
Chapter 3
Uniform Global Attractors
for Nonautonomous Evolution Inclusions

Mikhail Z. Zgurovsky and Pavlo O. Kasyanov

Abstract In this note, we prove the existence and provide basic structure properties
of compact (in the natural phase space) uniform global attractor for all global weak
solutions of the general classes of nonautonomous evolution equations and inclusions
that satisfy standard sign and polynomial growth conditions. The obtained results
allow to reduce the problem of the complete qualitative investigation of various
nonlinear systems into the “small” (compact) part of the natural phase space.

3.1 Introduction and Setting of the Problem

For evolution triple (Vi; H; V∗
i )

1 and multivalued map Ai : R+ × V ⇒ V∗, i =
1, 2, . . . , N , N = 1, 2, . . . , we consider a problem of longtime behavior (in the
natural phase space H) of all globally defined weak solutions for nonautonomous
evolution inclusion

y′(t) +
N∑

i=1

Ai(t, y(t)) � 0̄, (3.1)

as t → +∞. Let 〈·, ·〉Vi : Vi
∗ × Vi → R be the pairing in Vi

∗ × Vi that coincides on
H × Vi with the inner product (·, ·) in the Hilbert space H.

1That is, Vi is a real reflexive separable Banach space continuously and densely embedded into
a real Hilbert space H , H is identified with its topologically conjugated space H∗, V∗

i is a dual
space to Vi. So, there is a chain of continuous and dense embeddings: Vi ⊂ H ≡ H∗ ⊂ V∗

i (see,
e.g., Gajewski, Gröger, and Zacharias [1, Chap. I]).
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To introduce the assumptions on parameters of Problem (3.1) let us introduce addi-
tional constructions. A function ϕ ∈ Lloc

γ (R+), γ > 1, is called translation bounded
in Lloc

γ (R+), if

sup
t≥0

∫ t+1

t
|ϕ(s)|γ ds < +∞;

Chepyzhov and Vishik [2, p. 105]. A function ϕ ∈ Lloc
1 (R+) is called translation

uniform integrable (t.u.i.) in Lloc
1 (R+), if

lim
K→+∞ sup

t≥0

∫ t+1

t
|ϕ(s)|I{|ϕ(s)| ≥ K}ds = 0.

Note thatDunford–Pettis compactness criterionprovides that a functionϕ ∈ Lloc
1 (R+)

is t.u.i. in Lloc
1 (R+) if and only if for every sequence of elements {τn}n≥1 ⊂ R+

the sequence {ϕ( · + τn)}n≥1 contains a subsequence which converges weakly in
Lloc
1 (R+). Note that for any γ > 1 every translation bounded in Lloc

γ (R+) function is
t.u.i. in Lloc

1 (R+); Gorban et al. [3].
Throughout this paper, we suppose that the listed below assumptions hold:

Assumption 1 Let pi ≥ 2, qi > 1 are such that 1
pi

+ 1
qi

= 1, for each for i =
1, 2, . . . , N , and the embedding Vi ⊂ H is compact one, for some for i = 1, 2,
. . . , N .

Assumption 2 (Growth Condition) There exist a t.u.i. in Lloc
1 (R+) function c1 :

R+ → R+ and a constant c2 > 0 such that

N
max
i=1

‖di‖q
Vi

∗ ≤ c1(t) + c2

N∑

i=1

‖u‖p
Vi

for any u ∈ Vi, di ∈ Ai(t, u), i = 1, 2, . . . , N , and a.e. t > 0.

Assumption 3 (Signed Assumption) There exists a constant α > 0 and a t.u.i. in
Lloc
1 (R+) function β : R+ → R+ such that

N∑

i=1

〈di, u〉Vi ≥ α

N∑

i=1

‖u‖p
Vi

− β(t)

for any u ∈ Vi, di ∈ Ai(t, u), i = 1, 2, . . . , N , and a.e. t > 0.

Assumption 4 (Strong Measurability) If C ⊆ Vi
∗ is a closed set, then the set

{(t, u) ∈ (0,+∞) × Vi : Ai(t, u) ∩ C �= ∅} is a Borel subset in (0,+∞) × Vi.
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Assumption 5 (Pointwise Pseudomonotonicity) Let for each i = 1, 2, . . . , N and
a.e. t > 0, two assumptions hold:

(a) for every u ∈ Vi the set Ai(t, u) is nonempty, convex, and weakly compact one
in Vi

∗;
(b) if a sequence {un}n≥1 converges weakly in Vi toward u ∈ Vi as n → +∞, dn ∈

Ai(t, un) for any n ≥ 1, and lim sup
n→+∞

〈dn, un − u〉Vi ≤ 0, then for any ω ∈ Vi there

exists d(ω) ∈ Ai(t, u) such that

lim inf
n→+∞〈dn, un − ω〉Vi ≥ 〈d(ω), u − ω〉Vi .

Let 0 ≤ τ < T < +∞. As a weak solution of evolution inclusion (3.1) on the
interval [τ, T ], we consider an element u(·) of the space ∩N

i=1Lpi(τ, T; Vi) such that
for some di(·) ∈ Lqi(τ, T; Vi

∗), i = 1, 2, . . . , N , it is fulfilled:

−
T∫

τ

(ξ ′(t), y(t))dt +
N∑

i=1

T∫

τ

〈di(t), ξ(t)〉Vi dt = 0 ∀ξ ∈ C∞
0 ([τ, T ]; Vi), (3.2)

and di(t) ∈ Ai(t, y(t)) for each i = 1, 2, . . . , N and a.e. t ∈ (τ, T).

3.2 Preliminary Properties of Weak Solutions

Zgurovsky and Kasyanov [4, p. 225] provide the existence of a weak solution of
Cauchy problem (3.1) with initial data y(τ ) = y(τ ) on the interval [τ, T ], for any
y(τ ) ∈ H. For fixed τ and T , such that 0 ≤ τ < T < +∞, we denote

Dτ,T (y(τ )) = {y(·) | y is a weak solution of (3.1) on [τ, T ], y(τ ) = y(τ )}, y(τ ) ∈ H.

We remark that Dτ,T (y(τ )) �= ∅, if 0 ≤ τ < T < +∞ and y(τ ) ∈ H. Moreover, the
concatenation of Problem (3.1) weak solutions is a weak solutions too, i.e., if 0 ≤
τ < t < T , y(τ ) ∈ H, y(·) ∈ Dτ,t(y(τ )), and v(·) ∈ Dt,T (y(t)), then

z(s) =
{

y(s), s ∈ [τ, t],
v(s), s ∈ [t, T ],

belongs to Dτ,T (y(τ )); cf. Zgurovsky et al. [5, pp. 55–56].
Gronwall lemma provides that for any finite time interval [τ, T ] ⊂ R+ each weak

solution y of Problem (3.1) on [τ, T ] satisfies estimates
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‖y(t)‖2H − 2
∫ t

0
β(ξ)dξ + 2α

N∑

i=1

∫ t

s
‖y(ξ)‖p

Vi
dξ ≤ ‖y(s)‖2H − 2

∫ s

0
β(ξ)dξ,

(3.3)

‖y(t)‖2H ≤ ‖y(s)‖2He−2αγ (t−s) + 2
∫ t

s
(β(ξ) + αγ )e−2αγ (t−ξ)dξ, (3.4)

where t, s ∈ [τ, T ], t ≥ s; γ is a constant that does not depend on y, s, and t; see
Zgurovsky and Kasyanov [4, p. 225]. Therefore, any weak solution y of Problem
(3.1) on a finite time interval [τ, T ] ⊂ R+ can be extended to a global one, defined
on [τ,+∞).

For each τ ≥ 0 and y(τ ) ∈ H letDτ (y(τ )) be the set of all weak solutions (defined
on [τ,+∞)) of Problem (3.1) with initial data y(τ ) = y(τ ). Let us consider the family
K +

τ = ∪y(τ )∈HDτ (y(τ )) of all weak solutions of Problem (3.1) defined on the semi-
infinite time interval [τ,+∞).

Consider the Fréchet space Cloc(R+; H). We remark that the sequence {fn}n≥1

converges in Cloc(R+; H) toward f ∈ Cloc(R+; H) as n → +∞ iff the sequence
{Πt1,t2 fn}n≥1 converges in C([t1, t2]; H) toward Πt1,t2 f as n → +∞ for any finite
interval [t1, t2] ⊂ R+, where Πt1,t2 is the restriction operator to the interval [t1, t2];
Chepyzhov and Vishik [6, p. 918]. We denote T(h)y(·) = yh(·), where yh(t) = y(t +
h) for any y ∈ Cloc(R+; H) and t, h ≥ 0.

Let us consider united trajectory space that includes all globally defined on any
[τ,+∞) ⊆ R+ weak solutions of Problem (3.1) shifted to τ = 0:

K + = clCloc(R+;H)

[
⋃

τ≥0

{
y( · + τ) : y ∈ K +

τ

}
]

,

where clCloc(R+;H)[ · ] is the closure in Cloc(R+; H). Note that T(h){y( · + τ) : y ∈
K +

τ } ⊆ {y( · + τ + h) : y ∈ K +
τ+h} for any τ, h ≥ 0. Moreover,

T(h)K + ⊆ K + for any h ≥ 0,

because

ρCloc(R+;H)(T(h)u, T(h)v) ≤ ρCloc(R+;H)(u, v) for any u, v ∈ Cloc(R+; H),

where ρCloc(R+;H) is a standard metric on Fréchet space Cloc(R+; H); Zgurovsky and
Kasyanov [4, p. 226].

The following Lemma 3.1 and Theorem 3.1 are keynote for the existence of
compact (in the natural phase spaceH) uniform global attractor for all weak solutions
of Problem (3.1).

Lemma 3.1 (Zgurovsky and Kasyanov [4]) Let Assumptions (1)–(5) hold. Then,
there exist positive constants c3 and c4 such that the following inequalities hold:
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‖y(t)‖2H ≤ ‖y(s)‖2He−c3(t−s) + c4,

for each y ∈ K +, t ≥ s ≥ 0.

Theorem 3.1 (Zgurovsky and Kasyanov [4]) Let Assumptions (1)–(5) hold. Let
{yn}n≥1 ⊂ K + be a bounded in L∞(R+; H) sequence. Then, there exist a subse-
quence {ynk }k≥1 ⊂ {yn}n≥1 and an element y ∈ K + such that

max
t∈[τ,T ] ‖ynk (t) − y(t)‖H → 0, k → +∞,

for any finite time interval [τ, T ] ⊂ (0,+∞).

3.3 Uniform Global Attractor for all Weak Solutions
of Problem (3.1)

Let us define the multivalued semi-flow (m-semi-flow) G : R+ × H → 2H :

G(t, y0) := {y(t) : y(·) ∈ K + and y(0) = y0}, t ≥ 0, y0 ∈ H. (3.5)

For each t ≥ 0 and y0 ∈ H, the set G(t, y0) is nonempty. Moreover, the following
two conditions hold:

(i) G (0, ·) = I is the identity map;
(ii) G (t1 + t2, y0) ⊆ G (t1, G (t2, y0)) , ∀t1, t2 ∈ R+, ∀y0 ∈ H,

where G (t, D) = ∪
y∈D

G (t, y) , D ⊆ H.

We denote by distH(C, D) = supc∈C infd∈D ρ(c, d) the Hausdorff semi-distance
between nonempty subsets C and D of the Polish space H. Recall that the setR ⊂ H
is a global attractor of the m-semi-flow G if it satisfies the following conditions:

(i) R attracts each bounded subset B ⊂ H, i.e.,

distH(G(t, B),R) → 0, t → +∞; (3.6)

(ii) R is negatively semi-invariant set, i.e., R ⊆ G (t,R) for each t ≥ 0;
(iii) R is the minimal set among all nonempty closed subsets C ⊆ H that satisfy

(3.6).

The main result of this paper has the following form.

Theorem 3.2 Let Assumptions (1)–(5) hold. Then, the m-semi-flow G, defined in
(3.5), has a compact global attractor R in the phase space H.
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3.4 Proof of Theorem 3.2

Lemma 3.1 and Theorem 3.1 imply the following properties for the m-semiflow G,
defined in (3.5):

(a) for each t ≥ 0, the mapping G(t, · ) : H → 2H \ {∅} has a closed graph;
(b) for each t ≥ 0 and y0 ∈ H, the set G(t, y0) is compact in H;
(c) the setG(1, C̃),where C̃ := {z ∈ H : ‖z‖2H < c4 + 1}, is precompact and attracts

each bounded subset C ⊂ H.

Indeed, property (a) follows from Theorem 3.1; property (b) directly follows from
(a) and Theorem 3.1; property (c) holds, because of Lemma 3.1 and since the set
G(1, C̃) is precompact in H (Theorem 3.1).

According to properties (a)–(c), Mel’nik and Valero [7, Theorems 1, 2, Remark 2,
Proposition 1] yields that the m-semi-flow G has a compact global attractorR in the
phase space H.

3.5 Conclusions

For the class of nonautonomous differential-operator inclusions with pointwise
pseudomonotone operators, the dynamics (as t → +∞) of all global weak solutions
defined on [0,+∞) is examined. The existence of a compact global attractor in the
natural phase spaceH is proved. The results obtained allow one to study the dynamics
of solutions for new classes of evolution inclusions related to nonlinear mathematical
models of geophysical and socioeconomic processes and for fields with interaction
functions of pseudomonotone type satisfying the power growth and sign conditions.
For applications, one can consider newclasses of problemswith degeneracy, feedback
control problems, problems onmanifolds, problemswith delay, stochastic partial dif-
ferential equations, etc. (see Balibrea et al. [8]; Hu and Papageorgiou [9]; Gasinski
and Papageorgiou [10]; Kasyanov [11]; Kasyanov, Toscano, and Zadoianchuk [12];
Mel’nik and Valero [13]; Denkowski, Migórski, and Papageorgiou [14]; Gasinski
and Papageorgiou [10]; Zgurovsky et al. [5]; etc., see, also, [16–31]) involving dif-
ferential operators of pseudomonotone type and the corresponding choice of the
phase spaces. This note is a continuation of Zgurovsky and Kasyanov [4, 15].
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