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Preface

Given collected articles have been organized as a result of open joint academic
panels of research workers from Faculty of Mechanics and Mathematics of
Lomonosov Moscow State University and Institute for Applied Systems Analysis
of the National Technical University of Ukraine “Kyiv Polytechnic Institute,”
devoted to applied problems of mathematics, mechanics, and engineering, which
attracted attention of researchers from leading scientific schools of Brazil, France,
Germany, Poland, Russian Federation, Spain, Mexico, Ukraine, USA, and other
countries. Modern technological applications require development and synthesis of
fundamental and applied scientific areas, with a view to reducing the gap that may
still exist between theoretical basis used for solving complicated technical problems
and implementation of obtained innovations. To solve these problems, mathe-
maticians, mechanics, and engineers from wide research and scientific centers have
been worked together. Results of their joint efforts, including applied methods of
modern algebra and analysis, fundamental and computational mechanics, nonau-
tonomous and stochastic dynamical systems, optimization, control and decision
sciences for continuum mechanics problems, are partially presented here. In fact,
serial publication of such collected papers to similar seminars is planned.

This is the sequel of earlier two volumes “Continuous and Distributed Systems:
Theory and Applications.” In this volume, we are focusing on recent advances in
dynamical systems and control (theoretical bases as well as various applications):

(1) we benefit from the presentation of modern mathematical modeling methods
for the qualitative and numerical analysis of solutions for complicated engi-
neering problems in physics, mechanics, biochemistry, geophysics, biology,
and climatology;

(2) we try to close the gap between mathematical approaches and practical
applications (international team of experienced authors closes the gap between
abstract mathematical approaches, such as applied methods of modern anal-
ysis, algebra, fundamental and computational mechanics, nonautonomous and

v



stochastic dynamical systems, on the one hand, and practical applications in
nonlinear mechanics, optimization, decision-making theory, and control the-
ory on the other); and

(3) we hope that this compilations will be of interest to mathematicians and
engineers working at the interface of these fields.

Moscow Victor A. Sadovnichiy
Kyiv Mikhail Z. Zgurovsky
April 2016
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Chapter 1
Convergence Almost Everywhere
of Orthorecursive Expansions in Functional
Systems

Vladimir V. Galatenko, Taras P. Lukashenko and Victor A. Sadovnichiy

Abstract Along with the convergence in L2-norm, convergence almost everywhere
of expansions in functional systems is a property of interest for both theoretical
studies and applications. In this paper we present results on convergence almost
everywhere for orthorecursive expansions which are a natural generalization of clas-
sical expansions in orthogonal systems. As a corollary of a more general result,
we obtain a condition on coefficients of an expansion that guarantees convergence
almost everywhere. We also show that this condition cannot be relaxed.

1.1 Introduction

Orthorecursive expansion [8] is a natural generalization of orthogonal expansion. In
case of an orthogonal system, these types of expansions give the same result, but
orthorecursive expansions can be utilized for a much broader class of systems, and
for redundant systems, they provide an absolute stability with respect to errors in
coefficient computation [2].

Let us recall the definition of orthorecursive expansions in a system of elements.
Let H be aHilbert space (herewe consider spaces overR; however, the case of spaces
overC is similar), and let {en}∞n=1 be an arbitrary sequence of nonzero elements from
H . For f ∈ H , we define a sequence of remainders {rn( f )}∞n=0 and a sequence of
coefficients { f̂n}∞n=1:

r0( f ) = f ;

V.V. Galatenko (B) · T.P. Lukashenko · V.A. Sadovnichiy
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f̂n+1 = (rn( f ), en+1)

(en+1, en+1)
, rn+1( f ) = rn( f ) − f̂n+1en+1 (n = 0, 1, 2, . . . ).

Definition 1.1 The series
∞∑

n=1
f̂nen is called an orthorecursive expansion of f in a

system {en}∞n=1.

Orthorecursive expansions share with orthogonal expansions such properties as
Bessel’s identity

∥
∥
∥
∥
∥
f −

N∑

n=1

f̂nen

∥
∥
∥
∥
∥

2

= ‖rN ( f )‖2 = ‖ f ‖2 −
N∑

n=1

f̂ 2n ‖en‖2 (N = 0, 1, 2, . . . ),

Bessel’s inequality
∞∑

n=1

f̂ 2n ‖en‖2 ≤ ‖ f ‖2,

the equivalence of convergence to the expanded element and Parseval’s identity

‖ f ‖2 =
∞∑

n=1

f̂ 2n ‖en‖2

(see [8]).
Similarly to orthogonal expansions, there are at least two main types of results

concerning orthorecursive expansions. The first one deals with the general properties
of these expansions (e.g., [2, 10]), while the second one is focused on the properties
of expansions in given functional systems or classes of functional systems (e.g., [1,
6, 7]).

Most of the results of both types concern the convergence with respect to a norm
inducedby a scalar product (for functional systems, it is L2-norm).However, for some
functional systems, results on pointwise convergencewere also obtained (e.g., [1, 8]).
At the same time, no general results on the pointwise convergence of orthorecursive
expansions were known.

In this paper, we obtain a condition on coefficients of an orthorecursive expan-
sion that guarantees convergence almost everywhere. The condition is obtained as a
corollary of amore general result.We also show that this condition cannot be relaxed.

In order to simplify formulas without loss of generality, we consider normed
systems, i.e., we suppose that ‖en‖ = 1 for all n.
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1.2 Main Results

We start with a very simple positive result on the pointwise convergence. In fact, it
is a result on Weyl multipliers [3, Chap.VIII, Sect. 1] for general (not necessarily
orthogonal) systems.

Theorem 1.1 Let {en(x)}∞n=1 be a normed functional system in L2(Ω), and let
{λn}∞n=1 ⊂ [1,+∞) be a sequence for which

∞∑

n=1

1

λn
= Λ < ∞.

Then, for every sequence {an}∞n=1 ⊂ R which satisfies the condition

∞∑

n=1

a2n · λn = L < ∞

the functional series
∞∑

n=1
anen(x) absolutely converges almost everywhere on Ω and

absolutely converges in L2(Ω), and

∥
∥
∥
∥
∥

∞∑

n=1

anen(x)

∥
∥
∥
∥
∥

≤ √
LΛ. (1.1)

Note that in case of normed orthogonal systems, the classicalMenshov’s result [9]
implies that an exact Weyl multiplier for the almost everywhere convergence is
{log2 n}.
Corollary 1.1 If there exists such a sequence {λn}∞n=1 ⊂ [1,+∞) with

∞∑

n=1

1

λn
< ∞

that coefficients of an orthorecursive expansion of a function f ∈ L2(Ω) in a normed
functional system {en(x)}∞n=1 satisfy the condition

∞∑

n=1

f̂ 2n · λn < ∞,

then the orthorecursive expansion
∞∑

n=1
f̂nen(x) absolutely converges almost every-

where on Ω .
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For example, if | f̂n| do not exceed C
n1+α for all n, where C and α are arbitrary

positive constants, then convergence almost everywhere can be guaranteed for the
orthorecursive expansion as

{
n1+α

}∞
n=1 can be taken as {λn}∞n=1.

Note that in this case, the orthorecursive expansion also absolutely converges in
L2(Ω). However, the limit does not necessarily coincide with f .

The next result shows that in spite of its simplicity, the condition in Theorem 1.1
cannot be relaxed.

Theorem 1.2 Let L2(Ω) be a separable space, and let {λn}∞n=1 ⊂ [1,∞) be an
arbitrary sequence for which

∞∑

n=1

1

λn
= ∞.

Then, for every function f from L2(Ω) with ‖ f ‖ > 0, there exists a normed func-
tional system {en(x)}∞n=1 ⊂ L2(Ω) such that the orthorecursive expansion of f in
this system diverges almost everywhere and diverges in L2(Ω), while

∞∑

n=1

f̂ 2n · λn < ∞.

Note that if the condition of convergence of an orthorecursive expansion in L2

is additionally imposed, then almost everywhere convergence can be guaranteed by
a softer condition on {λn}∞n=1 in comparison with the condition from Theorem 1.1.
The details will be given in subsequent publications.

1.3 Proofs

We start with the proof of Theorem 1.1 which is quite simple and straightforward.
For an arbitrarymeasurable set E ⊂ Ω withmeasureμE < ∞due to theCauchy–

Schwarz inequality

∫

E
|anen(x)| dμ ≤

(∫

E
dμ

)1/2

·
(∫

Ω

|anen(x)|2 dμ

)1/2

= √
μE · |an|.

At the same time,

∞∑

n=1

|an | =
∞∑

n=1

1√
λn

·
(
|an |

√
λn

)
≤

( ∞∑

n=1

1

λn

)1/2

·
( ∞∑

n=1

a2nλn

)1/2

= √
LΛ < ∞.

(1.2)
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Thus,

∞∑

n=1

∫

E
|anen(x)| dμ < ∞

and Beppo Levi’s theorem implies that the series
∞∑

n=1
|anen(x)| converges almost

everywhere on E . As E is an arbitrary measurable subset ofΩ with a finite measure,
the series converges almost everywhere on Ω as well.

Absolute convergence in L2(Ω) and the estimate (1.1) directly follow from (1.2)
as the system {en(x)}∞n=1 is normed.

The proof of Theorem 1.2 is less straightforward. We start it with a number of
technical lemmas.

Lemma 1.1 Let d and h be vectors from R
2 with ‖d‖ = δ > 0, ‖h‖ = 1, and an

angle between these vectors equal to γ (0 ≤ γ ≤ π ). Then, for every finite set {αn}Nn=1
of positive numbers with

N∑

n=1

αn ≥ γ and
N∑

n=1

α2
n < 1

there exists a finite system of normed vectors {en}Nn=1 ⊂ R
2, such that the finite

orthorecursive expansion
N∑

n=1
d̂nen of d in this system satisfies the conditions

∣
∣
∣d̂n

∣
∣
∣ ≤ δαn (n = 1, 2, . . . , N ), rN = βh,

where rN = d −
N∑

n=1
d̂nen, and

δ

(

1 −
N∑

n=1

α2
n

)1/2

≤ β ≤ δ.

In order to prove this lemma, we first consider a trivial case γ = 0 (i.e., d = δh).
In this case, we find a unit vector e orthogonal to d and set all en to e. We get d̂n = 0
(n = 1, 2, . . . , N ), rN = d, and β = δ.

In case of γ > 0, we divide the angle between d and h into N angles with angle
measure γn , where 0 < γn ≤ αn for all n = 1, 2, . . . , N . Then, for each n in the
angle between vectors d and h, we find a unit vector vn such that the angle between

vn and d is
n∑

k=1
γk . One can easily see that vN coincides with h. Finally, for each

n = 1, 2, . . . , N , we find a unit vector orthogonal to vn and take it as en (an arbitrary
unit vector orthogonal to vn is taken). For this selection, we have
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|d̂1| = |(d, e1)| = ‖d‖ sin γ1 ≤ δγ1, r1 = β1v1 (β1 > 0),

δ2 ≥ ‖r1‖2 = β2
1 = ‖d‖2 − d̂2

1 ≥ δ2
(
1 − γ 2

1

)
,

|d̂2| = |(r1, e2)| = ‖r1‖ sin γ2 ≤ δγ2, r2 = β2v2 (β2 > 0),

δ2 ≥ ‖r2‖2 = β2
2 = ‖r1‖2 − d̂2

2 ≥ δ2
(
1 − γ 2

1 − γ 2
2

)
,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ,

|d̂N | = |(rN−1, eN )| = ‖rN−1‖ sin γN ≤ δγN , rN = βNvN (βN > 0),

δ2 ≥ ‖rN‖2 = β2
N = ‖rN−1‖2 − d̂2

N ≥ δ2

(

1 −
N∑

n=1

γ 2
n

)

.

Thus, for all n = 1, 2, . . . , N , we have
∣
∣
∣d̂n

∣
∣
∣ ≤ δγn ≤ δαn , rN = βNvN = βh, and

δ

(

1 −
N∑

n=1

α2
n

)1/2

≤ δ

(

1 −
N∑

n=1

γ 2
n

)1/2

≤ β ≤ δ,

so all the required conditions are satisfied.

Lemma 1.2 Let f be an arbitrary unit vector of a Hilbert space H, and let {αn}∞n=1
be a sequence of positive numbers such that

∞∑

n=1

αn = ∞,

∞∑

n=1

α2
n = ν ∈ (0, 1).

Let {hk}∞k=1 be an arbitrary sequence of unit vectors from H. Then, there exists a
normed system {en}∞n=1 ⊂ H such that coefficients of the orthorecursive expansion
of f in this system satisfy the estimate | f̂n| ≤ αn (n = 1, 2, 3, . . .) and there exists
an increasing sequence of indices {nk}∞k=1 for which

rnk ( f ) = rnk = βkhk, βk > 0, β2
k = 1 −

nk∑

j=1

f̂ 2j ≥ 1 −
nk∑

j=1

α2
j

(so for all k = 1, 2, 3, . . . the remainder rnk ( f ) is collinear to hk and ‖rnk ( f )‖2
exceeds 1 − ν).

Lemma 1.2 can be proved simply using Lemma 1.1 and induction.
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Let γ1 be the angle between f and h1. We find such n1 that
n1∑

j=1
α j ≥ γ1 and

applying Lemma 1.1 to f and h1, we construct vectors {en}n1n=1 which give | f̂n| ≤ αn

(n = 1, 2, . . . , n1), rn1( f ) = β1h1, β1 > 0 (and due to Bessel’s identity, we imme-

diately have the equality β2
1 = 1 −

n1∑

j=1
f̂ 2j ).

Assume that vectors {en}nmn=1 are already constructed and rnm ( f ) = βmhm with
βm > 0. Let γm+1 be the angle between rnm and hm+1. We find such nm+1 > nm

that
nm+1∑

j=nm+1
α j ≥ γm+1 and applying Lemma 1.1 to rnm and hm+1, we construct the

system {en}nm+1
n=nm+1. Taking into consideration that coefficients and remainders of the

orthorecursive expansion of rnm in this system with indices k = 1, 2, . . . , nm+1 −
nm coincide with coefficients and remainders of the orthorecursive expansion of f
in the system {en}nm+1

n=1 with indices nm + k, we have | f̂n| ≤ αn (k = nm + 1, nm +
2, . . . , nm+1), rnm+1( f ) = βm+1hm+1, βm+1 > 0 and

β2
m+1 = β2

m −
nm+1∑

j=nm+1

f̂ 2j = 1 −
nm+1∑

j=1

f̂ 2j .

Lemma 1.3 Let f be a unit vector of a separable Hilbert space H, and let {αn}∞n=1
be a sequence of positive numbers such that

∞∑

n=1

αn = ∞,

∞∑

n=1

α2
n ∈

(

0,
3

4

)

.

Then, there exists a normed system of elements {en}∞n=1 ⊂ H such that coefficients of
the orthorecursive expansion of f in this system satisfy the estimate | f̂n| ≤ αn (and
hence all remainders rn( f ) have norms exceeding

1
2 ) and the sequence of remainders

normed
{

rn
‖rn‖

}∞
n=0

is everywhere dense in a unit sphere S = {x ∈ H : ‖x‖ = 1}.

Lemma 1.3 directly follows from the monotony of the sequence of norms
{‖rn‖}∞n=0 (which is a corollary of Bessel’s identity) and Lemma 1.2 as we can apply
this lemma to a sequence of unit vectors {hk}∞k=1 that is everywhere dense in S. In
this case,

rnk
‖rnk ‖ = hk and ‖rnk‖2 > 1 − 3

4 = 1
4 for all k.

Remark 1.1 Note that the expansion of f from Lemma 1.3 diverges. Moreover, its
orthogonal projection on an arbitrary closed non-trivial (i.e., different from {0}) sub-
space also diverges. It follows from the fact that there exists an infinite subsequence
of remainders which has the following properties: all remainders in the subsequence
have norms exceeding 1

2 ; after norming, these remainders form an everywhere dense
subset of the unit sphere of the subspace.
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Now, we proceed directly to the proof of Theorem 1.2. Let Λn denote the partial

sum
n∑

k=1

1
λk
. As the series

∞∑

n=1

1
λn

diverges, due to Abel–Dini theorem [4, Chap. IX,

Sect. 39], the series
∞∑

n=1

1
λnΛn

also diverges, but the series
∞∑

n=1

1
λnΛ2

n
converges.

We take a number sequence αn = δ
λnΛn

, where a positive δ is selected in such a
way that

∞∑

n=1

α2
nλn =

∞∑

n=1

δ2

λnΛ2
n

<
3

4
.

Note that
∞∑

n=1
αn diverges.

Let f be an arbitrary function from L2(Ω) with ‖ f ‖ = 1 (the case of f with
another positive norm is brought to this case by norming). Lemma 1.3 guarantees
that there exists such a normed system {en(x)}∞n=1 ⊂ L2(Ω) that the orthorecursive
expansion of f in this system has the following properties: | f̂n| ≤ αn for all n and
hence,

∞∑

n=1

f̂ 2n λn ≤
∞∑

n=1

α2
nλn < ∞,

all remainders rn( f ) have norms exceeding 1
2 , and the sequence of normed remain-

ders
{

rn( f )
‖rn( f )‖

}∞
n=0

is everywhere dense in a unit sphere of L2(Ω).

According to Remark 1.1, the orthorecursive expansion of f in this system
diverges in L2(Ω) and its orthogonal projection on an arbitrary closed non-trivial
subset of L2(Ω) also diverges. If we assume that the orthorecursive expansion of f
in the constructed system {en(x)}∞n=1 converges pointwise on a set E with a positive
measure, then due to Egorov’s theorem [5, Chap.8, Sect. 28.5], it would uniformly
converge on a set E0 ⊂ E with μE0 > 0. Hence, the orthogonal projection of the
orthorecursive expansion on the subspace L2(E0) ⊂ L2(Ω) would converge in L2-
norm. This contradiction completes the proof.

1.4 Conclusion

The results of the paper are the first non-trivial general results on Weyl multipliers
for orthorecursive expansions. In the subsequent papers, we plan to state and prove
similar results in case of additional assumption of expansion convergence in L2.

We hope that these results would attract attention to problems of pointwise
convergence of orthorecursive expansions and stir up the studies both for a gen-
eral case and for cases of specific functional systems, including non-orthogonal
wavelets [6, 7].
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Chapter 2
Billiard Systems as the Models
for the Rigid Body Dynamics

Victoria V. Fokicheva and Anatoly T. Fomenko

Abstract Description of the rigid body dynamics is a complex problem, which goes
back toEuler andLagrange.These systems are described in the six-dimensional phase
space and have two integrals the energy integral and the momentum integral. Of par-
ticular interest are the cases of rigid body dynamics, where there exists the additional
integral, and where the Liouville integrability can be established. Because many of
such a systems are difficult to describe, the next step in their analysis is the calcula-
tion of invariants for integrable systems, namely, the so called Fomenko–Zieschang
molecules, which allow us to describe such a systems in the simple terms, and also
allow us to set the Liouville equivalence between different integrable systems. Bil-
liard systems describe the motion of the material point on a plane domain, bounded
by a closed curve. The phase space is the four-dimensional manifold. Billiard sys-
tems can be integrable for a suitable choice of the boundary, for example, when
the boundary consists of the arcs of the confocal ellipses, hyperbolas and parabo-
las. Since such a billiard systems are Liouville integrable, they are classified by the
Fomenko–Zieschang invariants. In this article, we simulate many cases of motion of
a rigid body in 3-space by more simple billiard systems. Namely, we set the Liou-
ville equivalence between different systems by comparing the Fomenko–Zieschang
invariants for the rigid body dynamics and for the billiard systems. For example,
the Euler case can be simulated by the billiards for all values of energy integral.
For many values of energy, such billard simulation is done for the systems of the
Lagrange top and Kovalevskaya top, then for the Zhukovskii gyrostat, for the sys-
tems by Goryachev–Chaplygin–Sretenskii, Clebsch, Sokolov, as well as expanding
the classical Kovalevskaya top Kovalevskaya–Yahia case.
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2.1 Introduction

Definition 2.1 A symplectic structure on a smooth manifold M is a differential 2-
form ω satisfying the following two properties:

(1) ω is closed, i.e., dω = 0;
(2) ω is non-degenerate at each point of the manifold, i.e., in local coordinates,

detΩ(x) �= 0, where Ω(x) = (ωij(x)) is the matrix of this form.

The manifold endowed with a symplectic structure is called symplectic.

Let H be a smooth function on a symplectic manifoldM. We define the vector of
skew-symmetric gradient sgradH for this function by using the following identity:

ω(v, sgrad H) = v(H),

where v is an arbitrary tangent vector v. In local coordinates x1, . . . , xn, we obtain
the following expression:

(sgrad H)i =
∑

ωij ∂H

∂xj
,

where ωij are components of the inverse matrix to the matrix Ω .

Definition 2.2 The vector field sgradH is called a Hamiltonian vector field. The
function H is called the Hamiltonian of the vector field sgradH.

One of the main properties of Hamiltonian vector fields is that they preserve the
symplectic structure ω.

Definition 2.3 Dynamical system ẋ = v on the smooth manifoldM is called Hamil-
tonian if and only if on the manifold M we can find symplectic structure ω and the
function H such that system can be wrote as v = sgradH.

Definition 2.4 Let f and g be two smooth functions on a symplectic manifoldM. By
definition, we set {f , g} = ω(sgrad f , sgrad g) = (sgrad f )(g) This operation {·, ·} :
C∞ × C∞ → C∞ on the space of smooth functions on M is called the Poisson
bracket.

LetM2n be a smooth symplectic manifold, and let v = sgradH be a Hamiltonian
dynamical system with a smooth Hamiltonian H.

Definition 2.5 The Hamiltonian system is called Liouville integrable if there exists
a set of smooth functions f1, . . . , fn such that

(1) f1, . . . , fn are integrals of v,
(2) they are functionally independent on M, i.e., their gradients are linearly inde-

pendent on M almost everywhere.
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(3) {fi, fj} = 0 for any i and j,
(4) the vector fields sgrad fi are complete, i.e., the natural parameter on their integral

trajectories is defined on the whole real axis.

Definition 2.6 The decomposition of the manifoldM2n into connected components
of common level surfaces of the integrals f1, . . . , fn is called the Liouville foliation
corresponding to the integrable system v = sgradH.

Since f1, . . . , fn are preserved by the flow v, every leaf of the Liouville foliation is an
invariant surface. The Liouville foliation consists of regular leaves (fillingM almost
in the whole) and singular ones (filling a set of zero measure). The Liouville theorem
formulated belowdescribes the structure of theLiouville foliation near regular leaves.

Consider a common regular level Tξ for the functions f1, . . . , fn, that is Tξ = {x ∈
M|fi(x) = ξi, i = 1, . . . , n}. The regularity means that all 1-forms dfi are linearly
independent on Tξ .

Theorem 2.1 (J. Liouville) Let v = sgradH be a Liouville integrable Hamiltonian
system on M2n, and let Tξ be a regular level surface of the integrals f1, . . . , fn. Then

(1) Tξ is a smooth Lagrangian submanifold that is invariant with respect to the flow
v = sgradH and sgrad f1, . . . , sgrad fn.

(2) if Tξ is connected and compact, then Tξ is diffeomorphic to the n-dimensional
torus Tn (this torus is called the Liouville torus);

(3) the Liouville foliation is trivial in some neighborhood of the Liouville torus, that
is, a neighborhood U of the torus Tξ is the direct product of the torus Tξ and the
disc Dn;

(4) in the neighborhood U = Tn × Dn there exists a coordinate system s1, . . . , sn,
ϕ1, . . . , ϕn, (which is called the action-angle variables), where s1, . . . , sn are
coordinates on the disc Dn and ϕ1, . . . , ϕn are standard angle coordinates on
the torus, such that

• ω = Σdϕi ∧ dsi, are functions of the integrals,
• the action variables si are functions of the integrals f1, . . . , fn,
• in the action-angle variables s1, . . . , sn, ϕ1, . . . , ϕn, the Hamiltonian flow v is
straightened on each of the Liouville tori in the neighborhood U, that is,

ṡi = 0, ϕ̇i = qi(s1, . . . , sn), i = 1, 2, . . . , n.

(this means that the flow v determines the conditionally periodic motion that
generates a rational or irrational rectilinear winding on each of the tori).

The problems of the rigid body dynamics can be described on the six-dimensional
phase manifold, which in some cases is the Poisson manifold. In integrable case we
can restrict the system to a submanifold M4, where it is possible to introduce a
symplectic structure. As a result we assume the existence of such four-dimensional
symplectic manifold. Thus, the Liouville tori are two-dimensional tori.

Liouville foliation provides a lot of information about the solutions of the sys-
tem. In fact, according to the Liouville theorem, the solutions on each torus, are
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its rectilinear windings. The manifold of the parameters of the integrals, where the
rectilinear winding is rational (the case of the so-called resonant torus) has measure
zero. Thus, for almost all values of the additional integral the closure of the solution
forms the Liouville torus. If you change the initial data the change entails the change
the Liouville torus, which makes it possible to describe the behavior of the solu-
tions of the system. This weakening of the orbital equivalence is called the Liouville
equivalence, see below.

Definition 2.7 Let (M4
1 , ω1, f1, g1) and (M4

2 , ω2, f2, g2) be two Liouville integrable
systems on symplectic manifolds M4

1 and M4
2 . Consider the isoenergy surfaces

Q3
1 = {x ∈ M4

1 : f1(x) = c1} Q3
2 = {x ∈ M4

2 : f2(x) = c2}, endowed with the Liou-
ville foliations. Integrable systems on these 3-manifolds are said to be Liouville
equivalent if there exists a leafwise diffeomorphismQ3

1 → Q3
2, preserving the orien-

tation of the 3-manifolds Q3
1 and Q3

2 and of all critical circles.

Let (M4, ω, f1, f2) be Liouville integrable system on symplectic manifolds M4. The
manifold Q3 = {x ∈ M4 : f1(x) = c1} is foliated into tori and singular leaves. Con-
sider the base of the Liouville foliation on Q3. This is a one-dimensional graph W
called the Kronecker–Reeb graph of the function f2|Q3 . The structure of a foliation
in a small neighborhood of the singular leaf corresponding to a vertex of the graph is
described by a combinatorial object, called atom. A graph each of whose vertices is
assigned an atom is called a Fomenko invariant (rough molecule). At the vertices of
“atoms” are placed; they describe the corresponding bifurcations of the Liouville tori.

We now describe the atoms we need.
The minimax 3-atom A. Topologically, this 3-atom is presented as a solid torus

foliated into concentric tori, shrinking into the axis of the solid torus. In other words,
the 3-atom A is the direct product of a circle and a disc foliated into concentric
circles (see Fig. 2.1). From the viewpoint of the corresponding dynamical system, A
is a neighborhood of a stable periodic orbit.

The saddle 3-atoms without stars. Consider an arbitrary 2-atom without stars,
i.e., a two-dimensional oriented compact surface P with a Morse function f : P →
R having just one critical value. The corresponding 3-atom is the direct product
U = P × S1. An example is shown in Fig. 2.1: this is the simple 3-atom B.

The simple 3-atom A∗ with star is presented in Fig. 2.1.
The molecule W contains a lot of essential information on the structure of the

Liouville foliation on Q3. However, this information is not quite complete. We have
to add some additional information to the moleculeW , namely, the rules that clarify
how to glue the isoenergy surface Q3 from individual 3-atoms.

To this end, cut every edge of the molecule in the middle. The molecule will
be divided into individual atoms. From the point of view of the manifold Q3 this
operation means that we cut it along some Liouville tori into 3-atoms. Imagine that
we want to make the backward gluing. The molecule W tells us which pairs of
boundary atoms we have to glue together. To realize how exactly they should be
glued, for every edge ofW , we have to define the gluing matrix C, which determines
the isomorphism between the fundamental groups of the two glued tori. To write
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down this matrix, we have to fix some coordinate systems on the tori. As usual, by a
coordinate system on the torus, we mean a pair of independent oriented cycles (λ, μ)

that are generators of the fundamental group π1(T 2) = Z ⊕ Z (or, what is the same
in this case, of the one-dimensional homology group). Geometrically, this simply
means that the cycles λ and μ are both nontrivial and are intersected transversely at
a single point. According to the fixed rules for each type of 3-atom we must choose
a special coordinate system on the boundary tori of the atom (see [1]) which will be
called admissible.

To the gluingmatrixCi =
(

αi βi

γi δi

)

on the edge ei we assign two following numer-

ical marks.

Definition 2.8 The mark ri on the edge ei of the molecule W is:

ri =
{

αi
βi

mod 1 ∈ Q/Z, ifβi �= 0,

symbol∞, ifβi = 0.

Definition 2.9 The mark εi on the edge ei of the molecule W is:

εi =
{
signβi, ifβi �= 0,

signαi, ifβi = 0.

First, we need some preliminary construction. An edge of the molecule with mark
ri equal to ∞ is said to be it an infinite edge. The other edges are called finite. Let

Fig. 2.1 The simple 3-atoms A,B and A∗.
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us cut the molecule along all the finite edges. As a result, the molecule splits into
several connected pieces.

Definition 2.10 Those pieces which do nor contain atoms of type A are said to be
families. For example, if all the edges of a molecule are finite, then each of its saddle
atoms is a family by definition.

Consider a single family U = Uk . All its edges can be divided into three classes:
incoming, outgoing, and interior.

Definition 2.11 To each of these edges ei, we assign an integer number Θi by the
following rule:

Θi =

⎧
⎪⎨

⎪⎩

[ αi
βi

], if ei − outgoing edge,

[− δi
βi

], if ei − incoming edge,

[− γi
αi

], if ei − interior edge.

For every family Uk , we define an integer number nk by setting

nk =
∑

Θi,

where the sum is taken over all edges of the given family, and k is the number of the
family.

Definition 2.12 The molecule W endowed with the marks ri, εi and nk is called a
marked molecule. We denote it by

W∗ = (W , ri, εi, nk).

Theorem 2.2 (A.T. Fomenko, X. Zieschang) Two integrable Hamiltonian systems
on the isoenergy surfaces Q3

1 = {x ∈ M4
1 : f1(x) = c1} and Q3

2 = {x ∈ M4
2 : f2(x) =

c2} are Liouville equivalent if and only if their marked molecules coincide.

2.2 The Rigid Body Dynamics

The classical Euler–Poisson equations [10, 11], that describe the motion of a rigid
body with a fixed point in the gravity field, have the following form (in the coordinate
system whose axes are directed along the principal moments of inertia of the body):

Aω̇ = Aω × ω − Pr × ν,

ν̇ = ν × ω. (2.1)

Hereω and ν are phase variables of the system,whereω is the angular velocity vector,
ν is the unit vector for the vertical line. The parameters of (2.1) are the diagonalmatrix
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A = diag(A1,A2,A3) that determines the tensor of inertia of the body, the vector r
joining the fixed point with the center of mass, and the weight P of the body. Notation
a × b is used for the vector product in R

3. The vector Aω has the meaning of the
angular momentum of the rigid body with respect to the fixed point.

N.E. Zhukovskii studied the problem on themotion of a rigid body having cavities
entirely filled by an ideal incompressible fluid performing irrotational motion [12].
In this case, the angular momentum is equal to Aω + λ, where λ is a constant vector
characterizing the cyclic motion of the fluid in cavities. The angular momentum has
a similar form in the case when a flywheel is fixed in the body such that its axis
is directed along the vector λ. Such a mechanical system is called a gyrostat. The
motion of a gyrostat in the gravity field, as well as some other problems in mechanics
(see, for instance, [13]), are described by the system of equations

Aω̇ = (Aω + λ) × ω − Pr × ν,

ν̇ = ν × ω, (2.2)

whose particular case for λ = 0 is system (2.1).
Another generalization of Eq. (2.1) can be obtained by replacing the homogeneous

gravity field with a more complicated one. The equations of motion of a rigid body
with a fixed point in an arbitrary potential force field were obtained by Lagrange. If
this field has an axis of symmetry, then this axis can be assumed to be vertical, and
the equations become

Aω̇ = Aω × ω + ν × ∂U

∂ν
,

ν̇ = ν × ω, (2.3)

where U(ν) is the potential function, and ∂U
∂ν

denotes the vector with coordinates
( ∂U

∂ν1
, ∂U

∂ν2
, ∂U

∂ν3
). For U = P〈r, ν〉 we obtain system (2.1). By 〈a, b〉 we denote the

standard Euclidean inner product in R3.

The generalized Eqs. (2.2) and (2.3) can be combined by considering, the motion
of a gyrostat in an axially symmetric force field. The most general equations that
describe various problems in rigid body dynamics have the following form (see, for
example, Kharlamov’s book [14]):

Aω̇ = (Aω + κ) × ω + ν × ∂U

∂ν
,

ν̇ = ν × ω, (2.4)

where κ(ν)—is the vector functionwhose components are the coefficients of a certain
closed 2-form on the rotation group SO(3), the so-called form of gyroscopic forces.
Moreover, κ(ν) is not arbitrary, but has the form
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κ = λ + (Λ − divλ · E)ν, (2.5)

where λ(ν)—is an arbitrary vector function, divλ = ∂λ1
∂ν1

+ ∂λ2
∂ν2

+ ∂λ3
∂ν3

, and Λ =
(

∂λi
∂νj

)T
is the transposed Jacobi matrix. Obviously, systems (2.1)–(2.3) are particular

cases of (2.4).
System (2.4) always possesses the geometrical integral

F = 〈ν, ν〉 = 1

and the energy integral

E = 1

2
〈Aω,ω〉 + U(ν).

If the vector function κ(ν) has the form (2.5) then there exists another integral the
so-called area integral

G = 〈Aω + λ, ν〉.

It canbe shown thatEqs. (2.4), (2.5) areHamiltonianoncommon four-dimensional
levels of the geometrical and area integrals. Moreover, (2.4) and (2.5) can be repre-
sented as the Euler equations for the six-dimensional Lie algebra e(3) of the group
of isometrical transformations (motions) of three-dimensional Euclidean space.

On the dual space e(3)∗, there is the standard Lie-Poisson bracket defined for
arbitrary smooth functions f and g:

{f , g}(x) = x([dxf , dxg]),

where x ∈ e(3)∗, [, ] denotes the commutator in the Lie algebra e(3), and dxf and
dxg—are the differentials of f and g at the point x. These differentials in fact belong
to the Lie algebra e(3) after standard identification of e(3)∗∗ with e(3). In terms of
the natural coordinates

S1, S2, S3,R1,R2,R3

on the space e(3)∗ this bracket takes the form:

{Si, Sj} = εijkSk, {Ri, Sj} = εijkRk, {Ri,Rj} = 0, (2.6)

where {i, j, k} = {1, 2, 3}, and εijk = 1
2 (i − j)(j − k)(k − i).

A Hamiltonian system on e(3)∗ relative to the bracket (2.6), i.e. the so-called
Euler equations, by definition has the form:

Ṡi = {Si,H}, Ṙi = {Ri,H},
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where H is a function on e(3)∗ called the Hamiltonian of the system. By introducing
the vectors

S = (S1, S2, S3) and R = (R1,R2,R3),

these equations can be rewritten in the form of the generalized Kirchhoff equations:

Ṡ =
(

∂H

∂S

)

× S +
(

∂H

∂R

)

× R, Ṙ =
(

∂H

∂S

)

× R. (2.7)

Proposition 2.1 The mapping ϕ : R6(ω, ν) → R
6(S,R), given by the formulas

S = −(Aω + λ),R = ν, (2.8)

establishes an isomorphism between system (2.4), (2.5) and system (2.7) with the
Hamiltonian

H = (S1 + λ1)
2

2A1
+ (S2 + λ2)

2

2A2
+ (S3 + λ3)

2

2A3
+ U, (2.9)

where the parameters A1,A2,A3 and the function λ1, λ2, λ3,U are taken from (2.4),
(2.5), but the functions are defined not on the space R3(ν), but on R

3(R).

Corollary 2.1 Condition (2.5) imposed on the vector function κ(ν) is equivalent
to the fact that (2.4) is isomorphic to the Euler equations (2.7) on e(3)∗ with the
quadratic (in variables S) Hamiltonian of the form

H = 〈CS, S〉 + 〈W , S〉 + V, (2.10)

where is a constant symmetric 3 × 3-matrix, W(R) is a vector function, and V (R) is
a smooth scalar function.

Under mapping (2.8), the integrals F = 〈ν, ν〉 and G = 〈Aω + λ, ν〉 transform into
the invariants of the Lie algebra e(3)

f1 = R2
1 + R2

2 + R2
3, f2 = S1R1 + S2R2 + S3R3,

and the energy integral E = 1
2 〈Aω,ω〉 + U(ν) transforms into Hamiltonian (2.9).

System (2.7) is Hamiltonian on common four-dimensional level surfaces of the two
invariants f1 and f2:

M4
c,g = {f1 = R2

1 + R2
2 + R2

3 = c, f2 = S1R1 + S2R2 + S3R3 = g}. (2.11)

For almost all values of c and g, these common levels are non-singular smooth
submanifolds in e(3)∗. In what follows, we shall assume that c and g are such regular
values.
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It is easily seen that these symplectic 4-manifolds M4
c,g are diffeomorphic (for

c > 0) to the cotangent bundle TS2 of the 2-sphere S2. The symplectic structure on
M4

c,g is given by the restriction of the Lie-Poisson bracket onto TS2 = M4
c,g from the

ambient six-dimensional space e(3)∗. Since the linear transformation S′ = S,R′ =
γR, where γ = const, preserves bracket (2.6), we shall assume in what follows that
c = 1.

Thus, from now on, we shall consider Eq. (2.7) with Hamiltonian (2.9) on sym-
plectic four-dimensional manifolds M4

1,g = {f1 = 1, f2 = g} in the six- dimensional
space e(3)∗. In each specific problem, the phase variables and parameters of the
system obtain a concrete physical meaning.

Now we give the list of main integrable cases of Eqs. (2.7), (2.9) with necessary
comments. For each case we indicate explicitly the HamiltonianH and the additional
integralK independent ofH. Note that sometimes the additional integralK may exist
only for exceptional values of the area constant g.

The Euler case (1750). The motion of a rigid body about a fixed point that coin-
cides with its center of mass.

H = S21
2A1

+ S22
2A2

+ S23
2A3

, K = S21 + S22 + S23 . (2.12)

The Lagrange case (1788). The motion of an axially symmetric rigid body about
a fixed point located at the symmetry axis.

H = S21
2A

+ S22
2A

+ S23
2B

+ aR3, K = S3. (2.13)

The Kovalevskaya case (1899). The motion of a rigid body about a fixed point
with the special symmetry conditions indicated below.

H = S21
2A

+ S22
2A

+ S23
A

+ a1R1 + a2R
2,

K =
(
S21 − S22
2A

+ a2R2 − a1R1

)2

+
(
S1S2
A

− a1R2 − a2R1

)2

.

(2.14)

The integral has degree 4. In this case, A1 = A2 = 2A3 (in particular, the body is
axially symmetric), and the center of mass is located in the equatorial plane related
to the coinciding axes of the inertia ellipsoid.

The Goryachev–Chaplygin case (1899). The motion of a rigid body about a fixed
point with the special symmetry conditions indicated below.

H = S21
2A

+ S22
2A

+ 2S23
A

+ a1R1 + a2R
2,

K = S3(S
2
1 + S22) − AR3(a1S1 + a2S2).

(2.15)
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The integral has degree 3. In this case, A1 = A2 = 4A3, and the center of mass is
located in the equatorial plane related to the coinciding axes of the inertia ellipsoid.

In this case, the Poisson bracket of H and is

{H,K} = (S1R1 + S2R2 + S3R3)(a2S1 − a1S2).

Hence the functionsH andK do not commute on all themanifoldsM4
1,g. Therefore,

the system is integrable only on the single special manifoldM4
1,0 = {f1 = 1, f2 = 0}.

This is a case of partial integrability corresponding to the zero value of the area
constant f2.

Each of these four cases admits an integrable generalization the the case of gyro-
scopic forces.

The Zhukovskii case (1885). The motion of a gyrostat in the gravity field when
the body is fixed at its center of mass.

H = (S1 + λ1)
2

2A1
+ (S2 + λ2)

2

2A2
+ (S3 + λ3)

2

2A3
,

K = S21 + S22 + S23 .

(2.16)

This case is a generalization of the classical Euler case (the Euler case is obtained
for λ1 = λ2 = λ3 = 0).

The Kovalevskaya–Yahia case (1986). The Kovalevskaya case with gyrostat.

H = S21
2A

+ S22
2A

+ (S3 + λ)2

A
+ a1R1 + a2R

2,

K =
(
S21 − S22

2A
+ a2R2 − a1R1

)2

+
(
S1S2
A

− a1R2 − a2R1

)2

− 2λ

A2
(S3 + 2λ)(S21 + S22) + 4λR3

A
(a1S1 + a2S2).

(2.17)

The classical Kovalevskaya case is obtained for λ = 0.
The Sretenskii case (1963). The Goryachev–Chaplygin case with gyrostat.

H = S21
2A

+ S22
2A

+ 2(S3 + λ)2

A
+ a1R1 + a2R

2,

K = (S3 + 2λ)(S21 + S22) − AR3(a1S1 + a2S2).
(2.18)

If λ = 0, then we obtain the classical Goryachev–Chaplygin case. This system is
integrable on the zero level of the area integral.

The Clebsch case (1871). Motion of a rigid body in a fluid.

H = S21
2A1

+ S22
2A2

+ S23
2A3

+ ε

2
(A1R

2
1 + A2R

2
2 + A3R

2
3),

K = 1

2
(S21 + S22 + S23) − ε

2
(A2A3R

2
1 + A3A1R

2
2 + A1A2R

2
3).

(2.19)
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The calculation of Fomenko–Zieschang invariants is an effective method for
recognizing the Liouville equivalence of the systems. The bifurcations of Liouville
tori, bifurcation diagrams, and molecules W for these cases were first calculated
by M.P. Kharlamov [14] and A.A. Oshemkov [15–17]. Then the complete invari-
ants of the Liouville foliations (marked molecules W∗) were computed in a series
of papers by several authors (A.V. Bolsinov [10], P. Topalov [18], A.V. Bolsinov,
A.T. Fomenko [7, 8], O.E. Orel [19], O.E. Orel, S. Takahashi [20]). As a result, a
complete classification of the main integrable cases in rigid body dynamics has been
obtained up to Liouville equivalence. P. Morozov proved the Liouville equivalence
of the Clebsch case [21] and the Sokolov case [22] for certain values of the integrals.
In [23], the Liouville equivalence invariants for the Kovalevskaya–Yehia case (this
is a generalization of the classical Kovalevskaya top to the case of the problem on
the motion of a heavy gyrostat) were calculated.

2.3 Billiard Motion
Let the domain Ω be the domain on the plane R

2 such that its boundary is the
piecewise smooth curve and the angle at the corner points equals π

2 . Consider the
billiard dynamical system in Ω that describes the motion of a point inside Ω with
natural reflection at the boundary P = ∂Ω . At those points where the boundary P is
not smooth, the trajectory of the system is extended by continuity: hitting a corner
vertex, a material point is reflected back along the same trajectory without losing the
rate.

The phase space of the system is the manifold

M4 := {(x, v)|x ∈ Ω, v ∈ TxR
2, |v > 0|}/ ∼

where the equivalence relation ∼ is defined by
(x1, v1) ∼ (x2, v2) if and only if x1 = x2 ∈ P, |v1| = |v2| and v1 + v2 ‖ TxP.Here,

TxP denotes the tangent to the domainΩ at the point x and |v| is the Euclidean length
of the vector v.

Billiard motion has the natural integral—the speed |v| of the material point x.
If |v| > 0 then we can restrict the system to the isoenergy surface Q3 := {(x, v) ∈
M4 : |v| = 1}. Such isoenergetic surfaces are homeomorphic to each other and in the
subsequent discussion we put |v| = 1. Some restriction of the choice of the boundary
allows to find the additional integral.

Theorem 2.3 (Jacobi, Chasles [24]) Given a geodesic curve on a quadric in n-
dimensional Euclidean space, tangent lines which are drawn at arbitrary points on
the geodesic are tangent both to this quadric and to n − 2 confocal quadrics, which
are the same for all the points on the geodesic.

Now fix the family of the confocal quadrics on the plane R
2 and consider the

equation
(b − λ)x2 + (a − λ)y2 = (a − λ)(b − λ), λ ≤ a. (2.20)
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where ∞ ≥ a ≥ b > 0 is the fixed pair of numbers, which describe the family of
quadrics, λ is the parameter defining the quadric which belongs to the family.

Suppose that a domain Ω in the plane R2 is such that its boundary is the union
of piecewise smooth curves consisting of arcs of the confocal quadric. This domain
will be called elementary.

From the Jacobi Chasles theorem it follows that the tangent lines to a billiard
trajectory at any point inside a plane two-dimensional domain are tangent to an
ellipse or a hyperbola confocal with the family of quadrics forming the boundary of
this domain [24].

This implies the integrability of the billiard in a plane domain bounded by arcs of
confocal ellipses andhyperbolas. The functions |v|—the speedof thematerial point—
and λ—the parameter of the confocal quadric—commutate inside the domain Ω .
Thus, they commutate in the boundary P of the domain Ω because they are integrals
of the system.

As a result the billiard system which if defined in the plane domain bounded by
the arcs of the confocal quadrics has two independent (see [24]) integrals |v| and
λ. Function λ sets on the isoenergy surface Q3 the Liouville foliation which can be
described in terms of the Fomenko–Zieshang invariant.

To classify all the domains bounded by ellipses and hyperbolas it is convenient
to take the equivalence relation, which would allow, smoothly changing the class
of confocal quadrics of the border region, to preserve the Liouville foliation of the
billiard motion in it.

Definition 2.13 Elementary domain Ω , bounded by arcs of the confocal family of
quadrics (2.20), is called equivalent to the other elementary domain Ω ′, which is
bounded by arcs of quadrics from the same family (2.20), ifΩ ′ can be obtained from
Ω by the following composition of transformations:

• sequential changing borders by continuous segments deformation in the class of
quadrics (2.20), so that the value of the parameter λ of the variable segment of the
border did not take the value b;

• symmetry with respect to the axis of the family (2.20).

As a result of such definition of equivalence all elementary domains can be divided
into three classes:

• pieces of the ellipse: domain A2 (bounded by ellipse), A1 (right part of the A2), A0

(rectangle, limited by ellipse and two branches of a hyperbola) and its upper halfs
A′
2,A

′
1 and A′

0;• ring-domain C2, bounded by two ellipses;
• simply connected domain-bands series B, which are parts of the ring-domain C2.

We can extend the class of elementary domains, adding to them the flat domains
that do not have an immersion into the plane. In this case, to have the above-described
non-simply connected domains we need to add the domainsC2n–n−sheets coverings
over the domain C2 and results of Cn of the quotient by the group Z2. As for simply
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connected domain, we must add “prolongations” of the domains B, which are now
subsets of relevant domains Cn.

The Fomenko–Zieschang invariants of these systems were calculated by
M. Radnovic and V. Dragovic in [25] and V.V. Fokicheva in [26].

The generalized billiard system in a generalized locally flat domain is defined in a
similar way as the billiard in domains glued together along common convex segments
of their boundaries. In this case, if a point reaches such a segment, its trajectory passes
from one elementary domain to another. If a pair of domains is glued together along
the common corner (the case of a conical point), then, by continuity, the motion must
be defined as follows: a point moving on a sheet and hitting the corner is reflected
along the same trajectory on the same sheet.

The equivalence relation on the set of generalized domains if taken as a contin-
uation of the equivalence relation on the set of elementary domains. Namely, the
domains will be called equivalent if they can be obtained from each other by replac-
ing their constituent elementary domains on their equivalent. All such domains were
classified by V. Fokicheva [28].

Obviously, with such a definition phasemanifoldM4 preserves integrability of the
system, namely, retained additional integral λ—parameter of the confocal quadric,
which concerns the billiard trajectory. This is due to the fact that the boundary of any
elementary domain Ωi, which is part of the generalized domain Δ, and in particular,
all the gluing edges pass into the arc of the same family of confocal quadrics in the
isometric immersion of the field Ωi or double covering in the plane.

The Fomenko–Zieschang invariants of these systems were calculated by V.V.
Fokicheva in [28].

For further convenience, we assume the following notation. ByΩ will be denoted
an elementary domain. Glued from several elementary domains Ωi the generalized
domain is denoted by Δ. For a fixed generalized domain Δ the unification of all the
borders of its constituent regions Ωi, which are not glue arcs will be called a free
boundary. By Θ we will denote the domain bounded by arcs of confocal quadrics,
without specifying whether it is a elementary (Ω) or generalized (Δ).

The generalized domain without conical points is denoted by Δα , with conical
points by Δβ . We distinguish three types of conical points: type x is formed by the
intersection of the focal line (λ = b) and confocal ellipse (λ < b), type c—at the
intersection of the focal line (λ = b) and confocal hyperbola (b < λ < a), type y—
at the intersection of the confocal ellipse (λ < b) and confocal hyperbola (λ > b).
In the notation of the generalized domain in parentheses we specify the types of
domains that make up this region and generalized types of conical points, if they
exist.

We describe several classes of generalized domains and calculate Fomenko–
Zieschang invariants that describe the topology of the Liouville foliation of the
billiard motion in them. More precisely, we describe the domains of the invariants
of the billiard motion that occur in problems of rigid body dynamics.

Proposition 2.2 ([28]) Let the domain Θ be that, first, the interior of each ele-
mentary domain in its composition does not include points of the focal line, and
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Fig. 2.2 In the top row there
are domains without conical
points at the bottom—with
one conical point

secondly, any conical point is of the type y (see examples on the Fig.2.2). Then
Fomenko–Zieschang invariant describing the topology of Liouville foliation for the
billiard motion in Θ is of the form:

• A
r=0,ε=1−−−−→ A, if the domain Θ does not contain conical points;

• A
r= 1

2 ,ε=1−−−−−→ A, if the domain Θ contains conical points.

Remark 2.1 According to the classification of generalized domains [28] the domain,
which has no common points with the focal line, and contains a conical point is
arranged as follows: it contains exactly one conical point, with its free boundary
homeomorphic to a circle.

Proposition 2.3 ([28]) Suppose that domain Θ without conical points is such that
each elementary domain Ω in its composition does not contain any focuses (see
examples on the Fig.2.3). Then Fomenko–Zieschang invariant describing the topol-
ogy of Liouville foliation for the billiard motion in Θ is of the form:

• A
r=∞,ε=1−−−−−→ B ⇒ A

A
, where marks on the right edges are r = 0, ε = 1, if domain

Θ is equivalent to B1, Δα(2B1),
A0, Δα(A0 + B0),Δα(A0 + A′

0),Δα(B0 + A0 + B0),
Δα(A′

0 + A0 + B0) orΔα(A′
0 + A0 + A′

0), i.e. domainΘ is homeomorphic to a disc
and contains only one line segment of the focal line (either only one elementary
domain Ω in its composition contains line segment of the focal line or these
segments are glued into one along the arcs of the focal line);

• A
r=0,ε=1−−−−→ B ⇒ A

A
, where marks on the right edges are r = ∞, ε = 1, if domain

Θ is equivalent to Δα(A0)
2 or C1, i.e. domain Θ is homeomorphic to a cartesian

product S1 × [0, 1] and contains only one line segment of the focal line;
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Fig. 2.3 Domains without
focuses and conical points

• A

A
⇒ C2 ⇒ A

A
, where marks on the left edges are r = ∞, ε = 1, and on the right

edges are r = 0, ε = 1, if domain Θ is equivalent to Δα(2A0)
2or Δα(2C2), i.e.

domain Θ is homeomorphic to a cartesian product S1 × [0, 1] and contains two
line segments of the focal line.

If the domain contains the focuses, all the edges of the molecule are finite, that
makes compute mark n.

Proposition 2.4 ([28]) Let the domain Θ be such that an elementary domain in
its composition contains focuses of the confocal family of the domain’s border (see
examples on the Fig.2.4). Then Fomenko–Zieschang invariant describing the topol-
ogy of Liouville foliation for the billiard motion in Θ is of the form:

• A

A
⇒ B → A, marks on the all edges are r = 0, ε = 1, and mark n in the family

is equal to 1, if domain Θ is equivalent to A2, Δα(2A1) or Δα(A2 + C2);

• A
r=0,ε=1−−−−→ A∗ r=0,ε=1−−−−→ A, mark n in the family is equal to 0, if domain Θ is equiv-

alent to A1 or Δα(A1 + B1);

• A

A
⇒ C2 ⇒ A

A
, marks on the all edges are r = 0, ε = 1, and mark n in the family

is equal to 2, if domain Θ is equivalent to Δα(2A2);

• A

A
⇒ B → A, marks on the all edges are r = 0, ε = 1, and mark n in the family

is equal to 2, if domain Θ is equivalent to Δβ(A′
1)

2
c ,Δβ((A′

1)
2
c + C1) or Δβ(A′

1)
2
x .

2.4 Main Results
The descriptions of all systems of the rigid body dynamics are fairly complex. It
turns out that, in many cases, the Fomenko–Zieschang theorem makes it possible
to establish the Liouville equivalence of these systems to certain simpler billiard
systems on the four-dimensional phase space M4.
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Fig. 2.4 Domains which
contains the focuses

Theorem 2.4 ([27]) The following cases of rigid body dynamics are modeled by
(Liouville equivalent to) the following generalized billiards

• the Euler case (see [9]) is completly modeled by the billiards in the generalized
domains shown in Figs.2.5 and 2.6;

• the Zhukovskii case (see [15]) is modeled by the billiards in the generalized
domains shown in Fig.2.5b (energy zone 11, Q3 � RP3), Fig.2.5c (energy zone
2,Q3 � S1 × S2), Fig.2.5d (energy zone 8, Q3 � S3), and Fig.2.5f (energy zone
12, Q3 � RP3);

• the Lagrange case (see [9]) is modeled by the billiards in the generalized domains
shown in Fig.2.5a (energy zone 2, Q3 � S3) and Fig.2.5b (energy zone 3, Q3 �
RP3);

• the Goryachev–Chaplygin–Sretenskii case (see [19]) is modeled by the billiards
in the generalized domains shown in Fig.2.5c (energy zone 4,Q3 � S1 × S2) and
Fig.2.5g (energy zone 2, Q3 � S3);

• the Kovalevskaya–Yehia case (see [23]) is modeled by the billiards in the gener-
alized domains shown in Fig.2.5c (energy zone h28, Q3 � S1 × S2) and Fig.2.5e
(energy zone h18, Q3 � S3);

• the Clebsch case (see [21]) is modeled by the billiards in the generalized domains
shown in Fig.2.5e (energy zone 2, Q3 � S3), Fig.2.5h (energy zones 10 and 12,
Q3 � S1 × S2), and Fig.2.5i (energy zone 5, Q3 � RP3);

• the Sokolov case (see [22]) is modeled by the billiards in the generalized domains
shown in Fig.2.5e (energy zone B, Q3 � S3) and Fig.2.5i (energy zone I, Q3 �
RP3).

The Liouville equivalence of these billiard systems and integrable systems of
the motion of a rigid body follows from the Fomenko–Zieschang theorem and the
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Fig. 2.5 The left column shows the billiard domains, in the middle column – Fomenko-Zieschang
invariants describing the topology of the billiard motion in them. The right column shows the cases
of rigid body dynamics Fomenko-Zieschang which also have the form shown in the middle column
(in parentheses are the numbers of the isoenergy surfaces in accordance with the numbering of the
authors, the data to calculate the invariants)

comparison of the invariants of generalized billiards found by these authors with
invariants calculated in the cited works of other authors.
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Fig. 2.6 Billiard system and
the Euler case of the rigid
body dynamics. The motion
of a rigid body, the
appropriate settings in the
shaded gray area on the
bifurcation diagram,
modeled billiards in the
domain shaded in the same
shade

The Euler case is Liouville equivalent to the case of the geodesic flow on the
ellipsoid [7]. This has been proven by the application of the theory of Fomenko–
Zieschang—by calculating and comparing the invariants. On the other hand, the
problemof the geodesic flow is closely connectedwith the integrable billiard problem
in the domain bounded by arcs of confocal quadrics—by limiting to zero at the half-
axis the ellipsoid becomes the flat ellipse, and geodesic lines on it become straight
line segments. However, as can be seen, the billiard in an ellipse will not be Liouville
equivalent to the geodesic flow.

The introduction of generalized billiards allowed to expand the class of classical
billiard systems and successfully simulate not only the case of Euler fixed type
isoenergy surfaces, but also to select for each constant-energy surface of a billiard a
movement which will simulate the motion of a rigid body fixed at its center of mass.

It turns out that, in a sense, the billiard system is not so simple. However, its
complexity lies in the complexity of a generalized billiard table—the more exotic
the boundary the more complicated the topology of the Liouville foliation isoenergy
surface Q3.
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Thus, as a result of the introduction of generalized billiards we have been able
not only fully simulate the Euler case, but also to get a large number of systems,
whose Fomenko–Zieschang invariants coincide with those calculated previously for
many systems of rigid body dynamics. This has allowed to simulate a wide class of
problems of rigid body dynamics, though not completely.
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Chapter 3
Uniform Global Attractors
for Nonautonomous Evolution Inclusions

Mikhail Z. Zgurovsky and Pavlo O. Kasyanov

Abstract In this note, we prove the existence and provide basic structure properties
of compact (in the natural phase space) uniform global attractor for all global weak
solutions of the general classes of nonautonomous evolution equations and inclusions
that satisfy standard sign and polynomial growth conditions. The obtained results
allow to reduce the problem of the complete qualitative investigation of various
nonlinear systems into the “small” (compact) part of the natural phase space.

3.1 Introduction and Setting of the Problem

For evolution triple (Vi; H; V∗
i )

1 and multivalued map Ai : R+ × V ⇒ V∗, i =
1, 2, . . . , N , N = 1, 2, . . . , we consider a problem of longtime behavior (in the
natural phase space H) of all globally defined weak solutions for nonautonomous
evolution inclusion

y′(t) +
N∑

i=1

Ai(t, y(t)) � 0̄, (3.1)

as t → +∞. Let 〈·, ·〉Vi : Vi
∗ × Vi → R be the pairing in Vi

∗ × Vi that coincides on
H × Vi with the inner product (·, ·) in the Hilbert space H.

1That is, Vi is a real reflexive separable Banach space continuously and densely embedded into
a real Hilbert space H , H is identified with its topologically conjugated space H∗, V∗

i is a dual
space to Vi. So, there is a chain of continuous and dense embeddings: Vi ⊂ H ≡ H∗ ⊂ V∗

i (see,
e.g., Gajewski, Gröger, and Zacharias [1, Chap. I]).
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To introduce the assumptions on parameters of Problem (3.1) let us introduce addi-
tional constructions. A function ϕ ∈ Lloc

γ (R+), γ > 1, is called translation bounded
in Lloc

γ (R+), if

sup
t≥0

∫ t+1

t
|ϕ(s)|γ ds < +∞;

Chepyzhov and Vishik [2, p. 105]. A function ϕ ∈ Lloc
1 (R+) is called translation

uniform integrable (t.u.i.) in Lloc
1 (R+), if

lim
K→+∞ sup

t≥0

∫ t+1

t
|ϕ(s)|I{|ϕ(s)| ≥ K}ds = 0.

Note thatDunford–Pettis compactness criterionprovides that a functionϕ ∈ Lloc
1 (R+)

is t.u.i. in Lloc
1 (R+) if and only if for every sequence of elements {τn}n≥1 ⊂ R+

the sequence {ϕ( · + τn)}n≥1 contains a subsequence which converges weakly in
Lloc
1 (R+). Note that for any γ > 1 every translation bounded in Lloc

γ (R+) function is
t.u.i. in Lloc

1 (R+); Gorban et al. [3].
Throughout this paper, we suppose that the listed below assumptions hold:

Assumption 1 Let pi ≥ 2, qi > 1 are such that 1
pi

+ 1
qi

= 1, for each for i =
1, 2, . . . , N , and the embedding Vi ⊂ H is compact one, for some for i = 1, 2,
. . . , N .

Assumption 2 (Growth Condition) There exist a t.u.i. in Lloc
1 (R+) function c1 :

R+ → R+ and a constant c2 > 0 such that

N
max
i=1

‖di‖q
Vi

∗ ≤ c1(t) + c2

N∑

i=1

‖u‖p
Vi

for any u ∈ Vi, di ∈ Ai(t, u), i = 1, 2, . . . , N , and a.e. t > 0.

Assumption 3 (Signed Assumption) There exists a constant α > 0 and a t.u.i. in
Lloc
1 (R+) function β : R+ → R+ such that

N∑

i=1

〈di, u〉Vi ≥ α

N∑

i=1

‖u‖p
Vi

− β(t)

for any u ∈ Vi, di ∈ Ai(t, u), i = 1, 2, . . . , N , and a.e. t > 0.

Assumption 4 (Strong Measurability) If C ⊆ Vi
∗ is a closed set, then the set

{(t, u) ∈ (0,+∞) × Vi : Ai(t, u) ∩ C �= ∅} is a Borel subset in (0,+∞) × Vi.
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Assumption 5 (Pointwise Pseudomonotonicity) Let for each i = 1, 2, . . . , N and
a.e. t > 0, two assumptions hold:

(a) for every u ∈ Vi the set Ai(t, u) is nonempty, convex, and weakly compact one
in Vi

∗;
(b) if a sequence {un}n≥1 converges weakly in Vi toward u ∈ Vi as n → +∞, dn ∈

Ai(t, un) for any n ≥ 1, and lim sup
n→+∞

〈dn, un − u〉Vi ≤ 0, then for any ω ∈ Vi there

exists d(ω) ∈ Ai(t, u) such that

lim inf
n→+∞〈dn, un − ω〉Vi ≥ 〈d(ω), u − ω〉Vi .

Let 0 ≤ τ < T < +∞. As a weak solution of evolution inclusion (3.1) on the
interval [τ, T ], we consider an element u(·) of the space ∩N

i=1Lpi(τ, T; Vi) such that
for some di(·) ∈ Lqi(τ, T; Vi

∗), i = 1, 2, . . . , N , it is fulfilled:

−
T∫

τ

(ξ ′(t), y(t))dt +
N∑

i=1

T∫

τ

〈di(t), ξ(t)〉Vi dt = 0 ∀ξ ∈ C∞
0 ([τ, T ]; Vi), (3.2)

and di(t) ∈ Ai(t, y(t)) for each i = 1, 2, . . . , N and a.e. t ∈ (τ, T).

3.2 Preliminary Properties of Weak Solutions

Zgurovsky and Kasyanov [4, p. 225] provide the existence of a weak solution of
Cauchy problem (3.1) with initial data y(τ ) = y(τ ) on the interval [τ, T ], for any
y(τ ) ∈ H. For fixed τ and T , such that 0 ≤ τ < T < +∞, we denote

Dτ,T (y(τ )) = {y(·) | y is a weak solution of (3.1) on [τ, T ], y(τ ) = y(τ )}, y(τ ) ∈ H.

We remark that Dτ,T (y(τ )) �= ∅, if 0 ≤ τ < T < +∞ and y(τ ) ∈ H. Moreover, the
concatenation of Problem (3.1) weak solutions is a weak solutions too, i.e., if 0 ≤
τ < t < T , y(τ ) ∈ H, y(·) ∈ Dτ,t(y(τ )), and v(·) ∈ Dt,T (y(t)), then

z(s) =
{

y(s), s ∈ [τ, t],
v(s), s ∈ [t, T ],

belongs to Dτ,T (y(τ )); cf. Zgurovsky et al. [5, pp. 55–56].
Gronwall lemma provides that for any finite time interval [τ, T ] ⊂ R+ each weak

solution y of Problem (3.1) on [τ, T ] satisfies estimates
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‖y(t)‖2H − 2
∫ t

0
β(ξ)dξ + 2α

N∑

i=1

∫ t

s
‖y(ξ)‖p

Vi
dξ ≤ ‖y(s)‖2H − 2

∫ s

0
β(ξ)dξ,

(3.3)

‖y(t)‖2H ≤ ‖y(s)‖2He−2αγ (t−s) + 2
∫ t

s
(β(ξ) + αγ )e−2αγ (t−ξ)dξ, (3.4)

where t, s ∈ [τ, T ], t ≥ s; γ is a constant that does not depend on y, s, and t; see
Zgurovsky and Kasyanov [4, p. 225]. Therefore, any weak solution y of Problem
(3.1) on a finite time interval [τ, T ] ⊂ R+ can be extended to a global one, defined
on [τ,+∞).

For each τ ≥ 0 and y(τ ) ∈ H letDτ (y(τ )) be the set of all weak solutions (defined
on [τ,+∞)) of Problem (3.1) with initial data y(τ ) = y(τ ). Let us consider the family
K +

τ = ∪y(τ )∈HDτ (y(τ )) of all weak solutions of Problem (3.1) defined on the semi-
infinite time interval [τ,+∞).

Consider the Fréchet space Cloc(R+; H). We remark that the sequence {fn}n≥1

converges in Cloc(R+; H) toward f ∈ Cloc(R+; H) as n → +∞ iff the sequence
{Πt1,t2 fn}n≥1 converges in C([t1, t2]; H) toward Πt1,t2 f as n → +∞ for any finite
interval [t1, t2] ⊂ R+, where Πt1,t2 is the restriction operator to the interval [t1, t2];
Chepyzhov and Vishik [6, p. 918]. We denote T(h)y(·) = yh(·), where yh(t) = y(t +
h) for any y ∈ Cloc(R+; H) and t, h ≥ 0.

Let us consider united trajectory space that includes all globally defined on any
[τ,+∞) ⊆ R+ weak solutions of Problem (3.1) shifted to τ = 0:

K + = clCloc(R+;H)

[
⋃

τ≥0

{
y( · + τ) : y ∈ K +

τ

}
]

,

where clCloc(R+;H)[ · ] is the closure in Cloc(R+; H). Note that T(h){y( · + τ) : y ∈
K +

τ } ⊆ {y( · + τ + h) : y ∈ K +
τ+h} for any τ, h ≥ 0. Moreover,

T(h)K + ⊆ K + for any h ≥ 0,

because

ρCloc(R+;H)(T(h)u, T(h)v) ≤ ρCloc(R+;H)(u, v) for any u, v ∈ Cloc(R+; H),

where ρCloc(R+;H) is a standard metric on Fréchet space Cloc(R+; H); Zgurovsky and
Kasyanov [4, p. 226].

The following Lemma 3.1 and Theorem 3.1 are keynote for the existence of
compact (in the natural phase spaceH) uniform global attractor for all weak solutions
of Problem (3.1).

Lemma 3.1 (Zgurovsky and Kasyanov [4]) Let Assumptions (1)–(5) hold. Then,
there exist positive constants c3 and c4 such that the following inequalities hold:
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‖y(t)‖2H ≤ ‖y(s)‖2He−c3(t−s) + c4,

for each y ∈ K +, t ≥ s ≥ 0.

Theorem 3.1 (Zgurovsky and Kasyanov [4]) Let Assumptions (1)–(5) hold. Let
{yn}n≥1 ⊂ K + be a bounded in L∞(R+; H) sequence. Then, there exist a subse-
quence {ynk }k≥1 ⊂ {yn}n≥1 and an element y ∈ K + such that

max
t∈[τ,T ] ‖ynk (t) − y(t)‖H → 0, k → +∞,

for any finite time interval [τ, T ] ⊂ (0,+∞).

3.3 Uniform Global Attractor for all Weak Solutions
of Problem (3.1)

Let us define the multivalued semi-flow (m-semi-flow) G : R+ × H → 2H :

G(t, y0) := {y(t) : y(·) ∈ K + and y(0) = y0}, t ≥ 0, y0 ∈ H. (3.5)

For each t ≥ 0 and y0 ∈ H, the set G(t, y0) is nonempty. Moreover, the following
two conditions hold:

(i) G (0, ·) = I is the identity map;
(ii) G (t1 + t2, y0) ⊆ G (t1, G (t2, y0)) , ∀t1, t2 ∈ R+, ∀y0 ∈ H,

where G (t, D) = ∪
y∈D

G (t, y) , D ⊆ H.

We denote by distH(C, D) = supc∈C infd∈D ρ(c, d) the Hausdorff semi-distance
between nonempty subsets C and D of the Polish space H. Recall that the setR ⊂ H
is a global attractor of the m-semi-flow G if it satisfies the following conditions:

(i) R attracts each bounded subset B ⊂ H, i.e.,

distH(G(t, B),R) → 0, t → +∞; (3.6)

(ii) R is negatively semi-invariant set, i.e., R ⊆ G (t,R) for each t ≥ 0;
(iii) R is the minimal set among all nonempty closed subsets C ⊆ H that satisfy

(3.6).

The main result of this paper has the following form.

Theorem 3.2 Let Assumptions (1)–(5) hold. Then, the m-semi-flow G, defined in
(3.5), has a compact global attractor R in the phase space H.
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3.4 Proof of Theorem 3.2

Lemma 3.1 and Theorem 3.1 imply the following properties for the m-semiflow G,
defined in (3.5):

(a) for each t ≥ 0, the mapping G(t, · ) : H → 2H \ {∅} has a closed graph;
(b) for each t ≥ 0 and y0 ∈ H, the set G(t, y0) is compact in H;
(c) the setG(1, C̃),where C̃ := {z ∈ H : ‖z‖2H < c4 + 1}, is precompact and attracts

each bounded subset C ⊂ H.

Indeed, property (a) follows from Theorem 3.1; property (b) directly follows from
(a) and Theorem 3.1; property (c) holds, because of Lemma 3.1 and since the set
G(1, C̃) is precompact in H (Theorem 3.1).

According to properties (a)–(c), Mel’nik and Valero [7, Theorems 1, 2, Remark 2,
Proposition 1] yields that the m-semi-flow G has a compact global attractorR in the
phase space H.

3.5 Conclusions

For the class of nonautonomous differential-operator inclusions with pointwise
pseudomonotone operators, the dynamics (as t → +∞) of all global weak solutions
defined on [0,+∞) is examined. The existence of a compact global attractor in the
natural phase spaceH is proved. The results obtained allow one to study the dynamics
of solutions for new classes of evolution inclusions related to nonlinear mathematical
models of geophysical and socioeconomic processes and for fields with interaction
functions of pseudomonotone type satisfying the power growth and sign conditions.
For applications, one can consider newclasses of problemswith degeneracy, feedback
control problems, problems onmanifolds, problemswith delay, stochastic partial dif-
ferential equations, etc. (see Balibrea et al. [8]; Hu and Papageorgiou [9]; Gasinski
and Papageorgiou [10]; Kasyanov [11]; Kasyanov, Toscano, and Zadoianchuk [12];
Mel’nik and Valero [13]; Denkowski, Migórski, and Papageorgiou [14]; Gasinski
and Papageorgiou [10]; Zgurovsky et al. [5]; etc., see, also, [16–31]) involving dif-
ferential operators of pseudomonotone type and the corresponding choice of the
phase spaces. This note is a continuation of Zgurovsky and Kasyanov [4, 15].
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Chapter 4
Minimal Networks: A Review

Alexander O. Ivanov and Alexey A. Tuzhilin

Abstract Minimal Networks Theory is a branch of mathematics that goes back
to 17th century and unites ideas and methods of metric, differential, and combina-
torial geometry and optimization theory. It is still studied intensively, due to many
important applications such as transportation problem, chip design, evolution theory,
molecular biology, etc. In this review we point out several significant directions of
the Theory. We also state some open problems which solution seems to be crucial for
the further development of the Theory. Minimal Networks can be considered as one-
dimensional minimal surfaces. The simplest example of such a network is a shortest
curve or, more generally, a geodesic. The first ones are global minima of the length
functional considered on the curves connecting fixed boundary points. The second
ones are the curves such that each sufficiently small part of them is a shortest curve.
A natural generalization of the problem appears, if the boundary consists of three and
more points, and additional branching points are permitted. Steiner minimal trees are
analogues of the shortest curves, and locally minimal networks are generalizations
of geodesics. We also include some results concerning so-called minimal fillings and
minimal networks in the spaces of compacts.

4.1 Steiner Problem and Its Generalizations

Westartwith several historical remarks concerning theSteiner problem that generates
Minimal Networks Theory.
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Fig. 4.1 Fermat problem’s solution

4.1.1 Fermat Problem

One of the first versions of the Steiner problem had appeared long before Jacob
Steiner. P. Fermat stated the following simplest case of the problem, see [1].

Problem 4.1 (P. Fermat) Qui hanc methodum non probaverit, ei proponitur: Datis
tribus punctis, quartum reperire, a quo si ducantur tres rectae ad data puncta, summa
trium harum rectarum sit minima quantitas.1

The solution to the Fermat problem is as follows. By A1, A2, A3 we denote the
given three points in the plane, and let S be the point we are looking for, which
is referred as a Fermat point. If one of the angles of the triangle A1A2A3 is more
than or equal to 120◦, then the point S coincides with the vertex of that angle. If all
the angles of the triangle A1A2A3 are less than 120◦, then the location of the point
S is uniquely defined by the following construction. By A′

k , {i, j, k} = {1, 2, 3}, we
denote the point in the plane such that the triangle Ai A j A′

k is regular and intersects the
triangle A1A2A3 by the segment Ai A j only. Then the circles circumscribed around
the triangles Ai A j A′

k , and the segments [A′
i Ai ] which are referred as the Simpson

lines, all together intersect inside the triangle A1A2A3 at the required point S, see
Fig. 4.1. The lengths of the Simpson lines are equal to each other and are equal to
the value

∑3
i=1 |SAi |.

Remark 4.1 The intersection point of the circles does exist for an arbitrary triangle
without any restrictions to its angles, and is usually referred as the Torricelli point.
If one of the angles of the triangle is more than 120◦, then the Torricelli point lies
outside such a triangle. Also, for any triangle the straight lines passing through the

1Let the one that did not appreciate this method, solve the following problem: for given three points
find the fourth one such that the total lengths of the three segments connecting it with the given
three points takes a minimal value.
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Simpson lines intersect a single point coinciding with the Torricelli point. If the
angle of the triangle A1A2A3 at the vertex Ai Ai is equal to 120◦, then the Torricelli
point coincides with Ai . Thus, for the triangles, whose angles does not exceed 120◦,
the Fermat point coincides with the Torricelli point. And if one of the angles of the
triangle is more than 120◦, then it is not so.

A natural generalization of the Fermat problemmay be obtained by considering an
arbitrary finite set of n points in the plane, instead of the three ones. Just this problem
was studied by Steiner. Notice that for n > 4 the solution of such a generalized
Fermat problem differs essentially from the initial case n = 3: in the case of n = 3
the above solution to Fermat problem gives an algorithm to construct the required
point S by ruler and compass, but for n ≥ 5 such algorithm does not exist (see, for
example, [2]).

An alternative view to the Fermat problem leads to another natural generalization.

4.1.2 Graphs and Continuous Networks

We suppose that the reader is familiar with the main concepts of the Graph Theory,
see for example [3]. But for convenience we include several general definitions and
fix some basic notations.

For an arbitrary set V , by V (k) we denote the collection of all k-element subsets
of V . Notice that the set V (2) consists of all non-ordered pairs of distinct elements of
V , and V (1) is the family of single-element subsets of V , and hence, can be naturally
identified with V .

Definition 4.1 A graph G is a triplet G = (V, E, ∂) consisting of the sets V , E ,
and a mapping ∂ : E → V (1) ∪ V (2). Elements from V and E are called vertices
and edges of the graph G, respectively, and ∂ is referred as incidence or incidence
mapping. An edge e is called a loop, if ∂(e) ∈ V (1), and one says that e connects the
vertex v with itself. If e is not a loop and ∂(e) = {u, v}, then one says that e connects
the vertices u and v. An edge e is said to be multiple, if there exists another edge e′
with ∂(e) = ∂(e′). A graph without loops and multiple edges is called simple.

Remark 4.2 If a graph (V, E, ∂) is simple, then the incidence mapping ∂ is an
injection of the set E into V (2), therefore in this case E is often identified with
∂(E) ⊂ V (2), and an edge e of a simple graph is considered as the corresponding pair
of vertices {u, v} = ∂(e) which is denoted by uv for simplicity (notice that uv = vu
by definition). Under such identification, the mapping ∂ becomes unnecessary, and
a simple graph is usually defined just as a pair (V, E), where E ⊂ V (2).

Remark 4.3 Usually we will consider finite graphs, i.e., the graphs with finite sets of
edges and vertices. But many of the classical problems can be naturally generalized
to the infinite graphs, see for example [4, 5].
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Definition 4.2 A path in a graph G is a sequence γ = vi1 , ei1 , vi2 , . . . , eik vik+1 of its
vertices vi and pairwise distinct edges e j , such that each eim connects the vertices
vim and vim+1 , m = 1, . . . , k. The path γ is said to be connecting the vertices vi1 and
vik+1 . If vi1 = vik+1 , then the path γ is called a cycle. A graph is said to be connected,
if any two its vertices are connected by a path. A connected graph without cycles is
called a tree.

Definition 4.3 A graph G = (V, E, ∂) is called topological, if E consists of topo-
logical segments, i.e., elements of E are topological spaces homeomorphic to a
straight segment with the topology induced from R.

Each topological graph G generates a topological space T (G) in the following
way: T (G) is obtained from the disjoint union of the edges–segments of G by gluing
their endpoints “as in the combinatorial graph” G.

Definition 4.4 Let G = (V, E, ∂) be a topological graph, then a continuous map-
ping Γ : V 	 (	e∈Ee) → X such that for any e ∈ E the continuous curve Γ |e con-
nects the points from Γ (∂(e)) is called a (continuous) network Γ of the type G,
or a network parameterized by the graph G, in the topological space X . For each
v ∈ V the mapping Γ |v is called the vertex of the network Γ corresponding to v,
and for each e ∈ E the continuous curve Γ |e is called the edge of the network Γ

corresponding to e. An edge Γ |e that maps the segment e onto a single point is called
degenerate.

Remark 4.4 Each (continuous) network Γ of a type G in a topological space X gen-
erates a continuous mapping Γ : T (G) → X . Conversely, each continuous mapping
Γ : T (G) → X generates uniquely defined network Γ . Thus, continuous networks
parameterized byG can be considered as continuous mappings from the correspond-
ing topological space T (G).

Remark 4.5 The concepts and properties that are defined for the parameterizing
graph of a topological network usually attributed to the network itself. Thus the paths,
cycles, incidence, degrees of vertices, connectivity, etc., are defined for networks.

We will consider boundary value problems, namely, we fix some subsets of the
ambient space and study the networks connecting those subsets and being optimal in
some reasonable sense. To give formal definitions, we extend the concept of graph
assuming that for each graph G some subset ∂G of the vertex set is chosen. This
subset is called the boundary of the graph. The vertices of a graph G belonging to
its boundary are called boundary ones, and the remaining vertices are referred as
interior ones.

Definition 4.5 The boundary of a network Γ of a type G is defined as the restriction
of the mapping Γ on to the boundary ∂G of its parameterizing graph G.

Definition 4.6 Let M be an arbitrary subset of a topological space X . We say that a
network Γ of a type G in X connects the set M , if Γ (∂G) = M .
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If a network is a mapping to a metric space, then one can define the length of each
its edge as the length of the corresponding continuous curve, see, for example [6].

Definition 4.7 The length |Γ | of a network Γ in a metric space is the sum of the
lengths of all its edges.

Remark 4.6 The length of a network can be infinite as due to infinite length of some
its edge, so as because of infinite number of its edges.

Now, the Fermat problem can be restated as the problem of finding a network of
the least possible length connecting three given points in the Euclidean plane. Of
course, there are much more networks connecting the points than the locations of
the point S. However, if a shortest network Γ is found, then (1) all its nondegenerate
edges are straight segments; (2)Γ contains neither nondegenerate loops, normultiple
edges; (3) Γ does not contain non-trivial cycles (non pointwise), and thus, Γ can be
supposed to be a tree; (4) the tree Γ does not contains nondegenerate edges incident
to interior vertices of degree 1, therefore, one can assume that all the vertices of Γ of
degree 1 belong to the boundary; (5) the tree Γ can have interior vertices of degree
2, but the edges incident to such a vertex have to form an angle of 180◦, so each
such pair of edges can be united into a single one, and the corresponding vertices of
degree 2 can be removed from consideration.

Thus, a solution to the Fermat problem can be represented as a tree Γ , all whose
vertices of degrees 1 and 2 belong to the three-point boundary. It is easy to see that
there are two possibilities: (1) the tree Γ has four vertices, namely, three given points
A1, A2, A3 and additional vertex S connected by three edges with the vertices Ai

(there are no other edges in the tree Γ ); (2) the tree Γ has exactly three vertices A1,
A2, A3, and one of them is connected by edges with the other two (in that case the
tree Γ consists exactly of the two edges).

The answer can be simplified even more: namely, the solution of the second type
can be represented as the solution of the first type, where the additional vertex S
coincides with the corresponding boundary point Ai . Thus, it is always possible to
find a shortest network Γ among the networks of the first class, and minimization
of the length is equivalent to minimization of the total distance from S to the given
points Ai . So, the Fermat problem and the problem of finding a shortest network are
equivalent.

4.1.3 Steiner Problem for Continuous Networks

The previous discussion leads to another generalization of the Fermat problem.
This generalization apparently appeared first in papers of French mathematician
J.D. Gergonne [7], who considered several points in the plane and described some
constructions similar to Torricelli–Simpson construction, see Fig. 4.1 and well-
knownMelzak algorithm, see [8]. The case of four points was also studies actively by
C.F. Gauss, H.C. Schumacher and K. Bopp [9]. The latter one stated the problem for
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an arbitrary number of points in the plane, considered locally minimal networks and
understood the 120-degrees Principle, see Theorem 4.1. Notice that Bopp had used
the Viviani’s Theorem (the sum of distances from a point inside a regular triangle
to its sides does not depend on the choice of the point), that he attributed to Jacob
Steiner by a mistake, see also Remark 4.7. The modern statement of the problem for
an arbitrary finite subset of a Euclidean space belongs to Jarnik and Kössler [10].
They proved an existence theorem and 120-degrees Principle.Wewill state this prob-
lem in the general case of metric spaces (other details and references can be found
in a remarkable historical review [11]).

Let X be a metric space and M be some its subset. Consider all the networks in X
connecting M and define the value smt(M) to be equal to the infimum of the lengths
of all the networks.

Definition 4.8 Under the above assumptions, if smt(M) < ∞ and there exists a
network Γ connecting M and such that |Γ | = smt(M), then Γ is called a shortest
network. If it is necessary to underline that Γ connects M , then such a network Γ is
referred as a shortest network on M .

Problem 4.2 (Jarnik, Kössler) Find a shortest network connecting a given subset
M of points of a metric space X (providing such a network does exist).

Remark 4.7 Atpresent the Jarnik–Kössler problem stated above is referred asSteiner
Problem, though J. Steiner worked on a similar but different problem (see above).
The confusion had appeared due to the outstanding and very popular book [12].

Remark 4.8 As it has been already mentioned above, each shortest network can be
parameterized by a nondegenerate tree, that is referred as a Steiner minimal tree (that
explains the notation smt).

4.1.4 Local Structure of Shortest Trees. Locally
Minimal Trees

Let us describe the structure of the shortest trees in small neighborhoods of their
points. In fact, to do that it is necessary to solve the following problem: describe all
the shortest networks of the “star–type”, i.e. the ones that have exactly one interior
vertex which is connected by edges with all the boundary vertices of the tree (the
interior vertex could coincide with one of the boundary ones).

Consider the case of the Euclidean plane. It turns out that it suffices to consider
the case of the star with three boundary vertices. Why is it so? The solution of
Fermat problem implies that the angle between any two adjacent edges–segments of
a shortest network can not be less than 120◦, because otherwise a pair of such edges
can be changed by a shorter tree that contradicts to minimality of the initial network.
Thus, at most three edges of a shortest tree can be incident to its vertex. So, in fact,
the solution of Fermat problem describes all possible ways of the edges adjacency
in a shortest tree. The complete answer is as follows.
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Theorem 4.1 (On the local structure of a shortest tree) All the edges of a shortest
tree in the Euclidean plane are straight segments, and the angles between the edges–
segments are at least 120◦, and hence, the degrees of the vertices of such trees are at
most 3. The degrees of all the interior vertices are always equal to 3, and the adjacent
edges form the angles of 120◦; the degrees of the boundary vertices can be equal to
1, 2, or 3, and at a boundary vertex of degree 2 the segments meet by an angle of at
at least 120◦, and at a boundary vertex of degree 3 the edges meet as at an interior
one.

Definition 4.9 A tree in Euclidean plane, whose local structure is as in Theorem 4.1,
i.e., a plane tree whose edges–segments meet by the angles of at least 120◦ and with
the boundary containing all the vertices of degree 1 and 2, is called locally minimal.

Remark 4.9 Theorem4.1 andDefinition 4.9 imply that any shortest tree in Euclidean
plane is locally minimal, therefore under studying of shortest trees one can restrict
consideration to so called Steiner trees that are defined as the trees, whose edges are
straight segments, vertices are of degree at most 3, and all the vertices of degrees 1
and 2 are boundary ones. For a fixed boundary, each such a tree is uniquely defined
by its combinatorial structure and the location of its interior vertices.

Moreover, if one “splits” each vertex of degree 2 of a shortest tree by changing
it by a boundary vertex of degree 1 and an interior vertex of degree 3 connected
by a degenerate edge (see Fig. 4.2, left), and also “splits” each boundary vertex of
degree 3 into two interior vertices of degree 3 and one boundary vertex of degree 1
connected as in Fig. 4.2, right, then the resulting tree has only the vertices of degrees
1 and 3, and the boundary of the resulting tree consists of all its vertices of degree

Fig. 4.2 Splitting of the boundary vertices of degree more than 1
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Fig. 4.3 Two locally minimal trees connecting the vertices of a rectangle

1. We call such trees binary. Thus, each shortest tree (and also each locally minimal
tree) can be represented as a binary tree, some of whose edges might be degenerate.

Remark 4.10 Of course, a locally minimal tree need not be a shortest one. For exam-
ple, the vertex set of a rectangle with distinct sides and such that the angle between
its diagonals is greater than 60◦, is connected by two locally minimal trees having
distinct lengths. It is clear that the longest tree is not a shortest, see Fig. 4.3.

Now, let us pass to locally minimal and shortest trees in other ambient spaces.
It turns out that their local structure in n-dimensional Euclidean space is the same
(this fact can be easily proved using the solution of Fermat problem again, see, for
example [13]). Similar result, see [14], is also valid for minimal trees in surfaces and,
more general, in Riemannian manifolds (the straight segments must be changed by
segments of geodesics). In normed spaces the situation is much more complicated,
see [15]. For example, in so called Manhattan plane, i.e., the plane with the standard
coordinates x , y and the norm ‖(x, y)‖ = |x | + |y|, shortest networks could have
vertices of degree 4. For example, a finite part of the “coordinate cross” forms such
a network. More information concerning the Manhattan plane can be found in [16].
In papers [15, 17–20] local structure of minimal networks in more general normed
planes is studied.

Now let us give a general definition of a locally minimal network. Let Γ be a
network in a metric space X , and P ∈ Γ be its arbitrary point (either a vertex, or an
interior point of an edge). If P lies inside an edge γ : [a, b] → X , i.e., P = γ (t0)
for some t0 ∈ (a, b), then a local network centered at P is defined as an arbitrary
curve δ = γ |[α,β], where t0 ∈ (α, β) ⊂ (a, b), and the boundary of this local network
consists of the two end points of the curve δ. And if P is a vertex of the network Γ ,
and γi are the edges of the network Γ that are incident to P , then a local network
centered at P is defined as a network, whose edges are some fragments δi of the
edges γi containing the point P , and the boundary of this local network consists of
all the ends of the curves δi , provided P is a boundary vertex of Γ , and of all the
ends of this curves excluding P , provided P is non-boundary.
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Fig. 4.4 Locally minimal networks with cycles, multiple edges and self-intersections

Definition 4.10 A (continuous) network in a metric space is called locally minimal,
if for any its point there exists a local network centered at this point, which is shortest
(with respect to its boundary).

Remark 4.11 It is easy to see that locally minimal networks consists of geodesics
(locally shortest curves). Besides, each shortest network is locally minimal, and the
converse statement is not valid.

Remark 4.12 A locally minimal network can have cycles, loops, multiple edges and
self-intersections (see Fig. 4.4).

Remark 4.13 All vertices of degree 1 of a locally minimal network must belong to
its boundary. All the interior vertices of degree 2 can be excluded except the only
case, when the network is a closed curve. In the latter case we need a single interior
vertex of degree 2 to get a topological graph with a singe loop, see Fig. 4.4.

4.1.5 Steiner Problem for Discrete Networks

Notice that not every metric space permits connection of its finite subsets by continu-
ous curves. For example, such trouble appears if one consider a finite metric space X ,
or a space of words with so-called editorial distance, that is actively used in biology
in problems related to genes and evolution, see [21]. But in those cases the Steiner
problem can be also stated. To do that we re-define the concepts of a network and of
the length of an edge. Let X be a metric space, and M ⊂ X .

Definition 4.11 By a (discrete) network in X we call an arbitrary connected combi-
natorial graph Γ = (V, E, ∂) such that V ⊂ X . We say that a network Γ connects
M , if M ⊂ V ; and the set M is referred as the boundary of the network Γ and is
denoted by ∂Γ . Put the length of an edge e of the network Γ to be equal to the
distance in X between the vertices connected by the edge.

Now the Steiner Problem is exactly Problem4.2, where networks are considered
in the sense of Definition 4.11.
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Remark 4.14 Assume that any subset of a metric space X can be connected by some
network. Is it true that in such a case smt(M) is the same for the both Definitions 4.4
and 4.11? The answer is positive for so-called length-metric spaces, i.e., the spaces
such that the distance between any two point is equal to the infimum of the lengths of
all the curves connecting those points (see [6]). But not any path-connected metric
space is a length metric one. As an example, consider a circle in the Euclidean plane
with the metric induced by the metric of the plane. Then the distance between two
points P and Q of the circle is equal to the Euclidean length |PQ| of the straight
segment [P, Q], but the shortest curve is one of the arcs of the circle that is definitely
longer than |PQ|.

4.2 Minimal Fillings

Up to now we have considered the Steiner problem for the network lying in an
ambient metric space. Is it possible to state a similar problem without ambient space
at all? Such version of the problem has been suggested in [22] by A. Ivanov and
A. Tuzhilin, who extended M. Gromov’s construction [23] of minimal fillings to the
case of one-dimensionalmanifoldswith singularities.Herewegive the corresponding
definitions.

Recall that a weighted graph (G, ω) = (V, E, ∂, ω) is a graph G = (V, E, ∂)

endowed with a non-negative function ω on its edges that is referred as the weight
function. For any subset E ′ of the edge set E of a weighted graph (V, E, ∂, ω) the
weight ω(E ′) is defined as the sum of weights ω(e) of all the edges e from E ′. In
particular, the weights of paths in G are defined, so as the weigh ω(G) := ω(E)

of the graph as a whole. If a weighted graph (G, ω) is connected, then a distance
function dω on the vertex set is defined as follows: for each pair u, v of vertices of the
graph G the value dω(u, v) is defined as weight of a path connecting those vertices
and having the least possible weight.

Let M be an arbitrary set, and G = (V, E, ∂) be a connected graph. We say that
the graph G connects M , if M ⊂ V .

Definition 4.12 A weighted connected graph (G, ω), connecting a metric space
(M, ρ) is called a filling of M , if for any two points u and v from M the relation
ρ(u, v) ≤ dω(u, v) holds.

By mf(M) we denote the greatest lower bound of the weights of all fillings of the
space M .

Definition 4.13 A filling (G, ω) of a metric space M is called minimal, if ω(G) =
mf(M).

Problem 4.3 (Ivanov and Tuzhilin) Describeminimal fillings of finitemetric spaces
and find out the relations between minimal fillings and shortest trees.
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4.3 Minimal Spanning Trees

This type of optimal networks often appear in different applications, because it is
algorithmically simple.

Let M be a metric space. Consider all possible trees G with the vertex set M ,
for each of them calculate the length |G| and put mst(M) to be equal to the greatest
lower bound of the numbers |G| over all such trees.

Definition 4.14 If mst(M) < ∞, and G is a tree with the vertex set M such that
|G| = mst(M), then G is called a minimal spanning tree (that is a reason for the
notation mst).

In fact, minimal spanning trees are often used as an approximation of the short-
est trees, because there exists polynomial algorithm for there constructing, such as
Kruskal’s Algorithm, see for example [24].

Next statements demonstrate relations between the functionsmst, smt (for discrete
networks), and mf.

• Let M be a subset of a metric space X , and smt(M) < ∞. Then smt(M) is equal
to the infimum of the values mst(W ) over all W such that M ⊂ W ⊂ X .

• Let M be an arbitrary metric space such that mf(M) < ∞. Then mf(M) is equal
to the infimum of the values mst(W ) over all metric spacesW with finite mst(W ),
such that M can be isometrically embedded into W .

• Let M be an arbitrary metric space such that mf(M) < ∞. Then mf(M) is equal
to the infimum of the numbers smt(W ) over all the pairs (W, X), where X is a
metric space of cardinality at most continuum and W ⊂ X is isometric to M .

In what follows all the types of optimal networks considered above, namely,
shortest trees, locally minimal trees, minimal fillings, and minimal spanning trees
are referred as minimal networks.

4.4 Properties of Minimal Networks

In this section we tell about some geometrical properties of minimal networks.
Restrict ourselves to the case of the Euclidean plane.

4.4.1 Minimal Spanning Trees

In this section we collect several simple geometric properties of plane minimal span-
ning trees.

Proposition 4.1 Let Γ be a minimal spanning tree connecting a finite subset M of
the Euclidean plane. Then
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(1) the tree Γ has no self-intersections;
(2) the angle between any two adjacent edges of the tree Γ is at least 60◦;
(3) if e is an arbitrary edge of the tree Γ , and Γ1 and Γ2 are the components of the

forest Γ \e obtained from Γ by deleting the edge e, then the distance between
the vertex sets of the trees Γi is equal to the length of the edge e.

Remark 4.15 Property (3) form Proposition 4.1 remains valid in an arbitrary metric
space.

4.4.2 Shortest Trees

Geometrical properties of shortest trees are studied much more better, see, for exam-
ple [25]. Here we include just one well-known example, that have been recently
generalized and developed.

Let e = uv be an edge of a shortest tree Γ . By L(e) we denote the intersection of
the open circles or radius |e| centered at u and v. The set L(e) is referred as the lune
of the edge e. The following classical result holds, see [25].

Proposition 4.2 The lune of an edge e of a shortest tree Γ does not contain any
points of Γ except the points from e. In other words, Γ ∩ L(uv) = (u, v).

Remark 4.16 Ivanov and Tuzhilin stated the next problem: Describe possible struc-
ture of the intersection of a shortest tree Γ with a sufficiently small ε-neighborhood
of the lune L(e) of an edge e of Γ . This problem is completely solved by Ivanov,
S’edina and Tuzhilin [26].

4.4.3 Locally Minimal Trees

In this section we demonstrate relations between the structure of locally minimal
trees and geometry of their boundaries. This connection follows from a general fact
concerning geometry of plane linear trees.

Let Γ be a plane graph, all whose edges are straight segments (such graphs are
referred as linear). Define the geometric boundary of linear graph Γ as follows: a
vertex v of Γ is a boundary one, if there exists a straight line � passing through v and
such that all the edges of Γ incident to v lie in a single open half-plane with respect to
�. All the remaining vertices of Γ are called interior. The set of all boundary vertices
of Γ is referred as the geometric boundary of Γ and is denoted by ∂Γ , see Fig. 4.5.

Let Γ be a linear tree, and e and f be arbitrary edges of Γ . By γ we denote the
unique path in Γ connecting e and f , and let e0 = e, e1, . . . , em = f be consecutive
edges of γ . Orient γ from e to f and consider each edge ei as the corresponding
vector in the plane. By αi ∈ (−π, π) we denote the angle from ei−1 to ei .
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Fig. 4.5 Geometrical
boundary of a linear graph

Fig. 4.6 The twisting
number of a linear tree

Definition 4.15 The number α(e, f ) = ∑m
i=1 αi is called the twisting angle from

e to f , and the value α(Γ ) = max(e, f ) α(e, f ) is called the twisting angle of the
linear tree Γ . Normalized twisting angles 3

π
α(e, f ) and 3

π
α(Γ ) are referred as the

corresponding twisting numbers and are denoted by tw(e, f ) and twΓ , see Fig. 4.6.

Remark 4.17 Since tw(e, f ) = −tw( f, e), then twΓ is non-negative.

Remark 4.18 If Γ is a plane locally minimal binary tree, then tw(e, f ) is equal to
the difference between the number of “left” and “right” turns under the walk from e
to f along Γ , see Fig. 4.7.

Fig. 4.7 The twisting
number of a locally minimal
binary tree
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Further, for any subset X ⊂ R
2 by convX we denote the convex hull of the set

X , and let ∂X stand for its topological boundary. Let M be an arbitrary finite subset
of the plane R

2. Put M1 = M ∩ ∂convM and M ′
1 = M \ M1. If M ′

i is defined and
non-empty, then put Mi+1 = M ′

i ∩ ∂convM ′
i and M ′

i+1 = M ′
i \ Mi+1. It is clear that

M = 	k
i=1Mi .

Definition 4.16 The set Mi is called the convexity level of M , and the number k =
k(M) is referred as the number of convexity levels of the set M .

Theorem 4.2 (Ivanov and Tuzhilin [27, 28]) Let Γ be a plane linear tree with
geometric boundary ∂Γ , and k = k(∂Γ ) be the number of convexity levels of the
set ∂Γ . Then twΓ ≤ 12(k − 1) + 6. If Γ is a locally minimal binary tree, then its
geometric boundary coincides with the boundary of the binary tree defined above,
i.e., with the set of vertices of degree 1, and a stronger estimate is valid, namely,
twΓ ≤ 12(k − 1) + 5.

Remark 4.18 demonstrates how the concept of twisting number can be transferred
to the case of a plane binary tree.

Definition 4.17 If Γ is a plane binary tree, then for any ordered pair (e, f ) of
edges of Γ put tw(e, f ) to be equal to the difference between the number of “left”
and “right” turns under the walk along the tree Γ from e to f . As above, twΓ =
max(e, f ) tw(e, f ), see Fig. 4.8.

Definition 4.18 A boundary of a locally minimal tree is called convex, if it has
exactly one convexity level.

Definition 4.19 We say that a plane Steiner tree has a convex minimal realization,
if there exists a planar equivalent plane locally minimal tree with a convex boundary.

Theorem 4.2 implies that the twisting number of plane binary tree having a convex
minimal realization does not exceed 5. It turns out, that the converse statement also
holds, and the proof is utter non-trivial (see [29–31]). Thus, the following result
holds.

Theorem 4.3 (Ivanov and Tuzhilin [29–32]) A plane binary tree has a convex
minimal realization, if and only if its twisting number does not exceed 5.

Fig. 4.8 The twisting
number of plane binary tree
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4.4.4 Minimal Fillings

In the present section we list several properties of minimal fillings.

4.4.4.1 Generic Spaces

To state the following result we need a concept of a generic finite metric space. To
define this concept we fix a finite setM , enumerate its points, i.e.,M = {p1, . . . , pn},
and consider an arbitrary metric ρ on M . Put ρi j = ρ(pi , p j ), write down all non-
zero elements of the upper triangle of the distance matrix (ρi j ) as a vector v(ρ) =
(ρ12, ρ13, . . . , ρ(n−1) n), and get a point in the space R

n(n−1)/2. Notice that the set
Mn = {v(ρ)}ρ is an open cone in the positive orthant determined by all triangle
inequalities of the form ρi j + ρ jk ≥ ρik .

Definition 4.20 We say, that a property holds for all generic finite metric spaces, if
for any n this property holds for all finite metric spaces from some everywhere dense
subset of Mn .

Theorem 4.4 (Eremin [33]) Minimal filling of a generic finite metric space is a
nondegenerate binary tree.

4.4.4.2 Additive Spaces

Definition 4.21 A path connecting boundary vertices in a graph G is called bound-
ary. A boundary path in a filling is said to be exact, if its weight is equal to the
distance between its ends.

Definition 4.22 A metric space is called additive, if there exists its filling such that
all its boundary paths are exact. Such a filling is called a generating tree of the
corresponding additive space.

In other words the space is additive, if all the distances are generated by some
weighted tree connecting it.

Remark 4.19 Afinite metric space is additive, if and only if the following four points
rule holds: for any four points x1, x2, x3, x4 of the space, considered as vertices of
a tetrahedron, the three numbers |xi x j | + |xkxl |, {i, j, k, l} = {1, 2, 3, 4}, which are
equal to the sum of the lengths of the opposite sides of the tetrahedron form the
lengths of the sides of an isosceles triangle, whose base does not exceed the other
sides. It is also well-known that a nondegenerate generating tree of an additive space
is unique, see [34–37].

Proposition 4.3 (Ivanov and Tuzhilin [22]) A nondegenerate generating tree of an
additive space is its unique nondegenerate minimal filling.
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Let M = {p1, . . . , pn} be a finite metric space with a metric ρ, and π is a permu-
tation on M . Put pn+1 = p1,

pπ (M, ρ) = 1

2

n∑

i=1

ρ (π(pi ), π(pi+1)) ,

and
p(M, ρ) = min

π
pπ (M, ρ).

Definition 4.23 The value pπ (M, ρ) is called the half-perimeter of the metric space
(M, ρ) with respect to the permutation π , and the value p(M, ρ) is called the half-
perimeter of the metric space (M, ρ).

Proposition 4.4 (Rubleva [38]) The weight of a minimal filling of a metric space is
equal to the half-perimeter of this space, if and only if the space is additive.

Recall that an Euler cycle in a connected graph is a cycle containing all the edges
and passing through each edge exactly once. Evenness of degrees of all the vertices
is a necessary and sufficient condition for an Euler cycle existence in a connected
graph.

Definition 4.24 The doubling of a graph G = (V, E, d) is the graph (V, E 	 E, d ′),
where the restriction of d ′ onto each E coincides with d.

It is clear, that the degrees of all the vertices of the doubling are even, therefore
the doubling of any connected graph contains an Euler cycle.

Let G be a binary tree and G ′ be its doubling. Consider an arbitrary Euler cycle C
in G ′ and orient it. It is not difficult to show that C consists of a sequence of oriented
boundary paths γ1, . . . , γn , where n is the number of boundary vertices (i.e., the
vertices of degree 1) of G. Moreover, for any v ∈ ∂G there exists unique path γi ,
such that v is its beginning vertex. Let πC : ∂G → ∂G be the mapping that maps
each vertex v onto the corresponding ending vertex of the unique path γi that goes
out of v. The resulting permutation on ∂G is called the walk around the tree G. The
following result is evident.

Proposition 4.5 Let G be the binary generating tree for an additive space (M, ρ)

and π be a walk around the tree G. Then the half-perimeter pπ (M, ρ) is equal to
the weight of the tree G, and hence, does not depend on the choice of the walk.

Is the inverse result valid? The answer turns out to be negative. Ovsyannikov [39]
described the set of all metric spaces satisfying that property.

4.4.4.3 Pseudo-additive Spaces

Let us permit the weights of edges of a filling be negative. For such a weighted tree
(G, ω) the same function dω on the vertex set of G can be defined. But now, dω can
take negative values.
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Definition 4.25 A metric space (M, ρ) is called pseudo-additive, if there exists a
weighted tree (G, ω), whose weights could be negative, connecting M and such that
the relation dω(x, y) = ρ(x, y) holds for all x, y ∈ M .

Theorem 4.5 (Ovsyannikov [39]) Let (M, ρ) be some metric space. Then the fol-
lowing properties are equivalent:

• there exists a binary tree G connecting M and such that the half-perimeters of all
the walks around G are the same;

• the space M is pseudo-additive.

Remark 4.20 Ovsyannikov found out that a pseudo-additivity criterion can be
obtained from the four points rule, see Remark 4.19, as follows: we just need to
omit the condition that the base of the isosceles triangle is longer than its other sides.

4.5 Classifications

In the present section we give a description of some classes of minimal networks for
some classes of boundary sets.

4.5.1 Shortest Trees

The pioneer work of Jarnik and Kössler [10] contains not only a new problem state-
ment, that becomes known as the Steiner problem, but also a solution to this problem
for the case of regular n-gons in Euclidean plane for all n except 6 ≤ n ≤ 12. This
gap was closed in 1987 only by Du, Hwang and Weng [40].

Theorem 4.6 (Jarnik, Kössler [10], Du, Hwang and Weng [40]) Let M be the
vertex set of a regular n-gon in the Euclidean plane. Then SMT(M) consists from
one (for n = 3), two (for n = 4), and n (for n ≥ 5) trees, which are obtained one
from another by some rotations around the center of the polygon M. For n = 3, 4, 5
those trees have the form shown in Fig.4.9 and uniquely defined by its local structure

Fig. 4.9 Shortest trees connecting the vertices of regular n-gons
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(Theorem 4.1). For n ≥ 6 each of the trees consists of all the sides of the polygon M
except one.

There exists a series of classifying results describing shortest trees connecting
vertices of so-called “zig-zags” [41], “ladders” [42], polygons inscribed into a circle
and having at most one “long” side [43, 44], “Chinese checkers board” [45]. Also,
a conjecture concerning the structure of shortest trees connecting the vertices of a
usual “chess board” is stated in [46].

Notice that in each of the above cases a proof is extremely non-trivial. Of course,
for the boundaries consisting of a small number of points it is possible to proceedwith
some algorithm ofMelzak type searching through all combinatorial possibilities. But
for large sets evenmodern computers turns out to be powerless. Away out is either in
finding some heuristics, such as a minimal spanning tree, or in elaboration a theory
that gives an opportunity to improve the direct algorithm basing on some geomet-
rical results. One example of such a theory is discussed above in Sect. 4.4.3, where
a relation between geometry of a boundary set and possible structure of minimal
networks connecting this set is established.

Another important problem is the one of constructing examples of shortest net-
works with some prescribed properties. Consider several results of that type for the
case of Euclidean plane.

Due to definition, each shortest tree is locally minimal. As we have already men-
tioned above, the converse statement does not hold in general. The following question
arises: Are there any structural obstacles for realization of a given locally minimal
tree (a plane Steiner tree) as a shortest one? Here by the “realization” we understand
a graph that is planar equivalent to the initial one. It is clear that shortest trees have
no self intersections. So, the initial trees also must not have self-intersections. Are
there some other restrictions? The following theorem gives the negative answer.

Theorem 4.7 ([47]) Any plane (embedded, i.e. without self-intersection) Steiner
tree is planar equivalent to some shortest tree.

Notice that any locally minimal tree can be transformed to an embedded one by
changing the lengths of edges only without changing their directions (this fact can
be easily proved by induction). Thus, using Theorem 4.7, conclude that any locally
minimal tree can be transformed to a shortest one by changing the lengths of edges.

It turns out that there is another way to transform a locally minimal tree without
self-intersections into a shortest one.

Theorem 4.8 (Ivanov and Tuzhilin [48]) Let Γ be a locally minimal tree without
self-intersections in aEuclidean space. Then the edges of the treeΓ canbe subdivided
by boundary vertices of degree 2 in such a way that the resulting tree is a shortest
one for the new boundary.

Thus, each embedded locally minimal tree in a Euclidean space coincides as a
subset with some shortest tree. In this sense the family of all shortest trees (considered
as subsets of Euclidean space) coincides with the set of all embedded locallyminimal
trees.
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4.5.2 Locally Minimal Trees

Usually, the set of locally minimal trees with a given boundary is essentially bigger
than the set of the shortest trees with the same boundary. One of a still open problems
(stated by Ivanov andTuzhilin) is to describe all locallyminimal networks connecting
vertex sets of regular polygons inEuclidean planeR2 (recall, that the shortest trees are
described by Theorem 4.6). Solving this problem Ivanov and Tuzhilin considered a
more general problemon description of embedded locallyminimal trees inR2, whose
boundaries are the vertex sets of convex polygons. Such boundaries are referred as
convex for shortness.

We give this description for an important particular case of binary trees.

4.5.2.1 Plane Locally Minimal Binary Trees with Convex Boundaries

For plane binary trees a twisting number has been defined above. In accordance
with Theorem4.3 the class we are interested in coincides with the class of plane
binary trees with twisting number at most five. How can one describe all such trees?
It turns out that it is essentially more convenient to study such trees in a “dual
language” of so called “triangle tilings”.

Consider a standard partition of the plane into regular triangles. Below that par-
tition is referred as the (triangle) tilling of the plane, and the triangles forming the
tiling are called cells. Two cells are called adjacent, if they have a common side. It
is clear that for each cell there exist exactly three cells adjacent to it.

Definition 4.26 A finite set of cells is called a tiling. A cell’s side located at the
topological boundary of a tiling containing it is called boundary.

Let T be a tiling. By V we denote the set of all the centers of all its cells and all
the centers of its boundary sides. By E we denote the set of all straight segments
connecting the centers of adjacent cells and the center of each boundary side with
the center of the unique cell containing this side.

Definition 4.27 The plane graph GT = (V, E) constructed above is called the dual
graph of the tiling T , see Fig. 4.10.

Definition 4.28 A tiling is called a tree tiling, if its dual graph is a tree. The twisting
number of the dual graph of a tree tiling is called the twisting number of the tiling.

Theorem 4.9 (On a tiling realization: Ivanov and Tuzhilin [29–32]) Each plane
binary tree, whose twisting number is at most five, is planar equivalent to the dual
graph of a tree tiling.

So, our problem is equivalent to description of all tree tilings, whose twisting
number is at mots 5.
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Fig. 4.10 A tiling T and its
dual graph GT

It turns out that each tiling can be represented as a union of some part having a
“regular structure” (this part is referred as a skeleton of the tiling), and some cells
glued to the skeleton in a “random way” (those cells are referred as growths).

Definition 4.29 A cell of a tiling is called extreme, if at least two its sides are
boundary ones, see Fig. 4.11. If a cell has no boundary sides, than it is called interior.
An extreme cell adjacent with an interior one is called a growth, see Fig. 4.12, and a
tiling without growths is called a skeleton.

Let T be an arbitrary tiling. By R we denote the set of the cells of T obtained as
follows: for each interior vertex of T chose one of adjacent extreme cells (if any)
and put in R. Clearly, all cells from R are growths of the tiling T . By S we denote
the tiling obtained from T by deleting all the cells from R. It is not difficult to verify
that S is a skeleton, so, we have constructed a decomposition of the tiling T into
a skeleton S and growths R. Notice that the set R, and hence, the skeleton S are
not uniquely defined, because some interior vertices could be adjacent with several
growths, see Fig. 4.12.

Fig. 4.11 Extreme (left) and interior (right) cells
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Fig. 4.12 Growths (left), paired (middle) and single (right)

For the tilings, whose twisting number does not exceed 5, Ivanov and Tuzhilin
described geometrical structure of their skeletons and possible location of their
growths. We do not include the complete answer (see details in [29–32]). Instead,
we show how this theory works demonstrating several corollaries.

Definition 4.30 A connected components of the set of interior vertices of a skeleton
are called branching nodes, and the connected components of a skeleton of a tree
tiling, whose branching nodes are deleted, are called linear parts.

Let S be a skeleton of a tree tiling. Construct a plane graph, whose vertex set is
formed by taking a single point inside each extreme cell and inside each branching
node. Connect the chosen points by embedded curves each of which lies inside the
union of the branching node (nodes) and the linear part adjacent to the nodes or
the linear part adjacent to the node and containing the extreme cell. We demand in
addition that the curves intersect each other by their ending points only. The resulting
graph is called a code of the skeleton S, see Fig. 4.13.

Fig. 4.13 A code of a
skeleton
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Fig. 4.14 All possible codes of skeletons, whose twisting number is at most 5

Theorem 4.10 (Ivanov andTuzhilin [29–32])The codes of skeletons,whose twisting
number is at most 5 are plane trees with at most six vertices of degree 1 and without
vertices of degree 2. Thus, there are 16 such codes depicted in Fig.4.14, up to a
planar equivalence.

Corollary 4.1 Each skeleton, whose twisting number is at most 5 contains at most
four branching nodes (and at most four interior cells) and at most 9 linear parts.

This theory had been applied to problem of classification of locally minimal
networks connecting the vertex sets of regular polygons. This problem turns out to
be very hard, and a complete answer still is not obtained. Nevertheless, the case of
binary trees that are dual graphs of skeletons had been completely studied. It turns
out that there are two infinite and one finite series of such skeletons. See details
in [49–52].

The case of a tiling with growths is even more complicated. By means of large
computer experiment, two series of such tilings were found that seems to be infinite.
Some technique has been elaborated in [53], but the problem remains open even in
the predicted cases of the two series.

4.5.2.2 Closed Locally Minimal Networks on Surfaces

Some classification results are obtained on closed (compact without boundary) two-
dimensional surfaces (Riemannian manifolds) of constant curvature. Notice that the
class of closed minimal networks, i.e., the networks without boundary is natural to
consider in such ambient spaces. The local structure description, see above, implies
that such networks consist of geodesic segments meeting at common vertices by
angles of 120◦.
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Here we consider the surfaces of non-negative curvature only, because in the case
of negative curvature there are no classification results for today. Notice that the
problem of closed locally minimal networks description in the constant curvature
surfaces was stated by A.T. Fomenko. Let us pass to details.

Sphere and Projective Plane

The problem of closed locally minimal networks in the standard sphere appears
naturally under studying of soap films singularities, see [54]. The complete answer
had bee obtained by Heppes [55], who studied “regular” geodesic partitions of the
sphere, see also [13].

Theorem 4.11 (Heppes [55]) In the standard sphere there exist exactly 10 closed
locally minimal networks, up to an isometry.

Recall that the projective plane can be represented as the quotient of the standard
sphere by identifying its antipodal points. Therefore, the list of closed locallyminimal
network in the projective plane can be obtained as the sublist of central-symmetrical
closed locallyminimal networks in the sphere. There are exactly three such networks,
up to an isometry, see [13].

Flat Tori and Klein Bottles

Recall that each flat torus T 2 can be obtained by gluing of a parallelogram as is
depicted in Fig. 4.15. It is clear that if such tori differ by a similarity, then the families

Fig. 4.15 Filling of the plane by parallelograms generates a locally isometric covering of a torus
by the Euclidean plane
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of closed locally minimal networks are also similar. Therefore, in what follows we
assume that one side of the parallelograms is equal to 1. The standard filling of
the Euclidean plane by copies of such a parallelogram generates a locally isometric
covering ν : R2 → T 2.

Fix a Cartesian coordinates Oxy in the plane, which are matched with the filling
in the following sense. Chose some parallelogram of the filling and let the origin
O be one of its vertices and the abscissa axis Ox go along the unit side of the
parallelogram (by e we denote the corresponding unit vector e). Also let the ordinate
axis be directed into the half-plane generated by Ox that contains the parallelogram.
So, the second side of the parallelogram oriented from the origin is given by the
vector f = ( f1, f2), f2 > 0, and the first side is the vector e = (1, 0). By T 2( f ) we
denote the corresponding flat torus underlying its dependence on the vector f . We
also need the set L( f ) = {m e + n f : m, n ∈ Z} that is referred as the lattice of the
torus T 2( f ). It is clear that L( f ) = ν−1 (ν(O)). Thus, our goal is to describe all
closed locally minimal networks in the flat torus T 2( f ) for any f .

Let G be an arbitrary such network. By Γ we denote its lifting to the plane R2,
see Fig. 4.16, i.e., Γ = ν−1(G) (with evident partition into edges and vertices). It
is clear that translations of R2 generates isometries of the torus T 2( f ), and hence,
do not change geometry of G and Γ . Therefore, without loss of generality one can
assume that one of the vertices of the network coincides with O .

Notice that each edge of the networkΓ is parallel to one of the three straight lines,
and so, there are exactly three classes of edges that are referred as parallel classes.

Definition 4.31 Infinite polygonal line emitted from a vertex of the network Γ and
consisting of the edges of Γ belonging to at most two parallel classes is called a net
ray. Each finite polygonal line that is contained in a net ray is called a net geodesic.

It is easy to see that six distinct net rays can be emitted from any vertex of Γ .
Emit from O two net rays which are neighboring with respect to a walk around the

Fig. 4.16 Lifting of a minimal network to the covering plane
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point O . By γ1 and γ2 we denote the parts of those net rays between O and the first
point from L( f ) distinct from O . Let (p, q) and (r, s) be the integer coordinates of
the end points of the net geodesics γ1 and γ2 (distinct from O) with respect to the
basis (e, f ), see Fig. 4.16. It turns out, see [13, 30, 56], that the numbers p and q
are co-prime, so as the numbers r and s, and the vectors (p, q) and (r, s) are linearly
independent.

It also can be shown that each net geodesic γi consists of an even number of edges
of Γ . Let m and n be the numbers of pairs of edges forming γ1 and γ2, respectively.

Put M =
(
p r
q s

)

. Without loss of generality, assume that the net geodesics are

ordered in such a way that det M > 0. It turns out that the numbers m and n are
divisible by det M , see [13, 30, 56].

Put m = u det M , n = v det M , and form the integer matrix g(M,m, n) =(
p v r u
q v s u

)

with positive determinant. Notice that by each integer matrix g =
(
P R
Q S

)

with positive determinant a triplet (M,m, n) can be restored, where M

is the matrix obtained from g by reducing the columns by there greatest common
factors v and u, respectively, and m = u det M and n = v det M .

Definition 4.32 The matrix g(M,m, n) constructed by a network G is referred as
the type of the network G.

The types of closed locally minimal networks in a torus T 2( f ) characterize the
topological structure of the networks. It is easy to see that the type of a network
remains the same under translations of the network described above. What other
transformations preserve the type? It is easy to see that one can chose an arbitrary
face of the network (such a face is a six-gone with angles of 120◦) and move its
vertices uniformly along the bisectors of the angles. It turns out that each network
can be transformed into so-called regular one by such deformation, where a regular
network is the one all whose faces are isometric to each other. Thus, the types of the
networks defined above classify regular networks up to translations of the torus.

What other ambiguities dowe have? It is clear that the type of the network depends
also on the choice of the net geodesics γi . There are six possibilities, see Fig. 4.16.
It is not difficult to calculate that under a change of net geodesics γi the type g

changes by right multiplication by one of the matrices J k , J =
(
0 −1
1 1

)

. Thus, we

characterized each closed locally minimal network on T 2( f ) by an element of the
quotient space G /〈J 〉, where G stands for the set of all integer matrices with positive
determinant, and 〈J 〉 is the cyclic group of order 6 generated by the matrix J and
acting on G by right multiplication.

Now, describe the types of closed locally minimal networks on a fixed flat torus
T 2( f ). To do that we need to introduce the concept of a characteristic triangle.
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Definition 4.33 For a type g =
(
P R
Q S

)

and a torus T 2( f ), the characteristic tri-

angle is a triangle in the plane defined by its vertices O , A = P e + Q f , and
B = R e + S f .

Remark 4.21 The characteristic triangles of the types g J k for a same torus T 2( f )
are equal to each other.

Theorem 4.12 (Ivanov, Ptitsyna and Tuzhilin [13, 30, 56])A closed locally minimal
network of a type g does exist on a flat torus T 2( f ), if and only if all the angles of
the corresponding characteristic triangle are less than 120◦.

Corollary 4.2 (Ivanov, Ptitsyna and Tuzhilin [13, 30, 56]) For any matrix g ∈ G
there exists a flat torus T 2( f ) and a closed locally minimal network of the type g on
T 2( f ).

Corollary 4.3 (Ivanov, Ptitsyna and Tuzhilin [13, 30, 56]) On any flat torus there
exist infinitely many closed locally minimal networks of different types.

Corollary 4.4 (Ivanov, Ptitsyna and Tuzhilin [13, 30, 56]) For any closed locally
minimal network G on a flat torus T 2( f ) there exists a neighborhood U of the point
f in the plane, such that for any f ′ ∈ U, a closed locally minimal network of the
same type as G exists on the torus T 2( f ′).

To study the case of Klein bottles it suffices to use the well-known two-sheeted
locally isomeric covering of a Klein bottle by a flat torus. It turns out that any closed
locally minimal network on a Klein bottle can be lifted onto a flat torus glued form a
rectangle, and such networks on tori are classified completely by the above results.
The corresponding classification can be found in [13, 30, 57].

Disphenoids and Other Polyhedra

Similarly to the case of Klein bottles, the case of disphenoids, i.e., of the tetrahedra
all whose faces are equal each other, can be reduced to the case of flat tori. Namely,
there also exists a locally isometric double covering by a flat torus, but this covering
have branch points at the vertices of the tetrahedron, see Fig. 4.17.

Fig. 4.17 Branched double covering of a disphenoid by a flat torus
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Fig. 4.18 Closed locally minimal networks on the surfaces of Platonic bodies

It is not difficult to show that each closed locally minimal network on the surface
of a convex polyhedron can not pass through the vertices of the polyhedron, therefore,
the branchings are inessential. The complete answer for the disphenoids can be found
in [13, 30, 58].

Remark 4.22 Notice that the disphenoids are exactly the tetrahedra with the same
curvature at the vertices, i.e., the tetrahedra of constant curvature.

Examples of closed locally minimal networks on the surfaces of all the Platonic
bodies are shown in Fig. 4.18. Notice that the non-trivial example of such network on
the surface of dodecahedron had been constructed by T. Anikeeva (Pavlyukevich).

But in this case a direct reduction to flat tori does not work, because either infinite-
sheeted branched coverings arise, as in the case of octahedron, or it is possible to
construct a two-sheeted covering but not by a torus, but by a torus with some holes.
The corresponding covering by a plane with holes can be used to construct examples,
and probably for classification, but no complete results have been obtained in this
direction still even in the case of cube.

A huge contribution in description of closed locally minimal networks on the
surfaces of convex polyhedra has been made by N.P. Strelkova. She has obtained a
complete description of possible combinatorial structures of closed locally minimal
networks on the surfaces of all convex polyhedra and also of the possible lengths of
the edges of such networks, see [59, 60]. Besides, she has shown that the problem
on description of all closed locally minimal networks on all convex polyhedra can
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be reduced to a more narrow class of so-called simple networks. This class has been
introduced byStrelkova and consists of the networks,whose any face contains exactly
one vertex of the polyhedron. Notice that the arguments of Strelkova are based on
classical technique of unfoldings elaborated by A.D. Alexandrov [61].

It is not difficult to see that closed locally minimal networks could exist on special
polyhedra only. The point is that the sum of angular excesses (Gauss curvatures) at
the vertices of an ambient polyhedron located in a single face of a network must be
multiple of π/3. In particular, if a network is simple, then all the angular excesses
themselves must be multiples of π/3. A natural question: Is the latter condition
sufficient for the existence of a simple network?

Conjecture 4.1 (Strelkova [60]) If all the angular excesses of a convexpolyhedra are
multiples ofπ/3, then a closed locallyminimal network does exist on the polyhedron.

Strelkova proved Conjecture 4.1 for “almost all” polyhedra, whose angular
excesses are multiples of π/3. Besides, an earlier results of Strelkova [62] imply
that Conjecture 4.1 is valid for tetrahedra.

4.6 How to Calculate or Estimate the Length of a Minimal
Network of a Given Topology Without Constructing
the Network Itself?

In this section we collect several formulas permitting to calculate or estimate the
weight or the length of a minimal network in terms of its boundary set.

4.6.1 The Length of a Minimal Spanning Tree

Let (M, ρ) be an arbitrary metric space. Generally speaking, we do not assume
that M is a finite set. The questions are: When mst(M) < ∞, and How to calculate
mst(M) without constructing a minimal spanning tree. Here we list the results of
Ivanov et al. [5].

Let N1 and N2 be arbitrary non-intersecting subsets of M . Put

ρ(N1, N2) = inf{ρ(x, y) | x ∈ N1, y ∈ N2}

(if one of those sets is empty, then ρ(N1, N2) = +∞).

Remark 4.23 This function ρ is not a metric on the subsets, see also Sect. 4.7.

For any d ≥ 0 we put

P(d) = {N ⊂ M | ρ(N , M \ N ) ≥ d}.
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Notice that for any d the sets ∅ and M are contained inP(d), and alsoP(0) is the
set of all subsets of M .

For each x ∈ M put:

P x (d) = {A ∈ P(d) | x ∈ A} and cd(x) = ∩A∈Px (d)A.

Notice that c0(x) = {x}.
ByPd(M)we denote the set of all distinct cd(x). Notice thatP0(M) is the set of

single-point subsets of M . It is not difficult to see, that the set Pd(M) is a partition
of M , and if d1 ≤ d2, then the partition Pd1(M) is a subpartition ofPd2(M).

Put

diam(M) = sup{ρ(x, y) | x ∈ M, y ∈ M},
Diamd(M) =

∑

c∈Pd (M)

diam(c).

For each set X by #X we denote the number of elements in X , provided X is
finite, and put #X = +∞ otherwise.

For any λ ≥ 0 put πλ(M) = #Pλ(M).

Theorem 4.13 (Ivanov et al. [5]) Let (M, ρ) be an arbitrary metric space. Then
mst(M) < ∞, if and only if the following conditions hold

• the space (M, ρ) is bounded and at most countable;
• ∫ diamM

0 πλ(M) dλ < ∞;
• Diamλ(M) → 0 as λ → 0.

Moreover, for such spaces the following equality holds

mst(M) =
∫ diamM

0
πλ(M) dλ − diam(M).

4.6.2 Maxwell Formula

The classical Maxwell Formula [25, 63, 64] calculates the length ρ(Γ ) of a given
plane locally minimal binary tree Γ in terms of the coordinates Ai of its boundary
vertices and the direction vectors ni of the edges of Γ coming to these vertices:

ρ(Γ ) =
∑

i

〈Ai , ni 〉,

where the angle brackets stand for the scalar product, see Fig. 4.19.
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Fig. 4.19 Maxwell Formula

This formula remains valid in the case of an arbitrary locally minimal network
Γ , if put ni to be equal to the sum of direction vectors of all the edges of Γ coming
to the vertex Ai . It is also valid in the Euclidean space of an arbitrary dimension.

Ivanov and Tuzhilin stated the following problem: How to calculate the length of
a plane locally minimal tree in terms of its boundary and topology only? Here we
give the solution of this problem for a bigger class of minimal parametric networks
in Rn , see [65].

Start with another version of discrete network definition that is more convenient
in this context (compare with the definition given above).

LetG = (V, E, ∂) be an arbitrary connected combinatorial graphwith a boundary
∂G, and (X, ρ) be a metric space. Fix some embedding ψ : ∂G → X and call it a
boundary mapping.

Definition 4.34 By a network in X of the type G with the boundary ψ we call a
mapping Γ : V → X such that Γ |∂G = ψ . By [G, ψ] we denote the set of all such
networks.

For each edge e ∈ E define its length ρΓ (e) to be equal to 0 for a loop e, and to
be equal to the number ρ (Γ (u), Γ (v)) for other edges e = uv. The length ρ(Γ ) of
a network Γ is the value

∑
e∈E ρΓ (e).

Thus, we defined a mapping ρ : [G, ψ] → R.
Let I = V \ ∂G be the set of all interior vertices of the graphG, then each network

Γ ∈ [G, ψ] is uniquely defined by the location of the points Γ (v), v ∈ I , and hence,
ifm = #I , then [G, ψ] can be naturally identifiedwith theCartesian product∏m

i=1 X .
It is easy to see that ρ is a continuous function on this space.

Put mpn (G, ψ) = inf {ρ (�) | � ∈ [G, ψ]}. Each network Γ ∈ [G, ψ] such that
ρ (G) = mpn (G, ψ) is called a minimal parametric network of the type G.

Let G = (V, E) be a tree with a boundary B = ∂G = {v1, . . . , vn}. By this tree
we construct a system of equations and inequalities on the variables from R

nd as
follows. Let

(
x11 , . . . , x

d
1 , . . . , x1n , . . . , x

d
n

)
be the standard coordinates in R

nd . Put
xk = (

x1k , . . . , x
d
k

)
and x = (x1, . . . , xn).



4 Minimal Networks: A Review 73

For each e ∈ E by G\e = G1 ∪ G2 we denote the forest obtained from the tree
G by deleting the edge e. Let Vk be the vertex set of the tree Gk , and Bk = B ∩ Vk ,
k = 1, 2. Chose any Bk , and let Bk = {

vk1 , . . . , vkp
}
. By σe we denote the inequality

‖∑
q xkq‖2 ≤ 1. By σ we denote the equality

∑
k xk = 0.

Consider the system SG consisting of σ and all the inequalities σe, e ∈ E , and let
|SG | ⊂ R

nd stands for the set of all solutions to this system. It turns out that the set
|SG | does not depend on the choice of Bk , and |SG | is a compact convex body in the
hyperspace of Rnd , defined by the equality σ .

Now consider an arbitrary boundary mapping ψ : B → R
d . Put Ak = ψ(vk) and

A = (A1, . . . , An) ∈ R
nd . Define a function ρψ : Rnd → R as follows: ρψ(x) =

〈x, A〉.
Theorem 4.14 (Ivanov and Tuzhilin [65]) Under the above assumptions,

mpn(G, ψ) = max
x∈|SG | ρψ(x).

Remark 4.24 In accordance with its definition, the length of a minimal parametric
network is a minimal value of the function defined on a linear space and having
the form of a sum of square roots of sums of coordinates squares. This function is
difficult for studying, but its domain is simple. Theorem 4.14 represents the same
value as a maximal value of a linear function but not on the entire space, but on some
its convex compact subset |SG |. Thus, now the function is simple, but the domain is
difficult.

Recently, A. Bannikova, D. Il’utko, and I. Nikonov generalized the classical
Maxwell Formula and Theorem 4.14 to the case of extreme networks in normed
spaces [66]. Notice that in contrast to Euclidean space locally minimal networks in
a normed space need not be a local minimum of the length functional. The ones that
are local minima are referred as extreme networks.

4.6.3 The Weight of a Minimal Filling

In [22] exact formulas for the weight of minimal fillings are obtained in some simple
cases, such as three and four points metric spaces, regular simplices, etc. In this
section we give a general formula calculating the weight of a minimal filling of a
finite metric space obtained by A. Eremin [33].

Let G = (V, E, d) be an arbitrary graph, and k be a positive integer. By G2k we
denote the graph (V,	2k

i=1E, d ′), where the restriction of d ′ onto each copy of E
coincides with d. Notice that for k = 1 the graph G2 is the doubling of the graph G,
see Definition 4.24. It is clear, that the degrees of all the vertices of the graph G2k

are even, therefore if G is connected, then G2k contains an Euler cycle.
Let (M, ρ) be a finite metric space, and G be a binary tree connecting M = ∂G.

By T2(M) we denote the set of all such trees G.
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Let k be a positive integer. Consider an Euler cycle C in G2k , that consists of
consecutive boundary paths γ1, . . . , γN (recall that a path in a graph passes each
edge at most once). This Euler cycle is called a multitour of multiplicity k of the tree
G. By Oμ(G) we denote the set of all multitours of the tree G.

For each γi by vi and wi we denote its ending vertices. Put

p(C) = 1

2k

N∑

i=1

ρ(vi ,wi ).

Theorem 4.15 (Eremin [33]) Let (M, ρ) be a finite metric space. Then

mf(M) = min
G∈T2(M)

max
C∈Oμ(G)

p(C).

Remark 4.25 The idea of such a formula belongs to Ivanov and Tuzhilin, who con-
jectured a similar formula for tours (i.e. multitours with k = 1). Eremin and Ovsyan-
nikov constructed a counter example. Then Ivanov, Ovsyannikov, Strelkova, and
Tuzhilin understand that the value mf(M) remains the same if negative weights on
edges of fillings are permitted [67]. Such fillings are called generalized. At last,
Eremin introduced multitours and proved the formula using the generalized fillings.

4.6.4 Ratios

Let M be an arbitrary finite metric space isometrically embedded into an ambient
metric space X . Above the following three values are defined: mst(M) (the least
possible length of spanning trees on M ; to define it the embedding into X is not
necessary), smt(M) (the least possible length of trees on X connecting M ; here the
embedding into X is necessary), mf(M) (theweight of aminimal filling; as in the first
case the embedding into X is not necessary). Clearly, mst(M) ≥ smt(M) ≥ mf(M).
Besides, in the important particular case when the ambient space X is a normed space
all these three values are homogeneous with respect to dilatations. Therefore, it is
natural to consider the ratios of the function to compare there values.

Those reasonings lead to the definition of the classical value: the Steiner ratio
sr(M) of the set M is defined as smt(M)/mst(M), see [25]. The infimum sr(X) of
theSteiner ratios over all finite subsetsM ⊂ X , #M ≥ 2, is a non-trivial characteristic
of the ambient space X and is referred as the Steiner ratio of the space X .

Remark 4.26 The Steiner ratio sr(M) had been defined to measure the relative error
of the approximation of a shortest tree by a minimal spanning tree. The importance
of such an approximation is explained by the fact that the algorithms constructing
shortest trees work slowly, but the algorithms constructing minimal spanning trees
are quite fast.



4 Minimal Networks: A Review 75

Two other ratios, namelymf(M)/smt(M), andmf(M)/mst(M) have been defined
by Ivanov and Tuzhilin and referred as Steiner subratio ssr(M) and Steiner–Gromov
ratio sgr(M). The both of them generate interesting characteristics of ambient space
that are defied similarly to the Steiner ratio. Notice that sgr(M) does not use isometric
embedding of M into an ambient space, but sr(M) and ssr(M) do use the embedding.

It is not difficult to verify that the three ratios take all the values from the segment
[1/2, 1], see [13] and Pakhomova [68]. But the exact calculation and even good
estimates of each of the ratios are very non-trivial problems. The exact results are
known to very few metric spaces such as Manhattan plane [69] and Lobachevski
plane [70]. The Gilbert–Pollack conjecture [25] concerning the exact value of the
Steiner ratio for the Euclidean plane remains open during about 30 years in spite of
several attempts, see [71–74]. Several estimates concerning Riemannian manifolds
and surface of tetrahedra obtained bymean of covering technique are received in [75,
76]. The detailed reviews can be found in [13, 77, 78].

4.7 Spaces of Compacts

The present Section is devoted to the Steiner problem in the space of compact metric
spaces, endowed with Gromov–Hausdorff metric. Here we show that each boundary
set consisting of finite metric spaces only, can be connected by a Steiner minimal
tree. In the general case, the authors have solved the Steiner problem for 2-point
boundaries [79], where the problem is equivalent to the fact that the ambient space
is geodesic. General case of more than 2 boundary points has resisted to the authors
attempts based on the Gromov pre-compactness criterion. Nevertheless, we hope
that the technique we worked out will be useful for either proving the theorem, or
for constructing a counterexample.

4.7.1 Main Definitions and Results

Let X be an arbitrary metric space. By |xy| we denote the distance between points
x, y ∈ X . LetP(X) be the family of all nonempty subsets of X . For A, B ∈ P(X)

we put

dH (A, B) = max

{

sup
a∈A

infb∈B |ab|, sup
b∈B

infa∈A|ab|
}

.

The value dH (A, B) is called the Hausdorff distance between A and B.
Notice that dH (A, B) as may be equal to infinity (e.g., for X = A = R and B =

{0} ⊂ R), so as may vanish for non-equal A and B (e.g., for X = R, A = [a, b], and
B = [a, b)).
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Let H (X) ⊂ P(X) denote the set of all nonempty closed bounded subsets of
X . It is well-known, see, for example [6], that the restriction of dH onto H (X) is a
metric.

Let X and Y be metric spaces. The triple (X ′,Y ′, Z) consisting of a metric space
Z and its subsets X ′ and Y ′ which are isometric to X and Y , respectively, is called a
realization of the pair (X,Y ). We put

dGH (X,Y ) = inf
{
r : ∃(X ′,Y ′, Z), dH (X ′,Y ′) ≤ r

}
.

The value dGH (X,Y ) is called the Gromov–Hausdorff distance between X and Y .
ByM wedenote the set of all compactmetric spaces considered up to an isometry.

It is also well-known that the restriction of dGH onto M is a metric, see [6].
The Gromov–Hausdorff distance can be effectively investigated in terms of cor-

respondences.
Let X and Y be arbitrary nonempty sets. We put P(X,Y ) = P(X × Y ). The

elements ofP(X,Y ) are called relations between X and Y . If X ′ ⊂ X and Y ′ ⊂ Y
are nonempty subsets, and σ ∈ P(X,Y ), then we put

σ |X ′×Y ′ = {
(x, y) ∈ σ : x ∈ X ′, y ∈ Y ′} .

Notice that σ |X ′×Y ′ may be empty and, thus, may not belong toP(X ′,Y ′).
Let πX : (x, y) �→ x and πY : (x, y) �→ y be the canonical projections. A relation

σ ∈ P(X,Y ) is called a correspondence, if the restrictions of πX and πY onto σ are
surjective. ByR(X,Y ) we denote the set of all correspondences between X and Y .

If X and Y are metric spaces, then for each relation σ ∈ P(X,Y ) its destortion
is defined as

disσ = sup
{∣
∣|xx ′| − |yy′|∣∣ : (x, y), (x ′, y′) ∈ σ

}
.

Proposition 4.6 ([6]) Let X and Y be metric spaces. Then

dGH (X,Y ) = 1

2
inf {disR : R ∈ R(X,Y )} .

For ametric space X by diamX we denote its diameter: diamX = sup {|xy| : x, y
∈ X}.
Corollary 4.5 ([6]) For any metric spaces X and Y such that the diameter of at
least one of them is finite, we have

dGH (X,Y ) ≥ 1

2
|diamX − diamY |.

A correspondence R ∈ R(X,Y ) is called optimal, if dGH (X,Y ) = 1
2disR. By

Ropt(X,Y ) we denote the set of all optimal correspondences between X and Y .
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Proposition 4.7 ([80–82]) For X, Y ∈ M we have Ropt(X,Y ) �= ∅.
LetMn ⊂ M consist of allmetric spaces containing atmost n points; letM (d) ⊂

M consist of all spaces, whose diameters are at most d; at last, putMn(d) = Mn ∩
M (d).

Proposition 4.8 ([6]) The space Mn(d) is compact.

The technique developed in [30] for Riemannian manifolds can be obviously
generalized to proper metric spaces.

Proposition 4.9 Let X be a proper metric space. Then for each nonempty finite
M ⊂ X we have SMT(M, X) �= ∅.

The next result follows from Propositions4.8 and 4.9.

Corollary 4.6 For any nonempty finite set M ⊂ Mn(d) we have

SMT (M,Mn(d)) �= ∅.

The above technique permits to prove the following Theorem.

Theorem 4.16 For each M = {m1, . . . ,mk} ⊂ Mn we have

SMT(M,M ) �= ∅.
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Abstract We consider the linear fractional transformations of polynomials and the
linear transformations of homogeneous binary forms and study their properties. A
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5.1 Introduction

The history of the theory of continued fractions has more than three hundred years.
To a significant degree, basic foundation of this theory was laid in the works of L.
Euler and J. L. Lagrange. According to this theory, any real irrational number1 α has
unique infinite continued fraction expansion.

α = α0 = q0 + 1

q1 + 1

. . . + 1

qk + 1

. . .

= q0 + 1

q1 + 1

. . . + 1

qk + 1

αk+1

, (5.1)

where incomplete quotients qk and residual fractions αk are uniquely determined by
following conditions:

qk = [αk], k ≥ 0; αk = 1

αk−1 − qk−1
, k ≥ 1.

As usual, by Pk and Qk , we denote numerator and denominator of kth-order conver-

gent of continued fraction
Pk

Qk
for α. There are well-known recurrence equations

{
Pk = qkPk−1 + Pk−2

Qk = qkQk−1 + Qk−2
,

which continue to hold for k ≥ 0, if we assume as usual that P−1 = 1, P−2 = 0 and
Q−1 = 0, Q−2 = 1.

The analogous formulas hold for α and its residual fractions:
⎧
⎪⎨

⎪⎩

α = αk+1Pk+Pk−1

αk+1Qk+Qk−1
,

αk+1 = αQk−1−Pk−1

Pk−αQk
,

k ≥ −1. (5.2)

Due to the well-known equality

PkQk−1 − Pk−1Qk = (−1)k−1 (k ≥ −1),

one can easily prove by induction the relation between α and its residual fractions
can be rewritten as

1Throughout this paper, by α we denote real irrational number.
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⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

α = Pk

Qk
+ (−1)k

Qk(αk+1Qk + Qk−1)
,

αk+1 = −Qk−1

Qk
+ (−1)k−1

Qk(Pk − αQk)
= −Qk−1

Qk
+ 1

Qk|Pk − αQk| ,
(k ≥ 0).

Notice that the relation between convergents allows to describe the real irrational-
ity of α in the form of alternating series

α = q0 +
∞∑

ν=1

(−1)ν−1

Qν−1Qν

.

Very little is known about the continued fraction expansion of algebraic irrationa-
lities of degree n > 2. It is one of the most difficult questions in the modern number
theory. The various aspects of this theory can be seen in the papers [1–9, 15–17, 20].

The paper [22] describes the set of reduced algebraic irrationalities of n degree
assigned that this set has the property of rational convexity. The paper [23] shows
that generalized Pisot numbers have the analogous properties.

The minimal polynomials of residual fractions of continued fraction expansion of
real algebraic irrationalitieswere investigated in [8]. The linear fractional transforma-
tions of the minimal polynomials of real algebraic irrationalities play a significant
role in these researches. This is natural, since every number is equivalent to their
residual fraction, and the equivalence is given by a unimodular linear fractional
transformation.

The aim of this paper is the study the following questions: first, the properties of
linear fractional transformations of polynomials in the wider context than in [8, 12],
secondly, the properties of the minimal polynomial of residual fractions which arise
during the work Lagrange algorithm for algebraic irrationalities of n-th degree. We
are interested in both reduced algebraic irrationalities and generalized Pisot numbers
in general.

Notice that the case of reduced algebraic irrationalities of degree n is closely
connected with quadrature formulas with weights in K. K. Frolov’s method (see [5–
7, 13, 14]). The fact is that the reduced algebraic irrationalities generate totally real
algebraic fields of degree n. If we consider a lattice similar to the lattice of integer
conjugate algebraic numbers from a totally real algebraic field, then the points of
polar lattice belonging to unit n-dimensional cube will form an algebraic net. These
nets are used in Frolov’s method solving the problem of constructing quadrature
formulas that give the right order of decreasing norm of a linear fractional of error of
approximate integration in the class Eα

s of periodic functions with rapidly decreasing
Fourier coefficients.

Let α be a reduced cubic irrationality, that is, α(1) = α > 1, and conjugate alge-
braic irrationalities satisfy the relationship −1 < α(3) < α(2) < 0. The concept of a
reduced cubic irrationality is the natural extension of a reduced quadratic irrationality.
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It is not difficult to see that a positive root α of the equation

x3 − 4x2 − 5x − 1 = 0

is a reduced cubic irrationality.
Indeed, for the polynomial f (x) = x3 − 4x2 − 5x − 1, we have:

f (−1) = f (0) = f (5) = −1, f (6) = 41, f

(

−1

2

)

= 3

8
,

so α = α(1) > 5, −1 < α(3) < − 1
2 , − 1

2 < α(2) < 0.
The matrix decompositions of algebraic irrationalities are considered in [10, 15,

17]. In particular, for cubic irrationality α satisfying the equation

f (t) = t3 + at2 + bt + c, f (α) = 0

the matrix decomposition is

(
α

1

)

=
∞∏

k=0

((
t −at2 − 2bt − 3c
1 3t2 + 2at + b

)(
3k + 2 0

0 3k + 1

)

·

·
(
3t2 + 2at + b −at2 − 2bt − 3c

1 t

)(
ab − 9c 2b2 − 6ac
2a2 − 6b ab − 9c

))

(5.3)

It states that thismatrix decomposition converges for t such that the difference |t − α|
is small.

We will give a general definition of the convergence of matrix decomposition in
Sect. 5.8.

Other aims of our paper are to get a new form of matrix decomposition of the
reduced cubic irrationality α, to consider the realization of Lagrange algorithm of
the expansion of this irrationality in the ordinary continued fraction, to construct
conversion algorithm a matrix decomposition in ordinary continued fraction and to
compare the results of these two algorithms.

Let us briefly consider the contents of this paper.
In Sect. 5.2, we introduce the necessary definitions and notations used throughout

the paper.
In Sect. 5.3 is explicitly built some class of generalized Pisot numbers and reduced

cubic irrationalities by specifying the minimum polynomial.
Section 5.4 is devoted to the consideration of linear fractional transformations of

polynomials and linear transformations of homogeneous binary forms and detailed
study of their properties.

In Sect. 5.5, we consider linear fractional transformations of the polynomials with
integer coefficients and study their properties.

Section 5.6 describes the behavior of residual fractions and its conjugate numbers
for continued fraction expansion of algebraic numbers. It is shown that for arbitrary
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real algebraic irrationality α of degree n ≥ 2, a sequence of residual fractions αm

is a sequence of the reduced generalized Pisot numbers starting from some index
m0 = m0(α). The asymptotic formula for conjugate numbers to residual fractions
of generalized Pisot numbers is found. Using this formula, we get that conjugate
numbers to residual fraction αm focus around fraction −Qm−2

Qm−1
in the interval of radius

O
(

1
Q2

m−1

)
in a case of totally real algebraic irrationality or in the interior circle of

the same radius in the general case of real algebraic irrationality having complex
conjugate numbers.

Section 5.7 is devoted to the study of the minimal polynomials of residual frac-
tions. It is shown that a sequence of the minimal polynomials of the residual fractions
is the sequence of the polynomials with equal discriminants.

In Sect. 5.8, we define a chain sequence of linear fractional transformations of the
plane and give the interpretation of the received results in terms of these sequences.

Lagrange algorithm of infinite continued fraction expansion for arbitrary reduced
irrationalities of degree n is considered in Sect. 5.9.

In Sect. 5.10, We suggest the modification of Lagrange algorithm which requires
the calculation only two values of the minimal polynomial for determining the next
incomplete quotient.

Section 5.11 describes the basic properties of the matrix decomposition.
Section 5.12 is devoted to the construction conversion algorithm a matrix decom-

position in ordinary continued fraction.
In Sect. 5.13, we compare the results of the two algorithms for reduced cubic

irrationality α.
In conclusion, perspective directions of research are formulated.

5.2 Notation and Preliminaries

We begin with the definition of a reduced algebraic irrationality of nth-degree and
generalized Pisot number of nth degree. Here, we follow [9, 11, 22].

Definition 5.1 Let

f (x) =
n∑

k=0

akx
k ∈ Z[x], an > 0

be such irreducible polynomial with integer coefficients2 that all its roots α(k) (k =
= 1, 2, . . . , n) are different real numbers satisfying the following condition:

−1 < α(n) < . . . < α(2) < 0, α(1) > 1.

2By irreducible polynomial f (x) with integer coefficients, we understand such polynomial that if
f (x) = g(x)h(x), where deg(g(x)) ≤ deg(h(x)), and then g(x) = ±1, h(x) = ∓f (x). In particular,
irreducibility of a polynomial means (a0, . . . , an) = 1.
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Then, an algebraic number α = α(1) is called reduced algebraic irrationality of nth
degree.

Definition 5.2 Let

f (x) =
n∑

k=0

akx
k ∈ Z[x], an > 0

be such irreducible polynomial with integer coefficients that all its roots α(k) (k =
= 1, 2, . . . , n) satisfy the following condition:

|α(j)| < 1, (2 ≤ j ≤ n), α(1) > 1,

Then, an algebraic number α = α(1) is called a generalized Pisot number of nth
degree.

It is not hard to see that if α = α(1) is a reduced algebraic irrationality, then
all n algebraic conjugate fields Q[α(1)], . . . ,Q[α(n)] are real. It is clear that α is
a generalized Pisot number, but generalized Pisot number need not to be a reduced
algebraic irrationality. Indeed,β = β(1) = (

α(1)
)2
is a generalizedPisot number since

0 < β(j) = (
α(j)

)2
< 1 (2 ≤ j ≤ n), but it is not a reduced algebraic irrationality.

The definition of a generalized Pisot number differ from Pisot number by the
absence of a requirement to be integer.

Note that for minimal polynomial f (x) defining a reduced algebraic irrationality
α of nth degree, we always have

a0 < 0. (5.4)

Indeed, the polynomial f (x) has only one root α belonging to interval [0;∞); hence,
for x > α, we have f (x) > 0, so f (0) < 0. Besides, the following inequalities hold

an + an−1 + . . . + a1 + a0 = f (1) < 0, (5.5)

an − an−1 + . . . + (−1)n−1a1 + (−1)na0 = (−1)nf (−1) > 0. (5.6)

For generalized Pisot number, the inequalities (5.5) and (5.6) hold too. Indeed, the
inequality (5.5) follows from the fact that minimal polynomial f (x) with a leading
coefficient an > 0 has exactly one root belonging to the interval [1;+∞). A lack
of the roots of f (x) on (−∞;−1] implies the inequality (5.6). In addition, for any
generalized Pisot numberα, there exists a natural number q0 = [α] such that f0(q0) <

0, f0(q0 + 1) > 0.

Lemma 5.1 For an arbitrary real algebraic irrationality α of degree n, its residual
fraction α1 is real algebraic irrationality of degree n satisfying the irreducible poly-
nomial

f1(x) =
n∑

k=0

ak,1x
k ∈ Z[x], an,1 > 0,
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where

ak,1 = bk
d0

, d0 = (b0, . . . , bn), bk = −
n∑

m=n−k

amC
m+k−n
m qm+k−n

0 , (0 ≤ k ≤ n),

and the following equality holds

f1(x) = −f0(q0)

d0

n∏

j=1

(

x − 1

α(j) − q0

)

.

Ifα is a reduced algebraic irrationality, thenα1 is a reduced algebraic irrationality
too.

Proof Consider the polynomial

g(x) = −f

(

q0 + 1

x

)

· xn =
n∑

k=0

bkx
k .

Since α = q0 + 1
α1
, it follows that g(α1) = 0.

We have

f

(

q0 + 1

x

)

· xn =
n∑

k=0

akx
n−k(q0x + 1)k =

n∑

k=0

akx
n−k

k∑

m=0

Cm
k q

m
0 x

m =

=
n∑

k=0

ak

n∑

m=n−k

Cm+k−n
k qm+k−n

0 xm =
n∑

k=0

xk
n∑

m=n−k

amC
m+k−n
m qm+k−n

0 ,

so

bk = −
n∑

m=n−k

amC
m+k−n
m qm+k−n

0 , (0 ≤ k ≤ n)

and bn = −f (q0). But q0 < α, f (α) = 0, an > 0, and α is the unique positive root of
the polynomial f (x), so f (q0) < 0, and therefore, bn > 0.

Hence, by dividing the polynomial g(x) by the greatest common divisor of its
coefficients, we obtain an irreducible polynomial f1(x).

Further notice that the roots α(k) (k = 1, 2, . . . , n) of the polynomial f (x) corre-
spond to the roots β(k) (k = 1, 2, . . . , n) of the polynomial g(x)which are connected
by the equalities

α(k) = q0 + 1

β(k)
, β(k) = 1

α(k) − q0
(k = 1, . . . , n).
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It follows that
−1 < β(k) < 0 (2 ≤ k ≤ n), β(1) > 1

and therefore, α1 = β(1) is a reduced algebraic irrationality of degree n. The lemma
is proved. �

Using Lemma 5.1, we prove the following theorem by induction.

Theorem 5.1 For an arbitrary real algebraic irrationality α of degree n, all its
residual fractions αm are also real algebraic irrationalities of degree n satisfying the
irreducible polynomials

fm(x) =
n∑

k=0

ak,mx
k ∈ Z[x], an,m > 0,

where

ak,m = bk,m
dm

, dm = (b0,m, . . . , bn,m),

bk,m = −
n∑

l=n−k

al,m−1C
l+k−n
l ql+k−n

m−1 , (0 ≤ k ≤ n).

The polynomials fm(x) have the roots

α(j)
m = α(j)Qm−2 − Pm−2

Pm−1 − α(j)Qm−1
(1 ≤ j ≤ n) (5.7)

and the following equalities hold

fm(x) = −fm−1(qm−1)

dm−1

n∏

j=1

(
x − α(j)

m

)
.

If α is a reduced algebraic irrationality, then all its residual fractions αm are the
reduced algebraic irrationalities too.

It is easily shown that if α = α0 = α(1) is a generalized Pisot number, then a
residual fraction α1, where

α1 = 1

α0 − q0
, q0 = [α0] ,

need not a generalized Pisot number.
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Indeed, if q0 = 1 and there is ν such that |α(ν) − q0| < 1, then for a conjugate
number α

(ν)
1 = 1

α(ν)−q0
for residual fraction α1, the inequality |α(ν)

1 | < 1 is false.
Let give the following definition.

Definition 5.3 A generalized Pisot number α = α(1) is called a reduced generalized
Pisot number if supplementary conditions hold: For natural q0 = [

α(1)
]
, we have the

following inequality:
|α(j) − q0| > 1, (2 ≤ j ≤ n).

Lemma 5.2 For an arbitrary reduced generalized Pisot number α of degree n, its
residual fraction α1 is also reduced generalized Pisot number of degree n, satisfying
the irreducible polynomial

f1(x) =
n∑

k=0

ak,1x
k ∈ Z[x], an,1 > 0,

where

ak,1 = bk
d0

, d0 = (b0, . . . , bn), bk = −
n∑

m=n−k

amC
m+k−n
m qm+k−n

0 , (0 ≤ k ≤ n)

and the following equality holds

f1(x) = −f0(q0)

d0

n∏

j=1

(

x − 1

α(j) − q0

)

.

Proof Indeed, the conjugate numbers α
(ν)
1 = 1

α(ν)−q0
to a residual fraction α1 = 1

α0−q0

by Definition 5.3 satisfy the conditions |α(ν)
1 | < 1 (2 ≤ ν ≤ n), so a residual fraction

α1 is generalized Pisot number.
Now, we need to prove that α1 is a reduced generalized Pisot number. Consider

three possible cases.

I. Let q0 > 1, then α(ν) − q0 = −xν + yν i, xν > q0 − 1 ≥ 1,

α
(ν)
1 = 1

α(ν) − q0
= −xν − yν i

x2ν + y2ν
.

So α
(ν)
1 lies in the left half-plane bounded by imaginary line. It follows that for

q1 = [α1], we have ∣
∣
∣α

(ν)
1 − q1

∣
∣
∣ > 1 (ν = 2, . . . , n).

Therefore, in this case, α1 is a reduced generalized Pisot number.
II. Let q0 = 1 and α(ν) = −xν + yν i, xν > 0, x2ν + y2ν < 1, then
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α
(ν)
1 = 1

α(ν) − q0
= −xν − 1 − yν i

(xν + 1)2 + y2ν
,

∣
∣
∣α

(ν)
1

∣
∣
∣ < 1

α
(ν)
1 lies in the left half-plane bounded by imaginary line. So for q1 = [α1], we

have ∣
∣
∣α

(ν)
1 − q1

∣
∣
∣ > 1 (ν = 2, . . . , n).

Hence, α1 is a reduced generalized Pisot number.
III. Let q0 = 1 and there exists ν such that α(ν) = xν + yν i, xν > 0, x2ν + y2ν < 1,

then (1 − xν)
2 + y2ν > 1. Thus, we have

α
(ν)
1 = 1

α(ν) − q0
= xν − 1 − yν i

(xν − 1)2 + y2ν
,

∣
∣
∣α

(ν)
1

∣
∣
∣ < 1

and α
(ν)
1 lies in the left half-plane bounded by imaginary line. It follows that for

q1 = [α1], we have ∣
∣
∣α

(ν)
1 − q1

∣
∣
∣ > 1 (ν = 2, . . . , n).

Therefore, in this case, α1 is a reduced generalized Pisot number too.

Consider a polynomial g(x) = −xnf0
(
q0 + 1

x

)
. Since

g(x)=−xnan

n∏

ν=1

(

q0 + 1

x
− α(ν)

)

=−an

n∏

ν=1

(q0 − α(ν))

n∏

ν=1

(

x − 1

α(ν) − q0

)

=

= −f0(q0)
n∏

ν=1

(

x − 1

α(ν) − q0

)

,

the roots of g(x) are a residual fraction α1 and its conjugate algebraic numbers α
(ν)
1

(2 ≤ ν ≤ n).
By Taylor formula

f0

(

q0 + 1

x

)

= f0(q0) +
n∑

ν=1

f (ν)
0 (q0)

ν!
1

xν
,

so that

g(x) = −f0(q0)x
n −

n∑

ν=1

f (ν)
0 (q0)

ν! xn−ν ∈ Z[x].

This completes the proof. �

Remark 5.1 As will be shown below d0 = 1, so
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f1(x) = −f0(q0)x
n −

n∑

ν=1

f (ν)
0 (q0)

ν! xn−ν ∈ Z[x].

5.3 Some Class of Generalized Pisot Numbers
and Reduced Cubic Irrationalities

Let describe some class of the reduced cubic irrationalities.
Consider for natural p ≥ 4 the polynomials

f (p, x) = x(x + 1)(x − p) − 1 = x3 − (p − 1)x2 − px − 1.

A positive root α(p) of the equation f (p, x) = 0 is a reduced cubic irrationality.
Indeed, for the polynomial f (p, x) = x3 − (p − 1)x2 − px − 1, we have:

f (p,−1) = f (p, 0) = f (p, p) = −1, f (p + 1) = p2 + 3p + 1 > 0,

f

(

p,−1

2

)

= 2p + 1

8
− 1 > 0,

so p + 1 > α(p) = α(1) > p, −1 < α(3) < − 1
2 , − 1

2 < α(2) < 0. Since the polyno-
mial f (p, x) has no rational roots, it is irreducible.

5.4 Linear Fractional Transformation of Polynomials
and Linear Transformation of Forms

As usual, let N be the set of natural numbers, Z the ring of integers, Q the field of
rational numbers, R the field of real numbers, and C the field of complex numbers.

Denote by Z[x], Q[x], R[x], C[x] the corresponding rings of polynomials and by
PZ[X,Y ], PQ[X,Y ], PR[X,Y ], PC[X,Y ] the corresponding multiplication groups
of homogeneous forms.

It is clear that

Z[x] ⊂ Q[x] ⊂ R[x] ⊂ C[x],
PZ[X,Y ] ⊂ PQ[X,Y ] ⊂ PR[X,Y ] ⊂ PC[X,Y ].

Let K be one of the sets Z, Q, R, or C. If

�a = (a0, a1, . . . , an) ∈ K
n+1,

then
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f�a(x) =
n∑

ν=0

aνx
ν ∈ K[x], F�a(X,Y) =

n∑

ν=0

aνX
νYn−ν ∈ PK[X,Y ].

It is clear that the following equality holds

F�a(X,Y) = Ynf�a
(
X

Y

)

. (5.8)

The formula (5.8) specifies bijection ϕ between K-moduleKn[x] of all polynomials
of degree less or equal to n and K-module PKn[X,Y ] of all homogeneous form of n
order.3

Denote byM2 (K) the ring of quadratic matrixes of second order whose elements
belong to K. Let M ∗

2 (K) be a multiplication group of M2 (K), i.e., a set of all
nondegenerate matrixes and U2 (K) be a set of all unimodular matrixes. Thus, we
have

M =
(
A B
C D

)

∈ M2 (K) , if A,B,C,D ∈ K;
M ∈ M ∗

2 (K) , if detM = AD − BC 
= 0;
M ∈ U2 (K) , if detM = ±1.

Definition 5.4 For nondegenerate matrix M =
(
A B
C D

)

∈ M ∗
2 (K), linear frac-

tional transformation M of a polynomial f�a(x) ∈ K[x] is called the transformation
given by the formula

M(f�a(x)) = (Cx + D)nf�a
(
Ax + B

Cx + D

)

.

Definition 5.5 For nondegenerate matrixM =
(
A B
C D

)

∈ M ∗
2 (K), linear transfor-

mation M of a form F�a(X,Y) ∈ PK[X,Y ] is called the transformation given by
formula

M(F�a(X,Y)) = F�a (AX + BY ,CX + DY) .

Obviously, that unity matrix E specifies identity transformations:

E(f�a(x)) = f�a(x), E(F�a(x)) = F�a(X,Y). (5.9)

For any matrix M =
(
A B
C D

)

∈ M2 (K), let define matrix M(n+1) ∈ Mn+1 (K)

by equality

3Here we suppose that only null form belongs to all PKn[X,Y ].
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M(n+1) =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

Dn C1
nCD

n−1 . . . Cn−1
n Cn−1D Cn

BDn−1 m(1, 1) . . . m(1, n − 1) ACn−1

...
...

. . .
...

...

Bn−1D m(n − 1, 1) . . . m(n − 1, n − 1) An−1C
Bn C1

nAB
n−1 . . . Cn−1

n An−1B An

⎞

⎟
⎟
⎟
⎟
⎟
⎠

=

= (m(ν, j) )
j=0,...,n
ν=0,...,n , (5.10)

where

m(ν, j) =
min(n−ν,j)∑

λ=max(0,j−ν)

Cj−λ
ν Aj−λBν−j+λCλ

n−νC
λDn−ν−λ.

Lemma 5.3 For any nondegenerate matrix M ∈ M ∗
2 (K), the following equality

holds
M(f�a(x)) = f�b(x), (5.11)

where
�b = �a · M(n+1). (5.12)

Proof Indeed,

M(f�a(x)) = (Cx + D)nf�a
(
Ax + B

Cx + D

)

=
n∑

ν=0

aν(Ax + B)ν(Cx + D)n−ν =

=
n∑

ν=0

aν

ν∑

μ=0

Cμ
ν A

μBν−μxμ

n−ν∑

λ=0

Cλ
n−νC

λDn−ν−λxλ =
n∑

ν=0

aν

n∑

j=0

xjm(ν, j),

where

m(ν, j) =
min(n−ν,j)∑

λ=max(0,j−ν)

Cj−λ
ν Aj−λBν−j+λCλ

n−νC
λDn−ν−λ.

So

M(f�a(x)) =
n∑

j=0

bjx
j
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and

bj =
n∑

ν=0

aν

min(n−ν,j)∑

λ=max(0,j−ν)

Cj−λ
ν Cλ

n−νA
j−λBν−j+λCλDn−ν−λ =

n∑

ν=0

aνm(ν, j).

Hence, �b = �a · M(n+1) as we wanted to show. �

By Lemma 5.3, it follows that any linear fractional transformation with matrix
M ∈ M ∗

2 (K) maps Kn[x] into itself.
Lemma 5.4 For any nondegenerate matrix M ∈ M ∗

2 (K), the following equality
holds

M(F�a(X,Y)) = F�b(X,Y), (5.13)

where
�b = �a · M(n+1). (5.14)

Proof Indeed,

M(F�a(X,Y)) = F�a (AX + BY ,CX + DY) =
n∑

ν=0

aν(AX + BY)ν(CX + DY)n−ν =

=
n∑

ν=0

aν

ν∑

μ=0

Cμ
ν A

μBν−μXμYν−μ
n−ν∑

λ=0

Cλ
n−νC

λDn−ν−λXλYn−ν−λ =

=
n∑

ν=0

aν

n∑

j=0

XjYn−jm(ν, j),

where

m(ν, j) =
min(n−ν,j)∑

λ=max(0,j−ν)

Cj−λ
ν Aj−λBν−j+λCλ

n−νC
λDn−ν−λ.

So

M(F�a(X,Y)) =
n∑

j=0

bjX
jYn−j

and

bj =
n∑

ν=0

aν

min(n−ν,j)∑

λ=max(0,j−ν)

Cj−λ
ν Cλ

n−νA
j−λBν−j+λCλDn−ν−λ =

n∑

ν=0

aνm(ν, j).

Hence, �b = �a · M(n+1) as we wanted to show. �
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By Lemma 5.4, it follows that any linear fractional transformation with matrix
M ∈ M ∗

2 (K) maps PKn[X,Y ] into itself.
Using Lemmas 5.3 and 5.4, we obtain the following theorem.

Theorem 5.2 For any nondegenerate matrix M ∈ M ∗
2 (K), bijection ϕ is defined

by the formula (5.8) preserved, that is, if

M(f�a(x)) = f�b(x), (5.15)

then
M(F�a(X,Y)) = F�b(X,Y). (5.16)

Proof Indeed, by Lemmas 5.3 and 5.4, the vector �b in the formulas (5.15) and (5.16)
is the same. This completes the proof. �

Denote by K
∗
n[x] a set of all polynomials of degree n with a0 
= 0 and denote by

PK
∗
n[X,Y ] a set of all nondegenerate homogeneous forms of order n, that is, such

forms F�a(X,Y) that an 
= 0 and a0 
= 0.
By fundamental theorem of algebra, any polynomial f�a(x) ∈ K

∗
n[x] has n roots

α(1), . . . , α(n) ∈ C and we have the following decomposition in C
∗
n[x]:

f�a(x) = an
(
x − α(1)

)
. . .

(
x − α(n)

)
.

Turning to the forms, we get two decompositions

F�a(X,Y) = an
(
X − α(1)Y

)
. . .

(
X − α(n)Y

) =
= a0

(
β(1)X + Y

)
. . .

(
β(n)X + Y

) ;
β(ν) = −1

α(ν)
ν = 1, . . . , n.

Thus, a binary form F�a(X,Y) has n root lines

X − α(ν)Y = 0 (ν = 1, . . . , n),

on which the form becomes zero.

Lemma 5.5 For any polynomials f�a(x), g�b(x) and any linear fractional transforma-
tion with matrix M ∈ M ∗

2 (K), we have the equation

M(f�a(x)g�b(x)) = M(f�a(x))M(g�b(x)).

Proof Indeed, if deg(f (x)) = k, deg(g(x)) = l and n = k + l, then
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M(f�a(x)g�b(x)) = (Cx + D)nf�a
(
Ax + B

Cx + D

)

g�b
(
Ax + B

Cx + D

)

=

=
(

(Cx + D)kf�a
(
Ax + B

Cx + D

))(

(Cx + D)lg�b
(
Ax + B

Cx + D

))

= M(f�a(x))M(g�b(x)).

This completes the proof. �

Lemma 5.6 For any forms F�a(X,Y), G�b(X,Y) and any linear transformation with
matrix M ∈ M ∗

2 (K), we have the equation

M(F�a(X,Y)G�b(X,Y)) = M(F�a(X,Y))M(G�b(X,Y)).

Proof Indeed,

M(F�a(X,Y)G�b(X,Y)) = F�a (Ax + B,Cx + D)G�b (Ax + B,Cx + D) =
= M(F�a(X,Y))M(G�b(X,Y)).

This completes the proof. �

Lemma 5.7 For any linear fractional transformation with matrix M =
(
A B
C D

)

∈
M ∗

2 (K) and any polynomial f (x), having the roots α(ν) (A 
= Cα(ν) for all ν =
1, . . . , n), the polynomial

M(f (x)) =
n∑

ν=0

bνx
ν

has the following roots

β(ν) = Dα(ν) − B

A − Cα(ν)
(1 ≤ ν ≤ n), bn =

{
Cnf

(
A
C

)
, if C 
= 0,

anAn, if C = 0,

b0 =
{
Dnf

(
B
D

)
, if D 
= 0,

anBn, if D = 0.

Proof Indeed, if

f (x) =
n∑

ν=0

aνx
ν = an

n∏

ν=1

(
x − α(ν)

)
,

then for C 
= 0

M(f (x)) = (Cx + D)nan

n∏

ν=1

(
Ax + B

Cx + D
− α(ν)

)

=

= an

n∏

ν=1

(
Ax + B − Cα(ν)x − Dα(ν)

) =



5 Generalized Pisot Numbers and Matrix Decomposition 97

= an

n∏

ν=1

(
A − Cα(ν)

) n∏

ν=1

(

x − Dα(ν) − B

A − Cα(ν)

)

=

= anC
n

n∏

ν=1

(
A

C
− α(ν)

) n∏

ν=1

(
x − β(ν)

) = Cnf

(
A

C

) n∏

ν=1

(
x − β(ν)

)
.

For C = 0, we have:

M(f (x)) = Dnan

n∏

ν=1

(
Ax + B

D
− α(ν)

)

=

= an

n∏

ν=1

(
Ax + B − Dα(ν)

) = anA
n

n∏

ν=1

(

x − Dα(ν) − B

A − Cα(ν)

)

=

= anA
n

n∏

ν=1

(
x − β(ν)

)

and first, the statement of lemma is proved.
For D 
= 0, we have b0 = M(f (0)) = Dnf

(
B
D

)
.

If D = 0, then b0 = M(f (0)) = anBn.
This completes the proof. �

Thus, the roots of a polynomial f (x) are conversed in the roots of a polynomial
M(f (x)) by the linear fractional transformation of the complex plane

M∗(z) = Dz − B

−Cz + A

with matrix

M∗ =
(

D −B
−C A

)

.

Lemma 5.8 For any linear transformation with matrix M =
(
A B
C D

)

∈ M ∗
2 (K)

and any form F(X,Y) with the root lines X − α(ν)Y = 0 (ν = 1, . . . , n), the form

M(F(X,Y)) =
n∑

ν=0

bνX
νYn−ν

has the root lines

(A − Cα(ν))X − (Dα(ν) − B)Y = 0 (1 ≤ ν ≤ n), bn = F(A,C),

b0 = F(B,D).
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Proof Indeed, if

F(X,Y) =
n∑

ν=0

aνX
νYn−ν = an

n∏

ν=1

(X − α(ν)Y),

Then,

M(F(X,Y)) = an

n∏

ν=1

(
AX + BY − α(ν)(CX + DY)

) =

= an

n∏

ν=1

(
(A − Cα(ν))X − (Dα(ν) − B)Y

)
.

It follows that the root lines have the forms which are listed in the lemma.
Since

bn = M(F(1, 0)) = F(A,C)

b0 = M(F(0, 1)) = F(B,D)

the lemma is completely proved. �

From the lemma proved above, it immediately follows that the root lines of a
form F(X,Y) are conversed in the root lines of a form M(F(X,Y)) by the linear
transformation of the two-dimensional complex space.

M∗(X,Y) = (DX − BY ,−CX + AY)

with matrix

M∗ =
(

D −B
−C A

)

.

Lemma 5.9 For composition ◦ of linear fractional transformations, the following
equality holds

M1 ◦ M = M · M1,

where · is matrix multiplication, and at the same time, the roots of polynomials are
transformed by the rule

(M1 ◦ M)∗ = M∗
1 · M∗.

Proof Indeed, let

M =
(
A B
C D

)

, M1 =
(
A1 B1

C1 D1

)
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and g(x) = M(f (x)), then

M1 ◦ M(f (x)) = (C1x + D1)
ng

(
A1x + B1

C1x + D1

)

=

= (C1x + D1)
n

(

C
A1x + B1

C1x + D1
+ D

)n

f

(
A A1x+B1

C1x+D1
+ B

C A1x+B1
C1x+D1

+ D

)

=

= ((CA1 + DC1)x + (CB1 + DD1))
n ·

·f
(

(AA1 + BC1)x + (AB1 + BD1)

(CA1 + DC1)x + (CB1 + DD1)

)

= M2(f (x)),

where

M2 =
(
AA1 + BC1 AB1 + BD1

CA1 + DC1 CB1 + DD1

)

= M · M1

First, statement of the lemma is found.
Let α(1), . . . , α(n) be the roots of a polynomial f (x), β(1), . . . , β(n) the roots of

M(f (x)), and γ (1), . . . , γ (n) the roots of (M1 ◦ M)(f (x)), then

β(ν) = M∗ (α(ν)
) = Dα(ν) − B

−Cα(ν) + A
,

γ (ν) = M∗
1

(
β(ν)

) = D1β
(ν) − B1

−C1β(ν) + A1
= D1

Dα(ν)−B
−Cα(ν)+A − B1

−C1
Dα(ν)−B

−Cα(ν)+A + A1

=

= D1(Dα(ν) − B) − B1(−Cα(ν) + A)

−C1(Dα(ν) − B) + A1(−Cα(ν) + A)
=

= (D1D + B1C)α(ν) − (D1B + B1A)

−(C1D + A1C)α(ν) + (C1B + A1A)
= M∗

2

(
α(ν)

)
,

where

M∗
2 =

(
CB1 + DD1 −(AB1 + BD1)

−(CA1 + DC1) AA1 + BC1

)

= M∗
1 · M∗.

The lemma is completely proved. �

Lemma 5.10 For composition ◦ of linear transformations of the forms, the following
equality holds

M1 ◦ M = M · M1,

where · is the matrix multiplication, and at the same time, the root lines are trans-
formed by the rule

(M1 ◦ M)∗ = M∗
1 · M∗.
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Proof Indeed, let

M =
(
A B
C D

)

, M1 =
(
A1 B1

C1 D1

)

and G(X,Y) = M(F(X,Y)), then

M1 ◦ M(F(X,Y)) = G (A1X + B1Y ,C1X + D1Y) =
= F (A(A1X + B1Y) + B(C1X + D1Y),C(A1X + B1Y) + D(C1X + D1Y)) =
= F ((AA1 + BC1)X + (AB1 + BD1)Y , (CA1 + DC1)X + (CB1 + DD1)Y) =

= M2(F(X,Y)),

where

M2 =
(
AA1 + BC1 AB1 + BD1

CA1 + DC1 CB1 + DD1

)

= M · M1

and first, statement of the lemma is found.
Let
X − α(ν)Y = 0 (ν = 1, . . . , n) be the root lines for a form F(X,Y),
X − β(ν)Y = 0 (ν = 1, . . . , n) be the root lines for a formM(F(X,Y)), and
X − γ (ν)Y = 0 (ν = 1, . . . , n) be the root lines for a form (M1 ◦ M)(F(X,Y)).

Then, first, collection of the root lines is conversed to second by the linear transforma-
tionM∗(X,Y) = (DX − BY ,−CX + AY), and the second collection is conversed to
third by the linear transformationM∗

1 (X,Y) = (D1X − B1Y ,−C1X + A1Y). There-
fore, first, collection is conversed to third by the composition

(M1 ◦ M)(F(X,Y)) =
= (D1(DX − BY) − B1(−CX + AY),−C1(DX − BY) + A1(−CX + AY)) =
= ((D1D + B1C)X − (D1B + B1A)Y ,−(C1D + A1C)X + (C1B + A1A)Y) =

= M2(F(X,Y)),

where

M∗
2 =

(
CB1 + DD1 −(AB1 + BD1)

−(CA1 + DC1) AA1 + BC1

)

= M∗
1 · M∗,

and the lemma is completely proved. �

Recall the definition of the discriminant D(f ) of a polynomial

f (x) = anx
n + an−1x

n−1 + . . . + a1x + a0, an 
= 0,

having the roots α(1), . . . , α(n). By definition

D(f ) = a2n−2
n

∏

ν<μ

(
α(ν) − α(μ)

)2
.
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Similarly, a discriminant D(F) of a form

F(X,Y) = anX
n + an−1X

n−1Y + . . . + a1XY
n−1 + a0Y

n, an 
= 0, a0 
= 0,

having the root lines X − α(ν)Y = 0 (ν = 1, . . . , n) is given by

D(F) = a2n−2
n

∏

ν<μ

(
α(ν) − α(μ)

)2 = a2n−2
0

∏

ν<μ

(
β(ν) − β(μ)

)2
.

The discriminant of the form is well defined, since by Vieta theorem α(1) . . . α(n) =
(−1)n a0an and for β(ν) = −1

α(ν) (ν = 1, . . . , n), we have:

a2n−2
0

∏

ν<μ

(
β(ν) − β(μ)

)2 = a2n−2
0

∏

ν<μ

(
α(ν) − α(μ)

)2

(
α(ν)α(μ)

)2 =

= a2n−2
0

∏

ν<μ

(
α(ν) − α(μ)

)2

(
n∏

ν=1
α(ν)

)2(n−1)
= a2n−2

n

∏

ν<μ

(
α(ν) − α(μ)

)2
.

Theorem 5.3 For any linear fractional transformation with matrix M =
(
A B
C D

)

∈
M ∗

2 (K) and any polynomial f (x)with roots α(ν) (A 
= Cα(ν), (ν = 1, . . . , n) and the
polynomial M(f (x)), the following holds

(detM)n(n−1) D(f ) = D(M(f )).

Proof Indeed, by Lemma 5.7 for C 
= 0 so that

D(M(f )) =
(

Cnf

(
A

C

))2n−2 ∏

ν<μ

(
β(ν) − β(μ)

)2 =

= a2n−2
n

(
n∏

ν=1

(A − Cα(ν))

)2n−2
∏

ν<μ

(
Dα(ν) − B

A − Cα(ν)
− Dα(μ) − B

A − Cα(μ)

)2

=

= a2n−2
n

(
n∏

ν=1
(A − Cα(ν))

)2n−2

(
n∏

ν=1
(A − Cα(ν))

)2n−2

∏

ν<μ

(
(DA − BC)(α(ν) − α(μ))

)2 =

= (detM)n(n−1) D(f )

and in this case, the theorem is true.
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If C = 0, then detM = DA and

D(M(f )) = (Anan)
2n−2

∏

ν<μ

(
β(ν) − β(μ)

)2 =

= a2n−2
n An(2n−2)

∏

ν<μ

(
Dα(ν) − B

A
− Dα(μ) − B

A

)2

=

= a2n−2
n

∏

ν<μ

(
DA(α(ν) − α(μ))

)2 = (detM)n(n−1) D(f )

and the theorem is completely proved. �

5.5 Linear Fractional Transformation of Integer
Polynomials

Denote by Pn[x] a set of all irreducible integer polynomials f (x) ∈ Z[x] of degree n.
In other words, if f (x) ∈ Pn[x], then

f (x) = anx
n + an−1x

n−1 + . . . + a1x + a0, an 
= 0 
= a0, aj ∈ Z (0 ≤ j ≤ n)

and the equations f (x) = g(x)h(x), deg(g(x)) ≤ deg(h(x)) imply that g(x) ≡ ±1,
h(x) ≡ ∓f (x). In particular, any irreducible polynomial is primitive, that is,
(a0, . . . , an) = 1.

By PPn[X,Y ], we denote a set of all irreducible binary integer form F(X,Y) ∈
PZ[X,Y ] of order n. This means that if F(X,Y) ∈ ∈ PZn[X,Y ], then

F(X,Y) = anX
n + an−1X

n−1Y + . . . + a1XY
n−1 + a0Y

n,

an 
= 0 
= a0, aj ∈ Z (0 ≤ j ≤ n)

and the equationsF(X,Y) = G(X,Y)H(X,Y), deg(G(X,Y)) ≤ deg(H(X,Y)) imply
that G(X,Y) ≡ ±1, H(X,Y) ≡ ∓F(X,Y). In particular, any irreducible form is
primitive, that is, (a0, . . . , an) = 1.

According to H. Weyl [21], denote by Ct(f ) the content of polynomial f (x) and
by Ct(F) the content of form F. Thus, Ct(f ) = Ct(F) = = (a0, . . . , an).

Lemma 5.11 For any linear fractional transformation with unimodular matrixM ∈
U2(Z), the following holds

Ct(f ) = Ct(M(f )).

Proof Indeed, let

M =
(
A B
C D

)

, M−1 = M1 =
(
A1 B1

C1 D1

)



5 Generalized Pisot Numbers and Matrix Decomposition 103

and

f (x) =
n∑

ν=0

aνx
ν, M(f (x)) =

n∑

ν=0

bνx
ν, aν, bν ∈ Z (0 ≤ ν ≤ n).

Then, we get the following relation between the coefficients aν and bν

M(f (x)) =
n∑

ν=0

bνx
ν =

n∑

ν=0

aν(Ax + B)ν(Cx + D)n−ν =

=
n∑

ν=0

aν

ν∑

μ=0

Cμ
ν A

μBν−μxμ

n−ν∑

λ=0

Cλ
n−νC

λDn−ν−λxλ =

=
n∑

ν=0

aν

n∑

λ=0

xλ

min(ν,λ)∑

μ=max(0,λ+ν−n)

Cμ
ν C

λ−μ
n−ν A

μBν−μCλ−μDn+μ−ν−λ;

bλ =
n∑

ν=0

aν

min(ν,λ)∑

μ=max(0,λ+ν−n)

Cμ
ν C

λ−μ
n−ν A

μBν−μCλ−μDn+μ−ν−λ;

aλ =
n∑

ν=0

bν

min(ν,λ)∑

μ=max(0,λ+ν−n)

Cμ
ν C

λ−μ
n−ν A

μ
1B

ν−μ
1 Cλ−μ

1 Dn+μ−ν−λ
1 .

This means that Ct(f )|Ct(M(f )) and Ct(M(f ))|Ct(f ), and therefore,

Ct(f ) = Ct(M(f )).

This completes the proof. �

In view of the bijection ϕ given by the Eq. (5.8) for any linear unimodular trans-
formation of integral forms, we obtain Ct(F) = Ct(M(F)).

Lemma 5.12 The image of any irreducible polynomial f (x) under the linear fractio-
nal transformation with unimodular matrix M ∈ U ∗

2 is a irreducible polynomial.

Proof Indeed, by Lemma 5.5, a linear fractional transformation conserves the prod-
uct, so the linear fractional transformation with unimodular matrix having an inverse
transformation converts a primitive polynomial into primitive and irreducible poly-
nomial into irreducible. �

In view of the bijection ϕ, the similar statement is true for irreducible form.

Theorem 5.4 For any linear fractional transformationwith unimodularmatrixM =(
A B
C D

)

∈ U ∗
2 (Z) and any polynomial f (x) with the roots α(ν) (A 
= Cα(ν), ν =

1, . . . , n), the following holds

D(f ) = D(M(f )).
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Proof Indeed, since detM = ±1 by Theorem 5.3, we have

D(M(f )) = (detM)n(n−1) D(f ) = D(f ).

This completes the proof. �

In view of the bijection ϕ for any linear transformation of the formF ∈ PZn[X,Y ]
with unimodular matrixM ∈ U ∗

2 (Z), we obtain D(M(F)) = D(F).

5.6 Behavior of Residual Fractions and Its Conjugate
Numbers

Let α = α(1), α(2), . . . , α(n) be the roots of some irreducible integer polynomial.
Denote by

δ(α) = min
2≤j≤n

∣
∣α(1) − α(j)

∣
∣ > 0.

It is clear that δ(α) is well defined as all the roots are distinct.
For m ≥ 1, we define θm−1 (0 < θm−1 < 1) using the equation

α = α(1) = Pm−1

Qm−1
+ (−1)m−1θm−1

Qm−1Qm
.

It is easy to calculate that

θm−1 = Qm

αmQm−1 + Qm−2
.

A residual fraction αm = α(1)
m has an expansion

αm = α(1)
m = qm + 1

qm+1 + 1

. . . + 1

qk + 1

. . .

> 1 (m ≥ 1).

Theorem 5.5 Let α = α0 be a real root of irreducible integer polynomial

f0(x) = anx
n + an−1x

n−1 + . . . + a1x + a0 ∈ Z[x], an > 0,

α = α(1), α(2), . . . , α(n) its root and let
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α = α0 = q0 + 1

q1 + 1

. . . + 1

qk + 1

. . .

be continued fraction expansion of α.
Suppose that a sequence of the polynomials fm(x) (m ≥ 1) is defined by the recur-

rence relations

fm(x) = εmx
nfm−1

(

qm−1 + 1

x

)

, where εm = sign(fm−1(qm−1)).

Then,

(1) fm(x) = ∑n
k=0 ak,mx

k ∈ Z[x], an,m > 0 and

ak,m = εm

n∑

ν=n−k

aν,m−1C
ν+k−n
ν qν+k−n

m−1 = εm
f (n−k)
m−1 (qm−1)

(n − k)! (0 ≤ k ≤ n);
(5.17)

(2) the polynomials fm(x) have the roots

α(j)
m = α(j)Qm−2 − Pm−2

Pm−1 − α(j)Qm−1
(1 ≤ j ≤ n); (5.18)

(3)

fm(x) = εmfm−1(qm−1)

n∏

j=1

(
x − α(j)

m

) ; (5.19)

(4) there exits index m0 = m0(α) such that for any m ≥ m0, a residual fraction
αm = α(1)

m is a reduced generalized Pisot number and

Qm−2

Qm−1
= 1

qm−1 + 1

. . . + 1

q2 + 1

q1

, (5.20)

α(j)
m = −Qm−2

Qm−1
+ (−1)m

Q2
m−1

(
(−1)mθm−1

Qm−1Qm
+ α(1) − α(j)

) (2 ≤ j ≤ n). (5.21)

Proof Consider a sequence of the polynomials
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fm(x) = εmx
nfm−1

(

qm−1 + 1

x

)

(m ≥ 1).

Using Taylor formula, we get

fm−1(x) =
n∑

ν=0

f (ν)
m−1(qm−1)

ν! (x − qm−1)
ν,

so

fm(x) = εm

n∑

ν=0

f (ν)
m−1(qm−1)

ν! xn−ν .

It is easy to see that for the coefficients of the polynomials

fm(x) =
n∑

ν=0

aν,mx
ν

we obtain

aν,m = εm
f (n−ν)
m−1 (qm−1)

(n − ν)! = εm

n∑

k=n−ν

ak,m−1C
n−ν
k qk+ν−n

m−1 .

And the statement (5.17) is true.
If

α
(j)
m−1 = α(j)Qm−3 − Pm−3

Pm−2 − α(j)Qm−2
(1 ≤ j ≤ n)

are the roots of a polynomial fm−1(x), then

α(j)
m = 1

α
(j)
m−1 − qm−1

= α(j)Qm−2 − Pm−2

Pm−1 − α(j)Qm−1
(1 ≤ j ≤ n),

and we get (5.18) and (5.19).
The Eq. (5.20) is well known.
To prove the last statement, we write (5.18) in the form

α(j)
m = Qm−2

Qm−1
· α(j) − Pm−2

Qm−2

Pm−1

Qm−1
− α(j)

(1 ≤ j ≤ n). (5.22)

For j = 1, we have the inequality α(1)
m > 1, which follows from the definition of

a residual fraction
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Let now 2 ≤ j ≤ n, then

α(j)
m = Qm−2

Qm−1

(

−1 +
Pm−1

Qm−1
− Pm−2

Qm−2

Pm−1

Qm−1
− α(j)

)

= Qm−2

Qm−1

(

−1 +
(−1)m

Qm−1Qm−2

Pm−1

Qm−1
− α(j)

)

=

= Qm−2

Qm−1

⎛

⎝−1 + (−1)m

Qm−1Qm−2

(
Pm−1

Qm−1
− α(j)

)

⎞

⎠ =

= −Qm−2

Qm−1
+ (−1)m

Q2
m−1

(
(−1)mθm−1

Qm−1Qm
+ α(1) − α(j)

) . (5.23)

There exists m0 such that

∣
∣
∣
∣
(−1)mθm−1

Qm−1Qm

∣
∣
∣
∣ ≤ δ(α)

2
,

2

Qm−1δ(α)
< 1,

for all m ≥ m0.
So for all m ≥ m0, we have

|α(j)
m | ≤ Qm−2

Qm−1

(

1 + 2

Qm−1Qm−2δ(α)

)

= Qm−2

Qm−1
+ 2

Q2
m−1δ(α)

< 1, (5.24)

it follows that α(1)
m is a generalized Pisot number.

We now show that the inequalities |qm − α
(j)
m | > 1 hold for all 2 ≤ j ≤ n.

Consider two possible cases.

I. Let α(j) be a real algebraic number. Then,

−1 < −Qm−2

Qm−1
− 2

Q2
m−1δ(α)

≤ α(j)
m = −Qm−2

Qm−1
+

+ (−1)m

Q2
m−1

(
(−1)mθm−1

Qm−1Qm
+ α(1) − α(j)

) ≤ −Qm−2

Qm−1
+ 2

Q2
m−1δ(α)

< 0,

so
qm − α(j)

m > 1

and an inequality holds for this algebraic conjugate to a residual fraction αm.
II. Let now α(j) be a complex algebraic number. Then, complex algebraic conjugate

α
(j)
m for a residual fraction αm lies within the circle of radius less than 1

Qm−1
and

center −Qm−2

Qm−1
. It follows that |qm − α

(j)
m | > 1, and in this case, the necessary

inequality holds too.

This concludes the proof. �
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5.7 Minimal Polynomials of Residual Fractions

Theorem 5.6 Let α = α0 be a real root of irreducible integer polynomial

f0(x) = anx
n + an−1x

n−1 + . . . + a1x + a0 ∈ Z[x], an > 0,

α = α(1), α(2), . . . , α(n) its root and let

α = α0 = q0 + 1

q1 + 1

. . . + 1

qk + 1

. . .

be continued fraction expansion of α.
Then, the sequence of the discriminants D(fm) of the minimal polynomials fm(x)

of residual fractions αm = α(1)
m is integer and stationary.

Proof Indeed, since all polynomials fm(x) ∈ Z[x] and according to the property of
discriminant (see [18], p. 34), it follows that D(fm) ∈ Z. By Theorem 5.3, so that
D(fm−1) = D(fm).

This completes the proof. �

Theorem 5.7 Let α = α0 be a real root of irreducible integer polynomial

f0(x) = anx
n + an−1x

n−1 + . . . + a1x + a0 ∈ Z[x], an > 0,

α = α(1), α(2), . . . , α(n) its root and let

α = α0 = q0 + 1

q1 + 1

. . . + 1

qk + 1

. . .

be continued fraction expansion of α.
If α is reduced generalized Pisot number, then the minimal polynomial fm(x) of a

residual fraction αm is as follows:

fm(x) = (−1)m(Qm−1x + Qm−2)
nf0

(
Pm−1x + Pm−2

Qm−1x + Qm−2

)

=
n∑

ν=0

aν,mx
ν, (5.25)
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where

an,m = Qn
m−1

∣
∣
∣
∣f0

(
Pm−1

Qm−1

)∣
∣
∣
∣ , a0,m = −Qn

m−2

∣
∣
∣
∣f0

(
Pm−2

Qm−2

)∣
∣
∣
∣ , (5.26)

aν,m = Qν
m−1Q

n−ν
m−2

n−ν∑

μ=0

f (μ)
0

(
Pm−1

Qm−1

)

μ!
(−1)m+(m−1)μ

(Qm−2Qm−1)μ
Cν
n−μ (0 ≤ ν ≤ n), (5.27)

an−1,m = Qn−1
m−1Qm−2

(

n

∣
∣
∣
∣f0

(
Pm−1

Qm−1

)∣
∣
∣
∣ −

1

Qm−2Qm−1
f ′
0

(
Pm−1

Qm−1

))

. (5.28)

Proof The proof is by induction on m.
For m = 0, we have

P−1 = 1, P−2 = 0, Q−1 = 0, Q−2 = 1,

(Q−1x + Q−2)
nf0

(
P−1x + P−2

Q−1x + Q−2

)

= f0(x)

and the equality (5.25) is true.
Assume the statement is true for m ≥ 0, then

fm(x) = (−1)mMm (f0(x)) , Mm =
(
Pm−1 Pm−2

Qm−1 Qm−2

)

.

Since an,m > 0 and αm is a reduced generalized Pisot number, it follows that
fm(qm) < 0 and

fm+1(x) = −xnfm

(

qm + 1

x

)

= −M ′
m (fm(x)) , M ′

m =
(
qm 1
1 0

)

.

Note that

Mm ·M ′
m=

(
Pm−1 Pm−2

Qm−1 Qm−2

)(
qm 1
1 0

)

=
(
qmPm−1 + Pm−2 Pm−1

qmQm−1 + Qm−2 Qm−1

)

=Mm+1.

By the inductive assumption and Lemma 5.9,

fm+1(x) = −M ′
m ((−1)mMm (f0(x))) = (−1)m+1(Mm · M ′

m) (f0(x)) =
= (−1)m+1Mm+1 (f0(x)) ,

and the equality (5.25) is proved.
We now start on the proof of (5.26).
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By Lemma 5.7, so that

an,m = (−1)mQn
m−1f0

(
Pm−1

Qm−1

)

.

If m is even, then Pm−1

Qm−1
> α and f0

(
Pm−1

Qm−1

)
> 0. If m is odd, then Pm−1

Qm−1
< α and

f0
(

Pm−1

Qm−1

)
< 0. Therefore,

(−1)mQn
m−1f0

(
Pm−1

Qm−1

)

= Qn
m−1

∣
∣
∣
∣f0

(
Pm−1

Qm−1

)∣
∣
∣
∣

and the equality for an,m is proved.
Similarly,

a0,m = (−1)mQn
m−2f0

(
Pm−2

Qm−2

)

= −Qn
m−2

∣
∣
∣
∣f0

(
Pm−2

Qm−2

)∣
∣
∣
∣

and the equalities (5.26) are proved.
To prove (5.27), we notice that

Pm−1x + Pm−2

Qm−1x + Qm−2
= Pm−1

Qm−1
+ (−1)m−1

Qm−1(Qm−1x + Qm−2)
.

Using Taylor formula, we get

(Qm−1x + Qm−2)
nf0

(
Pm−1x + Pm−2

Qm−1x + Qm−2

)

= (Qm−1x + Qm−2)
nf0

(
Pm−1

Qm−1

)

+

+
n∑

ν=1

f (ν)
0

(
Pm−1
Qm−1

)

ν!
(−1)(m−1)ν(Qm−1x + Qm−2)

n−ν

Qν
m−1

= Qn
m−1f0

(
Pm−1

Qm−1

)

xn +

+f0

(
Pm−1

Qm−1

) n−1∑

ν=0

Cν
nQ

ν
m−1Q

n−ν
m−2x

ν +
n∑

μ=1

f (μ)
0

(
Pm−1
Qm−1

)

μ!
(−1)(m−1)μ

Qμ
m−1

·

·
n−μ∑

ν=0

Cν
n−μQ

ν
m−1Q

n−μ−ν
m−2 xν = Qn

m−1f0

(
Pm−1

Qm−1

)

xn+f0

(
Pm−1

Qm−1

)

·

·
n−1∑

ν=0

Cν
nQ

ν
m−1Q

n−ν
m−2x

ν +
n−1∑

ν=0

xνQν
m−1Q

n−ν
m−2

n−ν∑

μ=1

Cν
n−μ

(−1)(m−1)μ

(Qm−2Qm−1)μ

f (μ)
0

(
Pm−1
Qm−1

)

μ! =

= Qn
m−1f0

(
Pm−1

Qm−1

)

xn+
n−1∑

ν=0

xνQν
m−1Q

n−ν
m−2

n−ν∑

μ=0

Cν
n−μ

(−1)(m−1)μ

(Qm−2Qm−1)μ

f (μ)
0

(
Pm−1
Qm−1

)

μ! ,

and the equality (5.27) is proved.
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For ν = n − 1, we obtain

an−1,m = (−1)mQn−1
m−1Qm−2

1∑

μ=0

Cn−1
n−μ

(−1)(m−1)μ

(Qm−2Qm−1)μ

f (μ)
0

(
Pm−1

Qm−1

)

μ! =

= (−1)mQn−1
m−1Qm−2

(

nf0

(
Pm−1

Qm−1

)

+ (−1)m−1

Qm−2Qm−1
f ′
0

(
Pm−1

Qm−1

))

=

= Qn−1
m−1Qm−2

(

n

∣
∣
∣
∣f0

(
Pm−1

Qm−1

)∣
∣
∣
∣ −

1

Qm−2Qm−1
f ′
0

(
Pm−1

Qm−1

))

and the equality (5.28) is proved.
Finally, we shall verify that (5.27) implies (5.26).
Indeed, for ν = n, we get

Qν
m−1Q

n−ν
m−2

n−ν∑

μ=0

f (μ)
0

(
Pm−1

Qm−1

)

μ!
(−1)m+(m−1)μ

(Qm−2Qm−1)μ
Cν
n−μ =

= Qn
m−1f0

(
Pm−1

Qm−1

)

(−1)m = an,m

and the first of the equalities (5.26) is proved.
Similarly, for ν = 0, we get

Qν
m−1Q

n−ν
m−2

n−ν∑

μ=0

f (μ)
0

(
Pm−1

Qm−1

)

μ!
(−1)m+(m−1)μ

(Qm−2Qm−1)μ
Cν
n−μ =

= (−1)mQn
m−2

n∑

μ=0

f (μ)
0

(
Pm−1

Qm−1

)

μ!
(
Pm−2

Qm−2
− Pm−1

Qm−1

)μ

=

= (−1)mQn
m−2f0

(
Pm−2

Qm−2

)

= a0,m

and the second of the equalities (5.26) is proved. �

Lemma 5.13 Let α be a root of minimal polynomial

f0(x) = anx
n + . . . + a1x + a0 ∈ Pn[x].

Then,
f (ν)
0 (α) 
= 0 (ν = 1, . . . , n).

Proof Indeed, since f0(x) ∈ Pn[x] and an 
= 0, it follows that f (n)
0 (x) = n!an 
= 0,
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Let 1 ≤ ν ≤ n − 1 and g(x) = f (ν)
0 (x), g(α) = 0. Since g(x) ∈ Z[x], f0(x), and

g(x) have the same root, we get (f0(x), g(x)) 
= 1. This contradicts irreducible min-
imal polynomial. This completes the proof. �

Denote by c(α, ε) > 0 the constant in Roth’s theorem [19]. Thus, for any integer
p and natural q, the following inequality holds

∣
∣
∣
∣α − p

q

∣
∣
∣
∣ ≥ c(α, ε)

q2+ε
. (5.29)

Let
Δ(α) = max

2≤j≤n
|α(1) − α(j)|.

Lemma 5.14 Let α be a real irrationality of degree n > 2 and let

f0(x) = anx
n + . . . + a1x + a0 ∈ Pn[x]

be a minimal polynomial.
Then, for any convergent Pm

Qm
to α, the following inequalities hold

an
c(α, ε)

(
δ(α)

2

)n−1

Q2+ε
m

<

∣
∣
∣
∣f0

(
Pm

Qm

)∣
∣
∣
∣ < an

(1 + Δ(α))n−1

Q2
m

. (5.30)

Proof Indeed,

∣
∣
∣
∣f0

(
Pm

Qm

)∣
∣
∣
∣ = an

n∏

j=1

∣
∣
∣
∣
Pm

Qm
− α(j)

∣
∣
∣
∣ = an

∣
∣
∣
∣
Pm

Qm
− α

∣
∣
∣
∣

n∏

j=2

∣
∣
∣
∣
Pm

Qm
− α + α(1) − α(j)

∣
∣
∣
∣ .

Next, we note that

c(α, ε)

Q2+ε
m

<

∣
∣
∣
∣
Pm

Qm
− α

∣
∣
∣
∣ <

1

Q2
m

,

δ(α)

2
<

∣
∣
∣
∣
Pm

Qm
− α + α(1) − α(j)

∣
∣
∣
∣ < 1 + Δ(α) (2 ≤ j ≤ n).

This completes the proof. �

By Lemma 5.14 and Theorem 5.7, it follows that for n > 2, the highest coeffi-
cient an,m of the minimal polynomial fm(x) for reduced generalized Pisot number α

increases as quantity of order O
(
Qn−2−ε

m−1

)
.
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Indeed, for m > m0, we have

an
c(α, ε)

(
δ(α)

2

)n−1

Q2+ε
m

<

∣
∣
∣
∣f0

(
Pm

Qm

)∣
∣
∣
∣ < an

(1 + Δ(α))n−1

Q2
m

,

anc(α, ε)

(
δ(α)

2

)n−1

Qn−2−ε
m−1 < an.m = Qn

m−1

∣
∣
∣
∣f0

(
Pm−1

Qm−1

)∣
∣
∣
∣ <

< an(1 + Δ(α))n−1Qn−2
m−1.

Denote by

Aν(α) =
n∑

j=2

1
(
α(1) − α(j)

)ν , ν = 1, 2, . . . .

Theorem 5.8 Let α be a real irrationality of degree n > 2 and let

f0(x) = anx
n + . . . + a1x + a0 ∈ Pn[x]

be a minimal polynomial.
Then, for m > m0 for any convergent

Pm
Qm

to reduced generalized Pisot number α

and residual fraction αm, the following relations hold

αm = −Qm−2

Qm−1
+

f ′
0

(
Pm−1

Qm−1

)

Q2
m−1

∣
∣
∣f0

(
Pm−1

Qm−1

)∣
∣
∣

+ (−1)m−1 λm

Q2
m−1

, (5.31)

where

λm = A1(α) + (−1)m−1θm−1

Qm−1Qm
A2(α)εm, |εm| < 2. (5.32)

Proof Indeed, by Vieta theorem, we have

α(1)
m + . . . + α(n)

m = −an−1,m

an,m
.

The formulas (5.26) and (5.28) imply

α(1)
m + . . . + α(n)

m = −n
Qm−2

Qm−1
+

f ′
0

(
Pm−1

Qm−1

)

Q2
m−1

∣
∣
∣f0

(
Pm−1

Qm−1

)∣
∣
∣
.

Using (5.23), we get
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α(1)
m + . . . + α(n)

m = αm − (n − 1)
Qm−2

Qm−1
+

n∑

j=2

(−1)m

Q2
m−1

(
(−1)mθm−1

Qm−1Qm
+ α(1) − α(j)

) .

It now follows that

αm = −Qm−2

Qm−1
+

f ′
0

(
Pm−1

Qm−1

)

Q2
m−1

∣
∣
∣f0

(
Pm−1

Qm−1

)∣
∣
∣

+ (−1)m−1 λm

Q2
m−1

,

where

λm =
n∑

j=2

1
(−1)mθm−1

Qm−1Qm
+ α(1) − α(j)

.

Next, we note that for m > m0

1
(−1)mθm−1

Qm−1Qm
+ α(1) − α(j)

= 1

α(1) − α(j)
− (−1)m

θm−1

Qm−1Qm
·

· 1
(

(−1)mθm−1

Qm−1Qm
+ α(1) − α(j)

) (
α(1) − α(j)

) = 1

α(1) − α(j)
+

+(−1)m−1 θm−1

Qm−1Qm

ε
(
α(1) − α(j)

)2 ,

where |ε| < 2. Finally, we obtain

λm = A1(α) + (−1)m−1θm−1

Qm−1Qm
A2(α)εm, |εm| < 2.

This completes the proof. �

5.8 Chain Sequence of Linear Fractional Transformations
of Plane

Recall the definition of a convergence of sequence of the integralmatrixes to a number
given in [15].

Definition 5.6 We say that a matrix decomposition

∞∏

k=0

(
ak bk
ck dk

)
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convergence to a number α if for matrixes

Mn =
n∏

k=0

(
ak bk
ck dk

)

=
(
An Bn

Cn Dn

)

the following relation holds

lim
n→∞

An

Cn
= lim

n→∞
Bn

Dn
= α.

In this case, we write
(

α

1

)

=
∞∏

k=0

(
ak bk
ck dk

)

.

The theory of matrix representations of real numbers is systematically stated
in [11]. We are now interested in the case of ordinary continued fractions. If α is
expanded in a continued fraction (5.1), then we obtain the following matrix decom-
position

(
α

1

)

=
∞∏

ν=0

(
qν 1
1 0

)

, (5.33)

because

Mm =
m∏

ν=0

(
qν 1
1 0

)

=
(
Pm Pm−1

Qm Qm−1

)

(m ≥ 0)

and the sequence of the matrixesMm converges to α by the properties of the conver-
gents.

Consider now an arbitrary linear fractional transformation of complex plane with
matrixM:

M =
(
A B
C D

)

, w = M(z) = Az + B

Cz + D
.

By (5.2), it follows that irrational number α and a residual fraction αk+1 relate to
inverse linear fractional transformation:

Mk =
(
Pk Pk−1

Qk Qk−1

)

, M∗
k =

(
Qk−1 −Pk−1

−Qk Pk

)

{
α = Mk(αk+1)

αk+1 = M∗
k (α)

. (5.34)



116 N.M. Dobrovol’skii et al.

Analyzing the formula (5.7) for the root of a minimal polynomial fm(x), we con-
clude that they are obtained from the roots of a given minimal polynomial under the
linear fractional transformation M∗

k−1.
Define the following concept.

Definition 5.7 Let α be a real irrationality. A chain sequence of the first kind of
linear fractional transformations for the polynomials is called a sequence

{

Mν(α) =
(
Pν(α) Pν−1(α)

Qν(α) Qν−1(α)

)∣
∣
∣
∣ ν = 0, 1, . . .

}

,

where Pν(α) is a numerator and Qν(α) is a denominator of νth-order convergent
of α.

A chain sequence of the first kind of linear fractional transformations of complex
plane is called a sequence

{

M∗
ν (α) =

(
Qν−1(α) −Pν−1(α)

−Qν(α) Pν(α)

)∣
∣
∣
∣ ν = 0, 1, . . .

}

.

To understand the effect of focusing the algebraic conjugate numbers for a residual
fraction αm around fraction −Qm−2

Qm−1
, we prove the following lemmas.

Lemma 5.15 Let M∗(z) be an arbitrary linear fractional transformation of complex
plane with unimodular matrix M∗:

M∗ =
(

D −B
−C A

)

A,B,C,D ∈ Z, |AD − BC| = 1, C 
= 0.

Then,

(1) the image of the exterior of the circle K
(
A
C , 1

) = {
z
∣
∣
∣
∣z − A

C

∣
∣ ≥ 1

}
is the inside

of the circle K
(−D

C , 1
C2

)
with center deleted;

(2) the image of the circumference C
(
A
C , 1

) = {
z
∣
∣
∣
∣z − A

C

∣
∣ = 1

}
is the circumfer-

ence C
(−D

C , 1
C2

)
;

(3) the image of the inside of the circle K
(
A
C , 1

)
with center deleted is the exterior

of the circle K
(−D

C , 1
C2

)
;

(4) the image of the ring

R

(
A

C
, 1, r

)

=
{

z

∣
∣
∣
∣ r <

∣
∣
∣
∣z − A

C

∣
∣
∣
∣ < 1

}

(0 < r < 1)

is the ring R
(−D

C , 1
rC2 ,

1
C2

)
;

(5) the point z = A
C is a pole of the linear fractional transformation M∗(z) with

residue 1
C2 .



5 Generalized Pisot Numbers and Matrix Decomposition 117

Proof Indeed,

M∗(z) = Dz − B

−Cz + A
= −D

C
+ AD − BC

C(A − Cz)
,

∣
∣
∣
∣M

∗(z) + D

C

∣
∣
∣
∣ = 1

C2
∣
∣ A
C − z

∣
∣
,

hence, all the statements of the lemma hold. �
Consider the linear fractional transformation N∗(z) with matrix

N∗ =
(
C D
0 C

)

C,D ∈ Z,C 
= 0, N∗(z) = Cz + D

C
= z + D

C
.

It is easy to see that

M∗
1 = N∗ · M∗ =

(
C D
0 C

)(
D −B

−C A

)

=
(

0 AD − BC
−C2 AC

)

Lemma 5.16 Let

M =
(
A B
C D

)

, N =
(
C −D
0 C

)

, A,B,C,D ∈ Z, C 
= 0,

M1 = N ◦ M be the linear fractional transformation of polynomials with matrix

M1 = M · N =
(
A B
C D

)(
C −D
0 C

)

=
(
AC BC − AD
C2 0

)

and let β(1), . . . , β(n) be the roots of the polynomial g(x) = M1(f (x)).
Then,

g(x) = M1(f (x)) = C2nxnf

(
A

C
+ BC − AD

C2x

)

=

= C2nf

(
A

C

)

xn +
n∑

ν=1

f (ν)
(
A
C

)

ν! C2(n−ν)xn−ν(BC − AD)ν (5.35)

and

β(ν) = M∗
1

(
α(ν)

) = AD − BC

C2
(
A
C − α(ν)

) (1 ≤ ν ≤ n). (5.36)

Proof Indeed, if h(x) = M(f (x)), then

h(x) = (Cx + D)nf

(
Ax + B

Cx + D

)

, g(x) = M1(f (x)) = Cnh

(

x − D

C

)

=

= Cn

(

C

(

x − D

C

)

+ D

)n

f

(
A
(
x − D

C

) + B

C
(
x − D

C

) + D

)

=
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= (
C2x

)n
f

(
ACx + (BC − AD)

C2x

)

= M1(f (x)).

Using Taylor formula, we get

(
C2x

)n
f

(
ACx + (BC − AD)

C2x

)

= (
C2x

)n
f

(
A

C
+ BC − AD

C2x

)

=

= C2nf

(
A

C

)

xn +
n∑

ν=1

f (ν)
(
A
C

)

ν! C2(n−ν)xn−ν(BC − AD)ν

and the equality (5.35) is proved.
Then, we have

g(x) = (
C2x

)n
an

n∏

ν=1

(
ACx + (BC − AD)

C2x
− α(ν)

)

=

= an

n∏

ν=1

(
(AC − C2α(ν))x − (AD − BC)

) =

= C2nf

(
A

C

) n∏

ν=1

(

x − AD − BC

C2
(
A
C − α(ν)

)

)

= C2nf

(
A

C

) n∏

ν=1

(
x − β(ν)

)

and this proves the equality (5.36). �

5.9 Lagrange Algorithm for Reduced Algebraic
Irrationality of Degree n

Recall the definition of a reduced algebraic irrationality of degree n given in Sect. 5.2
(Definition 5.1). For the infinite continued fraction expansion (5.1) of a reduced
algebraic irrationality α, the following theorem holds.

Theorem 5.9 The incomplete quotient qk is uniquely determined as a natural num-
ber satisfying the following condition:

fk(qk) < 0, fk(qk + 1) > 0.

Proof Indeed, since fk(αk) = 0, qk < αk < qk + 1, an,k > 0, and αk is the unique
positive root of the polynomial fk(x), it follows that fk(qk) < 0 and fk(qk+1) > 0. �

It is easily shown that we need to calculate O(ln qk) values of fk(x) for com-
putation qk . Indeed, consider a sequence fk(1), fk(2), . . . , fk(2m), fk(2m+1), where
m = [

log2(qk)
]
. It is clear that fk(2j) < 0 for 0 ≤ j ≤ m and fk(2m+1) > 0. Then,
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using the method of interval bisection contract segment [2m; 2m+1] to segment
[qk; qk + 1], that will require to compute yet m values of fk(x).

Thus, the description of the version Lagrange algorithm for calculating the incom-
plete quotients in continued fraction expansion of a reduced algebraic irrationality α

of degree n is completed.
Theorem 5.1 generalizes to continued fraction of arbitrary totally real algebraic

irrationality α of degree n. First, we prove the following lemma.

Lemma 5.17 Let

f (x) =
n∑

k=0

akx
k ∈ Z[x], an > 0

be arbitrary irreducible integer polynomial, all of whose roots α(k) (k = 1, 2, . . . , n)
are different real numbers satisfying the following condition:

α(n) < . . . < α(2) < α(1).

Suppose that for integer number q, the following inequalities hold:

⎧
⎨

⎩

α(k) < q for k ≥ k0,
q < α(k) < q + 1 for k0 > k ≥ k1,
α(k) > q + 1 for k1 > k ≥ 1,

Then, the polynomial

g(x) = −f

(

q + 1

x

)

· xn =
n∑

k=0

bkx
k .

has roots β(k) = 1
α(k)−q (k = 1, 2, . . . , n) satisfying the following inequalities:

⎧
⎨

⎩

β(k) < 0 for k ≥ k0,
1 < β(k) for k0 > k ≥ k1,
0 < β(k) < 1 for k1 > k ≥ 1.

Proof The proof is similar to that of Lemma 5.1. �

Theorem 5.10 For arbitrary totally real algebraic irrationality α of degree n, all of
its residual fractions αm are reduced algebraic irrationalities of nth degree starting
with some index m0 + 1.

Proof Let α = α(j) and
α(n) < . . . < α(2) < α(1)
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be the real roots of irreducible integer polynomial

f (x) =
n∑

k=0

akx
k ∈ Z[x], an > 0.

Let q0 = [α], k0,0 = k0, and k1,0 = k1 are defined as in Lemma 5.17 for q = q0.
Then, k0,0 > j ≥ k1,0 and the polynomial

f1(x) = −f

(

q0 + 1

x

)

· xn =
n∑

k=0

ak,1x
k

has roots
α

(n)
1 < . . . < α

(2)
1 < α

(1)
1 ,

among which there are n + 1 − k0,0 negative roots, k1,0 − 1 positive roots less than
1, and k0,0 − k1,0 positive roots more than 1.

Notice that α1 = α
(j1)
1 and k0,0 − k1,0 ≥ j1 ≥ 1.

Let integer polynomial fm(x) for residual fractionαm = α
(jm)
m be determined. Then,

defining q = qm = [αm], k0,m = k0, and k1,m = k1 as in Lemma 5.17, we get k0,m >

jm ≥ k1,m and a polynomial

fm+1(x) = −fm

(

qm + 1

x

)

· xn =
n∑

k=0

ak,m+1x
k

has roots
α

(n)
m+1 < . . . < α

(2)
m+1 < α

(1)
m+1,

among which there are n + 1 − k0,m negative roots, k1,m − 1 positive roots less than
1, and k0,m − k1,m positive roots more than 1.

It is clear that αm+1 = α
(jm+1)

m+1 and k0,m − k1,m ≥ jm+1 ≥ 1.
By the proof of Lemma 5.17, it follows that j1 ≥ j2 ≥ . . . ≥ jm ≥ . . .; k0,1 ≥ ≥

k0,2 = k0,1 − k1,0 + 1 ≥ . . . ≥ k0,m = k0,m−1 − k1,m−1 + 1 ≥ . . ..
The numbers k0,m, k1,m have a simple meaning: For k0,m > ν ≥ k1,m, α(ν)

m is mth
residual fraction for α(ν+j−jm). By unique continued fraction expansion, it follows
that there exists m0 such that for 0 ≤ k < m0 − 1, the incomplete quotients qk are
the same for α(ν) if k2 ≥ ν ≥ k3, k2 ≥ j ≥ k3, and the incomplete quotients qm0−1

for α = α(j) differ from corresponding incomplete quotients for α(ν) if k2 ≥ ν ≥ k3.
This implies that k0,m0−1 = k1,m0−1 + 1, k0,m0 = 2, k1,m0 = 1. Thus, αm0+1 = α

(1)
m0+1

is a reduced algebraic irrationality.
This completes the proof (Fig. 5.1). �
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Fig. 5.1 Shows the program text for computing the incomplete quotients for a reduced cubic
irrationalities α(p). For given natural p ≥ 4, this program computes n incomplete quotients of
continued fraction expansion for α(p) in the form of a table of 40 values in one line



122 N.M. Dobrovol’skii et al.

5.10 Modification Lagrange Algorithm for Continued
Fraction Expansion of Algebraic Number

The importance of generalizedPisot number for theLagrange algorithm for continued
fraction expansion is explained by the following lemma.

Lemma 5.18 If

f0(x) = anx
n + an−1x

n−1 + . . . + a1x + a0 ∈ Z[x], an ≥ 1

is a minimal polynomial for generalized Pisot number α(1) = α0, and then for con-
tinued fraction expansion

α(1) = α0 = q0 + 1

q1 + 1

. . . + 1

qn + 1

. . .

the following inequality holds

[

−an−1

an

]

+ 1 − n ≤ q0 < −an−1

an
+ n − 1. (5.37)

Proof Indeed, by Vieta formula, we have:

−an−1

an
= α(1) + α(2) + . . . + α(n).

Since the minimal polynomial f0(x) is irreducible, it follows that

α(2) + α(3) + . . . + α(n) 
= 0,

otherwise, α(1) = − an−1

an
∈ Q, which contradicts irreducibility of f0(x).

Since α(1) is Pisot number

|α(j)| < 1, (2 ≤ j ≤ n).

So
0 < |α(2) + . . . + α(n)| < n − 1

and
−an−1

an
+ 1 − n < α(1) < −an−1

an
+ n − 1.
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But q0 < α(1) < q0 + 1, so the statements of the lemma hold. �

Thus, Theorem 5.5 and Lemma 5.18 imply that starting from some m0, all partial
quotients qm (m ≥ m0) require for their computations no more than O(ln n) cal-
culation values of the fm(x). This result can be significantly intensified using the
asymptotic formula (5.21) for conjugate numbers to the residual fractions.

Theorem 5.11 Let α = α0 be a real root of a irreducible integer polynomial

f0(x) = anx
n + an−1x

n−1 + . . . + a1x + a0 ∈ Z[x], an > 0,

α = α(1), α(2), . . . , α(n) its root and

α = α0 = q0 + 1

q1 + 1

. . . + 1

qk + 1

. . .

andlet

be continued fraction expansion of α.
Suppose that a sequence of the polynomials fm(x) for the residual fractions αm is

defined by (5.17) and m0 = m0(α, ε) is defined from the inequality

2(n − 1)

Qm0−1δ(α)
< ε. (5.38)

Then, for any m > m0, the following equalities hold

qm =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

q∗
m for fm

(
q∗
m + 1

)
> 0 and fm

(
q∗
m

)
< 0,

q∗
m + 1 for fm

(
q∗
m + 1

)
< 0,

q∗
m − 1 for fm

(
q∗
m

)
> 0,

(5.39)

where

q∗
m =

[

− f ′
m−1(qm−1)

fm−1(qm−1)
+ (n − 1)Qm−2

Qm−1

]

.

Proof By Theorem 5.5, so that

fm(x) = −fm−1(qm−1)x
n − f ′

m−1(qm−1)

1! xn−1 −
n∑

ν=2

f (ν)
m−1(qm−1)

ν! xn−ν .
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Using Vieta formula, we get

− f ′
m−1(qm−1)

fm−1(qm−1)
= α(1)

m +
n∑

j=2

⎛

⎝−Qm−2

Qm−1
+ (−1)m

Q2
m−1

(
(−1)mθm−1

Qm−1Qm
+ α(1) − α(j)

)

⎞

⎠ .

Therefore,

α(1)
m = − f ′

m−1(qm−1)

fm−1(qm−1)
+ (n − 1)Qm−2

Qm−1
+ Δ,

where

Δ =
n∑

j=2

⎛

⎝ (−1)m−1

Q2
m−1

(
(−1)mθm−1

Qm−1Qm
+ α(1) − α(j)

)

⎞

⎠

and

|Δ| <
2(n − 1)

Q2
m−1δ(α)

<
ε

Qm−1
.

Since fm(x) > 0 for x > α(1)
m , fm(x) < 0 for 1 ≤ x < α(1)

m and q∗
m − 1 < α(1)

m < q∗
m +

2, there exist three possible cases:

(1) if fm(q∗
m + 1) < 0, then qm = q∗

m + 1;
(2) if fm(q∗

m) < 0 and fm(q∗
m + 1) > 0, then qm = q∗

m;
(3) if fm(q∗

m) > 0, then qm = q∗
m − 1.

This completes the proof. �

5.11 Properties of Matrix Decomposition

We will consider further only nonnegative integer nondegenerate matrix.
Notice some simple properties of the matrix decomposition.

Lemma 5.19 Let (
α

1

)

=
∞∏

k=0

(
ak bk
ck dk

)

be a convergent matrix decomposition, i1 < . . . in < . . . be arbitrary monotonic
sequence of natural numbers and i0 = 0.

If the matrixes mk are defined by the equalities

mk =
ik+1−1∏

j=ik

(
aj bj
cj dj

)

(k = 0, 1, . . .),
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then matrix product
∞∏

k=0

mk

converges to α.

Proof Indeed, if

n∏

k=0

(
ak bk
ck dk

)

=
(
An Bn

Cn Dn

)

= Mn and

(
α

1

)

= lim
n→∞Mn,

then

lim
n→∞

An

Cn
= lim

n→∞
Bn

Dn
= α,

hence

lim
k→∞

Aik−1

Cik−1
= lim

k→∞
Bik−1

Dik−1
= α.

Applying the associative law of a matrix product, we get

n∏

k=0

mk =
n∏

k=0

⎛

⎝
ik+1−1∏

j=ik

(
aj bj
cj dj

)
⎞

⎠ =
in+1−1∏

k=0

(
ak bk
ck dk

)

=

=
(
Ain+1−1 Bin+1−1

Cin+1−1 Din+1−1

)

= Min+1−1.

Thus, the matrix product
∞∏

k=0

mk

converges to α. �

Lemma 5.20 Let (
α

1

)

=
∞∏

k=0

(
ak bk
ck dk

)

be a convergent matrix decomposition and

(
a b
c d

)

, a, b, c, d ≥ 0, det

(
a b
c d

)


= 0.
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Then, the matrix product

(
a b
c d

) ∞∏

k=0

(
ak bk
ck dk

)

converges to aα+b
cα+d .

Proof Indeed, if
n∏

k=0

(
ak bk
ck dk

)

=
(
An Bn

Cn Dn

)

,

then

lim
n→∞

An

Cn
= lim

n→∞
Bn

Dn
= α

Hence,
(
a b
c d

) n∏

k=0

(
ak bk
ck dk

)

=
(
aAn + bCn aBn + bDn

cAn + dCn cBn + dDn

)

and

lim
n→∞

aAn + bCn

cAn + dCn
= lim

n→∞
a An
Cn

+ b

c An
Cn

+ d
= aα + b

cα + d
= lim

n→∞
a Bn
Dn

+ b

c Bn
Dn

+ d
= lim

n→∞
aBn + bDn

cBn + dDn
.

Since all matrixes are nonnegative and α > 0, lemma is proved �

Lemma 5.21 Let (
α

1

)

=
∞∏

k=0

(
ak bk
ck dk

)

be a convergent matrix decomposition.
Then, for any n > 0, the matrix product

∞∏

k=n

(
ak bk
ck dk

)

converges to βn and α = An−1βn+Bn−1

Cn−1βn+Dn−1
.

Proof The statement of the lemma follows from the preceding Lemma 5.20 for
a = An−1, b = Bn−1, c = Cn−1, and d = Dn−1. �

Lemma 5.22 Let (
α

1

)

=
∞∏

k=0

(
ak bk
ck dk

)
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be a convergent matrix decomposition, i1 < . . . in < . . . be arbitrary monotonic
sequence integer nonnegative numbers and

(
aij bij
cij dij

)

=
(
fj 0
0 fj

)

(j = 1, 2, . . .).

Then, the matrix product

∞∏

j=1

ij−1∏

k=ij−1+1

(
ak bk
ck dk

)

,

converges to α (here i0 = −1)

Proof Indeed, let

Mn =
n∏

k=0

(
ak bk
ck dk

)

=
(
An Bn

Cn Dn

)

,

M ′
m =

m∏

j=1

ij−1∏

k=ij−1+1

(
ak bk
ck dk

)

=
(
A′
m B′

m
C′
m D′

m

)

,

Fm =
m∏

j=1

fj.

Then,

Mim =
(
Aim Bim
Cim Dim

)

= FmM
′
m =

(
FmA′

m FmB′
m

FmC′
m FmD′

m

)

.

Hence,

α = lim
m→∞

Aim

Cim

= lim
m→∞

A′
m

C′
m

= lim
m→∞

B′
m

D′
m

= lim
m→∞

Bim

Dim

and the lemma is proved. �

Lemma 5.23 Let (
α

1

)

=
∞∏

k=0

(
ak bk
ck dk

)

be a matrix decomposition that converges to an irrational number α.
Then, all matrixes contained in the decomposition are nondegenerate.

Proof Assuming the converse, let

(
an bn
cn dn

)
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be a degenerate matrix. Then, the matrix

Mn =
n∏

k=0

(
ak bk
ck dk

)

=
(
An Bn

Cn Dn

)

is degenerate too, that is, Bn
Dn

= An
Cn

or Cn = mAn, Dn = mBn. Calculating

(
An+1 Bn+1

Cn+1 Dn+1

)

=
(
An Bn

Cn Dn

)

·
(
an+1 bn+1

cn+1 dn+1

)

,

we get An+1

Cn+1
= Bn+1

Dn+1
= An

Cn
.

Thus, Ak
Ck

= Bk
Dk

= An
Cn

for k ≥ n. This contradiction proves the lemma. �

Denote by Δn = detMn = AnDn − BnCn, δn = andn − bncn.

Lemma 5.24 Let ∞∏

k=0

(
ak bk
ck dk

)

be an infinite matrix decomposition, and all matrixes included in the decomposition
are nondegenerate integer positive with a condition

δk < 0, min

( |δn|
andn

,
|δn|
cnbn

)

≤ δ < 1.

Then, matrix product converges.

Proof First, we notice that

Δn = detMn = AnDn − BnCn =
= (An−1an + Bn−1cn)(Cn−1bn + Dn−1dn) −
−(An−1bn + Bn−1dn)(Cn−1an + Dn−1cn) =

= (An−1Dn−1 − Bn−1Cn−1)(andn − bncn) = Δn−1δn.

Hence, we get Δn = (−1)n+1|Δn| (n = 0, 1, . . .).
Consider the differences An

Cn
− Bn

Dn
for n = 0, 1, . . .. We obtain:

An

Cn
− Bn

Dn
= Δn

CnDn
= Δn−1δn

(Cn−1an + Dn−1cn)(Cn−1bn + Dn−1dn)
,



5 Generalized Pisot Numbers and Matrix Decomposition 129

∣
∣
∣
∣
An

Cn
− Bn

Dn

∣
∣
∣
∣ ≤ |Δn−1|

Cn−1Dn−1
min

( |δn|
andn

,
|δn|
cnbn

)

<
|Δn−1|δ
Cn−1Dn−1

;
An

Cn
− An−1

Cn−1
= (An−1an + Bn−1cn)Cn−1 − An−1(Cn−1an + Dn−1cn)

CnCn−1
=

= cn(Bn−1Cn−1 − An−1Dn−1)

CnCn−1
= −cnΔn−1

CnCn−1
;

Bn

Dn
− Bn−1

Dn−1
= (An−1bn + Bn−1dn)Dn−1 − Bn−1(Cn−1bn + Dn−1dn)

DnDn−1
=

= bn(An−1Dn−1 − Bn−1Cn−1)

DnDn−1
= bnΔn−1

DnDn−1
;

An

Cn
− Bn−1

Dn−1
= (An−1an + Bn−1cn)Dn−1 − (Cn−1an + Dn−1cn)Bn−1

CnDn−1
=

= an(An−1Dn−1 − Bn−1Cn−1)

CnDn−1
= anΔn−1

CnDn−1
;

Bn

Dn
− An−1

Cn−1
= (An−1bn + Bn−1dn)Cn−1 − (Cn−1bn + Dn−1dn)An−1

DnCn−1
=

= −dn(An−1Dn−1 − Bn−1Cn−1)

DnCn−1
= −dnΔn−1

DnCn−1
.

It follows that

A0

C0
<

B0

D0
,

A2k

C2k
<

B2k

D2k
,

B2k+1

D2k+1
<

A2k+1

C2k+1
,

[
A0

C0
; B0

D0

]

⊃
[
B1

D1
; A1

C1

]

⊃
[
A2

C2
; B2

D2

]

⊃ . . . ⊃

⊃
[
A2k

C2k
; B2k

D2k

]

⊃
[
B2k+1

D2k+1
; A2k+1

C2k+1

]

⊃
[
A2k+2

C2k+2
; B2k+2

D2k+2

]

⊃ . . .

Thus, we have the contracting sequence of the embedded segment. This implies that
the sequences of its ends converge to the same limit. This completes the proof �

We now notice that by the proof of this lemma, there exist two monotonic
sequences of the fractions converging to α:

A0

C0
<

B1

D1
<

A2

C2
< . . . <

A2k

C2k
<

B2k+1

D2k+1
<

A2k+2

C2k+2
< . . . , (5.40)

B0

D0
>

A1

C1
>

B2

D2
> . . . >

B2k

D2k
>

A2k+1

C2k+1
>

B2k+2

D2k+2
> . . . . (5.41)
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Consider the following sequence of matrixes

Mn =
(
2 · 2n+1 + (−1)n+1 2 · 2n + (−1)n

2n+1 2n

)

(n ≥ 0). (5.42)

It is easy to see that

M0 =
(
3 3
2 1

)

, Mn = Mn−1 ·
(
1 1
2 0

)

(n ≥ 1).

Indeed,

(
2 · 2n + (−1)n 2 · 2n−1 + (−1)n−1

2n 2n−1

)

·
(
1 1
2 0

)

=

=
(
2 · 2n+1 + (−1)n+1 2 · 2n + (−1)n

2n+1 2n

)

.

This implies that

Mn =
(
3 3
2 1

)

·
(
1 1
2 0

)n

and the matrix product
(
3 3
2 1

)

·
∞∏

k=1

(
1 1
2 0

)

converges to 2, that is,
(
2
1

)

=
(
3 3
2 1

)

·
∞∏

k=1

(
1 1
2 0

)

. (5.43)

The sequence of the matrixes (5.42) andmatrix product (5.43) show that not every
matrix product can be converted into ordinary continued fraction.

Assign the class of the matrixesM+ and the subclassesM+(q),M±,M∗ M∗(q)
(q ∈ N).

Definition 5.8 We say that an integer nonnegative matrixM belongs to a classM+
if

M =
(
a b
c d

)

, a ≥ c ≥ 0, b ≥ d ≥ 0, detM = ad − bc 
= 0, a, b, c, d ∈ Z.

(5.44)
Put

M± = {
M ∈ M+| detM < 0

}
, (5.45)
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and

M+(q) =
{

M ∈ M+
∣
∣
∣
∣

[a

c

]
=
[
b

d

]

= q

}

, (5.46)

Lemma 5.25 (1) M+ is a multiplicative semigroup.
(2) For any matrixes M,K,L ∈ M±, we have the following

M · K · L ∈ M±.

Proof Indeed, if

M =
(
a b
c d

)

, K =
(
e f
g h

)

, M,K ∈ M+,

then

ae + bg ≥ ce + dg ≥ 0, af + bh ≥ cf + dh ≥ 0, det(MK) = detM detK 
= 0.

Hence, M · K ∈ M+ and the statement (1) is proved.
If (

a b
c d

)

= M · K · L,

then a ≥ c ≥ 0, b ≥ d ≥ 0, and det(M · K · L) < 0. This completes the proof. �

Definition 5.9 We say that an integer nonnegative matrixM belongs to a classM∗,
if

M =
(
a b
c d

)

∈ M± and
[a

c

]
=
[
b

d

]

∈ N. (5.47)

Put

M∗(q) =
{

M ∈ M∗
∣
∣
∣
∣

[a

c

]
=
[
b

d

]

= q

}

. (5.48)

It is clear that

M∗ =
∞⋃

q=1

M∗(q).

Lemma 5.26 Let

M =
(
a b
c d

)

∈ M∗(q)

and

K =
(
a1 b1
c1 d1

)
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be an arbitrary nondegenerate integer matrix satisfying the condition detK > 0, a1,
b1, c1, d1 ≥ 0.

Then, M · K ∈ M∗(q).

Proof Indeed, by the condition, we have a = qc + r, 0 ≤ r < c, b = qd + s, 0 ≤
s < d. Then,

M · K =
(
aa1 + bc1 ab1 + bd1
ca1 + dc1 cb1 + dd1

)

=

=
(
q(ca1 + dc1) + ra1 + sc1 q(cb1 + dd1) + rb1 + sd1

ca1 + dc1 cb1 + dd1

)

.

Since detM · K < 0, 0 ≤ ra1 + sc1 < ca1 + dc1, 0 ≤ rb1 + sd1 < cb1 + dd1, it fol-
lows [

aa1 + bc1
ca1 + dc1

]

=
[
ab1 + bd1
cb1 + dd1

]

= q

This completes the proof. �

Theorem 5.12 Let

∞∏

k=0

(
ak bk
ck dk

)

=
∞∏

k=0

mk, mk =
(
ak bk
ck dk

)

(5.49)

be an infinite matrix decomposition and mk ∈ M∗ for all k.
Then, the matrix product converges to α > 1.
If in addition α is an irrational number, then for any matrix m ∈ M+ \ M∗ and a

natural n ∈ N there exists t ≥ n such that

m
t∏

k=n

(
ak bk
ck dk

)

∈ M∗.

Proof Put qk =
[
ak
ck

]
=
[
bk
dk

]
and αk =

{
ak
ck

}
, βk =

{
bk
dk

}
. Then, ak = (qk + αk) · ck ,

bk = (qk + βk)dk δk = akdk − bkck = ckdk(αk − βk) < 0. So

min

( |δk|
akdk

,
|δk|
ckbk

)

= min

(
βk − αk

qk + αk
,
βk − αk

qk + βk

)

<
βk

1 + βk
<

1

2
.

By Lemma 5.24, the matrix product (5.49) converges to α > q0 ≥ 1.
Let

m =
(
a b
c d

)

, Mn,t =
t∏

k=n

(
ak bk
ck dk

)

= M−1
n−1Mt =

(
An,t Bn,t

Cn,t Dn,t

)

.
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By Lemma 5.21, we get

lim
t→∞

An,t

Cn,t
= lim

t→∞
Bn,t

Dn,t
= βn.

Since α is an irrational number, βn is an irrational number too for any natural
number n.

Note that

m · Mn,t =
(
aAn,t + bCn,t aBn,t + bDn,t

cAn,t + dCn,t cBn,t + dDn,t

)

and

lim
t→∞

aAn,t + bCn,t

cAn,t + dCn,t
= lim

t→∞
aBn,t + bDn,t

cBn,t + dDn,t
= aβn + b

cβn + d
/∈ Q.

Therefore, there exists natural number t0 such that for any t ≥ t0, the following
equality holds

[
aAn,t + bCn,t

cAn,t + dCn,t

]

=
[
aβn + b

cβn + d

]

=
[
aBn,t + bDn,t

cBn,t + dDn,t

]

.

This proves the theorem if we put

t =
{
t0 for detm · (−1)t0−n > 0,
t0 + 1 for detm · (−1)t0−n < 0.

�

Lemma 5.27 Let

M =
(
a b
c d

)

∈
∞⋃

q=1

M+(q).

Then, M can be represented in the form

M =
(

n∏

k=0

(
qk 1
1 0

))

· K, (5.50)

where

K =
(
e f
g h

)

∈ M+ \
∞⋃

q=1

M+(q).
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Proof First, observe that ifM ∈ M+(q), then

M =
(
q 1
1 0

)

·
(

c d
a − qc b − qd

)

and (
c d

a − qc b − qd

)

∈ M+.

This representation is unique. Sincemax(c, d) > max(a − qc, b − qd), max(a, b) ≥
max(c, d), it follows that if

(
c d

a − qc b − qd

)

∈
∞⋃

q=1

M+(q).

We continue factorization separating the factors of the form

(
q 1
1 0

)

.

This procedure breaks off after finite number of steps. The remaining matrix K will
belong to the set

M+ \
∞⋃

q=1

M+(q).
�

5.12 Conversion Algorithm of Matrix Decomposition
in Ordinary Continued Fraction

Consider the matrix decomposition (5.3) for α(p). If t = p, a = −p + 1, b = −p and
c = −1, then we get

(
α(p)
1

)

=
∞∏

k=0

((
p p3 + p2 + 3
1 p2 + p

)(
3k + 2 0

0 3k + 1

)

·

·
(
p2 + p p3 + p2 + 3

1 p

)(
p2 − p + 9 2p2 − 6p + 6

2p2 + 2p + 2 p2 − p + 9

))

=

=
∞∏

k=0

M(p, k), (5.51)



5 Generalized Pisot Numbers and Matrix Decomposition 135

where

M(p, k) =
(
p p3 + p2 + 3
1 p2 + p

)(
3k + 2 0

0 3k + 1

)(
p2 + p p3 + p2 + 3

1 p

)

·

·
(

p2 − p + 9 2p2 − 6p + 6
2p2 + 2p + 2 p2 − p + 9

)( 1
3 0
0 1

3

)

=
(
Ak(p) Bk(p)
Ck(p) Dk(p)

)

,

Ak(p) = (27 + 9p + 33p2 + 32p3 + 8p4 + 10p5 + 4p6)k +
+9 + 5p + 16p2 + 16p3 + 4p4 + 5p5 + 2p6,

Bk(p) = (18 + 36p + 12p2 + 24p3 + 8p4 + 4p5 + 2p6)k +
+6 + 21p + 5p2 + 12p3 + 4p4 + 2p5 + p6,

Ck(p) = (6 + 24p + 26p2 + 8p3 + 10p4 + 4p5)k +
+4 + 13p + 14p2 + 4p3 + 5p4 + 2p5,

Dk(p) = (27 + 9p + 21p2 + 8p3 + 4p4 + 2p5)k +
+18 + 4p + 11p2 + 4p3 + 2p4 + p5.

The program on Fig. 5.2 implements an algorithm of transition from matrix de-
composition α(5) to a conventional continuous fraction.

Using the symbolic computation, we obtain

M(4, k) =
(
31311k + 15645 16226k + 8106
7686k + 3864 3983k + 2002

)

,

M(5, k) =
(
103647k + 51809 52248k + 26111
20526k + 10294 10347k + 5188

)

The value of M(5, k) is used in the given program.

Lemma 5.28 The program in Fig.5.2 realizes the conversion algorithm of a matrix
decomposition in continued fraction.

Proof Indeed, first observe that

[
103647k + 51809

20526k + 10294

]

= 5 +
[

1017k + 319

20526k + 10294

]

= 5,

[
52248k + 26111

10347k + 5188

]

= 5 +
[

513k + 171

10347k + 5188

]

= 5

and (
103647k + 51809 52248k + 26111
20526k + 10294 10347k + 5188

)

∈ M∗.
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Fig. 5.2 Describes conversion algorithm of a matrix decomposition α(5) in ordinary continued
fraction
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By Theorem 5.12, the matrix decomposition

∞∏

k=0

(
103647k + 51809 52248k + 26111
20526k + 10294 10347k + 5188

)

converges.
We observe further that the outside loop for k ∈ 0..n realizes the calculation of

the product
n∏

k=0

(
103647k + 51809 52248k + 26111
20526k + 10294 10347k + 5188

)

and separate the product
J∏

j=0

(
qj 1
1 0

)

using inner loop while r = floor
(
B
D

)
.

The auxiliary loop for kk ∈ 1..3 allows to reduce numbers in the matrix M, if
it is possible. By Lemma 5.22, the division of all elements of a matrix by com-
mon divisor does not change the value of the matrix decomposition. Therefore,
based on Theorem 5.12 and Lemma 5.27, the given program computes the partial
quotients. �

5.13 Results of Symbolic Computation

The symbolic computations based on programs in Figs. 5.1 and 5.2 show that these
programs provide the same partial quotients. The calculations using the program
based on matrix decomposition are faster.

The calculations cfki(100) give the values of 592 partial quotients, and cfki(200)
give the values of 1194 partial quotients. Since the results are presented in the matrix
form containing 40 elements in each row, the last elements of the last line may be
zero (Figs. 5.3 and 5.4).
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Fig. 5.3 Gives the distribution of values of partial quotients taking into account the value zero that
are not partial quotients

Fig. 5.4 The program of the
calculations of the
distribution of values of
partial quotients

5.14 Conclusion

The results of this paper show that reduced algebraic irrationalities in case of totally
real algebraic fields and generalized Pisot numbers in general case play a fundamental
role for the continued fraction expansion of algebraic irrationalities. Starting with
some index, all residual fractions are the reduced algebraic numbers in the first case
and generalized Pisot numbers in the second case.

Theorem 5.12 implies that starting with the number m0, to calculate the next
partial quotient is sufficient to calculate the two values of the minimal polynomial
fm(x). There is a recurrence formula for calculating the next partial quotient.

Apparently, it is of interest to further study the focus conjugate to the residual
fraction αm around the fraction −Qm−2

Qm−1
.

Consider the conjugation spectrum of irrational number α, that is, the set of all
conjugate to residual fractions. The conjugation spectrum is infinite if n > 2, and it
is a finite set if n = 2.

If we will call the rational conjugate spectrum of real algebraic numbers the set of
all fractions of the form −Qm−2

Qm−1
, then the natural question arises about its structure.

In the quadratic case, there is a finite set of limit points for the rational conjugate
spectrum that is conjugate spectrum. What is in general case?
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From the results of this paper, we see that the theory of linear fractional
transformations of polynomials is closely related to the theory of linear transforma-
tions of homogeneous binary form. The second theory is simpler in many respects,
and the proof of many statements is shorter.

Such relation is not casual. Apparently, the theory of linear fractional transforma-
tions of polynomials is connected with Diophantine approximations of the first kind,
and the linear transformations of homogeneous forms are connected with Diophan-
tine approximations of the second kind.
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Chapter 6
On the Periodicity of Continued Fractions
in Hyperelliptic Fields

Gleb V. Fedorov

Abstract Let L be a function field of a hyperelliptic curve defined over an arbitrary
field characteristic different from 2.We construct an arithmetic of continued fractions
of an arbitrary quadratic irrationality in field of formal power series with respect to
linear finite valuation. The set of infinite valuation and finite linear valuation of L
is denoted by S. As an application, we have found a relationship between the issue
of the existence of nontrivial S-units in L and periodicity of continued fractions of
some key elements of L.

6.1 Introduction

Let K be a field of characteristic different from 2, and let f (x) ∈ K [x] be a square
free polynomial of odd degree 2s + 1, s ≥ 1.Given an irreducible polynomial h(x) ∈
K [x], we use vh to denote the corresponding valuation of the field K (x). Suppose
that vh has two extensions to the field L = K (x)(

√
f ), namely v−

h and v+
h . We set

S = {v−
h , v∞}, where v∞ is the infinite valuation of the field L .

An elementary introduction to some of the theory of hyperelliptic curves over
finite fields of arbitrary characteristic may be found, for example, in [7].

The multiplicative group O∗
S of the ring OS of S-integer elements of L is called

the group of S-units.
The article [6] given a positive answer for two questions:

• Is there a relationship between the existence of nontrivial S-units and the period-
icity of the expansion of an appropriate element of in a continued fraction?
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• Is it possible to calculate a fundamental S-unit by using convergents for a continued
fraction expansion of an element of L (as in the case of a finite field of constants
studied in [2] and [3])?

In this paper, we construct the arithmetic of the general continued fractions, nec-
essary for the proof of the main results of [6].

If f (x) is a polynomial of even degree, an arithmetic of continued fractions
with respect to infinite valuation described in articles [1] and [10]. Moreover, the
relationship between fundamental units of the hyperelliptic field L = K (x)(

√
f )

and continued fractions is considered there. Another approach to this case uses only
the Riemann–Roch theorem for curves and manipulations of divisors related with
continued fractions (see [4]).

6.2 Continued Fractions

Let us define Oh = {ω ∈ K (x) : vh (ω) ≥ 0} is the valuation ring of the valuation
vh of the field K (x), and ρh = {ω ∈ K (x) : vh (ω) > 0} is an ideal of the valuation
vh . We fix the set � of the representative of related classes Oh by ρh , so that � =
{ω ∈ K [x] : degω < deg h}. Then, we can consider the set

�((h)) = �K ((h)) =
⎧
⎨

⎩

∞∑

j=m

b jh
j : b j ∈ �, m ∈ Z

⎫
⎬

⎭
.

The set �((h)) is called the set of a formal power series.
Let α ∈ �((h)), then α has the form

α =
∞∑

j=m

b jh
j .

We introduce the notation

[α] = [α]h =
{∑0

j=m b jh j , i f m ≤ 0,

0, i f m > 0.

We set α0 = α and a0 = [α0]. For j ∈ N, we define elements α j and a j by induction
as follows: If α j − a j �= 0, then

α j = 1

α j−1 − a j−1
∈ �((h)), a j = [α j ].
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As a result, we obtain a continued fraction, for which we use the standard brief
notation [a0, a1, a2, . . .]. Note that a j can be considered as an element of the field
K (x).

We set p−2 = 0, p−1 = 1, q−2 = 1, and q−1 = 0 and define elements p j , q j ∈
K (x) by induction as

p j = a j p j−1 + p j−2, q j = a jq j−1 + q j−2, j ≥ 0, (6.1)

then p j/q j = [a0, a1, a2, . . . , a j ] is the j th convergent of α. The standard way we
can show (see [8]) that for j ≥ −1, the following relations hold

q j p j−1 − p jq j−1 = (−1) j , (6.2)

q jα − p j = (−1) j

q jα j+1 + q j−1
, (6.3)

α = p jα j+1 + p j−1

q jα j+1 + q j−1
. (6.4)

By the construction, for j ≥ 1 we have vh
(
a j

) = vh
(
α j

)
< 0. From (6.1) by induc-

tion, we easily obtain relations

vh
(
q j

) = vh
(
a j

) + vh
(
q j−1

) =
j∑

i=1

vh (ai ) ,

vh
(
p j

) = vh
(
a j

) + vh
(
p j−1

) =
j∑

i=0

vh (ai ) .

From (6.3), we have

vh
(
q jα − p j

) = −vh
(
q j+1

) = −vh
(
a j+1

) − vh
(
q j

)
> −vh

(
q j

)
, (6.5)

or equivalently,

vh

(

α − p j

q j

)

= −vh
(
q j+1

) − vh
(
q j

)
> −2vh

(
q j

)
.

Thus, lim
j→∞ p j/q j = α, i. e., the convergents converge to α.

In [3], it was shown that an effective connection between the nontrivial S-units
in OS and the expansion of

√
f or of elements related to in a continued fraction is

possible only if deg h = 1.
Below, we will assume that deg h = 1.
Suppose that K (x)h is the completion of the field K (x)with respect to the valuation

vh . In the case of deg h = 1, it is easily to proof that K (x)h = K ((h)) = �((h)).
Since by assumption vh has two extensions to the field L = K (x)(

√
f ), then the
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field L has two embeddings into K (x)h . We fix one of this embedding, so that every
element of the field L has the unique formal power series in K ((h)).

The continued fraction [a0, a1, a2, . . .] of an element α ∈ K ((h)) is finite if and
only if α ∈ K (x) (see [3], Proposition5.1). In a standard way, we can show that if the
continued fraction [a0, a1, . . .] for some α ∈ K ((h)) is periodic, then α is a quadratic
irrationality. In the case of an infinite field K and valuation v∞, the converse is not
always true (see [1]). However, in the case of a field K = Fq and deg h = 1 an
assertion holds: If α ∈ K ((h)) is a quadratic irrationality, the continued fraction for
the α is periodic (see [3]).

6.3 Some Relations with Continued Fractions

Let α is a root of the polynomial

H(X) = λ2X
2 + 2λ1X + λ0, where λ0, λ1, λ2 ∈ K [x]. (6.6)

We define α is conjugate of the element α, and d = λ2
1 − λ2λ0 is the shortened

discriminant of the polynomial (6.6). We assume that d/ f is a perfect square in the
field K (x), i. e., α ∈ L . Let α = [a0, a1, . . .] is a decomposition of α into a continued
fraction, with respect to the valuation v−

h .
For all j ≥ 0, we denote s j = −vh

(
a j

)
and t j = −vh

(
q j

)
. Since vh ( f ) = 0,

we can define t = 1
2vh (d) ≥ 0, so that t ∈ Z.

By the construction of a continued fraction, for j ≥ 0 we have

s j ≥ 1, t j =
j∑

i=1

si , vh
(
p j

) = −t j − s0.

The element β ∈ L is called reduced with respect to the valuation v−
h , if v

−
h (β) <

0 and v−
h

(
β
)

> 0.

Proposition 6.1 The element α + a0 is reduced if and only if vh (λ0) < vh (λ2) <

vh (λ1).

Proof By the construction of a continued fraction, we have v−
h (α − a0) > 0.

Assume α + a0 is reduced, then v
−
h (α + a0) < 0 and v−

h (α + a0) > 0. By virtue
of Vieta’s formulas, we have

vh

(
λ1

λ2

)

= vh ((α − a0) + (α + a0)) ≥ min
(
v−
h (α − a0) , v−

h (α + a0)
)

> 0,

(6.7)
from which vh (λ2) < vh (λ1). Without loss of generality, we can assume that α =
−λ1+

√
d

λ2
. Since v−

h (α + a0) < 0, it follows that
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vh (a0) = v−
h (α) = v−

h

(
−λ1 + √

d

λ2

)

< 0, (6.8)

but from the inequality (6.7), we have

vh (a0) = v−
h

(√
d

λ2

)

< 0, (6.9)

therefore
vh

(
λ2
1 − λ2λ0

) = vh (d) < 2vh (λ2) , (6.10)

it means that vh (λ0) < vh (λ2).
Conversely, if vh (λ0) < vh (λ2) < vh (λ1), then the inequalities (6.8), (6.9), and

(6.10) hold, and by the construction of a continued fraction v−
h (α − a0) > 0, hence,

v−
h (α + a0) < 0. Then, we write

v−
h (α + a0) = v−

h

(

(a0 − α) − 2λ1

λ2

)

≥ min

(

v−
h (α − a0) , vh

(
2λ1

λ2

))

> 0,

and it was to be proved.

Let H(X,Y ) = λ2X2 + 2λ1XY + λ0Y 2. For j ≥ −1, we denote

A j = (−1) j+1H(p j , q j ), Bj = (−1) j (λ2 p j−1 p j + 2λ1 p j−1q j + λ0q j−1q j ).

(6.11)

The explicit form of A j and Bj for j = −1 and j = 0 is

A−1 = λ2, B−1 = 0, A0 = −(λ2a
2
0 + 2λ1a0 + λ0), B0 = λ2a0 + 2λ1.

(6.12)

Proposition 6.2 For j ≥ −1 the following identity holds

α j+1 = Bj + λ2α

A j
, (6.13)

Proof From (6.1), we can write

α j+1 = − p j−1 − αq j−1

p j − αq j
= − (p j−1 − αq j−1)(p j − αq j )

(p j − αq j )(p j − αq j )
,

then with the notation (6.11), it follows that
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α j+1 = (−1) jλ2
(
p j p j−1 − (α + α)q j p j−1 + ααq jq j−1 + α(q j p j−1 − p jq j−1)

)

A j
,

and by virtue of (6.2), we have (6.13).

In the article [3], it is proved that starting from a certain number j , quantities A j

and Bj are polynomials. We need a more rigorous statement.

Proposition 6.3 For j ≥ −1 quantities A j and Bj are polynomials, i. e., A j , Bj ∈
K [x].
Proof Without loss of generality, we can assume that

α = −λ1 + √
d

λ2
.

In the case j = −1, we have A−1 = λ2 and B−1 = 0; consequently, the statement is
obvious. In the case j = 0 by the construction, we have

0 < v−
h (α − a0) = v−

h

(√
d − λ1 − a0λ2

λ2

)

,

and taking into account (6.12), we obtain

0 < vh

(
d − (λ1 + a0λ2)

2

λ2

)

= vh (A0) .

From the equationα(λ2α + 2λ1) = −λ0 it follows thatvh (λ2α) ≥ 0hencevh (a0) +
vh (λ2) ≥ 0, so we have vh (B0) ≥ 0.

Now, we assume that j ≥ 1. By the construction of (6.1) and (6.11), we conclude
that A j , Bj ∈ K (x) are rational functions, and their denominators can be just the kind
of hn for some n ∈ Z. Thus, for A j , Bj ∈ K [x], it suffices to show that vh

(
A j

) ≥ 0
and vh

(
Bj

) ≥ 0.
Since H(X,Y ) = λ2(X − αY )(X − αY ), and taking into account (6.5), we have

vh
(
A j

) = v−
h

(
λ2(p j − αq j )(p j − αq j )

)

= vh (λ2) − vh
(
a j+1

) + v−
h

(
p j

q j
− α

)

. (6.14)

If v−
h

(√
d/λ2

)
≤ 0, then

v−
h

(
p j

q j
− α

)

> 0 ≥ v−
h (α − α) = v−

h

(
2
√
d

λ2

)

= 1

2
vh (d) − vh (λ2) .
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Hence

v−
h

(
p j

q j
− α

)

= v−
h

(
p j

q j
− α + α − α

)

= v−
h (α − α) .

Thus, from (6.14) we have vh
(
A j

) = 1
2vh (d) − vh

(
a j+1

)
> 0.

If v−
h

(√
d/λ2

)
> 0, then

0 < v−
h

(
p j

q j
− α

)

= v−
h

(
p j

q j
+ λ1

λ2
+

√
d

λ2

)

,

it follows that v−
h

(
p j

q j
+ λ1

λ2

)
> 0. Therefore

v−
h

(
p j

q j
− α

)

≥ min

(

vh

(
p j

q j
+ λ1

λ2

)

, v−
h

(√
d

λ2

))

> 0.

Again, from (6.14), we have vh
(
A j

)
> v−

h (λ2) − vh
(
a j+1

)
> 0.

Let us find a lower bound forvh
(
Bj

)
. From (6.13), it follows that Bj = A jα j+1 −

λ2α. We have already seen that vh (λ2α) ≥ 0. From the bound of v−
h

(
A j

)
, we have

v−
h

(
A jα j+1

) = vh
(
A ja j+1

) ≥ 0. Hence

vh
(
Bj

) ≥ min
(
v−
h

(
A jα j+1

)
, v−

h (λ2α)
)

≥ 0.

Note that the conditionvh (λ0) < vh (λ2) < vh (λ1) in the Proposition6.1 implies

that v−
h

(√
d/λ2

)
< 0; therefore, in this case, we have

vh
(
A j

) = 1

2
vh (d) − vh

(
a j+1

)
. (6.15)

Proposition 6.4 Let γ = deg h − 1, then we have

deg A j ≤ max ((2 j + 2)γ + deg λ2, (2 j + 1)γ + deg λ1, 2 jγ + deg λ0) ,

deg Bj ≤ max ((2 j + 1)γ + deg λ2, 2 jγ + deg λ1, (2 j − 1)γ + deg λ0) .

Proof To assess the degree of polynomials A j , Bj , we need to take into account that

v∞
(
p j

) ≥ −( j + 1)γ, v∞
(
q j

) ≥ − jγ,

from which we obtain required inequalities.

Thus, in the case deg h = 1 degree of polynomials A j , Bj do not exceed 	 =
max{deg λ0, deg λ1, deg λ2}.
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Without loss of generality, we will make all calculations concerning the “vari-
able” h.

Proposition 6.5 When j ≥ 0 the following identities hold

(Bj − λ1) + (Bj−1 − λ1) = a j A j−1, (6.16)

(Bj − λ1)
2 + A j A j−1 = d. (6.17)

Proof By the construction of a continued fraction [a0, a1, . . .], the following identity
holds

α j = a j + 1

α j+1
. (6.18)

Let us substitute in place α j and α j+1 in (6.18) the expression (6.13) and present it
a common denominator

A j A j−1 = (Bj + λ2α)(Bj−1 − a j A j−1 + λ2α). (6.19)

Opening the parenthesis, we have

A j A j−1 = Bj B j−1 − a j A j−1Bj + λ2α(Bj + Bj−1 − a j A j−1) + λ2
2α

2. (6.20)

Let us substitute the expression for the roots H(X)

α, α = −λ1 ± √
d

λ2
, d = λ2

1 − λ0λ2, (6.21)

in (6.20) and equate the coefficients of
√
d, and then, we get the recursive relation

(6.16) for Bj . Let us substitute the expression (6.16) in the second bracket (6.19) and
use the identity λ2α

2 + 2λ1α + λ0 = 0, then

B2
j − 2λ1Bj + A j A j−1 + λ0λ2 = 0, (6.22)

from which it follows (6.17).

Let us define the involution ι : L → L as an automorphism of the field L , acts as
follows:

ι(ω1 + ω2

√
f ) = ω1 − ω2

√
f , ω1, ω2 ∈ K (x).

Proposition 6.6 For j ≥ 0 elements α j+1 and ια j+1 = α j+1 are roots of the equa-
tion

A j X
2 − 2(Bj − λ1)X − A j−1 = 0 (6.23)

which has the discriminant (6.17). It is true identity
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α j+1 = − A j−1

Bj + λ2α
.

Proof By virtue of (6.13) and Vieta’s formulas, we have

α j+1 = Bj + λ2α

A j
, α j+1 = Bj + λ2α

A j
,

α j+1 + α j+1 = 2Bj − 2λ1

A j
, α j+1 · α j+1 = B2

j − 2λ1Bj + λ0λ2

A2
j

= − A j−1

A j
.

Again, using Vieta’s theorem, we obtain that α j+1 and α j+1 are roots of the equation
(6.23). Since (6.22) and (6.17), it follows the recursive function for A j

A j = 2λ1Bj − B2
j − λ0λ2

A j−1
= d − (Bj − λ1)

2

A j−1
. (6.24)

Let us write (6.24) into (6.13), then we have one more expression for α j+1:

α j+1 = A j−1(Bj + λ2α)

d − (Bj − λ1)2
= − A j−1

Bj + λ2α
. (6.25)

Proposition 6.7 For j ≥ 0 it is true identities

vh
(
A j

) = t + s j+1 ≥ 1, vh
(
Bj − λ1

) = t. (6.26)

If B j,i ∈ K are coefficients of the polynomial B j = Bj (h), then

Bj,i − λ1,i

2
= ±di−t , i = 0, 1, . . . , t + s j + s j+1 − 1, (6.27)

where λ1,i ∈ K are coefficients of the polynomial λ1 = λ1(h) and

√
d =

∞∑

i=0

di−t h
i ,

where di = 0 when −t ≤ i < 0.

Proof Relations (6.26) follow from (6.15) and (6.17).
By virtue of (6.25), we have

Bj − λ1 ∓ √
d = Bj + λ2α = − A j−1

α j+1
, (6.28)
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where the sign of
√
d we choose depending on the sign of α and α in (6.21) (every-

where positive sign or everywhere negative). If we compare in (6.28), the coefficients
of the first powers of h up to degree t + s j + s j+1 − 1, thenwe obtain relations (6.27).
Also, we can get relations (6.27) by the formula (6.17).

Proposition 6.8 Suppose we are given a polynomial ω ∈ K [x],

ω = c0 + c1h + . . . + cnh
n, ci ∈ �, c0 �= 0, cn �= 0,

and its expansion in formal power series

√
ω =

∞∑

i=0

ωi h
i , ωi ∈ �,

where ωs0+1 = . . . = ωs0+δ = 0 and ωs0+δ+1 �= 0 for some s0, δ ∈ N. Then, we have
δ < max(s0, n − s0).

Proof Let ci = 0 when i > n. Then, the following relations hold

ci =
i∑

r=0

ωrωi−r .

Weassume that δ ≥ max(s0, n − s0), i. e. δ + s0 + 1 > max(2s0, n). The coefficient
cδ+s0+1 satisfies the relation:

0 = cδ+s0+1 =
δ+s0+1∑

r=0

ωrωi−r = 2ω0ωδ+s0+1.

Since the conditions implyωδ+s0+1 �= 0 andω0 = √
c0 �= 0, we have a contradiction.

The following example shows that the upper bound for δ in the Proposition6.8 is
attained.

Example 6.1 Let us consider the polynomial ω ∈ K [x] of the following form

ω = c2 + exn, c �= 0, b �= 0

and its expansion in K ((x)):

√
ω =

∞∑

i=0

ωi x
i , ωi ∈ K .

It follows that ω0 = c and ωr = 0 for any r ∈ N, r �≡ 0 (mod n) and ωn = b/2c.
When r = nl and l ≥ 2, we have recursive relations
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ωnl = − 1

2c

l−1∑

i=1

ωniωn(l−i) = − nlωl
n

(2c)l−1
= − nlbl

(2c)2l−1
, nl ∈ N,

which are easy to set by induction. Thus, if s0 = 0 or s0 = n, then it follows that
δ = n − 1 = max(s0, n − s0) − 1.

Proposition 6.9 The sequence of polynomials A j satisfies the recursive relation

A j = A j−2 + a j (Bj−1 − Bj ), j ≥ 1. (6.29)

Proof Let us write (6.17) for two consecutive numbers j − 1 and j , and then subtract
their:

0 = (Bj − λ1)
2 − (Bj−1 − λ1)

2 + A j A j−1 − A j−1A j−2,

(Bj + Bj−1 − 2λ1)(Bj − Bj−1) = A j−1(A j−2 − A j ).

If we substitute the expression (6.16) in the first bracket, then we obtain (6.29).

Proposition 6.10 The incomplete partial a j , j ≥ 1, of a continued fraction [a0, a1,
a2, . . .] of the quadratic irrationality α satisfies the quadratic equation

A j−1X
2 − 2(Bj−1 − λ1)X + A j − A j−2 = 0.

Moreover, roots of this equation have the form

a j = (Bj−1 − λ1) + (Bj − λ1)

A j−1
, a′

j = Bj−1 − Bj

A j−1
. (6.30)

Proof Let us substitute the expression (6.16) in (6.29), then we obtain the relation
an analogue of (6.23), namely

A j−1a
2
j − 2(Bj−1 − λ1)a j + A j − A j−2 = 0,

which have the shortened discriminant

(Bj−1 − λ1)
2 − A j−1(A j − A j−2) = d − A j−1A j = (Bj − λ1)

2,

and roots have the form (6.30).

Proposition 6.11 Following relations hold

λ2 = (Bj − 2λ1)
q j

p j
+ A j

q j−1

p j
, (6.31)

d

λ2
= Bj

p j

q j
+ A j

p j−1

q j
+ λ2

1

λ2
, (6.32)

when j ≥ 0.
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Proof It follows from (6.4) that

α j+1 = −αq j−1 − p j−1

αq j − p j
= − (±√

d − λ1)q j−1 − λ2 p j−1

(±√
d − λ1)q j − λ2 p j

, (6.33)

wherewe are using (6.21). Let us put this expression into (6.13) andpresent a common
denominator

(Bj − λ1 ± √
d)((±√

d − λ1)q j − λ2 p j ) = −A j ((±
√
d − λ1)q j−1 − λ2 p j−1).

If we open the brackets and equate the coefficients of
√
d and all the rest, we obtain

desired identities (6.31) and (6.32).

Proposition 6.12 The relation holds

α1α2 . . . α j+1 = (−1) j

αq j − p j
, j ≥ 0.

Proof It follows by induction with using (6.33).

6.4 Best Approximations

For p, q ∈ K [x], we denote

ϕh

(
p

q

)

= r − vh (q) , where r = max

([
deg p

deg h

]

,

[
deg q

deg h

])

.

Recall that an irreducible fraction p/q ∈ K (h) is called a best approximation for
α if for any other irreducible fraction a/b �= p/q such that ϕh(u/w) ≥ ϕh(p/q), we
have

v−
h

(

α − p

q

)

> v−
h

(
α − a

b

)
.

In the case deg h = 1, the following assertions hold (see [3], Theorems5.4
and 5.6):

(1) The fraction p/q is the best approximation to α if and only if

v−
h

(

α − p

q

)

> −2vh (q) ;

(2) nth convergent pn/qn to α is the best approximation to α;
(3) If the fraction a/b is the best approximation to α, then there is a convergent

p j/q j to α and a constant c ∈ K ∗, that a = cp j and b = cq j .
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Proposition 6.13 If the equation

ω2
1 − f

h2s0
ω2
2 = bhm

has a solution for 1 ≤ s0 ≤ deg f − 1 such that ω1, ω2 ∈ K [x], vh (ω1) = 0 for
some m ∈ N and b ∈ K, then ω1/ω2 is a best approximation for α and, therefore,
ω1/ω2 = pn−1/qn−1 for some convergent pn−1/qn−1 of α = f/h2s0 .

The proof of Proposition6.13 is similar to that given in [3], Sect. 5.2.

6.5 Properties of Periodic and Quasiperiodic Continued
Fractions

We say that the continued fraction of an element β ∈ L is quasiperiodic if there is
l ∈ N0 and τ ∈ N such that βl = cβl+τ , where c ∈ K ∗ and β j are quotients of the
continued fraction β. The least τ is called the quasiperiod length.

Proposition 6.14 Let λ1 = 0 and the continued fraction of α + a0 is pure quasi-
periodic with the quasiperiod length n, i.e. the number n ∈ N is minimal such that
for some constant c ∈ K ∗ we have αn = c(α0 + a0). Then

• in the case n = 2k we have only c = 1, i.e. the continued fraction of α + a0 is pure
periodic with the quasiperiod length n, and besides

α + a0 = [2a0; a1, . . . , ak, ak, ak−1, . . . , a1]; (6.34)

• in the case n = 2k + 1 and c = 1 the continued fraction of α is periodic with the
quasiperiod length n, and besides

α + a0 = [2a0; a1, . . . , ak, ak+1, ak, . . . , a1]; (6.35)

• in the case n = 2k + 1 and c �= 1 the continued fraction of α is periodic with the
quasiperiod length 2n, and besides

α + a0 =
[
2a0; a1, . . . , ak, c(−1)k ak, c(−1)k−1ak−1, . . . , c−1a1,

2ca0, c−1a1, . . . , c(−1)k ak, ak . . . , a1
]
. (6.36)

The proof of the Proposition6.14 is similar to that of Lemma4.1 in [1].
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6.6 Preliminary Details

Now, let λ2 = h2s0 , λ1 = 0, and λ0 = f , where 1 ≤ s0 < deg d. Thus, α ∈ L is a
root of the polynomial

H(X) = h2s0X2 − f,

with the shortened discriminant d = h2s0 f . Let α = [a0, a1, . . .] be the continued
fraction expansion of α.

The Proposition6.3 implies that A j and Bj , defined in (6.11), are polynomials for
all j ≥ 0. In the current case, we have

A j = (−1) j+1(h2s0 p2j − f q2
j ), (6.37)

Bj = (−1) j (h2s0 p j p j−1 − f q jq j−1).

By virtue of (6.26), it follows that

vh
(
A j

) = s0 + s j+1, vh
(
Bj

) = s0, (6.38)

s0 + s j+1 ≤ deg A j ,

deg A j , deg Bj ≤ max(2s0, deg f ), (6.39)

where s j satisfy relations

vh
(
a j

) = −s j < 0, vh
(
p j

) = s0 + t j , vh
(
q j

) = t j , t j =
j∑

r=1

sr .

The result of the Proposition6.7 implies that first few coefficients of the polyno-
mial Bj is consistent with coefficients of the formal power series of

√
f .

We will use formulas (6.13), (6.16), and (6.17), which in this case take the form

α j+1 = Bj + hs0
√

f

A j
, (6.40)

Bj + Bj−1 = a j A j−1, (6.41)

A j A j−1 + B2
j = h2s0d. (6.42)

In particular, the last relation implies that

deg A j + deg A j−1 = max(2 deg Bj , 2s0 + deg f ). (6.43)

If 0 < s0 < deg f , then the Proposition6.13 implies that a solutionω1, ω2 ∈ K [x]
of the norm equation
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NL/K (x)(ω1 − αω2) = ω2
1 − ω2

2
f

h2s0
= bhm, m ∈ N, b ∈ K ∗, (6.44)

gives the best approximation of α and ω1/ω2 = pn/qn for some convergent pn/qn of
α. Note that the presence of solutions of the Eq. (6.44) is equivalent to the presence
of solutions of the canonical normal equation

ω2
1 − ω2

2 f = bhm, (6.45)

where ω1, ω2 ∈ K [x] are polynomials and m ∈ N, b ∈ K ∗.

Proposition 6.15 There is the least number n ≥ 2 that for which vh (An−1) =
deg An−1 if and only if there is the least number m for which the norm equation
(6.45) has a solution ω1, ω2 ∈ K [x] such that vh (ω1) = 0 and b ∈ K ∗.

Proof Let us assume that vh (An−1) = deg An−1 and n ≥ 2 is the least such number.
Multiplying the expression (6.37) by h2tn−1 , we obtain the same equation as (6.45),
where m = s0 + sn + 2tn−1. Note that if Eq. (6.45) is valid for a smaller value of
m, then, by Proposition6.13, there exists a convergent pr−1/qr−1 = ω1h−s0/ω2 of
α; therefore, dividing (6.45) by h2tr−1 , we would obtain vh (Ar−1) = deg Ar−1 with
r < n, which contradicts the condition that n is minimal.

Conversely, we write the norm equation (6.45) in the form

ω2
1 − f

h2s0
(ω2h

s0)2 = b0h
m .

By Proposition6.13, there exists a convergent pn−1/qn−1 = ω1h−s0/ω2 of α =√
f /hs0 , where ω1 = pn−1htn−1+s0 and ω2 = qn−1htn−1 . According to (6.37), we

obtain
An−1 = (−1)nb0h

m−2tn−1 = bhs0+sn .

Obviously, the minimality of m implies that n ≥ 2 is minimal.

It follows from [3] Sect. 2 that for a nontrivial S-unit u = ω1 + ω2 f , the norm
equation (6.45) holds. We refer to m as the degree of the S-unit u. The converse
is also true: If there is a solution ω1, ω2 ∈ K [x] of the norm equation (6.45), then
u = ω − √

f ω2 or u = ω + √
f ω2 is an S-unit of the field L . Thus, we can speak

about S-units as solutions of norm equation (6.45).

6.7 The Periodic Continued Fraction

Suppose that s0 = s or s0 = s + 1.

Theorem 6.1 The following conditions are equivalent:
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• n ≥ 2 is the least number for which vh (An−1) = deg An−1;
• the continued fraction of α + a0 ∈ K ((h)) is purely periodic with period length n
or 2n.

Proof Now, we show that the first condition implies the second condition.
We introduce the notation

β(s0) =
√

f

hs0
+

[√
f

hs0

]

= α + a0.

Let n be the least number for which deg An−1 = vh (An−1) = s0 + sn . Taking into
account (6.38), for all j ≥ 0 we denote Â j , B̂ j ∈ K [h] as follows:

Â j = h−s0 A j , B̂ j = h−s0Bj .

From (6.43), we have

sn + deg Ân = max
(
2 deg B̂n, 2s + 1

)
.

The relation (6.39) implies that

sn, deg Ân, deg B̂n ≤ max
(
s0, 2s + 1 − s0

) = s + 1.

Thus, sn = s + 1 if and only if deg Ân = deg B̂n = s or deg Ân = deg B̂n = s + 1;
otherwise, sn = s. Each of this cases implies deg Bn ≤ s0 + sn . Therefore, by virtue
of the Proposition6.7, all coefficients in the polynomial Bn equal corresponding
coefficients in the power series expansion of

√
f in K ((h)). Thus, by Proposition6.6,

we have αn = β(s)/b or αn = β(s + 1)/b.
The Proposition6.14 implies the pure periodicity of the continued fraction α + a0

with period length n or 2n.
Conversely, let us prove that the second condition implies the first condition.
It follows from the pure periodicity of α + a0 that there exists a number r ≥ 2

such that Ar−1 = bA0 = bh2s0 for some b ∈ K ∗. Hence, there exists a minimal n,
2 ≤ n ≤ r , for which deg An−1 = vh (An−1).

This completes the proof of the theorem.

Appendix

Note, that the existence of S-units in the hyperelliptic field L is equivalent to the
following assertion: The class of the divisor D = v+

h − v∞ has finite order m in the
group Δ0(L) of zeroth-degree divisor classes of the field L , where m is the degree
of the fundamental S-unit (see [9]).
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It follows from the Proposition6.13 on a best approximation for
√
d

hs0 that, to find

a fundamental S-unit, it suffices to examine the continued fraction expansion of
√
d

hs0
only one element at s0 = s or s0 = s + 1.

The results of the paper make it possible to construct a fast algorithm for con-
structing a fundamental S-unit in the field L . Take A−1, A0, B0 defined by (6.12).
Note that, we do not have to calculate p j and q j . For j = 1, 2, . . ., we cyclically
perform following steps:

• Verify the equality deg A j−1 = vh
(
A j−1

)
; if it holds, then the cycle is terminated;

• Calculate a j = [α j ] from A j−1 and Bj−1 by using (6.40);
• Calculate Bj and A j by formulas in Propositions6.5 (or formula (6.41)) and 6.9,
respectively, and proceed to the first step.

The well-known algorithm for finding torsion points in Jacobian of the hyperel-
liptic curve, using addition of divisors, is given in [5].
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Chapter 7
Method of Resolving Functions
for the Differential-Difference Pursuit
Game for Different-Inertia Objects

Lesia V. Baranovska

Abstract The paper is devoted to the differential-difference pursuit game for
different-inertia objects. An approach to the solution of this problem based on the
method of resolving functions is proposed. The guaranteed time of the game termina-
tion is found, and corresponding control law is constructed. The results are illustrated
by a model example.

7.1 Differential-Difference Games of Pursuit. Problem
Statement

We consider the pursuit game, whose dynamics is described by the system of
differential-difference equations of retarded type (see [1, 2]):

ż (t) = Az (t) + Bz (t − τ) + φ (u , v) , z ∈ R
n , u ∈ U , v ∈ V, (7.1)

where A and B are square constant matrices of order n ;U and V are nonempty
compacts sets; the function φ (u , v) , φ : U × V → R

n, is jointly continuous in
its variables; τ = const > 0.

Let z (t) be a solution of Eq. (7.1) under the initial condition

z (t) = z0 (t) , −τ ≤ t ≤ 0, (7.2)

where function z0 (t) is absolutely continuous on [−τ , 0] .
The piece of the trajectory zt ( · ), where

zt ( · ) = { z (t + s) , −τ ≤ s ≤ 0}
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will be referred to as the state of system (7.1) at the moment t. The game is evolving
on the closed time interval [0 , T ] .

The terminal set has cylindrical form, i.e.,

M∗ = M0 + M, (7.3)

where M0 is a linear subspace in R
n; and M is a compact set from L = M⊥

0 (the
orthogonal complement ofM0 in Rn).

The players choose their controls in the form of certain functions. In such a way,
the pursuer and evader affect the process (7.1), pursuing their own goals. The goal of
the pursuer (u) is in the shortest time to bring a trajectory of the process to a certain
closed set M∗; the goal of the evader (v) is to avoid a trajectory of the process from
meeting with the terminal set (7.3) on a whole semi-infinite interval of time or if is
impossible to maximally postpone the moment of meeting.

Nowwe describe what kind of information is available to the pursuer in the course
of the game.

Denote by ΩU , ΩV the sets of Lebesgue measurable functions u (t), v (t), u (t) ∈
U, v (t) ∈ V, t ≥ 0, respectively. A mapping that puts into correspondence to a state
z0 ( · ) some element in ΩV is called an open-loop strategy of the evader, specific
realization of this strategy for a given initial state z0 ( · ) of process (7.1) is called
an open-loop control. In the process of the game (7.1), (7.3), the evader applies
open-loop controls v ( · ) ∈ ΩV .

Function
u (t) = u

(
z0 ( · ) , t , v (t)

)
,

such that v ( · ) ∈ ΩV implies u ( · ) ∈ ΩU is called counter-control of pursuer
corresponding to initial state z0 ( · ) .We assume that the pursuer chooses his control
in the form

u (t) = u
(
z0 ( · ) , t , vt ( · )

)
, t ≥ 0,

where vt ( · ) = {v (s) : s ∈ [0 , t] , v ( · ) ∈ ΩV } , and u ( · ) ∈ ΩU .
Under these hypotheses, we will play the role of the pursuer and find sufficient

conditions on the parameters of the problem (7.1), (7.3), insuring the game termina-
tion for certain guaranteed time.

Let π be the orthogonal projector from R
n onto the subspace L. Consider the

multi-valued mapping

W (t , v) = πK (t) φ (U , v) , W (t) =
⋂

v∈V
W (t , v) ,

where K (t) is a matrix-valued function which satisfies conditions of the following
lemma.
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Lemma 7.1 Suppose that z0 ( · ) is absolutely continuous on [−τ , 0] , ϕ (u , v) is
jointly continuous in its variables. Let z (t) be the continuous solution of the system
(7.1) under the initial condition (7.2) and given admissible controls u (t), v (t). Then

z (t) = z0 (0)K (t) + B
∫ 0

−τ

z0 (s)K (t − s − τ) ds +
∫ t

0
φ (u(s), v(s))K (t − s) ds,

where K (t) is the unique matrix function with the properties (see [3]):

(1) K (t) = 0 , t < 0;
(2) K (0) = E , E is the identity matrix;
(3) The function K (t) is of class C0 on [0,+∞);
(4) K (t) satisfies K̇ (t) = AK (t) + BK (t − τ), t > 0.

Condition 7.1 (Pontryagin’s condition) The mapping W (t) 	= ∅ for all t ≥ 0.

Remark 7.1 For the linear process (φ(u, v) = u − v)

W (t) = πK (t)U
∗− πK (t) V,

where
∗− is a geometric subtraction of the sets (Minkowski’ difference) (see [4]).

For the game, described above, satisfying Pontryagin’s condition, the notion of
resolving function was introduced in [1, 2, 5], through which the time of game
termination was defined. The resolving function outlines the course of the game and
at the instant of time at which the integral of this function turns into unity the game
trajectory hits the terminal set. Sufficient conditions for solvability of the pursuit
problem were derived (see [1, 2, 5]). The process of pursuit is divided into two
parts. The method of the resolving function (see [6]) as such is working only on
the first interval of time [0, t∗] , t∗ being the instant of switching, on which the
pursuer constructs his control on the basis of information on the prehistory of the
evader’s control. As soon as at some instant of time t∗ the integral of the resolving
function turns into unity, the process of pursuit switches to Pontryagin’s First Direct
Method realized within the class of counter-controls. That is why from the instant
of switching to the rating time of the game termination the resolving function is set
equal to zero.

7.2 Case of Different-Inertia Objects

We will show that for different-inertia objects Pontryagin’s condition fails on some
interval of time. The problem “Boy and Crocodile” is an example (see [6]). First
consider ordinary differential game:

ẍ (t) = u (t) , x ∈ R
n , ‖u‖ ≤ 1,

ẏ (t) = v (t) , y ∈ R
n , ‖v‖ ≤ 1.
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Setting z1 = x − y, z2 = ẋ, we come to the system

ż1 (t) = z2 (t) − v , z1 ∈ R
n , n ≥ 2,

ż2 (t) = u , z2 ∈ R
n.

The pursuer (“crocodile,” u) is clumsy because of boundness of his trajectory
curvature radius though he may gather a high speed. The evader (“boy”, v) is inertia-
less though his speed is limited (see [7]).

We consider the analog of this game in the case when dynamics of the game is
described by the following system of differential-difference equations:

ż1 (t) = z2 (t − τ) − v , z1 ∈ R
n , n ≥ 2,

ż2 (t) = u , z2 ∈ R
n,

(7.4)

where ‖u‖ ≤ ρ , ρ > 0 , ‖v‖ ≤ σ , σ > 0.
The terminal set is given by the equality ‖z1 ‖ ≤ l.
In themodel example under study (7.1), thematricesA,B, and the control domains

U, V take the following forms, respectively,

A = 0, B =
(
0 En

0 0

)

;

U =
{(

0
u

)

, u ∈ R
n : ‖u‖ ≤ ρ

}

, V =
{(

v
0

)

, v ∈ R
n : ‖ v‖ ≤ σ

}

.

The terminal set is

M∗ = {
z = (z1 , z2) ∈ R

2n : ‖z1‖ ≤ l
}
.

Here

M0 = {
z = (z1 , z2) ∈ R

2n : z1 = 0
}

, L = {
z = (z1 , z2) ∈ R

2n : z2 = 0
}
,

M = {
z = (z1 , z2) ∈ R

2n : ‖z1 ‖ ≤ l , z2 = 0
}
.

The operator of orthogonal projection π : R
2n → L is defined by matrix(

En 0
0 0

)

, therefore π z =
(
En 0
0 0

)(
z1
z2

)

=
(
z1
0

)

.

Matrix function K (t) is unique and enjoys the properties:

(1) K (t) = 0 , t < 0;
(2) K (0) = E2n;
(3) K (t) is continuous on [0 , +∞) ;
(4) when t > 0 K (t) satisfies the equation

[
K̇ (t)

] = [B] · [K (t − τ)] .
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This equation can be rewritten as follows:

(
K̇11 (t) K̇12 (t)
K̇21 (t) K̇22 (t)

)

⊗ En =
(
0 En

0 0

)

·
(
K11 (t − τ) K12 (t − τ)

K21 (t − τ) K22 (t − τ)

)

⊗ En

=
(
K21 (t − τ) K22 (t − τ)

0 0

)

⊗ En,

where Kij ( · ) are numerical functions.
By the derivative of a matrix function is meant the matrix obtained by replacing

all its elements by their derivatives (see [8]).
With account of these conditions, we deduce:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

K̇11 (t) = K21 (t − τ) ,

K̇12 (t) = K22 (t − τ) ,

K̇21 (t) = 0 ,

K̇22 (t) = 0 ,

K12 (0) = K21 (0) = 0 ,

K11 (0) = K22 (0) = 1 .

Below given is the solution to this system:

K11 (t) = 1 , K12 (t) = t, K21 (t) = 0 , K22 (t) = 1.

Taking into account condition (a) we obtain an explicit form of the matrix function:

[K (t)] =
(
K11 (t) K12 (t)
0 K22 (t)

)

⊗ En,

where K11 (t) = K22 (t) =
[
1 , t ≥ 0 ,

0 , t < 0 ,
K12 (t) =

[
t , t ≥ 0 ,

0 , t < 0.
Thus, for t ≥ 0 the matrix function is of the form:

[K (t)] =
(
1 t
0 1

)

⊗ En.

Set γ (t) ≡ 0. For the linear process (7.4), we have

W (t) = π [K (t)] V
∗− π [K (t)]U .

π [K (t)] V =
(
En 0
0 0

)

·
(
En t
0 En

)

·
(
v
0

)

=
(
v
0

)

⊗ En,

π [K (t)]U =
(
En 0
0 0

)

·
(
En t
0 En

)

·
(
0
u

)

=
(
tu
0

)

⊗ En.
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Then

W (t) = (ρt − σ) S = ∅ for t ∈
[

0 ,
σ

ρ

)

.

Thus, for this game Pontryagin’s condition fails on some interval of time.

7.3 Modification of Pontryagin’s Condition

Let for the differential-difference game (7.1), (7.3) Pontryagin’s condition does
not hold and let us suppose that the matrix function K (t) satisfies assumptions of
Lemma7.1. We introduce multi-valued mappings

W̄ (t , v) = πK (t) φ (U , D (t) v) , W̄ (t) =
⋂

v∈V
W̄ (t , v) , t ≥ 0, (7.5)

where D (t) , t ∈ [0 , +∞) is some matrix function.

Condition 7.2 (modification of Pontryagin’s condition) There exists a continuous
matrix function D (t) , t ∈ [0 , +∞) , such that the multi-valued mapping W̄ (t) 	=
∅ for all t ≥ 0.

Denote

φ̄ (t , u , v) = φ (u , v) − φ (u , D (t) v) , t ≥ 0 , u ∈ U , v ∈ V ; (7.6)

M (t) = M
∗−
∫ t

0
πK (s) φ̄ (s , U , V ) ds , t ≥ 0.

We see that the mapping M (t) is upper semi-continuous as a geometric difference
of two continuous multi-valued mappings (see [4]).

Condition 7.3 For the above-mentioned matrix function D (t), the multi-valued
mapping M (t) is nonempty for all t ≥ 0.

By virtue of the assumptions on the process parameters, themulti-valuedmapping
W̄ (t , v) is continuous on the set [0, +∞) × V . Consequently, as follows from
Condition7.2, the mapping W̄ (t) is upper semi-continuous (see [9]) and therefore
Borelian (see [9]). Hence, there exists at least one Borelian selection γ (t) , γ (t) ∈
W̄ (t) , t ≥ 0 (see [9–12]).

Let us denote by Ḡ the set of all Borelian selections of the multi-valued mapping
W̄ (t) . For fixed γ ( · ) ∈ Ḡ, we put

ξ
(
t , z0 ( · ) , γ ( · )

)
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= πK (t) z0 (0) +
∫ 0

−τ

πK (t − s − τ)Bz0 (s)ds +
∫ t

0
γ (s)ds (7.7)

and consider the resolving function

ᾱ
(
t, s, z0( · ), v, γ ( · )) = sup{α ≥ 0 :

[
W̄ (t − s, v) − γ (t − s)

] ∩ α
[
M(t) − ξ

(
t, z0( · ), γ ( · ))] 	= ∅ }. (7.8)

It is easy to see that since 0 ∈ W̄ (t − s, v) − γ (t − s) , v ∈ V, t ≥ s ≥ 0, then
ᾱ
(
t, s, z0 ( · ) , v , γ ( · )

) = +∞ for all s ∈ [0 , t] , v ∈ V, if ξ
(
t, z0 ( · ) ,

γ ( · )) ∈ M (t) . If for some t ≥ 0 ξ
(
t, z0 ( · ) , γ ( · )

)
/∈ M (t) , then function

(7.8) assumes finite values and, what is more, it is bounded for s ∈ [0 , t] and v ∈ V
(see [9]). From the analysis above there follows that function inf

v∈V ᾱ
(
t , s , z0 ( · ) ,

v , γ ( · )) is summable for s ∈ [0 , t] (see [9]).
Let us define

T̄
(
z0 ( · ) , γ ( · )

)

= inf

{

t ≥ 0 :
∫ t

0
inf
v∈V ᾱ

(
t , s , z0 ( · ) , v , γ ( · )

)
ds ≥ 1

}

, γ ( · ) ∈ Ḡ.

If the inequality in the curly brackets is not satisfied for all t ≥ 0, we set
T̄
(
z0 ( · ) , γ ( · )

) = +∞.

If ξ
(
t , z0 ( · ) , γ ( · )

) ∈ M, then inf
v∈V ᾱ

(
t , s , z0 ( · ) , v , γ ( · )

) ≡ +∞ ,

s ∈ [0 , t] , and it seems natural to set the integral in the formula above equal to
+∞ . Then, the inequality in definition of the function T̄

(
z0 ( · ) , γ ( · )

)
is readily

satisfied.

Theorem 7.1 Let the conflict controlled process (7.1), (7.3) satisfies Conditions7.2,
7.3, the set M be convex, T̄ = T̄

(
z0 ( · ) , γ 0 ( · )

)
< +∞ for the given initial state

z0 ( · ) and some selection γ 0 ( · ) ∈ Ḡ. Then a trajectory of the process (7.1), (7.3)
can be brought by the pursuer from z0 ( · ) to the terminal set M∗ at the moment T̄
under arbitrary admissible controls of the evader.

Proof Let v (s) , v (s) ∈ V, s ∈ [0 , T̄
]
be an arbitrary measurable function. First

consider the case when ξ
(
T̄ , z0 ( · ) , γ 0 ( · )

)
/∈ M (t) . We introduce the control-

ling function (see [6, 13, 14])

h̄ (t) = 1 −
∫ t

0
ᾱ
(
T̄ , s , z0 ( · ) , v (s) , γ 0 ( · )

)
ds , t ≥ 0.

From the definition of time T̄ , there follows that there exists a switching time t∗ =
t∗ (v ( · )) , 0 < t∗ ≤ T , such that h̄ (t∗) = 0.

Let us describe the rules by which the pursuer constructs his control on the
so-called active and the passive parts, [0 , t∗) and [t∗ , T ] , respectively.
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Consider the multi-valued mapping

U1(s, v) = {
u ∈ U : πK

(
T̄ − s

)
φ
(
u,D

(
T̄ − s

)
v
)− γ 0

(
T̄ − s

)

∈ ᾱ
(
T̄ , s, z0 ( · ) , v, γ 0 ( · )) [M (

T̄
)− ξ

(
T̄ , z0 ( · ) , γ 0 ( · ))]} . (7.9)

From assumptions concerning the process (7.1), (7.3) parameters, with account of
properties of the resolving function, it follows that the mappingU1 (s , v) is Borelian
on the set [0 , T ] × V . Then selection

u1 (s , v) = lexminU1 (s , v)

appears as a jointly Borelian function in its variables (see [9]). The pursuer’s control
on the interval [0 , t∗) is constructed in the following form:

u (s) = u1 (s , v (s)) .

Being superposition of Borelian and measurable functions, it is also measurable
(see [4, 9]).

Set
ᾱ
(
t , s , z0 ( · ) , v , γ 0 ( · )

) = 0 , s ∈ [t∗ , T ] .

Then the mapping
U2 (s , v)

= {
u ∈ U : πK

(
T̄ − s

)
φ (u , v) − γ 0

(
T̄ − s

) = 0
}

, s ∈ [t∗ , T̄
]

, v ∈ V

is Borelian in its variables, and its selection

u2 (s , v) = lexminU2 (s , v)

is also Borelian.
On the interval [t∗ , T ], we set the pursuer’s control equal to

u (s) = u2 (s , v (s)) . (7.10)

It is measurable function too (see [4, 9]).
Let ξ

(
T̄ , z0 ( · ) , γ 0 ( · )

) ∈ M
(
T̄
)
. In this case, we choose the pursuer’s con-

trol on the interval
[
0 , T̄

]
in the form (7.10).

Thus, the rules are defined, to which the pursuer should follow in constructing his
control. We will now show that if the pursuer follows these rules in the course of the
game, a trajectory of process (7.1) hits the terminal set at the time T̄ under arbitrary
admissible controls of the evader.
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The Cauchy formula (see Lemma7.1) for the system (7.1) implies the represen-
tation

πz
(
T̄
) = πK

(
T̄
)
z0 (0) +

∫ 0

−τ

πK
(
T̄ − s − τ

)
Bz0 (s) ds

+
∫ T̄

0
πK

(
T̄ − s

)
φ (u (s) , v (s))ds. (7.11)

First we examine the case when ξ
(
T̄ , z0 ( · ) , γ 0 ( · )

)
/∈ M

(
T̄
)
. By adding

and subtracting from the right-hand side of Eq. (7.11), the values

∫ T̄

0
πK

(
T̄ − s

)
φ
(
u (s) , D

(
T̄ − s

)
v (s)

)
ds ,

∫ T̄

0
γ 0
(
T̄ − s

)
ds

one can deduce
πz
(
T̄
)

=
[

πK
(
T̄
)
z0 (0) +

∫ 0

−τ

πK
(
T̄ − s − τ

)
Bz0 (s) ds +

∫ T̄

0
γ 0
(
T̄ − s

)
ds

]

+
∫ T̄

0

[
πK

(
T̄ − s

)
φ
(
u (s) , D

(
T̄ − s

)
v (s)

)− γ 0
(
T̄ − s

)]
ds

+
∫ T̄

0

[
πK

(
T̄ − s

)
φ (u (s) , v (s)) − πK

(
T̄ − s

)
φ
(
u (s) , D

(
T̄ − s

)
v (s)

)]
ds.

Taking into account formulas (7.6), (7.7), (7.9), we come to the inclusion

πz
(
T̄
) ∈ ξ

(
T̄ , z0 ( · ) , γ 0 ( · )

)

×
(

1 −
∫ T̄

0
ᾱ
(
T̄ , s , z0 ( · ) , v (s) , γ 0 ( · )

)
ds

)

+
∫ T̄

0
ᾱ
(
T̄ , s , z0 ( · ) , v (s) , γ 0 ( · )

)
M
(
T̄
)
ds

+
∫ T̄

0
πK

(
T̄ − s

)
φ̄
(
T̄ − s , u (s) , v (s)

)
ds, (7.12)

where the following equation is taken into account

ᾱ
(
T̄ , s , z0 ( · ) , v (s) , γ 0 ( · )

) = 0 , s ∈ [t∗ , T̄
]
.
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If
∫ T̄
0 ᾱ

(
T̄ , s , z0 ( · ) , v (s) , γ 0 ( · )

)
ds = 1 and that the setM is convex then

∫ T̄

0
ᾱ
(
T̄ , s , z0 ( · ) , v (s) , γ 0 ( · )

)
M
(
T̄
)
ds ⊂ M

(
T̄
)

and inclusion (7.12) implies inclusion πz
(
T̄
) ∈ M.

Let ξ
(
T̄ , z0 ( · ) , γ 0 ( · )

) ∈ M
(
T̄
)
. By adding and subtracting from the right-

hand side of the Cauchy formula (7.11) the integral
∫ T̄
0 γ 0 (T − s) ds , we have the

following:
πz
(
T̄
)

=
[

πK
(
T̄
)
z0 (0) +

∫ 0

−τ

πK
(
T̄ − s − τ

)
Bz0 (s) ds +

∫ T̄

0
γ 0
(
T̄ − s

)
ds

]

+
∫ T̄

0

[
πK

(
T̄ − s

)
φ (u (s) , v (s)) − γ 0 (T̄ − s

)]
ds.

Then, using the rule of the pursuer control for the case when ξ(T̄ , z0( · ), γ 0( · )) ∈
M(T̄), we derive the pursuer control in the form of (7.10). Taking into account
expression (7.7) and definition of M

(
T̄
)
, we come to the inclusion πz

(
T̄
) ∈ M.

Corollary 7.1 Assume that the pursuit differential-difference game (7.1), (7.3) is
linear (φ (u , v) = u − v) , Conditions7.2, 7.3 hold, πK (t)U = r (t) S, M (t) =
q (t) S, where r (t) , r : R → R , q (t) , q : R → R , are continuous nonnegative
numerical functions, and S is the unit ball from the subspace L, centered at zero.
Thenwhen ξ

(
t , z0 ( · ) , γ ( · )

)
/∈ q (t) S, the resolving function (7.8) is the largest

root of the quadratic equation for α

∥
∥πK (t − s)D (t − s) v + γ (t − s) − αξ

(
t , z0 ( · ) , γ ( · )

)∥
∥

= r (t − s) + αq (t) .
(7.13)

Proof Wewill use thematrix functionD (t) , t ∈ [0 , +∞) . In linear case φ (U , D
(t) v) = U − D (t) v. Then the multi-valued mapping in (7.5) reduces to the form

W̄ (t − s , v) = πK (t − s)U − πK (t − s)D (t − s) v.

Taking into account the assumptions of Corollary7.1, we deduce from expression
(7.8) that the resolving function ᾱ

(
t , s , z0 ( · ) , v , γ ( · )

)
for fixed valued of its

arguments is the maximal number α such that

[
r (t − s) S − πK (t − s)D (t − s) v − γ (t − s)

]∩
α
[
q (t) S − ξ

(
t , z0 ( · ) , γ ( · )

)] 	= ∅.



7 Method of Resolving Functions for the Differential-Difference … 169

The last expression is equivalent to the inclusion

πK (t − s)D (t − s) v + γ (t − s) − αξ
(
t , z0 ( ·) , γ (·)) ∈[

r (t − s) + αq (t)
]
S.

Due to the linearity of the left-hand side of this inclusion in α, the vector
πK (t − s)D (t − s) v + γ (t − s) − αξ

(
t , z0 ( · ) , γ ( · )

)
at the maximal value

of α lies on the boundary of the ball
[
r (t − s) + αq (t)

]
S. In other words, the length

of this vector is equal to the radius of this ball that is demonstrated by (7.13).

7.4 Example

Let us examine some analog of the game “Boy and Crocodile” with dynamics
described by the system of differential-difference equations

ż1 (t) = z2 (t − τ) − v , z1 ∈ R
n , n ≥ 2 ,

ż2 (t) = u , z2 ∈ R
n,

‖u‖ ≤ ρ , ρ > 0 , ‖v‖ ≤ σ , σ > 0.

The initial state is

z (t) = z0 (t) = (
z01 (t) , z02 (t)

)
, −τ ≤ t ≤ 0.

The pursuit is completed when ‖z1 ‖ ≤ l. In accordance with the Eq. (7.1) A =0,

B =
(
0 En

0 0

)

; z (t) = Bz (t − τ) + u − v.

The control domains are

U =
{(

0
u

)

, u ∈ R
n : ‖u‖ ≤ ρ

}

, V =
{(

v
0

)

, v ∈ R
n : ‖ v‖ ≤ σ

}

.

Here the terminal set M∗ has the form

M∗ = {
z = (z1 , z2) ∈ R

2n : ‖z1 ‖ ≤ l
}
,

M0 = {
z = (z1 , z2) ∈ R

2n : z1 = 0
}

, L = {
z = (z1 , z2) ∈ R

2n : z2 = 0
}

and M = {
z = (z1 , z2) ∈ R

2n : ‖z1‖ ≤ l , z2 = 0
}
.

Thus, the operator of orthogonal projection is defined by matrix π =
(
En 0
0 0

)

.

The fundamental matrix has the form [K (t)] =
(
1 t
0 1

)

⊗ En. Then, we have
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W (t) = (ρt − σ) S = ∅ for t ∈
[
0 , σ

ρ

)
. This means that Pontryagin’s condition

fails on this interval of time.
Set

D (t) =
{ ρ

σ
tEn , 0 ≤ t < σ

ρ
,

En , t ≥ σ
ρ
.

Consider the multi-valued mapping W̄ (t) of the form (7.5). In this example

W̄ (t) = πK (t)U
∗− πK (t)D (t) V , πK (t)U = ρtS,

πK (t)D (t) V

=
(
En 0
0 0

)

·
(
En tEn

0 En

)

·
(

ρ

σ
tEn 0

0 ρ

σ
tEn

)

·
(
v

0

)

=
(

ρ

σ
tEn

ρ

σ
tEn

0 0

)

·
(
v
0

)

=
(

ρ

σ
tEnv
0

)

= ρtS , 0 ≤ t < σ
ρ
;

πK (t)D (t) V = σS , t ≥ σ

ρ
.

Finally, W̄ (t) =
⎧
⎨

⎩

{0} , t ∈
[
0 , σ

ρ

]
,

(ρt − σ) S , t ∈
(

σ
ρ

, +∞
)

.
Therefore, Condition7.2 is satis-

fied for all t ≥ 0.
Denote

φ̄ (t , U , V ) = φ (U , V ) − φ (U , D (t) V ) =
(
En − D (t)
0

)

⊗ V .

In the case, when t ∈
[
0 , σ

ρ

]
, we have

πK (t) φ̄ (t , U , V ) =
(
En tEn

0 0

)

·
(
En
(
1 − t ρ

σ

)

0

)

·
(
v
0

)

=
(
En
(
1 − t ρ

σ

)

0

)

·
(
v
0

)

= (
1 − t ρ

σ

) · σS = (σ − tρ) S.

Otherwise, when t > σ
ρ
we have πK (t) φ̄ (t , U , V ) = 0 .

We now proceed to constructing the multi-valued mapping

M (t) = M
∗−
∫ t

0
πK (t1) φ̄ (t1 , U , V ) dt1.
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If ∫ t

0
(σ − ρt1) Sdt1 = Sσ t1|tt1=0 − ρ

t21
2
S

∣
∣
∣
∣

t

t1=0

=
(

−ρt2

2
+ σ t

)

S,

then

M (t) =
⎧
⎨

⎩

(
ρt2

2 − σ t + l
)
S , t ∈

[
0 , σ

ρ

]
;

(
l − σ 2

2ρ

)
· S , t > σ

ρ
.

The mapping M (t) is nonempty, provided ρt2

2 − σ t + l ≥ 0 for t ∈
[
0 , σ

ρ

]
and

l − σ 2

2ρ ≥ 0 for t > σ
ρ
.

Denote that the discriminant of the quadratic polynomial of the former inequality is
equal toD = σ 2 − 2ρl and the account of the latter one yieldsD ≤ 0 . In otherwords,
the disparities in the performance of the second branch of the parabola quadratic
polynomial of the first inequality lie above (or intersect at one point) of the t−axis.
Thus, the inequality l − σ 2

2ρ ≥ 0 provides the inequality ρt2

2 − σ t + l ≥ 0, t ≥ 0 .

Hence, the inequality l − σ 2

2ρ ≥ 0 is sufficient the Condition7.3 to hold.

Thus, if l − σ 2

2ρ ≥ 0 then M (t) 	= ∅ for t ≥ 0 .

Let us analyze the case when l − σ 2

2ρ < 0 . The multi-valued mappingM (t) 	= ∅,

if

ρt2

2
− σ t + l ≥ 0 ⇔ t ∈

[

0 ,
σ −√

σ 2 − 2ρl

ρ

]

∪
[

σ +√
σ 2 − 2ρl

ρ
, +∞

)

and M (t) = ∅ for t ∈
(

σ−
√

σ 2−2ρl
ρ

,
σ+

√
σ 2−2ρl
ρ

)

.

Hence, in the case l − σ 2

2ρ < 0 we seek the time of the game termination on the

interval t ∈
[

0 ,
σ−

√
σ 2−2ρl
ρ

]

.

Let us choose selection γ 0 (t) ≡ 0 in W̄ (t). Then

ξ
(
t , z0 ( · ) , 0

) = πK (t) z0 (0) +
∫ 0

−τ

πK (t − s − 1)Bz0 (s) ds.

ξ
(
t , z0 ( · ) , 0

) =
(
En 0
0 0

)

·
(
En tEn

0 En

)

· z0 (0)

+ ∫ 0
−τ

(
En (t − s − 1)En

0 0

)

·
(
0 En

0 0

)

· z0 (s) ds

=
(
En tEn

0 0

)

·
(
z01 (0)
z02 (0)

)

+ ∫ 0
−τ

(
0 En

0 0

)

·
(
z01 (s)
z02 (s)

)

ds.
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The integral of the matrix is defined as the result of the “element-wise” integration
(see [15]). We have

ξ
(
t , z0 ( · ) , 0

) =
[
z01 (0) + tz02 (0) + ∫ 0

−τ
z02 (s) ds,

0

]

, (7.14)

z0i ( · ) =
⎡

⎢
⎣

z0i1 ( · )
...

z0in ( · )

⎤

⎥
⎦

i=1 ,2

,

[ξ (· · · )] being the block matrix of dimension 2n × 1.
1. Let 0 ≤ t ≤ σ

ρ
.

W̄ (t − s , v) = πK (t − s) φ (U , D (t − s) v)
= πK (t − s)U − πK (t − s)D (t − s) v
= ρ (t − s) S − ρ

σ
(t − s) v = ρ (t − s)

(
S − v

σ

)
.

Then, the resolving function has the form

ᾱ
(
t , s , z0 ( · ) , v , 0

) = sup{α ≥ 0 : ρ (t − s)
(
S − v

σ

)∩
α ·
[(

ρt2

2 − σ t + l
)
S − ξ

(
t , z0 ( · ) , 0

)] 	= ∅} , v ∈ V .

To find the resolving function, we make use of the Corollary7.1. We seek contin-
uous nonnegative functions r (t) and q (t) , such that the equalities

πK (t)U = r (t) S , M (t) = q (t) S

are satisfied.
We see that

πK (t)U =
(
En tEn

0 0

)

·
(
0
u

)

=
(
tEnu
0

)

= t · ρS.

Let us set r (t) = ρ t , q (t) = ρ t2

2 − σ t + l . Then, in view of the Corollary 7.1,
the resolving function ᾱ

(
t , s , z0 ( · ) , v , 0

)
is the largest root of the quadratic

equation for α

∥
∥πK (t − s)D (t − s) v − αξ

(
t , z0 ( · ) , γ ( · )

)∥
∥ = r (t − s) + αq (t) ,

provided that ξ
(
t , z0 ( · ) , 0

) 	= q (t) S.
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This equation can be rewritten as follows:

‖πK (t − s)D (t − s) v‖2 − 2α
(
πK (t − s)D (t − s) v , ξ

(
t , z0 ( · ) , γ ( · )

))

+α2 · ∥∥ξ
(
t , z0 ( · ) , γ ( · )

) ∥
∥2 = r2 (t − s) + 2α · r (t − s) q (t) + α2q2 (t) ,

α2 ·
(∥
∥ξ
(
t , z0 ( · ) , γ ( · )

) ∥
∥2 − q2 (t)

)

−2α
[(

πK (t − s)D (t − s) v , ξ
(
t , z0 ( · ) , γ ( · )

))− r (t − s) q (t)
]

+‖πK (t − s)D (t − s) v‖2 − r2 (t − s) = 0.

It is clear that min
v∈V ᾱ

(
t , s , z0 ( · ) , v , 0

) = 0 , vector

v = − σ
∥
∥ξ
(
t , z0 ( · ) , 0

)∥
∥

· ξ
(
t , z0 ( · ) , 0

)

furnishes the minimum, and the inequality in the definition of time T̄
(
z0 ( · ) , 0

)

fails for t ∈
[
0 , σ

ρ

]
.

If ξ
(
t , z0 ( · ) , 0

) ∈ M (t) then ᾱ
(
t , s , z0 ( · ) , v , 0

) = +∞. The least
instant, at which the above inclusion holds true, satisfies the equation

∥
∥ξ
(
t , z0 ( · ) , 0

) ∥
∥ = ρt2

2
− σ t + l , 0 ≤ t ≤ σ

ρ
. (7.15)

Thus, on the interval
[
0 , σ

ρ

]
the time of game termination T̄

(
z0 ( · ) , 0

)
appears

as the least positive root of Eq. (7.15).
2. Let t > σ

ρ
.

(a) Let us analyze the case when t − s ≤ σ
ρ

. Then D (t − s) = ρ

σ
(t − s) . If

r (t) = ρt then q (t) = l − σ 2

2ρ . In viewof theCorollary 7.1,when ξ
(
t , z0 ( · ) , 0

)
/∈

(
l − σ 2

2ρ

)
S the resolving function

ᾱ
(
t , s , z0 ( · ) , v , 0

) = sup{α ≥ 0 : ρ (t − s)
(
S − v

σ

)∩
α ·
[(

l − σ 2

2ρ

)
S − ξ

(
t , z0 ( · ) , 0

)] 	= ∅}

appears as the largest root of the following quadratic equation for α

∥
∥
∥

ρ

σ
(t − s) v − α · ξ

(
t , z0 ( · ) , 0

) ∥∥
∥ = α ·

(

l − σ 2

2ρ

)

+ ρ (t − s) .

It is clear that

min
v∈V ᾱ

(
t , s , z0 ( · ) , v , 0

) = 0 , t − s ≤ σ

ρ
. (7.16)
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The minimum is attained on the vector

v = − σ
∥
∥ξ
(
t , z0 ( · ) , 0

) ∥
∥

· ξ
(
t , z0 ( · ) , 0

)
.

In this case the inequality in the definition of time T̄
(
z0 ( · ) , 0

)
is not satisfied.

Let ξ
(
t , z0 ( · ) , 0

) ∈ M (t) . Then the time of game T̄
(
z0 ( · ) , 0

)
termination

appears as the least positive root of the equation

∥
∥ξ
(
t , z0 ( · ) , 0

) ∥
∥ = l − σ 2

2ρ
, t >

σ

ρ
.

(b) Let us analyze the case when t − s > σ
ρ
. Then D (t − s) = En and W̄ (t − s ,

v) = (t − s) ρS − v.
The resolving function is presented by the formula

ᾱ
(
t , s , z0 ( · ) , v , 0

)

= sup
{
α ≥ 0 : [ρ (t − s) S − v] ∩ α ·

[(
l − σ 2

2ρ

)
S − ξ

(
t , z0 ( · ) , 0

)] 	= ∅
}

,

v ∈ V .

When ξ
(
t , z0 ( · ) , 0

)
/∈
(
l − σ 2

2ρ

)
S it is the largest root of the quadratic equation

for α
∥
∥v − α · ξ

(
t , z0 ( · ) , 0

) ∥
∥ = ρ (t − s) + α ·

(

l − σ 2

2ρ

)

.

The minimum is attained on the vector v = − σ‖ ξ(t , z0( · ) , 0)‖ · ξ
(
t , z0 ( · ) , 0

)
and

min
v∈V ᾱ

(
t , s , z0 ( · ) , v , 0

)

= ρ(t−s)−σ

‖ ξ(t , z0( · ) , γ ( · ))‖−
(
l− σ2

2ρ

) , t − s > σ
ρ
.

(7.17)

Let us evaluate the instant of the game termination in the case t > σ
ρ
. To the end,

we perform calculations, taking account of formulas (7.16), (7.17).

∫ t
0 min‖ v ‖≤σ

ᾱ
(
t , s , z0 (·) , v , 0

)
ds = ∫ t− σ

ρ

0 min‖ v ‖≤σ
ᾱ
(
t , s , z0 (·) , v , 0

)
ds

+ ∫ t
t− σ

ρ

min‖ v ‖≤σ
ᾱ
(
t , s , z0 (·) , v , 0

)
ds = 1.

We observe that if 0 ≤ s ≤ t − σ
ρ
, then t − s > σ

ρ
. Therefore, in the first integral

(integrating in s from 0 to t − σ
ρ
), the integrand is expressed by the relation (7.17).

If t − σ
ρ

≤ s ≤ t then t − s ≤ σ
ρ
. In this case, the integrand in the integral in s

from t − σ
ρ
to t can be expressed by relation (7.16).
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Therefore,

∫ t
0 min‖ v ‖≤σ

ᾱ
(
t , s , z0 (·) , v , 0

)
ds = ∫ t− σ

ρ

0 min‖ v ‖≤σ
ᾱ
(
t , s , z0 (·) , v , 0

)
ds + 0

= ∫ t− σ
ρ

0
ρ(t-s)−σ

‖ ξ(t , z0( · ) , 0)‖−l+ σ2
2ρ

ds = 1.

Upon integration of the above expression, we come to the formulas

∫ t− σ
ρ

0
[ρ (t − s) − σ ] ds = ∥

∥ξ
(
t , z0 ( · ) , 0

) ∥
∥− l + σ 2

2ρ
,

ρ t

(

t − σ

ρ

)

− ρ

2
·
(

t − σ

ρ

)2

− σ

(

t − σ

ρ

)

= ∥
∥ξ
(
t , z0 ( · ) , 0

) ∥
∥− l + σ 2

2ρ
,

ρ t2

2
− σ t + l = ∥

∥ξ
(
t , z0 ( · ) , 0

) ∥
∥ .

Thus, this pursuit game for different-inertia objects, under given initial condition

z0 (t) = {(
z01 (t) , z02 (t)

) : z01 (t) ∈ R
n , z02 (t) ∈ R

n , −τ ≤ t ≤ 0
}
,

may be completed by the pursuer at the time T̄ = T̄
(
z0 ( · )

)
, which is the least root

of the quadratic equation for t

ρt2

2
− σ t + l =

∥
∥
∥
∥z

0
1 (0) + t z02 (0) +

∫ 0

−τ

z02 (s) ds

∥
∥
∥
∥ , 0 ≤ t ≤ σ

ρ
,

when l − σ 2

2ρ ≥ 0, or, when t > σ
ρ
at the time T̄ , the least root of following quadratic

equations for t

ρ t2

2
− σ t + l =

∥
∥
∥
∥z

0
1 (0) + tz02 (0) +

∫ 0

−τ

z02 (s) ds

∥
∥
∥
∥ ,

∥
∥
∥
∥z

0
1 (0) + tz02 (0) +

∫ 0

−τ

z02 (s) ds

∥
∥
∥
∥ = l − σ 2

2ρ
.

Otherwise, when l − σ 2

2ρ < 0, in the case t ∈
[

0 ,
σ−

√
σ 2−2ρl
ρ

]

, T̄ is the least root of

the quadratic equation

ρ t2

2
− σ t + l =

∥
∥
∥
∥z

0
1 (0) + tz02 (0) +

∫ 0

−τ

z02 (s) ds

∥
∥
∥
∥ .
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We now dwell upon the issue of existence of roots of these equations.

1. If l − σ 2

2ρ ≥ 0, then, under condition z02 (0) = 0, in the case
∥
∥
∥z01 (0) + ∫ 0

−τ
z02 (s) ds

∥
∥
∥

≥ l − σ 2

2ρ the time of the game termination is finite.

Clearly, if z02 (0) 	= 0 , then the time of the game termination is finite for all initial
states.

2. Let l − σ 2

2ρ < 0. Then the game can be completed at the instant

T ≤ σ−
√

σ 2−2ρl
ρ

in condition that
∥
∥
∥z01 (0) + ∫ 0

−τ
z02 (s) ds

∥
∥
∥ ≤ l.
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Chapter 8
Characterization of Pullback Attractors
for Multivalued Nonautonomous Dynamical
Systems

Jacson Simsen and José Valero

Abstract In this paper we provide a review of the general results on pullback
attractors for multivalued nonautonomous dynamical systems, completing at the
same time some gaps in the theory. Also, when the attraction of a class of families
of sets rather than just bounded sets is considered, we obtain the characterization
of the pullback attractor as the union of all complete trajectories belonging to this
class. Finally, an application to a reaction-diffusion equation without uniqueness of
solutions is given.

8.1 Introduction

The theory of pullback attractors for nonautonomous dynamical systems in both
single-valued and multivalued cases has been developed by several authors in the
last years (see [3–11, 13–15, 17, 18, 20, 21, 23, 24] and the references therein).

In this paper we focus on the multivalued situation, when more than one solution
can correspond to a given initial data. Such dynamical systems naturally appear in
importantmodels of theMathematical Physics such as the three-dimensionalNavier–
Stokes system or reaction-diffusion equations. It is worth pointing out that, unlike
the autonomous case, several approaches are possible in order to provide sufficient
and necessary conditions for the existence of pullback attractors. Such results are
scattered in the literature, so it would be nice to have in hand a whole picture of
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all these theories. On the other hand, an important feature of global attractors is its
characterization as the union of all complete trajectories of the system satisfying a
certain property. Such description was developed in [9] for pullback attractors which
attract bounded subsets of the phase space and are backwards bounded, but nothing
is known so far with respect to the attraction of families of sets.

Our goal is threefold.
First, we intend to make a review of the theory of pullback attractors for multi-

valued processes by putting together several theorems which have been published in
different papers to date. In this way, we offer a common perspective of such results.
On top of that, we complete some small gaps in the theory that were not covered by
the above mentioned papers.

Second, when the attraction of a class of families of sets rather than just bounded
sets is considered, we study the characterization of the pullback attractor as the
union of all complete trajectories belonging to this class. Such description of the
attractor gives us an insight of its internal structure, which is a first step leading to
the understanding of the dynamics inside the pullback attractor. We highlight that
such result is new even in the single-valued case. Also, we observe that in order to
obtain this type of results we ought to use the framework of generalized process,
that is, multivalued processes generated by a set of functions satisfying suitable
properties, which in applications are given by the solutions of a differential equation.

Third, we apply the theorem about the characterization of the pullback attractor to
a reaction-diffusion equation lacking uniqueness of solutions of the Cauchy problem.

8.2 Pullback Attraction of Bounded Sets

In this sectionwewill give a review of some results from [4, 9, 13, 17, 24] concerning
the existence and structure of pullback attractors formultivalued processes in the case
when we consider the attraction of bounded sets of the phase space, completing at
the same time some small gaps of the theory. In this way, we put together the results
published so far in different papers and offer a common perspective.Wewill consider
the particular case of multivalued processes generated by generalized processes.

Let (X, ρ) be a complete metric space with the metric ρ and let P(X), B(X)

and K (X) denote, respectively, the set of non-empty, non-empty and bounded
and non-empty and compact subsets of X. For x ∈ X, A, B ∈ P(X) and ε >

0 we set dist(x, A) := infa∈A {ρ(x, a)} , dist(A, B) := supa∈A {ρ(a, B)} , Oε(A) :=
{z ∈ X; ρ(z, A) < ε} . Also, let Rd = {(t, τ ) ∈ R

2 : τ ≤ t}.
We recall first the definition of generalized processes, which were introduced at

first in [2].
Let us denote Wτ = C([τ,∞); X) and let G = {G (τ )}τ∈R consists of maps ϕ ∈

Wτ . Let us consider the following conditions:

(C1) For any τ ∈ R and x ∈ X there exists ϕ ∈ G (τ ) such that ϕ (τ) = x.
(C2) ϕs = ϕ |[τ+s,∞)∈ G (τ + s) for any s ≥ 0, ϕ ∈ G (τ ) (translation property).
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(C3) Let ϕ,ψ ∈ G be such that ϕ ∈ G (τ ), ψ ∈ G (r) and ϕ(s) = ψ(s) for some
s ≥ r ≥ τ . Then the function θ defined by

θ(t) :=
{

ϕ(t), t ∈ [τ, s],
ψ(t), t ∈ [s,∞),

belongs to G (τ ) (concatenation property).
(C4) For any sequence ϕn ∈ G (τ ) such that ϕn (τ ) → ϕ0 in X, there exists a

subsequence ϕnk and ϕ ∈ G (τ ) such that

ϕnk (t) → ϕ (t) , ∀t ≥ τ.

If (C1)–(C2), (C4) hold, thenwe say thatG is a generalized process. If, moreover,
(C1)–(C4) hold, then G is an exact (or strict) generalized process.

We define the multivalued map UG : Rd × X → P(X) associated with the family
G in the following way:

UG (t, τ, x) = {ϕ (t) :ϕ ∈ G (τ ) , ϕ (τ ) = x}. (8.1)

If (C1)–(C2) hold, then the map UG is a multivalued process, that is:

(1) UG (t, t, x) = x for all t ∈ R, x ∈ X;
(2) UG (t, τ, x) ⊂ UG (t, s, UG (s, τ, x)) for all −∞ < τ ≤ s ≤ t < ∞, x ∈ X,

where UG (s, τ, C) = ∪x∈CUG (s, τ, x) for any C ⊂ X.

If, moreover, (C3) also holds, then the map UG is a strict multivalued
process, which means that UG is a multivalued process and, additionally, in the
second property a strict equality holds: UG (t, τ, x) = UG (t, s, UG (s, τ, x)) (see
[24, Theorem 12.1]).

The orbit γ ξ (t, E) for ξ ≤ t and the ω-limit set ω(t, E) at time t for E ⊂ X are
defined by:

γ ξ (t, E) =
⋃

s≤ξ

UG (t, s, E) ,

ω(t, E) =
⋂

ξ≤t

γ ξ (t, E).

Arguing as in [4, Lemma 5] one can show that the ω-limit set is characterized as
follows:

ω(t, E) = {
z ∈ X : ∃ {ξn}n∈N , sn → −∞ such that ξn ∈ UG (t, sn, E) and ξn → z

}
.

In order to study the structure of the pullback attractor the concept of complete
trajectory plays an important role.
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Definition 8.1 The map ψ : R → X is called a complete trajectory through x ∈ X
if ψ(τ) = x for some τ ∈ R and ψs = ψ |[τ+s,∞)∈ G (τ + s) for all s ∈ R.

It is obvious that every complete trajectory ψ satisfies

ψ (t) ∈ UG (t, s, ψ (s)) , for any s ≤ t.

Let us recall several concepts related to invariance of a family of sets A =
{A(t)}t∈R. We say that:

• A is positively invariant if UG (t, τ, A(τ )) ⊂ A(t) for all −∞ < τ ≤ t < ∞;
• A is negatively invariant if A(t) ⊂ UG (t, τ, A(τ )) for all −∞ < τ ≤ t < ∞;
• A is invariant if UG (t, τ, A(τ )) = A(t) for all −∞ < τ ≤ t < ∞;
• A is quasi-invariant (orweakly invariant) if for each τ ∈ R and z ∈ A(τ ) there exists
a complete trajectory ψ through z at τ (i.e., ψ(τ) = z) such that ψ(t) ∈ A(t) for
all t ∈ R.

• A is weakly positively invariant if for every τ ≤ t and z ∈ A(τ ) we have that
UG (t, τ, z) ∩ A(t) �= ∅.

It is obvious that A is invariant if and only if it is both positively and negatively
invariant and that if A is quasi-invariant, then A is negatively invariant. It is also
well-known [24] that if A is invariant, then it is quasi-invariant.

A family A = {A(t)}t∈R is said to be closed (compact, bounded) if every set A (t)
is closed (compact, bounded).

For compact families of sets of strict multivalued processes we will check that
negatively invariance together with weakly positively invariance implies quasi-
invariance. This fact is proved in a similar way to the autonomous case
[16, 19, 22].

Lemma 8.1 Let (C1)–(C4) hold and let A = {A(t)}t∈R be compact. If A is weakly
positively invariant and negatively invariant, then it is quasi-invariant.

Proof First, we prove that for every τ ∈ R, x0 ∈ A(τ ) there exists ϕ ∈ G (τ ) such
that ϕ (τ) = x0 and ϕ(t) ∈ A (t) for all t ≥ τ . We observe that for this statement it is
only necessary to assume that A is closed.

There is an x11 ∈ UG (τ + 1, τ, x0) ∩ A (τ + 1) and a map ϕ1 ∈ G (τ ) such that
ϕ1(τ ) = x0 and ϕ1(τ + 1) = x11. In the same way, we choose

x21 ∈ UG (τ + 1

2
, τ, x0) ∩ A(τ + 1

2
), x22 ∈ UG (τ + 1, τ + 1

2
, x21) ∩ A(τ + 1),

so by (C3) there exists ϕ2 ∈ G such that ϕ2(τ ) = x0, ϕ2(τ + 1
2 ) = x21 and ϕ2(τ +

1) = x22.
Repeating this procedure several times we obtain a map ϕn+1 ∈ G (τ ) such that

ϕn+1(τ ) = x0 and ϕn+1(t) ∈ A (t) for t = τ + j
2n , j = 1, 2, . . . , 2n.

From (C4) there exist ϕ0 ∈ G (τ ) and a subsequence of ϕn such that ϕ0(t) =
limk→∞ ϕnk (t), for all t ≥ 0. Thus, since A is closed, ϕ0(t) ∈ A(t) for all t ∈ [0, 1]
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which are binary fractions. As A is closed and ϕ0 is continuous, it follows that
ϕ0(t) ∈ A(t), for all t ∈ [0, 1].

We repeat the same proof in order to define a sequence ϕj ∈ G (τ+j), j ∈ N, such
that ϕj (τ + j) = ϕj−1 (τ + j) and ϕj (t) ∈ A (t) for all t ∈ [τ + j,
τ + j + 1]. Using (C3) we concatenate these maps and obtain ϕ ∈ G (τ ) such that
ϕ(τ) = x0 and ϕ(t) ∈ A, for all t ≥ τ , as desired.

Second, arguing in a similar way we can check that if A is compact, then for
every τ ∈ R, x0 ∈ A(τ ) there exists a complete trajectoryψ such that φ (τ) = x0 and
φ(t) ∈ A(t) for all t ≤ τ .

Concatenating the maps φ and ϕ we obtain a complete trajectory ψ such that
ψ (τ) = x0 and ψ (t) ∈ A (t) for all t ∈ R.

Let us recall now the concept of pullback attractor.

Definition 8.2 The family K = {K(t)}t∈R is called pullback attracting for UG if

dist(UG (t, s, B), K(t)) → 0, as s → −∞, for all B ∈ B (X) , t ∈ R.

That is, if it pullback attracts any bounded set at any time t ∈ R.

Definition 8.3 The family A = {A (t)}t∈R is said to be a global pullback attractor
for UG if:

(1) A is compact;
(2) A is pullback attracting;
(3) A is negatively invariant;
(4) A is minimal, that is, if Â = {

Â (t)
}

t∈R is a closed pullback attracting family,

then A (t) ⊂ Â (t) for all t ∈ R.

An essential property for proving the existence of a pullback attractor is the so-
called pullback asymptotic compactness.

Definition 8.4 UG is called pullback asymptotically compact at time t if for all
B ∈ B(X) each sequence

{
ξj

}
j∈N such that ξj ∈ UG (t, τj, B), where τj → −∞, has

a convergent subsequence. If this property is satisfied for each time t ∈ R, then we
say that G is pullback asymptotically compact.

Theorem 6 and Lemma 8 in [4] imply the following lemma.

Lemma 8.2 Let (C1)–(C2) hold. If G is pullback asymptotically compact, then for
any B ∈ B (X) and t ∈ R the ω-limit set ω (t, B) is non-empty, compact and pullback
attracts B at time t, that is,

dist(UG (t, s, B), ω(t, B)) → 0, as s → −∞.

Moreover, G is pullback asymptotically compact if and only if for each t ∈ R and
B ∈ B (X) there exists a compact set D(t, B) satisfying

dist (UG (t, s, B), D(t, B)) → 0 as s → −∞.
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Remark 8.1 There exist other definitions which are equivalent to pullback asymp-
totic compactness. See [13, 24] for more details.

In [24, Theorem12.5] theω-limit setwas proved to satisfy an additional invariance
property.

Lemma 8.3 Let (C1)–(C2), (C4) hold. If G is pullback asymptotically compact,
then for any B ∈ B (X) the family of sets {ω (t, B)}t∈R is quasi-invariant. If, more-
over, (C3) holds and UG (t, r, ω(r, B)) ⊂ B for all r ≤ t, then {ω (t, B)}t∈R is
invariant.

Let us consider now sufficient and necessary conditions for the existence of a
pullback attractor.

Condition (C4) implies easily that for all (t, s) ∈ Rd the map x → UG (t, s, x) has
closed graph (see Theorem 12.3 in [24] for more details). Hence, we obtain from
Theorem 18 in [4] the following result, which provides a sufficient condition for the
existence of a pullback attractor.

Theorem 8.1 Let (C1)–(C2), (C4) hold. If there exists a pullback attracting family
of compact sets D(t), then the family of sets A = {A (t)}t∈R defined by

A (t) =
⋃

B∈B(X)

ω(t, B) (8.2)

is a global pullback attractor for UG . Moreover, the sets A (t) are compact and
A (t) ⊂ D (t) for all t ∈ R.

Definition 8.5 The family of sets {K(t)}t∈R is called backwards bounded if for some
τ the set Kτ = ∪t≤τ K (t) is bounded.

In [13, Proposition 4.3] and [9, Lemma 5] it was proved that if the pullback
attractor is backwards bounded and UG is strict, then it is invariant. Since conditions
(C1)–(C4) imply that the semiflow UG is strict, we have the following result.

Lemma 8.4 Let (C1) − (C4) hold. If UG possesses a backwards bounded pullback
attractor A = {A (t)}t∈R, then A is invariant.

When we use pullback asymptotic compactness in order to prove the existence of
a pullback attractor, we need to add some dissipative assumptions.

Definition 8.6 The family {A(t)}t∈R pullback absorbs bounded subsets of X if for
each t ∈ R, B ∈ B(X) there exists T = T(t, B) ≤ t such that UG (t, τ, B) ⊂ A(t), for
all τ ≤ T .

Definition 8.7 UG is called pullback bounded dissipative if there exists a family
B0 := {B0(t)}t∈RwithB0(t) ∈ B(X) for any t ∈ Rwhich pullback absorbs bounded
subsets of X. B0 is said to be pullback absorbing. It is said to be monotonically
pullback bounded dissipative if, in addition, B0(s) ⊂ B0(t) for every s ≤ t.
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In [13, Theorem 3.6 and Proposition 4.2] the authors proved that if UG is a
multivalued process such that the graph of the map x → UG (t, s, x) is closed, then
pullback asymptotically compactness and monotonically pullback dissipativeness
are necessary and sufficient conditions for the existence of the unique backwards
bounded pullback attractor A = {A(s) : s ∈ R}. We extend this result by showing
that the pullback attractor is characterized in this case by formula (8.2) but without
the closure.

Theorem 8.2 Let (C1)–(C2), (C4) hold. Then UG is pullback asymptotically
compact and monotonically pullback bounded dissipative if and only if it pos-
sesses the unique backwards bounded global pullback attractorA = {A (s) : s ∈ R}
defined by

A (t) =
⋃

B∈B(X)

ω(t, B). (8.3)

If (C3) is also satisfied, then A is invariant.

Proof In view of [13, Theorem 3.6 and Proposition 4.2] it only remains to prove
the equality (8.3). From the proof of Theorem 3.6 in [13] we know that A (t) =⋃

B∈B(X) ω(t, B) = ω(t, B0(t)). Hence,

A (t) := ω(t, B0(t)) ⊂
⋃

B∈B(X)

ω(t, B) ⊂
⋃

B∈B(X)

ω(t, B) = A (t),

so (8.3) follows.
The last statement is a consequence of Lemma 8.4.

Remark 8.2 It is interesting to know whether it is possible to obtain the existence
of the pullback attractor assuming that UG is just pullback bounded dissipative. We
will give an answer to this question in the next section.

Finally, let us consider the characterization of the dynamics inside the pullback
attractor using complete trajectories. In [9] it is shown that backwards bounded pull-
back attractors can be characterized by the union of all backwards bounded complete
trajectories. We recall that a complete trajectory ψ is said to be bounded if the set
∪t∈Rψ (t) is bounded.

Theorem 8.3 ([9]) Let either (C1)–(C2), (C4) or (C1)–(C3) hold. If UG possesses
the backwards bounded global pullback attractor A = {A (s) : s ∈ R}, then

A (t) = {ψ (t) :ψ is a backwards bounded complete trajectory}. (8.4)

If we do not assume that the attractor is backwards bounded, then we can only
obtain that every backwards bounded complete trajectory belongs to it.

Theorem 8.4 Let (C1)–(C4) be satisfied and let UG possess the global pullback
attractor A = {A (s) : s ∈ R}. The following statements hold:
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(1) If ψ : R → X is a bounded complete trajectory, then ψ(s) ∈ A (s) for all s ∈ R.

(2) If, moreover, A is invariant, then for each z ∈ A (t) there exist a complete
trajectory ψz such that ψz(t) = z and ψz(s) ∈ A (s) for all s ∈ R.

Proof Let ψ : R → X be a bounded complete trajectory. Consider the set B :=⋃
s∈R ψ(s) ∈ B(X). Then for any s ∈ R and ε > 0 there exists T = T(s, B) < s such

that UG (s, �, B) ⊂ Oε(A (s)) for all � < T . Hence,

ψ(s) ∈ UG (s, s − t, ψ(s − t)) ⊂ UG (s, s − t, B) ⊂ Oε(A (s))

for t large enough (i.e., s − t < T ). Then, ψ(s) ∈ A (s).
The second statement is a consequence of Lemma 8.1.

Remark 8.3 Conditions (C3)–(C4) are not necessary for the first statement.

8.3 Pullback Attraction of Families of Sets

In this section we will consider the theory of pullback attractors which attract certain
families of sets instead of bounded sets. We will recall first the theory of existence of
such attractors, which was developed in [6, 7] for multivalued processes. After that,
we will study their characterization using complete trajectories.

Let D be a class of families of non-empty sets D = {D(t) : t ∈ R}. We will say
that the class D is inclusion-closed if D ∈ D and ∅ �= D′(t) ⊂ D(t), for all t ∈ R,

imply that D′ = {D′(t) : t ∈ R} belongs to D .

Definition 8.8 The family A = {A (t) : t ∈ R} is said to be a global pullback D-
attractor for UG if it satisfies:

1. A (t) is compact for any t ∈ R;
2. A is pullback D-attracting, i.e.

lim
τ→−∞ distX(UG (t, τ, D(τ )),A (t)) = 0 ∀t ∈ R,

for all D ∈ D ;
3. A is negatively invariant.

A is said to be a strict global pullback D-attractor if it is also invariant.

In this framework, the theorem stating the existence of a global pullback D-
attractor is similar to the corresponding one in the autonomous case, as unlike the
situation in the previous section we do not need to assume that the absorbing family
is backwards bounded.

Definition 8.9 We say that a family of non-empty sets B0 = {B0(t):t ∈ R} is pull-
back D-absorbing if for every D ∈ D and every t ∈ R, there exists τ(t, D) ≤ t such
that
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UG (t, τ, D(τ )) ⊂ B0(t) for all τ ≤ τ(t, D).

Definition 8.10 Themultivalued processUG is asymptotically compactwith respect
to a family B̂ = {B(t) : t ∈ R} if for all t ∈ R and every sequence τn ≤ t tending to
−∞, any sequence yn ∈ UG (t, τn, B(τn)) is relatively compact.

We say that UG is upper semicontinuous if for all t ≥ τ the mapping UG (t, τ, ·) is
upper-semicontinuous, i.e., for any x0 ∈ X and for every neighborhoodO in X of the
setUG (t, τ, x0), there exists δ > 0 such thatUG (t, τ, y) ⊂ O whenever ρ(x0, y) < δ.

Condition (C4) implies easily that UG (t, τ, ·) is upper-semicontinuous and has
closed values. Therefore, the following result is a slight modification of Theorem 3.3
in [7].

Theorem 8.5 Let (C1)–(C2), (C4) hold. Assume that there exists a pullback D-
absorbing family B0 = {B0(t) : t ∈ R} and that UG is asymptotically compact with
respect to B0. Then, the set A given by

A (t) :=
⋃

D∈D
ω (t, D) ⊂ ω (t,B0) , (8.5)

where ω (t, D) = ⋂

s≤t

⋃

τ≤s
UG (t, τ, D(τ )), is a global pullback D-attractor for UG . A

is the minimal closed pullback D-attracting family. If B0 ∈ D , then

A (t) := ω (t,B0) . (8.6)

Moreover, suppose that D is inclusion closed, B0 ∈ D , and that B(t) is closed in
X for any t ∈ R. Then A ∈ D and is the unique global pullback D-attractor with
this property. In addition, if (C3) is also satisfied, then A is invariant.

Proof In view of Lemma 3.2 in [7] the family ω (t,B0) is non-empty, compact,
negatively invariant and pullback attracts B0. It is also proved in [7, p. 33] that
ω (t,B0) pullback attracts every D ∈ D . Hence, UG is asymptotically compact with
respect to every D ∈ D . Thus, using again Lemma 3.2 in [7] the family {ω (t, D)}t∈R
pullback attracts D and is negatively invariant and compact. Moreover, {ω (t, D)}t∈R
is the minimal closed family that pullback attracts D. Indeed, let {A (t)}t∈R be a
closed family pullback attractingD. Since for any y ∈ ω (t, D) there exists a sequence
yn ∈ UG (t, τn, D(τn)), τn → −∞, such that yn → y, we have

dist(y, A(t)) ≤ ρ (y, yn) + dist (yn, A (t)) → 0,

so y ∈ A (t). Then it follows that ω (t, D) ⊂ ω (t,B0).
Therefore, A is the minimal closed pullback D-attracting family and A (t) ⊂

ω (t,B0). It is clear that the sets A (t) are compact. It remains to prove that A is
negatively invariant. Indeed, let y ∈ A (t) and yn ∈ ω (t, Dn) be such that yn → y.
For any τ < t there are xn ∈ ω (τ, Dn) satisfying yn ∈ UG (t, τ, xn). Passing to a
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subsequence we can assume that xn → x ∈ A (τ ) and then y ∈ UG (t, τ, x), as the
graph of the map x → UG (t, τ, x) is closed. Thus, A (t) ⊂ UG (t, τ,A (τ )) .

IfB0 ∈ D , then ω (t,B0) ⊂ A (t), which implies (8.6).
The other statements follow from [7, Theorem 3.3] or [6, Theorem 3.4].

Further, let us study the structure of the pullback attractor. More precisely, we
will prove analogous results as in Theorem 8.3, the main difference being that the
attractor will be described now as the union of all complete trajectories which belong
to the class D .

Theorem 8.6 Assume that (C1)–(C2), (C4) hold, D is inclusion closed and that
UG possesses the global pullback D-attractor A , which belong to D . Then

A (t) = {ψ (t) : ψ is a complete trajectory and ψ ∈ D}.

Proof First, let ψ ∈ D be a complete trajectory. Then

ψ (t) ∈ UG (t, s, ψ (s)) , for anys ≤ t.

Since dist (UG (t, s, ψ (s)) ,A (t)) → 0 as s → −∞, we obtain that ψ (t) ∈ A (t)
for any t ∈ R.

Second, let z ∈ A (t), t ∈ R be arbitrary. Since A is negatively invariant, for
an arbitrary sequence sn → −∞ we have z ∈ A (t) ⊂ U (t, sn,A (sn)), so there
is ϕn ∈ G (sn) such that z = ϕn (t) and ϕn (sn) ∈ A (sn). Condition (C2) implies
that v0n = ϕn |[t,∞)∈ G (t). By (C4) , passing to a subsequence, v0n (r) → v0 (r) , for
all r ≥ t, where v0 ∈ G (t), v0 (t) = z. Since v0 (r) = limn→∞ ϕn (r) and ϕn (r) ∈
UG (r, sn,A (sn)), we obtain that v0 (r) ∈ ω (r,A ) ⊂ A (r) for any r ≥ t.

Let now v1n = ϕn |[t−1,∞)∈ G (t − 1). Since

v1n (t − 1) = ϕn (t − 1) ∈ UG (t − 1, sn,A (sn)) ,

passing to a subsequence v1n (t − 1) → z−1. Therefore, repeating the same argument
as before we obtain a map v1 ∈ G (t − 1) such that, up to a subsequence, v1n (r) →
v1 (r) for all r ≥ t − 1. Also, v1 (r) ∈ A (r), for any r ≥ t − 1, and v1 (r) = v0 (r)
if r ≥ t. In particular, v1 (t) = z.

Arguing as in the previous cases we define a sequence of functions vj ∈ G (t − j),
j ∈ Z

+, such that vj (r) ∈ A (r), for any r ≥ t − j, vj (r) = vj−1 (r) , for r ≥ t − j +
1, and vj (t) = z.

Let ψ(·) be the function which takes the common value of the functions vj(·) for
all r ∈ R. It follows thatψ(·) is a complete trajectory andψ (t) = z. Moreover, since
ψ (r) ∈ A (r), for any r ∈ R,A ∈ D andD is inclusion closed, we get that ψ ∈ D .

Theorem 8.7 Assume that (C1)–(C3) hold, D is inclusion closed and that UG

possesses the global pullback D-attractor A , which belong to D . Then

A (t) = {ψ (t) : ψ is a complete trajectory and ψ ∈ D}.
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Proof We know from the proof of Theorem 8.6 that ψ (t) ∈ A (t) for any complete
trajectory ψ such that ψ ∈ D .

Let z ∈ A (t). By (C1) there exists ϕ0 ∈ G (t) such that ϕ0 (t) = z. The pullback
attractor A is invariant. Indeed, by (C3) for any s ≤ r we have

UG (r, s,A (s)) ⊂ UG (r, s, UG (s, τ,A (τ ))) ⊂ UG (r, τ,A (τ )) → A (r) , (8.7)

as τ → −∞.
Hence,A (r) = UG (r, t,A (t)), which implies that ϕ0 (r) ∈ A (r) for any r ≥ t.

Further, z ∈ A (t) ⊂ UG (t, t − 1,A (t − 1)) implies the existence of v1∈G (t − 1)
satisfying v1 (r) ∈ A (r), for all r ≥ t − 1, and v1 (t) = z. In view of (C3) con-
catenating v1 and ϕ0 we obtain a function ϕ1 ∈ G (t − 1) such that ϕ1 (r) ∈ A (r),
for all r ≥ t − 1, ϕ1 (t) = z and ϕ1 (r) = ϕ0 (r) for r ≥ t. Then, we define induc-
tively a sequence of functions ϕj ∈ G (t − j), j ∈ Z

+, such that ϕj (r) ∈ A (r), for
all r ≥ t − j, ϕj (t) = z and ϕj (r) = ϕj−1 (r) if r ≥ t − j + 1. Let ψ be the function
defined by the common value of ϕj at any point t ∈ R, which is a complete trajectory
satisfying ψ (t) = z and ψ (r) ∈ A (r) for any r ∈ R. Since D is inclusion closed
and A ∈ D , we obtain that ψ ∈ D .

Remark 8.4 As far as we know, this characterization of the pullback attractor is new
even in the case where the map UG is single-valued.

An interesting question appears when the multivalued semiflow posseses both a
pullback D-attractor and a pullback attractor in the sense of Definition 8.3. We will
denote these attractors byAD andA , respectively. Namely, what is the relationship
between them?

Lemma 8.5 Let (C1)–(C2) and let every family of the type B = {B(t) ≡ B ∈
B(X) : t ∈ R} belong to D (that is, any family of fixed bounded sets belong to D).
Assume that UG possesses both a pullback D-attractor AD and a pullback attractor
A . Then

A (t) ⊂ AD (t) for all t ∈ R. (8.8)

If, moreover, AD is backwards bounded, then

A (t) = AD (t) for all t ∈ R. (8.9)

Proof Since the families of fixed bounded sets belong toD ,AD is a closed pullback
attracting family in the sense of Definition 8.2. The minimality of A implies (8.8).

Let t ∈ R be arbitrary. If AD is backwards bounded, then

AD (t) ⊂ UG (t, s,AD (s)) ⊂ UG (t, s, Aτ ) , for any s ≤ τ,
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where τ ≤ t is such that Aτ = ∪r≤τAD (r) is bounded. From

dist (UG (t, s, Aτ ) , A (t)) → 0, as s → −∞,

we have that AD (t) ⊂ A (t). Thus, (8.9) is proved.

Remark 8.5 In the single-valued case, an answer to this problem was given in [20].
In the multivalued framework properties (8.8), (8.9) have been proved in [21] using
similar conditions to those in Theorem 8.5.

As commented before, it is an interesting question whether one can prove the
existence of a pullback attractor (in the sense of Definition 8.2) assuming just that
UG is pullback bounded dissipative. In [20] this problem was solved in the single-
valued framework bymodifying the pullback compactness condition.UsingTheorem
8.5 we will prove a similar result in the multivalued case. We note that this result
was already stated in [21].

Theorem 8.8 Let (C1)–(C2), (C4) hold. If UG is pullback bounded dissipative and
asymptotically compact with respect to the absorbing family B0, then it possesses
the global pullback attractor A = {A (s) : s ∈ R} defined by (8.5).

If (C3) is also satisfied and AD is backwards bounded, then A is invariant and
(8.4) holds.

Proof Consider the class of familiesD consisting of bounded sets, that is, D ∈ D if
and only if D = {D(t) ≡ B ∈ B(X) : t ∈ R}. The existence of the pullback attractor
follows from Theorem 8.5.

The second part is a consequence of Lemma 8.4 and Theorem 8.3.

8.4 Application to a Reaction-Diffusion Equation

Let us consider the following reaction-diffusion problem

⎧
⎨

⎩

∂u
∂t − �u = f (x, u) + h(t) in Ω × (τ,+∞),
u = 0 on ∂Ω × (τ,+∞),
u(x, τ ) = uτ (x), x ∈ Ω ,

(8.10)

where τ ∈ R, uτ ∈ L2 (Ω), h ∈ L2
loc(R; H−1 (Ω)), f : Ω × R → R is a measurable

function such that f (x, ·) ∈ C(R) for almost every x ∈ Ω , and f satisfies that there
exist constants α1 > 0, α2 > 0, p ≥ 2 and positive functions C1(x), C2(x) ∈ L1 (Ω)

such that
|f (x, s)| p

p−1 ≤ α1 |s|p + C1(x) ∀s ∈ R, x ∈ Ω , (8.11)

f (x, s)s ≤ −α2 |s|p + C2(x) ∀s ∈ R, x ∈ Ω. (8.12)
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Here, Ω ⊂ R
N is a nonempty open set, not necessarily bounded, satisfying the

Poincaré inequality, i.e., there exists a constant λ1 > 0 such that

∫

Ω

|u(x)|2 dx ≤ λ−1
1

∫

Ω

|∇u(x)|2 dx ∀u ∈ H1
0 (Ω) . (8.13)

We assume also that h = ∑N
i=1

∂hi
∂xi

, where hi ∈ L2
loc(R; L2 (Ω)) are such that

N∑

i=1

∫ t

−∞
eλ1s |hi(s)|2 ds < +∞ ∀t ∈ R. (8.14)

By |·| , ‖·‖ , ‖·‖∗ we denote the norms in L2 (Ω), H1
0 (Ω) and H−1 (Ω), respec-

tively.Wewill use (·, ·) to denote the scalar product in eitherL2 (Ω) or [L2 (Ω)]N , and
〈·, ·〉 to denote the duality pairing betweenH−1 (Ω) + Lq (Ω) andH1

0 (Ω) ∩ Lp (Ω),
where 1

p + 1
q = 1.

Aweak solution of (8.10) is a function u : (τ,+∞) → Lp(Ω) ∩ H1
0 (Ω) such that

u ∈ Lp (τ, T; Lp (Ω)) ∩ L2
(
τ, T; H1

0 (Ω)
)
, for all T > τ, and

(u(t), w) +
∫ t

τ

(∇u(s),∇w) ds = (uτ , w) +
∫ t

τ

〈f (x, u(s)) + h(s), w〉 ds, (8.15)

for all t ≥ τ , w ∈ Lp(Ω) ∩ H1
0 (Ω).

It follows from [12, p. 285] that any weak solution u to problem (8.10) satisfies
u ∈ C([τ,+∞); L2(Ω)).Moreover the function t → |u(t)|2 is absolutely continuous
on every interval [τ, T ] and d

dt |u(t)|2 = 2
〈

du
dt , u

〉
for a.a. t ∈ (τ, T). Hence, it satisfies

the energy equality

|u(t)|2 + 2
∫ t

τ

‖u(s)‖2 ds = |uτ |2 + 2
∫ t

τ

〈f (x, u(s)) + h(s), u(s)〉 ds ∀ t ≥ τ.

It is well-known [1, Theorem 2] that for all τ ∈ R, uτ ∈ L2 (Ω) there exists at
least one weak solution u to (8.10). For each τ ∈ R we define then the space Wτ =
C([τ,∞); L2(Ω)) and

G (τ ) = {u ∈ Wτ : u is a weak solution to (8.10)}.

Hence, condition (C1) is satisfied. It also follows from the proof of Lemma 11 in [1]
that (C2)–(C3) hold. Therefore, the map UG defined by (8.1) is a strict multivalued
semiflow. In addition, Proposition 16 in [1] implies that (C4) is satisfied, so G is a
exact generalized process.

We shall apply the results of Sects. 8.2 and 8.3 in order to obtain that the pullback
attractor of UG is described as the union of a certain type of complete trajectories.
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We begin with the second case, that is, when we study a global pullbackD-attractor
for a suitable class of families of sets D .

Let Rλ1 be the set of all functions r : R → (0,+∞) such that

lim
t→−∞ eλ1tr2(t) = 0,

where λ1 is the constant in the Poincaré inequality (8.13). Denote by D the class
of all families D = {D(t) : t ∈ R}, D (t) ∈ P(L2(Ω)), such that D(t) ⊂ B(0, rD(t))
for some rD ∈ Rλ1 , where B(0, rD(t)) is a closed ball in L2 (Ω) centered at zero with
radius rD(t). The class D is obviously inclusion-closed.

We recall some results from [1].

Lemma 8.6 ([1, Lemma 12]) The balls B0(t) = BL2(Ω)(0, Rλ1(t)), where Rλ1(t) is
the nonnegative number given by

R2
λ1

(t) = 2e−λ1t
N∑

i=1

∫ t

−∞
eλ1s |hi(s)|2 ds + 2λ−1

1 ‖C2‖L1(Ω) + 1, (8.16)

form a family B0 ∈ D which is pullback D-absorbing for UG .

Lemma 8.7 ([1, Lemma 18]) UG is asymptotically compact with respect to any
family D ∈ D .

Remark 8.6 In [1] this lemma is stated only with respect to the absorbing family
B0, but in fact the proof works for an arbitrary D ∈ D .

Theorem 8.9 ([1, Theorem 19]) The multivalued process UG possesses a unique
global pullback D-attractor AD = {AD (t) : t ∈ R} belonging to D , which is given
by

AD(t) :=
⋂

s≤t

⋃

τ≤s

UG (t, τ, B0(τ )), (8.17)

where B0 = {B(t) : t ∈ R} is defined in Lemma 8.6. Moreover, A is invariant.

Now, using Theorem 8.9 and either Theorem 8.6 or 8.7 we obtain the characteri-
zation of the pullback D-attractor.

Theorem 8.10 The global pullback D-attractor AD is given by

AD (t) = {ψ (t) : ψ is a complete trajectory and ψ ∈ D}.

In other words, AD is the union of all complete trajectories ψ such that

lim
t→−∞ eλ1t ‖ψ(t)‖2 = 0.
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Further, let us consider the first case, that is, when we study the attraction of
bounded sets.

We observe that for any bounded setB, the associated constant family B̂ = {B (t) :
t ∈ R}, where B (t) ≡ B, belongs to D . Therefore, Lemmas 8.6 and 8.7 imply in
particular that UG is pullback asymptotically compact and bounded dissipative in
the sense of Definitions 8.4 and 8.7. In order to obtain that UG is monotonically
bounded dissipative we need an extra assumption.

Lemma 8.8 Assume that

sup
t≤t0

e−λ1t
N∑

i=1

∫ t

−∞
eλ1s |hi(s)|2 ds < ∞ for any t0 ∈ R. (8.18)

Then UG is monotonically bounded dissipative.

Proof In view of (8.18) the absorbing familyB0 satisfies that the sets ∪t≤t0B0(t) are
bounded for any t0 ∈ R. Hence, the results follows from Proposition 3.4 in [13].

Applying Lemma 8.8 and Theorems 8.2 and 8.3 we obtain the following result.

Theorem 8.11 Assume that (8.18) holds. Then the multivalued semiflow UG pos-
sesses the unique backwards bounded global pullback attractorA = {A (s) : s ∈ R}
defined by

A (t) =
⋃

B∈B(X)

ω(t, B).

Moreover,

A (t) = {ψ (t) : ψ is a backwards bounded complete trajectory}. (8.19)

We can also prove that the pullback attractors AD and A coincide.

Lemma 8.9 If (8.18) holds, thenAD is backwards bounded andA = A D . In addi-
tion,

AD (t) = {ψ (t) :ψ is a backwards bounded complete trajectory}. (8.20)

Proof Wehave seen in the proof ofLemma8.8 that the sets∪t≤t0B0(t) are bounded for
any t0 ∈ R. In view of (8.17),B0 ∈ D and the closedness of B0(t) we getAD (t) ⊂
B0(t), soAD is backwards bounded. Since the families of fixedbounded sets belong to
D , the equalityA = A D follows from Lemma 8.5. Finally, (8.20) is a consequence
of (8.19).
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Chapter 9
Global Attractors for Discontinuous
Dynamical Systems with Multi-valued
Impulsive Perturbations

Oleksiy V. Kapustyan and Iryna V. Romaniuk

Abstract In this work, we consider impulsive infinite-dimensional dynamical sys-
tems generated by parabolic equations with continuous bounded right-hand side
εF(y) and with impulsive multi-valued perturbations. Moments of impulses are not
fixed and defined by moments of intersection of solutions with some subset of the
phase space. We find an explicit formula in the case ε = 0 and prove that for suffi-
ciently small value of the parameter ε > 0 the corresponding nonlinear system also
has a global attractor.

9.1 Introduction

An autonomous evolution system is called discontinuous (or impulsive) dynamical
system (DS) if its trajectories have jumps at moments of intersection with certain
surface of the phase space [19]. Unlike systems with impulses at fixed moments of
time, the behavior of impulsive DS is far from complete understanding. Some aspects
of the qualitative behavior of impulsive finite-dimensional DS such as stability of
solutions or properties of ω-limit sets have been studied by many authors [4, 13, 14,
16, 18, 19]. For infinite-dimensional dissipative systems, one of the most powerful
tools of investigation of their limit behavior is the theory of global attractors [20].
Lackof continuous dependenceon initial data in impulsiveDS required a newconcept
of global attractor for such systems. The first approach was proposed in [2, 3]. The
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key point of these paperswas to keep invariance property in definition of attractor. For
this purpose, the authors considered either systems with finite number of impulses or
systems satisfying very special conditions (“tube condition”) which required detailed
information about the character of intersection of a given set by the trajectories of
the given nonlinear system. These conditions were formulated in an abstract form
and could not be effectively tested without explicit formulas of solutions. The second
approach was proposed in [10, 11]. It was based on the notion of global attractor for
nonautonomous systems [5, 8, 9], in particular for the systemswith impulsive effects
at fixed moments of time [6, 17]. For such systems, it is natural to require minimality
property in the definition of global attractor instead of invariance. This approach
allowed us to give necessary and sufficient conditions of existence of global attractors
for impulsive DSwith infinite number of impulsive points under natural assumptions
on parameters. In particular, some model examples of existence and nonexistence
of global attractor were considered. In this chapter, we extend results of [10, 11]
on wider classes of impulsive DS. More precisely, we consider impulsive infinite-
dimensional dynamical systems generated by parabolic equations with continuous
bounded right-hand side εF(y) and with impulsive multi-valued perturbations. For
description of such systems, the theory of global attractors ofmulti-valuedDS is used
[7, 15, 21]. We find an explicit formula of attractor in the case ε = 0 and prove that
for sufficiently small value of the parameter ε > 0 the corresponding multi-valued
DS also has a global attractor.

9.2 Construction of Impulsive DS with Multi-valued
Impulsive Perturbation

Let (X, ρ) be a metric space, P(X) (β(X)) be a set of all nonempty (nonempty
bounded) subsets of X.

Definition 9.1 ([7]) A multi-valued map G : R+ × X → P(X) is called multi-
valued DS (MDS), if

(1) ∀x ∈ X G(0, x) = x ;
(2) ∀x ∈ X ∀t, s ≥ 0 G(t + s, x) ⊆ G(t,G(s, x)).

The following definition is borrowed from the attractors theory of nonautonomous
processes [5, 9, 17]

Definition 9.2 A subset Θ ⊂ X is called a global attractor of MDS G, if

(1) Θ is a compact set ;
(2) Θ is uniformly attracting set, i.e.,

∀B ∈ β(X) dist (G(t, B),Θ) → 0, t → ∞;
(3) Θ is minimal among closed uniformly attracting sets.
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Remark 9.1 In the definition of MDS, we assume no conditions of continuity for
the map x → G(t, x). If the MDS G also has global attractor in the classical sense
[7], i.e., if there exists a compact uniformly attracting set Θ1 ⊂ X and ∀t ≥ 0 Θ1 ⊂
G(t,Θ1), then Θ = Θ1.

Following result guarantees existence criteria of global attractors for dissipative
MDS.

Lemma 1 ([17, 21]) Assume that MDS G satisfies dissipativity condition:

∃B0 ∈ β(X) ∀B ∈ β(X) ∃T = T (B) > 0 ∀t ≥ T G(t, B) ⊂ B0. (9.1)

Then, the following conditions are equivalent:

(1) MDS G has a global attractor Θ;
(2) MDS G is asymptotically compact, i.e.,

∀tn ↗ ∞ ∀B ∈ β(X) ∀ξn ∈ G(tn, B) the sequence {ξn} is precompact in X.

(9.2)

Moreover,

Θ = ω(B0) :=
⋂

τ>0

⋃

t≥τ

G(t, B0). (9.3)

We consider MDS G generated by the following impulsive problem

du

dt
= L(u), u /∈ M, (9.4)

�u|u∈M ∈ I u − u, (9.5)

where (9.4) is some evolution autonomous problem, which generates continuous
semigroup V : R+ × X �→ X in the phase space X , M ⊂ X is impulsive set, I :
M �→ P(X) is impulsive map, �u|t=τ = u(τ + 0) − u(τ − 0).

The phase point u(t) moves along trajectories of (9.4) and when it reaches the
set M , it jumps to a new position u+ ∈ I u. We shall consider right continuous
impulsive trajectories. For constructing of such trajectories, we assume the following
conditions:

M ∩ I (M) = ∅; (9.6)

∀x ∈ M ∃τ = τ (x) ∀t ∈ (0, τ ) V (t, x) /∈ M. (9.7)

We define

∀x ∈ X M+(x) =
( ⋃

t>0

V (t, x)
)
∩M.
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If M+(x) �= ∅, then [1], there exists a moment of time s := φ(x) > 0 such that

{
V (t, x) /∈ M ∀t ∈ (0, s);
V (s, x) ∈ M.

Then, the impulsive trajectorywhich started from the point can be constructed accord-
ing to the classical scheme [13] with slight “multi-valued” modifications as follows.

If M+(x) = ∅, then ϕ(t) = V (t, x) ∀t ≥ 0.
If M+(x) �= ∅, then for s0 := φ(x) > 0, x1 := V (s0, x) ∈ M , x+

1 ∈ I x1 we define
ϕ on [0, s0] by the following rule:

ϕ(t) =
{
V (t, x), t ∈ [0, s0);
x+
1 , t = s0.

If M+(x+
1 ) = ∅, then ϕ(t) = V (t − s0, x

+
1 ) ∀t ≥ s0.

If M+(x+
1 ) �= ∅, then for s1 := φ(x+

1 ) > 0, x2 := V (s1, x
+
1 ) ∈ M , x+

2 ∈ I x2 we
define ϕ on [s0, s0 + s1] by the following rule:

ϕ(t) =
{
V (t − s0, x

+
1 ), t ∈ [s0, s0 + s1);

x+
2 , t = s0 + s1.

Repeating this procedure, we obtain impulsive trajectory with finite or infi-
nite number of impulsive points {x+

n }n≥1 ⊂ X and corresponding moments of time
{sn}n≥0 ⊂ (0,+∞).

If we put

t0 := 0, tn+1 :=
n∑

k=0

sk, n ≥ 0,

then for the case of infinite number of impulses we obtain ∀n ≥ 0 ∀t ∈ [tn, tn+1]

ϕ(t) =
{
V (t − tn, x+

n ), t ∈ [tn, tn+1);
x+
n+1, t = tn+1.

By Kx , we denote the set of all impulsive trajectories which start from the point x .
We assume the following conditions:

∀x ∈ X every trajectory ϕ ∈ Kx is defined on [0,+∞), (9.8)

i.e., for every impulsive trajectory, the number of impulsive points is either no more

than finite or
∞∑

k=0
sk = ∞.
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We put

∀x ∈ X ∀t ≥ 0 G(t, x) = {ϕ(t)|ϕ ∈ Kx }. (9.9)

It is easy to show that G : R+ × X → P(X) satisfies conditions of Definition 1. So,
(9.9) defines a MDS which will be called impulsive MDS.

In all further arguments, we shall say that the problem (9.4), (9.5) generates an
impulsive MDS (according to the rule (9.9) if the conditions (9.6)–(9.8) are satisfied.

9.3 The Main Results

Consider a tripleV ⊂ H ⊂ V ∗ ofHilbert spaceswith compact and dense embedding.
Denote by ‖ · ‖ and (·, ·), respectively, the norm and scalar product in H . Let ‖ · ‖V
be a norm in V and

∃α > 0 ∀u ∈ V ‖u‖2 ≤ α‖u‖2V .

Consider a linear continuous self-adjoint operator A : V → V ∗ such that

∃β > 0 ∀u ∈ V 〈Au, u〉 ≥ β‖u‖2V .

We consider the problem
dy

dt
= −Ay, t > 0. (9.10)

The corresponding semigroup V : R+ × H �→ H is defined by the formula

∀ y0 =
∞∑

i=1

ciψi ∈ H V (t, y0) = y(t) =
∞∑

i=1

ci e
−λi tψi ,

where {ψi }, {λi } are solutions of the spectral problem

∀i ≥ 1 Aψi = λiψi , 0 < λ1 ≤ λ2 ≤ . . . , λi → ∞, i → ∞.

The semigroup V has trivial global attractor {0}. As it was shown in [10] that an
arbitrary small impulsive perturbation can destroy global attractor. More precisely,
let us consider impulsive parameters

M = {y ∈ H | ‖y‖ = ε} , I y = (1 + μ)y, ε > 0, μ > 0. (9.11)

Lemma 2 ([10, 11]) For every ε > 0, μ > 0 the problem (9.10), (9.11) generates
an impulsive DS, which is dissipative but does not possess global attractor in the
phase space H.
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In [10], existence of global attractor was proved for the impulsive parameters

M =
{
y ∈ H | (y,ψ1) = a

}
, I : M �→ H,

I
( ∞∑

i=1

ciψi

)
= (1 + μ)c1ψ1 +

∞∑

i=2

ciψi

in both linear and weakly nonlinear cases. In the present chapter, our aim was to
extend this result to the following case: for fixed p ≥ 1, {αi }pi=1 ⊂ (0,+∞), a >

0, μ > 0,

M =
{
y =

∞∑

i=1

ciψi ∈ H | ∀i = 1, p ci ≥ 0,
p∑

i=1

αi ci = a
}
, (9.12)

I : M → P(H) and f or y =
∞∑

i=1

ciψi ∈ M

Iy =
{ p∑

i=1

c′iψi +
∞∑

i=p+1

ciψi | ∀i = 1, p c′i ≥ 0,
p∑

i=1

αi c
′
i = a(1 + μ)

}
. (9.13)

The followingLemmacan be proved bydirect calculationswith the help of explicit
formula of semigroup V .

Lemma 3 For every p ≥ 1, {αi }pi=1 ⊂ (0,+∞), a > 0, μ > 0, the impulsive prob-
lem (9.10), (9.12), (9.13) generates an impulsiveMDSG : R+ × H �→ P(H), which
has global attractor Θ .

Moreover,
∀t ≥ 0 G(t,Θ \ M) ⊂ Θ \ M, (9.14)

and the following equality takes place:

Θ =
{ p∑

i=1

ci e
−λi τψi | τ ∈ [0, τ ], ci ≥ 0,

p∑

i=1

αi ci e
−λi τ = a,

p∑

i=1

αi ci = a(1 + μ)
}
.

(9.15)

Remark 9.2 Note that if in (9.15) numbers ci ≥ 0 are such that
∑p

i=1 αi ci =
a(1 + μ), then the moment of time τ is uniquely determined by the equality∑p

i=1 αi ci e−λi τ = a.

The main result of the paper was to prove the existence of global attractor for
weakly nonlinear case when there is no explicit formula of solutions.
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We consider the following nonlinear problem

dy

dt
+ Ay = ε · f (y), t > 0, (9.16)

where ε > 0 is a small parameter and Lipschitz-continuous nonlinear term f : H �→
H satisfies the following assumption:

∃C > 0 ∀y ∈ H ‖ f (y)‖ ≤ C. (9.17)

It is well known that under such conditions for every y0 ∈ H, ε > 0 there exists
a unique (mild) solution y of (9.16) with y(0) = y0. Therefore, the problem (9.16)
generates the continuous semigroup Vε : R+ × H → H .

Moreover, if εn → ε0, y(n)(t) = Vεn (t, y
(n)
0 ), y(t) = Vε0(t, y0), then ∀T > 0 we

have the following regularity result [21]:

if y(n)
0 → y0 in Hw, then ∀ τ > 0 y(n) → y in C([0, T ]; Hw) ∩ C([τ , T ]; H),

(9.18)

if y(n)
0 → y0 in H, then y(n) → y in C([0, T ]; H), (9.19)

where Hw is the space H with weak topology.
The main result of the paper is the following theorem.

Theorem 9.1 For sufficiently small ε > 0, the impulsive problem (9.16), (9.12),
(9.13) generates an impulsive MDS Gε : R+ × H �→ P(H), which has a global
attractor Θε.

Moreover,

dist (Θε,Θ) → 0, ε → 0, (9.20)

where Θ is given by (9.15).

Remark 9.3 In all further arguments, the phrase “for sufficiently small ε” means that
there exists ε1 > 0 which depends only on the parameters of the problem (9.16),
(9.12), (9.13) such that some property fulfilled for every ε ∈ [0, ε1].
Proof First of all, we must verify conditions (9.6)–(9.8). Let us consider some prop-
erties of solutions of (9.16). For every solution y and for a.a. t > 0, we have

1

2

d

dt
‖y(t)‖2 + 〈Ay(t), y(t)〉 = ε( f (y(t)), y(t)). (9.21)

Then for sufficiently small ε from (9.17) and Gronwall Lemma, we deduce

∀t ≥ s ≥ 0 ‖y(t)‖2 ≤ ‖y(s)‖2e− β
α (t−s) + 1. (9.22)
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Every solution y also satisfies the following equality: ∀i ≥ 1 ∀t ≥ 0

(y(t),ψi ) = e−λi t (y0,ψi ) + ε

∫ t

0
e−λi (t−τ )( f (y(τ )),ψi )dτ (9.23)

From the definition of the setM and themap I , we immediately obtain (9.6). To verify
(9.7), we take an arbitrary y0 ∈ M , an arbitrary solution y of (9.16) with y(0) = y0
and consider the function

gε(t) =
p∑

i=1

αi e
−λi t (y0,ψi ) + ε

∫ t

0

p∑

i=1

αi e
−λi (t−τ )( f (y(τ )),ψi )dτ .

As for some τ0 = τ0(y0) > 0, we have

∀t ∈ (0, τ0) g0(t) < a − aλ1

2
t,

then for t ∈ (0, τ0)

gε(t) < a − aλ1

2
t + εC ·

p∑

i=1

αi t. (9.24)

So for sufficiently small ε > 0 we obtain

∃τ = τ (ε, y0) ∀t ∈ (0, τ ) gε(t) �= a. (9.25)

Let us prove property (9.8). It is obvious if y does not intersect M . To investigate the
other situation, we take an arbitrary solution y with y(0) = y0 ∈ I M . First of all let
us show that y intersects M . For this aim we consider the function

F(ε, t) =
p∑

i=1

αi e
−λi t (y0,ψi ) − a + ε

∫ t

0

p∑

i=1

αi e
−λi (t−τ )( f (y(τ )),ψi )dτ .

As

g0(0) = a(1 + μ), g′
0(t) = −

p∑

i=1

αiλi e
−λi t (y0,ψi ) < 0 ∀ t ≥ 0, lim

t→∞ g0(t) = 0,

so there exists s0 > 0 such that F(0, s0) = 0. Due to conditions on f , the function

(−1, 1) × (0,+∞) � (ε, t) �→ F(ε, t)

is continuous on the first variable and has continuous derivative on the second vari-
able. Moreover, the following estimates take place
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|F(ε, s0) − F(0, s0)| ≤ εC1,

∣
∣
∣
∣F(ε, t

′
) − F(ε, t

′′
) − ∂F

∂t
(0, s0)(t

′ − t
′′
)

∣
∣
∣
∣ ≤ C2

(
|t0 − t

′ | + |t0 − t
′′ | + ε

) ∣
∣
∣t

′ − t
′′ ∣∣
∣ ,

where positive constants C1,C2 depend only on parameters of the problem (9.16).
Therefore, from the Implicit Value Theorem for sufficiently small ε there exists
sε = sε(y0) > 0 such that F(ε, sε) = 0. The last equality means that y(sε) ∈ M .
Without loss of generality, we can assume that

∀t ∈ (0, sε) y(t) /∈ M, y(sε) ∈ M.

Let us give an estimation for sε. Using (9.23), we get

a =
p∑

i=1

αi e
−λi sε(y0,ψi ) + ε

∫ sε

0

p∑

i=1

αi e
−λi (sε−τ )( f (y(τ )),ψi )dτ ≤

p∑

i=1

αi‖y0‖ · e−λ1sε + εC
p∑

i=1

αi

λi
.

So for sufficiently small ε, we have

sε ≤ 1

λ1
ln

2‖y0‖
p∑

i=1
αi

a
. (9.26)

Using again (9.23), we obtain

a =
p∑

i=1

αi e
−λi sε(y0,ψi ) + ε

∫ sε

0

p∑

i=1

αi e
−λi (sε−τ )( f (y(τ )),ψi )dτ ≥

e−λpsεa(1 + μ) − aμ

2
.

Therefore,

sε ≥ 1

λp
ln(1 + μ′), μ′ = μ

2 + μ
. (9.27)

From (9.27), we get the required property.
It is important to note that the previous arguments guarantee that from every initial

point y(0) = y0 ∈ I M starts at least one trajectory with infinite number of impulsive
perturbations.

Properties (9.6)–(9.8) guarantee that for sufficiently small ε formula

Gε(t, y0) = {y(t) | y(·) ∈ K ε
y0} (9.28)
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generates an impulsive MDS, where K ε
y0 is a set of all solutions of (9.16), (9.12),

(9.13) with initial point y0.
Let us prove the dissipativity condition for impulsive MDS (9.28). If y ∈ K ε

y0 ,‖y0‖ ≤ R does not intersect M then from (9.22)

‖y(t)‖ ≤ √
2 ∀t ≥ T = 2α

β
ln R. (9.29)

If for some τ > 0 y(t) /∈ M ∀t ∈ (0, τ ), y(τ ) ∈ M then from (9.26) follows

τ ≤ 1

λ1
ln

2R
p∑

i=1
αi

a
(9.30)

Thus, it is enough to prove the following property for sufficiently small ε:

∃R0 > 0 ∀R > 0 ∃T = T (R) > 0 ∀y0 ∈ I M, ‖y0‖ ≤ R,

∀y ∈ K ε
y0 ∀t ≥ T ‖y(t)‖ ≤ R0. (9.31)

Without loss of generality in all further arguments, we assume that if y0 ∈ I M
then y ∈ K ε

y0 has an infinite number of impulsive points.
So for given y ∈ K ε

y0 with y0 ∈ I M , ‖y0‖ ≤ R from (9.27), there are {si }∞i=0 such
that y(·) has jumps at the moments {s0, s0 + s1, . . .} with impulsive points {y+

i }∞i=1
and ∀i ≥ 0 si ≥ 1

λp
ln(1 + μ′).

Let

Vε(s0, y0) = y(s0 − 0) =
p∑

i=1

ciψi +
∞∑

i=p+1

ciψi ,

‖y(s0 − 0)‖2 =
∞∑

i=1

c2i ≤ ‖y0‖2e−δs0 + 1, δ = β

α
> 0,

y(s0) = y+
1 =

p∑

i=1

c
′
iψi +

∞∑

i=p+1

ciψi .

Using inequality

∀ i = 1, p c
′
i ≤ a(1 + μ)

κ
, κ := min

1≤i≤p
αi > 0,

we get for k ≥ 1
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‖y(
k∑

i=0

si − 0)‖2 ≤ ‖y0‖2e
−δ

k∑

i=0
si + p

(1 + μ)2

κ2
a2(e−δsk + . . . + e−δ(sk+...+s1))+

(9.32)
e−δsk + . . . + e−δ(sk+...+s1) + 1

‖y+
k+1‖2 ≤ ‖y0‖2e

−δ
k∑

i=0
si + (p

(1 + μ)2

κ2
a2 + 1)(e−δsk + . . . + e−δ(sk+...+s1) + 1)

(9.33)
Using (9.27), from (9.32), (9.33) we get

∃T = T (R) ∀t ≥ T ‖y(t)‖2 ≤ 1 + (p (1+μ)2

κ
2 a2 + 1)

1 − (1 + μ′
)
− β

α·λp
:= R0 (9.34)

Finally, let us prove that Gε is asymptotically compact. Let {y(n)
0 } be an arbitrary-

bounded sequence of initial data, ‖y(n)
0 ‖ ≤ R, ξn ∈ Gε(tn, y

(n)
0 ), tn ↗ +∞. Then,

ξn = yn(tn), where yn ∈ K ε
y(n)
0

. If yn does not intersect M , then ∀ t ≥ 0 yn(t) =
Vε(t, y

(n)
0 ). So

ξn = yn(tn) = Vε(1, yn(tn − 1)).

From (9.22) we obtain

‖yn(tn − 1)‖ ≤ √
2 ∀n ≥ N (R).

Therefore from (9.18) the sequence {ξn} is precompact in H . If the function yn
intersects M at the first time at a point τn , then from (9.26) sequence τn is bounded
and {Vε(τn, y

(n)
0 )} is also bounded in H . So from the inequality

∀ y ∈ M ∀y+ ∈ I y ‖y+‖2 ≤ pa2
(1 + μ)2

κ2
+ ‖y‖2, (9.35)

it will be enough to prove the precompactness of the sequence {ξn} ⊂ H , where

ξn ∈ G̃ε(tn, zn), tn ↗ ∞, zn ∈ I M, ‖zn‖ ≤ R.

Let ξn = yn(tn), yn ∈ K ε
zn , {T (n)

i+1 =
i∑

k=0
s(n)
k }∞i=0 be the impulse moments for yn(·),

{η(n)+
i }∞i=1 be the corresponding impulsive points.
Firstly, we want to prove the precompactness of {η(n)+

i }. Due to boundness of f ,
we deduce from the Uniform Gronwall Lemma [20] that ∀r > 0 ∀ y0 ∈ H

β‖Vε(r, y0)‖2V ≤ ‖y(0)‖2 + 1

r
+ C2r + α

β
C2. (9.36)
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For the sequence yn from (9.22) and (9.34), we deduce that there exists c =
c(R) > 0 such that

∀t ≥ 0 ∀n ≥ 1 ‖yn(t)‖ ≤ c(R). (9.37)

Using the inequality

∀ y ∈ M ∩ V ∀ y+ ∈ I y ‖y+‖2V ≤ pλpa
2 (1 + μ)2

κ2
+ ‖y‖2V ,

from (9.26), (9.27), and (9.36), we deduce ∀i ≥ 1 ∀n ≥ 1

‖η(n)+
i ‖2V = ‖yn(T n

i )‖2V ≤ pλpa
2 (1 + μ)2

κ2
+

+ 1

β

( (c2(R) + 1)

ln(1 + μ′
)

λp + c21 · 1

λ1
ln

2c(R)
p∑

i=1
αi

a
+ α

β
c21

)
(9.38)

As the embedding V ⊂ H is compact, we obtain the required precompactness of
{η(n)+

i } in H . As for every sufficiently large n, there exists a number i = i(n) ≥ 1,
i(n) → ∞, n → ∞ such that

tn ∈ [T (n)

i(n), T
(n)

i(n)+1),

so (9.19) provides precompactness of {ξn = yn(tn)}. Therefore, according to Lemma
1 and dissipativity estimate (9.34), impulsive MDS Gε has global attractor Θε =
ωε(B0), where dissipativity set B0 does not depend on ε. Let us prove the limit
equality (9.20). For this purpose, it is enough to prove that for εn → 0, ξ(n) ∈ Θεn

on some subsequence
ξ(n) → ξ ∈ Θ in H, n → ∞. (9.39)

There exist sequences {tn ↗ ∞}, {zn} ⊂ B0, yn ∈ K εn
zn such that

∀ n ≥ 1 ‖ξ(n) − yn(tn)‖ ≤ 1

n
.

From previous arguments, we have for ξn = yn(tn)

ξn = Vεn (τn, η
+
n ),

where

τn = tn − T (n)+
i(n) , η+

n = η(n)+
i(n) , i(n) → ∞, n → ∞.
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Moreover, from (9.19) we can claim that

τn → τ ∈ [0, τ̄ ], η+
n → η, ξn → ξ = V (τ , η) in H.

Using (9.23), (9.27) and “nonimpulsive” character of coordinates c j (t), j ≥ p +
1 of every impulsive trajectory, we deduce

∀ j ≥ p + 1 (η+
n ,ψ j ) → 0, n → ∞.

Therefore, ξ ∈ Θ and theorem is proved.

Remark 9.4 It is also possible to prove invariance property (9.14) for the global
attractor Θε. It will be done in our forthcoming paper.
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Chapter 10
A Random Model for Immune Response
to Virus in Fluctuating Environments

Yusuke Asai, Tomás Caraballo, Xiaoying Han and Peter E. Kloeden

Abstract In this work, we study a model for virus dynamics with a random immune
response and a random production rate of susceptible cells from cell proliferation.
In traditional models for virus dynamics, the rate at which the viruses are cleared by
the immune system is constant, and the rate at which susceptible cells are provided is
constant or a function depending on the population of all cells. However, the human
body in general is never stationary, and thus, these rates can barely be constant. Here,
we assume that the human body is a random environment and models the rates by
random processes, which result in a system of random differential equations.We then
analyze the long-term behavior of the random system, in particular the existence and
geometric structure of the random attractor, by using the theory of random dynamical
systems. Numerical simulations are provided to illustrate the theoretical result.
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10.1 Introduction

Basic models for virus dynamics were introduced in the classic text by May and
Nowak [12]. The assumption for simplest models is that the body is modeled as a
“well-stirred” chemostat containing the virus and two kinds of cells, uninfected but
susceptible cells and cells infected by virus. In a chemostat, microorganisms grow
by feeding on nutrients in the culture vessel and are flushed out to the collecting
vessel. Similarly in the human body, the virus grows from dead infected cells and is
cleared by the immune system.Modeling chemostats by systems of non-autonomous
or randomdifferential equations is fully justified (see, e.g., [6, 7]), as the environment
for a chemostat usually varies in time (either deterministically or randomly). Using
the argument that the human body also varies in time, we will model the virus
dynamics by a system of random differential equations in this work.

Denote by v the population size of free virus, x the population size of uninfected
cells (food for virus), and y the population size of infected cells. First, uninfected
cells are produced by cell proliferation at a constant rate Λ, live for an average
lifetime, and die at an average death rate γ1. Second, virus infects susceptible cells
to produce infected cells, with an “efficiency,” β. Since cells are infected by contact
with viruses, the infection can be modeled as a simple mass action reaction

x + v
β−→ y.

Third, infected cells die at an average rate γ2 and release new viruses at a rate κ . At
the same time, these viruses are cleared by the immune system at a rate α. Then, we
arrive at the basic model of virus dynamics:

dx(t)

dt
= Λ − γ1x − βxv, (10.1)

dy(t)

dt
= βxv − γ2y, (10.2)

dv(t)

dt
= κy − αv. (10.3)

The ordinary differential equation system (10.1)–(10.3) can be used to describe the
dynamics of various types of virus and healthy and infected cells, butwith limitations.
First, the model assumes that the contribution of the immune response (to the death
of infected cells or free virus and to reducing the rate of infection of new cells) is
constant over time. Second, the dynamics of the susceptible cell population assumes
a constant production rate from a pool of precursors. These assumptions may be
justified for stationary environments, within a short term of time span. However,
in the long term, the human body is never a stationary environment—it varies over
time in principle, and hence, system (10.1)–(10.3) is not adequate to explain the real
dynamic of virus and the immune response.
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In this work, we will assume that the human body is a random environment that
varies randomly with respect to time. Due to this random variation, the contribu-
tion of the immune response and the production rate of susceptible cells from cell
proliferation will also fluctuate randomly with respect to time. More precisely, we
assume that parameters Λ and α are perturbed by real noise, i.e., Λ = Λ(θtω) and
α = α(θtω) are continuous and essentially bounded:

Λ(θtω) ∈ λ · [1 − δ1, 1 + δ1], λ > 0, 0 < δ1 < 1, (10.4)

α(θtω) ∈ a · [1 − δ2, 1 + δ2], a > 0, 0 < δ2 < 1. (10.5)

Then, system (10.1)–(10.3) becomes

dx(t, ω)

dt
= Λ(θtω) − γ1x − βxv, (10.6)

dy(t, ω)

dt
= βxv − γ2y, (10.7)

dv(t, ω)

dt
= κy − α(θtω)v, (10.8)

where γ1, γ2, β, κ are positive constants and Λ(θtω) and α(θtω) are defined as in
(10.4) and (10.5), respectively.

Bounded noise can be modeled in various ways. For example in [2], given a sto-
chastic process Zt such as Ornstein–Uhlenbeck (OU) process, the stochastic process

ζ(Zt) := ζ0

(
1 − 2ε

Zt
1 + Z2

t

)
, (10.9)

where ζ0 and ε are positive constants with ε ∈ (0, 1), takes values in the interval
ζ0[1 − ε, 1 + ε] and tends to peak around ζ0(1 ± ε). It is thus suitable for a noisy
switching scenario. In another example, the stochastic process

η(Zt) := η0

(
1 − 2ε

π
arctan Zt

)
, (10.10)

where η0 and ε are positive constants with ε ∈ (0, 1), takes values in the interval
η0[1 − ε, 1 + ε] and is centered on η0. In the theory of random dynamical systems,
the driving noise process Zt(ω) is replaced by a canonical driving system θtω. This
simplification allows a better understanding of the pathwise approach tomodel noise:
A system influenced by stochastic processes for each single realization ω can be
interpreted as wandering along a path θtω in Ω and thus may provide additional
statistical information to the modeler.

In this paper, we will study the properties of solutions to (10.6)–(10.8). In par-
ticular, we are interested in the long-term behavior of solutions to (10.6)–(10.8),
characterized by a global random attractor. The rest of the paper is organized as
follows. In Sect. 10.2, we provide preliminaries on the theory of random dynamical
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systems. In Sect. 10.3, we prove the existence and uniqueness of a positive bounded
solution to (10.6)–(10.8) and show that the solution generates a random dynamical
system. In Sect. 10.4, we prove the existence and uniqueness of a global random
attractor to the random dynamical system generated by the solution to (10.6)–(10.8)
and also investigate the conditions under which the global random attractor consists
of a singleton axial solution (endemic), or non-trivial component sets (pandemic).
Numerical simulations are provided in Sect. 6, to illustrate the conditions for the
endemic and pandemic of system (10.6)–(10.8).

10.2 Preliminaries on Random Dynamical Systems

In this section, we first present some concepts (from [1]) related to general random
dynamical systems (RDSs) and random attractors that we require in the sequel. Our
situation is, in fact, somewhat simpler, but to facilitate the reader’s access to the
literature, we give more general definitions here.

Let (X, ‖ · ‖X) be a separable Banach space, and let (Ω,F , ¶) be a probability
space whereF is the σ−algebra of measurable subsets ofΩ (called “events”) and ¶
is the probability measure. To connect the state ω in the probability space Ω at time
0 with its state after a time of t elapses, we define a flow θ = {θt}t∈R on Ω with each
θt being a mapping θt : Ω → Ω that satisfies

(1) θ0 = IdΩ ,
(2) θs ◦ θt = θs+t for all s, t ∈ R,
(3) the mapping (t, ω) �→ θtω is measurable, and
(4) the probability measure ¶ is preserved by θt , i.e., θt¶ = ¶.

This setup establishes a time-dependent family θ that tracks the noise, and
(Ω,F , ¶, θ) is called a metric dynamical system [1].

Definition 10.1 A stochastic process {S(t, ω)}t≥0,ω∈Ω is said to be a continuous
RDS over (Ω,F ,P, (θt)t∈R) with state space X if S : [0,+∞) × Ω × X → X is
(B[0,+∞) × F × B(X), B(X))-measurable and for each ω ∈ Ω ,

(1) the mapping S(t, ω) : X → X, x �→ S(t, ω)x is continuous for every t ≥ 0;
(2) S(0, ω) is the identity operator on X;
(3) (cocycle property) S(t + s, ω) = S(t, θsω)S(s, ω) for all s, t ≥ 0.

Definition 10.2 (1) A set-valued mapping B : ω → 2X\∅ is said to be a random set
if the mapping ω �→ distX(x,B(ω)) is measurable for any x ∈ X.

(2) A random set B(ω) is said to be bounded if B(ω) is bounded for a.e. ω ∈ Ω;
a random set B(ω) is said to be compact if B(ω) is compact for a.e. ω ∈ Ω; a
random set is said to be closed if B(ω) is closed for a.e. ω ∈ Ω .
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(3) A bounded random set B(ω) ⊂ X is said to be tempered with respect to (θt)t∈R
if for a.e. ω ∈ Ω ,

lim
t→∞ e−βt sup

x∈B(θ−tω)

‖x‖X = 0, for all β > 0;

a random variable ω �→ r(ω) ∈ R is said to be tempered with respect to (θt)t∈R
if for a.e. ω ∈ Ω ,

lim
t→∞ e−βt sup

t∈R
|r(θ−tω)| = 0, for all β > 0.

In what follows, we useD(X) to denote the set of all tempered random sets of X.

Definition 10.3 A random set K(ω) ⊂ X is called a random absorbing set in D(X)

if for any B ∈ D(X) and a.e. ω ∈ Ω , there exists TB(ω) > 0 such that

S(t, θ−tω)B(θ−tω) ⊂ K(ω), ∀t ≥ TB(ω).

Definition 10.4 Let {S(t, ω)}t≥0,ω∈Ω be an RDS over (Ω,F ,P, (θt)t∈R) with state
space X, and letA (ω)(⊂ X) be a random set. Then,A (ω) is called a global random
D attractor (or pullback Δ attractor) for {S(t, ω)}t≥0,ω∈Ω if ω �→ A (ω) satisfies

(1) (random compactness) A (ω) is a compact set of X for a.e. ω ∈ Ω;
(2) (invariance) for a.e. ω ∈ Ω and all t ≥ 0, it holds

S(t, ω)A (ω) = A (θtω);
(3) (attracting property) for any B ∈ D(X) and a.e. ω ∈ Ω ,

lim
t→∞ distX(S(t, θ−tω)B(θ−tω),A (ω)) = 0,

where
distX(G,H) = sup

g∈G
inf
h∈H

‖g − h‖X

is the Hausdorff semimetric for G,H ⊆ X.

Proposition 10.1 ([5, 9, 10]) Let B ∈ D(X) be an absorbing set for the con-
tinuous random dynamical system {S(t, ω)}t≥0,ω∈Ω which is closed and satisfies
the asymptotic compactness condition for a.e. ω ∈ Ω , i.e., each sequence xn ∈
S(tn, θ−tn ,B(θ−tnω)) has a convergent subsequence in X when tn → ∞. Then, the
cocycle S has a unique global random attractor with component subsets

A (ω) =
⋂

τ≥tB(ω)

⋃

t≥τ

S(t, θ−tω)B(θ−tω).
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If the pullback absorbing set is positively invariant, i.e., S(t, ω)B(ω) ⊂ B(θtω) for
all t ≥ 0, then

A (ω) =
⋂

t≥0

S(t, θ−tω)B(θ−tω).

For state space X =R
d as in this paper, the asymptotic compactness follows trivially.

Note that the random attractor is pathwise attracting in the pullback sense, but need
not be pathwise attracting in the forward sense, although it is forward attracting in
probability, due to some possible large deviations (see, e.g., Arnold [1].

When the cocycle mapping is strictly uniformly contracting [8, 11], i.e., there
exists K > 0 such that

‖S(t, ω)x0 − S(t, ω)y0‖X ≤ e−Kt ‖x0 − y0‖X
for all t ≥ 0, ω ∈ Ω , and x0, y0 ∈ X, then the random attractor consists of singleton
subsetsA (ω) = {A(ω)}. It is thus essentially a single stochastic process with sample
pathsA(θtω) for all t ∈R. The proof uses a Cauchy sequence rather than compactness
argument. In this case, the random attractor is pathwise attracting in both the pullback
and forward senses.

10.3 Properties of Solutions

In this section, we will prove the existence, uniqueness, and boundedness of positive
solutions to (10.6)–(10.8). In addition, we prove that the solution generates a random
dynamical system. Denote by

R
3
+ = {(x, y, v) ∈ R

3 : x ≥ 0, y ≥ 0, v ≥ 0},

and for simplicity, we write u(t, ω) = (x(t, ω), y(t, ω), v(t, ω))T .

Theorem 10.1 For anyω ∈ Ω , t0 ∈ R, and initial data u0 = (x(t0), y(t0), v(t0))T ∈
R

3+, system (10.6)–(10.8) has a unique nonnegative bounded solution u(·; t0, ω,u0)
∈ C

([t0,∞),R3+
)
, with u(t0; t0, ω,u0) = u0. Moreover, the solution generates a

random dynamical system ϕ(t, ω)(·) defined as

ϕ(t, ω)u0 = u(t; 0, ω,u0), ∀ t ≥ 0, u0 ∈ R
3
+, ω ∈ Ω.

Proof Write

L(θtω) =
⎛

⎝
−γ1 0 0
0 −γ2 0
0 κ −α(θtω)

⎞

⎠ and f (θtω, u) =
⎛

⎝
Λ(θtω) − βxv

βxv
0

⎞

⎠ ,
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then Eqs. (10.6)–(10.8) become

du(t, ω)

dt
= L(θtω)u + f (θtω, u). (10.11)

First, since α(θtω) is bounded, the operator L generates an evolution system on R
3.

Second, since Λ(θtω) is continuous with respect to t, function f is continuous with
respect to t and locally Lipschitz with respect to u. Hence, system (10.11) has a
unique local solution u(·; t0, ω, u0) ∈ C

([t0,T),R3
)
.

By continuity of solutions, each solution has to take value 0 before it reaches a
negative value. Notice that

dx(t, ω)

dt

∣
∣
∣
∣
x=0,y≥0,v≥0

= Λ(θtω) > 0,

dy(t, ω)

dt

∣
∣
∣
∣
x≥0,y=0,v≥0

= βxv ≥ 0,

dv(t, ω)

dt

∣
∣
∣
∣
x≥0,y≥0,v=0

= κy ≥ 0,

we have x(t) strictly increasing at x = 0, y(t) and v(t) and non-decreasing at y = 0
and v = 0, respectively. This implies that u(t) ∈ R

3+ for t ∈ [t0,T).
For u(t) ∈ R

3+, define

‖u(t)‖1 := x(t) + y(t) + v(t).

Let s(t) = 2κx(t) + 2κy(t) + γ2v(t), then

‖u(t)‖1 ≤ s(t)

min{2κ, γ2} .

On the other hand by (10.6)–(10.8), we have

ds(t, ω)

dt
= 2κΛ(θtω) − 2κγ1x − κγ2y − γ2α(θtω)v

≤ 2κλ(1 + δ1) − 2κγ1x − κγ2y − γ2a(1 − δ2)v

≤ 2κλ(1 + δ1) − μ1s(t), (10.12)

where
μ1 = min{γ1, γ2/2, a(1 − δ2)} > 0. (10.13)

For s(t0) ≥ 2κλ(1 + δ1)/μ1, s(t) will be non-increasing for t ≥ t0, and thus, s(t) ≤
s(t0). Otherwise, for s(t0) ≤ 2κλ(1 + δ1)/μ1, s(t) will stay ≤ 2κλ(1 + δ1)/μ1. In
summary,
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0 ≤ ‖u‖1 ≤ s(t)

min{2κ, γ2} ≤ max{2κx(t0) + 2κy(t0) + γ2v(t0), 2κλ(1 + δ1)/μ1}
μ2

,

where
μ2 = min{2κ, γ2}. (10.14)

This implies that system (10.11) has a unique positive and bounded global solution
u(·; t0, ω, u0) ∈ R

3+.
It is straightforward to check that

u(t + t0; t0, ω, u0) = u(t; 0, θt0ω, u0)

for all t0 ∈ R, t ≥ t0, ω ∈ Ω , and u0 ∈ R
3+. This allows us to define a mapping

ϕ(t, ω)(·):

ϕ(t, ω)u0 = u(t; 0, ω, u0), ∀t ≥ 0, u0 ∈ R
3
+, ω ∈ Ω. (10.15)

From now on, we will simply write u(t;ω, u0) instead of u(t; 0, ω, u0).
For any u0 ∈ R

3+, solution u(·;ω, u0) ∈ R
3+ for t ∈ [0,∞). Since function

f (u, θtω) = f (u, t, ω) is continuous in u, t, and is measurable in ω, u : [0,∞) ×
Ω × R

3+ → R
3+, (t;ω, u0) �→ u(t;ω, u0) is (B[0,∞) × F0 × B(R3+),B(R3+))-

measurable. It then follows directly that (10.11) generates a continuous random
dynamical system ϕ(t, ω)(·) defined by (10.15). This completes the proof.

10.4 Existence and Geometric Structure of Global Random
Attractors

In this section, we will first prove the existence of a global random attractor for
the random dynamical system {ϕ(t, ω)}t≥0,ω∈Ω . In addition, we will investigate the
geometric structure of this random attractor.

Theorem 10.2 The random dynamical system generated by system (10.11) pos-
sesses a unique global random attractor A = {A(ω) : ω ∈ Ω}.
Proof We first prove that forω ∈ Ω , there exists a tempered bounded closed random
absorbing setK(ω) ∈ Δ(R3+) of the random dynamical system {ϕ(t, ω)}t≥0,ω∈Ω such
that for any B ∈ Δ(R3+) and each ω ∈ Ω , there exists TB(ω) > 0 yielding

ϕ(t, θ−tω)B(θ−tω) ⊂ K(ω) ∀t ≥ TB(ω).

In fact, recall that u(t;ω, u0) = ϕ(t, ω)u0 denotes the solution of system (10.11)
satisfying u(0;ω, u0) = u0. Then, for any u0 := u0(θ−tω) ∈ B(θ−tω),
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‖ϕ(t, θ−tω)u0‖1 = ‖u(t; θ−tω, u0(θ−tω))‖1 ≤ 1

μ2
· s(t; θ−tω, s0(θ−tω)).

Using inequality (10.12) and substituting ω by θ−tω, we obtain

s(t; θ−tω, s0(θ−tω)) s0 ≤ e−μ1t + 2κλ(1 + δ1)

μ1

≤ e−μ1t sup
(x,y,v)∈B(θ−tω)

(2κx + 2κy + γ2v) + 2κλ(1 + δ1)

μ1
.

Therefore, for any ε > 0, and u0 ∈ B(θ−tω), there exists TB(ω) such that when
t > TB,

‖ϕ(t, θ−tω)u0‖1 ≤ 1

μ2
· s(t; θ−tω, s0(θ−tω))

≤ 1

μ2
· 2κλ(1 + δ1)

μ1
+ ε,

Define

Kε(ω) =
{

(x, y, v) ∈ R
3+ : x + y + v ≤ 1

μ2
· 2κλ(1 + δ1)

μ1
+ ε

}

. (10.16)

Then, Kε(ω) is positively invariant and absorbing in R3+.
It follows directly from Proposition 10.1 that the random dynamical system gen-

erated by system (10.6)–(10.8) possesses a random attractor A = {A(ω) : ω ∈ Ω},
consisting of non-empty compact random subsets of R3+ contained in Kε(ω). This
completes the proof.

Next, we will investigate the details of the random attractor A .

Theorem 10.3 The random pullback attractorA = {A(ω) : ω ∈ Ω} for the random
dynamical system generated by system (10.6)–(10.8) has singleton component sets
A(ω) = {(x∗(ω), 0, 0)} for every ω ∈ Ω , provided that

κ

γ2
≤ 1 and

βλ(1 + δ1)

μ1a(1 − δ2)
< 1. (10.17)

Proof Summing (10.7) and (10.8), we obtain

d(y + v)

dt
= −(γ2 − κ)y − (α(θtω) − βx)v.

Recall that due to (10.16), for any ε > 0, there exists TB(ω) such that when t > TB,

x(t) ≤ ‖u(t)‖1 ≤ 1

μ2
· 2κλ(1 + δ1)

μ1
+ ε.
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Bydefinition ofμ2 in (10.14),wehave that 2κ/μ2 ≤ 1.Then, picking ε small enough,
we have

α(θtω) − βx > α(1 − δ2) − β · 1

μ2
· 2κλ(1 + δ1)

μ1

≥ α(1 − δ2) − β · λ(1 + δ1)

μ1
> 0,

which implies that y + v decreases to 0 as t approaches ∞.
Letting y = v = 0 in Eq. (10.6), we obtain

dx

dt
= Λ(θtω) − γ1x. (10.18)

Solving Eq. (10.18) gives

x(t;ω, x0) = x0e
−γ1t +

∫ t

0
Λ(θsω)eγ1(t−s)ds,

and consequently,

x(t; θ−tω, x0) = x0e
−γ1t +

∫ 0

−t
Λ(θsω)e−γ1sds

t→∞−→
∫ 0

−∞
Λ(θsω)e−γ1sds := x∗(ω).

This completes the proof.

Theorem 10.3 implies that (x∗(θtω), 0, 0) is asymptotically stable as t → ∞,
i.e., endemic occurs when the parameters satisfy (10.17). We next investigate the
conditions under which epidemic occurs.

Theorem 10.4 The random pullback attractorA = {A(ω) : ω ∈ Ω} for the random
dynamical system generated by system (10.6)–(10.8) possesses non-trivial compo-
nent sets which include (x∗(ω), 0, 0) and strictly positive points, provided that

βλ(1 + δ1)

μ1a(1 + δ2)
>

γ2

κ
. (10.19)

Proof First, notice that the Eq. (10.7) is deterministic and implies that the surface
y = β

γ2
xv is invariant. The dynamics of x and v restricted on this invariant surface

satisfy

dx(t, ω)

dt
= Λ(θtω) − γ1x − βxv, (10.20)

dv(t, ω)

dt
= κβ

γ2
xv − α(θtω)v. (10.21)
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Define the region Γε by

Γε :=
{

(x, v) ∈ R
2+ : x ≥ a(1 + δ2)γ2

κβ
+ ε, v ≥ ε,

κ

γ2
x(t) + v(t) ≤ κλ

μ1γ2
(1 + δ1) + ε

}

.

For any (x, v) ∈ Γε, we have

dv

dt
=

(
κβ

γ2
x − α(θtω)

)

v >

(
κβ

γ2
· a(1 + δ2)γ2

κβ
− a(1 + δ2)

)

v ≥ 0.

On the other hand, we have

d

dt

(
κ

γ2
x(t) + v(t)

)

= κ

γ2
Λ(θtω) − γ1

κ

γ2
x − α(θtω)v

≤ κλ

γ2
(1 + δ1) − γ1

κ

γ2
x − a(1 − δ2)v

≤ κλ

γ2
(1 + δ1) − μ1

(
κ

γ2
x(t) + v(t)

)

,

where μ1 is as defined in (10.13). This implies that

κ

γ2
x(t) + v(t) ≤ κλ

μ1γ2
(1 + δ1) + ε

for t large enough. Assumption (10.19) ensures that Γε is a non-empty compact
positive invariant absorbing set, which then ensures the existence of a non-trivial
pullback attractor Aε = {Aε(t) : t ∈ R} in Γε. This completes the proof.

10.5 Numerical Simulations

In this section, we will simulate the system (10.6)–(10.8) numerically and verify
that conditions (10.17) and (10.19) give rise to an endemic state (all infected cells
and viruses are cleared) and a pandemic state (susceptible cells, infected cells, and
viruses coexist) of system (10.6)–(10.8), respectively.

First, we transform the system (10.6)–(10.8) and twoOUprocessesZ1(t) andZ2(t)
into a system of random ordinary differential equation (RODE)–stochastic ordinary
differential equation (SODE) pair [2, 4]:

d

⎛

⎜
⎜
⎜
⎜
⎝

x(t)
y(t)
v(t)
Z1(t)
Z2(t)

⎞

⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎝

Λ(Z1) − γ1x − βxv
βxv − γ2y

κy − α(Z2)ν
θ11 − θ12Z1
θ21 − θ22Z2

⎞

⎟
⎟
⎟
⎟
⎠
dt +

⎛

⎜
⎜
⎜
⎜
⎝

0
0
0

θ13
θ23

⎞

⎟
⎟
⎟
⎟
⎠

dWt .
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The OU processes Z1(t) and Z2(t) can be generated independently, and we solve
only the RODE part, i.e., x, y, and v compartments, of the RODE–SODE system.
The system is assumed to be stiff, and the implicit 1.5-order RODE–Taylor scheme
in [2] is applied here.

In the following simulation, we suppose that the cell proliferation rate Λ(Z1) has
a switching effect and the loss rate of viruses α(Z2) is distributed in a finite interval.
They are randomized by the Eqs. (10.9) and (10.10), respectively, and given by

Λ(Z1) = λ

(

1 − 2δ1
Z1

1 + Z2
1

)

,

α(Z2) = a

(

1 − 2δ2
π

arctan Z2

)

,

which satisfy (10.4) and (10.5).
Initial conditions for x, y, and v compartments are set as x0 = 2 × 105, y0 =

1 × 105, and v0 = 1 × 106. The coefficients for the OU processes are fixed to θ11 =
1, θ12 = 3, θ13 = 0.8, θ21 = 0, θ22 = 1, and θ23 = 0.5 for all examples. We will choose
different set of parameters that satisfy assumption (10.17) or assumption (10.19).

Example 1 In this example, we set the parameters to be γ1 = 0.25, γ2 = 0.5, β =
1 × 10−5, λ = 4 × 104, a= 3, δ1 = 0.45, δ2 = 0.2, and κ = 0.2. Assumption (10.17)
is satisfied by this set of parameters. Figure10.1 shows that the y and v compartments
go to zero after enough amount of time and only x compartment remains nonzero,
which means that the endemic state is achieved for parameters satisfying (10.17).

Fig. 10.1 With parameters
γ1 = 0.25, γ2 = 0.5, β =
1 × 10−5, λ = 4 × 104, a =
3, δ1 = 0.45, δ2 = 0.2, and
κ = 0.2 satisfying
assumption (10.17), both
infected cells and viruses are
cleared; only healthy cells
remain
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Example 2 In this example, we set the parameters to be γ1 = 0.25, γ2 = 0.5, β =
1 × 10−5, λ = 4 × 104, a = 3, δ1 = 0.45, δ2 = 0.2, and κ = 2. Assumption (10.19)
is satisfied by this set of parameters. Figure10.2 shows that x, y, and v all remain
nonzero for a time long enough, which means that the pandemic state is achieved for
parameters satisfying (10.19).

Notice that the only parameter that has different values in Example1 and Exam-
ple2 is κ . This implies that the rate at which virus is generated by dead susceptible
cells is critical. A series of numerical simulations with different parameters were
done to support this argument, among which we picked one more example to present

Fig. 10.2 With parameters
γ1 = 0.25, γ2 = 0.5, β =
1 × 10−5, λ = 4 × 104, a =
3, δ1 = 0.45, δ2 = 0.2, and
κ = 2 satisfying assumption
(10.19), infected cells,
susceptible cells, and viruses
coexist
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Fig. 10.3 With parameters
γ1 = 0.4, γ2 = 0.5, β =
5 × 10−5, λ = 105, a = 5, δ1
= 0.4, δ2 = 0.2, and κ = 0.3
satisfying assumption
(10.17), both infected cells
and viruses are cleared; only
healthy cells remain
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Fig. 10.4 With parameters
γ1 = 0.4, γ2 = 0.5, β =
5 × 10−5, λ = 105, a = 5, δ1
= 0.4, δ2 = 0.2 and κ = 3
satisfying assumption
(10.19), infected cells,
susceptible cells and viruses
coexist
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below. In the following example, the parameters are chosen to be γ1 = 0.4, γ2 = 0.5,
β = 5 × 10−5, λ = 105, a = 5, δ1 = 0.4, and δ2 = 0.2. When κ = 0.3, assumption
(10.17) is satisfied and we obtain an endemic state (see Fig. 10.3). When κ = 3,
assumption (10.19) is satisfied, and we obtain a pandemic state (see Fig. 10.4).
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Chapter 11
Some Aspects Concerning the Dynamics
of Stochastic Chemostats

Tomás Caraballo, María J. Garrido-Atienza
and Javier López-de-la-Cruz

Abstract In this paper, we study a simple chemostat model influenced by white
noise which makes this kind of models more realistic. We use the theory of random
attractors and, to that end, we first perform a change of variable using the Ornstein–
Uhlenbeck process, transforming our stochastic model into a system of differential
equations with random coefficients. After proving that this random system possesses
a unique solution for any initial value, we analyze the existence of random attractors.
Finally, we illustrate our results with some numerical simulations.

11.1 Introduction

Modeling chemostats is a really interesting and important problemwith special inter-
est in mathematical biology, since they can be used to study recombinant problems in
genetically altered microorganisms [12, 13], waste water treatment [9, 17] and play
an important role in theoretical ecology [2, 8, 11, 16, 21–23, 25]. Derivation and
analysis of chemostat models are well documented in [18, 19, 24] and references
therein.

Two standard assumptions for simple chemostat models are as follows: (1) the
availability of the nutrient and its supply rate are fixed and (2) the tendency of the
microorganisms to adhere to surfaces is not taken into account. However, these are
very strong restrictions as the real world is non-autonomous and stochastic, and this
justifies the analysis of stochastic chemostat models.
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Let us first consider one of the simplest chemostat models,

dS

dt
= (S0 − S)D − mSx

a + S
, (11.1)

dx

dt
= x

(
mS

a + S
− D

)

, (11.2)

where S(t) and x(t) denote concentrations of the nutrient and the microbial biomass,
respectively; S0 denotes the volumetric dilution rate, a is the half-saturation constant,
D is the dilution rate, andm is the maximal consumption rate of the nutrient and also
the maximal specific growth rate of microorganisms. We notice that all parameters
are positive and we use a function Holling type-II as functional response of the
microorganism describing how the nutrient is consumed by the species (see [20] for
more details and biological explanations about this model).

However, we can consider a more realistic model by introducing a white noise
in one of the parameters; therefore, we replace the dilution rate D by D + αẆ (t),
where W (t) is a white noise, i.e., is a Brownian motion, and α ≥ 0 represents the
intensity of noise. Then, system (11.1) and (11.2) is replaced by the following system
of stochastic differential equations

dS =
[

(S0 − S)D − mSx

a + S

]

dt + α(S0 − S)dW (t), (11.3)

dx = x

(
mS

a + S
− D

)

dt − αxdW (t). (11.4)

System (11.3) and (11.4) has been analyzed in [26] by using the classic techniques
from stochastic analysis and some stability results are provided there. However, as
in our opinion there are some unclear points in the analysis carried out in [26], our
aim in this paper is to use an alternative approach to this problem, specifically the
theory of random dynamical systems, which will allow us to partially improve the
results in [26]. In addition, we will provide some results which hold with probability
one while those from [26] are said to hold in probability.

System (11.3) and (11.4) is understood in the Itô sense. Then, we first consider
its equivalent Stratonovich formulation which is given by

dS =
[

(S0 − S)

(

D + α2

2

)

− mSx

a + S

]

dt + α(S0 − S) ◦ dW (t), (11.5)

dx = x

(
mS

a + S
− D + α2

2

)

dt − αx ◦ dW (t). (11.6)

In Sect. 11.2, we recall some basic results on random dynamical systems. In
Sect. 11.3, we start with the study of equilibria and we prove a result related to
the existence and uniqueness of global solution of (11.5) and (11.6), by using the
so-called Ornstein–Uhlenbeck process. Then, we define a random dynamical system
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and prove the existence of a random attractor for system (11.5) and (11.6) giving an
explicit expression for it. Finally, in Sect. 11.3.5we show somenumerical simulations
with different values of α and we can see what happens when α increases.

11.2 Random Dynamical Systems

In this section, we present some basic results related to random dynamical systems
(RDSs) and random attractors which will be necessary for our analysis. For more
detailed information about RDSs and their importance, see [1].

Let (X, ‖ · ‖X ) be a separable Banach space and let (Ω,F ,P) be a probability
space whereF is the σ -algebra of measurable subsets of Ω (called “events”) and P
is the probability measure. To connect the state ω in the probability space Ω at time
0 with its state after a time of t elapses, we define a flow θ = {θt }t∈R on Ω with each
θt being a mapping θt : Ω → Ω that satisfies

(1) θ0 = IdΩ ,
(2) θs ◦ θt = θs+t for all s, t ∈ R,
(3) the mapping (t, ω) �→ θtω is measurable,
(4) the probability measure P is preserved by θt , i.e., θtP = P.

This setup establishes a time-dependent family θ that tracks the noise, and
(Ω,F ,P, θ) is called a metric dynamical system [1].

Definition 11.1 A stochastic process {ϕ(t, ω)}t≥0,ω∈Ω is said to be a continuous
RDS over (Ω,F ,P, {θt }t∈R) with state space X if ϕ : [0,+∞) × Ω × X → X is
(B[0,+∞) × F × B(X), B(X))- measurable, and for each ω ∈ Ω ,

(i) the mapping ϕ(t, ω) : X → X , x �→ ϕ(t, ω)x is continuous for every t ≥ 0,
(ii) ϕ(0, ω) is the identity operator on X ,
(iii) (cocycle property) ϕ(t + s, ω) = ϕ(t, θsω)ϕ(s, ω) for all s, t ≥ 0.

Definition 11.2 Let (Ω,F ,P) be a probability space. A random set K is a measur-
able subset of X × Ω with respect to the product σ -algebra B(X) × F .

The ω-section of a random set K is defined by

K (ω) = {x : (x, ω) ∈ K }, ω ∈ Ω.

In the case that a set K ⊂ X × Ω has closed or compact ω-sections, it is a random
set as soon as the mapping ω �→ d(x, K (ω)) is measurable (from Ω to [0,∞)) for
every x ∈ X , see [7]. Then, K will be said to be a closed or a compact, respectively,
random set. It will be assumed that closed random sets satisfy K (ω) 
= ∅ for all or
at least for P-almost all ω ∈ Ω .

Remark 11.1 It should be noted that in the literature very often random sets are
defined provided that ω �→ d(x, K (ω)) is measurable for every x ∈ X . Obviously,
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this is satisfied, for instance, when K (ω) = N for all ω, where N is some non-
measurable subset of X , and also when K = (U × F) ∪ (U × Fc) for some open set
U ⊂ X and F /∈ F . In both cases, ω �→ d(x, K (ω)) is constant, hence measurable,
for every x ∈ X . However, both cases give K ⊂ X × Ω which is not an element of
the product σ -algebra B(X) × F .

Definition 11.3 A bounded random set K (ω) ⊂ X is said to be tempered with
respect to {θt }t∈R if for a.e. ω ∈ Ω ,

lim
t→∞ e−βt sup

x∈K (θ−tω)

‖x‖X = 0, for all β > 0;

a random variable ω �→ r(ω) ∈ R is said to be tempered with respect to {θt }t∈R if
for a.e. ω ∈ Ω ,

lim
t→∞ e−βt sup

t∈R
|r(θ−tω)| = 0, for all β > 0.

In what follows we use D(X) to denote the set of all tempered random sets of X .

Definition 11.4 A random set B(ω) ⊂ X is called a random absorbing set inD(X)

if for any D ∈ D(X) and a.e. ω ∈ Ω , there exists TD(ω) > 0 such that

ϕ(t, θ−tω)D(θ−tω) ⊂ B(ω), ∀t ≥ TD(ω).

Definition 11.5 Let {ϕ(t, ω)}t≥0,ω∈Ω be an RDS over (Ω,F ,P, {θt }t∈R) with state
space X and let A(ω)(⊂ X) be a random set. Then, A = {A(ω)}ω∈Ω is called a
global random D-attractor (or pullback D-attractor) for {ϕ(t, ω)}t≥0,ω∈Ω if

(i) (compactness) A(ω) is a compact set of X for any ω ∈ Ω;
(ii) (invariance) for any ω ∈ Ω and all t ≥ 0, it holds

ϕ(t, ω)A(ω) = A(θtω);

(iii) (attracting property) for any D ∈ D(X) and a.e. ω ∈ Ω ,

lim
t→∞ distX (ϕ(t, θ−tω)D(θ−tω), A(ω)) = 0,

where
distX (G, H) = sup

g∈G
inf
h∈H ‖g − h‖X

is the Hausdorff semi-metric for G, H ⊆ X.

Proposition 11.1 ([4, 10]) Let B ∈ D(X) be a closed absorbing set for the contin-
uous random dynamical system {ϕ(t, ω)}t≥0,ω∈Ω that satisfies the asymptotic com-
pactness condition for a.e. ω ∈ Ω , i.e., each sequence xn ∈ ϕ(tn, θ−tnω)B(θ−tnω)

has a convergent subsequence in X when tn → ∞. Then, ϕ has a unique global
random attractor A = {A(ω)}ω∈Ω with component subsets
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A(ω) =
⋂

τ≥TB (ω)

⋃

t≥τ

ϕ(t, θ−tω)B(θ−tω).

If the pullback absorbing set is positively invariant, i.e., ϕ(t, ω)B(ω) ⊂ B(θtω) for
all t ≥ 0, then

A(ω) =
⋂

t≥0

ϕ(t, θ−tω)B(θ−tω).

Remark 11.2 When the state space X = R
d as in this paper, the asymptotic com-

pactness follows trivially. Note that the random attractor is path-wise attracting in
the pullback sense, but does not need to be path-wise attracting in the forward sense,
although it is forward attracting in probability, due to some possible large deviations,
see e.g. [1].

The next result ensures when two random dynamical systems are conjugated (see
also [3, 6]).

Lemma 11.1 Let ϕu be a random dynamical system on X. Suppose that the mapping
T : Ω × X → X possesses the following properties: for fixed ω ∈ Ω , T (ω, ·) is a
homeomorphism on X, and for x ∈ X, the mappings T (·, x), T−1(·, x) are measur-
able. Then, the mapping

(t, ω, x) → ϕv(t, ω)x := T−1(θtω, ϕu(t, ω)T (ω, x))

is a (conjugated) random dynamical system.

11.3 Random Chemostat

In this section, we will investigate the stochastic system (11.5) and (11.6). To this
end, we first transform it into differential equations with random coefficients and
without white noise.

LetW be a two-sidedWiener process. Kolmogorov’s theorem ensures thatW has
a continuous version that we will denote by ω, whose canonical interpretation is as
follows: let Ω be defined by

Ω = {ω ∈ C (R,R) : ω(0) = 0} = C0(R,R),

F be the Borel σ -algebra on Ω generated by the compact open topology (see [1]
for details) and P the corresponding Wiener measure onF . We consider the Wiener
shift flow given by

θtω(·) = ω(· + t) − ω(t), t ∈ R,
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then (Ω,F ,P, {θt }t∈R) is a metric dynamical system. Now let us introduce the
following Ornstein–Uhlenbeck process on (Ω,F ,P, {θt }t∈R)

z∗(θtω) = −
0∫

−∞
esθtω(s)ds, t ∈ R, ω ∈ Ω,

which solves the following Langevin equation [1, 5]

dz + zdt = dω(t), t ∈ R.

Proposition 11.2 ([1, 5]) There exists a θt -invariant set Ω̃ ∈ F of Ω of full P
measure such that for ω ∈ Ω̃, we have

(i) the random variable |z∗(ω)| is tempered.
(ii) the mapping

(t, ω) → z∗(θtω) = −
0∫

−∞
esω(t + s)ds + ω(t)

is a stationary solution of (11.7) with continuous trajectories;
(iii) in addition, for any ω ∈ Ω̃:

lim
t→±∞

|z∗(θtω)|
t

= 0;

lim
t→±∞

1

t

∫ t

0
z∗(θsω)ds = 0;

lim
t→±∞

1

t

∫ t

0
|z∗(θsω)|ds = E[z∗] < ∞.

In what follows we will consider the restriction of the Wiener shift θ to the set Ω̃ ,
and we restrict accordingly the metric dynamical system to this set, that is also a
metric dynamical system, see [6]. For simplicity, we will still denote the restricted
metric dynamical system by the old symbols (Ω,F ,P, {θt }t∈R).

11.3.1 Stochastic Chemostat Becomes a Random Chemostat

In what follows we use the Ornstein–Uhlenbeck process to transform (11.5) and
(11.6) into a random system. Let us note that analyzing the equilibria we obtain that
the only one is the axial equilibrium (S0, 0) and then we define two new variables σ

and κ by
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σ(t) = (S(t) − S0)eαz∗(θtω), (11.7)

κ(t) = x(t)eαz∗(θtω). (11.8)

For the sake of simplicity, we will write z∗ instead of z∗(θtω), and σ and κ instead
of σ(t) and κ(t).

On the one hand, by differentiation, we have

dσ = eαz∗
dS + (S − S0)eαz∗

αdz∗

=
{[

(S0 − S)

(

D + α2

2

)

− mSx

a + S

]

dt + α(S0 − S) ◦ dW (t)

}

eαz∗

+ (S − S0)eαz∗
α

{−z∗dt + dW (t)
}

= (S0 − S)

(

D + α2

2

)

eαz∗
dt − mSx

a + S
eαz∗

dt + α(S0 − S)eαz∗ ◦ dW (t)

− (S − S0)αeαz∗
z∗dt + (S − S0)eαz∗

α ◦ dW (t)

=
[

−
(

D + α2

2

)

σ − mSκ

a + S
− ασ z∗

]

dt

=
[

−
(

D + α2

2

)

σ − m(S0 + σe−αz∗
)

a + S0 + σe−αz∗ κ − ασ z∗
]

dt.

On the other hand,

dκ = eαz∗
dx + xeαz∗

αdz∗

=
[

x

(
mS

a + S
− D + α2

2

)

dt − αx ◦ dW (t)

]

eαz∗ + αxeαz∗ [−z∗dt + dW (t)
]

= xmS

a + S
eαz∗

dt + x

(

−D + α2

2

)

eαz∗
dt − αxeαz∗ ◦ dW (t)

− αxz∗eαz∗
dt + αxeαz∗ ◦ dW (t)

=
[
m(S0 + σe−αz∗

)

a + S0 + σe−αz∗ κ −
(

D − α2

2

)

κ − αz∗κ
]

dt.

Thus, we have obtained the following random system

dσ

dt
= −(D̄ + αz∗)σ − m(S0 + σe−αz∗

)

a + S0 + σe−αz∗ κ, (11.9)

dκ

dt
= −(D̃ + αz∗)κ + m(S0 + σe−αz∗

)

a + S0 + σe−αz∗ κ, (11.10)

where D̄ := D + α2

2 and D̃ := D − α2

2 .
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11.3.2 Random Chemostat Generates an RDS

Next we prove that the random chemostat system (11.9) and (11.10) generates an
RDS. From now on, we denoteX := {(x, y) ∈ R

2 : x ∈ R, y ≥ 0}, the upper half-
plane.

Lemma 11.2 Assume that

D ≥ α2

2
, λ̃ := D̃a

m − D̃
≥ S0. (11.11)

Then for anyω ∈ Ω and any initial value u0 := (σ0, κ0) ∈ X , whereσ0 := σ(0) and
κ0 := κ(0), system (11.9) and (11.10) possesses a unique global solution u(·;ω, u0)
:= (σ (·;ω, u0), κ(·;ω, u0)) ∈ C 1([0,+∞),X ) with u(0;ω, u0) = u0. Moreover,
the solution mapping generates a random dynamical system ϕu : R+ × Ω × X →
X defined as

ϕu(t, ω)u0 = u(t;ω, u0), ∀t ∈ R
+, u0 ∈ X , ω ∈ Ω.

Proof Observe that we can rewrite one of the terms in the previous equations as

m(S0 + σe−αz∗
)

a + S0 + σe−αz∗ κ = m(S0 + σe−αz∗ + a − a)

a + S0 + σe−αz∗ κ = mκ − maκ

a + S0 + σe−αz∗

and therefore, system (11.9) and (11.10) turns into

dσ

dt
= −(D̄ + αz∗)σ − mκ + ma

a + S0 + σe−αz∗ κ, (11.12)

dκ

dt
= −(D̃ + αz∗)κ + mκ − ma

a + S0 + σe−αz∗ κ. (11.13)

Denotingu(·;ω, u0) := (σ (·;ω, u0), κ(·;ω, u0)), system (11.12) and (11.13) can
be rewritten as

du

dt
= L(θtω) · u + F(u, θtω),

where

L(θtω) =
(−(D̄ + αz∗) −m

0 −(D̃ + αz∗) + m

)
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and F : X × [0,+∞) −→ R
2 is given by

F(ξ, θtω) =
⎛

⎜
⎝

ma

a + S0 + ξ1e−αz∗ ξ2

−ma

a + S0 + ξ1e−αz∗ ξ2

⎞

⎟
⎠ ,

where ξ = (ξ1, ξ2) ∈ X .
Since z∗(θtω) is continuous, L generates an evolution system on R

2. Moreover,
we notice that

∂

∂ξ2

[

± am

a + S0 + ξ1e−αz∗ ξ2

]

= ± am

a + S0 + ξ1e−αz∗

and

∂

∂ξ1

[

± am

a + S0 + ξ1e−αz∗ ξ2

]

= ∓ ame−αz∗

(a + S0 + ξ1e−αz∗
)2

ξ2

so F(·, θtω) ∈ C (X × [0,+∞);R2) and is continuously differentiablewith respect
to the variables (ξ1, ξ2), which implies that it is locally Lipschitz with respect to
(ξ1, ξ2) ∈ X .

Therefore, thanks to classical results from the theory of ordinary differential equa-
tions, system (11.12) and (11.13) possesses a unique local solution. Let us check now
that in fact this solution is a global one. In order to do that we split our analysis into
two different cases: first, we assume σ(t) ≥ 0 for all t ≥ 0. Thus, from (11.9) and
(11.10)

d

dt
(σ + κ) = −D̄σ − αz∗σ − D̃κ − αz∗κ

≤ −D̃σ − αz∗σ − D̃κ − αz∗κ
= −(D̃ + αz∗)(σ + κ).

Hence

σ(t) + κ(t) ≤ (σ (0) + κ(0))e−D̃t−α
∫ t
0 z

∗(θsω)ds,

so σ + κ tends to zero when t goes to infinity since D ≥ α2

2 , i.e., D̃ ≥ 0.
Moreover, since S0 + σe−αz∗ = S ≥ 0, we have

dσ

dt
= −(D̄ + αz∗)σ − m(S0 + σe−αz∗

)

a + S0 + σe−αz∗ κ

≤ −(D̄ + αz∗)σ
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and solving this differential equation, we obtain

σ(t) ≤ σ(0)e−D̄t+α
∫ t
0 z

∗(θsω)ds,

which implies that σ always tends to zero when t goes to infinity, because D̄ ≥ 0.
Summing up, we have

0 ≤ σ(t) −→ 0, when t ↑ +∞,

0 ≤ σ(t) + κ(t) −→ 0, when t ↑ +∞,

since D ≥ α2

2 , so we have

0 ≤ κ(t) = (σ (t) + κ(t)) − σ(t) −→ 0, when t ↑ +∞.

In particular, σ and κ are bounded.
Now, we assume there exists some t̃ ≥ 0 such that σ (̃t) < 0. In this case, there

exists t∗ such that σ(t∗) = 0 and then

dσ

dt
(t∗) =

[

−(D̄ + αz∗)σ − m(S0 + σe−αz∗
)

a + S0 + σe−αz∗ κ

]

(t∗)

= − mS0

a + S0
κ(t∗) < 0.

Therefore, we have σ(t) < 0 for all t > t∗, and from (11.7), we get that S(t) < S0,
for all t > t∗.

Now, since the mapping f (S) := mS
a+S is an increasing function, then f (S(t)) <

f (S0), for all t > t∗, i.e., we have

mS

a + S
<

mS0

a + S0
.

Hence, from (11.9) and (11.10)

dσ

dt
= −(D̄ + αz∗)σ − m(S0 + σe−αz∗

)

a + S0 + σe−αz∗ κ

≤ −(D̄ + αz∗)σ
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and for t > t∗

dκ

dt
= −(D̃ + αz∗)κ + m(S0 + σe−αz∗

)

a + S0 + σe−αz∗ κ

= −(D̃ + αz∗)κ + mS

a + S
κ

< −(D̃ + αz∗)κ + mS0

a + S0
κ

= −
(

D̃ − mS0

a + S0
+ αz∗

)

κ, (11.14)

thus

σ(t) ≤ σ(0)e−D̄t−α
∫ t
0 z

∗(θsω)ds

and for t > t∗

κ(t) < κ(0)e
−

(
D̃− mS0

a+S0

)
t−α

∫ t
0 z

∗(θsω)ds
.

Summing up, in this second case σ and κ also keep bounded because of the
assumption λ̃ ≥ S0.

Therefore, the unique local solution to system (11.12) and (11.13) can be extended
to a unique global solution.

Notice that, although σ remains negative, it will never make vanish the denomi-
nator a + S0 + σe−αz∗

. Indeed, if we suppose that there exists t̄ > t∗ > 0 such that

a + S0 + σ(t̄)e−αz∗(θt̄ω) = 0,

then for every M > 0 given, there exists tM ∈ (t∗, t̄) such that

m(S0 + σ(t)e−αz∗(θtω))

a + S0 + σ(t)e−αz∗(θtω)
≥ M

for all t ∈ (tM , t̄].
Hence, κ satisfies the following differential inequality

dκ

dt
≥ −(D̃ − M + αz∗)κ, (11.15)

thus, if we choose M > mS0

a+S0 and evaluate the solution of (11.15) that starts in tM in
the instant t̄ , we obtain

κ(t̄) > κ(tM)e
−

(
D̃− mS0

a+S0

)
(t̄−tM )−α

∫ t̄
tM

z∗(θsω)ds
. (11.16)
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On the other hand, by solving (11.14) and evaluating it in t = t̄ , we have

κ(t̄) ≤ κ(tM)e
−

(
D̃− mS0

a+S0

)
(t̄−tM )−α

∫ t̄
tM

z∗(θsω)ds
, (11.17)

which clearly contradicts (11.16).
As a consequence, we deduce that for all t ∈ R

σ(t) > −(a + S0)eαz∗(θtω).

Now we would like to check that this global solution belongs to the set X for
any t ∈ R

+. If there exists t ∈ R
+ such that κ(t) = 0, assuming σ(0) > 0, we have

dσ

dt
(t) =

[

−(D̄ + αz∗)σ − m(S0 + σe−αz∗
)

a + S0 + σe−αz∗ κ

]

(t)

= −(D̄ + αz∗)σ (t),

and therefore,

σ(t) = σ(0)e−D̄t−α
∫ t
0 z

∗(θsω)ds,

which, since D̄ ≥ 0, implies that

lim
t↑+∞ σ(t) = 0 and lim

t↓−∞ σ(t) = +∞.

Similarly, assuming κ(t) = 0 and σ(0) < 0, we obtain

lim
t↑+∞ σ(t) = 0 and lim

t↓−∞ σ(t) = −∞.

By the previous analysis, we deduce that for any initial data u0 ∈ X , the solution
u(t) remains in X .

Now we can define the mapping ϕu : R+ × Ω × X → X given by

ϕu(t, ω)u0 := u(t;ω, u0), ∀t ≥ 0, u0 ∈ X , ω ∈ Ω.

Since the function F is continuous in u, t , and is measurable in ω, we obtain the
(B[0,+∞) × F × B(X ),B(X ))-measurability of the previous mapping. Items
(i), (ii), and (iii) in Definition 11.1 follow easily by the definition of ϕu .
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11.3.3 Existence of the Random Attractor

Now, we study the existence of a random attractor, describing it explicitly.

Lemma 11.3 Under the assumption (11.11), there exists a tempered compact ran-
dom absorbing set Bε(ω) ∈ D(X ), for all ε > 0, of the random dynamical sys-
tem {ϕu(t, ω)}t≥0, ω∈Ω , that is, for any D ∈ D(X ) and each ω ∈ Ω , there exists
TD(ω) > 0 such that

ϕu(t, θ−tω)D(θ−tω) ⊂ Bε(ω) ∀t ≥ TD(ω).

Proof Recall that ϕu(t, ω)u0 = u(t;ω, u0) denotes the solution of system (11.12)
and (11.13), satisfying u(0;ω, u0) = u0, where u0 := u0(θ−tω) ∈ D(θ−tω).

First we assume that σ(t) ≥ 0 for all t ≥ 0 and define ‖ · ‖1 as

‖ϕu(t, θ−tω)u0‖1 = ‖u(t; θ−tω, u0(θ−tω)‖1
= σ(t; θ−tω, u0(θ−tω)) + κ(t; θ−tω, u0(θ−tω)).

Note that

σ(t; θ−tω, u0(θ−tω)) + κ(t; θ−tω, u0(θ−tω))

≤ sup
(σ0,κ0)∈D(θ−tω)

{σ0 + κ0}e−D̃t−α
∫ t
0 z

∗(θsθ−tω)ds

= sup
(σ0,κ0)∈D(θ−tω)

{σ0 + κ0}e−D̃t−α
∫ 0
−t z

∗(θsω)ds .

Therefore, thanks to the temperedness of D(ω) and (11.11), there exists TD(ω)

such that‖u(t; θ−tω, u0(θ−tω)‖1 ≤ ε, for all ε > 0,u0 ∈ D(θ−tω),when t > TD(ω).
Define

B1
ε (ω) := {(σ, κ) ∈ X : 0 ≤ σ + κ ≤ ε},

then B1
ε (ω) is absorbing in X .

Now we assume that there exists some t̃ ≥ 0 such that σ (̃t) < 0. In this case, we
proved that σ(t) < 0 for all t ≥ t̃ . We now get

σ(t; θ−tω, u0(θ−tω)) ≤ sup
(σ0,κ0)∈D(θ−tω)

{σ0}e−D̄t−α
∫ t
0 z

∗(θsθ−tω)ds

= sup
(σ0,κ0)∈D(θ−tω)

{σ0}e−D̄t−α
∫ 0
−t z

∗(θsω)ds
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and

κ(t; θ−tω, u0(θ−tω)) ≤ sup
(σ0,κ0)∈D(θ−tω)

{κ0}e−
(
D̃− mS0

a+S0

)
t−α

∫ t
0 z

∗(θsθ−tω)ds

= sup
(σ0,κ0)∈D(θ−tω)

{κ0}e−
(
D̃− mS0

a+S0

)
t−α

∫ 0
−t z

∗(θsω)ds
.

Therefore, thanks to the temperedness of D(ω) and (11.11), there exists TD(ω)

such that

σ(t; θ−tω, u0(θ−tω)) ≤ ε and κ(t; θ−tω, u0(θ−tω)) ≤ ε

for all ε > 0, u0 ∈ D(θ−tω), when t > TD(ω).
On the other hand, from (11.9) and (11.10) we always have

d(σ + κ)

dt
≥ −(D̄ + αz∗)(σ + κ),

thus

(σ + κ)(t) ≥ (σ + κ)(0)e−D̄t−α
∫ t
0 z

∗(θsω)ds

which tends to zero when t goes to infinity since D̄ ≥ 0.
Hence, σ + κ ≥ 0 iff σ ≥ −κ , thus

σ(t; θ−tω, σ0(θ−tω)) ≥ −ε

for all ε > 0, u0 ∈ D(θ−tω), when t > TD(ω).
We define

B2
ε (ω) := {(σ, κ) ∈ X : −ε ≤ σ ≤ ε, 0 ≤ κ ≤ ε},

then B2
ε (ω) is absorbing in X .

In conclusion, considering

Bε(ω) = B1
ε (ω) ∪ B2

ε (ω) = B2
ε (ω),

it follows directly fromProposition 11.1 that the randomdynamical systemgenerated
by the system (11.12) and (11.13) possesses a unique random attractor given by

A = {A(ω)}ω∈Ω ⊂ Bε(ω), for all ε > 0,

thus
A = {A(ω)}ω∈Ω = {(0, 0)}.
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11.3.4 Existence of the Random Attractor for the Stochastic
Chemostat System

We have proved that the system (11.9) and (11.10) has a unique global solution
u(t;ω, u0) which remains inX for all u0 ∈ X and generates the RDS ϕu .

Now, we define a mapping

T : Ω × X −→ X

as follows

T (ω, ζ ) = T (ω, (ζ1, ζ2)) =
(
T1(ω, ζ1)

T2(ω, ζ2)

)

=
(

(ζ1 − S0)eαz∗(ω)

ζ2eαz∗(ω)

)

whose inverse is given by

T−1(ω, ζ ) =
(
S0 + ζ1e−αz∗(ω)

ζ2e−αz∗(ω)

)

.

Weknow that v(t) = (S(t), x(t)) and u(t) = (σ (t), κ(t)) are related by (11.7) and
(11.8). Since T is a homeomorphism, thanks to Lemma 11.1 we obtain a conjugated
RDS given by

ϕv(t, ω)v0 := T−1(θtω, ϕu(t, ω)T (ω, v0))

= T−1

(

θtω, ϕu(t, ω)

(
(S(0) − S0)eαz∗(ω)

x(0)eαz∗(ω)

))

= T−1(θtω, ϕu(t, ω)u0)

= T−1(θtω, u(t;ω, u0))

=
(
S0 + σ(t)e−αz∗(θtω)

κ(t)e−αz∗(θtω)

)

= v(t;ω, v0)

which means that ϕv is an RDS for our original stochastic system (11.5) and (11.6).
Moreover, the global random attractor of the random system (11.9) and (11.10)

A = {A(ω)}ω∈Ω = {(0, 0)}

becomes
Ã = { Ã(ω)}ω∈Ω = {(S0, 0)},

the global random attractor of the stochastic system (11.5) and (11.6).
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11.3.5 Numerical Simulations and Final Comments

To confirm the results above, in this section we show some numerical simulations
for (11.3) and (11.4). We use the Euler–Maruyama method [14] considering an
initial value (S0, x0) = (5, 10), S0 = 1, D = 3, a = 0.6, m = 3 and the following
numerical scheme:

Sj = Sj−1 + f (x j−1, Sj−1)Δt + g(x j−1, Sj−1) · (W (τ j ) − W (τ j−1)),

x j = x j−1 + f̃ (x j−1, Sj−1)Δt + g̃(x j−1, Sj−1) · (W (τ j ) − W (τ j−1)),

where we define functions f , g, f̃ , and g̃ as

f (x j−1, Sj−1) =
[

(S0 − Sj−1)D − mSj−1x j−1

a + Sj−1

]

,

g(x j−1, Sj−1) = α(S0 − Sj−1),

f̃ (x j−1, Sj−1) = x j−1

(
mSj−1

a + Sj−1
− D

)

,

g̃(x j−1, Sj−1) = αx j−1,

and

W (τ j ) − W (τ j−1) =
j R∑

k= j R−R+1

dWk,

where R is a non-negative integer number and dWk are N (0, 1)-distributed inde-
pendent random variables which can be generated numerically by pseudorandom
number generators.

From now on, the red lines in the pictures represent the stochastic solutions of
system (11.3) and (11.4) and the blue ones the deterministic solutions of the same
system.

By the previous sections, we know that system (11.3) and (11.4) possesses a
random attractor given by ˜A = {(S0, 0)} as long as (11.11) is satisfied. For the
following different values of α, we obtain the following values of λ̃:

(a) Case α = 0.1:

λ̃ := D̃a

m − D̃
= 359.4 ≥ 1 = S0.

(b) Case α = 0.5:

λ̃ := D̃a

m − D̃
= 13.8 ≥ 1 = S0.



11 Some Aspects Concerning the Dynamics of Stochastic Chemostats 243

(c) Case α = 1:

λ̃ := D̃a

m − D̃
= 3 ≥ 1 = S0.

(d) Case α = 1.5:

λ̃ := D̃a

m − D̃
= 1 ≥ 1 = S0.

Summing up, in all the above cases λ̃ ≥ S0 and D ≥ α2

2 hold; hence, the solutions
of system (11.3) and (11.4) for the previous values of the parameters go to (S0, 0) =
(1, 0), the random attractor.

The following pictures show what we expected from the theory and numeri-
cal computing and we also can observe what happens when the intensity of noise
increases (Figs. 11.1 and 11.2).
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Fig. 11.1 α = 0.1 on the left and α = 0.5 on the right
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Fig. 11.2 α = 1 on the left and α = 1.5 on the right
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Fig. 11.3 α = 0.1 on the left and α = 0.5 on the right

Fig. 11.4 α = 0.7 on the left and α = 0.9 on the right

However, the other pictures show what happens if λ̃ < S0 holds true. In this case,
D = 1.5 instead of D = 3 as in the previous cases (Figs. 11.3 and 11.4).

Remark 11.3 Wewould like to mention that the fact that the substrate S (or its corre-
sponding σ ) may take negative values does not produce any mathematical inconsis-
tence in our analysis, in other words, our mathematical analysis is accurate to handle
the mathematical problem. However, from a biological point of view, this may reflect
some troubles and suggest that either the fact of perturbing the dilution rate with an
additive noise may not be a realistic situation, or that we should try to use a some
kind of switching system to model our real chemostat in such a way that when the
dilution may be negative, we use a different equation to model the system. This will
lead us to a different analysis in some subsequent papers by considering a different
kind of randomness or stochasticity in this parameter or designing a different model
for our problem.
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On the other hand, it could also be considered a noisy term in each equation of
the deterministic model in the same fashion as in the paper by Imhof and Walcher
[15], which ensures the positivity of both the nutrient and biomass, although does
not preserve the washout equilibrium from the deterministic to the stochastic model.
We are currently interested on this kind of chemostat models and we will analyze
them in future papers.
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Chapter 12
Higher-Order Allen–Cahn Models
with Logarithmic Nonlinear Terms

Laurence Cherfils, Alain Miranville and Shuiran Peng

Abstract Our aim in this chapter was to study higher-order (in space) Allen–Cahn
models with logarithmic nonlinear terms. In particular, we obtain well-posedness
results, as well as the existence of the global attractor.

12.1 Introduction

TheAllen–Cahn equation describes the ordering of atoms during the phase separation
of a binary alloy (see [1]) and reads

∂u

∂t
− αΔu + f (u) = 0, α > 0. (12.1)

We studied in [9] generalizations of (12.1) of the form

∂u

∂t
+ P(−Δ)u + f (u) = 0, (12.2)

where P(s) = ∑k
i=1 ais

i, ak > 0, k ≥ 1; in particular, when k = 1, we recover
the Allen–Cahn equation (12.1) and, when k = 2, the model contains the Swift–
Hohenberg equation (see [30, 32]).

L. Cherfils
Université de La Rochelle, Laboratoire Mathématiques, Image et Applications,
Avenue Michel Crépeau, 17042 La Rochelle Cedex, France
e-mail: lcherfil@univ-lr.fr

A. Miranville (B) · S. Peng
Université de Poitiers, Laboratoire de Mathématiques et Applications,
UMR CNRS 7348 - SP2MI, Boulevard Marie et Pierre Curie - Téléport 2,
86962 Chasseneuil Futuroscope Cedex, France
e-mail: Alain.Miranville@math.univ-poitiers.fr

S. Peng
e-mail: Shuiran.Peng@math.univ-poitiers.fr

© Springer International Publishing Switzerland 2016
V.A. Sadovnichiy and M.Z. Zgurovsky (eds.), Advances in Dynamical Systems
and Control, Studies in Systems, Decision and Control 69,
DOI 10.1007/978-3-319-40673-2_12

247



248 L. Cherfils et al.

Such higher-order (in space) terms were proposed in [4] in the context of phase
transition models and in the isotropic limit of more general higher-order terms. We
can note that a second-order term in phase separation is obtained by the truncation
of higher-order ones (see [6]); it can also be seen as a first-order approximation of
a (spatially) nonlocal term accounting for long-ranged interactions (see [16, 17]).
In particular, nonlocal models have been much studied recently, see, e.g., [20, 22]
and the references therein; it is interesting to note that, from a mathematical point
of view, the picture is more complete when compared to the original (approximated)
ones (see the aforementioned references).

In [9], we considered regular nonlinear terms (a typical choice is the usual cubic
nonlinear term f (s) = s3 − s). It is, however, important to note that, in phase sepa-
ration, such a regular nonlinear term actually is an approximation of thermodynam-
ically relevant logarithmic ones of the form f (s) = −λ1s + λ2

2 ln 1+s
1−s , s ∈ (−1, 1),

0 < λ2 < λ1, which follow from a mean-field model (see [6, 10]; in particular, the
logarithmic terms correspond to the entropy of mixing); note that, as far as the Swift–
Hohenberg equation is concerned, it is not clear whether logarithmic nonlinear terms
are relevant.

The study of the classical Allen–Cahn equation (12.1) (i.e., k = 1 in (12.2)) with
logarithmic nonlinear terms is well established (see, e.g., [28]). However, when
k ≥ 2 in (12.2), the situation is much more involved and we are not able to prove the
existence of a solution in a classical sense (meaning in a classical weak/variational
sense). Nevertheless, we are able to prove the existence of a (weaker) variational
solution. This notion of a variational solution was introduced in [35] for the Cahn–
Hilliard equation with singular nonlinear terms and dynamic boundary conditions
and is based on a variational inequality (see also [21] for a different, though related,
approach based on duality techniques). It was also applied with success in other
situations in [8, 11, 30, 32].

Our aim in this chapter was to study the well-posedness of (12.2) with a loga-
rithmic nonlinear term in the variational sense mentioned above. We also prove the
dissipativity of the corresponding solution operator, as well as the existence of the
global attractor.

12.2 Setting of the Problem

We consider the following initial and boundary value problem in a bounded and
regular domain Ω ⊂ R

n, n = 1, 2 or 3, with boundary Γ :

∂u

∂t
+ P(−Δ)u + f (u) = 0, (12.3)

u = Δu = · · · = Δk−1u = 0 on Γ, (12.4)

u|t=0 = u0. (12.5)
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We assume that the polynomial P is defined by

P(s) =
k∑

i=1

ais
i, ak > 0, k ≥ 1, s ∈ R. (12.6)

As far as the nonlinear term f is concerned, we assume that

f (s) = −λ1s + λ2

2
ln

1 + s

1 − s
, s ∈ (−1, 1), 0 < λ2 < λ1. (12.7)

In particular, it is not difficult to show that it satisfies the following properties:

f ∈ C∞(−1, 1), f (0) = 0, (12.8)

lim
s→±1

f (s) = ±∞, lim
s→±1

f ′(s) = +∞, (12.9)

f ′ ≥ −λ1, (12.10)

− c1 ≤ F(s), F(s) + 1

2
|f (s)| ≤ f (s)s + c2, c1, c2 ≥ 0, s ∈ (−1, 1), (12.11)

where F(s) = ∫ s
0 f (ξ) dξ . We can also note that F is bounded on (−1, 1); indeed,

there holds

F(s) = −λ1

2
s2 + λ2

2
((1 + s) ln(1 + s) + (1 − s) ln(1 − s)). (12.12)

Remark 12.1 We can note that all properties above easily follow from the explicit
expression of f . Actually, (12.10) and (12.11) follow from (12.8) and (12.9). The
only difficulty here is to prove that F(s) ≤ f (s)s + c, c ≥ 0, s ∈ (−1, 1). To do so,
it suffices to study the variations of the function s 	→ f (s)s − F(s) + λ1

2 s
2, whose

derivative has, owing to (12.10), the sign of s. We can thus consider more general
singular nonlinear terms only satisfying (12.8) and (12.9). Indeed, the boundedness
of F is not necessary and just allows us to consider more general initial data.

Setting

F(s) = −λ1

2
s2 + F1(s),



250 L. Cherfils et al.

we introduce the following approximated functions F1,N ∈ C 4(R), N ∈ N:

F1,N (s) =

⎧
⎪⎨

⎪⎩

∑4
i=0

1
i!F

(i)
1 (1 − 1

N )(s − 1 + 1
N )i, s ≥ 1 − 1

N ,

F1(s), |s| ≤ 1 − 1
N ,

∑4
i=0

1
i!F

(i)
1 (−1 + 1

N )(s + 1 − 1
N )i, s ≤ −1 + 1

N .

(12.13)

Setting FN (s) = − λ1
2 s

2 + F1,N (s), f1,N = F ′
1,N and fN = F ′

N , there holds

fN ∈ C 3(R), fN (0) = 0, (12.14)

f ′
1,N ≥ 0, f ′

N ≥ −λ1, (12.15)

FN ≥ −c1, (12.16)

FN (s) ≥ c3s
4 − c4, c3 > 0, c4 ≥ 0, s ∈ R, (12.17)

fN (s)s ≥ c5(FN (s) + |fN (s)|) − c6, c5 > 0, c6 ≥ 0, s ∈ R. (12.18)

Furthermore, all constants can be chosen independently ofN . These properties follow
from the fact that we have similar properties for the original singular nonlinear term
and from the explicit expression of F1,N ; we refer the reader to [14, 33, 35] for more
details.We can also note thatFN is bounded, independently ofN , in the neighborhood
of ±1.

We then consider the approximated problems

∂uN

∂t
+ P(−Δ)uN + fN (uN ) = 0, (12.19)

uN = ΔuN = · · · = Δk−1uN = 0 on Γ, (12.20)

uN |t=0 = u0. (12.21)

The existence, uniqueness, and regularity of the solution uN to (12.19)–(12.21) were
proved in [9].

Notation

We denote by ((·, ·)) the usual L2-scalar product, with associated norm ‖ · ‖. More
generally, ‖ · ‖X denotes the norm on the Banach space X.

We then consider the operator −Δ associated with Dirichlet boundary condi-
tions; it is a strictly positive, self-adjoint, and unbounded linear operator with com-
pact inverse (−Δ)−1, with domain H2(Ω) ∩ H1

0 (Ω). In particular, this allows us
(see, e.g., [42]) to define the operators (−Δ)m, m ∈ R (being understood that, when
m = 0, then (−Δ)0 is the identity operator). For m ∈ N, (−Δ)m has for domain
{v ∈ H2m(Ω), v = Δv = · · · = Δm−1v = 0 on Γ }. We set, for m ∈ N,
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Ḣm(Ω) = {v ∈ Hm(Ω), v = Δv = · · · = Δ[ m−1
2 ]v = 0 on Γ },

where [·] denotes the integer part. This space, endowed with the usual Hm-norm, is
a closed subspace of Hm(Ω). Furthermore, v 	→ ‖(−Δ)

m
2 v‖ is a norm on Ḣm(Ω)

which is equivalent to the usual Hm-norm.
Throughout the chapter, the same letters c, c′, and c′′ denote (generally positive)

constants which may vary from line to line and are independent of N . Similarly,
the same letter Q denotes (positive) monotone increasing and continuous functions
which may vary from line to line and are independent of N .

12.3 A Priori Estimates

Our aim in this section was to derive uniform (with respect to N) a priori estimates
on uN which will allow us, in the next section, to pass to the limit N → +∞ and
prove the existence of a solution to the original singular problem, in a suitable setting
(i.e., as mentioned in the introduction, based on a proper variational inequality).

Though formal, these a priori estimates can be fully justified in view of the regu-
larity results obtained in [9].

We assume from now on that −1 < u0(x) < 1 a.e. x ∈ Ω .

Remark 12.2 For amore general singular nonlinear term f , wewould need a stronger
separation property from the singular values ±1, namely ‖u0‖L∞(Ω) < 1.

We multiply (12.19) by ∂uN

∂t and have, integrating over Ω and by parts,

d

dt
(

k∑

i=1

ai‖(−Δ)
i
2 uN‖2 + 2

∫

Ω

FN (uN ) dx) + 2‖∂uN

∂t
‖2 = 0. (12.22)

We then multiply (12.19) by uN to obtain

1

2

d

dt
‖uN‖2 +

k∑

i=1

ai‖(−Δ)
i
2 uN‖2 + ((fN (uN ), uN )) = 0. (12.23)

Employing the interpolation inequality

‖(−Δ)
i
2 v‖ ≤ c(i)‖(−Δ)

m
2 v‖ i

m ‖v‖1− i
m , (12.24)

v ∈ Ḣm(Ω), i ∈ {1, . . . ,m − 1}, m ∈ N, m ≥ 2,

from which it follows that, for i ∈ {1, . . . , k − 1} and k ≥ 2,

‖(−Δ)
i
2 uN‖2 ≤ ε‖(−Δ)

k
2 uN‖2 + c(i, ε)‖uN‖2, ∀ε > 0, (12.25)



252 L. Cherfils et al.

Equations (12.18), (12.23) and (12.25) yield

d

dt
‖uN‖2 + c(‖uN‖2

Hk(Ω)
+

∫

Ω
FN (uN ) dx + ‖fN (uN )‖L1(Ω)) ≤ c′(‖uN‖2 + 1), c > 0.

(12.26)

Noting finally that

‖uN‖2 ≤ ε‖uN‖4L4(Ω) + c(ε), ∀ε > 0, (12.27)

we deduce from (12.17) and (12.26)–(12.27) that

d

dt
‖uN‖2 + c(‖uN‖2Hk(Ω)

+
∫

Ω

FN (uN ) dx + ‖fN (uN )‖L1(Ω)) ≤ c′, c > 0. (12.28)

Summing (12.22) and (12.28), we find, noting that
∑k

i=1 ai‖(−Δ)
i
2 uN‖2 ≤

c‖uN‖2Hk(Ω)
, a differential inequality of the form

dE1,N

dt
+ c(E1,N + ‖fN (uN )‖L1(Ω) + ‖∂uN

∂t
‖2) ≤ c′, c > 0, (12.29)

where

E1,N =
k∑

i=1

ai‖(−Δ)
i
2 uN‖2 + 2

∫

Ω

FN (uN ) dx + ‖uN‖2

satisfies

E1,N ≥ c(‖uN‖2Hk(Ω)
+

∫

Ω

FN (uN ) dx) − c′, c > 0. (12.30)

Indeed, it follows from the interpolation inequality (12.24) that

E1,N ≥ c(‖uN‖2Hk(Ω)
+

∫

Ω

FN (uN ) dx) − c′‖uN‖2 − c′′

and we conclude by employing (12.17) and (12.27).
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We then multiply (12.19) by −ΔuN and have, owing to (12.15),

d

dt
‖∇uN‖2 + 2

k∑

i=1

ai‖(−Δ)
i+1
2 uN‖2 ≤ 2λ1‖∇uN‖2. (12.31)

Summing (12.29) and δ1 times (12.31), where δ1 > 0 is small enough, we obtain,
employing once more the interpolation inequality (12.24), a differential inequality
of the form

dE2,N

dt
+ c(E2,N + ‖uN‖2Hk+1(Ω)

+ ‖fN (uN )‖L1(Ω) + ‖∂uN

∂t
‖2) ≤ c′, c > 0,

(12.32)
where

E2,N = E1,N + δ1‖∇uN‖2

satisfies

E2,N ≥ c(‖uN‖2Hk(Ω)
+

∫

Ω

FN (uN ) dx) − c′, c > 0. (12.33)

In particular, it follows from (12.32) and (12.33) and Gronwall’s lemma that

‖uN (t)‖2Hk(Ω)
≤ ce−c′t(‖u0‖2Hk(Ω)

+
∫

Ω

FN (u0) dx) + c′′, c′ > 0, t ≥ 0,

(12.34)
and

∫ t+r

t
(‖uN‖2Hk+1(Ω)

+ ‖∂uN

∂t
‖2) ds (12.35)

≤ ce−c′t(‖u0‖2Hk(Ω)
+

∫

Ω

FN (u0) dx) + c′′(r), c′ > 0, t ≥ 0,

r > 0 given. Actually, noting that FN (u0) is bounded (independently of N and u0),
there holds

‖uN (t)‖2Hk(Ω)
≤ ce−c′t‖u0‖2Hk(Ω)

+ c′′, c′ > 0, t ≥ 0, (12.36)

and

∫ t+r

t
(‖uN‖2Hk+1(Ω)

+ ‖∂uN

∂t
‖2) ds (12.37)



254 L. Cherfils et al.

≤ ce−c′t‖u0‖2Hk(Ω)
+ c′′(r), c′ > 0, t ≥ 0,

r > 0 given.
We now differentiate (12.3) with respect to time to find

∂

∂t

∂uN

∂t
+ P(−Δ)

∂uN

∂t
+ f ′

N (uN )
∂uN

∂t
= 0, (12.38)

∂uN

∂t
= Δ

∂uN

∂t
= · · · = Δk−1 ∂uN

∂t
= 0 on Γ, (12.39)

∂uN

∂t
|t=0 = −P(−Δ)u0 − fN (u0). (12.40)

Multiplying (12.38) by ∂uN

∂t , we have, employing (12.15) and the interpolation
inequality (12.24),

d

dt
‖∂uN

∂t
‖2 ≤ c‖∂uN

∂t
‖2. (12.41)

It then follows from (12.37), say, for r = 1, and the uniform Gronwall’s lemma (see,
e.g., [42]) that

‖∂uN

∂t
(t)‖2 ≤ ce−c′t‖u0‖2Hk(Ω)

+ c′′, c > 0, t ≥ 1. (12.42)

Remark 12.3 (i) Actually, it follows from the uniform Gronwall’s lemma that

‖∂uN

∂t
(t + r)‖2 ≤ c(r)

r
e−c′t‖u0‖2Hk(Ω)

+ c′′(r), c′ > 0, t ≥ 0, (12.43)

r > 0 given.
(ii) We assume that ‖u0‖L∞(Ω) < 1. We can note that, if u0 ∈ H2k(Ω), then ∂uN

∂t (0) ∈
L2(Ω) and it follows from the continuity of f and the continuous embedding
H2k(Ω) ⊂ C (Ω) that, for N large enough (note that f1,N , coincides with f1 = F ′

1
when |s| ≤ 1 − 1

N ),

‖∂uN

∂t
(0)‖ ≤ Q(‖u0‖H2k(Ω)). (12.44)

It then follows from (12.41) and Gronwall’s lemma that

‖∂uN

∂t
(t)‖ ≤ ectQ(‖u0‖H2k(Ω)), t ≥ 0. (12.45)
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Collecting (12.42) and (12.45) (for t ∈ [0, 1]), we finally deduce that

‖∂uN

∂t
(t)‖ ≤ e−ctQ(‖u0‖H2k(Ω)) + c′, c > 0, t ≥ 0. (12.46)

We finally rewrite (12.19) as an elliptic equation, for t > 0 fixed,

P(−Δ)uN + fN (uN ) = −∂uN

∂t
, uN = ΔuN = · · · = Δk−1uN = 0 on Γ. (12.47)

Multiplying (12.47) by −ΔuN , we find, owing to (12.15) and employing the
interpolation inequality (12.24),

‖uN‖2Hk+1(Ω)
≤ c(‖∂uN

∂t
‖2 + ‖uN‖2H1(Ω)),

which yields, owing to (12.36) and (12.42),

‖uN (t)‖2Hk+1(Ω)
≤ ce−c′t‖u0‖2Hk(Ω)

+ c′′, c′ > 0, t ≥ 1. (12.48)

Remark 12.4 We assume that ‖u0‖L∞(Ω) < 1. There also holds, owing to (12.46)
and for N large enough,

‖uN (t)‖2Hk+1(Ω)
≤ e−ctQ(‖u0‖H2k(Ω)) + c′, c > 0, t ≥ 0. (12.49)

Of course, we have a similar H2k-estimate on uN (see [9]), but, in that case, the
constants and the function Q a priori depend on N .

12.4 The Dissipative Semigroup

We assume in this section that k ≥ 2. For k = 1, i.e., for the classical Allen–Cahn
equation, one can prove the existence (and the uniqueness) of a classical (strong)
solution u, owing to the fact that u is strictly separated from the singular values ±1,
meaning that we essentially have to deal with a regular (and even bounded) nonlinear
term (see [28]).

Our main aim was to prove the existence (and uniqueness) of solutions to (12.3)–
(12.5) in a suitable sense, namely based on a variational inequality.

To do so, we first derive a variational inequality from (12.3). In this regard, we
multiply this equation by u − v, where v = v(x) is smooth enough and satisfies
v = Δv = · · · = Δk−1v = 0 on Γ . We then have, recalling that f (s) = f1(s) − λ1s,
s ∈ (−1, 1),
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((
∂u

∂t
, u − v)) +

k∑

i=1

ai(((−Δ)
i
2 u, (−Δ)

i
2 (u − v)))

+((f1(u), u − v)) − λ1((u, u − v)) = 0.

Noting that f1 is monotone increasing, this yields the variational inequality

((
∂u

∂t
, u − v)) +

k∑

i=1

ai(((−Δ)
i
2 u, (−Δ)

i
2 (u − v))) (12.50)

+((f1(v), u − v)) − λ1((u, u − v)) ≤ 0,

i.e., the nonlinear term now acts on the test functions rather than on the solutions.
Based on this, we give the following definition (see also [35]):

Definition 12.1 We assume that u0 ∈ Ḣk(Ω), with −1 < u0(x) < 1 a.e. x ∈ Ω .
Then, u = u(t, x) is a variational solution to (12.3)–(12.5) if, for all T > 0,

(i) −1 < u(t, x) < 1 a.e. (t, x),
(ii) u ∈ C ([0,T ];L2(Ω)) ∩ L∞(0,T; Ḣk(Ω)) ∩ L2(0,T; Ḣk+1(Ω)),
(iii) ∂u

∂t ∈ L2(0,T;L2(Ω)),
(iv) f1(u) ∈ L1((0,T) × Ω),
(v) u(0) = u0,
(vi) the variational inequality (12.50) is satisfied for every t > 0 and every test

function v = v(x) such that v ∈ Ḣk(Ω), with f1(v) ∈ L1(Ω).

We first prove the uniqueness of variational solutions. To do so, we need to
define as admissible test functions the solutions themselves; i.e., we need to de-
fine admissible time-dependent test functions. More precisely, we call admissi-
ble any function v = v(t, x) such that v ∈ C ([0,T ];L2(Ω)) ∩ L∞(0,T; Ḣk(Ω)) ∩
L2(0,T; Ḣk+1(Ω)), f1(v) ∈ L1((0,T) × Ω) and ∂v

∂t ∈ L2(0,T;L2(Ω)), ∀T > 0.
Next, we write (12.50) for v = v(t, ·), for almost every t > 0. Noting that, owing

to the regularity assumptions on u and v, all terms are L1 with respect to time, we
can integrate with respect to time to obtain

∫ t

s
[((∂u

∂t
, u − v)) +

k∑

i=1

ai(((−Δ)
i
2 u, (−Δ)

i
2 (u − v))) (12.51)

+((f1(v), u − v)) − λ1((u, u − v))] dξ ≤ 0,

for all 0 < s < t and for every admissible test function v = v(t, x). In particular, since
Hk(Ω) ⊂ C (Ω), k ≥ 2, it follows from the above regularity that ((f1(u), u − v)) ∈
L1(0,T), ∀T > 0.
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Remark 12.5 We can replace (12.50) by (12.51) in Definition 12.1, (vi).

We will actually need a second variational inequality. To do so, let w = w(t, x)
be an admissible test function and set

vη = (1 − η)u + ηw, η ∈ (0, 1].

Noting that

f ′′
1 (s) sgn(s) ≥ 0, s ∈ (−1, 1), (12.52)

it follows that |f1| is convex, so that

|f1(vη)| ≤ |f1(u)| + |f1(w)|. (12.53)

This yields that f1(vη) ∈ L1((0,T) × Ω) and vη is an admissible test function. Taking
v = vη in (12.51) and dividing by η, we find

∫ t

s
[((∂u

∂t
, u − w)) +

k∑

i=1

ai(((−Δ)
i
2 u, (−Δ)

i
2 (u − w)))

+((f1(vη), u − w)) − λ1((u, u − w))] dξ ≤ 0.

Passing finally to the limit η → 0 and employing Lebesgue’s dominated convergence
theorem (see (12.53)), we have

∫ t

s
[((∂u

∂t
, u − w)) +

k∑

i=1

ai(((−Δ)
i
2 u, (−Δ)

i
2 (u − w))) (12.54)

+((f1(u), u − w)) − λ1((u, u − w))] dξ ≤ 0,

for all 0 < s < t and for every test function w = w(t, x).
Let now u1 and u2 be two variational solutions with initial data u1,0 and u2,0,

respectively. We take u = u1 and v = u2 in (12.51) and u = u2 andw = u1 in (12.54)
and sum the two resulting inequalities. We obtain, after simplifications (recall that
f1 is monotone increasing) and noting that all terms are absolutely continuous from
[0,T ] onto L2(Ω),

1

2
‖u1(t) − u2(t)‖2 − 1

2
‖u1(s) − u2(s)‖2 (12.55)

+
∫ t

s
(

k∑

i=1

ai‖(−Δ)
i
2 (u1 − u2)‖2 − λ1‖u1 − u2‖2) dξ ≤ 0.
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Employing the interpolation inequality (12.24), we deduce that

1

2
‖u1(t) − u2(t)‖2 − 1

2
‖u1(s) − u2(s)‖2 ≤ c

∫ t

s
‖u1 − u2‖2 dξ,

so that, employing Gronwall’s lemma,

‖u1(t) − u2(t)‖ ≤ ec(t−s)‖u1(s) − u2(s)‖,

where the constant c is independent of t, s, u1, and u2. Passing finally to the limit
s → 0, we find

‖u1(t) − u2(t)‖ ≤ ect‖u1,0 − u2,0‖, t ≥ 0, (12.56)

hence the uniqueness, as well as the continuous dependence with respect to the initial
data in the L2-norm.

We now have the

Theorem 12.1 We assume that u0 ∈ Ḣk(Ω), with −1 < u0 < 1 a.e. x ∈ Ω . Then,
(12.3)–(12.5) possesses a unique variational solution u.

Proof There remains to prove the existence of a variational solution. To do so, we
consider the solution uN to the approximated problem (12.19)–(12.21) (as already
mentioned, the existence, uniqueness, and regularity of uN are known). Furthermore,
proceeding as above, it is easy to see that uN satisfies a variational inequality which
is analogous to (12.51), namely

∫ t

s
[((∂u

N

∂t
, uN − v)) +

k∑

i=1

ai(((−Δ)
i
2 uN , (−Δ)

i
2 (uN − v))) (12.57)

+((f1,N (v), uN − v)) − λ1((u
N , uN − v))] dξ ≤ 0,

for all 0 < s < t and for every admissible test function v = v(t, x).
It then follows from the uniform (with respect to N) a priori estimates derived in

the previous section (which are fully justified at this stage) that, up to a subsequence,
uN converges to a limit function u such that, ∀T > 0,

uN → u in L∞(0,T;Hk(Ω)) weak − � and in L2(0,T;Hk+1(Ω)) weak,

∂uN

∂t
→ ∂u

∂t
in L2(0,T;L2(Ω)) weak,

uN → u in C ([0, T ];Hk−ε(Ω)), L2(0, T ;Hk+1−ε(Ω)) and a.e. in (0,T) × Ω, ε > 0.
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Our aimwas to pass to the limit in (12.57).Wecannote that the above convergences
allow us to pass to the limit in all terms in (12.57), except in the nonlinear term∫ t
s ((f1,N (v), uN − v)) dξ . To pass to the limit in the nonlinear term, we can note that,
by construction,

|f1,N (v)| ≤ |f1(v)|

and we are in a position to use Lebesgue’s dominated convergence theorem (recall
that if v is an admissible test function, then f1(v) ∈ L1((0,T) × Ω); also note that u
and v belong to L∞((0,T) × Ω)).

We now need to prove the separation property (i). To do so, we note that, owing to
(12.29) and (12.30), f1,N (uN ) is uniformly (with respect toN) bounded inL1((0,T) ×
Ω). Then, owing to the explicit expression of f1,N , we have

meas{(t, x) ∈ (0,T) × Ω, |uM(t, x)| > 1 − 1

N
} ≤ c

f1(1 − 1
N )

, M ≥ N,

(12.58)
where the constant c is independent of M ≥ N and N (note that f1 and f1,N are odd
functions). Indeed, there holds

∫ T

0

∫

Ω

|f1,M(uM)| dx dt ≥
∫

EN,M

|f1,M(uM)| dx dt ≥ c′meas(EN,M)f1(1 − 1

N
),

where

EN,M = {(t, x) ∈ (0,T) × Ω, |uM(t, x)| > 1 − 1

N
},

the constant c′ being independent of N and M. Passing to the limit M → +∞
(employing Fatou’s Lemma) and then N → +∞ (noting that f1(1 − 1

N ) → +∞
as N → +∞) in (12.58), it follows that

meas{(t, x) ∈ (0,T) × Ω, |u(t, x)| ≥ 1} = 0, (12.59)

hence the separation property.
In order to complete the proof of existence, there remains to prove (iv). To do

so, we note that it follows from the almost everywhere convergence of uN to u, the
separation property (i), and the explicit expression of f1,N again that

f1,N (uN ) → f1(u) a.e. in (0,T) × Ω.
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Then, we deduce from Fatou’s lemma that

‖f (u)‖L1((0,T)×Ω) ≤ lim inf ‖fN (uN )‖L1((0,T)×Ω) < +∞,

which finishes the proof of existence.

Remark 12.6 A natural question is whether a solution in the sense of Definition12.1
is a classical variational solution (i.e., it satisfies a variational equality instead of a
variational inequality). To prove this, one solution is to obtain a uniform (with respect
to N) bound on f1,N (uN ) in Lp((0,T) × Ω), for some p > 1 (and not just for p = 1).
Unfortunately, we have not been able to derive such an estimate when k ≥ 2 so that
the question of whether a variational solution is a classical (variational) one is an
open problem.

It follows from Theorem12.1 that we can define the family of operators S(t) :
Φ → Φ, u0 	→ u(t), t ≥ 0, where

Φ = {v ∈ Ḣk(Ω), −1 < v(x) < 1 a.e. x ∈ Ω}.

This family of operators forms a semigroup (i.e., S(0) = I (identity operator) and
S(t + τ) = S(t) ◦ S(τ ), t, τ ≥ 0) which is, owing to (12.56), continuous in the L2

topology. Furthermore, it follows from (12.36) (which also holds in the limit N →
+∞) that this semigroup is dissipative, in the sense that it possesses a bounded
absorbing setB0 ⊂ Φ (i.e., ∀B ⊂ Φ bounded, ∃t0 = t0(B) ≥ 0 such that t ≥ t0 =⇒
S(t)B ⊂ B0).

It then follows from (12.56) that we can actually extend (in a unique way and by
continuity) S(t) to the closure of Φ in the L2-topology, namely

S(t) : Φ1 → Φ1, t ≥ 0,

where

Φ1 = {v ∈ L∞(Ω), ‖v‖L∞(Ω) ≤ 1}.

It also follows from the a priori estimates derived in the previous section that S(t)
instantaneously regularizes, i.e.,

S(t) : Φ1 → Φ, t > 0,

and that it possesses a bounded absorbing set B1 which is compact in L2(Ω) and
bounded in Hk+1(Ω). We thus deduce from standard results (see, e.g., [34, 42]) that
we have the

Theorem 12.2 The semigroup S(t) possesses the global attractorA which is com-
pact in L2(Ω) and bounded in Hk+1(Ω).
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Remark 12.7 We recall that the global attractorA is the smallest (for the inclusion)
compact set of the phase space which is invariant by the flow (i.e., S(t)A = A , ∀t ≥
0) and attracts all bounded sets of initial data as time goes to infinity; it thus appears
as a suitable object in view of the study of the asymptotic behavior of the system.
We refer the reader to, e.g., [34, 42], for more details and discussions on this.

Remark 12.8 An important question is whether the global attractor A has finite
dimension, in the sense of covering dimensions such as the Hausdorff and the frac-
tal dimensions. The finite-dimensionality means, very roughly speaking, that even
though the initial phase space has infinite dimension, the reduced dynamics can be
described by a finite number of parameters (we refer the interested reader to, e.g., [34,
42], for discussions on this subject). When k = 1, i.e., for the classical Allen–Cahn
equation, this can easily be established, owing again to the strict separation from
the singular values ±1 (see, e.g., [28]). However, when k ≥ 2, the situation is much
more involved and one idea could be to proceed as in [35]. This will be addressed
elsewhere.

Remark 12.9 We can adapt the above analysis to the higher-order Cahn–Hilliard
model

(−Δ)−1 ∂u

∂t
+ P(−Δ)u + f (u) = 0, (12.60)

u = Δu = · · · = Δk−1u = 0 on Γ, (12.61)

u|t=0 = u0, (12.62)

where P and f are as above. In particular, for k = 1, we recover the classical Cahn–
Hilliard equation which describes phase separation processes (spinodal decompo-
sition and coarsening) in binary alloys (see [5, 6] and the review papers [10, 36]
for more details). When k = 2, the model contains sixth-order Cahn–Hilliard mod-
els. We can note that there is currently a strong interest in the study of sixth-order
Cahn–Hilliard equations. Such equations arise in situations such as strong anisotropy
effects being taken into account in phase separation processes (see [43]), atomistic
models of crystal growth (see [2, 3, 13, 15]), the description of growing crystalline
surfaces with small slopes which undergo faceting (see [41]), oil–water–surfactant
mixtures (see [18, 19]), and mixtures of polymer molecules (see [12]). We refer
the reader to [7, 23–27, 29–32, 37–40, 44–46] for the mathematical and numerical
analysis of such models.
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Chapter 13
Uniform Global Attractor
for Nonautonomous Reaction–Diffusion
Equations with Carathéodory’s Nonlinearity

Nataliia V. Gorban and Liliia S. Paliichuk

Abstract We consider nonautonomous reaction–diffusion system with
Carathéodory’s nonlinearity. We investigate the long-time dynamics of all globally
defined weak solutions under the standard sign and polynomial growth conditions.
We obtain new topological properties of solutions, in particular flattening property,
prove the existence of uniform global attractor for multivalued semiflow generated
by considered problem.

13.1 Introduction and Statement of the Problem

Let N , M = 1, 2, . . . . In a bounded domain Ω ⊂ RN with sufficiently smooth
boundary ∂Ω , we consider the following problem:

{
ut = aΔu − f (x, t, u), x ∈ Ω, t > 0,
u|∂Ω = 0,

(13.1)

where u = u(x, t) = (u(1)(x, t), . . . , u(M)(x, t)) is unknown vector function, a is
real M × M matrix, f = f (x, t, u) = ( f (1)(x, t, u), . . . , f (M)(x, t, u)) is given
interaction function.

Note that Problem (13.1) is a nonautonomous reaction–diffusion system.There are
a lot of papers on qualitative behavior of solutions for evolution systems of reaction–
diffusion type. This is due to theoretical and applied importance of such objects. The
partial cases of reaction–diffusion problem are Kolmogorov–Petrovsky–Piskunov
equations (the problem on the gene diffusion) [1], models of Belousov–Zhabotinsky
reaction [2, 3], Gause–Vitta models [4, 5], and Selkov model for glycolysis [6, 7].
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Reaction–diffusion equations are actively used for modeling various biological and
chemical processes.

Remark that existence andproperties of global attractors for autonomous reaction–
diffusion equations with smooth interaction functions are well-known results (see
[8, 9]). The autonomous equations and inclusionswithout uniqueness are investigated
in [10–15]. In [16, 17] for autonomous reaction–diffusion inclusion of subgradient
type, the existenceofLyapunov function is obtained, the structure of global attractor is
studied, and the application to climatology model is considered. For nonautonomous
equations of such type with almost periodic interaction functions, the results on
trajectory attractors are obtained in [18]. In [19], the existence of uniform trajectory
attractor for nonautonomous Problem (13.1) with Carathéodory’s nonlinearity is
proved. In this chapter, we prove the existence of uniformglobal attractor for Problem
(13.1).

Remark 13.1 Let γ ≥ 1 and Y be a real separable Banach space. We consider the
Fréchet space L loc

γ (R+;Y ) of all locally integrable functions with values in Y , i.e.,
ϕ ∈ L loc

γ (R+;Y ) if and only if for any finite interval [τ, T ] ⊂ R+ the restriction of
ϕ on [τ, T ] belongs to the space Lγ (τ, T ;Y ) [19].

Definition 13.1 ([19]) A function ϕ ∈ L loc
1 (R+; L1(Ω) is called a translation uni-

form integrable one in L loc
1 (R+; L1(Ω)), if

lim
K→+∞ sup

t≥0

t+1∫

t

∫

Ω

|ϕ(x, s)|χ{|ϕ(x,s)|≥K }dxds = 0.

Remark 13.2 A function ϕ ∈ L loc
1 (R+; L1(Ω)) is a translation uniform integrable

one in L loc
1 (R+; L1(Ω)) if and only if for every sequence of elements {τn}n≥1 ⊂ R+

the sequence {ϕ( · + τn)}n≥1 contains a subsequence which converges weakly in
L loc
1 (R+; L1(Ω)).
The following condition

sup
t≥0

t+1∫

t

‖ϕ(s)‖γ

E ds < +∞

is the sufficient condition for the translation uniform integrability of function ϕ; see
[19].

The Main Assumptions on Parameters of Problem (13.1)

Assumption (A) There exists a positive constant d such that 1
2 (a + a∗) ≥ d I ,

where I is the identity M × M matrix, a∗ is a transposed matrix for a.
Assumption (B) The interaction function f = ( f (1), . . . , f (M)) : Ω × R+ ×
R

M → R
M satisfies the standard Carathéodory’s conditions, i.e., (x, t, y) →
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f (x, t, y) is continuous map in y ∈ R
M for a.e. (x, t) ∈ Ω × R+, and it is mea-

surable map in (x, t) ∈ Ω × R+ for any y ∈ R
M .

Assumption (C) There exist a translation uniform integrable in L loc
1 (R+; L1(Ω))

function c1 : Ω × R+ → R+ and a constant c2 > 0 such that

M∑

i=1

∣
∣ f (i)(x, t, y)

∣
∣qi ≤ c1(x, t) + c2

M∑

i=1

∣
∣y(i)

∣
∣pi

for any y = (y(1), . . . , y(M)) ∈ R
M and a.e. (x, t) ∈ Ω × R+, where pi ≥ 2 and

qi > 1 are such that 1
pi

+ 1
qi

= 1 for any i = 1, 2, . . . , M .
Assumption (D) There exist a constant α > 0 and a translation uniform integrable
in L loc

1 (R+; L1(Ω)) function β : Ω × R+ → R+ such that

M∑

i=1

f (i)(x, t, y)y(i) ≥ α

M∑

i=1

∣
∣y(i)

∣
∣pi − β(x, t)

for any y = (y(1), . . . , y(M)) ∈ R
M and a.e. (x, t) ∈ Ω × R+.

Consider the evolution triple (V, H, V ∗),where H =(L2(Ω))M ,V = (H 1
0 (Ω))M ,

and V ∗ = (H−1(Ω))M with standard respective inner products and norms (·, ·)H and
‖ · ‖H , (·, ·)V and ‖ · ‖V , and (·, ·)V ∗ and ‖ · ‖V ∗ .

Let 0 ≤ τ < T < +∞. Denote

Lp(Ω) := L p1(Ω) × ... × L pM (Ω), Lq(Ω) := Lq1(Ω) × ... × LqM (Ω),

Lp(τ, T ; Lp(Ω)) := L p1(τ, T ; L p1(Ω)) × ... × L pM (τ, T ; L pM (Ω)),

Lq(τ, T ; Lq(Ω)) := Lq1(τ, T ; Lq1(Ω)) × ... × LqM (τ, T ; LqM (Ω)),

where p = (p1, p2, . . . , pM) and q = (q1, q2, . . . , qM).

Definition 13.2 A function u = u(x, t) ∈ L2(τ, T ; V ) ∩ Lp(τ, T ; Lp(Ω)) is called
a weak solution of Problem (13.1) on [τ, T ] if for any function ϕ = ϕ(x) ∈
(C∞

0 (Ω))M the following equality holds

d

dt

∫

Ω

u(x, t) · ϕ(x)dx +
∫

Ω

{a∇u(x, t) · ∇ϕ(x) + f (x, t, u(x, t)) · ϕ(x)}dx = 0

in the sense of scalar distributions on (τ, T ).

Conditions (A)–(D) guarantee the existence of at least one weak solution on arbi-
trary interval (τ, T ), 0 ≤ τ < T < ∞, with initial condition u(τ ) = uτ , uτ ∈ H
[20, pp. 283–284]. But the uniqueness is not provided.

The main goal of this paper is to investigate the uniform long-time behavior
of all globally defined weak solutions for Problem (13.1) with initial data uτ ∈ H
under listed above assumptions, in particular to prove the existence of uniform global
attractor for all globally defined weak solutions of Problem (13.1).
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13.2 Auxiliaries

Let 0 ≤ τ < T < ∞,u(τ ) ∈ H . Denote byDτ,T (u(τ )) the family of allweak solutions
on [τ, T ] with initial data u(τ ) = u(τ ); that is,

Dτ,T (u(τ )) = {u(·) |u is a weak solution of Problem (13.1) on [τ, T ], u(τ ) = u(τ )}.

Remark that Dτ,T (u(τ )) �= ∅ and Dτ,T (u(τ )) ⊂ Wτ,T where u(τ ) ∈ H . Moreover, the
concatenation of weak solutions of Problem (13.1) is a weak solution too, i.e., if
0 ≤ τ < t < T , u(τ ) ∈ H , u(·) ∈ Dτ,t (u(τ )), and v(·) ∈ Dt,T (u(t)), then

z(s) =
{

u(s), s ∈ [τ, t],
v(s), s ∈ [t, T ]

belongs to Dτ,T (u(τ )) (cf. [21, pp. 55–56]).
Listed above properties of solutions and Grönwall’s lemma provide that for any

finite time interval [τ, T ] ⊂ R+ each weak solution u of Problem (13.1) on [τ, T ]
satisfies estimates

‖u(t)‖2H − 2
∫ t
τ

∫
Ω

β(x, ξ)dxdξ + 2α
∑M

i=1

∫ t
s ‖u(i)(ξ)‖pi

L pi (Ω)dξ

+2d
∫ t

s ‖u(ξ)‖2V dξ ≤ ‖u(s)‖2H − 2
∫ s
τ

∫
Ω

β(x, ξ)dxdξ,
(13.2)

‖u(t)‖2H ≤ ‖u(s)‖2H e−2dλ1(t−s) + 2
∫ t

s

∫

Ω

β(x, ξ)e−2dλ1(t−ξ)dxdξ (13.3)

for any t, s ∈ [τ, T ], t ≥ s, where λ1 is the first eigenvalue of the scalar operator−Δ

with Dirichlet boundary conditions (cf. [20, p. 285], [21, p. 56], [22] and references
therein).

Any weak solution u of Problem (13.1) on a finite time interval [τ, T ] ⊂ R+ can
be extended to a global one, defined on [τ,+∞). For arbitrary τ ≥ 0 and u(τ ) ∈ H
denote by Dτ (u(τ )) the set of all weak solutions (defined on [τ,+∞)) of Problem
(13.1) with initial data u(τ ) = u(τ ). Consider the family of all weak solutions of
Problem (13.1) defined on the semi-infinite time interval [τ,+∞):

K +
τ = ∪u(τ )∈HDτ (u

(τ )).

Consider the Fréchet space C loc(R+; H) [23, p. 918]. We denote T (h)u(·) =
uh(·), where uh(t) = u(t + h) for any u ∈ C loc(R+; H) and t, h ≥ 0 [24].

Remark that in the autonomous case the set K + := K +
0 is translation semi-

invariant, i.e., T (h)K + ⊆ K + for any h ≥ 0. Such autonomous problems were
investigated in [20, Chap.XIII], [25–28], [21, Chap.2] and references therein; see
also [29]. In the nonautonomous case,wehave thatT (h)K +

0 � K +
0 . So,we consider

a united trajectory space [19] of the following form:
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K +
∪ :=

⋃

τ≥0

{
u( · + τ) ∈ C loc(R+; H) : u( · ) ∈ K +

τ

}
.

Then T (h){u( · + τ) : u ∈ K +
τ } ⊆ {u( · + τ + h) : u ∈ K +

τ+h} for any τ, h ≥ 0.
So, T (h)K +

∪ ⊆ K +
∪ for any h ≥ 0. Then, we consider an extended united trajectory

space for Problem (13.1):

K +
C loc(R+;H)

= clC loc(R+;H)

[
K +

∪
]
, (13.4)

where clC loc(R+;H)[ · ] is the closure in C loc(R+; H). Note that

T (h)K +
C loc(R+;H)

⊆ K +
C loc(R+)

for any h ≥ 0 (13.5)

(cf. [19, 23, 25]).
The following theorem characterizes the compactness properties of shifted solu-

tions for Problem (13.1) in the induced topology from C loc(R+; H).

Theorem 13.1 ([19, Theorem 4.1]) Let Assumptions (A)–(D) hold. If {un}n≥1 ⊂
K +

C loc(R+;H)
is an arbitrary sequence, which is bounded in L∞(R+; H), then there

exist a subsequence {unk }k≥1 ⊆ {un}n≥1 and an element u ∈ K +
C loc(R+;H)

such that

‖Πτ,T unk − Πτ,T u‖C([τ,T ];H) → 0, k → +∞,

for any finite time interval [τ, T ] ⊂ (0,+∞). Moreover, for any u ∈ K +
C loc(R+;H)

the
following estimate holds:

‖u(t)‖2H ≤ ‖u(0)‖2H e−c3t + c4

for any t ≥ 0, where positive constants c3 and c4 do not depend on u ∈ K +
C loc(R+;H)

and t ≥ 0.

Let us define the multivalued map G : R+ × H → 2H \ {∅} as

G(t, u0) = {u(t) ∈ H | u(·) ∈ K +
C loc(R+;H)

: u(0) = u0}. (13.6)

Then the multivalued map G is a multivalued semiflow (see [21], (13.4) and (13.5)).

Definition 13.3 (see [15, 21]) The set Θ ⊂ X is called a uniform global attractor
for multivalued semiflow G from (13.6) if the following conditions hold:

• Θ is an attracting set for G, that is for arbitrary bounded nonempty set B ⊂ H

distH (G(t, B),Θ) → 0 as t → +∞,

where distH (A, B) = supx∈A inf y∈B ||x − y||H for any non-empty sets A, B ⊂
H .
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• Θ is theminimal attracting set, that isΘ ⊂ clH Y for arbitrary attracting setY ⊂ H ;
• Θ ⊂ G (t,Θ) for all t ≥ 0.

Uniform global attractor is invariant if Θ = G(t,Θ) for all t ≥ 0.

Definition 13.4 ([30, Definition 2.7]) Multivalued semiflow G : R+ × H → 2H \
∅ satisfies the flattening property if for arbitrary bounded set B ⊂ H and ε > 0 there
exist t0(B, ε) andfinite-dimensional subspace E of H such that for bounded projector
P : H → E the set P(

⋃
t>t0

G (t, B)) is bounded in H , and

(I − P)(
⋃

t>t0

G (t, B)) ⊂ B(0, ε).

The following lemma provides the sufficient condition for justice of flattening
property for multivalued semiflow G.

Lemma 13.1 ([30, Lemmas 2.4, 2.6], [31, p. 35]) Let G be an asymptotically
compact multivalued semiflow in H, that is for arbitrary sequence {ϕn}n≥1 ⊂ G
with {ϕn(0)}n≥1 bounded, and for any sequence {tn}n≥1: tn → +∞ as n → ∞, the
sequence {ϕn(tn)}n≥1 has a convergent subsequence. Then for G the flattening prop-
erty holds.

13.3 Main Results

The main result of this note has the following formulation:

Theorem 13.2 Let Assumptions (A)–(D) hold. Then the multivalued semiflow G,
defined in (13.6), has a compact uniform global attractor Θ in the phase space H.

Proof From[21],wehave that the following conditions are sufficient for the existence
of a compact uniform global attractor for themultivalued semiflow G: for each t ≥ 0,
the mapping H � u �→ G(t, u) has a closed graph; G is asymptotically compact
multivalued semiflow; there exists R0 > 0 such that ∀R > 0 ∃T ≥ 0 (depended on
R) such that ∀t ≥ T

G(t, {u ∈ H | ρ(u, 0) ≤ R}) ⊂ B0 = {u ∈ H | ρ(u, 0) ≤ R0}. (13.7)

The first condition follows from (13.6). Theorem13.1 and assumptions (C), (D)
and estimates (13.2), (13.3) provide the asymptotically compactness of multivalued
semiflow G and the fulfillment of (13.7).

The following theorem implies that dynamics of allweak solutions of studiedproblem
is finite-dimensional within a small parameter.

Theorem 13.3 Let Assumptions (A)–(D) on the parameters of Problem (13.1) hold.
Then the multivalued semiflow G satisfies the flattening condition.
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Proof The statement of the theorem directly follows from Lemma13.1 and proof of
Theorem13.2.

Remark 13.3 All statements of Theorems13.2 and 13.3 hold for function f (x, t, u)

equals to the sumof interaction function f1(x, t, u), satisfyingAssumptions (A)–(D),
and an external force g ∈ L loc

2 (R+; V ∗), which satisfies

sup
t≥0

t+1∫

t

‖g(s)‖2V ∗ds < +∞.

The proofs are similar with some standard technical modifications.

As applications we may consider Fitz–Hugh–Nagumo system (signal transmission
across axons), complex Ginzburg–Landau equation (theory of superconductivity),
Lotka–Volterra systemwith diffusion (ecologymodels), Belousov–Zhabotinsky sys-
tem (chemical dynamics) and many other reaction–diffusion-type systems [32],
whose dynamics are well studied in autonomous case [9, 20], and in nonautonomous
case, when all coefficients are uniformly continuous on time variable (see [20, 21]
and references therein).
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Chapter 14
Some Problems Connected with
the Thue–Morse and Fibonacci
Sequences

Francisco Balibrea

Abstract We deal with outstanding properties of the Thue–Morse sequence and
consider some of its appearances in combinatorial, symbolic, and physical prob-
lems. In particular, we consider the solution of a problem in semigroups theory, and
additionally, we consider a system of difference equations associated with a trans-
mission of waves problem, studied in Avishai and Berend, Phys Rev B 45:6873–688,
1991, [1], and Avishai and Berend, Phys Rev B 45:2717–2774, 1992 [2]. Such sys-
tem has interesting properties from the dynamical point of view, particularly what
concerns to periodic points and asymptotic behaviors of most of the non-periodic
orbits. Additionally, we state similar problems using Fibonacci and Rudin–Shapiro
sequences.

14.1 Introduction

Given two symbols a and b, the Thue–Morse sequence denoted by (T − M) associ-
ated with them is a non-periodic sequence given by

abbabaabbaababbabaababbaabbabaab....

Usually, it is represented in the literature by the following sequence of 0′s and 1′s

t = (tn)n≥0 = 0110100110010...

Such sequence is an ubiquitous mathematical object. It comes up in algebra, number
theory, combinatorics, topology, and other areas.

(T − M) appeared for the first time in a paper of Eugene Prouhet in 1851 devoted
to problems in number theory [19]. However, Prouhet did not mention the sequence
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explicitly; this was made by Axel Thue in 1906 [22], who used in combinatorics
on words composed of 0′s and 1′s. The sequence was only brought to mathematical
worldwide attention byMarstonMorse in 1921 ([15]) in his construction of geodesics
in surfaces of negative curvature, and in turn, it was the beginning of a fruitful part
of the theory of dynamical systems, called the symbolic dynamics.

(T − M)was rediscovered independentlymany times, not always by professional
researchmathematicians. For example,MaxEuwe, a chess grandmaster,whoheld the
world championship title from 1935 to 1937, and mathematics teacher, discovered
it in 1929 in an application to chess. Using its overlap property, he showed how
to circumvent a rule aimed at preventing infinitely protracted games by declaring
repetition of moves a draw ([10]).

14.1.1 (T − M) and Some Definitions and Properties

Depending on the problem to solve or simplywhat properties of the sequencewewant
to take into account, there has been obtained different approaches for introducing
the sequence. In this subsection, we will consider only the approach needed in the
developing of the rest of the paper.

Given the alphabet {0, 1}, we will call as word to a finite sequence of symbols
from the alphabet and letter to any member of it. If the word is composed of infinite
symbols, then it is called an infinite word or simply a sequence of symbols. In this
paper, we will refer always to words with a finite number of symbols.

Define a sequence of words of 0’s and 1’s as follows:

a0 = 0, b0 = 1

a1 = a0b0, b = b0a0

....

an+1 = anbn, bn+1 = bnan

an+1 = anbn

where the words anbn and bnan are composed of symbols 0′s and 1′s in number 2n+1

For example, we find

a0 = 0

a1 = 01
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a2 = 0110

a3 = 01101001

a4 = 0110100110010110

....

and so on. Given two words A and B, we denote by AB their concatenation; that is,
we get a word of more number of symbols by adding to the last symbol of A the
symbols of B.

Given any word A, we will denote by A′ the word which is composed of the same
symbols that A but taken in a inverse order. Immediately, we observe that

an = a′
n, bn = b′

n, (n is even)

an = b′
n, bn = a′

n, (n is odd)

A morphism on words is a map h that satisfies the identity h(XY ) = h(X)h(Y )

for all words XandY .
Define the Thue–Morse morphism as μ(0) = 01 and μ(1) = 10. Then, the suc-

cessive iterations of the morphism are as follows:

μ(0) = 01

μ2(0) = μ(μ(0)) = 0110

μ3(0) = 01101001

μ4(0) = 0110100110010110...

and so on.
Then, it can be proved immediately by induction on n that μn(0) = Xn and

μn(1) = X̄n . This process leads to a sequence

b = (bi )
∞
i=0 = limn→∞μn

obtained simply as a concatenation of symbols. In the literature, there others methods
of introducing (T − M) (see, e.g., [5]).

An overlap on the set of words is a word of the form aXaXa where a is a letter
and X is a word. As examples, using all letters of English or Spanish languages, the
words alfalfa and entente (both exist in the two languages) are examples of overlap
words. A word is called overlap-free if it contains no word that is an overlap.



276 F. Balibrea

The (T − M) is an example of a infinite overlap-free word. It was proved in [16]
in the result,

Theorem 14.1 (M − T ) does not contain any word B of the form DD̄d holding
D = D̄ and when d is the initial symbol of D.

where D̄ will be defined at the end of the paragraph. From it may applications have
been made. Here, we present two of them, one concerning the solution of a chess
problem (solved by Euwe in [10]) and another giving an answer to a problem in
semigroup theory.

Another interesting appearance of (M − T ) is connected with the notion of uni-
form recurrence on shift of two symbols and the non-trivial construction of examples
of them. Let us denote by ((Σ2, d),σ)) (d is a metric) such shift, where σ is the map
shift acting on s ∈ Σ2); that is, (σ(s))n = sn+1 for all n = 0, 1, 2, . . .. (T − M) is
a uniform recurrent point with respect to the shift map. The proof of this statement
can be done seeing that all in the (T − M) are syndetic (see [6] for definitions on
recurrence, uniform recurrence, and proofs therein).

On next subsection, we will give a report of one old and interesting problem on
the construction of semigroups holding some conditions.

14.1.2 On the Solution of a Problem on Semigroups

In [5], R.P. Dilworth stated that some problems in semigroups theory could be solved
using the (T − M). Let S be a semigroup of elements where the operation between
a, b ∈ S (a product) is denoted by ab and where with e we denote the zero element,
that is, ea = ae = e for all a ∈ S. If A and B are subsets of S, we denote by AB
the set of all products ab taking a ∈ A and b ∈ B. The semigroup S is said to be
nilpotent if there exist an integer m such that Sm = e. It is wondered if it is possible
to construct a non-nilpotent semigroup S generated by three elements (which means
that there are a, b, andc in S in such a way that all members of S can be obtained by
a finite number of operations of them), and in such a way that w2 = e for all w ∈ S.
It can be done if it is possible to construct an infinite sequence of the three elements
containing no word of the form BB where B is a word.

We prove that using the (T − M), it is possible to solve such problem. The proof
is just an application of Theorem 14.1 and using some words considered in [17]
(see again [16]). The construction is contained in [16], and here, for the aim of
completeness and interest, we include it with some little variants. Such proof is
constructive and purely combinatorial.

First, we use a process called in [17], association in which, given a symbolic
sequence it is determined another sequence holding additional properties. In this
subsection, (T − M)will be represented by the indexed sequence of symbols t0t1t2...
and let denote by Bi the word of two symbols from the sequence starting in the index
i . Since (T − M) has two generating symbols 0 and 1, there are at most four different
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words Bi of two symbols, 00, 01, 10, and 11 which appear in (T − M). Now take
the indexed sequence

B0B1B2.....(4)

which has four generating symbols. Take as S the symbolic sequence of which (4) is
an indexed representation. If we denote the 2 − words given above by 1, 2, 3, and
4, a simple computation shows that B0B1B2... begins as follows

2432, 3124, 3123, 2432, 3123, 2431

Now let us suppose that in the indexed representation, a word D with initial index
i + 1 occurs and prove the following statement, where if

D = ti+1ti+2...ti+ω

then we will denote by D̄, the word

ti+ω+1ti+ω+2...ti+2ω

Proposition 14.1 The symbolic sequence S contains nowordof the form B B̄ holding
B = B̄.

Proof If the statement were not true, it would follow from the construction of S that
(T − M) would contain a word of the form DD̄d where D = D̄ and d would be the
initial symbol of the word D. But this is not possible according to Theorem 14.1.

Now let U be the symbolic sequence obtained from S just changing the index 4
by the index 1. The result is that U would contain the word

213231213123213231232131

Such symbolic trajectory U allows us to prove the following result which in fact
is an answer to the main question in this section

Theorem 14.2 The symbolic trajectory U has three generators and contains no
word of the form E Ē holding E = Ē

Proof It is immediate by the construction of U from S that it has three generators.
Let us suppose that U would contain a word of the form E Ē with E = Ē . This

would imply the existence of a word CC̄ in S and that C = C̄ when 4 be replaced
by 1. Suppose that in the indexed representation of S,C would have the representation
of Bi+1Bi+2...Bi+ω and C̄ the representation of Bi+ω+1Bi+ω+2...Bi+2ω . Since the
index 1 in S corresponds to 00 in (T − M) and 4 in S corresponds to 11 in (T − M),
while (T − M) contains neither the words 000 or 111, it follows that the index 1 in S
must be preceded by the index 3, while 4 must be preceded by 2 and followed by 3.
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Let us ω denote the number of symbols of a word. If ω = 1, from the hypothesis
E = Ē , it would follow that either C = C̄ or CC̄ = 14 or CC̄ = 41. But the former
proposition implies that the first possibility is impossible, and since 1 is followed by
2 and preceded by 3 in S, the second and third cases are also impossible. Therefore,
we cannot have ω = 1.

If ω > 1, let j be index holding i + 1 < j < i + ω. Using the hypothesis E = Ē ,
we claim that it must be Bi+ω = Bi+2ω unless Bi+ω = 4 and Bi+2ω = 1 or viceversa.
But Bi = 4 implies Bii+3 = 3 and therefore Bi+1+ω = 3, and consequently, Bi+ω =
4 = Bi . If Bi = 1, then Bi+1 = 2, and then, Bi+1+ω = 2 and Bi+ω = 1 = Bi . Thus
we have

Bi = Bi+ω, f or i + 1 ≤ j ≤ i + ω

But this implies that C = C̄ which is impossible according to Proposition 14.1.
The assumption that U contains a word of the form E Ē holding E = Ē leads to

a contradiction and the proof is complete.

14.2 A Problem on Transmission of Waves

In [1, 2], Y. Avishai and D. Berend considered the transmission of a wave described
by a parameter denoted by |tN | (in modulus) and reflection |rN | of a plane wave
(number wave given by k > 0) through a one-dimensional array of N δ-function
potentials having equal strengths ν placed on a Thue–Morse chain sequence xn with
distances d1 and d2 when N → ∞.

By means of number theoretical theory and analytic methods, such authors obtain
the following interesting results which describes the physics of the problem.

(1) For any k, if ν is large enough, the sequence of reflection coefficients (|rN |)∞N=1
has a subsequence that converges exponentially to unity.

(2) If k is an integer multiple of π
|d1−d2| , then there exists a threshold value ν0 for

the values of ν, such that for ν ≥ ν0 is |rN |N→∞ = 1. If ν < ν0, then it is
|rn| �= 1. In fact, something more can be said. Is lim supN→∞|rN | < 1 and
lim in fN→∞|rN | = 0.

(3) For other values of k, it is claimed that if k is not a multiple of π
|d1−d2| always

the sequence (|rN |)∞N=1 has a subsequence tending to unity independently of ν
except for a set of measure zero.

(4) After numerical simulations, it seems that if we test that the above sequence has
a subsequence converging to unity, then the whole sequence is converging to
unity.

The central problem to be solved is the casewhenwe are dealingwith quasicrystals
and trying to decidewhether a one-dimensional array behaves as conductor (|rN |N→∞
�= 1) or an insulator (|rN |N→∞ = 1). More specifically, there is or not a curve in the
(ν, k) parameter space separating the conductor and insulator domains.
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Given a one-dimensional array of N − δ-function potentials

V (x) = v
N∑

n=1

δ(x − xn)

where ν > 0 and xn is given assuming that
xn+1 − xn = yn takes only twopositive valuesd1 ord2 dependingon if ξn = 0 or 1,

where ξn = [1 + (−1)s(n)]/2 and s(n)is the number of ones in the binary expansion
of n.

A plane wave with momentum k, given by e−ikx (coming from right) will have
refection and transmission amplitudes rN and tN , respectively, when crossing the
array. When N = 1, we have

r1 = ν

2ik − ν
, t1 = 2ik

2ik − ν

holding unity and continuity at the point x0 conditions

|r1|2 + |t |2 = 1, t1r
�
1 + t ∗1 � = 0 (1)

where a� means the conjugate of the complex number a and

t1 = 1 + r1

The unitary condition (1) is held for any N . If N > 1, the reflection and transmission
amplitudes are determined for the following recursion. First, we introduce additional
notation

an = 1

tn
, bn = rn

tn
,

A1 =
(
1/t1 −r1/t1
r1/t1 (t21 − r21 )/t1

)

Λn =
(
e−ikyn 0
0 eiky−n

)

Then Dn = A1Λn with

det (A1) = det (Λn) = det (Dn) = 1

This Dn is the transfer matrix at the site n. Taking into account the product of n
transfer matrices, we define



280 F. Balibrea

Mn = Λn AΛn−1...AΛ1A

Then, we obtain

(an+1 bn+1) = A1Λn(an bn)

The conductance of the initial system (one-dimensional array) is given by
limN→∞|tN |2 = 1

|aN |2 . This is equivalent to obtain the limit of |rN |2 = | bNaN |2. This
leads to the following criterium. When |tN | → 0 (or equivalently |rN → 1), we say
that the systems behaves like an insulator. When |tN | does not converges to 0, then
the system may conduct. At this point, what it is really interesting is to find out for
what values of the parameters momentum k and the strength ν, the system is an
insulator or a conductor.

The matrices A1,Λn , and Mn belong to the multiplicative group of 2, defined by

SU (1, 1) =
(

α β
β� α�

)

where α,β ∈ C , |α|2 − |β|2 = 1.
Given the sequence (yn)∞n=1, our main problem is deciding the values of ν and

k for which we have |rN |N→∞ → 1. Before considering the Thue–Morse sequence
and independently of the values reached by yn (only that there are two values) in
[1, 2], it is proved that for every k multiple of π

(d1−d2)
, there is a threshold value ν0

such that

(1)
|rN | → 1 ⇔ ν ≥ ν0 (both posi tives)

ν0 = 2ktg
k

2
i f sin k < 0, −2ktg

k

2
sin k < 0

(2) When |rN |N→1, then the sequence rN lies on a circle of diameter q
|sin k−q cos k|

(<1) passing through the origin and additionally

lim sup|rN | < 1; lim in f |rN | = 0

This result covers the values of k which are integer multiples of mm = π
(d1−d2)

.
Further, we will assume that is not a multiple of m. We state

Φ = kd1, Ψ = kd2

and define recurrently two sequences of matrices (Pn)∞n=0 and (Qn)
∞
n=0 belonging to

SU (1, 1)
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P0 =
(
e−iΦ 0
0 eiΦ

)

,

Q0 =
(
e−iΨ 0
0 eiΨ

)

Pn = Qn−1Pn−1, Qn = Pn−1Qn−1 (1)

where A denotes the transfer matrix introduced before. We obtain by a direct calcu-
lation that

M2n = Pn n ≥ 0.

In [2], it is made some numerical simulations. As a consequence, he claimed that
the behavior of last subsequence (M2n )

∞
n=0 can be taken as the behavior of the whole

sequence. To see the behavior of the sequence (Pn)∞n=1, we are considering what
is called the trace map. Let us denote by χn = tr(Pn), n ≥ 0. It is immediate that
tr(Qn) = χn, n ≥ 1.

Our main purpose now is to find out for which the values of k and ν the sequence
of norms (||Pn||)∞n=1 converges to infinity and for which not. Instead, in order to
simplify computations, we will use the sequence of traces (χn)

∞
n=1. In this case if

|χn|n→∞, then ||Pn||n→∞. If |χn|n→∞, then all results can appear concerning the
other sequence (for a discussion in this point, see [2]).

Also in [2], it is proved that if (Pn)∞n=0 and (Qn)
∞
n=0 are any two sequences of

matrices from SU (1, 1), holding (1) and χn = tr(Pn), then

χn+2 = χ2
n(χn+1 − 2) + 2, n ≥ 1, (2)

To study the sequence (χn)
∞
n=1, we will consider the unfolding of the nonlinear

difference equation (2) by the planar transformation H : R2 → R2

H(x, y) = (y, x2y − 2x2 + 2)

Using the map, γ : R2 → R2 given by

γ(x, y) = (x2, y)

which is a semiconjugacy, it is immediate that γ ◦ H = T ◦ γ. Further, we will deal
with the difference equation given by T whichwewill call theThue–Morse difference
equation since it is generated using the idea of such a sequence and properties we
are remarked before.
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The Thue–Morse sequence is also connectedwith the description of quasicrystals.
In place of every 0, we can image an atom placed in a small square and when have
an 1 another different atom. If we construct an infinite array of squares, we have an
image of an 1D-quasicrystal.

14.2.1 Dynamics of the Thue–Morse System

The previous problem on transmission leads to the following system of difference
equations

xn+1 = xn(4 − xn − yn)

yn+1 = xn yn

The system can be seen as a two-dimensional dynamical system given by the pair
(R2, T ) where

T (x, y) = (x(4 − x − y), xy)

It is easy to test that systems

S(x, y) = ((y − 2)2, xy)

and
B(x, y) = (xy, (x − 2)2)

are topologically conjugate in R2 to T (x, y); that is, there exist bijections in R2, Φ
and Ψ such that

Φ ◦ T = S ◦ Φ

and
Φ ◦ T = B ◦ Ψ

These conjugations are interesting since the dynamical properties of the systems are
kept by topological conjugation, in particular existence of periodic orbits, density of
them, transitivity, etc. In the paper, we are dealing with the Thue–Morse transforma-
tion given in the form T (x, y) = (x(4 − x − y), xy) from R2 into itself which it is
a nonlinear transformation.

We will call the trajectory of a point P ∈ R2 the sequence (T n(P))∞n=0 where
with T n = T ◦ (T n−1) and T 0(P) = P for all points in R2. We will call orbit of P
the set of points of the trajectory of P .

The most interesting part of the dynamics is concentrated in the interior of the
triangle Δ obtained connecting the three points (0, 0), (4, 0), and(0, 4). The line l
connecting (4, 0) and (0, 4) is given by x + y = 4, and we will denote by Γ1 the
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Fig. 14.1 The partition of Δ

segment connecting these two points, byΓ2 the segment connecting (0, 0) and (0, 4),
and γ the segment connecting (0, 0) and (4, 0).

InsideΔ, there is a sequence of domains whose interiors are pairwise disjoint and
such that the terms of the orbit of a point stating in any of them follow the sequence
of domains ω0,ω1,ω2, ...,ωn .... It means that if a starting point P belongs to ωi , then
T (P) belongs to ωi+1 and so on. See Fig. 14.2, where their boundaries inside Δ are
denoted by Li and by Xi their intersections with the axis y = 0 (see Fig. 14.1).

The dynamics is easily understood if we split Δ into two sets

Δ = Δl ∪ ω0

where Δl = {(x, y) : 0 < x < 2} and ω0 = {(x, y) : 2 < 4}. Since every point in
intΔ has two preimages, the map T is not invertible in it, but it is easy to see that
the restriction to intΔl and intω0 it is. In fact, can be obtained explicit expressions
of the inverse maps of such restrictions (see [3]). Of interest is the segment {(2, y) :
0 < y < 2} which is the channel of communication of the inside of Δ and the point
(0, 0) through the boundary of Δ.

Since all points outside Γ1 but belonging to the line l are preimages of (0, 0), and
there are no preimages of (3, 0) inside Δ since all of them belong only to γ. The
following decomposition of Δ is very effective.
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Proposition 14.2 (see [3])
The triangle Δ can be decomposed into the following way

Δ = (

∞⋃

n=0

F−n(0, 0)|Δ) ∪ (

∞⋃

n=0

F−n(1, 2)) ∪ (

∞⋃

n=0

F−n(3, 0))∪

∪(I (
∞⋃

n=0

F−n(3, 0)) ∪
∞⋃

n=0

F−n(0, 0))) ∪ R

Because of this result, it is clear that any periodic orbit of T , if they exist, must belong
to the ser R.

Taking pieces of curve from boundaries of the ω-sets mentioned above, it is
possible to obtain invariant sets with the shape of a spiral. In Fig. 14.2, we joint the
points (1, 2) and (0, 0) through one of such invariant spirals.

In Fig. 14.3, we have made with the Program R, a representation of three orbits
starting in three relevant part of int D which give us an idea of the complexity of
orbits.

It seems that there exists a arrow strip parallel to γ which attracts initially to
almost points from intΔ, but when the iterates of the point are closed to it, then it is
an repelling effect. The topological and geometrical structure of such a string is not
yet known.

The dynamics on ∂Δ (boundary of Δ) and intΔ is easy to known.

Fig. 14.2 Invariant set as a spiral



14 Some Problems Connected with the Thue–Morse and Fibonacci Sequences 285

Fig. 14.3 On left we have of orbit of (0.5, 3.2), on center that of (1.5, 2.2), and on right that of
(3.5, 0.2). The three after 10.000 iterations

Proposition 14.3 The map T |∂Δ verifies:

(1)
T (∂Δ) = ∂Δ

(2)
T (intΔ) = intΔ

Proof 1 is immediate. To prove 2, we take into account that points (x, y) in intΔ ful-
fills the conditions, x > 0, y > 0, 4 − x − y > 0. If (X,Y ) is the image of (x, y), we
have X = x(4 − x − y) > 0, Y = xy > 0 and 4 − X − y = (x − 2)2 > 0 except
for the points of γ.

14.2.2 Sharkovskii’s Program

In 1993 in a conference in Oberwolfach, A. Sharkovskii motivated by the former
cited paper [2] proposed investigation on the two-dimensional dynamical system

S(x, y) = ((y − 2)2, xy)

and stated a program of research with the following questions:

(1) Are the periodic points of S dense in Δ?
(2) Is H |Δ transitive?
(3) Is Γ1 an attractor of Δ in Milnor’s sense?
(4) Does there exist a point P such thatωS(P) (theω-limit set of the point P under S)

be unbounded but holding ωS(P) ∩ Γ1 �= ∅
The aim of the rest of the paper was to deal with the above problems and with other
stated in the literature (see [3, 7, 12, 20]). We have answered to part of Sharkovskii’s
questions and complete the knowledge of the dynamics of the map T (x, y) outside
Δ. We have completed the analysis with graphical simulations. The dynamics inside
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the triangle is really complicated but outside is not so, since the orbits of almost
all points go to infinity. Instead of S, we are dealing with the map T , but we have
obtained that they are topologically conjugate.

14.2.2.1 On Periodic Orbits of T

On [3, 12], the existence of periodic orbits was investigated and the possibility of
the existence or not of forcing patterns of periodic orbits in the line of Sharkovskiĭ
results was stated. This is the case in the restriction of T to the segment γ, but this
nothing new since in γ, T behaves as like one-dimensional.

We are summarizing the above-referred papers and complete some aspects of
them concerning periodic orbits.

By elementary algebraic computations, it is easy to see that insideΔ, there is only
one fixed point, (1, 2). At the boundary of Δ, we have two fixed points, (0, 0) and
(3, 0). Outside the triangle, we have no fixed point. There are no two-periodic points,
neither three periodic points.

Using the algebraic method of resultant (see [3]), we obtain that the interior point

(1 − √
2/2, 1 + √

2/2)

is periodic of period 4. By a numerical approach in [3], it proved the existence of a
unique periodic points of period 5 and by direct calculus that

(1, (3 + √
5)/2))

is a periodic orbit of period six.
Using an adapted symbolic dynamics to this problem, P. Malicky has shown that

for n ≥ 4, there is point in int(Δ) of period n. It remains open if such points are
unique or not.

The key point of Malicky’s proof is to prove that given a saddle periodic point P
in γ, there exists in the interior of Δ a periodic point having the same itinerary. It is
interesting to have a criterium to prove the existence of saddle points in γ. In fact,
let P = [4sin2(kπ/(2n + (−)1), 0], where n > 0 andk are integer numbers. If

1 ≤ k ≤
√
2(2n + (−)1)

π2
√
2n+1/4

,

then P is a saddle fixed point of T n (see [11–13]). The following Fig. 14.4 allows us
to see the saddle nature of the internal periodic points in the triangle. In such figure,
it is represented with several colors from red to yellow the sum of the distances
between two consecutive points the orbits starting in points of the triangle according
with a technique of representation introduced in [9].

The restriction T |[0, 4] is the logistic parabola p(x) = x(4 − x). We will recall
some properties concerning periodic points. Let I = [0, 1] be the unit interval and
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Fig. 14.4 graphical representations of saddle points inside Δ

f (x) = 4x(1 − x) (equivalent to p(x)) be the logistic map. The map f is onto and
two to one for all points in I except for x = 1

2 .

Lemma 14.1 For every p ∈ N, the map f has a periodic orbit of period p

Proof We claim that the map f has in I a periodic point of period 3. In fact,

f (0) = f (1) = 0, f (
1

2
) = 1;

therefore, f 3(0) = 0. We also know that f ′( 12 ) = 0.

Let x0 = (1 −
√

1
2 )/2, thus, 0 > x0 < 1

2 and 4x0(1 − x0) = 1
2 ; that is, f (x0) = 1

2 .
And therefore

f 3(x0) = f 2(
1

2
) = f (1) = 0,

then 0 < x1 < x0 and f (x1) = x0
Let

x1 = 1

2
(1 −

√

1 + √
1/2

2
)

On the other hand, ( f 3)′(x) = f ′( f 2(x)) f ′( f (x)) f ′(x). Using the above prop-
erty, we have

f 3(x1) = f 2(x0) = f ′(
1

2
) = 1 > x1
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We conclude that there exists x2 ∈ (x1, x0) such that f 3(x2) = x2 and f (x2) = x1 >

x2 and f 2(x2) = f (x1) = x0 > x2.
On other hand is ( f 3)′(x) = f ′(( f 2(x)) f ′(( f (x)) f ′(x), and using the above

property, we have f ′( f 2(x1) = f ′( f (x0)) = f ′( 12 ) = 0, which implies that ( f 3)′
(x1 = 0. Then, we obtain that

f 3(x1) = f 2(x0) = f (
1

2
) = 1 > x1

We conclude that there exists x2 ∈ (x1, x0) such that f 3(x2) = x2 and f (x2) = x1 >

x2 and f 2(x2) = f (x1) = x0 > x2. Then, {x1, x2, x0} is orbit of period three and by
Sharkovskii’s theorem [21] has periodic points for all periods. According with the
construction made in [4], the map f has in [x1, x3] periodic points of all periods.

It is well known that f is topologically conjugate to the tent map t given in I by
t (x) = 2x if x ∈ [0, 1

2 ], and t (x) = 2(1 − x) otherwise. Then for every n ≥ 1 and
for all 0 ≤ k ≤ 2n is

tn(
k

2n
) = 0

if k is even and equal to 1 otherwise. It proves that in [ k−1
2n , k

2n ], t has precisely one
fixed point. Then, we have proved that

Lemma 14.2 The set of periodic points of f is dense in I.

In order to study with more detail the existence of periodic points in the interior
ofΔ, it is suitable to consider another chart. For this, we introduce a linear change of
variable denoted by Φ(x, y) = (4 − x − y, y) = (u, v). Now, we introduce a new
map G by

G(u, v) = (4 − u − v)(u, v)

This new map, G, is again onto on Δ which is also invariant, that is, G(Δ) = Δ. It
is easy to see that

Lemma 14.3 (1) The set of fixed points of G is

{(0, 0)} ∪ {(u, v) ∈ Δ : u + v = 3}

(2)
G−1({(0, 0)}) = {(0, 0)} ∪ {(u, v) ∈ Δ : u + v = 4}

(3) The maps T and G are related by the formulas F ◦ Φ = G for every (x, y) ∈ R2

Now, we have the interesting result on the periodic points of maps T and G

Theorem 14.3 The map G = T ◦ Φ has periodic orbits of all orders. Moreover, its
sets of periodic points is dense in Δ.
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Proof Let (x0, y0) a point of Γ , that is, 0 ≤ x0 ≤ 4 and y0 = 4 − x0. It will be
denoted by S(x0) the segment joining the points (0, 0) and (x0, y0), that is

S(x0) = t (x0, y0)) : 0 ≤ t ≤ 1

If we compute now G(t (x0, y0), we have

G(t (x0, y0)) = (4 − t x0 − t y0) = (4 − t x0 − t y0) = (4 − t x0 − 4t + 4t0)(t x0, t (4 − x0)) =

= (4(1 − t)(t x0, t (4 − x0)) = (4t (1 − t)x0, 4t (1 − t)(4 − x0)) = (4t (1 − t)x0, 4t (1 − t)y0))

Therefore, the point (x0, y0) belongs to S(x0) since 4t (1 − t) ≤ 1. The map f (t) =
4t (1 − t) has periodic orbits of all periods, and as a consequence, it is possible to
choose orbits of all periods. Given a periodic orbit of f (t), (t1, t2, ..., tn), we compute
the points ti (x0, y0) for i = 1, ..., n which all belong to S(x0) and form a periodic
orbit of period n which is contained in S(x0). Therefore in such a segment, there
periodic points of G of all periods. The procedure for finding them is changing the
value x0.

Remark 14.1 Since the maps T and G are not topologically conjugate, the existence
of periodic orbits for G does not imply they are automatically transmitted to T . For
example, it is the case with periodic orbits of period two and three which appear for
map G but not for T . In fact, we claim that the set of periodic points in

∫
D is not

dense, although currently we are not able to propose an easy argument of it.

14.2.2.2 Dynamics on ∂Δ and Axes x = 0 and y = 0

All points of the form (0, y)with y ∈ R are preimages of (0, 0). The images of points
of the segment γ = {(x, 0)} with 0 ≤ x ≤ 4 remains in γ and T |γ = ( f (x), 0) with
f (x) = x(4 − x) and T (γ) = γ.
In the axis y = 0, all points outside γ2 transform into point with negative abscise.

It is T (4,∞) = (−∞, 0) and T (−∞, 0) = (−∞, 0), that is

A = T ((4,∞) ∪ T (−∞, 0)) = (−∞, 0),

and it is immediate to test that limn→∞ f n(x) = −∞ for every x ∈ A.
Every point (x, y) belonging to the line x + y = 4 is transformed into points

(0,Y ) where Y = xy and the sign of X depends on signs of x and y. It is evident
that T (∂Δ) = ∂Δ. Therefore, the sets ∂Δ and (−∞, 0) are invariant by T .

It is immediate to see that T is not invertible inΔ since (0, 0) hasmany preimages,
but restricted to the sets
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Δ− = {(x, y) : 0 < x < 2}

and
Δ+ = {(x, y) : 2 < x < 4}

It is invertible and the open segment α = {(2, y)} with 0 < y < 2 is composed of
preimages of third order of (0, 0), that is, T 3(2, y) = (0, 0) for every point in α
which it is a channel of communication of the inside and the boundary of Δ. In fact,
the set of preimages of α is dense in Δ. In particular, all points belonging to Γ are
eventually fixed to (0, 0) of order two. The point (0, 0) has also in γ infinitely many
preimages of all orders.

14.2.2.3 Outside the Triangle Δ

Let us consider a partition of R2 into open domains shown in Fig. 14.3. Such domains
have as boundaries the line {(x, y) : x + y = 4} and/or segments of the axes. The
next result states the description of all orbits starting in interior of such domains.

Theorem 14.4 The behavior of the domains with respect to orbits starting in their
points is as follows.

(1) The first iteration of all points belonging to Domain 1, belongs to Domain 3,
except the points {(2, y) : y > 2} whose first iterate belongs to the set {(x, y) :
x + y = 4, x < 0} and consequently their third orbit is the point (0, 0). It means
there is a supply of iterations from points outside the triangle to its boundary

(2) All points in Domain 2 are transformed in points belonging to Domain 5 while
all points from Domain 6 are transformed in points of Domain 4.

(3) All points of Domain 3 are transformed in points of Domain 4 and viceversa.
This means that the orbit of every point from Domain 3 and 4 oscillates around
the axis y = 0 and

limn→∞||T n(x, y)|| = ∞

(4) Domain 6 is T -invariant and the orbit of every point verifies also

limn→∞||T n(x, y)|| = ∞

Proof What it is important is the position of points in the plane. For points (x, y), up
the line l is 4 − x − y < 0. For points in l is 4 − x − y = 0 anddown l is 4 − x − y >

0.

It remains open the description of the dynamics of themap outsideΔ. Analytically
and graphically it is proved that outside the triangle there are no periodic points.Using
Fig. 14.3, we appreciate the movement of points starting in each of the regions. In
particular, it is proved that Domain 6 is invariant and there are or not periodic points.
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Fig. 14.5 The number of points that remain in the different domains of the plane after taking initial
points in different domains

We claim that there are some periodic points, a non-wandering set of points and the
rest tending to infinite when n → ∞. The set

Δ1 = {(x, y) : x, y ≥ 0, x + y ≥ 4}

has no wandering points and the set

Δ2 = {(x, y) : x, y ≥ 0, x + y ≤ 4}

is also T -invariant and can contain non-wandering points. Using the former argu-
ments, the answer to problems 3 and 4 from Sharkovskii is negative, (see in [14] for
the definition of attractor on Milnor sense).

According to numerical experiments, it seems that most points go to infinite when
n → ∞ (Fig. 14.5).

14.2.3 A Fibonacci System

In [1], Y. Avishai and D. Berend considered a similar problem than what we have
considered before for the case of a Thue–Morse chain. The definitions of reflection
and transmission coefficients are the same than in Thue–Morse problem. Now, we
wonder for the values of k and ν such that |rN |N→∞ = 1 or there is no convergence.
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For the introduction of the Fibonacci sequence, we use the following substitutions
rules:

0 → 01

1 → 0

and with these rules, we obtain the mentioned sequence.

(00101001001....)

with it we construct also a Fibonacci quasicrystal. Using the Schrodinger partial
differential equation, trace maps of matrices from SO(1, 1) in [1], it is obtained the
following difference equations of third order for the traces χn = tr Pn of the implied
matrices

χn+3 = χn+1χn+2 − χn

whose unfolding

F(x, y, z) = (y, z, yz − x)

is a nonlinear dynamical system from R3 into itself. There is a few work made on it.
We claim that the orbits of all points outside a bounded set in R3 are converging to
infinity. In this bounded set is seem to concentrate a complicate dynamics.

Similar problems are open to be considered for the case of Rudin–Shapiro systems
(see [8, 18]).

Remark 14.2 Many thanks to Carlos Lopesino allowing us to reproduce Fig. 14.4.
The research has been supported by the Proyecto MTM2014-51891-P from
Spanish MINECO and from Research Project 19294/PI/14 supported by the Fun-
dacion Seneca—the Regional Agency of Science and Technology of the Regional
Government of Murcia (Spain) in the setting of PCTIRM 2011–2014.
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Chapter 15
Existence of Chaos in a Restricted
Oligopoly Model with Investment Periods

Jose S. Cánovas

Abstract The aim of this paper is to give a proof of the existence of chaos in an
oligopolymodel stated in Cánovas, Panchuk, and Puu,Math. Comput. Simul. 117, pp
20–38 (2015) [14]. For that, we consider a restricted case of the model and prove that
for awide range of parameter values, the topological entropy is positive, implying that
themodel exhibits topological chaos. In addition, we discusswhether this topological
chaos is also physically observable, that is, can be shown in a computer simulation.

15.1 Introduction

In [14], an oligopoly model with investment periods was introduced. In oligopoly
models, several firms compete in a market where some economic rules are fixed (see,
e.g., [6, 33] or [27]). Themodel studied in this chapter, whichwill be introduced in the
next section, is quite hard to analyze from an analytically point of view. However,
numerically, it has shown the existence of clusterization of firms that make their
investments at the same time, and moreover, in a periodic way. In this case, there
are some invariant subsets in which the model can adopt a simplified form, and the
restricted model can be analyzed mathematically, proving for instance, in a rigorous
way, the existence of chaos on it. This is the main aim of this paper.

The paper is organized as follows. The next sectionwill be devoted to introduce the
model in a concise way.We refer the reader to [14] for a complete model description.
Then, we will make a short introduction of the dynamical systems techniques that
we are going to use to describe the model, and finally, we apply the above-mentioned
techniques to study our model.
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15.2 The Model

In our model, n + 1 firms compete in a market in which firms produce similar goods.
Each firm i produces a quantity qi and possesses a capital ki. The capital decreases on
time, so the model has an investment period, long run, where the capital is renovated,
and a production period called short run. The model is constructed in such a way
each firm profit Πi is maximized in both long run and short run. If Q denotes the
total output of all the firms, and Qi = Q − qi denotes the residual supply for firm i,
the model has the form for the short run

qi(t + 1) = Fw,θ (qi(t),Qi(t), ki(t)),

ki(t + 1) = ki(t),

Ti(t + 1) = Ti(t) − κqi(t)−
√

r
c ki(t),

where

Fw,θ (qi,Qi, ki) :=
⎧
⎨

⎩

θki

√
Qi
w −Qi

ki+
√

Qi
w

+ (1 − θ) qi, Qi ≤ 1
w ,

(1 − θ) qi, Qi > 1
w ,

and for the long run

qi(t + 1) = Gc,θ (qi(t),Qi(t)),

ki(t + 1) =
√
c√
r
Gc,θ (qi(t),Qi(t)),

Ti(t + 1) = T .

where

Gc,θ (qi,Qi) :=
⎧
⎨

⎩

θ

(√
Qi

c − Qi

)

+ (1 − θ) qi, Qi ≤ 1
c ,

(1 − θ) qi, Qi > 1
c .

Of course, we must explain the meaning of the variables involved in the model, and
some relation among them. Themodel is discrete, and sequences are denoted by q(t),
t ∈ N ∪ {0}. The maps Fw,θ and Gc,θ are called reaction functions. Ti represents the
lifetime of capital, whileT denotes itsmaximum length. Denote capital rent andwage
rate as r and w, respectively, and the long-run unit cost is c = (√

r + √
w

)2
, which

are the economic constants of the model. The parameter θ is chosen to construct the
model with adaptative expectations. When θ = 1, we receive naive expectations, in
which firms expect to win the maximum value of the previous period, given by the
reaction functions. The parameter κ must be greater than zero, and it is related with
the life of capital. Therefore, the model depends on too many parameters. In this
paper, we will only consider the naive expectation case, that is, we fix θ = 1.
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As it can be checked in [14], we may assume without loss of generality that
w = 1, and so the number of parameters is reduced in one. On the other hand, all
the numerical simulations made in [14] establish that firms do invest in a periodic
way, and there is a clusterization process in the firm investment. This is important
because in the case of firm clusterization, we can study a simplified model instead
the original one.

Here, we consider the limited case of firm clusterization; that is, we suppose that
all the firms do invest at the same time. On the other hand, initially we consider that
capital is zero in two periods of time, and then, firms play the short run just once.
In other words, we are going to consider the simplified model in which we alternate
the long run and the short run, that is,

qi(t + 1) = F1(Qi(t), ki(t)),

ki(t + 1) = ki(t),

where

F1 (Qi, ki) :=
{
ki

√
Qi−Qi

ki+√
Qi

, Qi ≤ 1,
0, Qi > 1,

and for the long run

qi(t + 1) = Gc(Qi(t)),

ki(t + 1) =
√
c√
r
Gc(Qi(t)).

where

Gc (Qi) :=
{√

Qi

c − Qi, Qi ≤ 1
c ,

0, Qi > 1
c ,

and Ti is either 0 or 1 for i = 1, 2, . . . , n + 1.
In any case, when the map Gc is evaluated, all the future outputs depend on Qi

and no longer on the initial value of ki; that is, the second iteration is given by

qi(t + 2) = max

⎧
⎪⎪⎨

⎪⎪⎩
0,

√
c√
r
Gc(Qi(t))

√∑
j �=i Gc(Qj(t)) − ∑

j �=i Gc(Qj(t))
√
c√
r

√∑
j �=i Gc(Qj(t)) + Gc(Qi(t))

⎫
⎪⎪⎬

⎪⎪⎭
,

(15.1)
and

ki(t + 2) =
√
c√
r
Gc(Qi(t)). (15.2)
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Obviously, neither the variable Qi nor ki depend on ki, so we can avoid Eq. (15.2)
and concentrate our efforts in analyzing Eq. (15.1). It is easy to see that the diagonal

Δ = {(q, q, . . . , q) ∈ R
n+1 : q ≥ 0}

is invariant by the system, and on it, the Eq. (15.1) reads as

q(t + 2) =
√
c√
r
Gc(nq(t))

√
nGc(nq(t)) − nGc(nq(t))√
c√
r

√
nGc(nq(t)) + Gc(nq(t))

= √
cGc(nq(t))

√
nGc(nq(t)) − nGc(nq()t)√

c
√
nGc(nq(t)) + √

rGc(nq(t))
,

where Gc(nq) := Gc(q, q, . . . , q) = max{0,√nq/c − nq}.
For a proper analysis of the dynamics of the difference equation

q(t + 2) = f (q(t)) = max{0, ϕ(q(t))},

where

ϕ(q) = √
cGc(nq)

√
nGc(nq) − nGc(nq)√

c
√
nGc(nq) + √

rGc(nq)

we need to know the number of extrema, called turning points. For that, we consider
the auxiliary map

g(q) = √
cq

√
nq − nq√

c
√
nq + √

rq

and compute the solutions of the equation

g′(q) = 0,

which gives us

q̃ =
(√

r − 3n(1 + √
r) + √

(n + (n + 1)
√
r)(9n + (1 + 9n)

√
r)

4
√
nr

)2

.

Since
ϕ′(q) = (g ◦ Gc)

′(q) = g′(Gc(nq))G
′
c(nq) = 0

it gives us all the possible turning points. It is easy to see that Gc attains its maximal

valuewhenq = 1
4nc = 1

4n(1+√
r)2

andGc

(
1

4n(1+√
r)2

)
= 1

4(1+√
r)2
. Solving the equation

Gc(nq) = q̃,
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with solutions

q± = 1 ± √
1 − 4̃q(1 + √

r)2 − 2̃q(1 + √
r)2

2n(1 + √
r)2

gives us that the model has either one maximum point (when 4̃q(1 + √
r)2 ≥ 1) or

two maximum points and a minimum one (when 4̃q(1 + √
r)2 < 1).

On the other hand, it is easy to see that the equation ϕ(q) = 0 has the solutions
q0 = 0, q1 = 1

nc , and

q± = n − 2c ± √
n(n − 4c)

2n2c
.

It is easy to see that when n > 4c, then q± < 1
nc . We distinguish 6 cases, called 1A,

1B, 2A, 2B, 3A, and 3B, which correspond with different shapes of the map f , which
are shown in Figs. 15.1, 15.2 and 15.3.

Now, the rest of the paper is organized as follows. First, we make a short intro-
duction of basic mathematical background useful to understand the mathematical

Fig. 15.1 We show the graphs of maps of type 1A (a) and 1B (b). On the left, we fix 26 firms and
r = 2.2, while on the right, the number of firms is 6 and r = 0.012. In case 1A, the map fulfills that
f (q−) ≥ q−, while in the case 1B, we have the opposite inequality

Fig. 15.2 We show the graphs of maps of type 2A (a) and 2B (b). On the left, we fix 21 firms and
r = 3, while on the right, the number of firms is 21 as well and r = 2.2. In case 2A, the map fulfills
that f (q−) ≥ 1

cn , while in the case 1B, we have the opposite inequality. In both cases, the maps have
two maxima and one minimum
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Fig. 15.3 We show the graphs of maps of type 3A (left) and 3B (right). On the left, we fix 16
firms and r = 5, while on the right, the number of firms is 6 as well and r = 5. In case 2A, the map
fulfills that f ( 1

4cn ) ≥ 1
cn , while in the case 1B, we have the opposite inequality. In both cases, the

maps have one maximum

analysis of the model which will be done in the last section. Some conclusions and
open problems can be found at the end of the chapter.

15.3 Mathematical Tools

The models considered in this chapter are given by difference equations, which are
expressions with the form {

x(t + 1) = ft(x(t)),
x(0) = x0,

where ft : X → X, t ∈ N, is a sequence of maps on a metric space X into itself and
x0 ∈ X. The solution of the above difference equation is called orbit or trajectory of
x0 under ft . When the sequence of maps is constant, that is, ft = f , t ∈ N, we have
an autonomous difference equation, which is usually seen as a discrete dynamical
system, usually denoted by the pair (X, f ).1 Then, the orbit of x0 under f , denoted
Orb(x0, f ), is given by the sequence f t(x0), t ≥ 0, where f t = f ◦ f t−1, t > 1, f 1 = f ,
and f 0 is the identity on X.

Although one can study topological properties of dynamical systems, in this
chapter, we are interested in the caseX = R

n≥, whereR≥ represents the set of nonneg-
ative real numbers. There is a huge literature on discrete dynamical systems either
for the one-dimensional case, when n = 1 (see, e.g., [2, 8] or [15]) or for more
higher dimensions a general spaces (see, e.g., [3, 16]). Here, we introduce some
basic results and notation on dynamical systems on general metric spaces which can
be easily translated for real maps.

1In this section we denote the map defining the dynamical systems with the same letter f that we
use in our model. We think that readers will not be confused with this notation.
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15.3.1 Periodic Orbits and Topological Dynamics

We consider a metric space (X, d), which is usually compact, and a continuous map
f : X → X and recall that (X, f ) denotes a discrete dynamical system. Note that all
the definitions below can be expressed either in terms of the map f or the system
(X, f ).

To understand the dynamics of f , we have to introduce some definitions, which
have topological roots, to obtain some knowledge of the system (see, e.g., [8] or
[28]). A point x ∈ X is periodicwhen f t(x) = x for some t ≥ 1. The smallest positive
integer satisfying this condition is called the period of x. Periodic points of period 1
are called fixed points. Denote by F(f ), P(f ), and Per(f ) the sets of fixed and periodic
points and periods of f , respectively.

Periodic orbits are the simplest orbits that a discrete dynamical system can gener-
ate, but there are many other classes of orbit which makes richer the dynamics. For
x ∈ X, define its ω-limit set, ω(x, f ), as the set of limit points of its orbit Orb(x, f ).
If ω(x, f ) is finite, then it is a periodic orbit, but often, the dynamical behavior of a
single orbit can be very complicated or unpredictable, and usually, the word chaos
is used to refer to dynamical systems which are able to produce such a complicated
orbits as we discuss below.

Previously, note that to understand the dynamics, it is enough to do it on small
subsets of X called attractors, which are non-empty compact sets A that attract all
trajectories starting in some neighborhood U of A, that is, for all x ∈ U , we have
that

lim
t→∞ dist(f t(x),A) = 0,

where dist(x,A) = min{d(x, y) : y ∈ A}. When U is the whole space X, we have a
global attractor. The existence of attractors makes easier the understanding of the
dynamics, which in principle may be very complex. The existence and approximate
location of attractors are usually given by the absorbing sets; namely, a subset B ⊂ X
is an absorbing set if for any bounded set D of X there is t0 = t0(D) such that
f t(D) ⊂ B for all n ≥ t0.

There aremany definitions of chaos, but wewill focus our interest in the following
well-known ones. The map f is chaotic in the sense of Li and Yorke (LY-chaotic) [21]
if there is an uncountable set S ⊂ X (called scrambled set of f ) such that for any
x, y ∈ S, x �= y, we have that

lim inf
t→∞ d(f t(x), f t(y)) = 0,

lim sup
t→∞

d(f t(x), f t(y)) > 0.

Li and Yorke’s definition of chaos became famous because of the famous result
period three implies chaoswhich linked periodic orbits and unpredictable dynamical
behavior for continuous interval maps. Note that the definition implies the compari-
son between two orbits or limit points of orbits. Anotherwell-known chaos definition,
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inspired in the notion of sensitivity with respect to the initial conditions [22], was
given by Devaney [16] as follows. The map f is said to be chaotic in the sense of
Devaney (D-chaotic); if it is transitive (there is x ∈ X such that ω(x, f ) = X), the
set of periodic points P(f ) is dense in X and it has sensitive dependence on initial
conditions, that is, there is ε > 0 such that for any x ∈ X there is an arbitrarily close
y ∈ X and t ∈ N such that d(f t(x), f t(y)) > ε.2 Both Li–Yorke chaos and sensitivity
to initial conditions are in the dynamical systems folklore.

There is a big field between periodic orbits and chaotic behavior, so it is interesting
to explain what is simple dynamics. In fact, sometimes, the chaotic behavior can be
also taken as the opposite of simple (or ordered) behavior. We say that f is strongly
simple (ST-simple) if any ω-limit set is a periodic orbit of f . We say that an orbit
Orb(x, f ), x ∈ X, is approximated by periodic orbits if for any ε > 0, there is y ∈ P(f )
and t0 ∈ N such that d(f t(x), f t(y)) < ε for all t ≥ t0. The map f is LY-simple [31] if
any orbit is approximated by periodic orbits. Finally, f is Lyapunov stable (L-simple)
[19] if it has equicontinuous powers.

The above definitions are quite difficult to verify, and specially when we are
working with models which in principle may depend on several parameters, we
need some practical methods to try to measure the dynamical complexity of the
system. One of them is given by topological entropy, which was introduced in the
setting of continuous maps on compact topological spaces by Adler, Konheim and
McAndrew [1], and Bowen [11].3 It is remarkable that both definitions agree when
the set is metric and compact. It is a conjugacy invariant4 which is usually taken as
a criteria to decide whether the dynamics is complicated or not according to h(f )
greater than zero or not. Here, we introduce the equivalent definitions by Bowen [11]
when (X, d) is a compact metric space. Given ε > 0, we say that a set E ⊂ X is
(t, ε, f )-separated if for any x, y ∈ E, x �= y, there exists k ∈ {0, 1, . . . , t − 1} such
that d(f k(x), f k(y)) > ε. Denote by s (t, ε, f ) the biggest cardinality of any maximal
(t, ε, f )-separated set in X. Then, the topological entropy of f is

h (f ) = lim
ε→0

lim sup
t→∞

1

t
log s (t, ε, f ) .

There is an equivalent definition using spanning sets as follows. We say that a
set F ⊂ X (t, ε, f )-spans X if for any x ∈ X, there exists y ∈ F such that d(f i(x),

2It is proved in [5] that the first two conditions in Devaney’s definition implies the third one.
The definitions is presented in the original form because of the dynamical meaning of sensitive
dependence on initial conditions.
3Dinaburg [17] gave simultaneously a Bowen like definition for continuous maps on a compact
metric space.
4Two continuous maps f : X → X and g : Y → Y are said to be topologically conjugate if there
is an homeomorphism ϕ : X → Y such that g ◦ ϕ = ϕ ◦ f . In general, conjugate maps share many
dynamical properties.
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f i(y)) < ε for any i ∈ {0, 1, . . . , t − 1} .Denote by r (t, ε, f ) the smallest cardinality
of anyminimal (t, ε, f )-spanning set inX.Then, topological entropy can be computed
as

h (f ) = lim
ε→0

lim sup
t→∞

1

t
log r (t, ε, f ) .

The above definitions do not depend on the metric d and give us a nice inter-
pretation of topological entropy (see [2, p. 188]) as follows. Imagine that we have
a magnifying glass through which we can distinguish two point if and only if they
are more than ε-apart. If we know t points of two orbits given by x and y, that is,
(x, f (x), . . . , f t−1(x)) and (y, f (y), . . . , f t−1(y)), then we can distinguish between x
and y if and only if max1≤i≤t d(f i(x), f i(y)) > ε. Hence, s (t, ε, f ) gives us howmany
points of the space X we can see if we know the pieces of orbits of length t. Then,
we take the exponential growth rate with t of this quantity and finally the limit of
this as we take better and better magnifying glasses. Then, we obtain the topological
entropy.

In general, the above chaos definitions are not equivalent and their relations with
topological entropy are not homogeneous. For instance, it has been proved that D-
chaotic maps are LY-chaotic [20], but the converse is false [31]. On the other hand,
positive topological entropy implies LY-chaos [7]5 and the converse is also false
[31]. In [4, 23], it studied the relationship between topological entropy and D-chaos.
ST-simple maps are LY-simple maps, but the converse is false [31].

More popular than topological entropy are the so-called Lyapunov exponents
(see [26]), which make sense when differentiable structures are considered. Namely,
assume that X is a smooth finite dimensional manifold and f : X → X is aC1+α map.
Denote, as usual, byTxX the tangent space at x and the derivative dxf : TxX → Tf (x)X.
The Lyapunov exponent at x ∈ X in the direction of v ∈ TxX\{0} is defined by

exp(x, v) = lim
t→∞

1

t
log ||dxf t(v)||

if this limit exists. An invariant measure μ is a probability measure on the Borel sets
of X such that μ(f −1(A)) = μ(A) for any Borel set A ⊆ X. This invariant measure
μ is ergodic if the equality f −1(A) = A implies that μ(A) is either 0 or 1. The
multiplicative ergodic theorem states that the above limit exists forμ-almost all point
in X. We use Lyapunov exponents in some particular cases, to show the existence of
physically observable chaos.

Next, we study the particular case of real maps. We will see how the above result
is sharpened for continuous interval maps. In addition, we will give some notions on
the dynamics of several dimensional real maps.

5See also [32] which almost simultaneously states the same result for C2 diffeomorphisms on
compact manifolds of dimension greater than one.
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15.3.2 Dynamics of Continuous Interval Maps

In general, for one-dimensional maps, the relevant results are given when X =
[a, b] ⊂ R is a compact interval, usually [0, 1] due to linear conjugacy. In this set-
ting, Sharkovsky’s theorem is a remarkable result which helps to distinguish between
simple and complicated dynamics. Recall Sharkovsky’s order of natural numbers

3 >s 5 >s 7 >s . . . >s 2 · 3 >s 2 · 5 >s . . . >s 2
2 · 3 >s 2

2 · 5 >s . . .

. . . >s 2k · 3 >s 2k · 5 >s . . . >s 23 >s 22 >s 2 >s 1.

Applying Sharkovsky’s theorem (see [28] or [2]. Also [18] for an “easy” proof),
one can see that for any continuous map f : R → R with one periodic point holds
that either Per(f ) = S(m) = {k : m >s k} ∪ {m}, with m ∈ N, or Per(f ) = S(2∞) =
{2n : n ∈ N ∪ {0}}. A map is of type m ∈ N ∪ {2∞} if Per(f ) = S(m). A map f is
called S-chaotic if Per(f ) = S(m), m = 2rq, r ≥ 0, and q > 1 odd.

On the other hand, for one-dimensional dynamics, the topological entropy is
an useful tool to check the dynamical complexity of a map because it is strongly
connected with the notion of horseshoe (see [2, p. 205]). We say that the map
f : [0, 1] → [0, 1] has a k-horseshoe, k ∈ N, k ≥ 2, if there are k disjoint subinter-
vals Ji, i = 1, . . . , k, such that J1 ∪ . . . ∪ Jk ⊆ f (Ji), i = 1, . . . , k.6 It is well-known
that if f has a k-horseshoe, then its topological entropy is greater or equal to log k
([2, Chap. 4]).

The following result shows some equivalences among the above definitions of
chaos and order (see [8, 28, 31]). Note that the situation is simpler than in the
general case.

Theorem 15.1 Let f : [0, 1] → [0, 1] be a continuous map. Then,
(a) The map f has positive topological entropy if and only if the map f is S-chaotic.
(b) If f is D-chaotic, then h(f ) > 0.
(c) If f is either ST-simple or L-simple, then h(f ) = 0.
(d) If h(f ) > 0, then f is LY-chaotic, but the converse is false in general. If f is LY-

simple, then h(f ) = 0. The union of LY-chaotic and LY-simple continuous maps
is the set of continuous interval maps.

The nature of the above result is topological. If we consider another points of
view, we can obtain more information giving rise to apparently strange paradoxes.
For instance, there exist maps with positive entropy and therefore chaotic in some
sense, such that the orbit of almost all points in [0, 1] (with respect to the Lebesgue
measure) converges to a periodic orbit.

Although we will come back to this point later, let us show how to get such
example. Consider f a C3 unimodal map such that f (0) = f (1) = 0. Recall that a

6Since Smale’s work (see [30]), horseshoes have been in the core of chaotic dynamics, describing
what we could call random deterministic systems.
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map f is said to be unimodal if there is c ∈ [0, 1], called turning point such that f |[0,c)
is strictly increasing and f |[c,1] is strictly decreasing. The Schwarzian derivative (see
[29] or [34]) is then given by

S(f )(x) = f
′′′
(x)

f ′(x)
− 3

2

(
f

′′
(x)

f ′(x)

)2

,

at those points whose first derivative does not vanish. Assume that S(f )(x) < 0 and
that there is a locally attracting periodic orbit, that is, a periodic orbitP = {x1, . . . , xp}
for which there exists a neighborhood V of P such that for any x ∈ V the distance
d(f t(x),P) = min1≤i≤p d(f t(x), xi) tends to zero as t tends to infinity. The logistic
map f (x) = 3.83 x(1 − x) is a good example of such behavior; almost all trajectory
converges to a periodic orbit of period 3, while the topological entropy is positive
(see, e.g., [9]). This example andmany others in the literature show that it is important
to study dynamics from several points of view.

15.3.3 Piecewise Monotone Maps: Entropy and Attractors

Usually, one-dimensional difference equation models in science are given by piece-
wise monotone maps. A continuous interval map is piecewise monotone if there is a
finite partition of [0, 1], 0 = x0 < x1 < . . . < xk = 1, such that f |[xi,xi+1] is monotone
for 0 ≤ i < k. Note that a piecewise monotone map may have constant pieces. The
extreme points, intervals included if there exist, of f will be called turning points
(intervals). For a piecewise monotone map f , let c(f ) denote the number of pieces
of monotone of f . If g is another piecewise monotone map, it is easy to see that
c(f ◦ g) ≤ c(f )c(g). Hence, the sequence c(f t) gives the number of monotonicity
pieces of f t , and the following result due to Misiurewicz and Szlenk (see [25]) shows
that for piecewise monotone maps, topological entropy can be easily understood.

Theorem 15.2 Let f : [0, 1] → [0, 1]bea continuous andpiecewisemonotonemap.
Then,

h(f ) = lim
t→∞

1

t
log c(f t).

Note that c(f t) ≤ c(f )t , and so h(f ) ≤ log c(f ). Hence, a consequence of
Misiurewicz–Szlenk theorem is that homeomorphisms on the interval have zero
topological entropy. On the other hand, following Theorem 15.2, we can easily see
that the logistic map f (x) = 4x(1 − x) and the tent map g(x) = 1 − |2x − 1| have
topological entropy log 2, since c(f t) = c(gt) = 2t for all t ∈ N. However, comput-
ing topological entropy can be a very complicated task, but we will see in what
follows how to make these computations for a suitable class of maps.
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The dynamics of smooth enough piecewise monotone maps is well-known in the
following sense. Following [24], a metric attractor is a subset A ⊂ [0, 1] such that
f (A) ⊆ A, O(A) = {x : ω(x, f ) ⊂ A} has positive Lebesgue measure, and there is no
proper subset A′

� A with the same properties. The set O(A) is called the basin of
the attractor.

By [35], the regularity properties of f imply that there are three possibilities
for its metric attractors for a class of piecewise monotone maps, called multimodal
maps, fulfilling the following assumptions. There are c1 < c2 < . . . < ck , creating a
partition on [0, 1], such that f is strictly monotone on each element of the partition.
f is C3, and f is non-flat on the turning points c1, . . . , ck , that is, for x close to ci,
i = 1, 2, . . . , k,

f (x) = ±|φi(x)|βi + f (ci),

whereφi isC3,φi(ci) = 0, andβi > 0. Then, themetric attractors of suchmultimodal
maps can be of one of the following types:

(A1) A periodic orbit.
(A2) A solenoidal attractor, which is basically a Cantor set in which the dynamics

is quasi-periodic. More precisely, the dynamics on the attractor is conjugated
to a minimal translation, in which each orbit is dense on the attractor. The
dynamics of f restricted to the attractor is simple; neither positive topological
entropy nor Li–Yorke chaos can be obtained. Its dynamics is often known as
quasi-periodic.

(A3) A union of periodic intervals J1, . . . , Jk , such that f k(Ji) = Ji and f k(Ji) = Jj,
1 ≤ i < j ≤ k, and such that f k is topologically mixing. Topologically, mixing
property implies the existence of dense orbits on each periodic interval (under
the iteration of f k).

Moreover, if f has an attractor of type (A2) and (A3), then they must contain the
orbit of a turning point, and therefore, its number is bounded by the turning points.
In addition, if Sf (x) < 0, then the total number of attractors is bounded by k. From a
practical point of view, in a computer simulation, we are able to show the existence of
attractors of type (A1) and (A3), and only attractors of type (A3) are able to exhibit
unpredictable dynamics. As a conclusion of this, if all the turning points of f are
attracted by periodic orbits, then the map f will not exhibit physically observable
chaos, although it can be topologically chaotic.

The Lyapunov exponents on the turning points can be computed by

exp(ci) = lim
t→∞

1

t
log |(f t)′(ci)| = lim

t→∞
1

t
log |f ′((f t−1)(ci))|,

for i = 1, 2, . . . , k, and all of them are negative when the map f is free of attractors
of type (A3). So, positive Lyapunov exponents imply the existence of observable
chaos.
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15.3.4 Computing Topological Entropy

The above definition of topological entropy is not useful in practice, and counting
monotone pieces of an iterated map f t are not easy. In addition, an exact computation
of topological entropy for continuous interval maps cannot be done in general, but
there are several papers devoted to compute it approximately for unimodal maps
(see [9]) and bimodal maps, that is, with three monotone pieces (see [10]) and four
monotone pieces (see [13]). In general, it is possible to make computations for arbi-
trarily large monotone pieces whenever the number of so-called kneading sequences
will not be big enough (see [12]).

Now, we introduce the unimodal case where the topological entropy can be com-
puted by using kneading sequences as follows. Let f be an unimodal map with
maximum (turning point) at c. Let k(f ) = (k1, k2, k3, . . .) be its kneading sequence
given by the rule

ki =
⎧
⎨

⎩

R if f i(c) > c,
C if f i(c) = c,
L if f i(c) < c.

We fix that L < C < R. For two different unimodal maps f1 and f2, we fix their
kneading sequences k(f1) = (k1n) and k(f2) = (k2n).We say that k(f1) ≤ k(f2)provided
there is m ∈ N such that k1i = k2i for i < m and either an even number of k1′i s are
equal to R and k1m < k2m or an odd number of k1′i s are equal to R and k2m < k1m. Then, it
is proved in [9] that if k(f1) ≤ k(f2), then h(f1) ≤ h(f2). In addition, if km(f ) denotes
the first m symbols of k(f ), then if km(f1) < km(f2), then h(f1) ≤ h(f2).

The algorithm for computing the topological entropy is based on the fact that the
tent family

gk(x) =
{
kx if x ∈ [0, 1/2],
−kx + k if x ∈ [1/2, 1],

with k ∈ [1, 2] and holds that h(gk) = log k. The idea of the algorithm is to bound
the topological entropy of an unimodal maps between the topological entropies of
two tent maps. The algorithm is divided in four steps:

Step 1. Fix ε > 0 (fixed accuracy) and an integer n such that δ = 1/n < ε.
Step 2. Find the least positive integer m such that km(g1+iδ), 0 ≤ i ≤ n, are distinct

kneading sequences.
Step 3. Compute km(f ) for a fixed unimodal map f .
Step 4. Find r the largest integer such that km(g1+rδ) < km(f ). Hence, log(1 + rδ) ≤

h(f ) ≤ log(1 + (r + 2)δ).

The algorithm is easily programmed. We usually use Mathematica, which has
the advantage of computing the kneading invariants of tent maps without round off
errors, improving in practice the accuracy of the method.
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15.4 Mathematical Analysis of the Model

Below, we analyze our model. Recall that it is given by the difference equation

q(t + 2) = f (q(t)) = max{0, ϕ(q(t))},

where

ϕ(q) = √
cGc(nq)

√
nGc(nq) − nGc(nq)√

c
√
nGc(nq) + √

rGc(nq)

and
Gc(nq) = max{0,√nq/c − nq}.

Note that we have to make a difference between cases 1A, 2A, and 3A and 1B, 2B,
and 3B. The bifurcation diagrams of Figs. 15.4 and 15.5 show us the difference.

Apparently, in cases A, the dynamics is simple because the bifurcation diagrams
show us a fixed point, in fact at 0. However, it is easy to see that the topolog-
ical entropy is positive, and therefore, there is Li–Yorke chaos, although proba-
bly contained in a subset of zero Lebesgue measure. Note that in cases 1A, 2A,

Fig. 15.4 We show the bifurcation diagrams for r ranging the interval [0,5] with step size 0.001
for 5 firms (a), 8 (b), 9 (c) and 10 firms (d). It seems that there is just one bifurcation diagram made
plotting the last 200 points of orbits of length 1200
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Fig. 15.5 We show the bifurcation diagrams for r ranging the interval [0,5] with step size 0.001 for
16 firms (a, b) and 17 (c, d), 18 (e, f) and 20 firms (h, i). It seems that there is just two bifurcation
diagrams made plotting the last 200 points of orbits of length 1200. The existence of two different
diagrams comes from the fact that there are 3 extrema
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and 3A, there is at least one point q∗ such that either q∗ < q− and f (q∗) = q−
(case 1A), or q∗ < 1

cn and f (q∗) = 1
cn (cases 2A and 3A). In case 1A, we have

that f ([0, q∗]) ∩ f ([q∗, q−]) ⊆ [0, q∗] ∪ [q∗, q−], and therefore, the map has a 2-
horseshoe and the topological entropy is greater than log 2 (see [2, Chap. 4]). Simi-
larly, we prove that the topological entropy is positive in cases 2A and 3A. In most
of the cases, there is a subinterval J such that for q ∈ J either f (q) > q_ (case 1A)
or f (q) > 1

cn (cases 2A and 3A), and in general, the second iterate of such points is
zero, which is a fixed point of the model.

Next, we compute the topological entropy, which is shown in Figs. 15.6 and 15.7.
For that, when the map f has no constant pieces, we use the algorithm introduced
in Sect. 15.3.4 when f is unimodal (it has just one maximum) and that described in
[12] for the case when we have 3 extrema, being two of them maxima with the same
forward image. In the cases 1A, 2A, and 3A, we do not have algorithms to compute it
with prescribed accuracy, but we know that a lower bound is log 2. So, in the pictures,
we have chosen this value for all the parameter values which gives us cases 1A, 2A,
and 3A.

Fig. 15.6 We show the topological entropy with accuracy 10−3 when r ranges the interval [0,5]
with step size 0.001 for 5 firms (a), 8 (b), 9 (c), and 10 firms (d)
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Fig. 15.7 We show the topological entropy with accuracy 10−3 when r ranges the interval [0,5]
with step size 0.001 for 16 firms (a) and 17 (b), 18 (c), and 20 firms (d)

We highlight that the computation of topological entropy is made with algorithms
with prescribed accuracy, and therefore, when we obtain a positive value of topolog-
ical entropy, we are proving mathematically the existence of topological chaos. This
goes further than numerical simulations that we made for estimating the Lyapunov
exponents below.

When we have zero topological entropy, we can be confident that the dynamics
is simple, and when it is positive, it is complicated since it is chaotic in the sense
of Li and Yorke. But, as we wrote before, the complexity of cases 1A, 2A, and 3A
may remain unobserved. The same can happens when we have positive topological
entropy for the cases 1B, 2B, and 3B. Here, we estimate the Lyapunov exponent
on the image of turning points and take the maximal obtained value. Figures15.8
and 15.9 show our computations. When the Lyapunov exponent is negative, we
observe a simple dynamics, i.e., convergence to a periodic orbit even if the topological
entropy is positive. Recall that for having attractors different from periodic orbits,
such attractors must contain the orbit of a turning point.
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Fig. 15.8 We estimate the Lyapunov exponent for cases B when r ranges the interval [0,5] with
step size 0.001 for 5 firms (a), 8 (b), 9 (c), and 10 firms (d)

Fig. 15.9 We estimate the Lyapunov exponent for cases B when r ranges the interval [0,5] with
step size 0.001 for 16 firms (a), 17 (b), 18 (c), and 20 firms (d)
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15.5 Conclusions and Final Remark

We have analyzed a restricted oligopoly model which depends on two parameters,
the number of firms and the capital rent.We prove that increasing the number of firms
and reducing the capital rent may produce a complicated dynamical behavior given
by positive topological entropy. We show, however, that this topological complexity
may be unobserved on a computer simulation. Even more, increasing the number
of firms, we reduce the interval of capital rent where the chaotic behavior can be
physically observed, and if the number of firms is big enough (with 29 firms it is not
possible to obtain a value of topological entropy smaller than log 2), this complexity
remains unobserved for all the values of the capital rent.

We remark that our model is restricted to the diagonal set, where all the firms
produce the same. Our simulations show that such set seems to be a global attractor
for the model; that is, the dynamics is concentrate on the diagonal, but unfortunately,
we do not have an analytical proof of this fact.

Finally, we remark that obtaining the turning points of themodel is quite technical.
If wewant to increase the number of short-run periods, the computation of the turning
points is even more complicated and it is not clear if its number increases. This can
make the computation of topological entropy more difficult, or even impossible.

Acknowledgments Thiswork has been supported by the grantsMTM2014-52920-P fromMiniste-
rio de Economía y Competitividad (Spain), and COST Action IS1104 “The EU in the new complex
geography of economic systems: models, tools and policy evaluation.” Finally, este trabajo es
resultado del proyecto de investigación 19294/PI/14 financiado por la Fundación Séneca-Agencia
de Ciencia y Tecnología de la Región de Murcia en el marco del PCTIRM 2011–2014.

References

1. Adler, R.L., Konheim, A.G., McAndrew, M.H.: Topological entropy. Trans. Amer. Math. Soc.
114, 309–319 (1965)

2. Alsedá, L., Llibre, J., Misiurewicz, M.: Combinatorial Dynamics and Entropy in Dimension
One. World Scientific Publishing (1993)

3. Aoki, N., Hiraide, K.: Topological Theory of Dynamical Systems: Recent Advances. North–
Holland (1994)

4. Balibrea, F., Snoha, L.: Topological entropy of Devaney chaotic maps. Topol. Appl. 133, 225–
239 (2003)

5. Banks, J., Brooks, J., Cairns, G., Davis, G., Stacey, P.: On Devaney’s definition of chaos. Amer.
Math. Monthly 99, 332–334 (1992)

6. Bischi, G.I., Chiarella, C., Kopel,M., Szidarovszky, F.: Nonlinear Oligopolies. Springer, Berlin
(2010)

7. Blanchard, F., Glasner, E., Kolyada, S., Maass, A.: On Li-Yorke pairs. J. Reine Angew. Math.
547, 51–68 (2002)

8. Block, L.S., Coppel, W.A.: Dynamics in One Dimension. Lectures Notes in Mathematics, vol.
1513. Springer, Berlin (1992)

9. Block, L.S., Keesling, J., Li, S., Peterson,K.: An improved algorithm for computing topological
entropy. J. Statist. Phys. 55, 929–939 (1989)



314 J.S. Cánovas

10. Block, L., Keesling, J.: Computing the topological entropy of maps of the interval with three
monotone pieces. J. Statist. Phys. 66, 755–774 (1992)

11. Bowen, R.: Entropy for group endomorphism and homogeneous spaces. Trans. Amer. Math.
Soc. 153, 401–414 (1971)

12. Cánovas, J.S., Muñoz-Guillermo, M.: Computing topological entropy for periodic sequences
of unimodal maps. Commun. Nonlinear Sci. Numer. Simul. 19, 3119–3127 (2014)

13. Cánovas, J.S.,Muñoz–Guillermo,M.: Computing Topological Entropy for Periodic Sequences
of Unimodal Maps, preprint (2014)

14. Cánovas, J.S., Panchuk, A., Puu, T.: Asymptotic dynamics of a piecewise smooth map mod-
elling a competitive market. Math. Comput. Simul. 117, 20–38 (2015)

15. de Melo, W., van Strien, S.: One-Dimensional Dynamics. Springer, New York (1993)
16. Devaney, R.L.: An Introduction to Chaotic Dynamical Systems. Addison-Wesley, Redwood

City (1989)
17. Dinaburg, E.I.: The relation between topological entropy and metric entropy. Soviet Math. 11,

13–16 (1970)
18. Du, B.S.: A simple proof of Sharkovsky’s theorem. Amer.Math.Monthly 111, 595–599 (2004)
19. Fedorenko, V.V., Sharkovsky, A.N., Smítal, J.: Characterizations of weakly chaotic maps of

the interval. Proc. Amer. Math. Soc. 110, 141–148 (1990)
20. Huang, W., Ye, X.: Devaney’s chaos or 2-scattering implies Li-Yorke’s chaos. Topology Appl.

117, 259–272 (2002)
21. Li, T.Y., Yorke, J.A.: Period three implies chaos. Amer. Math. Monthly 82, 985–992 (1975)
22. Guckhenheimer, J.: Sensitive dependence to initial conditions for one-dimensional maps.

Comm. Math. Phys. 70, 133–160 (1979)
23. Kwietniak, D., Misiurewicz, M.: Exact Devaney chaos and entropy. Qual. Theory Dyn. Syst.

6, 169–179 (2005)
24. Milnor, J.: On the concept of attractor. Commun. Math. Phys. 99, 177–195 (1985)
25. Misiurewicz, M., Szlenk, W.: Entropy of piecewise monotone mappings. Studia Math. 67,

45–63 (1980)
26. Oseledets, V.I.: Amultiplicative ergodic theorem. Lyapunov characteristic numbers for dynam-

ical systems. Trans.MoscowMath. Soc. 19, 197–231,Moscov.Mat.Obsch. 19, 179–210 (1968)
27. Puu, T.: Oligopoly: Old Ends - New Means. Springer, Berlin (2011)
28. Sharkovsky,A.N.,Kolyada, S.F., Sivak,A.G., Fedorenko,V.V.:Dynamics ofOne–Dimensional

Maps. Kluwer Academic Publishers (1997)
29. Singer, D.: Stable orbits and bifurcation of maps of the interval. SIAM J. App. Math. 35,

260–267 (1978)
30. Smale, S.: Differentiable dynamical systems. Bull. Amer. Math. Soc. 73, 747–817 (1967)
31. Smítal, J.: Chaotic functions with zero topological entropy. Trans. Amer. Math. Soc. 297,

269–282 (1986)
32. Sumi, N.: Diffeomorphisms with positive entropy and chaos in the sense of Li-Yorke. Ergod.

Th. Dynam. Sys. 23, 621–635 (2003)
33. Theocharis, R.D.: On the stability of the Cournot solution on the oligopoly problem. Rev. Econ.

Stud. 27, 133–134 (1959)
34. Thunberg, H.: Periodicity versus chaos in one-dimensional dynamics. SIAM Rev. 43, 3–30

(2001)
35. van Strien, S., Vargas, E.: Real bounds, ergodicity and negative Schwarzian for multimodal

maps. J. Amer. Math. Soc. 17, 749–782 (2004)



Part III
Fundamental and Computational

Mechanics



Chapter 16
Two Thermodynamic Laws as the Forth
and the Fifth Integral Postulates
of Continuum Mechanics

Boris E. Pobedria and Dimitri V. Georgievskii

Abstract Amethodological reduction of the known in physics statements of the first
and second laws of thermodynamics to general form of integral postulates adopted
in classical mechanics of continuous media, is realized. It is shown that the second
law should be represented in the Carathéodory form which makes possible to intro-
duce both absolute temperature and entropy as phenomenological values not having
recourse to the model of perfect gas and the Carnot cycle. The local equations being
consequences of the integral postulates include mass densities of thermodynamic
values which must be defined as scalar or vector fields in material.

16.1 The Second Law of Thermodynamics
in the Carathéodory Form

In literature, there are a lot of attempts to construct phenomenological thermody-
namics by axiomatic, i. e., strictly mathematical way. All these attempts are based on
acceptance of the Carathéodory principle. Let us observe some fundamental state-
mentswhich seem to be necessary for any axiomatic construction of thermodynamics
[1–3].

The notion “system A” will mean some system being in the state of uniform
thermodynamic equilibrium and characterizing by the thermodynamic parameters
of state A1, A2, . . . , AnA . Each of the mentioned parameters may be either 0-rank
tensor (scalar) or 1-rank tensor (vector) or 2-rank tensor, etc.

Let B and C be the other systems. By virtue of so-called zero law of thermody-
namics, if each of the two systemsA and B is found in heat equilibrium withC, then
A is found in heat equilibrium with B. We introduce the symbol “∼” for designation
of heat equilibrium for two systems. Let this relation comply with the following
properties:
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1◦. A ∼ A (reflexivity).
2◦. A ∼ B =⇒ B ∼ A (symmetry).
3◦. A ∼ B ∨ B ∼ C =⇒ A ∼ C (transitivity).

Then, the relation of heat equilibrium is the equivalence relation. All systems are
divided by equivalence classes so that two systems of typeAwill belong to the same
class if and only if they are found in mutual heat equilibrium.

Among various kinds of thermodynamic systems, there are such ones that are
characterized by only scalar thermodynamic parameter of state TE . We choose one
of these systems and will call it as ”the system E.” So, there exists the functional
connection for the systems of each type, for example

TE = ϕA(A1, A2, . . . , AnA ), TE = ϕB(B1, B2, . . . , BnB ), TE = ϕC (C1,C2, . . . ,CnC )

(16.1)

such that two systems A and B are found in heat equilibrium if and only if

TE = ϕA(A1, A2, . . . , AnA) = ϕB(B1, B2, . . . , BnB ) (16.2)

Thus, zero law of thermodynamics leads to definition of the new parameter of
state TE being suitable for all thermodynamic systems. This parameter is said to be
empirical temperature; it is convenient to introduce it as an independent parameter
of state. Any scalar parameter, for example AnA , may be expressed as

AnA = ψA(A1, . . . , Am, TE ), m = nA − 1 (16.3)

The first law of thermodynamics ensures an introduction of the notions of internal
energy E and heat Q. The value δQ is an energy transmitted from one system to
another due to a difference of its empirical temperatures. For adiabatic processes,

dE + δA(int) = 0 (16.4)

where δA(int) is the change of work of internal forces.
The second law of thermodynamics is used for introduction of the notions of

absolute temperature scale and entropy. The relation (16.3) demonstrates that every
thermodynamic parameter of state, for example the internal energy E , is expressed
in terms of thermodynamic parameters of state in the form

E = E(A1, . . . , Am, TE ) (16.5)

The tensor values A1, A2, . . . , Am may be considered as generalized displace-
ments; we denote by Pj the corresponding to its generalized forces:

Pj = Pj (A1, . . . , Am, TE ), j = 1, . . . ,m (16.6)
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Therefore

δA(int) =
m∑

j=1

Pj d A j (16.7)

The generalized forces (16.6) are connected with the generalized displacements
by some constitutive relations (the state equations). If the process is balanced and it is
effected so slowly that every generalized force (16.6) corresponds to the state equa-
tions in any time moment then the first law of thermodynamics gives the following
relation:

δQ = dE + δA(int) =
m∑

j=1

(
∂E

∂A j
+ Pj

)

d A j + ∂E

∂TE
dTE (16.8)

So, according to (16.8) the value δQ for balanced processes is a linear differential
form (the Pfaffian form) of independent thermodynamic parameters of state.

C. Carathéodory suggested (1909) the statement of the second law of thermody-
namics in the form of following principle.

• For any state of thermodynamic system, one may produce the state with two prop-
erties:

(a) it is arbitrarily close to the original state;
(b) it is not reached from the original state by means of adiabatic balanced process.

Because δQ = 0 for adiabatic balanced process (16.8) becomes an equation in
total differentials:

m∑

j=1

(
∂E

∂A j
+ Pj

)

d A j + ∂E

∂TE
dTE = 0 (16.9)

According to the Carathéodory principle, there are close states which cannot be
joined with the help of the solution of (16.9). Carathéodory established that this
means an integrability of the Pfaffian form (16.8) i. e., an existence of the integrating
factor ν(A1, . . . , Am, TE ) and the associated function M(A1, . . . , Am, TE ) such that

δQ

ν
= dM (16.10)

or in detail

1

ν

[ m∑

j=1

(
∂E

∂A j
+ Pj

)

d A j + ∂E

∂TE
dTE

]

=
m∑

j=1

∂M

∂A j
d A j + ∂M

∂TE
dTE (16.11)

It can be shown that among all possible integrating factors ν, there exists unique (to
within constant) factor depending on temperature TE only. It is denoted by T (TE )

and is said to be an absolute temperature. This is an universal function of state
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applicable to any thermodynamic system. The associated to it function is denoted by
S(A1, . . . , Am, TE ) = S(μ1, . . . ,μm, T ) and is said to be an entropy of the system
under consideration. Then, the Eq. (16.10) has the following form

dQ = T dS = dE + dA(int) =
m∑

j=1

(
∂E

∂μ j
+ Pj

)

: dμ j + ∂E

∂T
dT (16.12)

where symbol “:” means a full contraction of the 2nd rank tensors. It is valid for any
balanced process between adjacent states.

We see that the Carathéodory principle allows to introduce both entropy and
absolute temperature not having recourse to the model of perfect gas and the Carnot
cycle. In the case of gas with the state equation f (p, V, T ) = 0, we receive from
(16.12)

dS = 1

T

(
∂E

∂T

)

V

dT + 1

T

[(
∂E

∂T

)

T

+ p

]

dV (16.13)

The number of independent parameters of state equals two, so any Pfaffian form has
an integrating factor and

(
∂E

∂V

)

T

= T

(
∂ p

∂T

)

V

− p (16.14)

It is easy to verify a realizability of (16.14) for both perfect gas and the van derWaals
gas.

16.2 Legendre Transforms and Thermodynamic Potentials

Side by side with the internal energy E(μ1, . . . ,μm, S) let us consider the following
thermodynamic potentials:

• the enthalpy (heat content) H(P1, . . . , Pm, S):

H = E +
m∑

j=1

Pj : μ j (16.15)

• the Helmholtz free energy F(μ1, . . . ,μm, T ):

F = E − T S (16.16)

• the Gibbs potential G(P1, . . . , Pm, T ):

G = H − T S (16.17)
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Using both the first and the second laws of thermodynamics, wemaywrite (16.14)
in the following way

δA(int) =
m∑

j=1

Pj : dμ j (16.18)

as well as represent the thermodynamic identity:

dE = T dS −
m∑

j=1

Pj : dμ j (16.19)

In order to pass from one thermodynamic potential to some other, it is efficient to
use the Legendre transform of function ϕ(x1, x2, . . . ) with the total differential

dϕ = ∂ϕ

∂x1
dx1 + ∂ϕ

∂x2
dx2 + · · · ≡ X1 dx1 + X2 dx2 + . . . (16.20)

The Legendre transform poses the function �(X1, X2, . . . ) in correspondence with
the function ϕ(x1, x2, . . . ) such that

� = ϕ − X1x1 − X2x2 − . . . (16.21)

d� = dϕ − X1 dx1 − x1 dX1 − X2 dx2 − x2 dX2 − . . . (16.22)

A transition from the internal energy E to the enthalpy (16.15) is realized by
means of the following transform

− Pj = ∂E

∂μ j
, j = 1, . . . ,m (16.23)

Then, repeating (16.19)

dE = −
m∑

j=1

Pj : dμ j + T dS (16.24)

dH = dE +
m∑

j=1

Pj : dμ j +
m∑

j=1

μ j : dPj = T dS +
m∑

j=1

μ j : dPj (16.25)

∂H

∂S
= T,

∂H

∂Pj
= μ j (16.26)
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Analogous relations take place in cases of the transition H �→ G:

dG = dH − T dS − S dT =
m∑

j=1

μ j : dPj − S dT (16.27)

∂G

∂T
= −S,

∂G

∂Pj
= μ j (16.28)

as well as the transition E �→ F :

dF = dE − T dS − S dT = −
m∑

j=1

Pj : dμ j − S dT (16.29)

∂F

∂T
= −S,

∂F

∂μ j
= −Pj (16.30)

It should be noted that both the thermodynamic parameters μ j and its fluxes Pj must
be given by choose of the model.

16.3 Mass Densities of Thermodynamic Potentials

To describe themodels in continuummechanics, it ismore convenient to use densities
of the thermodynamic functions and potentials under consideration. We remember
the statements of the first law of thermodynamics

dE + dK = δA(ext) + δQ (16.31)

or
dE = −δA(int) + δQ (16.32)

and the second law of thermodynamics

T dS = δQ + W ∗ dt (16.33)

where W ∗ is the dispersion function. Excepting δQ from (16.32) and (16.33), we
receive the following thermodynamic identity

dE = T dS − δA(int) − W ∗ dt (16.34)

Let us introduce amass density of internal energy e(x, t), amass density of entropy
s(x, t) and a density of dispersion w∗(x, t) by means of the following relations for
arbitrary moving volume V :
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E =
∫

V

ρe dV, S =
∫

V

ρs dV, W ∗ =
∫

V

w∗ dV (16.35)

In order to present the expression for the value δQ in (16.31)– (16.33),we consider
an arbitrary finite volume V bounded by surface Σ with external unit normal n. Let
mass density of heat q(x, t) is given in any material point of this volume, and normal
component q(n)(y, t) of the heat flux vector q is given on each square element dΣ

(y ∈ Σ):
q(n) = qini = q · n (16.36)

Then a heat influx in the volume V for some time interval dt is equal to

δQ = −dt
∫

Σ

q(n) dΣ + dt
∫

V

ρq dV = dt
∫

V

(ρq − div q) dV (16.37)

The sign minus before the surface integral in (16.37) is explained by fact that
vector n is the external normal, whereas positive surface heat influx must be directed
from the outside toward the interior the volume V .

Physical dimensions of the introduced mass densities [e] = L2T−2, [s] =
L2T−2K−1, [q] = L2T−3, [q(n)] = MT−3, [w∗] = ML−1T−3 demonstrate that the
scalar fields e(x, t), w∗(x, t), q(x, t), q(n)(y, t) have purely mechanical nature (in
spite of the word “heat”) and may be defined without the notion “temperature.”

It follows from the expressions (16.33), (16.35), (16.37) that in any material point
of the volume V :

ρT
ds

dt
= ρq − qi,i + w∗ (16.38)

This equation is known as the heat influx equation and it is the local consequence of
the second law of thermodynamics.

For a broad class of continuums, the constitutive relations connecting the heat
influx vector q and gradient of temperature grad T are valid. The Fourier law of heat
conduction

q = −Λ · grad T (16.39)

represents the simplest such relation. Here Λ is a positive definite symmetric tensor
of the second rank named the tensor of heat conduction. Using (16.39) the heat influx
Eq. (16.38) may be written as

ρT
ds

dt
= ρq + (Λkl T,l),k + w∗ (16.40)
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16.4 Two Thermodynamic Laws in the Form
of Integral Postulates

The introduced mass densities allow to formulate two thermodynamic laws as the
4th and 5th postulates of continuum mechanics, thus to add them to statements of
boundary-value problems. The integral statement of the first law is the following
[4, 5].

• Let Ω ∈ R3 be a material volume in actual frame of reference, V be an arbitrary
moving volume in Ω and Σ be its boundary with unit external normal n. Then

d

dt

∫

V

ρ
(
e + |v|2

2

)
dV =

∫

V

ρ(F · v + q) dV +
∫

Σ

(P(n) · v − q(n)) dΣ (16.41)

or taking into account the theorem of kinetic energy

d

dt

∫

V

ρe dV =
∫

V

(ρq + P : D) dV −
∫

Σ

q(n) dΣ (16.42)

Here D is strain rate tensor, F is mass force.
Differential consequence of the formulation (16.42) represents the local energy

equation

ρ
de

dt
= ρq − div q + P : D (16.43)

Integral statement of the second law of thermodynamics may be following [4, 5].

• Let Ω ∈ R3 be a material volume in actual frame of reference, V be an arbitrary
moving volume in Ω and Σ be its boundary with unit external normal n. Then

d

dt

∫

V

ρs dV =
∫

V

ρq

T
dV −

∫

Σ

q(n)

T
dΣ +

∫

V

(w∗
T

− q · grad T
T 2

)
dV (16.44)

The last integral in the right hand of (16.44) is said to be the production of entropy. It
is always nonnegative by virtue of positive definiteness of the tensor Λ (see (16.39))
as well as the inequalities w∗ ≥ 0, T > 0:

S∗ =
∫

V

(w∗

T
− q · grad T

T 2

)
dV =

∫

V

(w∗

T
+ 1

T 2
grad T · Λ · grad T

)
≥ 0

(16.45)
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Substituting the surface integral in (16.44) on volume one:

∫

Σ

q(n)

T
dΣ =

∫

V

div
( q
T

)
dV =

∫

V

(div q
T

− q · grad T
T 2

)
dV (16.46)

we easily receive the differential consequence of the 5th postulate, namely the equa-
tion of heat influx

ρT
ds

dt
= ρq − div q + w∗ (16.47)

The models of continuum mechanics for which w∗ = 0 are said to be reversible
ones. The inequality (16.45) demonstrates that the production of entropy may be not
equal to zero even for reversible models.

References

1. Germain, P.: Cours de Mécanique des Milieux Continus. T. 1. Théorie Générale. Masson Édi-
teurs, Paris (1973)

2. Sedov, L.I.: Mechanics of ContinuousMedia, vols. I, II. World Scientific Publ, Singapore (1997)
3. Ilyushin, A.A.: Mechanics of Continuous Media. Moscow State Univ. Publ, Moscow (1990).

[in Russian]
4. Pobedria, B.E., Georgievskii, D.V.: Foundations of Mechanics of Continuous Media. Fizmatlit,

Moscow (2006). [in Russian]
5. Pobedria, B.E., Georgievskii, D.V.: Uniform approach to construction of nonisothermal models

in the theory of constitutive relations. Continuous and Distributed Systems II. Ser. Studies in
Systems, Decision and Control, vol. 30, pp. 341–352 (2015)



Chapter 17
Flow Control Near a Square Prism
with the Help of Frontal Flat Plates

Iryna M. Gorban and Olha V. Khomenko

Abstract The case of two symmetrical flat plates fixed in front of a square prism for
passive control of a near-body flow pattern is numerically investigated at moderate
Reynolds numbers. The plates are used for generation of a pair of the frontal stable
vortices which would be able suppress flow separation in the neighbor body edges.
The improvement of body loads in this case is achieved by wake constriction and
reducing the difference between bottom and frontal pressure. The control scheme
presented was found to be sensitive to its geometrical parameters. The dynamic
system analysis is attracted for studying the flow topology in the area and deriving
optimum parameters of the control device. It was found that the plate length l ≈ 0.2d
and r ≈ 0.16d, where d is the prism side and r is the distance between the plate base
and the prism edge, is the appropriate choice which permits reduce the prism drag
approximately per 20%. An influence of the Reynolds number on the effectiveness
of the control scheme is also investigated.

17.1 Introduction

Square prism, as a circular cylinder, is a fundamental bluff body configuration used
inmany engineering applications including heat exchangers, architectural structures,
and marine equipment. Exploitation of these systems in air and fluid flows is accom-
panied by vortex shedding from the body that causes large unsteady forces, acoustic
noise and resonance, structural vibrations, andother dangerous effects. So, to improve
productivity of the equipment and prevent its destruction, different passive and active
methods have been proposed for control of vortex dynamics near a bluff body. The
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earliest methods for suppression of vortex shedding and fluid forces of bluff bodies
were discussed by Zdravkovich [1] who classified the schemes of flow control with
respect to the subject of exposure. He considered surface protrusions affecting sep-
arated shear layers, shrouds acting entrainment layers and near wake stabilizers. In
most cases, the methods are based on body surface modifications and are passive in
the sense that there is no power input. Further development of flow control has lead to
creation of the schemes requiring energy supplying from external sources (blowing
and suction, injection of micro-bubbles, surface heating or cooling, etc.). In paper
[2], those are classified into active open-loop and active closed-loop controls.

Majority of the both passive and active flowcontrol researches dealswith a circular
cylinder, which is the most popular bluff body configuration. At the same time, the
flow control for a square prism may differ from that for a cylinder owing to the fixed
separation points. In this case, wake modification does not require any influence on
the body boundary layer with the aim to delay the flow separation. Then the control
has to be brought to the body wake directly.

Among themost known direct-wake control methods for a square prism, are using
a downstream splitter plate [3, 4], installation of the small element, such as a flat
plate or rod, upstream of the prism [5, 6], and base blowing/suction [7–9]. Those
change vortex wake dynamics; as a result, the fluid forces acting on a square prism
are reduced. Notice that optimal control in these researches is derived by system-
atic changing parameters of the proposed devices, which is a very time-consuming.
To overcome this difficulty, the control theory based on the rigorous mathematical
apparatus can be applied. Researchers have shown that feedback control algorithms
based on mathematical analysis, such as optimal control approach and dynamical
systems theory, effectively control strong nonlinear flows generating in bluff body
wakes [10–12].

To achieve the desired effects to the flow, not only active but and passive methods
are in want of optimization in frames of the chosen control strategy. It is known
that one of the successful ways to control flow–body interactions at large Reynolds
numbers is connectedwithmodification of near-body flowby creating artificial large-
scale vortices there. In passive control, the special surface irregularities, such as cross
groves or plates, are usually used for this purpose. This conception known as trapped
vortex approach has found its practical application in aviation, marine engineering,
and hydraulic systems [13–15].

The principal requirement to the algorithms based on the generation of large-scale
stable vortices near a body consists in possibility to forecast and control the behavior
of those. Therefore, the control scheme will be effective, if it applies information
about critical points, dynamic properties of the vortices created and other topological
features of flow field. It was stated in paper [16], a knowledge of critical-point
theory is important for interpreting and understanding flow patterns whether they are
obtained experimentally or computationally. Modern control algorithms are not only
used the above-mentioned information, but also directed to creating the necessary
topology in the flow field that includes changing the location and type of flow critical
points in accordance with the control goals.



17 Flow Control Near a Square Prism with the Help of Frontal Flat Plates 329

In this work, the trapped vortex approach is used to improve loads of a square
prism. Two stable symmetrical vortices are proposed to be generated in front of the
prism with the help of special attaching plates. The effects of the control plates on
the force coefficients, flow pattern, and vortex shedding frequency of the prism are
numerically studied at moderate Reynolds numbers, with Re based on the side of
prism.

To identify the optimum position and length of the plates, the so-called reduced
order model is applied [11]. This concept is based on the nonviscous model of
point vortices, in which the vorticity field is represented by a discrete set of isolated
circulatory elements whose axes are perpendicular to the flow plane. The flow field
in this case is reduced to the finite system of vortices moving along the trajectories of
fluid particles. Analyzing the vortex system dynamics in the considered area, one is
able to derive the main regularities of the flow pattern there. The model of the vortex
dynamics has ensured many important results in regard to the flow control [11, 12,
16–18].

We use here the model with one degree of freedom to study the dynamic behavior
of the trapped vortex clamped between the control plate and the prism front side. It
is supposed the recirculation zone formed due to flow separation in the plate edge is
replaced by a singular vortex. According to the present control strategy, the vortex
has to be immovable and prevent the flow separation in the prism leading edge. Then,
the problem is reduced to the PDE system relatively coordinates and circulation of
the vortex as well as parameters of the control plate.

Numerical modeling of flow patterns around the square prism with two frontal
plates is performed in 2D space by the vortexmethod [19, 20], which belongs to high-
resolution Lagrangian-type schemes developed as fast alternative to direct numerical
simulations (DNS) [21]. As pointed out by Liu and Kopp [22], the accuracy in the
last versions of the vortex method is compared well to nondissipative and high-order
finite-difference schemes, especially in large and intermediate scales.

The Reynolds number in the present investigation is changed in the range Re =
100 ÷ 500. The second wake instability connected with 3D transition is known to
develop in the square cylinder flow starting from Re ≈ 170 [23]. But it has been
shown from previous researches two-dimensional calculations at higher Reynolds
number simulate flow patterns, mean forces, and separation frequency for the square
cylinder quite successfully [22].

Position and length of the control plate are set using the information obtained with
the help of the simplified model of trapped, or standing, vortices [24]. The objective
of this work was to estimate an influence of the control plates on flow patterns and
fluid forces of the square prism as well as demonstrate that the reduced order model
is able to ensure optimum parameters of the control device. Wake stabilization and a
significant decrease of both drag and lateral force are observed in the flow under the
control. It follows from the present-study new successful control methods for fluid
flows can be developed on base of the dynamic models taking into account the flow
topology.
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17.2 Problem Statement

The rigid square prism of side d with two symmetrical plates is immersed into the
uniformflowof velocityU∞. The two-dimensional geometricalmodel of the problem
and coordinate system are depicted in Fig. 17.1. The control scheme presented is
characterized by two geometrical parameters. Those are the plate length l and space r
between the plate and the neighboring square edge. The plates are supposed to be thin
and their width is invariable in this investigation. Incompressible flow with constant
fluid properties is assumed. The Reynolds number is defined as Re = U∞d/ν, where
ν is the kinematic viscosity of water. All geometrical lengths are normalized with
d, velocities with U∞, physical times with d/U∞, and frequencies with U∞/d.
Consequently, the Strouhal number is defined as St = fsd/U∞, where fs is the
shedding frequency. Force and pressure coefficients are specified by the dynamic
pressure ρU 2∞/2, where ρ is the fluid density.

The governing Eqs. (17.1) and (17.2) of continuity and momentum for the flow
under consideration are represented as follows:

∇V = 0, (17.1)

∂V
∂t

+ (V · ∇)V = −∇ρ + 1

Re
∇2V, (17.2)

where V = (u, v) is the velocity vector, ρ is the pressure, and t is the time.
On the body, the slipping condition must be satisfied

V · n|Σ = 0, (17.3)

V · τ |Σ = 0, (17.4)

whereΣ denotes the body contour, andn, τ are the normal and tangential unit vectors
to the body.

Fig. 17.1 Flow
configuration and coordinate
system
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Fig. 17.2 Classification of controlled wake flow patterns. a Pattern A. b Pattern B. c Pattern C

Choice of geometrical parameters of the control plates is seen to be conditioned by
the flow patterns generated near the prism with the plates. Note the thickness of the
plates is fixed to 0.02d. Then the square prism flow depends on the relation between
the length l and the position r of the control plates. The possible flow patterns around
the square prism with the plates are presented in Fig. 17.2. In pattern A, the shear
layers that separated from the control plates attach to the leading edges of prism.
That leads to depression of the flow separation in these edges and narrowing of the
wake behind the prism.

It is well known fromRoshko’s classical experiments with a circular cylinder [25]
that wake narrowing causes reduction of the body drag. So, we expect the essential
suppression of fluid forces for this configuration. Pattern B corresponds to the case
when the plates are located excessive far off the prism edges. Then, the plate shear
layers attach to the frontal side of prism that influences weakly on the flow separation
at the leading edges. Pattern C is themost invalid for a flow control because we obtain
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here the global flow separation in the plate edges. As a result, the prism wake can
become even broader than at uncontrolled case.

It follows from the above analysis the present control scheme is in need of correct
choice of its geometrical parameters. To exclude time-consuming systematic calcu-
lations, we apply here the critical-point theory for determining the optimal sizes of
control plates.

17.3 Dynamic Model of a Standing Vortex

In this section, the model of standing vortex [17, 23] is applied to study the flow
topology in the domain under consideration. Because of the horizontal symmetry of
the problem, it is enough to consider top part of the flow field only. The geometry of
interest is presented in Fig. 17.3. The uniformflowof ideal incompressible fluid in the
half-plane containing a hemiprism with a frontal plate is analyzed. The recirculation
flow in the domain between the plate and the prism frontal side is replaced by a point
vortex of circulation Γ0 and coordinates (x0, y0). Vortex dynamics model focuses on
equilibrium of the point vortex in the incident flow at the given geometry of flow
field.

The practical goal of the control was to create andmaintain the stationary circulat-
ingflowbetween the plate and the frontal prim sideswhichwould suppress generation
of vorticity in both the plate endA and the prism leading edgeB. Therefore, the theo-
retical model comes to determining the plate parameters, length l and position r , such
that the vortex of Γ0 is immovable (standing) and the Kutta–Joukowski condition is
satisfied in the sharp edges A and B. The system under consideration has one degree
of freedom. Therefore, its evolution is described by a nonlinear differential equation
in R2:

dX(t)

dt
= f (X(t)), (17.5)

whereX(t) ∈ R2 is the vector of vortex coordinates:X(t) = (x0(t), y0(t)), the vector
function f : R2 → R2 sets the vortex velocity: f (X(t)) = V(x0(t), y0(t)).

As the incident flow velocity does not change in time, Eq. (17.5) is autonomous
one. Then the vortex moves along the flow lines and the phase space of the dynamical
system coincideswith the flow domain. It follows that the vortex equilibrium position

Fig. 17.3 Scheme of the
flow with a trapped vortex in
the top of the square prism
with the attached plate
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checks with the flow critical point; that is, its coordinates can be determined from
the equation:

f (X) = 0 (17.6)

The Kutta–Joukowski theorem states that one will obtain an attached flow in the
sharp edges A and B if the following equalities are satisfied:

V|A = C1, V|B = C2. (17.7)

Equations (17.6) and (17.7) fully describe the control problem in the sense that they
allow to define uniquely the standing vortex characteristics and plate parameters
ensuring the nonseparated flow in the sharp edges.

The flow under consideration is potential with the exception of the vortex point
(x0, y0), so methods of the complex analysis can be employed for the flow analysis.
Within this formalism, the position of a point vortex is identified with a point in
the complex plane, i.e., z0 = x0 + iy0 ∈ C , where i = √−1. The fluid flow at any
point z ∈ C is described by the complex potential that is the Green’s function for
the Laplace equation. In the flow with a solid boundary, the complex potential is
built to satisfy condition (17.3) that the normal velocity component vanishes on all
boundaries.

To fulfill the condition on the body surfaceΣ , the last is modeled by a continuous
vortex sheet whose strength γ is induced by the jump in tangential velocity across the
sheet. In the computation scheme, the sheet is divided into partitions of equal length
and each partition is replaced by a single vortex of circulation Γk = γ (s)Δs. Here,
γ (s) is the linear intensity of the sheet in the body point of parametric coordinate s,
Δs is the length of the segment between neighboring vortices, k = 1, 2, . . . , N and
N is the number of the vortices in the discrete scheme. On the solid wall coinciding
with x axes, the boundary condition is satisfied with applying the “method of mirror
images.” Then, the complex velocity potential of the problem is given by

Φ(z) = U∞z + Γ0

2π i
ln

z − z0
z − z0

+ 1

2π i

N∑

k=1

Γk ln
z − zk
z − zk

. (17.8)

In Eq. (17.8) zk = xk + iyk are the complex coordinates of the bound vortices, and
the overbar denotes a complex conjugate. Taking into account that the flow complex
velocity is

V(z) = (u − iv)(z) = dΦ(z)

dz
,

one derives the following expression for the free vortex velocity:

(u − iv)(z0) = U∞ + Γ0

4πy0
+ 1

2π i

N∑

k=1

Γk

(
1

z0 − zk
− 1

z0 − zk

)

. (17.9)
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Sharing real and imaginary parts of (17.9), we construct the equations corresponding
to condition of vortex equilibrium (17.6):

u(z0) = 0, (17.10)

v(z0) = 0. (17.11)

Conditions (17.7) are identical to the following equations:

γ (A) = 0, (17.12)

γ (B) = 0. (17.13)

So, control problem (17.6) and (17.7) is presented in the discrete scheme by
system four transcendental Eqs. (17.10)–(17.13) with respect to the standing vortex
parameters (x0, y0, Γ0) and the plate geometrical characteristics. To close the system,
the plate length l is supposed to be fixed and other parameters are presented as
functions of l.

To determine circulations of bound vortices Γk , the method of boundary integral
equations is applied [26]. Assuming that the control points which no-through flow
boundary condition (17.3) is satisfied in are located in the middle of the segments
coupling two neighboring vortices, we obtain the following systemof linear algebraic
equations with respect to Γk :

1

2π

N∑

k=1

Γk(Vn)lk = −U∞ − 1

2π
Γ0(Vn)l0, l = 1, 2, . . . N , (17.14)

where (Vn)lk , (Vn)l0 are the normal velocities induced in the l- th control point by the
bound vortices and free vortex, respectively. Notice due to the symmetry of the flow
field relative to x axis, the condition of constancy of the circulation along a closed
contour is satisfied automatically.

The results of calculations show that problem (17.10)–(17.13) has a unique solu-
tion, when 0.15 ≤ l ≤ 0.65, i.e., the vortex of circulation Γ0 located in the point
(x0, y0) is immovable and it ensures an attached flow in both sharp edges A and
B. Analysis of the eigenvalues of the matrix of the linearized system corresponding
to (17.5) in the flow critical point (x0, y0) demonstrates that the point is a stable
focus. The linear stability makes the present configuration quite interesting from the
practical point of view. The picture of streamlines with a pair of standing vortices
in frontal part of the square prism is presented in Fig. 17.4. It sustains that optimal
choice of the control plate geometrical parameters is able to ensure nonseparated
flow in the prism leading edge.

The attributes Γ0, x0, y0 of the standing vortex and the space r between the prism
corner and the plate attachment point against the plate length l are shown in Fig. 17.5.
It can be observed that the dependencies are of linear type. Among them, the last
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Fig. 17.4 Picture of streamlines with two standing vortices in front of the square prismwith control
plates at l = 0.2, r = 0.16

Fig. 17.5 a The standing vortex parametersΓ0, x0, y0, b the plate position against the plate length l
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function is the most interesting because it demonstrates the optimal geometrical
characteristics of the present control scheme.

The results obtained with applying the reduced order model are fundamentally
important as those justify an existence of a stable recirculation zone generated in
front of the square prism with the help of small attached plates. Further the derived
parameters of the control plates will be used in the numerical simulations of the
viscous flow around the modified square prism.

17.4 Numerical Simulation of the Viscous Flow Past
a Square Prism with Attached Frontal Plates

17.4.1 Details of Implementation of the 2D Vortex Method

Numerical simulations of viscous flow field around the square prismwith two frontal
plates were performed with a high-resolution vortex method, which we have shown
can accurately simulate this class of flows [19, 20]. Vortex methods describe transla-
tion of vorticity in the flow field. Those are based on the vorticity transport equation:

∂ω

∂t
+ (V · ∇)ω = 1

Re
Δω (17.15)

with ω = k · ∇ × V being the vorticity, which is treated as a scalar quantity for 2D
flows. This approach is preferable due to the absence of the pressure in the equations,
automatic implementation of the continuity equation, and adaptability as the domains
of concentrated vorticity are only considered when performing the calculations.

The velocity field V(r) induced by the volume and the surface vorticity, ω and γ ,
respectively, is defined by the Biot–Savart formula:

V(r, t) =
∫

Σ

γ (r′, t)k × ∇G(r, r′)dl(r′) +
∫

S
ω(r′, t)k × ∇G(r, r′)ds(r′),

(17.16)

where r is the radius vector of the point, G is the fundamental solution of Laplace
operator for a unbounded domain: G(r) = 1

2π ln|r|.
Equation (17.15) is solved by the splitting procedure when we get the equations,

which describe separately the vortex convection and diffusion:

∂ω

∂t
+ (V · ∇)ω = 0, (17.17)

∂ω

∂t
= 1

Re
Δω. (17.18)
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Fig. 17.6 The scheme of
discretization of the vorticity
field

In the present numerical realization of the vortex method, the finite volume dis-
cretization of the vorticity field is performed. The volumes are connected with node
points of the orthogonal grid put on the calculation domain (Fig. 17.6). The point
vortices located in the middle of each volume are characterized by the vorticity ωi j ,
where i = 1, 2, . . . , Nx , j = 1, 2, . . . , Ny , Nx , Ny are the numbers of grid cells in x
and y directions, respectively. From the divergence theorem, the law of conservation
of vorticity in the elementary volume can be described in the form:

∂

∂t

∫ ∫

Ω

ωi j dq = −
∫

∂Ω

ωi j (V · n)dl, (17.19)

where Ω , ∂Ω is the discrete volume and its boundary, respectively, n is the normal
to ∂Ω andV is the flow velocity on ∂Ω . As Eq. (17.19) defines the vorticity convec-
tion across the elementary volume, we obtain the following numerical scheme for
Eq. (17.17):

ω t+Δt
i j − ω t

i j
Δt ΔxΔy ≈ (ω t

i−1 j u
t
i−1 j − ω t

i+1 j u
t
i+1 j )Δy+

(ω t
i j−1v

t
i j−1 − ω t

i j+1v
t
i j+1)Δx − ω t

i j (|u t
i j |Δy + |v t

i j |Δx),

(17.20)

where Δx and Δy are the steps of space discretization in x and y directions, and Δt
is the time step.

It is obvious that scheme (17.20) has the first order in time and the second order
in space. Development of this approach on multilayer templates is presented in [27].
Note the scheme is dissipation-free and has improved dispersion properties compared
with classical linear schemes.

To simulate the viscous diffusion process, we integrate Eq. (17.18) by the finite-
difference method. The scheme of the second order in space written in the nodes of
orthogonal grid takes the form:

ω t+Δt
i j − ω t

i j

Δt
= 1

Re

(
ω t

i+1 j − 2ω t
i j + ω t

i−1 j

(Δx)2
+ ω t

i j+1 − 2ω t
i j + ω t

i j−1

(Δy)2

)

.

(17.21)
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Discrete Eqs. (17.20) and (17.21) are integrated in time with applying the explicit
scheme of the first order. Notice it is stable at the Courant numbers that do not
exceed 1.

So, that way looks to changing in time the circulation Γ i j (t) = ω i j (t)ΔxΔy of
the vortex particle fixed in the grid node unlike the classical vortex method [21, 22]
that deals with translation of free discrete vortices in the flow field. Adaptability
of the scheme is reached because of the grid points whose circulation satisfies the
condition |Γ i j | < ε, where ε is the small value, are only considered.

The Lighthill’s mechanism of vorticity creation at a solid wall and linking it to
vortex methods are described in detail in [21]. It explains the vorticity generation by
changing the circulation γ of the vortex sheet simulating the body surface because
of vorticity field modifications. In the numerical schemes of a vortex type, there are
different approaches to calculation γ and its incorporation in a boundary condition for
vorticity. We determinate the intensity of body sheet from no-through flow boundary
condition (17.3), which leads to the following integral equations with respect to γ :

∫

Σ

γ (r′, t)
∂G(r, r′)

∂n
dl(r′) +

∫

S
ω(r′, t)

∂G(r, r′)
∂n

ds(r′) = 0, (17.22)

where r ∈ Σ .
The Kelvin’s theorem of circulation conservation in the computational domain

must be also satisfied:
∫

Σ

γ (r′, t)dl(r′) +
∫

S
ω(r′, t)ds(r′) = 0, (17.23)

No-slip condition (17.4) is used to derive a boundary condition for vorticity. Taking
into account the velocity jump across the vortex sheet, one has the following relation:

(Vτ )− = V0
τ + γ

2
, (17.24)

whereV0
τ is the tangential velocity of body-surface points calculated from (17.16) and

(Vτ )− is the limiting value of tangential velocity at the body, which condition (17.4)
has to be satisfied for. FollowingWu [28] who divided the strength of the vortex sheet
by the distance from the wall to the first mesh point in the computational domain
to obtain the vorticity on the body, we get the Dirichlet-type boundary condition for
vorticity in the following form:

ω0 = 2V0
τ

Δs
, (17.25)

where Δs is the grid spacing perpendicularly to the wall.
The vorticity created on smooth walls enters the fluid through a mechanism of

viscous diffusion described by formula (17.21). And the sharp edge vorticity is
transferred to the flow with applying convection formula (17.20) that is equivalent
to implementation the Kutta–Joukowski condition in this point.
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17.4.2 Calculation of the Pressure Field and Forces
on the Body

The introduction of vorticity and velocity–vorticity formulation of theNavier–Stokes
equations allow to decouple purely kinematical problem from the pressure problem.
It simplifies significantly numerical modeling of the hydrodynamic fields. But to
estimate either the fluid forces acting to a body or sound level in the flow, one is need
of calculating the pressure at least on the body. It has to be noted that recovery of the
pressure from vorticity and velocity fields is a daunting challenge, which has invited
attention of many researchers [29–31]. When direct solving the Poisson equation
for the pressure, the problem of the correct choice of boundary condition arises. On
the other hand, use of alternative approaches such as variational formulation [29]
or Uhlman’s integral [30] is difficult due to having sharp edges in the considered
geometrical configuration.

We derive the pressure field by direct integrating the Navier–Stokes equations in
the Lamb representation [32]:

∂u

∂t
+ 1

2

∂

∂x
(u2 + v2) − νω = − 1

ρ

∂p

∂x
− 1

Re

∂ω

∂y
, (17.26)

∂ν

∂t
+ 1

2

∂

∂y
(u2 + v2) + uω = − 1

ρ

∂p

∂y
+ 1

Re

∂ω

∂x
. (17.27)

It is obvious Eqs. (17.26) and (17.27) connect the pressure field with velocity and
vorticity fields. IntegratingEq. (17.26) of the variable x andEq. (17.27) of the variable
y, one obtains the following formulae for calculation the dimensionless pressure:

p = 1 − u2 − v2 + 2
∫ x

−∞

(

vω − ∂u

∂t
− 1

Re

∂ω

∂y

)

dx, (17.28)

p = 1 − u2 − v2 + 2
∫ y

−∞

(

−uω − ∂v

∂t
+ 1

Re

∂ω

∂x

)

dy, (17.29)

where p = 2(p − p∞)/ρU 2∞.
It depends on the flow field configuration, what equation from (17.28) and (17.29)

will be chosen for calculating the pressure. Note that this way allows deriving the
total drag including its form and viscous components.

The coefficients of fluid forces on the body are calculated using the pressure
distribution:

Cx =
∫

L
pnx dx, Cy =

∫

L
pny dy, (17.30)

where Cx , Cy are the coefficients of drag and lift, respectively, and n = (nx , ny) is
the internal normal to the body.
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Fig. 17.7 Sketch of the
computational grid

In the present numerical scheme, Eqs. (17.28) and (17.29) are integrated with the
trapezium method on the base orthogonal grid.

17.4.3 Validation of the Algorithm

With the vortex method described above, the present simulation results for an impul-
sively started square prism at moderate Reynolds numbers (Re = 100 ÷ 600) are
validated against theoretical, experimental, and numerical data available in the liter-
ature. In this study, we adopt the three-level rectangular grid with a constant cell size
at each level as presented in Fig. 17.7. The grid spacing Δ1 in the domain adjoining
the body coincides with the length of the panels that simulate the bound vortex sheet.
And the cell size of each next grid is doubled compared with the previous. The num-
ber of the nodes throughout the square side is determined after preliminary tests as
Ns = 50 that leads to Δ1 = 0.02. The dimensionless width of the calculation region
is 20 and the lengths of upstream and wake regions are 10 and 90, respectively. For
all the cases investigated in this paper, the normalized computational time step is
equal to Δt = 0.01.

Figure17.8 presents the variation of Strouhal number St and mean drag coeffi-
cient CD with Reynolds number for square prism from the present simulations. The
shedding frequencies were determined from the power spectra of the nonstationary
lift signals, as well as velocity fluctuations in the wake.

Included for comparisons are the known experimental data of Okajima [33, 34]
togetherwith the results of 2D and3DDNSsimulations ofNorberg et al. [23]. In spite
of the fact that 3D effects develop in the square cylinder flow starting from Re ≈ 170
[23], the present results are seen to be in close agreement with the experimental data
and in reasonable agreement with the numerical results. Note, when Re ≥ 150, the
mean drag coefficient obtained matches as experimental as numerical results very
good. At the same time, the Strouhal numbers predicted by 3D simulations are
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Fig. 17.8 a Strouhal number St , b mean drag coefficient CD of a square prism against Re

not necessarily more “accurate” than the present results. Generally, the performed
comparisons indicate the good correlation of both the time-mean drag and shedding
frequency calculated with known experimental and numerical data.

As for quantitative characteristics of the lift force acting to a square cylinder, those
are scarce in the literature. Table17.1 contains data for the root-mean-square value
(i. e., standard deviation) of the lift coefficient CLrms obtained in the present calcu-
lations and known from previous researches at Re = 150 and Re = 500. Among
those, data from [27] are only experimental and all other are acquired in numerical
simulations. The coefficient CLrms has been shown to be extremely sensitive as to Re
variations as to aspect ratio of the computation domain [23, 27] that explains sig-
nificant discrepancies in the results. Nonetheless, the present CLrms values compare
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Table 17.1 Comparison of lift force standard deviation CLrms for a square cylinder at Re = 150
and Re = 500

Source CLrms

Re = 150 Re = 500

Ali et al. [4] 0.28 –

Sohankar et al. [23] 0.23 1.13–1.22

Doolan [35] 0.296 –

Shimizu et al. [36] – 0.56–0.72

Hwang and Sue [37] – 0.9–1.01

Present simulation 0.23 0.9

reasonably well with other numerical results at Re = 150 and are in good agreement
with experimental data at Re = 500. The performed comparisons indicate that the
present version of the vortex method is able to predict correctly the flow past a square
prism at moderate Reynolds numbers.

17.4.4 Square Prism with Attached Frontal Plates. Results
of Simulation

In this section, an effect of two symmetrical plates attached to the prism frontal side
on flow structure and prism loads is studied. As we consider the possibility of small
control impact upon the flow, the plates are quite short and thin. The normalized plate
length and width are l = 0.2 and w = 0.02, respectively. A plate position toward the
adjacent prism edge r is chosen from the dependency presented in Fig. 17.5b, which
has been obtained in the previous section by the reduced order model. That has to
guarantee a stable recirculation zone between the plate and the prism frontal side.
Here, the value of ropt corresponding to the chosen plate length is 0.16.

An effect of the plates is as early as obvious if one compares the flow patterns
developed beyond a square prism without control and under the optimal control. In
Fig. 17.9,wepresent the vorticity fields obtained in the uncontrolledflowat Re = 150
(Fig. 17.9a) and Re = 500 (Fig. 17.9b). In all the figures, solid and dashed lines rep-
resent positive and negative vorticity values, respectively. At Re = 150, which is still
before the onset of 3D effects, the wake is seen to be laminar, regular and charac-
terized by the primary instability, the von Karman vortices. The estimated Strouhal
number characterizing the vortex shedding frequency is 0.145, which is close to
the experimental data of Okajima [33] (St = 0.148) and slightly smaller than the
computational value of Inoue et al. [38] obtained by high-order direct numerical
simulations (St = 0.151). As regards calculations at Re = 500, those have approx-
imation character because the transition to 3D flow behind the prism occurs well
before, at Re ≈ 190 [23]. In particular, significant levels in components of nonspan-
wise vorticity can be presented near the body at Re = 500. However, the flow patters
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Fig. 17.9 Vorticity contours past a square prism without control at a Re = 150 and b Re = 500:
solid line—positive circulation, dashed line—negative circulation

Fig. 17.10 Vorticity contours past a square prism with optimal control at l = 0.2, r = 0.16, a
Re = 150 and b Re = 500

and loads obtained in our calculations are close to those observed in nature. So, the
Strouhal number is 0.135 that coincides with experimental data of Norberg [39].
Other characteristics are also in good agreement with experimental and numerical
data available in the literature that is shown in Fig. 17.8b and Table17.1.

Figure17.10 illustrates the wake patterns generated beyond the prism with the
attached frontal plates (l = 0.2, r = ropt = 0.16). Note the vorticity contours in
Figs. 17.9 and 17.10 correspond to not only identical Reynolds numbers but also
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an identical instant when the flow with or without the control plates is well estab-
lished. The structure of separated flow in Fig. 17.10a, b is seen to be different from
those observed without the control. The wake width becomes narrower and much
more regular, especially at Re = 500. The vortex shedding period in the controlled
flow decreases as compared to the natural prism flow that results in the reduction
of both the intensity and the scale of the wake vortices. An influence of the control
plates on the flow grows significantly when increasing the Reynolds number. The
obtained nondimensional frequency of vortex shedding (Strouhal number) is 0.157
at Re = 150 against St = 0.195 at Re = 500. It means the increase of St in com-
parison with the natural frequency is 8% in the first case and more than 40% in the
last case.

It is shown in Fig. 17.10a, b the prism front lies inside the recirculation zones
generated by plate ends. The phenomenon as well as lowering the recirculation
bubble length and wake realignment causes drastic redistribution of pressure over
the body. Figure17.11a, b compares the time-averaged pressure coefficient Cp =
2(p − p∞)/ρU 2∞ over the prism calculated without control plates andwith the plates
at Re = 150 and Re = 500, respectively. The pictures demonstrate equalizing the
pressure at the frontal side and increase of the base pressure coefficient Cpb in the

Fig. 17.11 The pressure
coefficient over the prism
surface without control
(dashed line) and with
optimal control (solid line) at
a Re = 150 and b Re = 500
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Fig. 17.12 Instantaneous drag coefficient CD and lift coefficient CL without control (curves 1),
with optimal control (curves 2), with nonoptimal control (curves 3) at a Re = 150 and b Re = 500

controlled flow. At Re = 150, the base pressure coefficient rises from Cpb = −0.73
in the natural flow toCpb = −0.6 in the controlled flow and at Re = 500, the increase
is fromCpb = −1.2 toCpb = −0.8. It is obvious the tendency leads to decreasing the
prism drag, which is expected to be more significant at Re = 500. Note the obtained
values of Cpb in the natural flow are close to DNS data of Sohankar et al. [23] that
is important for the verification of our numerical scheme.

So, the attached frontal plates significantly affect both flow pattern and pressure
distribution about the prism and one can thus expect change of the fluid forces as
compared to the uncontrolled flow. Figure17.12a, b shows the temporal traces of the
drag (CD) and lift (CL ) coefficients of square prism for uncontrolled and controlled
flows at Re = 150 and Re = 500, respectively. Here curves labeled 1 correspond to
the natural prism flow, curves labeled 2 describe the prism characteristics at optimal
control (l = 0.2, r = 0.16), and curves as 3 deal with nonoptimal control when plate
position r is chosen independently of the results obtained with applying the standing
vortex model.

The presented data demonstrate substantial reduction of the hydrodynamic loads
of the prismwith attached frontal plates. Themean value of the prism drag coefficient
at Re = 150 derived from its time history in our simulation (curve 1 in Fig. 17.11a) is
CD = 1.4 that coincides exactly with both experimental [34] and DNS [23, 38] data.
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The prism modification with optimal parameters of the control plates is obtained to
reduce the coefficient up toCD = 1.08, curve 2 in Fig. 17.11a. So, drop in drag force
is about 22% in comparison with the uncontrolled flow. At Re = 500, lowering the
prismmean drag ismore essential; here, the coefficientCD decreases from value 1.76
obtained without control up to 1.12 that corresponds to optimal control. The control
effect is about 35% in this case. Analogous results are achieved for fluctuating forces
acting on a square prism. The amplitudes of both the drag and the lift coefficients
decrease significantly in the controlled flow. For example, at Re = 500, the amplitude
of CL in the controlled flow is a third of that in the uncontrolled flow.

To emphasize an importance of the results derived by the simplified model of
a standing vortex, we carried out the simulation with nonoptimal parameters of the
control device. Curves 2 in Fig. 17.11a correspond to the case when the plate position
r = 0.22 that exceeds the optimal value ropt , so the plates are located too far from
the prism edges. On the contrary, the case presented in Fig. 17.11b is characterized
by too close displacement of the plates in respect to the prism edges, here r = 0.08.
In both configurations, reducing mean drag and fluctuating forces are seen to be less
than at the optimal ratio of plate length to its position.

The plots of instantaneous streamlines presented in Fig. 17.13 interpret the possi-
ble flow topology around the prismwith the control plates. The results were obtained
in the numerical simulations at Re = 500. Three snapshots of these streamline plots

Fig. 17.13 Streamlines around the square prism with control plates at plate length l = 0.2, Re =
500 and different plate position: a r = 0.22, b r = 0.08, c r = 0.16
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Fig. 17.14 Strouhal number
of the square prism without
control (fill squares) and with
control (fill circles) against
the Reynolds number

correspond to an identical instant inside the period of vortex shedding and differ by
the plate location in respect to the prism edge. In the first mode, when r > ropt , the
streamline get off the plate end meets the prism at the frontal side (Fig. 17.13a). The
small vortex restricted by zero streamline weakens but cannot prevent in full the flow
separation in the prism leading edge. In the second case, no streamline reattachment
to the prism is observed (Fig. 17.13b).Only the last picture derived at r = ropt demon-
strates reattachment of zero streamline close to the prism leading edge (Fig. 17.13c).
The recirculation zone restricted by the streamline is stable enough and able to sup-
press the flow separation at the prism edge. As a result, the recirculation bubble in
the rear of prism is smaller than in previous modes. The conclusions are identical to
those that have been made with applying the standing vortex theory (Fig. 17.4). This
fact stresses an importance of development of simple topological models in order to
forecast optimal properties of the devices used for a flow control.

Figure17.14 shows the modification of the Strouhal number St by the frontal
plates at its optimal configuration (l = 0.2, r = 0.16) for different Reynolds num-
bers. For comparison, values of St in the uncontrolled flow are also represented.
Monitoring the vortex shedding frequency is known to be one way to quantify the
processes occurring in the body wake. So, an increasing of the prism Strouhal num-
ber in the controlled flow indicates the substantial change of the wake pattern as it
has been shown in Fig. 17.10. It follows from Fig. 17.14 the changes are typical for
all Reynolds numbers from the considered range. The plate effect on the shedding
frequency is seen to grow when increasing the Reynolds number.

Figure17.15 depicts the mean drag coefficient CD against the Reynolds number
obtained at the optimal plate control. For the range of Reynolds number considered
in the present study, the coefficient CD is seen to reduce greatly in the controlled
flow. At the same time, its change with the Reynolds number is rather weak. It points
out the fact the relative decrease of the drag force under the control is higher at large
Reynolds numbers.
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Fig. 17.15 Mean drag
coefficient of the square
prism without control and
with control against the
Reynolds number

All the results obtained in the present numerical simulation demonstrate the effec-
tiveness of the frontal plates growswhen increasing the Reynolds number of the flow.
The conclusion lies in the frames of the chosen control strategy which is directed
to creation of a stable recirculation zone, stable vortex, before the body. At small
Reynolds numbers from the considered range, the vortex is less pronounced because
it is suppressed by viscosity. The results point out the need to take into account the
flow topology for the development of successful algorithms of flow control near bluff
bodies.

17.5 Conclusion

In this work, passive control of flow around a square prism applying two attached
frontal plates is analyzed. The developed control strategy is directed to creating the
new flow topology in the region which should include a stable recirculation zone,
standing vortex, before the body.

The topological flow pattern is studied with the help of the reduced model of
a standing vortex, which allows us to derive the optimal ratio of plate length to
its position. In this case, the critical point is a stable focus and it ensures smooth
reattachment of the streamline separating in the plate end to the sharp edge of prism.

To estimate an efficiency of the control scheme, numerical simulation of viscous
flow around the prism with small frontal plates, when l = 0.2, was carried out in the
range of moderate Reynolds numbers. The obtained results revealed a considerable
regularization of the flow pattern in the prism wake under the control, especially at
large Reynolds numbers from the considered range. The positive flow correction in
the near-wake results in a shortening of the recirculation bubble and reduction of
both the strength and size of shedding vortices. The Strouhal number of prism in the
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controlled flow exceeds that in the natural flow and the plate effect on the shedding
frequency becomes more intense when increasing the Reynolds number.

Due to wake regularization, both the mean drag and fluctuating forces decrease
on the prism under the control. At the optimal displacement of the control plate, the
reduction of drag coefficient of the square prism changes from 20% at Re = 100
to 35% at Re = 500. Reduction of the amplitude of lift coefficient is even more
significant. It lies in the diapason 50–70% depending on the Reynolds number.

The results of numerical simulations show that the largest decrease of prism loads
is observed at the optimal ratio of plate length to its position, which has been derived
with the help of the reduced model of a standing vortex. Thus, it is essential to take
the flow topology into account when developing new algorithms for flow control
near bluff bodies.
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Chapter 18
Long-Time Behavior of State Functions
for Badyko Models

Nataliia V. Gorban, Mark O. Gluzman, Pavlo O. Kasyanov
and Alla M. Tkachuk

Abstract In this note we examine the long-time behavior of state functions for a
climate energy balance model (Budyko Model) in the strongest topologies of the
phase and the extended phase spaces. Strongest convergence results for all weak
solutions are obtained. New structure and regularity properties for global and trajec-
tory attractors are justified.

18.1 Introduction and Setting of the Problem

Let (M , g) be aC∞ compact connected oriented two-dimensional Riemannianman-
ifold without boundary (e.g.,M = S2 the unit sphere of R3). Consider the problem:

∂u
∂t − �u + Re(x, u) ∈ QS(x)β(u), (x, t) ∈ R+ × M , (18.1)

where�u = divM (∇Mu);∇M is understood in the sense of the Riemannian metric
g. Note that (18.1) is the so-called climate energy balance model. It was proposed in
Budyko [4] and Sellers [38] and examined also in Díaz et al. [10–13]. The unknown
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u(x, t) represents the average temperature of the Earth’s surface. In Budyko [4] the
energy balance is expressed as

heat variation = Ra − Re + D.

Here Ra = QS(x)β(u). It represents the solar energy absorbed by the Earth, Q > 0
is a solar constant, S(x) is an insolation function (the distribution of solar radiation
falling on upper atmosphere), β represents the ratio between absorbed and incident
solar energy at the point x of the Earth’s surface (so-called the co-albedo function).
The term Re represents the energy emitted by the Earth into space, and as usual, it is
assumed to be an increasing function on u. The term D is the heat diffusion, and we
assume (for simplicity) that it is constant.

As usual, the term Re may be chosen according to the Newton cooling law as
linear function on u, Re = Bu + C (here B and C are some positive constants) [4],
or according to the Stefan–Boltzmann law, Re = σu4 [38]. In this note we consider
Re = Bu as in Budyko [4].

Let S : M → R be a function such that S ∈ L∞(M ), and there exist S0, S1 > 0
such that

0 < S0 ≤ S(x) ≤ S1.

Suppose also that β is a bounded maximal monotone graph of R2; that is, there exist
m, M ∈ R, such that for all s ∈ R and z ∈ β(s)

m ≤ z ≤ M.

Through the note we consider real Hilbert spaces

H := L2(M ), V := {u ∈ L2(M ) : ∇Mu ∈ L2(TM )}

with respective standard norms ‖ · ‖H , ‖ · ‖V , and inner products ( · , · )H , ( · , · )V ,

where TM represents the tangent bundle and the functional spaces L2(M ) and
L2(TM ) are defined in a standard way; see, for example, Aubin [2]. Let V∗ be the
dual space of the function space V . We remark that

V ⊂ H ⊂ V∗,

and all embeddings are compact and dense; see, for example, Aubin [2, p. 55,
Theorem 2.34].

Let−∞ < τ < T < +∞. A function u(·) ∈ L2(τ,T;V) is called aweak solution
of Problem (18.1) on [τ,T ], if there exists a measurable function d : M × (τ,T) →
R such that

d(x, t) ∈ QS(x)β(u(x, t)) for a.e. (x, t) ∈ M × (τ,T), (18.2)
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and

∫ T

τ

[

〈−u,
∂ξ

∂t
〉 − 〈u,�ξ 〉 + 〈Re( · , t, u), ξ 〉 − 〈d, ξ 〉

]

dt = 0, (18.3)

for all ξ ∈ C∞
0 (M × (τ,T)), where 〈·,·〉 denotes the pairing in the space V .

In this manuscript, we examine the long-term dynamics as t → +∞ of all weak
solution for Problem (18.1) in the strongest sense under the assumptions listed above.

We note that the existence of a Lyapunov function for a class of semi-linear
parabolic differential reaction-diffusion equations with discontinuous nonlinearities,
regularity properties for global and trajectory attractors, and its applications were
considered in [16–18]. In [5, 32, 46, 48, 49] authors provided sufficient conditions
for the existence of a Lyapunov function for autonomous evolution inclusions of
hyperbolic type. The theory of the global and trajectory attractors for parabolic
systems in the natural phase and extended phase spaces was considered in [1, 3, 6–9,
14, 19–28, 30, 31, 33, 39–45]. Topological properties of strong and weak solutions
were provided in [15, 34–37]. Strong regularity properties of global and trajectory
attractors were proved in [10, 26–29].

18.2 Auxiliaries

According to [16], for each u0 ∈ H and T > 0, there exists at least one weak
solution of Problem (18.1) on [0,T ]. Moreover, each weak solution u(·) of Prob-
lem (18.1) on [0,T ] is regular, that is, u(·) ∈ C([ε,T ];V) ∩ L2(ε,T;D(A)) and
ut(·) ∈ L2(ε,T;H), for each ε ∈ (0,T); see Gluzman et al. [16, Theorem 14.1],
where D(A) := {u ∈ V : Au ∈ H} and 〈Au, v〉V = (u, v)V for each u, v ∈ V . Fur-
thermore, each weak solution of Problem (18.1) on [0,T ] can be extended to a
global one defined on [0,+∞); see Gluzman et al. [16, p. 235].

Denote byD(u0) the set of all weak solutions of Problem (18.1) globally defined
on [0,+∞) with initial data u(0) = u0, u0 ∈ H. Then, D(u0) ⊂ L2

loc(0,+∞;V) ∩
C([0,+∞),H) for each u0 ∈ H. Moreover, D(u0) ⊂ L∞(0,+∞;H) for each u0 ∈
H.

Consider the family of all weak solutions of Problem (18.1) defined on the semi-
infinite time interval [0,+∞):

K = ∪u0∈HD(u0).

The setK+ is a translation invariant one, that is, u(· + h) ∈ K+ for each u(·) ∈ K+
and h ≥ 0.

Let us consider Problem (18.1) on the entire time axis. A function u ∈ L∞(R;H)

is called a complete trajectory of Problem (18.1), if 	+u(· + h) ∈ K+ for each
h ≥ 0, where 	+ is the restriction operator to the interval [0,+∞). Denote by
K the family of all complete trajectories of Problem (18.1) A complete trajectory
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u(·) ∈ K is stationary if there is z ∈ D(A) such that u(t) = z for all t ∈ R. Such z
is called a rest point. We denote the set of all rest points by Z .

Definition 18.1 The function E : V → R is called a Lyapunov type one for K+, if
the following conditions hold:
(a) E is continuous on V ;
(b) E(u(t)) ≤ E(u(s)) whenever u ∈ K+ and t ≥ s > 0;
(c) If E(u(·)) ≡ const, for some u ∈ K , then u is stationary complete trajectory.

Let ϒ(s) be a real function such that ∂ϒ(s) = β(s) for each s ∈ R and 1 : M →
R, 1 ≡ 1. According to Gluzman et al. [16, Theorem 14.2], the following function

E(u) = 1

2
‖u‖2V + B

2
‖u‖2H − Q〈S( · )ϒ(u), 1〉 u ∈ V , (18.4)

is a Lyapunov-type function forK+. Moreover, the following energy equality holds:

E(u(T)) − E(u(τ )) = −
∫ T

τ

∥
∥
∥
∥
∂u

∂s
( · , s)

∥
∥
∥
∥

2

H

ds, (18.5)

for each u ∈ K+ and 0 < τ < T < ∞. The following lemma provides the main con-
vergence result for all weak solutions of Problem (18.1) in the strongest topologies.

Lemma 18.1 (Gluzman et al. [16, Theorem 14.3]) Let 0 < τ < T, uτ ∈ H, and
{un(·)}n≥1 be a sequence ofweak solutions for Problem (18.1) on [τ,T ]. Furthermore,
let un(τ ) → uτ weakly in H as n → ∞. Then, there exists a weak solution u(·) for
Problem (18.1) on [τ,T ] such that u(τ ) = uτ , and there exists an increasing sequence
of positive integers {nk}k≥1 such that for each ε ∈ (0,T − τ)

sup
t∈[τ+ε,T ]

‖unk (t) − u(t)‖V +
∫ T

τ+ε

∥
∥
∥
∥
∂unk
∂s

( · , s) − ∂u

∂s
( · , s)

∥
∥
∥
∥

2

H

ds → 0, (18.6)

as k → +∞.

Definition 18.2 The multivalued map G : R+ × H → 2H \ ∅ is called a strict mul-
tivalued semiflow if:
(a) G(0, ·) = Id (the identity map);
(b) G(t + s, x) = G(t,G(s, x)) ∀x ∈ H, t, s ∈ R+.

Let us define the multivalued map G : R+ × H → 2H\{∅} as follows:

G(t, u0) = {u(t) | u(·) ∈ K+, u(0) = u0}. (18.7)

Lemma 18.2 (Zgurovsky et al. [47, Chap. 2]) ThemultivaluedmapG : R+ × H →
2H \ {∅}, defined in (18.7), is a strict multivalued semiflow.
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18.3 Main Results

In this section we state that there exist trajectory and global attractors for all weak
solutions of Problem (18.1) and provide their structure and regularity properties.

Definition 18.3 A set A ⊆ H is called an invariant global attractor for multi-
valued semiflow G if the following conditions hold:
(1) A is an invariant set, that is A = G(t,A ) for each t ≥ 0;
(2) A is an attracting set, that is, for each nonempty bounded subset B ⊂ H,

distH(G(t,B),A ) → 0, t → +∞,

where distH(C,D) = sup
c∈C

inf
d∈D

‖c − d‖H denote the Hausdorff semidistance between

nonempty subsets C and D of space H.
(3) For any closed attracting set Y ⊆ H, we have A ⊆ Y .

Theorem 18.1 The strict multivalued semiflow G : R+ × H → 2H \ ∅, defined in
(18.7), has a compact invariant global attractor A in the phase space H.

Let {T(h)}h≥0 be the translation semigroup acting on K+, that is, T(h)u(·) =
u(· + h), h ≥ 0, u(·) ∈ K+. On K+, we consider the topology induced from the
Fréchet space Cloc(R+;H). Note that fn(·) → f (·) in Cloc(R+;H) as n → ∞ if and
only if ∀M > 0 	0,Mfn(·) → 	0,Mf (·) in C([0,M];H) as n → ∞.

Definition 18.4 A setU ⊂ K+ is called a trajectory attractor for translation semi-
group {T(h)}h≥0 on K+ in the induced topology of Cloc(R+;H), if U ⊂ K+ is a
global attractor for the translation semigroup {T(h)}h≥0 acting onK+; see Kasyanov
et al. [29, Sect. 3].

Theorem 18.2 There exists a trajectory attractor U for {T(h)}h≥0 on K+ in the
induced topology of Cloc(R+;H). Moreover, the following equalities hold:

U = 	+K = {u(·) ∈ K+ | u(t) ∈ A ∀t ∈ R+} = {u(·) ∈ K+ | u(0) ∈ A };
(18.8)

The following theorem provides structure and regularity properties for global and
trajectory attractors for all weak solutions of Problem (18.1).

Theorem 18.3 The following statements hold:

(i) A is a compact subset of V;
(ii) U is a bounded subset of L∞(R+;V) and 	0,MU is a compact subset of

W(0,M) for each M > 0, where W(0,M) = {u(·) ∈ C([0,M];V) : ut(·) ∈
L2(0,M;H)} is a real Banach space;

(iii) K is a bounded subset of L∞(R;V) and	0,MU a compact subset of W(0,M)

for each M > 0;
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(iv) For each nonempty bounded set B ⊂ H distV (G(t,B),A ) → 0, t → ∞;
(v) For any bounded in L∞(R+;H) set B ⊂ K+ and any M ≥ 0 the following

relation holds: distW(0,M)(	0,MT(t)B,	0,MU ) → 0, t → +∞;
(vi) For each u ∈ K the limit sets

α(u) = {z ∈ V | u(tj) → z in V for some sequence tj → −∞},

ω(u) = {z ∈ V | u(tj) → z in V for some sequence tj → +∞}

are connected subsets of Z on which E is constant. If Z is totally disconnected
(in particular, if Z is countable) the limits in V

z− = lim
t→−∞ u(t), z+ = lim

t→+∞ u(t) (18.9)

exist and z−, z+ are rest points; furthermore, u(t) tends in V to a rest point as
t → +∞ for every u ∈ K+.

18.4 Proof of Theorems18.1, 18.2 and 18.3

Gluzman et al. [16, Theorem 14.4] yield all the statements of Theorems18.1, 18.2,
and 18.3, because the spaces V ,H and operators A, J1( · ) := B

2 ‖ · ‖2H , J2( · ) :=
E( · ) − B

2 ‖ · ‖2H − 1
2‖ · ‖2V satisfy the assumptions of [16, Theorem 14.4], that is,

(a) (V;H;V∗) is an evolution triple,whereV is a realHilbert space, such thatV ⊂ H
with compact imbedding;

(b) A : V → V∗ is a linear symmetric operator such that there exists c > 0 such that
〈Av, v〉 ≥ c‖v‖2V , for each v ∈ V;

(c) Ji : H → R is a convex, lower semicontinuous function such that the following
assumptions hold: (i) (growth condition) There exists c1 > 0 such that ‖y‖H ≤
c1(1 + ‖u‖H), for each u ∈ H and y ∈ ∂Ji(u) and i = 1, 2; (ii) (sign condition)
there exist c2 > 0, λ ∈ (0, c) such that (y1 − y2, u)H ≥ −λ‖u‖2H − c2, for each
yi ∈ ∂Ji(u), u ∈ H, where ∂Ji(u) the subdifferential of Ji(·) at a point u; i = 1, 2,
0 < λ < λ1, λ1 is a first eigenvalue of A. Note that u∗ ∈ ∂Ji(u) if and only if
u∗(v − u) ≤ Ji(v) − Ji(u) ∀v ∈ H; i = 1, 2.
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35. Migórski, S., Ochal, A.: Optimal control of parabolic hemivariational inequalities. J. Glob.
Optim. 17, 285–300 (2000)

36. Otani, M., Fujita, H.: On existence of strong solutions for du
dt (t) + ∂ϕ1(u(t)) − ∂ϕ2(u(t)) �

f (t). J. Fac. Sci. The University of Tokyo. Sect. 1 A, Mathematics. 24(3), 575–605 (1977)
37. Panagiotopoulos, P.D.: Inequality Problems in Mechanics and Applications. Convex and Non-

convex Energy Functions. Birkhauser, Basel (1985)
38. Sellers, W.D.: A global climatic model based on the energy balance of the Earth-atmosphere

system. J. Appl. Meteorol. 8, 392–400 (1969)
39. Sell, G.R., You, Y.: Dynamics of Evolutionary Equations. Springer, New York (2002)
40. Temam, R.: Infinite-Dimensional Dynamical Systems in Mechanics and Physics. Springer,

New York (1988)
41. Terman, D.: A free boundary problem arising from a bistable reaction diffusion equation. SIAM

J. Math. Anal. 14, 1107–1129 (1983)
42. Terman, D.: A free boundary arising from a model for nerve conduction. J. Differ. Equ. 58(3),

345–363 (1985)
43. Valero, J.: Attractors of parabolic equations without uniqueness. J. Dyn. Differ. Equ. 13, 711–

744 (2001). doi:10.1023/A:1016642525800
44. Valero, J., Kapustyan, A.V.: On the connectedness and asymptotic behaviour of solutions of

reaction-diffusion systems. J. Math. Anal. Appl. (2006). doi:10.1016/j.jmaa.2005.10.042
45. Vishik, M.I., Zelik, S.V., Chepyzhov, V.V.: Strong trajectory attractor for dissipative reaction-

diffusion system. Doclady Math. (2010). doi:10.1134/S1064562410060086
46. Zadoianchuk, N.V., Kasyanov, P.O.: Dynamics of solutions of a class of second-order

autonomous evolution inclusions. Cybern. Syst. Anal. 48, 414–428 (2012)

http://dx.doi.org/10.3934/cpaa.2014.13.1891
http://dx.doi.org/10.3934/dcds.2014.34.4155
http://dx.doi.org/10.1007/s11228-013-0233-8
http://dx.doi.org/10.1155/2012/450984
http://dx.doi.org/10.1023/A:1008608431399
http://dx.doi.org/10.1023/A:1016642525800
http://dx.doi.org/10.1016/j.jmaa.2005.10.042
http://dx.doi.org/10.1134/S1064562410060086


18 Long-Time Behavior of State Functions for Badyko Models 359

47. Zgurovsky, M.Z., Kasyanov, P.O., Kapustyan, O.V., Valero, J., Zadoianchuk, N.V.: Evolution
Inclusions and Variation Inequalities for Earth Data Processing III. Springer, Berlin (2012).
doi:10.1007/978-3-642-28512-7

48. Zgurovsky, M.Z., Kasyanov, P.O.: Multivalued dynamics of solutions for autonomous operator
differential equations in strongest topologies. Solid Mech. Appl. 211, 149–162 (2014)

49. Zgurovsky,M.Z., Kasyanov, P.O., Zadoianchuk, N.V.: Long-time behavior of solutions for qua-
silinear hyperbolic hemivariational inequalities with application to piezoelectricity problem.
Appl. Math. Lett. 25, 1569–1574 (2012). doi:10.1016/j.aml.2012.01.016

http://dx.doi.org/10.1007/978-3-642-28512-7
http://dx.doi.org/10.1016/j.aml.2012.01.016


Part IV
Optimization, Control and Decision

Making



Chapter 19
Adaptive Control of Impulse Processes
in Complex Systems Cognitive Maps
with Multirate Coordinates Sampling

Mikhail Z. Zgurovsky, Victor D. Romanenko and Yuriy L. Milyavsky

Abstract Cognitive map (CM) is a popular method of complex systems description.
The system of first-order difference equations in variables increment, based on
weighting coefficients of CM, is used to describe impulse process of the system.
If different vertices coordinates of CM are measured with different frequencies mul-
tirate sampling impulse process model should be developed. The current paper pro-
poses such amodel and adds external control vectorswithmultirate sampling to allow
to affect impulse process dynamics. To stabilize this multirate system’s coordinates
at predefined levels two optimality criteria are proposed and correspondent control
laws are derived. Controls are alsomultirate, i.e. frequentlymeasured coordinates are
affected by controls frequently and infrequent coordinates are affected with longer
sampling period. For the case when weighting coefficients of CM are unknown or
varying special algorithm of their estimation is developed. The results are verified
by simulation performed for CM of a bank.

19.1 Introduction

Cognitive modelling is used when the object of study is high-dimensional complex
system with lots of cross couples. Most real-life social, economic, financial, ecolog-
ical, political systems are among them. The concept of cognitive map (CM) is the
basis of cognitive modelling. According to [1, 2], CM is a weighted oriented graph
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with vertices (nodes) representing components of complex systems (coordinates,
concepts) and edges representing relations between these concepts. CM is built by
experts. It allows to describe qualitatively and quantitatively cause-effect interrela-
tions between complex systems components by means of weighted graph. Under
impulse disturbance of one or several vertices CM switches to dynamic transient
process which is called impulse process [1, 2].

Rule of varying CM vertices coordinates under impulse process in free motion is
formulated as difference equation in increments [2]:

ΔYi (k + 1) =
n∑

j=1

ai jΔY j (k), (19.1)

where ΔYi (k) = Yi (k) − Yi (k − 1), i = 1, 2, ..., n; ai j—weight of orgraph edge
connecting j th vertice with i th one; n—number of CM vertices.

In vector form the expression (19.1) is written as

ΔY (k + 1) = AΔY (k), (19.2)

where A—weighted adjacency matrix, ΔY—vector of CM vertices coordinates Yi
increments.

In [3–5] control automation of CM impulse processes by means of closed-loop
system implementation is done. Based on automatic control theory methods MIMO
discrete controller is designed. It generates control vector directly affecting CM
vertices as controlled outputs of complex system. For this purpose forced motion
equation under CM impulse process is formulated:

ΔYi (k + 1) =
n∑

j=1

ai jΔY j (k) + biΔui (k), (19.3)

where Δui (k) = ui (k) − ui (k − 1)—controls increments.
In vector form Eq. (19.3) may be written as

ΔY (k + 1) = AΔY (k) + BΔu(k), (19.4)

where control matrix B usually has diagonal elements equal to ones.
Thus, while forming vectorΔu(k) it is necessary to select CM vertices which can

be affected by decision maker by varying available resources.

19.2 Problem Definition

To solve the problem of CM impulse process automated control it is necessary to
measure all vertices coordinates in discrete timemomentswith some samplingperiod.
But complex system coordinates have different response rates. SomeCMcoordinates
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are also difficult to measure and it is impossible to detect them with small sampling
period T0 appropriate for other coordinates.

Current paper considers complex systemswith some coordinatesmeasured (fixed)
with small sampling period T0 and others measured with h = mT0, where m > 1 is
integer. To implement automated control of this class of complex systems in dynamic
mode it is necessary:

• to develop CM impulse process model of complex system with multirate coordi-
nates sampling;

• based on the developed model to design slow and fast multivariate controllers to
stabilise CM coordinates at predefined levels during impulse process.

19.3 Development of Controlled CM Impulse Process
Model with Multirate Sampling

Controlled model (19.3) of impulse process with unirate sampling (with sampling
period T0) may be represented as follows:

ΔYi

[[
k

m

]

h + (l + 1)T0

]

=
n∑

j=1

ai jΔY j

[[
k

m

]

h + lT0

]

+ biΔui

[[
k

m

]

h + lT0

]

,

(19.5)
where h = mT0, l = 0, 1, ...,m − 1; i = 1, ..., n; [

k
m

]
—integer part of k

m .
Suppose that in the CM of n-dimensional complex system there exist p vertices

coordinates Yi that are measured with sampling period T0 and n − p coordinates that
are measured with longer period h = mT0. Then impulse process model (19.5) can
be described with multirate coordinates sampling as the following:

ΔYi

[[
k

m

]

h + (l + 1)T0

]

=
p∑

j=1

ai jΔY j

[[
k

m

]

h + lT0

]

+
n∑

j=p+1

ai jΔỸ j

[[
k

m

]

h

]

+ biΔui

[[
k

m

]

h + lT0

]

, (19.6)

ΔYs

[([
k

m

]

+ 1

)

h

]

=
p∑

j=1

asjΔỸ j

[[
k

m

]

h + lT0

]

+
n∑

j=p+1

asjΔY j

[[
k

m

]

h

]

+ bsΔus

[[
k

m

]

h

]

, (19.7)
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where i = 1, 2, ..., p; s = p + 1, ..., n; l = 0, 1, ...,m − 1;

ΔỸ j

[[
k

m

]

h

]

=
{
Y j

[[
k
m

]
h
] − Y j

[([
k
m

] − 1
)
h
]
, l = 0,

0, l �= 0

for j = p+ 1, ..., n. CoordinatesΔỸ j
[[

k
m

]
h + lT0

]
for j = 1, ..., pwill be explained

below.
Expressions (19.6), (19.7) may be written in the generalised vector-matrix form:

ΔY 1

[[
k

m

]

h + (l + 1)T0

]

= A11ΔY 1

[[
k

m

]

h + lT0

]

+A12ΔỸ 2

[[
k

m

]

h

]

+ B11Δu1

[[
k

m

]

h + lT0

]

, (19.8)

ΔY 2

[([
k

m

]

+ 1

)

h

]

= A21ΔỸ 1

[[
k

m

]

h + lT0

]

+A22ΔY 2

[[
k

m

]

h

]

+ B22Δu2

[[
k

m

]

h

]

, (19.9)

where matrices have dimensions A11(p × p), A12(p × (n − p)), A21((n − p) ×
p), A22((n − p) × (n − p)), B11, B22—diagonal matrices selected by control sys-
tem designer.

To transform ΔYi
[[

k
m

]
h + (l + 1)T0

]
in (19.5) with sampling period T0 into

ΔYs
[[

k
m

]
h + (l + 1)T0

]
in (19.7) with period h = mT0 the following Proposition

is used.

Proposition 19.1 If the first differences in (19.5) are equal to

ΔYi

[[
k

m

]

h + (l + 1)T0

]

= Yi

[[
k

m

]

h + (l + 1)T0

]

− Yi

[[
k

m

]

h + lT0

]

,

l = 0, 1, 2, ...,m − 1, then it is possible to get these differences with big sampling
period h = mT0 based on

ΔYi

[([
k

m

]

+ 1

)

h

]

=
m∑

l=1

ΔYi

[[
k

m

]

h + lT0

]

. (19.10)

Proof Consider a sequence of the first differences ΔYi
[[

k
m

]
h + (l + 1)T0

]
for l =

0, 1, ...,m − 1:
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ΔYi

[[
k

m

]

h + T0

]

= Yi

[[
k

m

]

h + T0

]

− Yi

[[
k

m

]

h

]

;

ΔYi

[[
k

m

]

h + 2T0

]

= Yi

[[
k

m

]

h + 2T0

]

− Yi

[[
k

m

]

h + T0

]

;
.....................................................................

ΔYi

[[
k

m

]

h + (m − 1)T0

]

= Yi

[[
k

m

]

h + (m − 1)T0

]

− Yi

[[
k

m

]

h + (m − 2)T0

]

;

ΔYi

[[
k

m

]

h + mT0

]

= Yi

[[
k

m

]

h + mT0

]

− Yi

[[
k

m

]

h + (m − 1)T0

]

.

After adding left and right hand sides of these equalities and combining similar terms
we obtain

m∑

l=1

ΔYi

[[
k

m

]

h + lT0

]

= Yi

[[
k

m

]

h + mT0

]

− Yi

[[
k

m

]

h

]

= ΔYi

[([
k

m

]

+ 1

)

h

]

,

which proves (19.10). �

In the impulse process model (19.9) vector Y 2 is measured in discrete moments
with sampling period h = mT0 and coordinates ΔY 1

[[
k
m

]
h + lT0

]
influence the

system with small period T0. To account for this we formulated the following Propo-
sition.

Proposition 19.2 For calculating vector ΔY 2
[([

k
m

] + 1
)
h
]
in the model (19.9)

discrete coordinates ΔỸ 1
[[

k
m

]
h + lT0

]
are accounted for with use of the formula:

ΔỸ 1

[[
k

m

]

h + lT0

]

= Y 1

[[
k

m

]

h + (m − 1)T0

]

− Y 1

[[
k

m

]

h − T0

]

.

(19.11)

Proof Impact of fast components ΔY 1
[[

k
m

]
h + lT0

]
for l = 0, 1, ...,m − 1 on

ΔY 2
[([

k
m

] + 1
)
h
]
may be represented as the following sum of increments with

sampling period T0:

ΔỸ 1

[[
k

m

]

h + lT0

]

= ΔY 1

[[
k

m

]

h

]

+ ΔY 1

[[
k

m

]

h + T0

]

+ ...

+ΔY 1

[[
k

m

]

h + (m − 2)T0

]

+ ΔY 1

[[
k

m

]

h + (m − 1)T0

]

.
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After expansion of the differences the sum above takes the form:

ΔỸ 1

[[
k

m

]

h + lT0

]

= Y 1

[[
k

m

]

h

]

− Y 1

[[
k

m

]

h − T0

]

+Y 1

[[
k

m

]

h + T0

]

− Y 1

[[
k

m

]

h

]

+ ... + Y 1

[[
k

m

]

h + (m − 2)T0

]

−Y 1

[[
k

m

]

h + (m − 3)T0

]

+ Y 1

[[
k

m

]

h + (m − 1)T0

]

− Y 1

[[
k

m

]

h + (m − 2)T0

]

= Y 1

[[
k

m

]

h + (m − 1)T0

]

− Y 1

[[
k

m

]

h − T0

]

,

that proves Proposition (19.2). �

19.4 Impulse Processes Adaptive Automated Control
in CM with Multirate Sampling

To develop an automated control algorithm for CM impulse processes, vectors
Y 1(k), Y 2(k) dynamics are presented in full variables values according to mod-
els (19.8), (19.9):

Y 1

[[
k

m

]

h + (l + 1)T0

]

= (I + A11 − A11q
−1
1 )Y 1

[[
k

m

]

h + lT0

]

+B11Δu1

[[
k

m

]

h + lT0

]

+ A12ΔỸ 2

[[
k

m

]

h

]

; (19.12)

Y 2

[([
k

m

]

+ 1

)

h

]

= (I + A22 − A22q
−1
2 )Y 2

[[
k

m

]

h

]

+B22Δu2

[[
k

m

]

h

]

+ A21ΔỸ 1

[[
k

m

]

h + lT0

]

, (19.13)

where q−1
1 , q−1

2 —inverse shift operators with sampling periods T0 and h = mT0

respectively. Terms A12ΔỸ 2
[[

k
m

]
h
]
and A21ΔỸ 1

[[
k
m

]
h + lT0

]
in Eqs. (19.12),

(19.13) respectively are disturbances.
Suppose that the system is stable. To synthesize the first control vectorΔu1

[[
k
m

]
h

+lT0
]
an optimality criterion is formulated:

J1

[[
k

m

]

h + (l + 1)T0

]

= E

{[

Y 1

[[
k

m

]

h + (l + 1)T0

]

− G1

]T

×
[

Y 1

[[
k

m

]

h + (l + 1)T0

]

− G1

]

+ΔuT1

[[
k

m

]

h + lT0

]

R1Δu1

[[
k

m

]

h + lT0

]}

, (19.14)
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where G1—reference-input signal for stabilisation of CM vertices coordinates Y 1,
E—conditional expectation operator, R1—weighting matrix selected by controller’s
designer. Based on minimization of given criterion with respect to control vector
Δu1 having considered model (19.12) we obtain the first controller’s equation

∂ J1
[[

k
m

]
h + (l + 1)T0

]

∂Δu1
[[

k
m

]
h + lT0

] = 2BT
11{(I + A11 − A11q

−1
1 )

×Y 1

[[
k

m

]

h + lT0

]

+ B11Δu1

[[
k

m

]

h + lT0

]

+A12ΔỸ 2

[[
k

m

]

h

]

− G1

}

+ 2R1Δu1

[[
k

m

]

h + lT0

]

= 0,

that results in the first controller’s law:

u1

[[
k

m

]

h + lT0

]

= u1

[[
k

m

]

h + (l − 1)T0

]

−(BT
11B11 + R1)

−1B11{(I + A11 − A11q
−1
1 )

×Y 1

[[
k

m

]

h + lT0

]

+ A12ΔỸ 2

[[
k

m

]

h

]

− G1

}

. (19.15)

To synthesize the second control vector Δu2
[[

k
m

]
h
]
the second optimality crite-

rion is proposed:

J2

[([
k

m

]

+ 1

)

h

]

= E

{[

Y 2

[([
k

m

]

+ 1

)

h

]

− G2

]T

×

×
[

Y 2

[([
k

m

]

+ 1

)

h

]

− G2

]

+ ΔuT
2

[[
k

m

]

h

]

R2Δu2

[[
k

m

]

h

]}

, (19.16)

where G2—reference-input signal for stabilization of CM vertices coordinates Y 2,
R2—weighting matrix selected by controller’s designer. After minimization of crite-
rion (19.16) with respect to vector Δu2, taking into consideration (19.15), we obtain
the second controller’s equation

∂ J2
[([

k
m

] + 1
)
h
]

∂Δu2
[[

k
m

]
h
] = 2BT

22{(I + A22 − A22q
−1
2 )

×Y 2

[[
k

m

]

h

]

+ B22Δu2

[[
k

m

]

h

]

+A21ΔỸ 1

[[
k

m

]

h + lT0

]

− G2

}

+ 2R2Δu2

[[
k

m

]

h

]

= 0,
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that results in the second controller’s law:

u2

[[
k

m

]

h

]

= u2

[([
k

m

]

− 1

)

h

]

−(BT
22B22 + R2)

−1B22{(I + A22 − A22q
−1
2 )

×Y 2

[[
k

m

]

h

]

+ A21ΔỸ 1

[[
k

m

]

h + lT0

]

− G2

}

. (19.17)

Coefficients of adjacency matrices A11, A12, A21, A22 of controlled CM impulse
process model (19.8), (19.9) with multirate sampling vary with time during complex
system functioning. They have to be estimated in real-time. For this purpose we
write model (19.6), (19.7) for each CM coordinateΔYi (i = 1, 2, ..., p) andΔYs(s =
p + 1, p + 2, ..., n) backward one period T0 and h respectively:

ΔYi

[[
k

m

]

h + lT0

]

=
p∑

j=1

ai jΔY j

[[
k

m

]

h + (l − 1)T0

]

+
n∑

j=p+1

ai jΔỸ j

[[
k

m

]

h

]

+biΔui

[[
k

m

]

h + (l − 1)T0

]

+ ξi

[[
k

m

]

h + lT0

]

, (19.18)

ΔYs

[[
k

m

]

h

]

=
p∑

j=1

asjΔỸ j

[([
k

m

]

− 1

)

h + lT0

]

+
n∑

j=p+1

asjΔY j

[([
k

m

]

− 1

)

h

]

+bsΔus

[([
k

m

]

− 1

)

h

]

+ ξs

[[
k

m

]

h

]

, (19.19)

where ξi
[[

k
m

]
h + lT0

]
, ξs

[[
k
m

]
h
]
—disturbances which represent uncontrolled

dynamic changes in CM impulse processes during control algorithm functioning.
Estimation of coefficients of the models (19.18), (19.19), which are adjacency

matrices A11, A12, A21, A22 components, is performed based on recursive least
squares (RLS) method with multirate sampling of coordinates. To accomplish this
model (19.18) with frequently measured coordinates Yi , ui , i = 1, ..., p should be
written as

ΔYi

[[
k

m

]

h + lT0

]

− biΔui

[[
k

m

]

h + (l − 1)T0

]

= X
T
1

[[
k

m

]

h + lT0

]

Θ1i + ξi

[[
k

m

]

h + lT0

]

, (19.20)
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where

X
T
1

[[
k

m

]

h + lT0

]

=
(

ΔY1

[[
k

m

]

h + (l − 1)T0

]

, ...,

ΔYp

[[
k

m

]

h + (l − 1)T0

]

,ΔỸp+1

[[
k

m

]

h

]

, ..., ΔỸn

[[
k

m

]

h

])

; (19.21)

Θ1i = (ai1, ..., aip, ai(p+1), ..., ain)
T . (19.22)

Based on Proposition 19.2 model (19.19) with infrequently changing coordinates
Ys, us, s = p + 1, ..., n may be written as

ΔYs

[[
k

m

]

h

]

− bsΔus

[([
k

m

]

− 1

)

h

]

= X
T
2

[[
k

m

]

h

]

Θ2s + ξs

[[
k

m

]

h

]

,

(19.23)

where

X
T
2

[[
k

m

]

h

]

=
(

Y1

[[
k

m

]

h + (m − 1)T0

]

− Y1

[[
k

m

]

h − T0

]

, ...,

Yp

[[
k

m

]

h + (m − 1)T0

]

− Yp

[[
k

m

]

h − T0

]

,

ΔYp+1

[([
k

m

]

− 1

)

h

]

, ..., ΔYn

[([
k

m

]

− 1

)

h

])

; (19.24)

Θ2s = (as1, ..., asp, as(p+1), ..., asn)
T . (19.25)

RLS algorithm for estimating vector (19.22) Θ̂1i
[[

k
m

]
h + lT0

]
is performed

according to [6] each sampling period T0 for the model (19.20) for each i = 1, ..., p
with common vector of measured coordinates (19.21) X1

[[
k
m

]
h + lT0

]
. RLS for

estimating vector (19.25) Θ̂2s
[[

k
m

]
h
]
is performed each sampling period h for the

model (19.23) for each s = p + 1, ..., n with common vector (19.24) X2
[[

k
m

]
h
]
.

19.5 Practical Example

Consider CM which represents stable operating of a bank [5] (Fig. 19.1). This CM
has vertices with the following meaning:

1 Regional network.
2 Capital.
3 Loans.
4 Deposits.
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Fig. 19.1 Cognitive map of a bank

5 Liquid assets.
6 Stability risk measure.
7 Liquidity risk measure.

Control inputs Δui in (19.3) are formed from outside by changing resources of CM
vertices. Vertices 1, 2, 3, 4 and 5 are measured daily with sample period T0 = 1 and
vertices 6, 7 (stability and liquidity risk measures) are measured monthly with period
h = 4T0.

Adjacency matrices in models (19.8), (19.9) composed of CM’s weighting coef-
ficients are equal to:

A11 =

⎛

⎜
⎜
⎜
⎜
⎝

0 0.15 0 0 0.1
−0.2 0 0.13 −0.2 0.03
2 0 0.75 0 0
1 0 0 0.8 0
0 0.85 −0.95 0.9 0

⎞

⎟
⎟
⎟
⎟
⎠

, A12 =

⎛

⎜
⎜
⎜
⎜
⎝

0 0
0 0
0 0

−0.5 0
0 −0.7

⎞

⎟
⎟
⎟
⎟
⎠

,

A21 =
(
0 −0.5 0.3 0 0
0 0 0.1 −0.2 0.8

)

, A22 =
(
0.7 0
0 0.6

)

.

The problem is to move all CM vertices coordinates of the bank to other reference
levels in the impulse process mode with multirate coordinates sampling (19.12),
(19.13) based on control inputs u1

[[
k
m

]
h + lT0

]
and u2

[[
k
m

]
h
]
synthesis accord-

ing to the proposed algorithms (19.15), (19.17). Let initial values of the vertices
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Fig. 19.2 Simulation results

coordinates be equal to
(
100 500 1500 1000 200 150 250

)
and new desired values

be
(
120 500 1700 1200 300 180 280

)
. Digital simulation results are presented in

Fig. 19.2.

19.6 Summary

The paper presents the adaptive control method for complex system described by
the model of impulse processes in CM [2]. CM vertices coordinates are measured
in discrete time with multirate sampling (with periods T0 and h = mT0,m > 1).
External controls vectors which affect CM vertices directly in closed-loop system
are synthesized with multirate sampling. Control inputs are implemented by means
of varying available resources in CM vertices. Propositions about transformation
of coordinates differences for controlled impulse processes models with multirate
sampling are formulated and proven in the paper.
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Estimation algorithm for weighting coefficients of CM impulse processes models
with multirate sampling, based on recursive least squares, is considered. Simulation
of the method developed for impulse process control was carried out on the example
of the CM of a bank to stabilize CM coordinates vertices with multirate sampling at
predefined levels.
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Chapter 20
Estimation of Consistency of Fuzzy Pairwise
Comparison Matrices using a Defuzzification
Method

Nataliya D. Pankratova and Nadezhda I. Nedashkovskaya

Abstract Adefinitionof consistencyof a fuzzypairwise comparisonmatrix (FPCM)
is developed in the paper. It is supposed that FPCM elements are fuzzy sets with
membership functions of any shape. Such FPCMs may be a result of evaluation
of decision alternatives by a group of experts when aggregating individual expert
judgments made in traditional crisp scales. A comparative analysis of suggested def-
inition with other known definitions of consistent FPCM is done. Usage of suggested
definition makes it possible to evaluate the admissibility of inconsistency of expert
judgmentswhen calculatingweights of decision alternatives and to reveal intransitive
expert judgments.

20.1 Introduction

The method of qualitative pairwise comparisons is a powerful instrument to evaluate
coefficients of relative importance (weights, priorities) of a set X = {x1, x2, ..., xn} of
decision-making elements, such as decision criteria and alternatives. Pairwise com-
parisons may be modeled using preference relation D : (xi, xj) ∈ X × X defined on
X, where dij = D(xi, xj) ∈ R is a quantitative representation of an intensity of pref-
erence of element xi over element xj given by an expert. The relationD is formalized
as a pairwise comparison matrix (PCM) if cardinality of the set X is small. Many
methods are known for calculation weights on basis of a PCM [1–7].

The notion of consistency [1] is used to evaluate quality of pairwise expert judg-
ments. Coefficients of consistency CR, GCI , HCR, CItr and ky and several consis-
tency criteria are known for evaluation of admissibility of inconsistency of crisp
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PCMs when making a decision (analysis and comparative study of these coefficients
and criteria are made, for example, in [8, 9]).

Fuzzy PCMs [10–13] and interval PCMs [14–18] are used in some decision-
making problems. Elements of the fuzzy PCMs are fuzzy sets mainly with triangle
or trapezoid membership functions. When calculating weights of decision alterna-
tives on basis of an interval PCM (IPCM) I = {([lij, uij])|0 < lij ≤ uij, i, j = 1, ..., n}
the LUAM method [14], the TLGP method [15], two-stage methods [3] and other
are known. The Chang’s method [19] is widely used to derive weights on basis of
a fuzzy PCM with triangle fuzzy elements Trmf = {((lij,mij, uij))|0 < lij ≤ mij ≤
uij, i, j = 1, ..., n}. However, not enough attention is given to problems of evaluation
of consistency of fuzzy and interval PCMs. Thus, the Chang’s method [19] does not
contain any stage for consistency evaluation. The two-stage model [3] on basis of
an IPCM has first stage devoted to consistency evaluation. But this model as well
as other known methods and models [14–18] on basis of an IPCM do not evaluate
admissibility of inconsistency of an IPCM in a process of decision making. Also not
enough attention is given to problems of consistency increasing of interval and fuzzy
PCMs and cycles (intransitive elements) elimination in these matrices.

Purpose of the paper is an analysis of different approaches for definition of a fuzzy
PCM consistency, and also an investigation of their usage to evaluate an admissible
inconsistency of a fuzzy PCM and consistency increasing of a fuzzy PCM while
providing a decision making process.

20.2 A Problem Statement

Definition: A fuzzy pairwise comparison matrix (FPCM) of n decision alternatives
(DAs) is a matrix

D̃ =

⎛

⎜
⎜
⎜
⎝

1 d̃12 . . . d̃1n
d̃21 1 . . . d̃2n
...

...
...

...

d̃n1 d̃n2 . . . 1

⎞

⎟
⎟
⎟
⎠

, (20.1)

where fuzzy set d̃ij = (x, μij(x)) represents intensity of preference of DA ai over
DA aj, x ∈ R,R—a set of real numbers, μij(x)—value of membership function for
a fuzzy preference relation of DA ai over DA aj and d̃ii = 1.

Let us suppose that an expert, performing pairwise comparisons of n DAs, gives
fuzzy estimate for preference degree of one DA over some other DA. For exam-
ple, such estimates as “preference degree is between weak and very weak inten-
sity” or “preference degree is near strong intensity” are specified using membership
functions.

Also a fuzzy PCM may be a logical result of evaluation of DAs by a group
of experts. Suppose m experts use the traditional Saaty scale [1] when providing
pairwise comparisons of DAs. Let us denote D(k) = {(dij(k))} a PCM, given by a
kth expert. Then a fuzzy PCM D̃ = {(d̃ij)} may be a result of an aggregation of these
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PCMs, where d̃ij is a discrete fuzzy set that represents distribution among elements
dij(k) of PCMs D(k), k = 1, ...,m.

It should be noted that in the known problem statements [7, 10–19], that deals
with FPCMs, it is supposed that an expert provides pairwise comparisons in the
Saaty fundamental scale [1], as in the traditional Analytic Hierarchy Process [1],
and after that his/her estimates are formalized using fuzzy fundamental scales with
elements in a form of symmetrical triangle or trapezoidal normalized convex fuzzy
sets. As a rule, heights of these fuzzy sets correspond to expert judgments in the
Saaty fundamental scale and the fuzzy sets may have different width. In the given
paper, as opposed to the mentioned problem statement, elements of a FPCM (20.1)
have an arbitrary form, and also may be discrete, built on basis of statistical results
of group assessment.

Let D̃ = {(d̃ij)} be a FPCM (20.1) of n DAs. The problem is to evaluate a FPCM
D̃ consistency; to improve (increase) D̃ consistency up to admissible level that is
acceptable for a calculation of coefficients of relative importance (weights, priorities)
of DAs.

20.3 Definitions of Consistency of a FPCM

In the paper we propose intuitive definitions of strong and weak consistency of a
FPCM (20.1) that use notion of consistency of some crisp PCM, built on basis of the
FPCM. Then to evaluate and increase a FPCM consistency an extensive knowledge
[1, 8, 9, 20] about evaluation and increasing of a traditional (crisp) PCM consistency
may be used. Similar approaches are used in [10, 21, 22].

Let us consider a PCMDwhich elements are positive real numbers and are results
of defuzzification of fuzzy sets d̃ij—elements of a FPCM (20.1):

D = {(dij)} ∈ R+
n×n (20.2)

(1) dij = Deffuz(d̃ij) if d̃ij ≥ 1,
(2) dij = 1/dji otherwise.
It should be noted that the second condition ensures a necessary property of inverse

symmetry of a PCM D.

Definition 20.1 A FPCM D̃ (20.1) is consistent, if corresponding defuzzified PCM
D = {(dij)} (20.2) is consistent, namely dij = dikdkj for ∀i, j, k = 1, ..., n.

Definition 20.2 A FPCM D̃ (20.1) is admissibly inconsistent, if corresponding
defuzzified PCM D = {(dij)} (20.2) is admissibly inconsistent, namely CR(D) ≤
CR∗ or GCI(D) ≤ GCI∗, or HCR(D) ≤ HCR∗, or CItr(D) ≤ CItr∗ (depending on
coefficient of consistencywhich is used), whereCR,GCI,HCR,CItr are consistency
ratio, geometric consistency index, harmonic consistency ratio and consistency index
of transitivities, and CR∗,GCI∗,HCR∗,CItr∗ are threshold values of corresponding
coefficients.
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Definition 20.3 A FPCM D̃ (20.1) is weak consistent, if corresponding defuzzified
PCM D = {(dij)} (20.2) is weak consistent, namely the following ordinal transitivi-
ties are hold: (dij > 1) ∧ (djk > 1) ⇒ (dik > 1), (dij = 1) ∧ (djk > 1) ⇒ (dik > 1),
(dki > 1) ∧ (dij = 1) ⇒ (dkj > 1) and (dij = 1) ∧ (djk = 1) ⇒ (dik = 1).

The following example illustrates usage of the most famous defuzzification meth-
ods, such as the centroid method, the median method and the centre of maxima
method [23]. It is worth noted that the mentioned defuzzification methods give the
same results for a symmetrical unimodal fuzzy number.

Example 20.1 Let us consider a FPCMwith elements d̃ij in a form of trapezoid fuzzy
numbers with membership functions

d̃ij = Trap(x, aij, bij, cij, dij) = max

(

min

(
x − aij
bij − aij

, 1,
dij − x

dij − cij

)

, 0

)

,

(20.3)

where aij, bij, cij, dij are parameters.
For example, a symmetrical fuzzy number d̃ij with parameters aij = 1,

bij = 2, cij = 4, dij = 5 may be used to model such expert judgment as “preference
degree is near to weak intensity”. The d̃ij defuzzification using the centriod method,
the median method and the centre of maxima method results in the same crisp value
dij = 3.

In the case of unsymmetrical fuzzynumber d̃ij (20.3), for example,with parameters
aij = 1, bij = 2, cij = 4, dij = 6, the centroid method gives the same result dij = 3,
the median method—the value dij = 3.25 and the centre of maxima method—the
value dij = 3.29.

20.4 A Comparative Study of Definitions of a FPCM
Consistency

Let us consider several known definitions of a FPCM consistency and their draw-
backs, and a comparative study of proposed definitions of a FPCM consistency with
the known definitions.

Definition 20.4 ([10]) A fuzzy positive inverse symmetrical matrix A is consistent
if condition aij ⊗ ajk = aik holds for all i, j = 1, ..., n, where⊗ is an extended binary
operation of multiplication.

Definition 20.4 allows to estimate a consistency of general type FPCMs (20.1).
It is a direct extension of a traditional well-known Definition [1] of consistency of
a crisp PCM with real-valued elements on a fuzzy PCM. Later several Definitions
[3, 11, 15, 21, 22] where proposed, which are particular cases of Definition 20.4 for
special typed FPCMs.
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Definition 20.5 ([21]) An IPCM D̃ = {d̃ij = [lij, uij]} is consistent if the following
PCMs DL and DU (20.4) are consistent:

DL =

⎛

⎜
⎜
⎜
⎝

1 l12 . . . l1n
u21 1 . . . l2n
...

...
...

...

un1 un2 . . . 1

⎞

⎟
⎟
⎟
⎠

,DU =

⎛

⎜
⎜
⎜
⎝

1 u12 . . . u1n
l21 1 . . . u2n
...

...
...

...

ln1 ln2 . . . 1

⎞

⎟
⎟
⎟
⎠

, (20.4)

Definition 20.6 ([22]) A FPCM D̃ = {d̃ij = (lij,mij, uij)} with triangle fuzzy ele-
ments is consistent, if PCMs DL,DU (20.4) and DM = {(mij)} are consistent.

Let us show that usage of Definitions 20.4, 20.5 and 20.6, described above, may
lead to contradictory results. Thus, if a task is to compare only two objects, then
a result of such pairwise comparison is always consistent [1], an inconsistency by
nature may appear only when three objects should be compared. Therefore a PCM
of dimension 2 × 2 must be consistent regardless of crispness or fuzziness of its
elements. Let us consider a FPCM of dimension 2 × 2, for example, with triangle
elements

D̃2×2 = (d̃ij)2×2 =
(

1 (l12,m12, u12)(
1
u12

, 1
m12

, 1
l12

)
1

)

.

The Definition 20.4 results in an inconsistency of this FPCM, since d̃12 ⊗ d̃21 
=
d̃11 in general case.

The proposed Definition 20.1, in turn, does not have such contradiction, since a
result of defuzzification (20.2) for a FPCM (20.1) is always a consistent PCM when
n = 2.

Now let us consider a FPCMof higher dimension n ≥ 3, for example,with triangle
elements

Ã = (ãij)n×n =

⎛

⎜
⎜
⎜
⎝

1 (l12,m12, u12) . . . (l1n,m1n, u1n)
(l21,m21, u21) 1 . . . (l2n,m2n, u2n)

...
...

...
...

(ln1,mn1, un1) (ln2,mn2, un2) . . . 1

⎞

⎟
⎟
⎟
⎠

.

where uij ≥ mij ≥ lij > 0, lij = 1
uji
, mij = 1

mji
, uij = 1

lji
for each i, j = 1, ..., n. Then

Definitions 20.4 and 20.6 require satisfaction of the following equations:

lij · ljk = lik, (20.5)

uij · ujk = uik and mij · mjk = mik .

∀i, j, k = 1, ..., n, i < j < k.
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The simultaneous satisfaction of the equations (20.5) is quite strict requirement,
and only FPCMs of special types meet the equations (20.5) in practical decision
problems. To illustrate this statement the following Example 20.2 is given.

Example 20.2 Suppose an expert gives a multiplicative preference relation on a set
A = {a1, a2, a3, a4} of four DAs, such that an intensity of preference of DA a1 over
DAs a2 and a4 is near weak intensity, DA a2 is nearly equivalent to DA a4 and so
on. Suppose triangle fuzzy numbers (lij,mij, uij), 0 < lij ≤ mij ≤ uij, lij = 1

uji
, mij =

1
mji
, uij = 1

lji
, i, j = 1, ..., n are used to formalize these expert pairwise comparison

judgments, and as a result the following FPCM is obtained

D̃ =

⎛

⎜
⎜
⎝

1 (1, 3, 5) (4, 6, 8) (1, 3, 5)
(1, 3, 5)−1 1 (1, 2, 4) (1, 1, 3)
(4, 6, 8)−1 (1, 2, 4)−1 1 (1, 2, 4)−1

(1, 3, 5)−1 (1, 1, 3)−1 (1, 2, 4) 1

⎞

⎟
⎟
⎠ . (20.6)

The FPCM (20.6) is obviously inconsistent in terms of Definitions 20.4 and 20.6,
since equalities lij · ljk = lik and uij · ujk = uik in (20.5) are not satisfied. But equations
mij · mjk = mik are satisfied for∀i, j, k = 1, ..., n. Therefore theremay be a contradic-
tion of results about consistency of expert judgments on basis of crisp and fuzzified
PCMs. Namely, in this example the formalization of expert judgments using crisp
PCM results in consistency of the judgments (since the PCMDM = {(mij)} is consis-
tent), and the formalization of the judgments using fuzzy triangle numbers (FPCM)
results in inconsistency which is moreover not admissible. This result follows from
the fact that PCMs DL and DU (20.4), built on basis of the FPCM (20.6), which
have to be consistent according to Definitions 20.4 and 20.6, have quite high level
of inconsistency: CR(DL) = 0.93 > CR∗ = 0.08, CR(DU) = 0.06 < CR∗ = 0.08.
Besides the inconsistency is inadmissible for the PCMDL. Such contradiction could
be decreased using triangle numbers of smaller width. However, we can’t assure
conditions lij · ljk = lik and uij · ujk = uik (20.5) for the given FPCM (20.6) , and only
admissible inconsistency of the PCMs DL and DU could be achieved.

According to Definition 20.1 proposed in the Sect. 20.3, the FPCM (20.6) is con-
sistent, since the result of its defuzzification is the consistent PCM DM = {(mij)}.
Contradiction results on basis of crisp and fuzzyfied expert judgments (i.e. the
PCM DM) do not occur when using the proposed Definition 20.1.

The following Definition 20.7 represents another approach to consistency evalu-
ation and is used in the methods [3, 11, 15] for calculation weights of DAs on basis
of an interval PCM (IPCM).

Definition 20.7 ([3, 11, 15]) An IPCM D̃ = {d̃ij = [lij, uij]} is called consistent if a
vector of weights w exists such that wi ∈ R, wi > 0,

n∑

i=1
wi = 1 and lij ≤ wi/wj ≤ uij,

i = 1, 2, ..., n − 1, j = 2, 3, ..., n.

Statement 1 An IPCM D̃ = {d̃ij = [lij, uij]} is consistent in terms of Definition 20.7
if and only if an inequality max

k
(lik lkj) ≤ min

k
(uikukj) holds for ∀i < j.
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Necessary and sufficient condition to satisfy Definition 20.7 is an existence of
some consistent PCM, such that all its elements are in corresponding intervals of the
initial IPCM. This definition, obviously, is weaker in comparison with Definitions
20.1 and 20.4 and more IPCMs become consistent.

A comparative study of the known Definitions 20.4–20.7 with the proposed in the
Sect. 20.3 ones results in the following conclusions:

(1) to evaluate inconsistency level of a FPCM the proposed Definitions 20.1–20.3
enable to apply all known results about evaluation of inconsistency of traditional
crisp PCMs and opposite to the known described above definitions enable to
identifyweak consistency of a FPCMand evaluate admissibility of inconsistency
of a FPCM when calculating weights of DAs;

(2) the proposed Definitions 20.1–20.3, opposite to all known described above def-
initions, enable to increase consistency of a FPCM rather easy, in particular,
enable to find the most inconsistent and intransitive elements of a FPCM, using
methods developed for crisp PCMs;

(3) the proposed Definitions 20.1–20.3 may be used to evaluate inconsistency of
a FPCM with fuzzy elements of any shape (triangle, trapezoidal, gaussian and
other, and also discrete fuzzy sets);

(4) contradiction results does not appear when the proposed Definition 20.1 is
applied to evaluate consistency of crisp and fuzzyfied PCM, opposite to the
known Definitions 20.4–20.6, which use extended binary arithmetic operations;

(5) the proposed Definition 20.1 does not lead to contradiction results about consis-
tency of a FPCM of dimension n = 2;

(6) in special case when evaluating inconsistency of interval PCM, the proposed
Definition 20.1 is more strong in comparison with the known and widely used
Definition 20.7. More precisely, IPCMs which are consistent in terms of Defi-
nition 20.7 are not always consistent in terms of the proposed Definition 20.1.
However, these IPCM, are in general admissibly inconsistent (see Definition
20.2) and therefore may be used for calculation of weights.

20.5 Illustrative Examples

Let us illustrate the proposed Definitions 20.1–20.3 on FPCMs of special case,
namely, on interval PCMs (IPCMs). It makes possible to compare results on basis
of Definitions 20.1–20.3 with results on basis of Definition 20.7. IPCMs of different
inconsistency level are considered in the following Examples20.3–20.5.

Example 20.3 The following IPCM D̃ is consistent in terms of Definition 20.7:
the possible vector of weights is w = (0.45 0.22 0.11 0.22). However this IPCM
is inconsistent in terms of Definition 20.4, since the following PCMs DL and DU ,
calculated according to (20.4), are inconsistent:
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D̃ =

⎛

⎜
⎜
⎜
⎝

1 [2, 5] [2, 4] [1, 3]
[
1
5 ,

1
2

]
1 [1, 3] [1, 2]

[
1
4 ,

1
2

] [
1
3 , 1

]
1

[
1
2 , 1

]

[
1
3 , 1

] [
1
2 , 1

] [1, 2] 1

⎞

⎟
⎟
⎟
⎠

,

DL =

⎛

⎜
⎜
⎝

1 2 2 1
1/2 1 1 1
1/2 1 1 1/2
1 1 2 1

⎞

⎟
⎟
⎠ and DU =

⎛

⎜
⎜
⎝

1 5 4 3
1/5 1 3 2
1/4 1/3 1 1
1/3 1/2 1 1

⎞

⎟
⎟
⎠ .

The IPCM D̃ is also inconsistent according to the proposed Definition 20.1.
Definition 20.2 makes it possible to evaluate inconsistency level and admissibil-
ity of inconsistency of the IPCM D̃. In the example the IPCM D̃ is admissi-
bly inconsistent since the consistency ratio does not exceed its threshold value
CR(Deffuz(D̃)) = 0.04 < CRthreshold = 0.08.

Example 20.4 The following IPCM D̃ is weak consistent in terms of Definition 20.3
and has no ordinal intransitive elements (cycles):

D̃ =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1
[
1
3 , 1

] [
1
4 ,

1
2

] [
1
7 ,

1
5

] [
1
3 , 1

]

[1, 3] 1 [3, 5] [4, 6] [1, 3]
[2, 4] [

1
5 ,

1
3

]
1

[
1
3 , 1

] [
1
5 ,

1
3

]

[5, 7] [
1
6 ,

1
4

] [1, 3] 1
[
1
4 ,

1
2

]

[1, 3] [
1
3 , 1

] [3, 5] [2, 4] 1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,D =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1 1
2

1
3

1
6

1
2

2 1 4 5 2

3 1
4 1 1

2
1
4

6 1
5 2 1 1

3

2 1
2 4 3 1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

Inconsistency level of the defuzzified PCMD is inadmissible since the consistency
ratio CR(D) = 0.202 exceeds the threshold value 0.1. Therefore the IPCM D̃ in
the example is inadmissibly inconsistent and should not be used for calculation of
weights, it requires a correction to increase its consistency.

To compare results, Definition 20.7 also defines this IPCM D̃ as inconsistent.
Weights of DAs calculated on basis of the IPCM D̃ using several known methods
[3, 14–16] are shown in Table20.1. It is worth noted that in the two-stage methods
TLGP [15] and 2SLGP [3] first stage deals with evaluation of IPCM consistency.
Weights in Table20.1 show that different methods lead to the same ranking of DAs.
It seems to be a result of the IPCM D̃weak consistency. Index J∗ in the TLGPmodel
[15] has nonzero value and therefore indicate an inconsistency of the IPCM D̃.

Example 20.5 The following IPCM D̃ is not weak consistent in terms of Definition
20.3 since the condition of ordinal transitivity of the defuzzified PCM D is violated:
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Table 20.1 Weights of DAs on basis of the IPCM D̃ calculated using different methods (Exam-
ple 20.4)

Weights TLGP [15] TLGP [15]
(defuzz)

LGPPM [16] 2SLGP [3] LUAM [14]

J∗ = 1, 610

w1 [0,268;0,749] 0,080 0,04 1 0,109

w2 [1,958;3,107] 0,396 0,424 5,576 0,273

w3 [0,514;0,720] 0,097 0,094 1,28 0,119

w4 [0,621;1,000] 0,127 0,148 2,021 0,125

w5 [1,599;2,245] 0,301 0,281 3,655 0,177

D̃ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 [1; 5] [4; 8] [3; 7] [2; 6]
[
1
5 ; 1

]
1

[
1
6 ; 1

2

] [
1
7 ; 1

3

] [3; 7]
[
1
8 ; 1

4

] [2; 6] 1
[
1
4 ; 1

] [
1
7 ; 1

3

]

[
1
7 ; 1

3

] [3; 7] [1; 4] 1 [1; 5]
[
1
6 ; 1

2

] [
1
7 ; 1

3

] [3; 7] [
1
5 ; 1

]
1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,D =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 3 6 5 4
1
3 1 1

4
1
5 5

1
6 4 1 1

3
1
5

1
5 5 3 1 3
1
4

1
5 5 1

3 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Namely, a triple of elements exists in the PCM D, such that (d53 > 1) ∧
(d32 > 1) ∧ (d52 < 1) and therefore a cycle in D exists.

A consistency ratio of the PCM D equals to CR(D) = 0.514 and considerably
increases the threshold value 0.1, therefore an inconsistency level of the PCM D is
quite high. As a result the IPCM D̃ should not be used for calculation of weights and
requires a correction to increase its consistency. The most inconsistent element of
the IPCM D̃ that leads to a cycle should be found and corrected (changed) (see an
Example 20.6).

The IPCM D̃ is inconsistent also in terms of Definition 20.7. Weights of DAs
calculated on basis of the IPCM D̃ using several known methods [3, 14–16] are
shown in Table20.2. It is worth noted that in the two-stage methods TLGP [15]
and 2SLGP [3] first stage deals with evaluation of IPCM consistency. Results in
Table 20.5 indicate a contradiction in rankings of DAs when using different methods
of weights calculation.

Index J∗ in the TLGP model [15] has quite large nonzero value and therefore
an inconsistency level of the IPCM D̃ is high. However, neither Definition 20.7 nor
index J∗ does not allow to evaluate an admissibility of a FPCM inconsistency level,
as opposed to the proposed Definition 20.2.

It is known that a vector of weights does not exist that satisfies a weak inconsistent
PCM with a cycle (cycles). A method for finding the most inconsistent element in a
FPCM which leads to a cycle in a FPCM is shown in next Sect. 20.6.
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Table 20.2 Weights of DAs on basis of the IPCM D̃ calculated using different methods (Exam-
ple 20.5)

Weights TLGP [15] TLGP
(defuzz)

LGPPM [16] 2SLGP [3] LUAM [14]

J∗ = 2, 036

w1 [2,442; 4,091] 0,483 0,481 1 0,25

w2 [0,324; 0,813] 0,084 0,128 0,359 0,133

w3 [0,422; 0,804] 0,091 0,059 0,206 0,133

w4 [1,000; 1,888] 0,213 0,226 0,467 0,136

w5 [0,556; 1,185] 0,129 0,063 0,262 0,133

20.6 Finding of the Most Inconsistent Element in a FPCM

A modified M_Outflow method [24] is proposed for finding the most inconsistent
element and a cycle (a triple of intransitive elements) elimination in a FPCM (20.1).
Let us consider a PCM D as a result of a FPCM (20.1) defuzzification according to
(20.2). The M_Outflow method has several stages:

(1) To calculate the inflow�−
i and outflow�+

i values for eachDA ai, i = 1, 2, ..., n.
Let �+

i be a number of DAs aj, such that ai outperforms aj, namely dij > 1. Let
�−

i be a number of DAs aj, such that aj outperforms ai, namely dji > 1.
(2) To find themaximum of differences�+

j − �+
i and�−

i − �−
j . Then element di∗j∗

is the most inconsistent one:

di∗j∗ : max
ij

(max(�+
j − �+

i ,�−
i − �−

j )), if i 
= j, dij > 1. (20.7)

Suppose that several elements di∗j∗ satisfy the condition (20.7). Then an element
among them is found which lead to more inconsistency, namely an element which
results in maximum value of the expression

γij = 1

n − 2

n∑

k=1

(ln dij − ln(dikdkj)), where k 
= i 
= j. (20.8)

Hence, the most inconsistent element in an initial FPCM (20.1) is the element
di∗j∗ , which corresponds to the maximum value of the expression (20.8).

Example 20.6 Let us consider defuzzyfied PCMs shown in the Examples 20.4 and
20.5, and let us find the most inconsistent elements of these matrices using the
M_OutFlow method:

(a) the inflow �− and outflow �+ vectors for the PCM D from the Example 20.4
are �− = (4, 0, 3, 2, 1) and �+ = (0, 4, 1, 2, 3). Elements d25, d31, d43 and d54
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satisfy the condition (20.7). Element d31 is the most inconsistent, since it has the
maximum value among values γij (20.8). After correction of this element (it is
assigned a new value d31 = 1) the consistency level of the PCM D is increased
up to the value CR(D) = 0.166;

(b) the inflow�− and outflow�+ vectors for the PCMD from the Example 20.5 are
�− = (0, 3, 3, 1, 3) and �+ = (4, 1, 1, 3, 1). Elements d25, d32 and d53 satisfy
the condition (20.7). Element d25 is the most inconsistent, since it has the max-
imum value among values γ25 = 2.682, γ32 = 2.52 and γ53 = 2.473 calculated
according to (20.8). After correction of d25 (it is assigned a new value d25 = 1/5)
the cycle in the PCM D is eliminated (D becomes weak consistent) and the con-
sistency level of the PCM D is increased up to the value CR(D) = 0.224.

As a sequence, the elements d31 and d25 are the most inconsistent elements of the
initial IPCMs from the Examples 20.4 and 20.5, respectively.

20.7 Conclusions

A new definition of consistency of a fuzzy pairwise comparison matrix (FPCM) is
developed in the paper under a suggestion that FPCM elements are fuzzy sets with
membership functions of any shape. Such FPCMs may be a result of evaluation
of decision alternatives by a group of experts when aggregating individual expert
judgments made in traditional crisp scales. A comparative analysis of proposed def-
inition with other known definitions of consistent FPCM is done. New definitions
are suggested to evaluate the admissibility of inconsistency of expert judgments
when calculating weights of decision alternatives, to reveal weak inconsistent and
intransitive expert judgments. Usage of these definitions allows to increase a FPCM
inconsistency in a quite easy way. The most inconsistent and intransitive FPCM
elements (expert judgments) are defined using a modified M_Outflow method.
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Chapter 21
Approximate Optimal Control
for Parabolic–Hyperbolic Equations
with Nonlocal Boundary Conditions
and General Quadratic Quality Criterion

Volodymyr O. Kapustyan and Ivan O. Pyshnograiev

Abstract Control theory recaptures an increasingly prominent place in modern
science. We constructed an approximate optimal control for parabolic–hyperbolic
equations with nonlocal boundary conditions and general quadratic quality crite-
rion in special norm. We considered the problem for distributed and divided control.
Also, we proved the convergence of approximate control and provided the numerical
experiments that characterized its properties.

21.1 Introduction

Control theory recaptures an increasingly prominent place in modern science.
Research results in this direction can be seen inmany areas such as economics [1] and
physics [2]. Mathematical models with investigated control problems are becoming
more complex (starting from simple models with ordinary differential equations of
the first order [3] to boundary problems of parabolic equations [4]).

In this paper, we construct an approximate optimal control for parabolic–
hyperbolic equations with nonlocal boundary conditions and general quadratic qual-
ity criterion in special norm. We consider the problem for distributed and divided
control.
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21.2 The Problem with Distributed Control

Let the controlled process y(x, t) ∈ C1(D̄) ∩ C2(D−) ∩ C2,1(D+) in D satisfy the
equation

Ly(x, t) = û(x, t) (21.1)

with initial
y(x,−α) = ϕ(x) (21.2)

and boundary conditions

y(0, t) = 0, y′(0, t) = y′(1, t),−α ≤ t ≤ T , (21.3)

whereD = {(x, t) : 0 < x < 1,−α < t ≤ T ,α,T > 0},D− = {(x, t) : 0 < x < 1,
−α < t ≤ 0},D+ = {(x, t) : 0 < x < 1, 0 < t ≤ T},

Ly =
{
yt − yxx, t > 0,
ytt − yxx, t < 0.

and

û(x, t) =
{
u(x, t), t ≥ 0,
v(x, t), t < 0.

This boundary value problem was solved in [5].
It is required to find the control û∗(x, t) ∈ K , which minimizes the functional

I(û) = 0.5(α̂||y(.,T) − ψ(.)||2D

+β̂1

0∫

−α

||y(., t)||2Ddt + β̂2

T∫

0

||y(., t)||2Ddt

+γ̂1

0∫

−α

||v(., t)||2Ddt + γ̂2(||u(., 0)||2D +
T∫

0

||ut(., t)||2Ddt))

= 0.5
∞∑

i=0

(α̂(yi(T) − ψi)
2 + β̂1

0∫

−α

y2i (t)dt + β̂2

T∫

0

y2i (t)dt

+γ̂1

0∫

−α

v2i (t)dt + γ̂2(u
2
i (0) +

T∫

0

u̇2i (t)dt)), (21.4)

where ψ(x) is fixed function, α̂, β̂i ≥ 0, γ̂i > 0, i = 1, 2; α̂ + β̂1 + β̂2 > 0; the
function classK and expansion of the functions by the Riss basis are shown in [5].
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In [6], it is shown that the optimal control can be found from equation system

γ̂1v0(t) +
0∫

−α

K (1)
0,1 (t, τ )v0(τ )dτ + K (1)

0,2 (t)u0(0) +
T∫

0

K (1)
0,3 (t, τ )ξ0(τ )dτ

= M (1)
0,1 (t)ϕ0 + M (1)

0,2 (t)ψ0, t ∈ [−α, 0),

γ̂2u0(0) +
0∫

−α

K (2)
0,1 (τ )v0(τ )dτ + K (2)

0,2 u0(0) +
T∫

0

K (2)
0,3 (τ )ξ0(τ )dτ

= M (2)
0,1ϕ0 + M (2)

0,2 ψ0,

γ̂2ξ0(t) +
0∫

−α

K (3)
0,1 (t, τ )v0(τ )dτ + K (3)

0,2 (t)u0(0) +
T∫

0

K (3)
0,3 (t, τ )ξ0(τ )dτ

= M (3)
0,1 (t)ϕ0 + M (3)

0,2 (t)ψ0, t ∈ (0,T ],

γ̂1vi(t) +
2k∑

j=2k−1

(

0∫

−α

K (1,i)
j,1 (t, τ ) vj(τ )dτ + K (1,i)

j,2 (t)uj(0)

+
T∫

0

K (1,i)
j,3 (t, τ ) ξj(τ )dτ )

=
2k∑

j=2k−1

(M (1,i)
j,1 (t)ϕj + M (1,i)

j,2 (t) ψj), t ∈ [−α, 0),

γ̂2ui(0) +
2k∑

j=2k−1

(

0∫

−α

K (2,i)
j,1 (τ )vj(τ )dτ + K (2,i)

j,2 uj(0)

+
T∫

0

K (2,i)
j,3 (τ )ξj(τ )dτ )

=
2k∑

j=2k−1

(M (2,i)
j,1 ϕj + M (2,i)

j,2 ψj),

γ̂2ξi(t) +
2k∑

j=2k−1

(

0∫

−α

K (3,i)
j,1 (t, τ ) vj(τ )dτ + K (3,i)

j,2 (t)uj(0)

+
T∫

0

K (3,i)
j,3 (t, τ ) ξj(τ )dτ ) =

2k∑

j=2k−1

(M (3,i)
j,1 (t)ϕj + M (3,i)

j,2 (t) ψj),

t ∈ (0,T ], i = 2k − 1, 2k, (21.5)
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where K and M are notations, which can be found from solution of the boundary
value problem.

21.2.1 Approximate Optimal Control

Let us consider the approximate optimal control and take the finite number of its
elements. So we get

v(N)(x, t) = v0(t)X0(x) +
N∑

k=1

(v2k−1(t)X2k−1(x) + v2k(t)X2k(x)),

u(N)(x, 0) = u0(0)X0(x) +
N∑

k=1

(u2k−1(0)X2k−1(x) + u2k(0)X2k(x)),

ξ(N)(x, t) = ξ0(t)X0(x) +
N∑

k=1

(ξ2k−1(t)X2k−1(x) + ξ2k(t)X2k(x)).

Then, the following theorem is obvious.

Theorem 21.1 Let the functionsϕ(x),ψ(x) of the problem (21.1)–(21.3), (21.4) sat-
isfy the conditions from [6]. Then the functions v(N)(x, t), u(N)(x, t) are the approxi-
mate solution of the optimal control problem. And the next equality is correct.

lim
N→∞ ||v∗ − v(N)||C(0,1)×C(−α,0) = 0,

lim
N→∞ ||u∗ − u(N)||C(0,1)×C(0,T) = 0,

lim
N→∞ |I(û∗) − I (N)(û(N))| = 0.

21.2.2 Example of Calculations

Let ϕ(x) = x,ψ(x) = 10x2, and α = 2,T = 5, γ̂ = 10, α̂ = β̂1 = β̂2 = γ̂1 =
γ̂2 = 1. Then, we use numerical algorithms for the solution of (21.5).

On the Fig. 21.1, changing criterion values are presented depending on the number
N of component series. Obviously, the criterion was changed a little for N > 1.

Thus, Fig. 21.2 shows the solution of the problem. Value criterion in this case is
I = 17, 87.
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Fig. 21.1 Criterion value

Fig. 21.2 Optimal control

21.3 The Problem with Divided Control

Let the controlled process y(x, t) is described by the boundary value problem

Ly(x, t) = g(t)û(x) (21.6)

with conditions (21.2)–(21.3). It is needed to find the control v∗(t) ∈ C[−α, 0):|v∗
(t)| ≤ 1; |u∗(0)| ≤ l0; ξ∗(t) ∈ L2[0,T ] : |ξ∗(t)| ≤ l1 almost everywhere on [0,T ],
which minimizes the functional
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I(û) = 0.5(α̂||y(.,T) − ψ(.)||2D + β̂1

0∫

−α

||y(., t)||2Ddt + β̂2

T∫

0

||y(., t)||2Ddt

+γ̂1

0∫

−α

v2(t)dt + γ̂2(u
2(0) +

T∫

0

u̇2(t)dt))

= 0.5(
∞∑

i=0

(α̂ (yi(T) − ψi)
2 + β̂1

0∫

−α

y2i (t)dt + β̂2

T∫

0

y2i (t)dt

+γ̂1

0∫

−α

v2(t)dt + γ̂2(u
2(0) +

T∫

0

u̇2(t)dt)). (21.7)

Because of strict convexity functional (21.7) by control, it has a single point of
minimum (v∗(t), u∗(0), ξ∗(t))C[−α, 0) × R1 × L2(0,T),which is characterized by
the following optimality conditions

0∫

−α

[γ̂1v∗(t) +
0∫

−α

K (1)
1 (t, τ )v∗(τ )dτ +

K (1)
2 (t)u∗(0) +

T∫

0

K (1)
3 (t, τ )ξ∗(τ )dτ

−M (1)
1 (t,ϕ) − M (1)

2 (t,ψ)][v(t) − v∗(t)]dt ≥ 0,∀|v(t)| ≤ 1,

(γ̂2u
∗(0) +

0∫

−α

K (2)
1 (τ )v∗(τ )dτ + K (2)

2 u∗(0) +
T∫

0

K (2)
3 (τ )ξ∗(τ )dτ

−M (2)
1 (ϕ) + M (2)

2 (ψ))[u(0) − u∗(0)] ≥ 0,∀|u(0)| ≤ l0,
T∫

0

[γ̂2ξ∗(t) +
0∫

−α

K (3)
1 (t, τ )v∗(τ )dτ

+K (3)
2 (t)u∗(0) +

T∫

0

K (3)
3 (t, τ )ξ∗(τ )dτ

−M (3)
1 (t,ϕ) − M (3)

2 (t,ψ)][ξ(t) − ξ∗(t)]dt ≥ 0, |ξ(t)| ≤ l1, (21.8)

where K and M are notations, which can be found from solution of the boundary
value problem.

This problem is investigated in [6].
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21.3.1 Approximate Control

Let us consider two cases of this problem. There are problem with approximate
unbounded control and approximate bounded control.

Unbounded Control

In this case, the system of variational inequalities (21.8) takes the form

γ̂1v
∗(t) +

0∫

−α

K (1)
1 (t, τ )v∗(τ )dτ + K (1)

2 (t)u∗(0) +
T∫

0

K (1)
3 (t, τ )ξ∗(τ )dτ

= M (1)
1 (t,ϕ) + M (1)

2 (t,ψ), t ∈ [−α, 0),

γ̂2u
∗(0) +

0∫

−α

K (2)
1 (τ )v∗(τ )dτ + K (2)

2 u∗(0) +
T∫

0

K (2)
3 (τ )ξ∗(τ )dτ

= M (2)
1 (ϕ) + M (2)

2 (ψ),

γ̂2ξ
∗(t) +

0∫

−α

K (3)
1 (t, τ )v∗(τ )dτ + K (3)

2 (t)u∗(0) +
T∫

0

K (3)
3 (t, τ )ξ∗(τ )dτ

= M (3)
1 (t,ϕ) + M (3)

2 (t,ψ), t ∈ (0,T ]. (21.9)

Since the core and right parts of the system (21.9) are the sequences, we consider
the approximate control, which can be found from the system of equations

γ̂1v
(N)(t) +

0∫

−α

K (1,N)
1 (t, τ )v(N)(τ )dτ + K (1,N)

2 (t)u(N)(0)

+
T∫

0

K (1,N)
3 (t, τ ) ξ(N)(τ )dτ

= M (1,N)
1 (t,ϕ) + M (1,N)

2 (t,ψ), t ∈ [−α, 0),

γ̂2u
(N)(0) +

0∫

−α

K (2,N)
1 (τ )v(N)(τ )dτ + K (2,N)

2 u(N)(0)

+
T∫

0

K (2,N)
3 (τ )ξ(N)(τ )dτ = M (2,N)

1 (ϕ) + M (2,N)
2 (ψ),

γ̂2ξ
(N)(t) +

0∫

−α

K (3,N)
1 (t, τ )v(N)(τ )dτ + K (3,N)

2 (t)u(N)(0)
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+
T∫

0

K (3,N)
3 (t, τ )ξ(N)(τ )dτ = M (3,N)

1 (t,ϕ) + M (3,N)
2 (t,ψ), t ∈ (0,T ], (21.10)

where K (j,N)

i (),M
(j,N)

l (), i, j = 1, 3, andl = 1, 2 are the finite sums.
Clearly, the system of equations (21.10) represents optimality conditions for opti-

mal control with criteria

I (N)(û(N)) = 0.5(
N∑

i=0

(α̂(y(N)
i (T) − ψi)

2 + β̂1

0∫

−α

(y(N)
i (t))2dt

+β̂2

T∫

0

(y(N)
i (t))2 dt + γ̂1

0∫

−α

(v(N)(t))2dt

+γ̂2((u
(N)(0))2 +

T∫

0

(ξ(N)(t))2dt)), (21.11)

where y(N)
i (t)andi = 0, 2N are solutions of Fourier coefficients of the boundary prob-

lem with the control û(N)(t).

Theorem 21.2 Let the functionsϕ(x),ψ(x), g(x) in optimal control problem (21.6),
(21.2), (21.3) and (21.7) (û(x, t) = g(x)û(t)) satisfy the lemmas conditions in [6].
Then continuous functions v(N)(t), u(N)(t) are the approximate control of original
optimal control problem, in other words

lim
N→∞ ||v∗ − v(N)||L2(−α,0) = 0,

lim
N→∞ ||u∗ − u(N)||C(0,T) = 0,

lim
N→∞ ||y∗ − y(N)||C(0,1)×C(−α,T) = 0,

lim
N→∞ |I(û∗) − I (N)(û(N))| = 0.

Justification. Let us define the operator

ˆA (N)θ(N)(.) = Γ3×3θ
(N)(t) + A (N)θ(N)(.),

where (θ(N)(t))′ = (v(N)(t), u(N)(0), ξ(N)(t)) ∈ L2(−α, 0) × R1 × L2(0,T), and
operator A (N) is determined by the remaining members of equations left parts
(21.10).

Since the operator ˆA (N) is positively identified, the system (21.10) has a unique
solution in space C(−α, 0) × R1 × L2(0,T).
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Let us denote the vectors of right-hand sides of (21.9) and (21.10) by F(t,ϕ,ψ),

F(N)(t,ϕ,ψ). Then, these systems can be written as operator equations

Γ3×3θ(t) + A θ(.) = F(t,ϕ,ψ),

Γ3×3θ
(N)(t) + A (N)θ(N)(.) = F(N)(t,ϕ,ψ).

(21.12)

Let us denote Δ(N)Θ(t) = Θ(t) − Θ(N)(t),Δ(N)A (.) = A (.) − A (N)(.),Δ(N)

F(t,ϕ,ψ) = F(t,ϕ,ψ) − F(N)(t,ϕ,ψ). Then, discrepancy Δ(N)Θ(t) satisfies the
operator equation

Γ3×3Δ
(N)Θ(t) + A Δ(N)Θ(.) = Δ(N)F(t,ϕ,ψ) − Δ(N)A Θ(N)(.). (21.13)

The operator from the left-hand side of the Eq. (21.13) is positive defined. Then
for solutions of this equation correct estimation

||Δ(N)Θ(.)||3 ≤ C (||Δ(N)F(.,ϕ,ψ)||3 + |||Δ(N)A |||3||Θ(N)(.)||3), (21.14)

where |||A |||3 is the norm of operator A .

From (21.12) and lemma in [6], it follows that numerical sequence {||Θ(N)(.)||3}
coincides. Moreover,

lim
N→∞ ||Δ(N)F(.,ϕ,ψ)||3 = 0.

Indeed, the estimates imply inequality

||Δ(N)F(.,ϕ,ψ)||3 ≤ C
∞∑

k=N+1

(|g2k−1| + |g2k|) ((|ϕ2k−1| + |ϕ2k|)

×(
α̂

λk exp(λ2
kT)

+ β̂1

λk
+ β̂2

λ3
k

) + (|ψ2k−1| + |ψ2k|) α̂

λk
).

The convergence of this sequence provides the required behavior of Δ(N)

F(t,ϕ,ψ).

Let us find the upper estimate for the norm of the operator A . In accordance
with [7],

|||A |||3 = sup
θ �=0

〈A θ(.), θ(.)〉3
||Θ(.)||23

.

Using (21.9), we find

〈A θ(.), θ(.)〉3 ≤ ||K (1)
1 ||L2(−α,0)×L2(−α,0) ||v||2L2(−α,0) + 2||K (1)

2 ||L2(−α,0)|u(0)|
×||v||L2(−α,0) + 2||K (1)

3 ||L2(−α,0)×L2(0,T) ||ξ||L2(0,T)||v||L2(−α,0) + |K (2)
2 |u2(0)

+2||K (2)
3 ||L2(0,T)||ξ||L2(0,T) |u(0)| + ||K (3)

3 ||L2(0,T)×L2(0,T)||ξ||2L2(0,T)
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< (||K (1)
1 ||L2(−α,0)×L2(−α,0) + ||K (1)

2 ||L2(−α,0) + ||K (1)
3 ||L2(−α,0)×L2(0,T)

+|K (2)
2 | + ||K (2)

3 ||L2(0,T) + ||K (3)
3 ||L2(0,T)×L2(0,T)) ||Θ(.)||23.

Hence, we find the required estimate

|||A |||3 < ||K (1)
1 ||L2(−α,0)×L2(−α,0) + ||K (1)

2 ||L2(−α,0)

+||K (1)
3 ||L2(−α,0)×L2(0,T) + |K (2)

2 |
+||K (2)

3 ||L2(0,T) + ||K (3)
3 ||L2(0,T)×L2(0,T). (21.15)

From (21.15), we establish estimate

|||Δ(N)A |||3 < C(α̂ + β̂1 + β̂2)

∞∑

k=N+1

1

λ2
k

,

that is,
lim
N→∞ |||Δ(N)A |||3 = 0.

Using the obtained boundary equality from (21.14), we get

lim
N→∞ ||Δ(N)Θ(.)||3 = 0,

which provides the first two equalities of theorem. Substituting the solutions of
(21.10) in solutions of the boundary value problem, we find y(N)(x, t). Then, we find
the following estimates

||y∗(x, t) − y(N)(x, t)||C(0,1)×C(−α,T) ≤ C[
∞∑

k=N+1

(|ϕ2k−1| + |ϕ2k|

+|g2k−1| + |g2k|
λk

(||v∗||L2(−α,0) + ||u∗||C(0,T))) + (||v∗ − v(N)||L2(−α,0)

+||u∗ − u(N)||C(0,T))

N∑

k=0

|g2k−1| + |g2k|
λk

)],

from which the equality of third theorems follows. Equality of last theorems is a
consequence of the previous equalities.
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Bounded Control

Let the optimal control can be found from

v(N)(t) = −1,−1 +
∫ 0

ξ̄(N)
1

K (1,N)
1 (t, τ ) v(N)(τ )dτ > M (1,N)

1 (t,ϕ)

+ M (1,N)
2 (t,ψ) +

∫ ξ̄(N)
1

−α

K (1,N)
1 (t, τ )dτ , t ∈ [−α, ξ̄(N)

1 );

v(N)(t) +
∫ 0

ξ̄(N)
1

K (1,N)
1 (t, τ ) v(N)(τ )dτ = M (1,N)

1 (t,ϕ) + M (1,N)
2 (t,ψ)

+
∫ ξ̄(N)

1

−α

K (1,N)
1 (t, τ )dτ , |v(N)(t)| < 1, t ∈ [ξ̄(N)

1 , 0).

(21.16)

The number ξ̄(N)
1 defines as the solution of equation

v(N)(ξ̄(N)
1 ) = −1, (21.17)

where v(N)(t) is the solution of the equation from (21.16).
Suppose that an approximate control satisfies the conditions

lim
N→∞ v(N)(t) = −1, t ∈ [−α, lim

N→∞ ξ
(N)

1 );
|v(N)(t)| < 1, t ∈ [ lim

N→∞ ξ
(N)

1 + 0, 0).
(21.18)

Then, we prove the theorem.

Theorem 21.3 Suppose that for optimal control problem (21.6), (21.2), (21.3) and
(21.7) the conditions from [6] is performed. Then formulas (21.16) is approximate
control for problem (21.6), (21.2), (21.3) and (21.7), that is,

lim
N→∞ |ξ1 − ξ

(N)

1 | = 0,

lim
N→∞ |v∗(t) − v(N)(t)| = 0, t ∈ [−α, 0),

lim
N→∞ |y∗(x, t) − y(N)(x, t)| = 0, x ∈ [0, 1], t ∈ [−α,T),

lim
N→∞ |I(v∗) − I(v(N))| = 0.

(21.19)

Justification. With fixed ξ̄1, the equation from (21.16) has a unique solution in the
space C(ξ̄1, 0) in full and approximate cases.
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From the uniqueness of solutions of equations (21.17) in full and approximate
cases, it follows that

ξ1 = lim
N→∞ ξ

(N)

1 .

Suppose that ξ̄(N)
1 < ξ̄1. Let us consider the difference Δv(N)(t) = v∗(t) − v(N)(t).

Then

Δv(N)(t) = 0, t ∈ [−α, ξ
(N)

1 );
Δv(N)(t) = −1 − v(N)(t), t ∈ [ξ(N)

1 , ξ1);
Δv(N)(t) +

∫ 0

ξ̄1

K (1)
1 (t, τ ) Δv(N)(τ )dτ

= ΔM (1,N)
1 (t,ϕ) + ΔM (1,N)

2 (t,ψ)

−
∫ 0

ξ̄1

K (1)
1 (t, τ ) v(N)(τ )dτ +

∫ 0

ξ̄(N)
1

K (1,N)
1 (t, τ ) v(N)(τ )dτ

+
∫ ξ̄1

−α

K (1)
1 (t, τ )dτ −

∫ ξ̄(N)
1

−α

K (1,N)
1 (t, τ )dτ , t ∈ [ξ1, 0), (21.20)

where

ΔM (1,N)
1 (t,ϕ) = M (1)

1 (t,ϕ) − M (1,N)
1 (t,ϕ),

ΔM (1,N)
2 (t,ϕ) = M (1)

2 (t,ψ) − M (1,N)
2 (t,ψ).

From (21.20), it follows that function Δv(N)(t) is continuous on t ∈ [−α, 0) and
following inequality is correct.

lim
N→∞ Δv(N)(t) = 0, t ∈ [−α, 0). (21.21)

Indeed, from (21.20) with t ∈ (ξ̄(N)
1 , ξ̄1), we get

Δv(N)(t) = −dv(N)(Θ
(N)
1 )

dt
(t − ξ

(N)

1 ),Θ
(N)
1 ∈ (ξ̄(N)

1 , ξ̄1). (21.22)

From (21.16), it follows that the sequence {dv(N)(Θ
(N)
1 )/dt} is limitedwhenN → ∞.

Indeed, firstly, the formula (21.22) occurs when a function dv(N)(t)/dt is continuous.
Let us find conditions on the functions, to ensure its continuity. For this purpose
using the Eq. (21.16), we obtain the estimate

||d
2v(N)(.)

dt2
||L2(ξ̄(N)

1 ,0) ≤ C (||∂
2K (1,N)

1 (., .)

∂t2
||L2(−α,0)×L2(−α,0)
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+ ||d
2M (1,N)

1 (.,ϕ)

dt2
||L2(−α,0) + ||d

2M (1,N)
2 (.,ψ)

dt2
||L2(−α,0)). (21.23)

We find the estimates of second derivatives from the right-hand side of inequality
(21.23) using the definition of the relevant functions. From some N , we have:

‖∂2K (1,N)
1 (., .)

∂t2
‖L2(−α,0)×L2(−α,0) ≤

N∑

k=1

g22k−1(
C1α̂

λk
+ C2β̂1 + C3β̂2

λk
)

+2 |g2k−1||g2k|(C4α̂

λk
+ C5β̂1 + C6β̂2

λk
) + g22k(

C7α̂

λ2
k

+ C8β̂1 + C9β̂2

λ2
k

)

≤
N∑

k=1

(g22k−1 + |g2k−1||g2k| + g22k),

||d
2M (1,N)

1 (.,ϕ)

dt2
||L2(−α,0) ≤

N∑

k=1

|g2k−1|(|ϕ2k−1|(C1α̂

λk
+ C2β̂1λk + C3α̂

λk
)

+|ϕ2k|(C4α̂

λk
+ C5β̂1λk + C6α̂

λk
)) + |g2k|(|ϕ2k−1|(C7α̂

λ2
k

+ C8β̂1λk + C9α̂

λ2
k

)

+|ϕ2k|(C10α̂

λ2
k

+ C11β̂1λk + C12α̂

λ2
k

))) ≤ C
N∑

k=1

λk(|g2k−1| + |g2k|)(|ϕ2k−1| + |ϕ2k|)

||d
2M (1,N)

2 (.,ψ)

dt2
||L2(−α,0) ≤ C

N∑

k=1

(
|g2k−1|

λk
(|ψ2k−1| + |ψ2k|) + |g2k||ψ2k|

λ2
k

).

If the conditions from [6] is performed, then the following equality is correct.

lim
N→∞ Δv(N)(t) = 0.

The equation from (21.20) is uniquely solvable in the spaceC(ξ̄1, 0).Other equalities
of theorem are proved analogous to Theorem21.2.

21.3.2 Example of Calculations

Letϕ(x) = 2x3 − 3x2 + x,ψ(x) = 4.5 ∗ x2, g(x) = x, andα = 0.5,T = 3, γ = 10.
Then numerically solving a system of integral equation (21.9), we find for different
N the values of criteria I (Fig. 21.3).
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Fig. 21.3 Criterion values

Fig. 21.4 Optimal control

For N > 7, criterion value does not change significantly, so we choose N = 7.
Then, the found control is shown in Fig. 21.4, and criterion value is I = 6, 42.
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Chapter 22
On Approximate Regulator
in Linear-Quadratic Problem
with Distributed Control and Rapidly
Oscillating Parameters

Oleksiy V. Kapustyan and Alina V. Rusina

Abstract In this chapter, we have substantiated the approximate feedback formula
for distributed optimal control in linear-quadratic problem with fast-oscillating coef-
ficients.

22.1 Introduction

In optimal control theory of infinite-dimensional systems [7], one of the impor-
tant problems is to obtain the optimal control in the feedback form (regulator). In
the case of linear-quadratic model, this problem can be reduced to a set of finite-
dimensional problems by expressing functions as a Fourier series and the exact
formula of regulator can be found [1, 2]. If the original problem describes a process
in micro-inhomogeneous media, its coefficients and the formula of optimal regula-
tor are typically expressed via rapidly oscillating parameters. Since the numerical
implementation of the optimal control problem with oscillatory coefficients is prob-
lematic, our goal was to justify the use of approximate optimal regulator, obtained
by replacing rapidly oscillating coefficients with their averaged values.

The aforementioned problem was addressed in [6] for the controls of the form
g(x)u(t) under certain assumptions on the input data. In this chapter, we focus on
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the optimal stabilization of solutions of a parabolic equation with rapidly oscillating
coefficients and bounded distributed control u(t, x). The case of finite time interval
was considered in [4]. Using the exact formula of optimal control in the feedback
form, we justify the formula of approximate optimal regulator, in which rapidly
oscillating coefficients are replaced with their homogenized values and infinite sums
are replaced with finite.

22.2 Statement of the Problem

Let Ω ⊂ Rn be a bounded domain, ε ∈ (0, 1) be a small parameter, ξ = (ξi)
∞
i=1 ∈ l2

be a fixed vector. In Q = (0,+∞) × Ω , we consider the following optimal control
problem: ⎧

⎨

⎩

dy
dt = Aεy(t) + u(t, x), (t, x) ∈ Q,

y|∂Ω = 0,
y|t=0 = yε

0,

(22.1)

J(y, u) =
+∞∫

0

∫

Ω

(
y2(t, x) + u2(t, x)

)
dtdx → inf, (22.2)

u ∈ Uε =
⎧
⎨

⎩
v ∈ L2(Q) : ∀i ≥ 1

∣
∣
∣
∣
∣
∣

∫

Ω

v(t, x)Xε
i (x)dx

∣
∣
∣
∣
∣
∣
≤ ξi for a.e. t > 0

⎫
⎬

⎭
,

(22.3)

where Aε = div(aε∇), aε(x) = a( x
ε
), a = ((aij)) is a measurable symmetric periodic

matrixwhich satisfies the condition of uniform ellipticity: ∃ v1 > 0, v2 > 0 ∀η, x ∈ Rn

v1

n∑

i=1

η2
i ≤

n∑

i,j=1

aij(x)ηiηj ≤ v2

n∑

i=1

η2
i , (22.4)

{Xε
i }, {λε

i } are solutions of the following spectrum problem

{
AεXε

i = −λε
i Xε

i ,

Xε
i |∂Ω = 0,

(22.5)

{Xε
i } ⊂ H1

0 (Ω) is an orthonormal basis in L2(Ω), 0 < λε
1 ≤ λε

2 ≤ · · · , λε
i → ∞,

i → ∞.
It is known [7] that the optimal control problem (22.1)–(22.3) has the unique

solution {yε, uε} in W × L2(Q), where

W = {y ∈ L2(0,+∞; H1
0 (Ω)) | dy

dt
∈ L2(0,+∞; H−1(Ω))}.
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The aim of this chapter was to justify the form of approximate optimal regulator
u = u[y] of the problem (22.1)–(22.3).

22.3 Main Results

Let ‖ · ‖ and (·, ·) denote a norm and a scalar product in L2(Ω) respectively.
The problem (22.1)–(22.3) is equivalent to the set of one-dimensional optimal

stabilization problems in W × L2(Q)

{
d
dt y

ε
i (t) = −λε

i yε
i + uε

i (t),
yε

i (0) = (yε
0, Xε

i ),
(22.6)

J(yε
i , uε

i ) =
+∞∫

0

(
yε2

i (t) + uε2
i (t)

)
dt → inf, (22.7)

|uε
i (t)| ≤ ξi a.e., (22.8)

where yε(t, x) =
∞∑

i=1
yε

i (t)X
ε
i (x), uε(t, x) =

∞∑

i=1
uε

i (t)X
ε
i (x).

For each i ≥ 1, the optimal control for the problem (22.6)–(22.8) in the feedback
form can be defined from Bellman equation as follows [2]:

uε
i [yε

i (t)] =

⎧
⎪⎨

⎪⎩

ξi, if yε
i (t) < − ξi

Rε
i
;

−Rε
i yε

i (t), if yε
i (t) ∈ [− ξi

Rε
i
,

ξi

Rε
i
];

−ξi, if yε
i (t) >

ξi

Rε
i
;

(22.9)

where Rε
i = −λε

i +
√

λε2
i + 1.

Then,

uε[yε(t)] =
∞∑

i=1

uε
i

[
(yε(t), Xε

i )
]

Xε
i (x) (22.10)

is the optimal control in the feedback form for the problem (22.1)–(22.3).
Let us analyze the formula (22.9).
If

∣
∣yε

i (0)
∣
∣ ≤ ξi

Rε
i

, (22.11)

from (22.6), then the open-loop optimal control can be expressed as

uε
i (t) = −Rε

i yε
i (0)e

−
√

λε2
i +1t; (22.12)
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thus, in this case

∀t ≥ 0 uε
i [yε

i (t)] = −Rε
i yε

i (t). (22.13)

If
∣
∣yε

i (0)
∣
∣ >

ξi

Rε
i

, (22.14)

it follows from (22.6) the optimal control is given by

uε
i [yε

i (t)] =
{−ξisign(yε

i (t)), if t ∈ [0, tεi ];−Rε
i yε

i (t), if t > tεi ; (22.15)

where tεi > 0 is the unique solution of equation

yε
i (t)sign(yε

i (t)) = ξi

Rε
i

, (22.16)

and yε
i is the solution of (22.6) with the control (22.15).

Let yε
0 be a function such that (22.14) holds ∀i ≥ 1. Then tεi is determined by

tεi = 1

λε
i

ln

⎛

⎝ Rε
i√

λε2
i + 1

(

1 + λε
i

ξi
sign(yε

i (t))y
ε
i (t)

)

eλε
i t

⎞

⎠ , (22.17)

where yε
i (t), t ∈ [0, tεi ] is the solution of (22.6) with the control (22.15).

By the above assumptions, (22.10) can be expressed as

uε[yε(t)] =
∞∑

i=1

(
αε

i (y
ε(t), Xε

i ) + βε
i

)
Xε

i (x), (22.18)

where

αε
i = αε

i (y
ε(t)) =

{
0, t ∈ [0, tεi ],−Rε

i , t > tεi ,

βε
i = βε

i (y
ε(t)) =

{−ξisign(yε
i (t)), t ∈ [0, tεi ],

0, t > tεi ,

tεi = tεi (y
ε(t)) = 1

λε
i

ln

⎛

⎝ Rε
i√

λε2
i + 1

(

1 + λε
i

ξi
sign((yε(t), Xε

i ))(yε(t), Xε
i )

)

eλε
i t

⎞

⎠ ,

t ∈ [0, tεi ],

where yε is the solution of (22.1) with the control (22.18).
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Let us construct the law of approximated averaged synthesis which is based on
formula (22.18).

Let a0 be a constant homogenized matrix for a
(

x
ε

)
[3], A0 = div(a0∇), {X0

i }, {λ0
i }

are solutions of following spectrum problem:

{
A0X0

i = −λ0
i X0

i ,

X0
i |∂Ω = 0,

and besides, a spectrum of A0 is simple, i.e.,

0 < λ0
1 < λ0

2 < · · · < λ0
k <, · · · , λ0

i → ∞, i → ∞. (22.19)

With condition (22.19) we can claim [3]

∀i ≥ 1 λε
i → λ0

i , Xε
i → X0

i in L2(Ω) as ε → 0. (22.20)

Assume
aε G→ a0, yε

0 → y0 weekly in L2(Ω) as ε → 0. (22.21)

We note that a class of symmetric matrices which satisfies (22.4) is compact in
the sense of G-convergence [3].

Denote ∀i ≥ 1

t0i = 1

λ0
i

ln

⎛

⎝ R0
i√

λ02
i + 1

(

1 + λ0
i

ξi
sign(y0i )y

0
i

)
⎞

⎠ , (22.22)

α0
i = α0

i (t) =
{
0, t ∈ [0, t0i ],−R0

i , t > t0i ,

β0
i = β0

i (t) =
{−ξisign(y0i ), t ∈ [0, t0i ],
0, t > t0i ,

where R0
i = −λ0

i +
√

λ02
i + 1, y0i = (y0, X0

i ).
Let us define an approximate (parametric) regulator as

u0
N [t, x, yε

N (t, x)] =
N∑

i=1

(
α0

i (y
ε
N (t), X0

i ) + β0
i

)
X0

i (x), (22.23)

where yε
N (t, x) is the solution of the problem (22.1) with the control (22.23).

If for some i ≥ 1 inequality (22.11) holds for yε
0, it also holds for y0i ; thus, by

setting tεi = t0i = 0, βε
i ≡ β0

i ≡ 0, αε
i ≡ −Rε

i , α0
i ≡ −R0

i , we can use formula
(22.23) in this case as well.
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Theorem 22.1 Suppose that the assumptions (22.4), (22.19)–(22.21) are satisfied
and

∃γ > 0 : limi→∞ξieγ λ0
i > 0.

Then formula (22.23) determines the approximate optimal regulator of the problem
(22.1)–(22.3), i.e., ∀ η > 0 ∀ 0 < τ < T ∃ ε ∈ (0, 1) ∃N ≥ 1 such that ∀ε ∈
(0, ε) ∀N ≥ N ∥

∥uε[yε] − u0
N [yε

N ]∥∥L2(Q)
< η, (22.24)

max
t∈[τ,T ]

∥
∥yε(t) − yε

N (t)
∥
∥ < η, (22.25)

∣
∣J(yε, uε) − J(yε

N , u0
N [yε

N ])∣∣ < η, (22.26)

where {yε, uε} is the optimal process of the problem (22.1)–(22.3), and yε
N is the

solution of (22.1) with the control (22.23).

Proof Consider
⎧
⎨

⎩

∂z
∂t = Aεz + u0[t, x, z],
z|∂Ω = 0,
z|t=0 = yε

0,

(22.27)

where

u0[t, x, z] =
∞∑

i=1

(
α0

i (t)
(
z(t), X0

i

) + β0
i (t)

)
X0

i (x).

Since
∥
∥u0[t, z]∥∥2 ≤ 2

(‖z‖2 + ‖ξ‖2), ∥
∥u0[t, z1] − u0[t, z2]

∥
∥ ≤ ‖z1 − z2‖, the

problem (22.27) has the unique solution ∀T > 0 [8] zε = zε(t, x) in the class

W (0, T) =
{

y ∈ L2(0, T; H1
0 (Ω)) | dy

dt
∈ L2(0, T; H−1(Ω))

}

which is defined on [0,+∞). For a.e. t > 0 for zε the following estimate holds

1

2

d

dt
‖zε(t)‖2 + ν1‖zε(t)‖2H1

0
≤

∞∑

i=1

(
α0

i (z
ε(t), X0

i )2 + β0
i (zε(t), X0

i )
)
. (22.28)

Since α0
i (t) ≤ 0,

∣
∣β0

i (t)
∣
∣ ≤ ξi, with (22.28) for a.e. t > 0 we have:

1

2

d

dt
‖zε(t)‖2 + ν1‖zε(t)‖2H1

0
≤ ‖ξ‖‖zε(t)‖. (22.29)
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Thus, ∀t > 0

‖zε(t)‖2 ≤ ‖yε
0‖2e−ν1λt + ‖ξ‖2

ν2
1λ

2
, (22.30)

where a constant λ > 0 is from the Poincare inequality.
With (22.29) and (22.30) and the compactness lemma [8], we can derive the

existence of z ∈ W (0, T) such that subsequently

zε → z weekly in L2(0, T; H1
0 (Ω)),

∂zε

∂t → ∂z
∂t weekly in L2(0, T; H−1(Ω)),

zε → z in L2((0, T) × Ω) and a.e. in (0, T) × Ω.

(22.31)

Since
u0[zε] → u0[z] in L2((0, T) × Ω), (22.32)

Aε G→ A0, from [5] we can claim z is the unique solution of (22.27) when ε = 0;
moreover,

zε → z in C([δ, T ]; L2(Ω)) ∀ δ > 0. (22.33)

Thus, we can claim that the function z, which is defined on [0,+∞), is the solution
of (22.27) when ε = 0. Besides (22.31)–(22.33) hold ∀T > 0.

Furthermore, denoting

JT (y, u) =
T∫

0

∫

Ω

(
y2(t, x) + u2(t, x)

)
dtdx,

we have
JT (zε, u0[zε]) → JT (z, u0[z]), ε → 0. (22.34)

Let us show (22.34) on an infinite interval.
If ∃γ > 0 : limi→∞ξieγ λ0

i > 0, from (22.22), it follows that

∃T > 0 ∀i ≥ 1 t0i ≤ T . (22.35)

Then from (22.28) for all s > 2T , we obtain

2ν1

s∫

2T

‖zε(t)‖2H1
0
dτ ≤ ‖zε(2T)‖2 ≤ ‖zε(T)‖2e−2ν1λT ≤

≤ e−2ν1λT

(

‖yε
0‖2e−ν1λt + ‖ξ‖2

ν2
1λ

2

)

. (22.36)

This gives a constant C1 > 0 (which does not depend on ε, T ) such that
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∞∫

2T

‖zε(t)‖2dt ≤ C1e−2ν1λT . (22.37)

Then from inequality

∀s ≥ T

∞∫

s

‖u0[zε(t)]‖2dt ≤
∞∫

s

‖zε(t)‖2dt

and with (22.31), we conclude

zε → z in L2(Q), (22.38)

u0[zε] → u0[z] in L2(Q), (22.39)

J(zε, u0[zε]) → J(z, u0[z]). (22.40)

Let us compare solutions yε
N and zε. For ωε

N = yε
N − zε, we have

⎧
⎪⎪⎨

⎪⎪⎩

∂ωε
N

∂t = Aεωε
N +

N∑

i=1
α0

i (t)(ω
ε
N (t), X0

i )X0
i (x) + f ε

N (t, x),

ωε
N |∂Ω = 0,

ωε
N |t=0 = 0,

(22.41)

where

f ε
N (t, x) = −

∞∑

i=N+1

(α0
i (z

ε(t), X0
i ) + β0

i )X0
i (x).

For ∀T > 0 let us show that ∀η > 0 ∃N1 ≥ 1 ∃ε1 ∈ (0, 1) ∀N ≥ N1 ∀ε ∈ (0, ε1)

supt∈[0,T ] ‖ωε
N (t)‖2 +

T∫

0
‖u0

N [yε
N ] − u0[zε]‖2dt < η,

∣
∣JT (yε

N , u0
N [yε

N ]) − JT (zε, u0[zε])∣∣ < η.

(22.42)

Applying Parseval’s identity, we obtain for t ∈ [0, T ]

‖f ε
N (t)‖2 =

∞∑

i=N+1

(
α0

i (t)(z
ε(t), X0

i ) + β0
i (t)

)2 ≤ 2
∞∑

i=N+1
(α0

i (t))
2(zε(t), X0

i )2+

+2
∞∑

i=N+1
(β0

i (t))2 ≤ 2
∞∑

i=N+1
(zε(t), X0

i )2 + 2
∞∑

i=N+1
ξ 2

i ≤

≤ 4
∞∑

i=N+1
(z(t), X0

i )2 + 4‖zε(t) − z(t)‖2 + 2
∞∑

i=N+1
ξ 2

i ,

(22.43)
where z is the solution of (22.27) when ε = 0.
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From (22.41), we have the following estimates for a.e. t ∈ (0, T):

1

2

d

dt
‖ωε

N (t)‖2 + v1‖ωε
N (t)‖2H1

0
≤ ‖ωε

N (t)‖2 + (
f ε
N (t), ωε

N (t)
)
,

d

dt
‖ωε

N (t)‖2 ≤ 3‖ωε
N (t)‖2 + ‖f ε

N (t)‖2.

Then by Gronwall’s lemma ∀t ∈ [0, T ]

‖ωε
N (t)‖2 ≤

T∫

0

‖f ε
N (t)‖2dt · e3T . (22.44)

With (22.43) and (22.44), we conclude ∃ C2 > 0 ∀t ∈ [0, T ]

‖ωε
N (t)‖2 ≤ C2

⎛

⎝

T∫

0

∞∑

i=N+1

(z(t), X0
i )2dt +

T∫

0

‖zε(t) − z(t)‖2dt +
∞∑

i=N+1

ξ 2
i

⎞

⎠ .

(22.45)

Since ∀t ∈ [0, T ] by Bessel’s inequality

∞∑

i=N+1

(z(t), X0
i )2 → 0 as N → ∞,

and taking into account
∣
∣α0

i (t)
∣
∣ ≤ 1,

∣
∣β0

i (t)
∣
∣ ≤ ξi, with (22.28) and Gronwall’s

lemma we have ∣
∣
∣
∣
∣

∞∑

i=N+1

(z(t), X0
i )2

∣
∣
∣
∣
∣
≤ (‖y0‖2 + ‖ξ‖2T)e3T .

Thus, it follows from the Lebesgue theorem that the first term in (22.45) converges
to 0 asN → ∞. Then with (22.38)–(22.40) ∀η1 > 0, ∃N1 ≥ 1 ∃ε1 ∈ (0, 1) such that
∀N ≥ N1 ∀ε ∈ (0, ε1)

sup
t∈[0,T ]

‖ωε
N (t)‖2 +

T∫

0

‖u0
N [t, yε

N ] − u0[t, zε]‖2dt < η. (22.46)

By (22.46) and the following estimate

∣
∣JT (yε

N , u0
N [yε

N ]) − JT (zε, u0[zε])∣∣ ≤
≤ C3

(

‖yε
N (T) − zε(T)‖ +

( T∫

0
‖u0

N [t, yε
N ] − u0[t, zε]‖2dt

) 1
2

)
(22.47)
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we obtain (22.42).
For all t ≥ 0, we have

1

2

d

dt
‖ωε

N (t)‖2 + v1‖ωε
N (t)‖2H1

0
≤ ∥

∥f ε
N (t)

∥
∥

∥
∥ωε

N (t)
∥
∥ ,

‖f ε
N (t)‖2 =

∞∑

i=N+1
(α0

i (z
ε(t), X0

i ) + β0
i )2 ≤ 2R02

N+1‖zε(t)‖2 + 2
∞∑

i=N+1
ξ 2

i ≤
(by(22.30)) ≤ r2N+1 → 0, N → ∞.

Hence,

1

2

d

dt
‖ωε

N (t)‖2 + v1‖ωε
N (t)‖2H1

0
≤ rN+1‖ωε

N (t)‖.

It follows that ∀t ≥ 0

‖ωε
N (t)‖2 ≤ ‖ωε

N (0)‖2e−λν1t + e−λν1t

t∫

0

r2N+1

λν1
eλν1sds ≤ r2N+1

λ2ν2
1

.

For t ≥ T

‖f ε
N (t)‖2 =

∞∑

i=N+1

R0 2
i (zε(t), X0

i )2 ≤ R0 2
N+1‖zε(t)‖2.

Thus,

λν1

∞∫

2T

‖ωε
N (t)‖2dt ≤ ‖ωε

N (2T)‖2 + R0 2
N+1

∞∫

2T

‖zε(t)‖2dt ≤ r2N+1

λ2ν2
1

+ R0 2
N+1C4e−2λν1T .

(22.48)

Combining the above estimate with (22.42), we have ∀η > 0 ∃ε̄ ∃N̄ ∀ε ∈
(0, ε̄) ∀N ≥ N̄

‖ωε
N‖L2(Q) < η. (22.49)

Since

∞∫

2T
‖u0

N [yε
N ] − u0[zε]‖2dt =

∞∫

2T
‖

N∑

i=1
α0

i (ω
ε
N (t), X0

i )X0
i + f ε

N‖2dt ≤

R0 2
N+1

∞∫

2T
‖ωε

N (t)‖2dt + R0 2
N+1

∞∫

2T
‖zε(t)‖2dt ≤ C5R0 2

N+1,

(22.50)

we obtain the required estimates on [0,+∞)
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It remains to prove that {yε, uε[yε]} converges to {z, u0[z]} in the sense of
(22.24)–(22.26). For yε the estimates (22.28)–(22.30) hold; hence, there exists
y ∈ W (0, T) such that yε → y in the sense of (22.31).

Let us prove that
uε[yε] → u0[y] in L2(0, T; L2(Ω)). (22.51)

By (22.20) and (22.21) ∀i ≥ 1 tεi → t0i hence, for a.e. t > 0

αε
i (t) → α0

i (t), βε
i (t) → β0

i (t), ε → 0. (22.52)

Therefore, for a.e. (t, x)

(
αε

i (t)(y
ε(t), Xε

i ) + βε
i (t)

)
Xε

i (x) → (
α0

i (t)(y(t), X0
i ) + β0

i

)
X0

i (x). (22.53)

Then, from (22.30) applying the Lebesgue theorem ∀M ≥ 1, we obtain

M∑

i=1

(
αε

i (y
ε, Xε

i ) + βε
i

)
Xε

i →
M∑

i=1

(
α0

i (y, X0
i ) + β0

i

)
X0

i in L2(0, T; L2(Ω)),

T∫

0

∥
∥
∥
∥

∞∑

i=M+1

(
α0

i (y, X0
i ) + β0

i

)
X0

i

∥
∥
∥
∥

2

dt =
T∫

0

∞∑

i=M+1

(
α0

i (y, X0
i ) + β0

i

)2
dt ≤

2R0 2
M+1

T∫

0
‖y(t)‖2dt + 2T

∞∑

i=M+1
ξ 2

i → 0, M → ∞.

Since αε
i (y

ε, Xε
i ) + βε

i = uε
i [(yε, Xε

i )] ∈ [−ξi, ξi] for a.e. t, it follows that

∥
∥
∥
∥
∥

∞∑

i=M+1

(
αε

i (y
ε(t), Xε

i ) + βε
i

)
Xε

i

∥
∥
∥
∥
∥

2

≤
∞∑

i=M+1

ξ 2
i → 0, M → ∞.

Thus, (22.51) holds; hence, y ≡ z is the solution of (22.27) when ε = 0,

yε → z in C([δ, T ]; L2(Ω)),

JT (yε, uε[yε]) → JT (y, u0[y]). (22.54)

Let us show that uε[yε] → u0[y] in L2(Q). For this purpose, we use the fact that
the process {yε, uε} is optimal.

By Bellman’s principle of optimality, we obtain inequality

∞∫

2T

(‖yε(t)‖2 + ‖uε(t)‖2) dt ≤
∞∫

2T

‖ỹε(t)‖2dt, (22.55)
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where ỹε is the solution of (22.1) on [2T ,+∞) with control u ≡ 0 and initial condi-
tion ỹε(2T) = yε(2T).

Then ∞∫

2T

‖ỹε(t)‖2dt ≤
∞∑

i=1

1

2λε
i

(
yε

i (2T)
)2

. (22.56)

Hence, ∀η > 0 ∃i0 ≥ 1 ∀ε ∈ (0, 1)

∞∑

i=i0+1

1

2λε
i

(
yε

i (2T)
)2

<
η

2
. (22.57)

On the other hand, ∃ε0 = ε0(i0) ∈ (0, 1) such that ∀ε ∈ (0, ε0) ∀i ∈ 1, i0 tεi < T .
Then for i ∈ 1, i0 on [T , 2T ]

d

dt
yε

i (t) = −(λε
i + Rε

i )y
ε
i (t).

Thus,
yε

i (2T) ≤ yε
i (T)e−λε

i T ≤ yε
i (T)e−ν1λT .

It follows that for some constant C5 > 0

i0∑

i=1

1

2λε
i

(
yε

i (2T)
)2 ≤ C5

2λ0
1

e−2ν1λT‖yε(T)‖2. (22.58)

With (22.57), (22.58), and (22.30), we derive

yε → y in L2(Q).

In the same manner, when ε = 0 we can see that

uε[yε] → u0[y] in L2(Q)

and the proof is complete. �
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Chapter 23
The Optimal Control Problem with
Minimum Energy for One Nonlocal
Distributed System

Olena A. Kapustian and Oleg K. Mazur

Abstract We obtain sufficient conditions for resolvability of optimal control prob-
lem with minimum energy on the solutions of parabolic equation with nonlocal
boundary conditions in a circular sector.

23.1 Introduction

It is known, unlike the well-developed finite-dimensional case [1], the theory of
optimal control problems with minimum energy for partial derivative equations is
far from final construction. In particular, it is connected with infinite dimension of the
moment problem in applying the Fourier method [2]. Significant progress in solving
this problem has been achieved by applying the variational methods [2–4]. However,
these methods are not effective for finding classic solution.

In this chapter we investigate the classic solvability of the energy minimization
problem for parabolic equation in sectorial domain with non-local boundary condi-
tions [5]. The elliptic case of such a problem has been considered in [6]. By using the
biorthonormal basis systems of functions and the Fourier–Bessel series, we reduce
the initial optimal control problem to the infinite-dimensional moment problem. In a
class of stationary controls the structure of such moment problem allows an explicit
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solving. This allows to substantiate classic solvability of the initial problem for a
wide class of initial data.

23.2 Setting of the Problem

In domain Q = (0,T) × Ω , Ω = {(r, θ)|r ∈ (0, 1), θ ∈ (0, π)} we consider the
problem: to find a state function y = y(t, r, θ) and control u = u(r, θ) such that

⎧
⎪⎪⎨

⎪⎪⎩

∂y
∂t = Δy + q(t)u(r, θ), (t, r, θ) ∈ Q,

y(t, 1, θ) = 0, t ∈ (0,T), θ ∈ (0, π),

y(t, r, 0) = 0, t ∈ (0,T), r ∈ (0, 1),
∂y
∂θ

(t, r, 0) = ∂y
∂θ

(t, r, π), t ∈ (0,T), r ∈ (0, 1),

(23.1)

y(0, r, θ) = h(r, θ), (23.2)

y(T , r, θ) = z(r, θ), (23.3)

J(u) = ∫ 1
0 r‖u(r)‖2dr → inf, (23.4)

where Δy := 1
r

∂
∂r (r

∂y
∂r ) + 1

r2
∂2y
∂θ2 be Laplace operator in polar coordinates, q ∈

C([0,T ]), h, z ∈ C(Ω) are given functions, ‖ · ‖ is a norm in L2(0, π). Because of
boundary conditions of the problem (23.1), we will use biorthonormal and complete
in L2(0, π) systems of functions [5]

Ψ = {ψ0 = 2

π2
, ψ2n = 4

π2
(π − θ) sin 2nθ, ψ2n−1 = 4

π2
cos 2nθ},

Φ = {ϕ0 = θ, ϕ2n = sin 2nθ, ϕ2n−1 = θ cos 2nθ}.

The norm in L2(0, π) is given by the equality

∀v ∈ L2(0, π) ‖v‖ =
( ∞∑

n=0

(

∫ π

0
v(θ)ψn(θ)dθ)2

)1/2

.

By solving the problem (23.1)–(23.4), the main difficulty is a nonlocality of the
boundary conditions. Using Fourier method it does not allow to obtain a sequence
of independent one-dimensional problems. In this paper for a fairly wide class
of input data we were able to get the solution of mentioned infinite-dimensional
moment problem and, thereby, to substantiate the classical solvability of the problem
(23.1)–(23.4).
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23.3 The Classical Solvability of the Problem (23.1)–(23.4)

For fixed control

u(r, θ) =
∞∑

n=0

un(r)ϕn(θ) (23.5)

we will find the solution of the problem (23.1), (23.2) in the form

y(t, r, θ) = y0(t, r)ϕ0(θ) +
∞∑

n=1

(y2n−1(t, r)ϕ2n−1(θ) + y2n(t, r)ϕ2n(θ)) , (23.6)

where the functions {yn(t, r)}∞n=0 are defined from the following initial-boundary
value problems in domain � = (0,T) × (0, 1):

⎧
⎨

⎩

∂y0
∂t = 1

r
∂
∂r (r

∂y0
∂r ) + q(t)u0(r), (t, r) ∈ �,

y0(t, 1) = 0, t ∈ (0,T),

y0(0, r) = h0(r), r ∈ (0, 1),
(23.7)

⎧
⎨

⎩

∂y2n−1

∂t = 1
r

∂
∂r (r

∂y2n−1

∂r ) − ( 2nr )2y2n−1 + q(t)u2n−1(r), (t, r) ∈ �,

y2n−1(t, 1) = 0, t ∈ (0,T),

y2n−1(0, r) = h2n−1(r), r ∈ (0, 1),
(23.8)

⎧
⎨

⎩

∂y2n
∂t = 1

r
∂
∂r (r

∂y2n
∂r ) − ( 2nr )2y2n − 4n

r2 y2n−1 + q(t)u2n(r), (t, r) ∈ �,

y2n(t, 1) = 0, t ∈ (0,T),

y2n(0, r) = h2n(r), r ∈ (0, 1),
(23.9)

where ∀n ≥ 0 hn = ∫ π

0 h(r, θ) · ψn(θ)dθ .
Thus, the original optimal control problem (23.1)–(23.4) is reduced to the follow-

ing one: among admissible pairs {un(r), yn(t, r)}∞n=0 of the problem (23.7)–(23.9)
one should find such pairs, which minimize the cost functional

J =
∫ 1

0
ru20(r)dr +

∞∑

n=1

∫ 1

0
r(u22n−1(r) + u22n(r))dr (23.10)

and satisfy conditions

y0(T , r) = z0(r) = 2

π2

∫ π

0
z(r, θ)dθ, (23.11)

∀n ≥ 1 y2n−1(T , r) = z2n−1(r) = 4

π2

∫ π

0
z(r, θ) cos 2nθdθ, (23.12)
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∀n ≥ 1 y2n(T , r) = z2n(r) = 4

π2

∫ π

0
z(r, θ)(π − θ) sin 2nθdθ. (23.13)

Herewith the optimal process {ũn, ỹn}∞n=0 should be such that the formula (23.5)
defines a function ũ ∈ C(Ω) and the formula (23.6) defines a function ỹ ∈ C(Q̄) for
which

∂ ỹ

∂θ
∈ C(Q̄),

∂ ỹ

∂t
,
∂2ỹ

∂r2
,

∂2ỹ

∂r∂θ
,
∂2ỹ

∂θ2
∈ C(Q). (23.14)

To solve such a task we make additional assumptions on the initial data: let for
some N ≥ 0

∀r ∈ [0, 1] h(r, ·), z(r, ·) ∈ LN := span{ϕ0, ϕ1, ..., ϕ2N }, (23.15)

i.e.

h(r, θ) =
2N∑

n=0

hn(r)ϕn(θ), z(r, θ) =
2N∑

n=0

zn(r)ϕn(θ).

From the condition (23.15) it follows that for n > N h2n−1 = h2n = 0, z2n−1 =
z2n = 0. So, the minimum of the cost functional

Jn :=
∫ 1

0
r(u22n−1(r) + u22n(r))dr

is equal to zero and it is achieved at admissible in (23.8), (23.9), (23.12) and (23.13)
pairs {u2n−1 = 0, y2n−1 = 0}, {u2n = 0, y2n = 0}.

In this manner, under the condition (23.15), on the optimal process the series
(23.5), (23.6) contain only a finite number of nonzero members. This provides the
condition (23.14) as soon as we find the solution of the problem (23.7)–(23.13) for
n = 1,N .

To solve the problems (23.7)–(23.9), we will use Fourier–Bessel series [7, 8]

∞∑

m=1

A(n)
m (f )Jn(λ

(n)
m r), (23.16)

where

A(n)
m (f ) =

∫ 1
0 rf (r)Jn(λ(n)

m r)dr
∫ 1
0 rJ2n (λ

(n)
m r)dr

,

Jn is Bessel function of order n, n ≥ 0, {λ(n)
m }∞m=1 is a positive monotonically

increasing sequence of the solutions of the equation Jn(λ) = 0. For these solutions
the following asymptotical formula holds
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∀m ≥ 1 λ(n)
m = π · m + q + L · θ

m
, (23.17)

where q = q(n) ∈ Z , L = L(n) > 0, θ = θ(m, n) ∈ [0, 1].
It is known [8] that if the function f ∈ Cp+1([0, 1]), f (k)(0) = f (k)(1) = 0, k =

0, p − 1, then the series (23.16) is absolutely and uniformly convergent on [0, 1],
and the following estimate holds

∃C = C(n) ∀m ≥ 1 |A(n)
m (f )| ≤ C

(λ
(n)
m )p+ 1

2

· max
x∈[0,1]

p+1∑

i=0

|f (i)(x)|. (23.18)

Taking into account the condition (23.15) and the fact that we do not need the
exact values of the constants in the estimates like (23.18), further we will denote by
the letter C the constants that depend only on n ∈ 0,N .

For n ≥ 0 let us consider the problem

⎧
⎨

⎩

∂y
∂t = 1

r
∂
∂r (r

∂y
∂r ) − ( 2nr )2y +

∞∑

m=1
Cm(t)J2n(λ(2n)

m r), (t, r) ∈ �,

y(t, 1) = 0, y(0, r) = 0, t ∈ (0,T), r ∈ (0, 1),
(23.19)

where {Cm}∞m=1 ⊂ C([0,T ]) be given functions, which satisfy an estimate

∀m ≥ 1 max
t∈[0,T ] |Cm(t)| ≤ C

λ
(2n)
m

. (23.20)

Taking into account estimates [7]

∀n ≥ 0 ∀r ≥ 0 |Jn(r)| ≤ 1, (23.21)

∀n ≥ 0 ∀r ≤ 0 |Jn(r)| ≤ C√
r

(23.22)

and such recurrent formulas

J ′
0(r) = −J1(r), 2J ′

n(r) = Jn−1(r) − −Jn+1(r), n ≥ 1, (23.23)

from the conditions (23.17) and (23.20), by the Weierstrass M-test, we get that
the formula

y(t, r) =
∞∑

m=1

(∫ t

0
Cm(s)e−(λ(2n)

m )2(t−s)ds

)

J2n(λ
(2n)
m r) (23.24)

defines the classical solution of the problem (23.19).
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Then, by using conditions

h0 ∈ C2([0, 1]), h0(0) = h0(1) = 0, (23.25)

∀n ≥ 1 h2n−1 ∈ C2([0, 1]), h2n−1(0) = h2n−1(1) = 0, (23.26)

from the estimate (23.18) with fixed controls

u0(r) =
∞∑

m=1

u(0)
m J0(λ

(0)
m r), u2n−1(r) =

∞∑

m=1

u(2n−1)
m · J2n(λ(2n)

m r), n ≥ 1,

where

|u(0)
m | ≤ C

λ
(0)
m

, |u(2n−1)
m | ≤ C

λ
(2n)
m

, m ≥ 1, (23.27)

the classical solutions of the problems (23.7) and (23.8) have the following form

y0(t, r) =
∞∑

m=1
A(0)
m (h0)J0(λ(0)

m r)e−(λ(0)
m )2t+

+
∞∑

m=1
u(0)
m

∫ t
0 q(s)e

−(λ(0)
m )2(t−s)ds · J0(λ(0)

m r),
(23.28)

y2n−1(t, r) =
∞∑

m=1
A(2n)
m (h2n−1)J2n(λ(2n)

m r)e−(λ(2n)
m )2t+

+
∞∑

m=1
u(2n−1)
m

∫ t
0 q(s)e

−(λ(2n)
m )2(t−s)ds · J2n(λ(2n)

m r).
(23.29)

Then, from the equalities (23.11), (23.12) we obtain the following relations

u(0)
m · ∫ T

0 q(t)e−(λ(0)
m )2(T−t)dt = α(0)

m := A(0)
m (z0) − A(0)

m (h0)e−(λ(0)
m )2T , (23.30)

u(2n−1)
m · ∫ T

0 q(t)e−(λ(2n)
m )2(T−t)dt = α(2n−1)

m

:= A(2n)
m (z2n−1) − A(2n)

m (h2n−1)e−(λ(2n)
m )2T .

(23.31)

From these relations the values of controls u(0)
m , u(2n−1)

m are defined uniquely.
Suppose the following conditions hold

∃q0 > 0 ∀t ∈ [0,T ] q(t) ≥ q0, (23.32)

z0 ∈ C4([0, 1]), z(k)0 (0) = z(k)0 (1) = 0, k = 0, 2, (23.33)

z2n−1 ∈ C4([0, 1]) z(k)2n−1(0) = z(k)2n−1(1) = 0, k = 0, 2. (23.34)

Then, from (23.18), (23.30), (23.31), we get that for the controls
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u(0)
m = α(0)

m

(∫ T

0
q(t)e−(λ(0)

m )2(T−t)dt

)−1

, (23.35)

u(2n−1)
m = α(2n−1)

m

(∫ T
0 q(t)e−(λ(2n)

m )2(T−t)dt
)−1

(23.36)

the following estimates hold

∀m ≥ 1 |u(0)
m | ≤ C

(λ
(0)
m )

3
2

, |u(2n−1)
m | ≤ C

(λ
(2n)
m )

3
2

, (23.37)

and, in particular, from (23.37) it follows (23.27).
Therefore, if the function h satisfies the conditions (23.15), (23.25), (23.26) and

the function z satisfies the conditions (23.15), (23.33), (23.34), the function q satisfies
the condition (23.32), then formulas

u0(r) =
∞∑

m=1

u(0)
m J0(λ

(0)
m r), u2n−1(r) =

∞∑

m=1

u(2n−1)
m J2n(λ

(2n)
m r), (23.38)

define the unique admissible controls in the problems (23.7), (23.11) and (23.8),
(23.12), moreover, the estimate (23.37) holds for them.

To solve the problem (23.9), we introduce the functions

f (2n)
k (r) := 1

r2
J2n(λ

(2n)
k r), k ≥ 1, n ≥ 0. (23.39)

By using the recurrent formula [7]

2n
Jn(r)

r
= Jn−1(r) + Jn+1(r),

we can write each function from (23.39) in the form

f (2n)
k (r) = (λ

(2n)
k )2

(
anJ2n+2(λ

(2n)
k r) + bnJ2n(λ

(2n)
k r) + cnJ2n−2(λ

(2n)
k r)

)
, (23.40)

where the positive constants an, bn, cn depend only on n.
At n > 1 the functions f (2n)

k ∈ C2([0, 1]), f (2n)
k (0) = f (2n)

k (1) = 0. So, from
(23.18) and (23.40) we obtain

∀m ≥ 1 ∀k ≥ 1 |A(2n)
m (f (2n)

k )| ≤ C(λ
(2n)
k )4

(λ
(2n)
m )

3
2

. (23.41)

At n = 1 f (2)
k (1) = 0, f (2)

k (0) = C2 · (λ
(2)
k )2, so, from [8] we obtain
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∀m ≥ 1 ∀k ≥ 1 |A(2)
m (f (2)

k )| ≤ C(λ
(2)
k )4

λ
(2)
m

. (23.42)

Formally, the solution of the problem (23.9) is defined by the formula

y2n(t, r) =
∞∑

m=1
A(2n)
m (h2n)J2n(λ(2n)

m r)e−(λ(2n)
m )2t+

+
∞∑

m=1
u(2n)
m ·

(∫ t
0 q(s)e

−(λ(2n)
m )2(t−s)ds

)
J2n(λ(2n)

m r) + y(t, r),
(23.43)

where y(t, r) is the solution of the problem (23.19) with

Cm(t) = −4n
∞∑

k=1
A(2n)
m (f (2n)

k ) · A(2n)
k (h2n−1)e−(λ

(2n)
k )2t−

−4n
∞∑

k=1
A(2n)
m (f (2n)

k ) · u(2n−1)
k · ∫ t

0 q(s)e
−(λ

(2n)
k )2(t−s)ds.

(23.44)

Let us strengthen the conditions on the functions h and z to the following ones:

h2n−1, z2n−1 ∈ C6([0, 1]), h(k)
2n−1(0) = z(k)2n−1(0) = h(k)

2n−1(1) = z(k)2n−1(1) = 0, k = 0, 5.

(23.45)

Then, from (23.18)

∀m ≥ 1 |A(2n)
k (h2n−1)| ≤ C

(λ
(2n)
k )5+ 1

2

, (23.46)

and for the set {u(2n−1)
m }∞m=1, defined by the formula (23.36), the following formula

holds

∀m ≥ 1 |u(2n−1)
m | ≤ C

(λ
(2n)
m )3+ 1

2

. (23.47)

The estimates (23.41), (23.42), (23.46), (23.47) guarantee the condition (23.20)
for the functions {Cm(t)}∞m=1. So, if h2n satisfies (23.26), u

(2n)
m satisfies (23.27), then

the formula (23.43) defines the classical solution (23.9).
From the equality (23.13) we obtain a relation

u(2n)
m · ∫ T

0 q(t)e−(λ(2n)
m )2(T−t)dt = α(2n)

m := A(2n)
m (z2n) − A(2n)

m (h2n)e−(λ(2n)
m )2T+

+4n
∞∑

k=1
A(2n)
m (f (2n)

k ) · A(2n)
k (h2n−1)e−(λ(2n)

m )2T · ∫ T
0 e((λ(2n)

m )2−(λ
(2n)
k )2)tdt+

+4n
∞∑

k=1
A(2n)
m (f (2n)

k ) · u(2n−1)
k · e−(λ(2n)

m )2T · ∫ T
0

∫ t
0 e

(λ
(2n)
k )2s · e((λ(2n)

m )2−(λ
(2n)
k )2)tdsdt.

(23.48)
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We need to show that the set of functions {u(2n)
m }∞m=1, defined by (23.48), satisfies

the estimate (23.27), i.e.

∀m ≥ 1 |u(2n)
m | ≤ C

λ
(2n)
m

. (23.49)

Due to (23.32) it’s sufficient to prove that

∀m ≥ 1 |α(2n)
m | ≤ C

(λ
(2n)
m )3

. (23.50)

Let the following condition holds

z2n ∈ C4([0, 1]), z(k)2n (0) = z(k)2n (1) = 0, k = 0, 2. (23.51)

Hence A(2n)
m (z2n) satisfies the inequality (23.50). Since h2n satisfies (23.26), i.e.

h2n ∈ C2([0, 1]), h2n(0) = h2n(1) = 0, (23.52)

then A(2n)
m (h2n) · e−(λ(2n)

m )2T satisfies (23.50) also.
Because of inequalities (23.42), (23.46) we get

|4n
∞∑

k=1
A(2n)
m (f (2n)

k ) · A(2n)
k (h2n−1) · e−(λ(2n)

m )2T · ∫ T
0 e((λ(2n)

m )2−(λ
(2n)
k )2)tdt| ≤

≤ C ·
∞∑

k=1

1
λ

(2n)
m

· 1

(λ
(2n)
k )

3
2

· e−(λ(2n)
m )2T · 1

(λ
(2n)
m )2

e(λ(2n)
m )2T ≤ C

(λ
(2n)
m )3

.

(23.53)

From (23.42), (23.47) we obtain

|4n
∞∑
k=1

A(2n)
m (f (2n)k ) · u(2n−1)

k · e−(λ
(2n)
m )2T · ∫ T

0 e(λ
(2n)
m )2t ·

(

e−(λ
(2n)
k )2t · ∫ t

0 e
(λ

(2n)
k )2sds

)

dt| ≤

≤ C ·
∞∑
k=1

(λ
(2n)
k )

1
2

λ
(2n)
m

· e−(λ
(2n)
m )2T · 1

(λ
(2n)
m )2

· 1
(λ

(2n)
k )2

· e(λ(2n)
m )2T ≤ C

(λ
(2n)
m )3

.

(23.54)

Thus, the above mentioned arguments have proved the following theorem.

23.4 The Main Result

The main result of this paper has the following formulation:

Theorem 1 Let in the problem (23.1)–(23.4) the following conditions hold

q ∈ C([0, 1]), ∃q0 > 0 ∀t ∈ [0,T ] q(t) ≥ q0, (23.55)
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for some N ≥ 0

h(r, θ) =
2N∑

n=0

hn(r)ϕn(θ), z(r, θ) =
2N∑

n=0

zn(r)ϕn(θ), (23.56)

h0 ∈ C2([0, 1]), h0(0) = h0(1) = 0, k = 0, 2, (23.57)

z0 ∈ C4([0, 1]), z(k)0 (0) = z(k)0 (1) = 0, k = 0, 2, (23.58)

∀n = 1,N h2n ∈ C2([0, 1]), h2n(0) = h2n(1) = 0, k = 0, 2, (23.59)

∀n = 1,N z2n ∈ C4([0, 1]), z(k)2n (0) = z(k)2n (1) = 0, k = 0, 2, (23.60)

h2n−1 ∈ C6([0, 1]), h(k)
2n−1(0) = h(k)

2n−1(1) = 0, k = 0, 4, (23.61)

z2n−1 ∈ C6([0, 1]), z(k)2n−1(0) = z(k)2n−1(1) = 0, k = 0, 4. (23.62)

Then the optimal control problem (23.1)–(23.4) has the unique classical solution

u(r, θ) =
2N∑

n=0

un(r)ϕn(θ), y(t, r, θ) =
2N∑

n=0

yn(t, r)ϕn(θ),

where {un, yn}2Nn=0 canbe found from the the problems (23.7)–(23.9) and the conditions
(23.11)–(23.13).

23.5 Conclusion

In this chapter, in the class of stationary controls we prove the classical solvability
of the optimal control problem with minimum energy for parabolic equation with
nonlocal boundary conditions in the sectorial two-dimensional domain.
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Chapter 24
Optimality Conditions for L1-Control
in Coefficients of a Degenerate Nonlinear
Elliptic Equation

Peter I. Kogut and Olha P. Kupenko

Abstract In this article, we study an optimal control problem for a nonlinear elliptic
equation of p-Laplace type with a coefficient in the leading order of differentiation
taken as control in L1(Ω). We allow such controls to vanish on zero Lebesgue sets.
As a result, we deal with degenerate elliptic Dirichlet problems that can exhibit the
Lavrentiev phenomenon and non-uniqueness of weak solutions. Moreover, the non-
differentiability of the term |∇y|p−2∇y at 0 implying the non-differentiability of the
state y(u) with respect to the control necessitates refined concepts in order to derive
optimality conditions.

24.1 Introduction

Themain goal of this paper is to derive optimality conditions to the following optimal
control problem

Minimize

{

I(u, y) =
∫

Ω

[
|y − yd |p + |∇y|pu(x)

]
dx

}

(24.1)
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subject to the constraints

u ∈ Aad ⊂ BV (Ω), y ∈ W 1,1
0 (Ω), (24.2)

− div
(
u(x)|∇y|p−2∇y

) = f in Ω, (24.3)

y = 0 on ∂Ω, (24.4)

whereAad is a class of admissible controls,Ω ⊂ R
N is a bounded open domain with

a Lipschitz boundary, f ∈ Lq(Ω), yd ∈ Lp(Ω), p ≥ 2, q = p/(p − 1), and N ≥ 2.
We consider below some special description of the class of admissible controls Aad .
Namely, we suppose that the controls are L1-integrable functions such that u(x) > 0
for a. e. x ∈ Ω and u + u−1/(p−1) ∈ L1(Ω). The set Aad has an empty L1-topological
interior. We give the precise definition of such controls in Sect. 24.2 and show in
Sect. 24.4 that the optimal control problem (24.1)–(24.4) admits a solution. We point
out that this problem can exhibit the Lavrentiev phenomenon and non-uniqueness of
weak solutions (see, for instance, [7, 33, 34]). At present, there are many different
concepts of solutions for degenerate partial differential equations: weak solutions,
H-solutions, W -solutions, variational solutions, T -solutions, shift T -solutions, and
others. In general, the mapping

admissible control �→ the corresponding solution of BVP

is multivalued. As a result, the corresponding optimal control problem can be stated
in different formats according to the space-setting. We study the optimal control
problemmentioned above in the class of weak solutions in the sense of Minty. Using
the direct method in the calculus of variations, we discuss existence of solutions to
this optimal control problem.

Optimal control in coefficients for partial differential equations is a classical sub-
ject initiated by Lurie [26]. Murat [28] showed examples of non-existence for such
problems. Since the range of OCPs in coefficients is very wide, including optimal
shape design problems, problems in structural mechanics, andmany others, this topic
has been widely studied by many authors. In particular, it leads to the possibility to
optimize material properties what are extremely important for material sciences.
However, most of the results and methods rely on linear PDEs, while only very few
articles deal with nonlinear problems (see O. Kogut [8] and P. Kogut and Leugering
[17]). Another point of interest is degeneration in the coefficients which is typically
avoided by assuming lower bounds on the coefficients. Even though numerous arti-
cles are devoted to variational and non-variational approaches to problems related to
(24.3) and (24.4), only few deal with optimal control problems for degenerate partial
differential equations (see, for example, [3, 4, 17, 19]). In Kogut and Leugering [18]
and in Kupenko andManzo [23, 24], this problem has been considered in the context
of linear problems. The nonlinear case was considered in [9, 20, 21].

The paper is organized as follows. In Sect. 24.2, we give some preliminaries and
prescribe the class of admissible controls to problem (24.1)–(24.4). In Sects. 24.3 and
24.4, we give a precise statement of optimal control problem (24.1)–(24.4) and show
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existence of a solution. The aim of Sect. 24.5 is to discuss the so-called directional
stability properties of weighted Sobolev spaces and their application to the study
of asymptotic behavior of minimizing sequences. In Sect. 24.6, we provide results
concerning the differentiability properties of the Lagrange functional associated with
problem (24.1)–(24.4) and show that it admits a Gâteaux derivative with respect to
so-called non-degenerate directions h ∈ W 1,p

0 (Ω, u dx) in weighted Sobolev spaces.
In Sect. 24.7, we discuss the formal approach in deriving first-order optimality con-
ditions for optimal control problem (24.1)–(24.4). In order to derive an optimality
system, we apply the Lagrange principle. It is well known that the proof of this prin-
ciple is different for different classes of optimal control problems (see, for instance,
[5, 6, 20]). The complexity of this procedure significantly depends on the form
of the extremal problem under consideration. In this article, we deal with the case
when we cannot apply the well-known classical results (see, for instance, [13, 16]),
because for a given distribution f ∈ Lq(Ω), the mapping u �→ y(u) is not Fréchet
differentiable on the class of admissible controls, in general, and the class Aad has
an empty topological interior. With that in mind, we apply an indirect approach to
derive optimality conditions which is based on the notion of a quasi-adjoint state ψε

to an optimal solution y0 ∈ W 1,p
0 (Ω, u0 dx), first proposed for non-degenerate linear

problems by Serovajskiy [31]). In order to derive optimality conditions in the frame-
work of more appropriate assumptions, we provide in Sect. 24.8 the analysis for the
corresponding variational problem forψθ and describe the asymptotic behavior of its
solutions as the parameter θ tends to zero. As a result, we give sufficient conditions in
order to show that the optimality system for the original problem can be recovered in
an explicit form. In Sect. 24.9, following the well-known Hardy–Poincaré inequality,
we study the well-posedness of variational problem for the adjoint system and show
that the adjoint state, in spite of possible degeneration, can be defined in a uniqueway.

24.2 Notation and Preliminaries

Let Ω be a bounded open subset of RN (N ≥ 1) with a Lipschitz boundary. Let
� ⊂ Ω be a manifold of positive (N − 1)-dimensional measure. Let C∞

0 (RN ;�) ={
ϕ ∈ C∞

0 (RN ) : ϕ = 0 on �
}
.We define the Banach spaceH1

0 (Ω;�) as the closure

of C∞
0 (RN ;�) with respect to the norm ‖y‖ = (∫

Ω
‖∇y‖2

RN dx
)1/2

. Let H−1(Ω;�)

be the dual space to H1
0 (Ω;�). For any subset E ⊂ Ω , we denote by |E| its N-

dimensional LebesguemeasureL N (E). Let u : Ω → R be an integrable function on
Ω such thatu(x) ≥ 0 for a. a. x ∈ Ω . Then,u gives rise to ameasure on themeasurable
subsets ofΩ through integration:u(E) = ∫E u dx formeasurable setsE ⊂ Ω . Letpbe
a real number such that 2 ≤ p < ∞.Wewill use the standard notationLp(Ω, u dx) for

the set of measurable functions f on Ω such that ‖f ‖Lp(Ω,u dx) =
( ∫

Ω
|f |pu dx

)1/p
<

+∞. We say that a function u : Ω → R+ is a weight on Ω if

u(x) > 0 a.e. in Ω and u + u−1/(p−1) ∈ L1(Ω), (24.5)
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Note that in this case the elements of Lp(Ω, u dx) are Lebesgue integrable on
Ω . To each weight function u, we may associate two weighted Sobolev spaces
Wu = W 1,p

0 (Ω, u dx) and Hu = H1,p
0 (Ω, u dx), where Wu is the set of functions

y ∈ W 1,1
0 (Ω) for which the norm

‖y‖1,p,u =
( ∫

Ω

(
yp + u |∇y|p) dx

)1/p
(24.6)

is finite, and Hu is the closure of C∞
0 (Ω) in Wu. Note that due to the estimates

∫

Ω

|y| dx ≤
( ∫

Ω

|y|p dx
)1/p|Ω|p/(p−1) ≤ C‖y‖1,p,u, (24.7)

∫

Ω

N∑

i=1

∣
∣
∣
∣
∂y

∂xi

∣
∣
∣
∣ dx ≤ C1

(∫

Ω

u|∇y|p dx

)1/p (∫

Ω

u−1/(p−1) dx

)p/p−1

≤ C‖y‖1,p,u,

(24.8)

where the space Wu is complete with respect to the norm ‖ · ‖1,p,u. It is clear that
Hu ⊂ Wu,

(
Wu, ‖ · ‖1,p,u

)
,
(
Hu, ‖ · ‖1,p,u

)
are reflexive separable Banach spaces and

that the embedding Wu ↪→ L1(Ω) is compact. If u is bounded between two positive
constants, or u belongs to the Muckenhoupt class Ap (see below), then it is easy to
verify that Wu = Hu = W 1,p

0 (Ω). However, for a “typical” weight u, the space of
smooth functions C∞

0 (Ω) is not dense in Wu. Hence, the identity Wu = Hu is not
always valid (for the corresponding examples, we refer to [7, 33]).

Remark 24.1 Werecall that the dual space of theweightedSobolev spaceHu is equiv-
alent to H∗

u = W −1,q(Ω, u1−q dx), where q is the conjugate of p, i.e., q = p
p−1 (for

more details, see [10]).Moreover, if there exists a value ν ∈
(

N
p ,+∞

)
∩
[

1
p−1 ,+∞

)

such that u−ν ∈ L1(Ω), then the expression (see [10, pp. 46]):

||y||Hu =
[∫

Ω

|∇y|p dx

]1/p

(24.9)

can be considered as a norm on Hu and it is equivalent to the norm (24.6). Moreover,
in this case, the embedding Hu ↪→ Lp(Ω) is compact.

Let {aε}ε>0 be a bounded sequence in L1(Ω). We recall that {aε}ε>0 is called
equi-integrable if for any δ > 0, there is τ = τ(δ) such that

∫
S |aε| dx < δ for every

measurable subset S ⊂ Ω of Lebesgue measure |S| < τ . Then, the following asser-
tions are equivalent:
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(i) a sequence {aε}ε>0 is weakly compact in L1(Ω);
(ii) the sequence {aε}ε>0 is equi-integrable.

Theorem 24.1 (Scheffe’s Theorem) If aε ≥ 0 for all ε > 0, aε → a almost every-
where in Ω , and

∫
Ω

aε dx → ∫
Ω

a dx, then aε → a in L1(Ω).

Theorem 24.2 (Lebesgue’s Theorem) If a sequence {aε}ε>0 ⊂ L1(Ω) is equi-integ-
rable and aε → a almost everywhere in Ω , then aε → a in L1(Ω;SN ).

The space of all nonnegative Radon measures on Ω will be denoted by M+(Ω).
If μ is a nonnegative Radon measure on Ω , we will use Lr(Ω, dμ), 1 ≤ r ≤ ∞
to denote the usual Lebesgue space with respect to the measure μ with the corre-
sponding norm ‖f ‖Lr(Ω,dμ) = (∫

Ω
|f (x)|r dμ

)1/r
. By BV (Ω), we denote the space

of all functions in L1(Ω) with bounded variation. Under the norm ‖f ‖BV (Ω) =
‖f ‖L1(Ω) + ∫

Ω
|Df |, BV (Ω) is a Banach space (see [15]). It is well known that

uniformly bounded set in the BV -norm is relatively compact in L1(Ω). Moreover, a
sequence {fk}∞k=1 ⊂ BV (Ω) weakly* converges to some f ∈ BV (Ω), and we write

fk
∗

⇀ f if and only if the following conditions hold: fk → f strongly in L1(Ω),

and Dfk
∗

⇀ Df in M(Ω;RN ). In the proposition below, we provide a compactness
result related to this convergence, together with the lower semicontinuity property
(see [15]):

Proposition 24.1 Let {fk}∞k=1 be a sequence in BV (Ω) strongly converging to some
f in L1(Ω) and satisfying supk∈N

∫
Ω

|Dfk| < +∞. Then,

(i) f ∈ BV (Ω) and
∫
Ω

|Df | ≤ lim infk→∞
∫
Ω

|Dfk| ; (ii) fk
∗

⇀ f in BV (Ω).

Let {μk}k∈N, μ be Radon measures such that μk
∗

⇀ μ in M+(Ω), i.e.,

lim
k→∞

∫

Ω

ϕ dμk =
∫

Ω

ϕ dμ ∀ϕ ∈ C0(R
N ). (24.10)

Let us recall the definition and main properties of convergence in the variable Lp-
space (see [34]).

1. A sequence
{
vk ∈ Lp(Ω, dμk)

}
is called bounded if lim sup

k→∞

∫

Ω

|vk|p dμk < +∞.

2. A bounded sequence
{
vk ∈ Lp(Ω, dμk)

}
converges weakly to v ∈ Lp(Ω, dμ), if

lim
k→∞

∫

Ω

vkϕ dμk =
∫

Ω

vϕ dμ ∀ϕ ∈ C∞
0 (Ω),

and it is written as vk ⇀ v in Lp(Ω, dμk).
3. Strong convergence vk → v in Lp(Ω, dμk) means that v ∈ Lp(Ω, dμ) and

lim
k→∞

∫

Ω

vkzk dμk =
∫

Ω

vz dμ as zk ⇀ z in Lq(Ω, dμk), q = p/(p − 1).

(24.11)
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In particular, if dμk = uk dx, 0 ≤ uk ⇀ u in L1(Ω), and vk ⇀ v in Lp(Ω, uk dx),
then vkuk ⇀ vu in L1(Ω), i.e.,

lim
k→∞

∫

Ω

ϕvkuk dx =
∫

Ω

ϕvu dx, ∀ϕ ∈ C∞
0 (Ω), (24.12)

and if a, b ∈ L∞(Ω), a(x) ≥ α > 0 a.e. in Ω , dμk = uk dx, and 0 ≤ uk ⇀ u in
L1(Ω), then

vk ⇀ v in Lp(Ω, uk dx) implies bvk ⇀ bv in Lp(Ω, uk dx), (24.13)

vk ⇀ v in Lp(Ω, uk dx) if and only if avk ⇀ av in Lp(Ω, uk dx). (24.14)

In spite of the fact that the following property of convergence in a variable-
weighted Lp-space is rather obvious, it plays an important role in nonlinear problems
and allows us to extend the class of admissible functions in relation (24.10). Let
dμk = uk dx, where 0 ≤ uk ⇀ u in L1(Ω), and let ϕ ∈ C∞

0 (Ω;RN ) be an arbitrary
vector-valued function. Then,

|ϕ|p−2ϕ → |ϕ|p−2ϕ in Lp(Ω, dμk)
N ; in particular lim

k→∞

∫

Ω

|ϕ|p dμk =
∫

Ω

|ϕ|p dμ.

(24.15)

Let m, α, δ, γ ∈ R+ be some positive values, and let ξ1, ξ2 be the given elements
of L1(Ω) satisfying the conditions

0 ≤ ξ1(x) ≤ ξ2(x) a.e. in Ω, (24.16)

and there exists a value ν ∈
(

N

p
,+∞

)

∩
[

1

p − 1
,+∞

)

such that ξ−ν
1 ∈ L1(Ω).

(24.17)

We assume that there exists a closed subdomain Q ⊂ Ω with nonzero Lebesgue
measure such that the Hausdorff–Pompeiu distance between the closed sets Q and
Ωc := R

N\Ω satisfies condition

dist (Ωc, Q) ≥ δ, (24.18)

the “volume” of the setΩ\Q is small enough, i.e., |Ω\Q| ≤ δ, (24.19)

ξ1, ξ2 ∈ L∞(Ω\Q), and ξ1(x) ≥ α > 0 a.e. in Ω\Q. (24.20)

We define the class of admissible BV -controls Aad as follows:

Aad =
{

u ∈ BV (Ω)

∣
∣
∣

∫

Ω

u dx = m,

∫

Ω

|Du| ≤ γ, ξ1(x) ≤ u(x) ≤ ξ2(x) a.e. in Ω
}
.

(24.21)
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It is clear that Aad is a convex, relatively compact subset of L1(Ω) with an empty
topological interior. Hereinafter, we assume that the set of admissible controls Aad

is always non-empty.

Remark 24.2 As a pathological example of function ξ1 satisfying the properties
(24.16) and (24.17), we consider:

ξ1(x) = (ε + |fK(x)|)−1/ν in Q, and ξ1(x) = α in Ω\Q, (24.22)

where ε > 0 is a positive value, and fK : Q → R is an L1-function that is essen-
tially unbounded on every non-empty open subset of Q (for the details, we refer
to Kovalevsky [22]). Since fK does not have a pointwise majorant, it follows that
ξ1, given by (24.22), is nonnegative, ξ1 ∈ L∞(Ω), ‖ξ1‖L∞(Ω) ≤ max{ε−1/ν, α}, and
ξ1 : Ω → R vanishes almost everywhere in Q.

Letu ∈ Aad be an admissible control such thatHu �= Wu, and letVu be an intermediate
space Hu ⊆ Vu ⊆ Wu. Let V ∗

u be the dual space. We say that the nonlinear operator
Δp(u, ·) : Vu → V ∗

u is the generalized p-Laplacian if it has a representation

Δp(u, y) = −div
(

u(x)|∇y|p−2∇y
)

, where |∇y|p−2 := |∇y|p−2
RN =

⎛

⎝
N∑

i=1

∣
∣
∣
∣
∂y

∂xj

∣
∣
∣
∣

2
⎞

⎠

p−2
2

,

or via the pairing 〈Δp(u, y), v〉V ∗
u ;Vu =

∫

Ω

u(x)|∇y|p−2 (∇y,∇v)RN dx, ∀ v ∈ Vu. It is

easy to see that if the condition (24.17) holds true, then for every admissible control
u ∈ Aad and for Vu = Hu, the operator Δp(u, ·) : Hu → H∗

u = W −1,q(Ω, u1−q dx)
turns out to be coercive, i.e.,

〈Δp(u, y), y〉H∗
u ;Hu =

∫

Ω

|∇y|pu(x) dx
by Remark 24.1= ‖y‖p

Hu
,

and semicontinuous, where by the semicontinuity property we mean the continuity
of the scalar function t → 〈Δp(u, y + tw), v〉H∗

u ;Hu for all y, v, w ∈ Hu. Indeed, in
order to obtain the required relation

lim
t→0

〈Δp(u, y + tw), v〉H∗
u ;Hu = 〈Δp(u, y), v〉H∗

u ;Hu ,

it is enough to observe that |∇y + t∇w|p−2 (∇y + t∇w) → |∇y|p−2∇y almost every-
where in Ω and to recall Lebesgue’s dominated convergence theorem. Moreover, in
this case, the p-Laplacian Δp(u, y) is a strictly monotone operator on Hu for each
u ∈ Aad . Indeed, having applied the estimate
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∫

Ω

|∇y|p−1|∇v|u(x) dx ≤
(∫

Ω

|∇y|pu dx

)(p−1)/p (∫

Ω

|∇v|pu dx

)1/p

=: ‖y‖p−1
Hu

‖v‖Hu ,

it is easy to verify

〈
Δp(u, y) − Δp(u, v), y − v

〉
H∗

u ;Hu
≥ 22−p

∣
∣
∣‖y‖Hu − ‖v‖Hu

∣
∣
∣
p

> 0 ∀ y, v ∈ Hu, y �= v.

Remark 24.3 By well-known existence results for nonlinear elliptic equations with
strictlymonotone semicontinuous coercive operators (see [14, 25]), one can conclude
that for every u ∈ Aad and f ∈ H∗

u = W −1,q(Ω, u1−q dx), the nonlinear Dirichlet
boundary value problem

Δp(u, y) = f in Ω, y ∈ Hu, (24.23)

admits a unique weak solution in Hu, or shortly, Hu-solution. However, if Hu �= Wu

the generalized p-Laplacian Δp(u, ·) : Vu → V ∗
u may not in general admit a weak

solution for an intermediate space Vu with Hu ⊂ Vu ⊆ Wu.

Let us recall that for a given control u ∈ Aad , a function y is the Vu-solution of
(24.23) if

y ∈ Vu, (24.24)
∫

Ω

u(x)|∇y|p−2 (∇y,∇v)RN dx = 〈f , v〉V ∗
u ;Vu , ∀ v ∈ Vu. (24.25)

24.3 Setting of the Optimal Control Problem

Let yd ∈ Lp(Ω) and f ∈ Lq(Ω) be the given distributions, where q = p/(p − 1) is
the conjugate of p ≥ 2. The optimal control problem we consider in this paper is to
minimize the discrepancy between distribution yd ∈ Lp(Ω) and the solution of the
following boundary value problem

Δp(u, y) = f in Ω, y = 0 on ∂Ω, (24.26)

by choosing an appropriate weight function u ∈ Aad , i.e.,

u ∈ BV (Ω),

∫

Ω

u dx = m,

∫

Ω

|Du| ≤ γ, ξ1(x) ≤ u(x) ≤ ξ2(x) a.e. in Ω,

(24.27)
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where functions ξ1 and ξ2 satisfy the conditions (24.16)–(24.20). More precisely, we
are concerned with the following optimal control problem

Minimize

{

I(u, y) =
∫

Ω

[
|y − yd |p + |∇y|pu(x)

]
dx

}

(24.28)

subject to the constraints (24.26) and (24.27) and (24.16)–(24.20).

Definition 24.1 We say that for a given admissible control u ∈ Aad , y ∈ Wu :=
W 1,p

0 (Ω, u dx) is a weak solution (in the sense of Minty) to problem (24.26) if

∫

Ω

u(x)|∇ϕ|p−2 (∇ϕ,∇ϕ − ∇y)RN dx ≥
∫

Ω

f (ϕ − y) dx, ∀ϕ ∈ C∞
0 (Ω).

(24.29)

Remark 24.4 As follows from this definition, the set ofweak solutions to the problem
(24.26) is convex and closed. Moreover, a function y ∈ Vu, Hu ⊆ Vu ⊆ Wu, is a Vu-
solution to (24.26) (see relations (24.24) and (24.25)) if and only if y satisfies the
inequality (24.29) for each ϕ ∈ Vu (for the details, we refer to Propositions 3.2 in
[30]). Hence, taking ϕ = y in (24.25), we arrive at the energy equality

∫

Ω

|∇y|pu dx =
∫

Ω

fy dx. (24.30)

In particular, if Vu = Hu, then the energy equality (24.30) immediately leads us to
the following a priori estimate:

‖y‖Hu ≤ C‖f ‖1/(p−1)
Lq(Ω) , ∀ u ∈ Aad, (24.31)

where constant C comes from Friedrichs inequality. It is worth to note that this
estimate is valid for Hu-solutions only, and we have no a priori estimate for other
types of solutions like weak solutions (see Definition 24.1) or Vu-solutions.

It is clear that the question of uniqueness of aweak solution leads us to the problem
of density of the subspace of smooth functions C∞

0 (Ω) in Wu for u ∈ Aad . However,
aswas indicated in [36], for a “typical”weight functionu ∈ Aad , the subspaceC∞

0 (Ω)

is not dense in Wu, and hence, no uniqueness of weak solutions can be expected (for
more details and other types of solutions, we refer to [2, 34, 36]). Taking this fact
into account, we introduce the set of admissible pairs to the problem (24.26)–(24.28)

Ξ = {(u, y) | u ∈ Aad, y ∈ Wu, (u, y) are related by inequality (24.29) } .

(24.32)
Note that due to the assumption (24.17), the set Ξ is always non-empty (see Remark
24.3). Therefore, in this case, the minimization problem

inf
(u,y)∈Ξ

I(u, y) (24.33)
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is regular.Moreover, aswe show inTheorem24.5under someadditional assumptions,
the structure of the set Ξ can be fundamentally simplified. In view of this, we adopt
the following concept.

Definition 24.2 We say that a pair (u0, y0) ∈ BV (Ω) × W 1,p
0 (Ω, u0 dx) is a weak

optimal solution to the problem (24.26)–(24.28) if (u0, y0) is a minimizer for (24.33).

24.4 Existence of Weak Optimal Solutions

Our prime interest in this section is the solution existence in the class of weak
solutions to the optimal control problem (24.26)–(24.28). To this end, we provide
some auxiliary results.

Lemma 24.1 Let {uk}k∈N be a sequence of controls in Aad such that uk → u in
L1(Ω). Then, u ∈ Aad and

u−1/(p−1)
k → u−1/(p−1) strongly in L1(Ω), (24.34)

(uk)
−1 → u−1 in the variable space Lq(Ω, uk dx) with q = p/(p − 1). (24.35)

Proof By the properties of the set of admissible controls Aad , we have u−ν
k ≤ ξ−ν

1
for every k ∈ N, where ν is defined by (24.17). Hence, the sequence

{
u−ν

k

}
k∈N is

equi-integrable on Ω . Then, up to a subsequence, we have uk → u a.e. in Ω , and
therefore, Lebesgue’s theorem (see Theorem 24.2) implies

u−ν
k → u−ν in L1(Ω). (24.36)

In view of the estimate (here, (p − 1)ν ≥ 1 by (24.17))

∫

Ω

u−1/(p−1)
k dx ≤ ‖u−ν

k ‖
1

(p−1)ν

L1(Ω)
|Ω| (p−1)ν−1

(p−1)ν , ∀ k ∈ N,

condition (24.36) guarantees that the sequence
{

u−1/(p−1)
k

}

k∈N
is bounded in L1(Ω)

and equi-integrable. Since u−1/(p−1)
k → u−1/(p−1) a.e. in Ω , by Lebesgue’s theorem,

we arrive at the required assertion (24.34).
Let ϕ ∈ C∞

0 (Ω) be a fixed function. Since by initial suppositions

sup
k∈N

∫

Ω

(
u−1

k

)q
uk dx = sup

k∈N

∫

Ω

u−1/(p−1)
k dx < +∞,

it follows that the sequence
{
u−1

k

}
k∈N is bounded in Lq(Ω, ukdx). Then, the equality

∫

Ω

u−1
k ϕ uk dx =

∫

Ω

ϕ dx =
∫

Ω

u−1ϕ u dx ∀k ∈ N
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leads us to theweak convergence u−1
k ⇀ u−1 in Lq(Ω, ukdx). Taking into account the

strong convergence u−1/(p−1)
k → u−1/(p−1) in L1(Ω) and the fact that Ω is a bounded

domain, we get

lim
k→∞

∫

Ω

(
u−1

k

)q
uk dx = lim

k→∞

∫

Ω

u−1/(p−1)
k dx =

∫

Ω

u−1/(p−1) dx =
∫

Ω

(
u−1
)q

u dx.

Hence, by the strong convergence criterion in the variable space Lq(Ω, ukdx) (see
[35]), we arrive at the property (24.35). It remains to note that by Proposition 24.1,
the set Aad is sequentially closed with respect to the strong convergence in L1(Ω).
Hence, u ∈ Aad and this concludes the proof.

As a direct consequence of this result, we can prove the following assertions.

Lemma 24.2 Let {uk}k∈N and {wk}k∈N be sequences such that

uk ∈ Aad, ∀ k ∈ N, uk → u in L1(Ω), (24.37)

wk ∈ Lp(Ω, uk dx), ∀ k ∈ N, wk ⇀ w in Lp(Ω, uk dx). (24.38)

Then, wk, w ∈ L1(Ω) and wk ⇀ w in L1(Ω) in the following sense

lim
k→∞

∫

Ω

wkϕ dx =
∫

Ω

wϕ dx, ∀ϕ ∈ C∞
0 (Ω). (24.39)

Proof Due to the estimate

∫

Ω

wk dx =
∫

Ω

u−1/p
k wku1/p

k dx ≤ ‖wk‖Lp(Ω,uk dx)‖u−1/(p−1)
k ‖(p−1)/p

L1(Ω)

≤ ‖wk‖Lp(Ω,uk dx)‖u−ν
k ‖

1
pν

L1(Ω)
|Ω| (p−1)ν−1

pν

≤
(

sup
k∈N

‖wk‖Lp(Ω,uk dx)

)

‖ξ−ν
1 ‖

1
pν

L1(Ω)
|Ω| (p−1)ν−1

pν < +∞,

the inclusions wk, w ∈ L1(Ω) are obvious. It remains to prove the convergence
(24.39). By Lemma 24.1, we have: (uk)

−1 → u−1 in variable space Lq(Ω, ukdx).
Therefore,

∫

Ω

wkϕ dx =
∫

Ω

u−1
k wkϕuk dx

by (24.11)→
∫

Ω

u−1wϕu dx =
∫

Ω

wϕ dx

for each ϕ ∈ C∞
0 (Ω). The proof is complete.

Lemma 24.3 Let {uk}k∈N ⊂ Aad and {yk ∈ Wuk }k∈N be sequences such that

uk → u in L1(Ω), yk ⇀ y in Lp(Ω), ∇yk ⇀ v in Lp(Ω, uk dx)N . (24.40)

Then, y ∈ Wu and ∇y = v.
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Proof By estimates (24.7) and (24.8) and Lemma 24.2, we conclude: yk ∈ W 1,1
0 (Ω)

for all k ∈ N, and

∫

Ω

ykϕ dx →
∫

Ω

yϕ dx, ∀ϕ ∈ C∞
0 (Ω), and

∫

Ω

(∇yk, ψ)RN dx →
∫

Ω

(v, ψ)RN dx, ∀ψ ∈ C∞
0 (Ω)N , where v ∈ L1(Ω)N .

Hence, y ∈ W 1,1
0 (Ω) and ∇y = v by completeness of the Sobolev space W 1,1

0 (Ω).
It remains to note that ‖y‖1,p,u < +∞ by (24.40). The proof is complete.

Wenowconcentrate on the topological properties of the set of admissible solutions
Ξ to the problem (24.26)–(24.28).

Definition 24.3 A sequence {(uk, yk) ∈ Ξ}k∈N is called bounded if

sup
k∈N

[‖uk‖BV (Ω) + ‖yk‖Lp(Ω) + ‖∇yk‖Lp(Ω,ukdx)N

]
< +∞.

Definition 24.4 We say that a bounded sequence {(uk, yk) ∈ Ξ}k∈N of admissible
solutions τ -converges to a pair (u, y) ∈ BV (Ω) × W 1,1

0 (Ω) if

(a) uk
∗

⇀ u in BV (Ω);
(d) yk ⇀ y in Lp(Ω);
(e) ∇yk ⇀ ∇y in the variable space Lp(Ω, ukdx)N .

Note that due to assumptions (24.5) and estimates like (24.7) and (24.8), the
inclusion y ∈ W 1,1

0 (Ω) is obvious.
The following result is crucial for our further analysis.

Theorem 24.3 Let {(uk, yk)}k∈N ⊂ Ξ be a bounded sequence. Then, there is a pair
(u, y) ∈ BV (Ω) × W 1,1

0 (Ω) such that up to a subsequence, (uk, yk)
τ−→ (u, y) and

(u, y) ∈ Ξ .

Proof By compactness criterion for the weak convergence in variable spaces, there
exists a subsequence of {(uk, yk) ∈ Ξ}k∈N, still denoted by the same indices, and
functions u ∈ BV (Ω), y ∈ Lp(Ω), and v ∈ Lp(Ω, u dx)N such that

uk → u in L1(Ω), (24.41)

yk ⇀ y inLp(Ω), ∇yk ⇀ v in the variable space Lp(Ω, uk dx)N . (24.42)

Then, by Lemmas 24.1 and 24.3, we have: u ∈ Aad , y ∈ Wu, and ∇y = v. It remains
to show that the τ -limit pair (u, y) is related by inequality (24.29). With that in mind,
we write down the Minty relation for (uk, yk):

∫

Ω

|∇ϕ|p−2 (∇ϕ,∇ϕ − ∇yk)RN uk dx ≥
∫

Ω

f (ϕ − yk) dx, ∀ϕ ∈ C∞
0 (Ω).

(24.43)
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Taking into account properties (24.41) and (24.42) and the fact that

lim
k→∞

∫

Ω

|∇ϕ|p−2 (∇ϕ,∇ϕ)RN uk dx
by (24.15)2=

∫

Ω

|∇ϕ|p−2 (∇ϕ,∇ϕ)RN u dx,

lim
k→∞

∫

Ω

|∇ϕ|p−2 (∇ϕ,∇yk)RN uk dx
by (24.15)1=

∫

Ω

|∇ϕ|p−2 (∇ϕ,∇y)RN u dx

as a product of strongly and weakly convergent sequences, we can pass to the limit
in relation (24.43) as k → ∞. As a result, we arrive at the inequality (24.29), which
means that y ∈ Wu is a weak solution to the boundary value problem (24.26) in the
sense ofMinty. This fact togetherwith u ∈ Aad leads us to the conclusion: (u, y) ∈ Ξ ,
i.e., the limit pair (u, y) is admissible to optimal control problem (24.26)–(24.28).
The proof is complete.

Remark 24.5 If the τ -limit pair (u, y) in the statement of Theorem 24.3 is such that
y ∈ Hu, then it is equivalent to state that this pair satisfies the energy equality (24.30).
Indeed, if y ∈ Hu, then by density of C∞

0 (Ω) in Hu, we can take any ϕ ∈ Hu for a test
function in (24.29). Therefore, after taking ϕ = y ± tw, w ∈ Hu, t > 0 and passing
to the limit in this relation as t → 0, we obtain

±
∫

Ω

u(x)|∇y ± t∇w|p−2 (∇y ± t∇w,∇w)RN dx ≥ ±
∫

Ω

fw dx, ∀ w ∈ Hu

which obviously yields

∫

Ω

u(x)|∇y|p−2 (∇y,∇w)RN dx =
∫

Ω

fw dx, ∀ w ∈ Hu.

So, in this case, the energy equality (24.30) holds true.

In conclusion of this section, we give the existence result for weak optimal pairs
to the problem (24.26)–(24.28).

Theorem 24.4 Let yd ∈ Lp(Ω) and f ∈ Lq(Ω) be the given functions. Then, optimal
control problem (24.26)–(24.28) admits at least one weak solution (uopt, yopt) ∈ Ξ ⊂
BV (Ω) × W 1,1

0 (Ω), yopt ∈ Wuopt .

Proof Since the set of admissible pairs Ξ is non-empty and the cost functional is
bounded below on Ξ , it follows that there exists a minimizing sequence {(uk, yk) ∈
Ξ}k∈N to the problem (24.33). Then, the inequality

inf
(u,y)∈Ξ

I(u, y) = lim
k→∞

∫

Ω

[
|yk(x) − yd(x)|p + |∇yk(x)|puk

]
dx < +∞,

implies that there is a constant C > 0 such that

sup
k∈N

‖yk‖Lp(Ω) ≤ C, sup
k∈N

‖∇yk‖Lp(Ω;ukdx)N ≤ C.
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Hence, in view of the definition of the class Aad , the sequence {(uk, yk) ∈ Ξ}k∈N
is bounded in the sense of Definition 24.3. Hence, by Theorem 24.3, there exist
elements u∗ ∈ Aad and y∗ ∈ Wu∗ such that up to a subsequence, (uk, yk)

τ−→ (u∗, y∗)
and (u∗, y∗) ∈ Ξ . To conclude the proof, it is enough to observe that by properties
of weak convergence in variable spaces, the cost functional I is sequentially lower
τ -semicontinuous. Thus,

I(u∗, y∗) ≤ lim inf
k→∞

I(uk, yk) = inf
(u, y)∈ Ξ

I(u, y).

Hence, (u∗, y∗) is an optimal pair, and we arrive at the required conclusion.

24.5 “Directional Stability” of Weighted Sobolev Spaces

In this section, we proceed to discuss the limit properties of sequences of admissible
solutions {(uk, yk)}k∈N ⊂ Ξ . As Theorem 24.3 indicates, if (u, y) ∈ Ξ is a τ -limit of
the sequence {(uk, yk)}k∈N ⊂ Ξ as k → ∞, then it is not known in general, whether
this pair is related by y ∈ Vu for some intermediate space Vu, Hu ⊆ Vu ⊆ Wu. In
other words, what kind of conditions guarantee that the τ -limit pair (u, y) ∈ Ξ is
such that the function y is Vu-solution to the boundary problem (24.26)? Since for a
given u the set of weak solutions to the problem (24.26) is not a singleton, in general
(see Remark 24.4), it is clear that the fulfillment of the condition y ∈ Vu depends
on the choice of the sequence {(uk, yk)}k∈N ⊂ Ξ (for the details and counterexam-
ples we refer to [34]). The following result can be considered as a specification of
Theorem 24.3.

Lemma 24.4 Let u ∈ Aad and {uε}ε>0 ⊂ L1(Ω) be such that ξ1(x) ≤ u(x) ≤ uε(x)
≤ ξ2(x) almost everywhere in Ω for all ε > 0, and uε → u in L1(Ω) as ε → 0. For
each ε > 0, let yε = y(uε) be the corresponding Huε

-solutions to the boundary value

problem (24.26). Then, up to a subsequence, we have (uε, yε)
τ−→ (u, y) as ε → 0,

where y ∈ Hu and y is an Hu-solution to boundary value problem (24.26) for the
given control u.

Proof In view of Remark 24.3, the sequence {(uε, yε)}ε>0 is defined in a unique way.
Since yε ∈ Huε

for all ε > 0, it follows from a priori estimates that the sequence
{(uε, yε)}ε>0 is bounded. Hence, by Theorem 24.3, this sequence is relatively τ -
compact and each of its τ -cluster pairs (u, y) belongs to the setΞ . It remains to show
that y ∈ Hu and y is an Hu-solution to the problem (24.26). Then, the τ -limit pair
(u, y) is unique by Remark 24.3.

By Theorem 24.3, we have: y ∈ Wu is a weak solution of (24.26) in the sense of
Minty and, within a subsequence,

yε ⇀ y in Lp(Ω), ∇yε ⇀ ∇y in the variable space Lp(Ω, uε dx)N . (24.44)
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Therefore, in order to prove the inclusion y ∈ Hu, it is enough to show that

∇yε ∈ Lp(Ω, u dx)N for all ε > 0 and ∇yε ⇀ ∇y in Lp(Ω, u dx)N . (24.45)

The first assertion in (24.45) is obvious because ∇yε ∈ Lp(Ω, uε dx)N and uε ≥ u
almost everywhere inΩ for all ε > 0.As for theweak convergence property (24.45)2,
we note that

(1) uε − u → 0 almost everywhere in Ω (by the initial assumptions);
(2) ∇yε ⇀ ∇y in L1(Ω)N by Lemma 24.2.

Hence, ∇yε(uε − u) → 0 almost everywhere in Ω and in view of estimate

∫

Ω

|∇yε|u dx ≤
∫

Ω

|∇yε|uε dx ≤ ‖∇yε‖Lp(Ω,uε dx)N ‖uε‖(p−1)/p
L1(Ω)

,

the sequence {∇yε(uε − u)}ε>0 is equi-integrable. Therefore, Lebesgue theorem
implies that

∇yε(uε − u) → 0 in L1(Ω)N as ε → 0. (24.46)

Taking (24.46) into account the fact that the smooth compactly supported functions
are dense in Lp(Ω, u dx)N , for every ϕ ∈ C∞

0 (Ω), we get

∣
∣
∣

∫

Ω

(∇yε,∇ϕ)RN u dx −
∫

Ω

(∇y,∇ϕ)RN u dx
∣
∣
∣ ≤

∫

Ω

∣
∣(∇yε(uε − u),∇ϕ)RN

∣
∣ dx

+
∣
∣
∣
∣

∫

Ω

(∇yε,∇ϕ)RN uε dx −
∫

Ω

(∇y,∇ϕ)RN u dx

∣
∣
∣
∣ = I1 + I2,

where I1 tends to zero as ε → 0 by (24.46) and I2 → 0 by (24.44). Thus, ∇yε ⇀ ∇y
weakly in Lp(Ω, u dx)N , and hence, y ∈ Hu.

Lemma 24.5 Under the assumptions of Lemma 24.4, we have the strong conver-
gence property: yε → y in Lp(Ω), ∇yε → ∇y in the variable space Lp(Ω, uε dx)N .

Proof Taking into account the result of Lemma 24.4 and the following arguments of
Remarks 24.4 and 24.5, for each ε > 0, we have the energy equalities

∫

Ω

uε(x)|∇yε|p dx =
∫

Ω

fyε dx,
∫

Ω

u(x)|∇y|p dx =
∫

Ω

fy dx. (24.47)

Since ∇yε ⇀ ∇y in the variable space Lp(Ω, uε dx)N , we derive from (24.47) the
following relation:

∫

Ω

u(x)|∇y|p dx ≤ lim inf
ε→0

∫

Ω

uε(x)|∇yε|p dx

= lim inf
ε→0

∫

Ω

fyε dx =
∫

Ω

fy dx =
∫

Ω

u(x)|∇y|p dx.
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Hence, lim
ε→0

∫

Ω

uε(x)|∇yε|p dx =
∫

Ω

u(x)|∇y|p dx and this implies the strong conver-

gence ∇yε ⇀ ∇y in the variable space Lp(Ω, uε dx)N . Using the fact that Huε
⊂ Hu

(because uε ≥ u in Ω) and the embedding Hu ↪→ Lp(Ω) is compact, we finally
conclude the strong convergence yε → y in Lp(Ω). The proof is complete.

Lemma 24.6 Let u ∈ Aad and {uε}ε>0 ⊂ L1(Ω) be such that ξ1(x) ≤ uε(x) ≤ u(x)
≤ ξ2(x) almost everywhere in Ω for all ε > 0, and uε → u in L1(Ω) as ε → 0. For
each ε > 0, let yε = y(uε) be Wuε

-solutions to the boundary value problem (24.26).

Then, up to a subsequence, we have (uε, yε)
τ−→ (u, y) as ε → 0, where y ∈ Wu

and y is a Wu-solution to the boundary value problem (24.26) for the given control
u. Moreover, in this case, we have

∇yε → ∇y in the variable space Lp(Ω, uε dx)N .

Proof By the arguments of the proof of Lemma 24.4, we conclude that up to a
subsequence, (uε, yε)

τ−→ (u, y) as ε → 0, where y ∈ Wu is a weak solution of
(24.26) in the sense of Minty. Taking into account the definition of Wuε

-solution, for
each ε > 0, we have

∫

Ω

uε(x)|∇ϕ|p−2 (∇ϕ,∇ϕ − ∇yε)RN dx ≥
∫

Ω

f (ϕ − yε) dx, ∀ϕ ∈ Wuε
. (24.48)

However, for an arbitrary function ϕ ∈ Wu, because of inequality uε ≤ u, we have:
ϕ ∈ Wuε

. Moreover, the strong convergence uε → u in L1(Ω) and Lebesgue theorem
imply

lim
ε→0

∫

Ω

|∇ϕ|puε dx =
∫

Ω

|∇ϕ|pu dx,

i.e., ∇ϕ → ∇ϕ strongly in the variable space Lp(Ω, uε dx)N . Therefore, passing to
the limit in (24.48) with an arbitrary ϕ ∈ Wu, we arrive at the relation

∫

Ω

u(x)|∇ϕ|p−2 (∇ϕ,∇ϕ − ∇y)RN dx ≥
∫

Ω

f (ϕ − y) dx, ∀ϕ ∈ Wu, (24.49)

i.e., y is the Wu-solution to the boundary value problem (24.26). The strong conver-
gence properties for the sequence

{∇yε ∈ Lp(Ω; uε dx)N
}

ε>0 can be established by
analogy with Lemma 24.5.

Remark 24.6 It is easy to show that Lemma 24.6 remains true if we replace the
conditions ξ1(x) ≤ uε(x) ≤ u(x) ≤ ξ2(x) almost everywhere in Ω for all ε > 0, and
uε → u in L1(Ω) as ε → 0 by the following stability property of the Sobolev space
Wu: if uε → u in L1(Ω), then Wuε

⊇ Wu for ε > 0 small enough. It should be empha-
sized that from an optimal control theory point of view, an L1-approximation of
element u ∈ Aad by the sequence {uε}ε>0 is meaningful if only {uε}ε>0 are admissi-
ble controls. However, the set Aad has an empty topological interior. Therefore, the
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existence of L1-convergent sequences of admissible controls {uε}ε>0 ⊂ Aad , with
monotone property ξ1(x) ≤ uε(x) ≤ u(x) ≤ ξ2(x) or ξ1(x) ≤ u(x) ≤ uε(x) ≤ ξ2(x)
in Ω , is an unrealistic assumption.

Taking this observation into account, it is reasonable to introduce the following
concept.

Definition 24.5 Let u, û ∈ Aad be a given pair of admissible controls. Let uε :=
u + ε(̂u − u) for each ε ∈ [0, 1]. We say that the weighted Sobolev space Hu is
stable along the direction û − u if Hu = limε→0 Huε

in the following sense:

(K1) for every y ∈ Hu, there exists a sequence
{
yε ∈ Huε

}
ε>0 such that (uε, yε)

τ−→
(u, y) as ε → 0;

(K2) if {εk}k∈N is a sequence converging to 0, and {yk}k∈N is a sequence such that

yk ∈ Huεk
for every k ∈ N and (uεk , yk)

τ−→ (u, y), then yk → y strongly in
Lp(Ω) and y ∈ Hu.

The definition of the limit Wu = limε→0 Wuε
can be done in a similar manner. As a

result, Lemmas 24.4–24.6 can be easily generalized to the following assertion.

Lemma 24.7 Assume that for a given u, û ∈ Aad , the weighted Sobolev space Hu

(respectively, Wu) is stable along the direction û − u. For each ε > 0, let uε := u +
ε(̂u − u) and let yε = y(uε) be Huε

-solutions (resp., Wuε
-solutions) to the boundary

value problem (24.26). Then, up to a subsequence, we have

uε → u in L1(Ω), (24.50)

yε → y in Lp(Ω), ∇yε →∇y in variable space Lp(Ω, uε dx)N , (24.51)

where y ∈ Hu is the Hu-solution (resp., (24.50) and (24.51) take place and y ∈ Wu

is the Wu-solution) to the boundary value problem (24.26) for the given control u.

As for the proof, it is enough to apply Definition 24.5 and repeat the main argu-
ments of the proofs of Lemmas 24.4–24.6.

Our next observationdealswith some specificationof the set of admissible controls
Aad . Having supposed that the functions ξ1 and ξ2 are extended to the whole space
of RN such that

ξ1, ξ2 ∈ L1
loc(R

N ), 0 ≤ ξ1(x) ≤ ξ2(x) a.e. in Ω, and ξ−ν
1 ∈ L1

loc(R
N ),

we assume that there exists a constant C > 0 such that

sup
B∈RN

(
1

|B|
∫

B
ξ2 dx

)(
1

|B|
∫

B
ξ

−1/(p−1)
1 dx

)p−1

≤ C, (24.52)

where B is a ball in RN . In this case, we have the following result.

Theorem 24.5 Assume the condition (24.52) holds true for some constant C > 0.
Then, boundary value problem (24.26) has a unique weak solution for each u ∈ Aad.
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Proof The main idea of this proof is to show that Wu = Hu for each u ∈ Aad and this
relies on the fact that such u belongs to the class of Muckenhoupt weights Ap. We
omit the details.

Corollary 24.1 Let u, û ∈ Aad be a given pair of admissible controls. Let uε :=
u + ε(̂u − u) for each ε ∈ [0, 1]. Assume there exists a constant C > 0 such that the
estimate (24.52) is valid. For each ε > 0, let yε = y(uε) be the corresponding weak
solutions to the boundary value problem (24.26). Then, up to a subsequence, the
properties (24.50) and (24.51) hold true, where y ∈ Hu is the weak solutions to the
boundary value problem (24.26) for the given control u.

Proof As follows from Theorem 24.5, the weak solutions
{
yε = y(uε) ∈ Wuε

}
ε>0

can be defined in a unique way. Moreover, by a priori estimate (24.31), we see
that the sequence {(uε, yε)}ε>0 is bounded. Hence, by Theorem 24.3, this sequence is
relatively τ -compact and each of its τ -cluster pairs (u, y) belongs to the setΞ . Since,
for each admissible control u ∈ Aad , the boundary value problem (24.26) admits a
unique weak solution, it follows that the τ -cluster pair (u, y) is uniquely defined. In
order to show the strong convergence property (24.51), it remains to repeat the trick
coming from the proof of Lemma 24.5.

24.6 On Differentiability of Lagrange Functional

In this section, we discuss the differentiable properties of the Lagrange functional
associated with optimal control problem (24.26)–(24.28). Since the relations (24.26)
can be seen as constraints, we define the Lagrangian as follows:

�(u, y, μ) = I(u, y) + au(y, μ) −
∫

Ω

f μ dx

= ‖y − yd‖p
Lp(Ω) + ‖∇y‖p

Lp(Ω,u dx)N + au(y, μ) −
∫

Ω

f μ dx, (24.53)

where μ ∈ Wu := W 1,p
0 (Ω, u dx) is a Lagrange multiplier and

au(y, μ) = 〈−Δp(u, y), μ〉W ∗
u ;Wu =

∫

Ω

u(x)
(|∇y|p−2∇y,∇μ

)
RN dx.

In what follows, to each distribution y ∈ Wu, where u ∈ Aad , we associate the
following sets:

S0(y) = {x ∈ Ω : |∇y(x)| = 0} , S1(y) = int S0(y). (24.54)

For our further analysis, we adopt the following concept.
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Definition 24.6 Let u ∈ Aad be a given control. We say that an element y ∈ Wu is a
regular point for the Lagrangian (24.53) if

Ω\S1(y) is a connected set with Lipschitz boundary, (24.55)

and S0(y)\S1(y) has zero u-measure, i.e. u(S0) :=
∫

S0

u dx = 0, (24.56)

and we say that an element y ∈ Wu is a strongly regular point for the Lagrangian
(24.53) if y is its regular point and S1(y) = ∅.
Remark 24.7 In the non-degenerate case, i.e., when u + u−1 ∈ L∞(Ω), due to the
results of Manfredi (see [27]), the notion of regularity is not too restrictive. In
this case, the set S0 := {x ∈ Ω : |∇y| = 0} for non-constant solutions of the p-
Laplace equation (a p-harmonic function) has zero Lebesgue measure (see [27]).
However, in the case of degenerate p-Laplacian Δp(u, y) with u ∈ Aad , the reg-
ularity assumption is not obvious. Therefore, we put forward a hypothesis that
if y ∈ Wu is a regular point of the functional �(u, y, μ), then for every v ∈ Wu

there exists a positive number α ∈ R (α �= 0) such that each point of the segment
[y, αv] = {y + t(αv − y) : ∀ t ∈ [0, 1]} ⊂ Wu is also regular for �(u, y, μ).

We are now ready to study the differentiability properties of the Lagrangian
�(u, y, λ). We begin with the following result.

Lemma 24.8 Let u ∈ Aad be the given control, and let y ∈ Wu be a regular point of
the Lagrangian (24.53). Then, the mapping

Wu � y �→ Δp(u, y) = −div
(
u(x)|∇y|p−2∇y

) ∈ W ∗
u

is Gâteaux differentiable at y and its Gâteaux derivative
(−Δp(u, y)

)′
G ∈L

(
Wu, W ∗

u

)

exists and takes the form:

(
Δp(u, y)

)′
G [h] =

⎧
⎨

⎩

−div
(
u(x)|∇y|p−2∇h

)

−(p − 2) div
(
u(x)|∇y|p−4 (∇y,∇h)RN ∇y

)
, in Ω\S1(y),

0, in S1(y);
(24.57)

for p > 2, and

(
Δp(u, y)

)′
G [h] = −div (u(x)∇h) in Ω, if p = 2. (24.58)

Proof Let y ∈ Wu be a regular point for the Lagrangian (24.53), and let h ∈ Wu be
an arbitrary distribution. Following the definition of Gâteaux derivative, we have to
deduce the following equality:

lim
λ→+0

∥
∥
∥
Δp(u, y + λh) − Δp(u, y)

λ
− (Δp(u, y)

)′
G [h]

∥
∥
∥

W ∗
u

= 0,
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where
(
Δp(u, y)

)′
G [h] is defined by (24.57). With that in mind, let us consider the

vector-valued function g(λ) := |∇y + λ∇h|p−2(∇y + λ∇h) for which the Taylor’s
expansion with the remainder term in the Lagrange form leads to the relation

|g(λ) − g(0)| ≤ |g′(θ)|λ, θ ∈ (0, λ),

where g(0) = |∇y|p−2∇y and

g′(θ) = |∇y + θ∇h|p−2∇h

+ (p − 2)|∇y + θ∇h|p−2
(
θ |∇h|2 + (∇y,∇h)RN

)(
∇y + θ∇h

) 1

|∇y + θ∇h|2
=|∇y + θ∇h|p−2∇h + (p − 2)|∇y + θ∇h|p−2 (∇y + θ∇h,∇h)RN

|∇y + θ∇h|
∇y + θ∇h

|∇y + θ∇h|
Let δ > 0 be an arbitrary value. Let us consider the following decomposition:

Ω = S1(y) ∪ (S0(y)\S1(y)
) ∪ Ω ′

δ ∪ Ω ′′
δ ,

where the sets S0(y) and S1(y) are defined in (24.54), andΩ ′
δ andΩ ′′

δ are u-measurable
subsets of Ω such that

Ω ′
δ = {x ∈ Ω\S1(y) : |∇y(x)| ≥ δ} , Ω ′′

δ = {x ∈ Ω\S1(y) : 0 < |∇y(x)| < δ} .

Closely following [1, p.598] (see also [11]), it can be shown that for every ε > 0,
there exists a positive value δ0 > 0 such that

∥
∥
∥g′(θ) − (p − 2)|∇y|p−4 (∇y,∇h)RN ∇y − |∇y|p−2∇h

∥
∥
∥

Lq(Ω ′
δ;u dx)N

<
ε

2
, (24.59)

∥
∥
∥g′(θ) − (p − 2)|∇y|p−4 (∇y,∇h)RN ∇y − |∇y|p−2∇h

∥
∥
∥

Lq(Ω ′′
δ ;u dx)N

<
ε

2
(24.60)

for all δ ∈ (0, δ0), θ ∈ (0, λ), and λ > 0 small enough. Moreover, as immediately
follows from (24.54), we have the following relations:

∥
∥
∥g′(θ)

∥
∥
∥

Lq(S1(y);u dx)N
= (p − 1)θp−2‖∇h‖p−1

Lp(S1(y);u dx)N → 0 as θ → +0 if p > 2,
∥
∥
∥g′(θ) − ∇h

∥
∥
∥

Lq(S1(y);u dx)N
= ‖∇h − ∇h‖Lq(S1(y);u dx)N = 0 if p = 2.

Since u
(
S0(y)\S1(y)

) = 0 by the initial assumptions, it follows from (24.59) and
(24.60) that the vector-valued function |∇y|p−2∇y is Gâteaux differentiable. Hence,
the operatorΔp(u, y) = −div

(
u(x)|∇y|p−2∇y

)
is Gâteaux differentiable at each reg-

ular point y ∈ Wu and its Gâteaux derivative takes the form (24.57).
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As an obvious consequence of this result and the fact that Gâteaux differentiability
of operator y �→ Δp(u, y) implies existence of Gâteaux derivative for the functional
ϕ : Wu → R, where

ϕ(y) = 〈−Δp(u, y), μ〉W ∗;Wu =
∫

Ω

u(x)
(|∇y|p−2∇y,∇μ

)
RN dx

and 〈ϕ′
G(y), h〉W ∗

u ;Wu = 〈(−Δp(u, y)
)′

G [h], μ〉W ∗
u ;Wu , ∀μ ∈ Wu, we arrive at the fol-

lowing obvious assertion.

Corollary 24.2 Let u ∈ Aad be a given element, and let y ∈ Wu be a regular point
of the Lagrangian (24.53). Then, the mapping

Wu � y �→ �(u, y, μ) = I(u, y) + au(y, μ) − 〈f , μ〉W ∗
u ;Wu ∈ R

is Gâteaux differentiable at y and its Gâteaux derivative �′
G(u, y, μ) ∈ W ∗

u exists
and takes the form:

〈�′
G(u, y, μ), h〉W ∗

u ;Wu = p
∫

Ω\S1(y)
|∇y|p−2 (∇y,∇h)RN u dx

+ p
∫

Ω

|y − yd |p−2 (y − yd) h dx +
∫

Ω\S1(y)

(
u(x)|∇y|p−2∇μ,∇h

)
RN dx

+ (p − 2)
∫

Ω\S1(y)
u(x)|∇y|p−4 (∇y,∇μ)RN

(
∇y,∇h

)

RN
dx

= p
∫

Ω

|∇y|p−2 (∇y,∇h)RN u dx

+ p
∫

Ω

|y − yd |p−2 (y − yd) h dx +
∫

Ω

(
u(x)|∇y|p−2∇μ,∇h

)
RN dx

+ (p − 2)
∫

Ω

u(x)|∇y|p−4 (∇y,∇μ)RN

(
∇y,∇h

)

RN
dx.

(24.61)

Remark 24.8 Taking into account the equality (∇y,∇μ)RN ∇y = [∇y ⊗ ∇y
]∇μ,

the last term in (24.61) can be rewritten as follows:

(p − 2)
∫

Ω

u(x)|∇y|p−4
( [∇y ⊗ ∇y

]∇μ,∇h
)

RN
dx.

Before deriving the optimality conditions, we need the following auxiliary result.

Lemma 24.9 Let u ∈ Aad , y ∈ Wu, and v ∈ Wu be the given distributions. Assume
that each point of the segment [y, v] = {y + α(v − y) : ∀α ∈ [0, 1]} ⊂ Wu is reg-
ular for the mapping v → �(u, v, μ). Then, there exists a positive value ε ∈ (0, 1)
such that
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�(u, v, μ) − �(u, y, μ) = 〈�′
G(u, y + εh, μ), h〉W ∗

u ;Wu

=
∫

Ω

|∇y + ε∇h|p−2
(
∇μ,∇h

)

RN
u dx

+ p
∫

Ω

|∇y + ε∇h|p−2
(
∇y + ε∇h,∇h

)

RN
u dx

+ p
∫

Ω

|y + εh − yd |p−2
(

y + εh − yd

)
h dx

+ (p − 2)
∫

Ω

|∇y + ε∇h|p−4
( [

(∇y + ε∇h) ⊗ (∇y + ε∇h)
]∇μ,∇h

)

RN
u dx

(24.62)

with h = v − y.

Proof For given u, μ, yd, y, and v, let us consider the scalar function ϕ(t) =
�(u, y + t(v − y), μ). Since by Corollary 24.2, the functional �(u, ·, μ) is Gâteaux
differentiable at each point of the segment [y, v], it follows that the function ϕ = ϕ(t)
is differentiable on (0, 1) and

ϕ′(t) = 〈�′
G(u, y + t(v − y), μ), v − y〉W ∗

u ;Wu , ∀ t ∈ (0, 1).

To conclude the proof, it remains to take into account (24.61) and apply the mean
value theorem: ϕ(1) − ϕ(0) = ϕ′(ε) for some ε ∈ (0, 1).

24.7 Formalism of the Quasi-adjoint Technique

Let (u0, y0) ∈ Ξ be an optimal pair for problem (24.26)–(24.28). LetAstab
ad be a subset

of L1(Ω) such that Astab
ad ⊂ Aad ,

‖∇y0‖p
Lp(Ω,̂u dx)N :=

∫

Ω

|∇y0|pû dx < +∞ and û/u0 ∈ L∞(Ω), for all û ∈ Astab
ad ,

(24.63)

and the weighted Sobolev space Hu0 is stable along the direction û − u0 for each
û ∈ Astab

ad . It is clear that Astab
ad is always non-empty because u0 ∈ Astab

ad by definition
of this set.

We begin with the following assumption:

(H0) y0 is an Hu0 -solution to the boundary value problem (24.26).
(H1) For a given distribution f ∈ Lq(Ω), the optimal state y0 ∈ Hu0 is a regular

point of the mapping y �→ �(u, y, λ) in the sense of Definition 24.6.
(H2) The set Astab

ad is not a singleton.
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Then,

Δ� = �(u, y, λ) − �(u0, y0, λ) ≥ 0,∀ (u, y) ∈ Ξ, ∀ λ ∈ C∞
0 (Ω). (24.64)

Since the set of admissible controls Aad ⊂ BV (Ω) has an empty topological
interior, we justify the choice of perturbation for an optimal control as follows: uθ :=
u0 + θ (̂u − u0), where û ∈ Astab

ad and θ ∈ [0, 1]. Aswas indicated in Remark 24.3, for
each θ ∈ [0, 1], there exists a unique Huθ

-solution yθ := y (uθ ) = y (u0 + θ (̂u − u0))
to boundary value problem (24.34) and (24.35). Then, due to Hypotheses (H0)–(H2),
we can suppose that the segment [y0, yθ ] belongs to Hu0 for θ small enough (by the
directional stability property). We also assume that

(H3) for each û ∈ Astab
ad , there exists a numerical sequence {θk}k∈N ⊂ (0, 1] such

that θk → 0 as k → ∞, and
{
yθk := y

(
uθk

)}
k∈N are strongly regular points

for the mappind v → �(u, v, λ).

We note that if y0 ∈ Hu0 is a strongly regular point of the mapping y �→ �(u, y, λ),
then fulfillment of Hypothesis (H3) is obvious. As a result, we obtain

Δ� =�(uθ , yθ , λ) − �(u0, y0, λ) = �(uθ , yθ , λ) − �(uθ , y0, λ)

+ �(uθ , y0, λ) − �(u0, y0, λ) = �(uθ , yθ , λ) − �(uθ , y0, λ)

+ �(uθ − u0, y0, λ) = Δyθ
�(uθ , y0, λ) + θ�(û − u0, y0, λ) ≥ 0. (24.65)

Hence, by Lemma 24.9, there exists a value εθ ∈ (0, 1) such that condition (24.65)
can be represented as follows:

Δ� = �(uθ , yθ , λ) − �(u0, y0, λ)

= 〈�′
G(uθ , y0 + εθ (yθ − y0), λ), yθ − y0〉H∗

u0
;Hu0

+ θ�(̂u − u0, y0, λ) ≥ 0.

(24.66)

Using (24.61), we obtain

Δ� = p
∫

Ω

|∇yεθ ,θ |p−2
(
∇yεθ ,θ ,∇yθ − ∇y0

)

RN
uθ dx + θ

∫

Ω

(̂u − u0) |∇y0|p dx

+ p
∫

Ω

|yεθ ,θ − yd |p−2
(

yεθ ,θ − yd

)
(yθ − y0) dx

+
∫

Ω

|∇yεθ ,θ |p−2
(
∇λ,∇yθ − ∇y0

)

RN
uθ dx

+ (p − 2)
∫

Ω

|∇yεθ ,θ |p−4
( [∇yεθ ,θ ⊗ ∇yεθ ,θ

]∇λ,∇yθ − ∇y0
)

RN
uθ dx

+ θ

∫

Ω

(̂u − u0)
(|∇y0|p−2∇y0,∇λ

)
RN dx ≥ 0, ∀ û ∈ Astab

ad , (24.67)

where yεθ ,θ = y0 + εθ (yθ − y0).
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Now, we introduce the concept of quasi-adjoint states that were first considered
for linear problems by Serovajskiy [31].

Definition 24.7 We say that for given θ ∈ [0, 1] and û ∈ Aad , a distribution ψθ is a
quasi-adjoint state to y0 ∈ Hu0 if ψθ satisfies the following integral identity:

∫

Ω

|∇yεθ ,θ |p−2
( [

I + (p − 2)
∇yεθ ,θ

|∇yεθ ,θ |
⊗ ∇yεθ ,θ

|∇yεθ ,θ |
]

∇ψθ,∇ϕ
)

RN
uθ dx

+ p
∫

Ω

|∇yεθ ,θ |p−2
(
∇yεθ ,θ ,∇ϕ

)

RN
uθ dx

+ p
∫

Ω

|yεθ ,θ − yd |p−2
(

yεθ ,θ − yd

)
ϕ dx = 0, ∀ϕ ∈ Huθ

, (24.68)

or in terms of distributions, ψθ is a solution to the following degenerate boundary
value problem

− div(ρθAθ∇ψθ) = gθ in Ω, ψθ = 0 on ∂Ω. (24.69)

Here,

ρθ = uθ |∇yεθ ,θ |p−2, (24.70)

Aθ = I + (p − 2)
∇yεθ ,θ

|∇yεθ ,θ |
⊗ ∇yεθ ,θ

|∇yεθ ,θ |
, (24.71)

gθ = p div
(
uθ |∇yεθ ,θ |p−2∇yεθ ,θ

)− p |yεθ ,θ − yd |p−2
(
yεθ ,θ − yd

)
, (24.72)

I ∈ L (RN ;RN ) is the identity matrix, yθ := y (uθ ) = y (u0 + θ (̂u − u0)) is the Huθ
-

solution of problem (24.34) and (24.35), yεθ ,θ = y0 + εθ (yθ − y0), and εθ = ε(uθ ) ∈
(0, 1) is a constant coming from equality (24.66).

A crucial point of this definition is the choice of the class of test functions in
integral identity (24.68) (ϕ ∈ Huθ

). At the end of this section, it will be shown that
Definition 24.7 makes a sense, and moreover, under some additional assumptions,
the quasi-adjoint states {ψθ }θ→0 can be defined in a unique way for each θ ∈ [0, 1]
in spite of the fact that boundary value problem (24.69) is degenerate in general.

Remark 24.9 If we assume that the quasi-adjoint state ψθ is defined by Defi-
nition 24.7 and the integral

∫
Ω

(̂u − u0)
(|∇y0|p−2∇y0,∇ψθ

)
RN dx exists for all

û ∈ Astab
ad , then as (yθ − y0) ∈ Huθ

for each θ > 0 (see (24.81) and Hypothesis (H2)),
the element λ in (24.67) can be defined as the quasi-adjoint state. As a result, having
put λ = ψθ in (24.67), the increment of the Lagrangian (24.67) can be simplified as

∫

Ω

(̂u − u0)
[
|∇y0|p + (|∇y0|p−2∇y0,∇ψθ

)
RN

]
dx ≥ 0, ∀ û ∈ Astab

ad . (24.73)

Thus, in order to derive the necessary optimality conditions, it remains to prove
the existence and the compactness properties of the sequence of quasi-adjoint states
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{ψθ }θ→0 (with respect to some appropriate topology) and pass to the limit in (24.69)–
(24.73) as θ → +0.

To beginwith, we establish a few auxiliary results. The characteristic feature of the
class of admissible controlsAad is the fact that strong convergence uk → u in L1(Ω)

implies weak convergence in variable space Lp(Ω, uk dx)N of ∇y(uk) → ∇y(u) as
k → ∞ (see, for instance, Theorem 24.3). However, we infer from Lemma 24.7
that the mapping u0 �→ y(u0) enjoys stronger properties provided some “directional
stability assumptions” on the space Hu0 hold. In particular, in this case, we have the
following result (for the details, see the proof of Lemma 24.5).

Lemma 24.10 Assume that for a given û ∈ Aad , Hypotheses (H0)–(H3) are valid.
Let θ ∈ [0, 1], uθ := u + θ (̂u − u), and let yθ = y(uθ ) be the corresponding Huθ

-
solutions to the boundary value problem (24.26). Then, uθ → u0 in L1(Ω),

yθ → y0 in Lp(Ω), ∇yθ → ∇y0 in the variable space Lp(Ω, uθ dx)N as θ → 0.
(24.74)

Taking this fact into account, we arrive at the following properties of the sequence

{
yεθ ,θ = y0 + εθ (yθ − y0)

}
θ→0 . (24.75)

Proposition 24.2 Assume that for a given û ∈ Aad , Hypothesis (H2) is valid. Then,

yεθ ,θ ∈ Huθ
, ∀ θ ∈ [0, 1], (24.76)

|∇yεθ ,θ |puθ → |∇y0|pu0 in L1(Ω) as θ → 0, (24.77)

|yεθ ,θ − yd |p−2
(
yεθ ,θ − yd

)→ |y0 − yd |p−2 (y0 − yd) in Lq(Ω) as θ → 0.
(24.78)

Proof By definition of the functions yθ and y0, we have

‖∇yθ‖Lp(Ω,uθ dx)N < +∞, and ‖∇y0‖Lp(Ω,u0 dx)N < +∞. (24.79)

Using the convexity of the norm ‖ · ‖Lp(Ω,uθ dx)N and representation (24.75), we get

‖∇yεθ ,θ‖Lp(Ω,uθ dx)N ≤ (1 − εθ )‖∇y0‖Lp(Ω,uθ dx)N + εθ‖∇yθ‖Lp(Ω,uθ dx)N . (24.80)

Since

‖∇y0‖p
Lp(Ω,uθ dx)N = (1 − θ)‖∇y0‖p

Lp(Ω,u0 dx)N + θ‖∇y0‖p
Lp(Ω,̂u dx)N , (24.81)

by Hypothesis (H2) and (24.79)2, it follows that ‖∇y0‖Lp(Ω,uθ dx)N < +∞. Thus, the
inclusion yεθ ,θ ∈ Huθ

is a direct consequence of the condition yθ ∈ Huθ
and inequality

(24.80). As for the property (24.77), in view of Lemma 24.10, we have, within a
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subsequence, that uθ → u0 a.e. in Ω , and hence (see (24.74)), |∇yθ |p(uθ − u0) → 0
a.e. in Ω . Since |∇yθ |puθ ≥ 0 a.e. in Ω and

lim
θ→0

∫

Ω

|∇yθ |puθ dx =
∫

Ω

|∇y0|pu0 dx by (24.74)2,

Scheffe’s theorem implies strong convergence

|∇yθ |puθ → |∇y0|pu0 in L1(Ω) as θ → 0. (24.82)

To conclude the proof, it remains to note that because of representation (24.75)
and condition (24.76), the functions yεθ ,θ inherit all limit properties of the sequence
{yθ }θ→0, i.e., assertion (24.82) remains valid for the sequence

{
yεθ ,θ

}
θ→0 as well.

Therefore, the property (24.78) is a direct consequence of the strong convergence
yεθ ,θ → y0 in Lp(Ω) (see (24.74)1).

We note that in view of property (24.77) (see Proposition 24.2), up to a subse-
quence we have |∇yεθ ,θ |p−2uθ → |∇y0|p−2u0 a.e. in Ω . Since

∫

Ω

|∇yεθ ,θ |p−2uθ dx =
∫

Ω

|∇yεθ ,θ |p−2u(p−2)/p
θ u2/p

θ dx =
{

p̂ = p/(p − 2)

q̂ = p/2

}

≤ ‖∇yεθ ,θ‖p−2
Lp(Ω,uθ dx)N ‖uθ‖2/p

L1(Ω)
≤ C‖f ‖(p−2)/(p−1)

Lq(Ω) ‖ξ2‖2/p
L1(Ω)

,

it follows that the sequence
{|∇yεθ ,θ |p−2uθ

}
θ→0 is equi-integrable. Hence, by

Lebesgue’s theorem, we arrive at the following property.

Corollary 24.3 Under assumptions of Proposition 24.2,

|∇yεθ ,θ |p−2uθ → |∇y0|p−2u0 in L1(Ω) as θ → 0. (24.83)

Proposition 24.3 Let (u0, y0) ∈ Ξ be an optimal pair for problem (24.26)–(24.28).
Assume that for a given û ∈ Aad , Hypotheses (H0)–(H3) are valid. Then, the matrix
Aθ , given by (24.71), possesses the following properties:

Aθ ∈ L∞(Ω;SN
sym), where S

N
sym is the set of all N × N symmetric matrices,

(24.84)

Aθ → A0 := I + (p − 2)
∇y0
|∇y0| ⊗ ∇y0

|∇y0| in Lr(Ω;SN
sym) ∀ r ∈ [1,∞) as θ → 0,

(24.85)

|η|2 ≤ (η, Aθη)RN ≤ [1 + (p − 2)2N−1
] |η|2 a.e. in Ω, ∀ η ∈ R

N , ∀ θ ∈ [0, 1].
(24.86)

Proof The proof is straightforward and, hence, omitted.



24 Optimality Conditions for L1-Control in Coefficients … 455

Our next intention is to study the variational problem (24.69). With that in mind,
to each value θ ∈ [0, 1], we associate two weighted Sobolev spaces Hθ and Wθ ,
where Wθ is the set of functions ψ ∈ W 1,1

0 (Ω) for which the norm

‖ψ‖ρθ ,Aθ
=
( ∫

Ω

(
ψ2 + (∇ψ, Aθ∇ψ)RN ρθ

)
dx
)1/2

(24.87)

is finite, andHθ is the closure of C∞
0 (Ω) with respect to the norm (24.87). It is clear

that Hθ ⊆ Wθ .

Remark 24.10 Some spaces of more or less similar type have been studied by Casas
and Fernández [6], Murthy and Stampacchia [29], and Trudinger [32]. However, in
contrast to the mentioned papers, we do not have a continuous embedding ofHθ in
the reflexive Banach space W 1,2(Ω).

For a fixed θ ∈ [0, 1], let us assume that

(
yεθ ,θ − yd

) ∈ L2p−2(Ω) and ρ−σ
θ := |∇yεθ ,θ |(2−p)σ u−σ

0 ∈ L1(Ω) (24.88)

for some σ ∈ (N
2 ,+∞). First of all, we note that due toHypothesis (H3), the assump-

tions (24.88)2 make a sense. As a result, the condition (24.88)2 and Proposition 24.3
imply that the expression

‖ψ‖Hθ
=
[∫

Ω

|∇ψ |2ρθ dx

]1/2
(24.89)

can be considered as a norm onHθ and it is equivalent to the norm (24.87) (see [10,
pp. 46] and Proposition 24.3). Moreover, in this case, the embeddingHθ ↪→ L2(Ω)

is compact for a given θ > 0 and due to Proposition 24.3 and estimates

∫

Ω

|ψ | dx ≤
( ∫

Ω

ψ2 dx
)1/2|Ω|1/2 ≤ C‖ψ‖Hθ

, (24.90)
∫

Ω

|∇ψ | dx ≤
( ∫

Ω

|∇ψ |2ρθ dx
)1/2( ∫

Ω

ρ−1
θ dx

)1/2 ≤ C‖ψ‖Hθ
, (24.91)

the spaceHθ is completewith respect to the norm‖ · ‖Hθ
with continuous embedding

Hθ ⊂ W 1,1
0 (Ω). Moreover, Hθ is a Hilbert space with the inner product

(ψ1, ψ2)Hθ
=
∫

Ω

(∇ψ1,∇ψ2)RN ρθ dx.
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As a result, we can pass to the following variational formulation of the problem
(24.69)

⎧
⎨

⎩

Find ψθ ∈ Hθ such that
∫

Ω

(∇ϕ, Aθ∇ψθ)RN ρθ dx = 〈gθ , ϕ〉H ∗
θ ;Hθ

, ∀ϕ ∈ C∞
0 (Ω).

(24.92)

Since

∫

Ω
(∇ϕ, Aθ∇ψθ )

RN ρθ dx
by Proposition 24.3≤ C

∫

Ω
|∇ϕ||∇ψθ |ρθ dx ≤ C‖ϕ‖Hθ

‖ψθ‖Hθ
,

(24.93)
∫

Ω
(∇ψθ , Aθ∇ψθ )

RN ρθ dx ≥
∫

Ω
|∇ψθ |2ρθ dx = ‖ψθ‖2Hθ

,

it follows that the bilinear form aθ : Hθ × Hθ → R, where

aθ (ϕ, ψ) :=
∫

Ω

(∇ϕ, Aθ∇ψ)RN ρθ dx,

is continuous and Hθ -coercive, whereas the right-hand side of (24.92) is a linear
continuous functional on Hθ . Indeed, in view of condition (24.88)1, we have

〈gθ , ϕ〉H ∗
θ ;Hθ

≤ p
∫

Ω

|∇yεθ ,θ |p−1|∇ϕ|uθ dx + p
∫

Ω

|yεθ ,θ − yd |p−1|ϕ| dx

= p(I1 + I2),

I1 ≤
(∫

Ω

|∇yεθ ,θ |2|∇yεθ ,θ |p−2uθ dx

)1/2 (∫

Ω

|∇ϕ|2|∇yεθ ,θ |p−2uθ dx

)1/2

= ‖yεθ ,θ‖p/2
Huθ

‖ϕ‖Hθ
, (24.94)

I2 ≤ ‖yεθ ,θ − yd‖p−1
L2p−2(Ω)

‖ϕ‖L2(Ω)

by (24.88)≤ C‖yεθ ,θ − yd‖p−1
L2p−2(Ω)

‖ϕ‖Hθ
.

(24.95)

Therefore, by Lax–Milgram theorem, we immediately conclude that due to the
assumptions (24.88), the variational problem (24.92) has a unique solutionψθ ∈ Hθ

(denoted as Hθ -solution) with the a priori estimate

‖∇ψθ‖Hθ
≤ Cp ‖yεθ ,θ − yd‖p−1

L2p−2(Ω)
+ p ‖yεθ ,θ‖p/2

Huθ

≤ Cp

(

‖yεθ ,θ − yd‖p−1
L2p−2(Ω)

+ ‖f ‖
p

2(p−1)

Lq(Ω)

)

. (24.96)
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Remark 24.11 As obviously follows from the relation

‖ϕ‖2Hθ
:=
∫

Ω

|∇ϕ|2ρθ dx =
∫

Ω

|∇ϕ|2|∇yεθ ,θ |p−2uθ dx =
{

p̂ = p/(p − 2)

q̂ = p/2

}

≤
(∫

Ω

|∇yεθ ,θ |puθ dx

)(p−2)/p (∫

Ω

|∇ϕ|puθ dx

)2/p

= ‖yεθ ,θ‖p−2
Huθ

‖ϕ‖2Huθ
, (24.97)

which holds true for every ϕ ∈ Hθ , we have:Huθ
⊂ Hθ with continuous embedding.

Hence, combining the inequalities (24.93)–(24.95) with estimate (24.97), we see
that the integral identity (24.92) can be extended by continuity to any test functions
ϕ ∈ Huθ

. Thus, the definition of quasi-adjoint statesψθ in the form of integral identity
(24.68),where the test functionsϕ are considered as elements of theweightedSobolev
space Huθ

, is correct provided assumptions (24.88) are valid for each θ ∈ [0, 1].

24.8 Substantiation of the Optimality Conditions
for Optimal Control Problem (24.26)–(24.28)
in the Framework of Weighted Sobolev Spaces

In view of Remark 24.11, we begin this section with the following hypothesis, which
can be viewed as some supplement to the Hypotheses (H0)–(H3) (see (24.88))

(H4) For given yd ∈ Lp(Ω), û ∈ Astab
ad ⊂ L1(Ω), f ∈ Lq(Ω) with q = p

p−1 and

p ≥ 2, there exist positive values C̃ > 0 and σ ∈ (N
2 ,+∞) such that

sup
θ∈[0,1]

‖yεθ ,θ − yd‖L2p−2(Ω) ≤ C̃, ρ−σ
θ ∈ L1(Ω). (24.98)

Let (u0, y0) ∈ Ξ be an optimal pair for problem (24.26)–(24.28). Let û ∈ Astab
ad ⊂

L1(Ω) be a fixed control function, and let uθ := u0 + θ (̂u − u0) for each θ ∈ [0, 1].
Let, as before, yθ := y (uθ ) = y (u0 + θ (̂u − u0)) be an Huθ

-solution of problem
(24.34) and (24.35) and yεθ ,θ = y0 + εθ (yθ − y0), where the constant εθ = ε(uθ ) ∈
(0, 1) is taken from equality (24.66). Having assumed that Hypotheses (H0)–(H4)
are valid, we see that the sequence of quasi-adjoint states {ψθ ∈ Hθ }θ→0 can be
defined in a unique way for a special choice of the numerical sequence (see Hypoth-
esis (H3)). Moreover, in view of (24.96), this sequence is bounded in the variable
space Hθ , i.e.,

sup
θ→0

∫

Ω

(
ψ2

θ + (∇ψθ, Aθ∇ψθ)RN ρθ

)
dx

≤ C

(

sup
θ→0

‖yεθ ,θ − yd‖p−1
L2p−2(Ω)

+ ‖f ‖
p

2(p−1)

Lq(Ω)

)

< +∞.
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Therefore, in view of the property (24.83), we can extract a subsequence of sequence
{ψθ ∈ Hθ }θ→0, still denoted by the same index, such that (see the main proper-
ties of convergence in the variable Lp-spaces) ψθ ⇀ ψ in L2(Ω), ∇ψθ ⇀ v in
the variable space L2(Ω, ρθ dx)N , where the last assertion means a fulfillment
of the following conditions: {∇ψθ }θ→0 is a bounded sequence in variable space
L2(Ω, |∇yεθ ,θ |p−2uθ dx)N , v ∈ L2(Ω, |∇y0|p−2u0 dx)N and

lim
θ→0

∫

Ω
(∇ψθ , ∇ϕ)

RN |∇yεθ ,θ |p−2uθ dx =
∫

Ω
(v, ∇ϕ)

RN |∇y0|p−2u0dx, ∀ ϕ ∈ C∞
0 (Ω).

Applying the arguments of Lemma 24.3 and estimates (24.90) and (24.91), we get:
v = ∇ψ and

‖ψ‖2ρ0,A0
:=
∫

Ω

(
ψ2 + (∇ψ, A0∇ψ)RN ρ0

)
dx

by Proposition 24.3≤ (
1 + (p − 2)2N−1

)
∫

Ω

[
ψ2 + |∇ψ |2|∇y0|p−2u0

]
dx

≤ C
(
1 + (p − 2)2N−1)

(

sup
θ→0

‖yεθ ,θ − yd‖p−1
L2p−2(Ω)

+ ‖f ‖
p

2(p−1)

Lq(Ω)

)

< +∞.

As a result, we arrive at the following assertion.

Proposition 24.4 If Hypotheses (H0)–(H4) are valid, then variational problem
(24.92) has a unique Hθ -solution ψθ for every θ ∈ {θk}k∈N, where the sequence
{θk}k∈N is given by Hypothesis (H3), and the sequence {ψθ ∈ Hθ }θ→0 is relatively
compact with respect to the following convergence:

ψθ ⇀ ψ in L2(Ω), ∇ψθ ⇀ ∇ψ in the variable space L2(Ω, ρθ dx)N . (24.99)

Remark 24.12 It should be emphasized that in general, the limit function ψ to the
sequence {ψθ ∈ Hθ }θ→0, in the sense of (24.99), does not belong to the weighted
space H0 = cl‖·‖ρ0 ,A0

C∞
0 (Ω), but it should be considered as some element of the

weighted space W0, i.e., ‖ψ‖ρ0,A0 < +∞. So, the inclusion ψ ∈ H0 is an open
question.

Thus, in order to finally characterize the limit function ψ , it remains to pass to
the limit in (24.68) and (24.73) as θ → 0.

Lemma 24.11 Let (u0, y0) ∈ Ξ be an optimal pair to the problem (24.26)–(24.28).
Assume that for a given û ∈ Aad , Hypotheses (H0)–(H4) are valid. Let

{
yθ ∈ Huθ

}
θ→0

and {ϕθ ∈ Hθ }θ→0 be the given sequences such that

yθ → y0 in Lp(Ω), ∇yθ → ∇y0 in variable space Lp(Ω, uθ dx)N , (24.100)

ϕθ ⇀ ϕ in L2(Ω), ∇ϕθ ⇀ ∇ϕ in variable space L2(Ω, |∇yθ |p−2uθ dx)N .

(24.101)
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Then,

lim
θ→0

∫

Ω

|∇yθ |p−2
(
∇yθ ,∇ϕθ

)

RN
uθ dx =

∫

Ω

|∇y0|p−2
(
∇y0,∇ϕ

)

RN
u0 dx.

(24.102)

Proof By initial assumptions, the sequence
{∇yθ ∈ Lp(Ω, uθ dx)N

}
θ→0 is bounded.

Hence, there exists C > 0 such that

‖∇yθ‖2L2(Ω,|∇yθ |p−2uθ dx)N :=
∫

Ω

|∇yθ |2|∇yθ |p−2uθ dx = ‖∇yθ‖p
Lp(Ω,uθ dx)N ≤ C,

i.e., ∇yθ ∈ L2(Ω, |∇yθ |p−2uθ dx)N for all θ > 0, and the sequence {∇yθ }θ→0 can be
considered as a bounded sequence in variable Hilbert space L2(Ω, |∇yθ |p−2uθ dx)N .
Taking into account the condition (24.100)2, we have

lim
θ→0

∫

Ω

|∇yθ |2|∇yθ |p−2uθ dx =
∫

Ω

|∇y0|2|∇y0|p−2u0 dx.

Hence, the sequence
{∇yθ ∈ L2(Ω, |∇yθ |p−2uθ dx)N

}
θ→0 strongly converges to∇y0

in variable spaceL2(Ω, |∇yθ |p−2uθ dx)N .As a result, in the left-hand side of (24.102),
we have a product of weakly and strongly convergent sequences in variable space
L2(Ω, |∇yθ |p−2uθ dx)N . Therefore, relation (24.102) is a direct consequence of the
strong convergence definition in variable spaces (see (24.11)).

Lemma 24.12 Let (u0, y0) ∈ Ξ be an optimal pair for problem (24.26)–(24.28).
Assume that for a given û ∈ Aad , Hypotheses (H0)–(H4) are valid. Let {ψθ }θ→0 be
a bounded sequence in variable space Hθ . Assume that ψθ converges to ψ in the
sense of (24.99). Then,

lim
θ→0

∫

Ω

(∇ϕ, Aθ∇ψθ)RN ρθ dx =
∫

Ω

(∇ϕ, A0∇ψ)RN ρ0 dx ∀ϕ ∈ C∞
0 (Ω),

(24.103)

i.e., Aθ∇ψθ ⇀ A0∇ψ in L2(Ω, ρθ dx)N . (24.104)

Proof Following the Lemma 24.3 and Corollary 24.3, we can suppose that the
sequence

{

Aθρθ :=
(

I + (p − 2)
∇yεθ ,θ

|∇yεθ ,θ |
⊗ ∇yεθ ,θ

|∇yεθ ,θ |
)

|∇yεθ ,θ |p−2uθ

}

θ→0

is such that ρθ → ρ0 in L1(Ω), A−1
θ → A−1

0 , and (Aθρθ − A0ρ0) → 0 a.e. in Ω .
Then, condition (24.99)2 together with (24.12) implies that sequences
{(Aθρθ − A0ρ0) ∇ψθ }θ→0 and {(ρθ − ρ0) A0∇ψθ }θ→0 are equi-integrable and con-
verge to zero almost everywhere in Ω . Hence, by Lebesgue’s theorem, we obtain
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(Aθρθ − A0ρ0)∇ψθ → 0, (ρθ − ρ0) A0∇ψθ → 0 in L1(Ω)N as θ → 0.
(24.105)

As a result, we finally have

∣
∣
∣
∣(∇ϕ, Aθ∇ψθ)RN ρθdx −

∫

Ω

(∇ϕ, A0∇ψ)RN ρ0dx

∣
∣
∣
∣

≤
∫

Ω

∣
∣ (∇ϕ, (Aθρθ − A0ρ0)∇ψθ)RN

∣
∣dx +

∫

Ω

∣
∣ (∇ϕ, A0 (ρθ − ρ0) ∇ψθ)RN

∣
∣ dx

+
∣
∣
∣
∣

∫

Ω

(∇ϕ, A0∇ψθ)RN ρθ dx −
∫

Ω

(∇ϕ, A0∇ψ)RN ρ0 dx

∣
∣
∣
∣

= I1 + I2 + I3 ∀ϕ ∈ C∞
0 (Ω),

where limθ→0 Ii = 0 for i = 1, 2 by (24.105), and limθ→0 I3 = 0 by (24.99)2 and
(24.13). The proof is complete.

We are now in a position to pass to the limit in variational problem (24.68) as
θ → 0. Having assumed that Hypotheses (H0)–(H4) are valid for a given û ∈ Aad ,
we get

lim
θ→0

∫

Ω

|∇yεθ ,θ |p−2
( [

I + (p − 2)
∇yεθ ,θ

|∇yεθ ,θ |
⊗ ∇yεθ ,θ

|∇yεθ ,θ |
]

∇ψθ,∇ϕ
)

RN
uθ dx

by Lemma 24.12=
∫

Ω

|∇y0|p−2
( [

I + (p − 2)
∇y0
|∇y0| ⊗ ∇y0

|∇y0|
]

∇ψ,∇ϕ
)

RN
u0 dx, ,

lim
θ→0

∫

Ω

|∇yεθ ,θ |p−2
(
∇yεθ ,θ ,∇ϕ

)

RN
uθ dx

by Lemma 24.11=
∫

Ω

|∇y0|p−2
(
∇y0,∇ϕ

)

RN
u0 dx,

lim
θ→0

∫

Ω

|yεθ ,θ − yd |p−2
(

yεθ ,θ − yd

)
ϕ dx

by (24.78)=
∫

Ω

|y0 − yd |p−2
(

y0 − yd

)
ϕ dx,

for all ϕ ∈ C∞
0 (Ω). Thus, the weak limit of the sequence {ψθ }θ→0 in the sense of

(24.99) satisfies the following integral identity:

∫

Ω

|∇y0|p−2
( [

I + (p − 2)
∇y0
|∇y0| ⊗ ∇y0

|∇y0|
]

∇ψ,∇ϕ
)

RN
u0 dx

+ p
∫

Ω

|∇y0|p−2
(
∇y0,∇ϕ

)

RN
u0 dx

+ p
∫

Ω

|y0 − yd |p−2
(

y0 − yd

)
ϕ dx = 0, ∀ϕ ∈ C∞

0 (Ω), (24.106)

or, in other words, it is a weak solution to the degenerate Dirichlet elliptic problem

− div(ρ0A0∇ψ) = g0 inΩ, ψ = 0 on ∂Ω, (24.107)
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where

ρ0 = u0|∇y0|p−2, (24.108)

A0 = I + (p − 2)
∇y0
|∇y0| ⊗ ∇y0

|∇y0| , (24.109)

g0 = p div
(
u0|∇y0|p−2∇y0

)− p |y0 − yd |p−2 (y0 − yd) . (24.110)

In order to realize the limit passage in the inequality (24.73), we adopt the following
“directional stability” property of the weak limit of the sequence of quasi-adjoint
states {ψθ ∈ Hθ }θ→0 (in the sense of (24.99)).

(H5) There exists a positive value δ > 0 such that ∇ψθ lies in “non-variable”
weighted space L2(Ω, |∇y0|p−2u0 dx)N for all θ such that 0 < θ ≤ δ.

It is clear now that due to the Hypotheses (H2)–(H5), the inequality (24.73) becomes
correctly defined for each û ∈ Astab

ad . Indeed, in this case, we have

∫

Ω

û
(|∇y0|p−2∇y0,∇ψθ

)
RN

≤
∥
∥
∥
∥

û

u0

∥
∥
∥
∥

L∞(Ω)

(∫

Ω

|∇ψθ |2|∇y0|p−2u0 dx

)1/2

‖y0‖p/2
Hu0

< +∞ (24.111)

by (H2) and (H5) for all û ∈ Astab
ad . To proceed further, we make use of the following

property which is crucial for the substantiation of the limit passage in inequality
(24.73).

Proposition 24.5 Let {ψθ ∈ Hθ }θ→0 be the sequence of quasi-adjoint states, and let
ψ ∈ W0 be its limit in the sense of (24.99). Then, validity of Hypotheses (H0)–(H5)
ensures the relation

lim
θ→0

∫

Ω

(∇y0,∇ψθ)RN |∇y0|p−2û dx =
∫

Ω

(∇y0,∇ψ)RN |∇y0|p−2û dx ∀ û ∈ Astab
ad .

Proof Let û ∈ Astab
ad be a fixed control. Then, Corollary 24.3 implies that

( |∇y0|p−2

|∇yεθ ,θ |p−2

û

uθ

− û

u0

)

→ 0 a.e. in Ω as θ → 0.

By weak convergence ∇ψθ ⇀ ∇ψ in the variable space L2(Ω, |∇yεθ ,θ |p−2uθ dx)N

and property (24.12), we have

wθ := (∇ψθ ,∇ϕ)
RN |∇yεθ ,θ |p−2uθ

(
|∇y0|p−2

|∇yεθ ,θ |p−2
û

uθ
− û

u0

)

→ 0 a.e. in Ω as θ → 0
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for every test function ϕ ∈ C∞
0 (Ω). Since

wθ = (∇ψθ,∇ϕ)RN |∇y0|p−2û − (∇ψθ,∇ϕ)RN |∇yθ |p−2uθ

û

u0
= (∇ψθ,∇ϕ)RN

(|∇y0|p−2 − |∇yεθ ,θ |p−2
)

û

+ θ (∇ψθ,∇ϕ)RN |∇yεθ ,θ |p−2û

(

1 − û

u0

)

,

it follows from estimate (24.111) and definition of the set Astab
ad that the sequence

{wθ }θ→0 is equi-integrable and wθ → 0 a.e. in Ω as θ → 0. Hence, by Lebesgue
theorem, we deduce:

wε → 0 in L1(Ω) as θ → 0. (24.112)

Taking this fact into account, we can provide the following estimation:

∣
∣
∣
∣

∫

Ω

(∇ϕ,∇ψθ)RN |∇y0|p−2û dx −
∫

Ω

(∇ϕ,∇ψ)RN |∇y0|p−2û dx

∣
∣
∣
∣

≤
∫

Ω

∣
∣
∣
∣(∇ψθ,∇ϕ)RN |∇y0|p−2û − (∇ψθ,∇ϕ)RN |∇yεθ ,θ |p−2uθ

û

u0

∣
∣
∣
∣ dx

+
∣
∣
∣
∣

∫

Ω

(∇ψθ,∇ϕ)RN |∇yεθ ,θ |p−2uθ

û

u0
dx −

∫

Ω

(∇ϕ,∇ψ)RN |∇y0|p−2û dx

∣
∣
∣
∣

=
∫

Ω

|wθ | dx
︸ ︷︷ ︸

I1

+
∣
∣
∣
∣

∫

Ω

(∇ψθ,∇ϕ)RN |∇yεθ ,θ |p−2uθ

û

u0
dx −

∫

Ω

(∇ϕ,∇ψ)RN |∇y0|p−2u0
û

u0
dx

∣
∣
∣
∣

︸ ︷︷ ︸
I2

,

where limθ→0 I1 = 0 by (24.112). As for the equality limθ→0 I2 = 0, it immediately
follows from weak convergence (24.99)2, condition û/u0 ∈ L∞(Ω), and property
(24.13). Thus, ∇ψθ ⇀ ∇ψ weakly in L2(Ω, |∇y0|p−2̂u dx)N . In order to complete
the proof, it is enough to note that the function∇y0 belongs to L2(Ω, |∇y0|p−2̂u dx)N

by condition (24.63)1. So, by density of C∞
0 (Ω) in L2(Ω, |∇y0|p−2̂u dx)N , we can

put ϕ = y0 in the last inequality. The proof is complete.

As a result, the passage to the limit in (24.73) becomes evident byProposition 24.5,
and combining this fact with the relation (24.106), we arrive at the following final
conclusion.

Theorem 24.6 Let yd ∈ Lp(Ω) and f ∈ Lq(Ω) be the given functions. Let (u0, y0) ∈
Ξ be an optimal pair for problem (24.26)–(24.28). Then, the fulfillment of Hypothe-
ses (H0)–(H5) implies the existence of an element ψ ∈ L2(Ω) such that ∇ψ ∈
L2(Ω, |∇y0|p−2u0 dx)N and
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∫

Ω

(̂u − u0)
[
|∇y0|p + (|∇y0|p−2∇y0,∇ψ

)
RN

]
dx ≥ 0, ∀ û ∈ Astab

ad , (24.113)
∫

Ω

|∇y0|p−2 (∇y0,∇w)RN u0(x) dx =
∫

Ω

fw dx, ∀ w ∈ Hu0 , (24.114)
∫

Ω

|∇y0|p−2
( [

I + (p − 2)
∇y0
|∇y0| ⊗ ∇y0

|∇y0|
]

∇ψ,∇ϕ
)

RN
u0 dx

+ p
∫

Ω

|∇y0|p−2
(
∇y0,∇ϕ

)

RN
u0 dx

+ p
∫

Ω

|y0 − yd |p−2
(

y0 − yd

)
ϕ dx = 0, ∀ϕ ∈ C∞

0 (Ω). (24.115)

Remark 24.13 Let us assume that condition (24.52) holds true with constant C > 0.
Then, Theorem 24.5 implies that the weighted Sobolev spaces Hu and Wu coincide
for each admissible control u ∈ Aad . Then, it is easy to show that the space Hu is
stable along every direction û − u, where u, û ∈ Aad . Hence, Hypothesis (H0) can
be omitted in Theorem 24.6. At the same time, if we assume that ξ2 ∈ L∞(Ω) and
ξ−1
1 ∈ L∞(Ω), i.e., we deal with an optimal control problem for non-degenerate

p-harmonic equation, then Hu = Wu = W 1,p
0 (Ω) for all u ∈ Aad and Astab

ad ≡ Aad .
Hence, Hypotheses (H0) and (H4) become trivial.

Remark 24.14 Let us assume for a moment that
∫

Ω
|y0 − yd |p−2

(
y0 − yd

)
ϕ dx =

∫

Ω\S1(y0)
|y0 − yd |p−2

(
y0 − yd

)
ϕ dx, ∀ϕ ∈ C∞

0 (Ω),

where the set S1(y0) is defined by (24.54)2 with the property (24.55). Then, the
integral identity (24.115) can be represented as follows:

∫

Ω\S1(y0)
|∇y0|p−2

( [

I + (p − 2)
∇y0
|∇y0| ⊗ ∇y0

|∇y0|
]

∇ψ,∇ϕ
)

RN
u0 dx (24.116)

+ p
∫

Ω\S1(y0)
|∇y0|p−2

(
∇y0,∇ϕ

)

RN
u0 dx

+ p
∫

Ω\S1(y0)
|y0 − yd |p−2

(
y0 − yd

)
ϕ dx = 0, ∀ϕ ∈ C∞

0 (RN ; ∂Ω\∂S1(y0)).

(24.117)

Hence, formally, it can be associated with the following degenerate elliptic boundary
value problem for the adjoint variable ψ ∈ L2(Ω\S1(y0))

− div(ρ0A0∇ψ) = g0 in Ω,

ψ = 0 on ∂Ω\∂S1(y0)), ρ0
∂ψ

∂nA0

= 0 on ∂S1(y0))\∂Ω,

where ρ0, A0, and g0 are defined in (24.108)–(24.110).
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24.9 The Hardy–Poincaré Inequality and Uniqueness
of the Adjoint State

The main goal of this section is to study the well-posedness of variational problem
(24.115). With that in mind, we make use of the following version of the Hardy–
Poincaré inequality: for a given internal point x∗ ∈ Ω , there exists a constant Ĉ(Ω) >

0 such that for every v ∈ H1
0 (Ω)

∫

Ω

[

|∇v|2
RN − λ∗

v2

|x − x∗|2
RN

]

dx ≥ Ĉ(Ω)

∫

Ω

v2 dx, (24.118)

where λ∗ := (N − 2)2/4 and N ≥ 2. We begin with the following auxiliary results.

Lemma 24.13 Let (u0, y0) ∈ Ξ be an optimal pair to the problem (24.26)–(24.28).
Assume the function |∇y0|p−2u0 belongs to the class of Muckenhoupt weight A2, and
∇ ln

(|∇y0|p−2u0
) ∈ L2(Ω)N . Then, each element

ψ ∈ W0 :=
{
ϕ ∈ W 1,1

0 (Ω) : ϕ ∈ L2(Ω), ∇ϕ ∈ L2(Ω, |∇y0|p−2u0 dx)N
}

can be represented in a unique way as follows:

ψ = |∇y0|(2−p)/2u−1/2
0 z0, where z0 ∈ W 1,1

0 (Ω) ∩ L2(Ω). (24.119)

Proof Since |∇y0|p−2u0 belongs to the class of Muckenhoupt weights A2, it fol-
lows that H0 = W0 = cl‖·‖H0

C∞
0 (Ω) and there exists a constant C > 0 such that

(see [10, 12])

∫

Ω

|ψ |2|∇y0|p−2u0 dx ≤ C
∫

Ω

|∇ψ |2|∇y0|p−2u0 dx, for each elementψ of W0.

(24.120)

Let us fix an element ψ ∈ W0. Then, ψ ∈ H0 and for z0 := |∇y0|(p−2)/2u1/2
0 ψ , we

have

‖z0‖2L2(Ω) =
∫

Ω

ψ2|∇y0|p−2u0 dx ≤ C‖∇ψ‖2L2(Ω;|∇y0|p−2u0 dx)N = C‖ψ‖2H0
< ∞,

where the constant C > 0 comes from the Poincaré inequality (24.120). Using the
evident equality

∇z0 =
(
1

2
√

ρ0ψ∇ ln ρ0 + √
ρ0∇ψ

) ∣
∣
∣
ρ0=|∇y0|p−2u0

,
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and applying the Hölder inequality with exponents p′ = q′ = 2, we get

‖∇z0‖L1(Ω)N ≤1

2

∫

Ω

|∇y0|(p−2)/2u1/20 |ψ |∣∣∇ ln
(
|∇y0|p−2u0

) ∣
∣ dx

+ |Ω|1/2
(∫

Ω

|∇y0|p−2u0
∣
∣∇ψ

∣
∣2 dx

)1/2

≤1

2
‖ψ‖L2(Ω;|∇y0|p−2u0 dx)

(∫

Ω

∣
∣∇ ln

(
|∇y0|p−2u0

) ∣
∣2 dx

)1/2

+ |Ω|1/2‖ψ‖H0

≤
(

C

2
‖∇ ln

(
|∇y0|p−2u0

)
‖L2(Ω)N + |Ω|1/2

)

‖ψ‖H0 < ∞.

Thus, z0 ∈ W 1,1(Ω) ∩ L2(Ω). Since the element z0 := |∇y0|(p−2)/2u1/2
0 ψ inherits

the trace properties along ∂Ω from its parent element ψ , we finally obtain z0 ∈
W 1,1

0 (Ω) ∩ L2(Ω). The proof is complete.

As an obvious consequence of this result and continuity of the embedding of
Sobolev spaces H1

0 (Ω) ↪→ W 1,1
0 (Ω), we can give the following conclusion.

Corollary 24.4 If ∇ ln
(|∇y0|p−2u0

) ∈ L2(Ω)N and |∇y0|p−2u0 ∈ A2, then there
exists a non-empty dense subset D(y0, u0) of H1

0 (Ω) such that

|∇y0|(2−p)/2u−1/2
0 z ∈ H0, ∀ z ∈ D(y0, u0). (24.121)

Remark 24.15 It is clear that Corollary 24.4 remains true if we relax the condi-
tion |∇y0|p−2u0 ∈ A2 to the following one: There exists a constant C > 0 such that
inequality (24.120) holds true for everyψ ∈ H0. In this case, the function |∇y0|p−2u0
is not obligatory of the class ofMuckenhoupt weightsA2, and hence, we can not guar-
antee the fulfillment of the equality H0 = W0.

We introduce the following linear mapping:

F : D(y0, u0) ⊂ H1
0 (Ω) → H0, where Fz = |∇y0|(2−p)/2

√

u−1
0 z. (24.122)

Since domain D(y0, u0) of F is dense in Banach space H1
0 (Ω), it follows that for F,

as for a densely defined operator, there exists an adjoint operator

F∗ : D
(
F∗) ⊂ H ∗

0 → H−1(Ω)

such that

〈F∗v, z〉H−1(Ω),H1
0 (Ω) = 〈v,Fz〉H ∗

0 ,H0 , ∀ z ∈ D(y0, u0) and ∀ v ∈ D
(
F∗) ,

where

D
(
F∗) =

{

v ∈ H ∗
0

∣
∣
∣
∣
there exists C > 0 such that for all z ∈ D(y0, u0)∣

∣〈v,Fz〉H ∗
0 ,H0

∣
∣ ≤ C‖z‖H1

0 (Ω)

}

.
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Notice that in general, the adjoint operator F∗ is not densely defined. For our further
analysis, we need to introduce some preliminaries. Let λ be a positive constant such
that λ < λ∗ := (N − 2)2/4. Let {x1, x2, . . . , xL} ⊂ Ω be a given collection of points.
We define a subset M(Ω) ⊂ Hu0 as follows: y ∈ M(Ω) if and only if y ∈ Hu0 and

− Ĉ(Ω) ≤ Vy(x) ≤ 2λ

L

L∑

i=1

1

|x − xi|2 a.e. in Ω, (24.123)

for some positive constant Ĉ(Ω) > 0, where the symmetric matrix A0 is defined by
(24.109), and

Vy(x) = −div
(

A0∇ ln
(
|∇y|p−2u0

))
− 1

2

(
∇ ln

(
|∇y|p−2u0

)
, A0∇ ln

(
|∇y|p−2u0

))

RN
.

Let us consider the following linear operator

A0ψ := −div (ρ0A0∇ψ) , ∀ψ ∈ H0,

where ρ0 and A0 are defined by (24.108) and (24.109). As follows from Proposi-
tion 24.3, the operator A0 : H0 → H ∗

0 is obviously strictly monotone

〈A0(ψ − φ),ψ − φ〉H ∗
0 ;H0 =

∫

Ω

|∇y|p−2u0 (A0(∇ψ − ∇φ),∇ψ − ∇φ)RN

≥ ‖∇ψ − ∇φ‖2L2(Ω,|∇y|p−2u0 dx)N = ‖ψ − φ‖2H0
,

semicontinuous and H0-coercive

∣
∣〈A0ψ, φ〉H ∗

0 ;H0

∣
∣ ≤ [1 + (p − 2)2N−1

] ‖ψ‖H0‖φ‖H0 ,∀ψ, φ ∈ H0,

〈A0ψ,ψ〉H ∗
0 ;H0 ≥ ‖ψ‖2H0

.

We are now in a position to establish another important property of this operator.

Lemma 24.14 Assume that an optimal pair (u0, y0) ∈ Ξ to the problem (24.26)–
(24.28) is such that

(H6)

⎧
⎪⎨

⎪⎩

∇ ln
(
|∇y0|p−2u0

)
∈ L2(Ω)N , y0 ∈ M(Ω) ⊂ Hu0 ,

∫

Ω

|ψ |2|∇y0|p−2u0 dx ≤ C
∫

Ω

|∇ψ |2|∇y0|p−2u0 dx, ∀ ψ ∈ H0 with some C > 0.

Then,
〈A0 (Fz) ,Fv〉H ∗

0 ;H0 = 〈B0(z), v〉H−1(Ω),H1
0 (Ω), (24.124)
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where

B0(z) = −div (A0∇z) − 1

2
V (x)z, (24.125)

V (x) = −div
(
A0∇ ln

(|∇y0|p−2u0
))− 1

2

(∇ ln
(|∇y0|p−2u0

)
, A0∇ ln

(|∇y0|p−2u0
))

RN ,

(24.126)

and the linear operator B0 defines an isomorphism from H1
0 (Ω) into its dual H−1(Ω).

Proof Let v and z be arbitrary elements of D(y0, u0) ⊂ H1
0 (Ω). Then, by Corollary

24.4 (see also Remark 24.15), we have Fz,Fv ∈ H0. Therefore, following the def-

inition of operator F and taking into account that
∇ρ0

ρ0
= ∇ ln ρ0, we arrive at the

following chain of transformations:

A0 (Fz) = −div

(

ρ0A0∇
(

z√
ρ0

))

= −div

(√
ρ0A0

(

∇z − 1

2
z∇ ln ρ0

))

= −1

2

(∇ρ0√
ρ

, A0∇z

)

RN
+ 1

4
z

(∇ρ0√
ρ

, A0∇ ln ρ0

)

RN
− √

ρ0div (A0∇z)

+
√

ρ0

2
(∇z, A0∇ ln ρ0)RN +

√
ρ0

2
zdiv(A0∇ ln ρ0)

= √
ρ0

[

−div (A0∇z) − z

2

(

−1

2
(∇ ln ρ0, A0∇ ln ρ0)RN − div(A0∇ ln ρ0)

)]

= √
ρ0(−div(A0∇z) − 1

2
z V (x)).

Hence,

〈A0 (Fz) ,Fv〉H ∗
0 ;H0 = 〈√ρ0

(
− div (A0∇z) − 1

2
V (x)z

)
,

v√
ρ0

〉H ∗
0 ;H0

= 〈−div (A0∇z) − 1

2
V (x)z, v〉H−1(Ω);H1

0 (Ω) = 〈B0(z), v〉H−1(Ω),H1
0 (Ω).

To conclude the proof, it remains to show that operator B0 := −div (A0∇) − 1
2 V (x)

defines an isomorphism from H1
0 (Ω) into its dual H−1(Ω). With that in mind, we

make use of the Hardy–Poincaré inequality (24.118), where λ∗ := (N − 2)2/4 and
N ≥ 2. According to this result and the fact that y0 ∈ M(Ω), we have

− Ĉ(Ω) ≤ V (x) ≤ 2λ

L

L∑

i=1

1

|x − xi|2 <
(N − 2)2

2L

L∑

i=1

1

|x − xi|2 a.e. in Ω

(24.127)
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and therefore,

(
1+ Ĉ(Ω)

2C

)
‖v‖2H1

0 (Ω)
≥
∫

Ω

[
|∇v|2 + Ĉ(Ω)

2
v2
]

dx

≥
∫

Ω

[
|∇v|2 − λ

L

(
L∑

i=1

1

|x − x∗
i |

)

v2
]

dx =
(

1 − λ

λ∗

)∫

Ω

|∇v|2 dx

+ λ

λ∗

∫

Ω

[

|∇v|2 − λ∗
L

(
L∑

i=1

1

|x − x∗
i |

)

v2
]

dx

≥
(

1 − λ

λ∗

)∫

Ω

|∇v|2 dx + λĈ(Ω)

λ∗

∫

Ω

v2 dx ≥
(

1 − λ

λ∗

)

‖v‖2H1
0 (Ω)

.

(24.128)

Thus, in view of (24.127) and (24.128),

‖[v]‖20 :=
∫

Ω

[
|∇v|2 − 1

2
V (x)v2

]
dx =

∫

Ω

[
(∇v,∇v)RN − 1

2
V (x)v2

]
dx

is equivalent to the standard norm of H1
0 (Ω), and therefore, the operator B0 given by

(24.125) defines an isomorphism from H1
0 (Ω) into its dual H−1(Ω).

The last step of our analysis is to show that the adjoint state ψ to y0 ∈ Hu0 can be
defined as a unique solution inH0 of degenerate variational problem (24.115) even
if the weight |∇y0|p−2u0 does not belong to the Muckenhoupt class A2.

Lemma 24.15 Assume that Hypotheses (H4) and (H6) (see Lemma 24.14) are valid.
Then, variational problem (24.115) admits a unique solution ψ ∈ H0.

Proof Since y0 ∈ Hu0 , Hypothesis (H4) implies that (see (24.94) and (24.95))

〈g0, ϕ〉H ∗
0 ;H0 ≤ p

∫

Ω

|∇y0|p−1|∇ϕ|u0 dx + p
∫

Ω

|y0 − yd |p−1|ϕ| dx

≤ ‖y0‖p/2
Hu0

‖ϕ‖H0 + C‖y0 − yd‖p−1
L2p−2(Ω)

‖ϕ‖H0 .

Hence, g0 := p div
(
u0|∇y0|p−2∇y0

)− p |y0 − yd |p−2 (y0 − yd) can be considered as
a distribution on H0. Therefore, equality (24.115) can be represented as follows:

〈−div
(|∇y0|p−2u0A0∇ψ

)− g0, φ〉H ∗
0 ;H0 = 0, ∀φ ∈ F(D(y0, u0)) = H0.

Then, Hypothesis (H6) and Lemma 24.14 lead to the following transformations:
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〈−div
(|∇y0|p−2u0A0∇ψ

)
, φ〉H ∗

0 ;H0 = 〈A0 (Fz) ,Fv〉H ∗
0 ;H0

= 〈−div (A0∇z) − 1

2
V (x)z, v〉H−1(Ω);H1

0 (Ω) = 〈B0(z), v〉H−1(Ω),H1
0 (Ω),

〈g0, φ〉H ∗
0 ;H0 = −p

∫

Ω

|∇y0|p−2
(
∇y0,∇φ

)

RN
u0 dx

− p
∫

Ω

|y0 − yd |p−2
(

y0 − yd

)
φ dx = 〈g0,Fv〉H ∗

0 ;H0 = 〈F∗g0, v〉H−1(Ω),H1
0 (Ω)

providedφ ∈ F(D(y0, u0)). ByHardy–Poincaré inequality (see (24.118)), the expres-
sion ∫

Ω

[
(∇v,∇z)RN − 1

2
V (x)vz

]
dx

can be considered as a scalar product in H1
0 (Ω). Then, by Riesz representation

theorem, there exists a unique element z0 ∈ H1
0 (Ω) such that

〈B0(z0), v〉H−1(Ω),H1
0 (Ω) = 〈F∗g0, v〉H−1(Ω),H1

0 (Ω), ∀ v ∈ H1
0 (Ω).

Thus,ψ := Fz0 = |∇y0|(2−p)/2
√

u−1
0 z0 is a unique solution to the Dirichlet boundary

value problem (24.107). Moreover, by Remark 24.15, we finally get ψ ∈ H0.

As a result, the optimality conditions to optimal control problem (24.26)–(24.28)
can be reformulated as follows (see for comparison Theorem 24.6):

Theorem 24.7 Let yd ∈ Lp(Ω) and f ∈ Lq(Ω) be the given functions. Let (u0, y0) ∈
Ξ be an optimal pair to the problem (24.26)–(24.28). Then, the fulfillment of Hypothe-
ses (H0)–(H6) implies the existence of a unique element z0 ∈ H1

0 (Ω) such that for
all û ∈ Astab

ad ,

∫

Ω

(̂u − u0)

⎡

⎣|∇y0|p +
√

|∇y0|p−2

u0

(
∇y0,∇z0 − z0

2
∇ ln

(|∇y0|p−2u0
))

RN

⎤

⎦ dx ≥ 0,

− div
(
u0(x)|∇y0|p−2∇y0

) = f in Ω,

y0 = 0 on ∂Ω,

− div

([

I + (p − 2)
∇y0
|∇y0| ⊗ ∇y0

|∇y0|
]

∇z0

)

− 1

2
V (x)z0 = F∗g0 in Ω,

z0 = 0 on ∂Ω,

where potential term V (x) and distribution g0 ∈ H ∗
0 are defined by (24.126) and

(24.110), respectively.
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