LNCS 9721

Juan Caballero
Urko Zurutuza
Ricardo J. Rodriguez (Eds.)

Detection of Intrusions
and Malware, and
Vulnerability Assessment

13th International Conference, DIMVA 2016
San Sebastian, Spain, July 7-8, 2016
Proceedings

@

DIMVA 2016

@ Springer

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, Lancaster, UK
Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Friedemann Mattern

ETH Zurich, Ziirich, Switzerland
John C. Mitchell

Stanford University, Stanford, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

TU Dortmund University, Dortmund, Germany
Demetri Terzopoulos

University of California, Los Angeles, CA, USA
Doug Tygar

University of California, Berkeley, CA, USA
Gerhard Weikum

Max Planck Institute for Informatics, Saarbriicken, Germany

9721

More information about this series at http://www.springer.com/series/7410

http://www.springer.com/series/7410

Juan Caballero - Urko Zurutuza
Ricardo J. Rodriguez (Eds.)

Detection of Intrusions
and Malware, and

Vulnerability Assessment
13th International Conference, DIMVA 2016

San Sebastian, Spain, July 7-8, 2016
Proceedings

@ Springer

Editors

Juan Caballero Ricardo J. Rodriguez
IMDEA Software Institute Universidad de Zaragoza
Pozuelo de Alarcon, Madrid Zaragoza

Spain Spain

Urko Zurutuza
Mondragon University
Arrasate, Guiptizcoa

Spain

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science

ISBN 978-3-319-40666-4 ISBN 978-3-319-40667-1 (eBook)

DOI 10.1007/978-3-319-40667-1

Library of Congress Control Number: 2016941320
LNCS Sublibrary: SL.4 — Security and Cryptology

© Springer International Publishing Switzerland 2016

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG Switzerland

Preface

It is our pleasure to welcome you to the proceedings of the 13th International Con-
ference on Detection of Intrusions and Malware and Vulnerability Assessment
(DIMVA 2016), which took place in Donostia-San Sebastian, Spain, during July 7-8,
2016. DIMVA is an international conference advancing the state of the art in intrusion
detection, malware analysis, and vulnerability assessment. It brings together members
of academia, industry, and governmental institutions to discuss novel ideas as well as
mature research results.

This year, DIMVA received 66 submissions, which were carefully reviewed by the
Program Committee. Each submission had at least three independent reviews. In the
end, 21 papers were accepted to be presented at the conference and included in this
proceedings. Of these, 19 are full papers presenting mature research results and two are
extended abstracts presenting new ideas in the early stages of research. Overall, the
acceptance rate was 31.8 %. The accepted papers present novel ideas, techniques, and
applications in important areas of computer security including vulnerability detection,
attack prevention, Web security, malware detection and classification, authentication,
data leakage prevention, and countering evasive techniques such as obfuscation.
Beyond the research papers, the program also included insightful keynote talks by Prof.
Christopher Kruegel (University of California at Santa Barbara) and by David Barroso
(CounterCraft).

Many individuals and organizations contributed to the success of DIMVA 2016.
First of all, we would like to express our appreciation to the Program Committee
members and external reviewers for the time spent reviewing, discussing papers, and
attending the Program Committee meeting in Madrid. We are also deeply grateful to all
members of the Organizing Committee for their tremendous work and for excelling in
their respective tasks. The conference was also made possible thanks to the support of
our sponsors Huawei and Inycom, and thanks to the collaboration of the Basque
Business Development Agency (SPRI) and the Department of Education, Linguistic
Policy and Culture of the Basque Government. We also thank Springer for publishing
these proceedings in their LNCS series, and the DIMVA Steering Committee for
continuing to bring together the conference.

Finally, the success of DIMVA hinges on the authors who contribute their work and
on the attendees who come to the conference. We would like to thank them and we
look forward to thier next contribution to DIMVA.

July 2016 Juan Caballero
Urko Zurutuza
Ricardo J. Rodriguez

Organization

DIMVA was organized by the special interest group Security — Intrusion Detection and
Response (SIDAR) of the German Informatics Society (GI).

Organizing Committee

General Chair

Urko Zurutuza

Program Chair

Juan Caballero

Financial Chair
Inaki Hurtado

Publication Chair

Ricardo J. Rodriguez

Mondragon University, Spain

IMDEA Software Institute, Spain

Mondragon University, Spain

University of Zaragoza, Spain

Steering Committee (Chairs)

Ulrich Flegel
Michael Meier

Infineon Technologies, Germany
University of Bonn, Germany

Steering Committee (Members)

Magnus Almgren
Herbert Bos
Danilo M. Bruschi
Roland Bueschkes
Lorenzo Cavallaro
Herve Debar
Sven Dietrich

Bernhard Haemmerli
Thorsten Holz
Marko Jahnke

Klaus Julisch
Christian Kreibich
Christopher Kruegel
Pavel Laskov
Federico Maggi

Chalmers University of Technology, Sweden

Vrije Universiteit Amsterdam, The Netherlands

Universita degli Studi di Milano, Italy

RWE AG, Germany

Royal Holloway, University of London, UK

Telecom SudParis, France

City University of New York, USA — John Jay College
of Criminal Justice, USA

Acris GmbH & HSLU Lucerne, Switzerland

Ruhr-Universitiat Bochum, Germany

Federal Office for Information Security, Germany

Deloitte, Switzerland

ICSI, USA

UC Santa Barbara, USA

University of Tiiebingen, Germany

Politecnico di Milano, Italy

VI Organization

Konrad Rieck
Robin Sommer

Program Committee

Manos Antonakakis
Marco Balduzzi
Leyla Bilge
Herbert Bos
Levente Buttyan

Mauro Conti
Baris Coskun
Lucas Davi

Sven Dietrich

Brendan Dolan-Gavitt
Zakir Durumeric
Nigel Edwards
Manuel Egele
Ulrich Flegel
Vincenzo Gulisano
Bernhard Haemmerli
Sotiris Ioannidis
Somesh Jha
Tim Kornau
Andrea Lanzi
Pavel Laskov
Corrado Leita
Zhiqiang Lin
Martina Lindorfer
Federico Maggi
Jean-Yves Marion
Michael Meier
Simin Nadjm-Tehrani
Nick Nikiforakis
Roberto Perdisci
Jason Polakis
Konrad Rieck
Christian Rossow
Stelios
Sidiroglou-Douskos
Gianluca Stringhini
Juan Tapiador
Yves Younan
Stefano Zanero

University of Gottingen, Germany
ICSI/LBNL, USA

Georgia Institute of Technology, USA

Trend Micro Research, USA

Symantec Research Labs, France

Vrije Universiteit, The Netherlands

Budapest University of Technology and Economics,
Hungary

University of Padua, Italy

Yahoo! Labs, USA

TU Darmstadt, Germany

John Jay College of Criminal Justice, City University
of New York, USA

New York University, USA

University of Michigan, USA

Hewlett Packard Laboratories, UK

Boston University, USA

Infineon Technologies AG, Germany

Chalmers University of Technology, Sweden

Acris GmbH, Switzerland

FORTH, Greece

University of Wisconsin-Madison, USA

Google, Switzerland

University of Milan, Italy

Huawei European Research Center, Germany

Lastline, UK

University of Texas at Dallas, USA

SBA Research, Austria

Politecnico di Milano, Italy

Lorraine University, France

University of Bonn and Fraunhofer FKIE, Germany

Linkdping University, Sweden

Stony Brook University, USA

University of Georgia and Georgia Tech, USA

Columbia University, USA

University of Gottingen, Germany

Saarland University, Germany

MIT, USA

University College London, UK
Carlos IIT University of Madrid, Spain
Cisco Systems, USA

Politecnico di Milano, Italy

Additional Reviewers

Daniel Arp
Sebastien Bardin
Guillaume Bonfante
Michele Carminati
Jean-Luc Danger
Drew Davidson

Lorenzo De Carli
Parvez Faruki
Dario Fiore

Maté Horvath
Kaitai Liang
Srdan Moraca

Organization

Mizuhito Ogawa
Raphael Otto
Davide Quarta
Vaibhav Rastogi
Sanjay Rawat
Valentin Tudor

Sponsoring Institutions (Gold)

Q)
HUAV\TE [

Sponsoring Institutions (Silver)

Collaborators

o
‘, inycom

j.- EUSKO JAURLARITZA

- GOBIERNO VASCO

HEZKUNTZA, HIZKUNTZA POLITIKA
ETA KULTURA SAILA

DEPARTAMENTQ_DE EDUCACION,
POLITICA LINGUISTICA Y CULTURA

ENPRESA

Sp[’i DIGITALA

IX

Contents

Attacks

Subverting Operating System Properties Through Evolutionary
DKOM Attacks. e
Mariano Graziano, Lorenzo Flore, Andrea Lanzi, and Davide Balzarotti

DeepFuzz: Triggering Vulnerabilities Deeply Hidden in Binaries:
(Extended Abstract).
Konstantin Béttinger and Claudia Eckert

Defenses

AutoRand: Automatic Keyword Randomization to Prevent

Injection Attacks. e
Jeff Perkins, Jordan Eikenberry, Alessandro Coglio, Daniel Willenson,
Stelios Sidiroglou-Douskos, and Martin Rinard

AVRAND: A Software-Based Defense Against Code Reuse Attacks

for AVR Embedded Devices
Sergio Pastrana, Juan Tapiador, Guillermo Suarez-Tangil,
and Pedro Peris-Lopez

Towards Vulnerability Discovery Using Staged Program Analysis.
Bhargava Shastry, Fabian Yamaguchi, Konrad Rieck,
and Jean-Pierre Seifert

Malware Detection

Comprehensive Analysis and Detection of Flash-Based Malware.
Christian Wressnegger, Fabian Yamaguchi, Daniel Arp,
and Konrad Rieck

Reviewer Integration and Performance Measurement

for Malware Detection.ttt
Brad Miller, Alex Kantchelian, Michael Carl Tschantz, Sadia Afroz,
Rekha Bachwani, Riyaz Faizullabhoy, Ling Huang, Vaishaal Shankar,
Tony Wu, George Yiu, Anthony D. Joseph, and J.D. Tygar

On the Lack of Consensus in Anti-Virus Decisions: Metrics and Insights

on Building Ground Truths of Android Malware.
Meédéric Hurier, Kevin Allix, Tegawendé F. Bissyandé, Jacques Klein,
and Yves Le Traon

http://dx.doi.org/10.1007/978-3-319-40667-1_1
http://dx.doi.org/10.1007/978-3-319-40667-1_1
http://dx.doi.org/10.1007/978-3-319-40667-1_2
http://dx.doi.org/10.1007/978-3-319-40667-1_2
http://dx.doi.org/10.1007/978-3-319-40667-1_3
http://dx.doi.org/10.1007/978-3-319-40667-1_3
http://dx.doi.org/10.1007/978-3-319-40667-1_4
http://dx.doi.org/10.1007/978-3-319-40667-1_4
http://dx.doi.org/10.1007/978-3-319-40667-1_5
http://dx.doi.org/10.1007/978-3-319-40667-1_6
http://dx.doi.org/10.1007/978-3-319-40667-1_7
http://dx.doi.org/10.1007/978-3-319-40667-1_7
http://dx.doi.org/10.1007/978-3-319-40667-1_8
http://dx.doi.org/10.1007/978-3-319-40667-1_8

XII Contents

Evasion

Probfuscation: An Obfuscation Approach Using Probabilistic
Control Flows. 165
Andre Pawlowski, Moritz Contag, and Thorsten Holz

RAMBO: Run-Time Packer Analysis with Multiple Branch Observation 186
Xabier Ugarte-Pedrero, Davide Balzarotti, Igor Santos,
and Pablo G. Bringas

Detecting Hardware-Assisted Virtualization 207
Michael Brengel, Michael Backes, and Christian Rossow

Web Security

Financial Lower Bounds of Online Advertising Abuse: A Four Year Case

Study of the TDSS/TDL4 Botnet, 231
Yizheng Chen, Panagiotis Kintis, Manos Antonakakis, Yacin Nadji,
David Dagon, Wenke Lee, and Michael Farrell

Google Dorks: Analysis, Creation, and New Defenses. 255
Flavio Toffalini, Maurizio Abba, Damiano Carra, and Davide Balzarotti
Data Leaks

Flush+Flush: A Fast and Stealthy Cache Attack 279
Daniel Gruss, Clementine Maurice, Klaus Wagner, and Stefan Mangard

Rowhammer.js: A Remote Software-Induced Fault Attack in JavaScript. 300
Daniel Gruss, Clémentine Maurice, and Stefan Mangard

Detile: Fine-Grained Information Leak Detection in Script Engines 322
Robert Gawlik, Philipp Koppe, Benjamin Kollenda, Andre Pawlowski,
Behrad Garmany, and Thorsten Holz

Understanding the Privacy Implications of ECS: (Extended Abstract) 343
Panagiotis Kintis, Yacin Nadji, David Dagon, Michael Farrell,
and Manos Antonakakis

Authentication

Analysing the Security of Google’s Implementation of OpenID Connect 357
Wanpeng Li and Chris J. Mitchell

Leveraging Sensor Fingerprinting for Mobile Device Authentication 377
Thomas Hupperich, Henry Hosseini, and Thorsten Holz

http://dx.doi.org/10.1007/978-3-319-40667-1_9
http://dx.doi.org/10.1007/978-3-319-40667-1_9
http://dx.doi.org/10.1007/978-3-319-40667-1_10
http://dx.doi.org/10.1007/978-3-319-40667-1_11
http://dx.doi.org/10.1007/978-3-319-40667-1_12
http://dx.doi.org/10.1007/978-3-319-40667-1_12
http://dx.doi.org/10.1007/978-3-319-40667-1_13
http://dx.doi.org/10.1007/978-3-319-40667-1_14
http://dx.doi.org/10.1007/978-3-319-40667-1_15
http://dx.doi.org/10.1007/978-3-319-40667-1_16
http://dx.doi.org/10.1007/978-3-319-40667-1_17
http://dx.doi.org/10.1007/978-3-319-40667-1_18
http://dx.doi.org/10.1007/978-3-319-40667-1_19

Contents XIII

Malware Classification

MitNet: A Multi-task Neural Network for Dynamic Malware Classification. . . 399
Wenyi Huang and Jack W. Stokes

Adaptive Semantics-Aware Malware Classification 419
Bojan Kolosnjaji, Apostolis Zarras, Tamas Lengyel, George Webster,
and Claudia Eckert

Author Index e 441

http://dx.doi.org/10.1007/978-3-319-40667-1_20
http://dx.doi.org/10.1007/978-3-319-40667-1_21

Attacks

Subverting Operating System Properties
Through Evolutionary DKOM Attacks

Mariano Graziano' 3™ Lorenzo Flore?, Andrea Lanzi?,

and Davide Balzarotti®

! Eurecom, Biot, France
magrazia@cisco.com
2 Universita degli Studi di Milano, Milan, Italy
3 Cisco Systems, Inc., San Jose, CA, USA

Abstract. Modern rootkits have moved their focus on the exploitation
of dynamic memory structures, which allows them to tamper with the
behavior of the system without modifying or injecting any additional
code.

In this paper we discuss a new class of Direct Kernel Object Manipula-
tion (DKOM) attacks that we call Evolutionary DKOM (E-DKOM). The
goal of this attack is to alter the way some data structures “evolve” over
time. As case study, we designed and implemented an instance of Evolu-
tionary DKOM attack that targets the OS scheduler for both userspace
programs and kernel threads. Moreover, we discuss the implementation
of a hypervisor-based data protection system that mimics the behavior
of an OS component (in our case the scheduling system) and detect any
unauthorized modification. We finally discuss the challenges related to
the design of a general detection system for this class of attacks.

1 Introduction

Rootkits are a particular type of malicious software designed to maintain a
hidden access to a compromised machine by targeting the running kernel. To
mitigate this severe threat, several defense techniques for code protection and
attestation have been proposed in the literature [27,37,39,46]. These mechanisms
try to protect the applications and the kernel code against any illicit modification
of its instructions. This also prevents hooking techniques that attempt to divert
the control flow to a routine controlled by the attacker.

However, while the code of the kernel is easy to protect, its dynamic data
structures often remain outside the boundaries of traditional defenses. Left
unprotected, they quickly became one of the main targets of modern rootkits,
that manipulates their values to tamper with the behavior of the system with-
out the need to modify the existing code. Even though these attacks are simple
to understand and relatively easy to perform, protecting the dynamic memory
structures of an operating system is a very difficult task. For instance, the classic
example of Direct Kernel Object Manipulation (or DKOM) attack consists of
hiding a running process by simply removing its corresponding element from the

© Springer International Publishing Switzerland 2016
J. Caballero et al. (Eds.): DIMVA 2016, LNCS 9721, pp. 324, 2016.
DOI: 10.1007/978-3-319-40667-1_1

4 M. Graziano et al.

processes list (e.g., the EPROCESS structure in Microsoft Windows). Detecting
DKOM attacks often rely on the assumption that even though some information
can be modified, the original value can still be present in other OS context. For
example, even if an element is deleted from the EPROCESS linked-list, in order
to be executed the process still needs to be present in the scheduling queue.
Consequently, a common technique to detect DKOM attacks consists in cross-
checking different sources of information to verify if their values are consistent.
For instance, this is the approach adopted by the psxview Volatility plugin [45]
to detect hidden processes. Researchers also proposed more sophisticated mon-
itoring techniques that maintain a reference model of the running system to
compare with the actual data structures. For example, Rhee et al. [36] proposed
to use an allocation driven mapping to identify dynamic kernel objects by inter-
cepting their allocations/deallocation operations, and use this information to
maintain a precise model of the running kernel. This approach also included a
hidden kernel object detector that uses this un-tampered view of kernel memory
to detect DKOM data hiding attacks.

Despite the recent efforts in detecting DKOM attacks, all the proposed tech-
niques are based on the assumption that during an attack there is always some-
thing anomalous in the state of the kernel dynamic data structures, typically
in the form of a missing or modified element. However, a closer look at DKOM
techniques reveals that there are two different ways to manipulate data to influ-
ence the behavior of the system. More precisely, from an attacker point of view,
we can identify a discrete attack that only tampers with a dynamic structure at
an isolated point in time, and an evolutionary attack that works by continuously
tampering with the internal state of the system. In the first case, the objective
of the attack is reached by changing some information stored in a data struc-
ture, by adding or removing elements, or by changing the pointer relationship
between data structures. As we described above, this may leave the system in an
inconsistent state, which can often be detected. In the second case, presented in
this paper, the goal of the attack is instead obtained by influencing the behavior
of the system by continuously modifying its memory and thus by affecting the
evolution of its dynamic data structures.

Due to the nature of this attack, it is possible that every single snapshot of
the system is indistinguishable from a clean state. Therefore, the attack only
manifests itself in an anomalous ewvolution in time of a given property of the
operating system. While this may seem just a minor variation of the original
DKOM technique, in this paper we show that it has very severe consequences
from a detection point of view. In fact, the only way to detect an evolutionary
attack is to implement a detector that can verify if a certain behavioral property
of the kernel is satisfied over time. This requires a very complex tool that con-
tinuously monitor the system, and replicates (or emulates) part of its behavior
inside the detector.

The goal of this paper is twofold. First, we present the design and implemen-
tation of an Ewvolutionary DKOM (E-DKOM) attack, and show that it cannot
be detected by any of the existing techniques. As a case study, we describe a

Subverting Operating System Properties 5

novel attack against the OS scheduling algorithm. This attack can be used to
silently block the execution of any critical security application, both in user-
and kernel-space. The second contribution of the paper is to discuss the possible
countermeasures. It is important to note that our goal is to detect the tampering
of the operating system, and not the code of the rootkit itself.

At the moment, the only generic defense solution would be to use a reference
monitor to trace all memory operations and enforce that only the authorized
code can modify a given critical structure. Unfortunately, this technique has two
big limitations. First, it is likely to introduce a large computational overhead.
Second, any memory access needs to be properly identified and attributed to the
piece of code responsible for that operation. Unfortunately, a precise attribution
in a compromised system is still an open problem — known as “confused deputy
attack” [16].

As an alternative, we discuss a custom defense technique based on a monitor
(implemented as a thin hypervisor) that can duplicate part of the behavior of
the OS that needs to be protected (the scheduler’s properties in our case), and
guarantee that this behavior is respected by the running system. Unfortunately,
this is not a general solution, as it would require a different monitor for every
property that needs to be enforced.

The rest of the paper is organized as follows. In Sects.2 and 3 we describe
our attack and its own threat model, discuss its properties, and emphasize the
differences with respect to traditional DKOM attacks. We then focus on a prac-
tical example in Sect.4, in which we present the details of an attack against
the Linux operating system scheduler. Section 5 shows the results of our attack
tests, and Sect. 6 introduces our prototype hypervisor-based defense mechanism.
Finally, Sect. 7 discusses the generality of the attack, its limitations and future
work, Sect. 8 describes related work and Sect. 9 concludes the paper.

2 Evolutionary DKOM Attacks

There is a subtle difference between a traditional DKOM attack and its evolu-
tionary counterpart that we present in this paper: in the evolutionary attack,
the goal of the attacker is to affect the evolution of a data structure in memory,
and not just its values. For instance, the two classic DKOM examples of privilege
escalation and process hiding require the attacker to directly modify a number
of kernel data structures to achieve the desired state (respectively remove an
element from a linked list, or modify the UID of a process). In the more sophis-
ticated version of DKOM attack we present in this paper, the “desired state” is
replaced by a “desired property”. More in detail, the attack we present in the
next sections affects the normal evolution of the red-black tree containing vital
information for the scheduling algorithm. On the other hand, the traditional
DKOM attacks change individual fields in data structures of interest, like the
task_struct to unlink a task. The latter operation is discrete and does not affect
the evolution of the task_struct list in any way.

This difference has a number of important consequences. First of all, while a
traditional DKOM can be performed in one single shot, an evolutionary attack

6 M. Graziano et al.

needs to continuously modify the kernel memory to maintain the target condi-
tion. Moreover, when the attacker stops his manipulation, the system naturally
resumes its original operation. This fundamental difference seems to be in favor
of traditional DKOMs, since a single memory change should be harder to detect
that a continuous polling process. However, in this paper we show that in prac-
tice the result is the opposite of what suggested by common sense. In fact, from
a defense point of view, it is easier to detect an altered state than to detect an
altered property. To detect the latter, a monitor needs to record the evolution of
the affected data structures over time, and also needs to replicate the logic of
the kernel property that it wants to enforce.

While it is possible to implement such a detector (as we discuss in Sect. 6
for our attack), this needs to be necessarily customized for each property. As a
result, it is difficult to propose a general solution for evolutionary attacks.

3 Threat Model

In this paper we assume a powerful attacker who is able to execute malicious
code both at the kernel and at the user level, and who can modify any critical ker-
nel data structures. Kernel-level access can be achieved via kernel-level exploits
or social engineering the user to install a malicious kernel module. The attacker
can also use sophisticated ROP rootkit techniques [20,44] or other stealthy tech-
niques [41,42] in order to overcome existing code protection mechanisms. The
attacker has the ability to make its malicious code undetected to any current
state of the art anti-malware software.

However, since our defense solution is based on a custom hypervisor, we
include both the hypervisor and the security VM as part of the trusted com-
puting base (TCB). To focus only on the detection of E-DKOM attacks without
replicating previous works, we also assume that the core kernel code of the
user VM is protected and cannot be subverted by any malicious code. This can
be achieved by making the kernel’s code pages read-only [18,38] or by using
others code protection systems proposed in the past [10,27,39]. Existing pro-
tection techniques also ensure that the attacker cannot tamper or hook code of
the OS, and cannot shutdown processes or kernel threads without the system
notice [23,27].

To summarize, our threat model covers an attacker that can run arbitrary
code in the OS kernel and tamper with dynamic data structures, but that cannot
modify the existing code or attack the hypervisor.

4 Subverting the Scheduler

In this section we first introduce the Completely Fair Scheduler (CFS) algorithm
adopted by Linux-based OS. We then describe the principles of our attack to
subvert the scheduling algorithm and present two different scenarios where our
attack can be applied.

Subverting Operating System Properties 7

4.1 Goal

The goal of the attacker is to silently and temporarily stop the execution of a
process without leaving direct evidences. This means the target process is no
more able to run on the CPU but it is still visible and listed as a normal running
application.

In a post-exploitation phase, this feature is a really valuable asset. Miscre-
ants may disable security monitors and detectors so that system administrators
or final victims do not notice any suspicious activity. A perfect target in this
scenario is either an antivirus software or a network/host intrusion detection
system. The desired result is to reach this goal without raising any warning or
visible alarms. This can be achieved in several ways in a modern operating sys-
tem like Linux or Windows. The first idea that comes to mind is to kill the target
application. However, this technique is easily detectable by the victim because
the process (or processes) is no more listed in the list of the running appli-
cations. Several security applications have a watchdog specifically designed to
detect these circumstances to restart the application. Another simple approach
would be to suspend the process or turn it into a zombie. Unfortunately also this
technique is not stealthy, and in a post-exploitation phase this cannot be toler-
ated. For example, it would be fairly easy to spot the anomaly by inspecting the
output of a program like ps. Finally, another possible option could be to directly
modify the code of the target application, for instance to inject an infinite loop or
an attempt to acquire a lock on some unavailable resource. While this would be
definitely more difficult to detect, security-critical applications often have kernel
components to protect the integrity of their code.

Therefore, in order to reach our objective in a completely transparent way,
a good target for the attacker would be to tamper with the scheduler imple-
mentation in the OS. This is a complex task and the implementation details
may vary between different systems. For instance, a desktop machine has to be
more reactive than a server. Indeed, it is clear the scheduling load may differ
in a server spawning several tasks for all the incoming connections compared
to a desktop machine used by an average secretary. All these differences affect
the scheduler implementation. To perform the attack on the scheduler imple-
mentation the rootkit’s author has to study in detail the inner mechanisms of
the targeted component. We implemented this idea in a proof of concept attack
against the current implementation of the Linux scheduler on a Debian “jessie”
GNU/Linux distribution for both x86-32 and x86-64 systems. It is worth not-
ing that our scheduler attack is able to stop the defensive mechanisms for an
arbitrary amount of time. For example during an attack the intrusion detection
system can be disabled, and then enabled again when the attack is terminated.
We call such attack evolutionary transient attacks.

4.2 An Overview of the CFS Algorithm

As the name says, the main goal of the CFS algorithm used by the Linux kernel
is to maintain a fair erecution by balancing the processor time assigned to the

8 M. Graziano et al.

different tasks of the system. The objective is to prevent one or more tasks from
not receiving enough CPU time compared with the others. For this purpose, the
CFS algorithm maintains the total amount of time assigned so far to a given task
in a field called the virtual runtime. The smaller a task virtual runtime is in terms
of execution, the higher the probability is to be the next being scheduled on the
system. The CFS also includes the concept of sleeper fairness. This concept is
used for the tasks that are not at the moment ready to run (e.g., those waiting
for I/O) and it ensures that such tasks will eventually receive a comparable
share of the processor when they are ready to execute. The CFS algorithm is
implemented using a time-ordered red-black tree. A red-black tree is a tree with
some interesting properties. First of all, it is self-balancing, which means that no
path in the tree will ever be more than twice as long as the others. Second, any
operation on the tree occurs in O(logn) time — where n is the number of nodes
in the tree.

4.3 CFS Internals

All tasks in Linux are represented by a memory structure called task_struct
that contains all the task information. In particular, it includes information
about the task’s current state, the task stack, the process flags, the priority
(both static and dynamic), and other additional fields defined by the Linux OS
kernel in the sched.h file. It is important to note that since not all the tasks
are runnable, the CFS scheduling fields are not included in the task_struct.
Instead, the Linux OS defined a new memory structures called sched_entity to
track all the scheduling information.

struct task_struct {
volatile long state;
void *stack;
unsigned int flags;
int prio, static_prio, normal_prio;
const struct sched_class *sched_class; struct sched_entity {

struct sched_entity se; struct load_weight load;
struct rb_node run_node;
} struct list_head group_node;
struct cfs_rq { ¥
struct rb_root tasks_timeline;
}; struct rb_node{

unsigned long rb_parent_color;
struct rb_node *rb_right;
struct rb_node *rb_left;

};

Fig. 1. CFS black tree structures

The relationships between the various memory structures and the scheduling
algorithm are summarized in Fig. 1. At the root of the tree we have the rb_root

Subverting Operating System Properties 9

element from the cfs_rq structure. Leaves in a red-black tree do not have any
useful information; instead the internal nodes represent one or more tasks that
can be executed. Each node in the red-black tree is represented by a rb_node.
Such a node only contains the reference to the child and the color of the par-
ent. The rb_node is defined into the sched_entity structure, which includes the
rb_node reference, the load weight, and some data statistics. The most impor-
tant field inside the sched_entity memory structures is the vruntime, which
represents the amount of time the task has been running on the system. Such
field is also used as the index for the red-black tree. The task_struct is at the
top, and is responsible for describing the task and including the sched_entity
structure.

The scheduling algorithm is quite simple and it is implemented inside the
function schedule(). The first action of the function is to preempt the cur-
rently running task. Since for each task the CFS only knows the virtual running
time, the algorithm does not have a real notion of time slices for preemption,
and therefore the preemption time is variable. After the scheduler interrupts
the current running task, the task is put back into the red-black tree by call-
ing the put_prev_task function. After that the scheduling function invokes the
pick_next_task function that is in charge of selecting the next task to exe-
cute. This function simply takes the left-most task from the red-black tree and
returns the associated sched_entity. By using the sched_entity and invok-
ing the task_of () function the system returns the reference to the relative
task_struct. At the end of this procedure the scheduler passes the task to
the processor to execute it.

4.4 Scheduler E-DKOM Attack

In this Section we describe how an attacker can target the OS scheduler to
suspend the execution of one or more of the processes running in a Linux system.
Such an attack can be used in order to stop security applications such as antivirus
software or Network Intrusion Detection System. Consequently, by using this
technique the attacker is able to elude the system protection mechanisms without
tampering with any OS code or modifying the control-flow of the running system.

Attack Principles. From an architectural point of view, the attack requires a
kernel module that executes code at regular time intervals (e.g., by registering a
timer). The module walks the process list and identifies the process it wants to
stop. It then collects the process descriptor and uses it to locate the correspond-
ing node in the CFS red-black tree. Afterward, the attack alters the scheduling
list by changing the virtual runtime’s value of the target process. In this way the
attacker forces the scheduling algorithm to push the process at the end of the
list and postpone its execution. By using this technique the attacker can stop
any processes, thread, and kernel thread that are running on the system.

10 M. Graziano et al.

Implementation Details. Our prototype first initializes a global kernel timer
registering a call-back function to be executed at regular intervals. Then,
the malicious module spawns two CPU-bound kernel threads to populate the
scheduling list in case the queue is empty. This can be useful in cases when most
of the processes are waiting for I/O operations, and the target process is the only
one that requires to be executed. It is important to note that the kernel threads
represent a normal task for the scheduling system, consequently the scheduler
puts them in the same scheduling queue with the others user space processes
and threads. Two is the minimum number to assure at least one predecessor and
one successor of the target process.

After these two initial operations, the attack algorithm identifies the refer-
ence of the target process into the CFS red-black tree and queue it at the end
of the scheduling list. This can be done by walking the task_struct looking for
the element representing the target process. From there, the code can extract
the sched_entity struct and use the struct_rb_node field to identify the corre-
sponding element in the CFS red-black tree. In Fig. 1 we show the link among the
memory structures described so far. At this point the attack algorithm locates
the rightmost element in the tree, which correspond to the last task that will
be scheduled for execution. Afterwards the kernel module changes the wvirtual
runtime of the target process to a value higher than the value of the rightmost
element. After this change, the scheduling algorithm, following the CFS policies,
will move the target process at the end of the scheduling list. This operation is
repeated every time the global kernel timer expires.

5 Attack Evaluation

In order to evaluate the real impact of our attack, we used it to stop two common
security mechanism: a popular IDS, and the Inotify notification mechanisms [28]
that is used by many programs to identify any modification on the files that
occurs in the system. For instance, Inotify is used by several security applications,
including Tripwire [1,24] and by most of the antivirus systems.

Case Study I: Blocking an IDS. In this experiment, a possible attack sce-
nario is represented by a Linux router machine used to protect an intranet net-
work. The router machine is equipped with an IDS and a system that verifies the
code integrity of the kernel and user-space applications [27]. By using such defen-
sive mechanisms, the attacker cannot modify any code running on the router and
she cannot shutdown any user-space applications without the system noticing
it. For our test we set up the IDS with a simple signature to detect a remote
buffer overflow attack by looking at the presence of the shellcode pattern in the
network packets.

Our experiment is divided in two parts. We first launched a simple buffer
overflow attack over the network protected by the IDS, and we verified that the
alert was correctly raised.

Subverting Operating System Properties 11

In the second test, we simulated that an attacker was able to install our
rootkit into the router, using the IDS application as a target. While the IDS
application was stopped by our rootkit, we run the network attack and double-
checked that no alerts were generated. Meanwhile, Linux was reporting the tar-
geted process as a running process. It is important to note that the kernel uses
a circular memory buffer to store the network packets copied from the network
card into the OS system before delivering them to the right application. There-
fore, before resuming the execution of the IDS the attacker needs to generate
benign traffic to force the queue to rotate and overwrite the network packets
related to the attack.

Case Study II: Blocking Inotify. Inotify is an inode monitoring system
introduced in Linux 2.6.13. This API provides mechanisms to monitor filesystem
events involving both files or entire directories. Most of the security applications,
such as integrity checker (Tripwire) or antivirus software use such mechanism
in order to detect any modification of the filesystem. For example, antivirus
detectors re-scan any modified file in order to check whether a malicious infection
occurred.

Inotify provides its own set of system calls: inotify_init() to create a new
monitoring instance with its own file descriptor, inotify_add watch() to add
a file to the monitored group, and inotify_rm watch() to remove the monitor.
After the registration of the files and directories that the application wants to
monitor, the code needs to invoke the pol1 () API to be notified when the regis-
tered events happen. It is important to note that the inotify events are reported
through a user-space device created as a communication channel between the
user-space application and the kernel. This device is associated to a kernel
buffer used to collect and temporarily store the filesystem events. By using the
read() function, the application can retrieve information about which event
have occurred.

For our evaluation we created a user space application that monitors a chosen
group of files on our system. The goal of the attack is twofold. First, the attacker
should be able to modify a file without the inotify-based application noticing the
change. Second, the attack needs also to guarantee that after the attack phase,
the inotify events should resume and correctly reach the application as if nothing
has happened.

To this end our evaluation is composed by three steps. In the first step we
run the inotify-based application and use our rootkit to temporarily stop its
execution. In the second step, the attacker modifies one of the monitored file,
and then forces a number of events (at least 1024*16) on other files with the
goal to saturate the kernel buffer associated to the device. This way the event
associated to the target file is overwritten by the new benign modifications.
Finally, the rootkit wakes up the inotify application, and we verified that it did
not receive any event about the attacker modification.

This can be quite severe in a number of scenarios. For instance, the Android
system uses a similar inotify mechanism that is mainly adopted to build security

12 M. Graziano et al.

monitors and detectors [12]. Our attack can temporarily disable them without
leaving any trace in the system.

Attack Discussion: One may argue that a malicious kernel module could be
detected by a simple detector that is able to find out in memory a footprint of the
malicious code or detect any suspicious activities by monitoring the frequency of
the interrupt timer issued at the kernel level (e.g., timing traces). Even if those
techniques could be effective against our attack, the kernel module can hide its
own timing activities and code in several sophisticated ways.

First of all it can hide the presence of the code just diverting the control flow
of a benign timer kernel module by using dynamic hooking that targets transient
control data as described in [43] and then perform a ROP attack for changing
the time scheduling activity. By using these attack techniques the detector can-
not see any suspicious kernel modules among the list of the registered kernel
modules timer and the malicious code is reduced to a few ROP gadgets result-
ing in minimal memory footprint. A more resilient approach is called Address
Translation Redirection Attack (ATRA) and is presented in [21]. By using such a
technique the attacker can relocate important kernel objects (e.g., malicious ker-
nel module) and makes the entire system refer to the copy by attacking the page
table data structures of the OS kernel. Finally, as shown in [25], our malicious
kernel module could be completely implemented in GPU space. A GPU-assisted
malware binary contains code destined to run on different processors. When
executing it, the malware loads the device-specific code on the GPU, allocates a
memory area accessible by both the CPU and the GPU, initializes it with any
shared data, and schedules the execution of the GPU code. Depending on the
design, the flow of control can either switch back and forth between the CPU
and the GPU, or separate tasks can run in parallel on both processors.

Other defense solutions to this attack could rely on a remote code attestation
mechanism [7], a method to remotely check whether some security proprieties
of the running application are preserved. In this case it is important to note
that the attacker, as we can show in the previous section, can stop the defensive
mechanism to be scheduled for the duration of the attack, and then restored
it. By using code attestation method or any other watchdog mechanisms that
check the status of the process (e.g., stack, registers, etc.) it is difficult to set
up the right time to check since we do not know when the attack will happen.
Remote attestation could be set to run constantly for the entire life of the process.
Deploying this solution on real-time systems could be prohibitive in terms of
performance overhead, and it could be difficult to use to monitor more than one
precess at a time.

6 Mitigation

In this section we describe the design and implementation of a detection system
that can be used to protect against the scheduler attack presented in Sect. 4. We
start by presenting the idea behind our solution, we then describe our system

Subverting Operating System Properties 13

architecture, and we finally evaluate our approach against some scheduling attack
samples.

6.1 Defense Mechanism Principles

Our approach for the detection of scheduling attacks is to observe and mimic the
behavior of the OS scheduler by intercepting events that occur in the OS context.
More in details, in case of the scheduling subsystem, the idea is to monitor the
execution time of all processes and check if the fairness property is preserved. In
order to obtain the real execution time for each process/task we need to intercept
some fundamental operations about the process activities such as the process
creation and termination, the process execution, and the process I/O waiting.
By using those operations our system can carefully estimate the execution time
for each process and, by mimicking the behavior of a real scheduler, detect
whether any anomaly (i.e., a process starvation) occurs in the system.

6.2 Defense Framework Architecture

Our defense mechanism is implemented as a custom hypervisor. This is required
in order to obtain a resilient and robust reference monitor in presence of kernel-
level attacks. Our anomaly detection mechanism is based on the assumption
that the system should give the same amount of execution time to each process
(fairness scheduling property). Consequently, if one process that is not blocked
in I/O operations is not scheduled at least once for each quantum of time, the
system raises an alarm. From an architectural point of view, our system consists
of two main software components: (1) the Task Tracer and (2) the Periodic
Monitor. Both components work together to simulate the fairness property and
to reveal any anomaly on the system.

The main goal of the Task Tracer is to replicate the tasks information at the
hypervisor level, storing them in a list of task_struct data structures. To this
end, the Task Tracer needs to intercept a number of process events. In particular
it needs to detect four main events:

— Process Creation: This event happens when the create process system call
is invoked.

— Process Exit: This event occurs when an exit system call or any process
error exception is invoked by the system.

— Process Execution: This event occurs when a process is assigned to a given
processor for its execution.

— Queue Insertion and Removing: These events happen when a task is
inserted or removed from the scheduling queue (CFS red-black tree).

When a new process is created, the Task Tracer component allocates a new
task_struct element to keep track of its information: name, process description
etc. Moreover, for each new process, the system adds a life timestamp field
named last_seen. This value represents the starting time of the process life,

14 M. Graziano et al.

that will later be used to check the time spent by the process waiting on the
scheduling queue. The queue insertion and removing operations are at the core
of our detection mechanism. In fact they allow the system to set the starting
and ending time for each process. The starting time begins when the process is
inserted into the scheduling queue. In particular when a process will be inserted
in the scheduling queue (CFS red-black tree), the hypervisor detects it and it sets
the timestamp field for this particular task. In case the process is not scheduled
for execution after a certain time (defined by a configurable scheduling threshold)
the system reports an anomaly. The effect of the remove operation from the
scheduling queue is to reset the timer associated to a particular process. It is
important to note that intercepting the insert and remove operations is sufficient
to monitor the execution time for all the processes of the system, since one of the
main assumption of the Linux scheduling algorithm is that every process needs
to be added to the scheduling list before it can be executed.

The goal of the other software component, the Periodic Monitor, is to peri-
odically check the status of the execution time for each process and update
their timestamps (last_seen fields). More in details, every time the timeout
occurs, the Periodic Monitor goes through all the elements of the task_list cre-
ated by the Task Tracer software component and checks among all the monitored
processes the timestamp field reported in the task_struct element. If the differ-
ence between this timestamp field and the current timestamp is greater than the
scheduling threshold the system reports an anomaly, otherwise it just update its
value with the new timestamp.

6.3 Implementation Details

Our current prototype is implemented as an extension of HyperDbg, an open-
source hardware-assisted hypervisor framework [11]. Typically, by monitoring
low-level interactions between the guest operating system and the memory man-
agement structures on which the OS depends, a hypervisor can infer when a guest
operating system creates processes, destroys them, or triggers a context-switch
between them. These techniques can be performed without any explicit infor-
mation about the guest operating system vendor, version, or implementation
details [23]. Unfortunately, our detector needs some information that cannot
be inferred only by observing the interactions between the guest OS and the
memory management structures. For example, insert and remove operations on
the scheduling queue or the creation and destruction of userspace and kernel
threads are fine-grained operations that cannot be identified by observing from
outside the OS. Therefore, our framework needs to rely on a hooking mecha-
nism that is specific for a particular operating system (Linux in our current
prototype). In order to intercept each task creation event, we inserted a hook
on the wake up new_task function. Such function is invoked the first time a
new task is inserted into the scheduling queue after the system invokes do_fork.
This is used to create a process on the system. We chose this function since
the argument of the wake_up_new_task function is the task_struct_element
that already contains all the process information that will be stored into the

Subverting Operating System Properties 15

hypervisor memory. The system also needs to intercept a process or task ter-
mination for two reasons: (1) when a process explicitly call the exit function
and (2) when it receives a signal or exception for its own termination. In both
cases the function that is invoked is the do_exit. When such a function is
called, by using the kernel macro current the system obtains the pointer to the
task_struct related to the process to terminate. Consequently our hypervisor
puts an hook on the do_exit function to intercept this information. Finally the
system needs to intercept the queue operations: insert and remove. In particular
when a process is inserted in the scheduler running queue (CFS black-red tree)
a function called enqueque_task is invoked. This function is in charge for insert-
ing the task_struct structures inside the CFS tree, and any information about
the inserted process can be retrieved starting from ecx register. For removing
elements from the scheduler queue, the operating system provides a function
called dequeue_task. This function is called when the scheduler removes a task
from the CFS tree and the reference to the task in this case is stored into edx
register.

To implement the Periodic Monitor component inside the hypervisor we
extended the core of HyperDbg. In particular, we created a time simulator inside
the hypervisor by using the Timestamp Counter TSC register provided by the
x86 architecture. This register counts the clock cycle and it is independent from
the processor frequency. In particular, the hypervisor core reads the value of
TSC each time a VMexit occurs in the system. If the elapsed time reach the
timeout set by the Periodic Monitor, the hypervisor invokes the periodic monitor
component. It is important to note that the VMexit are very frequent in the
system, consequently our timer simulator does not suffer from any considerable
delay.

6.4 Evaluation

In this section we describe the experiments that we performed in order to test
our defensive mechanism. The main goal of the experiments is to test the efficacy
and the efficiency of the detection system.

Overhead. In the first experiment we measure the overhead produced by our
system. To this end we performed two main tests. In the first test we measured
the execution time with our detection framework enabled, while the user per-
forms a number of normal operations — like browsing the web (e.g., Facebook,
Google, etc.), reading PDF documents, and editing files for a total of 60 min. To
compute the overhead we use the TSC timer provided inside the hypervisor. We
compute the ratio between the time spent inside the hypervisor with respect to
the time spent for the OS execution. We report the result in Fig. 2. As we can see
from the Figure, the gray area represents the window time where the detector
is active. The line in the graph shows instead the ratio between the execution
time spent into the hypervisor and the execution time spent into the OS. We
can observe that overhead never goes above 5 %.

16 M. Graziano et al.

w
S

r T T T
ProcMon activation aream

S}
a

(%)
S
T

=
T

non-root/root time ratio

Hypervisor to Guest Ratio (percentage)
» &

05

o

10 20 30 40 50 60 70 80

o

0.0

10 20 30 20 50 60

time (m) time (minutes)
Fig. 2. Detection system overhead dur- Fig.3. Detection system overhead
ing normal operation under an artificial stress

Since during the normal operation the system overhead is low, we performed
a second test where we stress the allocation/dis-allocation of the processes in
order to measure the worst case scenario. For this test we used the stress suite
to simulate a huge allocation/deallocation of the processes on a Linux system.
The overhead we observed in this case was at most 9%. The test was run for
80 min and the final result is reported in Fig.3. Again, it is important to note
the experiments performed in these tests produced a very intensive process allo-
cation/deallocation and therefore it is not representative of the behavior during
the normal process activities of the system.

Detection Accuracy. In order to measure the detection accuracy of our system
we tested the system while running some scheduler attacks. Since we have never
observed such attacks in the wild, we used our artificial dataset to test the
application. More in details, we again performed the experimental evaluation
with a popular IDS and with Inotify (as explained in Sect. 4) but this time with
our defensive mechanism enabled. In this test, our system was able to detect both
attacks and correctly recognize the anomalous process that was under attack.
We also performed an artificial experiment on kernel threads. In this case we
first created some artificial kernel threads and we then blocked their execution
by using our attack. Also in this experiment, our system was able to detect all
the attacks performed against the OS kernel.

6.5 False Positives and False Negatives

It is important to note that both false positives and false negatives can occur
depending on the value of the detection threshold set by the system. In partic-
ular, if such a threshold is too low, and therefore close to the real waiting time
for scheduled tasks, the system can raise false alarms. On the other hand, if
the threshold is too large, the system can miss short attacks that fits into the
time window. Therefore, the threshold should be tuned on the values of sched-
uler waiting times observed on the monitored OS. After a short training period,

Subverting Operating System Properties 17

we set the threshold to 40ms. We then run our defensive system on our work
computers for one week without observing any false alarm.

7 Discussion

In this section we discuss the generality of the proposed attack, the limitation
of the defense solutions and possible future work.

7.1 Generality

In this paper we presented a new class of attacks. For the sake of simplicity we
only described a single instance of E-DKOMs. In particular we chose to inves-
tigate the scheduler attack because it perfectly summarizes all the important
key points of the evolutionary DKOMs attacks and it was relatively easy to
implement.

The scheduler subsystem is a good candidate but it is not the only possible
target. In fact, the operating system offers other interesting functional compo-
nents to investigate such as the memory management, the network subsystem,
and the I/O subsystem. A requirement for E-DKOM attacks is to tamper with
dynamic data structures that contain fundamental information for controlling
the OS behavior. The targeted data structure needs to contain information that
defines an OS property along with an OS specific behavior. In the scheduler
attack example the OS property to subvert was the execution fairness, every
process defined into the run-queue structure need to be scheduled for running
after a certain time window. The goal of the attacker was to create starvation for
a select set of processes (e.g. AVs, IDSs). Another possible target for E-DKOM
attacks can be the virtual memory subsystem. In this case the property is related
to the memory pages replacement algorithm and the way the algorithm chooses
the page to swap to disk (e.g., LRU or FIFO). The attacker can alter this prop-
erty by changing the memory structure that contains the numbers of accesses
received by the page. By altering this number an attacker can decide which page
should be stored on disk and also on which disk location (e.g., filesystem inode),
creating a potential data leakage among the applications.

We believe that the OS contains a significant number of sensitive memory
structures that can be tampered by an attacker to consequently tamper a certain
OS behavior without being detected. Automatically discovering such memory
structures along with the analysis of attack impact will be the task of our future
research.

7.2 Limitations

The defensive solution described in the previous sections is based on a custom
hypervisor that plays the role of an external agent able to monitor the execu-
tion of the guest operating system. Unfortunately, collecting information from
outside the OS is not a trivial task, and requires to overcome the well-known

18 M. Graziano et al.

problem of the semantic gap [6,9,22]. The Intel hardware support for virtual-
ization simplifies only in part this issue, allowing the hypervisor to catch only
low level events (e.g., writing attempts to control registers). Unfortunately, all
the abstractions introduced by the operating system are lost and need to be
reconstructed by the hypervisor code.

In the literature, several solutions have been proposed to detect hidden
processes from a virtual machine monitor. These techniques typically intercept
all the writing attempts to the CR3 register by leveraging the Intel hardware
support. This control register contains the base address of the page directory, a
fundamental data structure to translate virtual to physical addresses. At every
context-switch, the OS loads the right value of the CR3 register to access the
process’s virtual address space. In this way, systems like Antfarm [23] are able
to discover all the running processes by observing this low level event. Other sys-
tems, like Patagoniz [27], achieve the same goal by setting the process’s pages
as non-executable (using the NX flag). In this way, every execution attempt is
intercepted, allowing the hypervisor to discover all running processes.

Our scheduler attack introduces a new challenge: the hypervisor needs to
identify the processes that are in the scheduled queue but are not executed in
the system. If a process is not executed, then there is no access to its CR3, nor to
its NX pages. In fact, the attack introduced in this paper may stop the process
during its creation, so that the monitoring system would never observe the CR3
associated to the program.

To make the problem worse, the granularity of this instance of E-DKOM is
at the thread level, but the address space is shared among all threads of the
same process — making an approach based on the monitoring of the CR3 regis-
ter too imprecise. For this reason, to implement a successful defense technique,
the hypervisor needs to set breakpoints in the kernel code to extract threads
information and to inspect the state of each tasks, (e.g. if it is in the running or
waiting queue).

Moreover, the hypervisor has to mimic the OS scheduler component to guar-
antee the scheduling property and detect deviations from the expected behavior.
In our example, this requires to follow over time the evolution of the scheduler
data structures, in particular the evolution of the runqueue to spot any anomaly.

For all these reasons, we believe this instance of E-DKOM attack sheds light
on several limitations of current solutions to address the semantic gap. More-
over, since each solution would need to be specifically tailored for the property
tampered by the attack, this example also shows the challenge of developing a
general solution for the detection of E-DKOM attacks.

8 Related Work

Over the years, operating systems have introduced several countermeasures to
hinder the exploitation of userland applications. These protections have signif-
icantly raised the bar for the attackers, making it increasingly difficult to gain
full control of a remote machine. As a consequence, it is now fundamental for

Subverting Operating System Properties 19

criminals to gain a persistent and stealth access on a compromised target imme-
diately after the breach. This is often achieved by installing a rootkit in the OS
kernel. The role of a rootkit is to hide resources in the compromised machine,
and this can be achieved either by using hooking techniques or by tampering
with dynamic kernel data structures.

In the literature, several approaches have been proposed to protect the ker-
nel from the malicious modifications introduced by rootkits. A first set of coun-
termeasures was designed to guarantee the integrity of the kernel, in order to
prevent attackers from modifying its code and introducing hooks [46]. There
are two ways to achieve this objective: i) by introducing a self-defense mech-
anism in the kernel, such as PatchGuard [29] for Windows x86-64 or ii) by
adopting an external monitor, such as a VMM-based system [14,37,38,46] or a
dedicated hardware coprocessor [26,30,32,48]. For instance, SecVisor [38] and
Nickle [37] are two hypervisor solutions that protect the integrity of the ker-
nel code from unintended modifications. Unfortunately, this class of protections
have been bypassed by DKOM attacks [19,31] which target dynamic kernel data
without the need to modify the kernel code.

A more complex and comprehensive defensive solution is to enforce the con-
trol flow integrity (CFI) of the kernel. CFI was initially proposed by Abadi
et al. [2] for userland applications and then extended and ported to the ker-
nel by Petroni et al. [33]. The state-based CFI (SBCFI) proposed by Petroni
is enforced by a hypervisor and periodically scans the kernel memory to detect
deviations from the allowed control flow. SBCFI can detect persistent control
flow changes but fails to prevent DKOM attacks.

To protect against DKOM, it was necessary to introduce new solutions to
enforce the kernel data integrity. The most interesting approaches in this direc-
tion are based on invariants or on data partitioning. The first class can be split
into two subgroups: external systems [3,18,36] and memory analysis [5,8] tech-
niques. External systems are implemented as either a virtual machine moni-
tor [18,36] or by using a separate machine [3]. The rationale behind these defen-
sive techniques is to take an untampered view of the objects running in the
target kernel and then compare this list with the invariants derived by walk-
ing the kernel data structures. Similarly, memory analysis solutions [5,8] lever-
age memory snapshots to isolate kernel objects and then compare with a list
retrieved directly from the live system. Unfortunately, invariants may not exist
for some kernel data structures, thus a different approach has been proposed
around the concept of object partitioning. For instance, Srivastava et al. [40]
proposed Sentry, a hypervisor solution able to divide kernel objects fields in
different memory regions depending on their security impact. Writes on these
sensitive fields are then monitored and a strict access control policy is enforced
to detect if the writer is legitimated. This approach has two main drawbacks:
a large performance overhead and the complexity of the writer’s identification
process.

More formal architectures have been proposed to verify dynamic kernel struc-
tures as proposed by Petroni et al. [34]. These rule-based systems may be effective

20 M. Graziano et al.

to detect advanced threats but they are error prone and depend on the astute-
ness of the rules writer. E-DKOM attacks are able to bypass these protections
given the huge new attack surface exposed by this generic technique.

The solution we propose in this paper belongs to the class of mimic defen-
sive solutions. Researchers have often proposed approaches to isolate a single OS
component and emulate it outside the system to provide a ground truth to the
analyst [15,17]. In our case, a custom hypervisor reproduces the same schedul-
ing algorithm (CFS) in a faithful step by step emulation. The drawback of these
approaches is that they only solve a particular instance of the problem. In fact,
we show how to protect the scheduler but an attacker can still exploit a differ-
ent property of the kernel. Moreover, these defensive solutions are not ideal, as
discussed by Garfinkel [13]. Specifically, the developers have to carefully think
and manage all possible corner cases in order to avoid possible bypasses, making
this process highly prone to errors.

To the best of our knowledge, E-DKOM attacks — as formalized in this paper
— have never been discussed in the literature. The most complete overview of
the DKOM’s problem has been provided by Baliga et al. [4] as well as Rhee
et al. [35]. They proposed a DKOM’s taxonomy and investigated a novel data
kernel attacks and possible POC solutions. Although they mention the huge
attack surface exposed by modern kernels and the failing approach adopted by
current detectors, they did not address our attack. In light of the current state
of the art, it is clear that all the existing defense mechanisms are not able to
detect this new class of attack and new comprehensive solutions are required to
address this new and complex threat.

In our example of E-DKOM attack, we use soft timer interrupt requests
(STIR) in order to perform polling tasks and modify the targeted dynamic mem-
ory structures. Even if the detection of malicious soft timer interrupt has been
addressed in the literature [47], an attacker can use several stealthy techniques
to hide the execution of malicious kernel code. For example, by using Address
Translation Redirection Attacks (ATRA) [21], an attacker can hide memory
pages along with kernel interrupt routines (e.g. code memory page). This would
trick an integrity code checker to analyze the code of a benign timer routine.
Finally, it is worth noting that in our threat model we consider an attacker
equipped with state of the art offensive tools, that are not always detectable by
the current defensive solutions.

9 Conclusion and Future Work

In this paper we discuss a new type of DKOM attack that targets the evolution
of a data structure in memory, with the goal of tampering with a particular
property of the operating system. Since at every single point in time the internal
state of the OS is not anomalous, the detection of this type of attack, which we
call evolutionary kernel object manipulation, requires a completely new approach
as well.

We conducted a number of experiments to show the feasibility of an evolution-
ary attack against the Linux scheduler. Our attack is able to temporarily block

Subverting Operating System Properties 21

any process or kernel thread, without leaving any trace that could be identified
by existing DKOM detection and protection systems. Moving to the defense side,
we then presented the design and implementation of a hypervisor-based detector
that can verify the fairness of the OS scheduler. While our prototype is able to
detect all the attacks with zero false positives, the implementation needs to be
customized on a case-by-case basis, and it also requires the hooking of a number
of internal functions of the operating systems (making the technique harder to
maintain and port to other systems). This shows that evolutionary attacks are
very hard to deal with, and more research is needed to mitigate this threat.

As a future work we are now investigating other possible E-DKOM attacks
that can be executed on some specific kernel subsystems. As we already discussed
in the Generality Section, one example could be related to the virtual memory
subsystem and in particular to the selection of the candidate memory page to
swap. It would also be interesting to work on an automated analysis system
that can autonomously inspect the OS kernel and identify possible candidate
data structures that have an interesting time-evolutionary behavior — and that
therefore could be targeted by future E-DKOM attacks.

References

1. Tripwire. http://www.tripwire.com/

2. Abadi, M., Budiu, M., Erlingsson, U., Ligatti, J.: Control-flow integrity. In: Pro-
ceedings of the 12th ACM Conference on Computer and Communications Security,
CCS 2005, pp. 340-353 (2005)

3. Baliga, A., Ganapathy, V., Iftode, L.: Automatic inference and enforcement of
kernel data structure invariants. In: Proceedings of the 2008 Annual Computer
Security Applications Conference, ACSAC 2008, pp. 77-86 (2008)

4. Baliga, A., Kamat, P., Iftode, L.: Lurking in the shadows: identifying systemic
threats to kernel data. In: Proceedings of the 2007 IEEE Symposium on Security
and Privacy, SP 2007, pp. 246-251(2007)

5. Carbone, M., Cui, W., Lu, L., Lee, W., Peinado, M., Jiang, X.: Mapping kernel
objects to enable systematic integrity checking. In: Proceedings of the 16th ACM
Conference on Computer and Communications Security, CCS 2009, pp. 555-565.
ACM, New York (2009)

6. Chen, P.M., Noble, B.D.: When virtual is better than real. In: Proceedings of the
Eighth Workshop on Hot Topics in Operating Systems, HOTOS (2001)

7. Coker, G., et al.: Principles of remote attestation. Int. J. Inf. Secur. 10(2), 63-81
(2011)

8. Cui, W., Peinado, M., Xu, Z., and Chan, E. Tracking rootkit footprints with a prac-
tical memory analysis system. In: Presented as Part of the 21st USENIX Security
Symposium (USENIX Security 2012), pp. 601-615. USENIX, Bellevue (2012)

9. Dolan-Gavitt, B., Leek, T., Zhivich, M., Giffin, J., Lee, W.: Virtuoso: narrowing
the semantic gap in virtual machine introspection. In: Proceedings of the IEEE
Symposium on Security and Privacy (Oakland), May 2011

10. Fattori, A., Lanzi, A., Balzarotti, D., Kirda, E.: Hypervisor-based malware protec-
tion with accessminer. Comput. Secur. 52, 33-50 (2015)

http://www.tripwire.com/

22

11.

12.

13.

14.

15.

16.

17.
18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.
29.

M. Graziano et al.

Fattori, A., Paleari, R., Martignoni, L., Monga, M.: Dynamic and transparent
analysis of commodity production systems. In: Proceedings of the 25" Interna-
tional Conference on Automated Software Engineering (ASE), Antwerp, Belgium,
September 2010. https://code.google.com/p/hyperdbg/

Fedler, R., Kulicke, M., Schtte, J.: An antivirus api for android malware recogni-
tion. In: MALWARE (2013)

Garfinkel, T.: Traps and pitfalls: practical problems in in system call interposi-
tion based security tools. In: Proceedings of the Network and Distributed Systems
Security Symposium, February 2003

Garfinkel, T., Rosenblum, M.: A virtual machine introspection based architecture
for intrusion detection. In: Proceedings of the Network and Distributed Systems
Security Symposium, pp. 191-206 (2003)

Grill, B., Platzer, C., Eckel, J.: A practical approach for generic bootkit detection
and prevention. In: EuroSec (2014)

Hardy, N.: The confused deputy: (or why capabilities might have been invented).
SIGOPS Oper. Syst. Rev. 22(4), 36-38 (1988)

Haukli, L.: Exposing bootkits with bios emulation. In: Blackhat US, August 2014
Hofmann, O., Dunn, A.M., Kim, S., Roy, 1., Witchel, E.: Ensuring operating system
kernel integrity with OSck. In: ASPLOS (2011)

Hoglund, G., Butler, J.: Rootkits: Subverting the Windows Kernel. Addison-Wesley
Professional, Boston (2005)

Hund, R., Holz, T., Freiling, F.C.: Return-oriented rootkits: bypassing kernel code
integrity protection mechanisms. In: Presented as Part of the 18th USENIX Secu-
rity Symposium (USENIX Security 2009). USENIX, Montreal (2009)

Jang, D., Lee, H., Kim, M., Kim, D., Kim, D., Kang, B.B.: Atra: address translation
redirection attack against hardware-based external monitors. In: Proceedings of the
2014 ACM SIGSAC Conference on Computer and Communications Security, CCS
2014, pp. 167-178. ACM, New York (2014)

Jiang, X., Wang, X., Xu, D.: Stealthy malware detection through vmm-based out-
of-the-box semantic view reconstruction. In: Proceedings of the ACM Conference
on Computer and Communications Security (CCS) (2007)

Jones, S.T., Arpaci-Dusseau, A.C., Arpaci-Dusseau, R.H.: Antfarm: tracking
processes in a virtual machine environment. In: Proceedings of the USENIX 2006
Annual Technical Conference, USENIX 2006, Boston, MA, June 2006

Kim, G.H., Spafford, E.H.: The design, implementation of tripwire: a file system
integrity checker. In: Proceedings of the 2nd ACM Conference on Computer and
Communications Security, CCS 1994, pp. 18-29 (1994)

Ladakis, E., Koromilas, L., Vasiliadis, G., Polychronakis, M., Ioannidis, S.: You can
type, but you can’t hide: a stealthy GPU-based keylogger. In: Proceedings of the
6th European Workshop on System Security, EuroSec, Prague, Czech Republic,
April 2013

Lee, H., Moon, H., Jang, D., Kim, K., Lee, J., Paek, Y., Kang, B.B.: Ki-mon: a
hardware-assisted event-triggered monitoring platform for mutable kernel object.
In: Presented as Part of the 22nd USENIX Security Symposium, pp. 511-526.
USENIX, Washington, D.C. (2013)

Litty, L., Lagar-Cavilla, H.A., Lie, D.: Hypervisor support for identifying covertly
executing binaries. In: Proceedings of the 17th Usenix Security Symposium, San
Jose, CA, July 2008

Love, R.: intro to inotify. http://www.linuxjournal.com/article/8478

Microsoft. PatchGuard - Kernel Patch Protection. https://technet.microsoft.com/
en-us/library/cc759759

https://code.google.com/p/hyperdbg/
http://www.linuxjournal.com/article/8478
https://technet.microsoft.com/en-us/library/cc759759
https://technet.microsoft.com/en-us/library/cc759759

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

Subverting Operating System Properties 23

Moon, H., Lee, H., Lee, J., Kim, K., Paek, Y., Kang, B.B.: Vigilare: toward snoop-
based kernel integrity monitor. In: Proceedings of the 2012 ACM Conference on
Computer and Communications Security, CCS 2012, pp. 28-37. ACM, New York
2012

%eter)Silberman and C.H.A.O.S. FUTo. http://uninformed.org/index.cgi?v=3&
a=7&p=T7

Petroni, J., Fraser, T., Molina, J., Arbaugh, W. A.: Copilot - a coprocessor-
based kernel runtime integrity monitor. In: Proceedings of the 13th Conference
on USENIX Security Symposium - vol. 13, SSYM 2004, p. 13. USENIX Associa-
tion, San Diego (2004)

Petroni, Jr., N.L., Hicks, M.: Automated detection of persistent kernel control-flow
attacks. In: Proceedings of the ACM Conference on Computer and Communica-
tions Security (CCS), pp. 103-115, October 2007

Petroni Jr., N.L., Fraser, T., Walters, A.A., Arbaugh, W.A.: An architecture for
specification-based detection of semantic integrity violations in kernel dynamic
data. In: Proceedings of the 15th Conference on USENIX Security Symposium,
p- 20 (2006)

Rhee, J., Riley, R., Xu, D., Jiang, X.: Defeating dynamic data kernel rootkit attacks
via vimm-based guest-transparent monitoring. In: Proceedings of the International
Conference on Availability, Reliability and Security (ARES 2009), Fukuoka, Japan,
March 2009

Rhee, J., Riley, R., Xu, D., Jiang, X.: Kernel malware analysis with un-tampered
and temporal views of dynamic kernel memory. In: Jha, S., Sommer, R., Kreibich,
C. (eds.) RAID 2010. LNCS, vol. 6307, pp. 178-197. Springer, Heidelberg (2010)
Riley, R., Jiang, X., Xu, D.: Guest-transparent prevention of kernel rootkits with
VMM-based memory shadowing. In: Lippmann, R., Kirda, E., Trachtenberg, A.
(eds.) RAID 2008. LNCS, vol. 5230, pp. 1-20. Springer, Heidelberg (2008)
Seshadri, A., Luk, M., Qu, N., Perrig, A.: SecVisor: a tiny hypervisor to guarantee
lifetime kernel code integrity for commodity oses. In: Proceedings of the ACM
Symposium on Operating Systems Principles (SOSP), October 2007

Seshadri, A., Perrig, A., Doorn, L.V., Khosla, P.: Swatt: software-based attestation
for embedded devices. In: Proceedings of the IEEE Symposium on Security and
Privacy (2004)

Srivastava, A., Giffin, J.: Efficient protection of kernel data structures via object
partitioning. In: Proceedings of the 28th Annual Computer Security Applications
Conference, ACSAC 2012, pp. 429-438 (2012)

Srivastava, A., Lanzi, A., Giffin, J.T.: System call API obfuscation (extended
abstract). In: Lippmann, R., Kirda, E., Trachtenberg, A. (eds.) RAID 2008. LNCS,
vol. 5230, pp. 421-422. Springer, Heidelberg (2008)

Srivastava, A., Lanzi, A., Giffin, J., Balzarotti, D.: Operating system interface
obfuscation and the revealing of hidden operations. In: Holz, T., Bos, H. (eds.)
DIMVA 2011. LNCS, vol. 6739, pp. 214-233. Springer, Heidelberg (2011)

Vogl, S., Gawlik, R., Garmany, B., Kittel, T., Pfoh, J., Eckert, C., Holz, T.:
Dynamic hooks: hiding control flow changes within non-control data. In: 23rd
USENIX Security Symposium (USENIX Security 2014), pp. 813-328. USENIX
Association, San Diego, August 2014

Vogl, S., Pfoh, J., Kittel, T., Eckert, C.: Persistent data-only malware: function
hooks without code. In: Proceedings of the 21th Annual Network and Distributed
System Security Symposium (NDSS), February 2014

Volatility Foundation. psxview Volatility command. https://github.com/
volatilityfoundation/volatility /wiki/Command

http://uninformed.org/index.cgi?v=3&a=7&p=7
http://uninformed.org/index.cgi?v=3&a=7&p=7
https://github.com/volatilityfoundation/volatility/wiki/Command
https://github.com/volatilityfoundation/volatility/wiki/Command

24

46.

47.

48.

M. Graziano et al.

Wang, Z., Jiang, X., Cui, W., Ning, P.: Countering kernel rootkits with lightweight
hook protection. In: Proceedings of the 16th ACM Conference on Computer and
Communications Security, CCS 2009, pp. 545-554 (2009)

Wei, J., Payne, B. D., Giffin, J., Pu, C.: Soft-timer driven transient kernel control
flow attacks and defense. In: ACSAC (2008)

Zhang, X., van Doorn, L., Jaeger, T., Perez, R., Sailer, R.: Secure coprocessor-
based intrusion detection. In: Proceedings of the Tenth ACM SIGOPS European
Workshop, September 2002

DeepFuzz: Triggering Vulnerabilities Deeply
Hidden in Binaries
(Extended Abstract)

Konstantin Béttinger®™) and Claudia Eckert

Fraunhofer Institute for Applied and Integrated Security,
85748 Garching (near Munich), Germany
konstantin.boettinger@aisec.fraunhofer.de

Abstract. We introduce a new method for triggering vulnerabilities in
deep layers of binary executables and facilitate their exploitation. In our
approach we combine dynamic symbolic execution with fuzzing tech-
niques. To maximize both the execution path depth and the degree of
freedom in input parameters for exploitation, we define a novel method
to assign probabilities to program paths. Based on this probability distri-
bution we apply new path exploration strategies. This facilitates payload
generation and therefore vulnerability exploitation.

Keywords: Concolic execution - Fuzzing - Random testing

1 Introduction

As ubiquitous software is ever increasing in size and complexity, we face the
severe challenge to validate and maintain the systems that surround us. Soft-
ware testing has come a long way from its origins to the recent developments
of sophisticated validation techniques. In this paper we introduce a new method
combining symbolic execution and random testing. Our goals are (1) code cover-
age in deep layers of targeted binaries which are unreachable by current technolo-
gies and (2) maximal degree of freedom in the input variables when discovering
a program error.

Before we present the main idea of our approach and the summary of our
contributions, we give some background on concolic execution and fuzzing. We
especially highlight limitations of concolic execution and fuzzing when applied
isolated and motivate a combination of both as a promising new strategy.

Concolic Execution. The main idea of symbolic execution is to assign symbolic
representations to input variables of a program and generate formulas over the
symbols according to the transformations in the program execution. Reason-
ing about a program on the bases of such symbolic representations of execution
paths can provide new insight into the behavior of the program. Besides program

© Springer International Publishing Switzerland 2016
J. Caballero et al. (Eds.): DIMVA 2016, LNCS 9721, pp. 25-34, 2016.
DOI: 10.1007/978-3-319-40667-1_2

26 K. Bottinger and C. Eckert

verification, symbolic execution nowadays has its biggest impact in program test-
ing. The original idea was extended over the years and developed into concrete
symbolic (concolic) execution. The program is initially executed with arbitrary
concrete input values and symbolic constraints over the symbols are generated
along the program execution path. Next, one of the collected branch conditions
is negated and together with the remaining constraints given to an SMT solver.
The solution (also called model) generated by the SMT solver is injected as new
input into the program, which now takes the branch alternative when executed.
This is because the SMT solver just calculated the solution of the negation of the
former branch constraint so that the newly generated input follows the alterna-
tive path. This procedure is iteratively repeated until a halt condition is reached.
In the best case the reached halt condition resembles full path coverage of all
alternative paths of the program, in the worst case the halt condition is caused
by an overloaded SMT solver. The latter is a natural consequence of the expo-
nential growth of the number of paths we have to deal with, which we refer to as
the path explosion problem. Concolic execution is advantageous in code regions
where pure symbolic reasoning is ineffective or even infeasible. This is often the
case for complex arithmetic operations, pointer manipulations, calls to external
library functions, or system calls.

Pure concolic execution, however, has strong limitations. Current SMT
solvers are very limited in the number of variables and constraints they can
handle efficiently so that concolic execution gets stuck in very early stages of the
program. Despite huge advances in the field of SMT solvers, concolic execution
of large programs is infeasible and in practice will only cover limited parts of the
execution graph. The major part of graph coverage must therefore be done with
fuzzing.

Fuzzing. Existing fuzzing tools generate random input values for the targeted
program in order to drive it to an unexpected state. Fuzzing has generated a long
list of vulnerabilities over the years and is by now the most successful approach
when it comes to program testing. However, it has severe limitations even in
very simple situations. To illustrate this, consider the following code snippet:

#include <stdint.h>

int check(uint64_t num){
if (num == UINT64_C(0))
assert(false);

3

If we want to reach the assertion in the check function with a random choice
of the integer num, we have a probability of 2764 for each try to pass the if
statement. The situation gets even worse if there are multiple such checks, e.g.
in the calculation of a checksum or character match during input parsing. Such
code areas are very hard to be passed by pure random input generation and
code regions beyond such examples are most likely not covered by fuzzing. In
the following we will refer to such cases as fuzzing walls. However, the false

DeepFuzz: Triggering Vulnerabilities Deeply Hidden 27

assertion in the above code listing can easily be reached with concolic execution,
as the comparison to zero directly translates to a simple expression for the SMT
solver.

The Hybrid Approach. As we just showed, critical limitations of fuzzing can
be overcome with concolic execution, and in turn fuzzing scales much better to
path explosion than SMT solvers do. As a natural next step we combine both
methods. The idea is to apply concolic execution whenever fuzzing saturates (i.e.
stops exploration at a fuzzing wall), and in turn switch back to fuzzing whenever
the fuzzing walls are passed by concolic execution.

However, we still have to deal with the problem of path explosion and there-
fore still may end up covering only the first execution layers of a program. In
the following, we refer to path depth as the number of branches along that path,
which directly corresponds to the number of basic blocks. Even in the combined
approach we are confronted with two challenges. First, if we want to fuzz deep
areas of a program, we have to find a way to construct execution paths into such
areas and somehow delay path explosion until we have found such a tunnel. Sec-
ond, to generate a payload and exploit a detected vulnerability in the program
under test, we not only have to reach the bug with a single suitable input, but
we have to reach it with maximal degree of freedom in the input values. To be
more precise, if we reach a vulnerability with exactly one constellation of the
input variables, we most probably would not be able to exploit it in a meaningful
way because any attempt to generate a payload (and thereby change the input
variables) would lead the input to take a different path in the execution graph.
Therefore, we propose a way to maximize the degree of freedom regarding input
variables. This yields both alleviation of vulnerability exploitation and execution
paths that reach into deep layers of the program.

In summary, we make the following contributions:

— We propose a new search heuristic that delays path explosion effectively into
deeper layers of the tested binary.

— We define a novel technique to assign probabilities to execution paths.

— We introduce DeepFuzz, an algorithm combining initial seed generation, con-
colic execution, distribution of path probabilities, path selection, and con-
strained fuzzing.

2 Related Work

Symbolic execution has experienced significant development since its beginnings
in the seventies to the advanced modern variants invented for program testing
in recent years. Especially the last decade has seen a renewed research interest
due to powerful Satisfiability Modulo Theory (SMT) solvers and computation
capabilities that have led to advanced tools for dynamic software testing. Cadar
et al. [2] give an overview of the current status of dynamic symbolic execution.
In concolic execution [5,10] symbolic constraints are generated along program
execution paths of concrete input values.

28 K. Bottinger and C. Eckert

Research in random test generation established powerful fuzzing tools such
as AFL, Radamsa, the Peach Fuzzer, and many more. We refer to [12] for a
comprehensive account.

Both concolic execution and fuzzing have severe limitations when aiming for
code coverage (see Sect.1). Since those limitations are partly complementary
to each other, a fusion of concolic execution and fuzzing emerges as natural
approach. Majumdar et al. [8] made a first inspiring step into this direction by
proposing hybrid concolic testing: by interleaving random testing with concolic
execution the authors of [8] increase code coverage significantly. However, it is
still an open question how to efficiently generate restricted inputs for random
testing. We propose a solution for high frequency test case generation that scales
to large sets of constraints. Further, we specify the rather general test goals of [§]
by focusing on maximization of the degree of freedom regarding input variables
to achieve both, alleviation of vulnerability exploitation and execution paths
that reach into deep layers of the program.

Closely related to our approach is Driller by Stephens et al. [11] who also
combine fuzzing with selective concolic execution in order to reach deep execu-
tion paths. Driller switches from pure fuzzing to concolic execution whenever
random testing saturates, i.e. gets stuck at a fuzzing wall. To keep the load
for symbolic execution low while simultaneously maximizing the chance to pass
fuzzing walls with concolic execution, Driller also selects inputs. This selection
privileges paths that first trigger state transitions or first reach loops which are
similarly iterated by other paths. In contrast, we systematically assign proba-
bilities to paths based on SMT solving performance and select paths according
to this probability distribution. This assignment of probabilities to execution
paths has no direct counterpart in related work. Although the authors of [4] also
propose assertion of probability weights to paths in the execution graph, they
differ significantly in their proposed methods which are based on path condition
slicing and computing volumes of convex polytopes.

3 The DeepFuzz Algorithm

In this section we present the DeepFuzz algorithm in detail. The main idea is
interleaving concolic execution with constrained fuzzing in a way that allows
us to explore paths providing maximal input generation frequency. We achieve
this by assigning weights (corresponding to fuzzing performance) to the explored
paths after each concolic execution step in order to select the ones with highest
probability. In the following, we first describe the individual building blocks,
namely initial seed generation, concolic execution, distribution of path probabil-
ities, path selection, and constrained fuzzing. Next, we combine these parts in
the overall DeepFuzz algorithm.

3.1 Initial Seed Generation

Initially we start with a short period of concrete input generation for the sub-
sequent concolic execution. If the inputs belong to a predefined data format, we

DeepFuzz: Triggering Vulnerabilities Deeply Hidden 29

generate inputs according to the format definition (as in generational fuzzing).
If there is no format specified or available we just generate random input seeds.
We denote the set of all possible concrete input values as X and the initial seeds
generated in this initial step as Xg C X.

3.2 Concolic Execution

The concolic execution step receives a set of concrete program inputs Xgeeq C X
and outputs a set of symbolic constraints collected along the paths belonging to
these inputs. At the beginning, directly after the initial seed generation step, we
set Xgeeqd = Xo. The symbolic expressions are basically generated as described
in Sect.1. However, we adapt the path search heuristics to our approach in a
similar way as introduced in [6]. We conduct concolic execution of the program
with each input z; € Xeeq until one of the following two halt conditions occur:
either the program reaches the predefined goal, which in our case is basically an
unexpected error condition, or the number of newly discovered branches taken
exceeds a fixed maximum b, € N.

To keep the notation as clear as possible, in the following we assume without
loss of generality that the halting conditions are reached after exactly bp,qz
branches. Let ¢} denote the execution path belonging to input z; and n’ = | Xsced|
denote the number of inputs in Xgeeq. For each branch j € {1,..., b4, } there
is a sub-path c;j which equals ¢, until branch number j is reached. Clearly,
the c;; are sub-paths of ¢}. For each i = 1,...,n" and j = 1, ..., by We store the
logical conjunction of the negated branch condition \;; (corresponding to branch
number j of execution path c;) and the path condition p;; of the sub-path c;;
leading to this branch, which yields the n'#b,,q, expression sets ¢;; := —=Xi; Api;.
With this notation, concolic execution of the input set X,..q yields the total set
of constraints @ := {¢;; | i =1,...,n', j =1,...,bpmaz }. For each element in @ the
SMT solver checks if the the symbolic constraints are satisfiable and in that case
computes a new input z;; for each element ¢;; € ®. These newly generated inputs
x;; drive the program execution along the original paths ¢ until branch number
j is reached and then takes the alternative. We denote these new explored paths
as ¢;;. In the next step we assign probabilities to these paths. To maintain a
clear notation and avoid too many indices we work with the union set

C:={c1,.,Cn}i= chj. (1)
0,J

3.3 Distribution of Path Probabilities

Next, we describe our approach to assign probabilities to program paths. This
step takes as input a set of paths C and outputs a probability distribution on
this set.

One possible strategy is to calculate the cardinality |I;| of the set of solutions
I; for the path constraint ¢; € @ corresponding to ¢; and then define weights on
the paths according to number of inputs that travel through it. This strategy

30 K. Béttinger and C. Eckert

is chosen and comprehensively described in [4], where the purpose of assigning
probabilities to paths is to provide estimates of likelihood of executing portions of
a program in the setting of general software evaluation. In contrast to this we are
interested in deep fuzzing and therefore must guarantee maximal possible sample
generation in a fixed amount of time. To illustrate this more clearly, consider two
sets of constraints $4 and @ with (non-empty) solution sets A and B. If we are
given only the constraints @4 and @5 and are interested in some solutions in A
or B, we simply feed an SMT solver with the constraints and receive solutions.
However, computing the cardinality |A| and | B| of all solutions corresponding to
&4 and Pp (also called the model counting problem) can be significantly more
expensive than the decision problem (asking if there is a single solution of the
constraints at all). The authors of [4] rely on expensive algorithms for computing
volumes of convex polytopes and integrating functions defined upon them. This
would yield a theoretical sound distribution of path probabilities, with the dis-
advantage of extremely low fuzzing performance in our setting. Further, even if
cardinality |A| is significantly greater than | B|, meaning that &4 has much more
solutions than ®@p, computation of B may take much longer than computation
of A. In other words (|A| > |B|) # (T(®4) > T(®p)), where T(®;) is the time
it takes an SMT solver to compute all solutions corresponding to the constraints
@;. To guarantee high frequency of model generation for effective deep fuzzing
we have to build our strategy around a time constraint. Therefore, in order to
assign probabilities to the paths ¢y, ..., ¢, we apply another strategy.

For a fixed time interval T let k;(¢;, Tp) denote the number of solutions for
constraints ¢; that the applied SMT solver finds in the amount of time Ty. Among
the paths cq, ..., ¢, we choose the one whose constraints yield - when given to the
SMT solver - the maximal number of satisfying solutions in the fixed amount
of time Tj. Therefore, we distribute the probabilities p(c;) belonging to path ¢;
according to

-1

plei) = ki (60, To) [D ki85, To) (2)
for i =1,...,n. With >, p(¢;) = 1 this probability distribution is well defined.

3.4 Path Selection

Now that we have n explored paths C = {¢1,, ¢, } weighted with probabilities
according to Eq. (2) in the execution graph, our goal in this step is to select the
paths that provide us maximal model generation frequency. Such a set of paths
will guarantee us efficient fuzzing and maximal degree of freedom for subsequent
payload generation in case we detect a vulnerability.

The defined probabilities p(c¢;) in Eq. (2) directly correspond to the perfor-
mance in computing inputs for subsequent fuzzing. Practical calculation of those
probabilities is efficient: we simply let the SMT solver compute solutions for the
path constraints @;(i = 1,...,n) in a round-robin schedule and count the number

DeepFuzz: Triggering Vulnerabilities Deeply Hidden 31

of solutions for each path, which directly yields the probabilities p(¢;). A suffi-
ciently small choice of the computing time Tj will result in fast path selection.
To gain maximal input generation frequency, we could simply choose the single
path whose assigned probability is maximal. However, some paths are dead ends
and if we would restrict the algorithm to select only a single path for subsequent
fuzzing, path exploration might stop too early in some binaries.

Therefore, we select the m < n different paths é; (j =1, ..., m) with highest
probability. In order to make sure that the following path choice is well defined,
we prepend a short side note first: it almost never happens in practice that
there are two paths assigned with exactly the same probability. If this unlikely
situation occurs in practice, we could just randomly choose one among these
equiprobable paths and proceed without much changes in the subsequent algo-
rithm. For simplicity of notation we assume without loss of generality that the
set {p(¢;) | © = 1,...,n} is strictly ordered. We initially choose the path with
highest probability

¢ = argmax p(c;) 3)
c,eC

and then proceed in the same way

¢ = argmax p(c;) (4)
i €C\{é1,....,&5-1}

until we obtain the path set Chign = {¢; | j = 1,...,m} including the m paths
with hightest probability. On the one hand, setting the parameter m close to n
will result in fast path explosion. On the other hand, setting m = 1 might be
too restrictive for some binaries. Therefore, we initially set m to a small integer
and then run parameter optimization to adapt to the specific binaries in testing
experiments.

3.5 Constrained Fuzzing

Now that we have selected the paths Cjg, with highest probability, we continue
with fuzzing deeper layers of the program. Remember we denoted the set of all
possible concrete input values as X and the set of inputs belonging to path ¢;
as I; ¢ X (i = 1,...,n). To start fuzzing into the program from an endpoint
of a selected path ¢; € Chign, the generated fuzzing inputs have to fulfill the
respective path constraints ¢;, otherwise they would result in a different execu-
tion path. There are basically three possible strategies to generate inputs (i.e.
subsets of I;) that satisfy the respective constraints:

Random Generation of Inputs with Successive Constraint Filtering. This strat-
egy would initially generate a random input set X,,,q C X, which would be
given to an SMT solver in order to check if a concrete input z € X,.4,q satisfies
the constraint ¢; and therefore belongs to I;. However, filtering the generated
inputs in X454 by checking for satisfiability of respective path constraints would

32 K. Béttinger and C. Eckert

most unlikely leave any input over, i.e. X,qnqNI; = () with high probability. This
is obvious due to the fact that the path constraints in ¢; symbolically represent
all branch conditions along the path ¢;, in particular fuzz-walls (as introduced
in Sect.1). Randomly generating input values that satisfy such a fuzz-wall con-
straint in ¢; is therefore clearly as unlikely as passing such a wall with pure
fuzzing.

Pure SMT Solver-Based Input Generation. With this strategy we would inject all
the constraints in ¢; into an SMT solver, that in turn computes a set of possible
solutions. The problem with this strategy is that an SMT solver is sometimes
slow and inefficient in computing solutions and the fuzzing input generation
rate would drop significantly. This is due to the fact that an SMT solver cannot
effectively handle large amounts of variables constrained in large amounts of
equations. For example, consider a situation where the input consists of a large
file I' and the targeted program only checks a small part F of it during initial
parsing. Using an SMT solver to generate both the constrained part F’ and the
unconstrained part of F' would be inefficient. This motivates the third strategy.

Random Generation of Independent Input Variables with Subsequent Constraint
Solving. Here, we randomly generate input values for all variables that are inde-
pendent (also called free) in ¢;. An SMT solver subsequently generates a model
for the remaining dependent variable constraints.

In summary, the first strategy is infeasible, whereas strategies two and three
are more similar to each other for small input sizes. However, if we deal with
larger inputs where only a small minority of input variables are constrained by
the current path constraint ¢; there is no need to feed a huge amount of path
constraints for independent input variables into an SMT solver. We proceed with
the third approach as it guarantees us maximal input generation frequency and
scales better to large inputs.

In the following, we refer to the frequency of input generation for path ¢; as
f(¢;). The above reasoning yields

ki(¢i, To)
(o) > —T1,

()
i.e. the number of models for ¢; found by the SMT solver in time Tj is less or
equal than the number of inputs generated with strategy three in time Tj.

3.6 Joining the Pieces

Now that we have described all individual parts we can combine them for the
overall DeepFuzz algorithm, as depicted in Fig.1. After the initial seed gener-
ation (SG) is completed we run concolic execution (CE), distribution of path
probabilities (DP), path selection (PS), and constrained fuzzing (CF) in a loop,
where CF is run for a fixed amount of time 7. This loop is executed until a halt
condition is reached. A halt condition is given either if a predefined goal (e.g. a

DeepFuzz: Triggering Vulnerabilities Deeply Hidden 33

Input: Program P, Parameters m, kpin, 1o, T1, T2, bmax

Xseed < SG (P)
do:
o =1
Cc=0
for each = in X, .4 do:
¢, ¢ «CE (2,bmaz)
append ¢ to ®
append ¢ to C
Prob < DP (®,C,Tp)
Chigh «~ PS (P?”()IL C)
Xseed +— CF (C’Ligh7¢aTI)

L— while - condition (11) ;ie. (302 ki(¢,70) = kmin)

CF(Chigh, ®,T5)

Fig. 1. DeepFuzz main algorithm.

program crash) is reached, or if the constrained fuzzing performance collapses.
In the latter case the total number of solutions that the applied SMT solver finds
in the fixed amount of time m * Ty drops below a predefined bound &,

m

Z ki(¢s, To) < kmin (6)

i=1

and we leave the loop to procede with solely constrained fuzzing for a long testing
time T5.

4 Conclusion

We present an approach to trigger vulnerabilities in deep layers of binary exe-
cutables. DeepFuzz constructs a tunnel into the program by applying concolic
execution, distribution of path probabilities, path selection, and constrained
fuzzing in a way that allows fuzzing deep areas of the program.

Instead of source code instrumentation, we only need compiled binaries for
program testing. This is an advantage for the same reasons as stated in [7]. First,
we are independent on the high level language and build processes. Second, we
avoid any problems caused by compiler transformation after the build process,
realized for example by obfuscation. Third, DeepFuzz is suited to fuzz closed
source targets. Another important aspect of DeepFuzz is the ability to highly
parallelize the proposed algorithm in Sect. 3. All intermediate steps can be mod-
ularized and distributed for parallel computing with a suitable framework. One
disadvantage of DeepFuzz is that it is not directed towards a tagged point in the
execution graph. It builds paths as deep as possible into the program, however

34 K. Béttinger and C. Eckert

with no preferably direction. In order to address this issue we are currently con-
sidering how to combine our approach with previous work on driving execution
of the input space towards a selected region. Such a directed exploration can be
achieved by using fitness functions as described in [13]. For example, we could
integrate fitness functions in the path selection step.

First tests targeting OpenSSL-based parsers of Base64-encoded X.509 certifi-
cates promise well. Here, we adapted the concolic execution framework Triton
[9], which itself uses the Z3 SMT solver [3]. A comprehensive evaluation of our
approach on a broad range of targets is subject to future work.

Finally, DeepFuzz may help to circumvent current bottlenecks related to
automatic exploit generation as described by Avgerinos et al. in [1]. We expect
that our proposed algorithm can be deployed for automatic exploitation of vul-
nerabilities deeply hidden in binaries.

References

1. Avgerinos, T., Cha, S.K., Rebert, A., Schwartz, E.J., Woo, M., Brumley, D.: Auto-
matic exploit generation. Commun. ACM 57(2), 74-84 (2014)

2. Cadar, C., Sen, K.: Symbolic execution for software testing: three decades later.
Commun. ACM 56(2), 82-90 (2013)

3. de Moura, L., Bjgrner, N.S.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337-340. Springer, Heidelberg
(2008)

4. Geldenhuys, J., Dwyer, M.B., Visser, W.: Probabilistic symbolic execution. In: Pro-
ceedings of the 2012 International Symposium on Software Testing and Analysis,
pp. 166-176. ACM (2012)

5. Godefroid, P., Klarlund, N., Sen, K.: DART: directed automated random testing.
In: ACM SIGPLAN Notices, vol. 40, pp. 213-223. ACM (2005)

6. Godefroid, P., Levin, M.Y., Molnar, D.: SAGE: whitebox fuzzing for security test-
ing. Commun. ACM 55(3), 40-44 (2012)

7. Godefroid, P., Levin, M.Y., Molnar, D.A.: Automated whitebox fuzz testing. In:
NDSS, vol. 8, pp. 151-166 (2008)

8. Majumdar, R., Sen, K.: Hybrid concolic testing. In: 29th International Conference
on Software Engineering, 2007, ICSE 2007, pp. 416-426. IEEE (2007)

9. Saudel, F., Salwan, J.: Triton: a dynamic symbolic execution framework. In: Sym-
posium sur la sécurité des technologies de l'information et des communications,
SSTIC, France, Rennes, 3-5 June 2015, pp. 31-54. SSTIC (2015)

10. Sen, K., Marinov, D., Agha, G.: CUTE: a concolic unit testing engine for C. In:
European Software Engineering Conference, pp. 263-272 (2005)

11. Stephens, N., Grosen, J., Salls, C., Dutcher, A., Wang, R., Corbetta, J., Shoshi-
taishvili, Y., Kruegel, C., Vigna, G.: Driller: augmenting fuzzing through selective
symbolic execution. In: Proceedings of the Network and Distributed System Secu-
rity Symposium (NDSS) (2016)

12. Takanen, A., Demott, J.D., Miller, C.: Fuzzing for Software Security Testing and
Quality Assurance. Artech House, Norwood (2008)

13. Xije, T., Tillmann, N., De Halleux, J., Schulte, W.: Fitness-guided path explo-
ration in dynamic symbolic execution. In: IEEE/IFIP International Conference on
Dependable Systems and Networks DSN 2009, pp. 359-368. IEEE (2009)

Defenses

AutoRand: Automatic Keyword Randomization
to Prevent Injection Attacks

Jeff Perkins'®9, Jordan Eikenberry!, Alessandro Coglio?, Daniel Willenson'!,
Stelios Sidiroglou-Douskos', and Martin Rinard®

! MIT/CSAIL, Cambridge, MA, USA
{jhp, jeikenberry,dwillenson,stelios,rinard}@csail.mit.edu
2 Kestrel Institute, Palo Alto, CA, USA
coglio@kestrel.edu

Abstract. AutoRand automatically transforms Java applications to use
SQL keyword randomization to defend against SQL injection vulnerabil-
ities. AutoRand is completely automatic. Unlike previous approaches it
requires no manual modifications to existing code and does not require
source (it works directly on Java bytecode). It can thus easily be applied
to the large numbers of existing potentially insecure applications without
developer assistance. Our key technical innovation is augmented strings.
Augmented strings allow extra information (such as random keys) to
be embedded within a string. AutoRand transforms string operations so
that the extra information is transparent to the program, but is always
propagated with each string operation. AutoRand checks each keyword
at SQL statements for the random key. Experimental results on large,
production Java applications and malicious inputs provided by an inde-
pendent evaluation team hired by an agency of the United States gov-
ernment showed that AutoRand successfully blocked all SQL injection
attacks and preserved transparent execution for benign inputs, all with
low overhead.

1 Introduction

SQL injection attacks are a critical vector of security exploits in deployed appli-
cations. SQL Injection [1] is the first entry in the CWE/SANS list of the top
25 most dangerous software errors [2]. Injection errors are also the first entry
in OWASP’s top 10 web application security problems [3]. Given the demon-
strated ability of attackers to exploit such vulnerabilities [4] and the exploitable
opportunities that this class of vulnerabilities presents to attackers on an ongo-
ing basis [5], techniques that eliminate SQL injection vulnerabilities and prevent
SQL injection attacks are of primary importance to the future security of our
information technology infrastructure.

On the surface it would seem that SQL attacks could be prevented by follow-
ing good coding practices (such as using prepared statements and/or sanitizing
inputs) that have been available for many years. Unfortunately, these practices
have to be followed 100 % of the time or an attack may be enabled. The con-
tinued prevalence of SQL injection attacks [5] bears evidence to the fact that a

© Springer International Publishing Switzerland 2016
J. Caballero et al. (Eds.): DIMVA 2016, LNCS 9721, pp. 37-57, 2016.
DOI: 10.1007/978-3-319-40667-1_3

38 J. Perkins et al.

different approach that doesn’t rely on error-free development is required. Fur-
thermore there is a large amount of existing SQL code that needs protection. It
is unrealistic to expect this code to be retrofitted. The developer resources are
often not available and in many cases the source code may not be accessible.

1.1 SQL Keyword Randomization

Instruction set randomization [6] protects systems against code-injection attacks
by creating randomized instruction sets. An attacker that does not know the
instruction set in use will inject invalid code which will not execute correctly.

SQL keyword randomization applies the same technique to SQL injection
attacks. Conceptually the SQL grammar is changed to use randomized SQL
keywords that are not known to possible attackers. Any code that is injected will
not contain valid keywords and will thus yield an error when parsed thwarting
any attack.

Existing randomization systems [7] require the developer to manually mod-
ify the program to randomize the SQL keywords that appear in constant
strings. This requires program source and possibly significant developer time
(see Sect.6.2). In many cases, neither of these may be available. An automatic
system is needed to address the large numbers of existing potentially insecure
applications.

Building an automatic system, however, is challenging. A working solution
must randomize all SQL keywords that can reach an SQL statement (by any
path) while ensuring that those modifications do not change the semantics of the
program or are made visible outside of the program (because that would leak
the random key). Operations on strings containing random keys must preserve
the keys and the original semantics of the operation. Since the keys change
both the length and contents of the string, many operations (e.g., substring,
charAt, replace) must be automatically converted.

1.2 AutoRand

We present a new system, AutoRand, that automatically transforms Java appli-
cations to use randomized SQL keywords'.

The resulting transformed Java application is protected against SQL injection
attacks that rely on using SQL keywords in the malicious input to change the
structure of the SQL command passed to the SQL execution engine.

AutoRand automatically translates the Java bytecodes of the application to
randomize any SQL keywords that appear in program constants or in trusted
inputs. It transparently propagates the randomized versions of the keywords
across string operations. Any use of randomized SQL keywords in other opera-
tions (e.g., file/socket writes, string comparisons, etc.) are automatically deran-
domized to ensure that the program’s semantics are maintained.

! We use the term keyword to include keywords, operators and comment tokens.

AutoRand: Automatic Keyword Randomization to Prevent Injection Attacks 39

AutoRand also inserts code that checks each SQL command to ensure that all
keywords have the correct random value. If any keywords (such as those inserted
by an attacker) are not correct, an exception is thrown. If all of the keywords
are correct, the query is de-randomized and passed to the normal SQL routine.

AutoRand operates directly on byte-code and does not require source or
manual modifications. It can easily be applied to existing applications without
developer assistance. To our knowledge it is the first system to automatically
apply SQL keyword randomization to existing programs.

Experimental results on large, production Java applications and malicious
inputs provided by an independent evaluation team hired by an agency of the
United States government showed that AutoRand successfully blocked all SQL
injection attacks with no false positives and negligible overhead.

1.3 Augmented Strings

Our key technical innovation is augmented strings. Augmented strings allow addi-
tional information to be added to strings. This additional information is handled
transparently with respect to the application. Augmented strings are designed to
ensure that, with the exception of augmented checks (such as SQL query checks),
the application exhibits the same behavior with augmented strings as without.
The additional information is accounted for in all string operations to ensure
that it is propagated across the operation without changing the semantics of
the program. To accomplish this transparency, AutoRand automatically modi-
fies string operations to ensure that the presence of the additional information is
not visible to the program itself (e.g., conditionals over string values, reflection,
etc.) or externally (e.g., network writes, environment variables access, etc.).

The additional information in an augmented string is identified by a ran-
dom key. The key is complex enough to ensure that it will not occur (within
some arbitrarily small probability) by happenstance in the program’s input or
constants. This allows the additional information to be precisely identified.

In the case of AutoRand, the random key is placed immediately after each
SQL keyword to create a randomized version of the keyword in the augmented
string. To our knowledge the augmented strings approach is novel and could
be used in broader contexts than SQL injection, such as tracking the detailed
provenance (filename, URL) of each token in a string, randomization for other
injection issues (such as command injection) or carrying debug information.

1.4 Experimental Evaluation

We evaluate the AutoRand implementation on a set of benchmarks and associ-
ated inputs developed by an independent evaluation team hired by the sponsor
of this research (an agency of the United States government). The evaluation
team started with a set of existing large, production Java applications, inserted
SQL injection vulnerabilities into the applications, and developed inputs that
exploit the vulnerabilities. The evaluation team was given complete information
about the AutoRand implementation. The results of the evaluation show that

40 J. Perkins et al.

AutoRand successfully blocked all SQL injection attacks. To test transparency
and preservation of functionality, the evaluation also exercised the applications
on benign inputs. The results showed identical behavior for each benign input.
We note that this evaluation worked with applications that are over an order of
magnitude larger than any previous evaluation of SQL injection attack defenses
for Java programs of which we are aware [8-10]. AutoRand’s ability to success-
fully block SQL injection attacks in these applications highlights the effectiveness
of AutoRand’s techniques and the robustness of the AutoRand implementation.

1.5 Contributions
This paper makes the following contributions:

— AutoRand: It presents a system for automatic and transparent SQL keyword
randomization to automatically eliminate SQL injection vulnerabilities.

— Augmented Strings: It presents a technique that transparently adds infor-
mation (in this case a random key) to strings and propagates that informa-
tion across string operations. The original semantics of the application are
preserved except where explicit checks utilizing the additional information are
added (in this case for SQL injection attacks).

— Experimental Evaluation: It presents results from applications and inputs
developed by an independent evaluation team. These results show that
AutoRand successfully blocked all of the developed SQL injection attacks and
correctly preserved transparent execution for all of the benign inputs.

2 Example

We next present an example that illustrates how AutoRand nullifies SQL injec-
tion attacks.

2.1 Vulnerable Code

Consider the Java fragment

String query = "select * from users where"
"username=’" + username + "’ and password=’" + password + "’"; (1)
ResultSet results = databaseConnection.

createStatement () . executeQuery(query) ;

which looks up, in the users table of a database, the user whose name and
password are in the string variables username and password. The query is con-
structed by combining a constant SQL code template with variable fragments
that should only specify data. If username is jqd and password is xB34qy5s,
the query sent to the database is

select * from users where username=’jqd’ and password=’xB34qy5s’ (2)

2

and the application operates normally. However, if username is “’ or 1=1 --
and password is the empty string, the query sent to the database is

AutoRand: Automatic Keyword Randomization to Prevent Injection Attacks 41

select * from users where username=’’ or 1=1 --’ and password=’’ (3)

which always returns all records from the users table, since the password check
has been commented out by the comment marker —-. The latter input is crafted
to subvert normal operation by executing SQL code that is part of the input
data. This kind of subversion may cause loss of confidentiality and/or integrity.
E.g., if username is “’; drop table users --" and password is the empty
string, the query sent to the database is

select * from users where username=’’; drop table users (4)
--’ and password=’’

where the semicolon separates the (now irrelevant) query from an injected drop
statement that deletes the users table from the database.

If username and password are set from application inputs, the execution of
the SQL query in (1) should be preceded by input validation, i.e., checks that
username and password do not contain characters that may alter the structure
of the SQL query (e.g., that they only contain letters and numbers). If the check
fails, the inputs should be rejected or sanitized (e.g., by removing any character
that is not a letter or a number). If the developer fails to include these checks,
the code in (1) is vulnerable to SQL injection attacks.

2.2 Automatic Hardening by AutoRand

AutoRand automatically turns the code in (1) into code like

String query ="select<key> * from<key> users where<key> username=’" +
+ username + "’ and<key> password=’" + password + "’"; (5)
ResultSet results = derandomizeAndExecuteQuery

(databaseConnection.createStatement (), query);

where <key> is a randomization key, i.e., a randomly chosen sequence of ASCII
letters and numbers, e.g., di83e2371A. That is, all the SQL keywords that occur
in string constants are randomized by appending <key>. The AutoRand run-
time method derandomizeAndExecuteQuery tokenizes the query and checks
each SQL keyword to ensure that it is suffixed by <key>. If the check suc-
ceeds, the query is deemed legitimate, all instances of <key> are removed, and
the resulting query is executed normally by calling executeQuery. This check
fails if an attacker injects a non-randomized keyword. For example, if username
is “> or 1=1 --" and password is the empty string, the query

select<key> * from<key> users where<key> username=’’ (6)
or 1=1 --’ and<key> password=’’

fails the check because or and -- lack <key>. Since the attacker does not know
the valid keywords for or and -- (i.e., does not know <key>), they are unable
to create a successful attack.

42 J. Perkins et al.

AutoRand also automatically transforms other parts of the code to make
keyword randomization transparent to non-SQL uses of the mutated strings. For
instance, using String.length() to take the length of query in (5) should return
the same value as query in (1)— the randomization key should not contribute
to the count. Transparency is particularly important for output-related uses of
the mutated strings, e.g., String.out.println(query), because if the attacker
were to see the randomization key in some output (e.g., error message) they
would be able to inject correctly randomized keywords.

3 Technical Approach

AutoRand protects a Java application against SQL injection by statically trans-
forming each class of the application, producing a hardened version of the appli-
cation.

3.1 Correctness

In Java, strings are objects, whose contents are manipulated exclusively via a
standard API, which consists of the classes String, StringBuilder and String-
Buffer.? AutoRand intervenes in string method calls to ensure that keys are
propagated (propagation) and do not affect the application (transparency)—
other than protecting against SQL injection. AutoRand’s transformation is cor-
rect if it maintains these properties.

— Transparency: A given AutoRand program state and (side-effect free) oper-
ation is transparent if running the operation in the state produces the same
result as running the corresponding original operation in the derandomized
state.

— Propagation: A given operation satisfies propagation if each keyword that is
propagated from its inputs to its outputs is consistently randomized (i.e., the
output keyword is randomized if and only if the corresponding input keyword
was randomized).

Transparency guarantees that the original semantics of the program hold
(except for the added SQL checks). Propagation ensures that randomized key-
words in program constants or trusted inputs propagate through string manip-
ulations to SQL statements. This ensures that they will parse correctly (in the
absence of injection attacks). If a randomized keyword were not propagated cor-
rectly to an SQL statement the statement would not parse correctly and an
exception would be incorrectly thrown (a false positive). A propagation error
would not result in a false negative as the lack of a randomized key will always
be treated as an error. There is no path by which an attacker can add the key
to their keywords (other than by knowing the key).

2 For simplicity, we use the term ‘string’ to refer to objects of all three classes.

AutoRand: Automatic Keyword Randomization to Prevent Injection Attacks 43

Transparency. Abstractly, if op is an operation that takes a string .S as input
and yields a string as output, AutoRand’s replacement operation op’, in order
to achieve transparency, must satisfy

op(S) =~ (op'(r(S))) (7)

where 7 randomizes strings and 7~! derandomizes strings.? The requirement
(7) is easily adapted to operations that take multiple strings as input or yield
non-strings (e.g. =1 is a no-op for String.equals()). Derandomization r~!
removes all instances of the key, not only instances that follow SQL keywords,
thus, string operations that modify keywords will not affect transparency.

Some string methods return values other than strings. The derandomization
operation r~! is a no-op for non-strings. Thus op’ must return the same value
as op (as required by equation (7)). Many of the non-string return values are
indices into strings. These indices must reference the derandomized version of
the string, not the randomized version. AutoRand’s replacement operations must
also accept index arguments that are with respect to the derandomized version
of the string. These operations map any index arguments from the derandom-
ized string to the corresponding index in the randomized string. For example,
the following code adds some text to an SQL statement following the select
keyword. The length of the select keyword is hard-coded.

StringBuffer sb = new StringBuffer(...);
int offset = sb.index0f("select") + 6; (8)
sb.insert(offset, "fieldl, field2");

For this to work correctly on a randomized sb, the index must be translated
to the corresponding index in the randomized buffer (after select<key>). Note
that code similar to this exists in the real-world applications that we tested.

Propagation. Propagation is achieved if every randomized keyword in the input
operands that is transferred to the result is also randomized in the result. For
the purposes of SQL commands, keywords are a unit and only operations over a
complete keyword (and not its individual characters) need to support propaga-
tion. Such sub-keyword operations may occur if the string is used for non-SQL
purposes, but propagation is not required in such cases. As noted above, trans-
parency is not affected by sub-keyword operations.

Abstractly, if op is an operation that takes a string S as input (where S may
contain randomized keys) and yields a string as output, AutoRand’s replacement
operation op’, in order to achieve propagation must satisfy

(K. € S)A(K € op(r~*(9))) «<= K, € op/(S) (9)
3 The requirement assumes that the key does not occur in S. The space of keys ensures

a sufficiently small probability that the key occurs in the application code or data
by happenstance.

44 J. Perkins et al.

where r~! derandomizes strings, K, is a randomized keyword and K is the
corresponding keyword. A keyword in the output corresponds to a keyword in
the input only if it is the same instance of the keyword (i.e., the characters that
make up the keyword in the input were copied to the output).

3.2 String Randomization

AutoRand randomizes (each SQL keyword in) each string constant in the appli-
cation code.

AutoRand randomizes each string constant by tokenizing it and then append-
ing the randomization key to all the SQL keywords in the string. The string is left
unmodified if no SQL keywords are found in it. The set of tokens that AutoRand
regards as SQL keywords is easily configurable. The current default configura-
tion protects against injection of standard SQL [11] as well as non-standard SQL
extensions for popular databases. Since SQL keywords are case-insensitive, the
AutoRand tokenizer is case-insensitive.

Each keyword is randomized by appending a randomization key consisting
of 10 ASCII letters (upper case or lower case) or digits. For example, select
could become selecta2831jfy6. To minimize the possibility that an attacker
could generate the key by chance, we use a large space consisting of 6219 (i.e.,
over 800 quadrillion) possible keys. This corresponds to about 60 bits, which is
small for cryptographic keys, whose threat model is offline brute force search.
However, AutoRand’s keys have a different threat model, namely an attacker
attempting injections over the network, whose latency limits the rate at which
keys can be tried. Nonetheless, AutoRand’s key length is configurable and could
be easily increased. Increasing the key by 10 characters increases the overhead
(see Sect. 5.3) by only about 0.73 %.

3.3 SQL API Calls

Java applications access SQL databases via a standard Java API. The
java.sql.Statement class provides methods to execute SQL statements passed
as string arguments, e.g., executeQuery() in (1).

AutoRand wraps each call by the application to the methods of Statement
and Connection that receive SQL statements and prepared statements as string
arguments. Even though a prepared statement is not vulnerable to injections
when the template is instantiated, the creation of the prepared statement itself
is vulnerable to injection when the string (e.g., “select * from users where
username=7 and password=7") is assembled from parts that are not all trusted.

Each method wrapper first checks that all the keywords in the SQL string
include the correct key. If any keyword does not have the key, the SQL string is
deemed to result from an attack and the wrapper throws an exception.

If all the keywords have the correct key, the method wrapper removes every
occurrence of the key and then calls the method of Statement or Connection
with the resulting string.

AutoRand: Automatic Keyword Randomization to Prevent Injection Attacks 45

3.4 String Manipulations

Just randomizing strings as described in Sect. 3.2 and wrapping SQL API calls
as described in Sect. 3.3 would nullify SQL injection attacks but could disrupt
the normal operation of the application. For instance, if String.equals were
called on a program constant containing a keyword and an input containing
the same keyword, it would incorrectly return false, changing the semantics
of the application. Also, if a randomized string makes its way to an output
that is visible to the attacker (e.g., System.out.println(query)), the attacker
could learn the key and inject correctly randomized keywords. Thus, AutoRand
implements further transformations to make keyword randomization transparent
to the application (other than hardening the application against SQL injection),
including any output that may be visible to the attacker.

When necessary, AutoRand intervenes in string method calls by replacing
calls to string methods with calls to methods in the AutoRand string library.

The Java string methods fall into a few basic categories. AutoRand’s app-
roach for accomplishing transparency and propagation for each of those cate-
gories is described in the following subsections. The category, propagation, and
transparency for each string method are shown in Fig. 2.

Observer Methods. Observer methods do not create or modify strings. They
are handled by derandomizing each of the string arguments and then invoking the
original method. Transparency is trivially accomplished as the original method
is run on the derandomized arguments. There are no keyword propagation issues
since strings are not created or modified.

For example, the implementation for String.length and String.equals
are:

AutoRandLength (String s) { AutoRandEquals (String s1, String s2) {
return derand(s).length(); return derand(sl).equals(derand(s2));
} }

Complete String Methods. Complete string methods operate on entire
strings, and not on portions of them. Since the random keys are incorporated
into the string itself, any operations that only involve complete strings will work
correctly without modification. For example, String.concat() and String-
Buffer.append() function correctly on randomized strings without modifica-
tion.

Fortunately, these are amongst the most commonly used of the String func-
tions, which is partially responsible for AutoRand’s low overhead.

Partial String Methods. Partial string methods may operate on pieces of a
string. The pieces are often specified by indices, but can also be specified by
a string match (such as in String.replace()). For these methods, AutoRand

46 J. Perkins et al.

Fig. 1. Each character in the original (unrandomized) string is mapped to the corre-
sponding character in the randomized string. There is no mapping to any of the char-
acters in the randomization key. This ensures that no operation over mapped indices
can create a partial key and that any operation over complete keywords will include
the corresponding randomization key.

transfers the operation from the original (derandomized) string to the random-
ized string.

The three basic operators for partial strings are substring, insert, and
delete. The location in the string is specified by one or more indices.

AutoRand creates an index map between the derandomized and randomized
versions of the string (an example is shown in Fig. 1). This maps characters in the
original (derandomized) string to the corresponding character in the randomized
string. AutoRand implements substring, insert, and delete by looking up
each index in the map and calling the original method on the randomized string
using the mapped indices. This both propagates random keys and preserves
transparency for each operation.

The substring method takes a substring from start (inclusive) to end (exclu-
sive). Any substring that contains a keyword will include both the beginning
character of the keyword and the character immediately after the keyword. Since
the map of the character after the keyword will point after the randomization
key, any substring that includes the keyword will also include its key. For exam-
ple, consider substring(9,13) on the string in Fig. 1. This call would return
the keyword from in the original string. After applying the index map this call is
transformed into substring(14,23) on the randomized string. This will return
from<KEY> in the randomized string, preserving the randomization key.

The delete method takes the same parameters as substring and works in
the same fashion. For example, delete(9,13) would be transformed to delete
(14,23) and would remove from<KEY> from the randomized string.

The insert method inserts its string argument before the specified index.
The map ensures that inserts cannot occur between the keyword and its ran-
domization key or in the middle of a randomization key, because there are no
maps to those locations.

All other partial string methods can be built up from these core methods
(substring, delete, and insert), and the observer and complete string meth-
ods. For example, the String.replace(target,replacement) can be imple-
mented as

AutoRand: Automatic Keyword Randomization to Prevent Injection Attacks 47

StringBuffer sb = new StringBuffer();
int start = 0O;
int offset = this.indexO0f (target);
while (offset != -1) {
sb.append (this.substring(start,offset));
sb.append (replacement) ;
start = offset + target.length();
offset = this.indexOf (target,start);
}
sb.append(this.substring(start));

AutoRand re-implements each of the other non-core partial string methods
in the same fashion.

Character Methods. Character methods convert (portions of) strings to their
underlying characters, bytes, or code points (e.g., toCharArray(), getChars(),
getBytes () and charAt()).

AutoRand derandomizes the string before making the conversion, preserving
transparency. Since the result is not a string, random keys are not propagated
(see Sect. 4 for more information)

Miscellaneous Methods. The reverse() method reverses the characters in
a string. AutoRand derandomizes the string before making the conversion, pre-
serving transparency. Propagation is not an issue as there are no single char-
acter keywords and thus keywords can not be transferred to the result. The
capacity(), ensureCapacity(), and trimToSize() methods are not modified
by AutoRand.

The intern() method returns a canonical representation for the string
object. This is commonly used to conserve memory and also allows reference
equality checks between interned strings. Since string constants are automati-
cally interned and AutoRand modifies entries in the constant table, the random-
ized versions of constants are interned. This does not affect transparency unless
reference equality is used to compare a constant with an interned input value.
This kind of reference equality did not occur in any of the real-world programs
used in the evaluation. Nonetheless, AutoRand could be extended to modify
reference equalities (via the if_acmp<cond> bytecode) on strings to compare
the (derandomized) contents of the strings if both sides of the equality test are
interned.

3.5 External API Calls

Java strings can interact externally to the Java application through a number
of Java system library calls. For example, writing to files/sockets, opening files,
reading properties, reading environment variables, using reflection etc.

In these cases, the original strings should always be used. AutoRand accom-
plishes this by converting the application (and the system libraries themselves)

48 J. Perkins et al.

Category Methods

Complete <init>, append, appendCP, concat, copyValueOf, toString, valueOf
Observer compareTo*, contains, contentEquals, endsWith, equals*,
hashcode, indexOf, isEmpty, lastIndexOf, length, matches,
offsetByCPs, regionMatches, startswith
Partial delete*, format, insert, replace*® setCharAt, setLength,
split, subSequence, substring, toLowerCase, toUpperCase, trim
Character charAt, codePoint*, getBytes, getChars, toCharArray
Misc capacity, ensureCapacity, intern, reverse, trimToSize

Fig. 2. Synopsis of approach for each string method (in String, StringBuffer, and
StringBuilder). Similar calls (indicated with *) are grouped together as are calls with
the same name but different arguments. CodePoint is abbreviated as CP. Category
is the type of call for AutoRand instrumentation purposes. See Sect.3.4 for more
information.

to call AutoRand’s version of these routines. These routines derandomize their
string arguments and then make the original call. This ensures that each exter-
nal call acts correctly and that the random key is never visible to an attacker
(since it is always removed before any external communications).

3.6 Standard Java Library

Strings are also manipulated within the standard Java library. For example, the
equals (), compareTo() and hashCode() methods are called in the collection
classes. Commonly used classes such as Pattern and Matcher call string meth-
ods and create new strings. AutoRand instruments the libraries in the same
manner as it instruments the application. This ensures that any string manip-
ulations within the libraries will correctly propagate random keys and ensures
transparency over any strings containing random keys. The only differences are
that constant strings within the standard libraries are not randomized (as they
will not flow to application SQL commands).

AutoRand statically transforms the byte code of the standard Java libraries
and creates a new version of the library. When an application hardened by
AutoRand is run, it is run with the transformed version of the library.

3.7 Extensibility

AutoRand could be easily extended to randomize, besides SQL keywords, other
kinds of keywords in strings, to provide protection against OS command injec-
tion, LDAP injection, XQuery/XPath injection, etc.

4 Threats to Validity

Our current AutoRand implementation is transparent with the following excep-
tions: (1) AutoRand performs the randomization checks at SQL API calls to

AutoRand: Automatic Keyword Randomization to Prevent Injection Attacks 49

detect SQL injection attacks. The lack of transparency at these API calls is one
of the goals of AutoRand. (2) Intern calls may not be transparent with respect
to reference equality. This is straightforward to implement but not currently
implemented (see Sect. 3.4).

Our current AutoRand implementation satisfies propagation on all string
operations over full keywords. However, there are some possible issues: (1) Con-
verting strings to characters, bytes, or arrays thereof and back to strings. (2)
Character-level manipulations that construct strings with SQL keywords (e.g.,
"sel" + "ect"). None of these occurred in any of the evaluation programs.

Because characters extracted from strings are manipulated as individual char-
acters and not as strings, the randomization keys cannot be propagated for these
methods. AutoRand thus derandomizes the string before making the conversion
(preserving transparency). Fortunately, there is little reason to manipulate pro-
gram constants in this fashion.

We evaluated this hypothesis experimentally by gathering information about
how many times each character method is called in the evaluation programs on
strings that contain randomization keys and the stack trace for each such call. We
then examined each call to determine if it would pose a problem for propagation.
Only strings that contain randomization keys are relevant to propagation.

The getBytes() method is called only in Ant and FTPS. In both cases it
is used to prepare a string to be written to a stream. Strings that are written
would be derandomized in any event (see Sect.3.5) and are not an issue for
propagation.

The getChars() and toCharArray() methods are called only by JMeter in
a class that outputs XML (PrettyPrintWriter). Strings that are written out
would be derandomized in any event (see Sect.3.5) and are not an issue for
propagation.

The charAt () method is called in 7 of the 8 evaluation applications. There
were 12 unique call sites for charAt () on randomized strings in the seven appli-
cations. We examined each of these to determine how charAt () was being used
and whether or not it was a problem for propagation. We found that these
use cases for charAt() query the string for information, but do not use the
resulting characters to build new strings. For example, the method Selec-
torutils.tokenizePathAsArray in Ant uses charAt() to look for slashes in
the path. But the resultant array is built by normal string operations using
the locations of the slashes as indices. Since AutoRand uses indices relative
to the derandomized string, the offsets determined by querying charAt() are
compatible.

The code point methods (e.g., codePointAt()) return full 32-bit character
representations. Their usage would be similar to charAt() in programs that
support the full Unicode set (and manipulate strings at the character level).
These methods were not called in any of the evaluation applications.

None of the character methods were used to create new strings that are later
used by the program. The examination of each use indicates that these do not
present a propagation problem as they are commonly used. This validates our

50 J. Perkins et al.

hypothesis that these calls are not used to manipulate strings but only to create
specific output formats or to obtain information about the string. Propagation
is not an issue in either case.

5 Experimental Evaluation

AutoRand has been experimentally evaluated using various Java programs.

5.1 Programs with Inserted Vulnerabilities

An independent test and evaluation (T&E) team hired by the government agency
that is the sponsor of this research identified a set of Java programs, ranging in
size up to 250k lines of Java source, not including common third-party libraries:

Ant (256 k LOC) —A build system.

— Barcode4J (28 k LOC)—A barcode generator.
FindBugs (208 k LOC)—A bug finder.

- FTPS (40k LOC)—An FTP server.

HtmlCleaner (9k LOC)—A reformatter of HTML files.
— JMeter (178 k LOC)—A performance measuring tool.
— PMD (110k LOC)—A source code analyzer.

— SchemaSpy (16 k LOC)—A database inspecting tool.

The T&E team introduced SQL vulnerabilities into each program, and pro-
duced a set of malicious inputs to exercise the vulnerabilities. The T&E team
also produced a set of benign inputs to exercise each program’s standard func-
tionality. They created 13 vulnerability variants to insert into the base programs.
Each test case inserts one of the variants into the base program. The same vari-
ant can be applied to multiple locations in a base program. See Fig. 3 for details.
As the figure shows, there are a total of 289 distinct test cases (base program +
variant + injection location), 578 attack inputs, and 1444 benign inputs.

The malicious and benign inputs were sent to the program after hardening
with AutoRand and the results observed to determine if the vulnerability was
exploited in the case of malign inputs, and if functionality was preserved in the
case of benign inputs. The inputs were also sent to the unaltered programs as a
control. The AutoRand-hardened programs successfully blocked all of the attack
inputs (i.e., injection attacks) and preserved functionality for all of the benign
inputs.

The experiments were run using the Test and Evaluation Workbench (TEW)
developed by the T&E team. The TEW works on an interconnected set of
virtual machines where variant creation, compilation, and instrumentation are
performed on one machine and execution of test cases performed on separate
machine(s). The tests were performed on Debian 6.03 and the virtual machines
were run on a 12 core machine using Xeon 3.47 Ghz processors. The TEW
also includes support services such as the MySQL, PostgreSQL, SQLServer
(Microsoft) and Hibernate database systems.

AutoRand: Automatic Keyword Randomization to Prevent Injection Attacks 51

Attack/ Attack/
Test Var- Benign Test Var- Benign
Program iant Database Cnt inputs Program iant Database Cnt inputs
Ant V0l MySQL 43 2/5 JMeter V05 MySQL 1 2/5
Ant V02 Postgres 1 2/5 JMeter V08 SQLServer 2 2/5
Ant V03 MySQL 9 2/5 JMeter V10 SQLServer 1 2/5
Ant V04 MySQL 1 2/5 JMeter V11 SQLServer 1 2/5
FTPS V01 MySQL 41 2/5 Barcode V05 MySQL 1 2/5
FTPS V03 MySQL 1 2/5 Barcode V06 Postgres 55 2/5
FTPS V04 MySQL 13 2/5 Barcode V07 Postgres 1 2/5
FTPS V05 MySQL 1 2/5 HtmlCleaner V06 Postgres 44 2/5
PMD Vol MySQL 11 2/5 FindBugs V08 SQLServer 39 2/5
PMD V12 MySQL 14 2/5 FindBugs V09 SQLServer 6 2/5
PMD V13 MySQL 1 2/5 FindBugs V10 SQLServer 1 2/5

SchemaSpy V02 Postgres 1 2/4

Fig. 3. Injected vulnerability programs and variants. Each variant is injected into the
base program at Cnt different locations creating Cnt versions of the program. The
attack and benign inputs are then applied to each version. For example, in the first
row, 43 versions of Ant are created with the V01 vulnerability code inserted in a
different location in each. Then 2 attack inputs and 5 benign inputs are applied to
each of the 43 versions of Ant. AutoRand detects each attack with no false positives
or semantic changes to the program.

5.2 SQL Injection Test Programs

The same T&E team also wrote 17 small programs (see Fig.4) for the pur-
pose of testing systems like AutoRand that protect against SQL injection. Each
program reads inputs and uses them in SQL queries. The programs work as
expected with benign inputs but are subject to SQL injection with malicious
inputs. The tests covered the MySQL, Hibernate, and PostgreSQL database
engines, a variety of SQL query syntax, and the Statement.execute(), and
Connection.prepareStatement () Java SQL API calls.

Several different types of attack inputs were used across the tests including:

— String Tautology - Closing the application’s quote of a string input early
and then adding a tautology. For example one attack input is: > OR 1°=’1.
The resulting SQL is: ...password=’’> OR ’1’=’1’... which will always be
true (thus evading the password check).

— Adding Code - After a valid string or numeric input, additional code is
added.

— Comment out code - After a valid string or numeric input, comment char-
acters are added that stop processing of any remaining characters in the com-
mand. This can be combined with Adding Code to execute arbitrary com-
mands.

We hardened each program using AutoRand and executed the programs
with each of their benign and attack inputs. The AutoRand-hardened programs

52 J. Perkins et al.

Lines Agtack/ Lines Attack/
Test of Benign Test of Benign
Program code Database inputs Program code Database inputs
TC 1055 MySQL 3/1 TC-3073 198 Hibernate 2/2
TC-3008 1723 MySQL 1/2 TC-3078 192 Hibernate 1/3
TC-3010 1680 MySQL 1/2 TC-3104 197 Hibernate 1/3
TC-3014 1166 MySQL 1/2 TC-31056 199 Hibernate 1/3
TC-3015 1127 MySQL 3/1 TC-3106 194 Hibernate 1/3
TC-3016 1055 MySQL 1/1 TC-3166 1221 MySQL 2/1
TC-3017 1780 MySQL 1/2 TC-3174 1298 MySQL 1/1
TC-3044 1054 MySQL 3/1 TC-3177 370 MySQL 1/1
TC-3045 1730 Postgres 4/1 TC-3178 315 MySQL 1/1

Fig. 4. SQL injection tests written by the T&E team. Each test applies the benign
and attack inputs to the same SQL statement. AutoRand detected each attack with
no false positives.

Test Overhead Test Overhead
Program Variant Runs Percent Program Variant Runs Percent
Ant Vo1 25 4.6 FTPS V05 25 0.0
Ant Vo2 25 0.5 FTPS All 100 0.0
Ant Vo3 25 2.2 HtmlCleaner V06 25 6.8
Ant Vo4 25 2.7 HtmlCleaner All 25 6.8
Ant All 100 2.5 JMeter V05 25 2.7
Barcode Vo5 25 3.5 JMeter Vo8 25 0.3
Barcode V06 25 3.4 JMeter V1o 25 0.3
Barcode Vo7 25 17.2 JMeter Vil 25 0.4
Barcode All 75 8.1 JMeter All 100 0.9
FindBugs V08 25 10.3 PMD Vo1 25 6.1
FindBugs V09 25 11.1 PMD V12 25 7.2
FindBugs Vio 25 23.8 PMD Vi3 25 8.6
FindBugs All 75 15.1 PMD All 75 7.3
FTPS Voir 25 0.0 SchemaSpy Vo2 20 3.4
FTPS V03 25 0.0 SchemaSpy All 20 3.4
FTPS V04 25 0.0 All All 570 4.9

Fig. 5. Overhead for test programs. One example of each program/variant was run
(native and instrumented) five times over each of its inputs.

successfully blocked every attack input while leaving behavior unchanged for
every benign input.
5.3 Overhead

To measure the overhead incurred by randomization, we randomly chose one
example test case from each program/variant combination (Fig.3) for a total

AutoRand: Automatic Keyword Randomization to Prevent Injection Attacks 53

of 23 applications.* We ran each over each of its benign inputs five times and
measured the total wall clock time. We repeated this process with the hardened
version of each variant and compared the times. The average overhead ranged
from 0% for FTPS to 15.1 % for FindBugs with an average of 4.9 %. See Fig. 5.

We also measured server overhead (a common use case for SQL injection
defenses). OpenCMS [12] is an open-source Java program (consisting of over
100k lines of code) for managing web sites. It runs as a web application in the
Apache Software Foundation’s Tomcat framework [13]. It uses a database to
store web site content and configurations. SQL injection attacks might thus be
possible by sending customized URLs to the OpenCMS web application.

To measure the overhead incurred by randomization, a script was devel-
oped to send 1,000 benign URLs to an OpenCMS installation and record the
resulting HTML responses. (The URLSs were captured while interacting with the
installation to manage a web site.) The total time required to process all of
the URLs was measured both before and after hardening of the OpenCMS code
by AutoRand. The average overhead was 4.5 %. The recorded HTML responses
were also compared to ensure that functionality was not altered.

The OpenCMS test was performed on a virtual machine running Ubuntu
12.04 on a 3.6 Ghz 4 core iMac with 32 GBytes of memory. Both the client
and the server ran on the same machine using localhost with negligible network
delays.

6 Related Work

6.1 Manual Prevention

The most common approach to preventing SQL injection attacks is defensive
coding practices such as carefully validating all inputs and using parameterized
query APIs [14,15]. Unfortunately, as evidenced by the continuing prevalence of
successful SQL attacks [5], these practices have not been sufficient to prevent
attacks.

Defensive coding practices require trained developers that always follow the
correct approach. A single shortcut can lead to a vulnerability. And they can be
very expensive and time consuming to apply to legacy code. And they provide
no protection without access to developers and source.

AutoRand, by contrast, allows code to be immediately protected without
source code modifications or developer involvement.

6.2 Randomization

SQLRand [7] introduced a manual method to randomize SQL queries. To apply
the method, a developer finds each string containing SQL keywords, determines
whether or not that string is used to build an SQL command, runs the string

4 The full test suite runs in a special environment and is difficult to instrument. The
subset allowed for more manageable experiments.

54 J. Perkins et al.

through the SQLRand tool, and copies the result back into their program. SQL
requests are checked by a database proxy. Requests that do not contain the
correctly randomized keywords will result in an exception. SQLRand does not
derandomize SQL keywords except in the proxy. Thus, if the modified strings are
used for any other purpose, changes to program semantics may result (including
accidental disclosure of the randomization key). SQLRand does not support
strings that are used for multiple purposes (e.g., SQL and error messages).

AutoRand automatically transforms the program to randomize SQL key-
words and ensure semantic correctness (e.g., string length, accidental disclosures,
etc.). In addition, AutoRand does not require any additional network compo-
nents (i.e., a proxy).

6.3 Dynamic Tainting

A popular technique for preventing SQL injection attacks is dynamic taint track-
ing [8,10,16—18]. Taint-tracking systems instrument applications with the ability
to track the provenance of inputs and are thus able to determine if an SQL query
contains any untrusted inputs. Unfortunately, most taint tracking systems have
either (a) non-negligible performance overhead [8,10] or (b) reduce the scope of
tracking they perform (i.e., they do not track character level information) that
can lead to false positives and false negatives [16,17].

Chin et al. [10] implement a comprehensive taint tracking system (using
character-level tainting), through modifications to the Java string library, that
reports a modest overhead of about 15 %. Unfortunately, their performance eval-
uation numbers do not include any safety checks using the taint information.
Safety checks typically contribute significantly to the overhead of taint tracking
systems. Furthermore, their evaluation does not test the system on real-world
applications; they focus on unit tests designed to test taint propagation. Their
implementation requires changes to the string library that are only compatible
with the IBM JVM and does not support common string related functions, such
as regular expressions and String.format ().

WASP [8] is a taint tracking system that tracks trusted, rather than
untrusted, data. WASP uses its MetaStrings library to mimic and extend the
behavior of Java’s standard string classes. It replaces strings allocated in the
application with the MetaStrings equivalent. WASP does not, however, instru-
ment the Java libraries (except to remove the final flag from the string classes).
Strings allocated within the Java library will thus not include meta-data. Any
operations within the library that creates a new string based on application
strings (such as those in Pattern, Matcher, and Formatter) will not propagate
taint. Also, the string classes contain methods (e.g., format () and split()) that
are implemented using these classes. Unless MetaStrings re-implemented these
without using the libraries these may suffer from the same propagation issues.
Propagation failures in WASP can lead to false positives. In contrast, AutoRand
propagates random keys through the Java libraries and has less overhead.

WASP could be extended to instrument the system libraries to avoid these
issues, but one would expect its overhead to be significantly increased.

AutoRand: Automatic Keyword Randomization to Prevent Injection Attacks 55

Diglossia [18] tracks taint in PHP by modifying the interpreter to create a
shadow string that uses a mapped character set for trusted characters. It then
parses the shadow string and the original string to ensure that tainted input
doesn’t change the parse tree. PHP interpreter based approaches are not directly
applicable to Java as the complex Java JIT makes it significantly more difficult to
efficiently modify the interpreter. AutoRand’s bytecode transformation approach
is more portable and maintainable.

6.4 Parse Tree Structure

Another technique for detecting SQL injection attacks is based on the obser-
vations that most attacks modify the SQL query structure (i.e., parse tree) as
intended by the developer [9,19-21].

SQLGuard [19] and SQLCheck [20] are developer tools that can be used to
statically define and dynamically check the integrity of SQL query structures.
While successful at detecting a number of SQL inject attacks, they require man-
ual modifications to the application. In contrast, AutoRand is fully automatic.

An alternative approach is to automatically learn query structure [9,21-
23]. AMNESIA [22] and Halder et al. [23] use static analysis to create a model
of query structure and a run-time system to detect structure violations. To
scale its static analysis to real-world applications, AMNESIA is context- and
flow-insensitive and thus susceptible to false-negatives and false-positives [21].
AutoRand is a dynamic technique and hence not susceptible to the imprecision
introduced by static analysis.

CANDID [9,21] is a dynamic technique for extracting query structure. CAN-
DID automatically transforms the application code to create a parallel, shadow
data set for strings. Where the program assigns to a string variable, CANDID
inserts code to assign to a shadow variable which will be used in the reference
query. If the real variable is assigned a string constant, the shadow variable gets
the same value. If the real variable receives a value from user input, the shadow
variable gets a dummy value. String operations like concatenation are performed
on both data sets in parallel. CANDID’s published overhead is four times slower
than AutoRand, most likely due to its added complexity.

6.5 Static Analysis

Several methods use static analysis to detect SQL injection attack vulnerabil-
ities [24-26]. These systems identify unsanitized data flows from user input to
SQL queries (i.e., they check whether every flow from input to query is subject
to input validation). These techniques can verify that a sanitization technique is
called on unsanitized flows but not whether the sanitization is correct, which can
lead to false negatives. Given that static data-flow analysis must be conservative,
these techniques, inescapably, also suffer from false positives.

56 J. Perkins et al.

7 Conclusion

SQL injection vulnerabilities comprise a prominent, serious, and ongoing source
of security vulnerabilities. By delivering an automated, transparent, and effi-
cient implementation of SQL keyword randomization, AutoRand provides one
solution to this problem. Our results show that, on examples developed by an
independent evaluation team, AutoRand, as designed, successfully blocked all
SQL injection attacks and provided transparent execution for benign inputs, all
with low overhead in large production Java applications.

Acknowledgements. We thank the MITRE Corporation test and evaluation team for
creating an automatic and thorough testing apparatus. We thank Stephen Fitzpatrick
and Eric McCarthy of Kestrel Institute for their contributions to the project. We thank
Michael Gordon of Aarno Labs for comments that greatly improved the manuscript.

References

1. Common Weakness Enumeration (CWE) 89: Improper neutralization of special
elements used in an SQL command (‘SQL injection’). http://cwe.mitre.org

2. SANS Institute, MITRE, et al.: CWE/SANS Top 25 Most Dangerous Software
Errors, September 2011. http://cwe.mitre.org/top25

3. OWASP Foundation: OWASP Top Ten Project, June 2013. https://www.owasp.
org/index.php/Top-10-2013-Top_10

4. Clarke, J.: SQL Injection Attacks and Defenses, 2nd edn. Syngress, Massachusetts
(2012)

5. Code Curmudgeon: SQL injection hall of shame. http://codecurmudgeon.com/wp/
sql-injection-hall-of-shame/. Accessed 24 June 2014

6. Kc, G.S., Keromytis, A.D., Prevelakis, V.: Countering code-injection attacks with
instruction-set randomization. In: CCS 2003, pp. 272-280 (2003)

7. Boyd, S.W., Keromytis, A.D.: SQLrand: preventing SQL injection attacks. In:
Jakobsson, M., Yung, M., Zhou, J. (eds.) ACNS 2004. LNCS, vol. 3089, pp. 292—
302. Springer, Heidelberg (2004)

8. Halfond, W.G.J., Orso, A., Manolios, P.: Using positive tainting and syntax-aware
evaluation to counter SQL injection attacks. In: SIGSOFT 2006/FSE-14 (2006)

9. Bisht, P., Madhusudan, P., Venkatakrishnan, V.N.: Candid: dynamic candidate
evaluations for automatic prevention of SQL injection attacks. ACM Trans. Inf.
Syst. Secur. 13(2), 14:1-14:39 (2010)

10. Chin, E., Wagner, D.: Efficient character-level taint tracking for Java. In: Proceed-
ings of the 2009 ACM Workshop on Secure Web Services (2009)

11. ISO/IEC 9075:2011 - Information technology - Database languages - SQL

12. Alkacon Software: OpenCms, May 2012. http://www.opencms.org

13. Apache Foundation: Apache Tomcat, January 2012. http://tomcat.apache.org/

14. Veracode: SQL injection cheat sheet and tutorial. http://www.veracode.com/
security/sql-injection. Accessed 1 August 2014

15. OWASP: SQL injection prevention cheat sheet. https://www.owasp.org/index.
php/SQL_Injection_Prevention_Cheat_Sheet. Accessed 1 Aug 2014

16. Nguyen-Tuong, A., Guarnieri, S., Greene, D., Shirley, J., Evans, D.: Automatically
hardening web applications using precise tainting (2005)

http://cwe.mitre.org
http://cwe.mitre.org/top25
https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.owasp.org/index.php/Top_10_2013-Top_10
http://codecurmudgeon.com/wp/sql-injection-hall-of-shame/
http://codecurmudgeon.com/wp/sql-injection-hall-of-shame/
http://www.opencms.org
http://tomcat.apache.org/
http://www.veracode.com/security/sql-injection
http://www.veracode.com/security/sql-injection
https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet

AutoRand: Automatic Keyword Randomization to Prevent Injection Attacks 57

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Pietraszek, T., Berghe, C.V.: Defending against injection attacks through context-
sensitive string evaluation (2006)

Son, S., McKinley, K.S., Shmatikov, V.: Diglossia: detecting code injection attacks
with precision and efficiency. In: CCS 2013, pp. 1181-1192 (2013)

Buehrer, G., Weide, B.W., Sivilotti, P.A.G.: Using parse tree validation to prevent
SQL injection attacks. In: SEM 2005 (2005)

Su, Z., Wassermann, G.: The essence of command injection attacks in web appli-
cations. In: POPL 2006, pp. 372-382 (2006)

Bandhakavi, S., Bisht, P., Madhusudan, P., Venkatakrishnan, V.N.: Candid: pre-
venting SQL injection attacks using dynamic candidate evaluations. In: CCS 2007
(2007)

Halfond, W.G.J., Orso, A.: Amnesia: analysis and monitoring for neutralizing SQL-
injection attacks. In: ASE 2005, pp. 174-183 (2005)

Halder, R., Cortesi, A.: Obfuscation-based analysis of SQL injection attacks. In:
ISCC 2010, pp. 931-938 (2010)

Jovanovic, N.; Kruegel, C., Kirda, E.: Pixy: a static analysis tool for detecting web
application vulnerabilities (short paper). In: SP 2006 (2006)

Livshits, V.B., Lam, M.S.: Finding security vulnerabilities in Java applications
with static analysis. In: SSYM 2005, p. 18 (2005)

Fu, X., Lu, X., Peltsverger, B., Chen, S., Qian, K., Tao, L.: A static analysis
framework for detecting SQL injection vulnerabilities. In: COMPSAC 2007 (2007)

AVRAND: A Software-Based Defense Against
Code Reuse Attacks for AVR Embedded Devices

Sergio Pastrana! ™) Juan Tapiador!, Guillermo Suarez-Tangil?,
and Pedro Peris-Lépez!

! Department of Computer Science, University Carlos III de Madrid, Leganés, Spain
{spastran, jestevez,pperis}@inf.uc3m.es
2 Information Security Group, Royal Holloway University of London, Egham, UK
guillermo.suarez-tangil@rhul.ac.uk

Abstract. Code reuse attacks are advanced exploitation techniques that
constitute a serious threat for modern systems. They profit from a con-
trol flow hijacking vulnerability to maliciously execute one or more pieces
of code from the targeted application. ASLR and Control Flow Integrity
are two mechanisms commonly used to deter automated attacks based
on code reuse. Unfortunately, none of these solutions are suitable for
modified Harvard architectures such as AVR microcontrollers. In this
work, we present a code reuse attack against embedded AVR devices
that shows how an adversary can execute arbitrary code reused from the
firmware and other external libraries. We then propose a software-based
defense based on fine-grained random permutations of the code mem-
ory. Our solution is installed in the bootloader section of the embedded
device and thus executes during every device reset. We also propose a
self-obfuscation technique to hinder code-reuse attacks against the boot-
loader.

Keywords: Code reuse attacks - Return Oriented Programming -
AVR - Internet-of-things - Embedded devices + Memory randomization

1 Introduction

The widespread adoption of communicating technologies such as smart or wear-
able devices enables users to interconnect their systems world-widely. The
so-called Internet of Things (IoT) represents the integration of several comput-
ing and communications paradigms that facilitate the interaction between these
devices. In this context, security and privacy play an important role as many
of these devices incorporate sensors that could leak highly sensitive information
(e.g., location, behavioral patterns, and audio and video of the device’ surround-
ings). Moreover, embedded devices are frequently connected to the Internet, so
they are valuable targets for malicious activities, such as botnets or spammers.

One common architecture for embedded devices is AVR!, which is a modified
Harvard architecture that physically separates the flash memory from the SRAM

! http://www.atmel.com/products/microcontrollers /avr/.

© Springer International Publishing Switzerland 2016
J. Caballero et al. (Eds.): DIMVA 2016, LNCS 9721, pp. 58-77, 2016.
DOI: 10.1007/978-3-319-40667-1_4

http://www.atmel.com/products/microcontrollers/avr/

A Software-Based Defense Against Code Reuse Attacks for AVR Devices 59

memory. While the former contains the executable binary, the latter stores the
program data, heap, and stack. Flash memory can only be re-programmed from a
special section called bootloader, and applications cannot be modified at runtime
without flashing the entire memory. In addition, the number of times a memory
can be flashed (namely cycles) is limited.

Memory corruption vulnerabilities have been widely explored as a strategy
to hijack the execution control flow for a huge variety of systems, including
embedded and mobile devices [6,12,15]. In the past, once the adversary gained
control of the execution, the immediate next step was to directly jump into its
own malicious payload, which was already injected in the exploit [8]. However,
Data Execution Prevention (DEP) techniques turn code injection useless. AVR—
together with other Harvard architectures—incorporate a type of hardware based
DEP defense. This avoids the flash memory (where the executable code resides)
being written from anywhere else except from the bootloader section, which also
resides in the flash memory. Thus, the only means to exploit AVR devices is by
reusing existing software from the flash memory [12,15].

Related Work. Code reuse attacks were first implemented by reusing different
functions imported from various libraries (such as libc [27]). Well-known coun-
termeasures such as Address Space Layout Randomization (ASLR) [5] modify
the memory layout of the function libraries during the loading process to effec-
tively hinder these return-to-lib attacks. However, modern code reuse attacks can
arbitrarily perform certain operations to carefully chain different pieces of code
(called gadgets) based on the Return Oriented Programming (ROP) paradigm
[17,20]. In fact, code reuse attack are still feasible in ASLR-based defenses using
ROP due to memory leakage vulnerabilities [24]. For example, the JIT-ROP
attack in [23] disassembles pages obtained from the leaked address to build a
gadget chain at runtime. The exploitation of memory leakages assumes that the
adversary can use large payloads, and that she can exploit the vulnerability sev-
eral times. However, these assumptions are not generally valid for AVR devices,
and the threat model is different from other less constrained architectures such
as ARM or x86.

Countermeasures against code reuse attacks have been widely explored
recently [4,6,7,9,10,12,15,18,22]. Current defenses can be classified as follows:

1. Memory randomization [4,6,9,25] obfuscates the layout of the program
binary. To overcome memory leakages, this technique relies on certain
Execute-only-Memory (XoM) areas, which can neither be read nor written.
These areas can be used to store trampolines to real, randomized areas of
code. Many of these solutions rely on hardware-specific properties, such as
Intel Extended Tables [9,25], which obviously are not applicable to AVR.
A recent work by Braden et al. [6] performs a software-based XoM for ARM
embedded devices. However, the authors also rely on a specific hardware com-
ponent, namely the link register used in ARM, to prevent address disclosure.

2. Control Flow Integrity (CFI), which typically determines which are the valid
targets for each control flow statement (e.g., jumps or returns), and prevents
non-valid flows. CFI usually incurs an expensive overhead [18], which is not
suitable for resource-constrained systems such as AVR.

60 S. Pastrana et al.

Most of the attacks and defenses so far target either x86 or ARM architectures.
In these cases, the adversarial model and the defense capabilities are radically
different from those applicable to AVR. Current approaches aiming at hinder-
ing code reuse attacks in Harvard-based architectures rely on adding additional
hardware [15] or modifying the existing one [13]. Such countermeasures introduce
additional costs to these devices that cannot be overlooked. This is especially
critical in scenarios where devices are expected to be inexpensive, as it usually
happens with many IoT deployments. Furthermore, there are settings where the
hardware is already given “as it is”, such us in industrial environments [21],
vehicular systems, and home automation projects [26], to name a few.

Contribution. In this work, we demonstrate code reuse attacks against AVR
devices and provide a software-based defense named AVRAND. The novelty of
our work lies in providing an inexpensive solution targeting endpoint users and
distributions rather than manufacturers, vendors, or hardware architects. We
argue that the capabilities of an attacker are much more limited when dealing
with hardware constrained devices such as an Arduino. Based on this, we balance
the trade-off between its capabilities and the level of protection implemented to
provide a practical and robust countermeasure. To the best of our knowledge,
this is the first work looking at this problem from this viewpoint that proposes
a software-based defense for AVR-based devices. Our randomization engine is
encoded in the bootloader section of the device and, thus, it is executed after
every reboot. Moreover, since the bootloader itself is a potential target for code
reuse attacks, AVRAND applies an obfuscation technique using an XOR-based
self encryption function. To facilitate reproducibility of our results and foster
research in AVR security, we provide functional prototypes of the attack and
the proposed defense for an Arduino Yun device (Sect. 5), which is an emerging
platform widely used in the IoT arena.

2 Background

In this section, we provide a brief background on the target systems studied in
this work: the AVR architecture and the Arduino Yun, which is the platform
used during our experimentation.

2.1 The AVR Architecture

AVR is a modified Harvard architecture implemented by Atmel in 1996. AVR is
widely deployed in embedded devices due to its simplicity and low cost, and it
is present in a variety of applications, including automotive systems [3], the toy
industry, and home automation systems [26].

AVR devices store code and data in memories that are physically separated,
i.e., the flash memory and the data or SRAM memory (see Fig.1la). To allow
self-programming, two special instructions are provided to load data from flash
to SRAM memory (Load Program Memory, LPM), and to store data in the flash
memory (Store Program Memory, SPM). The latter can only be invoked from

A Software-Based Defense Against Code Reuse Attacks for AVR Devices 61

AVR Device

Data memory Flash memory

Interrupt vectors

1/0 registers

Application code
Global data

Heap l Bootloader

Unused

Stack 4

(a) Schematic view of AVR memories. (b) Arduino Yun board.

Fig.1. AVR and Arduino Yun boards.

a special memory region called the bootloader, and thus all the reprogramming
code must reside in this region. The flash memory in AVR is structured in pages,
which are addressed different than the SRAM. Actually, the program counter
(PC) does not hold the actual address, but a page-based index. Specifically, the
most significant bits of the PC are mapped to the page number, while the less
significant bits are mapped to the offset within the page. As shown throughout
this paper, AVRAND uses this property to manage the memory randomization
efficiently. AVR has 3 special registers, called X, Y and Z, that are used for
direct and indirect addressing and have added properties such as automatic
increment (e.g., Y++) or fixed displacement (e.g., Y+k). These special registers
are mapped with 8-bit general purpose registers (e.g., Y is the concatenation of
r28 and r29).

The SRAM contains the program data, the heap and the stack, which are
unique as AVR runs a single process at a time. A property of AVR is that
the stack starts at the highest address and grows towards lower addresses (i.e., a
PUSH instruction stores a new byte in the stack and decreases the stack pointer),
while the heap grows towards higher addresses and can eventually collide with
the stack. Additionally, the data memory also contains I/O registers such as
the status register or the stack pointer. This implies that the stack pointer is
directly mapped in program memory and can be read and write by load and
store instructions, respectively.

Code running in embedded AVR devices may contain a huge amount of
firmware and library functions required to integrate and operate different sen-
sors, such as thermometers, motion sensors, cameras, etc. Since AVR does not
provide dynamic loading of libraries, integrated libraries are statically linked at
compilation time. AVR binaries follow the Hexadecimal Object File (HEX) for-
mat [16]. These binaries must be uploaded (flashed) to program memory using
either an In-System Programming interface (ISP) or by communicating with the
bootloader using a universal asynchronous receiver/transmitter (UART) [2].

62 S. Pastrana et al.

2.2 Arduino Yun

Arduino? is an open-source platform originally proposed to be used in electron-
ics and microcontroller projects. With the increasing interest in the IoT, the
Arduino Yun has been designed specifically to run IoT applications, by com-
bining both the low-level electronics originally present in other Arduino devices
with higher level architectures running a Linux based operating system. Specifi-
cally, the Arduino Yun contains a board based on two chips (see Fig. 1b). One is
the Atmel ATmega32u4 (AVR MCU) and the other is an Atheros AR9331. The
Atheros processor holds a Linux distribution based on OpenWrt and has built-in
Ethernet and WiFi support.

The AVR chip and the OpenWrt are connected through a Bridge, i.e., a logical
component programmed in the OpenWrt which communicates with the AVR chip
using a serial port. An Arduino Bridge library provides the required functionality
to communicate applications running in the AVR chip with the OpenWrt, includ-
ing a Process object that allows to run shell commands in the OpenWrt shell or
a HitpClientd that allows to connect the AVR to internet. As shown in Sect. 3.3,
the proposed exploit uses functions from the Bridge library to compromise the
OpenWrt shell.

3 Code Reuse Attacks in AVR

In this section, we demonstrate code reuse attacks in AVR binaries using ROP
and other similar exploiting techniques [27]. We first present the adversarial
model assumed and then provide a general description of the attack. Finally, we
describe the implementation of a prototype for Arduino Yun devices.

3.1 Assumptions and Adversarial Model
In this work, we consider the following assumptions and adversarial settings:

— The targeted embedded device is based on the AVR architecture and it is not
tamper-proof. Thus, if physically accessible, the adversary can dump all the
contents from the data and code memories at any time.

— The adversary cannot inject arbitrarily large payloads. We elaborate more on
this limitation in Sect. 3.2. However, an adversary could inject relatively large
payloads in memory by using software resets and multiple runs.

— The adversary could gain the control of the program flow by remotely exploit-
ing a memory corruption vulnerability on the device, for example a stack or
heap overflow.

— The program includes library functions that are useful for the adversary. For
example, we assume that the program includes the Bridge lib that allows
communication between the AVR and OpenWrt chips in Arduino Yun.

2 https://www.arduino.cc.

https://www.arduino.cc

A Software-Based Defense Against Code Reuse Attacks for AVR Devices 63

3.2 Attack Overview

In this section we present a code reuse attack for AVR devices. Due to the limited
capacity of the AVR memory, the adversary is not able to use large exploiting
payloads, and thus she has to inject additional data into the SRAM. This is
also used when a function library function is called by reference, i.e., when the
arguments are passed as pointers to data memory. Contrarily to other architec-
tures, function arguments in AVR are passed via registers whenever possible,
and through the stack only when the arguments are larger than the length of
the registers. An adversary may also be able to change any data from the SRAM
memory. For example, Habibi et al. [15] proposed an attack that modifies the
registers of an Unmaned Aerial Vehicle (UAV) gyroscope to control its flight.

Injecting Data into the SRAM. Injecting data into the SRAM is limited
by the amount of memory available for the exploit. The main idea is to use
a set of gadgets that, when chained together, could potentially store data into
non-volatile areas of the SRAM memory [12,15]. We call this chain of gadgets
Store_data. Ideally, the fewer the number of gadgets used the better, as each gad-
get may require to include its pointer in the exploit. During our experimentation,
we have found a pair of gadgets that allow an adversary to build a payload that
loads several values in memory recursively. We provide more details of these
gadgets and how they are used in our prototype in Sect. 3.3.

Since the stack is located at the highest address of the SRAM memory, the
space available to inject a payload after overflowing the stack is significantly
limited. When a buffer is locally declared in a function, the return address is
stored at a higher position of the memory allocated in the stack. This position
may be close to the end of the SRAM address space (see Fig.1la). Thus, the
adversary is not able to send large attack payloads as it is usually done in ROP
attacks against conventional architectures [23]. To partially overcome this issue
and provide more space, the stack pointer can be moved to the beginning of
the buffer as proposed in [15]. In this way, the buffer itself can be fully used
to allocate the payload, and the size of the payload injected by the adversary
intrinsically depends on the available buffer size. We call the gadgets that allow
to move the stack Stack_-mowve.

Given that the amount of injected data is limited, exploiting the same vul-
nerability multiple times could place the attacker in an advantageous position.
However, exploiting a buffer overflow usually leaves the memory in a non-
deterministic state and the attacker is usually forced to reset the device each
time to maintain the device functional and/or resume its normal operation. To
this end, existing works proposed to repair the stack right after the attack suc-
ceeds [14,15]. While this is useful to modify a few memory data bytes (such as
the UAV gyroscope), repairing the stack does not provide the adversary with
extra data space since the payload is always limited by the memory size—in
fact, using the gadgets that repair the stack requires additional space in the
payload. In this regard, Francillon and Castellucia [12] proposed to perform a
software reset by directly jumping to the address 020000 (i.e., the reset vector).

64 S. Pastrana et al.

However, this approach is not suitable for modern AVR chips since it does not
guarantee that the I/O registers are restored to their initial state®. In this work,
we propose the use of a gadget, namely Reset_chip, that uses a watchdog reset,
which is one of the reset sources used in AVR. More precisely, the gadget first
establishes a watchdog timer and then jumps to an infinite loop. When the timer
expires, the watchdog causes a software reset.

Figure 2 shows a schematic view of a generic data injection attack. When
the vulnerable function is called, the return address is pushed on the stack. The
attack starts by overwriting this address with the address of the Stack-move
gadget (Step 1), which pops the new address and stores it in the memory address
corresponding to the stack pointer (SP). From there on, the buffer constitutes
the new stack (Step 2). Then, the address of the next gadget is popped from
the stack, so the first bytes of the buffer must point to the Store_data gadget
(Step 3) that stores the data at a given address (Step 4). As showed in Sect. 3.3,
both the stored data and the SRAM memory addresses must be included in
the payload. Finally, when the Store_data gadget returns (Step 5), the program
jumps to the Reset_chip gadget (Step 6), which performs a clean software reset
of the AVR chip. The adversary, while needed, may send a new payload to
exploit the vulnerability and store additional data in consecutive addresses. In
every reboot, the .data and .bss sections (i.e., data and heap) of the SRAM
memory are cleared and reloaded, so if the adversary stores data in a memory
area different from these (e.g., the region tagged as unused in Fig. 1a), then such
data will persist across reboots.

Calling Library Functions. Once the required data are stored in memory,
the adversary is ready to use library functions. The idea is to perform a similar
approach to classical “return-to-lib” attacks [27]. Arguments are passed through
registers, which can be easily loaded by using gadgets that pop values from the
stack and stores them in registers. During our experimentation we have observed
that these gadgets are frequent in many AVR binaries.

The adversary is now ready to call the library function using a chain of gad-
gets that performs the desired operation. First, she must load the arguments
and prepare the required data (e.g., pointers to objects) using the data injec-
tion scheme explained above. Next, the program flow must jump to the desired
function itself.

3.3 Attack Implementation in Arduino Yun

In this section, we describe and implement an attack that targets Arduino Yun
devices, allowing an adversary to execute remote commands in the OpenWrt
environment of these devices (i.e., bypassing the Bridge between the two chip-
sets). The attack comprises two phases: injection and invocation. First, it starts
by injecting the command into SRAM memory as a String object, and then

3 http://www.atmel.com/webdoc/AVRLibcReferenceManual /FAQ_1faq softreset.
html.

http://www.atmel.com/webdoc/AVRLibcReferenceManual/FAQ_1faq_softreset.html
http://www.atmel.com/webdoc/AVRLibcReferenceManual/FAQ_1faq_softreset.html

A Software-Based Defense Against Code Reuse Attacks for AVR Devices 65

DATA MEMORY PROGRAM MEMORY

0x0000 Reg‘\sters Interrupt vectors
0x0020 1/0 Space
0x0100 data

Application Flash section
text

0x0100 + size(.data) .bss

0x0100 size(.bss+.data) Unused
HEAP 4

/v‘ Store_data

ADDRESS = DATA
Reset_chip
5
NEW SP =) &Store_data
ADDRESS
2
Buffer and DATA
callee Stack_move
saved &Reset_chip
registers
8 Padding (if needed) 1
Bootloader flash section
SP (just before return) = &Stack move
‘\ NEW SP
STACK OXOAFF

Fig. 2. Scheme of the data injection ROP attack.

forces the execution of the function runShellCommand(String* c¢md) from the
Bridge Library? by passing as argument the pointer to the injected object.

We assume that the adversary is able to exploit a memory corruption vul-
nerability and hijack the control flow. In this work, we have exploited a function
(implemented ad-hoc for the prototype) that receives data from the serial port
and stores it into a buffer, without checking its bounds. By sending crafted data,
we are able to overwrite the return address of the function and take control of
the program flow. We next explain the implementation details of the attack.

Command Injection into the SRAM. Tablela shows a pair of gadgets
that chained together move the stack pointer (SP) to a given address. The first
gadget loads the new SP to registers r28 and r29, while the second gadget stores
the SP in 0x3e and 0x3f, which are actually the positions mapping the SP.
This is possible because AVR uses fixed positions of data memory to store 1/0
registers, including the SP. Gadgets used to move the stack are very frequent in
AVR binaries, since they are used to save and restore the stack within the called
functions.

To store the data in SRAM, we have found an optimal pair of gadgets (see
Table 1b) that are included with the String library (imported by default in all
Arduino programs). As these gadgets are consecutive in the code, they can be
used recursively. In the first interaction, the gadget Load_data at address 0x2c00
loads data in registers r16 and r17, and the destination address in registers r28 an
r29. As explained in Sect. 2.1, registers r28 and r29 are mapped to the register Y
used for direct addressing. Here, the gadget Store_data showed in Table 1b uses

4 https://www.arduino.cc/en/Reference/ YunProcessConstructor.

https://www.arduino.cc/en/Reference/YunProcessConstructor

66 S. Pastrana et al.

Table 1. Gadgets used to move the stack to a desired position (a) and to inject data
in SRAM (b).

[Address[Instructions [Description |

(b) Store_data
0x2bf6 [std Y+3, r17|Stores the values

[Addrcss[lnstructions [Dcscription]
(a) Stack_mov_1

Ox0c84 pop fgg Ltf;is tfi‘;tr";vzn std Y42, r16|from r17 and rl8 in
p tp s " ,tp . 128 and r29 1di r24, 0x01 |addresses Y+3 and
re rogisers ¢ ! rjmp .+2 Y+4 (mapped to r29
_ (a) Stack-mov.2 and r28) and jumps

0x39e4 11114 r0, O0x3f Stores the new to 0x2c00.
fﬂit 0x3e. rog |address in the SRAM (b) Load_data
out 0x3f.’ r0 memory addresses 0x2c00 |pop r29 Loads the new values

; mapping the stack pop r28 . N ‘ i
out 0x3d, r28 pointer (i.e. Ox3e and pop r17 at r17 and r16 and
movw r28, r26 new addresses at r28
0x3f) pop rl6

ret and r29

ret

the fixed displacement of the Y register to store the values from r16 and r17 in
addresses Y42 and Y+3 respectively. Because the end of the gadget Store_data
directly jumps to the gadget Load_data, they can be used repetitively, as shown
in Fig. 3.

To perform a software reset of the AVR chip, we use one of the reset sources
provided by the AVR architecture, the watchdog reset, which establishes a time-
out and resets the chip when it expires. Table 2a shows the gadgets used. A first
gadget enables the watchdog and sets a timeout to 120 ms. This gadget is present
in all Arduino programs since it belongs to one of its core libraries, CDC (the
USB Connected Device Classes). The second gadget performs an infinite loop
and is intended to wait until the timer expires. This gadget, which consists of
just one instruction, is the last instruction of every Arduino program and repre-
sents the “stop-program” instruction that maintains the device in an idle state.
By chaining these two gadgets, the chip automatically resets and the normal
operation of the Arduino device is restored. Then, the adversary may send a
new exploit to store more data, depending on what she wants to inject.

Command Invocation. In the previous section we have described how an
adversary can store any data in the SRAM. Now, we show how she could use
such data to execute commands in the OpenWrt of an Arduino Yun. Using the
data injection process, the adversary writes in memory the raw sequence of
characters of the command (e.g., “curl”, as shown in Fig.2). Then, a String
object pointing to such sequence must be created. A String object has three
components. First, a pointer to the sequence of characters (2 bytes); second, the
length of the sequence (2 bytes); and, finally, its capacity (2 bytes).

To execute the inserted command, we call the function runShellCommand
of the Bridge Library. This function takes as argument the address of the
String object that represents the command, which is provided in registers.
Load_arguments gadget, showed in Table2b performs such loading. In many
AVR binaries it is frequent to find pop instructions before a return, and thus

A Software-Based Defense Against Code Reuse Attacks for AVR Devices 67

L0AD-DATAK } Initial call to “Load_data”
LOAD_DATA_L (PC=1600)
Address H : } Loads ‘address’ (0x05ee) in Y
Address_L e
Data [2] 5 Loads first 2 bytes of data (‘c’
and ‘v’) inr15 and r16
Data [1]

First call to “Store_data”.
¢ Stores ‘c’in ‘address’ and ‘v’ in
‘address+1’
* Jumps to “Load_data”

STORE_DATA_H

STORE_DATA_L

(Address+2) H Loads ‘address+2’ (0x05f0) in Y

Loads bytes 3 and 4 (‘" and T)
of the datainr15 and r16

Second call to “Store_data”.
e Stores T’ in ‘address+2’and ‘I in
‘address+3’
¢ Jumps to “Load_data”

it

(Address+2)_L
Data [4]
Data [3]

STORE_DATA_H

STORE_DATA_L

Padding
Padding Padding required for the last

) execution of “Load_data”, since
Padding no more data is being stored
Padding

—> Calls the next gadget (e.g. “reset_chip”)

NEXT_GADGET

Fig.3. Schematic view of a payload that inserts the command “curl”
(0x63,0x75,0x72,0x6¢) into a the address 0xef00 of SRAM memory using the gadgets
from Table 1b.

it can be assumed that this gadget can be easily obtained. Finally, after the
Load_arguments gadget is executed, the program should directly jump to the
runShellCommand function which uses the Bridge between the two chips to
execute the desired command in the OpenWrt.

4 Design and Overview of AVRAND

In order to defeat code reuse attacks, we propose AVRAND, a solution that
randomizes the layout of the flash memory where the binary code resides and
obfuscates the randomization engine. Since the core of AVRAND resides in the
bootloader of the flash memory, it re-randomizes the complete program memory
after every software reset, thus preventing attacks that exploit the vulnerability
several times (e.g., brute force attacks) and requiring adversaries to use one-shot
clean attacks (i.e., attacks that do not rely on software resets). Moreover, as we
discuss in Sect.6, AVRAND could be configured to defeat other exploitation
techniques that do not require to reset the device.

AVRAND is composed by two main modules: preprocessing and runtime, as
depicted in Fig. 4. First, the preprocessing module modifies the HEX file that is
being uploaded into the AVR device so that it can be randomized. This module

68 S. Pastrana et al.

Table 2. Gadgets used to reset the microcontroller (a) and to load the arguments to
the function runShellCommand (b).

[Address[lnstructions [Description l [Address[Instructions[Description]
. a) Reset_chip_1 - a) Reset_chip_2
0x1c56 [I1di r18, 0x0OB |Sets the timeout 0x3a0a |rjmp -2 Relative jump to itself

1di r24, 0x18 [to 120 ms, disables
1di r25, 0x00 |interrupts and enables
in r0, 0x3f the watchdog

(i.e. infinitive loop)

b) Load_arguments
0x2b52 |pop r25 Loads the arguments

ziiir pop r24 into registers. Note that

sts 0x0060, r24 pop r23 some useless instructions

out 0x3f, r0 pop r22 are omitted. Upon return

sts 0x0060, r18 the program should jump

ret ret to runShellCommand
AVR Device

Initial Secret key
Flash memory

Application code

o =
/" Compiled runtime module (HEX) l

F3DF ‘ >/ X0R |
107E1000FECFEBO123E0FB0120935700E89507B666 /
107E200000FCFDCF20E030E001E0DAOIA20FB31F3B

=

Modifed app code (HEX)
100000000C944E010C9476010C9476010C947601BC

100010000C9476010C9476010C9476010C94760184
:100020000C9476010C9476010C94200B0CI4EC0O942

Bootloader

Data memory

Original app code (HEX) Public metadata
100000000C5450010C9488010C9485010C94880184 Num.page: | Type|Offset | Dest page A >
100010000C9488010C9488010C9488010C9488013C N s | o
100020000C9488010C9488010C94520D0CI4AC0B28 um. page: || Type|Offsef est_page

v
Private metadata
> xor —> EEPROM

Position_pagel | Position_page2 | Position_page3

Fig. 4. AVRAND overview.

is executed once in an external computer, before uploading the binary to the
device. Second, the runtime module is installed in the bootloader section of the
device to perform the actual randomization of the flash memory after each device
reset. Moreover, this module uses an obfuscation technique to prevent code reuse
attacks on the bootloader, by applying XOR-based encryption.

Preprocessing Module. This module is executed once and prepares the code
so that it can be randomized. First, it reads the original HEX file and gets
a list of all the control-flow statements, including both absolute and relative
pointers within the code (e.g., jumps and calls, conditional branches, etc.) and
also indirect pointers that may be in the data section (e.g., C++ vtables). Using
relative offsets is common in AVR binaries due to code-size optimization, but
this is not compatible with a randomization approach since relative positions
change from one layout to another. Thus, during the preprocessing module all
the relative operations are replaced by their absolute versions (e.g., RIMP are
substituted by JMP and RCALL by CALL instructions).

A Software-Based Defense Against Code Reuse Attacks for AVR Devices 69

Since the flash memory in AVR is structured in pages, AVRAND performs
randomization at a paged-grained level. However, in order to preserve the seman-
tics of the entire code, pages are linked using JMP instructions. Thus, all control-
flow statements in the code point to absolute positions and can be re-calculated
at runtime during each randomization. Accordingly, the preprocessing mod-
ule outputs a list of public metadata (i.e., we assume that an adversary may
know this information) used to update the offsets during the randomization (see
Sect. 5.1 for details). Furthermore, a list of initial page positions is also created
to indicate the offsets of each page in the binary, which must be kept secret from
adversaries and thus it is named private metadata.

The modified binary code is then flashed onto the flash memory and the
public metadata in the SRAM, while the private metadata is encrypted with the
XOR key and flashed in a non-readable memory area of the embedded device.
For example, many AVR devices are equipped with an external EEPROM mem-
ory that is not directly addressable without special functions in the program
binary, so it can be used to store the private metadata. Finally, the initial pri-
vate key is stored in a fixed position of the flash memory. Note that during each
randomization a new key is generated which overwrites the previous one.

Runtime Module. This module is installed in the bootloader section of the
device and it performs the actual randomization of the memory layout each time
the device is reset. First, it reads the current page positions (i.e., the offset of each
page) from the private metadata to get the actual memory layout of the device,
and decrypts it using the secret key. Second, it generates a map of random
swaps indicating couples of pages randomly paired that must be exchanged.
This map is used to update the current page positions in the private metadata.
Furthermore, the offsets of every control-flow statement in the program memory
are re-calculated and updated by using the new positions and looking at the
public metadata. Finally, the entire memory is re-flashed, swapping all the pages
that purely contain code. To do this, both pages are temporary stored in the
SRAM and then they are re-written into each others’ offsets of the flash memory.
Note that a complete random permutation of the memory layout would require
to store an entire copy of the binary in SRAM, which demands much more
memory than keeping only two pages at a time in memory.

The entire flash memory is structured in pages, but certain pages cannot be
shuffled during the randomization. These are pages that contain data (which
are either before or after the code, never interleaved) and the first two pages
which contains the interrupt vectors. Pages containing data remain in constant
memory offsets. However, two pages may contain both data and code (i.e., one
page before the program and one page after the program), and code in these
pages may be used in a code reuse attack. In the worst case, each of these two
pages will have a single byte of data and code in the bottom part of the section
(i.e., page_size — 1). Thus, the maximum size of code that remains constant
during randomization is 2 x (page_size — 1) (i.e., 254 bytes in the Atmega32u4
chip).

70 S. Pastrana et al.

Each page contains 128 bytes of code, i.e., approximately 42 instructions.
Thus, gaining knowledge of a single page does not position the attacker in a
privileged situation since she may not find enough gadgets to perform a code-
reuse attack. Moreover, the probability of guessing a page in AVRAND is 1/N,,
where N, is the number of swapped pages (which depends on the size of the
program memory, as discussed below). This probability outperforms state-of-the-
art solutions like Isomeron [10], which has a probability of 0.5 of being discovered
at each gadget.

As stated before, the runtime module is compiled and uploaded into the
bootloader section of the embedded system. Accordingly, this is the first piece
of code being executed after every device reboot, which prevents code reuse
attacks using software resets and reducing the chances for brute force attacks
aiming to discover the memory layout. However, the bootloader itself could be
the target of code reuse attacks (in our experiments, the bootloader contains
around 4 KB of code) and thus it should be protected as well. AVRAND solves
it by applying a simple obfuscation technique using an XOR based encryption. As
such, most of the bootloader is stored encrypted. The runtime module uses a non-
encrypted routine that is executed at the beginning to decrypt the bootloader
and then jumps to its main function. Once the randomization is finished, and
before jumping to the application section, a new random key is generated and
used to re-encrypt the bootloader and the private data from the EEPROM.

5 Implementation

We have developed a freely available® prototype of AVRAND for the Atmel
Atmega32u4 chip included in the Arduino Yun platform. In this section, we
discuss its implementation details.

5.1 Preprocessing Module

We have implemented the preprocessing module in Python. It takes as input
the HEX file of the original application and generates a modified HEX in such a
way that it can be randomized at runtime by the bootloader. The initial list of
control-flow statements is obtained from the assembly code, which is generated
from the HEX file using the open source tools avr-objcopy and avr-objdump [19].
Control-flow statements may be one of the following: relative or absolute jumps
(RIMP/JMP), relative or absolute calls (RCALL/CALL), conditional branches
(BR), pointers to function prologues and epilogues (used by some functions to
save registers in the stack), pointers to global variable constructors (CTORS) and
C++ specific virtual pointers (vpointers). Also, a list of indivisible instruction
sequences is obtained, in order to avoid placing jumps between them during the
page linking. Examples of such non-breakable instructions are all the two-word
instructions, or the CPSE instruction that compare two registers and jumps to
PC+2 or PC+3 depending on the result.

5 http://www.seg.inf.uc3m.es/~spastran/avrand /.

http://www.seg.inf.uc3m.es/~spastran/avrand/

A Software-Based Defense Against Code Reuse Attacks for AVR Devices 71

270: d9 £7 brne .-10; 0x268 ||270: 09 £4 brne .+2 ; 0x274

272: 24 €0 1di r18, 0x04 ; 4| 272: 02 cO rimp .+4 ; 0x278
274: Oc 94 34 01 jmp 0x268 ; 0x268
278: 24 €0 1di r18, 0x04 ; 4

Fig. 5. Transformation of a relative conditional branch (left) to its absolute version
(right).

Then, each instruction using relative offsets (i.e. RIMP and RCALL) is sub-
stituted by its corresponding absolute version (i.e., JMP and CALL). Chang-
ing relative by absolute versions adds 2 extra bytes. In case of conditional
branches, we follow an approach similar to Oxymoron [4] to transform them
into an absolute version, by adding a RJMP and a JMP instruction. This trans-
formation is shown in Fig.5. The whole BR/RJMP/JMP block is considered as
an indivisible sequence in order to maintain its semantics. As it can be observed,
each conditional branch modified adds 6 extra bytes to the binary code. Every
time that the module inserts new code bytes, the offsets of the entire program
are updated accordingly.

The next step is to link the pages using absolute JMP instructions, which
are inserted in the bottom of each page, i.e., the last instruction of every page
is a JMP to the first instruction of the next page. In this way, whenever a page
changes its position during randomization, these linking pointers can be updated
to point to the new address where the next page begins. The insertion of a JMP
may occur between an indivisible sequence of instructions. If such situation is
detected, the entire sequence is moved forward, to the beginning of the next
page, by adding padding (i.e., NOP instructions).

Finally, the new HEX file is generated along with the public metadata and
the private metadata. The public metadata provides the list of structures rep-
resenting each control-flow statement. Concretely, each structure indicates the
page where the statement is, the offset within the page, the type (i.e., CALL or
JMP, prologue/epilogue function pointer, C+-+ vpointer or pointer to a global
variable initialization routine), and the page pointed. Note that the offset within
the page does not change in the randomization, and thus it is not necessary to
store it since it can be obtained from the PC address, as explained in Sect. 2.1.

The binary code (HEX) and the public metadata are uploaded to the flash
and data memories respectively, while the private metadata is encrypted (using
an XOR-based encryption and a private key of 128 bytes) and uploaded to
a memory region that is not directly observable by an adversary. During our
experiments, we used the external EEPROM present in the Atmega32u4 chip of
the Arduino Yun. In order to upload these contents to the device, we use the
open source tool avrdude [11].

5.2 Runtime Module

The main purpose of the runtime module is to perform the randomization of
the entire application after every device reset. Thus, it must be stored in the

72 S. Pastrana et al.

booloader section of the flash memory. However, the bootloader contains critical
functions from the standard library, such as those for reading and writing the
private metadata. In a scenario where the adversary can reuse any code from
the flash section, this private data would be accessible by just jumping to the
proper function in the bootloader.

To protect the bootloader, we introduce a self-encryption and self-decryption
routines that obfuscate its contents. Thus, these are the only two routines that
could be potentially used in code reuse attacks. In our prototype they both
occupy less than 2 pages (i.e., 256 bytes), which prevents the use of a practical
ROP attack against our system. Moreover, these non-encrypted pages can also
be shuffled by the randomization engine to prevent attackers from pinpointing
them. Indeed, as the adversary is forced to perform the attack in one-shot, then
if she is able to decrypt the bootloader, when trying to use it or read the private
metadata, the device may be reset, which modify the private metadata.

The runtime module can be divided into 3 main parts: an initialization rou-
tine, the bootloader itself, and the encryption/decryption routine. The first one
holds the Interrupt vectors and some required initialization instructions, and
jumps to the decryption routine. The second part, which is encrypted, contains
the main functionality to setup the hardware and randomize the binary code.
Finally, the last part encrypts again the bootloader and the private data, and
jumps to the beginning of the application code.

The decryption process reads the key (stored at a fixed position of the flash
memory). This key has the same length than the page size (i.e., 128 bytes). Then,
it reads the encrypted bootloader page by page, performing the XOR to obtain
the clear-text of the code, and rewrites the output in the same position. Then,
it jumps to the beginning of the decrypted bootloader.

The bootloader starts by setting up the required hardware (e.g., to initialize
the USB or the clock of the device). It then performs the actual randomization
of the application binary. To do so, it first reads the private metadata and loads
it into a temporary buffer of the SRAM memory (which is deleted once finished).
Second, it creates a random list of pairs of pages (i.e., the random swap), that
must be exchanged, and updates the private data by exchanging the page posi-
tions. We use the rand function implementation from libc, which uses a LFSR
based random number generator. However, in order to get the random seed, we
rely on a timing jitter produced after the variance introduced between the inter-
nal timer of the AVR chip and the oscillator used by the watchdog timer [1].
In this way, AVRAND produces truly random numbers in each execution of the
randomization engine.

Once the random swap map is obtained, the bootloader processes one by one
the pages from the bottom of the application section. Each page is temporarily
stored in data memory, its control-flow statements are modified, and then it
is stored again in the position indicated by the private metadata. Control-flow
statements are updated by looking at the public metadata (i.e., where the pointer
is, its type, and the page being pointed at) and the private metadata (i.e., the
new position of the pointed page). In order to swap two pages, they are both

A Software-Based Defense Against Code Reuse Attacks for AVR Devices 73

stored in SRAM memory and then re-written in each other’s previous position of
the flash memory. Thus, the size of SRAM required during the randomization is
page_sizex2. Finally, the new page positions (i.e. private metadata) is encrypted
again, and written to the EEPROM memory. In order to prevent brute force
attacks against the cryptosystem, the randomization engine generates a new
XOR key each time. Figure 6 shows a schematic view of the memory layout of
the application section before and after randomization.

Finally, when the randomization process is finished, the last step is to obfus-
cate the bootloader again using the XOR-based encryption routine and the newly
generated key.

FLASH Memory 0%00

FLASH Memory
0x0000'

Absolute 0%0000
pointer to Page 87
page 125 (at oxo0s0
O0x3E80) + Page 150
offset 48

Page 1

0%0080

Page 2
0x0100

Page 3 Updated
pointer to
page 125 (at
0x1E00) +
offset 48

0x007c: jmp 0x0080 e
Application 0x1E00 ="
code

s
Page 125
Application

code |

0x3E80

o
Page 125 Link to page 2
(at 0x0080) o
Page 1
b

0x2bfe: jup 0x4BOO

1 >
L : Updated link to
page 2 (at 0x4B00)

0x4B00

H
Unused FFFFFFFF .. page2 |-

0x7000

Bootloader
Section Bootloader

EEPROM Memory
Pagel Page2 Page3 Page 125 Page 150

0x0000 0x0080

0x0100 | ... | 0x3E80 ‘ 0x4B00

(a)

EEPROM Memory
Pagel Page2 Page3 Page 125 Page 150

0x2B80 | 0x4B0O 00100 | ... | Ox1EQ0 | .. | Ox0080

(b)

Fig. 6. Flash memory layout before (a) and after (b) randomization.

6 Discussion

AVRAND hampers code reuse attack by randomizing the application layout
from the bootloader and by obfuscating the bootloader itself. We next provide
a discussion of the suitability of our approach and the introduced overhead.

6.1 Suitability of AVRAND

AVRAND is designed specifically for AVR architectures. However, it could also
be applied to other systems using a modified Harvard-based architecture, given
that it is provided with a bootloader section that reprograms the flash memory.
While the core idea of AVRAND (i.e., randomization of the memory layout) has
been widely studied for other architectures such as x86 [5] or ARM [6], few works
have addressed the problem in AVR. Moreover, our focus is on using a lightweight
cryptographic routine, since AVR is designed for resource-constrained embedded

74 S. Pastrana et al.

devices. In our prototype we have used an XOR-based encryption and a lin-
ear PRNG, which fit well in the space given for the bootloader section (4 KB).
Nevertheless, our architecture is designed to accept stronger cryptographic func-
tions if enough resources are available (e.g., using AES or 3DES and the more
robust MersenneTwister PRNG). Nonetheless, in addition to a greater perfor-
mance overhead, the use of complex encryption would have an extra drawback
in AVRAND: since the code used to encrypt and decrypt the bootloader can be
used in code-reuse attacks, using encryption and decryption routines with larger
code size increases the available code for attackers. As explained in Sect. 5.2,
currently the XOR-based encryption only occupies 2 pages.

External hardware can also be applied to palliate code reuse attacks [13,15].
We emphasize that our approach is complementary, but it benefits from a pure
software-based solution. This perfectly suits scenarios where cost-minimization
strategies play an important role in the device design. Francillon and Castellucia
mentioned different protection mechanisms to prevent code injection attacks
[12], such as preventing software vulnerabilities or using stack canaries. These
mechanisms aim at avoiding the control-flow hijack and are complementary to
the randomization provided by AVRAND. Our solution assumes that somehow
the control flow may be hijacked, and thus it intends to hinder code reuse.
Additionally, when the sensor is not physically accessible, then the chances for
and adversary also decrease. While this may be subject for future research, we
consider that AVRAND takes a step forward in the security of AVR devices.

6.2 Limitations

During the design of AVRAND, we have assumed that the exploit size is
restricted by the size of the SRAM memory. For example, as explained in
Sect. 3.2, the stack size may not be large enough to store a complex payload, thus
limiting stack-based exploitation and requiring the adversary to reset the device
when injecting large payloads in memory. Additionally, some devices based on
the TinyOS restrict the packet size to 28 bytes. However, this is not the case
of other chips like the Atmega32u4. Accordingly, other exploitation techniques
such as heap or integer overflows may provide the adversary with the ability to
inject larger payloads.

In this work, we have considered that the memory should be re-randomized
with every device reset. Indeed, it is reasonable that a reset may be produced
because the device is under attack or some other abnormal activity. However,
we are aware that a smart adversary may find techniques to attack the sensor
without causing resets or a system crash (e.g., by cleaning the stack after the
payload execution [14,15]). In any case, AVRAND could be configured to reset
the device periodically, or only under certain conditions. Due to the limited num-
ber of write/erase cycles of the flash memory (e.g., 10,000 in the Atmega32u4
chip), this feature should be carefully adjusted to meet the security requirements
while maximizing the lifetime of the chip, which in turn depends on the applica-
tion scenario. For example, by periodically randomizing the device every 5 min,
a device using the Atmega32u4 chip would last approximately 35 days.

A Software-Based Defense Against Code Reuse Attacks for AVR Devices 75

Finally, it is important to understand that AVRAND is a countermeasure to
code reuse attacks in AVR based chips. However, these chips may be directly
connected to other sensors (e.g., wireless antennas or thermometers) or chips
(e.g., the Atheros chip in the Arduino Yun). In this last case, the Atheros chip
in the Arduino Yun has far more resources than the AVR to secure the device.
Indeed, the installed OpenWrt OS has support for ASLR, DEP, and other security
measures such as authenticating and encrypting communications (e.g., through
SSH). If the adversary could gain access to the MIPS-based chip (for example,
by performing a brute force attack against the SSH or exploiting a vulnerability
in the Linux kernel), then the security gained by AVRAND would be useless.
However, no matter how strong the security measures taken in the Atheros chip
are, the exploitation of AVR opens a security hole, since both chips are connected
through the Bridge library. This is where AVRAND is particularly helpful.

6.3 Overhead Incurred by AVRAND

We have tested the prototype of AVRAND in the Atmel atmega32u4 chip inte-
grated within the Arduino Yun device, equipped with a 32 KB flash Memory
(from which 4 KB corresponds with the bootloader section). Our evaluation indi-
cates a noteworthy increase in the code size due to changes introduced by the
preprocessing module. We have tested our prototype on the entire set of exam-
ples included in the Arduino IDE software. While all the tested programs fit
in the flash memory, we have observed an average of 20 % of extra code on the
modified binary. However, this overhead is related to a binary which has been
compiled turning on the optimization flags of avr-gcc [19], that prioritizes the use
of relative versions of control flow instructions. However, if these optimization
flags were turned off, as done in MAVR [15], then the difference between initial
code size and modified code size would be considerably smaller. Re-compiling all
the libraries without an optimization requires having the source code of every
library (which is certainly not possible in case of proprietary code), so we decided
to transform the binary directly in our preprocessing module, thus providing a
more general solution.

As for the time spent by the runtime module in the bootloader, results show
that it requires an average of 1.7 s to randomize the code of our proof-of-concept
program, which takes 18 KB of the flash memory. For example, a bootloader
using the AVR 109 protocol [2] (that allows self-programming without exter-
nal programmers) takes a minimum of 750 ms. Given the security provided by
AVRAND, we consider that an overhead of 1s is acceptable, especially since the
bootloader is only executed under certain circumstances.

7 Conclusions

In this paper, we have presented a software-based defense against code reuse
attacks for AVR systems—a modified Harvard architecture. These type of
architectures are popular among embedded devices used in different contexts.

76 S. Pastrana et al.

We focus on providing an inexpensive solution tailored for resourced constrained
devices. Our system perfectly balances the trade-off between the attack surface
exposed in this class of devices and the level of protection required to defeat
code reuse attacks. Thus, we design an architecture based on a fine-grained ran-
domization defense with self encryption that does not require additional hard-
ware support. We have implemented a proof-of-concept for the Arduino Yun,
an emerging open-source platform widely used in the IoT arena. Our prototype
introduces a negligible overhead with respect to the normal operation of the
Arduino. We evaluated the proposed scheme against a code reuse attack based
on Return Oriented Programming that first exploits a buffer overflow to exe-
cute code from the Arduino libraries. Finally, to foster research in this area, we
provide functional prototypes of the attack and the proposed defense.

Acknowledgments. We would like to thank our shepherd, Andrea Lanzi, for his assis-
tance and the feedback provided during the reviewing process. This work was supported
by the MINECO Grant TIN2013-46469-R (SPINY), the CAM Grant S2013/ICE-3095
(CIBERDINE) and the UK EPSRC Grant EP/L022710/1.

References

1. Anderson, W.: Entropy library documentation. Google Code Projects (2012)

2. Atmel, C.: Avr109: Self programming (2004). atmel.com/images/doc1644.pdf

3. Atmel, C.: Automotive compilation (2012). http://www.atmel.com/Images/atmel_
autocompilation_vol9_oct2012.pdf

4. Backes, M., Niirnberger, S.: Oxymoron: making fine-grained memory randomiza-
tion practical by allowing code sharing. In: USENIX Security Symposium (2014)

5. Bhatkar, S., DuVarney, D.C., Sekar, R.: Address obfuscation: an efficient approach
to combat a broad range of memory error exploits. In: USENIX Security (2003)

6. Braden, K., Crane, S., Davi, L., Franz, M., Larsen, P., Liebchen, C., Sadeghi,
A.R.: Leakage-resilient layout randomization for mobile devices. In: Network and
Distributed Systems Security Symposium (NDSS) (2016)

7. Carlini, N., Wagner, D.: Rop is still dangerous: breaking modern defenses. In:
USENIX Security Symposium (2014)

8. Cowan, C., Wagle, P., Pu, C., Beattie, S., Walpole, J.: Buffer overflows: attacks and
defenses for the vulnerability of the decade. In: DARPA Information Survivability
Conference and Exposition, 2000, DISCEX 2000, vol. 2, pp. 119-129. IEEE (2000)

9. Crane, S., Liebchen, C., Homescu, A., Davi, L., Larsen, P., Sadeghi, A.R., Brun-
thaler, S., Franz, M.: Readactor: practical code randomization resilient to memory
disclosure. In: IEEE Symposium on Security and Privacy, S&P, vol. 15 (2015)

10. Davi, L., Liebchen, C., Sadeghi, A.R., Snow, K.Z., Monrose, F.: Isomeron: code ran-
domization resilient to (just-in-time) return-oriented programming. In: Proceedings
of the 22nd Network and Distributed Systems Security Symposium (NDSS) (2015)

11. Dean, B.S.: Avr downloader/uploader (2003). http://www.nongnu.org/avrdude/.
Accessed Jan 2016

12. Francillon, A., Castelluccia, C.: Code injection attacks on harvard-architecture
devices. In: Proceedings of the 15th ACM Conference on Computer and Commu-
nications Security, pp. 15-26. ACM (2008)

http://atmel.com/images/doc1644.pdf
http://www.atmel.com/Images/atmel_autocompilation_vol9_oct2012.pdf
http://www.atmel.com/Images/atmel_autocompilation_vol9_oct2012.pdf
http://www.nongnu.org/avrdude/

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

A Software-Based Defense Against Code Reuse Attacks for AVR Devices 7

Francillon, A., Perito, D., Castelluccia, C.: Defending embedded systems against
control flow attacks. In: Proceedings of the First ACM Workshop on Secure Exe-
cution of Untrusted Code, pp. 19-26. ACM (2009)

Gu, Q., Noorani, R.: Towards self-propagate mal-packets in sensor networks. In:
Proceedings of the ACM Conference on Wireless Network Security, pp. 172-182.
ACM (2008)

Habibi, J., Gupta, A., Carlsony, S., Panicker, A., Bertino, E.: MAVR: code reuse
stealthy attacks and mitigation on unmanned aerial vehicles. In: Distributed Com-
puting Systems (ICDCS), pp. 642-652. IEEE (2015)

Intel, C.: Hexadecimal object file format specification (1988)

Mohan, V., Hamlen, K.W.: Frankenstein: stitching malware from benign binaries.
In: 6th USENIX Workshop on Offensive Technologies. USENIX (2012)

Mohan, V., Larsen, P., Brunthaler, S., Hamlen, K., Franz, M.: Opaque control-
flow integrity. In: Network and Distributed Systems Security Symposium (NDSS)
(2015)

GNU Project: Avr libc home page (1999). http://www.nongnu.org/avr-libc/.
Accessed Jan 2016

Roemer, R., Buchanan, E., Shacham, H., Savage, S.: Return-oriented program-
ming: systems, languages, and applications. ACM Trans. Inf. Syst. Secur. (TIS-
SEC) 15(1), 2 (2012)

Sadeghi, A.R., Wachsmann, C., Waidner, M.: Security and privacy challenges in
industrial internet of things. In: Annual Design Automation Conference. ACM
(2015)

Schuster, F., Tendyck, T., Pewny, J., Maaf; A., Steegmanns, M., Contag, M.,
Holz, T.: Evaluating the effectiveness of current Anti-ROP defenses. In: Stavrou,
A., Bos, H., Portokalidis, G. (eds.) RAID 2014. LNCS, vol. 8688, pp. 88-108.
Springer, Heidelberg (2014)

Snow, K.Z., Monrose, F., Davi, L., Dmitrienko, A., Liebchen, C., Sadeghi, A.R.:
Just-in-time code reuse: on the effectiveness of fine-grained address space layout
randomization. In: Security and Privacy (SP), pp. 574-588 (2013)

Szekeres, L., Payer, M., Wei, T., Song, D.: SoK: eternal war in memory. In: 2013
IEEE Symposium on Security and Privacy (SP), pp. 48-62. IEEE (2013)

Tang, A., Sethumadhavan, S., Stolfo, S.: Heisenbyte: thwarting memory disclosure
attacks using destructive code reads. In: Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security, pp. 256-267. ACM (2015)
Trevennor, A.: Practical AVR Microcontrollers: Games, Gadgets, and Home
Automation with the Microcontroller Used in the Arduino. Apress, USA (2012)
Wojtczuk, R.: The advanced return-into-lib (c) exploits: Pax case study. Phrack
Magazine, vol. 0x0b, Issue 0x3a, Phile# 0x04 of 0x0e (2001)

http://www.nongnu.org/avr-libc/

Towards Vulnerability Discovery Using Staged
Program Analysis

Bhargava Shastry' (™) Fabian Yamaguchi?, Konrad Rieck?,
and Jean-Pierre Seifert!

! Security in Telecommunications, TU Berlin, Berlin, Germany
bshastry@sec.t-labs.tu-berlin.de
2 Institute of System Security, TU Braunschweig, Braunschweig, Germany

Abstract. Eliminating vulnerabilities from low-level code is vital for
securing software. Static analysis is a promising approach for discov-
ering vulnerabilities since it can provide developers early feedback on
the code they write. But, it presents multiple challenges not the least of
which is understanding what makes a bug exploitable and conveying this
information to the developer. In this paper, we present the design and
implementation of a practical vulnerability assessment framework, called
Meélange. Mélange performs data and control flow analysis to diagnose
potential security bugs, and outputs well-formatted bug reports that help
developers understand and fix security bugs. Based on the intuition that
real-world vulnerabilities manifest themselves across multiple parts of a
program, Mélange performs both local and global analyses in stages. To
scale up to large programs, global analysis is demand-driven. Our proto-
type detects multiple vulnerability classes in C'and C++ code including
type confusion, and garbage memory reads. We have evaluated Mélange
extensively. Our case studies show that Mélange scales up to large code-
bases such as Chromium, is easy-to-use, and most importantly, capable of
discovering vulnerabilities in real-world code. Our findings indicate that
static analysis is a viable reinforcement to the software testing tool set.

Keywords: Program analysis + Vulnerability assessment - LLVM

1 Introduction

Vulnerabilities in popularly used software are not only detrimental to end-user
security but can also be hard to identify and fix. Today’s highly inter-connected
systems have escalated the damage inflicted upon users due to security com-
promises as well as the cost of fixing vulnerabilities. To address the threat
landscape, software vendors have established mechanisms for software quality
assurance and testing. A prevailing thought is that security bugs identified and
fixed early impose lower costs than those identified during the testing phase or in
the wild. Thus, vulnerability re-mediation—the process of identifying and fixing
vulnerabilities—is being seen as part of the software development process rather
than in isolation [28].

© Springer International Publishing Switzerland 2016
J. Caballero et al. (Eds.): DIMVA 2016, LNCS 9721, pp. 78-97, 2016.
DOI: 10.1007/978-3-319-40667-1_5

Towards Vulnerability Discovery Using Staged Program Analysis 79

Program analysis provides a practical means to discover security bugs during
software development. Prior approaches to vulnerability discovery using static
code analysis have ranged from simple pattern-matching to context and path-
sensitive data-flow analysis. For instance, ITS4 [42]—a vulnerability scanner
for C/C++ programs—parses source code and looks up lexical tokens of inter-
est against an existing vulnerability database. In our initial experiments, the
pattern-matching approach employed by I'TS4 produced a large number of warn-
ings against modern C, and C++ codebases. On the contrary, security vulnera-
bilities are most often, subtle corner cases, and thus rare. The approach taken by
ITS4 is well-suited for extremely fast analysis, but the high amount of manual
effort required to validate warnings undermines the value of the tool itself.

On the other end of the spectrum, the Clang Static Analyzer [4] presents an
analytically superior approach for defect discovery. Precise—context and path
sensitive—analysis enables Clang SA to warn only when there is evidence of
a bug in a feasible program path. While precise warnings reduce the burden
of manual validation, we find that Clang SA’s local inter-procedural analysis
misses security bugs that span file boundaries. The omission of bugs that span
file boundaries is significant especially for object-oriented code®, where object
implementation and object use are typically in different source files. A natural
solution is to make analysis global. However, global analysis does not scale up to
large programs.

In this paper, we find a middle ground. We present the design and implemen-
tation of Mélange, a vulnerability assessment tool for C and C++ programs, that
performs both local and global analysis in stages to discover potential vulner-
abilities spanning source files. Mélange has been implemented as an extension
to the LLVM compiler infrastructure [32]. To keep analysis scalable, Mélange
performs computationally expensive analyses locally (within a source file), while
performing cheaper analyses globally (across the whole program). In addition,
global analysis is demand-driven: It is performed to validate the outcome of local
analyses. To provide good diagnostics, Mélange primarily analyzes source code.
It outputs developer-friendly bug reports that point out the ezact position in
source code where potential vulnerabilities exist, why they are problematic, and
how they can be remedied.

Results from our case studies validate our design decisions. We find that
Mélange is capable of highlighting a handful of problematic corner cases, while
scaling up to large programs like Chromium, and Firefox. Since Mélange is imple-
mented as an extension to a widely used compiler toolchain (Clang/LLVM), it
can be invoked as part of the build process. Moreover, our current implementa-
tion is fast enough to be incorporated into nightly builds? of two large codebases
(MySQL, Chromium), and with further optimizations on the third (Firefox). In
summary, we make the following contributions.

1 All the major browsers including Chromium and Firefox are implemented in object-
oriented code.
2 Regular builds automatically initiated overnight on virtual machine clusters.

80 B. Shastry et al.

1. We present the design and implementation of Mélange, an extensible program
analysis framework.

2. We demonstrate the utility of Mélange by employing it to detect multiple
classes of vulnerabilities, including garbage reads and incorrectly typed data,
that are known to be a common source of exploitable vulnerabilities.

3. We evaluate Mélange extensively. We benchmark Mélange against NIST’s
Juliet benchmark [36] for program analysis tools. Mélange has thus
far detected multiple known vulnerabilities in the PHP interpreter, and
Chromium codebases, and discovered a new defect in Firefox.

2 Background: Clang and LLVM

Mélange is anchored in the Clang/LLVM open-source compiler toolchain [13], an
outcome of pioneering work by Lattner et al. [32]. In this section, we review com-
ponents of this toolchain that are at the core of Mélange’s design. While Clang/
LLVM is a compiler at heart, it’s utility is not limited to code generation/optimiza-
tion. Different parts of the compiler front-end (Clang) and back-end (LLVM) are
encapsulated into libraries that can be selectively used by client systems depend-
ing on their needs. Thus, the LLVM project lends itself well to multiple compiler-
technology-driven use-cases, program analysis being one of them.

We build Mélange on top of the analysis infrastructure available within the
LLVM project. This infrastructure mainly comprises the Clang Static Analyzer—
a source code analyzer for C, C++, and Objective-C programs—and the LLVM
analyzer /optimizer framework which permits analysis of LLVM Bitcode. In the
following paragraphs, we describe each of these components briefly.

2.1 Clang Static Analyzer

The Clang Static Analyzer (Clang SA) is similar in spirit to Metal/zgce, which
its authors classify as a “Meta-level Compilation” (MC) framework [21,24]. The
goal of an MC framework is to allow for modular extensions to the compiler that
enable checking of domain-specific program properties. Abstractly viewed, an
MC framework comprises a set of checkers (domain-specific analysis procedures)
and a compilation system.

The division of labor envisioned by Hallem et al. [24] is that checkers only
encode the property to check, leaving the mechanics of the actual checking to the
compilation system. The compilation system facilitates checking by providing
the necessary analysis infrastructure. Figurel shows how an MC framework
is realized in Clang SA. Source files are parsed and subsequently passed on
to the Data-Flow Analysis engine (DFA engine), which provides the analysis
infrastructure required by checkers. Checkers encode the program property to
be checked and produce bug reports if a violation is found. Bug reports are then
reviewed by a human analyst.

Towards Vulnerability Discovery Using Staged Program Analysis 81

f)

()

Graph
Reachability

Source Engine Bug
File » ~——P| Checkers ———"[— Reports
Symbolic

Execution
Engine

\\ DFA Engine)

_ Clang Static Analyzer Y,

Fig. 1. Clang Static Analyzer overview

Data-Flow Analysis Engine. Clang SA performs Context and Path sensitive
inter-procedural data-flow analysis. Context sensitivity means that the analy-
sis preserves the calling context of function calls; path sensitivity means that
the analysis explores paths forked by branch statements independently. Con-
text sensitivity is realized in the Graph Reachability Engine which implements
a namesake algorithm proposed by Reps et al. [37]. Path sensitivity is imple-
mented in the Symbolic Execution Engine. The symbolic execution engine uses
static Forward Symbolic Execution (FSE) [38] to explore program paths in a
source file.

Checkers. Checkers implement domain-specific checks and issue bug reports.
Clang SA contains a default suite of checkers that implement a variety of checks
including unsafe API usage, and memory access errors. More importantly, the
checker framework in Clang SA can be used by programmers to add custom
checks. To facilitate customized checks, Clang SA exposes callbacks (as APIs)
that hook into the DFA engine at pre-defined program locations. Clang SA and
its checkers seen together, demonstrate the utility of meta-level compilation.

2.2 LLVM Pass Infrastructure

The LLVM pass infrastructure [13] provides a modular means to perform analy-
ses and optimizations on an LLVM Intermediate Representation (IR) of a pro-
gram. LLVM IR is a typed, yet source-language independent representation of a
program that facilitates uniform analysis of whole-programs or whole-libraries.
Simply put, an LLVM Pass is an operation (procedure invocation) on a unit
of LLVM IR code. The granularity of code operated on can vary from a Function
to an entire program (Module in LLVM parlance). Passes may be run in sequence,
allowing a successive pass to reuse information from (or work on a transformation
carried out by) preceding passes. The LLVM pass framework provides APIs to
tap into source-level meta-data in LLVM IR. This provides a means to bridge
the syntactic gap between source-level and IR-level analyses. Source literals may
be matched against LLVM IR meta-data programmatically. Mélange takes this
approach to teach the LLVM pass what a source-level bug report means.

82

3

B. Shastry et al.
4 N
@ Source Candidate
';' Analyzer Bug Reports;
1 v
d wp 5 Extended
| Analyzer " Diagnostics
Codebase n
-t Library or
r . Bitcode
c Analysis J
e
p Native
t —>| Native Compiler P Library or
o Executable
r
\U Mélange J
Fig. 2. Mélange overview
»
Mélange

Our primary goal is to develop an early warning system for security-critical
software defects. We envision Mélange as a tool that assists a developer in iden-

tifying, and fixing potential security bugs during software development. Figure 2
provides an overview of our approach. Mélange comprises four high-level com-

ponents: the build interceptor, the LLVM builder, the source analyzer, and the

Whole-Program (WP) analyzer. We summarize the role of each component in

analyzing a program. Subsequently, we describe them in greater detail.

1.

Build Interceptor. The build interceptor is a program that interposes between
the build program (e.g., GNU-Make) and the compilation system (e.g.,
Clang/LLVM). In Mélange, the build interceptor is responsible for correctly
and independently invoking the program builders and the source analyzer.
(Sect. 3.1)

. LLVM Builder. The LLVM builder is a utility program that assists in gener-

ating LLVM Bitcode for C, C++, and Objective-C programs. It mirrors steps
taken during native compilation onto LLVM Bitcode generation. (Sect. 3.1)
Source Analyzer. The source analyzer executes domain-specific checks on a
source file and outputs candidate bug reports that diagnose a potential secu-
rity bug. The source analyzer is invoked during the first stage of Mélange’s
analysis. We have implemented the source analyzer as a library of checkers
that plug into a patched version of Clang SA. (Sect. 3.2)

Whole-Program Analyzer. The WP analyzer examines candidate bug reports
(from Step 3), and either provides extended diagnostics for the report or
classifies it as a false positive. The developer is shown only those reports
that have extended diagnostics i.e., those not classified as a false positive by
the WP analyzer. We have implemented the WP analyzer in multiple LLVM
passes. (Sect. 3.3)

Towards Vulnerability Discovery Using Staged Program Analysis 83

3.1 Analysis Utilities

Ease-of-deployment is one of the design goals of Mélange. We want software
developers to use our analysis framework in their build environments seamlessly.
The build interceptor and the LLVM builder are analysis utilities that help us
achieve this goal. The build interceptor and the LLVM builder facilitate trans-
parent analysis of codebases by plugging in Mélange’s analyses to an existing
build system. We describe them briefly in the following paragraphs.

Build Interceptor. Our approach to transparently analyze large software projects
hinges on triggering analysis via the build command. We use an existing build
interceptor, scan-build [12], from the Clang project. Scan-build is a command-line
utility that intercepts build commands and invokes the source analyzer in tandem
with the compiler. Since Mélange’s WP analysis is targeted at program (LLVM)
Bitcode, we instrument scan-build to not only invoke the source analyzer, but
also the LLVM builder.

LLVM Builder. Generating LLVM Bitcode for program libraries and executa-
bles without modifying source code and/or build configuration is a daunting
task. Fortunately, the Whole-program LLVM (WLLVM) [14], an existing open-
source LLVM builder, solves this problem. WLLVM is a python-based utility
that leverages a compiler for generating whole-program or whole-library LLVM
Bitcode. It can be used as a drop-in replacement for a compiler i.e., pointing the
builder (e.g., GNU-Make) to WLLVM is sufficient.

3.2 Source Analyzer

The source analyzer assists Mélange in searching for potential bugs in source
code. We build a novel event collection system that helps detect both taint-
style vulnerabilities as well as semantic defects. Our event collection system is
implemented as a system of taints on C and C++ language constructs (Decla-
rations). We call the underlying mechanism Declaration Tainting because taints
in the proposed event collection system are associated with AST Declaration
identifiers of C and C++ objects. Since declaration tainting is applied on AST
constructs, it can be carried out in situations where local symbolic execution is
not possible.

We write checkers to flag defects. Checkers have been developed as clients
of the proposed event collection system. The division of labor between checkers
and the event collection system mirrors the Meta-level Compilation concept:
Checkers encode the policy for flagging defects, while the event collection system
maintains the state required to perform checks. We have prototyped this system
for flagging garbage (uninitialized) reads® of C++ objects, incorrect type casts
in PHP interpreter codebase, and other Common Weakness Enumerations (see
Sect. 4).

3 The algorithm for flagging garbage reads is based on a variation of gen-kill sets [30].

84 B. Shastry et al.

We demonstrate the utility of the proposed system by using the code snippet
shown in Listing 1.1 as a running example. Our aim is to detect uninitialized
reads of class members in the example. The listing encompasses two source files,
foo.cpp and main.cpp, and a header file foo.h. We maintain two sets in the
event collection system: the Def set containing declaration identifiers for class
members that have at least one definition, and the UseWithoutDef set containing
identifiers for class members that are used (at least once) without a preceding
definition. We maintain an instance of both sets for each function that we analyze
in a translation unit i.e., for function F', Apr denotes the analysis summary of
F that contains both sets. The checker decides how the event collection sets
are populated. The logic for populating the Def and UseWithoutDef sets is
simple. If a program statement in a given function defines a class member for
the very first time, we add the class member identifier to the Def set of that
function’s analysis summary. If a program statement in a given function uses a
class member that is absent from the Def set, we add the class member identifier
to the UseWithoutDef set of that function’s analysis summary.

1 // foo.h

2 class foo {

3 public:

4 int x;

5 foo() {}

6 bool isZero () ;
7T}

8

9 // foo.cpp

10 #include"foo.h"

11

12 bool foo::isZero() {
13 if (!'x)

14 return true;

15 }

16

17 // main.cpp

18 #include "foo.h"

19

20 int main() {

21 foo f;

22 if (f.isZero())
23 return O;
24 return 1;

25 }

Listing 1.1. Running example-The foo object does not initialize its class member
foo::x. The call to isZero on Line 22 leads to a garbage read on Line 13.

In Listing 1.1, when function foo: :isZero in file foo.cpp is being analyzed,
the checker adds class member foo: :x to the UseWithoutDef set of Afoo.:i5zero

Towards Vulnerability Discovery Using Staged Program Analysis 85

after analyzing the branch condition on Line 13. This is because the checker
has not encountered a definition for foo::x in the present analysis context.
Subsequently, analysis of the constructor function foo: :foo does not yield any
additions to either the Def or UseWithoutDef sets. So A yoo:: oo is empty. Finally,
the checker compares set memberships across analysis contexts. Since foo: :x is
marked as a use without a valid definition in Af,e:iszero and foo: :x is not a
member of the Def set in the constructor function’s analysis summary (A foe:: foo),
the checker classifies the use of Line 13 as a candidate bug. The checker encodes
the proof for the bug in the candidate bug report. Listing 1.2 shows how candi-
date bug reports are encoded. The bug report encodes the location and analysis
stack corresponding to the potential garbage (uninitialized) read.

The proposed event collection approach has several benefits. First, by retro-
fitting simple declaration-based object tainting into Clang SA, we enable Check-
ers to perform analysis based on the proposed taint abstraction. Due to its
general-purpose nature, the taint abstraction is useful for discovering other defect
types such as null pointer dereferences. Second, the tainting APIs we expose are
opt-in. They may be used by existing and/or new checkers. Third, our additions
leverage high-precision analysis infrastructure already available in Clang SA. We
have implemented the event collection system as a patch to the mainline version
of Clang Static Analyzer. In the next paragraph, we describe how candidate bug
reports are analyzed by our whole-program analyzer.

3.3 Whole-Program Analyzer

Whole-program analysis is demand-driven. Only candidate bug reports are ana-
lyzed. The analysis target is an LLVM Bitcode file of a library or executable.
There are two aspects to WP analysis: Parsing of candidate bug reports to con-
struct a query, and the analysis itself. We have written a simple python-based
parser to parse candidate bug reports and construct queries. The analysis itself is
implemented as a set of LLVM passes. The bug report parser encodes queries as
preprocessor directives in a pass header file. A driver script is used to recompile,
and run the pass against all candidate bug reports.

Our whole-program analysis routine is composed of a CallGraph analysis
pass. We leverage an existing LLVM pass called the Basic CallGraph pass to build
a whole-program call graph. Since the basic pass misses control flow at indirect
call sites, we have implemented additional analyses to improve upon the precision
of the basic callgraph. Foremost among our analyses is Class Hierarchy Analysis
(CHA) [20]. CHA enables us to devirtualize those dynamically dispatched call
sites where we are sure no delegation is possible. Unfortunately, CHA can only
be undertaken in scenarios where no new class hierarchies are introduced. In
scenarios where CHA is not applicable, we examine call instructions to resolve
as many forms of indirect call sites as possible. Our prototype resolves aliases of
global functions, function casts etc.

Once program call graph has been obtained, we perform a domain-specific
WP analysis. For instance, to validate garbage reads, the pass inspects loads
and store to the buggy program variable or object. In our running example

86 B. Shastry et al.

(Listing 1.1), loads and stores to the foo: :x class member indicated in candidate
bug report (Listing 1.2) are tracked by the WP garbage read pass. To this end,
the program call graph is traversed to check if a load of foo::x does not have
a matching store. If all loads have a matching store, the candidate bug report
is classified as a false positive. Otherwise, program call-chains in which a load
from foo: :x does not have a matching store are displayed to the analyst in the
whole-program bug report (Listing 1.2).

// Source-level bug report
// report-e6ed9c.html

Local Path to Bug: foo::x->_ZN3foob6isZeroEv

Annotated Source Code
foo.cpp:4:6: warning: Potentially uninitialized
object field
if (!'x)

1 warning generated.

// Whole-program bug report

—————————— report-e6ed9c.html ---------

[+] Parsing bug report report-e6ed9c.html

[+] Writing queries into LLVM pass header file

[+] Recompiling LLVM pass

[+] Running LLVM BugReportAnalyzer pass against
main

Candidate callchain is:

foo::isZero ()

main
Listing 1.2. Candidate bug report (top) and whole-program bug report (bottom) for
garbage read in the running example shown in Listing 1.1.

4 Evaluation

We have evaluated Mélange against both static analysis benchmarks and real-
world code. To gauge Mélange’s utility, we have also tested it against known
defects and vulnerabilities. Our evaluation seeks to answer the following questions:

— What is the effort required to use Mélange in an existing build system?
(Sect.4.1)

— How does Mélange perform against static analysis benchmarks? (Sect. 4.2)

— How does Mélange fare against known security vulnerabilities? (Sect.4.3)

— What is the analysis run-time and effectiveness of Mélange against large well-
tested codebases? (Sect.4.4)

Towards Vulnerability Discovery Using Staged Program Analysis 87

4.1 Deployability

Ease-of-deployment is one of the design goals of Mélange. Build interposition
allows us to analyze codebases as is, without modifying build configuration
and/or source code. We have deployed Mélange in an Amazon compute instance
where codebases with different build systems have been analyzed (see Sect. 4.4).
Another benefit of build system integration is incremental analysis. Only the
very first build of a codebase incurs the cost of end-to-end analysis; subsequent
analyses are incremental. While incremental analysis can be used in conjunction
with daily builds, full analysis can be coupled with nightly builds and initiated
on virtual machine clusters.

4.2 NIST Benchmarks

We used static analysis benchmarks released under NIST’s SAMATE project [35]
for benchmarking Mélange’s detection rates. In particular, the Juliet C/C++
test suite (version 1.2) [36] was used to measure true and false positive detection
rates for defects spread across multiple categories. The Juliet suite comprises
test sets for multiple defect types. Each test set contains test cases for a spe-
cific Common Weakness Enumeration (CWE) [41]. The CWE system assigns
identifiers for common classes of software weaknesses that are known to lead to
exploitable vulnerabilities. We implemented Mélange checkers and passes for the
following CWE categories: CWE457 (Garbage or uninitialized read), CWE843
(Type confusion), CWE194 (Unexpected Sign Extension), and CWE195 (Signed
to Unsigned Conversion Error). With the exception of CWE457, the listed
CWESs have received scant attention from static analysis tools. For instance,
type confusion (CWE843) is an emerging attack vector [33] for exploiting popular
applications.

Figure 3 summarizes the True/False Positive Rates (TPRs/FPRs) for Clang
SA and Mélange for the chosen CWE benchmarks. Currently, Clang SA only sup-
ports CWE457. Comparing reports from Clang SA and Mélange for the CWE457
test set, we find that the former errs on the side of precision (fewer false posi-
tives), while the latter errs on the side of caution (fewer false negatives). For the
chosen CWE benchmarks, Mélange attains a true-positive rate between 57-88 %,
and thus, it is capable of spotting over half of the bugs in the test suite.

Mélange’s staggered analysis approach allows it to present both source file
wide and program wide diagnostics (see Fig.4). In contrast, Clang SA’s diag-
nostics are restricted to a single source file. Often, the call stack information
presented in Mélange’s extended diagnostics has speeded up manual validation
of bug reports.

4.3 Detection of Known Vulnerabilities

We tested five known type-confusion vulnerabilities in the PHP interpreter with
Mélange. All of the tested flaws are taint-style vulnerabilities: An attacker-
controlled input is passed to a security-sensitive function call that wrongly

88 B. Shastry et al.

T T T T %
I -2 5 ClangSA-CWE457
D 525 | °° Melange-CWEA57

FPR | 0 ® \lelange- CWES43
12966 *© \felange-CWE195
:] 15 h Melange-CWE194

I s

T s8

TPR - 575 5
[| 59.33

3427

| | | | | |

0 20 40 60 80 100

Percentage

Fig. 3. Juliet test suite: True Positive Rate (TPR) and False Positive Rate (FPR) for
Mélange, and Clang Static Analyzer. Clang SA supports CWE457 only. (Color figure
online)

interprets the input’s type. Ultimately all these vulnerabilities result in invalid
memory accesses that can be leveraged by an attacker for arbitrary code exe-
cution or information disclosure. We wrote a checker for detecting multiple
instances of this vulnerability type in the PHP interpreter codebase. For patched
vulnerabilities, testing was carried out on unpatched versions of the codebase.
Mélange successfully flagged all known vulnerabilities. The first five entries of
Table 1 summarize Mélange’s findings. Three of the five vulnerabilities have
been assigned Common Vulnerabilities and Exposures (CVE) identifiers by the
MITRE Corporation. Reporters of CVE-2014-3515, CVE-2015-4147, and PHP
report ID 73245 have received bug bounties totaling $5500 by the Internet Bug
Bounty Panel [7].

In addition, we ran our checker against a recent PHP release candidate (PHP
7.0 RC7) released on 12th November, 2015. Thus far, Mélange has drawn atten-
tion to PHP sub-systems where a similar vulnerability may exist. While we
haven’t been able to verify if these are exploitable, this exercise demonstrates
Mélange’s utility in bringing attention to multiple instances of a software flaw
in a large codebase that is under active development.

4.4 Case Studies

To further investigate the practical utility of Mélange, we conducted case stud-
ies with three popular open-source projects, namely, Chromium, Firefox, and
MySQL. We focused on detecting garbage reads only. In the following para-
graphs, we present results from our case studies emphasizing analysis effective-
ness, and analysis run-time.

Towards Vulnerability Discovery Using Staged Program Analysis 89

Table 1. Detection summary of Mélange against production codebases. Mélange has
confirmed known vulnerabilities and flagged a new defect in Firefox. Listed Chromium
and Firefox bugs are not known to be exploitable. Chromium bug 411177 is classified
as a Medium-Severity bug in Google’s internal bug tracker.

Codebase | CVE ID (Rating) |Bug ID Vulnerability | Known/New
PHP CVE-2015-4147 69085 [9] | Type-confusion | Known
PHP CVE-2015-4148 69085 [9] | Type-confusion | Known
PHP CVE-2014-3515 67492 [8] | Type-confusion | Known
PHP Unassigned 73245 [11] | Type-confusion | Known
PHP Unassigned 69152 [10] | Type-confusion | Known
Chromium | (Medium-Severity) | 411177 [2] | Garbage read | Known
Chromium | None 436035 [3] | Garbage read | Known
Firefox None 1168091 [1] | Garbage read | New

Software Versions: Evaluation was carried out for Chromium version 38 (dated
August 2014), for Firefox revision 244208 (May 2015), and for MySQL version
5.7.7 (April 2015).

Evaluation Setup: Analysis was performed in an Amazon compute instance
running Ubuntu 14.04 and provisioned with 36 virtual (Intel Xeon E5-2666 v3)
CPUs clocked at 2.6 GHz, 60 GB of RAM, and 100 GB of SSD-based storage.

Effectiveness

True Positives. Our prototype flagged 3 confirmed defects in Chromium, and
Firefox, including a new defect in the latter (see bottom three entries of
Table 1). Defects found by our prototype in MySQL codebase have been reported
upstream and are being triaged. Figure4 shows Mélange’s bug report for a
garbage read in the pdf library shipped with Chromium v38. The source-level
bug report (Fig.4a) shows the line of code that was buggy. WP analyzer’s bug
report (Fig.4b) shows candidate call chains in the libpdf library in which the
uninitialized read may manifest.

We have manually validated the veracity of all bug reports generated by
Mélange through source code audits. For each bug report, we verified if the
data-flow and control-flow information conveyed in the report tallied with pro-
gram semantics. We classified only those defects that passed our audit as true
positives. Additionally, for the Chromium true positives, we matched Mélange’s
findings with reports [2,3] generated by MemorySanitizer [40], a dynamic pro-
gram analysis tool from Google. The new defect discovered in Firefox was
reported upstream [1]. Our evaluation demonstrates that Mélange can comple-
ment dynamic program analysis tools in use today.

90 B. Shastry et al.

Bug Summary

File: out analyze/Debug/../../pdf/page_indicator.cc
Location: line 94, column 19
Description: Potentially uninitialized object field
Local Path to Bug: chrome_pdf::Pagelndicator::fade_out_timer_id_—

_ZN10chrome_pdfl3Pagelndicatorl20nTimerFiredEj

Annotated Source Code

92 void PageIndicator::0nTimerFired(uint32 timer id) {
93 FadingControl::0OnTimerFired(timer_id);
94 if (timer_id == fade out_timer_id) {

Potentially uninitialized object fieIdJ

95 Fade(false, fade timeout_);
96 }
97 }
(a) Source-level Bug Report

—————————— page_indicator.cc.pass.html —-————————-
[+] Parsing bug report page_indicator.cc.pass.html
[+] Writing queries into LLVM pass header file

[+] Recompiling LLVM pass

[+] Selecting LLVM BC for analysis

[+] Target Found: libpdf.a

[+] Running LLVM BugReportAnalyzer pass

Candidate callchain is:
chrome_pdf::PageIndicator::0OnTimerFired (unsigned int)
chrome_pdf::Instance::0nControlTimerFired (int,
unsigned int consté&, unsigned int)

(b) Whole-program Bug Report

Fig. 4. Mélange bug report for Chromium bug 411177.

False Positives. Broadly, we encounter two kinds of false positives; those that are
due to imprecision in Mélange’s data-flow analysis, and those due to imprecision
in its control-flow analysis. In the following paragraphs, we describe one example
of each kind of false positive.

Data-Flow Imprecision: Mélange’s analyses for flagging garbage reads lack
sophisticated alias analysis. For instance, initialization of C++ objects passed-
by-reference is missed. Listing 1.3 shows a code snippet borrowed from the Fire-
fox codebase that illustrates this category of false positives.

When AltSvcMapping object is constructed (see Line 2 of Listing 1.3),
one of its class members mHttps is passed by reference to the callee function
SchemeIsHTTPS. The callee function SchemeIsHTTPS initializes mHttps via its
alias (outIsHTTPS). Mélange’s garbage read checker misses the aliased store and
incorrectly flags the use of class member mHttps on Line 8 as a candidate bug.
Mélange’s garbage read pass, on its part, tries to taint all functions that store
to mHttps. Since the store to mHttps happens via an alias, the pass also misses
the store and outputs a legitimate control-flow sequence in its WP bug report.

Control-Flow Imprecision: Mélange’s WP analyzer misses control-flow infor-
mation at indirect call sites e.g., virtual function invocations. Thus, class

Towards Vulnerability Discovery Using Staged Program Analysis 91

Table 2. Mélange: analysis summary for large open-source projects. True positives for
MySQL have been left out since we are awaiting confirmation from its developers.

Codebase | Build time | Analysis run-time* Bug reports
N SAy |WPAg | TAy | WPAwvg: | Stage 1 | Stage 2 | True positive
Chromium | 18 m 20s |29.09 | 15.49 |44.58 |7.5s 2686 12 2
Firefox 41m 25s |3.38 |39.31 |42.69|13m 35s | 587 16 1
MySQL 8m 15s 9.26 |21.24 30.50 |2m 26s | 2494 32 -

*All terms except W PAvg are normalized to native compilation time.

members that are initialized in a call sequence comprising an indirect func-
tion call are not registered by Mélange’s garbage read pass. While resolving all
indirect call sites in large programs is impossible, we employ best-effort devir-
tualization techniques such as Rapid Type Analysis [16] to improve Mélange’s
control-flow precision.

1 AltSvcMapping::AltSvcMapping(...) {
2 if (NS_FAILED(SchemeIsHTTPS(originScheme, mHttps))) {
3
4 b
5 %
6 void AltSvcMapping::GetConnectionInfo(...) {
7 // ci is an object on the stack
8 ci->SetInsecureScheme (!mHttps) ;
9
10 }
11 static nsresult SchemeIsHTTPS(const nsACString &
originScheme, bool &outIsHTTPS)
12 {
13 outIsHTTPS =
originScheme.Equals (NS_LITERAL CSTRING("https"));
14
15 3

Listing 1.3. Code snippet involving an aliased definition that caused a false positive
in Mélange.

The final three columns of Table 2 present a summary of Mélange’s findings
for Chromium, Firefox, and MySQL projects. We find that Mélange’s two-stage
analysis pipeline is very effective at filtering through a handful of bug reports
that merit attention. In particular, Mélange’s WP analyses filter out 99.6 %,
97.3%, and 98.7 % source level bug reports in Chromium, Firefox, and MySQL
respectively. Although Mélange’s true positive rate is low in our case studies,
the corner cases it has pointed out, notwithstanding the confirmed bugs it has
flagged, is encouraging. Given that we evaluated Mélange against well-tested
production code, the fact that it could point out three confirmed defects in the
Chromium and Firefox codebases is a promising result. We plan to make our

92 B. Shastry et al.

MySQL []
Firefox [l
° sA,
¢}
Chromium l] WPA,

0 20 40 60 80 100
Fraction of Total Analysis Run-time (%)

Fig. 5. For each codebase, its source and whole-program analysis run-times are shown
as fractions (in %) of Mélange’s total analysis run-time. (Color figure online)

tool production-ready by incorporating insights gained from our case studies.
Next, we discuss Mélange’s analysis run-time.

Analysis Run-Time. We completed end-to-analysis of Chromium, Firefox,
and MySQL codebases—all of which have millions of lines of code—in under
48h. Of these, MySQL, and Chromium were analyzed in a little over 4 h, and
13 h respectively. Table2 summarizes Mélange’s run-time for our case studies.
We have presented the analysis run-time of a codebase relative (normalized)
to its build time, N;. For instance, a normalized analysis run-time of 30 for a
codebase indicates that the time taken to analyze the codebase is 30x longer
than its build time. All normalized run-times are denoted with the x subscript.
Normalized source analysis time, WP analysis time, and total analysis time of
Mélange are denoted as SA,, WPA,, and T A, respectively. The term W P Avg;
denotes the average time (not normalized) taken by Mélange’s WP analyzer to
analyze a single candidate bug report.

Figure 5 shows source and WP analysis run-times for a codebase as a fraction
(in percentage terms) of Mélange’s total analysis run-time. Owing to Chromium’s
modular build system, we could localize a source defect to a small-sized library.
The average size of program analyzed for Chromium (1.8 MB) was much lower
compared to MySQL (150 MB), and Firefox (1.1 GB). As a consequence, the
WP analysis run-times for Firefox, and MySQL are relatively high. While our
foremost priority while prototyping Mélange has been functional effectiveness,
our implementation leaves significant room for optimizations that will help bring
down Mélange’s end-to-end analysis run-time.

4.5 Limitations

Approach Limitations. BBy design, Mélange requires two analysis procedures at
different code abstractions for a given defect type. We depend on programmer-
written analysis routines to scale out to multiple defect types. Two actualities
lend credence to our approach: First, analysis infrastructure required to carry
out extended analyses is already available and its use is well-documented. This
has assisted us in prototyping Mélange for four different CWEs. Second, the

Towards Vulnerability Discovery Using Staged Program Analysis 93

complexity of analysis routines is many times lower than the program under
analysis. Our analysis procedures span 2,598 lines of code in total, while our
largest analysis target (Chromium) has over 14 million lines of C++ code.
While Mélange provides precise diagnostics for security bugs it has discov-
ered, manual validation of bug reports is still required. Given that software
routinely undergoes manual review during development, our tool does not intro-
duce an additional requirement. Rather, Mélange’s diagnostics bring attention
to problematic corner cases in source code. The manual validation process of
Mélange’s bug reports may be streamlined by subsuming our tool under existing
software development processes (e.g., nightly builds, continuous integration).

Implementation Limitations. Mélange’s WP analysis is path and context insen-
sitive. This makes Mélange’s whole-program analyzer imprecise and prone to
issuing false warnings. To counter imprecision, we can augment our WP analyzer
with additional analyses. Specifically, more powerful alias analysis and aggressive
devirtualization algorithms will help prune false positives further. One approach
to counter existing imprecision is to employ a ranking mechanism for bug reports

(e.g., Z-Ranking [31]).

5 Related Work

Program analysis research has garnered attention since the late 70s. Lint [29],
a C program checker developed at Bell Labs in 1977, was one of the first
program analysis tools to be developed. Lint’s primary goal was to check
“portability, style, and efficiency” of programs. Ever since, the demands from
a program checker have grown as new programming paradigms have been
invented and programs have increased in complexity. This has contributed
to the development of many commercial [5,23,27], closed-source [19], free [6],
and open source [4,15,17,18,22,26,39,40,43,44] tools. Broadly, these tools are
based on Model Checking [17,26], Theorem Proving [6], Static Program Analy-
sis [4,5,19,23,27,44], Dynamic Analysis [18,34,39,40], or are hybrid systems
such as AEG [15]. In the following paragraphs, we comment on related work
that is close in spirit to Mélange.

Program Instrumentation. Traditionally, memory access bugs have been found
by fuzz testing (or fuzzing) instrumented programs. The instrumentation takes
care of tracking the state of program memory and adds run-time checks before
memory accesses are made. Instrumentation is done either during run time (as in
Valgrind [34]), or at compile time (as in AddressSanitizer or ASan [39]). Compile-
time instrumentation has been preferred lately due to the poor performance of
tools that employ run-time instrumentation.

While sanitizer tools such as ASan, and MemorySanitizer (MSan) are
expected to have a zero false positive rate, practical difficulties, such as unin-
strumented code in an external library, lead to false positives in practice. Thus,
even run-time tools do not eliminate the need for manual validation of bug

94 B. Shastry et al.

reports. To guarantee absence of uninitialized memory, MSan needs to monitor
each and every load from/store to memory. This all-or-nothing philosophy poses
yet another problem. Uninstrumented code in pre-compiled libraries (such as the
C++ standard library) used by the program will invariably lead to false program
crashes. Until these false crashes are rectified—either by instrumenting the code
where the crash happens or by asking the tool to suppress the warning—the san-
itizer tool is rendered unusable. Thus, use of MSan impinges on instrumentation
of each and every line of code that is directly or indirectly executed by the pro-
gram or maintenance of a blacklist file that records known false positives. Unlike
MSan, not having access to library source code only lowers Mélange’s analysis
accuracy, but does not impede analysis itself. Having said that, Mélange will
benefit from a mechanism to suppress known false positives. Overall, we believe
that dynamic tools are invaluable for vulnerability assessment, and that a tool
such as ours can complement them well.

Symbolic Ezecution. Symbolic execution has been used to find bugs in programs,
or to generate test cases with improved code coverage. KLEE [18], Clang SA [4],
and AEG [15] use different flavors of forward symbolic execution for their own
end. As the program (symbolically) executes, constraints on program paths (path
predicates) are maintained. Satisfiability queries on path predicates are used to
prune infeasible program paths. Unlike KLEE and AEG, symbolic execution
in Clang SA is done locally and hences scales up to large codebases. Anecdotal
evidence suggests that KLEE and AEG don’t scale up to large programs [25]. To
the best of our knowledge, KLEE has not been evaluated against even medium-
sized codebases let alone large codebases such as Firefox and Chromium.

Static Analysis. Parfait [19] employs an analysis strategy that is similar in spirit
to ours. It employs multiple stages of analysis, where each successive stage is
more precise than the preceding stage. Parfait has been used for finding buffer
overflows in C programs. In contrast, we have evaluated Mélange against multiple
vulnerability classes. Mélange’s effectiveness in detecting multiple CWEs vali-
dates the generality of its design. In addition, Mélange has fared well against mul-
tiple code paradigms: both legacy C programs and modern object-oriented code.

Like Yamaguchi et al. [44], our goal is to empower developers in finding mul-
tiple instances of a known defect. However, the approach we take is different.
Yamaguchi et al. [44], use structural traits in a program’s AST representation
to drive a Machine Learning (ML) phase. The ML phase eztrapolates traits of
known vulnerabilities in a codebase, obtaining matches that are similar in struc-
ture to the vulnerability. CQUAL [22], and CQual++ [43], are flow-insensitive
data-flow analysis frameworks for C and C++ languages respectively. Oink per-
forms whole-program data-flow analysis on the back of Elsa, a C++ parser, and
Cqual++. Data-flow analysis is based on type qualifiers. Our approach has two
advantages over Cqual++. We use a production compiler for parsing C++ code
that has a much better success rate at parsing advanced C++ code than a cus-
tom parser such as Elsa. Second, our source-level analysis is both flow and path
sensitive while, in CQual++, it is not.

Towards Vulnerability Discovery Using Staged Program Analysis 95

Finally, Clang Static Analyzer borrows ideas from several publications includ-
ing (but not limited to) [24,37]. Inter-procedural context-sensitive analysis in
Clang SA is based on the graph reachability algorithm proposed by Reps
et al. [37]. Clang SA is also similar in spirit to Metal/xgcc [24].

6 Conclusion

We have developed Mélange, a static analysis tool for helping fix security-critical
defects in open-source software. Our tool is premised on the intuition that vul-
nerability search necessitates multi-pronged analysis. We anchor Mélange in the
Clang/LLVM compiler toolchain, leveraging source analysis to build a corpus of
defects, and whole-program analysis to filter the corpus. We have shown that
our approach is capable of identifying defects and vulnerabilities in open-source
projects, the largest of which—Chromium—spans over 14 million lines of code.
We have also demonstrated that Mélange’s analyses are viable by empirically
evaluating its run-time in an EC2 instance.

Since Mélange is easy to deploy in existing software development environ-
ments, programmers can receive early feedback on the code they write. Further-
more, our analysis framework is extensible via compiler plug-ins. This enables
programmers to use Mélange to implement domain-specific security checks.
Thus, Mélange complements traditional software testing tools such as fuzzers.
Ultimately, our aim is to use the proposed system to help fix vulnerabilities in
open-source software at an early stage.

Acknowledgments. This work was supported by the following grants: 317888
(project NEMESYS), 10043385 (project Enzevalos), and RI 2468/1-1 (project DEVIL).
Authors would like to thank colleagues at SecT and Daniel Defreez for valuable feedback
on a draft of this paper, and Janis Danisevskis for discussions on the C++ standard
and occasional code reviews.

References

1. Bugzilla@Mozilla, Bug 1168091. https://bugzilla.mozilla.org/show_bug.cgi?
id=1168091

2. Chromium Issue Tracker, Issue 411177. https://code.google.com/p/chromium/
issues/detail7id=411177

3. Chromium Issue Tracker, Issue 436035. https://code.google.com/p/chromium/

issues/detail7id=436035

Clang Static Analyzer. http://clang-analyzer.llvim.org/. Accessed 25 Mar 2015

Coverity inc. http://www.coverity.com/

HAVOC. http://research.microsoft.com/en-us/projects/havoc/

PHP Bug Bounty Program. https://hackerone.com/php

PHP::Sec Bug, 67492. https://bugs.php.net/bug.php?id=67492

PHP::Sec Bug, 69085. https://bugs.php.net/bug.php?id=69085

PHP::Sec Bug, 69152. https://bugs.php.net/bug.php?id=69152

© VXN o

https://bugzilla.mozilla.org/show_bug.cgi?id=1168091
https://bugzilla.mozilla.org/show_bug.cgi?id=1168091
https://code.google.com/p/chromium/issues/detail?id=411177
https://code.google.com/p/chromium/issues/detail?id=411177
https://code.google.com/p/chromium/issues/detail?id=436035
https://code.google.com/p/chromium/issues/detail?id=436035
http://clang-analyzer.llvm.org/
http://www.coverity.com/
http://research.microsoft.com/en-us/projects/havoc/
https://hackerone.com/php
https://bugs.php.net/bug.php?id=67492
https://bugs.php.net/bug.php?id=69085
https://bugs.php.net/bug.php?id=69152

96

11.
12.
13.
14.
15.

16.

17.

18.

19.

20.

21.

22.

23.
24.

25.

26.

27.

28.

29.

30.

B. Shastry et al.

Report 73245: Type-confusion Vulnerability in SoapClient. https://hackerone.
com/reports/73245

Scan-build. http://clang-analyzer.llvim.org/scan-build.html

The LLVM Compiler Infrastructure. http://llvm.org/

WLLVM: Whole-program LLVM. https://github.com/travitch/whole-program-
llvm

Avgerinos, T., Cha, S.K., Hao, B.L.T., Brumley, D.: AEG: automatic exploit gen-
eration. In: NDSS, vol. 11, pp. 59-66 (2011)

Bacon, D.F., Sweeney, P.F.: Fast static analysis of c++ virtual function calls. In:
Proceedings of the 11th ACM SIGPLAN Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications, OOPSLA 1996, pp. 324-341. ACM,
New York (1996). http://doi.acm.org/10.1145/236337.236371

Ball, T., Rajamani, S.K.: The s lam project: debugging system software via static
analysis. In: ACM SIGPLAN Notices, vol. 37, pp. 1-3. ACM (2002)

Cadar, C., Dunbar, D., Engler, D.R.: KLEE: unassisted and automatic generation
of high-coverage tests for complex systems programs. In: OSDI, vol. 8, pp. 209-224
(2008)

Cifuentes, C., Scholz, B.: Parfait: designing a scalable bug checker. In: Proceedings
of the 2008 Workshop on Static Analysis, pp. 4-11. ACM (2008)

Dean, J., Grove, D., Chambers, C.: Optimization of object-oriented programs using
static class hierarchy analysis. In: Tokoro, M., Pareschi, R. (eds.) ECOOP 1995
Object-Oriented Programming. LNCS, vol. 952, pp. 77-101. Springer, Heidelberg
(1995)

Engler, D., Chelf, B., Chou, A., Hallem, S.: Checking system rules using system-
specific, programmer-written compiler extensions. In: Proceedings of the 4th Con-
ference on Symposium on Operating System Design & Implementation, vol. 4,
p. 1. USENIX Association (2000)

Foster, J.S., Johnson, R., Kodumal, J., Terauchi, T., Shankar, U., Talwar, K.,
Wagner, D., Aiken, A., Elsman, M., Harrelson, C.: CQUAL: a tool for adding type
qualifiers to C (2003). https://www.cs.umd.edu/~jfoster/cqual/. Accessed 26 Mar
2015

GrammaTech: CodeSonar. http://www.grammatech.com/codesonar

Hallem, S., Chelf, B., Xie, Y., Engler, D.: A system and language for build-
ing system-specific, static analyses. In: Proceedings of the ACM SIGPLAN 2002
Conference on Programming Language Design and Implementation, PLDI 2002,
pp. 69-82. ACM, New York (2002). http://doi.acm.org/10.1145/512529.512539
Heelan, S.: Vulnerability detection systems: think cyborg, not robot. IEEE Secur.
Priv. 9(3), 74-77 (2011)

Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Software verification
with BLAST. In: Ball, T., Rajamani, S.K. (eds.) SPIN 2003. LNCS, vol. 2648,
pp. 235-239. Springer, Heidelberg (2003)

Hewlett Packard: Fortify Static Code Analyzer. http://www8.hp.com/us/en/
software-solutions/static-code-analysis-sast/

Howard, M., Lipner, S.: The Security Development Lifecycle. O’Reilly Media,
Incorporated, Sebastopol (2009)

Johnson, S.: Lint, a C Program Checker. Bell Telephone Laboratories, Murray Hill
(1977)

Knoop, J., Steffen, B.: Efficient and optimal bit vector data flow analyses: a uniform
interprocedural framework. Inst. fiir Informatik und Praktische Mathematik (1993)

https://hackerone.com/reports/73245
https://hackerone.com/reports/73245
http://clang-analyzer.llvm.org/scan-build.html
http://llvm.org/
https://github.com/travitch/whole-program-llvm
https://github.com/travitch/whole-program-llvm
http://doi.acm.org/10.1145/236337.236371
https://www.cs.umd.edu/~jfoster/cqual/
http://www.grammatech.com/codesonar
http://doi.acm.org/10.1145/512529.512539
http://www8.hp.com/us/en/software-solutions/static-code-analysis-sast/
http://www8.hp.com/us/en/software-solutions/static-code-analysis-sast/

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

Towards Vulnerability Discovery Using Staged Program Analysis 97

Kremenek, T., Engler, D.: Z-Ranking: using statistical analysis to counter the
impact of static analysis approximations. In: Cousot, R. (ed.) SAS 2003. LNCS,
vol. 2694, pp. 295-315. Springer, Heidelberg (2003). http://dl.acm.org/citation.
c¢fm?id=1760267.1760289

Lattner, C., Adve, V.: Llvin: a compilation framework for lifelong program analysis
& transformation. In: International Symposium on Code Generation and Optimiza-
tion, 2004, CGO 2004, pp. 75-86. IEEE (2004)

Lee, B., Song, C., Kim, T., Lee, W.: Type casting verification: stopping an emerg-
ing attack vector. In: 24th USENIX Security Symposium (USENIX Security 15),
Washington, D.C, August 2015, pp. 81-96. USENIX Association. https://www.
usenix.org/conference/usenixsecurity15/technical-sessions/presentation/lee
Nethercote, N., Seward, J.: Valgrind: a framework for heavyweight dynamic binary
instrumentation. In: ACM Sigplan Notices, vol. 42, pp. 89-100. ACM (2007)
NIST: SAMATE - Software Assurance Metrics And Tool Evaluation. http://
samate.nist.gov/Main_Page.html

NIST: Test Suites, Software Assurance Reference Dataset. http://samate.nist.gov/
SRD/testsuite.php

Reps, T., Horwitz, S., Sagiv, M.: Precise interprocedural dataflow analysis via
graph reachability. In: Proceedings of the 22nd ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages, pp. 49-61. ACM (1995)
Schwartz, E.J., Avgerinos, T., Brumley, D.: All you ever wanted to know about
dynamic taint analysis and forward symbolic execution (but might have been afraid
to ask). In: 2010 IEEE Symposium on Security and Privacy (SP), pp. 317-331.
IEEE (2010)

Serebryany, K., Bruening, D., Potapenko, A., Vyukov, D.: Addresssanitizer: a fast
address sanity checker. In: Proceedings of the 2012 USENIX Conference on Annual
Technical Conference, USENIX ATC 2012, Berkeley, CA, USA, p. 28. USENIX
Association (2012). http://dl.acm.org/citation.cfm?id=2342821.2342849
Stepanov, E., Serebryany, K.: Memorysanitizer: fast detector of uninitialized mem-
ory use in c++. In: 2015 IEEE/ACM International Symposium on Code Generation
and Optimization (CGO), pp. 46-55. IEEE (2015)

Tsipenyuk, K., Chess, B., McGraw, G.: Seven pernicious kingdoms: a taxonomy of
software security errors. IEEE Secur. Priv. 3(6), 81-84 (2005)

Viega, J., Bloch, J., Kohno, Y., McGraw, G.: Its4: a static vulnerability scan-
ner for ¢ and c++ code. In: 2000 16th Annual Conference on Computer Security
Applications, ACSAC 2000, pp. 257-267, December 2000

Wilkerson, D.: CQUAL++. https://daniel-wilkerson.appspot.com/oink/qual.html.
Accessed 26 Mar 2015

Yamaguchi, F., Lottmann, M., Rieck, K.: Generalized vulnerability extrapolation
using abstract syntax trees. In: Proceedings of the 28th Annual Computer Security
Applications Conference, pp. 359-368. ACM (2012)

http://dl.acm.org/citation.cfm?id=1760267.1760289
http://dl.acm.org/citation.cfm?id=1760267.1760289
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/lee
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/lee
http://samate.nist.gov/Main_Page.html
http://samate.nist.gov/Main_Page.html
http://samate.nist.gov/SRD/testsuite.php
http://samate.nist.gov/SRD/testsuite.php
http://dl.acm.org/citation.cfm?id=2342821.2342849
https://daniel-wilkerson.appspot.com/oink/qual.html

Malware Detection

Comprehensive Analysis and Detection
of Flash-Based Malware

Christian Wressnegger™) | Fabian Yamaguchi, Daniel Arp, and Konrad Rieck

Institute of System Security, TU Braunschweig, Braunschweig, Germany
c.wressnegger@tu-braunschweig.de

Abstract. Adobe Flash is a popular platform for providing dynamic
and multimedia content on web pages. Despite being declared dead for
years, Flash is still deployed on millions of devices. Unfortunately, the
Adobe Flash Player increasingly suffers from vulnerabilities, and attacks
using Flash-based malware regularly put users at risk of being remotely
attacked. As a remedy, we present GORDON, a method for the compre-
hensive analysis and detection of Flash-based malware. By analyzing
Flash animations at different levels during the interpreter’s loading and
execution process, our method is able to spot attacks against the Flash
Player as well as malicious functionality embedded in ActionScript code.
To achieve this goal, GORDON combines a structural analysis of the con-
tainer format with guided execution of the contained code, a novel analy-
sis strategy that manipulates the control flow to maximize the coverage
of indicative code regions. In an empirical evaluation with 26,600 Flash
samples collected over 12 consecutive weeks, GORDON significantly out-
performs related approaches when applied to samples shortly after their
first occurrence in the wild, demonstrating its ability to provide timely
protection for end users.

Keywords: Adobe flash - Malware - Classification

1 Introduction

Adobe Flash is a widespread platform for providing multimedia content on web
pages—despite being declared dead for years and the recent standardization of
HTML5. According to Adobe, the Flash Player is still deployed on over 500
million devices across different hardware platforms, covering a large fraction of
all desktop systems [42]. Furthermore, a significant number of web sites employs
Flash for advertising, video streaming and gaming, such that every fourth web
site in the top 1,000 Alexa ranking still makes use of Flash-based content [22].

Unfortunately, the implementation of Flash is continuously suffering from
security problems. During the last ten years over 690 different vulnerabilities
have been discovered in the Adobe Flash Player [32]. In the year 2015 alone,
314 new vulnerabilities have been made public, 268 of which enable remote code
execution and require a user to merely visit a web page to be infected. This
growing attack surface provides a perfect ground for miscreants and has lead to
a large variety of Flash-based malware in the wild.

© Springer International Publishing Switzerland 2016
J. Caballero et al. (Eds.): DIMVA 2016, LNCS 9721, pp. 101-121, 2016.
DOI: 10.1007/978-3-319-40667-1_6

102 C. Wressnegger et al.

Three factors render the Flash platform particularly attractive for attackers:
First, the large number of vulnerabilities considerably increases the chances for
compromising a wide range of systems. Second, the ability to execute Action-
Script code as part of an attack allows to probe the target environment and
carry out sophisticated exploit strategies. Finally, the Flash platform provides
several means for obstructing the analysis of attacks—most notably the capabil-
ity to execute downloaded or dynamically assembled code. As a result of such
obfuscation, the analysis of Flash-based attacks is difficult and time-consuming.
Often, signatures for virus scanners are only available with notable delay such
that end users remain unprotected for a considerable period of time.

In this paper, we present GORDON, a method for the automatic analysis and
detection of Flash-based malware. Our method combines a structural analysis of
the Flash container format with guided execution of ActionScript code, a light-
weight and pragmatic form of multi-path exploration. While related approaches
orient analysis to normal execution [27,44,48] or external triggers [6,14,30],
GORDON actively guides the analyzer towards interesting code regions to maxi-
mize the coverage thereof. This equips us with a comprehensive view on a sample,
including downloaded and dynamically assembled code. By additionally inspect-
ing the container format, we are able to construct a detection method capable
of spotting malicious ActionScript code as well as exploits targeting the Flash
Player directly.

To cope with the large diversity of Flash files in practice, GORDON imple-
ments support for all versions of Flash animations, including all versions of
ActionScript code. To the best of our knowledge, we are the first to provide
a generic method for the analysis and detection of Flash-based malware that
enables a comprehensive view on the behavior and structure of a Flash anima-
tion across all versions. The efficacy of GORDON in practice is demonstrated in
an evaluation with 26,600 Flash samples collected over a time of 12 consecutive
weeks. GORDON detects 90 % of the malicious samples shortly after their appear-
ance in the wild with a false-positive rate of at most 0.1 %. Consequently, our
method provides an excellent starting point for fending off Flash-based malware
more efficiently.

In summary we make the following contributions:

— Guided code-execution. We propose a lightweight and pragmatic approach
for exploring ActionScript code in Flash-based malware that guides analysis
towards large or otherwise characteristic code regions automatically.

— Comprehensive analysis of Flash. With the combination of a structural
analysis of Flash containers and a guided execution of embedded code we
provide a fine-grained view on samples across all versions of ActionScript code
and Flash.

— Effective detection of Flash-based attacks. Based on this analysis, we
develop a detection method that accurately identifies Flash-based exploits
and malware shortly after their occurrence, providing a good starting point
to bootstrap signature-based approaches.

Comprehensive Analysis and Detection of Flash-Based Malware 103

The rest of the paper is structured as follows: In Sect. 2 we introduce GOR-
DON, our method for the analysis and detection of Flash-based malware, fol-
lowed by a detailed description of the employed structural analysis in Sect. 3,
our guided code-execution in Sect.4 and GORDON’s detector in Sect.5. Our
evaluation is presented in Sect.6. We discuss limitations and related work in
Sect. 7 and Sect. 8, respectively. Section 9 concludes the paper.

R1 354: pushstring STR.01

SWF version 10.3

@ malicious
9 benign

Flash Animation
(*.swf)

Structural ANalysis ——————Guided Code-Execution

Fig. 1. Schematic depiction of the analysis and detection process of GORDON with a
Flash-based malware as input, the two-step analysis of the profiler and the classification
of our method’s detector as output.

2 System Overview

The diverse nature of attacks based on Flash requires an analysis method to
inspect these animations on different levels. To this end, we implement our
method GORDON by integrating it into different processing stages of two Flash
interpreters, thereby blending into existing loading and execution processes. This
allows us to make use of data generated directly during execution, such as dynam-
ically constructed code or downloaded files. We achieve this analysis using the
following two-step procedure (see Fig.1): First, we instrument the processing
unit of the Flash interpreter in order to profile a malware’s structure as well as
the execution of contained code. Second, we combine these profiles into a com-
mon representation to power a classifier based on machine learning techniques,
that allows to effectively discriminate malicious from benign Flash animations.

Profiling the Malware. GORDON’s profiler is implemented on the basis of two
popular and mature open-source implementations of the Flash platform that
are complementary with respect to the versions they support: Gnash [20] and
Lightspark [34]. While Gnash provides support for Flash up to version 9,
Lightspark enables processing version 9 and higher. As a result, GORDON is able
to analyze all currently relevant versions and file formats of Adobe Flash anima-
tions, including all versions of ActionScript code. The profiling implemented for
both interpreters features two kinds of analyses, that in turn make use of data
arising during an interpreter’s regular loading and execution process [1]:

— First, the profiler of GORDON inspects the hierarchical composition of the
Shockwave Flash (SWF) format. This can be done during the loading phase
when the interpreter parses the file for further processing (Sect. 3).

104 C. Wressnegger et al.

— Second, the control flow of embedded ActionScript code is analyzed in order
to determine indicative regions. By strategically changing the control flow at
branches in the code, GORDON guides execution along paths covering as much
indicative regions as possible (Sect.4).

Detecting Flash-Based Malware. Based on the output of these different analyses,
we are then able to decide whether a particular Flash animation is malicious or
not. To this end we translate the structural report of a file and the execution
trace of contained ActionScript code into a representation that allows to train a
machine learning classifier (Sect.5).

3 Structural Analysis

We begin our analysis by breaking down Flash animations into tags , the primary
containers employed by the SWF file format [2] to store ActionScript code as
well as data of various kinds, including audio, video, image and font data. Due
to the large number of different types of tags Flash files expose a huge attack
surface for memory corruption exploits. As a consequence, many exploits rely on
very specific types and arrangements of tags to succeed, and thus, the sequence
of tags alone can already serve as a strong indicator for malware.

For the structural analysis as employed by GORDON only tag identifiers and
structural dependencies are of interest, contained data on the other hand is not
considered. Consequently, GORDON does not need to know about the format of
individual tags and hence can be applied to unknown tags, e.g., tags introduced
in future versions. However, to further enhance the overall detection our method
may be combined with approaches to specifically target data formats that can
be included in a Flash animation’s tags. Moreover, exploits often rely on corrupt
or incomplete tags. To better account for these, we additionally include two
specific tag identifiers that mark (a) incomplete tags, i.e. tags that are known
to the interpreter, but could not be correctly parsed and (b) tags that contain
additional data beyond their specified limits. The latter occurs, for instance,
whenever the file contains data at the end that is not fully contained in its
last tag.

69 FileAttributes
77 Metadata
9 SetBackgroundColor
2 DefineShape
39 DefineSprite
26 PlaceObject2
86 DefineSceneAndFramelabelData
43 FrameLabel
87 DefineBinaryData // Payload
87 DefineBinaryData // Payload

82 DoABC // ActionScript 3
76 SymbolClass
1 ShowFrame

Fig. 2. Excerpt of the structural report for a LadyBoyle sample (See footnote 1).

Comprehensive Analysis and Detection of Flash-Based Malware 105

As a result of this structural analysis, we obtain a sequence of container types
including their nestings for each Flash file. Figure 2 shows the resulting container
listing for a sample! of the LadyBoyle malware using CVE-2015-323.

In comparison to many other Flash animations, the content of this
file is rather short. However, for this specific sample the presence of the
DefineBinaryData and DoABC tags is crucial. The first contain the malware’s
payload as binary data, which in turn gets extracted by ActionScript 3 code
embedded in the latter. These tags in combination comprise the malicious func-
tionality of the sample. While in this particular case the structure alone is only
an indicator for the malicious behavior, that needs to be backed up by an analy-
sis of the embedded ActionScript code, other types of malware rely on cor-
rupt tags that allow to distinctively distinguish these. Some containers, such
as the DefineShape tag, allow to enclose an arbitrary number of other contain-
ers. We include these in the listing as children of the parent tag. Note that the
DefineShape tag and its children are not present in the original sample and have
been added for illustration purposes only.

For convenience, the structural report can also be represented as a sequential
list of identifiers, where nested containers are indicated by brackets:

69 77 9 2 [39 26] 86 43 87 87 82 76 1

It is important to note, that this representation already encodes the com-
plete hierarchy and relations of the tags to each other. This condensed form
is particularly suitable for automated approaches that do not require a textual
description of the tags. We revisit this topic when discussing the implementation
of GORDON’s detector in Sect. 5.

4 Guided Code-Execution

When analyzing a sample with GORDON we aim at observing as much indica-
tive behavior of a Flash animation as possible—ideally the analysis covers all
possible execution paths and corner cases. However, as extensively discussed in
computer security literature in the past [e.g., 27,30] this is not feasible due to
the potentially exponential number of different paths, making it necessary to
revert to approximations and heuristics in practice.

While related approaches orient analysis to normal execution [27,44,48] or
external triggers [6,14,30], our method guides execution towards indicative code
regions: Each branch is chosen such that the execution corresponds to the path
that covers the most indicative ActionScript code not observed so far. In partic-
ular, we are interested in exploring paths containing security-related objects and
functions as well as branches that contain more code than others. Figure 3 exem-
plarily shows the selected paths of two consecutive runs. During the first, GOR-
DON’s profiler guides execution towards the loadMovie function, which enables
Flash animations using ActionScript 2 to dynamically load code in form of
another SWF file. The second run then directs the interpreter along the path

! md5: cac794adea27aab4f2e5ac3151050845.

106 C. Wressnegger et al.

| @\/G)\/@

5 |
loadMovie @ 2 3 3 6
Run #1:

Loading of Run #2:
code 2 @ Best code
coverage

Fig. 3. Illustration of the path-selection strategy. Node labels correspond to the amount
of bytecode instructions in each basic block. Black lines indicate chosen execution paths.

covering the most bytecode instructions. This strategy can hence be seen as a
way to not only maximize code coverage locally (within the sample itself), but
globally, including all code that is loaded dynamically.

This is made possible by inspecting the control flow of the ActionScript
code contained in a Flash file with the aim of learning (a) how much code
can be covered along a specific path and (b) where security-related objects and
functions such as the aforementioned loadMovie are located. To this end, we first
derive the control-flow graph (CFG) of the ActionScript bytecode in question and
remove cycles induced by loops and recursive function calls (Sect.4.1). Second,
the resulting graph is annotated with locations of indicative functionality and
the number of instructions contained in each branch, which in turn enables us
to efficiently determine the overall code coverage of individual paths (Sect. 4.2).
The results of this analysis is then used for the actual execution of the Flash
animation, allowing GORDON to navigate through the code in a targeted way
(Sect. 4.3).

4.1 Control-Flow Analysis

A control-flow graph (CFG) as shown in Fig. 4 contains basic code blocks as its
nodes and directed edges for branches connecting them [see 3]. As part of the
Adobe Flash Player’s verification phase, the ActionScript VM already checks
certain control flow properties when bytecode is loaded into the interpreter [1].
Our control-flow analysis can thus be thought of as a natural extension to the
examinations conducted by Flash interpreters. We, however, make use of this
information only as a starting point for the following analysis.

Upon the generation of a CFG, we are ready to find execution paths that
maximize code coverage. To easily determine these paths, the graph needs to
first undergo a few modifications. In particular, it is necessary to eliminate cycles
that occur due to loop statements in the code. Once these cycles are removed
we obtain an acyclic control-flow graph (ACFG) which allows us to efficiently
determine the code size of complete paths in the graph. To this end, we rewrite
all back-edges (edges pointing backwards with respect to the control flow) by

Comprehensive Analysis and Detection of Flash-Based Malware 107

var a:int = 294;
var b:int = 1722; (})

while (b != 0)

{ >
var h:int = a % b;
a = b; b = h;

}

trace(a);

Fig. 4. An ActionScript 3 snippet, the corresponding control flow graph (CFG) and
its acyclic transformation (ACFG). Dark nodes represent loop headers, bright nodes
generic code blocks; newly inserted edges are shown in red. (Color figure online)

linking them to the first code block after the loop. Figure4 demonstrates this
for a simple while loop. All conventional loop, nested loops and their special
cases such as unnatural loops can be efficiently resolved using the dominance
relations of the individual nodes [see 3].

4.2 Annotating Control-Flow Edges

Once an ACFG has been generated, we annotate each of its edges with the num-
ber of bytecode instructions covered by the following code block. We artificially
increase the weight of individual instructions, if they correspond to security-
related objects and functions. For example, to pinpoint the dynamic loading of
code, we set the weighting for calls to the loadMovie function (ActionScript 2)
and the Loader object (ActionScript 3) to the maximum to ensure the analyzer
targets these first. Both are frequently used by Flash-based malware to load code
downloaded from the Internet or dynamically assembled at runtime. Similarly, it
is possible to emphasize other security-related functions and objects in Action-
Script, such as readBytes and ByteArray which are often used for obfuscated
code.

Given the annotated graph, the search for the most indicative code regions
can be rephrased as a longest-path problem. For arbitrary graphs determining
the longest path is NP-hard. Fortunately, for directed acylic graphs such as the
ACFG extracted previously, this is possible [see 11,38].

4.3 Path Exploration

With the annotated ACFG at hand, we can now guide the interpreter to execute
security-related or large code regions by stopping at every conditional jump and
choosing the branch corresponding to the path with the highest weight. In order
to avoid executing indicative code unnecessarily often, we constantly update vis-
ited regions within the ACFG. Moreover, GORDON enables multiple executions
based on the coverage analysis of previous runs. Hence, a different path is taken
and different code regions are visited in each run, thereby challenging adversarial

108 C. Wressnegger et al.

R1 973: pushString "fla"

R1 975: pushString "sh.uti"

R1 977: add "fla" + "sh.uti"

R1 978: pushString "ls.Byt"

R1 980: add "flash.uti" + "ls.Byt"

R1 981: pushString "eArray"

R1 983: add "flash.utils.Byt" + "eArray"

R1 984: callProperty [ns:flash.utils] getDefinitionByName 1
R1 > Looking for definition of [ns:flash.utils] ByteArray
R1 > Getting definition for [ns:flash.utils] ByteArray

R1 987: getLex: [ns:] Class

Fig. 5. Excerpt of behavioral report (See footnote 2).

attempts to hide payload in paths not covered initially. As analysis output of the
guided execution, we obtain all covered ActionScript instructions across multiple
execution runs. Figure 5 shows a short excerpt of the instructions executed by a
malware to facilitate the CVE-2015-03-313 exploit? in the first run (R1).

Instructions at offset 973 to 983 show how the malware obfuscates the usage
of the ByteArray object at offset 984. This object is frequently used to construct
malicious payloads at run-time. The complete listing shows how the encrypted
payload is composed out of different parts, decrypted and finally loaded.

In the following we address certain implementation details of GORDON’s
guided code-execution with a special focus on the characteristics of Flash-based
malware and potential adversarial attempts to avoid analysis.

Reducing Branch Candidates. Although GORDON is capable of pursuing all
branches in ActionScript code, narrowing down the candidates speeds up the
process and limits the possibility of breaking the semantics of a sample. Often,
web-based attacks are tailored towards specific browser environments and thus
only trigger malicious activity upon checking for the correct target environ-
ment [27,44]. The conditional jumps underlying these checks provide excellent
candidates for our guided execution, as they usually lead to a malware sample’s
payload and are likely to be mutually exclusive, therefore reducing the risk of
semantic side-effects.

To restrict our analysis to these conditional jumps, we implement a taint-
tracking mechanism that propagates taint from environment-identifying data
sources to conditional jumps. In the scope of Flash-based malware, such data typ-
ically originates from the System.capabilities and flash.system.Capabilities
data structures available in ActionScript 2 and 3, respectively. To track the data
flow across built-in functions, we conservatively taint the result whenever at
least one of the input arguments is tainted. Note that for simplicity, we do not
consider implicit data-flow and control dependencies in our implementation [see
8,31] but leave this for future work.

Countering Obfuscation. To account for dynamically loaded code, we addition-
ally hook the interpreter’s loading routines. All such code then passes through

2 mdb: 4£293f0bda8f851525f28466882125b7 .

Comprehensive Analysis and Detection of Flash-Based Malware 109

the same analysis steps as the host file, allowing to analyze files downloaded
from the Internet as well as potentially encrypted code embedded in the Flash
animation itself equally thoroughly. This scheme is applied recursively to ensure
that all code is covered by our analysis.

Furthermore, GORDON implements an adaptive timeout mechanism rather
than a fixed period of time as utilized in previous works [13,19,44]. In particular,
we reset a 10s timer each time the sample attempts to load code, giving the
sample time to react to this event. This may increase the analysis duration for
certain files but significantly reduces the effort for those that do not load data
or do not contain ActionScript code at all. On average a sample is executed for
12.6 s with a maximum duration of 3 min, reducing the analysis time by 93 %
compared to a fixed timeout.

We also take precautions for the possibility that an execution path is not
present in the statically extracted ACFG. In these rare cases, we switch to deter-
mining the size of the branch in an online manner: GORDON looks ahead in order
to inspect the instructions right after the branching point and passively skips
over instructions to determine the sizes of the branches. This analysis in principle
is the same as performed earlier (Sect.4.1) but applied to the newly discovered
piece of bytecode only.

Lastly, we have observed an increase in the use of event-based program-
ming in recent malware—presumably to circumvent automatic detection—and
thus incorporate the automatic execution of such events into GORDON’s profiler.
Immediately after an event listener is added the specified function gets passed an
appropriate dummy event object and is executed without waiting for the actual
event to happen.

Updating the ACFG. Our method is designed to run a sample multiple times. To
this end, we update the edge labels of the ACFG during execution to reflect the
visited code and recompute the largest path in an online manner. Consequently,
our method implements a lightweight variant of multi-path exploration that
executes different code during each run. Since we decide on each condition at
runtime and identical code regions (functions) may be referenced multiple times
we not only cover the code of the single largest path in the graph but potentially
a combination of a number of paths. This softens the definition of such a path
as used in graph theory but makes a lot of sense for this application especially.

5 Learning-Based Detection

In order to demonstrate the expressiveness of our analysis, we implement a
learning-based detector that is trained on known benign and malicious Flash
animations. This approach spares us from manually constructing detection rules,
yet it requires a comprehensive dataset for training (see Sect.6.1). However, as
most learning algorithms operate on vectorial data, we first need to map the
analysis output of GORDON to a vector space.

110 C. Wressnegger et al.

Vector Space Embedding. To embed the structural and behavioral reports
generated by GORDON in a vector space, we make use of classic n-gram models.
These models have initially been proposed for natural language processing [9,41]
but are also used in computer security for analyzing sequential data [e.g.,
24,28,33,39,47].

In particular, we extract token n-grams from both kinds of analysis outputs
by moving a sliding window of length n over the tokens in the reports. While the
compact output representation of GORDON’s structural analysis already is in a
format that can be used to extract such tokens, the reports generated by the
guided code-execution need to be normalized first: We extract all instructions,
including their names and parameters. Moreover, we replace values passed as
parameters with their respective type, such as INT, FLOAT or STR. To avoid loosing
relevant information we however preserve all names of operations, functions and
objects. Finally, we tokenize the behavioral reports using white-space characters.

High-order n-grams compactly describe the content, implicitly reflect the
structure of the reports and can be used for establishing a joint map to a vector
space. To this end, we embed a Flash animation z in a binary vector space
{0,1}!8! spanned by the set S of all observed n-grams in the analysis output.
Each dimension in this vector space is associated with the presence of one n-gram
s € S. Formally, this mapping ¢ is given by

¢:x— (b(s,z))ses

where the function b(s,x) returns 1 if the n-gram s is present in the analysis
output of the file x and 0 otherwise.

Classification. Based on this vector space embedding, we apply a linear Support
Vector Machine (SVM) for learning a classification between benign and mali-
cious Flash animations. While several other learning algorithms could also be
applied in this setting, we stick to linear SVMs for their excellent generalization
capability and very low run-time complexity, which is linear in the number of
objects and features [37].

In short, a linear SVM learns a hyperplane that separates two classes with
maximum margin—in our setting corresponding to vectors of benign Flash ani-
mations and Flash-based malware. The orientation of the hyperplane is expressed
as a normal vector w in the input space and thus an unknown sample can be
classified using an inner product as follows

f(@) = (w, ¢(x)) —t

where ¢ is a threshold and f(x) the orientation of ¢(x) with respect to the
hyperplane. That is, f(z) > 0 indicates malicious content in z and f(z) < 0
corresponds to benign content.

Due to the way the mapping of n-grams is defined, the vector ¢(x) is sparse:
Out of millions of possible token n-grams, only a limited subset is present in
a particular sample z. These vectors can thus be compactly stored in memory.

Comprehensive Analysis and Detection of Flash-Based Malware 111

Also, the inner product to determine the final score can be calculated in linear
time in the number of n-grams in a sample

f(z) = Zwsb(s,x) = Z ws —t

ses sin x

We integrate this classifier into GORDON, such that it can be applied to either
the analysis outputs individually or to the joint representation of both.

6 Evaluation

We proceed to empirically evaluate the capabilities of GORDON in different
experiments. In particular, we study the effectiveness of the guided execution
in terms of code covered (Sect.6.2), compare the detection performance with
related approaches (Sect.6.3) and further demonstrate the effectivity of GORr-
DON in a temporal evaluation (Sect.6.4). Before presenting these experiments,
we introduce our dataset of Flash-based malware and benign animations.

6.1 Dataset Composition

The dataset for our evaluation has been collected over a period of 12 consecutive
weeks. In particular, we have been given access to submissions to the VirusTo-
tal service, thereby receiving benign and malicious Flash files likewise. Since
many web crawlers are directly tied to VirusTotal, the collected data reflects the
current landscape of Flash usage to a large part.

We split our dataset into malicious and benign Flash animations based on
the classification results provided by VirusTotal two months later: A sample is
marked as malicious, if it is detected by at least 3 scanners and flagged as benign,
if none of the 50 scanners hosted at VirusTotal detects the sample. Samples that
do not satisfy one of the conditions are discarded. This procedure enables us to
construct a reasonable estimate of the ground truth, since most virus scanners
refine their signatures and thus improve their classification results over time. The
resulting dataset comprises 1,923 malicious and 24,671 benign Flash animations,
with about half the samples being of version 8 or below and the other half of
more recent versions, therefore handled by the ActionScript VM version 1 and 2
respectively. A summary of the dataset is given in Table 1.

Table 1. Overview of the evaluation dataset

Classification | AVM1 | AVM2 | Total
Malicious 864 1,059 |1,923
Benign 12,046 | 12,625 | 24,671
Total 12,910 | 13,684 | 26,594

112 C. Wressnegger et al.

To account for the point in time the samples have been observed in the wild,
we group the samples in buckets according to the week of their submission to
VirusTotal. Consequently, we obtain 12 sets containing benign and malicious
Flash animations corresponding to the 12-week evaluation period. These tempo-
ral sets are used during the evaluation to construct temporarily disjoint datasets
for training and testing to conduct our experiments in strict chronological order:
For our experiments the performance is determined only on samples that have
been submitted to VirusTotal after any sample in the training data. This ensures
an experimental setup as close to reality as possible and demonstrates the app-
roach’s effectivity of providing timely protection.

6.2 Coverage Analysis

In our first experiment, we evaluate the effectiveness of the proposed guided
code-execution strategy. To this end, we investigate the code coverage of mal-
ware samples in our 12 week dataset. We apply GORDON to the malware and
inspect the output of the interpreter. Due to obfuscation techniques employed
by malware, the amount of statically contained code of a Flash file often is not
a reliable measure in this setting. Hence, we compare the number of executed
instructions with respect to a regular execution of the samples. With the path-
exploration strategy employed by GORDON, we manage to oberserve over 50 %
more ActionScript code than during a naive execution, and unveil crucial infor-
mation not provided otherwise. We mainly credit this leap in coverage to the
recursive analysis of dynamically loaded code and code assembled at runtime.

6.3 Comparative Evaluation

We continue to evaluate the detection performance of GORDON, showing its
ability to correctly classify Flash-based malware and specifically compare our
method with FLASHDETECT * [44]. In particular, we evaluate the approaches on
the complete set of 12 consecutive weeks, where we use weeks 1-6 for training and
weeks 7-9 for validation to calibrate the parameters of the detectors. We then
combine these two sets for final training and apply the detectors to weeks 10-12
for testing the detection performance. Table2 summarizes the results as the
true-positive rates and the corresponding false-positives rates of the methods.

Table 2. Detection rates of FLASHDETECT and GORDON.

Method FLASHDETECT? | GORDON-1% | GORDON-0.1%
False-postive rate | 1% 1% 0.1%
True-positive rate | 26.5 % 95.2 % 90.0 %

3 Versions not supported by FLASHDETECT (version 8 and below) have been excluded.

Comprehensive Analysis and Detection of Flash-Based Malware 113

GORDON. As described in Sect. 5 GORDON’s detector can be applied to either
the analysis outputs individually or to the joint representation of both. The rela-
tion thereof is shown in Fig. 6(a) as a ROC curve with the detection performance
as true-positive rate on the y-axis over the false-positive rate on the x-axis. To
map the reports of GORDON’s profiler to the vector space we make use of 4-
grams. Each representation and the combination of both are plotted as different
curves.

At a false-positive rate of 0.1 % the individual representations attain a detec-
tion rate of 60-65%. The combination of both (GORDON-0.1%) increases the
detection performance significantly and enables spotting 90.0 % of the Flash-
based attacks. If the false-positive rate is increased to 1%, our method even
detects 95.2 % of the malicious samples in our dataset (GORDON-1%). Addition-
ally we break down this results by CVE numbers. Figure 6(b) shows the detection
performance as true-positive rate over the years of appearance of the particu-
lar vulnerabilities in our dataset. The average performance is slightly below the
overall detection rate, indicating that we also detect malware that does not carry
exploits itself, but facilitates a different attack or uses obfuscation to obscure the
presence of an exploit. This perfectly demonstrates the capabilities of our app-
roach: First, the complementary views on the behavior and structure of Flash
animations provide a good basis for analyzing attacks and, second, this expres-
sive representation can be effectively used for detecting malware in the wild.

95% —

o
®
o
@

o
=Y
=4
Y

o
~

Detection rate
o
=

Detection rate

—— Gordon
—— Guided execution —— Average
Structural analysis 3 Gordon

0.2

o
N

0.0 0.0
0.000 0.005 0.010 0.015 0.020 07 '09 10 11 12 13 14 15

False-positive rate Year of CVE

Fig. 6. Detection performance of GORDON as ROC curve and sorted by CVE numbers.

FLASHDETECT. For the related method FLASHDETECT we slightly modify
the setting and exclude Flash animations of versions below 9 from the evalu-
ation, as this detector is dedicated to the analysis of ActionScript 3 malware
only. Nevertheless, FLASHDETECT only identifies 26.5 % of the malicious Flash
samples at a false-positive rate of 1%.

Although FLASHDETECT employs a heuristic for eliciting malicious behavior
during the execution of a Flash animation, it misses 3 out of 4 attacks. We
attribute this low performance to two issues: First, compared to our method the
employed branch selection strategy is less effective and second, the method has
been tailored towards specific types of attacks which are not prevalent anymore.
GORDON in contrast does not rely on manually selected features, but models

114 C. Wressnegger et al.

the underlying data using n-grams. Therefore it can better cope with the large
diversity of today’s malware. Due to the low performance of FLASHDETECT, we
omit it from the ROC curve in Fig. 6(a).

AV Engines. We finally determine the detection performance of 50 virus scanners
on the testing dataset. The 5 best scanners detect 82.3 %—93.5 % of the malicious
samples. However, due to the very nature of signature-based approaches they
provide detection with practically no false positives. If we parametrize GORDON
to zero false positives only 47.2 % of the malware is detected. This clearly shows,
that GORDON cannot compete with manually crafted signatures in the long
run, but provides solid detection of Flash-based malware shortly after its first
occurrence in the wild without the need for manual analysis.

As a consequence, we consider our method a valuable tool for improving the
analysis of Flash-based malware in the short run and a way to provide traditional
approaches with a good starting point in day-to-day business to efficiently craft
signatures for AV products.

6.4 Temporal Evaluation

To demonstrate the use of GORDON as a fast, complementary detector, we study
its performance over several weeks of operation. We again make use of 4-grams
and 12 consecutive weeks of collected Flash data. This time we however apply
the detector one week ahead of time, that is, we classify one week after the other,
based on the previous weeks.

We start off with week 1 as training, week 2 as validation and week 3 as
first test dataset. Over the course of the experiment we shift the time frame
forward by one week and likewise increase the training dataset. This can be seen
as expanding a window over the experiment’s period of time. Hence, GORDON’s
detector accumulates more and more data for training—just as a system oper-
ating in practice would. In order to optimally foster complementary approaches
we choose a rather liberal false-positive rate of 1%. Figure7 shows the true-
positive rates achieved by our method during 10 weeks of operation. GORDON
starts off below its average performance and takes time till week 5 to perform
well, reaching detection rates between 80 % and 99 % for the remaining weeks.
As our method makes use of machine learning techniques, the detector requires a
certain amount of training data before it is fully operational and reaches its opti-
mal performance. If parametrized to 0.1 % false positives, GORDON still reaches
detection performances of 82 % on average.

Overall, this experiment shows GORDON’s potential to improve on the detec-
tion performance shortly after a malware’s appearance in the wild. We consider
the number of false-positives—benign samples that need to be additionally ana-
lyzed without directly resulting in a malicious signature—as tolerable trade-off
for the leap taken in short-term detection performance. In practice, one may
start off with a rather strict configuration, accept a lower gain and scale up the
interval according to available resources.

Comprehensive Analysis and Detection of Flash-Based Malware 115

1.0 — —

0.8 7

0.6

0.4

Detection rate

0.2
—— Linear regression

[Gordon

0.0
3 4 5 6 7 8 9 0 11 12

Week

Fig. 7. GORDON’s performance over 12 consecutive weeks. The red line illustrates the
detector’s progression over time, showing a clear uptrend towards its optimal perfor-
mance. (Color figure online)

7 Limitations

The experiments discussed in the previous section demonstrate that our method
provides an effective solution for the analysis and detection of Flash-based mal-
ware. Nonetheless, our approach has some limitations which are discussed in the
following.

Breaking Code Semantics. With GORDON we make a trade-off between com-
pleteness and simplicity of analysis. By pragmatically forcing the execution of
specific branches the analyzer avoids expensive computations at execution-time,
but may—similar to previous approaches [27,48]—break semantics of underly-
ing code. Our experiments however show that restricting GORDON to branches
which depend on environment-identifying data (c.f. Sect.4) reduces the impact
of such inconsistencies and that the overall effectiveness of the detector is not
influenced in a negative way. Note that, GORDON’s path-exploration strategy of
guiding analysis towards indicative code regions can also be used in combination
with symbolic execution—an adaption worth exploring in future work.

Analysis-Aware Malware. Experience has shown that successful analysis sys-
tems have repeatedly been subject to dedicated evasion techniques of various
types [10]. For GORDON two particular variations come to mind: First, a mal-
ware author may leverage differences in implementation of Lightspark and Gnash
compared to the Adobe Flash Player. While this is true, the underlying concepts
of GORDON can be easily transferred to any interpreter when used in production,
possibly using instrumentation [21].

Second, malware might hide its payload in a seemingly irrelevant, low-
weighted branch, veiled by branches containing more instructions—potentially
across multiple stages. By maximizing the code coverage over multiple execu-
tions, GORDON systematically restricts the available space for hiding malicious
code. The number of executions thereby is a parameter that allows to strike a bal-
ance between coverage and analysis time. Furthermore, the proposed weighting

116 C. Wressnegger et al.

of the annotated ACFG can be refined to better characterize indicative
code regions and adapted to malware trends. This can be deployed with-
out the need to change the underlying analysis system and enhanced as
analysis-aware malware evolves.

Dynamic Loading of Other File Formats. Although GORDON inspects dynam-
ically loaded code in the form of Flash animations, we do not currently track
and analyze other file formats such as audio, video and image containers. These
have shown to be a possible attack vector in the scope of Flash malware in the
past and have been considered in other malware analysis systems [19,44]. The
detection of embedded malware, however, is a research field of its own and ranges
from statically matching shellcode signatures to finding suspicious code in dif-
ferent file containers [4,39,40,50]. For GORDON, we thus consider the analysis
of other file formats mainly an engineering effort of integrating other successful
approaches.

Interaction with JavaScript and the DOM. Similarly to malware families that
make use of ActionScript to set the grounds for exploiting a particular vulnera-
bility in the browser, there also exist attack campaigns that utilize JavaScript for
heap spraying, for instance, in order to exploit a vulnerability in the Flash Player.
This cannot be handled with the current prototype of GORDON as we solely focus
on the Flash part in this paper. Bringing together our method with systems that
have proven effective for detecting JavaScript malware [e.g., 13,16,35] may close
this gap elegantly.

Machine Learning for Malware Detection. Finally, as GORDON’s detector is
based on machine learning, it may be vulnerable to mimicry attacks [18,46,47].
For n-gram models, Fogla and Lee [17] show that generating a polymorphic
blending attack is NP-hard, but can be approximated for low-order n-grams.
While non-trivial in practice, such attacks could theoretically be conducted
against GORDON. However, the use of high-order n-grams elevates complexity to
a level where such attacks become impractical. In addition to mimicry, a pow-
erful attacker may systematically introduce samples to shift the classification
boundary to her advantage [5,23]. These attacks can have an effect on GOR-
DON’s detector, but require access to large portions of the training data to be
effective. As a consequence, such attacks can be alleviated if data from different
sources is mixed and subsequently sanitized [15].

8 Related Work

A large body of research has dealt with the detection and analysis of web-based
attacks, yet Flash-based malware has received only little attention so far. In this
section, we discuss work related to GORDON, focusing on two strains of research:
(1) Flash-based malware and (2) multi-path exploration.

Note that the implementations of JavaScript and ActionScript interpreters
are fundamentally different, making an application of detection approaches for

Comprehensive Analysis and Detection of Flash-Based Malware 117

malicious JavaScript source-code unlikely to operate on Flash-based malware
available in bytecode. Consequently, we do not discuss approaches for malicious
JavaScript code in this paper and refer the reader to a wide range of research [7,
13,26,27,35]. Nonetheless, combining detection methods for malicious JavaScript
and Flash can be of considerable value. Also, the work by Srndi¢ and Laskov [45]
is of particular interest, since they have been the first to show the practicality
of using hierarchical document structure for detection.

Flash-based Attacks and Malware. Only few works have studied means to fend off
malware targeting the Adobe Flash platform [19,44]. ODOSWIFF [19], focuses
on detecting malicious ActionScript 2 Flash advertisements based on expert
knowledge of prevalent attacks. In contrast to ODOSWIFF, our method employs
machine learning to automatically produce a classifier based on benign and mali-
cious Flash animations. FLASHDETECT [44], the successor of ODOSWIFF also
makes use of machine learning techniques and, similar to GORDON, employs an
instrumented interpreter to dump dynamically loaded code. However, FLASHDE-
TECT only pursues one level of staged-execution, focuses solely on ActionScript 3
and employs a simple heuristic for subverting environmental checks that has
proven insufficient for modern Flash-based malware. By contrast, GORDON aims
at maximizing the coverage of indicative code regions independent of particu-
lar attacks, across multiple stages and versions. As a result, our method allows
to uncover vitally more code than FLASHDETECT and thereby attains a better
basis for detecting attacks. Furthermore, by not relying on hand-crafted features
GORDON can better cope with the large diversity of today’s malware.

Industry research has mainly focused on instrumenting Flash interpreters
for analysis purposes. Wook Oh [49], for instance, presents methods to patch
ActionScript bytecode to support function hooking, and more recently, Hirvo-
nen [21] introduces an approach for instrumenting Flash based on the Intel Pin
Platform. These systems complement GORDON and may be used to implement
our method for other platforms.

Aside from Flash-based malware and therefore, orthogonal to GORDON sev-
eral authors have inspected the malicious use of Flash’s cross-domain capabili-
ties [25], its vulnerability to XSS attacks [43] and the prevention of such [29].

Multi-path Ezploration. Ideally an analysis covers all possible paths and corner
case, which however is not feasible due to the potentially exponential number of
different execution paths. Most notably in this context is the work by Moser et al.
[30], who propose to narrow down analysis to paths influenced by input data such
as network I/0, files or environment information. While this effectively decreases
the number of paths to inspect it still exhaustively enumerates all paths of this
subset under investigation. A second strain of research has considered symbolic
execution for the analysis of program code and input generation [e.g., 12,36].
Brumley et al. [6] combine dynamic binary instrumentation with symbolic exe-
cution to identify malware behavior triggered by external commands. Similarly,
Crandall et al. [14] use symbolic execution to expose specific points in time where

118 C. Wressnegger et al.

malicious behavior is triggered. Equally to the enumeration of paths, symbolic
execution shares the problem of an exponential state space.

With Rozzle, Kolbitsch et al. [27] also make use of techniques from symbolic
execution. However, instead of generating inputs, data in alternative branches
is represented symbolically and, upon subsequent execution of both branches,
merged. In doing so, Kolbitsch et al. except to break existing code due to the
execution of infeasible paths. Based on the symbolic representation Rozzle like-
wise is subject to an exponential state space that is dealt with by limiting the
depth of the symbolic trees used. Limbo [48] avoids this kind of state explosion
and reverts to a more simple strategy of forcing branching conditions to monitor
execution. Limbo however again exhaustively enumerates paths and thus does
not address the underlying problem in the first place.

All these methods are either driven by the original execution path [27,48]
or focus on external triggers [6,14,30]. GORDON on the other hand, first identi-
fies indicative code regions and guides the interpreter towards these, enabling a
payload-centric analysis.

9 Conclusions

In light of an increasing number of vulnerabilities in Flash, there is an urgent
need for tools that provide an effective analysis and detection of Flash-based
malware. As a remedy, we present GORDON, a novel approach that combines
a structural analysis of the Flash container format with guided execution of
embedded ActionScript code—a lightweight and pragmatic form of multi-path
exploration. Our evaluation on 26,600 Flash samples shows that GORDON is
able to cover more code than observed with other approaches. Moreover, this
increase of coverage exposes indicative patterns that enable GORDON’s detector
to identify 90-95 % of malware shortly after its appearance in the wild.

Our method can be used to bootstrap the current process of signature gener-
ation and point an analyst to novel malware samples. GORDON thereby provides
a valuable step towards the timely protection of end users. Furthermore, the
guided execution of code is a simple yet effective strategy for studying malicious
code that might also be applicable in other branches of malware analysis, such
as for JavaScript and x86 inspection.

Acknowledgments. The authors would like to thank Emiliano Martinez of Virus-
Total for supporting the acquisition of malicious Flash files. Furthermore, we
gratefully acknowledge funding from the German Federal Ministry of Education
and Research (BMBF) under the projects APT-Sweeper (FKZ 16KIS0307) and
INDI (FKZ 16KIS0154K) as well as the German Research Foundation (DFG) under
project DEVIL (RI 2469/1-1).

References

1. Adobe Systems Incooperated: ActionScript virtual machine 2 (AVM2) overview.
Technical report, Adobe System Incooperated (2007)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Comprehensive Analysis and Detection of Flash-Based Malware 119

Adobe Systems Incooperated: SWF file format specification. Technical report,
Adobe System Incooperated (2013)

Aho, A.V., Sethi, R., Ullman, J.D.: Compilers Principles, Techniques, and Tools,
2nd edn. Addison-Wesley, Reading (2006)

Baecher, P., Koetter, M.: libemu - x86 Shellcode Emulation (2008)

Biggio, B., Nelson, B., Laskov, P.: Poisoning attacks against support vector
machines. In: Proceedings of International Conference on Machine Learning
(ICML) (2012)

Brumley, D., Hartwig, C., Liang, Z., Newsome, J., Song, D., Yin, H.: Automatically
identifying trigger-based behavior in malware. In: Lee, W.; Wang, C., Dagon, D.
(eds.) Botnet Detection, pp. 65-88. Springer, US (2008)

Canali, D., Cova, M., Vigna, G., Kruegel, C.: Prophiler: a fast filter for the large-
scale detection of malicious web pages. In: Proceedings of the International World
Wide Web Conference (WWW), pp. 197-206, April 2011

Cavallaro, L., Saxena, P., Sekar, R.: On the limits of information flow techniques
for malware analysis and containment. In: Zamboni, D. (ed.) DIMVA 2008. LNCS,
vol. 5137, pp. 143-163. Springer, Heidelberg (2008)

Cavnar, W., Trenkle, J.: N-gram-based text categorization. In: Proceedings of
SDAIR, Las Vegas, pp. 161-175, NV, USA, April 1994

Chen, X., Andersen, J., Mao, Z.M., Bailey, M., Nazario, J.: Towards an under-
standing of anti-virtualization and anti-debugging behavior in modern malware.
In: Proceedings of Conference on Dependable Systems and Networks (DSN),
pp. 177-186 (2008)

Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
3rd edn. MIT Press, Cambridge (2009)

Cova, M., Felmetsger, V., Banks, G., Vigna, G.: Static detection of vulnerabilities
in x86 executables. In: Proceedings of Annual Computer Security Applications
Conference (ACSAC), pp. 269278 (2006)

Cova, M., Kruegel, C., Vigna, G.: Detection and analysis of drive-by-download
attacks and malicious JavaScript code. In: Proceedings of the International World
Wide Web Conference (WWW), pp. 281-290 (2010)

Crandall, J.R., Wassermann, G., Oliveira, D.A.S., Su, Z., Wu, S.F., Chong, F.T.:
Temporal search: detecting hidden malware timebombs with virtual machines. In:
Proceedings of International Conference on Architectural Support for Program-
ming Languages and Operating Systems, pp. 25-36 (2006)

Cretu, G., Stavrou, A., Locasto, M., Stolfo, S., Keromytis, A.: Casting out demons:
Sanitizing training data for anomaly sensors. In: Proceedings of IEEE Symposium
on Security and Privacy, pp. 81-95 (2008)

Curtsinger, C., Livshits, B., Zorn, B., Seifert, C.: Zozzle: fast and precise in-browser
JavaScript malware detection. In: Proceedings of USENIX Security Symposium,
pp. 33-48 (2011)

Fogla, P., Lee, W.: Evading network anomaly detection systems: formal reasoning
and practical techniques. In: Proceedings of ACM Conference on Computer and
Communications Security (CCS), pp. 59-68 (2006)

Fogla, P., Sharif, M., Perdisci, R., Kolesnikov, O., Lee, W.: Polymorphic blending
attacks. In: Proceedings of USENIX Security Symposium, pp. 241-256 (2006)
Ford, S., Cova, M., Kruegel, C., Vigna, G.: Analyzing and detecting malicious
flash advertisements. In: Proceedings of Annual Computer Security Applications
Conference (ACSAC), pp. 363-372 (2009)

gnash. GNU Gnash. https://www.gnu.org/software/gnash. Accessed April 2016

https://www.gnu.org/software/gnash

120

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.
33.

34.
35.

36.

37.
38.
39.

40.

41.

C. Wressnegger et al.

Hirvonen, T.: Dynamic flash instrumentation for fun and profit. In: Proceedings of
Black Hat USA (2014)

httparchive. http://www.httparchive.org. Accessed April 2016

Huang, L., Joseph, A.D.; Nelson, B., Rubinstein, B.I.P., Tygar, J.D.: Adversarial
machine learning. In: Proceedings of ACM Workshop on Artificial Intelligence and
Security (AISEC), pp. 43-58 (2011)

Jang, J., Agrawal, A., Brumley, D.: ReDeBug: finding unpatched code clones in
entire os distributions. In: Proceedings of IEEE Symposium on Security and Pri-
vacy, pp. 48-62 (2012)

Johns, M., Lekies, S.: Biting the hand that serves you: a closer look at client-side
flash proxies for cross-domain requests. In: Holz, T., Bos, H. (eds.) DIMVA 2011.
LNCS, vol. 6739, pp. 85-103. Springer, Heidelberg (2011)

Kapravelos, A.; Shoshitaishvili, Y., Cova, M., Kruegel, C., Vigna, G.: Revolver: an
automated approach to the detection of evasive web-based malware. In: Proceed-
ings of USENIX Security Symposium, pp. 637651, August 2013

Kolbitsch, C., Livshits, B., Zorn, B., Seifert, C.: Rozzle: de-cloaking internet mal-
ware. In: Proceedings of IEEE Symposium on Security and Privacy, pp. 443-457
(2012)

Laskov, P., Srndi¢, N.: Static detection of malicious javascript-bearing PDF doc-
uments. In: Proceedings of Annual Computer Security Applications Conference
(ACSAC), pp. 373-382 (2011)

Louw, M.T., Thotta, K., Venkatakrishnan, V.N.: AdJail: practical enforcement
of confidentiality and integrity policies on web advertisments. In: Proceedings of
USENIX Security Symposium, pp. 371-388 (2010)

Moser, A., Kruegel, C., Kirda, E.: Exploring multiple execution paths for malware
analysis. In: Proceedings of IEEE Symposium on Security and Privacy, pp. 231-245
(2007)

Nair, S.K., Simpson, P.N.D., Crispo, B., Tanenbaum, A.S.: A virtual machine based
information flow control system for policy enforcement. Electron. Notes Theor.
Comput. Sci. (ENTCS) 197(1), 3-16 (2008)

Ozkan, S.: CVE Details. http://www.cvedetails.com. Accessed April 2016
Perdisci, R., Ariu, D., Fogla, P., Giacinto, G., Lee, W.: McPAD: a multiple clas-
sifier system for accurate payload-based anomaly detection. Comput. Netw. 5(6),
864-881 (2009)

Pignotti, A.: Lightspark. https://github.com/lightspark. Accessed April 2016
Ratanaworabhan, P., Livshits, B., Zorn, B.: Nozzle: a defense against heap-
spraying code injection attacks. In: Proceedings of USENIX Security Symposium,
pp. 169-186 (2009)

Saxena, P., Akhawe, D., Hanna, S., Mao, F., McCamant, S., Song, D.: A sym-
bolic execution framework for javascript. In: Proceedings of IEEE Symposium on
Security and Privacy, pp. 513-528 (2010)

Scholkopf, B., Smola, A.J.: Learning with Kernels. MIT Press, Cambridge (2002)
Sedgewick, R., Wayne, K.: Algorithms, 4th edn. Addison-Wesley, Boston (2011)
Shafiq, M.Z., Khayam, S.A., Farooq, M.: Embedded malware detection using
markov n-grams. In: Zamboni, D. (ed.) DIMVA 2008. LNCS, vol. 5137, pp. 88-107.
Springer, Heidelberg (2008)

Stolfo, S.J., Wang, K., Li, W.-J.: Towards stealthy malware detection. In:
Christodorescu, M., Jha, S., Maughan, D., Song, D., Wang, C. (eds.) Malware
Detection, pp. 231-249. Springer, USA (2007)

Suen, C.: N-gram statistics for natural language understanding, text processing.
IEEE Trans. Pattern Anal. Mach. Intell. 1(2), 164-172 (1979)

http://www.httparchive.org
http://www.cvedetails.com
https://github.com/lightspark

42.

43.

44.

45.

46.

47.

48.

49.

50.

Comprehensive Analysis and Detection of Flash-Based Malware 121

Systems, A.: Adobe Flash runtimes: Statistics. http://www.adobe.com/products/
flashruntimes/statistics.html. Accessed April 2016

van Acker, S., Nikiforakis, N., Desmet, L., Joosen, W., Piessens, F.: FlashOver:
automated discovery of cross-site scripting vulnerabilities in rich internet applica-
tions. In: Proceedings of ACM Symposium on Information, Computer and Com-
munications Security (ASIACCS) (2012)

Van Overveldt, T., Kruegel, C., Vigna, G.: FlashDetect: actionscript 3 malware
detection. In: Balzarotti, D., Stolfo, S.J., Cova, M. (eds.) RAID 2012. LNCS, vol.
7462, pp. 274-293. Springer, Heidelberg (2012)

Srndié¢, N., Laskov, P.: Detection of malicious PDF files based on hierarchical docu-
ment structure. In: Proceedings of Network and Distributed System Security Sym-
posium (NDSS) (2013)

Wagner, D., Soto, P.: Mimicry attacks on host based intrusion detection systems.
In: Proceedings of ACM Conference on Computer and Communications Security
(CCS), pp. 255-264 (2002)

Wang, K., Parekh, J.J., Stolfo, S.J.: Anagram: a content anomaly detector resistant
to mimicry attack. In: Zamboni, D., Kruegel, C. (eds.) RAID 2006. LNCS, vol.
4219, pp. 226-248. Springer, Heidelberg (2006)

Wilhelm, J., Chiueh, T.: A forced sampled execution approach to kernel rootkit
identification. In: Kruegel, C., Lippmann, R., Clark, A. (eds.) RAID 2007. LNCS,
vol. 4637, pp. 219-235. Springer, Heidelberg (2007)

Wook Oh, J.: AVM inception - how we can use AVM instrumentation in a beneficial
way. In: Shmoocon (2012)

Wressnegger, C., Boldewin, F., Rieck, K.: Deobfuscating embedded malware using
probable-plaintext attacks. In: Stolfo, S.J., Stavrou, A., Wright, C.V. (eds.) RAID
2013. LNCS, vol. 8145, pp. 164-183. Springer, Heidelberg (2013)

http://www.adobe.com/products/flashruntimes/statistics.html
http://www.adobe.com/products/flashruntimes/statistics.html

Reviewer Integration and Performance
Measurement for Malware Detection

Brad Miller!®) | Alex Kantchelian?, Michael Carl Tschantz®, Sadia Afroz?,
Rekha Bachwani*, Riyaz Faizullabhoy?, Ling Huang®, Vaishaal Shankar?,
Tony Wu?, George Yiu®, Anthony D. Joseph?, and J.D. Tygar?

! Google Inc., Mountain View, USA
bradmiller@google.com
2 UC Berkeley, Berkeley, USA
{akant,riyazdf,vaishaal,tony.wu,adj,tygar}@cs.berkeley.edu
3 International Computer Science Institute, Berkeley, USA
{mct,sadia}@icsi.berkeley.edu
4 Netflix, Los Gatos, USA
rbachwani@netflix.com
® DataVisor, Mountain View, USA
ling.huang@datavisor.com
6 Pinterest, San Francisco, USA
george@pinterest.com

Abstract. We present and evaluate a large-scale malware detection sys-
tem integrating machine learning with expert reviewers, treating review-
ers as a limited labeling resource. We demonstrate that even in small
numbers, reviewers can vastly improve the system’s ability to keep pace
with evolving threats. We conduct our evaluation on a sample of Virus-
Total submissions spanning 2.5years and containing 1.1 million bina-
ries with 778 GB of raw feature data. Without reviewer assistance, we
achieve 72 % detection at a 0.5 % false positive rate, performing compa-
rable to the best vendors on VirusTotal. Given a budget of 80 accurate
reviews daily, we improve detection to 89 % and are able to detect 42 %
of malicious binaries undetected upon initial submission to VirusTotal.
Additionally, we identify a previously unnoticed temporal inconsistency
in the labeling of training datasets. We compare the impact of training
labels obtained at the same time training data is first seen with training
labels obtained months later. We find that using training labels obtained
well after samples appear, and thus unavailable in practice for current
training data, inflates measured detection by almost 20 % points. We
release our cluster-based implementation, as well as a list of all hashes
in our evaluation and 3% of our entire dataset.

1 Introduction

Malware constitutes an enormous arms race in which attackers evolve to evade
detection and detection mechanisms react. A recent study found that only 66 %

B. Miller and G. Yiu—Primarily contributed while at UC Berkeley.
R. Bachwani—Primarily contributed while at Intel.
© Springer International Publishing Switzerland 2016

J. Caballero et al. (Eds.): DIMVA 2016, LNCS 9721, pp. 122-141, 2016.
DOT: 10.1007/978-3-319-40667-1_7

Reviewer Integration and Performance Measurement for Malware Detection 123

of malware was detected within 24h, 72 % within one week, and 93 % within
one month [9]. To evade detection, attackers produce a large number of different
malware binaries, with McAfee receiving over 300,000 binaries daily [14].

Machine learning offers hope for timely detection at scale, but the setting of
malware detection differs from common applications of machine learning. Unlike
applications such as speech and text recognition where pronunciations and char-
acter shapes remain relatively constant over time, malware evolves as adversaries
attempt to fool detectors. In effect, malware detection becomes an online process
in which vendors must continually update detectors in response to new threats,
requiring accurate labels for new data. Unfortunately, malware labeling poses
unique challenges. Whereas reading is sufficient to label text, the deceptive and
technical nature of malware requires expert analysis.

We present an approach to detection integrating machine learning and expert
reviews to keep pace with new threats at scale. As expert labeling is expensive,
we model the expert as capable of supplying labels for a limited selection of
samples. We then combine the limited supply of expert reviewer labels with
the broader supply of noisy labels produced by anti-virus scanners to train a
detection model. We evaluate our approach using a sample of submissions to
VirusTotal, a malware analysis and detection website [27]. The dataset includes
a timestamp and anti-virus labels for each submission, capturing the emergence
and prevalence of binaries, as well as label knowledge, over a 2.5 year period.
We train new models weekly with a customized approach combining accurate
reviewer labels and noisy anti-virus labels and evaluate each model over the
coming week. To evaluate at scale, we simulate reviewer labels by revealing the
results of automated scans taken at least 8 months after a sample first appears,
providing opportunity for automated detectors to update and detect new threats.

We recognize that accurate training labels are not instantaneously available
for all data, and therefore examine the impact of training label practices on per-
formance measurement. Prior work has introduced temporal sample consistency,
requiring that training binaries predate evaluation binaries [13]. We introduce
temporal label consistency, imposing the requirement that training labels also
predate evaluation binaries. Temporal label consistency restricts label quality
relative to common practice, which collects labels well after binaries first appear
and uses the same mature labels for both training and evaluation, leading to
artificially inflated performance measurements.

Our work offers the following contributions:

— We present a detection system that integrates reviewers to increase detection
from 72% at 0.5% false positive rate, comparable to the best vendors on
VirusTotal, to 77 % and 89 % detection with a budget of 10 and 80 reviews
daily on average. Additionally, our system detects 42 % of malicious binaries
initially undetected by vendors in our evaluation.

— We demonstrate impact of temporally inconsistent labels on performance mea-
surement, artificially inflating measured detection from 72 % to 91 % at a 0.5 %
false positive rate.

124 B. Miller et al.

— We publicly release! our implementation, 3% of all data, and list of all 1.1
million unique binaries appearing over 2.5 years included in our evaluation.

Our evaluation also includes several additional experiments offering a more
complete understanding of detection performance. Although our design includes
both static and dynamic features, since VirusTotal detectors must operate stat-
ically we also compare our performance against VirusTotal using static features
alone. Note that the restriction to static features actually disadvantages our
approach, as VirusTotal detectors may operate against the arbitrary file and
we restrict ourselves to static attributes available through VirusTotal. Our per-
formance is slightly impacted, producing 84 % detection at 0.5 % false positive
rate with 80 queries daily and still surpassing detectors on VirusTotal. We also
explore the impact of inaccurate human labelers on the system’s detection per-
formance by adding random noise to the simulated expert labels. We find that
our design is robust in the presence of imperfect labelers. Given reviewers with
a 90 % true positive rate and a 5% false positive rate our system still achieves
82 % detection at a 0.5 % false positive rate, as compared to 89 % detection using
accurate reviewers.

We evaluate our contributions using VirusTotal data because each submis-
sion represents a request for analysis from a user, researcher or member of the
security community. VirusTotal responds to requests by running dozens of anti-
virus products from the security industry, including large firms such as McAfee,
Symantec and Kaspersky. As we evaluate our contributions on a dataset includ-
ing submissions from researchers and the security industry, not a random sam-
pling of files from end user machines, we envision our approach as improving the
detection workflows within security firms which ultimately produce products
for end users. We demonstrate that by investing a fraction of the engineering
expertise of large security firms, we can vastly improve the ability to determine
whether a binary is malicious.

In Sect. 2, we review prior work. Section 3 presents the design of our system,
including feature extraction, machine learning and integration of the labeling
expert, and Sect. 4 examines our dataset. Section 5 discusses our system imple-
mentation and then examines the impact of different performance measurement
techniques and evaluates the performance of our detection system. Lastly, Sect. 6
concludes.

2 Prior Work

In this section we present the prior work most directly related to our own areas
of contribution: reviewer integration to improve automated detection and perfor-
mance measurement. Consistent with the focus of our work, we primarily discuss
systems for malware detection rather than family classification or clustering. An
extensive discussion of related work is available online [15].

! http://secml.cs.berkeley.edu/detection_platform/.

http://secml.cs.berkeley.edu/detection_platform/

Reviewer Integration and Performance Measurement for Malware Detection 125

Since minimal prior work has explored reviewer integration, we begin by dis-
cussing systems that moderate access to any expensive labeling resource. Several
works employ a weak detector design, which cheaply labels some instances as
benign but requires an expensive confirmation to label any instance as malicious.
Provos et al. and Canali et al. present weak detector systems for malicious URLs
which moderate access to expensive analysis in a virtual machine [5,19]. Sim-
ilarly, Chakradeo et al. present MAST, a system capable of detecting 95% of
Android malware at the cost of analyzing 13 % of non-malicious applications [6].
Karanth et al. prioritize JavaScript for manual review with the end goal of iden-
tifying new vulnerabilities [12]. In contrast with weak detectors, we view the
expensive resource as an integrated component in a periodically retrained sys-
tem, rather than the final step in a detection pipeline. Instead of attempting to
pass the entire and exact set of malicious instances to the expensive resource
for verification, we identify a smaller set of instances that improve automated
detection and use scalable components to determine final instance labels.

In contrast to weak detector approaches, Nissim et al. present a system that
integrates reviewers during retraining but focuses on increasing the raw number
of malicious instances submitted to the reviewer rather than improving auto-
mated detection. Nissim et al. introduce two reviewer integration strategies and
compare both to uncertainty sampling, a reviewer integration technique from
machine learning [24]. Although each new strategy reviews more malicious sam-
ples, neither improves automated detection, instead producing lower true pos-
itive and higher false positive rates [16] or true positive rates within 1% [17]
of uncertainty sampling. The evaluation also lacks timestamped data and ran-
domly divides samples into 10 artificial “days”. Since there are no temporal
effects in the sample ordering, it is not possible to accurately assess detector
performance or reviewer workload when confronted with new attacks. In con-
trast, we demonstrate novel reviewer integration improving detection 17 % points
over uncertainty sampling and conduct an evaluation with timestamped samples
and labels spanning 2.5 years.

Sculley et al. present Google’s approach to detecting adversarial advertise-
ments, integrating human reviewers and automated detection [23]. Unfortu-
nately, the presentation omits key details and the sensitive nature of the system
prevents any code or data release. For example, the evaluation does not specify
how many human reviewers are necessary, the added benefit from additional
reviewers or the total number of queries to each reviewer. Likewise, the impact
of reviewers errors and different integration strategies is also unspecified. We
contribute an analysis of the marginal benefit from additional reviews, as well
as the impacts of reviewer errors and different reviewer integration strategies.
Additionally, we release all source code and sample data to facilitate future work.

We also examine prior work related to performance measurement. The most
common performance measurement technique in malware detection is cross-
validation (e.g., [4,8,21,26]). Cross-validation tends to inflate measured perfor-
mance by partitioning training and evaluation data randomly, effectively guaran-
teeing that any attack seen in evaluation is also seen in training [11]. Kolter et al.

126 B. Miller et al.

Internal Component labeled by reviewer

v 1

1

Binaries —>| Feature Extraction |—>| Current Model |—> Prediction

Detection Pipeline |
Training Pipeline Binaries labeled Predictions for binaries :
benign by detectors labeled benign by detectors 1

_____________ 1

- P 1

Binary Database s @S@—) I;t:\;_;iz;:j !

1

> Binaries labeled with current] Binaries labeled !

by VirusTotal detectors| model and VirusTotal detectors by reviewer| !

Key Binaries already I

1

1

1

i
iExternal Label Sourcej

Fig. 1. The detection pipeline employs the current model to detect malware, and the
training pipeline produces the next model for use in the detection pipeline. During each
retraining period, the training pipeline reviews all available training data and selects
binaries for submission to the integrated reviewer. Binaries labeled by the reviewer are
combined with binaries labeled using the current model and anti-virus scan results to
train the next model.

improve on cross-validation by using a separate training dataset which entirely
predates any evaluation data [13]. Furthering this approach, Perdisci et al. and
Srndic et al. conduct evaluations which use a single timestamped dataset divided
chronologically into periods, using the first n — 1 periods to detect content in
period n [18,25]. While these works maintain temporal sample consistency, none
present or systematically evaluate the impact of temporal label consistency.
Prior work approaching temporal label consistency has either evaluated a
system in production, which would have no way to be temporally inconsistent,
or a system that retrains on its own output. Rajab et al. evaluate a deployed
PDF malware detector, which trains using presently available knowledge and is
evaluated in retrospect after anti-virus labels have matured [20]. Schwenk et al.
demonstrate the infeasibility of a JavaScript malware system which is iteratively
retrained over time using its own output labels, but do not compare temporally
consistent labels from an external source with labels from the future [22].

3 Detector Design

In this section we present our detector design, including feature extraction,
machine learning and reviewer integration. Figure 1 presents an overview of our
approach. When a binary arrives, the detection pipeline extracts the features,
applies the current model to classify the binary as malicious or benign, and the
training pipeline stores the binary in a database along with all other binaries
seen to-date. During each retraining period, binaries not detected by scanners
on VirusTotal are considered for submission to the integrated reviewer. Binaries
confidently detected by the current model are included in training data with a
malicious label, and the remaining purportedly benign binaries are submitted to
the integrated reviewer as the review budget allows. The remaining un-submitted
binaries are included in the training data as benign. At the end of the retraining
period, the next model produced in the training pipeline replaces the current
model and the process repeats.

Reviewer Integration and Performance Measurement for Malware Detection 127

We begin by examining the general techniques used for feature vectorization
in Sect. 3.1, and then present the application of feature vectorization techniques
to static and dynamic attributes of binaries in Sect.3.2. Section 3.3 presents
our approach to labeling training data, and Sect. 3.4 describes our approach to
reviewer integration.

3.1 Approaches to Feature Vectorization

Many machine learning algorithms work best with numeric features, but not all
attributes of binaries come in that format. We discuss four general techniques to
convert static and dynamic attributes of binaries into numerical feature vectors.
Which of the four techniques we can apply varies across attributes. For each
technique, we discuss how we apply the technique to maximize robustness against
evasion.

Categorical. The categorical mapping associates one dimension with each possi-
ble attribute value. For example, the DeviceIoControl API call may correspond
to index ¢ in feature vector x, where x; = 1 if and only if the binary issues the
DeviceIOControl API call. Since the absence of an attribute reveals informa-
tion about a binary, we include a special null index to indicate that the value
of the attribute is missing. For example, the file may not generate any network
traffic, or may not be signed. Where possible, we structure our application of
categorical feature extraction to constrain the attacker to remain within a lim-
ited set of values. For example, we apply subnet masks to IP addresses accessed
by binaries to effectively shrink the IP space and associate access to similar IP
addresses with the same feature index.

Ordinal. Ordinal attributes assume a specific value in an ordered range of possi-
bilities, such as the size of a binary. To remain robust to moderate fluctuations as
adversaries attempt to evade detection, we vectorize ordinal values using a bin-
ning scheme rather than associating each distinct quantity with a unique index.
The binning scheme works as follows: for a given attribute value, we return the
index of the bin which the value falls into, and set the corresponding dimension
to 1. For attributes that vary widely, we use a non-linear scheme to prevent large
values from overwhelming small values during training. For example, the number
of written files v is discretized to a value 4 such that 3 < v < 3'*1, where the
exponential bins accommodate the large dynamic range of this quantity.

Free-Form String. Many important attributes appear as unbounded strings,
such as the comments field of the signature check. Representing these attributes
as categorical features could allow an attacker to evade detection by altering
a single character in the attribute, causing the attribute to map into a dif-
ferent dimension. To increase robustness, we capture 3-grams of these strings,
where each contiguous sequence of 3 characters represents a distinct 3-gram,
and consider each of the 3-grams as a separate dimension. Since this approach is
still sensitive to variations that alter 3-grams, we introduce an additional string
simplification.

128 B. Miller et al.

Table 1. Feature vectors reflect static and dynamic attributes of binaries. We apply
categorical vectorization to all attributes, as well as *string, Tordinal and *sequential
vectorization for selected attributes.

Feature Name Description Example
Binary Metadata*® Metadata from MAGIC and EXIFTOOL PECompact2 compressed
° Digital Signing* Certificate chain identity attributes Google Inc; Somoto Ltd
.f: Heuristic Tools TRID; Tools from ClamAV, Symantec InstallShield setup; DirectShow filter
& Packer Detection Packer or crypter used on binary UPX; NSIS; Armadillo
PE Properties*" Section hashes, entropies; Resource list, types image/x-png; hash:eb0c7c289436. . .
Static Imports Referenced library names and functions msvert.dl1l/1div; certcli.dll
Dynamic Imports Dynamically loaded libraries shell32.d11; dnsapi.dll
o File Operations’ Number of operations; File paths accessed C:\WINDOWS\system32\mshtml.tlb
E Mutex Operations™ Each created or opened mutex ShimCacheMutex; RasPbFile
g Network Operations' IPs accessed; HTTP requests; DNS requests 66.150.14.%; b.liteflames.com
5’ Processes Created, injected or terminated process names python.exe; cmd.exe
Registry Operations Registry key set or delete operations SET: ...\WindowsUpdate\AU\NoAutoUpdate
Windows API Calls? n-grams of Windows APIT calls DeviceIoControl | IsDebuggerPresent

To reduce sensitivity to 3-gram variations, we define classes of equivalence
between characters and replace each character by its canonical representative.
For instance, the string 3PUe5f would be canonicalized to 0BAaOb, where upper
and lowercase vowels are mapped to ‘A’ and ‘a’ respectively, upper and lowercase
consonants are mapped to ‘B’ and ‘b’, and numerical characters to ‘0’. Likewise,
the string 7SEi2d would also canonicalize to 0BAaOb. Occasionally, we sort the
characters of the trigrams to further control for variation and better capture the
morphology of the string. Mapping portable executable resource names, which
sometimes exhibit long random-looking bytes sequences, is one application of
this string simplification technique.

Sequential. The value of some attributes is a sequence of tokens where each
token assumes a finite range of values. These sequential attributes are strongly
related to free-form string attributes, although the individual tokens are not
restricted to being individual characters. We use sequential feature extraction to
capture API call information since there is a finite set of API calls and the calls
occur in a specific order. As with free-form string features, we use an n-gram
approach where each sequence of n adjacent tokens comprises an individual fea-
ture. Sequential vectorization can be vulnerable to evasion in situations where
adversaries are able to introduce tokens which have no effect and separate mean-
ingful tokens. To increase robustness, we apply n-gram vectorization with n = 1
and n = 2 as well as n = 3, decreasing the number of unique n-grams which the
adversary is able to generate.

3.2 Attributes of Binaries

VirusTotal provides static and dynamic attributes for each binary. Whereas
static attributes are obtained though analysis of the binary itself, dynamic
attributes are obtained through execution in the Cuckoo sandbox [3]. Table1
provides an overview of static attributes, dynamic attributes and associated
vectorization techniques.

Reviewer Integration and Performance Measurement for Malware Detection 129

The static attributes available from VirusTotal consist of direct properties
of the executable code itself, metadata associated with or derived from the exe-
cutable and the results of heuristic tools applied to the executable. The attributes
extracted directly from the code include any statically imported library functions
and aspects of the portable executable format, such as resource language, section
attributes (e.g. entropy) and resource attributes (e.g. type). The metadata asso-
ciated with the code includes the output of the MAGIC and EXIFTOOL utilities,
which infer properties such as the file type, and any digital signatures associated
with the file. We collect the status of the verification, the identities of every entity
in the certificate chain, comments, product name, description, copyright, inter-
nal name, and publisher from each digital signature. The heuristic tools applied
to the executable include PEID [2] and utilities from ClamAV [1], and check for
packing, network utilities or administrative utilities commonly associated with
malware or potentially unwanted applications.

The dynamic attributes available from the Cuckoo sandbox capture interac-
tions with the host operating system, disk and network resources. Interactions
with the operating system include dynamic library imports, mutex activity and
manipulation of other processes running on the system. Additionally, the Cuckoo
sandbox provides an execution trace of all Windows API calls accessed by the
binary, including the arguments, argument values and return values of any sys-
tem call. The summary of disk activity includes file system and registry oper-
ations, capturing any persistent effects of the binary. We utilize both full and
partial paths of file system operations as well as the types and number of oper-
ations to the file system during feature extraction; we also utilize the specific
registry keys accessed or modified by the binary. Lastly, we extract features
from the network activity of the binary, including HTTP and DNS traffic and
IP addresses accessed via TCP and UDP.

3.3 Training Label Harmonization and Reviewer Query Strategy

During each retraining period, the training process must assign labels to all
available training binaries. The process of assigning training labels harmonizes
four distinct sources of information: scan results from anti-virus software, the
current learned model, any prior reviews, and additional fresh reviews for a
small number of binaries selected by the query strategy for review.

The labeling process begins with the anti-virus scan results and application
of the current model, both of which prune the set of binaries which the query
strategy will consider for submission to the integrated reviewer. Our application
of anti-virus scan results leverages the intuition, which we confirm in Sect. 4,
that anti-virus vendors bias detections towards false negatives rather than false
positives. Correspondingly, we view consensus among anti-virus detectors that
a binary is malicious as sufficient to label the binary malicious during training,
but we do not label undetected binaries as benign without further analysis. We
call this heuristic the undetected filter since only binaries which are not detected
by the vendors remain as candidates for review.

130 B. Miller et al.

Next, we apply our current detection model to all undetected binaries and
assign a malicious label to any binaries which score above a threshold M. We
refer to this heuristic as auto-relabeling since some undetected binaries are auto-
matically relabeled, similar to the self-training concept from semi-supervised
learning [7]. If the binary is both undetected by anti-virus vendors and cannot
be auto-relabeled using our detector, we submit the binary to the query strategy.

From the binaries that could not be confidently labeled as malicious, the
query strategy selects a subset for review to improve their training labels. The
uncertainty sampling query strategy selects binaries that are closest to the deci-
sion boundary, intuiting that the model will benefit from knowing the labels
of those binaries about which it is unsure [24]. Uncertainty sampling has expe-
rienced success in other application domains, such as text classification, and
served as a baseline for comparison in prior work involving integrated manual
review [16,17]. Designed for a case where the reviewer is the only source of
labeling information, uncertainty sampling is unaware of how our two heuris-
tics used the noisy labels from anti-virus scanners to filter the binaries for its
consideration.

Consequently, we propose a new query strategy aware of our heuristics to
increase the effectiveness of the integrated reviewer. Since the heuristics identify
binaries likely to be malicious, we will label any binary not identified by them or
selected for review as benign. Consequently, only reviews which label a binary
malicious will impact the final training data labels. Accordingly, we develop
the maliciousness query strategy, which selects binaries for review that received
high scores from our detection model, but not high enough to be subject to auto-
relabeling. More formally, the query strategy has a submission budget B, where
B is determined as a fixed percentage of the total number of new training binaries
during the retraining period. The maliciousness query strategy then submits the
B remaining binaries with the greatest maliciousness scores less than the auto-
relabeling threshold M to the integrated reviewer. The binaries in excess of
B which are not submitted to the integrated reviewer are labeled benign. By
selecting binaries likely to be malicious but would otherwise be labeled benign,
maliciousness achieves a higher likelihood than uncertainty sampling that the
review will effect a change in training labels.

3.4 Model Training and Integration of Reviewer Labels

After considering several forms of learning, including decision tree and nearest
neighbor based approaches, we selected logistic regression as the basis for our
malware detector. As a linear classifier, logistic regression assigns a weight to each
feature and issues predictions as a linear function of the feature vector, resulting
in a real valued quantity [10]. Scoring each binary as a real valued quantity
enables us to create a tradeoff between true and false positive rates by adjusting
the threshold at which binaries are labeled malicious. Linear classification scales
well in prediction as the size of the model is a function of the dimensionality of
the data and not the size of the training data, as happens with nearest neighbor
techniques. Additionally, the clear relationship between weights and features

Reviewer Integration and Performance Measurement for Malware Detection 131

allows analysts to easily understand what the detector is doing and why, which
can be difficult with complex tree ensembles. Lastly, logistic regression scales well
in training with many available implementations capable of accommodating high
dimensional feature spaces and large amounts of training data.

We now discuss our training process integrating labels from the reviewer with
noisy labels from anti-virus scanners and our own detector. Since the reviewer
only labels a small minority of binaries, noisy labels from anti-virus vendors will
overwhelm reviewer labels during training unless reviewer labels receive special
treatment. We present the standard logistic regression training process below,
and then describe the special treatment which we provide for reviewer labels. The
logistic regression training process finds the weight vector w which minimizes
the following loss function for labeled training set {(x',4"),...,(x",y™)} where
y* € {—1,+1} represents the label:

Cox Y U(=wTx') + Cyx Y L(w'x') + %||w||2

yt=—1 iyi=1

C_ > 0 and Cy > 0 are distinct hyper-parameters controlling for both regu-
larization and class importance weighting and ¢(z) = log(1 + exp(—x)) is the
logistic loss function. The first and second terms correspond to the misclassifica-
tion losses for negative and positive instances, respectively, and the final term is
a regularization term that discourages models with many large non-zero weights.
To amplify the effect of reviewer labels, we assign a higher weight W during train-
ing to any binary labeled benign by the reviewer. We obtain superior results only
weighting binaries that the reviewer labels benign since the maliciousness query
strategy tends to select binaries for review which fall on the malicious side of
the decision boundary. When a benign instance is classified as malicious during
training, a particularly high weight is necessary to have a corrective effect on
the model and force the instance to receive a benign classification.

4 Dataset and Evaluation Labeling Overview

We maintain that an evaluation dataset should include diverse binaries, reflect
the emergence and prevalence of binaries over time, and record changes in the
best available labeling knowledge for the binaries as time progresses. Our eval-
uation dataset, consisting of 1.1 million distinct binaries submitted to Virus-
Total between January 2012 and June 2014, achieves these criteria. VirusTotal
accepts submissions from end users, researchers and corporations, leading to a
diverse sampling of binaries containing thousands of malware families and benign
instances. To randomize interaction with daily and hourly batch submission jobs,
VirusTotal supplied us with the hashes of binaries submitted during a random-
ized segment during each hour of our collection period, reflecting approximately
1% of the total binaries during the collection period. We include each submission
of each binary to accurately represent the prevalence and labeling knowledge of
binaries over time. A more complete discussion of the dataset, including changes

132 B. Miller et al.

in vendor labels over time and analysis of our labeling methodology is available
online [15].

Due to the regular distribution of the evaluation data over an extended period
of time and the broad use of VirusTotal, the dataset includes a diverse sampling
from many families of malware. Symantec, TrendMicro, Kaspersky and McAfee
report 3,135, 46,374, 112,114 and 408,646 unique families for the dataset, respec-
tively. The number of families reported varies due to differences in naming con-
ventions between vendors. Although the exact number of families reported varies
by vendor, each vendor agrees that the malware represents a broad sampling,
with each vendor reporting less than 50 % of malware occurring in the most
common 10 % of families.

As the dataset contains scan results form 80 different vendors, we employ a
harmonization approach to create the gold labels which we use to characterize
the dataset and evaluate detector performance. Since some vendors are only spo-
radically present in the data, we restrict our work to the 32 vendors present in
at least 97 % of scan results to increase consistency in the set of vendors applied
to each binary.? We observe that among binaries that receive multiple scans
in our dataset, 29.6 % of binaries increase in number of detections as malware
by at least 5 vendors from their first to last scan, and only 0.25% of binaries
decrease by 5 or more detections. This shift from benign to malicious labels con-
firms the intuition that vendors behave conservatively, preferring false negatives
over false positives. Given vendors’ demonstrated aversion to false positives, we
set a detection threshold of 4 vendor detections as sufficient to label a binary
as malicious, and request a rescan of any binary which received fewer than 10
detections at the most recent scan. We conduct rescans in February and March
2015, 8 months after the end of our data collection period, to allow time for ven-
dor signature updates. We avoid rescanning binaries with 10 or more detections
since decreases large enough to cross the four vendor detection threshold are
unlikely. After rescanning, we assign a gold label to each binary in our dataset
representing the best available understanding of whether the binary is malicious.

We reserve from January 2012 to December 2012, the first year of our data
set, for obtaining an initial model and use the data from January 2013 to June
2014 to perform a complete rolling window evaluation of our detector. Figure 2a
presents the occurrence of scans over time, indicating that scans consistently
occur throughout the period during which we measure performance. Notice that
scans do not occur evenly during the training period, with the first approximately
200 days containing fewer scans. The difference in available data occurs because
fewer binaries have dynamic attributes available; the difference does not reflect
an underlying phenomenon in submissions.

2 In particular, we include the following vendors: AVG, Antiy-AVL, Avast, Bit-
Defender, CAT-QuickHeal, ClamAV, Comodo, ESET-NOD32, Emsisoft, F-Prot,
Fortinet, GData, Ikarus, Jiangmin, K7AntiVirus, Kaspersky, McAfee, McAfee-
GW-Edition, Microsoft, Norman, Panda, SUPERAntiSpyware, Sophos, Symantec,
TheHacker, TotalDefense, TrendMicro, TrendMicro-HouseCall, VBA32, VIPRE,
ViRobot and nProtect.

Reviewer Integration and Performance Measurement for Malware Detection 133

1.75 i i Occurrenc‘e of Slcans‘Over‘Time‘ 1.75 F‘{ecurrence‘of Binaries‘in Scan Se‘t
. T .
— Scans of Malicious Binaries

1.50 == Scans of Benign Binaries i 1.50 -
— Training Only (Excluded from Evaluation) —_
2 2
2 1.251- - S 1.25- .|
E g
n 1.00- = n 1.00~ -
c c
(o] o]
v U
0 w_ o\ aaaaaa]
u5 0.75- T) e e e !
s N -
o [
Ee) Q
£ 0.50 H4 £ o050 =
3 3
= =

0.258 1 0.25 — Malicious: 949,874 Binaries

i - Benign: 130,006 Binaries
0.00! ey T LAl | | | | | | 0.0 | T T T
0 90 180 270 360 450 540 630 720 810 900 8.0 0.2 0.4 0.6 0.8 1.0
Days (January 2012 - June 2014) Portion of Binaries
(a) (b)

Fig. 2. Data Overview. (a) and (b) Demonstrate that scans are well distributed across
our evaluation period and distinct binaries, respectively. Note that relative scarcity
of scans in the first 200 days reflects availability of necessary attributes in VirusTotal
data, not underlying submission behavior.

In addition to being well distributed over time, scans are also well distrib-
uted across the different binaries in our dataset. Figure2b depicts the impact
of resubmissions on the dataset, with the horizontal axis ordering binaries from
most commonly to least commonly submitted. We include re-submissions to
ensure that the distribution of our evaluation data mirrors the distribution of
actual data submitted to VirusTotal by incorporating the prevalence of each
individual file, effectively balancing any effects of polymorphism in the dataset.
Additionally, inclusion of rescan events in our analysis provides more timely
labeling during evaluation.

5 Experimental Results and System Evaluation

In this section we briefly discuss our implementation, present experimental
results and evaluate our detection system. Our presentation of experimental
results demonstrates the impact of different performance measurement tech-
niques on detection results. Our detection system evaluation demonstrates the
potential for integrated review techniques to improve performance over current
anti-virus vendors, as well as the impact of reviewer errors, marginal benefit of
additional reviews and effects of different of reviewer integration strategies.

5.1 System Implementation

Since anti-virus vendors can receive in excess of 300,000 binaries daily [14], we
design our detector with a focus on scalability. We implement our detection plat-
form in five thousand lines of Python, which offers bindings for the numerical
and infrastructure packages we require. We use Scikit Learn and Numpy for

134 B. Miller et al.

machine learning, and Apache Spark for distributed computation. Using a 40
core cluster with 600 GB of RAM, we were able to conduct feature vectoriza-
tion, learning and prediction on our 778 GB dataset including 1.1 million unique
binaries in 10 h.

To allow experimentation at scale, we simulate an integrated reviewer rather
than employing an actual labeling expert. We model the analysis of the inte-
grated reviewer by revealing the gold label associated with a binary. For exper-
iments that consider an imperfect reviewer, we assign the simulated reviewer a
true positive rate and a false positive rate, allowing the likelihood of the reviewer
supplying the correct label to depend on the gold label for the sample. By condi-
tioning the likelihood of a correct response on the gold label of a sample, we are
able to more closely model the errors of an actual reviewer who may be highly
likely to correctly identify a benign binary as benign, but less likely to correctly
identify a malicious binary as malicious. We leave the comparison of this model
to actual reviewer performance as future work.

Lastly, we describe our management of the system parameters discussed in
Sect. 3, including a reviewer submission budget B, auto-relabeling confidence
threshold M and learning parameters C_, C; and W. Section 5.3 presents the
effects of varying the submission budget B, with experiments conducted at 80
queries daily on average unless otherwise specified. The remaining parameters
are tuned to maximize detection at false positive rates between .01 and .001
on a set of binaries obtained from an industry partner and excluded from our
evaluation. We use the following values: M = 1.25, C_ = 0.16, C; = .0048 and
W = 10.

5.2 Impact of Performance Measurement Techniques

The primary motivation for measuring the performance of a detection system in
a research or development setting is to understand how the system would per-
form in a production setting. Accordingly, measurement techniques should seek
to minimize the differences from production settings. In practice, knowledge of
both binaries and labels changes over time as new binaries appear and malware
detectors respond appropriately with updated labels. Performance measurement
techniques that fail to recognize the emergence of binaries and label knowledge
over time effectively utilize knowledge from the future, inflating the measured
accuracy of the approach. For example, consider malware that evades detec-
tion but can be easily detected once the first instance is identified. Performance
inflation occurs because inserting correctly labeled binaries into training data
circumvents the difficult task of identifying the first instance of the malware.
We analyze three approaches to measuring the performance of malware detec-
tors, each recognizing the emergence of binaries and labels over time to varying
degrees. Cross-validation is a common approach for machine learning evalua-
tions in situations where binaries are independent and identically distributed
(i.i.d.). In the malware detection context the i.i.d. assumption does not hold
since malware changes over time to evade detection. Cross-validation evaluations
completely disregard time, dividing binaries randomly and applying evaluation

Reviewer Integration and Performance Measurement for Malware Detection 135

1.0

Impact of Performance Measurement Technique

Label Evolution over Time Training Binary Evaluation Binary rmmmmmnn T
t=0 |t=1ft=2 | rmennannnnr
Bi 2> A BCDE|F F[BG e
Label tltnaory Cross-Validation 0.8
= - 4. - =
abela Binary ABCDEFERG g
Label at t=1 + - - - E
Label at t=2 44 4|- +|. . Goldlabel(t=co)[27R + - '(?j + Lo6
Gold label (t=e0) - + + - +|- + |+ + \ J i
2
Temporally Consi: Temporally Consistent Labels 804
t=0 jt=1jt=2 t=0 [t=1ft=2 E]
i) =
Binary ABCDE|FEBG Binary ABCDE|FEPBG 02
=oo) - = -+ - ==~ Cross-Validation
Gold label (t=e0) - + + 2 2 Label at t=0 + - . - Temporally Consistent Samples
Gold label (t=e0) - + + - +|2 ? Label at t=1 -+ - - - 00 —— Temporally Consistent Labels
Gold label (t=e0) - + + - +[- +|2 2 Labelatt=2 S+ - 4[-+]2 2 10 102 2 =) 10°
False Positive Rate (FPR)
@ (b)

Fig. 3. Accurate performance measurement requires temporally consistent labels. (a)
Illustrates three techniques. The upper left shows the evolution of labels over time for a
series of binaries, with B’ and E’ denoting variants of previously submitted binaries B
and E. Each remaining subfigure depicts the experiments a performance measurement
technique would conduct given the example dataset. Rows correspond to successive
retraining periods with specified training and evaluation data, binaries appear chrono-
logically from left to right, and + and - denote malicious and benign labels, respectively.
(b) Presents the effects of performance measurement technique on experimental results.

quality labels to all binaries. Evaluations maintaining temporally consistent sam-
ples recognize the ordering of binaries in time but not the emergence of labels
over time, instead applying gold labels from future scan results to all binaries.
Use of gold quality labels during training effectively assumes that accurate detec-
tion occurs instantly. Evaluations maintaining temporally consistent labels fully
respect the progression of knowledge, ordering binaries in time and restricting
the training process to binaries and labels available at the time of training. For
measurements with both temporally consistent samples and labels, we divide
data into periods and use the first n — 1 periods to detect content in period n.
Unless otherwise specified we use a period length of one week. Figure 3a presents
the specifics of each approach.

Our experiments demonstrate that measurement technique powerfully
impacts performance results. Figure3b presents the results of our analysis.
Notice that cross-validation and temporally consistent samples perform simi-
larly, inflating detection results 20 and 19 % points respectively over temporally
consistent labeling at a 0.5 % false positive rate. Since reviewer integration effec-
tively reduces the impact of temporally consistent labels by revealing future
labels, we conduct these experiments without any reviewer queries. Note that
our conclusions apply only to the setting of malware detection and not family
classification, which presents a fundamentally different challenge as the set of
known family labels may change over time.

Temporally consistent labeling requires that training labels predate evalu-
ation binaries. Since VirusTotal scans each binary upon each submission our
experiments are able to satisfy temporally consistent labeling requirements. How-
ever, since binaries are not necessarily rescanned at regular intervals, we are not

136 B. Miller et al.
1.0 Accuracy Comparison to Vendor Labels
. .-

0.8 t t T
z ‘ e -
o | - - .‘ .
= L-==* £ .
; e’ “ * . .
o 0.6 s - L o .
© .
o . 4 ‘ 10 °
[z T .
>
: 1. | .
3 0.4 1 . t .
a ‘ . °
v - L
= | -

0.2 l L 1

—— 80 Queries/Day 80 Queries/Day - Static Features
= =" 0 Queries 0 Queries - Static Features
® Individual Vendor Labels Target FPR Range: (0.001, 0.01)
0.0 ' .
10 102 107 107 10°

False Positive Rate (FPR)

Fig. 4. Without reviewer integration our detector is competitive with VirusTotal detec-
tors. With reviewer integration, detection improves beyond vendors on VirusTotal. We
tune our system to maximize detection in the (0.1 %, 1%) false positive region, conse-
quently decreasing detection at lower false positive rates.

able to guarantee that our labels are up to date. For example, consider a binary
which receives benign scan results in week 1 and malicious scan results in week
10: the up-to-date training label in week 5 is unclear. To simulate the effects of
more frequent rescanning, we conduct a second experiment in which we reveal
the gold label for each binary once a fixed interval has passed since the binary’s
first submission. We find that without releasing gold labels temporally consis-
tent evaluation results in 76 % detection at a 1% false positive rate; releasing
gold labels 4 weeks and 1 week after a binary appears increases detection to 80 %
and 84 % respectively. Note that these figures represent an upper bound on the
impact of frequent rescanning since malware may remain undetected much longer
than 1 or 4 weeks. Considering that cross-validation and temporal sample con-
sistency each achieve 92 % detection at a 1 % false positive rate, we see that even
with regular rescanning, temporal label consistency impacts detection results.

5.3 Detection System Evaluation

In this section we evaluate our malware detection system and the impact of
reviewer integration. We begin with the impact of the reviewer and performance
relative to VirusTotal. Then, we examine parameters such as reviewer accuracy
and retraining frequency. Lastly, we analyze impact of different types of features.

Impact of Integrated Reviewer. Given the breadth of our data and unique
structure of our evaluation, the vendor detection results on VirusTotal provide
the best performance comparison for our work. Based on the false positive rates
of vendors, we tune our detector to maximize detection for false positive rates

Reviewer Integration and Performance Measurement for Malware Detection 137

greater than 0.1% and less than 1%. Figure4 compares our performance to
vendor detectors provided on VirusTotal. Without involvement from the inte-
grated reviewer our detector achieves 72 % detection at a 0.5 % false positive
rate, performing comparably to the best vendor detectors. With support from
the reviewer, we increase detection to 89 % at a 0.5 % false positive rate using
80 queries daily on average. Since we train a separate model during each weekly
retraining period, the performance curve results from varying the same detection
threshold across the results of each individual model.

VirusTotal invokes vendor detectors from the command line rather than in
an execution environment, allowing detectors to arbitrarily examine the file but
preventing observation of dynamic behavior. Since our analysis includes dynamic
attributes, we also observe our performance when restricted to static attributes
provided by VirusTotal. Note that this restriction places our detector at a strict
disadvantage to vendors, who may access the binary itself and apply signa-
tures derived from dynamic analysis. Figure4 demonstrates that our perfor-
mance decreases when restricted to static features but, with support from the
integrated reviewer, surpasses vendors to achieve 84 % detection at a 0.5 % false
positive rate.

Performance comparison must also consider the process of deriving gold
labels, which introduces a circularity that artificially inflates vendor perfor-
mance. Consider the case of a false positive: once a vendor has marked a binary
as positive, the binary is more likely to receive a positive gold label, effectively
decreasing the false positive rate of the vendor. An alternate approach would be
to withhold a vendor’s labels when evaluating that vendor, effectively creating
a separate ground truth for each vendor. Although this approach more closely
mirrors the evaluation of our own detector (which does not contribute to gold
labels), in the interest of consistency we elect to use the same ground truth
throughout the entire evaluation since efforts to correct any labeling bias only
increase our performance differential.

In addition to offering superior detection performance aggregated across all
data relative to vendor labels, our approach also experiences greater success
detecting novel malware that is missed by detectors on VirusTotal. Of the 1.1
million samples included in our analysis, there are 6,873 samples which have a
malicious gold label but are undetected by all vendors the first time the sample
appears. Using 80 reviewer queries daily, our approach is able to detect 44 % and
32 % of these novel samples at 1 % and .1 % false positive rates, respectively. The
ability of our approach to detect novel malware illustrates the value of machine
learning for detecting successively evolving generations of malware.

To provide a corresponding analysis of false positives, we measure our per-
formance on the 61,213 samples which have a benign gold label and are not
detected as malware by any vendor the first time the sample appears. Of these
61,213 benign samples, our detector labels 2.0 % and 0.2% as malicious when
operating at 1% and .1% false positive rates over all data, respectively. The
increased false positive rate on initial scans of benign samples is expected since
the sample has not yet been included as training data.

138 B. Miller et al.

1.0 Impact of Reviewer Query Strategy 1.0 Impact of 0.05 Reviewer False Positive Rate

154
©o
1

o
[or]
.
o
®

o
[*)]
.
o
¢

[Maliciousness, Undetected, Auto-Relabeling
Uncertainty, Undetected, Auto-Relabeling
I Uncertainty, Undetected

True Positive Rate
o
3

Il Reviewer TPR: 0.80 [Reviewer TPR: 0.99
[|EEE Reviewer TPR: 0.90 [Reviewer TPR: 1.00||

o
o
1
o
n

L

Detector True Positive Rate
o
5

BN Uncertainty [Reviewer TPR: 0.95 — Perfect Reviewer
0.4 0.4 = E
0.01 0.001 0.01 0.001
False Positive Rate Detector False Positive Rate
(a) (b)

Fig.5. (a) Presents the impact of each component in our customized query strategy.
We improve detection over the uncertainty sampling approach from prior work. (b)
Presents the performance of our detector for imperfect reviewers with the specified
true and false positive rates. For example, given a reviewer with a 5% false positive
rate and 80 % true positive rate, our detector’s true positive rate only decreases by 5%
at a 1% false positive rate.

Reviewer Query Strategies. Our reviewer query strategy represents numer-
ous advances over prior work. Figure 5a presents the impact of each of the three
improvements we introduce and discussed in Sect. 3.3. For a fixed labeling bud-
get B = 80, uncertainty sampling results in a detection rate 17 % points lower
than the combination of our techniques at 0.1 % false positive rate.

Reviewer Accuracy. Our system also demonstrates strong results in the pres-
ence of an imperfect reviewer. Since malware creators may explicitly design mal-
ware to appear benign but benign software is less likely to appear malicious, we
model the false positive and true positive rates of reviewers separately, reflect-
ing a reviewer who is more likely to mistake malware for benign software than
benign software for malware. Figure5b presents detection rates for reviewers
with a 5% false positive rates and a range of true positive rates. For example,
given a reviewer with a 5% false positive rate and 80 % true positive rate, our
detector’s true positive rate only decreases by 5% at a 1% false positive rate.

Resource Parameterization. Beyond classifier parameters, detection perfor-
mance is also influenced by operator resources including reviewer query budget
and retraining frequency. We explore each of these parameters below.

As the allowed budget for queries to the reviewer increases, the detection
performance increases since higher quality training labels are available. Figure 6a
presents the detection increase from increased reviewer queries, with the benefit
of 80 queries per day on average approaching the upper bound of having gold
labels for all training data. The benefit of reviewer queries is non-linear, with
the initial queries providing the greatest benefit, allowing operators to experience
disproportionate benefit from a limited review budget.

Reviewer Integration and Performance Measurement for Malware Detection 139

1.0 Impact of Increased Reviewer Queries 1.0 Impact of Retraining Frequency

o
)
T
o
@

°
>

True Positive Rate
o
~
T
o
=

1

True Positive Rate
o
>

I 0 Queries/Day I 40 Queries/Day
I 10 Queries/Day [80 Queries/Day
BN 20 Queries/Day 1 Gold Labels

o
§

b 0.5r EEN 8 Weeks [2 Weeks -
B 4 Weeks [1 Week
|

o
I

[
0.01 0.001 0.01 0.001
False Positive Rate False Positive Rate

(a) (b)

Fig. 6. (a) Presents performance for different reviewer query budgets, with significant
return on minimal efforts and diminishing returns occurring around 80 queries/day.
(b) Demonstrates that retraining more quickly improves detector performance.

Although our evaluation is large relative to academic work, an actual deploy-
ment would offer an even larger pool of possible training data. Since the utility
of reviewer queries will vary with the size of the training data, increasing the
amount of training data may increase reviewer queries required to reach full
benefit. Fortunately, the training process may elect to use only a subset of the
available training data. We demonstrate that 1.1 million binaries selected ran-
domly from VirusTotal submissions is sufficient training data to outperform
vendor labels for our evaluation data.

Lastly, we examine variations in the length of the re-training period gov-
erning how often models are updated. We conduct these experiments with 80
reviewer queries on average per day. Figure 6b presents the effect of variations
in the retraining period. Notice that the benefit of frequent retraining begins to
diminish around 2 weeks.

Detection Mechanics. Having analyzed detection accuracy and evaluation
methodology, we now examine the features that our detector uses for classi-
fication. In the interest of understanding the dataset as a whole, we train a
model over all data from all dates. Although we learn a linear model and can
easily observe the weight of each feature, inspecting the weight vector alone is
not enough to understand feature importance. A feature can be associated with
a large weight but be essentially constant across the dataset, as may happen
with strongly malicious features that are relatively rare in practice. Intuitively,
such features have low discrimination power. Furthermore, we are interested in
grouping low-level features together into high level concepts.

Thus, we use the following ranking method for sets of features. Let d be the
total number of features, w € R? be the weight vector and {x'} be a given set
of instances. The notation x} designates the k-th coordinate of instance x*. We
can compute the importance of a group S C {1,...,d} of features by quantifying
the amount of score variation Ig they induce. Our ranking formula is:

140 B. Miller et al.

Featyre Impaclt

Heuristics| N

T
I Static

Processes| .
Mutexesi] [Dynamic
Packers
Dynamic Imports| |

Metadata)
Registry| |
PE Format
Network| |
Signature|
API Calls| |
Static Imports|
Filesystem| i i i
0.0 0.5 1.0 1.5 2.0

Relative Importance

Fig. 7. Feature categories ranked by importance.

Is = ,|Var
7

> X?;Wk]

kes

Using this ranking method, Fig.7 shows the global ranking of the features
when grouped by their original measurements. The most important measure-
ments are thus the file system operations, static imports, API call sequence
and digital signature, while the least useful measurement is the heuristic tools.
Further analysis including highly weighted features is available online [15].

6 Conclusion

In this paper, we explore the power of putting humans in the loop by integrating
a simulated human labeling expert into a scalable malware detection system. We
show it capable of handling over 1 million samples using a small cluster in hours
while substantially outperforming commercial anti-virus providers both in terms
of malware detection and false positive rates (as measured using VirusTotal). We
explain why machine learning systems appear to perform very well in research
settings and yet fail to perform reasonably in production settings by demon-
strating the critical temporal factors of labeling, training, and evaluation that
affect detection performance in real-world settings. In future work, we plan to
expand our detection system to perform malware family labeling and detection
of new malware families. Additionally, we may implement clustering or density
based sampling techniques to further reduce the reviewer burden by eliminating
any duplicate reviews.

References

1. ClamAV PUA, 14 November 2014. http://www.clamav.net/doc/pua.html
2. PEiD, 14 November 2014. http://woodmann.com/BobSoft/Pages/Programs/
PEiD

http://www.clamav.net/doc/pua.html
http://woodmann.com/BobSoft/Pages/Programs/PEiD
http://woodmann.com/BobSoft/Pages/Programs/PEiD

Reviewer Integration and Performance Measurement for Malware Detection 141

11.

12.

13.

14.
15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

The Cuckoo Sandbox, 14 November 2014. http://www.cuckoosandbox.org

Arp, D., Spreitzenbarth, M., Hubner, M., Gascon, H., Rieck, K.: Drebin: effective
and explainable detection of android malware in your pocket. In: NDSS (2014)
Canali, D., Cova, M., Vigna, G., Kruegel, C.: Prophiler: a fast filter for the large-
scale detection of malicious web pages. In: WWW (2011)

Chakradeo, S., Reaves, B., Traynor, P., Enck, W.: Mast: triage for market-scale
mobile malware analysis. In: ACM WiSec (2013)

Chapelle, O., Schlkopf, B., Zien, A.: Semi-Supervised Learning. The MIT Press,
Cambridge (2010)

Curtsinger, C., Livshits, B., Zorn, B., Seifert, C.: Zozzle: fast and precise in-browser
javascript malware detection. In: Usenix Security (2011)

Damballa: State of Infections Report: Q4 2014. Technical report, Damballa (2015)

. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning.

Springer, New York (2001)

Kantchelian, A., Afroz, S., Huang, L., Islam, A.C., Miller, B., Tschantz, M.C.,
Greenstadt, R., Joseph, A.D., Tygar, J.D.: Approaches to adversarial drift. In:
ACM AlSec (2013)

Karanth, S., Laxman, S., Naldurg, P., Venkatesan, R., Lambert, J., Shin, J.:
ZDVUE: prioritization of javascript attacks to discover new vulnerabilities. In:
ACM AISec (2011)

Kolter, J.Z., Maloof, M.A.: Learning to detect and classify malicious executables
in the wild. J. Mach. Learn. Res. 7, 2721-2744 (2006)

McAfee Labs: McAfee Labs Threats Report, August 2014

Miller, B.: Scalable Platform for Malicious Content Detection Integrating Machine
Learning and Manual Review. Ph.D. thesis, UC Berkeley (2015)

Nissim, N., Cohen, A., Moskovitch, R., Shabtai, A., Edry, M., Bar-Ad, O., Elovici,
Y.: ALPD: active learning framework for enhancing the detection of malicious pdf
files. In: IEEE JISIC, September 2014

Nissim, N., Moskovitch, R., Rokach, L., Elovici, Y.: Novel active learning methods
for enhanced pc malware detection in windows os. J. Expert Syst. Appl. 41(13),
5843-5857 (2014)

Perdisci, R., Lee, W., Feamster, N.: Behavioral clustering of http-based malware
and signature generation using malicious network traces. In: NSDI (2010)
Provos, N., Mavrommatis, P., Rajab, M.A., Monrose, F.: All your iframes point to
us. In: USENIX Security (2008)

Rajab, M.A., Ballard, L., Lutz, N., Mavrommatis, P., Provos, N.: CAMP: content-
agnostic malware protection. In: NDSS (2013)

Schultz, M.G., Eskin, E., Zadok, E., Stolfo, S.J.: Data mining methods for detection
of new malicious executables. In: IEEE S&P (2001)

Schwenk, G., Bikadorov, A., Krueger, T., Rieck, K.: Autonomous learning for detec-
tion of javascript attacks: vision or reality? In: ACM AlSec (2012)

Sculley, D., Otey, M.E., Pohl, M., Spitznagel, B., Hainsworth, J., Zhou, Y.: Detect-
ing adversarial advertisements in the wild. In: KDD (2011)

Settles, B.: Active learning literature survey. Computer Sciences Technical report
1648, University of Wisconsin-Madison (2009)

Srndic, N., Laskov, P.: Detection of malicious PDF files based on hierarchical doc-
ument structure. In: NDSS (2013)

Stringhini, G., Kruegel, C., Vigna, G.: Shady paths: leveraging surfing crowds to
detect malicious web pages. In: ACM CCS (2013)

VirusTotal. https://www.virustotal.com/. Accessed 30 Jul 2014

http://www.cuckoosandbox.org
https://www.virustotal.com/

On the Lack of Consensus in Anti-Virus
Decisions: Metrics and Insights on Building

Ground Truths of Android Malware

Médéric Hurier®™), Kevin Allix, Tegawendé F. Bissyandé, Jacques Klein,
and Yves Le Traon

SnT, University of Luxembourg, Luxembourg City, Luxembourg
mederic.hurier@uni.lu

Abstract. There is generally a lack of consensus in Antivirus (AV)
engines’ decisions on a given sample. This challenges the building of
authoritative ground-truth datasets. Instead, researchers and practition-
ers may rely on unvalidated approaches to build their ground truth, e.g.,
by considering decisions from a selected set of Antivirus vendors or by
setting up a threshold number of positive detections before classifying a
sample. Both approaches are biased as they implicitly either decide on
ranking AV products, or they consider that all AV decisions have equal
weights. In this paper, we extensively investigate the lack of agreement
among AV engines. To that end, we propose a set of metrics that quan-
titatively describe the different dimensions of this lack of consensus. We
show how our metrics can bring important insights by using the detection
results of 66 AV products on 2 million Android apps as a case study. Our
analysis focuses not only on AV binary decision but also on the notori-
ously hard problem of labels that AVs associate with suspicious files, and
allows to highlight biases hidden in the collection of a malware ground
truth—a foundation stone of any malware detection approach.

1 Introduction

Malware is ubiquitous across popular software ecosystems. In the realm of mobile
world, researchers and practitioners have revealed that Android devices are
increasingly targeted by attackers. According to a 2015 Symantec Mobile Threat
report [1], among 6.3 million Android apps analyzed, over 1 million have been
flagged as malicious by Symantec in 2014 and classified in 277 Android malware
families. To stop the proliferation of these malware, device owners and market
maintainers can no longer rely on the manual inspection of security analysts.
Indeed, analysts require to know beforehand all patterns of malicious behaviors
S0 as to spot them in new apps. Instead, the research and practice of malware
detection are now leaning towards machine learning techniques where algorithms
can learn themselves to discriminate between malicious and benign apps after
having observed features in an a-priori labelled set. It is thus obvious that the
performance of the detector is tightly dependent on the quality of the training
dataset. Previous works have even shown that the accuracy of such detectors can

© Springer International Publishing Switzerland 2016
J. Caballero et al. (Eds.): DIMVA 2016, LNCS 9721, pp. 142-162, 2016.
DOI: 10.1007/978-3-319-40667-1_8

On the Lack of Consensus in Anti-Virus Decisions 143

be degraded by orders of magnitude if the training data is faulty [2-6]. Following
these findings, one can easily infer that it is also possible to artificially improve
the performance of malware detectors by selecting a “ground truth” that splits
around malware corner cases.

To build training datasets, Antivirus (AV) engines appear to be the most
affordable means today. In particular, their use have become common thanks to
online free services such as VirusTotal [7] that accepts the submission of any file
for which it reports back the AV decisions from several vendors. Unfortunately,
AV engines disagree regularly on samples. Their lack of consensus is actually
observed in two dimensions: (1) their binary decisions on the maliciousness of
a sample are often conflicting and (2) their labels are challenging to compare
because of the lack of standard for naming malware samples.

To consolidate datasets as ground truth based on AV decisions, researchers
often opt to use heuristics that they claim to be reasonable. For example, in the
assessment of a state-of-the-art machine learning-based malware detection for
Android [8], the authors have considered the reports from only 10 AV engines,
selected based on their “popularity”, dismissing all other reports. They further
consider a sample to be malicious once two AV engines agree to say so. They
claim that:

“This procedure ensures that [their] data is (almost) correctly split into benign
and malicious samples—even if one of the ten scanners falsely labels a benign
application as malicious” [8, p. 7]

To gain some insights on the impact of such heuristics, we have built a dataset
following these heuristics and another dataset following another common process
in the literature [9], which considers all AV reports from VirusTotal and accepts
a sample as malicious as long as any of the AV flags it as such. We compare the
two datasets and find that the malware set in the first “ground truth” is reduced
to only 6 % of the malware set of the second “ground truth” dataset.

An in-depth study of different heuristics parameters can further reveal dis-
crepancies in the construction of ground truth datasets, and thus further ques-
tion any comparison of detectors performance. Similarly, the lack of consensus
in label naming prevents a proper assessment of the performance of detectors
across malware families.

In a recent work, Kantchellian et al. [10] have proposed weighting techniques
towards deriving better, authoritative, ground truth based on AV labels. Our work
is an in-depth investigation to further motivate this line of research by highlight-
ing different facets of the problem. To that end, we propose metrics for quantifying
various dimensions of comparison for AV decisions and labels. These metrics typ-
ically investigate to what extent decisions of a given AV are exclusive w.r.t other
AVs, or the degree of genericity at which AV vendors assign malware labels.

Contributions: We make the following contributions:

— We extensively overview the lack of consensus in AV engines’ decisions and
labels. Our work is a call for new approaches to building authoritative ground
truth datasets, in particular for the ever-growing field of machine learning-
based malware detection.

144 M. Hurier et al.

— Building on a large dataset of thousands Android apps, we provide insights
on the practice of building ground truth datasets based on VirusTotal AV
decisions.

— We define metrics for quantifying the consensus (or lack thereof) among AV
products following various dimensions. Based on the values of these metrics
for extreme cases, they can be leveraged as good indicators for assessing a
ground truth dataset. We further expect these metrics to be used as important
information when describing experimental datasets for machine learning-based
malware detection!.

Findings: Among the findings of this study, we note that:

— AVs that flag many apps as malicious (i.e. AVs that seem to favor high Malware
Recall) are more consensual than AVs that flag relatively few samples (i.e. AVs
that seem to favor high Precision).

— Labels assigned to samples present a high level of genericity.

— Selecting a subset of AVs to build a ground truth dataset may lead to more
disagreement in detection labels.

The remainder of this paper is presented as follows. Section2 overviews
related work which either inspired our work, or attempted to address the prob-
lem that we aim at quantifying. Section 3 presents the datasets that we have used
for our study as well as the use cases we focus on. Section 4 presents our metrics
and show-cases their importance. We discuss the interpretation of the metrics
and their limitations in Sect. 5 before giving concluding remarks in Sect. 6.

2 Related Work

Our study relates to various work in the literature which have been interested
in the collection of ground truth, in the automation of malware detection and
those that have experimented with AV labels.

2.1 Security Assessment Datasets

Ground truth datasets are essential in the realm of security analysis. Indeed,
on the one hand, analysts rely on them to manually draw patterns of malicious
behaviors and devise techniques to prevent their damages. On the other hand,
automated learning systems heavily rely on them to systematically learn fea-
tures of malware. Unfortunately, these datasets are seldom fully qualified by
the research community [11,12]. This shortcoming is due to the rapid develop-
ment of new malware [10] which forces the community to collect malware sam-
ples through generic techniques, which do not thoroughly validate the malicious
behaviors [13].

! We make available a full open source implementation under the name STASE at
https://github.com/freaxmind /STASE.

https://github.com/freaxmind/STASE

On the Lack of Consensus in Anti-Virus Decisions 145

A number of researchers have lately warned that flaws in security datasets
are frequent [11] and can lead to false assumptions or erroneous results [3,10,14].
In their study, Rossow et al. [11] have analyzed the methodology of 36 papers
related to malware research. Most notably, they observed that a majority of
papers failed to provide sufficient descriptions of experimental setups and that
50 % of experiments had training datasets with imbalanced family distributions.
Related to this last point, Li et al. [14] raised a concern about such imbalances
in clustering results. Using tools from a different domain (plagiarism detection),
they were able to achieve results comparable to the state-of-the-art malware
clustering algorithm at that time [15].

Nowadays, research in malware detection is often relying on AV engines to
build ground truth datasets. Unfortunately, AVs often disagree, and AVs may
even change their decision over time [16]. With our work, we aim to provide
metrics that describe the underlying properties of experimental settings, focus-
ing on ground truth collection, to transparently highlight biases and improve
reproducibility.

2.2 Studies on Anti-Virus Decisions and Labels

Canto et al. [3] support that clear interpretations of malware alerts should be
provided due to inconsistencies between antivirus engines. In view of these con-
cerns, Rossow et al. [11] have also proposed a set of recommendations to design
prudent experiments on malware. Kantchelian et al. [10] referred to Li et al. [14]
study to point out that malware datasets obtained from a single source (e.g.
antivirus vendors) could implicitly remove the most difficult cases. They thus
propose supervised models to weight AV labels.

Another work related to malware experiments is AV-Meter by Mohaisen and
Alrawi [5]. In their paper, the authors have described four metrics to assess the
performance of antivirus scanners on a reference set of malwares. To our knowl-
edge, this is the first attempt to formalize the comparison of security datasets.
Their study also revealed that multiple antivirus are necessary to obtain com-
plete and correct detections of malwares. Yet, AV-meter can not fully qualify
datasets used in most common experiments. First, the metrics proposed by
Mohaisen and Alrawi [5] are only applicable on ground-truth datasets where
applications are known to expose malicious behaviors. In reality, this constraint
can not be met due to the rising number of new malware samples which are
created each year [10]. For instance, GData [17] experts identified more than
575000 new malware samples between July and September 2015. This is an
increase of 50 % compared to the same period in 2014. Consequently, their study
relied on a small dataset of 12 000 samples in order to ensure the correctness of
their labels. In comparison, Arp et al. [8] performed a recent experiment on more
than 130000 samples. Finally, only four metrics were proposed by the authors,
which may not describe all the characteristics necessary to avoid potential biases
as mentioned in [3,11,14].

146 M. Hurier et al.

2.3 Experiments in Android ML-based Malware Detection

Android malware has attracted a lot of attention from the research commu-
nity [18-22], and a number of machine learning based approaches have been
proposed recently [8,23,24]. State-of-the-art work, such as DREBIN [8] have even
shown promising results. However, we observe that machine learning approaches
have not been widely implemented in the malware detection industry. Sommer
and Paxson [25] have presented multiple reasons which distinguish the security
domain from other Computer Science areas, such as image recognition or nat-
ural language translation, where machine learning has been applied successfully.
In previous work, we have shown how experimental scenarios can artificially
improve the performance of detectors in the lab and make them unreliable on
real-world settings [26,27].

Our work here is about providing metrics to help researchers characterize
their datasets and highlight their potential biases, as was recommended by
Rossow et al. [11] and Sommer and Paxson [25].

3 Preliminaries

3.1 Dataset of Android Apps and Antivirus

Our study leverages a large dataset of 2117825 Android applications and their
analysis reports by 66 antivirus engines hosted by VirusTotal.

App Dataset: Our application samples have been obtained by crawling well-
known app stores, including Google Play (70.33% of the dataset), Anzhi
(17.35%) and AppChina (8.44 %), as well as via direct downloads (e.g., Genome
- 0.06 %) [28].

AV Reports: The AV reports were collected from VirusTotal?, an online platform
that can test files against commercial antivirus engines®. For each app package
file (APK) sent to VirusTotal, the platform returns, among other information,
two pieces of information for each antivirus:

— A binary flag (True = positive detection, False = negative detection)
— A string label to identify the threat (e.g. Trojan:Android0S/Ginger
Master.A)

Overall, we managed to obtain AV reports for 2063 674 Android apps®. In this
study we explore those reports and define metrics to quantify the characteristics
of several tentative ground truths.

2 https://www.virustotal.com.

3 Since the goal of this study is not to evaluate the individual performance of antivirus
engines, their names have been omitted and replaced by an unique number (ID).

* We could not obtain the results for 54 151 (2.56 %) applications because of a file size
limit by VirusTotal.

https://www.virustotal.com

On the Lack of Consensus in Anti-Virus Decisions 147

3.2 Variations in Experimental Ground Truth Settings

When experimenting with machine learning-based malware detector, as it is nowa-
days common among security researchers, one of the very first steps is to build a
ground truth, for training and also assessing the detector. The question is then how
to derive a ground truth based on AV reports of the millions of apps in existence.
In particular, we focus on which samples are considered as malicious and included
in the malware set of the ground truth. Based on methods seen in the literature,
we consider the following three settings for building a ground truth:

Baseline settings: In these settings, we consider a straightforward process often
used [9,26] where a sample is considered malicious as long as any AV reports it
with a positive detection. Thus, our ground truth with the Baseline settings
and based on our 2 million apps, contains 689209 “malware” apps. These
samples are reported by AVs with 119 156 distinct labels.

Genome settings: In a few papers of the literature, researchers use for ground
truth smaller datasets constituted of manually compiled and “verified” mali-
cious samples. We consider such a case and propose such settings where the
malware set of the ground truth is the Genome [29] dataset containing 1248
apps. AV reports on these apps have yielded 7101 distinct labels.

Filtered settings: Finally we consider a refined process in the literature where
authors attempt to produce a clean ground truth dataset using heuristics. We
follow the process used in a recent state-of-the-art work [8]:

1. Use a set of 10 popular AV scanners®.
2. Select apps detected by at least two AVs in this set.
3. Remove apps whose label from any AV include the keyword “adware”.

With these settings the malware set of the ground truth include 44 615 apps
associated with 20308 distinct labels.

In the remainder of this paper, we use Dyenome, Poase, and Dyijtered to refer
to the three ground truth datasets. We did not performed supplementary pre-
processings besides the heuristics we mentioned in the previous paragraph to
avoid potential biases in our study.

3.3 Notations and Definitions

Given a set of n AV engines A = {aj,as, - ,a,} and a set of m apps P =
{p1,p2, -+ ,Pm}, we collect the binary decisions and string labels in two n x m
matrices denoted B and L respectively:

ay ag e Qp ay ag . Qp,
D1 bl,l b1,2 ce b1,n D1 l1,1 l1,2 e ll,n
p2 | b2 b2 ... ban p2 | lag b2 ... lan
B= . . =
Pm bm71 bm,2 v bm,n Pm lm,l Zm,2 v lm,n

5 AVs considered in [8]: AntiVir, AVG, Bit- Defender, ClamAV, ESET, F-Secure,
Kaspersky, McAfee, Panda, Sophos.

148 M. Hurier et al.

where entry b; ; corresponds to the binary flag assigned by AV a; to application
p; and entry [; ; corresponds to the string label assigned by AV a; to application
pi. String label [; ; is () (null or empty string) if the app p; is not flagged by AV
a;. For any settings under study, a ground truth D will be characterized by both
B and L.

Let note R; = {m; 1,m;z2, -+ ,m;,} the i" row vector of a matrix M, and
C; = {mij,maj, -~ ,My ;} the j column. The label matrix £ can also be
vectorized as a column vector £’ = (ly,la, - ,lx) which includes all distinct
labels from matrix £, excluding null values (0).

We also define six specific functions that will be reused through this paper:

— Let positives be the function which returns the number of positive detections
from matrix B, or the number of not null labels from matrix L.

— Let exclusives be the function which returns the number of samples detected
by only one AV in matrix B.

— Let distincts be the function which returns the number of distinct labels
(excluding 0) in matrix L.

— Let fregmaz be the function which returns the number of occurrences of the
most frequent label (excluding) from matrix L.

— Let clusters be the function which returns the number of applications which
received a given label [, with [, € L'.

— Let Ouroboros be the function which returns the minimum proportion of
groups including 50% elements of the dataset, normalized between 0 and
1 [30]. This function is used to quantify the uniformity of a list of frequencies,
independently of the size of the list.

4 Definition of Metrics and Experiments

In this section we consider the two pieces of information, AV decision and AV
label, and perform analyses that investigate various aspects of the inconsistencies
that may be present among AV reports. We then propose metrics to quantify
these aspects and allow for comparison between different ground truth datasets.

4.1 Analysis of AV Decisions

The primary role of an AV engine is to decide whether a given sample should
be considered as malicious [13]. These decisions have important consequences in
production environments since a positive detection will probably trigger an alert
and an investigation to mitigate a potential threat. False positives would thus
lead to a waste of resources, while False negatives can have dire consequences
such as substantial losses. AV engines must then select an adequate trade-off
between a deterring high number of false positives and a damaging high number
of false negatives.

In this section, we analyze the characteristics of AV decisions and their dis-
crepancies when different engines are compared against each other.

On the Lack of Consensus in Anti-Virus Decisions 149

4.1.1 Equiponderance

The first concern in using a set of AV engines is to quantify their detection
accuracies. If there are extreme differences, the collected “ground truth” may be
polluted by decisions from a few engines. In the absence of a significant golden set
to compute accuracies, one can estimate, to some extent, the differences among
AVs by quantifying their detection rates (i.e., number of positive decisions).
400k Figure 1 highlights the uneven dis-
tribution of positive detections per
AV in the Dpyse baseline ground
truth. The number of detected apps
indeed ranges from 0 to 367 435. This
raises the question of the confidence
in a “ground truth” when malicious
samples can be contributed by AVs

from the head and tail of the distri-
‘“ bution. Indeed, although we cannot
"""Ilmu.....

N N w w
o [$2] o o
o o o o
= = = =

- -
o (€2
o o
= =

Number of positive detections

[$))
o
=

assume that AV engines with high (or

______________ low) detection rates have better per-
Antivirus

0
formances, because of their potential

Fig. 1. AVs positive detections in Dpase false positives (or false negatives), it

is important to consider the detection

rates of AVs for a given dataset to allow comparisons on a common ground.

A corollary concern is then to characterize the ground truth to allow compar-

isons. To generalize and quantify this characteristic of ground truth datasets, we
consider the following research question:

RQ1: Given a set of AVs and the ground truth that they produce together,
Is the resulting ground truth dominated by only a few AVs, or do all AVs
contribute the same amount of information?

We answer this RQ with a single metric, Equiponderance, which measures
how balanced—or how imbalanced—are the contributions of each AV. Consid-
ering our baseline settings with all AV engines, we infer that 9, i.e., 13.5%,
AVs provided as many positive detections as all the other AVs combined. The
Equiponderance aims to capture this percentage in its output. Because maximum
value for this percentage is 50 %°, we weigh this percentage, by multiplying it
by 2, to yield a metric between 0 and 1. We define the function Ouroboros [30]
which computes this value and also returns the corresponding number of AVs,
which we refer to as the Index of the Equiponderance.

Equiponderance(B) = Ouroboros(X) with X = {positives(C;): C; € B,1 < j <n}

— Interpretation — minimal proportion of antivirus that detected at least 50 % appli-
cations in the dataset. The metric value is weighted.
— Minimum: 0 — when a single antivirus made all the positive detections

5 If one set of AVs leads to a percentage x over 50 %, then the other set relevant value
is 100-x% < 50 %.

150 M. Hurier et al.

— Maximum: 1 — when the distribution of detection rates is perfectly even

When the FEquiponderance is close to zero, the ground truth analyzed is
dominated by the extreme cases: a large number of AV engines provide only
a few positive detections, while only a few AVs engine provide most positive
detections. In comparison with Dyase’s Equiponderance value of 0.27, Dgenome
and Dyiirered present Equiponderance values of 0.48 and 0.59 respectively.

4.1.2 Exclusivity

Even in the case where several AVs would have the same number of detections,
it does not imply any agreement of AVs. It is thus important to also quantify to
what extent each AV tends to detect samples that no other AV detects.

00 Figure2 plots, for every AV prod-

o uct, the proportion of exclusive detections

(i.e., samples no other AV detects) over

é 80, the total number of positive detection of
37 i this AV. Five AVs provide a majority of
2 60x exclusive detections while a large part of
§ 50 % other AVs (45) provides less than 10%
5 407 x such detections. For the 21 AVs that made
g’ 30 x x the most positive detections, the propor-
8 20x tion of exclusive detections remains below
® ok x o« 16 %, while the highest ratios of exclu-

OB o o x o xx x x sive detections are associated with AVs

0 50k 100k 150k 200k 250k 300k 350k 400k that made a (relatively) small number of
Number of positve detections positive detections. Figure2 provides an
Fig. 2. Relation between positive and important insight into Android malware
exclusive detections in Dpase detection by AVs: A very high absolute
number of detections comes from adding more non-exclusive detections—mnot
from detecting apps no other AV detects as could have been intuitively expected.
The following research question aims at formally characterizing this bias in
datasets:

RQ2: Given a set of AVs and the ground truth that they produce together,
what is the proportion of samples that were included only due to one AV
engine?

To answer this RQ, we propose the Ezclusivity metric, which measures the pro-
portion of a tentative ground truth that is specific to a single detector.

exclusives(B)

Ezxclusivity(B) = -

— Interpretation — proportion of applications detected by only one antivirus
— Minimum: 0 — when every sample has been detected by more than one AV
— Maximum: 1 — when every sample has been detected by only one antivirus

On the Lack of Consensus in Anti-Virus Decisions 151

In Dygse, 31 % apps were detected exclusively by only one AV, leading to an
FEzclusivity value of 0.31. On the contrary, both Dyenome and Dyjtereq do not
include apps detected by only one AV and have an Ezclusivity of 0.

4.1.3 Recognition

Because Equiponderance and Ezclusivity alone are not sufficient to describe how
experimental ground truth datasets are built, we investigate the impact of the
threshold parameter that is often used in the literature of malware detection to
consolidate the value of positive detections [8]. A threshold 7 indicates that a
sample is considered as a malware in the ground truth if and only if at least 7
AV engines have reported positive detections on it. Unfortunately, to the best
of our knowledge, there is no theory or golden rule behind the selection of 7.
On one hand, it should be noted that samples rejected because of a threshold
requirement may simply be either (a) new malware samples not yet recognized
by all industry players, or (b) difficult cases of malware whose patterns are not
easily spotted [10]. On the other hand, when a sample is detected by A or v AVs
(where A is close to 7 and v is much bigger than 7), the confidence of including
the app in the malware set is not equivalent for both cases.

Figure 3 explores the variations in the .
numbers of apps included in the ground EEE Equal to threshold value
truth dataset Dbase as malware when the 600k I Strictly superior to threshold value
threshold value for detection rates (i.e.,
threshold number 7 of AVs assigning a
positive detection a sample) changes. The
number of apps detected by more than 7
AVs is also provided for the different val-
ues of 7.

Both bar plots appear to be right-
skewed, with far more samples detected o e e ¢ 40 45 50
by a small number of antivirus than by Threshold value (7)
the majority of them. Thus, any thresh-
old value applied to this dataset would
remove a large portion of the potential
malware set (and, in some settings, shift them into the benign set). To quan-
tify this property of ground truth datasets, we investigate the following research
question:

Number of positive detections

Fig. 3. Distribution of apps flagged by
7 AVs in Dygse (Color figure online)

RQ3: Given the result of antivirus scans on ground-truth daetaset, have ap-
plications been marginally or widely recognized to be malicious ?

We answer this RQ with a single metric, Recognition, which simply computes
the average number of positive detections that are assigned to a sample. In other
words, it estimates the number of AVs agreeing on a given app.

™o X
Lim X with X = {positives(R;): R; € B,1 <i<m}

Recognition(B) = ~
nxm

152 M. Hurier et al.

— Interpretation — proportion of antivirus which provided a positive detection to an
application, averaging on the entire dataset

— Minimum: 0 — when no detections were provided at all

— Maximum: 1 — when each AV have agreement to flag all apps

When a threshold is applied on an experimental dataset, the desired objective
is often to increase the confidence by ensuring that malware samples are widely
recognized to be malicious by existing antivirus engines. Although researchers
often report the effect on the dataset size, they do not measure the level of
confidence that was reached. As an example, the Recognition of Dpg,se is 0.09: on
average, 6 (9 %) AV engines provided positive detections per sample, suggesting a
marginal recognition by AVs. The Recognition values for Dyjtereq and Dgenome
amounts to 0.36 and 0.48 respectively. These values characterize the datasets
by estimating the extent to which AVs agree more to recognize samples from
Dyittered as positive detections more widely than in Dygse. AVs recognize samples
from Dyepome even more widely.

4.1.4 Synchronicity

In complement to Recognition and Ezclusivity, we investigate the scenarios where
pairs of AV engines conflict in their detection decisions. Let us consider two AV
engines U and V and the result of their detections on a fixed set of samples. For
each sample, we can expect 4 cases:
Detected by U Not detected by U
Detected By V/ (True, True) (True, False)
Not detected by V' (False, True) (False, False)

Even if the Fquiponderance value of the dataset produced by AVs U and V
amounts to 1, one cannot conclude on the distribution of those cases. The most
extreme scenarios could be 50 % (True, True) and 50 % (False, False) or 50 %
(True, False) and 50 % (False, True). For the first one, both AVs are in perfect
synchrony while they are in perfect asynchrony in the second one.

Figure4 is a heatmap representation of the
pairwise agreement among the 66 AV engines
on our dataset. For simplicity, we have ordered
the AV engines by their number of positive
os detections (the top row—Ileft to right— and the

left column—top to bottom—correspond to the
0a same AVs). For each of the (626) entries, we com-
pute the overlap function [31]:

02
overlap(X,Y) = | X NY|/min(|X|,|Y])

0.0
This function normalizes the pairwise compar-

Fig. 4. Overlap between pairs of ison with the case of the AV presenting the
AVs in Dyase smallest number of positive detections. From
the heatmap, we can observe two patterns: (a) The number of cells where a

On the Lack of Consensus in Anti-Virus Decisions 153

full similarity is achieved is relatively small w.r.t the number of entries. Only
12% of pairs of AVs achieved a pairwise similarity superior to 0.8, and only
1% of pairs presented a perfect similarity. (b) There is no continuity from the
right to the left (nor from the top to the bottom) of the map. This indicates that
AVs with comparable number of positive detections do not necessarily detect the
same samples. We aim to quantify this level of agreement through the following
research question:

RQ4: Given a dataset of samples and a set of AVs, what is the likelihood
for any pair of distinct AV engines to agree on a given sample?

We answer this RQ with the Synchronicity metric which measures the ten-
dency of a set of AVs to provide positive detections at the same time as other
antivirus in the set:

>y 2%y PairwiseSimilarity(Cy, Cjr)

Synchronicity(B) = (0
n(n —

with j ;éj/,Cj € B, Cj/ eB

Interpretation — average pairwise similarity between pairs of AVs
— Minimum: 0 — when no sample is detected at the same time by more than
one AV
— Maximum: 1 — when each sample is detected by every AV
— Parameters
o PairwiseSimilarity: a binary distance function [31]
* Overlap: based on positive detections and normalized (default)
* Jaccard: based on positive detections, but not normalized
+x Rand: based on positive and negative detections

High values of Synchronicity should be expected for datasets where no uncer-
tainty remains to recognize applications as either malicious or not malicious.
Dyase presents a Synchronicity of 0.32, which is lower than values for Dgenome
(0.41), and Dyijrerea (0.75). The gap between values for Dyepome and Dyittered
suggests the impact that a selection of Antivirus can have on artificially increas-
ing the Synchronicity of the dataset.

4.2 Analysis of Malware Labels

Besides binary decisions on detection of maliciousness in a sample, AV engines
also provide, in case of positive detection, a string label which indicates the
type/family /behavior of the malware or simply identifies the malicious trait.
These labels are thus expected to specify appropriately the threat in a meaning-
ful and consistent way. Nevertheless, previous work have found that the disagree-
ment of multiple AVs on labelling a sample malware challenges their practical
use [2-5].

In this section, we further investigate the inconsistencies of malware labels
and quantify different dimensions of disagreements in “ground truth” settings.

154 M. Hurier et al.

4.2.1 Uniformity

Figureb represents the distribution 1 —
of the most frequently used labels im
on our Dy,s. dataset. In total, the é sm
689209 samples detected by at least § ZE
one AV were labeled with 119156 dis- g on
tinct labels. ’é Y
68 % of positive detections were fom
associated with the most infrequent E\, 1o
labels, i.e., outside the top 20 labels]g:
(grouped together under the ‘OTH- o
ERS’ label). The most frequent label, O —
Android.Adware.Dowgin.I, is associ- Percentage of positive detections

a.ted with 9% of the positive dete?— Fig. 5. Distribution of malware labels in
tions. In a ground truth dataset, it Dyoon

is important to estimate the balance

between different malicious traits, so as to ensure that the reported performance
of an automated detector can generalize. We assess this property of ground truth
by answering the following research question:

RQ5: Given a ground truth derived by leveraging a set of AVs, are the labels
associated to samples evenly distributed?

We answer this RQ with a single metric, Uniformity, which measures how
balanced—or how imbalanced—are the clusters of samples associated to the
different labels.

Uni formity(L') = Ouroboros(X) with X = {clusters(ly) : I € £L',1 < k < o}

— Interpretation — minimal proportion of labels assigned to at least 50 % of
total number of detected samples. The metric value is weighted

— Minimum: 0 — when each sample is assigned a unique label by each AV

— Maximum: 1 — when the same label is assigned to every sample by all AVs

The Uniformity metric is important as it may hint on whether some malware
families are undersampled w.r.t others in the ground truth. In can thus help, to
some extent, to quantify potential biases due to malware family imbalance. Dpgse
exhibits a Uniformity value close to 0 (12 x 107%) with an index of 75: 75 labels
occur as often in the distribution than the rest of labels (119081), leading to
an uneven distribution. We also found extreme values for both Filtered and
Genome settings with Uniformity of 0.01 and 0.04 respectively. These values
raise the question of malware families imbalance in most ground truth datasets.
However, it is possible that some labels, although distinct, because of the lack of
naming standard, actually represent the same malware type. We thus propose
to further examine labels on other dimensions.

On the Lack of Consensus in Anti-Virus Decisions 155

4.2.2 Genericity
Once the distribution of labels has

50k ;
‘.”xx TyEx been extracted from the dataset, we
40k | x antivirus can also measure how often labels are
ﬁ reused by antivirus. This property is
§30k an interesting behavior that Bureau
£ : and Harley highlighted [13]. If we
gzok consider the two extreme cases, AVs
g x could either assign a different label to
2 1ok ! every sample (e.g. hash value), or a
! x| X unique label to all samples. In both
o 3%;% zx X xzx el y scenarios, labels would be of no value

to group malware together [2].

0 50k 100k 150k 200k 250k 300k 350k 400k
Number of positive detections In Fig.6, we plot the number of

detections against the number of dis-
Fig. 6. Relation between distinct labels and tinct labels for each AV. While two
positive detections per AV in Dyase AVs assign almost a different label for

each detected sample (points close to
the y = z line), the majority of AVs have much fewer distinct labels than detected
samples: they reuse labels amongst several samples. These two different behaviors
might be explained by different levels of genericity of labels. For example, using
very precise labels would make the sharing of labels among samples harder than
in the case of very generic labels that could each be shared by several samples.
To quantify this characteristic of labels produced by a set of AVs contributing
to define a ground truth, we raise the following research question:

RQ6: Given a ground truth derived by leveraging a set of AVs, what is,
on average for an AV, the degree of reuse of a label to characterize several

samples?

We propose the genericity metric to quantify this information:
o—1

— ——————— with o « number of distinct labels
positives(L) — 1

Genericity(L) =1
— Interpretation — ratio between the number of distinct labels and the number of
positive detections

— Minimum: 0 — when every assigned label is unique
— Maximum: 1 — when all labels are identical

Genericity assesses whether AVs assign precise labels or generic ones to sam-
ples. Although detectors with low Genericity would appear to be more precise
in their naming, Bureau and Harley [13] support that such engines may not
be the most appropriate w.r.t the exponential growth of malware variants. The
Genericity Dpgse is 0.97, inline with our visual observation that there is far less
distinct labels than positive detections. The Genericity values of Dgenome and
Dritterea are equal to 0.82 and 0.87 respectively.

156 M. Hurier et al.

4.2.3 Divergence

While Uniformity and Genericity can 40
evaluate the overall distribution of
labels that were assigned by AVs, they 2
do not consider the question of agree-
ment of AVs on each sample. Ideally,
AVs should be consistent and provide £ 20
labels similar to that of their peers. 1

Even if this ideal case can not be g};‘
achieved, the number of distinct labels = s
per application should remain limited .
w.r.t the number of AVs agreeing to ;

. 0 2 4 6 8101214 16 18 20 22 24 26 28 30 32 34 36 38 40
detect it. Number of positive detections

For Dpase, Fig. 7 plots the relation Fig. 7. Relation between distinct labels
between the number of positive detec- ;nq positive detections per app in Dyase
tions of a sample and the average num-
ber of distinct labels associated to it. As a confidence margin, we also draw an
area of two standard deviations centered on the mean. We note that the mean
value for number of labels grows steadily with the number of detection, close to
the maximum possible values represented by the dotted line. The Pearson corre-
lation coefficient p between these variables evaluates to 0.98, indicating a strong
correlation. Overall, the results suggest not only that there is a high number
of different labels per application on our dataset, but also that this behavior is
true for both small and high values of positive detections. The following research
question investigates this characteristic of ground truth datasets:

RQ7: Given a set of AVs and the ground truth that they produce, to what
extent do AVs provide for each sample a label that is inconsistent w.r.t.
other AVs labels.

We can quantify this factor with the following metric that measures the capacity
of a set of antivirus to assign a high number of different labels per application.

(221 Xi)—n

positives(L) — n wi {distincts(R:) € i <m}

Divergence(L)

— Interpretation: — average proportion of distinct labels per application w.r.t the
number of AVs providing positive detection flags

— Minimum: 0 — when AVs assign a single label to each application

— Maximum: 1 — when each AV assigns its own label to each application

Two conditions must be met in a ground truth dataset to reach a low Diver-
gence: AVs must apply the same syntax consistently for each label, and they
should refer to a common semantics when mapping labels with malicious behav-
iors/types. If label syntax is not consistent within the dataset, then the semantics
cannot be assessed via the Divergence metric. It is, however, often possible to
normalize labels through a basic preprocessing step.

On the Lack of Consensus in Anti-Virus Decisions 157

The Divergence values of Dygse, Dfittered and Dgenome are 0.77, 0.87 and 0.95
respectively. These results are counter-intuitive, since they suggest that more
constrained settings create more disagreement among AVs in terms of labeling.

4.2.4 Consensuality

To complement the property highlighted by Divergence, we can look at the
most frequent label assigned per application. Indeed, while the previous met-
ric describes the number of distinct labels assigned per application, it does not
measure the weight of each label, notably that of the most used label. Yet, to
some extent, this label could be used to infer the family and the version of a
malware, e.g., if it used by a significant portion of AVs to characterize a sample.
To visualize this information, still for Dp,se, we create in Fig. 8 a plot similar
to that of Fig. 7, looking now at the average number of occurrence of the Most
Frequent Label (MFL) against the number of positive detections per application.
The correlation coefficient p

between the two variables is 0.76, 9

high. The plot further highlights
that the most frequent label for an
application is assigned simultane-
ously by one to six AVs (out of
66) on average. Th}s finding S}lg_ 0 2 475 B 101214 16 18 20 22 24 26 28 30 32 34 36 38 40
gests that, at least in Dpyse, using Number of positive detections

the most frequent label to charac-

terize the malicious sample is not Fig. 8. Relation between MFL /7 and positive
a sound approximation. The follow- detections per app in Dpase

ing research question generalize the

dimension of disagreement that we investigate:

indicative of a correlation. Never- B
. . ®© 3
theless, the relation is close to the =3
potential minimum (x-axis). This is 33
. . . . (9]
in line with our previous observa- &2
. [72] —
tions on Dpese that the number of g2 T:arzd
. . . . — 12§
distinct labels per application was 21 v=x
2
o
@1
%’ 1
S
Q
O
o

w
ONPOXONPOXONROIRXON KD

RQ8: Given a set AVs and the ground truth that they produce, to what extent
can we rely on the most frequently assigned label for each detected sample
as an authoritative label?

We answer this RQ with the Consensuality metric:

Consensuality(L) = i X))o with X = {freqmaz(R;) : R; € £,1 <i<m}
n

" positives(L) —

— Interpretation — average proportion of AVs that agree to assign the most frequent
label. The frequency is computed per sample.

158 M. Hurier et al.

— Minimum: 0 — when each AV assigns to each detected sample its own label (i.e.,
unused by others on this sample)

— Maximum: 1 - when all AVs assign the same label to each sample. Different samples
can have different labels however

A high Consensuality value highlights that the used AVs agree on most appli-
cations to assign a most frequent label. This metric is important for validating,
to some extent, the opportunity to summarize multiple labels into a single one.
In the Dyyse set, 79% detection reports by AVs do not come with a label that,
for each sample, corresponds to the most frequent label on the sample. The Con-
sensuality value of the set evaluates to 0.21. In comparison, the Consensuality
values for Dyijtered and Dyenome are 0.05 and 0.06 respectively.

4.2.5 Resemblance

Divergence and Consensuality values on Dyqs suggest that labels assigned to
samples cannot be used directly to represent malware families. Indeed, the num-
ber of distinct labels per application is high (high Divergence), and the most
frequent label per application does not occur often (low Consensuality). We fur-
ther investigate these disagreements in labels to verify whether the differences
between label strings are small or large across AVs. Indeed, in previous compari-
son, given the lack of standard naming, we have chosen to compute exact match-
ing. Thus, minor variations in label strings may have widely influenced our metric
values. We thus compute the similarity between label strings for each application
and present the summary in Fig. 9. For each
detected sample, we computed the Jaro-
Winkler [32] similarity between pairwise
combinations of labels provided by AVs. 08
This distance metric builds on the same
intuition as the edit-disance (i.e., Leven- 06
shtein distance), but is directly normalized

between 0 and 1.A similarity value of 1 o4 -
implies the identicality of strings while a
value of 0 is indicative of high difference. o2
We consider the minimum, mean and max-
imum of these similarity values and repre-
sent their distributions across all apps. The
median of mean similarity values is around Fig.9. String similarity between
0.6: on average labels only slightly resemble 1ahels per app in Dyase

each other. The following research question

highlights the consensus that we attempt to measure:

[RQQ: Given a set AVs and the ground truth that they produce, how resem—]

1.0

Min. Ressemblance ~ Avg. Max.

bling are the labels assigned by AVs for each detected sample?

We answer this metric with the Resemblance metric which measures the average
similarity between labels assigned by set of AVs to a given detected sample.

On the Lack of Consensus in Anti-Virus Decisions 159

i 7?;; 7.1;_ Jaro — Winkler(l; j,1; i
Ressemblance(L) = 1 Z 21 2y =) (g o)

m <
i=1

with j # j',li; # 0,1, # 0,1;; € B,l; j» € B and nj = positives(R;),2 < nj <n

— Interpretation estimation of the global resemblance between labels for each app
— Minimum 0 when there is no similitude between labels of an application
— Maximum 1 when labels are identical per application

Resemblance assesses how labels assigned to a given application would be
actually similar across the considered AVs. This metric, which is necessary when
Divergence is high and Consensuality is low, can evaluate if the differences
between label strings per application are small or large. Dpgse, Dyistereq and
Dgyenome present Resemblance values of 0.63, 0.57 and 0.60 respectively. Com-
bined with the Divergence metric values, we note that reducing the set of AVs
has not yielded datasets where AVs agree more on the labels.

5 Discussions

5.1 Comparison of Ground-Truth Approaches

Table 1 summarizes the metric values for the three settings described in Sect. 3.3
that researchers may use to build ground truth datasets.

Table 1. Summary of Metrics for three common settings of Ground Truth constructions

‘Eqniponderance Exclusivity Recognition Synchronicity Uniformity Genericity Divergence Consensuality Resemblance

Dease 0.27 0.31 0.09 0.32 0.001 0.97 0.77 0.21 0.63
Dyittered 0.59 0 0.36 0.75 0.01 0.87 0.95 0.05 0.57
Dygenome 0.48 0 0.48 0.41 0.04 0.82 0.87 0.06 0.60

The higher values of Recognition and Synchronicity for Dyenome and Dtiitered
in comparison with Dp,s. suggest that these datasets were built with sam-
ples that are well known to be malicious in the industry. If we consider that
higher Recognition and Synchronicity values provide guarantees for more reli-
able ground truth, then Dycpnome and Dyijzereq are better ground truth candidates
than Dygse. Their lower value of Genericity also suggests that AV labels pro-
vided are more precise than that in Dygse. At the same time, higher values of
Equiponderance and Uniformity imply that both AV detections and labels are
more balanced across AVs.

Divergence and Consensuality values however suggest that the general agree-
ment on AV labels has diminished in Dgepome and Dyjitereqd in comparison with
Drase- The Exclusivity value of 0 for Dyenome and Dyijrerea further highlights
that the constraints put on building those datasets may have eliminated corner
cases of malware that only a few, if not 1, AV could have been able to spot.

We also note that Dyjjtereq has a higher Synchronicity value than Dyenome,
indicating that its settings lead to a selection of AVs which were more in agree-
ment on their decision. In contrast, the Divergence values indicate that the

160 M. Hurier et al.

proportion of distinct labels for each sample was higher in D¢jitereq than in
Dgenome, suggesting that decisions in Dyenome are easier to interpret for each
sample. Nevertheless, the classification of samples in malware families would be
more difficult because of the higher proportion of distinct labels to take into
consideration.

5.2 Limitations and Future Work

The collection of metrics proposed in this paper is focused on the quantification of
nine characteristics that we considered relevant based on our experience and the
literature related to malware experiments [3,10,11,13]. Hence, we do not attempt
to cover the full range of information that could be quantified from the output
of AV scans. In addition, our analysis of antivirus reports has exposed a global
lack of consensus that has been previously highlighted by other authors for other
computing platforms [2,4,13,33]. Our work cannot be used to solve the challenge
of naming inconsistencies directly. Instead, the metrics we presented can be used
to evaluate ground truth datasets prior and posterior to their transformation by
techniques proposed by other authors [6,10,34].

As future work, we will focus on surveying parameter values to yield ground
truths that are suitable to practionners’ constraints for consensus and reliability
in accordance to their use cases.

6 Conclusion

We have investigated the lack of consensus in AV decisions and labels using
the case study of Android samples. Based on different metrics, we assessed the
discrepancies between three ground truth datasets, independently of their size,
and question their reliability for evaluating the performance of a malware detec-
tor. The objective of our work was twofold: (1) to further motivate research on
aggregating AV decisions results and improving the selection of AV labels; (2) to
provide means to researchers to qualify their ground truth datasets, w.r.t AVs
and their heuristics, so as to increase confidence in performance assessment, and
take a step further to improve reproducibility of experimental settings, given the
limited sharing of security data such as samples.

Acknowledgment. This work was supported by the Fonds National de la Recherche
(FNR), Luxembourg, under the project AndroMap C13/1S/5921289.

References

1. Symantec: Symantec. istr 20 - internet security threat report, April 2015. http://
know.symantec.com/LP=1123

2. Bailey, M., Oberheide, J., Andersen, J., Mao, Z.M., Jahanian, F., Nazario,
J.: Automated classification and analysis of internet malware. In: Kruegel, C.,
Lippmann, R., Clark, A. (eds.) RAID 2007. LNCS, vol. 4637, pp. 178-197.
Springer, Heidelberg (2007)

http://know.symantec.com/LP=1123
http://know.symantec.com/LP=1123

10.

11.

12.

13.

14.

15.

16.

17.
18.

19.

20.

On the Lack of Consensus in Anti-Virus Decisions 161

Canto, J., Sistemas, H., Dacier, M., Kirda, E., Leita, C.: Large scale malware col-
lection: lessons learned. In: 27th International Symposium on Reliable Distributed
Systems, vol. 52(1), pp. 35-44 (2008)

Maggi, F., Bellini, A., Salvaneschi, G., Zanero, S.: Finding non-trivial malware
naming inconsistencies. In: Jajodia, S., Mazumdar, C. (eds.) ICISS 2011. LNCS,
vol. 7093, pp. 144-159. Springer, Heidelberg (2011)

Mohaisen, A., Alrawi, O.: AV-Meter: an evaluation of antivirus scans and labels. In:
Dietrich, S. (ed.) DIMVA 2014. LNCS, vol. 8550, pp. 112-131. Springer, Heidelberg
(2014)

Perdisci, R., U, M.: Vamo: towards a fully automated malware clustering valid-
ity analysis. In: Annual Computer Security Applications Conference, pp. 329-338
(2012)

VirusTotal: VirusTotal about page. https://www.virustotal.com/en/about/

Arp, D., Spreitzenbarth, M., Malte, H., Gascon, H., Rieck, K.: Drebin: effective
and explainable detection of android malware in your pocket. In: Symposium on
Network and Distributed System Security (NDSS), pp. 23-26 (2014)

Yang, C., Xu, Z., Gu, G., Yegneswaran, V., Porras, P.: DroidMiner: automated
mining and characterization of fine-grained malicious behaviors in android appli-
cations. In: Kutylowski, M., Vaidya, J. (eds.) ICAIS 2014, Part I. LNCS, vol. 8712,
pp. 163-182. Springer, Heidelberg (2014)

Kantchelian, A., Tschantz, M.C., Afroz, S., Miller, B., Shankar, V., Bachwani, R.,
Joseph, A.D., Tygar, J.D.: Better malware ground truth: techniques for weighting
anti-virus vendor labels. In: AISec 2015, pp. 45-56. ACM (2015)

Rossow, C., Dietrich, C.J., Grier, C., Kreibich, C., Paxson, V., Pohlmann, N., Bos,
H., Van Steen, M.: Prudent practices for designing malware experiments: Status
quo and outlook. In: Proceedings of S&P, pp. 65-79 (2012)

Allix, K., Jérome, Q., Bissyandé, T.F., Klein, J., State, R., Le Traon, Y.: A forensic
analysis of android malware-how is malware written and how it could be detected?
In: COMPSAC 2014, pp. 384-393. IEEE (2014)

Bureau, P.M., Harley, D.: A dose by any other name. In: Virus Bulletin Conference,
VB, vol. 8, pp. 224-231 (2008)

Li, P., Liu, L., Gao, D., Reiter, M.K.: On challenges in evaluating malware clus-
tering. In: Jha, S., Sommer, R., Kreibich, C. (eds.) RAID 2010. LNCS, vol. 6307,
pp. 238-255. Springer, Heidelberg (2010)

Bayer, U., Comparetti, P.M., Hlauschek, C., Kruegel, C., Kirda, E.: Scalable,
behavior-based malware clustering. In: Proceedings of the 16th Annual Network
and Distributed System Security Symposium (NDSS 2009) (1) (2009)

Gashi, I., Sobesto, B., Mason, S., Stankovic, V., Cukier, M.: A study of the rela-
tionship between antivirus regressions and label changes. In: ISSRE, November
2013

GData: Mobile malware report (Q3 2015). https://secure.gd/dl-en-mmwr201503

Enck, W., Ongtang, M., McDaniel, P.: On lightweight mobile phone application
certification. In: Proceedings of the 16th ACM Conference on Computer and Com-
munications Security - CCS 2009, pp. 235-245 (2009)

Enck, W., Octeau, D., McDaniel, P., Chaudhuri, S.: A study of android application
security. In: Proceedings of the 20th USENIX Security, vol. 21 (2011)

Felt, A.P., Chin, E., Hanna, S., Song, D., Wagner, D.: Android permissions demys-
tified. In: Proceedings of the 18th ACM Conference on Computer and Communi-
cations Security, CCS 2011, pp. 627-638. ACM, New York (2011)

https://www.virustotal.com/en/about/
https://secure.gd/dl-en-mmwr201503

162

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

M. Hurier et al.

Yan, L., Yin, H.: Droidscope: seamlessly reconstructing the os and dalvik semantic
views for dynamic android malware analysis. In: Proceedings of the 21st USENIX
Security Symposium, vol. 29 (2012)

Zhou, Y., Wang, Z., Zhou, W., Jiang, X.: Hey, you, get off of my market: detecting
malicious apps in official and alternative android markets. In: Proceedings of the
19th Annual Network and Distributed System Security Symposium (2), pp. 58
(2012)

Barrera, D., Kayacik, H.G., van Oorschot, P.C., Somayaji, A.: A methodology
for empirical analysis of permission-based securitymodels and its application to
android. In: Proceedings of the 17th ACM CCS (1), pp. 73-84 (2010)

Peng, H., Gates, C., Sarma, B., Li, N., Qi, Y., Potharaju, R., Nita-Rotaru, C.,
Molloy, I.: Using probabilistic generative models for ranking risks of android apps.
In: Proceedings of the 2012 ACM CCS, pp. 241-252. ACM (2012)

Sommer, R., Paxson, V.: Outside the closed world: on using machine learning for
network intrusion detection. In: Proceedings of the 2010 IEEE S&P, pp. 305-316
(2010)

Allix, K., Bissyandé, T.F., Jérome, Q., Klein, J., State, R., Le Traon, Y.: Empirical
assessment of machine learning-based malware detectors for android. Empirical
Softw. Eng. 21, 183-211 (2014)

Allix, K., Bissyandé, T.F., Klein, J., Le Traon, Y.: Are your training datasets yet
relevant? In: Piessens, F., Caballero, J., Bielova, N. (eds.) ESSoS 2015. LNCS, vol.
8978, pp. 51-67. Springer, Heidelberg (2015)

Allix, K., Bissyandé, T.F., Klein, J., Le Traon, Y.: Androzoo: collecting millions
of android apps for the research community. In: MSR 2016 (2016)

Zhou, Y., Jiang, X.: Dissecting android malware: characterization and evolution.
In: Proceedings of the 2012 IEEE S&P, pp. 95-109. IEEE Computer Society (2012)
Hurier, M.: Definition of ouroboros. https://github.com/freaxmind/ouroboros
Pfitzner, D., Leibbrandt, R., Powers, D.: Characterization and evaluation of simi-
larity measures for pairs of clusterings. Knowl. Inf. Syst. 19(3), 361-394 (2009)
Cohen, W.W., Ravikumar, P., Fienberg, S.E.: A comparison of string metrics for
matching names and records. In: KDD Workshop on Data Cleaning and Object
Consolidation, vol. 3 (2003)

Harley, D.: The game of the name malware naming, shape shifters and sympathetic
magic. In: CEET 3rd International Conference on Cybercrime Forensics Education
& Training, San Diego, CA (2009)

Wang, T., Meng, S., Gao, W., Hu, X.: Rebuilding the tower of babel: towards cross-
system malware information sharing. In: Proceedings of the 23rd ACM CIKM, pp.
1239-1248 (2014)

https://github.com/freaxmind/ouroboros

Evasion

Probfuscation: An Obfuscation Approach Using
Probabilistic Control Flows

Andre Pawlowski®™), Moritz Contag, and Thorsten Holz

Horst Gortz Institute for IT-Security (HGI), Ruhr-Universitat Bochum,
Bochum, Germany
andre.pawlowski@rub.de

Abstract. Sensitive parts of a program, such as proprietary algorithms
or licensing information, are often protected with the help of code obfus-
cation techniques. Many obfuscation schemes transform the control flow
of the protected program. Typically, the control flow of obfuscated pro-
grams is deterministic, i.e., recorded execution traces do not differ for
multiple executions using the same input values. An adversary can take
advantage of this behavior and create multiple traces to perform analy-
ses on the target program in order to deobfuscate it.

In this paper, we introduce an obfuscation approach which yields prob-
abilistic control flow within a given method. That is, for the same input
values, multiple execution traces differ, whilst preserving semantics. This
effectively renders analyses relying on multiple traces impractical. We
have implemented a prototype and applied it to several different pro-
grams. Our experimental results show that our approach can be used
to ensure divergent traces for the same input values and that it can
significantly improve the resilience against dynamic analysis.

1 Introduction

Obfuscation (lat. obfuscare = darken) is the art of disguising a given system such
that the analysis becomes harder. In the area of software engineering, obfusca-
tion can be used on either the source code or binary level to obscure the code or
data flow. Generally speaking, the goal is to hamper reverse engineering. Code
obfuscation plays an important role in practice and such techniques are widely
used. On the one hand, obfuscation techniques can be used to protect programs
from reverse engineering or to at least increase the costs for such an analysis.
Examples include protection systems for sensitive parts or proprietary algorithms
of a given program, or digital rights management systems that contain licens-
ing information. On the other hand, obfuscation is widely used by attackers
to impede analysis of malicious software such that antivirus companies have a
harder time to analyze new samples. As a result, many different kinds of obfus-
cation techniques were proposed in the last years (e.g., [6,10,13,15]). Note that
all obfuscation techniques have one constraint in common: the transformations
used to obfuscate the program must ensure that the semantic meaning of the
program is not changed.

© Springer International Publishing Switzerland 2016
J. Caballero et al. (Eds.): DIMVA 2016, LNCS 9721, pp. 165-185, 2016.
DOI: 10.1007/978-3-319-40667-1_9

166 A. Pawlowski et al.

Current state-of-the-art obfuscation techniques translate the target pro-
gram’s code into custom bytecode [17,22]. This bytecode is generated specifically
for the obfuscated program and an interpreter is embedded which handles execu-
tion of said bytecode. When analyzed statically, the translation to an unknown
instruction set forces an analyst to examine the bytecode interpreter first, before
actually reverse engineering the original algorithm. Because obfuscation schemes
are often difficult to analyze statically, most deobfuscation approaches make use
of dynamic analysis [7,21,25]. A drawback of current obfuscation techniques is
the fact that the control flow does not differ for multiple program executions
when using the same input values. Thus, it is easier for an analyst to monitor
control flow, which exposes parts of the semantic of the target program. Note
that state-of-the-art deobfuscation tools utilize a dynamic trace of the program
to reconstruct an unobfuscated version of the program.

In this paper, we propose a novel obfuscation approach that tackles the afore-
mentioned problem. Our obfuscation scheme is constructed in such a way that
multiple traces of the same function with the same input values lead to different
observed control flows, whilst preserving semantics. Our approach is inspired by
the idea of Collberg et al. [5], which uses opaque predicates constructed using a
specifically crafted graph data structure. However, their technique is based on
a problem that is only difficult to tackle when the attacker is limited to static
analysis. Hence, if an analyst employs dynamic analyses, she can easily determine
the value of an opaque predicate which has been executed in the recorded trace.
In an empirical evaluation, we show that our proposed obfuscation approach
successfully introduces probabilism to the control flow of the target program.
Thus, it thwarts dynamic analysis operating on multiple executions of the pro-
tected program significantly and does not focus solely on static analysis like
other state-of-the-art obfuscation approaches [6,13,17,22].

In summary, we make the following contributions:

— We present a novel obfuscation scheme that introduces probabilistic con-
trol flow, but still ensures that the code’s semantics are preserved. Due the
probabilistic nature of our scheme, it can withstand proposed deobfuscation
approaches that rely on a trace-based analysis of several execution runs.

— We implemented a proof-of-concept obfuscation tool in the managed code
programming language C# targeting .NET applications. The tool is freely
available at https://github.com/RUB-SysSec/Probfuscator.

— We evaluate the prototype and demonstrate that probabilistic obfuscation is
a viable obfuscation technique to protect sensitive parts of a given program.

2 Technical Background

The transformations applied by the obfuscation process aim to hide the pro-
gram’s semantics. If successful, the analysis and deobfuscation effort is consider-
ably higher than feasible for an analyst. In the following, we refer to an analyst
as adversary given that we study an obfuscation algorithm.

https://github.com/RUB-SysSec/Probfuscator

Probfuscation: An Obfuscation Approach Using Probabilistic Control Flows 167

The main class of obfuscation schemes, as well as ours, target the control flow
of the target program since it contains vital information about the general struc-
ture of a program and exposes high-level constructs such as loops or if-clauses.
Doing so, these obfuscation schemes thwart attempts to statically analyze the
target program. One building block used by said schemes is the construct of
opaque predicates [5]. An opaque predicate is a boolean expression whose value
is known at obfuscation time. However, its value is difficult to infer by an (auto-
mated) attacker. Collberg et al. introduce three types of opaque predicates which
we will refer to as true opaque predicates, false opaque predicates, and random
opaque predicates, whose expressions evaluate to the boolean values true, false
or evaluate randomly to either, respectively [5]. In the following, we will denote
by (always) taken branch the branch of an opaque predicate which is known to
be always taken.

In case of a true opaque predicate, its taken branch will always be taken, as it
corresponds to the predicate evaluating to true. Its other branch also has to point
to meaningful code, though, and points to a block of dead code. From the obfus-
cator’s point of view, it should be difficult to distinguish dead from live code.
False opaque predicates operate analogously. Random opaque predicates differ
in that their expression yields a random value and both branches may be taken.
Consequently, the code blocks the branches point to have to be semantically
equivalent for the obfuscation to be semantics-preserving. A resilient random
opaque predicate aims to hide this fact by employing several transformations on
the blocks to make comparison of their semantics harder.

Attacks against opaque predicates make use of data flow analysis and try
to prove that the expression the predicate checks are in fact constant. More
resilient opaque predicates hence build expressions involving pointer aliases by
making use of the hardness of the intraprocedural may-alias analysis problem [20].
This problem states that it is generally undecidable if two given pointers into a
complex data structure alias each other, i.e., point to the same location in the
structure. While algorithms that tackle the problem do exist, many of them are
incapable of handling special cases like recursive or cyclic data structures [5].

3 Adversary Model

The goal of the adversary is to analyze and understand a protected algorithm
inside the obfuscated method (e.g., a serial key check algorithm or a propri-
etary algorithm embedded in the method). To this end, the adversary has to
understand the effect of the input values on the program’s observable behavior,
among others. We assume an adversary that bases her deobfuscation attempts
solely on dynamic analysis techniques, a common attacker model found in recent
literature on attacks against obfuscation schemes [7,21,25].

The adversary is able to record multiple traces of the obfuscated method for
any inputs as well as set breakpoints on specific points in the control flow. Note
that deobfuscation with the help of static analysis is already tackled by obfus-
cation techniques proposed previously [1,5,20,23], which are orthogonal to our

168 A. Pawlowski et al.

Program Class Method Method
/c‘lasi Bar { pu\kn)l‘?avzoisd; ;?.(.) '(/
1 > > 1 e —
- inta=4 /
1) Adding 2) Graph 3) Adding 4) Linking
Properties Generation Initialization Code Basic Blocks
Method Method Method Method
e
- « Sy =] e A T
[
/
8) Transforming 7) Generating 6) Injecting 5) Transforming
Basic Blocks Dead Code Opaque Predicates Control Flow

Fig. 1. Overview of the eight steps of the obfuscation process. On the top, it is noted
which entity is targeted by the current obfuscation step.

approach. However, the adversary is subject to time constraints in her analysis.
Given that modern programs change their protection implementations with the
release of new versions (e.g., anti-cheat systems, [14]) and recent deobfuscation
approaches work solely on execution traces [7,21,25], we deem these assumptions
reasonable.

4 Approach

Our approach makes use of an artificial graph, called obfuscation graph, whose
nodes consist of objects of classes provided by the target program. Each protected
method in the target program holds a pointer to the graph, linking both together.
Each basic block of the protected method is linked to one or multiple nodes in the
obfuscation graph. During the execution of the protected method, the pointer to
the obfuscation graph is moved from node to node. The obfuscation only forwards
the pointer to nodes linked to the basic blocks which are to be executed next.
With the help of opaque predicates, the scheme ensures that tampering with the
link most likely results in a crash of the program.

The obfuscation scheme consists of eight steps which are illustrated in Fig. 1
and shortly described in the following.

1. Adding properties. The scheme uses properties of the nodes in the obfuscation
graph for opaque predicates. In order to increase the number of possible
opaque predicates, additional properties are added to the nodes.

2. Generating the obfuscation graph. The obfuscator then builds the obfuscation
graph with the help of the properties. It is then added to the class that
contains the method that should be protected.

3. Adding initialization code. This step adds additional logic to initialize the
obfuscation scheme for all methods that are to be protected.

Probfuscation: An Obfuscation Approach Using Probabilistic Control Flows 169

4. Linking basic blocks. The basic blocks of the control flow graph (CFG) are
linked to the nodes of the obfuscation graph. This connection is needed to
ensure correct evaluation of the boolean expressions of the opaque predicates.

5. Transforming control flow. The CFG of the method is transformed with the
help of the linked obfuscation graph in such a way that multiple paths through
the CFG yield the same output.

6. Injecting opaque predicates. Opaque predicates are injected that only evaluate
correctly if the pointer to the obfuscation graph points to the correct location
during the execution.

7. Generating dead code. Dead basic blocks added during the insertion of opaque
predicates are filled with artificially created code.

8. Transforming basic blocks. The basic blocks themselves are transformed to
obfuscate the method’s original code.

In the following, the eight steps are described in detail.

Adding Properties. In order to provide a diverse range of opaque predicates
for the same node, the nodes should either have a large number of properties
or a property which allows a wide range of different states. Note that all nodes
in the obfuscation graph have to implement the same properties, which may
be uncommon for a set of entities in non-obfuscated applications. Therefore, the
obfuscator adds a set of random properties to all possible nodes of the obfuscation
graph (i.e., to all classes, as a node is an object of a class). However, the random
properties use different states.

For our obfuscation approach, a property can be anything that can be added
to all nodes of the obfuscation graph and can hold different states, so that boolean
expressions for opaque predicates can be built. For example, common attributes
or metadata of a class, like implemented interfaces, can be used. The state of an
interface would be a boolean variable indicating whether the class implements
the interface.

Generating the Obfuscation Graph. The obfuscation graph is embedded
into the class that contains the method(s) that should be protected. If multiple
methods of the same class should be protected, the same obfuscation graph can
be used multiple times. The nodes of the graph consist of objects of different
classes of the target program. Hence, every node is related to a specific class
of the program and therefore has different states for the added properties. The
graph is a tree-like graph structure where the leaf nodes have back-edges to the
root of the “tree” (semi-cyclic structure).

The structure of the obfuscation graph allows traversal on multiple paths.
The obfuscator chooses random paths through the obfuscation graph and
declares them to be vpaths (as in valid paths). The number of vpaths is given
by the user. An example for an obfuscation graph is shown in Fig. 2. Classes are
randomly assigned to the nodes of the graph. The property states of the nodes
on the vpaths are later used to build opaque predicates.

170 A. Pawlowski et al.

——»» Non-vpath
-------J» vpath
- - — — Object Details

'
\ | Object: class A
Property states: p=1, =2, r=3

Property states: p=1, g=1, r=1

/| Object: class D
S Property states: p=3, =2, r=3
/
N

Fig. 2. An example obfuscation graph with one vpath printed as a dotted line. All
classes for the nodes are picked randomly by the obfuscator. The classes and properties
that are used for the nodes on the vpath are used to build opaque predicates.

' { Object: class C

The obfuscation graph is parametrized by its depth and dimension. The depth
specifies the maximum length of a path whereas the dimension specifies the
number of children of each node. These parameters can be chosen arbitrarily
and determine the obfuscation graph’s layout. An evaluation of the effect of
chosen parameters is given in Sect. 6.1.

Adding Initialization Code. Because the opaque predicates use properties
of the nodes on the vpaths, each method to protect needs a pointer into the
obfuscation graph. In order to be consistent between executions, the pointer has
to point to the same starting point each time. Therefore, in the beginning of the
method, the pointer is reset to the root node of the graph. This pointer realizes
the link between executed basic blocks and the nodes in the obfuscation graph.

Obviously, a single vpath can be easily monitored by an adversary using
dynamic analysis. Thus, at least two distinct vpaths have to exist in the graph.
Probabilistic control flow can then be ensured by letting the obfuscated method
determine randomly at runtime which vpath is used. Therefore, a vpath state is
added to each method which determines the vpath used in current transition. It
is initialized randomly in the beginning of the method at runtime.

Linking Basic Blocks. The nodes on the vpaths are linked to basic blocks
in the CFG. Detailed information about the links are used later in the obfusca-
tion process to transform the control flow of the method and to build opaque
predicates (e.g., the properties used to construct the opaque predicates). This
information is only needed during the obfuscation process. During execution of
the method, only the states of the properties are used with the help of opaque
predicates to position the pointer into the obfuscation graph. The detailed infor-
mation is merely kept at obfuscation time.

Probfuscation: An Obfuscation Approach Using Probabilistic Control Flows 171

Link to

------ P vpath =P Node

e
/
'/

Obfuscation Graph [Nerwath — ranch | CEGG
|
B4

Fig. 3. An example relation between the obfuscation graph and the method’s control
flow. On the right side, a part of the control flow graph is shown. On the left side, the
obfuscation graph is shown, where the vpath is printed as a dotted line. The relation
between the nodes of the vpath and the basic blocks is printed using dash-dotted lines.

An example relation of the obfuscation graph and the CFG of the method
to protect is shown in Fig.3. The obfuscator links the first basic block of the
CFG to the root node of the obfuscation graph (where the first block is the
one executed first once the method is called). This is the initial position of the
pointer into the graph, which is set by the initialization code added previously.
The algorithm then iterates over all remaining basic blocks of the CFG and links
each basic block to a node on the vpath of the obfuscation graph. During this
process, the obfuscator checks for each basic block which node the preceding
block is linked to. It then decides randomly to link the current processed basic
block to the same node or to the next node on the vpath. This is done for each
vpath the obfuscation graph possesses. Hence, each basic block has a link to one
node of each vpath. The algorithm terminates when all basic blocks are linked
to a node of the obfuscation graph.

Transforming Control Flow. The outgoing branches of each basic block are
processed exactly once. In the following, we describe the control flow transfor-
mation process on the basis of the example shown in Fig. 4:

1. Each basic block has a link to one node in every vpath. The vpath state (intro-
duced to the protected method while adding the initialization code) deter-
mines which of the vpaths is currently active during execution. In order to
divert the control flow depending on the currently used vpath, logic must
be added that switches the control flow accordingly. Hence, the obfusca-
tor replaces the branch of basic block A to B with one branch for every

172 A. Pawlowski et al.

4) Add logic to switch

select random equal move logic to the used vpath

2) Duplicate or 3) Add pointer

1) Add switch logic target basic block each branch randomly or not
. k1 vpath: 2*
Here: two Here: duplicate B * Here: only needed B ﬁ
H vpaths target basic block 5 for ,vpath 2¢ H
i Jvpath: 1° : i ,vpath: 2“ th: 1¢ ! . h: 2%
wpath: 1 oo) vpath: 2+ V ‘ ‘ A vpath: 1°) Y .vpath:
. B B ||l B B || B

Fig. 4. The control flow transformation process operating on two consecutive basic
blocks A and B. The target of the transformation is depicted by dotted lines. The
caption “vpath: X” denotes the control flow path corresponding to the respective vpath
in the obfuscation graph.

existing vpath (in this example there are two vpaths). At runtime, the branch
corresponding to the vpath state is taken.

2. In order to avoid all of these new branches having the same target basic block,
the obfuscator either duplicates the target basic block or randomly chooses a
semantically equivalent basic block. The list of semantically equivalent basic
blocks consists of the target basic block itself and all duplicates of this basic
block. In this example, the basic block B is duplicated and the new basic
block B’ is executed when wvpath 2 is currently active.

3. The source basic block of a branch and the target basic block may be linked to
different nodes on the vpath. Hence, the pointer into the obfuscation graph
has to be moved from the node the source basic block is linked to to the
node the target basic block is linked to (compare Fig.3). As depicted in our
example, basic block B is linked to the same node on vpath 1 as basic block
A, but basic block B’ is not linked to the same node on vpath 2 as A. Thus,
a move block has to be inserted in between A and B’. Said block moves the
pointer into the obfuscation graph to point to the node B’ is linked to.

4. The current approach would not yield probabilistic control flow at all, as the
vpath state is only set once in the initialization code of a method. Hence, for
each outgoing branch of a basic block, logic may be added (determined during
the obfuscation process) that may switch the vpath the method currently
follows. The switching decision is made at runtime and at random. If switching
occurs, the pointer into the graph has to be moved according to the chosen
vpath.

Injecting Opaque Predicates. In this step of the obfuscation process, the
obfuscator adds opaque predicates to the method that should be protected. For
each basic block, the obfuscator randomly decides whether to inject an opaque
predicate into the incoming branch. If an opaque predicate is injected, the obfus-
cator randomly decides to either create a true, false, or random opaque predi-
cate. For the true and false opaque predicates, the never taken branch points to
a newly created basic block that is marked as dead.

Probfuscation: An Obfuscation Approach Using Probabilistic Control Flows 173

During the execution, the method’s pointer into the obfuscation graph has
to point to the exact node in the active vpath that is linked to the currently
executed basic block. For each opaque predicate, the properties that are given by
this node are used for its boolean expression. For example, with the obfuscation
graph in Fig.2, the obfuscator can build a true opaque predicate for a basic
block that is linked to node NI with the boolean expression ¢ == 2. Note that
this boolean expression is not unique to this node in the obfuscation graph, since
it is also fulfilled by node N7 (and probably by other nodes that do not reside
on the vpath). This design decision was made to ensure that an attacker is not
able to distinctively connect the opaque predicate to a node in the obfuscation
graph. Even if the focus of our approach lies on dynamic analysis, the obfuscation
scheme should withstand a shallow static analysis.

Furthermore, true and false opaque predicates are deterministic and do not
contribute to the probabilism of the control flow. But since the attacker is allowed
to conduct a manual dynamic analysis and change the program state during the
execution, it adds a tamper proofing mechanism: if the attacker changes the
pointer to the obfuscation graph or the obfuscation graph itself in order to affect
execution, one of the following opaque predicates would divert the control flow
and with a high probability crash the program. This is an advantage over a solely
use of random opaque predicates to create probabilistic control flow.

Generating Dead Code. Basic blocks marked as dead are filled with artifi-
cially generated code. During this process the obfuscator randomly chooses the
terminating instruction (called exit) of the dead basic block. If the chosen exit is
a branch, the target can either be an arbitrary (existing) basic block in the CFG
or a new dead basic block. If the target is a new dead basic block, the process is
repeated. Otherwise, if the target is an existing basic block, the interconnectivity
of the method’s CFG is increased.

Transforming Basic Blocks. The transformation of basic blocks is necessary
because the algorithm duplicated basic blocks during the control flow transfor-
mation step. If no transformation was applied, a pattern matching of basic blocks
could be sufficient to detect the always taken branch of an opaque predicate.

In order to make semantically equivalent blocks harder to detect, the obfus-
cator employs standard obfuscation techniques [4]. We focus on those affecting
control flow (like splitting blocks or outsourcing the last instructions to a com-
mon block for a subset of blocks), but other techniques can be applied as well.
This includes instruction re-ordering, replacement of instruction sequences with
equal ones, or usage of opaque expressions.

5 Implementation

Our prototype obfuscator is written in C# and targets .NET programs. It uses the
CCI Metadata libraries [11] in order to transform the target program. For now,

174 A. Pawlowski et al.

the prototype of our obfuscation scheme operates on the bytecode of individual
methods a user wishes to protect. In general, however, the approach is not limited
to bytecode or methods only (or managed code programming languages). As
mentioned in Sect. 4, the user chooses the method(s) he wants to protect. Note
that typically only a very small number of methods in a given software project
contain sensitive and valuable information that need to be protected.

All random numbers that are required during the obfuscation process are
fetched from the same pseudo random number generator (PRNG). Hence, the
seed of the PRNG can be used as a key for the obfuscation. This means the same
seed used for the same target method results in the same obfuscated output.

The vpath through the obfuscation graph that is used for the current run is
randomly determined during execution of the protected method. This random-
ness is used to implement non-deterministic control flow. We stress that these
random numbers are created during the execution of the obfuscated method and
not during the obfuscation process.

In our prototype implementation, the random number generator of the .NET
System namespace is used. This implementation is sufficient for our proof-of-
concept tool, but not for a real-world application. An attacker can potentially
determine the points in the control flow which generates random numbers and
replace them with fixed values. A detailed discussion about the random number
generation during the execution of the obfuscated method is given in Sect. 7.
More information about the actual implementation is available in a technical
report [18]. The prototype implementation of our tool is freely available at
https://github.com/RUB-SysSec/Probfuscator.

6 Evaluation

In this section, we evaluate the prototype of our proposed obfuscation technique.
Since it is hard to evaluate obfuscation techniques in general, we evaluate it using
the four aspects proposed by Collberg et al. [5]:

1. Cost gives a measurement of the time and space overhead that is induced by
the obfuscation technique.

2. Resilience measures how well the protected program resists deobfuscation
attempts.

3. Potency measures how complex the program has become after the obfuscation
process.

4. Stealth measures how well the obfuscation blends into the original program.

Given that our obfuscation is parametrized, we evaluate the effect of the
parameters on the obfuscation first. Afterwards, the four aspects cost, resilience,
potency, and stealth are measured.

6.1 Obfuscator Parameters

The obfuscation graph is the only component of the obfuscation scheme that is
memory dependent. Its size is mainly characterized by its depth and dimension.

https://github.com/RUB-SysSec/Probfuscator

Probfuscation: An Obfuscation Approach Using Probabilistic Control Flows 175

Table 1. Size of the obfuscation graph and its dependency to the graph’s depth and
dimension.

Depth | Dim. | # Nodes | Depth | Dim. | # Nodes | Depth | Dim. | # Nodes

6 4 1,365 7 4 5,461 8 4 21,845
6 5 3,906 7 5 19,531 8 5 97,656
6 6 9,331 7 6 55,987 |8 6 335,923

Table 2. Relation between the number of vpaths and the size of the obfuscated method.

vpaths | # Basic blocks | Growth factor | # Branches | Growth factor
4 2,520 504 3,059 611.8
5 5,963 1192.6 7,272 1454.4
6 15,418 3083.6 18,804 3760.8
7 26,215 5243 31,848 6369.6

Each node of the graph is represented by an object of a class in the target
program and incurs an overhead dependent on the classes that are instantiated.
Table 1 shows the size of the obfuscation graph for a range of parameters.

The length of the vpath is determined by the depth of the obfuscation graph.
The number of vpaths affects the number of possible control flows of the method
for the same input and thus influences the method’s size as well. The effect of
multiple possible control flows is further evaluated in Sect. 6.3. Table 2 shows the
outcome of the obfuscation process for different numbers of vpaths for the same
example method. The original method’s CFG consists of five basic blocks and
five edges. As evident from the table, the growth of the method’s size proceeds
exponentially.

While larger values for the parameters yield better protection levels, one has
to weigh up the desired protection level with penalties in terms of size and speed.
These penalties are evaluated in detail in Sect. 6.2.

6.2 Measuring Costs

In order to evaluate the cost of the obfuscation scheme on the program, we mea-
sure its performance, file size, and memory consumption during execution. These
values are compared to the execution of the original, unobfuscated program. The
tests were run on an Intel Core i7 870 CPU with 2.93 GHz using Windows 8.1
as operating system (OS). We set the number of vpaths through the obfuscation
graph to six, the depth of the obfuscation graph to seven, and the dimension of
the obfuscation graph to five. The chosen numbers provide a balance between
the penalty introduced by the obfuscation scheme and the protection level that
is provided, as described in Sect. 6.1. Since obfuscation introduces a performance
overhead and is therefore usually only used to protect important parts of the pro-
gram, we evaluate our approach only on the implementation of certain algorithms

176 A. Pawlowski et al.

(representative of any intellectual property one wishes to protect). Because of
its nested loop structure and variable input length, we deem the SHA-256 hash
computation as best suited to represent a worst case for our obfuscation scheme
in terms of performance penalties. The nested loop structure increases the effect
of the probabilistic control flow and therefore slows down the computation. In
the following, we describe this test case in detail. The evaluation of additional
test cases can be found in our technical report [18].

Size. To quantify the impact of our obfuscation scheme on the file size, we
measure the file size in bytes. In our setting, the size of the original binary is
12,288 bytes and the obfuscated binary has a file size of 7,666,688 bytes. This
implies that the obfuscated binary is about 624 times larger than the original
binary. This result is similar to the other test cases in the corresponding technical
report [18]. Note that, as discussed in Sect. 6.1, the size of the obfuscated binary
highly depends on the parameters chosen for the obfuscator. In order to ensure
a variety of possible control flows, the obfuscator has to clone the basic blocks
of the target method multiple times. Therefore, our obfuscation scheme also
increases the size of the target method multiple times. We stress that the growth
of the size is dependent on the target method and not on the entire program. A
large program has the same growth as a small program if they implement the
same method that is the target of the obfuscation.

Performance. The performance is measured by calculating the SHA-256 hash
of a 10 MB file. In order to compensate for outliers, we repeat the calculation
1000 times and calculate the average time. We take two different timings. First,
the time needed for the creation of an object of the obfuscated class, and second
the time needed for the actual computation of the hash is measured. During the
creation of the object itself, the obfuscation graph is built by the constructor of
the class. The creation of the obfuscation graph impacts the overall performance
depending on the parameters specified by the user. Therefore, we also have to
take timings for the creation and not only for the actual computation. Timings
are measured with a resolution of 1 ms.

The original binary takes less than 1 ms for object creation. The obfus-
cated binary takes 3,925 ms to create the object (and therefore to build the
obfuscation graph). The calculation of the hash is performed in 785 ms by the
original binary, whereas 5,658 ms are needed by the obfuscated binary. While
the obfuscated SHA-256 algorithm takes around 7 times longer to perform the
same calculation, we stress that this case constitutes a worst case scenario for
our obfuscation scheme in terms of performance. The other tested algorithms
in our technical report [18] need roughly the same time to create the object,
but only need around 1.6 times longer to perform the same calculation. Again,
these values are dependent on the parameters of the obfuscation graph. While
parameters exists for which obfuscation graph creation consumes less time, the
protection level for the obfuscated method is lowered as well. Additionally, algo-
rithms that are usually protected with obfuscation in real-world applications are

Probfuscation: An Obfuscation Approach Using Probabilistic Control Flows 177

sparsely performed during the execution of a program. Therefore, we regard the
introduced performance penalty as acceptable.

Memory. The only memory dependent component of the proposed obfuscation
technique is the obfuscation graph. Hence, the memory consumption of the graph
is measured after the object of the protected class is created in the program. The
parameters yield an obfuscation graph with 19,531 nodes. The original program
consumes 1,480 kB of memory after the object is created. The protected program
needs 28,852 kB after the target object is allocated. Therefore, the obfuscation
graph needs about 27,372 kB for the used parameters. This is similar to the mem-
ory consumption of the other test cases in our technical report [18]. Note that
the memory required for one obfuscation graph is constant. Larger applications
embedding the same obfuscation graph will face the same memory requirements.

6.3 Measuring Resilience

Resilience measures the resistance of the obfuscation scheme against deobfusca-
tion attempts. Since we focus on thwarting dynamic analyses, we measure the
resilience of our obfuscation scheme by quantifying the probabilistic control flow.
Therefore, we trace the execution of an obfuscated method with the same input
values and compare the similarity of these traces. To this end, we generate a
graph from the traced basic blocks in the obfuscated method and compute the
graph-edit distance between two execution traces using the algorithm proposed
by Hu et al. [12]. The graph-edit distance yields the number of edits needed to
transform one graph into another graph. Edits are node insertions/deletions and
edge insertions/deletions.

We follow the proposal of Chan et al. [2] and normalize the graph-edit dis-
tance such that it computes a similarity score using the following formula:

h-edit dist
similarity (G, Go) = 1 — (grap edit dis ance))

|G| + |Ga|

where the size of the graph G; is given by the total number of nodes and edges
and is denoted by |G;|. The output of the similarity function is a value between
0.0 and 1.0. A result of 1.0 means that the two graphs are identical, whereas a
result of 0.0 means they are completely different.

Results. As test case we use our running example, the SHA-256 hash computa-
tion. We generated 100 traces by executing the program 100 times in a row with
the same input. Since the graph-edit distance calculation is NP-hard in general
[26], we have to choose an input size that creates traces with graph dimensions
that are still comparable. To this end, we used 100 bytes of random data. Since
the SHA-256 hash computation operates on blocks of 512 bits, the algorithm
runs through multiple iterations until it terminates. As obfuscation parameters
we use the settings evaluated in Sect. 6.2.

178 A. Pawlowski et al.

1200

1000

800

600

Number of Traces

400

200

8. 0.4 0.5 0.6 0.7 0.8 0.9
Similarity

Fig. 5. The 4,950 similarity values of the traces displayed as a histogram. The bin size
amounts to 0.05. The smallest similarity was 0.35 and the greatest 0.88. The majority
of the values have a similarity of under 0.75.

In total, we calculated 4,950 graph comparisons (as graph comparison is
commutative). The greatest similarity of two traces was 88.45%. The small-
est similarity was 35.29 %, while the average of all similarities is 69.65%. An
overview of the similarity between the traces is given in Fig. 5 as histogram. As
can be seen, most of the similarity values are near the calculated average value
in the range of 60 % to 75 %.

The smallest trace regarding the number of unique basic blocks visited 359
unique basic blocks and took 367 unique branches. The largest trace reached
1,183 unique basic blocks and took 1,255 unique branches. On average, 753
unique basic blocks were visited and 793 unique branches were taken by the
traces. The number of all visited unique basic blocks and taken unique branches
is given in Fig. 6. As evident from the figure, the number of visited unique basic
blocks and taken unique branches correlate. If more unique basic blocks were
executed, more unique branches were used. But still, the number of basic blocks
and branches vary greatly between single executions. The size of the traces of
our other test cases is provided in the corresponding technical report [18].

These results show that multiple executions for the same input values do not
even once have the same execution path. This effectively hinders deobfuscation
approaches working on multiple traces, such as state-of-the-art deobfuscation
methods like the one proposed by Yadegari et al. [25]. In addition, a manual
analysis using breakpoints is rendered unreliable in presence of the probabilistic
control flow, as we explain in Sect. 7.

6.4 Measuring Potency

Potency measures how complex and confusing the program becomes after obfus-
cation. In order to evaluate the potency of our obfuscation scheme regarding

Probfuscation: An Obfuscation Approach Using Probabilistic Control Flows 179

1400 T T T T
Unique Branches SHA-256
Unique Basic Blocks SHA-256 x

1200 |

1000 | x|

800 | 200000000 p

600 000 g

400 |* B

200 L L L L L L L L L

Fig. 6. The number of unique basic blocks and branches each trace used ordered by the
number of reached basic blocks. The gray + dots depict the used unique branches and
the black x dots show the visited unique basic blocks. On the x-axis the trace number
is given. On the y-axis the number of unique basic blocks/unique branches are given.

dynamic analysis, we measure the differences between the original and an obfus-
cated control flow. Therefore, we recorded an execution trace for the original
and obfuscated program with the same input. During the obfuscation process,
all semantically equivalent basic blocks were labeled in order to recognize them in
the obfuscated CFG. Note that this information is not available for an adversary
trying to analyze the obfuscated method.

In order to quantify the wtilization of the different semantically equivalent
basic blocks we visited with respect to all available semantically equivalent basic
blocks and the number of executions, we make the following case distinction:

di . .
o ‘L;f;]l, if |ezec| < |availl
utilization = :
| diff] ;
Tavail] otherwise

where |exec| gives the number of times one of the semantically equivalent basic
blocks were visited, |avail| gives the number of available semantically equiva-
lent basic blocks, and |diff| gives the number of visited different semantically
equivalent basic blocks. This way we can differentiate between cases where the
total number of visited semantically equivalent basic blocks is lower than the
available number of semantically equivalent basic blocks and vice versa. Con-
sider for example a case where only one of the available semantically equivalent
basic blocks is executed. If this is the case during multiple iterations of a loop,
its utilization of the available semantically equivalent basic blocks is obviously
not optimal because control flow visits only this available basic block multiple
times. On the other hand, utilization is good if the code contains no loop and

180 A. Pawlowski et al.

Table 3. The results of the comparison of the obfuscated method trace with the trace
of the original method for the same input (ID = ID for semantically equivalent basic
blocks, |avail| = number of available semantically equivalent basic blocks, |exec| = total
number of times one of the semantically equivalent basic blocks were visited, |diff| =
number of different semantically equivalent basic blocks executed, Util = utilization
of the reached different semantically equivalent basic blocks with respect to available
semantically equivalent basic blocks and the total number of executions in percent).

ID 0 1|2 3 4 5 6 7 8 9 |10 11 1213 14 15 |16 Total
|lavail| 9|43 | 40|30 35| 24| 22| 20|29 18 | 22 31 25|22 43 23| 33 469
|exec| 120 119 3 1 2 1|34 2132 98 2|96 130 21128 572
|dif f| 1|10 1| 8 3 1 2 1|15 1|10 4 1| 4 24 2| 20 108
Util 100 | 50 | 100 | 42.1 | 100 | 100 | 100 | 100 | 51.7 | 50 | 45.5 | 12.9 | 50 | 18.2 | 55.8 | 100 | 60.6 | 71

control flow visits only one of the semantically equivalent basic blocks during
the execution only one single time. Therefore, we have to differentiate.

Results. As input data we used 100 bytes of random data and as obfuscation
parameters we use the settings evaluated in Sect. 6.2. We recorded a trace by exe-
cuting the obfuscated and original program with the same input. The resulting
traces were compared with respect to their executed basic blocks.

The obfuscator cloned the basic blocks of the original method multiple times
during the obfuscation process. Remember that the decision to clone a basic
block is made randomly during the obfuscation process. The minimum number
of semantically equivalent basic blocks in the obfuscated method amounts to 9
and the maximum number to 43. On average, the control flow has 27 different
possibilities per basic block to exhibit the same behavior.

During the execution of the obfuscated method, the control flow has visited
572 relevant basic blocks that contribute to the calculation of the result. These
basic blocks consist of the basic blocks of the original method and transformed
copies of these original basic blocks. The utilization of the available semantically
equivalent basic blocks ranges from 12.9 % to 100 %. In total, 71 % of the available
semantically equivalent basic blocks were utilized during the execution of the
obfuscated method. The results for our test case are shown in Table 3. All test
cases in our technical report [18] have similar results.

The results show that an execution of the obfuscated method uses a variety
of different but semantically equivalent basic blocks to compute its result. Hence,
the number of basic blocks that are actually involved in the computation has
been increased by our approach and with it the complexity of the control flow.

6.5 Measuring Stealth

Stealth measures the difficulty for an adversary to determine if the given
method is obfuscated, i.e., how well the obfuscated entity fits in legitimate code.
Although stealth is not an objective of our approach, we evaluate it for the
sake of completeness. Recently published obfuscation papers measure this aspect

Probfuscation: An Obfuscation Approach Using Probabilistic Control Flows 181

based on the distribution of instructions [3,19,24]. However, as Collberg et al. [5]
describe it, stealth is a context-sensitive metric. Hence, instead of pursuing a
static approach for evaluating stealth, we consider the dynamic behavior of the
obfuscated program. This fits our general focus on dynamic analysis.

Given that our approach is by design supposed to yield different execution
traces for the same input, stealth is inherently hard. An adversary only has to
execute the program two times with the same input and compare the recorded
execution traces. If they differ, the adversary can conclude that the program is
most likely protected by our obfuscation approach.

7 Discussion

In the following, we discuss potential limitations of our approach.

Dynamic Analysis. Our approach aims to transform methods such that mul-
tiple traces of the same function using the same inputs differ, which implies
that dynamic deobfuscation approaches are hampered [7,21]. Furthermore, this
is done to thwart dynamic analyses operating on multiple executions (like [25]).
For example, manual dynamic analysis of the obfuscated method is hindered by
probabilistic control flow: an adversary observing the control flow at some fixed
point during execution of the method cannot depend on the program reaching
the exactly same point during a following run. Hence, pausing execution using
breakpoints is rendered unreliable in presence of our obfuscation approach.

Single Trace Analysis. If an adversary knows that our obfuscation scheme is
used, the best way to attack it is by resorting to work on a single execution trace.
Since the goal of probabilistic control flow is to make dynamic analyses based
on multiple traces harder, deobfuscation methods operating on only one trace
are only affected if at least one loop is present. In this case, our scheme increases
the size of the recorded trace because the obfuscator clones basic blocks in order
to have multiple possible control flows to choose from. As shown in Sect. 6.4,
the execution of multiple iterations of a loop results in different semantically
equivalent basic blocks that are reached. Algorithms processing the recorded
trace dismiss basic blocks that do not affect the outcome of the method [7,21,
25]. Since the visited semantically equivalent basic blocks of the probabilistic
control flow affect the outcome of the method, they can not be dismissed. As
a result, subsequent analysis of the recorded trace is more complicated due to
our obfuscation scheme. As future work, we propose to integrate the use of the
obfuscation graph into the calculations of the protected method. This way it gets
harder to dismiss instructions based on their usage of the obfuscation graph.
Furthermore, deobfuscation methods operating on only one trace do not per-
form as good in terms of code coverage compared to those using multiple execu-
tion paths. This poses a problem for an adversary who wants to analyze multiple
execution paths in an algorithmic manner in order to understand the obfuscated

182 A. Pawlowski et al.

program better. Often, multi-path exploration techniques are considered when
tackling this problem [21,25]. This is where our approach proves useful: It intro-
duces a variety of valid, but distinct control flows and adds probabilism. For the
adversary, it is hard to distinguish whether a branch was taken due to prob-
abilistic control flow or because the function was run with different input. In
order to improve this aspect, we currently work on extending our approach by
merging the semantics of multiple methods into one method. The semantic that
is actually executed when the method is called is then determined with the help
of the obfuscation graph and opaque predicates. Therefore, the same method can
have multiple semantics and, depending on the vpath that is used, the correct
semantic of the method is chosen.

Probabilistic Control Flow. An important component of our proposed app-
roach is the obfuscation graph with its vpaths. The vpaths are used to select the
current control flow through the obfuscated method and therefore to introduce
probabilistic control flow. Which vpath is to be used is decided by a random
value. In our prototype implementation, the used vpath is merely chosen using
the PRNG as provided by the .NET System namespace. This implementation is
obviously vulnerable, as the call to the PRNG could be replaced by the usage
of fixed values. As a result, the probabilistic control flow is then merely reduced
to a deterministic one.

A straightforward approach to make the random number generation more
resilient is not to use any external PRNG. Instead, one could build a PRNG into
the obfuscated method itself and replace the calls to the external PRNG with
code sequences that generate random numbers. This way, the random number
generation is harder to pinpoint by an adversary because the code that generates
the random number is concealed by the code of the obfuscated method. The
obfuscator is not limited to build only one PRNG into the obfuscated method
but could inject multiple ones to make it even harder to find the code sequences
that generate random numbers. Furthermore, the random number generation can
be protected by additional layers of obfuscation like translating the obfuscated
method to custom bytecode [1,17,22].

However, even this construct suffers from the problem that it needs an initial
random seed to create different control flows every time it is executed. If an
adversary is able to set this initial random seed to a fixed value, the PRNG in
the obfuscated method generates the same sequence of random numbers every
time the program is executed. Even if the user input influences the calculation of
the random numbers, the program would only have different traces for different
inputs (which still hampers analysis of the program with different inputs, but
allows debugging of the function with the same input). This circumstance poses
the greatest limitation of our current implementation of the proposed obfuscation
scheme. However, due to their huge number, it is not easy in practice to detect
every single state that is fetched by a program from the OS or to set every
internal state of an OS every time to the exact same value in order to fix the seed.
One approach to circumvent fixed OS states would be using non-deterministic

Probfuscation: An Obfuscation Approach Using Probabilistic Control Flows 183

sources like the intentional use of race conditions. For future work, we propose
to develop methods to conceal the fetching of external states for the random
number generation.

8 Related Work

The basic technique our approach is based on is presented in a paper by Collberg
et al. [5]. They propose a method to create opaque constructs based on objects
and pointer aliases. They also suggest a directed graph as concrete data type.
However, their approach is mainly concerned with the creation of cheap, stealthy
and resilient opaque constructs. We extend this approach and focus on the dif-
ferent paths we can insert into a target using their construct. This stems from
the insight that while their technique efficiently makes static analysis harder,
the traces obtained using dynamic analyses are very much the same. This, in
turn, helps in determining the concrete value of an opaque predicate and might
allow to partly reconstruct the control flow of the program.

Wang et al. describe a technique to obfuscate a target program using control
flow transformations as well [23]. They transform a method’s CFG in such a way
that a new basic block in the beginning of the method decides which original
basic block is executed next. These control flow decisions are made based on a
state variable which gets updated after every basic block. Similar to the approach
of Collberg et al., they transform the control flow analysis problem into a data
flow analysis problem. However, their approach also merely aims to make static
analysis of an obfuscated program harder.

More recent work focuses on deobfuscation of obfuscated programs [7,21,25].
All of them have in common that they are based on dynamic analysis. Traces
of the program’s execution are recorded and subsequently used to remove the
applied obfuscation schemes. Approaches working on multiple traces in order to
tackle the code coverage problem [16] of dynamic analysis are challenged by the
probabilistic control flow introduced by our technique.

The recent work of Crane et al. also makes use of probabilistic control flow [8].
It enables them to thwart cache side-channel attacks. To this end, they clone
program fragments and transform the clone in order to avoid making an exact
copy. A stub is used to decide randomly if the clone or the original fragment is
executed. Because an attacker has no knowledge about which was executed, it
hampers cache side-channel attacks. Additionally, Davi et al. [9] use probabilistic
control flow in combination with memory randomization in order to prevent
conventional return-oriented programming (ROP) and JIT (just-in-time)-ROP
attacks. To this end, they clone and diversify the code that is loaded into memory.
Whenever a function is called, their system randomly decides if the original or
cloned function is executed. Once the executed function returns, the system
checks if execution shall continue at the normal or cloned version of the function
caller by adding an offset to the return address. Therefore, an attacker is not
able to precisely predict where execution will resume and cannot reliably perform
an attack.

184 A. Pawlowski et al.

9 Conclusion

In this paper, we introduce a novel approach to obfuscate software, including,
but not limited to, those written in managed code programming languages. The
proposed scheme is based on a construct introduced by Collberg et al. [5]. How-
ever, instead of focusing on protecting the program against static analysis, we
introduce a scheme achieving probabilistic control flow, aiming to make dynamic
analysis harder. This is achieved by embedding an obfuscation graph containing
multiple virtual paths. Based on these paths, opaque predicates are constructed
and added to the target method. Consequently, control flow may take different
paths exhibiting the same observable semantics.

We have implemented a prototype obfuscator for .NET applications and eval-
uated it using multiple programs. The experiments have shown that the obfus-
cated methods do not exhibit the same execution trace after executing it 100
times in a row with the same input. Inevitably, this comes with a significant
performance and memory penalty. Resilience against dynamic analyses thus has
to be weighed up with constraints on time and space. We are confident that the
overhead is still acceptable to protect sensitive parts or proprietary algorithms of
a given program. Since we believe our obfuscation approach provides a new strat-
egy for tackling dynamic analysis and hence a building block for future research,
we are making our obfuscation tool available to the research community.

References

1. Anckaert, B., Jakubowski, M., Venkatesan, R.: Proteus: virtualization for diversi-
fied tamper-resistance. In: Proceedings of the ACM Workshop on Digital Rights
Management (2006)

2. Chan, P.P.; Collberg, C.: A method to evaluate CFG comparison algorithms. In:
International Conference on Quality Software (QSIC) (2014)

3. Chen, H., Yuan, L., Wu, X., Zang, B., Huang, B., Yew, P.C.: Control flow obfus-
cation with information flow tracking. In: Annual IEEE/ACM International Sym-
posium on Microarchitecture (2009)

4. Collberg, C., Thomborson, C., Low, D.: A Taxonomy of Obfuscating Transfor-
mations. Technical report, Department of Computer Science, The University of
Auckland, New Zealand (1997)

5. Collberg, C., Thomborson, C., Low, D.: Manufacturing cheap, resilient, and

stealthy opaque constructs. In: ACM Symposium on Principles of Programming

Languages (POPL) (1998)

Collberg, C.: The Tigress C Diversifier/Obfuscator. http://tigress.cs.arizona.edu

7. Coogan, K., Lu, G., Debray, S.: Deobfuscation of virtualization-obfuscated soft-
ware: a semantics-based approach. In: ACM Conference on Computer and Com-
munications Security (CCS) (2011)

8. Crane, S., Homescu, A., Brunthaler, S., Larsen, P., Franz, M.: Thwarting cache
side-channel attacks through dynamic software diversity. In: Symposium on Net-
work and Distributed System Security (NDSS) (2015)

9. Davi, L., Liebchen, C., Sadeghi, A.R., Snow, K.Z., Monrose, F.: Isomeron: code
randomization resilient to (just-in-time) return-oriented programming. In: Sympo-
sium on Network and Distributed System Security (NDSS) (2015)

o

http://tigress.cs.arizona.edu

Probfuscation: An Obfuscation Approach Using Probabilistic Control Flows 185

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Fang, H., Wu, Y., Wang, S., Huang, Y.: Multi-stage binary code obfuscation using
improved virtual machine. In: Lai, X., Zhou, J., Li, H. (eds.) ISC 2011. LNCS, vol.
7001, pp. 168-181. Springer, Heidelberg (2011)

Guy_Smith: Common Compiler Infrastructure: Metadata API. https://
ccimetadata.codeplex.com/

Hu, X., Chiueh, T.C., Shin, K.G.: Large-scale malware indexing using function-call
graphs. In: ACM Conference on Computer and Communications Security (CCS)
(2009)

Junod, P.: Obfuscator-LLVM. https://github.com/obfuscator-llvm/obfuscator/
wiki

Kushner, D.: Steamed: Valve Software Battles Video-game Cheaters. http://
spectrum.ieee.org/consumer-electronics/gaming/steamed-valve-software-battles-
videogame-cheaters

Lee, B., Kim, Y., Kim, J.: binOb+: a framework for potent and stealthy binary
obfuscation. In: ACM Symposium on Information, Computer and Communications
Security (ASIACCS) (2010)

Moser, A., Kruegel, C., Kirda, E.: Exploring multiple execution paths for malware
analysis. In: IEEE Symposium on Security and Privacy (S&P) (2007)

Oreans Technologies: Code Virtualizer: Total Obfuscation against Reverse Engi-
neering. http://oreans.com/codevirtualizer.php

Pawlowski, A., Contag, M., Holz, T.: Probfuscation: An Obfuscation Approach
using Probabilistic Control Flows. In: Technical Report TR-HGI-2016-002, Ruhr
University Bochum (2016)

Popov, I.V., Debray, S.K., Andrews, G.R.: Binary obfuscation using signals. In:
USENIX Security Symposium (2007)

Ramalingam, G.: The undecidability of aliasing. ACM Trans. Program. Lang. Syst.
(TOPLAS) 16(5), 14671471 (1994)

Sharif, M., Lanzi, A., Giffin, J., Lee, W.: Automatic reverse engineering of malware
emulators. In: IEEE Symposium on Security and Privacy (S&P) (2009)
VMProtect Software: VMProtect: Software protection against reversing and crack-
ing. http://vmpsoft.com/

Wang, C., Davidson, J., Hill, J., Knight, J.: Protection of software-based surviv-
ability mechanisms. In: International Conference on Dependable Systems and Net-
works, 2001, DSN 2001 (2001)

Wang, P., Wang, S., Ming, J., Jiang, Y., Wu, D.: Translingual obfuscation. In:
IEEE European Symposium on Security and Privacy (Euro S&P) (2016)
Yadegari, B., Johannesmeyer, B., Whitely, B., Debray, S.: A generic approach to
automatic deobfuscation of executable code. In: IEEE Symposium on Security and
Privacy (S&P) (2015)

Zeng, 7., Tung, A K., Wang, J., Feng, J., Zhou, L.: Comparing stars: on approxi-
mating graph edit distance. In: International Conference on Very Large Data Bases
(VLDB) (2009)

https://ccimetadata.codeplex.com/
https://ccimetadata.codeplex.com/
https://github.com/obfuscator-llvm/obfuscator/wiki
https://github.com/obfuscator-llvm/obfuscator/wiki
http://spectrum.ieee.org/consumer-electronics/gaming/steamed-valve-software-battles-videogame-cheaters
http://spectrum.ieee.org/consumer-electronics/gaming/steamed-valve-software-battles-videogame-cheaters
http://spectrum.ieee.org/consumer-electronics/gaming/steamed-valve-software-battles-videogame-cheaters
http://oreans.com/codevirtualizer.php
http://vmpsoft.com/

RAMBO: Run-Time Packer Analysis
with Multiple Branch Observation

Xabier Ugarte-Pedrero’2(®) Davide Balzarotti®, Igor Santos!,
and Pablo G. Bringas'

! University of Deusto, Bilbao, Spain
{xabier.ugarte,isantos,pablo.garcia.bringas}@deusto.es
2 Cisco Talos Security Intelligence and Research Group, San Jose, USA
xabipedr@cisco.com
3 Eurecom, Sophia Antipolis, France
davide.balzarotti@eurecom.fr

Abstract. Run-time packing is a technique employed by malware
authors in order to conceal (e.g., encrypt) malicious code and recover
it at run-time. In particular, some run-time packers only decrypt indi-
vidual regions of code on demand, re-encrypting them again when they
are not running. This technique is known as shifting decode frames and
it can greatly complicate malware analysis. The first solution that comes
to mind to analyze these samples is to apply multi-path exploration to
trigger the unpacking of all the code regions. Unfortunately, multi-path
exploration is known to have several limitations, such as its limited scal-
ability for the analysis of real-world binaries. In this paper, we propose
a set of domain-specific optimizations and heuristics to guide multi-path
exploration and improve its efficiency and reliability for unpacking bina-
ries protected with shifting decode frames.

Keywords: Malware - Unpacking + Multi-path exploration

1 Introduction

Malware authors employ a large variety of techniques to conceal their code and
make reverse engineering and automatic detection more difficult. One of these
techniques is packing, which consists in encoding or encrypting the code and
data in the binary and revealing them only at run-time.

Packers have been widely studied by researchers and, as a result, many
generic unpacking techniques have been proposed in the literature. In partic-
ular, researchers have addressed this problem from different perspectives: (i)
by making the analysis platform resilient to anti-analysis techniques [1], (ii) by
tracing the execution of the binary at different granularity levels [2,3], (iii) by
adopting different heuristics to detect the original entry point of the binary [4], or
by dumping the code at the appropriate moment [5], and (iv) by improving the
efficiency of the unpacking process [6]. Although some of these approaches use
static analysis techniques [7], the majority rely on the execution of the sample.

© Springer International Publishing Switzerland 2016
J. Caballero et al. (Eds.): DIMVA 2016, LNCS 9721, pp. 186-206, 2016.
DOI: 10.1007/978-3-319-40667-1_10

RAMBO: Run-Time Packer Analysis with Multiple Branch Observation 187

Nevertheless, there is a specific protection technique that takes advantage of
an intrinsic limitation of dynamic analysis, i.e., the fact that it only explores a
single execution path. Shifting-decode-frames or partial code revelation consists
of unpacking the code on demand, just before its execution. These packers only
reveal one code region at a time, decrypting only the code covered by a single
execution path. In previous work [8], we classified this behavior at the highest
level of complexity (with the exception of virtualization based packers). One of
the most common and famous packers that employ this technique is Armadillo,
which is widely used among malware writers.

These protection scheme is particularly effective in cases in which the sample
employs anti-sandbox techniques to conditionally execute the payload, or when it
is designed to communicate with external entities (e.g., a Command and Control
Server). If the sample is executed inside an isolated environment or the server
is unavailable, certain parts of its code will never be executed under a single-
path dynamic execution engine. In both cases, a packer like Armadillo would
not reveal the portions of the code that are not executed.

Therefore, the first solution that may come to mind to deal with these packers
is to resort to some form of multi-path exploration. Several works [9-13] have
studied multi-path exploration to improve coverage in dynamic analysis. While
these works address some of the limitations of dynamic analysis, none of them
has addressed the specific problems that may arise when adopting this technique
for the generic unpacking of samples protected with shifting-decode-frames.

On the one hand, packers heavily rely on self-modifying code and obfus-
cated control flow, making very hard to automatically explore different execution
paths. One of the major limitations of multi-path exploration is its computa-
tional overhead, making the approach almost infeasible for large-scale malware
analysis. On the other hand, in our case we do not need to execute all possible
paths, but only to guide the execution in a way to maximize the recovered code.
Moreover, as the program does not need to continue once the code has been
unpacked, the memory consistency is less of an issue in the unpacking prob-
lem. As a result, multi-path exploration of packed programs is still an open and
interesting problem, that requires a new set of dedicated and custom techniques.

Peng et al. [13] proposed the application of a fully inconsistent multi-path
exploration approach and applied their technique to improve the execution path
coverage in malware, focusing in particular on environment sensitive malware.
In this paper, however, we focus on the specific characteristics of the described
packing technique. These particularities allow us to apply different optimiza-
tions and heuristics to multi-path exploration, improving the feasibility of this
technique, especially for complex cases.

In particular, in this paper we want to answer two questions: Is it possible
to apply new optimizations to the classic multi-path exploration to efficiently
uncover protected regions of code for packers using shifting-decode-frames? And
1s it possible to design new heuristics specific to the unpacking domain, that can
guide the multi-path exploration and increase the recovery of the protected code?

188 X. Ugarte-Pedrero et al.

Iteration 0: Single path

Iteration 1-N: Multi-path exploration

Unpacked code Interesting paths |Exploration guided by heuristic

b=a+4;

b=bx*2;

if (b 1= 12){ if (b !=12)
. if (b == 10){ Region2;
., goto Region2; Region3;

“g } else{ if (b == 10)
", goto Region3; Region2;
: } if (b 1= 10)

}else{ Region3;

goto Regionl;

}

Fig. 1. General workflow of our approach.

Our main contributions are oriented to answer these questions: (i) we propose
a set of optimizations for the application of multi-path exploration to binaries
protected by shifting-decode-frames, (i) we introduce a new heuristic that can
guide multi-path exploration to unpack previously unseen regions of code and
(iii) we evaluate this approach and present three different case studies.

2 Approach

Moser et al. [14] proposed for the first time the application of multi-path explo-
ration for the analysis of environment-sensitive malware. This approach lever-
aged dynamic taint analysis, symbolic execution, and process snapshotting in
order to explore multiple execution paths in depth-first order.

In order to evaluate our system, we implemented a modified version of multi-
path exploration applying a set of domain specific optimizations that allow us
to selectively explore certain interesting regions of code: which in our case is the
code of the original program protected by the packer.

Our multi-path exploration engine is built on top of TEMU and Vine, the
components of the Bitblaze [15] platform. TEMU allows to trace the execution
of a binary, applying dynamic taint analysis, whereas Vine is an analysis engine
based on Vine-IL, an intermediate language, that allows to design control-flow
and data-flow analysis algorithms.

The general workflow of our solution is as follows (see Fig.1). We first exe-
cute the sample in a single-path execution mode and extract different pieces of
information. We analyze the packer structure and identify the regions of memory
that contain the protected code, by applying the techniques developed in previ-
ous work [8]. In a second step, we extract the memory that was unpacked in this
first run, and compute the control flow graph of the unpacked code in order to
find interesting points in the code (i.e., control flow instructions that lead to the
unpacking of new regions of code). This process provides us a list containing the
control flow instructions that lead to new regions. We use this list as part of a

RAMBO: Run-Time Packer Analysis with Multiple Branch Observation 189

heuristic to guide multi-path exploration. Finally, we apply our optimized multi-
path exploration engine using this pre-computed information to prioritize paths
that will likely drive to the unpacking of new regions. This two-step process is
repeated until our system cannot recover any additional code.

This section is divided in three parts. First, we introduce our multi-path
exploration approach, and describe several design decisions. Second, we describe
a set of optimizations we developed over this model, and third, we present the
heuristic that allows us to prioritize execution paths in this specific domain.

2.1 General Approach

Symbolic Execution. Symbolic execution allows to evaluate a program over a
set of symbolic inputs instead of concrete values. A constraint solver can evaluate
the symbolic expression that must be satisfied to follow a given path, providing
an appropriate set of values for each input variable. The reader can refer to
previous literature [14,16] for a better understanding of symbolic execution and
its limitations.

Some symbolic execution engines [17,18] simplify symbolic expressions to
enhance the efficiency of the computations of the constraint solver. Alternatively,
other works [19,20] propose the use of weakest preconditions, a method that
keeps the computational complexity and size of the formulas O(n?) [16]. We
leveraged Vine, a tool that can compute the weakest precondition of an execution
trace and to generate a query to the STP constraint solver.

Indirect memory accesses (i.e., memory access instructions in which the
address itself is tainted and it depends on program input) are a recurrent problem
in symbolic execution. When the program is evaluated symbolically, the address
can contain any value constrained by the symbolic expression. This limitation
is specially problematic for the symbolic execution of jump tables, a mechanism
widely used by compilers to implement switch statements.

Some approaches let the constraint solver reason about the possible values,
while other approaches perform alias analysis in order to determine the possible
memory ranges pointed by the index [16]. In our case, we let Vine adopt the
concrete value observed during the execution for every tainted memory index
avoiding symbolic processing. Although this unsound assumption implies that
some paths will never be executed, it simplifies the reasoning process involved in
multi-path exploration. This limitation can be eventually mitigated in cases in
which several paths in the program trigger the execution of a page or function,
successfully triggering its unpacking routine.

System-Level Snapshots. In order to save the execution state at a given point
(before a conditional jump is evaluated), we collect a system-snapshot. Previous
approaches have proposed the use of process snapshots, a technique more effi-
cient in terms of computational overhead and disk space. Nevertheless, making
snapshots of the process state (memory and registers) involves many technical
problems that are not easy to address. Processes running on the system gen-
erally use resources provided by the operating system like files, sockets, or the

190 X. Ugarte-Pedrero et al.

registry. Besides, the kernel of the operating system maintains many structures
with information regarding the memory assignment, heaps, stacks, threads, and
handles. While saving and recovering the memory and register state is not diffi-
cult to implement, it is hard to maintain the system consistency when the state
of a process is restored. Moser et al. [14] proposed several methods to ensure
that the process can continue running even if it is restored to a previous state
(e.g., avoiding closing handles).

Since the optimization of process snapshots is beyond the scope of this study
and stands as a research problem by itself, we adopt a system-snapshot approach
that, in spite of sacrificing system efficiency, allows us to securely restart the
execution of a program at any point maintaining the consistency of the whole
system.

Taint Sources. We taint the output of the APIs that are most interesting for
our goals, including network operations such as connect, recv, gethostbyname
or gethostbyaddr, file operations such as ReadFile or CreateFile, command
line argument related functions such as __wgetmainargs or ReadConsoleInput,
and other functions typically used to query the system state like GetSystemTime
or Process32First/Process32Next.

Target Code Selection. In shifting-decode-frames, we can distinguish two
parts in the code. First, there must be a decryption routine that is usually highly
obfuscated and armored with anti-analysis tricks. This routine is in charge of
taking control when the execution of the protected code jumps from one region
to another, decrypting the next region of code, and encrypting the previous one.

Our goal only requires to apply multi-path exploration to the protected code,
avoiding the decryption and anti-analysis routines. In order to do this, we first
need to determine the place where the original code is decrypted and executed.
This problem has been widely studied in the past and researchers have proposed
different heuristics. To this end, we implemented a framework based on a pre-
vious approach [8] to analyze the execution trace of the binary and divide the
execution into layers. Our framework also incorporates several heuristics that
can highlight the code sections that likely contain the original code. This infor-
mation is also presented to the analyst who may select other regions to explore
on demand, if necessary.

2.2 Domain Specific Optimizations

In this section we introduce six custom optimizations that simplify the multi-
path exploration problem in the case of binary unpacking.

Inconsistent Multi-path Exploration. In some cases, traditional symbolic
execution approaches cannot execute certain paths that, despite of being feasible,
are difficult to solve for a constraint solver. For instance, a parser routine may

RAMBO: Run-Time Packer Analysis with Multiple Branch Observation 191

access tables with a symbolic index. Reasoning about indirect symbolic memory
accesses requires a complex processing such as alias analysis.

In these cases, when our constraint solver cannot provide a solution, we
take an unsound assumption and query the constraint solver ignoring the path
restrictions imposed by the previous instructions in the trace. This approach lets
us explore the path by forcing a set of values consistent with the last tainted jump
instruction, but potentially inconsistent with the previous path restrictions.

In our specific domain, maintaining the consistency of the system is only
important in order to avoid system crashes until every protected region of code
has been unpacked. While other domains may suffer from this unsound imple-
mentation (e.g., malware analysis may require to know under which circum-
stances a certain path is triggered), in our case this information is not relevant,
as long as the system remains stable enough to unpack the different regions.

Partial Symbolic Execution. In order to reduce the size of the code to be
explored symbolically, we restrict symbolic execution to the original malicious
code (i.e., unpacking routines are explored in single-path execution mode). One
may think that the unpacking code will never have conditional branches that
depend on system input, but there are packers, like Armadillo, that apart from
protecting the original code of the binary, apply licensing restrictions. Moreover,
this packer fetches the system date using the GetSystemTime API function in
kernel32.d11, and executes conditional jumps that depend on the information
collected. Nevertheless, this code will not trigger the unpacking of new regions of
code. Also, this code is generally highly obfuscated and does not follow standard
calling conventions, making more difficult to correctly trace and symbolically
process this code. For these reasons, we restrict multi-path exploration to the
regions suspected to contain the code of the original application.

Local and Global Consistency. Another aspect to consider is the consistency
of the symbolic execution engine. For example, the S2E project [18] allows to
run programs at different consistency levels.

In order to minimize the computational overhead we apply a locally consis-
tent multi-path exploration approach. This means that we respect the consis-
tency within the regions that contain the original code of the binary, but we
allow the variables in this region to adopt values that are inconsistent with the
rest of the code (e.g., system libraries). For instance, a program may update
a variable with a value coming from keyboard input after a scanf call. This
function applies some restrictions to the input, as well as some parsing. As a
result, the value adopted by the variable would be restricted by the (potentially
complex code) present in the library. In order to avoid this complexity, we let
the variable adopt any value creating a fresh symbolic variable for it.

First, we avoid tracing any taint-propagating instruction if it is executed
outside the explored regions. In this way, when the execution trace is processed
in the symbolic engine, only the instructions in the explored regions impose
restrictions over the symbolic variables.

192 X. Ugarte-Pedrero et al.

Second, the first time a new taint (that has been created outside the interest-
ing regions of code), is propagated to our explored code, we create a completely
new taint value for each of the memory bytes affected by this taint, in such a
way that our system will consider those bytes as free variables.

Finally, whenever the program calls to a function outside the region delim-
ited, if the arguments of the call are tainted then the result of the call can be
consequently tainted. As we do not record the execution of such code, the taint
propagation chain will be broken and our tool will be unable to provide a solu-
tion. Executing symbolically all the code present in these API functions can
become computationally infeasible. For this reason, we avoid recording the exe-
cution of code outside the boundaries of our regions of interest. In order to allow
Vine to process these traces with broken taint propagation, we create a new
independent symbolic variable whenever necessary. In this case, again, we lose
program consistency. Nevertheless, as we describe in Sect. 2.2, this inconsistency
does not affect our approach but on the contrary, lets us explore as many paths
as possible (triggering the execution and thus the unpacking of new regions of
code).

State Explosion. One of the limitations that make multipath exploration infea-
sible to analyse large programs is the well-known state explosion problem [21]:
when the number of state variables increases, the number of states grows expo-
nentially. Many samples may have infinite program states, for example when
unbounded loops are implemented in the explored code.

Unfortunately, constraint solvers are not suitable to reason about long exe-
cution traces. In our case, we configured our multi-path exploration engine to
discard execution paths with a trace longer than a given threshold. This parame-
trization allows us to keep the analysis as simple as possible and computationally
feasible.

Blocking API Calls. Our system uses a mechanism to bypass blocking API
function calls. In some cases, the program gets blocked waiting for user input
or certain events in the system. For this reason, when certain APIs such as the
read or recv functions are called, instead of letting the program run, we restore
the instruction pointer to the return address in the moment of the call. Also, we
fill the output buffers and output values with fake data, and taint those buffers.
This approach allows us to successfully run the samples that would otherwise
need some network simulation or external interaction.

String Comparison Optimization. The last optimization implemented is
related to string comparisons, an operation commonly performed by malware to
parse commands (e.g., IRC or HTTP bots). These string comparisons are com-
monly implemented by means of system API calls such as strcmp and strlen.

Some functions can return different non-tainted constant values depending
on the path followed during execution (that may depend on tainted conditional

RAMBO: Run-Time Packer Analysis with Multiple Branch Observation 193

jumps). Nevertheless, since the code is outside the boundaries of the protected
code, these paths will not be explored. For instance, an strlen-like function will
have a character counter that is incremented for each non-null character found
in the string. This counter is a non-tainted value, and our approach does not
explore any alternative paths inside the function. As a result, the function will
return a non-tainted constant value although the input parameter is tainted.

In order to deal with this limitation and to minimize the processing overhead
in such string operations, we hooked 15 different string comparison functions in
several DLLs in order to taint the return value of the function whenever a tainted
value is provided as input parameter to it.

2.3 Heuristic to Guide the Multipath Exploration

One way to reduce the state space and thus the complexity of multipath explo-
ration is to apply heuristics in order to determine which paths should be
expanded first. We propose a heuristic based on the intuition that, for a packer
protected using the shifting-decode-frames technique, a subset of its execution
paths (i.e., one or several instructions in the program) can trigger the execution
of a region (e.g., function or memory page). Therefore, in these cases, it is not
necessary to explore all the possible paths in order to fully unpack all the content
of a binary.

First, our system extracts all the executed code and unpacked memory
regions from a single-path execution trace in order to recover as much code
as possible. Then, it analyzes this code and determines the instructions that
reference locations in the program that have not been unpacked yet. The sys-
tem then constructs the call graph and control flow graph of the trace and finds
the paths that lead to interesting instructions, and finally it provides this infor-
mation as input to our multi-path exploration engine in order to prioritize the
execution of certain paths that would trigger the unpacking of new regions of
code. The next sections detail how this process is performed.

Dumping Unpacked Memory Regions. Our framework monitors memory
writes and execution, and allows us to dump the unpacked and re-packed memory
regions after each run. Once we obtain a complete memory dump, we filter it
in order to keep only the regions susceptible of being explored in a multi-path
fashion. In order to do this, we first indicate which regions we want to explore,
and then we generate a filtered memory dump containing (i) the memory blocks
that overlap those regions, and (ii) all the execution blocks traced for those
regions.

Disassembly and Translation to Intermediate Language. In order to
analyze the memory dumped by our tool, we implemented our custom disassem-
bly engine to process the unpacked frames of code. This engine is based on the
binutils disassembly interface and the libdisasm library.

194 X. Ugarte-Pedrero et al.

First, for each execution block recorded during the analysis of the packer, we
perform a linear sweep disassembly. Execution blocks do not contain any instruc-
tion that affects the control flow of the program and therefore a linear-sweep
algorithm will always successfully extract the code for these blocks. Second, for
each conditional jump pointing to blocks that were not executed, we disassem-
ble the target blocks if they are located in memory already dumped. In this
case, we follow a recursive-traversal algorithm in order to disassemble as many
instructions as possible from the non-executed parts of the unpacked frames, fol-
lowing any jump, conditional jump or call instruction found. Finally, this code
is translated to Vine Intermediate Language (Vine IL) for further processing.

Obtaining Interesting Points in the Code. Next, we build the Control
Flow Graph for every function found in the disassembled code. We then process
the result in order to find points in the code that may trigger the unpacking of
other regions of code.

— Control flow instructions. Control flow instructions (jmp,call, and cjmp)
alter the execution flow of the binary and therefore are susceptible of triggering
the unpacking of new frames of code. First, if a non-conditional control flow
instructions is executed, then the address pointed by the instruction will be
executed next. In the case of cjmp instructions, it is possible to find cases
in which only one of the branches is executed. Nevertheless, considering that
we also disassemble non-executed instructions extracted from the unpacked
memory frames, we can also find jump and call instructions that lead to
regions of code not previously observed.

— Direct memory addressing. Instructions that access a memory address not
previously unpacked can trigger the decryption of a new region.

— Indirect function calls. Indirect function calls constitute a problem in multi-
path exploration. When the register containing the call address is tainted,
we need to reason about all the possible values that it can adopt. In our
case, we have simplified this problem by concretely evaluating the call address
regardless of its taint value. In order to allow our system to explore different
targets for the call, we consider these instructions as interesting points in the
program. Our engine will try to explore all the different paths that drive the
execution to this point, since they may write different values over the register
or memory address used in the indirect call.

— Constants. Finally, we also analyze the constant values provided as imme-
diate values in the code and check if they may reference a memory address
contained in the original code. This approach allows us to consider potential
register-indirect or memory-indirect addressing operations.

Finding Interesting Paths. Once we have identified the interesting points in
the code, we can distinguish three different cases:

— Non-conditional instructions that were executed and triggered the unpack-
ing of a region of code. Examples are direct memory addressing operations,

RAMBO: Run-Time Packer Analysis with Multiple Branch Observation 195

constants, or unconditional jumps. We discard these points in the code since
they are no longer interesting for guiding the execution.

— Conditional jumps in which only one of the possible branches was executed. In
these cases, we notify our engine that the alternative branch is an interesting
point that should be reached in the next iteration.

— We include any instruction that can potentially trigger the unpacking of a new
region, if it is located at a memory address not executed before.

Finally, functions calls represent a special case that must be considered. For
instance, there may be a case in which a fully unpacked function (that was
executed) has unexplored paths that drive to new regions of code. There will
be one or several points in the code that trigger a call to such function. Even if
all these points were executed during previous runs, there are still unexplored
paths in the function so we need to keep them in the list of interesting points.
This can be applied recursively to all the inter-procedural calls we find in the
code.

Once we have identified the list of interesting points in the code, we compute
the paths that reach each of them. Whenever a loop in the CFG is detected,
we consider two possible paths: one that enters the loop, and another one that
does not satisfy the loop condition. We keep iterating the ancestor basic blocks
until we reach the function entry point. The final result will be a sequence of
(cjmp,address) pairs. For each conditional jump, we indicate the address that
should be executed next in order to reach the interesting point in the code.

Eventually, there might be several different paths reaching interesting points
in the code. Instead of simplifying the list, we keep all the possible paths because
they might introduce different path restrictions during execution. In fact, many
of the paths computed will not be feasible (i.e., there is no possible assignment
for the variables in order to force the path). This feasibility will be tested by the
constraint solver during multi-path exploration.

The output of our system is a complete list of the interesting points that
can be reached for each of the two possible branches of each ¢jmp. This list is
provided as input to the multi-path exploration engine to guide the execution
to the interesting parts of the code.

Queries to the SMT Solver. Whenever a tainted conditional jump is exe-
cuted, we check if it is present in the list of interesting conditional jumps com-
puted in the previous phase. If the ¢jmp is present in the list, we inspect the
number of interesting points that can be reached from each of its paths. Then,
we query the SMT solver:

— If the two paths drive to interesting points.
— If only one of the paths leads to an interesting region, but it is not the path
taken by default.

If the solver cannot provide a feasible solution, we query the solver again ignoring
the path restrictions imposed by the execution trace. If there is a feasible set
of values that can be forced in order to follow the alternative path, we create a
snapshot and decide the next path to execute.

196 X. Ugarte-Pedrero et al.

Path Selection Algorithm. In order to select the next path to execute, we
iterate the execution tree in Breath First Search order. This approach allows us
to incrementally expand all the paths in the execution tree. More specifically,
we select the first path that meets the following conditions:

— The path has been forced less times than the rest of paths.
— If several paths have been forced the same number of times, we prioritize those
that were solved by the SMT solver in a consistent manner.

This approach allows us to avoid the recursive exploration of loops, in cases
in which there are other paths that will reach the same region more efficiently.

During exploration, we update the list of interesting paths whenever a new
memory region is unpacked, removing all the entries that refer to the region.

Path Brute-Forcing. In order to avoid exploring repeatedly the same paths
in cases in which there is a complex logic with loops, we limit the maximum
number of times that a path can be forced. When we reach this limit, we query
the list of conditional jumps we obtained from static analysis, and try to force the
execution of conditional jumps that have never been tainted. Since the branch is
not tainted, the SMT solver cannot be queried to compute a set of values to force
the branch consistently. While this method to force the execution may result
into an undetermined behavior or the instability of the process, there are cases
in which this unsound approach lets the system reach other interesting regions
of code. For instance, a command parsing routine may divide the input strings
into tokens and have a complex parsing logic with plenty of loops. There may be
cases in which a loop has to be repeated many times (i.e. loop condition is not
tainted). If this loop includes tainted branches and a complex logic inside it, it
would unnecessarily make the system expand the execution tree too many times.
In these cases, when we reach a certain limit of expansions for each conditional
jump, our approach forces the exit of the loop and continues execution. A similar
case occurs when a loop variable is not tainted itself, but it is set to a constant
value (that triggers the exit) when a specific path is followed. This path may
only be triggered once we fully explore inner loops, growing the execution tree
excessively. In this case our system will inconsistently force the path to reach
this point before expanding further the tree. A different case may occur when the
variable is updated using instructions that do not involve tainted values (e.g.,
inc, or add an immediate value). In this last case, our approach would force the
exit of the loop even if the variable is never set with the correct value.

In conclusion, if a certain memory region can be reached from different exe-
cution paths, even if the constraint solver is not capable of providing a feasible
set of values, our approach will reach the region if there is at least one path that
can be forced in a consistent or inconsistent manner, always trying to maintain
system consistency to avoid exceptions and system instability.

Also, in cases like page-granularity protection, we only need to trigger a
subset of the paths in order to reach all the code pages, avoiding to explore the
rest of paths and thus reducing the complexity of the problem.

RAMBO: Run-Time Packer Analysis with Multiple Branch Observation 197

3 Evaluation

In order to evaluate our approach, we implemented our engine on top of TEMU,
totalling 7,500 C/C++, 1,300 Python and 500 OCaml lines of code.

In this section we present three different case studies corresponding to packers
that protect samples at different granularity levels. On the one hand, Backpack is
a packer proposed by Bilge et al. [22] that protects the binary with function-level
granularity. On the other hand, Armadillo is a well-known commercial packer
that allows to protect binaries with a page granularity.

3.1 Backpack

In order to test our approach against Backpack, we downloaded the source code
of the Kaiten IRC bot, reported to be distributed using the shellshock bash
vulnerability!. This sample connects to an IRC channel and receives commands
to perform actions such as remote command execution or network flooding.
Backpack is designed to protect the binary at compile time and it is implemented
as an LLVM plugin to protect C programs. However, due to a limitation of the
plugin, to successfully compile Kaiten using Backpack we had to modify the
command dispatching routines of the malware to substitute function pointers
with direct calls. Given the functionality of the malware, we configured our
system to taint network input considering the recv, connect, read, write and
inetaddr system API functions. Also, we parametrized our system to expand
each tainted conditional jump a maximum of 8 times. Once this limit is reached,
our system inconsistently forces the conditional jumps that were visited but not
tainted.

Table 1 shows the results obtained for this experiment. The sample consists
of 31 protected functions that implement a total of 22 different commands, trig-
gered by TRC commands and private messages. The unpacking is performed
iteratively. In the first iteration we run the malware without applying any multi-
path exploration, revealing only 5 out of 31 functions.

Our heuristic engine reported 52 interesting points and 36 conditional jumps
in the code. In the first multi-path iteration, 6 new functions were unpacked
requiring a total of 167 snapshots. These functions correspond to the 6 different
IRC commands implemented by the bot. One of these commands is PRIVMSG,
that triggers the execution of a function that processes the rest of arguments
to trigger different bot commands. Once this function was unpacked in the first
multi-path iteration, our static analysis found 96 interesing points in the code
and 110 conditional jumps that could drive the execution to functions not yet
unpacked. In the last iteration, 27 functions were triggered requiring 525 snap-
shots. These results show that a concrete execution only reveals a little portion
of the real contents of the binary. Also, the heuristic allows to discover new
functions in the binary exploring a relatively low number of paths.

! http://blog.trendmicro.com/trendlabs-security-intelligence /shellshock-vulnerability-
downloads-kaiten-source-code/. (Accessed: 2015-11-13).

http://blog.trendmicro.com/trendlabs-security-intelligence/shellshock-vulnerability-downloads-kaiten-source-code/
http://blog.trendmicro.com/trendlabs-security-intelligence/shellshock-vulnerability-downloads-kaiten-source-code/

198 X. Ugarte-Pedrero et al.

Table 1. Results obtained for the Kaiten malware packed with backpack.

Iteration 0 |Iteration 1 |Iteration 2 | No heuristics

Functions unpacked 5/31 11/31 27/31 8/31
Interesting points - 52 96 -

Cjmps - 36 110 -

Snapshots - 167 544 6015
Tainted-consistent cjmps |- 161 525 5888
Tainted-inconsistent cjmps | - 6 19 127
Untainted cjmps - 0 40 -

Long traces discarded - 6 0 -

Time 5m 24 m 1.2h 8h

Table 1 also shows the number of tainted conditional jumps forced consis-
tently and inconsistently. The number of inconsistently forced cjmps is very low
in both cases. Our local-consistency based exploration algorithm and the rest
of domain-specific optimizations allow us to tolerate certain inconsistencies with
the rest of the system, improving the ability of the approach to force locally
consistent paths. Nevertheless, there are still a few cases in which inconsistent
assumptions allow to explore alternative paths that otherwise would be infeasible
to explore.

We can also observe that our system recovered the code of almost all the
protected functions. More specifically, the 22 main commands were revealed,
and only 4 helper functions remained protected due to the early termination of
the process. In the last multi-path exploration run, up to 40 untainted condi-
tional jumps were forced inconsistently in order to trigger the unpacking of new
functions. These cases correspond to non-tainted conditional jumps that were
identified by our heuristic engine as points that could potentially lead to the
unpacking of still protected regions of code. These inconsistencies caused the
process to terminate when trying to access inexistent strings.

The last row shows the total time required in order to run the python and
OCaml code in charge of postprocessing the execution traces, computing the
heuristic, and the multi-path exploration itself. For this sample, the scripts
related to the heuristic accounted for the 18 % of the total processing time.

The last column shows the results when only the domain specific optimiza-
tions were applied (no heuristics were used for path selection). In this case, we
let the system run for a total of 8 h. In this time, the system explored up to
6,000 conditional branches, but was only able to recover 8 functions.

3.2 Armadillo

Armadillo is one of the most popular packers among malware writers. It allows
to protect binaries with page granularity. This technique, also named CopyMem-
I, consists of creating two separate processes. The first process attaches to the

RAMBO: Run-Time Packer Analysis with Multiple Branch Observation 199

second one as a debugger, capturing its exceptions. When this process starts
the execution at a region not present in memory, an exception is produced and
the debugger process takes control. This process makes sure that the exception
corresponds to a protected memory page, and then it decrypts the page and on
the memory of the debugged process, protecting again the previously executed
memory page so that it cannot be collected by an analyst. Following this scheme,
only one single page of memory is present in memory at any given time, making
extremely difficult for an analyst to recover the entire code of the malware.

We used Armadillo 8.0 to protect two different samples with several pages of
code and a complex internal logic. These samples belong to the SDBot and the
SpyBot malware families. These families of bots typically connect to IRC servers
and accept complex IRC commands. However, only the code of the requested
functionality is decrypted in memory. Moreover, these specific samples present
a very complex command parsing routine that triggers, at different points, code
in memory pages that cannot be reached in any other way. We selected these
samples in order to properly test our heuristics, and to demonstrate how our
optimizations allow to reduce the complexity of multi-path exploration allowing
to drive the execution towards the most interesting points in the execution tree,
recovering all the code pages efficiently.

In order to measure the complexity of these samples, we applied the IDA-
Metrics? plugin. The most complex function in SDBot has 417 branches and a
cyclomatic complexity of 321. Overall, it has 104 functions with a total cyclo-
matic complexity of 674. SpyBot, in contrast, has its command parsing routine
spread in 4 functions, and although the most complex function presents a cyclo-
matic complexity of 135, its overall complexity is 953, significantly higher than
SDBot.

Table 2 shows the results obtained for the SDBot sample protected by
Armadillo. The malware contains 7 pages of code, but a first concrete execution
only reveals code in the first and last pages, leaving a total of 5 protected pages.
To fully recover every page, we needed to run our engine in 3 iterations. Also,
for this sample, it is strictly necessary to trigger some specific paths inside the
command parsing routine in order to reach certain pages of code. This function
was reached in the first multi-path run, that revealed 2 more memory pages.
A second run revealed 2 more pages that were reached through the function,
and the last run reached the last memory page. We can observe that the num-
ber of interesting points (i.e. targets in the control flow graph that trigger the
unpacking of a previously unseen region) is always very low because only a few
paths linked the code in one page to code in the next. Although this means that
it is only possible to reach these pages by executing those points in the code,
it also means that our system only needs to focus on steering the execution
towards those points in the code, ignoring all other paths that are not related to
them. This brings a very large improvement over a classic multi-path execution
approach.

2 https://github.com/MShudrak /TDAmetrics.

https://github.com/MShudrak/IDAmetrics

200 X. Ugarte-Pedrero et al.

Table 2. Results obtained for the SDBot malware and Armadillo 8.0.

Iter. 0 |Iter. 1 |Iter. 2 |Iter. 3 | No heuristics

Pages unpacked 2/7 4/7 6/7 7/7 4/7
Interesting points - 3 2 7 -

Cjmps - 65 162 264 -

Snapshots - 14 366 367 3974
Tainted-consistent cjmps | - 13 295 296 3660
Tainted-inconsistent cjmps | - 1 71 71 314
Untainted cjmps - 0 1 1 -

Long traces discarded - 1 14 14 -

Time 30m |2.2h |2.8h |32h | 8h

Table 3. Results obtained for the SpyBot malware and Armadillo 8.0.

Iteration 0 | Iteration 1 |Iteration 2 | No heuristics

Pages unpacked 3/9 8/9 9/9 6/9
Interesting points - 26 1 -

Cjmps - 163 214 -

Snapshots - 113 153 4466
Tainted-consistent cjmps | - 17 31 4096
Tainted-inconsistent cjmps |- 96 122 370
Untainted cjmps - 17 34 -

Long traces discarded - 9 34 -

Time 30m 3h 2.75h 8h

Despite the high number of conditional jumps reported in Table2, we can
observe that the number of snapshots remains low because our heuristics and
optimizations allow to priorities the paths and to limit the depth of the execution
tree in presence of loops. The number of inconsistent queries is lower than the
number of consistent queries, as a result of the local consistency model described
that allows tainted variables to adopt free symbolic values (i.e., not tied to global
restrictions). We can also observe that our system only needed to force one
untainted conditional jump in the second and third iterations, in order to force
the exit of complex loops in the command parsing routine.

The last column shows the results for multi-path exploration without heuris-
tics. Similarly to the previous experiment, we let the system run for 8 h and
observed that although the number of expanded conditional jumps was much
higher (3660 snapshots), only 4 pages were recovered.

Finally, Table 3 shows the results obtained for the SpyBot malware. In this
case, the command parsing routine is spread in several functions that combined
together present a more complex logic than SDBot and an higher number of

RAMBO: Run-Time Packer Analysis with Multiple Branch Observation 201

untainted conditional jumps. This sample was unpacked in 2 multi-path explo-
ration runs. In this case, the concrete execution revealed 3/9 code pages, the
first multi-path exploration revealed 8 pages, and finally one last multi-path
exploration reached the last page.

We can observe that the number of conditional jumps that can drive the
execution to the interesting points is similar but there is a higher number of
interesting points. Nevertheless, for this sample there was one single transition
point to reach the last code page, located deep into the last command parsing
routine of the bot. In this experiment, we can notice that the number of queries
that the SMT solver was not able to solve is higher, resulting into more tainted
and untainted conditional jumps forced inconsistently. Again, like in previous
cases, when the system was run without heuristics, only 6 pages were recovered
after 8 h, requiring a much higher number of snapshots. In this last case, the
postprocessing scripts represented the 59 % of the processing time.

4 Discussion

In order to evaluate our approach we have presented three case studies cor-
responding to samples with complex routines, hundreds of conditional jumps
depending on program input, and many string parsing loops. The results of
our experiments show that, by adding several domain specific optimizations and
heuristics, it is feasible to apply multi-path exploration to unpack complex bina-
ries protected with shifting-decode-frames.

We selected three case studies in order to test our approach, using two dif-
ferent packers for protection. Although the number of tests is low, we selected
representative samples with complex logic and different protection granularities.
In fact, most of the packers reveal all the protected code at once and only few
present this advanced protection mechanism. Beria applies the same approach
as Armadillo, but presents a lower overall complexity. Unfortunately, it is not a
common packer, and thus we found no interesting samples available.

We only tested one sample protected with Backpack because was developed
for GNU/Linux and it requires the source code of the malware in order to apply
the protection at compilation time. Given this restriction, we selected the most
complex GNU/Linux malware source code we could compile with Backpack.

In the case of Armadillo, we needed to meet several requirements in order
to properly test our approach and heuristics. First, we needed samples with
complex routines depending on program input. These samples had to trigger the
execution of new regions of code (not executed in a single concrete run), only
after executing a fairly complex amount of code. Also, we selected samples that
did not already present a custom packing routine. Otherwise, only that routine
would be protected by Armadillo, greatly simplifying our job and not providing
a challenge for our system. Similarly, we had to discard samples that decode and
inject all their code into another process once the execution starts, as well as
droppers, downloaders, and simple spyware due to their simplicity.

Our approach is based on whole system emulation, which has a number of
well-known limitations. For instance, red-pills can be used to determine if the

202 X. Ugarte-Pedrero et al.

execution environment in which it runs is a virtual/emulated environment or
a real machine. In fact, Paleari et al. [23] proposed a method to automatically
discover and generate red-pills in system emulators. In particular, during this
project we found two implementation errors in the Dynamic Binary Translation
engine of QEMU that affected all its versions and impeded the correct emulation
of the Armadillo packer. In this context, several publications and projects [3,24,
25] have reported the incapacity of emulators to correctly execute the Armadillo
packer. We solved this issue and reported it to the QEMU developers.

Finally, although the samples evaluated in this study were not affected by the
following techniques, complex packers may leverage them to hinder our approach.

— Calling convention violation. Malware can violate calling conventions in
order to obfuscate the code. If these techniques are employed to obfuscate API
function calls (e.g., stolen bytes), our tracing mechanisms could fail to locate
string parsing functions, affecting some of our optimizations.

— Alternative methods to redirect control-flow. In order to evade multi-
path exploration, malware samples may potentially use alternative methods
to redirect the control flow: alternative combinations of instructions such as
push + ret, indirect calls, call + pop + push + jmp, SEH or VEH based
redirection, opaque predicates in branch instructions, or even obfuscating the
computation of triggers [26].

— Resource exhaustion. Our techniques reduce the computing overhead of
multi-path exploration. Nevertheless, creating memory snapshots and query-
ing SMT solvers over long traces still requires significant computing resources.
A packer may increase the complexity of the code affecting impacting the per-
formance of multi-path exploration. A malware writer may design a complex
CFG with a high number of loops and conditional jumps specifically crafted
to increase the number of paths to explore with our heuristic.

— Nanomites. This technique consists in replacing conditional branch instruc-
tions by software interrupts (e.g. INT 3) that cause the execution to break.
A parent process intercepts the exception and then overwrites the conditional
jump. A more complicated example involves redirecting the execution of the
child by evaluating its context (state of the EFLAGS register) and redirecting
its execution to the appropriate address, without even replacing the interrupt
instruction with the original instruction. This technique would break taint
propagation and prevent us from successfully reconstructing the CFG.

5 Related Work

Manual unpacking requires a substantial reverse engineering effort. Conse-
quently, many researchers have focused on generic unpacking in recent years.
Both dynamic and static [7] approaches have been proposed, but due to the
complexity of static approaches, most of the authors have focused on dynamic
analysis, installing drivers in the system [6,27] or tracing the execution [3].

RAMBO: Run-Time Packer Analysis with Multiple Branch Observation 203

Some of these systems rely on heuristics or monitor coarse-grained events [27],
while others monitor memory writes and memory execution at different granular-
ity levels [3,6,28,29], compare the static and run-time version of the memory [2],
perform statistical analysis [5], or measure the entropy variation [4].

Other approaches rely on hybrid static and dynamic analysis [30]. Virtualiza-
tion based packers constitute a special category of protection techniques. Several
authors have focused on unpacking these packers from different perspectives [31—-
33]. Nevertheless, these protection engines are a different challenge that require
other techniques in order to recover the original code.

Transparent execution [1,34,35] is focused on dealing with malware capa-
ble of detecting the analysis environment and modifying its execution to evade
detection. Nevertheless, these techniques do not explore the different execution
paths that a binary may have. Bilge et al. [22] demonstrated that this limitation
can be leveraged by an attacker in order to defeat unpackers that assume that
all the code will be present in memory at some moment in time.

In order to improve the test coverage in malware analysis, Moser et al. [14]
proposed a system to explore different execution paths based on taint analysis
and symbolic execution. Our work is built on top of this research, adding a set
of optimizations and heuristics to deal with a specific use-case.

Almost in parallel, Song et al. [15] developed a platform for binary analysis.
This platform was used in many different follow-up works, including identifica-
tion of trigger-based behaviour [10], reasoning about code paths in malware using
mixed concrete and symbolic execution [11], or even triggering the unpacking
routine of environment sensitive malware [12]. Another closely related project is
S2E [18], a platform that introduces the concept of selective symbolic execution
(application of symbolic execution to only certain memory regions) and exe-
cution consistency models. Schwartz et al. [16] summarized the challenges and
limitations that affect efficiency and feasibility of symbolic execution. Taint poli-
cies and the sanitization of tainted values have a direct impact on over-tainting
and under-tainting errors. Indirect memory accesses with symbolic addresses,
jump tables, or the size of the constraint systems are aspects that have no clear
solution. Finally, X-Force [13] is a system capable of forcing execution paths
inconsistently and recovering from execution errors by dynamically allocating
memory and updating related pointers. More specifically, they focus on 3 dif-
ferent goals: (i) constructing the control flow graph of a binary, type reverse
engineering, and discovering hidden behavior in malware. Our approaches share
some concepts, such as forcing the execution inconsistently. However, their main
contribution is a technique to recover from errors (which is not as important in
our domain), while our contributions are a set of domain-specific optimizations,
and a heuristic to drive the exploration. Also, we focus on applying multi-path
exploration to unpacking samples with a complex command parsing logic, a
problem that typically presents a high complexity. To this aim, our approach
mixes consistent and inconsistent multi-path exploration to maximise system
consistency in order to reach deep execution paths. Overall, our goal is not to
improve multi-path exploration, but to show if and how this technique can be

204 X. Ugarte-Pedrero et al.

used for unpacking, and which customizations are required in order to improve
its results. To sum up, all these approaches suffer from the well-known path
explosion problem [21]. This limitation makes necessary to develop heuristics
and optimizations in order to improve the feasibility of multi-path exploration,
and this is the main contribution of our paper.

6 Conclusions

In previous sections we have described the domain-specific optimizations and
heuristics that can be implemented over multi-path exploration to unpack
shifting-decode-frames protectors. We have evaluated our approach over three
different case studies covering Backpack, a function granularity based packer, and
Armadillo, a well-known packer that protects binaries with a page-granularity.
Our test cases cover different samples with complex command parsing logic.

Multi-path exploration has been addressed by several researchers but it is not
generally used for real-scale malware analysis due to its technical complexity and
its limitations. Our results show that it is possible to apply optimizations and
heuristics to multi-path exploration in order to address specific problems such
as the malware protection technique covered by this study.

Acknowledgements. We would like to thank the reviewers for their insightful com-
ments and our shepherd Brendan Dolan-Gavitt for his assistance to improve the quality
of this paper. This research was partially supported by the Basque Government under
a pre-doctoral grant given to Xabier Ugarte-Pedrero.

References

1. Dinaburg, A., Royal, P., Sharif, M., Lee, W.: Ether: malware analysis via hard-
ware virtualization extensions. In: Proceedings of the 15th ACM Conference on
Computer and Communications Security, pp. 51-62. ACM (2008)

2. Royal, P., Halpin, M., Dagon, D., Edmonds, R., Lee, W.: Polyunpack: automating
the hidden-code extraction of unpack-executing malware. In: Proceedings of the
22nd Annual Computer Security Applications Conference, pp. 289-300 (2006)

3. Kang, M., Poosankam, P., Yin, H.: Renovo: a hidden code extractor for packed
executables. In: Proceedings of the 2007 ACM Workshop on Recurring Malcode,
pp. 46-53 (2007)

4. Cesare, S., Xiang, Y.: Classification of malware using structured control flow. In:
Proceedings of the Eighth Australasian Symposium on Parallel and Distributed
Computing, vol. 107, pp. 61-70. Australian Computer Society, Inc. (2010)

5. Sharif, M., Yegneswaran, V., Saidi, H., Porras, P.A., Lee, W.: Eureka: a framework
for enabling static malware analysis. In: Jajodia, S., Lopez, J. (eds.) ESORICS
2008. LNCS, vol. 5283, pp. 481-500. Springer, Heidelberg (2008)

6. Martignoni, L., Christodorescu, M., Jha, S.: Omniunpack: fast, generic, and safe
unpacking of malware. In: Computer Security Applications Conference, 2007,
ACSAC 2007, Twenty-Third Annual, pp. 431-441. IEEE (2007)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

RAMBO: Run-Time Packer Analysis with Multiple Branch Observation 205

Coogan, K., Debray, S., Kaochar, T., Townsend, G.: Automatic static unpacking
of malware binaries. In: 16th Working Conference on Reverse Engineering, 2009,
pp. 167-176. IEEE (2009)

Ugarte-Pedrero, X., Balzarotti, D., Santos, I., Bringas, P.G.: [SoK] Deep packer
inspection: a longitudinal study of the complexity of run-time packers. In: Proceed-
ings of the IEEE Symposium on Security and Privacy. IEEE Computer Society,
May 2015

Moser, A., Kruegel, C., Kirda, E.: Limits of static analysis for malware detection.
In: Proceedings of the 23rd Annual Computer Security Applications Conference
(ACSACQC), pp. 421-430 (2007)

Brumley, D., Hartwig, C., Liang, Z., Newsome, J., Song, D.; Yin, H.: Automatically
identifying trigger-based behavior in malware. In: Lee, W., Wang, C., Dagon, D.
(eds.) Botnet Detection, pp. 65-88. Springer, USA (2008)

Brumley, D., Hartwig, C., Kang, M.G., Liang, Z., Newsome, J., Poosankam, P.,
Song, D., Yin, H.: Bitscope: Automatically dissecting malicious binaries. School of
Computer Science, Carnegie Mellon University, Technical report CMU-CS-07-133
(2007)

Jia, C., Wang, Z., Lu, K., Liu, X., Liu, X.: Directed hidden-code extractor for
environment-sensitive malwares. Phys. Procedia 24, 1621-1627 (2012)

Peng, F., Deng, Z., Zhang, X., Xu, D., Lin, Z., Su, Z.: X-force: force-executing
binary programs for security applications. In: Proceedings of the 2014 USENIX
Security Symposium, San Diego, CA (2014)

Moser, A., Kruegel, C., Kirda, E.: Exploring multiple execution paths for malware
analysis. In: IEEE Symposium on Security and Privacy, 2007, pp. 231-245. IEEE
(2007)

Song, D., et al.: BitBlaze: a new approach to computer security via binary analysis.
In: Sekar, R., Pujari, A.K. (eds.) ICISS 2008. LNCS, vol. 5352, pp. 1-25. Springer,
Heidelberg (2008)

Schwartz, E.J., Avgerinos, T., Brumley, D.: All you ever wanted to know about
dynamic taint analysis and forward symbolic execution (but might have been afraid
to ask). In: IEEE Symposium on Security and Privacy 2010, pp. 317-331. IEEE
(2010)

Cadar, C., Dunbar, D., Engler, D.R.: Klee: unassisted and automatic generation
of high-coverage tests for complex systems programs. In: Proceedings of the 8th
USENIX Conference on Operating Systems Design and Implementation (OSDI),
vol. 8, pp. 209224 (2008)

Chipounov, V., Kuznetsov, V., Candea, G.: S2e: a platform for in-vivo multi-path
analysis of software systems. ACM SIGARCH Comput. Archit. News 39(1), 265—
278 (2011)

Brumley, D., Wang, H., Jha, S., Song, D.: Creating vulnerability signatures using
weakest preconditions. In: 20th IEEE Computer Security Foundations Symposium
(CSF), pp. 311-325. IEEE (2007)

Leino, K.R.M.: Efficient weakest preconditions. Inf. Process. Lett. 93(6), 281-288
(2005)

Clarke, E.M., Klieber, W., Novacek, M., Zuliani, P.: Model checking and the state
explosion problem. In: Meyer, B., Nordio, M. (eds.) LASER 2011. LNCS, vol. 7682,
pp. 1-30. Springer, Heidelberg (2012)

Bilge, L., Lanzi, A., Balzarotti, D.: Thwarting real-time dynamic unpacking. In:
Proceedings of the 4th European Workshop on System Security, Article No. 5.
ACM (2011)

206

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

X. Ugarte-Pedrero et al.

Paleari, R., Martignoni, L., Roglia, G.F., Bruschi, D.: A fistful of red-pills: how to
automatically generate procedures to detect cpu emulators. In: Proceedings of the
USENIX Workshop on Offensive Technologies (WOOT), vol. 41, p. 86 (2009)
Deng, Z., Zhang, X., Xu, D.: Spider: stealthy binary program instrumentation
and debugging via hardware virtualization. In: Proceedings of the 29th Annual
Computer Security Applications Conference, pp. 289-298. ACM (2013)
Balzarotti, D., Cova, M., Karlberger, C., Kirda, E., Kruegel, C., Vigna, G.: Efficient
detection of split personalities in malware. In: Network and Distributed System
Security Symposium (NDSS) (2010)

Sharif, M.I., Lanzi, A., Giffin, J.T., Lee, W.: Impeding malware analysis using
conditional code obfuscation. In: Network and Distributed System Security
Symposium (NDSS) (2008)

Guo, F., Ferrie, P., Chiueh, T.C.: A study of the packer problem and its solutions.
In: Lippmann, R., Kirda, E., Trachtenberg, A. (eds.) RAID 2008. LNCS, vol. 5230,
pp. 98-115. Springer, Heidelberg (2008)

Stewart, J.: Ollybone: semi-automatic unpacking on ia-32. In: Proceedings of the
14th DEF CON Hacking Conference (2006)

Kim, H.C., Inoue, D., Eto, M., Takagi, Y., Nakao, K.: Toward generic unpacking
techniques for malware analysis with quantification of code revelation. In: The 4th
Joint Workshop on Information Security (2009)

Caballero, J., Johnson, N., McCamant, S., Song, D.: Binary code extraction and
interface identification for security applications. In: Proceedings of the 17th Annual
Network and Distributed System Security Symposium, ISOC, pp. 391-408 (2009)
Rolles, R.: Unpacking virtualization obfuscators. In: 3rd USENIX Workshop on
Offensive Technologies (WOOT) (2009)

Sharif, M., Lanzi, A., Giffin, J., Lee, W.: Automatic reverse engineering of malware
emulators. In: 30th IEEE Symposium on Security and Privacy, pp. 94-109. IEEE
(2009)

Coogan, K., Lu, G., Debray, S.: Deobfuscation of virtualization-obfuscated soft-
ware: a semantics-based approach. In: Proceedings of the 18th ACM Conference
on Computer and Communications Security, pp. 275-284. ACM (2011)
Vasudevan, A., Yerraballi, R.: Cobra: fine-grained malware analysis using stealth
localized-executions. In: IEEE Symposium on Security and Privacy, 15-pp (2006)
Kang, M.G., Yin, H., Hanna, S., McCamant, S., Song, D.: Emulating emulation-
resistant malware. In: Proceedings of the 1st ACM Workshop on Virtual Machine
Security, pp. 11-22. ACM (2009)

Detecting Hardware-Assisted Virtualization

Michael Brengel ™), Michael Backes, and Christian Rossow

CISPA, Saarland University, Saarbriicken, Germany
mbrengel@mmci.uni-saarland.de

Abstract. Virtualization has become an indispensable technique for
scaling up the analysis of malicious code, such as for malware analy-
sis or shellcode detection systems. Frameworks like Ether, ShellOS and
an ever-increasing number of commercially-operated malware sandboxes
rely on hardware-assisted virtualization. A core technology is Intel’s VT-
x, which — compared to software-emulated virtulization — is believed
to be stealthier, especially against evasive attackers that aim to detect
virtualized systems to hide the malicious behavior of their code.

‘We propose and evaluate low-level timing-based mechanisms to detect
hardware-virtualized systems. We build upon the observation that an
adversary can invoke hypervisors and trigger context switches that are
noticeable both in timing and in their side effects on caching. We have
locally trained and then tested our detection methodology on a wide vari-
ety of systems, including 240 PlanetLab nodes, showing a high detection
accuracy. As a real-world evaluation, we detected the virtualization tech-
nology of more than 30 malware sandboxes. Finally, we demonstrate how
an adversary may even use these detections to evade multi-path explo-
ration systems that aim to explore the full behavior of a program. Our
results show that VT-x is not sufficiently stealthy for reliable analysis of
malicious code.

1 Introduction

Malicious code continues to be a major security threat. The economics of cyber
crime tempt attackers to improve their attacks in both quantity and quality. As
such, analysts are confronted with a large number of sophisticated new attacks on
a daily basis. This sheer volume of threats renders manual analysis impractical,
which is why defenders seek to automate the analysis of potentially malicious
code. In terms of automated analysis, defenders usually prefer dynamic over
static analysis, since malware is usually heavily obfuscated [18,21,31]. While
ideas exist to cope with this problem [4,11,12,25,27,28], in practice, a satisfying
notion of static code analysis automation is still far from being established.

Dynamic analysis executes unknown programs in a controlled environment
and monitors this execution to look for malicious behavior. The large number of
dynamic malware analysis systems demonstrates their utility [6]. The security
industry has also taken up the concept of malware sandboxes and one can choose
from a variety of open-source and commercial systems, such as Cuckoo [19], Joe
Sandbox, GFI Sandbox, VMRay or FireEye.

© Springer International Publishing Switzerland 2016
J. Caballero et al. (Eds.): DIMVA 2016, LNCS 9721, pp. 207-227, 2016.
DOI: 10.1007/978-3-319-40667-1_11

208 M. Brengel et al.

Realizing the benefits of dynamic analysis, attackers started to evade sand-
boxes. Evasion enables an attacker to discover that the execution takes place in
a controlled environment and to suppress any malicious behavior because of this
insight. In its simplest form, evasion leverages the fact that most dynamic code
analysis systems use some kind of virtualization solution and that these solutions
usually come with artifacts such as specific device drivers or known hardware
serial numbers, for example. By probing for those artifacts, the attacker can
detect the analysis system and suppress any malicious behavior. Note that this
approach relies on the assumption that virtualized code execution is equivalent
to dynamic code analysis. While this is not generally true, e.g., due to cloud com-
puting, typically attack targets can be assumed to operate on native systems.
Virtual machine (VM) detection approaches are widely popular among attack-
ers in the wild. Malware (e.g., the families Dyre, CryptoWall, Shifu, Kronos and
Shylock) hide their actual behavior if they are executed in a VM.

When it comes to the choice of virtualization solution, defenders usually build
upon hardware-assisted virtualization techniques such as Intel VT-x or AMD-V.
Besides being faster due to hardware support, hardware-assisted virtualization
also greatly reduces the number of artifacts, giving the attacker less room for
simple evasion. Analysis systems such as Ether [5] and CXPInspector [30] use
VT-x to analyze malware in a transparent manner. The authors of Ether have
shown that malware that does not show behavior on other software-virtualized
systems suddenly becomes active in their systems, which highlights the impor-
tance of hardware-assisted virtualization.

In this paper, we therefore aim at a more generic form of evasion. While
an artifact indicates that the system might be virtualized, there is no semantic
connection between the presence of an artifact and the concept of virtualiza-
tion. Instead, we follow the intuition that virtualized guests operate more slowly
than native systems. To this end, we propose three timing-based and assembly-
level mechanisms to detect hardware-assisted virtualization from user space, i.e.,
without using privileged instructions. We first consider measuring the execution
time of special x86 instructions, that cause a trap to the hypervisor, which will
not occur during native execution. We then discuss how a hypervisor might try
to hide the involved timing artifacts, and propose a second detection technique
which exploits the Translation Lookaside Buffer (TLB) and which cannot be
protected against in the same fashion. We leverage timing differences during
accesses to pages whose address translations have been cached in the TLB, but
whose cache entries a hypervisor has evicted due to the limited size of the TLB.
We then consider the stealthiness of those two approaches. Given that the first
two methods use special instructions excessively, we argue that those methods
are not stealthy. Therefore, we propose a third method which is stealthier in
that it limits the use of possibly suspicious instructions and resorts to a different
timing source.

We evaluate our methods on a large variety of native and VT-x-based systems
and show that the detection methods have a 99.4 % true positive rate on average.
We then turn to a few practical use cases. First, we deploy our detection routine

Detecting Hardware-Assisted Virtualization 209

on 31 public malware sandboxes, all of which we can detect using the described
methods. Second, we demonstrate that even a commercial sandbox with anti-
evasion features falls for our caching-based detection mechanism. Finally, we
show how an adversary may combine the detection results to evade multi-path
exploration systems and demonstrate this with the use case of ShellOS [29], a
VT-based shellcode detection framework.

2 Background

2.1 Hardware Virtualization

Most malware analysis systems that use hardware-assisted virtualization rely on
Intel VT (or VT-x) as an underlying virtualization technique. With VT-x, the
Virtual Machine Monitor (VMM, or hypervisor) can create and launch multiple
virtual machines. Once the VM is running, the guest can return to the hyper-
visor; this is called a VM Exit. The guest can explicitly invoke the exit handler
of the hypervisor, e.g., to establish communication between the host and the
guest. After the hypervisor has performed the desired operations, control can be
returned to the guest; this is called a VM Entry.

In addition to the explicit calls to the exit handler, the hypervisor also implic-
itly traps in certain occasions. We will use exactly these implicit traps as part
of our timing side-channels, and thus briefly explain them in the following. For
example, VM Exits are implicitly caused if the guest executes a sensitive instruc-
tion. This behavior is crucial, since it gives the hypervisor the chance to emulate
important data structures and monitor the VM. Intel specifies all such VMM
trap instructions in their manual. Since VM Exits are an inherent difference
between virtualized and native executions, we use them as a way of detecting
the presence of a VT-x hypervisor. While VT-x offers the possibility to dis-
able traps for some instructions, Intel enforces VM Exits on a selected set of
instructions in hardware. We also argue that in order to monitor the guest, the
hypervisor has to use some kind of traps, which also gives additional space for
evasion.

2.2 Translation Lookaside Buffer

One of the side effects of hypervisors that we will use targets the TLB, as outlined
in the following. Modern operating systems use the concept of virtual memory
to give each running process the impression of having a large contiguous space
of memory, whereas in reality there is a mapping between virtual and physical
memory in a non-contiguous manner. Resolving this mapping is called a page
walk. Since a page walk can be costly, hardware developers introduced the TLB,
which caches the mapping from virtual pages to physical pages. When a process
accesses a virtual address v, it first checks if the virtual page of v is in the TLB.
If it is, the physical address can be obtained from the TLB. Otherwise, the MMU
needs to do a page walk and then caches the result in the TLB. Therefore, when

210 M. Brengel et al.

accessing multiple addresses on the same page, it is likely that only the first
access is slow relative to all subsequent accesses, as long as the TLB entry is not
evicted in the meantime.

If we switch from a process p; to a process ps (context switch), the TLB will
most likely contain invalid entries, since p; and ps have their own virtual memory
and thus use different address space mappings. The simplest way to deal with
this problem is to completely flush the TLB upon context switches. However, this
strategy had severe performance penalties, as every VM Exit causes a context
switch. To cope with this problem, Intel introduced a feature called VPID. With
VPID enabled, the TLB entries are tagged with the ID of the virtual machine. As
a consequence, when a virtual address is accessed, the MMU will only consider
TLB entries which are tagged with the current VM’s ID. Hence, there is no need
to flush the TLB, resulting in better performance.

3 Threat Model

Throughout the remainder of this paper, we envision an adversary that has
implemented an arbitrary program (e.g., malware) and tries to detect if this
program is being executed in a virtualized environment. We aim to explore
generic evasion attempts, i.e., those that (i) do not focus on particular analysis
environments, but instead on inherent characteristics of such systems, (ii) an
approach that is independent from the malicious payload that the adversary may
aim to hide, and (iii) mechanisms that are not restricted to a certain operating
system. All these requirements make our methods applicable to a wide set of
programs, explicitly including typical malware targeting Windows or Linux.
Furthermore, we restrict ourselves to developing detection mechanisms that
operate purely in user mode, i.e., unprivileged code that executes in ring 3. This
assumption varies from existing approaches that aim to detect virtualization by
using privileged instructions, such as reading the contents of the page tables or
using nested virtualization. Approaches using privileged code (ring 0) are well
known to be effective, but may raise suspicions to an analyst or even during auto-
mated program analysis. In contrast, our assumption on user-mode execution is
in line with the use case of in-the-wild malware, such as a myriad of banking
trojans, droppers, clickbots, spambots, denial-of-service bots and even targeted
malware—all of which typically run in user space. The most notable exceptions
are malware families with a kernel-mode rootkit, which, however, could also use
our proposed user-mode detection methods. For example, a user-space dropper
could try to detect virtualization prior to installing further modules (such as
kernel-mode rootkits), such that the second- or third-stage malware samples are
not exposed to the analyst. In fact, this concept is common in the wild [15,26].
Finally, we assume that the actual target systems of an attacker, i.e., those
that the attacker aims to infect, are not virtualized. While it is conceivable that
an attacker may miss target systems that are indeed virtualized, widespread
malware will still be successful in infecting the vast majority of native systems.

Detecting Hardware-Assisted Virtualization 211

4 Timing-Based VT-x Detection

VT-x was invented with the goal to increase the performance as well as the trans-
parency of virtualization. In this section, we aim to undermine that transparency
by proposing three timing-based methods to detect virtualization.

4.1 Measuring Elapsed CPU Cycles

The first two proposed detection methods are based on a technique to accurately
determine the execution time of machine code. To this end, we measure the
number of CPU cycles that elapse when a piece of code is executed. To do so, we
use the rdtsc instruction to read the CPU’s time stamp counter (TSC), which
is incremented every clock cycle. Upon execution of rdtsc, the edx register is
loaded with the high-order 32 bits and eax holds the low-order 32 bits of the
TSC. Reading the TSC before and after the machine code helps us to measure
the number of cycles that have elapsed. We can thus execute rdtsc, save the
TSC, execute the instructions to be measured, execute rdtsc again and subtract
the saved TSC from the current TSC. To get more accurate results, we need to
serialize the instruction stream to prevent out-of-order execution. We use the
mfence instruction, which will serialize rdtsc with respect to load-from-memory
and store-to-memory instructions.

This method over-approximates the execution time. This is a bias introduced
by the measurement code, which also consumes CPU cycles. If necessary, to
counteract this influence, we can measure the measuring overhead and subtract
it from the measured time. To this end, we measure how long it takes to execute
no code. We then subtract this overhead from subsequent measuring results to
get a more realistic measurement of the actual clock cycles. We will use this
technique for our implementation of a TLB-based VT detection that demands
a higher measuring accuracy.

Finally, measurements may not be accurate due to context switches that
occur during the measurement phase, in which another process would execute
and implicitly increase the TSC. To tackle this problem, we repeatedly measure
the same sequences of instructions, record the time of each execution, and then
use the minimum of all measurements. Our assumption here is that at least one
out of these many executions will not be clobbered by a context switch.

4.2 Method 1: Detecting VM Exit Overhead

Based on the timing measurements, we will now describe our first method to
detect hardware virtualization. We follow the intuition that a VM Exit consumes
CPU cycles. In particular, we leverage the fact that some CPU instructions
provoke a VM Exit, which does not occur on native systems. The Intel manual
specifies over 30 of such instructions, most of whic