
Chapter 13
Uniform Global Attractor
for Nonautonomous Reaction–Diffusion
Equations with Carathéodory’s Nonlinearity

Nataliia V. Gorban and Liliia S. Paliichuk

Abstract We consider nonautonomous reaction–diffusion system with
Carathéodory’s nonlinearity. We investigate the long-time dynamics of all globally
defined weak solutions under the standard sign and polynomial growth conditions.
We obtain new topological properties of solutions, in particular flattening property,
prove the existence of uniform global attractor for multivalued semiflow generated
by considered problem.

13.1 Introduction and Statement of the Problem

Let N , M = 1, 2, . . . . In a bounded domain Ω ⊂ RN with sufficiently smooth
boundary ∂Ω , we consider the following problem:

{
ut = aΔu − f (x, t, u), x ∈ Ω, t > 0,
u|∂Ω = 0,

(13.1)

where u = u(x, t) = (u(1)(x, t), . . . , u(M)(x, t)) is unknown vector function, a is
real M × M matrix, f = f (x, t, u) = ( f (1)(x, t, u), . . . , f (M)(x, t, u)) is given
interaction function.

Note that Problem (13.1) is a nonautonomous reaction–diffusion system.There are
a lot of papers on qualitative behavior of solutions for evolution systems of reaction–
diffusion type. This is due to theoretical and applied importance of such objects. The
partial cases of reaction–diffusion problem are Kolmogorov–Petrovsky–Piskunov
equations (the problem on the gene diffusion) [1], models of Belousov–Zhabotinsky
reaction [2, 3], Gause–Vitta models [4, 5], and Selkov model for glycolysis [6, 7].
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Reaction–diffusion equations are actively used for modeling various biological and
chemical processes.

Remark that existence andproperties of global attractors for autonomous reaction–
diffusion equations with smooth interaction functions are well-known results (see
[8, 9]). The autonomous equations and inclusionswithout uniqueness are investigated
in [10–15]. In [16, 17] for autonomous reaction–diffusion inclusion of subgradient
type, the existenceofLyapunov function is obtained, the structure of global attractor is
studied, and the application to climatology model is considered. For nonautonomous
equations of such type with almost periodic interaction functions, the results on
trajectory attractors are obtained in [18]. In [19], the existence of uniform trajectory
attractor for nonautonomous Problem (13.1) with Carathéodory’s nonlinearity is
proved. In this chapter, we prove the existence of uniformglobal attractor for Problem
(13.1).

Remark 13.1 Let γ ≥ 1 and Y be a real separable Banach space. We consider the
Fréchet space L loc

γ (R+;Y ) of all locally integrable functions with values in Y , i.e.,
ϕ ∈ L loc

γ (R+;Y ) if and only if for any finite interval [τ, T ] ⊂ R+ the restriction of
ϕ on [τ, T ] belongs to the space Lγ (τ, T ;Y ) [19].

Definition 13.1 ([19]) A function ϕ ∈ L loc
1 (R+; L1(Ω) is called a translation uni-

form integrable one in L loc
1 (R+; L1(Ω)), if

lim
K→+∞ sup

t≥0

t+1∫
t

∫
Ω

|ϕ(x, s)|χ{|ϕ(x,s)|≥K }dxds = 0.

Remark 13.2 A function ϕ ∈ L loc
1 (R+; L1(Ω)) is a translation uniform integrable

one in L loc
1 (R+; L1(Ω)) if and only if for every sequence of elements {τn}n≥1 ⊂ R+

the sequence {ϕ( · + τn)}n≥1 contains a subsequence which converges weakly in
L loc
1 (R+; L1(Ω)).
The following condition

sup
t≥0

t+1∫
t

‖ϕ(s)‖γ

E ds < +∞

is the sufficient condition for the translation uniform integrability of function ϕ; see
[19].

The Main Assumptions on Parameters of Problem (13.1)

Assumption (A) There exists a positive constant d such that 1
2 (a + a∗) ≥ d I ,

where I is the identity M × M matrix, a∗ is a transposed matrix for a.
Assumption (B) The interaction function f = ( f (1), . . . , f (M)) : Ω × R+ ×
R

M → R
M satisfies the standard Carathéodory’s conditions, i.e., (x, t, y) →
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f (x, t, y) is continuous map in y ∈ R
M for a.e. (x, t) ∈ Ω × R+, and it is mea-

surable map in (x, t) ∈ Ω × R+ for any y ∈ R
M .

Assumption (C) There exist a translation uniform integrable in L loc
1 (R+; L1(Ω))

function c1 : Ω × R+ → R+ and a constant c2 > 0 such that

M∑
i=1

∣∣ f (i)(x, t, y)
∣∣qi ≤ c1(x, t) + c2

M∑
i=1

∣∣y(i)
∣∣pi

for any y = (y(1), . . . , y(M)) ∈ R
M and a.e. (x, t) ∈ Ω × R+, where pi ≥ 2 and

qi > 1 are such that 1
pi

+ 1
qi

= 1 for any i = 1, 2, . . . , M .
Assumption (D) There exist a constant α > 0 and a translation uniform integrable
in L loc

1 (R+; L1(Ω)) function β : Ω × R+ → R+ such that

M∑
i=1

f (i)(x, t, y)y(i) ≥ α

M∑
i=1

∣∣y(i)
∣∣pi − β(x, t)

for any y = (y(1), . . . , y(M)) ∈ R
M and a.e. (x, t) ∈ Ω × R+.

Consider the evolution triple (V, H, V ∗),where H =(L2(Ω))M ,V = (H 1
0 (Ω))M ,

and V ∗ = (H−1(Ω))M with standard respective inner products and norms (·, ·)H and
‖ · ‖H , (·, ·)V and ‖ · ‖V , and (·, ·)V ∗ and ‖ · ‖V ∗ .

Let 0 ≤ τ < T < +∞. Denote

Lp(Ω) := L p1(Ω) × ... × L pM (Ω), Lq(Ω) := Lq1(Ω) × ... × LqM (Ω),

Lp(τ, T ; Lp(Ω)) := L p1(τ, T ; L p1(Ω)) × ... × L pM (τ, T ; L pM (Ω)),

Lq(τ, T ; Lq(Ω)) := Lq1(τ, T ; Lq1(Ω)) × ... × LqM (τ, T ; LqM (Ω)),

where p = (p1, p2, . . . , pM) and q = (q1, q2, . . . , qM).

Definition 13.2 A function u = u(x, t) ∈ L2(τ, T ; V ) ∩ Lp(τ, T ; Lp(Ω)) is called
a weak solution of Problem (13.1) on [τ, T ] if for any function ϕ = ϕ(x) ∈
(C∞

0 (Ω))M the following equality holds

d

dt

∫
Ω

u(x, t) · ϕ(x)dx +
∫

Ω

{a∇u(x, t) · ∇ϕ(x) + f (x, t, u(x, t)) · ϕ(x)}dx = 0

in the sense of scalar distributions on (τ, T ).

Conditions (A)–(D) guarantee the existence of at least one weak solution on arbi-
trary interval (τ, T ), 0 ≤ τ < T < ∞, with initial condition u(τ ) = uτ , uτ ∈ H
[20, pp. 283–284]. But the uniqueness is not provided.

The main goal of this paper is to investigate the uniform long-time behavior
of all globally defined weak solutions for Problem (13.1) with initial data uτ ∈ H
under listed above assumptions, in particular to prove the existence of uniform global
attractor for all globally defined weak solutions of Problem (13.1).
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13.2 Auxiliaries

Let 0 ≤ τ < T < ∞,u(τ ) ∈ H . Denote byDτ,T (u(τ )) the family of allweak solutions
on [τ, T ] with initial data u(τ ) = u(τ ); that is,

Dτ,T (u(τ )) = {u(·) |u is a weak solution of Problem (13.1) on [τ, T ], u(τ ) = u(τ )}.

Remark that Dτ,T (u(τ )) �= ∅ and Dτ,T (u(τ )) ⊂ Wτ,T where u(τ ) ∈ H . Moreover, the
concatenation of weak solutions of Problem (13.1) is a weak solution too, i.e., if
0 ≤ τ < t < T , u(τ ) ∈ H , u(·) ∈ Dτ,t (u(τ )), and v(·) ∈ Dt,T (u(t)), then

z(s) =
{

u(s), s ∈ [τ, t],
v(s), s ∈ [t, T ]

belongs to Dτ,T (u(τ )) (cf. [21, pp. 55–56]).
Listed above properties of solutions and Grönwall’s lemma provide that for any

finite time interval [τ, T ] ⊂ R+ each weak solution u of Problem (13.1) on [τ, T ]
satisfies estimates

‖u(t)‖2H − 2
∫ t
τ

∫
Ω

β(x, ξ)dxdξ + 2α
∑M

i=1

∫ t
s ‖u(i)(ξ)‖pi

L pi (Ω)dξ

+2d
∫ t

s ‖u(ξ)‖2V dξ ≤ ‖u(s)‖2H − 2
∫ s
τ

∫
Ω

β(x, ξ)dxdξ,
(13.2)

‖u(t)‖2H ≤ ‖u(s)‖2H e−2dλ1(t−s) + 2
∫ t

s

∫
Ω

β(x, ξ)e−2dλ1(t−ξ)dxdξ (13.3)

for any t, s ∈ [τ, T ], t ≥ s, where λ1 is the first eigenvalue of the scalar operator−Δ

with Dirichlet boundary conditions (cf. [20, p. 285], [21, p. 56], [22] and references
therein).

Any weak solution u of Problem (13.1) on a finite time interval [τ, T ] ⊂ R+ can
be extended to a global one, defined on [τ,+∞). For arbitrary τ ≥ 0 and u(τ ) ∈ H
denote by Dτ (u(τ )) the set of all weak solutions (defined on [τ,+∞)) of Problem
(13.1) with initial data u(τ ) = u(τ ). Consider the family of all weak solutions of
Problem (13.1) defined on the semi-infinite time interval [τ,+∞):

K +
τ = ∪u(τ )∈HDτ (u

(τ )).

Consider the Fréchet space C loc(R+; H) [23, p. 918]. We denote T (h)u(·) =
uh(·), where uh(t) = u(t + h) for any u ∈ C loc(R+; H) and t, h ≥ 0 [24].

Remark that in the autonomous case the set K + := K +
0 is translation semi-

invariant, i.e., T (h)K + ⊆ K + for any h ≥ 0. Such autonomous problems were
investigated in [20, Chap.XIII], [25–28], [21, Chap.2] and references therein; see
also [29]. In the nonautonomous case,wehave thatT (h)K +

0 � K +
0 . So,we consider

a united trajectory space [19] of the following form:
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K +
∪ :=

⋃
τ≥0

{
u( · + τ) ∈ C loc(R+; H) : u( · ) ∈ K +

τ

}
.

Then T (h){u( · + τ) : u ∈ K +
τ } ⊆ {u( · + τ + h) : u ∈ K +

τ+h} for any τ, h ≥ 0.
So, T (h)K +

∪ ⊆ K +
∪ for any h ≥ 0. Then, we consider an extended united trajectory

space for Problem (13.1):

K +
C loc(R+;H)

= clC loc(R+;H)

[
K +

∪
]
, (13.4)

where clC loc(R+;H)[ · ] is the closure in C loc(R+; H). Note that

T (h)K +
C loc(R+;H)

⊆ K +
C loc(R+)

for any h ≥ 0 (13.5)

(cf. [19, 23, 25]).
The following theorem characterizes the compactness properties of shifted solu-

tions for Problem (13.1) in the induced topology from C loc(R+; H).

Theorem 13.1 ([19, Theorem 4.1]) Let Assumptions (A)–(D) hold. If {un}n≥1 ⊂
K +

C loc(R+;H)
is an arbitrary sequence, which is bounded in L∞(R+; H), then there

exist a subsequence {unk }k≥1 ⊆ {un}n≥1 and an element u ∈ K +
C loc(R+;H)

such that

‖Πτ,T unk − Πτ,T u‖C([τ,T ];H) → 0, k → +∞,

for any finite time interval [τ, T ] ⊂ (0,+∞). Moreover, for any u ∈ K +
C loc(R+;H)

the
following estimate holds:

‖u(t)‖2H ≤ ‖u(0)‖2H e−c3t + c4

for any t ≥ 0, where positive constants c3 and c4 do not depend on u ∈ K +
C loc(R+;H)

and t ≥ 0.

Let us define the multivalued map G : R+ × H → 2H \ {∅} as

G(t, u0) = {u(t) ∈ H | u(·) ∈ K +
C loc(R+;H)

: u(0) = u0}. (13.6)

Then the multivalued map G is a multivalued semiflow (see [21], (13.4) and (13.5)).

Definition 13.3 (see [15, 21]) The set Θ ⊂ X is called a uniform global attractor
for multivalued semiflow G from (13.6) if the following conditions hold:

• Θ is an attracting set for G, that is for arbitrary bounded nonempty set B ⊂ H

distH (G(t, B),Θ) → 0 as t → +∞,

where distH (A, B) = supx∈A inf y∈B ||x − y||H for any non-empty sets A, B ⊂
H .
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• Θ is theminimal attracting set, that isΘ ⊂ clH Y for arbitrary attracting setY ⊂ H ;
• Θ ⊂ G (t,Θ) for all t ≥ 0.

Uniform global attractor is invariant if Θ = G(t,Θ) for all t ≥ 0.

Definition 13.4 ([30, Definition 2.7]) Multivalued semiflow G : R+ × H → 2H \
∅ satisfies the flattening property if for arbitrary bounded set B ⊂ H and ε > 0 there
exist t0(B, ε) andfinite-dimensional subspace E of H such that for bounded projector
P : H → E the set P(

⋃
t>t0

G (t, B)) is bounded in H , and

(I − P)(
⋃
t>t0

G (t, B)) ⊂ B(0, ε).

The following lemma provides the sufficient condition for justice of flattening
property for multivalued semiflow G.

Lemma 13.1 ([30, Lemmas 2.4, 2.6], [31, p. 35]) Let G be an asymptotically
compact multivalued semiflow in H, that is for arbitrary sequence {ϕn}n≥1 ⊂ G
with {ϕn(0)}n≥1 bounded, and for any sequence {tn}n≥1: tn → +∞ as n → ∞, the
sequence {ϕn(tn)}n≥1 has a convergent subsequence. Then for G the flattening prop-
erty holds.

13.3 Main Results

The main result of this note has the following formulation:

Theorem 13.2 Let Assumptions (A)–(D) hold. Then the multivalued semiflow G,
defined in (13.6), has a compact uniform global attractor Θ in the phase space H.

Proof From[21],wehave that the following conditions are sufficient for the existence
of a compact uniform global attractor for themultivalued semiflow G: for each t ≥ 0,
the mapping H � u �→ G(t, u) has a closed graph; G is asymptotically compact
multivalued semiflow; there exists R0 > 0 such that ∀R > 0 ∃T ≥ 0 (depended on
R) such that ∀t ≥ T

G(t, {u ∈ H | ρ(u, 0) ≤ R}) ⊂ B0 = {u ∈ H | ρ(u, 0) ≤ R0}. (13.7)

The first condition follows from (13.6). Theorem13.1 and assumptions (C), (D)
and estimates (13.2), (13.3) provide the asymptotically compactness of multivalued
semiflow G and the fulfillment of (13.7).

The following theorem implies that dynamics of allweak solutions of studiedproblem
is finite-dimensional within a small parameter.

Theorem 13.3 Let Assumptions (A)–(D) on the parameters of Problem (13.1) hold.
Then the multivalued semiflow G satisfies the flattening condition.
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Proof The statement of the theorem directly follows from Lemma13.1 and proof of
Theorem13.2.

Remark 13.3 All statements of Theorems13.2 and 13.3 hold for function f (x, t, u)

equals to the sumof interaction function f1(x, t, u), satisfyingAssumptions (A)–(D),
and an external force g ∈ L loc

2 (R+; V ∗), which satisfies

sup
t≥0

t+1∫
t

‖g(s)‖2V ∗ds < +∞.

The proofs are similar with some standard technical modifications.

As applications we may consider Fitz–Hugh–Nagumo system (signal transmission
across axons), complex Ginzburg–Landau equation (theory of superconductivity),
Lotka–Volterra systemwith diffusion (ecologymodels), Belousov–Zhabotinsky sys-
tem (chemical dynamics) and many other reaction–diffusion-type systems [32],
whose dynamics are well studied in autonomous case [9, 20], and in nonautonomous
case, when all coefficients are uniformly continuous on time variable (see [20, 21]
and references therein).
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