
Juan Caballero
Urko Zurutuza
Ricardo J. Rodríguez (Eds.)

 123

LN
CS

 9
72

1

13th International Conference, DIMVA 2016
San Sebastián, Spain, July 7–8, 2016
Proceedings

Detection of Intrusions
and Malware, and
Vulnerability Assessment

Lecture Notes in Computer Science 9721

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7410

http://www.springer.com/series/7410

Juan Caballero • Urko Zurutuza
Ricardo J. Rodríguez (Eds.)

Detection of Intrusions
and Malware, and
Vulnerability Assessment
13th International Conference, DIMVA 2016
San Sebastián, Spain, July 7–8, 2016
Proceedings

123

Editors
Juan Caballero
IMDEA Software Institute
Pozuelo de Alarcón, Madrid
Spain

Urko Zurutuza
Mondragon University
Arrasate, Guipúzcoa
Spain

Ricardo J. Rodríguez
Universidad de Zaragoza
Zaragoza
Spain

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-40666-4 ISBN 978-3-319-40667-1 (eBook)
DOI 10.1007/978-3-319-40667-1

Library of Congress Control Number: 2016941320

LNCS Sublibrary: SL4 – Security and Cryptology

© Springer International Publishing Switzerland 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG Switzerland

Preface

It is our pleasure to welcome you to the proceedings of the 13th International Con-
ference on Detection of Intrusions and Malware and Vulnerability Assessment
(DIMVA 2016), which took place in Donostia-San Sebastián, Spain, during July 7–8,
2016. DIMVA is an international conference advancing the state of the art in intrusion
detection, malware analysis, and vulnerability assessment. It brings together members
of academia, industry, and governmental institutions to discuss novel ideas as well as
mature research results.

This year, DIMVA received 66 submissions, which were carefully reviewed by the
Program Committee. Each submission had at least three independent reviews. In the
end, 21 papers were accepted to be presented at the conference and included in this
proceedings. Of these, 19 are full papers presenting mature research results and two are
extended abstracts presenting new ideas in the early stages of research. Overall, the
acceptance rate was 31.8 %. The accepted papers present novel ideas, techniques, and
applications in important areas of computer security including vulnerability detection,
attack prevention, Web security, malware detection and classification, authentication,
data leakage prevention, and countering evasive techniques such as obfuscation.
Beyond the research papers, the program also included insightful keynote talks by Prof.
Christopher Kruegel (University of California at Santa Barbara) and by David Barroso
(CounterCraft).

Many individuals and organizations contributed to the success of DIMVA 2016.
First of all, we would like to express our appreciation to the Program Committee
members and external reviewers for the time spent reviewing, discussing papers, and
attending the Program Committee meeting in Madrid. We are also deeply grateful to all
members of the Organizing Committee for their tremendous work and for excelling in
their respective tasks. The conference was also made possible thanks to the support of
our sponsors Huawei and Inycom, and thanks to the collaboration of the Basque
Business Development Agency (SPRI) and the Department of Education, Linguistic
Policy and Culture of the Basque Government. We also thank Springer for publishing
these proceedings in their LNCS series, and the DIMVA Steering Committee for
continuing to bring together the conference.

Finally, the success of DIMVA hinges on the authors who contribute their work and
on the attendees who come to the conference. We would like to thank them and we
look forward to thier next contribution to DIMVA.

July 2016 Juan Caballero
Urko Zurutuza

Ricardo J. Rodríguez

Organization

DIMVA was organized by the special interest group Security – Intrusion Detection and
Response (SIDAR) of the German Informatics Society (GI).

Organizing Committee

General Chair

Urko Zurutuza Mondragon University, Spain

Program Chair

Juan Caballero IMDEA Software Institute, Spain

Financial Chair

Iñaki Hurtado Mondragon University, Spain

Publication Chair

Ricardo J. Rodríguez University of Zaragoza, Spain

Steering Committee (Chairs)

Ulrich Flegel Infineon Technologies, Germany
Michael Meier University of Bonn, Germany

Steering Committee (Members)

Magnus Almgren Chalmers University of Technology, Sweden
Herbert Bos Vrije Universiteit Amsterdam, The Netherlands
Danilo M. Bruschi Università degli Studi di Milano, Italy
Roland Bueschkes RWE AG, Germany
Lorenzo Cavallaro Royal Holloway, University of London, UK
Herve Debar Telecom SudParis, France
Sven Dietrich City University of New York, USA – John Jay College

of Criminal Justice, USA
Bernhard Haemmerli Acris GmbH & HSLU Lucerne, Switzerland
Thorsten Holz Ruhr-Universität Bochum, Germany
Marko Jahnke Federal Office for Information Security, Germany
Klaus Julisch Deloitte, Switzerland
Christian Kreibich ICSI, USA
Christopher Kruegel UC Santa Barbara, USA
Pavel Laskov University of Tüebingen, Germany
Federico Maggi Politecnico di Milano, Italy

Konrad Rieck University of Göttingen, Germany
Robin Sommer ICSI/LBNL, USA

Program Committee

Manos Antonakakis Georgia Institute of Technology, USA
Marco Balduzzi Trend Micro Research, USA
Leyla Bilge Symantec Research Labs, France
Herbert Bos Vrije Universiteit, The Netherlands
Levente Buttyan Budapest University of Technology and Economics,

Hungary
Mauro Conti University of Padua, Italy
Baris Coskun Yahoo! Labs, USA
Lucas Davi TU Darmstadt, Germany
Sven Dietrich John Jay College of Criminal Justice, City University

of New York, USA
Brendan Dolan-Gavitt New York University, USA
Zakir Durumeric University of Michigan, USA
Nigel Edwards Hewlett Packard Laboratories, UK
Manuel Egele Boston University, USA
Ulrich Flegel Infineon Technologies AG, Germany
Vincenzo Gulisano Chalmers University of Technology, Sweden
Bernhard Haemmerli Acris GmbH, Switzerland
Sotiris Ioannidis FORTH, Greece
Somesh Jha University of Wisconsin-Madison, USA
Tim Kornau Google, Switzerland
Andrea Lanzi University of Milan, Italy
Pavel Laskov Huawei European Research Center, Germany
Corrado Leita Lastline, UK
Zhiqiang Lin University of Texas at Dallas, USA
Martina Lindorfer SBA Research, Austria
Federico Maggi Politecnico di Milano, Italy
Jean-Yves Marion Lorraine University, France
Michael Meier University of Bonn and Fraunhofer FKIE, Germany
Simin Nadjm-Tehrani Linköping University, Sweden
Nick Nikiforakis Stony Brook University, USA
Roberto Perdisci University of Georgia and Georgia Tech, USA
Jason Polakis Columbia University, USA
Konrad Rieck University of Göttingen, Germany
Christian Rossow Saarland University, Germany
Stelios

Sidiroglou-Douskos
MIT, USA

Gianluca Stringhini University College London, UK
Juan Tapiador Carlos III University of Madrid, Spain
Yves Younan Cisco Systems, USA
Stefano Zanero Politecnico di Milano, Italy

VIII Organization

Additional Reviewers

Daniel Arp
Sebastien Bardin
Guillaume Bonfante
Michele Carminati
Jean-Luc Danger
Drew Davidson

Lorenzo De Carli
Parvez Faruki
Dario Fiore
Máté Horváth
Kaitai Liang
Srdan Moraca

Mizuhito Ogawa
Raphael Otto
Davide Quarta
Vaibhav Rastogi
Sanjay Rawat
Valentin Tudor

Sponsoring Institutions (Gold)

Sponsoring Institutions (Silver)

Collaborators

Organization IX

Contents

Attacks

Subverting Operating System Properties Through Evolutionary
DKOM Attacks. 3

Mariano Graziano, Lorenzo Flore, Andrea Lanzi, and Davide Balzarotti

DeepFuzz: Triggering Vulnerabilities Deeply Hidden in Binaries:
(Extended Abstract) . 25

Konstantin Böttinger and Claudia Eckert

Defenses

AutoRand: Automatic Keyword Randomization to Prevent
Injection Attacks . 37

Jeff Perkins, Jordan Eikenberry, Alessandro Coglio, Daniel Willenson,
Stelios Sidiroglou-Douskos, and Martin Rinard

AVRAND: A Software-Based Defense Against Code Reuse Attacks
for AVR Embedded Devices . 58

Sergio Pastrana, Juan Tapiador, Guillermo Suarez-Tangil,
and Pedro Peris-López

Towards Vulnerability Discovery Using Staged Program Analysis. 78
Bhargava Shastry, Fabian Yamaguchi, Konrad Rieck,
and Jean-Pierre Seifert

Malware Detection

Comprehensive Analysis and Detection of Flash-Based Malware. 101
Christian Wressnegger, Fabian Yamaguchi, Daniel Arp,
and Konrad Rieck

Reviewer Integration and Performance Measurement
for Malware Detection . 122

Brad Miller, Alex Kantchelian, Michael Carl Tschantz, Sadia Afroz,
Rekha Bachwani, Riyaz Faizullabhoy, Ling Huang, Vaishaal Shankar,
Tony Wu, George Yiu, Anthony D. Joseph, and J.D. Tygar

On the Lack of Consensus in Anti-Virus Decisions: Metrics and Insights
on Building Ground Truths of Android Malware. 142

Médéric Hurier, Kevin Allix, Tegawendé F. Bissyandé, Jacques Klein,
and Yves Le Traon

http://dx.doi.org/10.1007/978-3-319-40667-1_1
http://dx.doi.org/10.1007/978-3-319-40667-1_1
http://dx.doi.org/10.1007/978-3-319-40667-1_2
http://dx.doi.org/10.1007/978-3-319-40667-1_2
http://dx.doi.org/10.1007/978-3-319-40667-1_3
http://dx.doi.org/10.1007/978-3-319-40667-1_3
http://dx.doi.org/10.1007/978-3-319-40667-1_4
http://dx.doi.org/10.1007/978-3-319-40667-1_4
http://dx.doi.org/10.1007/978-3-319-40667-1_5
http://dx.doi.org/10.1007/978-3-319-40667-1_6
http://dx.doi.org/10.1007/978-3-319-40667-1_7
http://dx.doi.org/10.1007/978-3-319-40667-1_7
http://dx.doi.org/10.1007/978-3-319-40667-1_8
http://dx.doi.org/10.1007/978-3-319-40667-1_8

Evasion

Probfuscation: An Obfuscation Approach Using Probabilistic
Control Flows. 165

Andre Pawlowski, Moritz Contag, and Thorsten Holz

RAMBO: Run-Time Packer Analysis with Multiple Branch Observation 186
Xabier Ugarte-Pedrero, Davide Balzarotti, Igor Santos,
and Pablo G. Bringas

Detecting Hardware-Assisted Virtualization . 207
Michael Brengel, Michael Backes, and Christian Rossow

Web Security

Financial Lower Bounds of Online Advertising Abuse: A Four Year Case
Study of the TDSS/TDL4 Botnet . 231

Yizheng Chen, Panagiotis Kintis, Manos Antonakakis, Yacin Nadji,
David Dagon, Wenke Lee, and Michael Farrell

Google Dorks: Analysis, Creation, and New Defenses 255
Flavio Toffalini, Maurizio Abbà, Damiano Carra, and Davide Balzarotti

Data Leaks

Flush+Flush: A Fast and Stealthy Cache Attack . 279
Daniel Gruss, Clémentine Maurice, Klaus Wagner, and Stefan Mangard

Rowhammer.js: A Remote Software-Induced Fault Attack in JavaScript. 300
Daniel Gruss, Clémentine Maurice, and Stefan Mangard

Detile: Fine-Grained Information Leak Detection in Script Engines 322
Robert Gawlik, Philipp Koppe, Benjamin Kollenda, Andre Pawlowski,
Behrad Garmany, and Thorsten Holz

Understanding the Privacy Implications of ECS: (Extended Abstract) 343
Panagiotis Kintis, Yacin Nadji, David Dagon, Michael Farrell,
and Manos Antonakakis

Authentication

Analysing the Security of Google’s Implementation of OpenID Connect 357
Wanpeng Li and Chris J. Mitchell

Leveraging Sensor Fingerprinting for Mobile Device Authentication 377
Thomas Hupperich, Henry Hosseini, and Thorsten Holz

XII Contents

http://dx.doi.org/10.1007/978-3-319-40667-1_9
http://dx.doi.org/10.1007/978-3-319-40667-1_9
http://dx.doi.org/10.1007/978-3-319-40667-1_10
http://dx.doi.org/10.1007/978-3-319-40667-1_11
http://dx.doi.org/10.1007/978-3-319-40667-1_12
http://dx.doi.org/10.1007/978-3-319-40667-1_12
http://dx.doi.org/10.1007/978-3-319-40667-1_13
http://dx.doi.org/10.1007/978-3-319-40667-1_14
http://dx.doi.org/10.1007/978-3-319-40667-1_15
http://dx.doi.org/10.1007/978-3-319-40667-1_16
http://dx.doi.org/10.1007/978-3-319-40667-1_17
http://dx.doi.org/10.1007/978-3-319-40667-1_18
http://dx.doi.org/10.1007/978-3-319-40667-1_19

Malware Classification

MtNet: A Multi-task Neural Network for Dynamic Malware Classification. . . 399
Wenyi Huang and Jack W. Stokes

Adaptive Semantics-Aware Malware Classification 419
Bojan Kolosnjaji, Apostolis Zarras, Tamas Lengyel, George Webster,
and Claudia Eckert

Author Index . 441

Contents XIII

http://dx.doi.org/10.1007/978-3-319-40667-1_20
http://dx.doi.org/10.1007/978-3-319-40667-1_21

Attacks

Subverting Operating System Properties
Through Evolutionary DKOM Attacks

Mariano Graziano1,3(B), Lorenzo Flore2, Andrea Lanzi2,
and Davide Balzarotti1

1 Eurecom, Biot, France
magrazia@cisco.com

2 Università degli Studi di Milano, Milan, Italy
3 Cisco Systems, Inc., San Jose, CA, USA

Abstract. Modern rootkits have moved their focus on the exploitation
of dynamic memory structures, which allows them to tamper with the
behavior of the system without modifying or injecting any additional
code.

In this paper we discuss a new class of Direct Kernel Object Manipula-
tion (DKOM) attacks that we call Evolutionary DKOM (E-DKOM). The
goal of this attack is to alter the way some data structures “evolve” over
time. As case study, we designed and implemented an instance of Evolu-
tionary DKOM attack that targets the OS scheduler for both userspace
programs and kernel threads. Moreover, we discuss the implementation
of a hypervisor-based data protection system that mimics the behavior
of an OS component (in our case the scheduling system) and detect any
unauthorized modification. We finally discuss the challenges related to
the design of a general detection system for this class of attacks.

1 Introduction

Rootkits are a particular type of malicious software designed to maintain a
hidden access to a compromised machine by targeting the running kernel. To
mitigate this severe threat, several defense techniques for code protection and
attestation have been proposed in the literature [27,37,39,46]. These mechanisms
try to protect the applications and the kernel code against any illicit modification
of its instructions. This also prevents hooking techniques that attempt to divert
the control flow to a routine controlled by the attacker.

However, while the code of the kernel is easy to protect, its dynamic data
structures often remain outside the boundaries of traditional defenses. Left
unprotected, they quickly became one of the main targets of modern rootkits,
that manipulates their values to tamper with the behavior of the system with-
out the need to modify the existing code. Even though these attacks are simple
to understand and relatively easy to perform, protecting the dynamic memory
structures of an operating system is a very difficult task. For instance, the classic
example of Direct Kernel Object Manipulation (or DKOM) attack consists of
hiding a running process by simply removing its corresponding element from the
c© Springer International Publishing Switzerland 2016
J. Caballero et al. (Eds.): DIMVA 2016, LNCS 9721, pp. 3–24, 2016.
DOI: 10.1007/978-3-319-40667-1 1

4 M. Graziano et al.

processes list (e.g., the EPROCESS structure in Microsoft Windows). Detecting
DKOM attacks often rely on the assumption that even though some information
can be modified, the original value can still be present in other OS context. For
example, even if an element is deleted from the EPROCESS linked-list, in order
to be executed the process still needs to be present in the scheduling queue.
Consequently, a common technique to detect DKOM attacks consists in cross-
checking different sources of information to verify if their values are consistent.
For instance, this is the approach adopted by the psxview Volatility plugin [45]
to detect hidden processes. Researchers also proposed more sophisticated mon-
itoring techniques that maintain a reference model of the running system to
compare with the actual data structures. For example, Rhee et al. [36] proposed
to use an allocation driven mapping to identify dynamic kernel objects by inter-
cepting their allocations/deallocation operations, and use this information to
maintain a precise model of the running kernel. This approach also included a
hidden kernel object detector that uses this un-tampered view of kernel memory
to detect DKOM data hiding attacks.

Despite the recent efforts in detecting DKOM attacks, all the proposed tech-
niques are based on the assumption that during an attack there is always some-
thing anomalous in the state of the kernel dynamic data structures, typically
in the form of a missing or modified element. However, a closer look at DKOM
techniques reveals that there are two different ways to manipulate data to influ-
ence the behavior of the system. More precisely, from an attacker point of view,
we can identify a discrete attack that only tampers with a dynamic structure at
an isolated point in time, and an evolutionary attack that works by continuously
tampering with the internal state of the system. In the first case, the objective
of the attack is reached by changing some information stored in a data struc-
ture, by adding or removing elements, or by changing the pointer relationship
between data structures. As we described above, this may leave the system in an
inconsistent state, which can often be detected. In the second case, presented in
this paper, the goal of the attack is instead obtained by influencing the behavior
of the system by continuously modifying its memory and thus by affecting the
evolution of its dynamic data structures.

Due to the nature of this attack, it is possible that every single snapshot of
the system is indistinguishable from a clean state. Therefore, the attack only
manifests itself in an anomalous evolution in time of a given property of the
operating system. While this may seem just a minor variation of the original
DKOM technique, in this paper we show that it has very severe consequences
from a detection point of view. In fact, the only way to detect an evolutionary
attack is to implement a detector that can verify if a certain behavioral property
of the kernel is satisfied over time. This requires a very complex tool that con-
tinuously monitor the system, and replicates (or emulates) part of its behavior
inside the detector.

The goal of this paper is twofold. First, we present the design and implemen-
tation of an Evolutionary DKOM (E-DKOM) attack, and show that it cannot
be detected by any of the existing techniques. As a case study, we describe a

Subverting Operating System Properties 5

novel attack against the OS scheduling algorithm. This attack can be used to
silently block the execution of any critical security application, both in user-
and kernel-space. The second contribution of the paper is to discuss the possible
countermeasures. It is important to note that our goal is to detect the tampering
of the operating system, and not the code of the rootkit itself.

At the moment, the only generic defense solution would be to use a reference
monitor to trace all memory operations and enforce that only the authorized
code can modify a given critical structure. Unfortunately, this technique has two
big limitations. First, it is likely to introduce a large computational overhead.
Second, any memory access needs to be properly identified and attributed to the
piece of code responsible for that operation. Unfortunately, a precise attribution
in a compromised system is still an open problem – known as “confused deputy
attack” [16].

As an alternative, we discuss a custom defense technique based on a monitor
(implemented as a thin hypervisor) that can duplicate part of the behavior of
the OS that needs to be protected (the scheduler’s properties in our case), and
guarantee that this behavior is respected by the running system. Unfortunately,
this is not a general solution, as it would require a different monitor for every
property that needs to be enforced.

The rest of the paper is organized as follows. In Sects. 2 and 3 we describe
our attack and its own threat model, discuss its properties, and emphasize the
differences with respect to traditional DKOM attacks. We then focus on a prac-
tical example in Sect. 4, in which we present the details of an attack against
the Linux operating system scheduler. Section 5 shows the results of our attack
tests, and Sect. 6 introduces our prototype hypervisor-based defense mechanism.
Finally, Sect. 7 discusses the generality of the attack, its limitations and future
work, Sect. 8 describes related work and Sect. 9 concludes the paper.

2 Evolutionary DKOM Attacks

There is a subtle difference between a traditional DKOM attack and its evolu-
tionary counterpart that we present in this paper: in the evolutionary attack,
the goal of the attacker is to affect the evolution of a data structure in memory,
and not just its values. For instance, the two classic DKOM examples of privilege
escalation and process hiding require the attacker to directly modify a number
of kernel data structures to achieve the desired state (respectively remove an
element from a linked list, or modify the UID of a process). In the more sophis-
ticated version of DKOM attack we present in this paper, the “desired state” is
replaced by a “desired property”. More in detail, the attack we present in the
next sections affects the normal evolution of the red-black tree containing vital
information for the scheduling algorithm. On the other hand, the traditional
DKOM attacks change individual fields in data structures of interest, like the
task struct to unlink a task. The latter operation is discrete and does not affect
the evolution of the task struct list in any way.

This difference has a number of important consequences. First of all, while a
traditional DKOM can be performed in one single shot, an evolutionary attack

6 M. Graziano et al.

needs to continuously modify the kernel memory to maintain the target condi-
tion. Moreover, when the attacker stops his manipulation, the system naturally
resumes its original operation. This fundamental difference seems to be in favor
of traditional DKOMs, since a single memory change should be harder to detect
that a continuous polling process. However, in this paper we show that in prac-
tice the result is the opposite of what suggested by common sense. In fact, from
a defense point of view, it is easier to detect an altered state than to detect an
altered property. To detect the latter, a monitor needs to record the evolution of
the affected data structures over time, and also needs to replicate the logic of
the kernel property that it wants to enforce.

While it is possible to implement such a detector (as we discuss in Sect. 6
for our attack), this needs to be necessarily customized for each property. As a
result, it is difficult to propose a general solution for evolutionary attacks.

3 Threat Model

In this paper we assume a powerful attacker who is able to execute malicious
code both at the kernel and at the user level, and who can modify any critical ker-
nel data structures. Kernel-level access can be achieved via kernel-level exploits
or social engineering the user to install a malicious kernel module. The attacker
can also use sophisticated ROP rootkit techniques [20,44] or other stealthy tech-
niques [41,42] in order to overcome existing code protection mechanisms. The
attacker has the ability to make its malicious code undetected to any current
state of the art anti-malware software.

However, since our defense solution is based on a custom hypervisor, we
include both the hypervisor and the security VM as part of the trusted com-
puting base (TCB). To focus only on the detection of E-DKOM attacks without
replicating previous works, we also assume that the core kernel code of the
user VM is protected and cannot be subverted by any malicious code. This can
be achieved by making the kernel’s code pages read-only [18,38] or by using
others code protection systems proposed in the past [10,27,39]. Existing pro-
tection techniques also ensure that the attacker cannot tamper or hook code of
the OS, and cannot shutdown processes or kernel threads without the system
notice [23,27].

To summarize, our threat model covers an attacker that can run arbitrary
code in the OS kernel and tamper with dynamic data structures, but that cannot
modify the existing code or attack the hypervisor.

4 Subverting the Scheduler

In this section we first introduce the Completely Fair Scheduler (CFS) algorithm
adopted by Linux-based OS. We then describe the principles of our attack to
subvert the scheduling algorithm and present two different scenarios where our
attack can be applied.

Subverting Operating System Properties 7

4.1 Goal

The goal of the attacker is to silently and temporarily stop the execution of a
process without leaving direct evidences. This means the target process is no
more able to run on the CPU but it is still visible and listed as a normal running
application.

In a post-exploitation phase, this feature is a really valuable asset. Miscre-
ants may disable security monitors and detectors so that system administrators
or final victims do not notice any suspicious activity. A perfect target in this
scenario is either an antivirus software or a network/host intrusion detection
system. The desired result is to reach this goal without raising any warning or
visible alarms. This can be achieved in several ways in a modern operating sys-
tem like Linux or Windows. The first idea that comes to mind is to kill the target
application. However, this technique is easily detectable by the victim because
the process (or processes) is no more listed in the list of the running appli-
cations. Several security applications have a watchdog specifically designed to
detect these circumstances to restart the application. Another simple approach
would be to suspend the process or turn it into a zombie. Unfortunately also this
technique is not stealthy, and in a post-exploitation phase this cannot be toler-
ated. For example, it would be fairly easy to spot the anomaly by inspecting the
output of a program like ps. Finally, another possible option could be to directly
modify the code of the target application, for instance to inject an infinite loop or
an attempt to acquire a lock on some unavailable resource. While this would be
definitely more difficult to detect, security-critical applications often have kernel
components to protect the integrity of their code.

Therefore, in order to reach our objective in a completely transparent way,
a good target for the attacker would be to tamper with the scheduler imple-
mentation in the OS. This is a complex task and the implementation details
may vary between different systems. For instance, a desktop machine has to be
more reactive than a server. Indeed, it is clear the scheduling load may differ
in a server spawning several tasks for all the incoming connections compared
to a desktop machine used by an average secretary. All these differences affect
the scheduler implementation. To perform the attack on the scheduler imple-
mentation the rootkit’s author has to study in detail the inner mechanisms of
the targeted component. We implemented this idea in a proof of concept attack
against the current implementation of the Linux scheduler on a Debian “jessie”
GNU/Linux distribution for both x86-32 and x86-64 systems. It is worth not-
ing that our scheduler attack is able to stop the defensive mechanisms for an
arbitrary amount of time. For example during an attack the intrusion detection
system can be disabled, and then enabled again when the attack is terminated.
We call such attack evolutionary transient attacks.

4.2 An Overview of the CFS Algorithm

As the name says, the main goal of the CFS algorithm used by the Linux kernel
is to maintain a fair execution by balancing the processor time assigned to the

8 M. Graziano et al.

different tasks of the system. The objective is to prevent one or more tasks from
not receiving enough CPU time compared with the others. For this purpose, the
CFS algorithm maintains the total amount of time assigned so far to a given task
in a field called the virtual runtime. The smaller a task virtual runtime is in terms
of execution, the higher the probability is to be the next being scheduled on the
system. The CFS also includes the concept of sleeper fairness. This concept is
used for the tasks that are not at the moment ready to run (e.g., those waiting
for I/O) and it ensures that such tasks will eventually receive a comparable
share of the processor when they are ready to execute. The CFS algorithm is
implemented using a time-ordered red-black tree. A red-black tree is a tree with
some interesting properties. First of all, it is self-balancing, which means that no
path in the tree will ever be more than twice as long as the others. Second, any
operation on the tree occurs in O(logn) time – where n is the number of nodes
in the tree.

4.3 CFS Internals

All tasks in Linux are represented by a memory structure called task struct
that contains all the task information. In particular, it includes information
about the task’s current state, the task stack, the process flags, the priority
(both static and dynamic), and other additional fields defined by the Linux OS
kernel in the sched.h file. It is important to note that since not all the tasks
are runnable, the CFS scheduling fields are not included in the task struct.
Instead, the Linux OS defined a new memory structures called sched entity to
track all the scheduling information.

struct task_struct {
volatile long state;
void *stack;
unsigned int flags;
int prio , static_prio , normal_prio;
const struct sched_class *sched_class;
struct sched_entity se;
...

}

struct sched_entity {
struct load_weight load;
struct rb_node run_node;
struct list_head group_node;
...

}

struct rb_node{
unsigned long rb_parent_color;
struct rb_node *rb_right;
struct rb_node *rb_left;

};

struct cfs_rq {
...
struct rb_root tasks_timeline;
...

};

Fig. 1. CFS black tree structures

The relationships between the various memory structures and the scheduling
algorithm are summarized in Fig. 1. At the root of the tree we have the rb root

Subverting Operating System Properties 9

element from the cfs rq structure. Leaves in a red-black tree do not have any
useful information; instead the internal nodes represent one or more tasks that
can be executed. Each node in the red-black tree is represented by a rb node.
Such a node only contains the reference to the child and the color of the par-
ent. The rb node is defined into the sched entity structure, which includes the
rb node reference, the load weight, and some data statistics. The most impor-
tant field inside the sched entity memory structures is the vruntime, which
represents the amount of time the task has been running on the system. Such
field is also used as the index for the red-black tree. The task struct is at the
top, and is responsible for describing the task and including the sched entity
structure.

The scheduling algorithm is quite simple and it is implemented inside the
function schedule(). The first action of the function is to preempt the cur-
rently running task. Since for each task the CFS only knows the virtual running
time, the algorithm does not have a real notion of time slices for preemption,
and therefore the preemption time is variable. After the scheduler interrupts
the current running task, the task is put back into the red-black tree by call-
ing the put prev task function. After that the scheduling function invokes the
pick next task function that is in charge of selecting the next task to exe-
cute. This function simply takes the left-most task from the red-black tree and
returns the associated sched entity. By using the sched entity and invok-
ing the task of() function the system returns the reference to the relative
task struct. At the end of this procedure the scheduler passes the task to
the processor to execute it.

4.4 Scheduler E-DKOM Attack

In this Section we describe how an attacker can target the OS scheduler to
suspend the execution of one or more of the processes running in a Linux system.
Such an attack can be used in order to stop security applications such as antivirus
software or Network Intrusion Detection System. Consequently, by using this
technique the attacker is able to elude the system protection mechanisms without
tampering with any OS code or modifying the control-flow of the running system.

Attack Principles. From an architectural point of view, the attack requires a
kernel module that executes code at regular time intervals (e.g., by registering a
timer). The module walks the process list and identifies the process it wants to
stop. It then collects the process descriptor and uses it to locate the correspond-
ing node in the CFS red-black tree. Afterward, the attack alters the scheduling
list by changing the virtual runtime’s value of the target process. In this way the
attacker forces the scheduling algorithm to push the process at the end of the
list and postpone its execution. By using this technique the attacker can stop
any processes, thread, and kernel thread that are running on the system.

10 M. Graziano et al.

Implementation Details. Our prototype first initializes a global kernel timer
registering a call-back function to be executed at regular intervals. Then,
the malicious module spawns two CPU-bound kernel threads to populate the
scheduling list in case the queue is empty. This can be useful in cases when most
of the processes are waiting for I/O operations, and the target process is the only
one that requires to be executed. It is important to note that the kernel threads
represent a normal task for the scheduling system, consequently the scheduler
puts them in the same scheduling queue with the others user space processes
and threads. Two is the minimum number to assure at least one predecessor and
one successor of the target process.

After these two initial operations, the attack algorithm identifies the refer-
ence of the target process into the CFS red-black tree and queue it at the end
of the scheduling list. This can be done by walking the task struct looking for
the element representing the target process. From there, the code can extract
the sched entity struct and use the struct rb node field to identify the corre-
sponding element in the CFS red-black tree. In Fig. 1 we show the link among the
memory structures described so far. At this point the attack algorithm locates
the rightmost element in the tree, which correspond to the last task that will
be scheduled for execution. Afterwards the kernel module changes the virtual
runtime of the target process to a value higher than the value of the rightmost
element. After this change, the scheduling algorithm, following the CFS policies,
will move the target process at the end of the scheduling list. This operation is
repeated every time the global kernel timer expires.

5 Attack Evaluation

In order to evaluate the real impact of our attack, we used it to stop two common
security mechanism: a popular IDS, and the Inotify notification mechanisms [28]
that is used by many programs to identify any modification on the files that
occurs in the system. For instance, Inotify is used by several security applications,
including Tripwire [1,24] and by most of the antivirus systems.

Case Study I: Blocking an IDS. In this experiment, a possible attack sce-
nario is represented by a Linux router machine used to protect an intranet net-
work. The router machine is equipped with an IDS and a system that verifies the
code integrity of the kernel and user-space applications [27]. By using such defen-
sive mechanisms, the attacker cannot modify any code running on the router and
she cannot shutdown any user-space applications without the system noticing
it. For our test we set up the IDS with a simple signature to detect a remote
buffer overflow attack by looking at the presence of the shellcode pattern in the
network packets.

Our experiment is divided in two parts. We first launched a simple buffer
overflow attack over the network protected by the IDS, and we verified that the
alert was correctly raised.

Subverting Operating System Properties 11

In the second test, we simulated that an attacker was able to install our
rootkit into the router, using the IDS application as a target. While the IDS
application was stopped by our rootkit, we run the network attack and double-
checked that no alerts were generated. Meanwhile, Linux was reporting the tar-
geted process as a running process. It is important to note that the kernel uses
a circular memory buffer to store the network packets copied from the network
card into the OS system before delivering them to the right application. There-
fore, before resuming the execution of the IDS the attacker needs to generate
benign traffic to force the queue to rotate and overwrite the network packets
related to the attack.

Case Study II: Blocking Inotify. Inotify is an inode monitoring system
introduced in Linux 2.6.13. This API provides mechanisms to monitor filesystem
events involving both files or entire directories. Most of the security applications,
such as integrity checker (Tripwire) or antivirus software use such mechanism
in order to detect any modification of the filesystem. For example, antivirus
detectors re-scan any modified file in order to check whether a malicious infection
occurred.

Inotify provides its own set of system calls: inotify init() to create a new
monitoring instance with its own file descriptor, inotify add watch() to add
a file to the monitored group, and inotify rm watch() to remove the monitor.
After the registration of the files and directories that the application wants to
monitor, the code needs to invoke the poll() API to be notified when the regis-
tered events happen. It is important to note that the inotify events are reported
through a user-space device created as a communication channel between the
user-space application and the kernel. This device is associated to a kernel
buffer used to collect and temporarily store the filesystem events. By using the
read() function, the application can retrieve information about which event
have occurred.

For our evaluation we created a user space application that monitors a chosen
group of files on our system. The goal of the attack is twofold. First, the attacker
should be able to modify a file without the inotify-based application noticing the
change. Second, the attack needs also to guarantee that after the attack phase,
the inotify events should resume and correctly reach the application as if nothing
has happened.

To this end our evaluation is composed by three steps. In the first step we
run the inotify-based application and use our rootkit to temporarily stop its
execution. In the second step, the attacker modifies one of the monitored file,
and then forces a number of events (at least 1024*16) on other files with the
goal to saturate the kernel buffer associated to the device. This way the event
associated to the target file is overwritten by the new benign modifications.
Finally, the rootkit wakes up the inotify application, and we verified that it did
not receive any event about the attacker modification.

This can be quite severe in a number of scenarios. For instance, the Android
system uses a similar inotify mechanism that is mainly adopted to build security

12 M. Graziano et al.

monitors and detectors [12]. Our attack can temporarily disable them without
leaving any trace in the system.

Attack Discussion: One may argue that a malicious kernel module could be
detected by a simple detector that is able to find out in memory a footprint of the
malicious code or detect any suspicious activities by monitoring the frequency of
the interrupt timer issued at the kernel level (e.g., timing traces). Even if those
techniques could be effective against our attack, the kernel module can hide its
own timing activities and code in several sophisticated ways.

First of all it can hide the presence of the code just diverting the control flow
of a benign timer kernel module by using dynamic hooking that targets transient
control data as described in [43] and then perform a ROP attack for changing
the time scheduling activity. By using these attack techniques the detector can-
not see any suspicious kernel modules among the list of the registered kernel
modules timer and the malicious code is reduced to a few ROP gadgets result-
ing in minimal memory footprint. A more resilient approach is called Address
Translation Redirection Attack (ATRA) and is presented in [21]. By using such a
technique the attacker can relocate important kernel objects (e.g., malicious ker-
nel module) and makes the entire system refer to the copy by attacking the page
table data structures of the OS kernel. Finally, as shown in [25], our malicious
kernel module could be completely implemented in GPU space. A GPU-assisted
malware binary contains code destined to run on different processors. When
executing it, the malware loads the device-specific code on the GPU, allocates a
memory area accessible by both the CPU and the GPU, initializes it with any
shared data, and schedules the execution of the GPU code. Depending on the
design, the flow of control can either switch back and forth between the CPU
and the GPU, or separate tasks can run in parallel on both processors.

Other defense solutions to this attack could rely on a remote code attestation
mechanism [7], a method to remotely check whether some security proprieties
of the running application are preserved. In this case it is important to note
that the attacker, as we can show in the previous section, can stop the defensive
mechanism to be scheduled for the duration of the attack, and then restored
it. By using code attestation method or any other watchdog mechanisms that
check the status of the process (e.g., stack, registers, etc.) it is difficult to set
up the right time to check since we do not know when the attack will happen.
Remote attestation could be set to run constantly for the entire life of the process.
Deploying this solution on real-time systems could be prohibitive in terms of
performance overhead, and it could be difficult to use to monitor more than one
precess at a time.

6 Mitigation

In this section we describe the design and implementation of a detection system
that can be used to protect against the scheduler attack presented in Sect. 4. We
start by presenting the idea behind our solution, we then describe our system

Subverting Operating System Properties 13

architecture, and we finally evaluate our approach against some scheduling attack
samples.

6.1 Defense Mechanism Principles

Our approach for the detection of scheduling attacks is to observe and mimic the
behavior of the OS scheduler by intercepting events that occur in the OS context.
More in details, in case of the scheduling subsystem, the idea is to monitor the
execution time of all processes and check if the fairness property is preserved. In
order to obtain the real execution time for each process/task we need to intercept
some fundamental operations about the process activities such as the process
creation and termination, the process execution, and the process I/O waiting.
By using those operations our system can carefully estimate the execution time
for each process and, by mimicking the behavior of a real scheduler, detect
whether any anomaly (i.e., a process starvation) occurs in the system.

6.2 Defense Framework Architecture

Our defense mechanism is implemented as a custom hypervisor. This is required
in order to obtain a resilient and robust reference monitor in presence of kernel-
level attacks. Our anomaly detection mechanism is based on the assumption
that the system should give the same amount of execution time to each process
(fairness scheduling property). Consequently, if one process that is not blocked
in I/O operations is not scheduled at least once for each quantum of time, the
system raises an alarm. From an architectural point of view, our system consists
of two main software components: (1) the Task Tracer and (2) the Periodic
Monitor. Both components work together to simulate the fairness property and
to reveal any anomaly on the system.

The main goal of the Task Tracer is to replicate the tasks information at the
hypervisor level, storing them in a list of task struct data structures. To this
end, the Task Tracer needs to intercept a number of process events. In particular
it needs to detect four main events:

– Process Creation: This event happens when the create process system call
is invoked.

– Process Exit: This event occurs when an exit system call or any process
error exception is invoked by the system.

– Process Execution: This event occurs when a process is assigned to a given
processor for its execution.

– Queue Insertion and Removing: These events happen when a task is
inserted or removed from the scheduling queue (CFS red-black tree).

When a new process is created, the Task Tracer component allocates a new
task struct element to keep track of its information: name, process description
etc. Moreover, for each new process, the system adds a life timestamp field
named last seen. This value represents the starting time of the process life,

14 M. Graziano et al.

that will later be used to check the time spent by the process waiting on the
scheduling queue. The queue insertion and removing operations are at the core
of our detection mechanism. In fact they allow the system to set the starting
and ending time for each process. The starting time begins when the process is
inserted into the scheduling queue. In particular when a process will be inserted
in the scheduling queue (CFS red-black tree), the hypervisor detects it and it sets
the timestamp field for this particular task. In case the process is not scheduled
for execution after a certain time (defined by a configurable scheduling threshold)
the system reports an anomaly. The effect of the remove operation from the
scheduling queue is to reset the timer associated to a particular process. It is
important to note that intercepting the insert and remove operations is sufficient
to monitor the execution time for all the processes of the system, since one of the
main assumption of the Linux scheduling algorithm is that every process needs
to be added to the scheduling list before it can be executed.

The goal of the other software component, the Periodic Monitor, is to peri-
odically check the status of the execution time for each process and update
their timestamps (last seen fields). More in details, every time the timeout
occurs, the Periodic Monitor goes through all the elements of the task list cre-
ated by the Task Tracer software component and checks among all the monitored
processes the timestamp field reported in the task struct element. If the differ-
ence between this timestamp field and the current timestamp is greater than the
scheduling threshold the system reports an anomaly, otherwise it just update its
value with the new timestamp.

6.3 Implementation Details

Our current prototype is implemented as an extension of HyperDbg, an open-
source hardware-assisted hypervisor framework [11]. Typically, by monitoring
low-level interactions between the guest operating system and the memory man-
agement structures on which the OS depends, a hypervisor can infer when a guest
operating system creates processes, destroys them, or triggers a context-switch
between them. These techniques can be performed without any explicit infor-
mation about the guest operating system vendor, version, or implementation
details [23]. Unfortunately, our detector needs some information that cannot
be inferred only by observing the interactions between the guest OS and the
memory management structures. For example, insert and remove operations on
the scheduling queue or the creation and destruction of userspace and kernel
threads are fine-grained operations that cannot be identified by observing from
outside the OS. Therefore, our framework needs to rely on a hooking mecha-
nism that is specific for a particular operating system (Linux in our current
prototype). In order to intercept each task creation event, we inserted a hook
on the wake up new task function. Such function is invoked the first time a
new task is inserted into the scheduling queue after the system invokes do fork.
This is used to create a process on the system. We chose this function since
the argument of the wake up new task function is the task struct element
that already contains all the process information that will be stored into the

Subverting Operating System Properties 15

hypervisor memory. The system also needs to intercept a process or task ter-
mination for two reasons: (1) when a process explicitly call the exit function
and (2) when it receives a signal or exception for its own termination. In both
cases the function that is invoked is the do exit. When such a function is
called, by using the kernel macro current the system obtains the pointer to the
task struct related to the process to terminate. Consequently our hypervisor
puts an hook on the do exit function to intercept this information. Finally the
system needs to intercept the queue operations: insert and remove. In particular
when a process is inserted in the scheduler running queue (CFS black-red tree)
a function called enqueque task is invoked. This function is in charge for insert-
ing the task struct structures inside the CFS tree, and any information about
the inserted process can be retrieved starting from ecx register. For removing
elements from the scheduler queue, the operating system provides a function
called dequeue task. This function is called when the scheduler removes a task
from the CFS tree and the reference to the task in this case is stored into edx
register.

To implement the Periodic Monitor component inside the hypervisor we
extended the core of HyperDbg. In particular, we created a time simulator inside
the hypervisor by using the Timestamp Counter TSC register provided by the
x86 architecture. This register counts the clock cycle and it is independent from
the processor frequency. In particular, the hypervisor core reads the value of
TSC each time a VMexit occurs in the system. If the elapsed time reach the
timeout set by the Periodic Monitor, the hypervisor invokes the periodic monitor
component. It is important to note that the VMexit are very frequent in the
system, consequently our timer simulator does not suffer from any considerable
delay.

6.4 Evaluation

In this section we describe the experiments that we performed in order to test
our defensive mechanism. The main goal of the experiments is to test the efficacy
and the efficiency of the detection system.

Overhead. In the first experiment we measure the overhead produced by our
system. To this end we performed two main tests. In the first test we measured
the execution time with our detection framework enabled, while the user per-
forms a number of normal operations – like browsing the web (e.g., Facebook,
Google, etc.), reading PDF documents, and editing files for a total of 60 min. To
compute the overhead we use the TSC timer provided inside the hypervisor. We
compute the ratio between the time spent inside the hypervisor with respect to
the time spent for the OS execution. We report the result in Fig. 2. As we can see
from the Figure, the gray area represents the window time where the detector
is active. The line in the graph shows instead the ratio between the execution
time spent into the hypervisor and the execution time spent into the OS. We
can observe that overhead never goes above 5 %.

16 M. Graziano et al.

Fig. 2. Detection system overhead dur-
ing normal operation

Fig. 3. Detection system overhead
under an artificial stress

Since during the normal operation the system overhead is low, we performed
a second test where we stress the allocation/dis-allocation of the processes in
order to measure the worst case scenario. For this test we used the stress suite
to simulate a huge allocation/deallocation of the processes on a Linux system.
The overhead we observed in this case was at most 9 %. The test was run for
80 min and the final result is reported in Fig. 3. Again, it is important to note
the experiments performed in these tests produced a very intensive process allo-
cation/deallocation and therefore it is not representative of the behavior during
the normal process activities of the system.

Detection Accuracy. In order to measure the detection accuracy of our system
we tested the system while running some scheduler attacks. Since we have never
observed such attacks in the wild, we used our artificial dataset to test the
application. More in details, we again performed the experimental evaluation
with a popular IDS and with Inotify (as explained in Sect. 4) but this time with
our defensive mechanism enabled. In this test, our system was able to detect both
attacks and correctly recognize the anomalous process that was under attack.
We also performed an artificial experiment on kernel threads. In this case we
first created some artificial kernel threads and we then blocked their execution
by using our attack. Also in this experiment, our system was able to detect all
the attacks performed against the OS kernel.

6.5 False Positives and False Negatives

It is important to note that both false positives and false negatives can occur
depending on the value of the detection threshold set by the system. In partic-
ular, if such a threshold is too low, and therefore close to the real waiting time
for scheduled tasks, the system can raise false alarms. On the other hand, if
the threshold is too large, the system can miss short attacks that fits into the
time window. Therefore, the threshold should be tuned on the values of sched-
uler waiting times observed on the monitored OS. After a short training period,

Subverting Operating System Properties 17

we set the threshold to 40ms. We then run our defensive system on our work
computers for one week without observing any false alarm.

7 Discussion

In this section we discuss the generality of the proposed attack, the limitation
of the defense solutions and possible future work.

7.1 Generality

In this paper we presented a new class of attacks. For the sake of simplicity we
only described a single instance of E-DKOMs. In particular we chose to inves-
tigate the scheduler attack because it perfectly summarizes all the important
key points of the evolutionary DKOMs attacks and it was relatively easy to
implement.

The scheduler subsystem is a good candidate but it is not the only possible
target. In fact, the operating system offers other interesting functional compo-
nents to investigate such as the memory management, the network subsystem,
and the I/O subsystem. A requirement for E-DKOM attacks is to tamper with
dynamic data structures that contain fundamental information for controlling
the OS behavior. The targeted data structure needs to contain information that
defines an OS property along with an OS specific behavior. In the scheduler
attack example the OS property to subvert was the execution fairness, every
process defined into the run-queue structure need to be scheduled for running
after a certain time window. The goal of the attacker was to create starvation for
a select set of processes (e.g. AVs, IDSs). Another possible target for E-DKOM
attacks can be the virtual memory subsystem. In this case the property is related
to the memory pages replacement algorithm and the way the algorithm chooses
the page to swap to disk (e.g., LRU or FIFO). The attacker can alter this prop-
erty by changing the memory structure that contains the numbers of accesses
received by the page. By altering this number an attacker can decide which page
should be stored on disk and also on which disk location (e.g., filesystem inode),
creating a potential data leakage among the applications.

We believe that the OS contains a significant number of sensitive memory
structures that can be tampered by an attacker to consequently tamper a certain
OS behavior without being detected. Automatically discovering such memory
structures along with the analysis of attack impact will be the task of our future
research.

7.2 Limitations

The defensive solution described in the previous sections is based on a custom
hypervisor that plays the role of an external agent able to monitor the execu-
tion of the guest operating system. Unfortunately, collecting information from
outside the OS is not a trivial task, and requires to overcome the well-known

18 M. Graziano et al.

problem of the semantic gap [6,9,22]. The Intel hardware support for virtual-
ization simplifies only in part this issue, allowing the hypervisor to catch only
low level events (e.g., writing attempts to control registers). Unfortunately, all
the abstractions introduced by the operating system are lost and need to be
reconstructed by the hypervisor code.

In the literature, several solutions have been proposed to detect hidden
processes from a virtual machine monitor. These techniques typically intercept
all the writing attempts to the CR3 register by leveraging the Intel hardware
support. This control register contains the base address of the page directory, a
fundamental data structure to translate virtual to physical addresses. At every
context-switch, the OS loads the right value of the CR3 register to access the
process’s virtual address space. In this way, systems like Antfarm [23] are able
to discover all the running processes by observing this low level event. Other sys-
tems, like Patagonix [27], achieve the same goal by setting the process’s pages
as non-executable (using the NX flag). In this way, every execution attempt is
intercepted, allowing the hypervisor to discover all running processes.

Our scheduler attack introduces a new challenge: the hypervisor needs to
identify the processes that are in the scheduled queue but are not executed in
the system. If a process is not executed, then there is no access to its CR3, nor to
its NX pages. In fact, the attack introduced in this paper may stop the process
during its creation, so that the monitoring system would never observe the CR3
associated to the program.

To make the problem worse, the granularity of this instance of E-DKOM is
at the thread level, but the address space is shared among all threads of the
same process – making an approach based on the monitoring of the CR3 regis-
ter too imprecise. For this reason, to implement a successful defense technique,
the hypervisor needs to set breakpoints in the kernel code to extract threads
information and to inspect the state of each tasks, (e.g. if it is in the running or
waiting queue).

Moreover, the hypervisor has to mimic the OS scheduler component to guar-
antee the scheduling property and detect deviations from the expected behavior.
In our example, this requires to follow over time the evolution of the scheduler
data structures, in particular the evolution of the runqueue to spot any anomaly.

For all these reasons, we believe this instance of E-DKOM attack sheds light
on several limitations of current solutions to address the semantic gap. More-
over, since each solution would need to be specifically tailored for the property
tampered by the attack, this example also shows the challenge of developing a
general solution for the detection of E-DKOM attacks.

8 Related Work

Over the years, operating systems have introduced several countermeasures to
hinder the exploitation of userland applications. These protections have signif-
icantly raised the bar for the attackers, making it increasingly difficult to gain
full control of a remote machine. As a consequence, it is now fundamental for

Subverting Operating System Properties 19

criminals to gain a persistent and stealth access on a compromised target imme-
diately after the breach. This is often achieved by installing a rootkit in the OS
kernel. The role of a rootkit is to hide resources in the compromised machine,
and this can be achieved either by using hooking techniques or by tampering
with dynamic kernel data structures.

In the literature, several approaches have been proposed to protect the ker-
nel from the malicious modifications introduced by rootkits. A first set of coun-
termeasures was designed to guarantee the integrity of the kernel, in order to
prevent attackers from modifying its code and introducing hooks [46]. There
are two ways to achieve this objective: i) by introducing a self-defense mech-
anism in the kernel, such as PatchGuard [29] for Windows x86-64 or ii) by
adopting an external monitor, such as a VMM-based system [14,37,38,46] or a
dedicated hardware coprocessor [26,30,32,48]. For instance, SecVisor [38] and
Nickle [37] are two hypervisor solutions that protect the integrity of the ker-
nel code from unintended modifications. Unfortunately, this class of protections
have been bypassed by DKOM attacks [19,31] which target dynamic kernel data
without the need to modify the kernel code.

A more complex and comprehensive defensive solution is to enforce the con-
trol flow integrity (CFI) of the kernel. CFI was initially proposed by Abadi
et al. [2] for userland applications and then extended and ported to the ker-
nel by Petroni et al. [33]. The state-based CFI (SBCFI) proposed by Petroni
is enforced by a hypervisor and periodically scans the kernel memory to detect
deviations from the allowed control flow. SBCFI can detect persistent control
flow changes but fails to prevent DKOM attacks.

To protect against DKOM, it was necessary to introduce new solutions to
enforce the kernel data integrity. The most interesting approaches in this direc-
tion are based on invariants or on data partitioning. The first class can be split
into two subgroups: external systems [3,18,36] and memory analysis [5,8] tech-
niques. External systems are implemented as either a virtual machine moni-
tor [18,36] or by using a separate machine [3]. The rationale behind these defen-
sive techniques is to take an untampered view of the objects running in the
target kernel and then compare this list with the invariants derived by walk-
ing the kernel data structures. Similarly, memory analysis solutions [5,8] lever-
age memory snapshots to isolate kernel objects and then compare with a list
retrieved directly from the live system. Unfortunately, invariants may not exist
for some kernel data structures, thus a different approach has been proposed
around the concept of object partitioning. For instance, Srivastava et al. [40]
proposed Sentry, a hypervisor solution able to divide kernel objects fields in
different memory regions depending on their security impact. Writes on these
sensitive fields are then monitored and a strict access control policy is enforced
to detect if the writer is legitimated. This approach has two main drawbacks:
a large performance overhead and the complexity of the writer’s identification
process.

More formal architectures have been proposed to verify dynamic kernel struc-
tures as proposed by Petroni et al. [34]. These rule-based systems may be effective

20 M. Graziano et al.

to detect advanced threats but they are error prone and depend on the astute-
ness of the rules writer. E-DKOM attacks are able to bypass these protections
given the huge new attack surface exposed by this generic technique.

The solution we propose in this paper belongs to the class of mimic defen-
sive solutions. Researchers have often proposed approaches to isolate a single OS
component and emulate it outside the system to provide a ground truth to the
analyst [15,17]. In our case, a custom hypervisor reproduces the same schedul-
ing algorithm (CFS) in a faithful step by step emulation. The drawback of these
approaches is that they only solve a particular instance of the problem. In fact,
we show how to protect the scheduler but an attacker can still exploit a differ-
ent property of the kernel. Moreover, these defensive solutions are not ideal, as
discussed by Garfinkel [13]. Specifically, the developers have to carefully think
and manage all possible corner cases in order to avoid possible bypasses, making
this process highly prone to errors.

To the best of our knowledge, E-DKOM attacks – as formalized in this paper
– have never been discussed in the literature. The most complete overview of
the DKOM’s problem has been provided by Baliga et al. [4] as well as Rhee
et al. [35]. They proposed a DKOM’s taxonomy and investigated a novel data
kernel attacks and possible POC solutions. Although they mention the huge
attack surface exposed by modern kernels and the failing approach adopted by
current detectors, they did not address our attack. In light of the current state
of the art, it is clear that all the existing defense mechanisms are not able to
detect this new class of attack and new comprehensive solutions are required to
address this new and complex threat.

In our example of E-DKOM attack, we use soft timer interrupt requests
(STIR) in order to perform polling tasks and modify the targeted dynamic mem-
ory structures. Even if the detection of malicious soft timer interrupt has been
addressed in the literature [47], an attacker can use several stealthy techniques
to hide the execution of malicious kernel code. For example, by using Address
Translation Redirection Attacks (ATRA) [21], an attacker can hide memory
pages along with kernel interrupt routines (e.g. code memory page). This would
trick an integrity code checker to analyze the code of a benign timer routine.
Finally, it is worth noting that in our threat model we consider an attacker
equipped with state of the art offensive tools, that are not always detectable by
the current defensive solutions.

9 Conclusion and Future Work

In this paper we discuss a new type of DKOM attack that targets the evolution
of a data structure in memory, with the goal of tampering with a particular
property of the operating system. Since at every single point in time the internal
state of the OS is not anomalous, the detection of this type of attack, which we
call evolutionary kernel object manipulation, requires a completely new approach
as well.

We conducted a number of experiments to show the feasibility of an evolution-
ary attack against the Linux scheduler. Our attack is able to temporarily block

Subverting Operating System Properties 21

any process or kernel thread, without leaving any trace that could be identified
by existing DKOM detection and protection systems. Moving to the defense side,
we then presented the design and implementation of a hypervisor-based detector
that can verify the fairness of the OS scheduler. While our prototype is able to
detect all the attacks with zero false positives, the implementation needs to be
customized on a case-by-case basis, and it also requires the hooking of a number
of internal functions of the operating systems (making the technique harder to
maintain and port to other systems). This shows that evolutionary attacks are
very hard to deal with, and more research is needed to mitigate this threat.

As a future work we are now investigating other possible E-DKOM attacks
that can be executed on some specific kernel subsystems. As we already discussed
in the Generality Section, one example could be related to the virtual memory
subsystem and in particular to the selection of the candidate memory page to
swap. It would also be interesting to work on an automated analysis system
that can autonomously inspect the OS kernel and identify possible candidate
data structures that have an interesting time-evolutionary behavior – and that
therefore could be targeted by future E-DKOM attacks.

References

1. Tripwire. http://www.tripwire.com/
2. Abadi, M., Budiu, M., Erlingsson, U., Ligatti, J.: Control-flow integrity. In: Pro-

ceedings of the 12th ACM Conference on Computer and Communications Security,
CCS 2005, pp. 340–353 (2005)

3. Baliga, A., Ganapathy, V., Iftode, L.: Automatic inference and enforcement of
kernel data structure invariants. In: Proceedings of the 2008 Annual Computer
Security Applications Conference, ACSAC 2008, pp. 77–86 (2008)

4. Baliga, A., Kamat, P., Iftode, L.: Lurking in the shadows: identifying systemic
threats to kernel data. In: Proceedings of the 2007 IEEE Symposium on Security
and Privacy, SP 2007, pp. 246–251(2007)

5. Carbone, M., Cui, W., Lu, L., Lee, W., Peinado, M., Jiang, X.: Mapping kernel
objects to enable systematic integrity checking. In: Proceedings of the 16th ACM
Conference on Computer and Communications Security, CCS 2009, pp. 555–565.
ACM, New York (2009)

6. Chen, P.M., Noble, B.D.: When virtual is better than real. In: Proceedings of the
Eighth Workshop on Hot Topics in Operating Systems, HOTOS (2001)

7. Coker, G., et al.: Principles of remote attestation. Int. J. Inf. Secur. 10(2), 63–81
(2011)

8. Cui, W., Peinado, M., Xu, Z., and Chan, E. Tracking rootkit footprints with a prac-
tical memory analysis system. In: Presented as Part of the 21st USENIX Security
Symposium (USENIX Security 2012), pp. 601–615. USENIX, Bellevue (2012)

9. Dolan-Gavitt, B., Leek, T., Zhivich, M., Giffin, J., Lee, W.: Virtuoso: narrowing
the semantic gap in virtual machine introspection. In: Proceedings of the IEEE
Symposium on Security and Privacy (Oakland), May 2011

10. Fattori, A., Lanzi, A., Balzarotti, D., Kirda, E.: Hypervisor-based malware protec-
tion with accessminer. Comput. Secur. 52, 33–50 (2015)

http://www.tripwire.com/

22 M. Graziano et al.

11. Fattori, A., Paleari, R., Martignoni, L., Monga, M.: Dynamic and transparent
analysis of commodity production systems. In: Proceedings of the 25th Interna-
tional Conference on Automated Software Engineering (ASE), Antwerp, Belgium,
September 2010. https://code.google.com/p/hyperdbg/

12. Fedler, R., Kulicke, M., Schtte, J.: An antivirus api for android malware recogni-
tion. In: MALWARE (2013)

13. Garfinkel, T.: Traps and pitfalls: practical problems in in system call interposi-
tion based security tools. In: Proceedings of the Network and Distributed Systems
Security Symposium, February 2003

14. Garfinkel, T., Rosenblum, M.: A virtual machine introspection based architecture
for intrusion detection. In: Proceedings of the Network and Distributed Systems
Security Symposium, pp. 191–206 (2003)

15. Grill, B., Platzer, C., Eckel, J.: A practical approach for generic bootkit detection
and prevention. In: EuroSec (2014)

16. Hardy, N.: The confused deputy: (or why capabilities might have been invented).
SIGOPS Oper. Syst. Rev. 22(4), 36–38 (1988)

17. Haukli, L.: Exposing bootkits with bios emulation. In: Blackhat US, August 2014
18. Hofmann, O., Dunn, A.M., Kim, S., Roy, I., Witchel, E.: Ensuring operating system

kernel integrity with OSck. In: ASPLOS (2011)
19. Hoglund, G., Butler, J.: Rootkits: Subverting the Windows Kernel. Addison-Wesley

Professional, Boston (2005)
20. Hund, R., Holz, T., Freiling, F.C.: Return-oriented rootkits: bypassing kernel code

integrity protection mechanisms. In: Presented as Part of the 18th USENIX Secu-
rity Symposium (USENIX Security 2009). USENIX, Montreal (2009)

21. Jang, D., Lee, H., Kim, M., Kim, D., Kim, D., Kang, B.B.: Atra: address translation
redirection attack against hardware-based external monitors. In: Proceedings of the
2014 ACM SIGSAC Conference on Computer and Communications Security, CCS
2014, pp. 167–178. ACM, New York (2014)

22. Jiang, X., Wang, X., Xu, D.: Stealthy malware detection through vmm-based out-
of-the-box semantic view reconstruction. In: Proceedings of the ACM Conference
on Computer and Communications Security (CCS) (2007)

23. Jones, S.T., Arpaci-Dusseau, A.C., Arpaci-Dusseau, R.H.: Antfarm: tracking
processes in a virtual machine environment. In: Proceedings of the USENIX 2006
Annual Technical Conference, USENIX 2006, Boston, MA, June 2006

24. Kim, G.H., Spafford, E.H.: The design, implementation of tripwire: a file system
integrity checker. In: Proceedings of the 2nd ACM Conference on Computer and
Communications Security, CCS 1994, pp. 18–29 (1994)

25. Ladakis, E., Koromilas, L., Vasiliadis, G., Polychronakis, M., Ioannidis, S.: You can
type, but you can’t hide: a stealthy GPU-based keylogger. In: Proceedings of the
6th European Workshop on System Security, EuroSec, Prague, Czech Republic,
April 2013

26. Lee, H., Moon, H., Jang, D., Kim, K., Lee, J., Paek, Y., Kang, B.B.: Ki-mon: a
hardware-assisted event-triggered monitoring platform for mutable kernel object.
In: Presented as Part of the 22nd USENIX Security Symposium, pp. 511–526.
USENIX, Washington, D.C. (2013)

27. Litty, L., Lagar-Cavilla, H.A., Lie, D.: Hypervisor support for identifying covertly
executing binaries. In: Proceedings of the 17th Usenix Security Symposium, San
Jose, CA, July 2008

28. Love, R.: intro to inotify. http://www.linuxjournal.com/article/8478
29. Microsoft. PatchGuard - Kernel Patch Protection. https://technet.microsoft.com/

en-us/library/cc759759

https://code.google.com/p/hyperdbg/
http://www.linuxjournal.com/article/8478
https://technet.microsoft.com/en-us/library/cc759759
https://technet.microsoft.com/en-us/library/cc759759

Subverting Operating System Properties 23

30. Moon, H., Lee, H., Lee, J., Kim, K., Paek, Y., Kang, B.B.: Vigilare: toward snoop-
based kernel integrity monitor. In: Proceedings of the 2012 ACM Conference on
Computer and Communications Security, CCS 2012, pp. 28–37. ACM, New York
(2012)

31. Peter Silberman and C.H.A.O.S. FUTo. http://uninformed.org/index.cgi?v=3&
a=7&p=7

32. Petroni, J., Fraser, T., Molina, J., Arbaugh, W. A.: Copilot - a coprocessor-
based kernel runtime integrity monitor. In: Proceedings of the 13th Conference
on USENIX Security Symposium - vol. 13, SSYM 2004, p. 13. USENIX Associa-
tion, San Diego (2004)

33. Petroni, Jr., N.L., Hicks, M.: Automated detection of persistent kernel control-flow
attacks. In: Proceedings of the ACM Conference on Computer and Communica-
tions Security (CCS), pp. 103–115, October 2007

34. Petroni Jr., N.L., Fraser, T., Walters, A.A., Arbaugh, W.A.: An architecture for
specification-based detection of semantic integrity violations in kernel dynamic
data. In: Proceedings of the 15th Conference on USENIX Security Symposium,
p. 20 (2006)

35. Rhee, J., Riley, R., Xu, D., Jiang, X.: Defeating dynamic data kernel rootkit attacks
via vmm-based guest-transparent monitoring. In: Proceedings of the International
Conference on Availability, Reliability and Security (ARES 2009), Fukuoka, Japan,
March 2009

36. Rhee, J., Riley, R., Xu, D., Jiang, X.: Kernel malware analysis with un-tampered
and temporal views of dynamic kernel memory. In: Jha, S., Sommer, R., Kreibich,
C. (eds.) RAID 2010. LNCS, vol. 6307, pp. 178–197. Springer, Heidelberg (2010)

37. Riley, R., Jiang, X., Xu, D.: Guest-transparent prevention of kernel rootkits with
VMM-based memory shadowing. In: Lippmann, R., Kirda, E., Trachtenberg, A.
(eds.) RAID 2008. LNCS, vol. 5230, pp. 1–20. Springer, Heidelberg (2008)

38. Seshadri, A., Luk, M., Qu, N., Perrig, A.: SecVisor: a tiny hypervisor to guarantee
lifetime kernel code integrity for commodity oses. In: Proceedings of the ACM
Symposium on Operating Systems Principles (SOSP), October 2007

39. Seshadri, A., Perrig, A., Doorn, L.V., Khosla, P.: Swatt: software-based attestation
for embedded devices. In: Proceedings of the IEEE Symposium on Security and
Privacy (2004)

40. Srivastava, A., Giffin, J.: Efficient protection of kernel data structures via object
partitioning. In: Proceedings of the 28th Annual Computer Security Applications
Conference, ACSAC 2012, pp. 429–438 (2012)

41. Srivastava, A., Lanzi, A., Giffin, J.T.: System call API obfuscation (extended
abstract). In: Lippmann, R., Kirda, E., Trachtenberg, A. (eds.) RAID 2008. LNCS,
vol. 5230, pp. 421–422. Springer, Heidelberg (2008)

42. Srivastava, A., Lanzi, A., Giffin, J., Balzarotti, D.: Operating system interface
obfuscation and the revealing of hidden operations. In: Holz, T., Bos, H. (eds.)
DIMVA 2011. LNCS, vol. 6739, pp. 214–233. Springer, Heidelberg (2011)

43. Vogl, S., Gawlik, R., Garmany, B., Kittel, T., Pfoh, J., Eckert, C., Holz, T.:
Dynamic hooks: hiding control flow changes within non-control data. In: 23rd
USENIX Security Symposium (USENIX Security 2014), pp. 813–328. USENIX
Association, San Diego, August 2014

44. Vogl, S., Pfoh, J., Kittel, T., Eckert, C.: Persistent data-only malware: function
hooks without code. In: Proceedings of the 21th Annual Network and Distributed
System Security Symposium (NDSS), February 2014

45. Volatility Foundation. psxview Volatility command. https://github.com/
volatilityfoundation/volatility/wiki/Command

http://uninformed.org/index.cgi?v=3&a=7&p=7
http://uninformed.org/index.cgi?v=3&a=7&p=7
https://github.com/volatilityfoundation/volatility/wiki/Command
https://github.com/volatilityfoundation/volatility/wiki/Command

24 M. Graziano et al.

46. Wang, Z., Jiang, X., Cui, W., Ning, P.: Countering kernel rootkits with lightweight
hook protection. In: Proceedings of the 16th ACM Conference on Computer and
Communications Security, CCS 2009, pp. 545–554 (2009)

47. Wei, J., Payne, B. D., Giffin, J., Pu, C.: Soft-timer driven transient kernel control
flow attacks and defense. In: ACSAC (2008)

48. Zhang, X., van Doorn, L., Jaeger, T., Perez, R., Sailer, R.: Secure coprocessor-
based intrusion detection. In: Proceedings of the Tenth ACM SIGOPS European
Workshop, September 2002

DeepFuzz: Triggering Vulnerabilities Deeply
Hidden in Binaries

(Extended Abstract)

Konstantin Böttinger(B) and Claudia Eckert

Fraunhofer Institute for Applied and Integrated Security,
85748 Garching (near Munich), Germany

konstantin.boettinger@aisec.fraunhofer.de

Abstract. We introduce a new method for triggering vulnerabilities in
deep layers of binary executables and facilitate their exploitation. In our
approach we combine dynamic symbolic execution with fuzzing tech-
niques. To maximize both the execution path depth and the degree of
freedom in input parameters for exploitation, we define a novel method
to assign probabilities to program paths. Based on this probability distri-
bution we apply new path exploration strategies. This facilitates payload
generation and therefore vulnerability exploitation.

Keywords: Concolic execution · Fuzzing · Random testing

1 Introduction

As ubiquitous software is ever increasing in size and complexity, we face the
severe challenge to validate and maintain the systems that surround us. Soft-
ware testing has come a long way from its origins to the recent developments
of sophisticated validation techniques. In this paper we introduce a new method
combining symbolic execution and random testing. Our goals are (1) code cover-
age in deep layers of targeted binaries which are unreachable by current technolo-
gies and (2) maximal degree of freedom in the input variables when discovering
a program error.

Before we present the main idea of our approach and the summary of our
contributions, we give some background on concolic execution and fuzzing. We
especially highlight limitations of concolic execution and fuzzing when applied
isolated and motivate a combination of both as a promising new strategy.

Concolic Execution. The main idea of symbolic execution is to assign symbolic
representations to input variables of a program and generate formulas over the
symbols according to the transformations in the program execution. Reason-
ing about a program on the bases of such symbolic representations of execution
paths can provide new insight into the behavior of the program. Besides program

c© Springer International Publishing Switzerland 2016
J. Caballero et al. (Eds.): DIMVA 2016, LNCS 9721, pp. 25–34, 2016.
DOI: 10.1007/978-3-319-40667-1 2

26 K. Böttinger and C. Eckert

verification, symbolic execution nowadays has its biggest impact in program test-
ing. The original idea was extended over the years and developed into concrete
symbolic (concolic) execution. The program is initially executed with arbitrary
concrete input values and symbolic constraints over the symbols are generated
along the program execution path. Next, one of the collected branch conditions
is negated and together with the remaining constraints given to an SMT solver.
The solution (also called model) generated by the SMT solver is injected as new
input into the program, which now takes the branch alternative when executed.
This is because the SMT solver just calculated the solution of the negation of the
former branch constraint so that the newly generated input follows the alterna-
tive path. This procedure is iteratively repeated until a halt condition is reached.
In the best case the reached halt condition resembles full path coverage of all
alternative paths of the program, in the worst case the halt condition is caused
by an overloaded SMT solver. The latter is a natural consequence of the expo-
nential growth of the number of paths we have to deal with, which we refer to as
the path explosion problem. Concolic execution is advantageous in code regions
where pure symbolic reasoning is ineffective or even infeasible. This is often the
case for complex arithmetic operations, pointer manipulations, calls to external
library functions, or system calls.

Pure concolic execution, however, has strong limitations. Current SMT
solvers are very limited in the number of variables and constraints they can
handle efficiently so that concolic execution gets stuck in very early stages of the
program. Despite huge advances in the field of SMT solvers, concolic execution
of large programs is infeasible and in practice will only cover limited parts of the
execution graph. The major part of graph coverage must therefore be done with
fuzzing.

Fuzzing. Existing fuzzing tools generate random input values for the targeted
program in order to drive it to an unexpected state. Fuzzing has generated a long
list of vulnerabilities over the years and is by now the most successful approach
when it comes to program testing. However, it has severe limitations even in
very simple situations. To illustrate this, consider the following code snippet:

#include <stdint.h>
...
int check(uint64_t num){

if(num == UINT64_C(0))
assert(false);

}

If we want to reach the assertion in the check function with a random choice
of the integer num, we have a probability of 2−64 for each try to pass the if
statement. The situation gets even worse if there are multiple such checks, e.g.
in the calculation of a checksum or character match during input parsing. Such
code areas are very hard to be passed by pure random input generation and
code regions beyond such examples are most likely not covered by fuzzing. In
the following we will refer to such cases as fuzzing walls. However, the false

DeepFuzz: Triggering Vulnerabilities Deeply Hidden 27

assertion in the above code listing can easily be reached with concolic execution,
as the comparison to zero directly translates to a simple expression for the SMT
solver.

The Hybrid Approach. As we just showed, critical limitations of fuzzing can
be overcome with concolic execution, and in turn fuzzing scales much better to
path explosion than SMT solvers do. As a natural next step we combine both
methods. The idea is to apply concolic execution whenever fuzzing saturates (i.e.
stops exploration at a fuzzing wall), and in turn switch back to fuzzing whenever
the fuzzing walls are passed by concolic execution.

However, we still have to deal with the problem of path explosion and there-
fore still may end up covering only the first execution layers of a program. In
the following, we refer to path depth as the number of branches along that path,
which directly corresponds to the number of basic blocks. Even in the combined
approach we are confronted with two challenges. First, if we want to fuzz deep
areas of a program, we have to find a way to construct execution paths into such
areas and somehow delay path explosion until we have found such a tunnel. Sec-
ond, to generate a payload and exploit a detected vulnerability in the program
under test, we not only have to reach the bug with a single suitable input, but
we have to reach it with maximal degree of freedom in the input values. To be
more precise, if we reach a vulnerability with exactly one constellation of the
input variables, we most probably would not be able to exploit it in a meaningful
way because any attempt to generate a payload (and thereby change the input
variables) would lead the input to take a different path in the execution graph.
Therefore, we propose a way to maximize the degree of freedom regarding input
variables. This yields both alleviation of vulnerability exploitation and execution
paths that reach into deep layers of the program.

In summary, we make the following contributions:

– We propose a new search heuristic that delays path explosion effectively into
deeper layers of the tested binary.

– We define a novel technique to assign probabilities to execution paths.
– We introduce DeepFuzz, an algorithm combining initial seed generation, con-

colic execution, distribution of path probabilities, path selection, and con-
strained fuzzing.

2 Related Work

Symbolic execution has experienced significant development since its beginnings
in the seventies to the advanced modern variants invented for program testing
in recent years. Especially the last decade has seen a renewed research interest
due to powerful Satisfiability Modulo Theory (SMT) solvers and computation
capabilities that have led to advanced tools for dynamic software testing. Cadar
et al. [2] give an overview of the current status of dynamic symbolic execution.
In concolic execution [5,10] symbolic constraints are generated along program
execution paths of concrete input values.

28 K. Böttinger and C. Eckert

Research in random test generation established powerful fuzzing tools such
as AFL, Radamsa, the Peach Fuzzer, and many more. We refer to [12] for a
comprehensive account.

Both concolic execution and fuzzing have severe limitations when aiming for
code coverage (see Sect. 1). Since those limitations are partly complementary
to each other, a fusion of concolic execution and fuzzing emerges as natural
approach. Majumdar et al. [8] made a first inspiring step into this direction by
proposing hybrid concolic testing: by interleaving random testing with concolic
execution the authors of [8] increase code coverage significantly. However, it is
still an open question how to efficiently generate restricted inputs for random
testing. We propose a solution for high frequency test case generation that scales
to large sets of constraints. Further, we specify the rather general test goals of [8]
by focusing on maximization of the degree of freedom regarding input variables
to achieve both, alleviation of vulnerability exploitation and execution paths
that reach into deep layers of the program.

Closely related to our approach is Driller by Stephens et al. [11] who also
combine fuzzing with selective concolic execution in order to reach deep execu-
tion paths. Driller switches from pure fuzzing to concolic execution whenever
random testing saturates, i.e. gets stuck at a fuzzing wall. To keep the load
for symbolic execution low while simultaneously maximizing the chance to pass
fuzzing walls with concolic execution, Driller also selects inputs. This selection
privileges paths that first trigger state transitions or first reach loops which are
similarly iterated by other paths. In contrast, we systematically assign proba-
bilities to paths based on SMT solving performance and select paths according
to this probability distribution. This assignment of probabilities to execution
paths has no direct counterpart in related work. Although the authors of [4] also
propose assertion of probability weights to paths in the execution graph, they
differ significantly in their proposed methods which are based on path condition
slicing and computing volumes of convex polytopes.

3 The DeepFuzz Algorithm

In this section we present the DeepFuzz algorithm in detail. The main idea is
interleaving concolic execution with constrained fuzzing in a way that allows
us to explore paths providing maximal input generation frequency. We achieve
this by assigning weights (corresponding to fuzzing performance) to the explored
paths after each concolic execution step in order to select the ones with highest
probability. In the following, we first describe the individual building blocks,
namely initial seed generation, concolic execution, distribution of path probabil-
ities, path selection, and constrained fuzzing. Next, we combine these parts in
the overall DeepFuzz algorithm.

3.1 Initial Seed Generation

Initially we start with a short period of concrete input generation for the sub-
sequent concolic execution. If the inputs belong to a predefined data format, we

DeepFuzz: Triggering Vulnerabilities Deeply Hidden 29

generate inputs according to the format definition (as in generational fuzzing).
If there is no format specified or available we just generate random input seeds.
We denote the set of all possible concrete input values as X and the initial seeds
generated in this initial step as X0 ⊂ X.

3.2 Concolic Execution

The concolic execution step receives a set of concrete program inputs Xseed ⊂ X
and outputs a set of symbolic constraints collected along the paths belonging to
these inputs. At the beginning, directly after the initial seed generation step, we
set Xseed = X0. The symbolic expressions are basically generated as described
in Sect. 1. However, we adapt the path search heuristics to our approach in a
similar way as introduced in [6]. We conduct concolic execution of the program
with each input xi ∈ Xseed until one of the following two halt conditions occur:
either the program reaches the predefined goal, which in our case is basically an
unexpected error condition, or the number of newly discovered branches taken
exceeds a fixed maximum bmax ∈ N.

To keep the notation as clear as possible, in the following we assume without
loss of generality that the halting conditions are reached after exactly bmax

branches. Let c′
i denote the execution path belonging to input xi and n′ = |Xseed|

denote the number of inputs in Xseed. For each branch j ∈ {1, ..., bmax} there
is a sub-path c′

ij which equals c′
i until branch number j is reached. Clearly,

the c′
ij are sub-paths of c′

i. For each i = 1, ..., n′ and j = 1, ..., bmax we store the
logical conjunction of the negated branch condition λij (corresponding to branch
number j of execution path c′

i) and the path condition ρij of the sub-path c′
ij

leading to this branch, which yields the n′∗bmax expression sets φij := ¬λij∧ρij .
With this notation, concolic execution of the input set Xseed yields the total set
of constraints Φ := {φij | i = 1, ..., n′, j = 1, ..., bmax}. For each element in Φ the
SMT solver checks if the the symbolic constraints are satisfiable and in that case
computes a new input xij for each element φij ∈ Φ. These newly generated inputs
xij drive the program execution along the original paths c′

i until branch number
j is reached and then takes the alternative. We denote these new explored paths
as cij . In the next step we assign probabilities to these paths. To maintain a
clear notation and avoid too many indices we work with the union set

C := {c1, ..., cn} :=
⋃

i,j

c′
ij . (1)

3.3 Distribution of Path Probabilities

Next, we describe our approach to assign probabilities to program paths. This
step takes as input a set of paths C and outputs a probability distribution on
this set.

One possible strategy is to calculate the cardinality |Ii| of the set of solutions
Ii for the path constraint φi ∈ Φ corresponding to ci and then define weights on
the paths according to number of inputs that travel through it. This strategy

30 K. Böttinger and C. Eckert

is chosen and comprehensively described in [4], where the purpose of assigning
probabilities to paths is to provide estimates of likelihood of executing portions of
a program in the setting of general software evaluation. In contrast to this we are
interested in deep fuzzing and therefore must guarantee maximal possible sample
generation in a fixed amount of time. To illustrate this more clearly, consider two
sets of constraints ΦA and ΦB with (non-empty) solution sets A and B. If we are
given only the constraints ΦA and ΦB and are interested in some solutions in A
or B, we simply feed an SMT solver with the constraints and receive solutions.
However, computing the cardinality |A| and |B| of all solutions corresponding to
ΦA and ΦB (also called the model counting problem) can be significantly more
expensive than the decision problem (asking if there is a single solution of the
constraints at all). The authors of [4] rely on expensive algorithms for computing
volumes of convex polytopes and integrating functions defined upon them. This
would yield a theoretical sound distribution of path probabilities, with the dis-
advantage of extremely low fuzzing performance in our setting. Further, even if
cardinality |A| is significantly greater than |B|, meaning that ΦA has much more
solutions than ΦB , computation of B may take much longer than computation
of A. In other words

(|A| > |B|) �
(
T (ΦA) > T (ΦB)

)
, where T (Φi) is the time

it takes an SMT solver to compute all solutions corresponding to the constraints
Φi. To guarantee high frequency of model generation for effective deep fuzzing
we have to build our strategy around a time constraint. Therefore, in order to
assign probabilities to the paths c1, ..., cn we apply another strategy.

For a fixed time interval T0 let ki(φi, T0) denote the number of solutions for
constraints φi that the applied SMT solver finds in the amount of time T0. Among
the paths c1, ..., cn we choose the one whose constraints yield - when given to the
SMT solver - the maximal number of satisfying solutions in the fixed amount
of time T0. Therefore, we distribute the probabilities p(ci) belonging to path ci
according to

p(ci) := ki (φi, T0)

⎛

⎝
n∑

j=1

kj(φj , T0)

⎞

⎠
−1

(2)

for i = 1, ..., n. With
∑n

i=1 p(ci) = 1 this probability distribution is well defined.

3.4 Path Selection

Now that we have n explored paths C = {c1,, cn} weighted with probabilities
according to Eq. (2) in the execution graph, our goal in this step is to select the
paths that provide us maximal model generation frequency. Such a set of paths
will guarantee us efficient fuzzing and maximal degree of freedom for subsequent
payload generation in case we detect a vulnerability.

The defined probabilities p(ci) in Eq. (2) directly correspond to the perfor-
mance in computing inputs for subsequent fuzzing. Practical calculation of those
probabilities is efficient: we simply let the SMT solver compute solutions for the
path constraints Φi(i = 1, ..., n) in a round-robin schedule and count the number

DeepFuzz: Triggering Vulnerabilities Deeply Hidden 31

of solutions for each path, which directly yields the probabilities p(ci). A suffi-
ciently small choice of the computing time T0 will result in fast path selection.
To gain maximal input generation frequency, we could simply choose the single
path whose assigned probability is maximal. However, some paths are dead ends
and if we would restrict the algorithm to select only a single path for subsequent
fuzzing, path exploration might stop too early in some binaries.

Therefore, we select the m < n different paths c̃j (j = 1, ...,m) with highest
probability. In order to make sure that the following path choice is well defined,
we prepend a short side note first: it almost never happens in practice that
there are two paths assigned with exactly the same probability. If this unlikely
situation occurs in practice, we could just randomly choose one among these
equiprobable paths and proceed without much changes in the subsequent algo-
rithm. For simplicity of notation we assume without loss of generality that the
set {p(ci) | i = 1, ..., n} is strictly ordered. We initially choose the path with
highest probability

c̃1 = arg max
ci∈C

p(ci) (3)

and then proceed in the same way

c̃j = arg max
ci∈C\{c̃1,...,c̃j−1}

p(ci) (4)

until we obtain the path set Chigh = {c̃j | j = 1, ...,m} including the m paths
with hightest probability. On the one hand, setting the parameter m close to n
will result in fast path explosion. On the other hand, setting m = 1 might be
too restrictive for some binaries. Therefore, we initially set m to a small integer
and then run parameter optimization to adapt to the specific binaries in testing
experiments.

3.5 Constrained Fuzzing

Now that we have selected the paths Chigh with highest probability, we continue
with fuzzing deeper layers of the program. Remember we denoted the set of all
possible concrete input values as X and the set of inputs belonging to path ci
as Ii ⊂ X (i = 1, ..., n). To start fuzzing into the program from an endpoint
of a selected path ci ∈ Chigh, the generated fuzzing inputs have to fulfill the
respective path constraints φi, otherwise they would result in a different execu-
tion path. There are basically three possible strategies to generate inputs (i.e.
subsets of Ii) that satisfy the respective constraints:

Random Generation of Inputs with Successive Constraint Filtering. This strat-
egy would initially generate a random input set Xrand ⊂ X, which would be
given to an SMT solver in order to check if a concrete input x ∈ Xrand satisfies
the constraint φi and therefore belongs to Ii. However, filtering the generated
inputs in Xrand by checking for satisfiability of respective path constraints would

32 K. Böttinger and C. Eckert

most unlikely leave any input over, i.e. Xrand∩Ii = ∅ with high probability. This
is obvious due to the fact that the path constraints in φi symbolically represent
all branch conditions along the path ci, in particular fuzz-walls (as introduced
in Sect. 1). Randomly generating input values that satisfy such a fuzz-wall con-
straint in φi is therefore clearly as unlikely as passing such a wall with pure
fuzzing.

Pure SMT Solver-Based Input Generation. With this strategy we would inject all
the constraints in φi into an SMT solver, that in turn computes a set of possible
solutions. The problem with this strategy is that an SMT solver is sometimes
slow and inefficient in computing solutions and the fuzzing input generation
rate would drop significantly. This is due to the fact that an SMT solver cannot
effectively handle large amounts of variables constrained in large amounts of
equations. For example, consider a situation where the input consists of a large
file F and the targeted program only checks a small part F ′ of it during initial
parsing. Using an SMT solver to generate both the constrained part F ′ and the
unconstrained part of F would be inefficient. This motivates the third strategy.

Random Generation of Independent Input Variables with Subsequent Constraint
Solving. Here, we randomly generate input values for all variables that are inde-
pendent (also called free) in φi. An SMT solver subsequently generates a model
for the remaining dependent variable constraints.

In summary, the first strategy is infeasible, whereas strategies two and three
are more similar to each other for small input sizes. However, if we deal with
larger inputs where only a small minority of input variables are constrained by
the current path constraint φi there is no need to feed a huge amount of path
constraints for independent input variables into an SMT solver. We proceed with
the third approach as it guarantees us maximal input generation frequency and
scales better to large inputs.

In the following, we refer to the frequency of input generation for path ci as
f(φi). The above reasoning yields

f(φi) ≥ ki(φi, T0)
T0

, (5)

i.e. the number of models for φi found by the SMT solver in time T0 is less or
equal than the number of inputs generated with strategy three in time T0.

3.6 Joining the Pieces

Now that we have described all individual parts we can combine them for the
overall DeepFuzz algorithm, as depicted in Fig. 1. After the initial seed gener-
ation (SG) is completed we run concolic execution (CE), distribution of path
probabilities (DP), path selection (PS), and constrained fuzzing (CF) in a loop,
where CF is run for a fixed amount of time T1. This loop is executed until a halt
condition is reached. A halt condition is given either if a predefined goal (e.g. a

DeepFuzz: Triggering Vulnerabilities Deeply Hidden 33

Fig. 1. DeepFuzz main algorithm.

program crash) is reached, or if the constrained fuzzing performance collapses.
In the latter case the total number of solutions that the applied SMT solver finds
in the fixed amount of time m ∗ T0 drops below a predefined bound kmin

m∑

i=1

ki(φi, T0) < kmin (6)

and we leave the loop to procede with solely constrained fuzzing for a long testing
time T2.

4 Conclusion

We present an approach to trigger vulnerabilities in deep layers of binary exe-
cutables. DeepFuzz constructs a tunnel into the program by applying concolic
execution, distribution of path probabilities, path selection, and constrained
fuzzing in a way that allows fuzzing deep areas of the program.

Instead of source code instrumentation, we only need compiled binaries for
program testing. This is an advantage for the same reasons as stated in [7]. First,
we are independent on the high level language and build processes. Second, we
avoid any problems caused by compiler transformation after the build process,
realized for example by obfuscation. Third, DeepFuzz is suited to fuzz closed
source targets. Another important aspect of DeepFuzz is the ability to highly
parallelize the proposed algorithm in Sect. 3. All intermediate steps can be mod-
ularized and distributed for parallel computing with a suitable framework. One
disadvantage of DeepFuzz is that it is not directed towards a tagged point in the
execution graph. It builds paths as deep as possible into the program, however

34 K. Böttinger and C. Eckert

with no preferably direction. In order to address this issue we are currently con-
sidering how to combine our approach with previous work on driving execution
of the input space towards a selected region. Such a directed exploration can be
achieved by using fitness functions as described in [13]. For example, we could
integrate fitness functions in the path selection step.

First tests targeting OpenSSL-based parsers of Base64-encoded X.509 certifi-
cates promise well. Here, we adapted the concolic execution framework Triton
[9], which itself uses the Z3 SMT solver [3]. A comprehensive evaluation of our
approach on a broad range of targets is subject to future work.

Finally, DeepFuzz may help to circumvent current bottlenecks related to
automatic exploit generation as described by Avgerinos et al. in [1]. We expect
that our proposed algorithm can be deployed for automatic exploitation of vul-
nerabilities deeply hidden in binaries.

References

1. Avgerinos, T., Cha, S.K., Rebert, A., Schwartz, E.J., Woo, M., Brumley, D.: Auto-
matic exploit generation. Commun. ACM 57(2), 74–84 (2014)

2. Cadar, C., Sen, K.: Symbolic execution for software testing: three decades later.
Commun. ACM 56(2), 82–90 (2013)

3. de Moura, L., Bjørner, N.S.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

4. Geldenhuys, J., Dwyer, M.B., Visser, W.: Probabilistic symbolic execution. In: Pro-
ceedings of the 2012 International Symposium on Software Testing and Analysis,
pp. 166–176. ACM (2012)

5. Godefroid, P., Klarlund, N., Sen, K.: DART: directed automated random testing.
In: ACM SIGPLAN Notices, vol. 40, pp. 213–223. ACM (2005)

6. Godefroid, P., Levin, M.Y., Molnar, D.: SAGE: whitebox fuzzing for security test-
ing. Commun. ACM 55(3), 40–44 (2012)

7. Godefroid, P., Levin, M.Y., Molnar, D.A.: Automated whitebox fuzz testing. In:
NDSS, vol. 8, pp. 151–166 (2008)

8. Majumdar, R., Sen, K.: Hybrid concolic testing. In: 29th International Conference
on Software Engineering, 2007, ICSE 2007, pp. 416–426. IEEE (2007)

9. Saudel, F., Salwan, J.: Triton: a dynamic symbolic execution framework. In: Sym-
posium sur la sécurité des technologies de l’information et des communications,
SSTIC, France, Rennes, 3–5 June 2015, pp. 31–54. SSTIC (2015)

10. Sen, K., Marinov, D., Agha, G.: CUTE: a concolic unit testing engine for C. In:
European Software Engineering Conference, pp. 263–272 (2005)

11. Stephens, N., Grosen, J., Salls, C., Dutcher, A., Wang, R., Corbetta, J., Shoshi-
taishvili, Y., Kruegel, C., Vigna, G.: Driller: augmenting fuzzing through selective
symbolic execution. In: Proceedings of the Network and Distributed System Secu-
rity Symposium (NDSS) (2016)

12. Takanen, A., Demott, J.D., Miller, C.: Fuzzing for Software Security Testing and
Quality Assurance. Artech House, Norwood (2008)

13. Xie, T., Tillmann, N., De Halleux, J., Schulte, W.: Fitness-guided path explo-
ration in dynamic symbolic execution. In: IEEE/IFIP International Conference on
Dependable Systems and Networks DSN 2009, pp. 359–368. IEEE (2009)

Defenses

AutoRand: Automatic Keyword Randomization
to Prevent Injection Attacks

Jeff Perkins1(B), Jordan Eikenberry1, Alessandro Coglio2, Daniel Willenson1,
Stelios Sidiroglou-Douskos1, and Martin Rinard1

1 MIT/CSAIL, Cambridge, MA, USA
{jhp,jeikenberry,dwillenson,stelios,rinard}@csail.mit.edu

2 Kestrel Institute, Palo Alto, CA, USA
coglio@kestrel.edu

Abstract. AutoRand automatically transforms Java applications to use
SQL keyword randomization to defend against SQL injection vulnerabil-
ities. AutoRand is completely automatic. Unlike previous approaches it
requires no manual modifications to existing code and does not require
source (it works directly on Java bytecode). It can thus easily be applied
to the large numbers of existing potentially insecure applications without
developer assistance. Our key technical innovation is augmented strings.
Augmented strings allow extra information (such as random keys) to
be embedded within a string. AutoRand transforms string operations so
that the extra information is transparent to the program, but is always
propagated with each string operation. AutoRand checks each keyword
at SQL statements for the random key. Experimental results on large,
production Java applications and malicious inputs provided by an inde-
pendent evaluation team hired by an agency of the United States gov-
ernment showed that AutoRand successfully blocked all SQL injection
attacks and preserved transparent execution for benign inputs, all with
low overhead.

1 Introduction

SQL injection attacks are a critical vector of security exploits in deployed appli-
cations. SQL Injection [1] is the first entry in the CWE/SANS list of the top
25 most dangerous software errors [2]. Injection errors are also the first entry
in OWASP’s top 10 web application security problems [3]. Given the demon-
strated ability of attackers to exploit such vulnerabilities [4] and the exploitable
opportunities that this class of vulnerabilities presents to attackers on an ongo-
ing basis [5], techniques that eliminate SQL injection vulnerabilities and prevent
SQL injection attacks are of primary importance to the future security of our
information technology infrastructure.

On the surface it would seem that SQL attacks could be prevented by follow-
ing good coding practices (such as using prepared statements and/or sanitizing
inputs) that have been available for many years. Unfortunately, these practices
have to be followed 100 % of the time or an attack may be enabled. The con-
tinued prevalence of SQL injection attacks [5] bears evidence to the fact that a
c© Springer International Publishing Switzerland 2016
J. Caballero et al. (Eds.): DIMVA 2016, LNCS 9721, pp. 37–57, 2016.
DOI: 10.1007/978-3-319-40667-1 3

38 J. Perkins et al.

different approach that doesn’t rely on error-free development is required. Fur-
thermore there is a large amount of existing SQL code that needs protection. It
is unrealistic to expect this code to be retrofitted. The developer resources are
often not available and in many cases the source code may not be accessible.

1.1 SQL Keyword Randomization

Instruction set randomization [6] protects systems against code-injection attacks
by creating randomized instruction sets. An attacker that does not know the
instruction set in use will inject invalid code which will not execute correctly.

SQL keyword randomization applies the same technique to SQL injection
attacks. Conceptually the SQL grammar is changed to use randomized SQL
keywords that are not known to possible attackers. Any code that is injected will
not contain valid keywords and will thus yield an error when parsed thwarting
any attack.

Existing randomization systems [7] require the developer to manually mod-
ify the program to randomize the SQL keywords that appear in constant
strings. This requires program source and possibly significant developer time
(see Sect. 6.2). In many cases, neither of these may be available. An automatic
system is needed to address the large numbers of existing potentially insecure
applications.

Building an automatic system, however, is challenging. A working solution
must randomize all SQL keywords that can reach an SQL statement (by any
path) while ensuring that those modifications do not change the semantics of the
program or are made visible outside of the program (because that would leak
the random key). Operations on strings containing random keys must preserve
the keys and the original semantics of the operation. Since the keys change
both the length and contents of the string, many operations (e.g., substring,
charAt, replace) must be automatically converted.

1.2 AutoRand

We present a new system, AutoRand, that automatically transforms Java appli-
cations to use randomized SQL keywords1.

The resulting transformed Java application is protected against SQL injection
attacks that rely on using SQL keywords in the malicious input to change the
structure of the SQL command passed to the SQL execution engine.

AutoRand automatically translates the Java bytecodes of the application to
randomize any SQL keywords that appear in program constants or in trusted
inputs. It transparently propagates the randomized versions of the keywords
across string operations. Any use of randomized SQL keywords in other opera-
tions (e.g., file/socket writes, string comparisons, etc.) are automatically deran-
domized to ensure that the program’s semantics are maintained.

1 We use the term keyword to include keywords, operators and comment tokens.

AutoRand: Automatic Keyword Randomization to Prevent Injection Attacks 39

AutoRand also inserts code that checks each SQL command to ensure that all
keywords have the correct random value. If any keywords (such as those inserted
by an attacker) are not correct, an exception is thrown. If all of the keywords
are correct, the query is de-randomized and passed to the normal SQL routine.

AutoRand operates directly on byte-code and does not require source or
manual modifications. It can easily be applied to existing applications without
developer assistance. To our knowledge it is the first system to automatically
apply SQL keyword randomization to existing programs.

Experimental results on large, production Java applications and malicious
inputs provided by an independent evaluation team hired by an agency of the
United States government showed that AutoRand successfully blocked all SQL
injection attacks with no false positives and negligible overhead.

1.3 Augmented Strings

Our key technical innovation is augmented strings. Augmented strings allow addi-
tional information to be added to strings. This additional information is handled
transparently with respect to the application. Augmented strings are designed to
ensure that, with the exception of augmented checks (such as SQL query checks),
the application exhibits the same behavior with augmented strings as without.
The additional information is accounted for in all string operations to ensure
that it is propagated across the operation without changing the semantics of
the program. To accomplish this transparency, AutoRand automatically modi-
fies string operations to ensure that the presence of the additional information is
not visible to the program itself (e.g., conditionals over string values, reflection,
etc.) or externally (e.g., network writes, environment variables access, etc.).

The additional information in an augmented string is identified by a ran-
dom key. The key is complex enough to ensure that it will not occur (within
some arbitrarily small probability) by happenstance in the program’s input or
constants. This allows the additional information to be precisely identified.

In the case of AutoRand, the random key is placed immediately after each
SQL keyword to create a randomized version of the keyword in the augmented
string. To our knowledge the augmented strings approach is novel and could
be used in broader contexts than SQL injection, such as tracking the detailed
provenance (filename, URL) of each token in a string, randomization for other
injection issues (such as command injection) or carrying debug information.

1.4 Experimental Evaluation

We evaluate the AutoRand implementation on a set of benchmarks and associ-
ated inputs developed by an independent evaluation team hired by the sponsor
of this research (an agency of the United States government). The evaluation
team started with a set of existing large, production Java applications, inserted
SQL injection vulnerabilities into the applications, and developed inputs that
exploit the vulnerabilities. The evaluation team was given complete information
about the AutoRand implementation. The results of the evaluation show that

40 J. Perkins et al.

AutoRand successfully blocked all SQL injection attacks. To test transparency
and preservation of functionality, the evaluation also exercised the applications
on benign inputs. The results showed identical behavior for each benign input.
We note that this evaluation worked with applications that are over an order of
magnitude larger than any previous evaluation of SQL injection attack defenses
for Java programs of which we are aware [8–10]. AutoRand’s ability to success-
fully block SQL injection attacks in these applications highlights the effectiveness
of AutoRand’s techniques and the robustness of the AutoRand implementation.

1.5 Contributions

This paper makes the following contributions:

– AutoRand: It presents a system for automatic and transparent SQL keyword
randomization to automatically eliminate SQL injection vulnerabilities.

– Augmented Strings: It presents a technique that transparently adds infor-
mation (in this case a random key) to strings and propagates that informa-
tion across string operations. The original semantics of the application are
preserved except where explicit checks utilizing the additional information are
added (in this case for SQL injection attacks).

– Experimental Evaluation: It presents results from applications and inputs
developed by an independent evaluation team. These results show that
AutoRand successfully blocked all of the developed SQL injection attacks and
correctly preserved transparent execution for all of the benign inputs.

2 Example

We next present an example that illustrates how AutoRand nullifies SQL injec-
tion attacks.

2.1 Vulnerable Code

Consider the Java fragment
String query = "select * from users where"

"username=’" + username + "’ and password=’" + password + "’";

ResultSet results = databaseConnection.

createStatement().executeQuery(query);

(1)

which looks up, in the users table of a database, the user whose name and
password are in the string variables username and password. The query is con-
structed by combining a constant SQL code template with variable fragments
that should only specify data. If username is jqd and password is xB34qy5s,
the query sent to the database is

select * from users where username=’jqd’ and password=’xB34qy5s’ (2)

and the application operates normally. However, if username is “’ or 1=1 --”
and password is the empty string, the query sent to the database is

AutoRand: Automatic Keyword Randomization to Prevent Injection Attacks 41

select * from users where username=’’ or 1=1 --’ and password=’’ (3)

which always returns all records from the users table, since the password check
has been commented out by the comment marker --. The latter input is crafted
to subvert normal operation by executing SQL code that is part of the input
data. This kind of subversion may cause loss of confidentiality and/or integrity.
E.g., if username is “’; drop table users --” and password is the empty
string, the query sent to the database is

select * from users where username=’’; drop table users

--’ and password=’’
(4)

where the semicolon separates the (now irrelevant) query from an injected drop
statement that deletes the users table from the database.

If username and password are set from application inputs, the execution of
the SQL query in (1) should be preceded by input validation, i.e., checks that
username and password do not contain characters that may alter the structure
of the SQL query (e.g., that they only contain letters and numbers). If the check
fails, the inputs should be rejected or sanitized (e.g., by removing any character
that is not a letter or a number). If the developer fails to include these checks,
the code in (1) is vulnerable to SQL injection attacks.

2.2 Automatic Hardening by AutoRand

AutoRand automatically turns the code in (1) into code like

String query ="select<key> * from<key> users where<key> username=’" +

+ username + "’ and<key> password=’" + password + "’";

ResultSet results = derandomizeAndExecuteQuery

(databaseConnection.createStatement(), query);

(5)

where <key> is a randomization key, i.e., a randomly chosen sequence of ASCII
letters and numbers, e.g., di83e2371A. That is, all the SQL keywords that occur
in string constants are randomized by appending <key>. The AutoRand run-
time method derandomizeAndExecuteQuery tokenizes the query and checks
each SQL keyword to ensure that it is suffixed by <key>. If the check suc-
ceeds, the query is deemed legitimate, all instances of <key> are removed, and
the resulting query is executed normally by calling executeQuery. This check
fails if an attacker injects a non-randomized keyword. For example, if username
is “’ or 1=1 --” and password is the empty string, the query

select<key> * from<key> users where<key> username=’’

or 1=1 --’ and<key> password=’’
(6)

fails the check because or and -- lack <key>. Since the attacker does not know
the valid keywords for or and -- (i.e., does not know <key>), they are unable
to create a successful attack.

42 J. Perkins et al.

AutoRand also automatically transforms other parts of the code to make
keyword randomization transparent to non-SQL uses of the mutated strings. For
instance, using String.length() to take the length of query in (5) should return
the same value as query in (1)— the randomization key should not contribute
to the count. Transparency is particularly important for output-related uses of
the mutated strings, e.g., String.out.println(query), because if the attacker
were to see the randomization key in some output (e.g., error message) they
would be able to inject correctly randomized keywords.

3 Technical Approach

AutoRand protects a Java application against SQL injection by statically trans-
forming each class of the application, producing a hardened version of the appli-
cation.

3.1 Correctness

In Java, strings are objects, whose contents are manipulated exclusively via a
standard API, which consists of the classes String, StringBuilder and String-
Buffer.2 AutoRand intervenes in string method calls to ensure that keys are
propagated (propagation) and do not affect the application (transparency)—
other than protecting against SQL injection. AutoRand’s transformation is cor-
rect if it maintains these properties.

– Transparency: A given AutoRand program state and (side-effect free) oper-
ation is transparent if running the operation in the state produces the same
result as running the corresponding original operation in the derandomized
state.

– Propagation: A given operation satisfies propagation if each keyword that is
propagated from its inputs to its outputs is consistently randomized (i.e., the
output keyword is randomized if and only if the corresponding input keyword
was randomized).

Transparency guarantees that the original semantics of the program hold
(except for the added SQL checks). Propagation ensures that randomized key-
words in program constants or trusted inputs propagate through string manip-
ulations to SQL statements. This ensures that they will parse correctly (in the
absence of injection attacks). If a randomized keyword were not propagated cor-
rectly to an SQL statement the statement would not parse correctly and an
exception would be incorrectly thrown (a false positive). A propagation error
would not result in a false negative as the lack of a randomized key will always
be treated as an error. There is no path by which an attacker can add the key
to their keywords (other than by knowing the key).

2 For simplicity, we use the term ‘string’ to refer to objects of all three classes.

AutoRand: Automatic Keyword Randomization to Prevent Injection Attacks 43

Transparency. Abstractly, if op is an operation that takes a string S as input
and yields a string as output, AutoRand’s replacement operation op′, in order
to achieve transparency, must satisfy

op(S) = r−1(op′(r(S))) (7)

where r randomizes strings and r−1 derandomizes strings.3 The requirement
(7) is easily adapted to operations that take multiple strings as input or yield
non-strings (e.g. r−1 is a no-op for String.equals()). Derandomization r−1

removes all instances of the key, not only instances that follow SQL keywords,
thus, string operations that modify keywords will not affect transparency.

Some string methods return values other than strings. The derandomization
operation r−1 is a no-op for non-strings. Thus op′ must return the same value
as op (as required by equation (7)). Many of the non-string return values are
indices into strings. These indices must reference the derandomized version of
the string, not the randomized version. AutoRand’s replacement operations must
also accept index arguments that are with respect to the derandomized version
of the string. These operations map any index arguments from the derandom-
ized string to the corresponding index in the randomized string. For example,
the following code adds some text to an SQL statement following the select
keyword. The length of the select keyword is hard-coded.

StringBuffer sb = new StringBuffer(...);

int offset = sb.indexOf("select") + 6;

sb.insert(offset, "field1, field2");

(8)

For this to work correctly on a randomized sb, the index must be translated
to the corresponding index in the randomized buffer (after select<key>). Note
that code similar to this exists in the real-world applications that we tested.

Propagation. Propagation is achieved if every randomized keyword in the input
operands that is transferred to the result is also randomized in the result. For
the purposes of SQL commands, keywords are a unit and only operations over a
complete keyword (and not its individual characters) need to support propaga-
tion. Such sub-keyword operations may occur if the string is used for non-SQL
purposes, but propagation is not required in such cases. As noted above, trans-
parency is not affected by sub-keyword operations.

Abstractly, if op is an operation that takes a string S as input (where S may
contain randomized keys) and yields a string as output, AutoRand’s replacement
operation op′, in order to achieve propagation must satisfy

(Kr ∈ S) ∧ (K ∈ op(r−1(S))) ⇐⇒ Kr ∈ op′(S) (9)

3 The requirement assumes that the key does not occur in S. The space of keys ensures
a sufficiently small probability that the key occurs in the application code or data
by happenstance.

44 J. Perkins et al.

where r−1 derandomizes strings, Kr is a randomized keyword and K is the
corresponding keyword. A keyword in the output corresponds to a keyword in
the input only if it is the same instance of the keyword (i.e., the characters that
make up the keyword in the input were copied to the output).

3.2 String Randomization

AutoRand randomizes (each SQL keyword in) each string constant in the appli-
cation code.

AutoRand randomizes each string constant by tokenizing it and then append-
ing the randomization key to all the SQL keywords in the string. The string is left
unmodified if no SQL keywords are found in it. The set of tokens that AutoRand
regards as SQL keywords is easily configurable. The current default configura-
tion protects against injection of standard SQL [11] as well as non-standard SQL
extensions for popular databases. Since SQL keywords are case-insensitive, the
AutoRand tokenizer is case-insensitive.

Each keyword is randomized by appending a randomization key consisting
of 10 ASCII letters (upper case or lower case) or digits. For example, select
could become selecta2831jfy6. To minimize the possibility that an attacker
could generate the key by chance, we use a large space consisting of 6210 (i.e.,
over 800 quadrillion) possible keys. This corresponds to about 60 bits, which is
small for cryptographic keys, whose threat model is offline brute force search.
However, AutoRand’s keys have a different threat model, namely an attacker
attempting injections over the network, whose latency limits the rate at which
keys can be tried. Nonetheless, AutoRand’s key length is configurable and could
be easily increased. Increasing the key by 10 characters increases the overhead
(see Sect. 5.3) by only about 0.73 %.

3.3 SQL API Calls

Java applications access SQL databases via a standard Java API. The
java.sql.Statement class provides methods to execute SQL statements passed
as string arguments, e.g., executeQuery() in (1).

AutoRand wraps each call by the application to the methods of Statement
and Connection that receive SQL statements and prepared statements as string
arguments. Even though a prepared statement is not vulnerable to injections
when the template is instantiated, the creation of the prepared statement itself
is vulnerable to injection when the string (e.g., “select * from users where
username=? and password=?”) is assembled from parts that are not all trusted.

Each method wrapper first checks that all the keywords in the SQL string
include the correct key. If any keyword does not have the key, the SQL string is
deemed to result from an attack and the wrapper throws an exception.

If all the keywords have the correct key, the method wrapper removes every
occurrence of the key and then calls the method of Statement or Connection
with the resulting string.

AutoRand: Automatic Keyword Randomization to Prevent Injection Attacks 45

3.4 String Manipulations

Just randomizing strings as described in Sect. 3.2 and wrapping SQL API calls
as described in Sect. 3.3 would nullify SQL injection attacks but could disrupt
the normal operation of the application. For instance, if String.equals were
called on a program constant containing a keyword and an input containing
the same keyword, it would incorrectly return false, changing the semantics
of the application. Also, if a randomized string makes its way to an output
that is visible to the attacker (e.g., System.out.println(query)), the attacker
could learn the key and inject correctly randomized keywords. Thus, AutoRand
implements further transformations to make keyword randomization transparent
to the application (other than hardening the application against SQL injection),
including any output that may be visible to the attacker.

When necessary, AutoRand intervenes in string method calls by replacing
calls to string methods with calls to methods in the AutoRand string library.

The Java string methods fall into a few basic categories. AutoRand’s app-
roach for accomplishing transparency and propagation for each of those cate-
gories is described in the following subsections. The category, propagation, and
transparency for each string method are shown in Fig. 2.

Observer Methods. Observer methods do not create or modify strings. They
are handled by derandomizing each of the string arguments and then invoking the
original method. Transparency is trivially accomplished as the original method
is run on the derandomized arguments. There are no keyword propagation issues
since strings are not created or modified.

For example, the implementation for String.length and String.equals
are:

AutoRandLength (String s) { AutoRandEquals (String s1, String s2) {

return derand(s).length(); return derand(s1).equals(derand(s2));

} }

Complete String Methods. Complete string methods operate on entire
strings, and not on portions of them. Since the random keys are incorporated
into the string itself, any operations that only involve complete strings will work
correctly without modification. For example, String.concat() and String-
Buffer.append() function correctly on randomized strings without modifica-
tion.

Fortunately, these are amongst the most commonly used of the String func-
tions, which is partially responsible for AutoRand’s low overhead.

Partial String Methods. Partial string methods may operate on pieces of a
string. The pieces are often specified by indices, but can also be specified by
a string match (such as in String.replace()). For these methods, AutoRand

46 J. Perkins et al.

Fig. 1. Each character in the original (unrandomized) string is mapped to the corre-
sponding character in the randomized string. There is no mapping to any of the char-
acters in the randomization key. This ensures that no operation over mapped indices
can create a partial key and that any operation over complete keywords will include
the corresponding randomization key.

transfers the operation from the original (derandomized) string to the random-
ized string.

The three basic operators for partial strings are substring, insert, and
delete. The location in the string is specified by one or more indices.

AutoRand creates an index map between the derandomized and randomized
versions of the string (an example is shown in Fig. 1). This maps characters in the
original (derandomized) string to the corresponding character in the randomized
string. AutoRand implements substring, insert, and delete by looking up
each index in the map and calling the original method on the randomized string
using the mapped indices. This both propagates random keys and preserves
transparency for each operation.

The substring method takes a substring from start (inclusive) to end (exclu-
sive). Any substring that contains a keyword will include both the beginning
character of the keyword and the character immediately after the keyword. Since
the map of the character after the keyword will point after the randomization
key, any substring that includes the keyword will also include its key. For exam-
ple, consider substring(9,13) on the string in Fig. 1. This call would return
the keyword from in the original string. After applying the index map this call is
transformed into substring(14,23) on the randomized string. This will return
from<KEY> in the randomized string, preserving the randomization key.

The delete method takes the same parameters as substring and works in
the same fashion. For example, delete(9,13) would be transformed to delete
(14,23) and would remove from<KEY> from the randomized string.

The insert method inserts its string argument before the specified index.
The map ensures that inserts cannot occur between the keyword and its ran-
domization key or in the middle of a randomization key, because there are no
maps to those locations.

All other partial string methods can be built up from these core methods
(substring, delete, and insert), and the observer and complete string meth-
ods. For example, the String.replace(target,replacement) can be imple-
mented as

AutoRand: Automatic Keyword Randomization to Prevent Injection Attacks 47

StringBuffer sb = new StringBuffer();

int start = 0;

int offset = this.indexOf(target);

while (offset != -1) {

sb.append(this.substring(start,offset));

sb.append(replacement);

start = offset + target.length();

offset = this.indexOf(target,start);

}

sb.append(this.substring(start));

(10)

AutoRand re-implements each of the other non-core partial string methods
in the same fashion.

Character Methods. Character methods convert (portions of) strings to their
underlying characters, bytes, or code points (e.g., toCharArray(), getChars(),
getBytes() and charAt()).

AutoRand derandomizes the string before making the conversion, preserving
transparency. Since the result is not a string, random keys are not propagated
(see Sect. 4 for more information)

Miscellaneous Methods. The reverse() method reverses the characters in
a string. AutoRand derandomizes the string before making the conversion, pre-
serving transparency. Propagation is not an issue as there are no single char-
acter keywords and thus keywords can not be transferred to the result. The
capacity(), ensureCapacity(), and trimToSize() methods are not modified
by AutoRand.

The intern() method returns a canonical representation for the string
object. This is commonly used to conserve memory and also allows reference
equality checks between interned strings. Since string constants are automati-
cally interned and AutoRand modifies entries in the constant table, the random-
ized versions of constants are interned. This does not affect transparency unless
reference equality is used to compare a constant with an interned input value.
This kind of reference equality did not occur in any of the real-world programs
used in the evaluation. Nonetheless, AutoRand could be extended to modify
reference equalities (via the if acmp<cond> bytecode) on strings to compare
the (derandomized) contents of the strings if both sides of the equality test are
interned.

3.5 External API Calls

Java strings can interact externally to the Java application through a number
of Java system library calls. For example, writing to files/sockets, opening files,
reading properties, reading environment variables, using reflection etc.

In these cases, the original strings should always be used. AutoRand accom-
plishes this by converting the application (and the system libraries themselves)

48 J. Perkins et al.

Fig. 2. Synopsis of approach for each string method (in String, StringBuffer, and
StringBuilder). Similar calls (indicated with *) are grouped together as are calls with
the same name but different arguments. CodePoint is abbreviated as CP. Category
is the type of call for AutoRand instrumentation purposes. See Sect. 3.4 for more
information.

to call AutoRand’s version of these routines. These routines derandomize their
string arguments and then make the original call. This ensures that each exter-
nal call acts correctly and that the random key is never visible to an attacker
(since it is always removed before any external communications).

3.6 Standard Java Library

Strings are also manipulated within the standard Java library. For example, the
equals(), compareTo() and hashCode() methods are called in the collection
classes. Commonly used classes such as Pattern and Matcher call string meth-
ods and create new strings. AutoRand instruments the libraries in the same
manner as it instruments the application. This ensures that any string manip-
ulations within the libraries will correctly propagate random keys and ensures
transparency over any strings containing random keys. The only differences are
that constant strings within the standard libraries are not randomized (as they
will not flow to application SQL commands).

AutoRand statically transforms the byte code of the standard Java libraries
and creates a new version of the library. When an application hardened by
AutoRand is run, it is run with the transformed version of the library.

3.7 Extensibility

AutoRand could be easily extended to randomize, besides SQL keywords, other
kinds of keywords in strings, to provide protection against OS command injec-
tion, LDAP injection, XQuery/XPath injection, etc.

4 Threats to Validity

Our current AutoRand implementation is transparent with the following excep-
tions: (1) AutoRand performs the randomization checks at SQL API calls to

AutoRand: Automatic Keyword Randomization to Prevent Injection Attacks 49

detect SQL injection attacks. The lack of transparency at these API calls is one
of the goals of AutoRand. (2) Intern calls may not be transparent with respect
to reference equality. This is straightforward to implement but not currently
implemented (see Sect. 3.4).

Our current AutoRand implementation satisfies propagation on all string
operations over full keywords. However, there are some possible issues: (1) Con-
verting strings to characters, bytes, or arrays thereof and back to strings. (2)
Character-level manipulations that construct strings with SQL keywords (e.g.,
"sel" + "ect"). None of these occurred in any of the evaluation programs.

Because characters extracted from strings are manipulated as individual char-
acters and not as strings, the randomization keys cannot be propagated for these
methods. AutoRand thus derandomizes the string before making the conversion
(preserving transparency). Fortunately, there is little reason to manipulate pro-
gram constants in this fashion.

We evaluated this hypothesis experimentally by gathering information about
how many times each character method is called in the evaluation programs on
strings that contain randomization keys and the stack trace for each such call. We
then examined each call to determine if it would pose a problem for propagation.
Only strings that contain randomization keys are relevant to propagation.

The getBytes() method is called only in Ant and FTPS. In both cases it
is used to prepare a string to be written to a stream. Strings that are written
would be derandomized in any event (see Sect. 3.5) and are not an issue for
propagation.

The getChars() and toCharArray() methods are called only by JMeter in
a class that outputs XML (PrettyPrintWriter). Strings that are written out
would be derandomized in any event (see Sect. 3.5) and are not an issue for
propagation.

The charAt() method is called in 7 of the 8 evaluation applications. There
were 12 unique call sites for charAt() on randomized strings in the seven appli-
cations. We examined each of these to determine how charAt() was being used
and whether or not it was a problem for propagation. We found that these
use cases for charAt() query the string for information, but do not use the
resulting characters to build new strings. For example, the method Selec-
torutils.tokenizePathAsArray in Ant uses charAt() to look for slashes in
the path. But the resultant array is built by normal string operations using
the locations of the slashes as indices. Since AutoRand uses indices relative
to the derandomized string, the offsets determined by querying charAt() are
compatible.

The code point methods (e.g., codePointAt()) return full 32-bit character
representations. Their usage would be similar to charAt() in programs that
support the full Unicode set (and manipulate strings at the character level).
These methods were not called in any of the evaluation applications.

None of the character methods were used to create new strings that are later
used by the program. The examination of each use indicates that these do not
present a propagation problem as they are commonly used. This validates our

50 J. Perkins et al.

hypothesis that these calls are not used to manipulate strings but only to create
specific output formats or to obtain information about the string. Propagation
is not an issue in either case.

5 Experimental Evaluation

AutoRand has been experimentally evaluated using various Java programs.

5.1 Programs with Inserted Vulnerabilities

An independent test and evaluation (T&E) team hired by the government agency
that is the sponsor of this research identified a set of Java programs, ranging in
size up to 250 k lines of Java source, not including common third-party libraries:

– Ant (256 k LOC) —A build system.
– Barcode4J (28 k LOC)—A barcode generator.
– FindBugs (208 k LOC)—A bug finder.
– FTPS (40 k LOC)—An FTP server.
– HtmlCleaner (9 k LOC)—A reformatter of HTML files.
– JMeter (178 k LOC)—A performance measuring tool.
– PMD (110 k LOC)—A source code analyzer.
– SchemaSpy (16 k LOC)—A database inspecting tool.

The T&E team introduced SQL vulnerabilities into each program, and pro-
duced a set of malicious inputs to exercise the vulnerabilities. The T&E team
also produced a set of benign inputs to exercise each program’s standard func-
tionality. They created 13 vulnerability variants to insert into the base programs.
Each test case inserts one of the variants into the base program. The same vari-
ant can be applied to multiple locations in a base program. See Fig. 3 for details.
As the figure shows, there are a total of 289 distinct test cases (base program +
variant + injection location), 578 attack inputs, and 1444 benign inputs.

The malicious and benign inputs were sent to the program after hardening
with AutoRand and the results observed to determine if the vulnerability was
exploited in the case of malign inputs, and if functionality was preserved in the
case of benign inputs. The inputs were also sent to the unaltered programs as a
control. The AutoRand-hardened programs successfully blocked all of the attack
inputs (i.e., injection attacks) and preserved functionality for all of the benign
inputs.

The experiments were run using the Test and Evaluation Workbench (TEW)
developed by the T&E team. The TEW works on an interconnected set of
virtual machines where variant creation, compilation, and instrumentation are
performed on one machine and execution of test cases performed on separate
machine(s). The tests were performed on Debian 6.03 and the virtual machines
were run on a 12 core machine using Xeon 3.47 Ghz processors. The TEW
also includes support services such as the MySQL, PostgreSQL, SQLServer
(Microsoft) and Hibernate database systems.

AutoRand: Automatic Keyword Randomization to Prevent Injection Attacks 51

Fig. 3. Injected vulnerability programs and variants. Each variant is injected into the
base program at Cnt different locations creating Cnt versions of the program. The
attack and benign inputs are then applied to each version. For example, in the first
row, 43 versions of Ant are created with the V01 vulnerability code inserted in a
different location in each. Then 2 attack inputs and 5 benign inputs are applied to
each of the 43 versions of Ant. AutoRand detects each attack with no false positives
or semantic changes to the program.

5.2 SQL Injection Test Programs

The same T&E team also wrote 17 small programs (see Fig. 4) for the pur-
pose of testing systems like AutoRand that protect against SQL injection. Each
program reads inputs and uses them in SQL queries. The programs work as
expected with benign inputs but are subject to SQL injection with malicious
inputs. The tests covered the MySQL, Hibernate, and PostgreSQL database
engines, a variety of SQL query syntax, and the Statement.execute(), and
Connection.prepareStatement() Java SQL API calls.

Several different types of attack inputs were used across the tests including:

– String Tautology - Closing the application’s quote of a string input early
and then adding a tautology. For example one attack input is: ’ OR ’1’=’1.
The resulting SQL is: ...password=’’ OR ’1’=’1’... which will always be
true (thus evading the password check).

– Adding Code - After a valid string or numeric input, additional code is
added.

– Comment out code - After a valid string or numeric input, comment char-
acters are added that stop processing of any remaining characters in the com-
mand. This can be combined with Adding Code to execute arbitrary com-
mands.

We hardened each program using AutoRand and executed the programs
with each of their benign and attack inputs. The AutoRand-hardened programs

52 J. Perkins et al.

Fig. 4. SQL injection tests written by the T&E team. Each test applies the benign
and attack inputs to the same SQL statement. AutoRand detected each attack with
no false positives.

Fig. 5. Overhead for test programs. One example of each program/variant was run
(native and instrumented) five times over each of its inputs.

successfully blocked every attack input while leaving behavior unchanged for
every benign input.

5.3 Overhead

To measure the overhead incurred by randomization, we randomly chose one
example test case from each program/variant combination (Fig. 3) for a total

AutoRand: Automatic Keyword Randomization to Prevent Injection Attacks 53

of 23 applications.4 We ran each over each of its benign inputs five times and
measured the total wall clock time. We repeated this process with the hardened
version of each variant and compared the times. The average overhead ranged
from 0 % for FTPS to 15.1 % for FindBugs with an average of 4.9 %. See Fig. 5.

We also measured server overhead (a common use case for SQL injection
defenses). OpenCMS [12] is an open-source Java program (consisting of over
100k lines of code) for managing web sites. It runs as a web application in the
Apache Software Foundation’s Tomcat framework [13]. It uses a database to
store web site content and configurations. SQL injection attacks might thus be
possible by sending customized URLs to the OpenCMS web application.

To measure the overhead incurred by randomization, a script was devel-
oped to send 1,000 benign URLs to an OpenCMS installation and record the
resulting HTML responses. (The URLs were captured while interacting with the
installation to manage a web site.) The total time required to process all of
the URLs was measured both before and after hardening of the OpenCMS code
by AutoRand. The average overhead was 4.5 %. The recorded HTML responses
were also compared to ensure that functionality was not altered.

The OpenCMS test was performed on a virtual machine running Ubuntu
12.04 on a 3.6 Ghz 4 core iMac with 32 GBytes of memory. Both the client
and the server ran on the same machine using localhost with negligible network
delays.

6 Related Work

6.1 Manual Prevention

The most common approach to preventing SQL injection attacks is defensive
coding practices such as carefully validating all inputs and using parameterized
query APIs [14,15]. Unfortunately, as evidenced by the continuing prevalence of
successful SQL attacks [5], these practices have not been sufficient to prevent
attacks.

Defensive coding practices require trained developers that always follow the
correct approach. A single shortcut can lead to a vulnerability. And they can be
very expensive and time consuming to apply to legacy code. And they provide
no protection without access to developers and source.

AutoRand, by contrast, allows code to be immediately protected without
source code modifications or developer involvement.

6.2 Randomization

SQLRand [7] introduced a manual method to randomize SQL queries. To apply
the method, a developer finds each string containing SQL keywords, determines
whether or not that string is used to build an SQL command, runs the string
4 The full test suite runs in a special environment and is difficult to instrument. The

subset allowed for more manageable experiments.

54 J. Perkins et al.

through the SQLRand tool, and copies the result back into their program. SQL
requests are checked by a database proxy. Requests that do not contain the
correctly randomized keywords will result in an exception. SQLRand does not
derandomize SQL keywords except in the proxy. Thus, if the modified strings are
used for any other purpose, changes to program semantics may result (including
accidental disclosure of the randomization key). SQLRand does not support
strings that are used for multiple purposes (e.g., SQL and error messages).

AutoRand automatically transforms the program to randomize SQL key-
words and ensure semantic correctness (e.g., string length, accidental disclosures,
etc.). In addition, AutoRand does not require any additional network compo-
nents (i.e., a proxy).

6.3 Dynamic Tainting

A popular technique for preventing SQL injection attacks is dynamic taint track-
ing [8,10,16–18]. Taint-tracking systems instrument applications with the ability
to track the provenance of inputs and are thus able to determine if an SQL query
contains any untrusted inputs. Unfortunately, most taint tracking systems have
either (a) non-negligible performance overhead [8,10] or (b) reduce the scope of
tracking they perform (i.e., they do not track character level information) that
can lead to false positives and false negatives [16,17].

Chin et al. [10] implement a comprehensive taint tracking system (using
character-level tainting), through modifications to the Java string library, that
reports a modest overhead of about 15 %. Unfortunately, their performance eval-
uation numbers do not include any safety checks using the taint information.
Safety checks typically contribute significantly to the overhead of taint tracking
systems. Furthermore, their evaluation does not test the system on real-world
applications; they focus on unit tests designed to test taint propagation. Their
implementation requires changes to the string library that are only compatible
with the IBM JVM and does not support common string related functions, such
as regular expressions and String.format().

WASP [8] is a taint tracking system that tracks trusted, rather than
untrusted, data. WASP uses its MetaStrings library to mimic and extend the
behavior of Java’s standard string classes. It replaces strings allocated in the
application with the MetaStrings equivalent. WASP does not, however, instru-
ment the Java libraries (except to remove the final flag from the string classes).
Strings allocated within the Java library will thus not include meta-data. Any
operations within the library that creates a new string based on application
strings (such as those in Pattern, Matcher, and Formatter) will not propagate
taint. Also, the string classes contain methods (e.g., format() and split()) that
are implemented using these classes. Unless MetaStrings re-implemented these
without using the libraries these may suffer from the same propagation issues.
Propagation failures in WASP can lead to false positives. In contrast, AutoRand
propagates random keys through the Java libraries and has less overhead.

WASP could be extended to instrument the system libraries to avoid these
issues, but one would expect its overhead to be significantly increased.

AutoRand: Automatic Keyword Randomization to Prevent Injection Attacks 55

Diglossia [18] tracks taint in PHP by modifying the interpreter to create a
shadow string that uses a mapped character set for trusted characters. It then
parses the shadow string and the original string to ensure that tainted input
doesn’t change the parse tree. PHP interpreter based approaches are not directly
applicable to Java as the complex Java JIT makes it significantly more difficult to
efficiently modify the interpreter. AutoRand’s bytecode transformation approach
is more portable and maintainable.

6.4 Parse Tree Structure

Another technique for detecting SQL injection attacks is based on the obser-
vations that most attacks modify the SQL query structure (i.e., parse tree) as
intended by the developer [9,19–21].

SQLGuard [19] and SQLCheck [20] are developer tools that can be used to
statically define and dynamically check the integrity of SQL query structures.
While successful at detecting a number of SQL inject attacks, they require man-
ual modifications to the application. In contrast, AutoRand is fully automatic.

An alternative approach is to automatically learn query structure [9,21–
23]. AMNESIA [22] and Halder et al. [23] use static analysis to create a model
of query structure and a run-time system to detect structure violations. To
scale its static analysis to real-world applications, AMNESIA is context- and
flow-insensitive and thus susceptible to false-negatives and false-positives [21].
AutoRand is a dynamic technique and hence not susceptible to the imprecision
introduced by static analysis.

CANDID [9,21] is a dynamic technique for extracting query structure. CAN-
DID automatically transforms the application code to create a parallel, shadow
data set for strings. Where the program assigns to a string variable, CANDID
inserts code to assign to a shadow variable which will be used in the reference
query. If the real variable is assigned a string constant, the shadow variable gets
the same value. If the real variable receives a value from user input, the shadow
variable gets a dummy value. String operations like concatenation are performed
on both data sets in parallel. CANDID’s published overhead is four times slower
than AutoRand, most likely due to its added complexity.

6.5 Static Analysis

Several methods use static analysis to detect SQL injection attack vulnerabil-
ities [24–26]. These systems identify unsanitized data flows from user input to
SQL queries (i.e., they check whether every flow from input to query is subject
to input validation). These techniques can verify that a sanitization technique is
called on unsanitized flows but not whether the sanitization is correct, which can
lead to false negatives. Given that static data-flow analysis must be conservative,
these techniques, inescapably, also suffer from false positives.

56 J. Perkins et al.

7 Conclusion

SQL injection vulnerabilities comprise a prominent, serious, and ongoing source
of security vulnerabilities. By delivering an automated, transparent, and effi-
cient implementation of SQL keyword randomization, AutoRand provides one
solution to this problem. Our results show that, on examples developed by an
independent evaluation team, AutoRand, as designed, successfully blocked all
SQL injection attacks and provided transparent execution for benign inputs, all
with low overhead in large production Java applications.

Acknowledgements. We thank the MITRE Corporation test and evaluation team for
creating an automatic and thorough testing apparatus. We thank Stephen Fitzpatrick
and Eric McCarthy of Kestrel Institute for their contributions to the project. We thank
Michael Gordon of Aarno Labs for comments that greatly improved the manuscript.

References

1. Common Weakness Enumeration (CWE) 89: Improper neutralization of special
elements used in an SQL command (‘SQL injection’). http://cwe.mitre.org

2. SANS Institute, MITRE, et al.: CWE/SANS Top 25 Most Dangerous Software
Errors, September 2011. http://cwe.mitre.org/top25

3. OWASP Foundation: OWASP Top Ten Project, June 2013. https://www.owasp.
org/index.php/Top 10 2013-Top 10

4. Clarke, J.: SQL Injection Attacks and Defenses, 2nd edn. Syngress, Massachusetts
(2012)

5. Code Curmudgeon: SQL injection hall of shame. http://codecurmudgeon.com/wp/
sql-injection-hall-of-shame/. Accessed 24 June 2014

6. Kc, G.S., Keromytis, A.D., Prevelakis, V.: Countering code-injection attacks with
instruction-set randomization. In: CCS 2003, pp. 272–280 (2003)

7. Boyd, S.W., Keromytis, A.D.: SQLrand: preventing SQL injection attacks. In:
Jakobsson, M., Yung, M., Zhou, J. (eds.) ACNS 2004. LNCS, vol. 3089, pp. 292–
302. Springer, Heidelberg (2004)

8. Halfond, W.G.J., Orso, A., Manolios, P.: Using positive tainting and syntax-aware
evaluation to counter SQL injection attacks. In: SIGSOFT 2006/FSE-14 (2006)

9. Bisht, P., Madhusudan, P., Venkatakrishnan, V.N.: Candid: dynamic candidate
evaluations for automatic prevention of SQL injection attacks. ACM Trans. Inf.
Syst. Secur. 13(2), 14:1–14:39 (2010)

10. Chin, E., Wagner, D.: Efficient character-level taint tracking for Java. In: Proceed-
ings of the 2009 ACM Workshop on Secure Web Services (2009)

11. ISO/IEC 9075:2011 - Information technology - Database languages - SQL
12. Alkacon Software: OpenCms, May 2012. http://www.opencms.org
13. Apache Foundation: Apache Tomcat, January 2012. http://tomcat.apache.org/
14. Veracode: SQL injection cheat sheet and tutorial. http://www.veracode.com/

security/sql-injection. Accessed 1 August 2014
15. OWASP: SQL injection prevention cheat sheet. https://www.owasp.org/index.

php/SQL Injection Prevention Cheat Sheet. Accessed 1 Aug 2014
16. Nguyen-Tuong, A., Guarnieri, S., Greene, D., Shirley, J., Evans, D.: Automatically

hardening web applications using precise tainting (2005)

http://cwe.mitre.org
http://cwe.mitre.org/top25
https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.owasp.org/index.php/Top_10_2013-Top_10
http://codecurmudgeon.com/wp/sql-injection-hall-of-shame/
http://codecurmudgeon.com/wp/sql-injection-hall-of-shame/
http://www.opencms.org
http://tomcat.apache.org/
http://www.veracode.com/security/sql-injection
http://www.veracode.com/security/sql-injection
https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet

AutoRand: Automatic Keyword Randomization to Prevent Injection Attacks 57

17. Pietraszek, T., Berghe, C.V.: Defending against injection attacks through context-
sensitive string evaluation (2006)

18. Son, S., McKinley, K.S., Shmatikov, V.: Diglossia: detecting code injection attacks
with precision and efficiency. In: CCS 2013, pp. 1181–1192 (2013)

19. Buehrer, G., Weide, B.W., Sivilotti, P.A.G.: Using parse tree validation to prevent
SQL injection attacks. In: SEM 2005 (2005)

20. Su, Z., Wassermann, G.: The essence of command injection attacks in web appli-
cations. In: POPL 2006, pp. 372–382 (2006)

21. Bandhakavi, S., Bisht, P., Madhusudan, P., Venkatakrishnan, V.N.: Candid: pre-
venting SQL injection attacks using dynamic candidate evaluations. In: CCS 2007
(2007)

22. Halfond, W.G.J., Orso, A.: Amnesia: analysis and monitoring for neutralizing SQL-
injection attacks. In: ASE 2005, pp. 174–183 (2005)

23. Halder, R., Cortesi, A.: Obfuscation-based analysis of SQL injection attacks. In:
ISCC 2010, pp. 931–938 (2010)

24. Jovanovic, N., Kruegel, C., Kirda, E.: Pixy: a static analysis tool for detecting web
application vulnerabilities (short paper). In: SP 2006 (2006)

25. Livshits, V.B., Lam, M.S.: Finding security vulnerabilities in Java applications
with static analysis. In: SSYM 2005, p. 18 (2005)

26. Fu, X., Lu, X., Peltsverger, B., Chen, S., Qian, K., Tao, L.: A static analysis
framework for detecting SQL injection vulnerabilities. In: COMPSAC 2007 (2007)

AVRAND: A Software-Based Defense Against
Code Reuse Attacks for AVR Embedded Devices

Sergio Pastrana1(B), Juan Tapiador1, Guillermo Suarez-Tangil2,
and Pedro Peris-López1

1 Department of Computer Science, University Carlos III de Madrid, Leganés, Spain
{spastran,jestevez,pperis}@inf.uc3m.es

2 Information Security Group, Royal Holloway University of London, Egham, UK
guillermo.suarez-tangil@rhul.ac.uk

Abstract. Code reuse attacks are advanced exploitation techniques that
constitute a serious threat for modern systems. They profit from a con-
trol flow hijacking vulnerability to maliciously execute one or more pieces
of code from the targeted application. ASLR and Control Flow Integrity
are two mechanisms commonly used to deter automated attacks based
on code reuse. Unfortunately, none of these solutions are suitable for
modified Harvard architectures such as AVR microcontrollers. In this
work, we present a code reuse attack against embedded AVR devices
that shows how an adversary can execute arbitrary code reused from the
firmware and other external libraries. We then propose a software-based
defense based on fine-grained random permutations of the code mem-
ory. Our solution is installed in the bootloader section of the embedded
device and thus executes during every device reset. We also propose a
self-obfuscation technique to hinder code-reuse attacks against the boot-
loader.

Keywords: Code reuse attacks · Return Oriented Programming ·
AVR · Internet-of-things · Embedded devices · Memory randomization

1 Introduction

The widespread adoption of communicating technologies such as smart or wear-
able devices enables users to interconnect their systems world-widely. The
so-called Internet of Things (IoT) represents the integration of several comput-
ing and communications paradigms that facilitate the interaction between these
devices. In this context, security and privacy play an important role as many
of these devices incorporate sensors that could leak highly sensitive information
(e.g., location, behavioral patterns, and audio and video of the device’ surround-
ings). Moreover, embedded devices are frequently connected to the Internet, so
they are valuable targets for malicious activities, such as botnets or spammers.

One common architecture for embedded devices is AVR1, which is a modified
Harvard architecture that physically separates the flash memory from the SRAM
1 http://www.atmel.com/products/microcontrollers/avr/.

c© Springer International Publishing Switzerland 2016
J. Caballero et al. (Eds.): DIMVA 2016, LNCS 9721, pp. 58–77, 2016.
DOI: 10.1007/978-3-319-40667-1 4

http://www.atmel.com/products/microcontrollers/avr/

A Software-Based Defense Against Code Reuse Attacks for AVR Devices 59

memory. While the former contains the executable binary, the latter stores the
program data, heap, and stack. Flash memory can only be re-programmed from a
special section called bootloader, and applications cannot be modified at runtime
without flashing the entire memory. In addition, the number of times a memory
can be flashed (namely cycles) is limited.

Memory corruption vulnerabilities have been widely explored as a strategy
to hijack the execution control flow for a huge variety of systems, including
embedded and mobile devices [6,12,15]. In the past, once the adversary gained
control of the execution, the immediate next step was to directly jump into its
own malicious payload, which was already injected in the exploit [8]. However,
Data Execution Prevention (DEP) techniques turn code injection useless. AVR—
together with other Harvard architectures—incorporate a type of hardware based
DEP defense. This avoids the flash memory (where the executable code resides)
being written from anywhere else except from the bootloader section, which also
resides in the flash memory. Thus, the only means to exploit AVR devices is by
reusing existing software from the flash memory [12,15].

Related Work. Code reuse attacks were first implemented by reusing different
functions imported from various libraries (such as libc [27]). Well-known coun-
termeasures such as Address Space Layout Randomization (ASLR) [5] modify
the memory layout of the function libraries during the loading process to effec-
tively hinder these return-to-lib attacks. However, modern code reuse attacks can
arbitrarily perform certain operations to carefully chain different pieces of code
(called gadgets) based on the Return Oriented Programming (ROP) paradigm
[17,20]. In fact, code reuse attack are still feasible in ASLR-based defenses using
ROP due to memory leakage vulnerabilities [24]. For example, the JIT-ROP
attack in [23] disassembles pages obtained from the leaked address to build a
gadget chain at runtime. The exploitation of memory leakages assumes that the
adversary can use large payloads, and that she can exploit the vulnerability sev-
eral times. However, these assumptions are not generally valid for AVR devices,
and the threat model is different from other less constrained architectures such
as ARM or x86.

Countermeasures against code reuse attacks have been widely explored
recently [4,6,7,9,10,12,15,18,22]. Current defenses can be classified as follows:

1. Memory randomization [4,6,9,25] obfuscates the layout of the program
binary. To overcome memory leakages, this technique relies on certain
Execute-only-Memory (XoM) areas, which can neither be read nor written.
These areas can be used to store trampolines to real, randomized areas of
code. Many of these solutions rely on hardware-specific properties, such as
Intel Extended Tables [9,25], which obviously are not applicable to AVR.
A recent work by Braden et al. [6] performs a software-based XoM for ARM
embedded devices. However, the authors also rely on a specific hardware com-
ponent, namely the link register used in ARM, to prevent address disclosure.

2. Control Flow Integrity (CFI), which typically determines which are the valid
targets for each control flow statement (e.g., jumps or returns), and prevents
non-valid flows. CFI usually incurs an expensive overhead [18], which is not
suitable for resource-constrained systems such as AVR.

60 S. Pastrana et al.

Most of the attacks and defenses so far target either x86 or ARM architectures.
In these cases, the adversarial model and the defense capabilities are radically
different from those applicable to AVR. Current approaches aiming at hinder-
ing code reuse attacks in Harvard-based architectures rely on adding additional
hardware [15] or modifying the existing one [13]. Such countermeasures introduce
additional costs to these devices that cannot be overlooked. This is especially
critical in scenarios where devices are expected to be inexpensive, as it usually
happens with many IoT deployments. Furthermore, there are settings where the
hardware is already given “as it is”, such us in industrial environments [21],
vehicular systems, and home automation projects [26], to name a few.

Contribution. In this work, we demonstrate code reuse attacks against AVR
devices and provide a software-based defense named AVRAND. The novelty of
our work lies in providing an inexpensive solution targeting endpoint users and
distributions rather than manufacturers, vendors, or hardware architects. We
argue that the capabilities of an attacker are much more limited when dealing
with hardware constrained devices such as an Arduino. Based on this, we balance
the trade-off between its capabilities and the level of protection implemented to
provide a practical and robust countermeasure. To the best of our knowledge,
this is the first work looking at this problem from this viewpoint that proposes
a software-based defense for AVR-based devices. Our randomization engine is
encoded in the bootloader section of the device and, thus, it is executed after
every reboot. Moreover, since the bootloader itself is a potential target for code
reuse attacks, AVRAND applies an obfuscation technique using an XOR-based
self encryption function. To facilitate reproducibility of our results and foster
research in AVR security, we provide functional prototypes of the attack and
the proposed defense for an Arduino Yun device (Sect. 5), which is an emerging
platform widely used in the IoT arena.

2 Background

In this section, we provide a brief background on the target systems studied in
this work: the AVR architecture and the Arduino Yun, which is the platform
used during our experimentation.

2.1 The AVR Architecture

AVR is a modified Harvard architecture implemented by Atmel in 1996. AVR is
widely deployed in embedded devices due to its simplicity and low cost, and it
is present in a variety of applications, including automotive systems [3], the toy
industry, and home automation systems [26].

AVR devices store code and data in memories that are physically separated,
i.e., the flash memory and the data or SRAM memory (see Fig. 1a). To allow
self-programming, two special instructions are provided to load data from flash
to SRAM memory (Load Program Memory, LPM), and to store data in the flash
memory (Store Program Memory, SPM). The latter can only be invoked from

A Software-Based Defense Against Code Reuse Attacks for AVR Devices 61

Fig. 1. AVR and Arduino Yun boards.

a special memory region called the bootloader, and thus all the reprogramming
code must reside in this region. The flash memory in AVR is structured in pages,
which are addressed different than the SRAM. Actually, the program counter
(PC) does not hold the actual address, but a page-based index. Specifically, the
most significant bits of the PC are mapped to the page number, while the less
significant bits are mapped to the offset within the page. As shown throughout
this paper, AVRAND uses this property to manage the memory randomization
efficiently. AVR has 3 special registers, called X, Y and Z, that are used for
direct and indirect addressing and have added properties such as automatic
increment (e.g., Y++) or fixed displacement (e.g., Y+k). These special registers
are mapped with 8-bit general purpose registers (e.g., Y is the concatenation of
r28 and r29).

The SRAM contains the program data, the heap and the stack, which are
unique as AVR runs a single process at a time. A property of AVR is that
the stack starts at the highest address and grows towards lower addresses (i.e., a
PUSH instruction stores a new byte in the stack and decreases the stack pointer),
while the heap grows towards higher addresses and can eventually collide with
the stack. Additionally, the data memory also contains I/O registers such as
the status register or the stack pointer. This implies that the stack pointer is
directly mapped in program memory and can be read and write by load and
store instructions, respectively.

Code running in embedded AVR devices may contain a huge amount of
firmware and library functions required to integrate and operate different sen-
sors, such as thermometers, motion sensors, cameras, etc. Since AVR does not
provide dynamic loading of libraries, integrated libraries are statically linked at
compilation time. AVR binaries follow the Hexadecimal Object File (HEX) for-
mat [16]. These binaries must be uploaded (flashed) to program memory using
either an In-System Programming interface (ISP) or by communicating with the
bootloader using a universal asynchronous receiver/transmitter (UART) [2].

62 S. Pastrana et al.

2.2 Arduino Yun

Arduino2 is an open-source platform originally proposed to be used in electron-
ics and microcontroller projects. With the increasing interest in the IoT, the
Arduino Yun has been designed specifically to run IoT applications, by com-
bining both the low-level electronics originally present in other Arduino devices
with higher level architectures running a Linux based operating system. Specifi-
cally, the Arduino Yun contains a board based on two chips (see Fig. 1b). One is
the Atmel ATmega32u4 (AVR MCU) and the other is an Atheros AR9331. The
Atheros processor holds a Linux distribution based on OpenWrt and has built-in
Ethernet and WiFi support.

The AVR chip and the OpenWrt are connected through a Bridge, i.e., a logical
component programmed in the OpenWrt which communicates with the AVR chip
using a serial port. An Arduino Bridge library provides the required functionality
to communicate applications running in the AVR chip with the OpenWrt, includ-
ing a Process object that allows to run shell commands in the OpenWrt shell or
a HttpClientd that allows to connect the AVR to internet. As shown in Sect. 3.3,
the proposed exploit uses functions from the Bridge library to compromise the
OpenWrt shell.

3 Code Reuse Attacks in AVR

In this section, we demonstrate code reuse attacks in AVR binaries using ROP
and other similar exploiting techniques [27]. We first present the adversarial
model assumed and then provide a general description of the attack. Finally, we
describe the implementation of a prototype for Arduino Yun devices.

3.1 Assumptions and Adversarial Model

In this work, we consider the following assumptions and adversarial settings:

– The targeted embedded device is based on the AVR architecture and it is not
tamper-proof. Thus, if physically accessible, the adversary can dump all the
contents from the data and code memories at any time.

– The adversary cannot inject arbitrarily large payloads. We elaborate more on
this limitation in Sect. 3.2. However, an adversary could inject relatively large
payloads in memory by using software resets and multiple runs.

– The adversary could gain the control of the program flow by remotely exploit-
ing a memory corruption vulnerability on the device, for example a stack or
heap overflow.

– The program includes library functions that are useful for the adversary. For
example, we assume that the program includes the Bridge lib that allows
communication between the AVR and OpenWrt chips in Arduino Yun.

2 https://www.arduino.cc.

https://www.arduino.cc

A Software-Based Defense Against Code Reuse Attacks for AVR Devices 63

3.2 Attack Overview

In this section we present a code reuse attack for AVR devices. Due to the limited
capacity of the AVR memory, the adversary is not able to use large exploiting
payloads, and thus she has to inject additional data into the SRAM. This is
also used when a function library function is called by reference, i.e., when the
arguments are passed as pointers to data memory. Contrarily to other architec-
tures, function arguments in AVR are passed via registers whenever possible,
and through the stack only when the arguments are larger than the length of
the registers. An adversary may also be able to change any data from the SRAM
memory. For example, Habibi et al. [15] proposed an attack that modifies the
registers of an Unmaned Aerial Vehicle (UAV) gyroscope to control its flight.

Injecting Data into the SRAM. Injecting data into the SRAM is limited
by the amount of memory available for the exploit. The main idea is to use
a set of gadgets that, when chained together, could potentially store data into
non-volatile areas of the SRAM memory [12,15]. We call this chain of gadgets
Store data. Ideally, the fewer the number of gadgets used the better, as each gad-
get may require to include its pointer in the exploit. During our experimentation,
we have found a pair of gadgets that allow an adversary to build a payload that
loads several values in memory recursively. We provide more details of these
gadgets and how they are used in our prototype in Sect. 3.3.

Since the stack is located at the highest address of the SRAM memory, the
space available to inject a payload after overflowing the stack is significantly
limited. When a buffer is locally declared in a function, the return address is
stored at a higher position of the memory allocated in the stack. This position
may be close to the end of the SRAM address space (see Fig. 1a). Thus, the
adversary is not able to send large attack payloads as it is usually done in ROP
attacks against conventional architectures [23]. To partially overcome this issue
and provide more space, the stack pointer can be moved to the beginning of
the buffer as proposed in [15]. In this way, the buffer itself can be fully used
to allocate the payload, and the size of the payload injected by the adversary
intrinsically depends on the available buffer size. We call the gadgets that allow
to move the stack Stack move.

Given that the amount of injected data is limited, exploiting the same vul-
nerability multiple times could place the attacker in an advantageous position.
However, exploiting a buffer overflow usually leaves the memory in a non-
deterministic state and the attacker is usually forced to reset the device each
time to maintain the device functional and/or resume its normal operation. To
this end, existing works proposed to repair the stack right after the attack suc-
ceeds [14,15]. While this is useful to modify a few memory data bytes (such as
the UAV gyroscope), repairing the stack does not provide the adversary with
extra data space since the payload is always limited by the memory size—in
fact, using the gadgets that repair the stack requires additional space in the
payload. In this regard, Francillon and Castellucia [12] proposed to perform a
software reset by directly jumping to the address 0x0000 (i.e., the reset vector).

64 S. Pastrana et al.

However, this approach is not suitable for modern AVR chips since it does not
guarantee that the I/O registers are restored to their initial state3. In this work,
we propose the use of a gadget, namely Reset chip, that uses a watchdog reset,
which is one of the reset sources used in AVR. More precisely, the gadget first
establishes a watchdog timer and then jumps to an infinite loop. When the timer
expires, the watchdog causes a software reset.

Figure 2 shows a schematic view of a generic data injection attack. When
the vulnerable function is called, the return address is pushed on the stack. The
attack starts by overwriting this address with the address of the Stack move
gadget (Step 1), which pops the new address and stores it in the memory address
corresponding to the stack pointer (SP). From there on, the buffer constitutes
the new stack (Step 2). Then, the address of the next gadget is popped from
the stack, so the first bytes of the buffer must point to the Store data gadget
(Step 3) that stores the data at a given address (Step 4). As showed in Sect. 3.3,
both the stored data and the SRAM memory addresses must be included in
the payload. Finally, when the Store data gadget returns (Step 5), the program
jumps to the Reset chip gadget (Step 6), which performs a clean software reset
of the AVR chip. The adversary, while needed, may send a new payload to
exploit the vulnerability and store additional data in consecutive addresses. In
every reboot, the .data and .bss sections (i.e., data and heap) of the SRAM
memory are cleared and reloaded, so if the adversary stores data in a memory
area different from these (e.g., the region tagged as unused in Fig. 1a), then such
data will persist across reboots.

Calling Library Functions. Once the required data are stored in memory,
the adversary is ready to use library functions. The idea is to perform a similar
approach to classical “return-to-lib” attacks [27]. Arguments are passed through
registers, which can be easily loaded by using gadgets that pop values from the
stack and stores them in registers. During our experimentation we have observed
that these gadgets are frequent in many AVR binaries.

The adversary is now ready to call the library function using a chain of gad-
gets that performs the desired operation. First, she must load the arguments
and prepare the required data (e.g., pointers to objects) using the data injec-
tion scheme explained above. Next, the program flow must jump to the desired
function itself.

3.3 Attack Implementation in Arduino Yun

In this section, we describe and implement an attack that targets Arduino Yun
devices, allowing an adversary to execute remote commands in the OpenWrt
environment of these devices (i.e., bypassing the Bridge between the two chip-
sets). The attack comprises two phases: injection and invocation. First, it starts
by injecting the command into SRAM memory as a String object, and then
3 http://www.atmel.com/webdoc/AVRLibcReferenceManual/FAQ 1faq softreset.

html.

http://www.atmel.com/webdoc/AVRLibcReferenceManual/FAQ_1faq_softreset.html
http://www.atmel.com/webdoc/AVRLibcReferenceManual/FAQ_1faq_softreset.html

A Software-Based Defense Against Code Reuse Attacks for AVR Devices 65

Fig. 2. Scheme of the data injection ROP attack.

forces the execution of the function runShellCommand(String* cmd) from the
Bridge Library4 by passing as argument the pointer to the injected object.

We assume that the adversary is able to exploit a memory corruption vul-
nerability and hijack the control flow. In this work, we have exploited a function
(implemented ad-hoc for the prototype) that receives data from the serial port
and stores it into a buffer, without checking its bounds. By sending crafted data,
we are able to overwrite the return address of the function and take control of
the program flow. We next explain the implementation details of the attack.

Command Injection into the SRAM. Table 1a shows a pair of gadgets
that chained together move the stack pointer (SP) to a given address. The first
gadget loads the new SP to registers r28 and r29, while the second gadget stores
the SP in 0x3e and 0x3f, which are actually the positions mapping the SP.
This is possible because AVR uses fixed positions of data memory to store I/O
registers, including the SP. Gadgets used to move the stack are very frequent in
AVR binaries, since they are used to save and restore the stack within the called
functions.

To store the data in SRAM, we have found an optimal pair of gadgets (see
Table 1b) that are included with the String library (imported by default in all
Arduino programs). As these gadgets are consecutive in the code, they can be
used recursively. In the first interaction, the gadget Load data at address 0x2c00
loads data in registers r16 and r17, and the destination address in registers r28 an
r29. As explained in Sect. 2.1, registers r28 and r29 are mapped to the register Y
used for direct addressing. Here, the gadget Store data showed in Table 1b uses
4 https://www.arduino.cc/en/Reference/YunProcessConstructor.

https://www.arduino.cc/en/Reference/YunProcessConstructor

66 S. Pastrana et al.

Table 1. Gadgets used to move the stack to a desired position (a) and to inject data
in SRAM (b).

Address Instructions Description

(a) Stack mov 1
0x0c84 pop r29 Loads the new

pop r28 stack pointer in
ret registers r28 and r29

(a) Stack mov 2
0x39e4 in r0, 0x3f

Stores the new
address in the SRAM
memory addresses
mapping the stack
pointer (i.e. 0x3e and
0x3f)

cli
out 0x3e, r29
out 0x3f, r0
out 0x3d, r28
movw r28, r26
ret

Address Instructions Description

(b) Store data
0x2bf6 std Y+3, r17 Stores the values

from r17 and r18 in
addresses Y+3 and
Y+4 (mapped to r29
and r28) and jumps
to 0x2c00.

std Y+2, r16
ldi r24, 0x01
rjmp .+2

(b) Load data
0x2c00 pop r29

Loads the new values
at r17 and r16 and
new addresses at r28
and r29

pop r28
pop r17
pop r16
ret

the fixed displacement of the Y register to store the values from r16 and r17 in
addresses Y+2 and Y+3 respectively. Because the end of the gadget Store data
directly jumps to the gadget Load data, they can be used repetitively, as shown
in Fig. 3.

To perform a software reset of the AVR chip, we use one of the reset sources
provided by the AVR architecture, the watchdog reset, which establishes a time-
out and resets the chip when it expires. Table 2a shows the gadgets used. A first
gadget enables the watchdog and sets a timeout to 120 ms. This gadget is present
in all Arduino programs since it belongs to one of its core libraries, CDC (the
USB Connected Device Classes). The second gadget performs an infinite loop
and is intended to wait until the timer expires. This gadget, which consists of
just one instruction, is the last instruction of every Arduino program and repre-
sents the “stop-program” instruction that maintains the device in an idle state.
By chaining these two gadgets, the chip automatically resets and the normal
operation of the Arduino device is restored. Then, the adversary may send a
new exploit to store more data, depending on what she wants to inject.

Command Invocation. In the previous section we have described how an
adversary can store any data in the SRAM. Now, we show how she could use
such data to execute commands in the OpenWrt of an Arduino Yun. Using the
data injection process, the adversary writes in memory the raw sequence of
characters of the command (e.g., “curl”, as shown in Fig. 2). Then, a String
object pointing to such sequence must be created. A String object has three
components. First, a pointer to the sequence of characters (2 bytes); second, the
length of the sequence (2 bytes); and, finally, its capacity (2 bytes).

To execute the inserted command, we call the function runShellCommand
of the Bridge Library. This function takes as argument the address of the
String object that represents the command, which is provided in registers.
Load arguments gadget, showed in Table 2b performs such loading. In many
AVR binaries it is frequent to find pop instructions before a return, and thus

A Software-Based Defense Against Code Reuse Attacks for AVR Devices 67

Fig. 3. Schematic view of a payload that inserts the command “curl”
(0x63,0x75,0x72,0x6c) into a the address 0xef00 of SRAM memory using the gadgets
from Table 1b.

it can be assumed that this gadget can be easily obtained. Finally, after the
Load arguments gadget is executed, the program should directly jump to the
runShellCommand function which uses the Bridge between the two chips to
execute the desired command in the OpenWrt.

4 Design and Overview of AVRAND

In order to defeat code reuse attacks, we propose AVRAND, a solution that
randomizes the layout of the flash memory where the binary code resides and
obfuscates the randomization engine. Since the core of AVRAND resides in the
bootloader of the flash memory, it re-randomizes the complete program memory
after every software reset, thus preventing attacks that exploit the vulnerability
several times (e.g., brute force attacks) and requiring adversaries to use one-shot
clean attacks (i.e., attacks that do not rely on software resets). Moreover, as we
discuss in Sect. 6, AVRAND could be configured to defeat other exploitation
techniques that do not require to reset the device.

AVRAND is composed by two main modules: preprocessing and runtime, as
depicted in Fig. 4. First, the preprocessing module modifies the HEX file that is
being uploaded into the AVR device so that it can be randomized. This module

68 S. Pastrana et al.

Table 2. Gadgets used to reset the microcontroller (a) and to load the arguments to
the function runShellCommand (b).

Address Instructions Description

a) Reset chip 1
0x1c56 ldi r18, 0x0B Sets the timeout

ldi r24, 0x18 to 120 ms, disables
ldi r25, 0x00 interrupts and enables
in r0, 0x3f the watchdog
cli
wdr
sts 0x0060, r24
out 0x3f, r0
sts 0x0060, r18
ret

Address Instructions Description

a) Reset chip 2
0x3a0a rjmp .-2 Relative jump to itself

(i.e. infinitive loop)

b) Load arguments
0x2b52 pop r25 Loads the arguments

pop r24 into registers. Note that
pop r23 some useless instructions
pop r22 are omitted. Upon return
... the program should jump
ret to runShellCommand

Fig. 4. AVRAND overview.

is executed once in an external computer, before uploading the binary to the
device. Second, the runtime module is installed in the bootloader section of the
device to perform the actual randomization of the flash memory after each device
reset. Moreover, this module uses an obfuscation technique to prevent code reuse
attacks on the bootloader, by applying XOR-based encryption.

Preprocessing Module. This module is executed once and prepares the code
so that it can be randomized. First, it reads the original HEX file and gets
a list of all the control-flow statements, including both absolute and relative
pointers within the code (e.g., jumps and calls, conditional branches, etc.) and
also indirect pointers that may be in the data section (e.g., C++ vtables). Using
relative offsets is common in AVR binaries due to code-size optimization, but
this is not compatible with a randomization approach since relative positions
change from one layout to another. Thus, during the preprocessing module all
the relative operations are replaced by their absolute versions (e.g., RJMP are
substituted by JMP and RCALL by CALL instructions).

A Software-Based Defense Against Code Reuse Attacks for AVR Devices 69

Since the flash memory in AVR is structured in pages, AVRAND performs
randomization at a paged-grained level. However, in order to preserve the seman-
tics of the entire code, pages are linked using JMP instructions. Thus, all control-
flow statements in the code point to absolute positions and can be re-calculated
at runtime during each randomization. Accordingly, the preprocessing mod-
ule outputs a list of public metadata (i.e., we assume that an adversary may
know this information) used to update the offsets during the randomization (see
Sect. 5.1 for details). Furthermore, a list of initial page positions is also created
to indicate the offsets of each page in the binary, which must be kept secret from
adversaries and thus it is named private metadata.

The modified binary code is then flashed onto the flash memory and the
public metadata in the SRAM, while the private metadata is encrypted with the
XOR key and flashed in a non-readable memory area of the embedded device.
For example, many AVR devices are equipped with an external EEPROM mem-
ory that is not directly addressable without special functions in the program
binary, so it can be used to store the private metadata. Finally, the initial pri-
vate key is stored in a fixed position of the flash memory. Note that during each
randomization a new key is generated which overwrites the previous one.

Runtime Module. This module is installed in the bootloader section of the
device and it performs the actual randomization of the memory layout each time
the device is reset. First, it reads the current page positions (i.e., the offset of each
page) from the private metadata to get the actual memory layout of the device,
and decrypts it using the secret key. Second, it generates a map of random
swaps indicating couples of pages randomly paired that must be exchanged.
This map is used to update the current page positions in the private metadata.
Furthermore, the offsets of every control-flow statement in the program memory
are re-calculated and updated by using the new positions and looking at the
public metadata. Finally, the entire memory is re-flashed, swapping all the pages
that purely contain code. To do this, both pages are temporary stored in the
SRAM and then they are re-written into each others’ offsets of the flash memory.
Note that a complete random permutation of the memory layout would require
to store an entire copy of the binary in SRAM, which demands much more
memory than keeping only two pages at a time in memory.

The entire flash memory is structured in pages, but certain pages cannot be
shuffled during the randomization. These are pages that contain data (which
are either before or after the code, never interleaved) and the first two pages
which contains the interrupt vectors. Pages containing data remain in constant
memory offsets. However, two pages may contain both data and code (i.e., one
page before the program and one page after the program), and code in these
pages may be used in a code reuse attack. In the worst case, each of these two
pages will have a single byte of data and code in the bottom part of the section
(i.e., page size − 1). Thus, the maximum size of code that remains constant
during randomization is 2 ∗ (page size − 1) (i.e., 254 bytes in the Atmega32u4
chip).

70 S. Pastrana et al.

Each page contains 128 bytes of code, i.e., approximately 42 instructions.
Thus, gaining knowledge of a single page does not position the attacker in a
privileged situation since she may not find enough gadgets to perform a code-
reuse attack. Moreover, the probability of guessing a page in AVRAND is 1/Np,
where Np is the number of swapped pages (which depends on the size of the
program memory, as discussed below). This probability outperforms state-of-the-
art solutions like Isomeron [10], which has a probability of 0.5 of being discovered
at each gadget.

As stated before, the runtime module is compiled and uploaded into the
bootloader section of the embedded system. Accordingly, this is the first piece
of code being executed after every device reboot, which prevents code reuse
attacks using software resets and reducing the chances for brute force attacks
aiming to discover the memory layout. However, the bootloader itself could be
the target of code reuse attacks (in our experiments, the bootloader contains
around 4 KB of code) and thus it should be protected as well. AVRAND solves
it by applying a simple obfuscation technique using an XOR based encryption. As
such, most of the bootloader is stored encrypted. The runtime module uses a non-
encrypted routine that is executed at the beginning to decrypt the bootloader
and then jumps to its main function. Once the randomization is finished, and
before jumping to the application section, a new random key is generated and
used to re-encrypt the bootloader and the private data from the EEPROM.

5 Implementation

We have developed a freely available5 prototype of AVRAND for the Atmel
Atmega32u4 chip included in the Arduino Yun platform. In this section, we
discuss its implementation details.

5.1 Preprocessing Module

We have implemented the preprocessing module in Python. It takes as input
the HEX file of the original application and generates a modified HEX in such a
way that it can be randomized at runtime by the bootloader. The initial list of
control-flow statements is obtained from the assembly code, which is generated
from the HEX file using the open source tools avr-objcopy and avr-objdump [19].
Control-flow statements may be one of the following: relative or absolute jumps
(RJMP/JMP), relative or absolute calls (RCALL/CALL), conditional branches
(BR), pointers to function prologues and epilogues (used by some functions to
save registers in the stack), pointers to global variable constructors (CTORS) and
C++ specific virtual pointers (vpointers). Also, a list of indivisible instruction
sequences is obtained, in order to avoid placing jumps between them during the
page linking. Examples of such non-breakable instructions are all the two-word
instructions, or the CPSE instruction that compare two registers and jumps to
PC+2 or PC+3 depending on the result.
5 http://www.seg.inf.uc3m.es/∼spastran/avrand/.

http://www.seg.inf.uc3m.es/~spastran/avrand/

A Software-Based Defense Against Code Reuse Attacks for AVR Devices 71

Fig. 5. Transformation of a relative conditional branch (left) to its absolute version
(right).

Then, each instruction using relative offsets (i.e. RJMP and RCALL) is sub-
stituted by its corresponding absolute version (i.e., JMP and CALL). Chang-
ing relative by absolute versions adds 2 extra bytes. In case of conditional
branches, we follow an approach similar to Oxymoron [4] to transform them
into an absolute version, by adding a RJMP and a JMP instruction. This trans-
formation is shown in Fig. 5. The whole BR/RJMP/JMP block is considered as
an indivisible sequence in order to maintain its semantics. As it can be observed,
each conditional branch modified adds 6 extra bytes to the binary code. Every
time that the module inserts new code bytes, the offsets of the entire program
are updated accordingly.

The next step is to link the pages using absolute JMP instructions, which
are inserted in the bottom of each page, i.e., the last instruction of every page
is a JMP to the first instruction of the next page. In this way, whenever a page
changes its position during randomization, these linking pointers can be updated
to point to the new address where the next page begins. The insertion of a JMP
may occur between an indivisible sequence of instructions. If such situation is
detected, the entire sequence is moved forward, to the beginning of the next
page, by adding padding (i.e., NOP instructions).

Finally, the new HEX file is generated along with the public metadata and
the private metadata. The public metadata provides the list of structures rep-
resenting each control-flow statement. Concretely, each structure indicates the
page where the statement is, the offset within the page, the type (i.e., CALL or
JMP, prologue/epilogue function pointer, C++ vpointer or pointer to a global
variable initialization routine), and the page pointed. Note that the offset within
the page does not change in the randomization, and thus it is not necessary to
store it since it can be obtained from the PC address, as explained in Sect. 2.1.

The binary code (HEX) and the public metadata are uploaded to the flash
and data memories respectively, while the private metadata is encrypted (using
an XOR-based encryption and a private key of 128 bytes) and uploaded to
a memory region that is not directly observable by an adversary. During our
experiments, we used the external EEPROM present in the Atmega32u4 chip of
the Arduino Yun. In order to upload these contents to the device, we use the
open source tool avrdude [11].

5.2 Runtime Module

The main purpose of the runtime module is to perform the randomization of
the entire application after every device reset. Thus, it must be stored in the

72 S. Pastrana et al.

booloader section of the flash memory. However, the bootloader contains critical
functions from the standard library, such as those for reading and writing the
private metadata. In a scenario where the adversary can reuse any code from
the flash section, this private data would be accessible by just jumping to the
proper function in the bootloader.

To protect the bootloader, we introduce a self-encryption and self-decryption
routines that obfuscate its contents. Thus, these are the only two routines that
could be potentially used in code reuse attacks. In our prototype they both
occupy less than 2 pages (i.e., 256 bytes), which prevents the use of a practical
ROP attack against our system. Moreover, these non-encrypted pages can also
be shuffled by the randomization engine to prevent attackers from pinpointing
them. Indeed, as the adversary is forced to perform the attack in one-shot, then
if she is able to decrypt the bootloader, when trying to use it or read the private
metadata, the device may be reset, which modify the private metadata.

The runtime module can be divided into 3 main parts: an initialization rou-
tine, the bootloader itself, and the encryption/decryption routine. The first one
holds the Interrupt vectors and some required initialization instructions, and
jumps to the decryption routine. The second part, which is encrypted, contains
the main functionality to setup the hardware and randomize the binary code.
Finally, the last part encrypts again the bootloader and the private data, and
jumps to the beginning of the application code.

The decryption process reads the key (stored at a fixed position of the flash
memory). This key has the same length than the page size (i.e., 128 bytes). Then,
it reads the encrypted bootloader page by page, performing the XOR to obtain
the clear-text of the code, and rewrites the output in the same position. Then,
it jumps to the beginning of the decrypted bootloader.

The bootloader starts by setting up the required hardware (e.g., to initialize
the USB or the clock of the device). It then performs the actual randomization
of the application binary. To do so, it first reads the private metadata and loads
it into a temporary buffer of the SRAM memory (which is deleted once finished).
Second, it creates a random list of pairs of pages (i.e., the random swap), that
must be exchanged, and updates the private data by exchanging the page posi-
tions. We use the rand function implementation from libc, which uses a LFSR
based random number generator. However, in order to get the random seed, we
rely on a timing jitter produced after the variance introduced between the inter-
nal timer of the AVR chip and the oscillator used by the watchdog timer [1].
In this way, AVRAND produces truly random numbers in each execution of the
randomization engine.

Once the random swap map is obtained, the bootloader processes one by one
the pages from the bottom of the application section. Each page is temporarily
stored in data memory, its control-flow statements are modified, and then it
is stored again in the position indicated by the private metadata. Control-flow
statements are updated by looking at the public metadata (i.e., where the pointer
is, its type, and the page being pointed at) and the private metadata (i.e., the
new position of the pointed page). In order to swap two pages, they are both

A Software-Based Defense Against Code Reuse Attacks for AVR Devices 73

stored in SRAM memory and then re-written in each other’s previous position of
the flash memory. Thus, the size of SRAM required during the randomization is
page size∗2. Finally, the new page positions (i.e. private metadata) is encrypted
again, and written to the EEPROM memory. In order to prevent brute force
attacks against the cryptosystem, the randomization engine generates a new
XOR key each time. Figure 6 shows a schematic view of the memory layout of
the application section before and after randomization.

Finally, when the randomization process is finished, the last step is to obfus-
cate the bootloader again using the XOR-based encryption routine and the newly
generated key.

Fig. 6. Flash memory layout before (a) and after (b) randomization.

6 Discussion

AVRAND hampers code reuse attack by randomizing the application layout
from the bootloader and by obfuscating the bootloader itself. We next provide
a discussion of the suitability of our approach and the introduced overhead.

6.1 Suitability of AVRAND

AVRAND is designed specifically for AVR architectures. However, it could also
be applied to other systems using a modified Harvard-based architecture, given
that it is provided with a bootloader section that reprograms the flash memory.
While the core idea of AVRAND (i.e., randomization of the memory layout) has
been widely studied for other architectures such as x86 [5] or ARM [6], few works
have addressed the problem in AVR. Moreover, our focus is on using a lightweight
cryptographic routine, since AVR is designed for resource-constrained embedded

74 S. Pastrana et al.

devices. In our prototype we have used an XOR-based encryption and a lin-
ear PRNG, which fit well in the space given for the bootloader section (4 KB).
Nevertheless, our architecture is designed to accept stronger cryptographic func-
tions if enough resources are available (e.g., using AES or 3DES and the more
robust MersenneTwister PRNG). Nonetheless, in addition to a greater perfor-
mance overhead, the use of complex encryption would have an extra drawback
in AVRAND: since the code used to encrypt and decrypt the bootloader can be
used in code-reuse attacks, using encryption and decryption routines with larger
code size increases the available code for attackers. As explained in Sect. 5.2,
currently the XOR-based encryption only occupies 2 pages.

External hardware can also be applied to palliate code reuse attacks [13,15].
We emphasize that our approach is complementary, but it benefits from a pure
software-based solution. This perfectly suits scenarios where cost-minimization
strategies play an important role in the device design. Francillon and Castellucia
mentioned different protection mechanisms to prevent code injection attacks
[12], such as preventing software vulnerabilities or using stack canaries. These
mechanisms aim at avoiding the control-flow hijack and are complementary to
the randomization provided by AVRAND. Our solution assumes that somehow
the control flow may be hijacked, and thus it intends to hinder code reuse.
Additionally, when the sensor is not physically accessible, then the chances for
and adversary also decrease. While this may be subject for future research, we
consider that AVRAND takes a step forward in the security of AVR devices.

6.2 Limitations

During the design of AVRAND, we have assumed that the exploit size is
restricted by the size of the SRAM memory. For example, as explained in
Sect. 3.2, the stack size may not be large enough to store a complex payload, thus
limiting stack-based exploitation and requiring the adversary to reset the device
when injecting large payloads in memory. Additionally, some devices based on
the TinyOS restrict the packet size to 28 bytes. However, this is not the case
of other chips like the Atmega32u4. Accordingly, other exploitation techniques
such as heap or integer overflows may provide the adversary with the ability to
inject larger payloads.

In this work, we have considered that the memory should be re-randomized
with every device reset. Indeed, it is reasonable that a reset may be produced
because the device is under attack or some other abnormal activity. However,
we are aware that a smart adversary may find techniques to attack the sensor
without causing resets or a system crash (e.g., by cleaning the stack after the
payload execution [14,15]). In any case, AVRAND could be configured to reset
the device periodically, or only under certain conditions. Due to the limited num-
ber of write/erase cycles of the flash memory (e.g., 10,000 in the Atmega32u4
chip), this feature should be carefully adjusted to meet the security requirements
while maximizing the lifetime of the chip, which in turn depends on the applica-
tion scenario. For example, by periodically randomizing the device every 5 min,
a device using the Atmega32u4 chip would last approximately 35 days.

A Software-Based Defense Against Code Reuse Attacks for AVR Devices 75

Finally, it is important to understand that AVRAND is a countermeasure to
code reuse attacks in AVR based chips. However, these chips may be directly
connected to other sensors (e.g., wireless antennas or thermometers) or chips
(e.g., the Atheros chip in the Arduino Yun). In this last case, the Atheros chip
in the Arduino Yun has far more resources than the AVR to secure the device.
Indeed, the installed OpenWrt OS has support for ASLR, DEP, and other security
measures such as authenticating and encrypting communications (e.g., through
SSH). If the adversary could gain access to the MIPS-based chip (for example,
by performing a brute force attack against the SSH or exploiting a vulnerability
in the Linux kernel), then the security gained by AVRAND would be useless.
However, no matter how strong the security measures taken in the Atheros chip
are, the exploitation of AVR opens a security hole, since both chips are connected
through the Bridge library. This is where AVRAND is particularly helpful.

6.3 Overhead Incurred by AVRAND

We have tested the prototype of AVRAND in the Atmel atmega32u4 chip inte-
grated within the Arduino Yun device, equipped with a 32 KB flash Memory
(from which 4 KB corresponds with the bootloader section). Our evaluation indi-
cates a noteworthy increase in the code size due to changes introduced by the
preprocessing module. We have tested our prototype on the entire set of exam-
ples included in the Arduino IDE software. While all the tested programs fit
in the flash memory, we have observed an average of 20 % of extra code on the
modified binary. However, this overhead is related to a binary which has been
compiled turning on the optimization flags of avr-gcc [19], that prioritizes the use
of relative versions of control flow instructions. However, if these optimization
flags were turned off, as done in MAVR [15], then the difference between initial
code size and modified code size would be considerably smaller. Re-compiling all
the libraries without an optimization requires having the source code of every
library (which is certainly not possible in case of proprietary code), so we decided
to transform the binary directly in our preprocessing module, thus providing a
more general solution.

As for the time spent by the runtime module in the bootloader, results show
that it requires an average of 1.7 s to randomize the code of our proof-of-concept
program, which takes 18 KB of the flash memory. For example, a bootloader
using the AVR 109 protocol [2] (that allows self-programming without exter-
nal programmers) takes a minimum of 750 ms. Given the security provided by
AVRAND, we consider that an overhead of 1 s is acceptable, especially since the
bootloader is only executed under certain circumstances.

7 Conclusions

In this paper, we have presented a software-based defense against code reuse
attacks for AVR systems—a modified Harvard architecture. These type of
architectures are popular among embedded devices used in different contexts.

76 S. Pastrana et al.

We focus on providing an inexpensive solution tailored for resourced constrained
devices. Our system perfectly balances the trade-off between the attack surface
exposed in this class of devices and the level of protection required to defeat
code reuse attacks. Thus, we design an architecture based on a fine-grained ran-
domization defense with self encryption that does not require additional hard-
ware support. We have implemented a proof-of-concept for the Arduino Yun,
an emerging open-source platform widely used in the IoT arena. Our prototype
introduces a negligible overhead with respect to the normal operation of the
Arduino. We evaluated the proposed scheme against a code reuse attack based
on Return Oriented Programming that first exploits a buffer overflow to exe-
cute code from the Arduino libraries. Finally, to foster research in this area, we
provide functional prototypes of the attack and the proposed defense.

Acknowledgments. We would like to thank our shepherd, Andrea Lanzi, for his assis-
tance and the feedback provided during the reviewing process. This work was supported
by the MINECO Grant TIN2013-46469-R (SPINY), the CAM Grant S2013/ICE-3095
(CIBERDINE) and the UK EPSRC Grant EP/L022710/1.

References

1. Anderson, W.: Entropy library documentation. Google Code Projects (2012)
2. Atmel, C.: Avr109: Self programming (2004). atmel.com/images/doc1644.pdf
3. Atmel, C.: Automotive compilation (2012). http://www.atmel.com/Images/atmel

autocompilation vol9 oct2012.pdf
4. Backes, M., Nürnberger, S.: Oxymoron: making fine-grained memory randomiza-

tion practical by allowing code sharing. In: USENIX Security Symposium (2014)
5. Bhatkar, S., DuVarney, D.C., Sekar, R.: Address obfuscation: an efficient approach

to combat a broad range of memory error exploits. In: USENIX Security (2003)
6. Braden, K., Crane, S., Davi, L., Franz, M., Larsen, P., Liebchen, C., Sadeghi,

A.R.: Leakage-resilient layout randomization for mobile devices. In: Network and
Distributed Systems Security Symposium (NDSS) (2016)

7. Carlini, N., Wagner, D.: Rop is still dangerous: breaking modern defenses. In:
USENIX Security Symposium (2014)

8. Cowan, C., Wagle, P., Pu, C., Beattie, S., Walpole, J.: Buffer overflows: attacks and
defenses for the vulnerability of the decade. In: DARPA Information Survivability
Conference and Exposition, 2000, DISCEX 2000, vol. 2, pp. 119–129. IEEE (2000)

9. Crane, S., Liebchen, C., Homescu, A., Davi, L., Larsen, P., Sadeghi, A.R., Brun-
thaler, S., Franz, M.: Readactor: practical code randomization resilient to memory
disclosure. In: IEEE Symposium on Security and Privacy, S&P, vol. 15 (2015)

10. Davi, L., Liebchen, C., Sadeghi, A.R., Snow, K.Z., Monrose, F.: Isomeron: code ran-
domization resilient to (just-in-time) return-oriented programming. In: Proceedings
of the 22nd Network and Distributed Systems Security Symposium (NDSS) (2015)

11. Dean, B.S.: Avr downloader/uploader (2003). http://www.nongnu.org/avrdude/.
Accessed Jan 2016

12. Francillon, A., Castelluccia, C.: Code injection attacks on harvard-architecture
devices. In: Proceedings of the 15th ACM Conference on Computer and Commu-
nications Security, pp. 15–26. ACM (2008)

http://atmel.com/images/doc1644.pdf
http://www.atmel.com/Images/atmel_autocompilation_vol9_oct2012.pdf
http://www.atmel.com/Images/atmel_autocompilation_vol9_oct2012.pdf
http://www.nongnu.org/avrdude/

A Software-Based Defense Against Code Reuse Attacks for AVR Devices 77

13. Francillon, A., Perito, D., Castelluccia, C.: Defending embedded systems against
control flow attacks. In: Proceedings of the First ACM Workshop on Secure Exe-
cution of Untrusted Code, pp. 19–26. ACM (2009)

14. Gu, Q., Noorani, R.: Towards self-propagate mal-packets in sensor networks. In:
Proceedings of the ACM Conference on Wireless Network Security, pp. 172–182.
ACM (2008)

15. Habibi, J., Gupta, A., Carlsony, S., Panicker, A., Bertino, E.: MAVR: code reuse
stealthy attacks and mitigation on unmanned aerial vehicles. In: Distributed Com-
puting Systems (ICDCS), pp. 642–652. IEEE (2015)

16. Intel, C.: Hexadecimal object file format specification (1988)
17. Mohan, V., Hamlen, K.W.: Frankenstein: stitching malware from benign binaries.

In: 6th USENIX Workshop on Offensive Technologies. USENIX (2012)
18. Mohan, V., Larsen, P., Brunthaler, S., Hamlen, K., Franz, M.: Opaque control-

flow integrity. In: Network and Distributed Systems Security Symposium (NDSS)
(2015)

19. GNU Project: Avr libc home page (1999). http://www.nongnu.org/avr-libc/.
Accessed Jan 2016

20. Roemer, R., Buchanan, E., Shacham, H., Savage, S.: Return-oriented program-
ming: systems, languages, and applications. ACM Trans. Inf. Syst. Secur. (TIS-
SEC) 15(1), 2 (2012)

21. Sadeghi, A.R., Wachsmann, C., Waidner, M.: Security and privacy challenges in
industrial internet of things. In: Annual Design Automation Conference. ACM
(2015)

22. Schuster, F., Tendyck, T., Pewny, J., Maaß, A., Steegmanns, M., Contag, M.,
Holz, T.: Evaluating the effectiveness of current Anti-ROP defenses. In: Stavrou,
A., Bos, H., Portokalidis, G. (eds.) RAID 2014. LNCS, vol. 8688, pp. 88–108.
Springer, Heidelberg (2014)

23. Snow, K.Z., Monrose, F., Davi, L., Dmitrienko, A., Liebchen, C., Sadeghi, A.R.:
Just-in-time code reuse: on the effectiveness of fine-grained address space layout
randomization. In: Security and Privacy (SP), pp. 574–588 (2013)

24. Szekeres, L., Payer, M., Wei, T., Song, D.: SoK: eternal war in memory. In: 2013
IEEE Symposium on Security and Privacy (SP), pp. 48–62. IEEE (2013)

25. Tang, A., Sethumadhavan, S., Stolfo, S.: Heisenbyte: thwarting memory disclosure
attacks using destructive code reads. In: Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security, pp. 256–267. ACM (2015)

26. Trevennor, A.: Practical AVR Microcontrollers: Games, Gadgets, and Home
Automation with the Microcontroller Used in the Arduino. Apress, USA (2012)

27. Wojtczuk, R.: The advanced return-into-lib (c) exploits: Pax case study. Phrack
Magazine, vol. 0x0b, Issue 0x3a, Phile# 0x04 of 0x0e (2001)

http://www.nongnu.org/avr-libc/

Towards Vulnerability Discovery Using Staged
Program Analysis

Bhargava Shastry1(B), Fabian Yamaguchi2, Konrad Rieck2,
and Jean-Pierre Seifert1

1 Security in Telecommunications, TU Berlin, Berlin, Germany
bshastry@sec.t-labs.tu-berlin.de

2 Institute of System Security, TU Braunschweig, Braunschweig, Germany

Abstract. Eliminating vulnerabilities from low-level code is vital for
securing software. Static analysis is a promising approach for discov-
ering vulnerabilities since it can provide developers early feedback on
the code they write. But, it presents multiple challenges not the least of
which is understanding what makes a bug exploitable and conveying this
information to the developer. In this paper, we present the design and
implementation of a practical vulnerability assessment framework, called
Mélange. Mélange performs data and control flow analysis to diagnose
potential security bugs, and outputs well-formatted bug reports that help
developers understand and fix security bugs. Based on the intuition that
real-world vulnerabilities manifest themselves across multiple parts of a
program, Mélange performs both local and global analyses in stages. To
scale up to large programs, global analysis is demand-driven. Our proto-
type detects multiple vulnerability classes in C and C++ code including
type confusion, and garbage memory reads. We have evaluated Mélange
extensively. Our case studies show that Mélange scales up to large code-
bases such as Chromium, is easy-to-use, and most importantly, capable of
discovering vulnerabilities in real-world code. Our findings indicate that
static analysis is a viable reinforcement to the software testing tool set.

Keywords: Program analysis · Vulnerability assessment · LLVM

1 Introduction

Vulnerabilities in popularly used software are not only detrimental to end-user
security but can also be hard to identify and fix. Today’s highly inter-connected
systems have escalated the damage inflicted upon users due to security com-
promises as well as the cost of fixing vulnerabilities. To address the threat
landscape, software vendors have established mechanisms for software quality
assurance and testing. A prevailing thought is that security bugs identified and
fixed early impose lower costs than those identified during the testing phase or in
the wild. Thus, vulnerability re-mediation—the process of identifying and fixing
vulnerabilities—is being seen as part of the software development process rather
than in isolation [28].
c© Springer International Publishing Switzerland 2016
J. Caballero et al. (Eds.): DIMVA 2016, LNCS 9721, pp. 78–97, 2016.
DOI: 10.1007/978-3-319-40667-1 5

Towards Vulnerability Discovery Using Staged Program Analysis 79

Program analysis provides a practical means to discover security bugs during
software development. Prior approaches to vulnerability discovery using static
code analysis have ranged from simple pattern-matching to context and path-
sensitive data-flow analysis. For instance, ITS4 [42]—a vulnerability scanner
for C/C++ programs—parses source code and looks up lexical tokens of inter-
est against an existing vulnerability database. In our initial experiments, the
pattern-matching approach employed by ITS4 produced a large number of warn-
ings against modern C, and C++ codebases. On the contrary, security vulnera-
bilities are most often, subtle corner cases, and thus rare. The approach taken by
ITS4 is well-suited for extremely fast analysis, but the high amount of manual
effort required to validate warnings undermines the value of the tool itself.

On the other end of the spectrum, the Clang Static Analyzer [4] presents an
analytically superior approach for defect discovery. Precise—context and path
sensitive—analysis enables Clang SA to warn only when there is evidence of
a bug in a feasible program path. While precise warnings reduce the burden
of manual validation, we find that Clang SA’s local inter-procedural analysis
misses security bugs that span file boundaries. The omission of bugs that span
file boundaries is significant especially for object-oriented code1, where object
implementation and object use are typically in different source files. A natural
solution is to make analysis global. However, global analysis does not scale up to
large programs.

In this paper, we find a middle ground. We present the design and implemen-
tation of Mélange, a vulnerability assessment tool for C and C++ programs, that
performs both local and global analysis in stages to discover potential vulner-
abilities spanning source files. Mélange has been implemented as an extension
to the LLVM compiler infrastructure [32]. To keep analysis scalable, Mélange
performs computationally expensive analyses locally (within a source file), while
performing cheaper analyses globally (across the whole program). In addition,
global analysis is demand-driven: It is performed to validate the outcome of local
analyses. To provide good diagnostics, Mélange primarily analyzes source code.
It outputs developer-friendly bug reports that point out the exact position in
source code where potential vulnerabilities exist, why they are problematic, and
how they can be remedied.

Results from our case studies validate our design decisions. We find that
Mélange is capable of highlighting a handful of problematic corner cases, while
scaling up to large programs like Chromium, and Firefox. Since Mélange is imple-
mented as an extension to a widely used compiler toolchain (Clang/LLVM), it
can be invoked as part of the build process. Moreover, our current implementa-
tion is fast enough to be incorporated into nightly builds2 of two large codebases
(MySQL, Chromium), and with further optimizations on the third (Firefox). In
summary, we make the following contributions.

1 All the major browsers including Chromium and Firefox are implemented in object-
oriented code.

2 Regular builds automatically initiated overnight on virtual machine clusters.

80 B. Shastry et al.

1. We present the design and implementation of Mélange, an extensible program
analysis framework.

2. We demonstrate the utility of Mélange by employing it to detect multiple
classes of vulnerabilities, including garbage reads and incorrectly typed data,
that are known to be a common source of exploitable vulnerabilities.

3. We evaluate Mélange extensively. We benchmark Mélange against NIST’s
Juliet benchmark [36] for program analysis tools. Mélange has thus
far detected multiple known vulnerabilities in the PHP interpreter, and
Chromium codebases, and discovered a new defect in Firefox.

2 Background: Clang and LLVM

Mélange is anchored in the Clang/LLVM open-source compiler toolchain [13], an
outcome of pioneering work by Lattner et al. [32]. In this section, we review com-
ponents of this toolchain that are at the core of Mélange’s design. While Clang/
LLVM is a compiler at heart, it’s utility is not limited to code generation/optimiza-
tion. Different parts of the compiler front-end (Clang) and back-end (LLVM) are
encapsulated into libraries that can be selectively used by client systems depend-
ing on their needs. Thus, the LLVM project lends itself well to multiple compiler-
technology-driven use-cases, program analysis being one of them.

We build Mélange on top of the analysis infrastructure available within the
LLVM project. This infrastructure mainly comprises the Clang Static Analyzer—
a source code analyzer for C, C++, and Objective-C programs—and the LLVM
analyzer/optimizer framework which permits analysis of LLVM Bitcode. In the
following paragraphs, we describe each of these components briefly.

2.1 Clang Static Analyzer

The Clang Static Analyzer (Clang SA) is similar in spirit to Metal/xgcc, which
its authors classify as a “Meta-level Compilation” (MC) framework [21,24]. The
goal of an MC framework is to allow for modular extensions to the compiler that
enable checking of domain-specific program properties. Abstractly viewed, an
MC framework comprises a set of checkers (domain-specific analysis procedures)
and a compilation system.

The division of labor envisioned by Hallem et al. [24] is that checkers only
encode the property to check, leaving the mechanics of the actual checking to the
compilation system. The compilation system facilitates checking by providing
the necessary analysis infrastructure. Figure 1 shows how an MC framework
is realized in Clang SA. Source files are parsed and subsequently passed on
to the Data-Flow Analysis engine (DFA engine), which provides the analysis
infrastructure required by checkers. Checkers encode the program property to
be checked and produce bug reports if a violation is found. Bug reports are then
reviewed by a human analyst.

Towards Vulnerability Discovery Using Staged Program Analysis 81

Fig. 1. Clang Static Analyzer overview

Data-Flow Analysis Engine. Clang SA performs Context and Path sensitive
inter-procedural data-flow analysis. Context sensitivity means that the analy-
sis preserves the calling context of function calls; path sensitivity means that
the analysis explores paths forked by branch statements independently. Con-
text sensitivity is realized in the Graph Reachability Engine which implements
a namesake algorithm proposed by Reps et al. [37]. Path sensitivity is imple-
mented in the Symbolic Execution Engine. The symbolic execution engine uses
static Forward Symbolic Execution (FSE) [38] to explore program paths in a
source file.

Checkers. Checkers implement domain-specific checks and issue bug reports.
Clang SA contains a default suite of checkers that implement a variety of checks
including unsafe API usage, and memory access errors. More importantly, the
checker framework in Clang SA can be used by programmers to add custom
checks. To facilitate customized checks, Clang SA exposes callbacks (as APIs)
that hook into the DFA engine at pre-defined program locations. Clang SA and
its checkers seen together, demonstrate the utility of meta-level compilation.

2.2 LLVM Pass Infrastructure

The LLVM pass infrastructure [13] provides a modular means to perform analy-
ses and optimizations on an LLVM Intermediate Representation (IR) of a pro-
gram. LLVM IR is a typed, yet source-language independent representation of a
program that facilitates uniform analysis of whole-programs or whole-libraries.

Simply put, an LLVM Pass is an operation (procedure invocation) on a unit
of LLVM IR code. The granularity of code operated on can vary from a Function
to an entire program (Module in LLVM parlance). Passes may be run in sequence,
allowing a successive pass to reuse information from (or work on a transformation
carried out by) preceding passes. The LLVM pass framework provides APIs to
tap into source-level meta-data in LLVM IR. This provides a means to bridge
the syntactic gap between source-level and IR-level analyses. Source literals may
be matched against LLVM IR meta-data programmatically. Mélange takes this
approach to teach the LLVM pass what a source-level bug report means.

82 B. Shastry et al.

Fig. 2. Mélange overview

3 Mélange

Our primary goal is to develop an early warning system for security-critical
software defects. We envision Mélange as a tool that assists a developer in iden-
tifying, and fixing potential security bugs during software development. Figure 2
provides an overview of our approach. Mélange comprises four high-level com-
ponents: the build interceptor, the LLVM builder, the source analyzer, and the
Whole-Program (WP) analyzer. We summarize the role of each component in
analyzing a program. Subsequently, we describe them in greater detail.

1. Build Interceptor. The build interceptor is a program that interposes between
the build program (e.g., GNU-Make) and the compilation system (e.g.,
Clang/LLVM). In Mélange, the build interceptor is responsible for correctly
and independently invoking the program builders and the source analyzer.
(Sect. 3.1)

2. LLVM Builder. The LLVM builder is a utility program that assists in gener-
ating LLVM Bitcode for C, C++, and Objective-C programs. It mirrors steps
taken during native compilation onto LLVM Bitcode generation. (Sect. 3.1)

3. Source Analyzer. The source analyzer executes domain-specific checks on a
source file and outputs candidate bug reports that diagnose a potential secu-
rity bug. The source analyzer is invoked during the first stage of Mélange’s
analysis. We have implemented the source analyzer as a library of checkers
that plug into a patched version of Clang SA. (Sect. 3.2)

4. Whole-Program Analyzer. The WP analyzer examines candidate bug reports
(from Step 3), and either provides extended diagnostics for the report or
classifies it as a false positive. The developer is shown only those reports
that have extended diagnostics i.e., those not classified as a false positive by
the WP analyzer. We have implemented the WP analyzer in multiple LLVM
passes. (Sect. 3.3)

Towards Vulnerability Discovery Using Staged Program Analysis 83

3.1 Analysis Utilities

Ease-of-deployment is one of the design goals of Mélange. We want software
developers to use our analysis framework in their build environments seamlessly.
The build interceptor and the LLVM builder are analysis utilities that help us
achieve this goal. The build interceptor and the LLVM builder facilitate trans-
parent analysis of codebases by plugging in Mélange’s analyses to an existing
build system. We describe them briefly in the following paragraphs.

Build Interceptor. Our approach to transparently analyze large software projects
hinges on triggering analysis via the build command. We use an existing build
interceptor, scan-build [12], from the Clang project. Scan-build is a command-line
utility that intercepts build commands and invokes the source analyzer in tandem
with the compiler. Since Mélange’s WP analysis is targeted at program (LLVM)
Bitcode, we instrument scan-build to not only invoke the source analyzer, but
also the LLVM builder.

LLVM Builder. Generating LLVM Bitcode for program libraries and executa-
bles without modifying source code and/or build configuration is a daunting
task. Fortunately, the Whole-program LLVM (WLLVM) [14], an existing open-
source LLVM builder, solves this problem. WLLVM is a python-based utility
that leverages a compiler for generating whole-program or whole-library LLVM
Bitcode. It can be used as a drop-in replacement for a compiler i.e., pointing the
builder (e.g., GNU-Make) to WLLVM is sufficient.

3.2 Source Analyzer

The source analyzer assists Mélange in searching for potential bugs in source
code. We build a novel event collection system that helps detect both taint-
style vulnerabilities as well as semantic defects. Our event collection system is
implemented as a system of taints on C and C++ language constructs (Decla-
rations). We call the underlying mechanism Declaration Tainting because taints
in the proposed event collection system are associated with AST Declaration
identifiers of C and C++ objects. Since declaration tainting is applied on AST
constructs, it can be carried out in situations where local symbolic execution is
not possible.

We write checkers to flag defects. Checkers have been developed as clients
of the proposed event collection system. The division of labor between checkers
and the event collection system mirrors the Meta-level Compilation concept:
Checkers encode the policy for flagging defects, while the event collection system
maintains the state required to perform checks. We have prototyped this system
for flagging garbage (uninitialized) reads3 of C++ objects, incorrect type casts
in PHP interpreter codebase, and other Common Weakness Enumerations (see
Sect. 4).

3 The algorithm for flagging garbage reads is based on a variation of gen-kill sets [30].

84 B. Shastry et al.

We demonstrate the utility of the proposed system by using the code snippet
shown in Listing 1.1 as a running example. Our aim is to detect uninitialized
reads of class members in the example. The listing encompasses two source files,
foo.cpp and main.cpp, and a header file foo.h. We maintain two sets in the
event collection system: the Def set containing declaration identifiers for class
members that have at least one definition, and the UseWithoutDef set containing
identifiers for class members that are used (at least once) without a preceding
definition. We maintain an instance of both sets for each function that we analyze
in a translation unit i.e., for function F , ΔF denotes the analysis summary of
F that contains both sets. The checker decides how the event collection sets
are populated. The logic for populating the Def and UseWithoutDef sets is
simple. If a program statement in a given function defines a class member for
the very first time, we add the class member identifier to the Def set of that
function’s analysis summary. If a program statement in a given function uses a
class member that is absent from the Def set, we add the class member identifier
to the UseWithoutDef set of that function’s analysis summary.

1 // foo.h
2 class foo {
3 public:
4 int x;
5 foo() {}
6 bool isZero ();
7 };
8

9 // foo.cpp
10 #include"foo.h"
11

12 bool foo:: isZero () {
13 if (!x)
14 return true;
15 }
16

17 // main.cpp
18 #include "foo.h"
19

20 int main() {
21 foo f;
22 if (f.isZero ())
23 return 0;
24 return 1;
25 }

Listing 1.1. Running example–The foo object does not initialize its class member
foo::x. The call to isZero on Line 22 leads to a garbage read on Line 13.

In Listing 1.1, when function foo::isZero in file foo.cpp is being analyzed,
the checker adds class member foo::x to the UseWithoutDef set of Δfoo::isZero

Towards Vulnerability Discovery Using Staged Program Analysis 85

after analyzing the branch condition on Line 13. This is because the checker
has not encountered a definition for foo::x in the present analysis context.
Subsequently, analysis of the constructor function foo::foo does not yield any
additions to either the Def or UseWithoutDef sets. So Δfoo::foo is empty. Finally,
the checker compares set memberships across analysis contexts. Since foo::x is
marked as a use without a valid definition in Δfoo::isZero and foo::x is not a
member of the Def set in the constructor function’s analysis summary (Δfoo::foo),
the checker classifies the use of Line 13 as a candidate bug. The checker encodes
the proof for the bug in the candidate bug report. Listing 1.2 shows how candi-
date bug reports are encoded. The bug report encodes the location and analysis
stack corresponding to the potential garbage (uninitialized) read.

The proposed event collection approach has several benefits. First, by retro-
fitting simple declaration-based object tainting into Clang SA, we enable Check-
ers to perform analysis based on the proposed taint abstraction. Due to its
general-purpose nature, the taint abstraction is useful for discovering other defect
types such as null pointer dereferences. Second, the tainting APIs we expose are
opt-in. They may be used by existing and/or new checkers. Third, our additions
leverage high-precision analysis infrastructure already available in Clang SA. We
have implemented the event collection system as a patch to the mainline version
of Clang Static Analyzer. In the next paragraph, we describe how candidate bug
reports are analyzed by our whole-program analyzer.

3.3 Whole-Program Analyzer

Whole-program analysis is demand-driven. Only candidate bug reports are ana-
lyzed. The analysis target is an LLVM Bitcode file of a library or executable.
There are two aspects to WP analysis: Parsing of candidate bug reports to con-
struct a query, and the analysis itself. We have written a simple python-based
parser to parse candidate bug reports and construct queries. The analysis itself is
implemented as a set of LLVM passes. The bug report parser encodes queries as
preprocessor directives in a pass header file. A driver script is used to recompile,
and run the pass against all candidate bug reports.

Our whole-program analysis routine is composed of a CallGraph analysis
pass. We leverage an existing LLVM pass called the Basic CallGraph pass to build
a whole-program call graph. Since the basic pass misses control flow at indirect
call sites, we have implemented additional analyses to improve upon the precision
of the basic callgraph. Foremost among our analyses is Class Hierarchy Analysis
(CHA) [20]. CHA enables us to devirtualize those dynamically dispatched call
sites where we are sure no delegation is possible. Unfortunately, CHA can only
be undertaken in scenarios where no new class hierarchies are introduced. In
scenarios where CHA is not applicable, we examine call instructions to resolve
as many forms of indirect call sites as possible. Our prototype resolves aliases of
global functions, function casts etc.

Once program call graph has been obtained, we perform a domain-specific
WP analysis. For instance, to validate garbage reads, the pass inspects loads
and store to the buggy program variable or object. In our running example

86 B. Shastry et al.

(Listing 1.1), loads and stores to the foo::x class member indicated in candidate
bug report (Listing 1.2) are tracked by the WP garbage read pass. To this end,
the program call graph is traversed to check if a load of foo::x does not have
a matching store. If all loads have a matching store, the candidate bug report
is classified as a false positive. Otherwise, program call-chains in which a load
from foo::x does not have a matching store are displayed to the analyst in the
whole-program bug report (Listing 1.2).

// Source -level bug report
// report -e6ed9c.html
...
Local Path to Bug: foo::x->_ZN3foo6isZeroEv

Annotated Source Code
foo.cpp :4:6: warning: Potentially uninitialized

object field
if (!x)

^
1 warning generated.

// Whole -program bug report
---------- report -e6ed9c.html ---------
[+] Parsing bug report report -e6ed9c.html
[+] Writing queries into LLVM pass header file
[+] Recompiling LLVM pass
[+] Running LLVM BugReportAnalyzer pass against

main

Candidate callchain is:

foo:: isZero ()
main

Listing 1.2. Candidate bug report (top) and whole-program bug report (bottom) for
garbage read in the running example shown in Listing 1.1.

4 Evaluation

We have evaluated Mélange against both static analysis benchmarks and real-
world code. To gauge Mélange’s utility, we have also tested it against known
defects and vulnerabilities. Our evaluation seeks to answer the following questions:

– What is the effort required to use Mélange in an existing build system?
(Sect. 4.1)

– How does Mélange perform against static analysis benchmarks? (Sect. 4.2)
– How does Mélange fare against known security vulnerabilities? (Sect. 4.3)
– What is the analysis run-time and effectiveness of Mélange against large well-

tested codebases? (Sect. 4.4)

Towards Vulnerability Discovery Using Staged Program Analysis 87

4.1 Deployability

Ease-of-deployment is one of the design goals of Mélange. Build interposition
allows us to analyze codebases as is, without modifying build configuration
and/or source code. We have deployed Mélange in an Amazon compute instance
where codebases with different build systems have been analyzed (see Sect. 4.4).
Another benefit of build system integration is incremental analysis. Only the
very first build of a codebase incurs the cost of end-to-end analysis; subsequent
analyses are incremental. While incremental analysis can be used in conjunction
with daily builds, full analysis can be coupled with nightly builds and initiated
on virtual machine clusters.

4.2 NIST Benchmarks

We used static analysis benchmarks released under NIST’s SAMATE project [35]
for benchmarking Mélange’s detection rates. In particular, the Juliet C/C++
test suite (version 1.2) [36] was used to measure true and false positive detection
rates for defects spread across multiple categories. The Juliet suite comprises
test sets for multiple defect types. Each test set contains test cases for a spe-
cific Common Weakness Enumeration (CWE) [41]. The CWE system assigns
identifiers for common classes of software weaknesses that are known to lead to
exploitable vulnerabilities. We implemented Mélange checkers and passes for the
following CWE categories: CWE457 (Garbage or uninitialized read), CWE843
(Type confusion), CWE194 (Unexpected Sign Extension), and CWE195 (Signed
to Unsigned Conversion Error). With the exception of CWE457, the listed
CWEs have received scant attention from static analysis tools. For instance,
type confusion (CWE843) is an emerging attack vector [33] for exploiting popular
applications.

Figure 3 summarizes the True/False Positive Rates (TPRs/FPRs) for Clang
SA and Mélange for the chosen CWE benchmarks. Currently, Clang SA only sup-
ports CWE457. Comparing reports from Clang SA and Mélange for the CWE457
test set, we find that the former errs on the side of precision (fewer false posi-
tives), while the latter errs on the side of caution (fewer false negatives). For the
chosen CWE benchmarks, Mélange attains a true-positive rate between 57–88 %,
and thus, it is capable of spotting over half of the bugs in the test suite.

Mélange’s staggered analysis approach allows it to present both source file
wide and program wide diagnostics (see Fig. 4). In contrast, Clang SA’s diag-
nostics are restricted to a single source file. Often, the call stack information
presented in Mélange’s extended diagnostics has speeded up manual validation
of bug reports.

4.3 Detection of Known Vulnerabilities

We tested five known type-confusion vulnerabilities in the PHP interpreter with
Mélange. All of the tested flaws are taint-style vulnerabilities: An attacker-
controlled input is passed to a security-sensitive function call that wrongly

88 B. Shastry et al.

0 20 40 60 80 100

TPR

FPR

34.27

15

59.33

29.66

57.5

0

88

52.5

88

52.5

Percentage

ClangSA-CWE457

Melange-CWE457

Melange-CWE843

Melange-CWE195

Melange-CWE194

Fig. 3. Juliet test suite: True Positive Rate (TPR) and False Positive Rate (FPR) for
Mélange, and Clang Static Analyzer. Clang SA supports CWE457 only. (Color figure
online)

interprets the input’s type. Ultimately all these vulnerabilities result in invalid
memory accesses that can be leveraged by an attacker for arbitrary code exe-
cution or information disclosure. We wrote a checker for detecting multiple
instances of this vulnerability type in the PHP interpreter codebase. For patched
vulnerabilities, testing was carried out on unpatched versions of the codebase.
Mélange successfully flagged all known vulnerabilities. The first five entries of
Table 1 summarize Mélange’s findings. Three of the five vulnerabilities have
been assigned Common Vulnerabilities and Exposures (CVE) identifiers by the
MITRE Corporation. Reporters of CVE-2014-3515, CVE-2015-4147, and PHP
report ID 73245 have received bug bounties totaling $5500 by the Internet Bug
Bounty Panel [7].

In addition, we ran our checker against a recent PHP release candidate (PHP
7.0 RC7) released on 12th November, 2015. Thus far, Mélange has drawn atten-
tion to PHP sub-systems where a similar vulnerability may exist. While we
haven’t been able to verify if these are exploitable, this exercise demonstrates
Mélange’s utility in bringing attention to multiple instances of a software flaw
in a large codebase that is under active development.

4.4 Case Studies

To further investigate the practical utility of Mélange, we conducted case stud-
ies with three popular open-source projects, namely, Chromium, Firefox, and
MySQL. We focused on detecting garbage reads only. In the following para-
graphs, we present results from our case studies emphasizing analysis effective-
ness, and analysis run-time.

Towards Vulnerability Discovery Using Staged Program Analysis 89

Table 1. Detection summary of Mélange against production codebases. Mélange has
confirmed known vulnerabilities and flagged a new defect in Firefox. Listed Chromium
and Firefox bugs are not known to be exploitable. Chromium bug 411177 is classified
as a Medium-Severity bug in Google’s internal bug tracker.

Codebase CVE ID (Rating) Bug ID Vulnerability Known/New

PHP CVE-2015-4147 69085 [9] Type-confusion Known

PHP CVE-2015-4148 69085 [9] Type-confusion Known

PHP CVE-2014-3515 67492 [8] Type-confusion Known

PHP Unassigned 73245 [11] Type-confusion Known

PHP Unassigned 69152 [10] Type-confusion Known

Chromium (Medium-Severity) 411177 [2] Garbage read Known

Chromium None 436035 [3] Garbage read Known

Firefox None 1168091 [1] Garbage read New

Software Versions: Evaluation was carried out for Chromium version 38 (dated
August 2014), for Firefox revision 244208 (May 2015), and for MySQL version
5.7.7 (April 2015).

Evaluation Setup: Analysis was performed in an Amazon compute instance
running Ubuntu 14.04 and provisioned with 36 virtual (Intel Xeon E5-2666 v3)
CPUs clocked at 2.6 GHz, 60 GB of RAM, and 100 GB of SSD-based storage.

Effectiveness

True Positives. Our prototype flagged 3 confirmed defects in Chromium, and
Firefox, including a new defect in the latter (see bottom three entries of
Table 1). Defects found by our prototype in MySQL codebase have been reported
upstream and are being triaged. Figure 4 shows Mélange’s bug report for a
garbage read in the pdf library shipped with Chromium v38. The source-level
bug report (Fig. 4a) shows the line of code that was buggy. WP analyzer’s bug
report (Fig. 4b) shows candidate call chains in the libpdf library in which the
uninitialized read may manifest.

We have manually validated the veracity of all bug reports generated by
Mélange through source code audits. For each bug report, we verified if the
data-flow and control-flow information conveyed in the report tallied with pro-
gram semantics. We classified only those defects that passed our audit as true
positives. Additionally, for the Chromium true positives, we matched Mélange’s
findings with reports [2,3] generated by MemorySanitizer [40], a dynamic pro-
gram analysis tool from Google. The new defect discovered in Firefox was
reported upstream [1]. Our evaluation demonstrates that Mélange can comple-
ment dynamic program analysis tools in use today.

90 B. Shastry et al.

Fig. 4. Mélange bug report for Chromium bug 411177.

False Positives. Broadly, we encounter two kinds of false positives; those that are
due to imprecision in Mélange’s data-flow analysis, and those due to imprecision
in its control-flow analysis. In the following paragraphs, we describe one example
of each kind of false positive.

Data-Flow Imprecision: Mélange’s analyses for flagging garbage reads lack
sophisticated alias analysis. For instance, initialization of C++ objects passed-
by-reference is missed. Listing 1.3 shows a code snippet borrowed from the Fire-
fox codebase that illustrates this category of false positives.

When AltSvcMapping object is constructed (see Line 2 of Listing 1.3),
one of its class members mHttps is passed by reference to the callee function
SchemeIsHTTPS. The callee function SchemeIsHTTPS initializes mHttps via its
alias (outIsHTTPS). Mélange’s garbage read checker misses the aliased store and
incorrectly flags the use of class member mHttps on Line 8 as a candidate bug.
Mélange’s garbage read pass, on its part, tries to taint all functions that store
to mHttps. Since the store to mHttps happens via an alias, the pass also misses
the store and outputs a legitimate control-flow sequence in its WP bug report.

Control-Flow Imprecision: Mélange’s WP analyzer misses control-flow infor-
mation at indirect call sites e.g., virtual function invocations. Thus, class

Towards Vulnerability Discovery Using Staged Program Analysis 91

Table 2. Mélange: analysis summary for large open-source projects. True positives for
MySQL have been left out since we are awaiting confirmation from its developers.

Codebase Build time Analysis run-time∗ Bug reports

Nt SAx WPAx TAx WPAvgt Stage 1 Stage 2 True positive

Chromium 18m 20 s 29.09 15.49 44.58 7.5 s 2686 12 2

Firefox 41m 25 s 3.38 39.31 42.69 13m 35 s 587 16 1

MySQL 8m 15 s 9.26 21.24 30.50 2m 26 s 2494 32 -
∗All terms except WPAvg are normalized to native compilation time.

members that are initialized in a call sequence comprising an indirect func-
tion call are not registered by Mélange’s garbage read pass. While resolving all
indirect call sites in large programs is impossible, we employ best-effort devir-
tualization techniques such as Rapid Type Analysis [16] to improve Mélange’s
control-flow precision.

1 AltSvcMapping :: AltSvcMapping (...) {
2 if (NS FAILED(SchemeIsHTTPS(originScheme, mHttps))) {
3 ...
4 }
5 }
6 void AltSvcMapping :: GetConnectionInfo (...) {
7 // ci is an object on the stack
8 ci->SetInsecureScheme(!mHttps);
9 ...

10 }
11 static nsresult SchemeIsHTTPS(const nsACString &

originScheme , bool &outIsHTTPS)
12 {
13 outIsHTTPS =

originScheme.Equals(NS LITERAL CSTRING("https"));
14 ...
15 }

Listing 1.3. Code snippet involving an aliased definition that caused a false positive
in Mélange.

The final three columns of Table 2 present a summary of Mélange’s findings
for Chromium, Firefox, and MySQL projects. We find that Mélange’s two-stage
analysis pipeline is very effective at filtering through a handful of bug reports
that merit attention. In particular, Mélange’s WP analyses filter out 99.6 %,
97.3 %, and 98.7 % source level bug reports in Chromium, Firefox, and MySQL
respectively. Although Mélange’s true positive rate is low in our case studies,
the corner cases it has pointed out, notwithstanding the confirmed bugs it has
flagged, is encouraging. Given that we evaluated Mélange against well-tested
production code, the fact that it could point out three confirmed defects in the
Chromium and Firefox codebases is a promising result. We plan to make our

92 B. Shastry et al.

0 20 40 60 80 100

Chromium

Firefox

MySQL

Fraction of Total Analysis Run-time (%)

SAx

WPAx

Fig. 5. For each codebase, its source and whole-program analysis run-times are shown
as fractions (in %) of Mélange’s total analysis run-time. (Color figure online)

tool production-ready by incorporating insights gained from our case studies.
Next, we discuss Mélange’s analysis run-time.

Analysis Run-Time. We completed end-to-analysis of Chromium, Firefox,
and MySQL codebases—all of which have millions of lines of code—in under
48 h. Of these, MySQL, and Chromium were analyzed in a little over 4 h, and
13 h respectively. Table 2 summarizes Mélange’s run-time for our case studies.
We have presented the analysis run-time of a codebase relative (normalized)
to its build time, Nt. For instance, a normalized analysis run-time of 30 for a
codebase indicates that the time taken to analyze the codebase is 30x longer
than its build time. All normalized run-times are denoted with the x subscript.
Normalized source analysis time, WP analysis time, and total analysis time of
Mélange are denoted as SAx, WPAx, and TAx respectively. The term WPAvgt
denotes the average time (not normalized) taken by Mélange’s WP analyzer to
analyze a single candidate bug report.

Figure 5 shows source and WP analysis run-times for a codebase as a fraction
(in percentage terms) of Mélange’s total analysis run-time. Owing to Chromium’s
modular build system, we could localize a source defect to a small-sized library.
The average size of program analyzed for Chromium (1.8 MB) was much lower
compared to MySQL (150 MB), and Firefox (1.1 GB). As a consequence, the
WP analysis run-times for Firefox, and MySQL are relatively high. While our
foremost priority while prototyping Mélange has been functional effectiveness,
our implementation leaves significant room for optimizations that will help bring
down Mélange’s end-to-end analysis run-time.

4.5 Limitations

Approach Limitations. BBy design, Mélange requires two analysis procedures at
different code abstractions for a given defect type. We depend on programmer-
written analysis routines to scale out to multiple defect types. Two actualities
lend credence to our approach: First, analysis infrastructure required to carry
out extended analyses is already available and its use is well-documented. This
has assisted us in prototyping Mélange for four different CWEs. Second, the

Towards Vulnerability Discovery Using Staged Program Analysis 93

complexity of analysis routines is many times lower than the program under
analysis. Our analysis procedures span 2, 598 lines of code in total, while our
largest analysis target (Chromium) has over 14 million lines of C++ code.

While Mélange provides precise diagnostics for security bugs it has discov-
ered, manual validation of bug reports is still required. Given that software
routinely undergoes manual review during development, our tool does not intro-
duce an additional requirement. Rather, Mélange’s diagnostics bring attention
to problematic corner cases in source code. The manual validation process of
Mélange’s bug reports may be streamlined by subsuming our tool under existing
software development processes (e.g., nightly builds, continuous integration).

Implementation Limitations. Mélange’s WP analysis is path and context insen-
sitive. This makes Mélange’s whole-program analyzer imprecise and prone to
issuing false warnings. To counter imprecision, we can augment our WP analyzer
with additional analyses. Specifically, more powerful alias analysis and aggressive
devirtualization algorithms will help prune false positives further. One approach
to counter existing imprecision is to employ a ranking mechanism for bug reports
(e.g., Z-Ranking [31]).

5 Related Work

Program analysis research has garnered attention since the late 70s. Lint [29],
a C program checker developed at Bell Labs in 1977, was one of the first
program analysis tools to be developed. Lint’s primary goal was to check
“portability, style, and efficiency” of programs. Ever since, the demands from
a program checker have grown as new programming paradigms have been
invented and programs have increased in complexity. This has contributed
to the development of many commercial [5,23,27], closed-source [19], free [6],
and open source [4,15,17,18,22,26,39,40,43,44] tools. Broadly, these tools are
based on Model Checking [17,26], Theorem Proving [6], Static Program Analy-
sis [4,5,19,23,27,44], Dynamic Analysis [18,34,39,40], or are hybrid systems
such as AEG [15]. In the following paragraphs, we comment on related work
that is close in spirit to Mélange.

Program Instrumentation. Traditionally, memory access bugs have been found
by fuzz testing (or fuzzing) instrumented programs. The instrumentation takes
care of tracking the state of program memory and adds run-time checks before
memory accesses are made. Instrumentation is done either during run time (as in
Valgrind [34]), or at compile time (as in AddressSanitizer or ASan [39]). Compile-
time instrumentation has been preferred lately due to the poor performance of
tools that employ run-time instrumentation.

While sanitizer tools such as ASan, and MemorySanitizer (MSan) are
expected to have a zero false positive rate, practical difficulties, such as unin-
strumented code in an external library, lead to false positives in practice. Thus,
even run-time tools do not eliminate the need for manual validation of bug

94 B. Shastry et al.

reports. To guarantee absence of uninitialized memory, MSan needs to monitor
each and every load from/store to memory. This all-or-nothing philosophy poses
yet another problem. Uninstrumented code in pre-compiled libraries (such as the
C++ standard library) used by the program will invariably lead to false program
crashes. Until these false crashes are rectified—either by instrumenting the code
where the crash happens or by asking the tool to suppress the warning—the san-
itizer tool is rendered unusable. Thus, use of MSan impinges on instrumentation
of each and every line of code that is directly or indirectly executed by the pro-
gram or maintenance of a blacklist file that records known false positives. Unlike
MSan, not having access to library source code only lowers Mélange’s analysis
accuracy, but does not impede analysis itself. Having said that, Mélange will
benefit from a mechanism to suppress known false positives. Overall, we believe
that dynamic tools are invaluable for vulnerability assessment, and that a tool
such as ours can complement them well.

Symbolic Execution. Symbolic execution has been used to find bugs in programs,
or to generate test cases with improved code coverage. KLEE [18], Clang SA [4],
and AEG [15] use different flavors of forward symbolic execution for their own
end. As the program (symbolically) executes, constraints on program paths (path
predicates) are maintained. Satisfiability queries on path predicates are used to
prune infeasible program paths. Unlike KLEE and AEG, symbolic execution
in Clang SA is done locally and hences scales up to large codebases. Anecdotal
evidence suggests that KLEE and AEG don’t scale up to large programs [25]. To
the best of our knowledge, KLEE has not been evaluated against even medium-
sized codebases let alone large codebases such as Firefox and Chromium.

Static Analysis. Parfait [19] employs an analysis strategy that is similar in spirit
to ours. It employs multiple stages of analysis, where each successive stage is
more precise than the preceding stage. Parfait has been used for finding buffer
overflows in C programs. In contrast, we have evaluated Mélange against multiple
vulnerability classes. Mélange’s effectiveness in detecting multiple CWEs vali-
dates the generality of its design. In addition, Mélange has fared well against mul-
tiple code paradigms: both legacy C programs and modern object-oriented code.

Like Yamaguchi et al. [44], our goal is to empower developers in finding mul-
tiple instances of a known defect. However, the approach we take is different.
Yamaguchi et al. [44], use structural traits in a program’s AST representation
to drive a Machine Learning (ML) phase. The ML phase extrapolates traits of
known vulnerabilities in a codebase, obtaining matches that are similar in struc-
ture to the vulnerability. CQUAL [22], and CQual++ [43], are flow-insensitive
data-flow analysis frameworks for C and C++ languages respectively. Oink per-
forms whole-program data-flow analysis on the back of Elsa, a C++ parser, and
Cqual++. Data-flow analysis is based on type qualifiers. Our approach has two
advantages over Cqual++. We use a production compiler for parsing C++ code
that has a much better success rate at parsing advanced C++ code than a cus-
tom parser such as Elsa. Second, our source-level analysis is both flow and path
sensitive while, in CQual++, it is not.

Towards Vulnerability Discovery Using Staged Program Analysis 95

Finally, Clang Static Analyzer borrows ideas from several publications includ-
ing (but not limited to) [24,37]. Inter-procedural context-sensitive analysis in
Clang SA is based on the graph reachability algorithm proposed by Reps
et al. [37]. Clang SA is also similar in spirit to Metal/xgcc [24].

6 Conclusion

We have developed Mélange, a static analysis tool for helping fix security-critical
defects in open-source software. Our tool is premised on the intuition that vul-
nerability search necessitates multi-pronged analysis. We anchor Mélange in the
Clang/LLVM compiler toolchain, leveraging source analysis to build a corpus of
defects, and whole-program analysis to filter the corpus. We have shown that
our approach is capable of identifying defects and vulnerabilities in open-source
projects, the largest of which—Chromium—spans over 14 million lines of code.
We have also demonstrated that Mélange’s analyses are viable by empirically
evaluating its run-time in an EC2 instance.

Since Mélange is easy to deploy in existing software development environ-
ments, programmers can receive early feedback on the code they write. Further-
more, our analysis framework is extensible via compiler plug-ins. This enables
programmers to use Mélange to implement domain-specific security checks.
Thus, Mélange complements traditional software testing tools such as fuzzers.
Ultimately, our aim is to use the proposed system to help fix vulnerabilities in
open-source software at an early stage.

Acknowledgments. This work was supported by the following grants: 317888
(project NEMESYS), 10043385 (project Enzevalos), and RI 2468/1-1 (project DEVIL).
Authors would like to thank colleagues at SecT and Daniel Defreez for valuable feedback
on a draft of this paper, and Janis Danisevskis for discussions on the C++ standard
and occasional code reviews.

References

1. Bugzilla@Mozilla, Bug 1168091. https://bugzilla.mozilla.org/show bug.cgi?
id=1168091

2. Chromium Issue Tracker, Issue 411177. https://code.google.com/p/chromium/
issues/detail?id=411177

3. Chromium Issue Tracker, Issue 436035. https://code.google.com/p/chromium/
issues/detail?id=436035

4. Clang Static Analyzer. http://clang-analyzer.llvm.org/. Accessed 25 Mar 2015
5. Coverity inc. http://www.coverity.com/
6. HAVOC. http://research.microsoft.com/en-us/projects/havoc/
7. PHP Bug Bounty Program. https://hackerone.com/php
8. PHP::Sec Bug, 67492. https://bugs.php.net/bug.php?id=67492
9. PHP::Sec Bug, 69085. https://bugs.php.net/bug.php?id=69085

10. PHP::Sec Bug, 69152. https://bugs.php.net/bug.php?id=69152

https://bugzilla.mozilla.org/show_bug.cgi?id=1168091
https://bugzilla.mozilla.org/show_bug.cgi?id=1168091
https://code.google.com/p/chromium/issues/detail?id=411177
https://code.google.com/p/chromium/issues/detail?id=411177
https://code.google.com/p/chromium/issues/detail?id=436035
https://code.google.com/p/chromium/issues/detail?id=436035
http://clang-analyzer.llvm.org/
http://www.coverity.com/
http://research.microsoft.com/en-us/projects/havoc/
https://hackerone.com/php
https://bugs.php.net/bug.php?id=67492
https://bugs.php.net/bug.php?id=69085
https://bugs.php.net/bug.php?id=69152

96 B. Shastry et al.

11. Report 73245: Type-confusion Vulnerability in SoapClient. https://hackerone.
com/reports/73245

12. Scan-build. http://clang-analyzer.llvm.org/scan-build.html
13. The LLVM Compiler Infrastructure. http://llvm.org/
14. WLLVM: Whole-program LLVM. https://github.com/travitch/whole-program-

llvm
15. Avgerinos, T., Cha, S.K., Hao, B.L.T., Brumley, D.: AEG: automatic exploit gen-

eration. In: NDSS, vol. 11, pp. 59–66 (2011)
16. Bacon, D.F., Sweeney, P.F.: Fast static analysis of c++ virtual function calls. In:

Proceedings of the 11th ACM SIGPLAN Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications, OOPSLA 1996, pp. 324–341. ACM,
New York (1996). http://doi.acm.org/10.1145/236337.236371

17. Ball, T., Rajamani, S.K.: The s lam project: debugging system software via static
analysis. In: ACM SIGPLAN Notices, vol. 37, pp. 1–3. ACM (2002)

18. Cadar, C., Dunbar, D., Engler, D.R.: KLEE: unassisted and automatic generation
of high-coverage tests for complex systems programs. In: OSDI, vol. 8, pp. 209–224
(2008)

19. Cifuentes, C., Scholz, B.: Parfait: designing a scalable bug checker. In: Proceedings
of the 2008 Workshop on Static Analysis, pp. 4–11. ACM (2008)

20. Dean, J., Grove, D., Chambers, C.: Optimization of object-oriented programs using
static class hierarchy analysis. In: Tokoro, M., Pareschi, R. (eds.) ECOOP 1995
Object-Oriented Programming. LNCS, vol. 952, pp. 77–101. Springer, Heidelberg
(1995)

21. Engler, D., Chelf, B., Chou, A., Hallem, S.: Checking system rules using system-
specific, programmer-written compiler extensions. In: Proceedings of the 4th Con-
ference on Symposium on Operating System Design & Implementation, vol. 4,
p. 1. USENIX Association (2000)

22. Foster, J.S., Johnson, R., Kodumal, J., Terauchi, T., Shankar, U., Talwar, K.,
Wagner, D., Aiken, A., Elsman, M., Harrelson, C.: CQUAL: a tool for adding type
qualifiers to C (2003). https://www.cs.umd.edu/∼jfoster/cqual/. Accessed 26 Mar
2015

23. GrammaTech: CodeSonar. http://www.grammatech.com/codesonar
24. Hallem, S., Chelf, B., Xie, Y., Engler, D.: A system and language for build-

ing system-specific, static analyses. In: Proceedings of the ACM SIGPLAN 2002
Conference on Programming Language Design and Implementation, PLDI 2002,
pp. 69–82. ACM, New York (2002). http://doi.acm.org/10.1145/512529.512539

25. Heelan, S.: Vulnerability detection systems: think cyborg, not robot. IEEE Secur.
Priv. 9(3), 74–77 (2011)

26. Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Software verification
with BLAST. In: Ball, T., Rajamani, S.K. (eds.) SPIN 2003. LNCS, vol. 2648,
pp. 235–239. Springer, Heidelberg (2003)

27. Hewlett Packard: Fortify Static Code Analyzer. http://www8.hp.com/us/en/
software-solutions/static-code-analysis-sast/

28. Howard, M., Lipner, S.: The Security Development Lifecycle. O’Reilly Media,
Incorporated, Sebastopol (2009)

29. Johnson, S.: Lint, a C Program Checker. Bell Telephone Laboratories, Murray Hill
(1977)

30. Knoop, J., Steffen, B.: Efficient and optimal bit vector data flow analyses: a uniform
interprocedural framework. Inst. für Informatik und Praktische Mathematik (1993)

https://hackerone.com/reports/73245
https://hackerone.com/reports/73245
http://clang-analyzer.llvm.org/scan-build.html
http://llvm.org/
https://github.com/travitch/whole-program-llvm
https://github.com/travitch/whole-program-llvm
http://doi.acm.org/10.1145/236337.236371
https://www.cs.umd.edu/~jfoster/cqual/
http://www.grammatech.com/codesonar
http://doi.acm.org/10.1145/512529.512539
http://www8.hp.com/us/en/software-solutions/static-code-analysis-sast/
http://www8.hp.com/us/en/software-solutions/static-code-analysis-sast/

Towards Vulnerability Discovery Using Staged Program Analysis 97

31. Kremenek, T., Engler, D.: Z-Ranking: using statistical analysis to counter the
impact of static analysis approximations. In: Cousot, R. (ed.) SAS 2003. LNCS,
vol. 2694, pp. 295–315. Springer, Heidelberg (2003). http://dl.acm.org/citation.
cfm?id=1760267.1760289

32. Lattner, C., Adve, V.: Llvm: a compilation framework for lifelong program analysis
& transformation. In: International Symposium on Code Generation and Optimiza-
tion, 2004, CGO 2004, pp. 75–86. IEEE (2004)

33. Lee, B., Song, C., Kim, T., Lee, W.: Type casting verification: stopping an emerg-
ing attack vector. In: 24th USENIX Security Symposium (USENIX Security 15),
Washington, D.C, August 2015, pp. 81–96. USENIX Association. https://www.
usenix.org/conference/usenixsecurity15/technical-sessions/presentation/lee

34. Nethercote, N., Seward, J.: Valgrind: a framework for heavyweight dynamic binary
instrumentation. In: ACM Sigplan Notices, vol. 42, pp. 89–100. ACM (2007)

35. NIST: SAMATE - Software Assurance Metrics And Tool Evaluation. http://
samate.nist.gov/Main Page.html

36. NIST: Test Suites, Software Assurance Reference Dataset. http://samate.nist.gov/
SRD/testsuite.php

37. Reps, T., Horwitz, S., Sagiv, M.: Precise interprocedural dataflow analysis via
graph reachability. In: Proceedings of the 22nd ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages, pp. 49–61. ACM (1995)

38. Schwartz, E.J., Avgerinos, T., Brumley, D.: All you ever wanted to know about
dynamic taint analysis and forward symbolic execution (but might have been afraid
to ask). In: 2010 IEEE Symposium on Security and Privacy (SP), pp. 317–331.
IEEE (2010)

39. Serebryany, K., Bruening, D., Potapenko, A., Vyukov, D.: Addresssanitizer: a fast
address sanity checker. In: Proceedings of the 2012 USENIX Conference on Annual
Technical Conference, USENIX ATC 2012, Berkeley, CA, USA, p. 28. USENIX
Association (2012). http://dl.acm.org/citation.cfm?id=2342821.2342849

40. Stepanov, E., Serebryany, K.: Memorysanitizer: fast detector of uninitialized mem-
ory use in c++. In: 2015 IEEE/ACM International Symposium on Code Generation
and Optimization (CGO), pp. 46–55. IEEE (2015)

41. Tsipenyuk, K., Chess, B., McGraw, G.: Seven pernicious kingdoms: a taxonomy of
software security errors. IEEE Secur. Priv. 3(6), 81–84 (2005)

42. Viega, J., Bloch, J., Kohno, Y., McGraw, G.: Its4: a static vulnerability scan-
ner for c and c++ code. In: 2000 16th Annual Conference on Computer Security
Applications, ACSAC 2000, pp. 257–267, December 2000

43. Wilkerson, D.: CQUAL++. https://daniel-wilkerson.appspot.com/oink/qual.html.
Accessed 26 Mar 2015

44. Yamaguchi, F., Lottmann, M., Rieck, K.: Generalized vulnerability extrapolation
using abstract syntax trees. In: Proceedings of the 28th Annual Computer Security
Applications Conference, pp. 359–368. ACM (2012)

http://dl.acm.org/citation.cfm?id=1760267.1760289
http://dl.acm.org/citation.cfm?id=1760267.1760289
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/lee
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/lee
http://samate.nist.gov/Main_Page.html
http://samate.nist.gov/Main_Page.html
http://samate.nist.gov/SRD/testsuite.php
http://samate.nist.gov/SRD/testsuite.php
http://dl.acm.org/citation.cfm?id=2342821.2342849
https://daniel-wilkerson.appspot.com/oink/qual.html

Malware Detection

Comprehensive Analysis and Detection
of Flash-Based Malware

Christian Wressnegger(B), Fabian Yamaguchi, Daniel Arp, and Konrad Rieck

Institute of System Security, TU Braunschweig, Braunschweig, Germany
c.wressnegger@tu-braunschweig.de

Abstract. Adobe Flash is a popular platform for providing dynamic
and multimedia content on web pages. Despite being declared dead for
years, Flash is still deployed on millions of devices. Unfortunately, the
Adobe Flash Player increasingly suffers from vulnerabilities, and attacks
using Flash-based malware regularly put users at risk of being remotely
attacked. As a remedy, we present Gordon, a method for the compre-
hensive analysis and detection of Flash-based malware. By analyzing
Flash animations at different levels during the interpreter’s loading and
execution process, our method is able to spot attacks against the Flash
Player as well as malicious functionality embedded in ActionScript code.
To achieve this goal, Gordon combines a structural analysis of the con-
tainer format with guided execution of the contained code, a novel analy-
sis strategy that manipulates the control flow to maximize the coverage
of indicative code regions. In an empirical evaluation with 26,600 Flash
samples collected over 12 consecutive weeks, Gordon significantly out-
performs related approaches when applied to samples shortly after their
first occurrence in the wild, demonstrating its ability to provide timely
protection for end users.

Keywords: Adobe flash · Malware · Classification

1 Introduction

Adobe Flash is a widespread platform for providing multimedia content on web
pages—despite being declared dead for years and the recent standardization of
HTML5. According to Adobe, the Flash Player is still deployed on over 500
million devices across different hardware platforms, covering a large fraction of
all desktop systems [42]. Furthermore, a significant number of web sites employs
Flash for advertising, video streaming and gaming, such that every fourth web
site in the top 1,000 Alexa ranking still makes use of Flash-based content [22].

Unfortunately, the implementation of Flash is continuously suffering from
security problems. During the last ten years over 690 different vulnerabilities
have been discovered in the Adobe Flash Player [32]. In the year 2015 alone,
314 new vulnerabilities have been made public, 268 of which enable remote code
execution and require a user to merely visit a web page to be infected. This
growing attack surface provides a perfect ground for miscreants and has lead to
a large variety of Flash-based malware in the wild.
c© Springer International Publishing Switzerland 2016
J. Caballero et al. (Eds.): DIMVA 2016, LNCS 9721, pp. 101–121, 2016.
DOI: 10.1007/978-3-319-40667-1 6

102 C. Wressnegger et al.

Three factors render the Flash platform particularly attractive for attackers:
First, the large number of vulnerabilities considerably increases the chances for
compromising a wide range of systems. Second, the ability to execute Action-
Script code as part of an attack allows to probe the target environment and
carry out sophisticated exploit strategies. Finally, the Flash platform provides
several means for obstructing the analysis of attacks—most notably the capabil-
ity to execute downloaded or dynamically assembled code. As a result of such
obfuscation, the analysis of Flash-based attacks is difficult and time-consuming.
Often, signatures for virus scanners are only available with notable delay such
that end users remain unprotected for a considerable period of time.

In this paper, we present Gordon, a method for the automatic analysis and
detection of Flash-based malware. Our method combines a structural analysis of
the Flash container format with guided execution of ActionScript code, a light-
weight and pragmatic form of multi-path exploration. While related approaches
orient analysis to normal execution [27,44,48] or external triggers [6,14,30],
Gordon actively guides the analyzer towards interesting code regions to maxi-
mize the coverage thereof. This equips us with a comprehensive view on a sample,
including downloaded and dynamically assembled code. By additionally inspect-
ing the container format, we are able to construct a detection method capable
of spotting malicious ActionScript code as well as exploits targeting the Flash
Player directly.

To cope with the large diversity of Flash files in practice, Gordon imple-
ments support for all versions of Flash animations, including all versions of
ActionScript code. To the best of our knowledge, we are the first to provide
a generic method for the analysis and detection of Flash-based malware that
enables a comprehensive view on the behavior and structure of a Flash anima-
tion across all versions. The efficacy of Gordon in practice is demonstrated in
an evaluation with 26,600 Flash samples collected over a time of 12 consecutive
weeks. Gordon detects 90 % of the malicious samples shortly after their appear-
ance in the wild with a false-positive rate of at most 0.1 %. Consequently, our
method provides an excellent starting point for fending off Flash-based malware
more efficiently.

In summary we make the following contributions:

– Guided code-execution. We propose a lightweight and pragmatic approach
for exploring ActionScript code in Flash-based malware that guides analysis
towards large or otherwise characteristic code regions automatically.

– Comprehensive analysis of Flash. With the combination of a structural
analysis of Flash containers and a guided execution of embedded code we
provide a fine-grained view on samples across all versions of ActionScript code
and Flash.

– Effective detection of Flash-based attacks. Based on this analysis, we
develop a detection method that accurately identifies Flash-based exploits
and malware shortly after their occurrence, providing a good starting point
to bootstrap signature-based approaches.

Comprehensive Analysis and Detection of Flash-Based Malware 103

The rest of the paper is structured as follows: In Sect. 2 we introduce Gor-
don, our method for the analysis and detection of Flash-based malware, fol-
lowed by a detailed description of the employed structural analysis in Sect. 3,
our guided code-execution in Sect. 4 and Gordon’s detector in Sect. 5. Our
evaluation is presented in Sect. 6. We discuss limitations and related work in
Sect. 7 and Sect. 8, respectively. Section 9 concludes the paper.

Fig. 1. Schematic depiction of the analysis and detection process of Gordon with a
Flash-based malware as input, the two-step analysis of the profiler and the classification
of our method’s detector as output.

2 System Overview

The diverse nature of attacks based on Flash requires an analysis method to
inspect these animations on different levels. To this end, we implement our
method Gordon by integrating it into different processing stages of two Flash
interpreters, thereby blending into existing loading and execution processes. This
allows us to make use of data generated directly during execution, such as dynam-
ically constructed code or downloaded files. We achieve this analysis using the
following two-step procedure (see Fig. 1): First, we instrument the processing
unit of the Flash interpreter in order to profile a malware’s structure as well as
the execution of contained code. Second, we combine these profiles into a com-
mon representation to power a classifier based on machine learning techniques,
that allows to effectively discriminate malicious from benign Flash animations.

Profiling the Malware. Gordon’s profiler is implemented on the basis of two
popular and mature open-source implementations of the Flash platform that
are complementary with respect to the versions they support: Gnash [20] and
Lightspark [34]. While Gnash provides support for Flash up to version 9,
Lightspark enables processing version 9 and higher. As a result, Gordon is able
to analyze all currently relevant versions and file formats of Adobe Flash anima-
tions, including all versions of ActionScript code. The profiling implemented for
both interpreters features two kinds of analyses, that in turn make use of data
arising during an interpreter’s regular loading and execution process [1]:

– First, the profiler of Gordon inspects the hierarchical composition of the
Shockwave Flash (SWF) format. This can be done during the loading phase
when the interpreter parses the file for further processing (Sect. 3).

104 C. Wressnegger et al.

– Second, the control flow of embedded ActionScript code is analyzed in order
to determine indicative regions. By strategically changing the control flow at
branches in the code, Gordon guides execution along paths covering as much
indicative regions as possible (Sect. 4).

Detecting Flash-Based Malware. Based on the output of these different analyses,
we are then able to decide whether a particular Flash animation is malicious or
not. To this end we translate the structural report of a file and the execution
trace of contained ActionScript code into a representation that allows to train a
machine learning classifier (Sect. 5).

3 Structural Analysis

We begin our analysis by breaking down Flash animations into tags , the primary
containers employed by the SWF file format [2] to store ActionScript code as
well as data of various kinds, including audio, video, image and font data. Due
to the large number of different types of tags Flash files expose a huge attack
surface for memory corruption exploits. As a consequence, many exploits rely on
very specific types and arrangements of tags to succeed, and thus, the sequence
of tags alone can already serve as a strong indicator for malware.

For the structural analysis as employed by Gordon only tag identifiers and
structural dependencies are of interest, contained data on the other hand is not
considered. Consequently, Gordon does not need to know about the format of
individual tags and hence can be applied to unknown tags, e.g., tags introduced
in future versions. However, to further enhance the overall detection our method
may be combined with approaches to specifically target data formats that can
be included in a Flash animation’s tags. Moreover, exploits often rely on corrupt
or incomplete tags. To better account for these, we additionally include two
specific tag identifiers that mark (a) incomplete tags, i.e. tags that are known
to the interpreter, but could not be correctly parsed and (b) tags that contain
additional data beyond their specified limits. The latter occurs, for instance,
whenever the file contains data at the end that is not fully contained in its
last tag.

Fig. 2. Excerpt of the structural report for a LadyBoyle sample (See footnote 1).

Comprehensive Analysis and Detection of Flash-Based Malware 105

As a result of this structural analysis, we obtain a sequence of container types
including their nestings for each Flash file. Figure 2 shows the resulting container
listing for a sample1 of the LadyBoyle malware using CVE-2015-323.

In comparison to many other Flash animations, the content of this
file is rather short. However, for this specific sample the presence of the
DefineBinaryData and DoABC tags is crucial. The first contain the malware’s
payload as binary data, which in turn gets extracted by ActionScript 3 code
embedded in the latter. These tags in combination comprise the malicious func-
tionality of the sample. While in this particular case the structure alone is only
an indicator for the malicious behavior, that needs to be backed up by an analy-
sis of the embedded ActionScript code, other types of malware rely on cor-
rupt tags that allow to distinctively distinguish these. Some containers, such
as the DefineShape tag, allow to enclose an arbitrary number of other contain-
ers. We include these in the listing as children of the parent tag. Note that the
DefineShape tag and its children are not present in the original sample and have
been added for illustration purposes only.

For convenience, the structural report can also be represented as a sequential
list of identifiers, where nested containers are indicated by brackets:

It is important to note, that this representation already encodes the com-
plete hierarchy and relations of the tags to each other. This condensed form
is particularly suitable for automated approaches that do not require a textual
description of the tags. We revisit this topic when discussing the implementation
of Gordon’s detector in Sect. 5.

4 Guided Code-Execution

When analyzing a sample with Gordon we aim at observing as much indica-
tive behavior of a Flash animation as possible—ideally the analysis covers all
possible execution paths and corner cases. However, as extensively discussed in
computer security literature in the past [e.g., 27,30] this is not feasible due to
the potentially exponential number of different paths, making it necessary to
revert to approximations and heuristics in practice.

While related approaches orient analysis to normal execution [27,44,48] or
external triggers [6,14,30], our method guides execution towards indicative code
regions: Each branch is chosen such that the execution corresponds to the path
that covers the most indicative ActionScript code not observed so far. In partic-
ular, we are interested in exploring paths containing security-related objects and
functions as well as branches that contain more code than others. Figure 3 exem-
plarily shows the selected paths of two consecutive runs. During the first, Gor-
don’s profiler guides execution towards the loadMovie function, which enables
Flash animations using ActionScript 2 to dynamically load code in form of
another SWF file. The second run then directs the interpreter along the path

1 md5: cac794adea27aa54f2e5ac3151050845.

106 C. Wressnegger et al.

14

3

2

2

Run #1:
Loading of

code
Run #2:

Best code
coverage

3 6

4

5 12

9

15

3

9

?loadMovie

Fig. 3. Illustration of the path-selection strategy. Node labels correspond to the amount
of bytecode instructions in each basic block. Black lines indicate chosen execution paths.

covering the most bytecode instructions. This strategy can hence be seen as a
way to not only maximize code coverage locally (within the sample itself), but
globally, including all code that is loaded dynamically.

This is made possible by inspecting the control flow of the ActionScript
code contained in a Flash file with the aim of learning (a) how much code
can be covered along a specific path and (b) where security-related objects and
functions such as the aforementioned loadMovie are located. To this end, we first
derive the control-flow graph (CFG) of the ActionScript bytecode in question and
remove cycles induced by loops and recursive function calls (Sect. 4.1). Second,
the resulting graph is annotated with locations of indicative functionality and
the number of instructions contained in each branch, which in turn enables us
to efficiently determine the overall code coverage of individual paths (Sect. 4.2).
The results of this analysis is then used for the actual execution of the Flash
animation, allowing Gordon to navigate through the code in a targeted way
(Sect. 4.3).

4.1 Control-Flow Analysis

A control-flow graph (CFG) as shown in Fig. 4 contains basic code blocks as its
nodes and directed edges for branches connecting them [see 3]. As part of the
Adobe Flash Player’s verification phase, the ActionScript VM already checks
certain control flow properties when bytecode is loaded into the interpreter [1].
Our control-flow analysis can thus be thought of as a natural extension to the
examinations conducted by Flash interpreters. We, however, make use of this
information only as a starting point for the following analysis.

Upon the generation of a CFG, we are ready to find execution paths that
maximize code coverage. To easily determine these paths, the graph needs to
first undergo a few modifications. In particular, it is necessary to eliminate cycles
that occur due to loop statements in the code. Once these cycles are removed
we obtain an acyclic control-flow graph (ACFG) which allows us to efficiently
determine the code size of complete paths in the graph. To this end, we rewrite
all back-edges (edges pointing backwards with respect to the control flow) by

Comprehensive Analysis and Detection of Flash-Based Malware 107

var a:int = 294;

var b:int = 1722;

while (b != 0)

{

var h:int = a % b;

a = b; b = h;

}

trace(a);

Fig. 4. An ActionScript 3 snippet, the corresponding control flow graph (CFG) and
its acyclic transformation (ACFG). Dark nodes represent loop headers, bright nodes
generic code blocks; newly inserted edges are shown in red. (Color figure online)

linking them to the first code block after the loop. Figure 4 demonstrates this
for a simple while loop. All conventional loop, nested loops and their special
cases such as unnatural loops can be efficiently resolved using the dominance
relations of the individual nodes [see 3].

4.2 Annotating Control-Flow Edges

Once an ACFG has been generated, we annotate each of its edges with the num-
ber of bytecode instructions covered by the following code block. We artificially
increase the weight of individual instructions, if they correspond to security-
related objects and functions. For example, to pinpoint the dynamic loading of
code, we set the weighting for calls to the loadMovie function (ActionScript 2)
and the Loader object (ActionScript 3) to the maximum to ensure the analyzer
targets these first. Both are frequently used by Flash-based malware to load code
downloaded from the Internet or dynamically assembled at runtime. Similarly, it
is possible to emphasize other security-related functions and objects in Action-
Script, such as readBytes and ByteArray which are often used for obfuscated
code.

Given the annotated graph, the search for the most indicative code regions
can be rephrased as a longest-path problem. For arbitrary graphs determining
the longest path is NP-hard. Fortunately, for directed acylic graphs such as the
ACFG extracted previously, this is possible [see 11,38].

4.3 Path Exploration

With the annotated ACFG at hand, we can now guide the interpreter to execute
security-related or large code regions by stopping at every conditional jump and
choosing the branch corresponding to the path with the highest weight. In order
to avoid executing indicative code unnecessarily often, we constantly update vis-
ited regions within the ACFG. Moreover, Gordon enables multiple executions
based on the coverage analysis of previous runs. Hence, a different path is taken
and different code regions are visited in each run, thereby challenging adversarial

108 C. Wressnegger et al.

Fig. 5. Excerpt of behavioral report (See footnote 2).

attempts to hide payload in paths not covered initially. As analysis output of the
guided execution, we obtain all covered ActionScript instructions across multiple
execution runs. Figure 5 shows a short excerpt of the instructions executed by a
malware to facilitate the CVE-2015-03-313 exploit2 in the first run (R1).

Instructions at offset 973 to 983 show how the malware obfuscates the usage
of the ByteArray object at offset 984. This object is frequently used to construct
malicious payloads at run-time. The complete listing shows how the encrypted
payload is composed out of different parts, decrypted and finally loaded.

In the following we address certain implementation details of Gordon’s
guided code-execution with a special focus on the characteristics of Flash-based
malware and potential adversarial attempts to avoid analysis.

Reducing Branch Candidates. Although Gordon is capable of pursuing all
branches in ActionScript code, narrowing down the candidates speeds up the
process and limits the possibility of breaking the semantics of a sample. Often,
web-based attacks are tailored towards specific browser environments and thus
only trigger malicious activity upon checking for the correct target environ-
ment [27,44]. The conditional jumps underlying these checks provide excellent
candidates for our guided execution, as they usually lead to a malware sample’s
payload and are likely to be mutually exclusive, therefore reducing the risk of
semantic side-effects.

To restrict our analysis to these conditional jumps, we implement a taint-
tracking mechanism that propagates taint from environment-identifying data
sources to conditional jumps. In the scope of Flash-based malware, such data typ-
ically originates from the System.capabilities and flash.system.Capabilities

data structures available in ActionScript 2 and 3, respectively. To track the data
flow across built-in functions, we conservatively taint the result whenever at
least one of the input arguments is tainted. Note that for simplicity, we do not
consider implicit data-flow and control dependencies in our implementation [see
8,31] but leave this for future work.

Countering Obfuscation. To account for dynamically loaded code, we addition-
ally hook the interpreter’s loading routines. All such code then passes through

2 md5: 4f293f0bda8f851525f28466882125b7.

Comprehensive Analysis and Detection of Flash-Based Malware 109

the same analysis steps as the host file, allowing to analyze files downloaded
from the Internet as well as potentially encrypted code embedded in the Flash
animation itself equally thoroughly. This scheme is applied recursively to ensure
that all code is covered by our analysis.

Furthermore, Gordon implements an adaptive timeout mechanism rather
than a fixed period of time as utilized in previous works [13,19,44]. In particular,
we reset a 10 s timer each time the sample attempts to load code, giving the
sample time to react to this event. This may increase the analysis duration for
certain files but significantly reduces the effort for those that do not load data
or do not contain ActionScript code at all. On average a sample is executed for
12.6 s with a maximum duration of 3 min, reducing the analysis time by 93 %
compared to a fixed timeout.

We also take precautions for the possibility that an execution path is not
present in the statically extracted ACFG. In these rare cases, we switch to deter-
mining the size of the branch in an online manner: Gordon looks ahead in order
to inspect the instructions right after the branching point and passively skips
over instructions to determine the sizes of the branches. This analysis in principle
is the same as performed earlier (Sect. 4.1) but applied to the newly discovered
piece of bytecode only.

Lastly, we have observed an increase in the use of event-based program-
ming in recent malware—presumably to circumvent automatic detection—and
thus incorporate the automatic execution of such events into Gordon’s profiler.
Immediately after an event listener is added the specified function gets passed an
appropriate dummy event object and is executed without waiting for the actual
event to happen.

Updating the ACFG. Our method is designed to run a sample multiple times. To
this end, we update the edge labels of the ACFG during execution to reflect the
visited code and recompute the largest path in an online manner. Consequently,
our method implements a lightweight variant of multi-path exploration that
executes different code during each run. Since we decide on each condition at
runtime and identical code regions (functions) may be referenced multiple times
we not only cover the code of the single largest path in the graph but potentially
a combination of a number of paths. This softens the definition of such a path
as used in graph theory but makes a lot of sense for this application especially.

5 Learning-Based Detection

In order to demonstrate the expressiveness of our analysis, we implement a
learning-based detector that is trained on known benign and malicious Flash
animations. This approach spares us from manually constructing detection rules,
yet it requires a comprehensive dataset for training (see Sect. 6.1). However, as
most learning algorithms operate on vectorial data, we first need to map the
analysis output of Gordon to a vector space.

110 C. Wressnegger et al.

Vector Space Embedding. To embed the structural and behavioral reports
generated by Gordon in a vector space, we make use of classic n-gram models.
These models have initially been proposed for natural language processing [9,41]
but are also used in computer security for analyzing sequential data [e.g.,
24,28,33,39,47].

In particular, we extract token n-grams from both kinds of analysis outputs
by moving a sliding window of length n over the tokens in the reports. While the
compact output representation of Gordon’s structural analysis already is in a
format that can be used to extract such tokens, the reports generated by the
guided code-execution need to be normalized first: We extract all instructions,
including their names and parameters. Moreover, we replace values passed as
parameters with their respective type, such as INT, FLOAT or STR. To avoid loosing
relevant information we however preserve all names of operations, functions and
objects. Finally, we tokenize the behavioral reports using white-space characters.

High-order n-grams compactly describe the content, implicitly reflect the
structure of the reports and can be used for establishing a joint map to a vector
space. To this end, we embed a Flash animation x in a binary vector space
{0, 1}|S| spanned by the set S of all observed n-grams in the analysis output.
Each dimension in this vector space is associated with the presence of one n-gram
s ∈ S. Formally, this mapping φ is given by

φ : x �−→ (
b(s, x)

)
s∈S

where the function b(s, x) returns 1 if the n-gram s is present in the analysis
output of the file x and 0 otherwise.

Classification. Based on this vector space embedding, we apply a linear Support
Vector Machine (SVM) for learning a classification between benign and mali-
cious Flash animations. While several other learning algorithms could also be
applied in this setting, we stick to linear SVMs for their excellent generalization
capability and very low run-time complexity, which is linear in the number of
objects and features [37].

In short, a linear SVM learns a hyperplane that separates two classes with
maximum margin—in our setting corresponding to vectors of benign Flash ani-
mations and Flash-based malware. The orientation of the hyperplane is expressed
as a normal vector w in the input space and thus an unknown sample can be
classified using an inner product as follows

f(x) = 〈w, φ(x)〉 − t

where t is a threshold and f(x) the orientation of φ(x) with respect to the
hyperplane. That is, f(x) > 0 indicates malicious content in x and f(x) ≤ 0
corresponds to benign content.

Due to the way the mapping of n-grams is defined, the vector φ(x) is sparse:
Out of millions of possible token n-grams, only a limited subset is present in
a particular sample x. These vectors can thus be compactly stored in memory.

Comprehensive Analysis and Detection of Flash-Based Malware 111

Also, the inner product to determine the final score can be calculated in linear
time in the number of n-grams in a sample

f(x) =
∑

s∈S

ws b(s, x) =
∑

s in x

ws − t

We integrate this classifier into Gordon, such that it can be applied to either
the analysis outputs individually or to the joint representation of both.

6 Evaluation

We proceed to empirically evaluate the capabilities of Gordon in different
experiments. In particular, we study the effectiveness of the guided execution
in terms of code covered (Sect. 6.2), compare the detection performance with
related approaches (Sect. 6.3) and further demonstrate the effectivity of Gor-
don in a temporal evaluation (Sect. 6.4). Before presenting these experiments,
we introduce our dataset of Flash-based malware and benign animations.

6.1 Dataset Composition

The dataset for our evaluation has been collected over a period of 12 consecutive
weeks. In particular, we have been given access to submissions to the VirusTo-
tal service, thereby receiving benign and malicious Flash files likewise. Since
many web crawlers are directly tied to VirusTotal, the collected data reflects the
current landscape of Flash usage to a large part.

We split our dataset into malicious and benign Flash animations based on
the classification results provided by VirusTotal two months later: A sample is
marked as malicious, if it is detected by at least 3 scanners and flagged as benign,
if none of the 50 scanners hosted at VirusTotal detects the sample. Samples that
do not satisfy one of the conditions are discarded. This procedure enables us to
construct a reasonable estimate of the ground truth, since most virus scanners
refine their signatures and thus improve their classification results over time. The
resulting dataset comprises 1,923 malicious and 24,671 benign Flash animations,
with about half the samples being of version 8 or below and the other half of
more recent versions, therefore handled by the ActionScript VM version 1 and 2
respectively. A summary of the dataset is given in Table 1.

Table 1. Overview of the evaluation dataset

Classification AVM1 AVM2 Total

Malicious 864 1,059 1,923

Benign 12,046 12,625 24,671

Total 12,910 13,684 26,594

112 C. Wressnegger et al.

To account for the point in time the samples have been observed in the wild,
we group the samples in buckets according to the week of their submission to
VirusTotal. Consequently, we obtain 12 sets containing benign and malicious
Flash animations corresponding to the 12-week evaluation period. These tempo-
ral sets are used during the evaluation to construct temporarily disjoint datasets
for training and testing to conduct our experiments in strict chronological order:
For our experiments the performance is determined only on samples that have
been submitted to VirusTotal after any sample in the training data. This ensures
an experimental setup as close to reality as possible and demonstrates the app-
roach’s effectivity of providing timely protection.

6.2 Coverage Analysis

In our first experiment, we evaluate the effectiveness of the proposed guided
code-execution strategy. To this end, we investigate the code coverage of mal-
ware samples in our 12 week dataset. We apply Gordon to the malware and
inspect the output of the interpreter. Due to obfuscation techniques employed
by malware, the amount of statically contained code of a Flash file often is not
a reliable measure in this setting. Hence, we compare the number of executed
instructions with respect to a regular execution of the samples. With the path-
exploration strategy employed by Gordon, we manage to oberserve over 50 %
more ActionScript code than during a naive execution, and unveil crucial infor-
mation not provided otherwise. We mainly credit this leap in coverage to the
recursive analysis of dynamically loaded code and code assembled at runtime.

6.3 Comparative Evaluation

We continue to evaluate the detection performance of Gordon, showing its
ability to correctly classify Flash-based malware and specifically compare our
method with FlashDetect 3 [44]. In particular, we evaluate the approaches on
the complete set of 12 consecutive weeks, where we use weeks 1–6 for training and
weeks 7–9 for validation to calibrate the parameters of the detectors. We then
combine these two sets for final training and apply the detectors to weeks 10–12
for testing the detection performance. Table 2 summarizes the results as the
true-positive rates and the corresponding false-positives rates of the methods.

Table 2. Detection rates of FlashDetect and Gordon.

Method FlashDetect3 Gordon-1% Gordon-0.1%

False-postive rate 1 % 1 % 0.1 %

True-positive rate 26.5 % 95.2 % 90.0 %

3 Versions not supported by FlashDetect (version 8 and below) have been excluded.

Comprehensive Analysis and Detection of Flash-Based Malware 113

Gordon. As described in Sect. 5 Gordon’s detector can be applied to either
the analysis outputs individually or to the joint representation of both. The rela-
tion thereof is shown in Fig. 6(a) as a ROC curve with the detection performance
as true-positive rate on the y-axis over the false-positive rate on the x-axis. To
map the reports of Gordon’s profiler to the vector space we make use of 4-
grams. Each representation and the combination of both are plotted as different
curves.

At a false-positive rate of 0.1 % the individual representations attain a detec-
tion rate of 60–65 %. The combination of both (Gordon-0.1%) increases the
detection performance significantly and enables spotting 90.0 % of the Flash-
based attacks. If the false-positive rate is increased to 1 %, our method even
detects 95.2 % of the malicious samples in our dataset (Gordon-1%). Addition-
ally we break down this results by CVE numbers. Figure 6(b) shows the detection
performance as true-positive rate over the years of appearance of the particu-
lar vulnerabilities in our dataset. The average performance is slightly below the
overall detection rate, indicating that we also detect malware that does not carry
exploits itself, but facilitates a different attack or uses obfuscation to obscure the
presence of an exploit. This perfectly demonstrates the capabilities of our app-
roach: First, the complementary views on the behavior and structure of Flash
animations provide a good basis for analyzing attacks and, second, this expres-
sive representation can be effectively used for detecting malware in the wild.

Fig. 6. Detection performance of Gordon as ROC curve and sorted by CVE numbers.

FlashDetect. For the related method FlashDetect we slightly modify
the setting and exclude Flash animations of versions below 9 from the evalu-
ation, as this detector is dedicated to the analysis of ActionScript 3 malware
only. Nevertheless, FlashDetect only identifies 26.5 % of the malicious Flash
samples at a false-positive rate of 1 %.

Although FlashDetect employs a heuristic for eliciting malicious behavior
during the execution of a Flash animation, it misses 3 out of 4 attacks. We
attribute this low performance to two issues: First, compared to our method the
employed branch selection strategy is less effective and second, the method has
been tailored towards specific types of attacks which are not prevalent anymore.
Gordon in contrast does not rely on manually selected features, but models

114 C. Wressnegger et al.

the underlying data using n-grams. Therefore it can better cope with the large
diversity of today’s malware. Due to the low performance of FlashDetect, we
omit it from the ROC curve in Fig. 6(a).

AV Engines. We finally determine the detection performance of 50 virus scanners
on the testing dataset. The 5 best scanners detect 82.3 %–93.5 % of the malicious
samples. However, due to the very nature of signature-based approaches they
provide detection with practically no false positives. If we parametrize Gordon
to zero false positives only 47.2 % of the malware is detected. This clearly shows,
that Gordon cannot compete with manually crafted signatures in the long
run, but provides solid detection of Flash-based malware shortly after its first
occurrence in the wild without the need for manual analysis.

As a consequence, we consider our method a valuable tool for improving the
analysis of Flash-based malware in the short run and a way to provide traditional
approaches with a good starting point in day-to-day business to efficiently craft
signatures for AV products.

6.4 Temporal Evaluation

To demonstrate the use of Gordon as a fast, complementary detector, we study
its performance over several weeks of operation. We again make use of 4-grams
and 12 consecutive weeks of collected Flash data. This time we however apply
the detector one week ahead of time, that is, we classify one week after the other,
based on the previous weeks.

We start off with week 1 as training, week 2 as validation and week 3 as
first test dataset. Over the course of the experiment we shift the time frame
forward by one week and likewise increase the training dataset. This can be seen
as expanding a window over the experiment’s period of time. Hence, Gordon’s
detector accumulates more and more data for training—just as a system oper-
ating in practice would. In order to optimally foster complementary approaches
we choose a rather liberal false-positive rate of 1 %. Figure 7 shows the true-
positive rates achieved by our method during 10 weeks of operation. Gordon
starts off below its average performance and takes time till week 5 to perform
well, reaching detection rates between 80 % and 99 % for the remaining weeks.
As our method makes use of machine learning techniques, the detector requires a
certain amount of training data before it is fully operational and reaches its opti-
mal performance. If parametrized to 0.1 % false positives, Gordon still reaches
detection performances of 82 % on average.

Overall, this experiment shows Gordon’s potential to improve on the detec-
tion performance shortly after a malware’s appearance in the wild. We consider
the number of false-positives—benign samples that need to be additionally ana-
lyzed without directly resulting in a malicious signature—as tolerable trade-off
for the leap taken in short-term detection performance. In practice, one may
start off with a rather strict configuration, accept a lower gain and scale up the
interval according to available resources.

Comprehensive Analysis and Detection of Flash-Based Malware 115

Fig. 7. Gordon’s performance over 12 consecutive weeks. The red line illustrates the
detector’s progression over time, showing a clear uptrend towards its optimal perfor-
mance. (Color figure online)

7 Limitations

The experiments discussed in the previous section demonstrate that our method
provides an effective solution for the analysis and detection of Flash-based mal-
ware. Nonetheless, our approach has some limitations which are discussed in the
following.

Breaking Code Semantics. With Gordon we make a trade-off between com-
pleteness and simplicity of analysis. By pragmatically forcing the execution of
specific branches the analyzer avoids expensive computations at execution-time,
but may—similar to previous approaches [27,48]—break semantics of underly-
ing code. Our experiments however show that restricting Gordon to branches
which depend on environment-identifying data (c.f. Sect. 4) reduces the impact
of such inconsistencies and that the overall effectiveness of the detector is not
influenced in a negative way. Note that, Gordon’s path-exploration strategy of
guiding analysis towards indicative code regions can also be used in combination
with symbolic execution—an adaption worth exploring in future work.

Analysis-Aware Malware. Experience has shown that successful analysis sys-
tems have repeatedly been subject to dedicated evasion techniques of various
types [10]. For Gordon two particular variations come to mind: First, a mal-
ware author may leverage differences in implementation of Lightspark and Gnash
compared to the Adobe Flash Player. While this is true, the underlying concepts
of Gordon can be easily transferred to any interpreter when used in production,
possibly using instrumentation [21].

Second, malware might hide its payload in a seemingly irrelevant, low-
weighted branch, veiled by branches containing more instructions—potentially
across multiple stages. By maximizing the code coverage over multiple execu-
tions, Gordon systematically restricts the available space for hiding malicious
code. The number of executions thereby is a parameter that allows to strike a bal-
ance between coverage and analysis time. Furthermore, the proposed weighting

116 C. Wressnegger et al.

of the annotated ACFG can be refined to better characterize indicative
code regions and adapted to malware trends. This can be deployed with-
out the need to change the underlying analysis system and enhanced as
analysis-aware malware evolves.

Dynamic Loading of Other File Formats. Although Gordon inspects dynam-
ically loaded code in the form of Flash animations, we do not currently track
and analyze other file formats such as audio, video and image containers. These
have shown to be a possible attack vector in the scope of Flash malware in the
past and have been considered in other malware analysis systems [19,44]. The
detection of embedded malware, however, is a research field of its own and ranges
from statically matching shellcode signatures to finding suspicious code in dif-
ferent file containers [4,39,40,50]. For Gordon, we thus consider the analysis
of other file formats mainly an engineering effort of integrating other successful
approaches.

Interaction with JavaScript and the DOM. Similarly to malware families that
make use of ActionScript to set the grounds for exploiting a particular vulnera-
bility in the browser, there also exist attack campaigns that utilize JavaScript for
heap spraying, for instance, in order to exploit a vulnerability in the Flash Player.
This cannot be handled with the current prototype of Gordon as we solely focus
on the Flash part in this paper. Bringing together our method with systems that
have proven effective for detecting JavaScript malware [e.g., 13,16,35] may close
this gap elegantly.

Machine Learning for Malware Detection. Finally, as Gordon’s detector is
based on machine learning, it may be vulnerable to mimicry attacks [18,46,47].
For n-gram models, Fogla and Lee [17] show that generating a polymorphic
blending attack is NP-hard, but can be approximated for low-order n-grams.
While non-trivial in practice, such attacks could theoretically be conducted
against Gordon. However, the use of high-order n-grams elevates complexity to
a level where such attacks become impractical. In addition to mimicry, a pow-
erful attacker may systematically introduce samples to shift the classification
boundary to her advantage [5,23]. These attacks can have an effect on Gor-
don’s detector, but require access to large portions of the training data to be
effective. As a consequence, such attacks can be alleviated if data from different
sources is mixed and subsequently sanitized [15].

8 Related Work

A large body of research has dealt with the detection and analysis of web-based
attacks, yet Flash-based malware has received only little attention so far. In this
section, we discuss work related to Gordon, focusing on two strains of research:
(1) Flash-based malware and (2) multi-path exploration.

Note that the implementations of JavaScript and ActionScript interpreters
are fundamentally different, making an application of detection approaches for

Comprehensive Analysis and Detection of Flash-Based Malware 117

malicious JavaScript source-code unlikely to operate on Flash-based malware
available in bytecode. Consequently, we do not discuss approaches for malicious
JavaScript code in this paper and refer the reader to a wide range of research [7,
13,26,27,35]. Nonetheless, combining detection methods for malicious JavaScript
and Flash can be of considerable value. Also, the work by Ŝrndić and Laskov [45]
is of particular interest, since they have been the first to show the practicality
of using hierarchical document structure for detection.

Flash-based Attacks and Malware. Only few works have studied means to fend off
malware targeting the Adobe Flash platform [19,44]. OdoSwiff [19], focuses
on detecting malicious ActionScript 2 Flash advertisements based on expert
knowledge of prevalent attacks. In contrast to OdoSwiff, our method employs
machine learning to automatically produce a classifier based on benign and mali-
cious Flash animations. FlashDetect [44], the successor of OdoSwiff also
makes use of machine learning techniques and, similar to Gordon, employs an
instrumented interpreter to dump dynamically loaded code. However, FlashDe-
tect only pursues one level of staged-execution, focuses solely on ActionScript 3
and employs a simple heuristic for subverting environmental checks that has
proven insufficient for modern Flash-based malware. By contrast, Gordon aims
at maximizing the coverage of indicative code regions independent of particu-
lar attacks, across multiple stages and versions. As a result, our method allows
to uncover vitally more code than FlashDetect and thereby attains a better
basis for detecting attacks. Furthermore, by not relying on hand-crafted features
Gordon can better cope with the large diversity of today’s malware.

Industry research has mainly focused on instrumenting Flash interpreters
for analysis purposes. Wook Oh [49], for instance, presents methods to patch
ActionScript bytecode to support function hooking, and more recently, Hirvo-
nen [21] introduces an approach for instrumenting Flash based on the Intel Pin
Platform. These systems complement Gordon and may be used to implement
our method for other platforms.

Aside from Flash-based malware and therefore, orthogonal to Gordon sev-
eral authors have inspected the malicious use of Flash’s cross-domain capabili-
ties [25], its vulnerability to XSS attacks [43] and the prevention of such [29].

Multi-path Exploration. Ideally an analysis covers all possible paths and corner
case, which however is not feasible due to the potentially exponential number of
different execution paths. Most notably in this context is the work by Moser et al.
[30], who propose to narrow down analysis to paths influenced by input data such
as network I/O, files or environment information. While this effectively decreases
the number of paths to inspect it still exhaustively enumerates all paths of this
subset under investigation. A second strain of research has considered symbolic
execution for the analysis of program code and input generation [e.g., 12,36].
Brumley et al. [6] combine dynamic binary instrumentation with symbolic exe-
cution to identify malware behavior triggered by external commands. Similarly,
Crandall et al. [14] use symbolic execution to expose specific points in time where

118 C. Wressnegger et al.

malicious behavior is triggered. Equally to the enumeration of paths, symbolic
execution shares the problem of an exponential state space.

With Rozzle, Kolbitsch et al. [27] also make use of techniques from symbolic
execution. However, instead of generating inputs, data in alternative branches
is represented symbolically and, upon subsequent execution of both branches,
merged. In doing so, Kolbitsch et al. except to break existing code due to the
execution of infeasible paths. Based on the symbolic representation Rozzle like-
wise is subject to an exponential state space that is dealt with by limiting the
depth of the symbolic trees used. Limbo [48] avoids this kind of state explosion
and reverts to a more simple strategy of forcing branching conditions to monitor
execution. Limbo however again exhaustively enumerates paths and thus does
not address the underlying problem in the first place.

All these methods are either driven by the original execution path [27,48]
or focus on external triggers [6,14,30]. Gordon on the other hand, first identi-
fies indicative code regions and guides the interpreter towards these, enabling a
payload-centric analysis.

9 Conclusions

In light of an increasing number of vulnerabilities in Flash, there is an urgent
need for tools that provide an effective analysis and detection of Flash-based
malware. As a remedy, we present Gordon, a novel approach that combines
a structural analysis of the Flash container format with guided execution of
embedded ActionScript code—a lightweight and pragmatic form of multi-path
exploration. Our evaluation on 26,600 Flash samples shows that Gordon is
able to cover more code than observed with other approaches. Moreover, this
increase of coverage exposes indicative patterns that enable Gordon’s detector
to identify 90–95 % of malware shortly after its appearance in the wild.

Our method can be used to bootstrap the current process of signature gener-
ation and point an analyst to novel malware samples. Gordon thereby provides
a valuable step towards the timely protection of end users. Furthermore, the
guided execution of code is a simple yet effective strategy for studying malicious
code that might also be applicable in other branches of malware analysis, such
as for JavaScript and x86 inspection.

Acknowledgments. The authors would like to thank Emiliano Martinez of Virus-
Total for supporting the acquisition of malicious Flash files. Furthermore, we
gratefully acknowledge funding from the German Federal Ministry of Education
and Research (BMBF) under the projects APT-Sweeper (FKZ 16KIS0307) and
INDI (FKZ 16KIS0154K) as well as the German Research Foundation (DFG) under
project DEVIL (RI 2469/1-1).

References

1. Adobe Systems Incooperated: ActionScript virtual machine 2 (AVM2) overview.
Technical report, Adobe System Incooperated (2007)

Comprehensive Analysis and Detection of Flash-Based Malware 119

2. Adobe Systems Incooperated: SWF file format specification. Technical report,
Adobe System Incooperated (2013)

3. Aho, A.V., Sethi, R., Ullman, J.D.: Compilers Principles, Techniques, and Tools,
2nd edn. Addison-Wesley, Reading (2006)

4. Baecher, P., Koetter, M.: libemu - x86 Shellcode Emulation (2008)
5. Biggio, B., Nelson, B., Laskov, P.: Poisoning attacks against support vector

machines. In: Proceedings of International Conference on Machine Learning
(ICML) (2012)

6. Brumley, D., Hartwig, C., Liang, Z., Newsome, J., Song, D., Yin, H.: Automatically
identifying trigger-based behavior in malware. In: Lee, W., Wang, C., Dagon, D.
(eds.) Botnet Detection, pp. 65–88. Springer, US (2008)

7. Canali, D., Cova, M., Vigna, G., Kruegel, C.: Prophiler: a fast filter for the large-
scale detection of malicious web pages. In: Proceedings of the International World
Wide Web Conference (WWW), pp. 197–206, April 2011

8. Cavallaro, L., Saxena, P., Sekar, R.: On the limits of information flow techniques
for malware analysis and containment. In: Zamboni, D. (ed.) DIMVA 2008. LNCS,
vol. 5137, pp. 143–163. Springer, Heidelberg (2008)

9. Cavnar, W., Trenkle, J.: N-gram-based text categorization. In: Proceedings of
SDAIR, Las Vegas, pp. 161–175, NV, USA, April 1994

10. Chen, X., Andersen, J., Mao, Z.M., Bailey, M., Nazario, J.: Towards an under-
standing of anti-virtualization and anti-debugging behavior in modern malware.
In: Proceedings of Conference on Dependable Systems and Networks (DSN),
pp. 177–186 (2008)

11. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
3rd edn. MIT Press, Cambridge (2009)

12. Cova, M., Felmetsger, V., Banks, G., Vigna, G.: Static detection of vulnerabilities
in x86 executables. In: Proceedings of Annual Computer Security Applications
Conference (ACSAC), pp. 269–278 (2006)

13. Cova, M., Kruegel, C., Vigna, G.: Detection and analysis of drive-by-download
attacks and malicious JavaScript code. In: Proceedings of the International World
Wide Web Conference (WWW), pp. 281–290 (2010)

14. Crandall, J.R., Wassermann, G., Oliveira, D.A.S., Su, Z., Wu, S.F., Chong, F.T.:
Temporal search: detecting hidden malware timebombs with virtual machines. In:
Proceedings of International Conference on Architectural Support for Program-
ming Languages and Operating Systems, pp. 25–36 (2006)

15. Cretu, G., Stavrou, A., Locasto, M., Stolfo, S., Keromytis, A.: Casting out demons:
Sanitizing training data for anomaly sensors. In: Proceedings of IEEE Symposium
on Security and Privacy, pp. 81–95 (2008)

16. Curtsinger, C., Livshits, B., Zorn, B., Seifert, C.: Zozzle: fast and precise in-browser
JavaScript malware detection. In: Proceedings of USENIX Security Symposium,
pp. 33–48 (2011)

17. Fogla, P., Lee, W.: Evading network anomaly detection systems: formal reasoning
and practical techniques. In: Proceedings of ACM Conference on Computer and
Communications Security (CCS), pp. 59–68 (2006)

18. Fogla, P., Sharif, M., Perdisci, R., Kolesnikov, O., Lee, W.: Polymorphic blending
attacks. In: Proceedings of USENIX Security Symposium, pp. 241–256 (2006)

19. Ford, S., Cova, M., Kruegel, C., Vigna, G.: Analyzing and detecting malicious
flash advertisements. In: Proceedings of Annual Computer Security Applications
Conference (ACSAC), pp. 363–372 (2009)

20. gnash. GNU Gnash. https://www.gnu.org/software/gnash. Accessed April 2016

https://www.gnu.org/software/gnash

120 C. Wressnegger et al.

21. Hirvonen, T.: Dynamic flash instrumentation for fun and profit. In: Proceedings of
Black Hat USA (2014)

22. httparchive. http://www.httparchive.org. Accessed April 2016
23. Huang, L., Joseph, A.D., Nelson, B., Rubinstein, B.I.P., Tygar, J.D.: Adversarial

machine learning. In: Proceedings of ACM Workshop on Artificial Intelligence and
Security (AISEC), pp. 43–58 (2011)

24. Jang, J., Agrawal, A., Brumley, D.: ReDeBug: finding unpatched code clones in
entire os distributions. In: Proceedings of IEEE Symposium on Security and Pri-
vacy, pp. 48–62 (2012)

25. Johns, M., Lekies, S.: Biting the hand that serves you: a closer look at client-side
flash proxies for cross-domain requests. In: Holz, T., Bos, H. (eds.) DIMVA 2011.
LNCS, vol. 6739, pp. 85–103. Springer, Heidelberg (2011)

26. Kapravelos, A., Shoshitaishvili, Y., Cova, M., Kruegel, C., Vigna, G.: Revolver: an
automated approach to the detection of evasive web-based malware. In: Proceed-
ings of USENIX Security Symposium, pp. 637–651, August 2013

27. Kolbitsch, C., Livshits, B., Zorn, B., Seifert, C.: Rozzle: de-cloaking internet mal-
ware. In: Proceedings of IEEE Symposium on Security and Privacy, pp. 443–457
(2012)

28. Laskov, P., Šrndić, N.: Static detection of malicious javascript-bearing PDF doc-
uments. In: Proceedings of Annual Computer Security Applications Conference
(ACSAC), pp. 373–382 (2011)

29. Louw, M.T., Thotta, K., Venkatakrishnan, V.N.: AdJail: practical enforcement
of confidentiality and integrity policies on web advertisments. In: Proceedings of
USENIX Security Symposium, pp. 371–388 (2010)

30. Moser, A., Kruegel, C., Kirda, E.: Exploring multiple execution paths for malware
analysis. In: Proceedings of IEEE Symposium on Security and Privacy, pp. 231–245
(2007)

31. Nair, S.K., Simpson, P.N.D., Crispo, B., Tanenbaum, A.S.: A virtual machine based
information flow control system for policy enforcement. Electron. Notes Theor.
Comput. Sci. (ENTCS) 197(1), 3–16 (2008)

32. Özkan, S.: CVE Details. http://www.cvedetails.com. Accessed April 2016
33. Perdisci, R., Ariu, D., Fogla, P., Giacinto, G., Lee, W.: McPAD: a multiple clas-

sifier system for accurate payload-based anomaly detection. Comput. Netw. 5(6),
864–881 (2009)

34. Pignotti, A.: Lightspark. https://github.com/lightspark. Accessed April 2016
35. Ratanaworabhan, P., Livshits, B., Zorn, B.: Nozzle: a defense against heap-

spraying code injection attacks. In: Proceedings of USENIX Security Symposium,
pp. 169–186 (2009)

36. Saxena, P., Akhawe, D., Hanna, S., Mao, F., McCamant, S., Song, D.: A sym-
bolic execution framework for javascript. In: Proceedings of IEEE Symposium on
Security and Privacy, pp. 513–528 (2010)

37. Schölkopf, B., Smola, A.J.: Learning with Kernels. MIT Press, Cambridge (2002)
38. Sedgewick, R., Wayne, K.: Algorithms, 4th edn. Addison-Wesley, Boston (2011)
39. Shafiq, M.Z., Khayam, S.A., Farooq, M.: Embedded malware detection using

markov n-grams. In: Zamboni, D. (ed.) DIMVA 2008. LNCS, vol. 5137, pp. 88–107.
Springer, Heidelberg (2008)

40. Stolfo, S.J., Wang, K., Li, W.-J.: Towards stealthy malware detection. In:
Christodorescu, M., Jha, S., Maughan, D., Song, D., Wang, C. (eds.) Malware
Detection, pp. 231–249. Springer, USA (2007)

41. Suen, C.: N-gram statistics for natural language understanding, text processing.
IEEE Trans. Pattern Anal. Mach. Intell. 1(2), 164–172 (1979)

http://www.httparchive.org
http://www.cvedetails.com
https://github.com/lightspark

Comprehensive Analysis and Detection of Flash-Based Malware 121

42. Systems, A.: Adobe Flash runtimes: Statistics. http://www.adobe.com/products/
flashruntimes/statistics.html. Accessed April 2016

43. van Acker, S., Nikiforakis, N., Desmet, L., Joosen, W., Piessens, F.: FlashOver:
automated discovery of cross-site scripting vulnerabilities in rich internet applica-
tions. In: Proceedings of ACM Symposium on Information, Computer and Com-
munications Security (ASIACCS) (2012)

44. Van Overveldt, T., Kruegel, C., Vigna, G.: FlashDetect: actionscript 3 malware
detection. In: Balzarotti, D., Stolfo, S.J., Cova, M. (eds.) RAID 2012. LNCS, vol.
7462, pp. 274–293. Springer, Heidelberg (2012)

45. Šrndić, N., Laskov, P.: Detection of malicious PDF files based on hierarchical docu-
ment structure. In: Proceedings of Network and Distributed System Security Sym-
posium (NDSS) (2013)

46. Wagner, D., Soto, P.: Mimicry attacks on host based intrusion detection systems.
In: Proceedings of ACM Conference on Computer and Communications Security
(CCS), pp. 255–264 (2002)

47. Wang, K., Parekh, J.J., Stolfo, S.J.: Anagram: a content anomaly detector resistant
to mimicry attack. In: Zamboni, D., Kruegel, C. (eds.) RAID 2006. LNCS, vol.
4219, pp. 226–248. Springer, Heidelberg (2006)

48. Wilhelm, J., Chiueh, T.: A forced sampled execution approach to kernel rootkit
identification. In: Kruegel, C., Lippmann, R., Clark, A. (eds.) RAID 2007. LNCS,
vol. 4637, pp. 219–235. Springer, Heidelberg (2007)

49. Wook Oh, J.: AVM inception - how we can use AVM instrumentation in a beneficial
way. In: Shmoocon (2012)

50. Wressnegger, C., Boldewin, F., Rieck, K.: Deobfuscating embedded malware using
probable-plaintext attacks. In: Stolfo, S.J., Stavrou, A., Wright, C.V. (eds.) RAID
2013. LNCS, vol. 8145, pp. 164–183. Springer, Heidelberg (2013)

http://www.adobe.com/products/flashruntimes/statistics.html
http://www.adobe.com/products/flashruntimes/statistics.html

Reviewer Integration and Performance
Measurement for Malware Detection

Brad Miller1(B), Alex Kantchelian2, Michael Carl Tschantz3, Sadia Afroz3,
Rekha Bachwani4, Riyaz Faizullabhoy2, Ling Huang5, Vaishaal Shankar2,

Tony Wu2, George Yiu6, Anthony D. Joseph2, and J.D. Tygar2

1 Google Inc., Mountain View, USA
bradmiller@google.com

2 UC Berkeley, Berkeley, USA
{akant,riyazdf,vaishaal,tony.wu,adj,tygar}@cs.berkeley.edu

3 International Computer Science Institute, Berkeley, USA
{mct,sadia}@icsi.berkeley.edu

4 Netflix, Los Gatos, USA
rbachwani@netflix.com

5 DataVisor, Mountain View, USA
ling.huang@datavisor.com

6 Pinterest, San Francisco, USA
george@pinterest.com

Abstract. We present and evaluate a large-scale malware detection sys-
tem integrating machine learning with expert reviewers, treating review-
ers as a limited labeling resource. We demonstrate that even in small
numbers, reviewers can vastly improve the system’s ability to keep pace
with evolving threats. We conduct our evaluation on a sample of Virus-
Total submissions spanning 2.5 years and containing 1.1 million bina-
ries with 778GB of raw feature data. Without reviewer assistance, we
achieve 72 % detection at a 0.5 % false positive rate, performing compa-
rable to the best vendors on VirusTotal. Given a budget of 80 accurate
reviews daily, we improve detection to 89% and are able to detect 42%
of malicious binaries undetected upon initial submission to VirusTotal.
Additionally, we identify a previously unnoticed temporal inconsistency
in the labeling of training datasets. We compare the impact of training
labels obtained at the same time training data is first seen with training
labels obtained months later. We find that using training labels obtained
well after samples appear, and thus unavailable in practice for current
training data, inflates measured detection by almost 20% points. We
release our cluster-based implementation, as well as a list of all hashes
in our evaluation and 3% of our entire dataset.

1 Introduction

Malware constitutes an enormous arms race in which attackers evolve to evade
detection and detection mechanisms react. A recent study found that only 66 %

B. Miller and G. Yiu—Primarily contributed while at UC Berkeley.
R. Bachwani—Primarily contributed while at Intel.

c© Springer International Publishing Switzerland 2016
J. Caballero et al. (Eds.): DIMVA 2016, LNCS 9721, pp. 122–141, 2016.
DOI: 10.1007/978-3-319-40667-1 7

Reviewer Integration and Performance Measurement for Malware Detection 123

of malware was detected within 24 h, 72 % within one week, and 93 % within
one month [9]. To evade detection, attackers produce a large number of different
malware binaries, with McAfee receiving over 300,000 binaries daily [14].

Machine learning offers hope for timely detection at scale, but the setting of
malware detection differs from common applications of machine learning. Unlike
applications such as speech and text recognition where pronunciations and char-
acter shapes remain relatively constant over time, malware evolves as adversaries
attempt to fool detectors. In effect, malware detection becomes an online process
in which vendors must continually update detectors in response to new threats,
requiring accurate labels for new data. Unfortunately, malware labeling poses
unique challenges. Whereas reading is sufficient to label text, the deceptive and
technical nature of malware requires expert analysis.

We present an approach to detection integrating machine learning and expert
reviews to keep pace with new threats at scale. As expert labeling is expensive,
we model the expert as capable of supplying labels for a limited selection of
samples. We then combine the limited supply of expert reviewer labels with
the broader supply of noisy labels produced by anti-virus scanners to train a
detection model. We evaluate our approach using a sample of submissions to
VirusTotal, a malware analysis and detection website [27]. The dataset includes
a timestamp and anti-virus labels for each submission, capturing the emergence
and prevalence of binaries, as well as label knowledge, over a 2.5 year period.
We train new models weekly with a customized approach combining accurate
reviewer labels and noisy anti-virus labels and evaluate each model over the
coming week. To evaluate at scale, we simulate reviewer labels by revealing the
results of automated scans taken at least 8 months after a sample first appears,
providing opportunity for automated detectors to update and detect new threats.

We recognize that accurate training labels are not instantaneously available
for all data, and therefore examine the impact of training label practices on per-
formance measurement. Prior work has introduced temporal sample consistency,
requiring that training binaries predate evaluation binaries [13]. We introduce
temporal label consistency, imposing the requirement that training labels also
predate evaluation binaries. Temporal label consistency restricts label quality
relative to common practice, which collects labels well after binaries first appear
and uses the same mature labels for both training and evaluation, leading to
artificially inflated performance measurements.

Our work offers the following contributions:

– We present a detection system that integrates reviewers to increase detection
from 72 % at 0.5 % false positive rate, comparable to the best vendors on
VirusTotal, to 77 % and 89 % detection with a budget of 10 and 80 reviews
daily on average. Additionally, our system detects 42 % of malicious binaries
initially undetected by vendors in our evaluation.

– We demonstrate impact of temporally inconsistent labels on performance mea-
surement, artificially inflating measured detection from 72 % to 91 % at a 0.5 %
false positive rate.

124 B. Miller et al.

– We publicly release1 our implementation, 3 % of all data, and list of all 1.1
million unique binaries appearing over 2.5 years included in our evaluation.

Our evaluation also includes several additional experiments offering a more
complete understanding of detection performance. Although our design includes
both static and dynamic features, since VirusTotal detectors must operate stat-
ically we also compare our performance against VirusTotal using static features
alone. Note that the restriction to static features actually disadvantages our
approach, as VirusTotal detectors may operate against the arbitrary file and
we restrict ourselves to static attributes available through VirusTotal. Our per-
formance is slightly impacted, producing 84 % detection at 0.5 % false positive
rate with 80 queries daily and still surpassing detectors on VirusTotal. We also
explore the impact of inaccurate human labelers on the system’s detection per-
formance by adding random noise to the simulated expert labels. We find that
our design is robust in the presence of imperfect labelers. Given reviewers with
a 90 % true positive rate and a 5 % false positive rate our system still achieves
82 % detection at a 0.5 % false positive rate, as compared to 89 % detection using
accurate reviewers.

We evaluate our contributions using VirusTotal data because each submis-
sion represents a request for analysis from a user, researcher or member of the
security community. VirusTotal responds to requests by running dozens of anti-
virus products from the security industry, including large firms such as McAfee,
Symantec and Kaspersky. As we evaluate our contributions on a dataset includ-
ing submissions from researchers and the security industry, not a random sam-
pling of files from end user machines, we envision our approach as improving the
detection workflows within security firms which ultimately produce products
for end users. We demonstrate that by investing a fraction of the engineering
expertise of large security firms, we can vastly improve the ability to determine
whether a binary is malicious.

In Sect. 2, we review prior work. Section 3 presents the design of our system,
including feature extraction, machine learning and integration of the labeling
expert, and Sect. 4 examines our dataset. Section 5 discusses our system imple-
mentation and then examines the impact of different performance measurement
techniques and evaluates the performance of our detection system. Lastly, Sect. 6
concludes.

2 Prior Work

In this section we present the prior work most directly related to our own areas
of contribution: reviewer integration to improve automated detection and perfor-
mance measurement. Consistent with the focus of our work, we primarily discuss
systems for malware detection rather than family classification or clustering. An
extensive discussion of related work is available online [15].

1 http://secml.cs.berkeley.edu/detection platform/.

http://secml.cs.berkeley.edu/detection_platform/

Reviewer Integration and Performance Measurement for Malware Detection 125

Since minimal prior work has explored reviewer integration, we begin by dis-
cussing systems that moderate access to any expensive labeling resource. Several
works employ a weak detector design, which cheaply labels some instances as
benign but requires an expensive confirmation to label any instance as malicious.
Provos et al. and Canali et al. present weak detector systems for malicious URLs
which moderate access to expensive analysis in a virtual machine [5,19]. Sim-
ilarly, Chakradeo et al. present MAST, a system capable of detecting 95 % of
Android malware at the cost of analyzing 13 % of non-malicious applications [6].
Karanth et al. prioritize JavaScript for manual review with the end goal of iden-
tifying new vulnerabilities [12]. In contrast with weak detectors, we view the
expensive resource as an integrated component in a periodically retrained sys-
tem, rather than the final step in a detection pipeline. Instead of attempting to
pass the entire and exact set of malicious instances to the expensive resource
for verification, we identify a smaller set of instances that improve automated
detection and use scalable components to determine final instance labels.

In contrast to weak detector approaches, Nissim et al. present a system that
integrates reviewers during retraining but focuses on increasing the raw number
of malicious instances submitted to the reviewer rather than improving auto-
mated detection. Nissim et al. introduce two reviewer integration strategies and
compare both to uncertainty sampling, a reviewer integration technique from
machine learning [24]. Although each new strategy reviews more malicious sam-
ples, neither improves automated detection, instead producing lower true pos-
itive and higher false positive rates [16] or true positive rates within 1 % [17]
of uncertainty sampling. The evaluation also lacks timestamped data and ran-
domly divides samples into 10 artificial “days”. Since there are no temporal
effects in the sample ordering, it is not possible to accurately assess detector
performance or reviewer workload when confronted with new attacks. In con-
trast, we demonstrate novel reviewer integration improving detection 17 % points
over uncertainty sampling and conduct an evaluation with timestamped samples
and labels spanning 2.5 years.

Sculley et al. present Google’s approach to detecting adversarial advertise-
ments, integrating human reviewers and automated detection [23]. Unfortu-
nately, the presentation omits key details and the sensitive nature of the system
prevents any code or data release. For example, the evaluation does not specify
how many human reviewers are necessary, the added benefit from additional
reviewers or the total number of queries to each reviewer. Likewise, the impact
of reviewers errors and different integration strategies is also unspecified. We
contribute an analysis of the marginal benefit from additional reviews, as well
as the impacts of reviewer errors and different reviewer integration strategies.
Additionally, we release all source code and sample data to facilitate future work.

We also examine prior work related to performance measurement. The most
common performance measurement technique in malware detection is cross-
validation (e.g., [4,8,21,26]). Cross-validation tends to inflate measured perfor-
mance by partitioning training and evaluation data randomly, effectively guaran-
teeing that any attack seen in evaluation is also seen in training [11]. Kolter et al.

126 B. Miller et al.

Binaries labeled with current
model and VirusTotal detectors

Binaries Feature Extraction Current Model

Binary Database

Labeled Training Data Model Training Next Model

Detection Pipeline

Training Pipeline Binaries labeled
benign by detectors

Predictions for binaries
labeled benign by detectors

Binaries already
labeled by reviewer

Binaries labeled malicious
 by VirusTotal detectors

Binaries labeled
by reviewer

Prediction

Query Strategy Integrated
Reviewer VirusTotal Detectors

Internal Component

External Label Source

Key

Feature Extraction

Fig. 1. The detection pipeline employs the current model to detect malware, and the
training pipeline produces the next model for use in the detection pipeline. During each
retraining period, the training pipeline reviews all available training data and selects
binaries for submission to the integrated reviewer. Binaries labeled by the reviewer are
combined with binaries labeled using the current model and anti-virus scan results to
train the next model.

improve on cross-validation by using a separate training dataset which entirely
predates any evaluation data [13]. Furthering this approach, Perdisci et al. and
Srndic et al. conduct evaluations which use a single timestamped dataset divided
chronologically into periods, using the first n − 1 periods to detect content in
period n [18,25]. While these works maintain temporal sample consistency, none
present or systematically evaluate the impact of temporal label consistency.

Prior work approaching temporal label consistency has either evaluated a
system in production, which would have no way to be temporally inconsistent,
or a system that retrains on its own output. Rajab et al. evaluate a deployed
PDF malware detector, which trains using presently available knowledge and is
evaluated in retrospect after anti-virus labels have matured [20]. Schwenk et al.
demonstrate the infeasibility of a JavaScript malware system which is iteratively
retrained over time using its own output labels, but do not compare temporally
consistent labels from an external source with labels from the future [22].

3 Detector Design

In this section we present our detector design, including feature extraction,
machine learning and reviewer integration. Figure 1 presents an overview of our
approach. When a binary arrives, the detection pipeline extracts the features,
applies the current model to classify the binary as malicious or benign, and the
training pipeline stores the binary in a database along with all other binaries
seen to-date. During each retraining period, binaries not detected by scanners
on VirusTotal are considered for submission to the integrated reviewer. Binaries
confidently detected by the current model are included in training data with a
malicious label, and the remaining purportedly benign binaries are submitted to
the integrated reviewer as the review budget allows. The remaining un-submitted
binaries are included in the training data as benign. At the end of the retraining
period, the next model produced in the training pipeline replaces the current
model and the process repeats.

Reviewer Integration and Performance Measurement for Malware Detection 127

We begin by examining the general techniques used for feature vectorization
in Sect. 3.1, and then present the application of feature vectorization techniques
to static and dynamic attributes of binaries in Sect. 3.2. Section 3.3 presents
our approach to labeling training data, and Sect. 3.4 describes our approach to
reviewer integration.

3.1 Approaches to Feature Vectorization

Many machine learning algorithms work best with numeric features, but not all
attributes of binaries come in that format. We discuss four general techniques to
convert static and dynamic attributes of binaries into numerical feature vectors.
Which of the four techniques we can apply varies across attributes. For each
technique, we discuss how we apply the technique to maximize robustness against
evasion.

Categorical. The categorical mapping associates one dimension with each possi-
ble attribute value. For example, the DeviceIoControl API call may correspond
to index i in feature vector x, where xi = 1 if and only if the binary issues the
DeviceIOControl API call. Since the absence of an attribute reveals informa-
tion about a binary, we include a special null index to indicate that the value
of the attribute is missing. For example, the file may not generate any network
traffic, or may not be signed. Where possible, we structure our application of
categorical feature extraction to constrain the attacker to remain within a lim-
ited set of values. For example, we apply subnet masks to IP addresses accessed
by binaries to effectively shrink the IP space and associate access to similar IP
addresses with the same feature index.

Ordinal. Ordinal attributes assume a specific value in an ordered range of possi-
bilities, such as the size of a binary. To remain robust to moderate fluctuations as
adversaries attempt to evade detection, we vectorize ordinal values using a bin-
ning scheme rather than associating each distinct quantity with a unique index.
The binning scheme works as follows: for a given attribute value, we return the
index of the bin which the value falls into, and set the corresponding dimension
to 1. For attributes that vary widely, we use a non-linear scheme to prevent large
values from overwhelming small values during training. For example, the number
of written files v is discretized to a value i such that 3i ≤ v < 3i+1, where the
exponential bins accommodate the large dynamic range of this quantity.

Free-Form String. Many important attributes appear as unbounded strings,
such as the comments field of the signature check. Representing these attributes
as categorical features could allow an attacker to evade detection by altering
a single character in the attribute, causing the attribute to map into a dif-
ferent dimension. To increase robustness, we capture 3-grams of these strings,
where each contiguous sequence of 3 characters represents a distinct 3-gram,
and consider each of the 3-grams as a separate dimension. Since this approach is
still sensitive to variations that alter 3-grams, we introduce an additional string
simplification.

128 B. Miller et al.

Table 1. Feature vectors reflect static and dynamic attributes of binaries. We apply
categorical vectorization to all attributes, as well as *string, †ordinal and ‡sequential
vectorization for selected attributes.

Feature Name Description Example

S
ta

ti
c

Binary Metadata* Metadata from MAGIC and EXIFTOOL PECompact2 compressed

Digital Signing* Certificate chain identity attributes Google Inc; Somoto Ltd

Heuristic Tools trid; Tools from ClamAV, Symantec InstallShield setup; DirectShow filter

Packer Detection Packer or crypter used on binary UPX; NSIS; Armadillo

PE Properties*† Section hashes, entropies; Resource list, types image/x-png; hash:eb0c7c289436...

Static Imports Referenced library names and functions msvcrt.dll/ldiv; certcli.dll

D
y
n
a
m
ic

Dynamic Imports Dynamically loaded libraries shell32.dll; dnsapi.dll

File Operations† Number of operations; File paths accessed C:\WINDOWS\system32\mshtml.tlb
Mutex Operations* Each created or opened mutex ShimCacheMutex; RasPbFile

Network Operations† IPs accessed; HTTP requests; DNS requests 66.150.14.*; b.liteflames.com

Processes Created, injected or terminated process names python.exe; cmd.exe

Registry Operations Registry key set or delete operations SET: ...\WindowsUpdate\AU\NoAutoUpdate
Windows API Calls‡ n-grams of Windows API calls DeviceIoControl | IsDebuggerPresent

To reduce sensitivity to 3-gram variations, we define classes of equivalence
between characters and replace each character by its canonical representative.
For instance, the string 3PUe5f would be canonicalized to 0BAa0b, where upper
and lowercase vowels are mapped to ‘A’ and ‘a’ respectively, upper and lowercase
consonants are mapped to ‘B’ and ‘b’, and numerical characters to ‘0’. Likewise,
the string 7SEi2d would also canonicalize to 0BAa0b. Occasionally, we sort the
characters of the trigrams to further control for variation and better capture the
morphology of the string. Mapping portable executable resource names, which
sometimes exhibit long random-looking bytes sequences, is one application of
this string simplification technique.

Sequential. The value of some attributes is a sequence of tokens where each
token assumes a finite range of values. These sequential attributes are strongly
related to free-form string attributes, although the individual tokens are not
restricted to being individual characters. We use sequential feature extraction to
capture API call information since there is a finite set of API calls and the calls
occur in a specific order. As with free-form string features, we use an n-gram
approach where each sequence of n adjacent tokens comprises an individual fea-
ture. Sequential vectorization can be vulnerable to evasion in situations where
adversaries are able to introduce tokens which have no effect and separate mean-
ingful tokens. To increase robustness, we apply n-gram vectorization with n = 1
and n = 2 as well as n = 3, decreasing the number of unique n-grams which the
adversary is able to generate.

3.2 Attributes of Binaries

VirusTotal provides static and dynamic attributes for each binary. Whereas
static attributes are obtained though analysis of the binary itself, dynamic
attributes are obtained through execution in the Cuckoo sandbox [3]. Table 1
provides an overview of static attributes, dynamic attributes and associated
vectorization techniques.

Reviewer Integration and Performance Measurement for Malware Detection 129

The static attributes available from VirusTotal consist of direct properties
of the executable code itself, metadata associated with or derived from the exe-
cutable and the results of heuristic tools applied to the executable. The attributes
extracted directly from the code include any statically imported library functions
and aspects of the portable executable format, such as resource language, section
attributes (e.g. entropy) and resource attributes (e.g. type). The metadata asso-
ciated with the code includes the output of the magic and exiftool utilities,
which infer properties such as the file type, and any digital signatures associated
with the file. We collect the status of the verification, the identities of every entity
in the certificate chain, comments, product name, description, copyright, inter-
nal name, and publisher from each digital signature. The heuristic tools applied
to the executable include peid [2] and utilities from ClamAV [1], and check for
packing, network utilities or administrative utilities commonly associated with
malware or potentially unwanted applications.

The dynamic attributes available from the Cuckoo sandbox capture interac-
tions with the host operating system, disk and network resources. Interactions
with the operating system include dynamic library imports, mutex activity and
manipulation of other processes running on the system. Additionally, the Cuckoo
sandbox provides an execution trace of all Windows API calls accessed by the
binary, including the arguments, argument values and return values of any sys-
tem call. The summary of disk activity includes file system and registry oper-
ations, capturing any persistent effects of the binary. We utilize both full and
partial paths of file system operations as well as the types and number of oper-
ations to the file system during feature extraction; we also utilize the specific
registry keys accessed or modified by the binary. Lastly, we extract features
from the network activity of the binary, including HTTP and DNS traffic and
IP addresses accessed via TCP and UDP.

3.3 Training Label Harmonization and Reviewer Query Strategy

During each retraining period, the training process must assign labels to all
available training binaries. The process of assigning training labels harmonizes
four distinct sources of information: scan results from anti-virus software, the
current learned model, any prior reviews, and additional fresh reviews for a
small number of binaries selected by the query strategy for review.

The labeling process begins with the anti-virus scan results and application
of the current model, both of which prune the set of binaries which the query
strategy will consider for submission to the integrated reviewer. Our application
of anti-virus scan results leverages the intuition, which we confirm in Sect. 4,
that anti-virus vendors bias detections towards false negatives rather than false
positives. Correspondingly, we view consensus among anti-virus detectors that
a binary is malicious as sufficient to label the binary malicious during training,
but we do not label undetected binaries as benign without further analysis. We
call this heuristic the undetected filter since only binaries which are not detected
by the vendors remain as candidates for review.

130 B. Miller et al.

Next, we apply our current detection model to all undetected binaries and
assign a malicious label to any binaries which score above a threshold M . We
refer to this heuristic as auto-relabeling since some undetected binaries are auto-
matically relabeled, similar to the self-training concept from semi-supervised
learning [7]. If the binary is both undetected by anti-virus vendors and cannot
be auto-relabeled using our detector, we submit the binary to the query strategy.

From the binaries that could not be confidently labeled as malicious, the
query strategy selects a subset for review to improve their training labels. The
uncertainty sampling query strategy selects binaries that are closest to the deci-
sion boundary, intuiting that the model will benefit from knowing the labels
of those binaries about which it is unsure [24]. Uncertainty sampling has expe-
rienced success in other application domains, such as text classification, and
served as a baseline for comparison in prior work involving integrated manual
review [16,17]. Designed for a case where the reviewer is the only source of
labeling information, uncertainty sampling is unaware of how our two heuris-
tics used the noisy labels from anti-virus scanners to filter the binaries for its
consideration.

Consequently, we propose a new query strategy aware of our heuristics to
increase the effectiveness of the integrated reviewer. Since the heuristics identify
binaries likely to be malicious, we will label any binary not identified by them or
selected for review as benign. Consequently, only reviews which label a binary
malicious will impact the final training data labels. Accordingly, we develop
the maliciousness query strategy, which selects binaries for review that received
high scores from our detection model, but not high enough to be subject to auto-
relabeling. More formally, the query strategy has a submission budget B, where
B is determined as a fixed percentage of the total number of new training binaries
during the retraining period. The maliciousness query strategy then submits the
B remaining binaries with the greatest maliciousness scores less than the auto-
relabeling threshold M to the integrated reviewer. The binaries in excess of
B which are not submitted to the integrated reviewer are labeled benign. By
selecting binaries likely to be malicious but would otherwise be labeled benign,
maliciousness achieves a higher likelihood than uncertainty sampling that the
review will effect a change in training labels.

3.4 Model Training and Integration of Reviewer Labels

After considering several forms of learning, including decision tree and nearest
neighbor based approaches, we selected logistic regression as the basis for our
malware detector. As a linear classifier, logistic regression assigns a weight to each
feature and issues predictions as a linear function of the feature vector, resulting
in a real valued quantity [10]. Scoring each binary as a real valued quantity
enables us to create a tradeoff between true and false positive rates by adjusting
the threshold at which binaries are labeled malicious. Linear classification scales
well in prediction as the size of the model is a function of the dimensionality of
the data and not the size of the training data, as happens with nearest neighbor
techniques. Additionally, the clear relationship between weights and features

Reviewer Integration and Performance Measurement for Malware Detection 131

allows analysts to easily understand what the detector is doing and why, which
can be difficult with complex tree ensembles. Lastly, logistic regression scales well
in training with many available implementations capable of accommodating high
dimensional feature spaces and large amounts of training data.

We now discuss our training process integrating labels from the reviewer with
noisy labels from anti-virus scanners and our own detector. Since the reviewer
only labels a small minority of binaries, noisy labels from anti-virus vendors will
overwhelm reviewer labels during training unless reviewer labels receive special
treatment. We present the standard logistic regression training process below,
and then describe the special treatment which we provide for reviewer labels. The
logistic regression training process finds the weight vector w which minimizes
the following loss function for labeled training set

{
(x1, y1), . . . , (xn, yn)

}
where

yi ∈ {−1,+1} represents the label:

C− ∗
∑

i:yi=−1

�(−wᵀxi) + C+ ∗
∑

i:yi=1

�(wᵀxi) +
1
2
‖w‖2

C− > 0 and C+ > 0 are distinct hyper-parameters controlling for both regu-
larization and class importance weighting and �(x) = log(1 + exp(−x)) is the
logistic loss function. The first and second terms correspond to the misclassifica-
tion losses for negative and positive instances, respectively, and the final term is
a regularization term that discourages models with many large non-zero weights.
To amplify the effect of reviewer labels, we assign a higher weight W during train-
ing to any binary labeled benign by the reviewer. We obtain superior results only
weighting binaries that the reviewer labels benign since the maliciousness query
strategy tends to select binaries for review which fall on the malicious side of
the decision boundary. When a benign instance is classified as malicious during
training, a particularly high weight is necessary to have a corrective effect on
the model and force the instance to receive a benign classification.

4 Dataset and Evaluation Labeling Overview

We maintain that an evaluation dataset should include diverse binaries, reflect
the emergence and prevalence of binaries over time, and record changes in the
best available labeling knowledge for the binaries as time progresses. Our eval-
uation dataset, consisting of 1.1 million distinct binaries submitted to Virus-
Total between January 2012 and June 2014, achieves these criteria. VirusTotal
accepts submissions from end users, researchers and corporations, leading to a
diverse sampling of binaries containing thousands of malware families and benign
instances. To randomize interaction with daily and hourly batch submission jobs,
VirusTotal supplied us with the hashes of binaries submitted during a random-
ized segment during each hour of our collection period, reflecting approximately
1 % of the total binaries during the collection period. We include each submission
of each binary to accurately represent the prevalence and labeling knowledge of
binaries over time. A more complete discussion of the dataset, including changes

132 B. Miller et al.

in vendor labels over time and analysis of our labeling methodology is available
online [15].

Due to the regular distribution of the evaluation data over an extended period
of time and the broad use of VirusTotal, the dataset includes a diverse sampling
from many families of malware. Symantec, TrendMicro, Kaspersky and McAfee
report 3,135, 46,374, 112,114 and 408,646 unique families for the dataset, respec-
tively. The number of families reported varies due to differences in naming con-
ventions between vendors. Although the exact number of families reported varies
by vendor, each vendor agrees that the malware represents a broad sampling,
with each vendor reporting less than 50 % of malware occurring in the most
common 10 % of families.

As the dataset contains scan results form 80 different vendors, we employ a
harmonization approach to create the gold labels which we use to characterize
the dataset and evaluate detector performance. Since some vendors are only spo-
radically present in the data, we restrict our work to the 32 vendors present in
at least 97 % of scan results to increase consistency in the set of vendors applied
to each binary.2 We observe that among binaries that receive multiple scans
in our dataset, 29.6 % of binaries increase in number of detections as malware
by at least 5 vendors from their first to last scan, and only 0.25 % of binaries
decrease by 5 or more detections. This shift from benign to malicious labels con-
firms the intuition that vendors behave conservatively, preferring false negatives
over false positives. Given vendors’ demonstrated aversion to false positives, we
set a detection threshold of 4 vendor detections as sufficient to label a binary
as malicious, and request a rescan of any binary which received fewer than 10
detections at the most recent scan. We conduct rescans in February and March
2015, 8 months after the end of our data collection period, to allow time for ven-
dor signature updates. We avoid rescanning binaries with 10 or more detections
since decreases large enough to cross the four vendor detection threshold are
unlikely. After rescanning, we assign a gold label to each binary in our dataset
representing the best available understanding of whether the binary is malicious.

We reserve from January 2012 to December 2012, the first year of our data
set, for obtaining an initial model and use the data from January 2013 to June
2014 to perform a complete rolling window evaluation of our detector. Figure 2a
presents the occurrence of scans over time, indicating that scans consistently
occur throughout the period during which we measure performance. Notice that
scans do not occur evenly during the training period, with the first approximately
200 days containing fewer scans. The difference in available data occurs because
fewer binaries have dynamic attributes available; the difference does not reflect
an underlying phenomenon in submissions.

2 In particular, we include the following vendors: AVG, Antiy-AVL, Avast, Bit-
Defender, CAT-QuickHeal, ClamAV, Comodo, ESET-NOD32, Emsisoft, F-Prot,
Fortinet, GData, Ikarus, Jiangmin, K7AntiVirus, Kaspersky, McAfee, McAfee-
GW-Edition, Microsoft, Norman, Panda, SUPERAntiSpyware, Sophos, Symantec,
TheHacker, TotalDefense, TrendMicro, TrendMicro-HouseCall, VBA32, VIPRE,
ViRobot and nProtect.

Reviewer Integration and Performance Measurement for Malware Detection 133

(a) (b)

Fig. 2. Data Overview. (a) and (b) Demonstrate that scans are well distributed across
our evaluation period and distinct binaries, respectively. Note that relative scarcity
of scans in the first 200 days reflects availability of necessary attributes in VirusTotal
data, not underlying submission behavior.

In addition to being well distributed over time, scans are also well distrib-
uted across the different binaries in our dataset. Figure 2b depicts the impact
of resubmissions on the dataset, with the horizontal axis ordering binaries from
most commonly to least commonly submitted. We include re-submissions to
ensure that the distribution of our evaluation data mirrors the distribution of
actual data submitted to VirusTotal by incorporating the prevalence of each
individual file, effectively balancing any effects of polymorphism in the dataset.
Additionally, inclusion of rescan events in our analysis provides more timely
labeling during evaluation.

5 Experimental Results and System Evaluation

In this section we briefly discuss our implementation, present experimental
results and evaluate our detection system. Our presentation of experimental
results demonstrates the impact of different performance measurement tech-
niques on detection results. Our detection system evaluation demonstrates the
potential for integrated review techniques to improve performance over current
anti-virus vendors, as well as the impact of reviewer errors, marginal benefit of
additional reviews and effects of different of reviewer integration strategies.

5.1 System Implementation

Since anti-virus vendors can receive in excess of 300,000 binaries daily [14], we
design our detector with a focus on scalability. We implement our detection plat-
form in five thousand lines of Python, which offers bindings for the numerical
and infrastructure packages we require. We use Scikit Learn and Numpy for

134 B. Miller et al.

machine learning, and Apache Spark for distributed computation. Using a 40
core cluster with 600 GB of RAM, we were able to conduct feature vectoriza-
tion, learning and prediction on our 778 GB dataset including 1.1 million unique
binaries in 10 h.

To allow experimentation at scale, we simulate an integrated reviewer rather
than employing an actual labeling expert. We model the analysis of the inte-
grated reviewer by revealing the gold label associated with a binary. For exper-
iments that consider an imperfect reviewer, we assign the simulated reviewer a
true positive rate and a false positive rate, allowing the likelihood of the reviewer
supplying the correct label to depend on the gold label for the sample. By condi-
tioning the likelihood of a correct response on the gold label of a sample, we are
able to more closely model the errors of an actual reviewer who may be highly
likely to correctly identify a benign binary as benign, but less likely to correctly
identify a malicious binary as malicious. We leave the comparison of this model
to actual reviewer performance as future work.

Lastly, we describe our management of the system parameters discussed in
Sect. 3, including a reviewer submission budget B, auto-relabeling confidence
threshold M and learning parameters C−, C+ and W . Section 5.3 presents the
effects of varying the submission budget B, with experiments conducted at 80
queries daily on average unless otherwise specified. The remaining parameters
are tuned to maximize detection at false positive rates between .01 and .001
on a set of binaries obtained from an industry partner and excluded from our
evaluation. We use the following values: M = 1.25, C− = 0.16, C+ = .0048 and
W = 10.

5.2 Impact of Performance Measurement Techniques

The primary motivation for measuring the performance of a detection system in
a research or development setting is to understand how the system would per-
form in a production setting. Accordingly, measurement techniques should seek
to minimize the differences from production settings. In practice, knowledge of
both binaries and labels changes over time as new binaries appear and malware
detectors respond appropriately with updated labels. Performance measurement
techniques that fail to recognize the emergence of binaries and label knowledge
over time effectively utilize knowledge from the future, inflating the measured
accuracy of the approach. For example, consider malware that evades detec-
tion but can be easily detected once the first instance is identified. Performance
inflation occurs because inserting correctly labeled binaries into training data
circumvents the difficult task of identifying the first instance of the malware.

We analyze three approaches to measuring the performance of malware detec-
tors, each recognizing the emergence of binaries and labels over time to varying
degrees. Cross-validation is a common approach for machine learning evalua-
tions in situations where binaries are independent and identically distributed
(i.i.d.). In the malware detection context the i.i.d. assumption does not hold
since malware changes over time to evade detection. Cross-validation evaluations
completely disregard time, dividing binaries randomly and applying evaluation

Reviewer Integration and Performance Measurement for Malware Detection 135

Fig. 3. Accurate performance measurement requires temporally consistent labels. (a)
Illustrates three techniques. The upper left shows the evolution of labels over time for a
series of binaries, with B’ and E’ denoting variants of previously submitted binaries B
and E. Each remaining subfigure depicts the experiments a performance measurement
technique would conduct given the example dataset. Rows correspond to successive
retraining periods with specified training and evaluation data, binaries appear chrono-
logically from left to right, and + and - denote malicious and benign labels, respectively.
(b) Presents the effects of performance measurement technique on experimental results.

quality labels to all binaries. Evaluations maintaining temporally consistent sam-
ples recognize the ordering of binaries in time but not the emergence of labels
over time, instead applying gold labels from future scan results to all binaries.
Use of gold quality labels during training effectively assumes that accurate detec-
tion occurs instantly. Evaluations maintaining temporally consistent labels fully
respect the progression of knowledge, ordering binaries in time and restricting
the training process to binaries and labels available at the time of training. For
measurements with both temporally consistent samples and labels, we divide
data into periods and use the first n − 1 periods to detect content in period n.
Unless otherwise specified we use a period length of one week. Figure 3a presents
the specifics of each approach.

Our experiments demonstrate that measurement technique powerfully
impacts performance results. Figure 3b presents the results of our analysis.
Notice that cross-validation and temporally consistent samples perform simi-
larly, inflating detection results 20 and 19 % points respectively over temporally
consistent labeling at a 0.5 % false positive rate. Since reviewer integration effec-
tively reduces the impact of temporally consistent labels by revealing future
labels, we conduct these experiments without any reviewer queries. Note that
our conclusions apply only to the setting of malware detection and not family
classification, which presents a fundamentally different challenge as the set of
known family labels may change over time.

Temporally consistent labeling requires that training labels predate evalu-
ation binaries. Since VirusTotal scans each binary upon each submission our
experiments are able to satisfy temporally consistent labeling requirements. How-
ever, since binaries are not necessarily rescanned at regular intervals, we are not

136 B. Miller et al.

Fig. 4. Without reviewer integration our detector is competitive with VirusTotal detec-
tors. With reviewer integration, detection improves beyond vendors on VirusTotal. We
tune our system to maximize detection in the (0.1 %, 1%) false positive region, conse-
quently decreasing detection at lower false positive rates.

able to guarantee that our labels are up to date. For example, consider a binary
which receives benign scan results in week 1 and malicious scan results in week
10: the up-to-date training label in week 5 is unclear. To simulate the effects of
more frequent rescanning, we conduct a second experiment in which we reveal
the gold label for each binary once a fixed interval has passed since the binary’s
first submission. We find that without releasing gold labels temporally consis-
tent evaluation results in 76 % detection at a 1 % false positive rate; releasing
gold labels 4 weeks and 1 week after a binary appears increases detection to 80 %
and 84 % respectively. Note that these figures represent an upper bound on the
impact of frequent rescanning since malware may remain undetected much longer
than 1 or 4 weeks. Considering that cross-validation and temporal sample con-
sistency each achieve 92 % detection at a 1 % false positive rate, we see that even
with regular rescanning, temporal label consistency impacts detection results.

5.3 Detection System Evaluation

In this section we evaluate our malware detection system and the impact of
reviewer integration. We begin with the impact of the reviewer and performance
relative to VirusTotal. Then, we examine parameters such as reviewer accuracy
and retraining frequency. Lastly, we analyze impact of different types of features.

Impact of Integrated Reviewer. Given the breadth of our data and unique
structure of our evaluation, the vendor detection results on VirusTotal provide
the best performance comparison for our work. Based on the false positive rates
of vendors, we tune our detector to maximize detection for false positive rates

Reviewer Integration and Performance Measurement for Malware Detection 137

greater than 0.1 % and less than 1 %. Figure 4 compares our performance to
vendor detectors provided on VirusTotal. Without involvement from the inte-
grated reviewer our detector achieves 72 % detection at a 0.5 % false positive
rate, performing comparably to the best vendor detectors. With support from
the reviewer, we increase detection to 89 % at a 0.5 % false positive rate using
80 queries daily on average. Since we train a separate model during each weekly
retraining period, the performance curve results from varying the same detection
threshold across the results of each individual model.

VirusTotal invokes vendor detectors from the command line rather than in
an execution environment, allowing detectors to arbitrarily examine the file but
preventing observation of dynamic behavior. Since our analysis includes dynamic
attributes, we also observe our performance when restricted to static attributes
provided by VirusTotal. Note that this restriction places our detector at a strict
disadvantage to vendors, who may access the binary itself and apply signa-
tures derived from dynamic analysis. Figure 4 demonstrates that our perfor-
mance decreases when restricted to static features but, with support from the
integrated reviewer, surpasses vendors to achieve 84 % detection at a 0.5 % false
positive rate.

Performance comparison must also consider the process of deriving gold
labels, which introduces a circularity that artificially inflates vendor perfor-
mance. Consider the case of a false positive: once a vendor has marked a binary
as positive, the binary is more likely to receive a positive gold label, effectively
decreasing the false positive rate of the vendor. An alternate approach would be
to withhold a vendor’s labels when evaluating that vendor, effectively creating
a separate ground truth for each vendor. Although this approach more closely
mirrors the evaluation of our own detector (which does not contribute to gold
labels), in the interest of consistency we elect to use the same ground truth
throughout the entire evaluation since efforts to correct any labeling bias only
increase our performance differential.

In addition to offering superior detection performance aggregated across all
data relative to vendor labels, our approach also experiences greater success
detecting novel malware that is missed by detectors on VirusTotal. Of the 1.1
million samples included in our analysis, there are 6,873 samples which have a
malicious gold label but are undetected by all vendors the first time the sample
appears. Using 80 reviewer queries daily, our approach is able to detect 44 % and
32 % of these novel samples at 1 % and .1 % false positive rates, respectively. The
ability of our approach to detect novel malware illustrates the value of machine
learning for detecting successively evolving generations of malware.

To provide a corresponding analysis of false positives, we measure our per-
formance on the 61,213 samples which have a benign gold label and are not
detected as malware by any vendor the first time the sample appears. Of these
61,213 benign samples, our detector labels 2.0 % and 0.2 % as malicious when
operating at 1 % and .1 % false positive rates over all data, respectively. The
increased false positive rate on initial scans of benign samples is expected since
the sample has not yet been included as training data.

138 B. Miller et al.

(a) (b)

Fig. 5. (a) Presents the impact of each component in our customized query strategy.
We improve detection over the uncertainty sampling approach from prior work. (b)
Presents the performance of our detector for imperfect reviewers with the specified
true and false positive rates. For example, given a reviewer with a 5% false positive
rate and 80% true positive rate, our detector’s true positive rate only decreases by 5 %
at a 1% false positive rate.

Reviewer Query Strategies. Our reviewer query strategy represents numer-
ous advances over prior work. Figure 5a presents the impact of each of the three
improvements we introduce and discussed in Sect. 3.3. For a fixed labeling bud-
get B = 80, uncertainty sampling results in a detection rate 17 % points lower
than the combination of our techniques at 0.1 % false positive rate.

Reviewer Accuracy. Our system also demonstrates strong results in the pres-
ence of an imperfect reviewer. Since malware creators may explicitly design mal-
ware to appear benign but benign software is less likely to appear malicious, we
model the false positive and true positive rates of reviewers separately, reflect-
ing a reviewer who is more likely to mistake malware for benign software than
benign software for malware. Figure 5b presents detection rates for reviewers
with a 5 % false positive rates and a range of true positive rates. For example,
given a reviewer with a 5 % false positive rate and 80 % true positive rate, our
detector’s true positive rate only decreases by 5 % at a 1 % false positive rate.

Resource Parameterization. Beyond classifier parameters, detection perfor-
mance is also influenced by operator resources including reviewer query budget
and retraining frequency. We explore each of these parameters below.

As the allowed budget for queries to the reviewer increases, the detection
performance increases since higher quality training labels are available. Figure 6a
presents the detection increase from increased reviewer queries, with the benefit
of 80 queries per day on average approaching the upper bound of having gold
labels for all training data. The benefit of reviewer queries is non-linear, with
the initial queries providing the greatest benefit, allowing operators to experience
disproportionate benefit from a limited review budget.

Reviewer Integration and Performance Measurement for Malware Detection 139

(a) (b)

Fig. 6. (a) Presents performance for different reviewer query budgets, with significant
return on minimal efforts and diminishing returns occurring around 80 queries/day.
(b) Demonstrates that retraining more quickly improves detector performance.

Although our evaluation is large relative to academic work, an actual deploy-
ment would offer an even larger pool of possible training data. Since the utility
of reviewer queries will vary with the size of the training data, increasing the
amount of training data may increase reviewer queries required to reach full
benefit. Fortunately, the training process may elect to use only a subset of the
available training data. We demonstrate that 1.1 million binaries selected ran-
domly from VirusTotal submissions is sufficient training data to outperform
vendor labels for our evaluation data.

Lastly, we examine variations in the length of the re-training period gov-
erning how often models are updated. We conduct these experiments with 80
reviewer queries on average per day. Figure 6b presents the effect of variations
in the retraining period. Notice that the benefit of frequent retraining begins to
diminish around 2 weeks.

Detection Mechanics. Having analyzed detection accuracy and evaluation
methodology, we now examine the features that our detector uses for classi-
fication. In the interest of understanding the dataset as a whole, we train a
model over all data from all dates. Although we learn a linear model and can
easily observe the weight of each feature, inspecting the weight vector alone is
not enough to understand feature importance. A feature can be associated with
a large weight but be essentially constant across the dataset, as may happen
with strongly malicious features that are relatively rare in practice. Intuitively,
such features have low discrimination power. Furthermore, we are interested in
grouping low-level features together into high level concepts.

Thus, we use the following ranking method for sets of features. Let d be the
total number of features, w ∈ R

d be the weight vector and {xi} be a given set
of instances. The notation xi

k designates the k-th coordinate of instance xi. We
can compute the importance of a group S ⊂ {1, . . . , d} of features by quantifying
the amount of score variation IS they induce. Our ranking formula is:

140 B. Miller et al.

Fig. 7. Feature categories ranked by importance.

IS =

√√√√Var
i

[
∑

k∈S

xi
kwk

]

Using this ranking method, Fig. 7 shows the global ranking of the features
when grouped by their original measurements. The most important measure-
ments are thus the file system operations, static imports, API call sequence
and digital signature, while the least useful measurement is the heuristic tools.
Further analysis including highly weighted features is available online [15].

6 Conclusion

In this paper, we explore the power of putting humans in the loop by integrating
a simulated human labeling expert into a scalable malware detection system. We
show it capable of handling over 1 million samples using a small cluster in hours
while substantially outperforming commercial anti-virus providers both in terms
of malware detection and false positive rates (as measured using VirusTotal). We
explain why machine learning systems appear to perform very well in research
settings and yet fail to perform reasonably in production settings by demon-
strating the critical temporal factors of labeling, training, and evaluation that
affect detection performance in real-world settings. In future work, we plan to
expand our detection system to perform malware family labeling and detection
of new malware families. Additionally, we may implement clustering or density
based sampling techniques to further reduce the reviewer burden by eliminating
any duplicate reviews.

References

1. ClamAV PUA, 14 November 2014. http://www.clamav.net/doc/pua.html
2. PEiD, 14 November 2014. http://woodmann.com/BobSoft/Pages/Programs/

PEiD

http://www.clamav.net/doc/pua.html
http://woodmann.com/BobSoft/Pages/Programs/PEiD
http://woodmann.com/BobSoft/Pages/Programs/PEiD

Reviewer Integration and Performance Measurement for Malware Detection 141

3. The Cuckoo Sandbox, 14 November 2014. http://www.cuckoosandbox.org
4. Arp, D., Spreitzenbarth, M., Hubner, M., Gascon, H., Rieck, K.: Drebin: effective

and explainable detection of android malware in your pocket. In: NDSS (2014)
5. Canali, D., Cova, M., Vigna, G., Kruegel, C.: Prophiler: a fast filter for the large-

scale detection of malicious web pages. In: WWW (2011)
6. Chakradeo, S., Reaves, B., Traynor, P., Enck, W.: Mast: triage for market-scale

mobile malware analysis. In: ACM WiSec (2013)
7. Chapelle, O., Schlkopf, B., Zien, A.: Semi-Supervised Learning. The MIT Press,

Cambridge (2010)
8. Curtsinger, C., Livshits, B., Zorn, B., Seifert, C.: Zozzle: fast and precise in-browser

javascript malware detection. In: Usenix Security (2011)
9. Damballa: State of Infections Report: Q4 2014. Technical report, Damballa (2015)

10. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning.
Springer, New York (2001)

11. Kantchelian, A., Afroz, S., Huang, L., Islam, A.C., Miller, B., Tschantz, M.C.,
Greenstadt, R., Joseph, A.D., Tygar, J.D.: Approaches to adversarial drift. In:
ACM AISec (2013)

12. Karanth, S., Laxman, S., Naldurg, P., Venkatesan, R., Lambert, J., Shin, J.:
ZDVUE: prioritization of javascript attacks to discover new vulnerabilities. In:
ACM AISec (2011)

13. Kolter, J.Z., Maloof, M.A.: Learning to detect and classify malicious executables
in the wild. J. Mach. Learn. Res. 7, 2721–2744 (2006)

14. McAfee Labs: McAfee Labs Threats Report, August 2014
15. Miller, B.: Scalable Platform for Malicious Content Detection Integrating Machine

Learning and Manual Review. Ph.D. thesis, UC Berkeley (2015)
16. Nissim, N., Cohen, A., Moskovitch, R., Shabtai, A., Edry, M., Bar-Ad, O., Elovici,

Y.: ALPD: active learning framework for enhancing the detection of malicious pdf
files. In: IEEE JISIC, September 2014

17. Nissim, N., Moskovitch, R., Rokach, L., Elovici, Y.: Novel active learning methods
for enhanced pc malware detection in windows os. J. Expert Syst. Appl. 41(13),
5843–5857 (2014)

18. Perdisci, R., Lee, W., Feamster, N.: Behavioral clustering of http-based malware
and signature generation using malicious network traces. In: NSDI (2010)

19. Provos, N., Mavrommatis, P., Rajab, M.A., Monrose, F.: All your iframes point to
us. In: USENIX Security (2008)

20. Rajab, M.A., Ballard, L., Lutz, N., Mavrommatis, P., Provos, N.: CAMP: content-
agnostic malware protection. In: NDSS (2013)

21. Schultz, M.G., Eskin, E., Zadok, E., Stolfo, S.J.: Data mining methods for detection
of new malicious executables. In: IEEE S&P (2001)

22. Schwenk, G., Bikadorov, A., Krueger, T., Rieck, K.: Autonomous learning for detec-
tion of javascript attacks: vision or reality? In: ACM AISec (2012)

23. Sculley, D., Otey, M.E., Pohl, M., Spitznagel, B., Hainsworth, J., Zhou, Y.: Detect-
ing adversarial advertisements in the wild. In: KDD (2011)

24. Settles, B.: Active learning literature survey. Computer Sciences Technical report
1648, University of Wisconsin-Madison (2009)

25. Šrndic, N., Laskov, P.: Detection of malicious PDF files based on hierarchical doc-
ument structure. In: NDSS (2013)

26. Stringhini, G., Kruegel, C., Vigna, G.: Shady paths: leveraging surfing crowds to
detect malicious web pages. In: ACM CCS (2013)

27. VirusTotal. https://www.virustotal.com/. Accessed 30 Jul 2014

http://www.cuckoosandbox.org
https://www.virustotal.com/

On the Lack of Consensus in Anti-Virus
Decisions: Metrics and Insights on Building

Ground Truths of Android Malware

Médéric Hurier(B), Kevin Allix, Tegawendé F. Bissyandé, Jacques Klein,
and Yves Le Traon

SnT, University of Luxembourg, Luxembourg City, Luxembourg
mederic.hurier@uni.lu

Abstract. There is generally a lack of consensus in Antivirus (AV)
engines’ decisions on a given sample. This challenges the building of
authoritative ground-truth datasets. Instead, researchers and practition-
ers may rely on unvalidated approaches to build their ground truth, e.g.,
by considering decisions from a selected set of Antivirus vendors or by
setting up a threshold number of positive detections before classifying a
sample. Both approaches are biased as they implicitly either decide on
ranking AV products, or they consider that all AV decisions have equal
weights. In this paper, we extensively investigate the lack of agreement
among AV engines. To that end, we propose a set of metrics that quan-
titatively describe the different dimensions of this lack of consensus. We
show how our metrics can bring important insights by using the detection
results of 66 AV products on 2 million Android apps as a case study. Our
analysis focuses not only on AV binary decision but also on the notori-
ously hard problem of labels that AVs associate with suspicious files, and
allows to highlight biases hidden in the collection of a malware ground
truth—a foundation stone of any malware detection approach.

1 Introduction

Malware is ubiquitous across popular software ecosystems. In the realm of mobile
world, researchers and practitioners have revealed that Android devices are
increasingly targeted by attackers. According to a 2015 Symantec Mobile Threat
report [1], among 6.3 million Android apps analyzed, over 1 million have been
flagged as malicious by Symantec in 2014 and classified in 277 Android malware
families. To stop the proliferation of these malware, device owners and market
maintainers can no longer rely on the manual inspection of security analysts.
Indeed, analysts require to know beforehand all patterns of malicious behaviors
so as to spot them in new apps. Instead, the research and practice of malware
detection are now leaning towards machine learning techniques where algorithms
can learn themselves to discriminate between malicious and benign apps after
having observed features in an a-priori labelled set. It is thus obvious that the
performance of the detector is tightly dependent on the quality of the training
dataset. Previous works have even shown that the accuracy of such detectors can
c© Springer International Publishing Switzerland 2016
J. Caballero et al. (Eds.): DIMVA 2016, LNCS 9721, pp. 142–162, 2016.
DOI: 10.1007/978-3-319-40667-1 8

On the Lack of Consensus in Anti-Virus Decisions 143

be degraded by orders of magnitude if the training data is faulty [2–6]. Following
these findings, one can easily infer that it is also possible to artificially improve
the performance of malware detectors by selecting a “ground truth” that splits
around malware corner cases.

To build training datasets, Antivirus (AV) engines appear to be the most
affordable means today. In particular, their use have become common thanks to
online free services such as VirusTotal [7] that accepts the submission of any file
for which it reports back the AV decisions from several vendors. Unfortunately,
AV engines disagree regularly on samples. Their lack of consensus is actually
observed in two dimensions: (1) their binary decisions on the maliciousness of
a sample are often conflicting and (2) their labels are challenging to compare
because of the lack of standard for naming malware samples.

To consolidate datasets as ground truth based on AV decisions, researchers
often opt to use heuristics that they claim to be reasonable. For example, in the
assessment of a state-of-the-art machine learning-based malware detection for
Android [8], the authors have considered the reports from only 10 AV engines,
selected based on their “popularity”, dismissing all other reports. They further
consider a sample to be malicious once two AV engines agree to say so. They
claim that:

“This procedure ensures that [their] data is (almost) correctly split into benign

and malicious samples—even if one of the ten scanners falsely labels a benign

application as malicious” [8, p. 7]

To gain some insights on the impact of such heuristics, we have built a dataset
following these heuristics and another dataset following another common process
in the literature [9], which considers all AV reports from VirusTotal and accepts
a sample as malicious as long as any of the AV flags it as such. We compare the
two datasets and find that the malware set in the first “ground truth” is reduced
to only 6 % of the malware set of the second “ground truth” dataset.

An in-depth study of different heuristics parameters can further reveal dis-
crepancies in the construction of ground truth datasets, and thus further ques-
tion any comparison of detectors performance. Similarly, the lack of consensus
in label naming prevents a proper assessment of the performance of detectors
across malware families.

In a recent work, Kantchellian et al. [10] have proposed weighting techniques
towards deriving better, authoritative, ground truth based on AV labels. Our work
is an in-depth investigation to further motivate this line of research by highlight-
ing different facets of the problem. To that end, we propose metrics for quantifying
various dimensions of comparison for AV decisions and labels. These metrics typ-
ically investigate to what extent decisions of a given AV are exclusive w.r.t other
AVs, or the degree of genericity at which AV vendors assign malware labels.

Contributions: We make the following contributions:

– We extensively overview the lack of consensus in AV engines’ decisions and
labels. Our work is a call for new approaches to building authoritative ground
truth datasets, in particular for the ever-growing field of machine learning-
based malware detection.

144 M. Hurier et al.

– Building on a large dataset of thousands Android apps, we provide insights
on the practice of building ground truth datasets based on VirusTotal AV
decisions.

– We define metrics for quantifying the consensus (or lack thereof) among AV
products following various dimensions. Based on the values of these metrics
for extreme cases, they can be leveraged as good indicators for assessing a
ground truth dataset. We further expect these metrics to be used as important
information when describing experimental datasets for machine learning-based
malware detection1.

Findings: Among the findings of this study, we note that:

– AVs that flag many apps as malicious (i.e. AVs that seem to favor high Malware
Recall) are more consensual than AVs that flag relatively few samples (i.e. AVs
that seem to favor high Precision).

– Labels assigned to samples present a high level of genericity.
– Selecting a subset of AVs to build a ground truth dataset may lead to more

disagreement in detection labels.

The remainder of this paper is presented as follows. Section 2 overviews
related work which either inspired our work, or attempted to address the prob-
lem that we aim at quantifying. Section 3 presents the datasets that we have used
for our study as well as the use cases we focus on. Section 4 presents our metrics
and show-cases their importance. We discuss the interpretation of the metrics
and their limitations in Sect. 5 before giving concluding remarks in Sect. 6.

2 Related Work

Our study relates to various work in the literature which have been interested
in the collection of ground truth, in the automation of malware detection and
those that have experimented with AV labels.

2.1 Security Assessment Datasets

Ground truth datasets are essential in the realm of security analysis. Indeed,
on the one hand, analysts rely on them to manually draw patterns of malicious
behaviors and devise techniques to prevent their damages. On the other hand,
automated learning systems heavily rely on them to systematically learn fea-
tures of malware. Unfortunately, these datasets are seldom fully qualified by
the research community [11,12]. This shortcoming is due to the rapid develop-
ment of new malware [10] which forces the community to collect malware sam-
ples through generic techniques, which do not thoroughly validate the malicious
behaviors [13].

1 We make available a full open source implementation under the name STASE at
https://github.com/freaxmind/STASE.

https://github.com/freaxmind/STASE

On the Lack of Consensus in Anti-Virus Decisions 145

A number of researchers have lately warned that flaws in security datasets
are frequent [11] and can lead to false assumptions or erroneous results [3,10,14].
In their study, Rossow et al. [11] have analyzed the methodology of 36 papers
related to malware research. Most notably, they observed that a majority of
papers failed to provide sufficient descriptions of experimental setups and that
50 % of experiments had training datasets with imbalanced family distributions.
Related to this last point, Li et al. [14] raised a concern about such imbalances
in clustering results. Using tools from a different domain (plagiarism detection),
they were able to achieve results comparable to the state-of-the-art malware
clustering algorithm at that time [15].

Nowadays, research in malware detection is often relying on AV engines to
build ground truth datasets. Unfortunately, AVs often disagree, and AVs may
even change their decision over time [16]. With our work, we aim to provide
metrics that describe the underlying properties of experimental settings, focus-
ing on ground truth collection, to transparently highlight biases and improve
reproducibility.

2.2 Studies on Anti-Virus Decisions and Labels

Canto et al. [3] support that clear interpretations of malware alerts should be
provided due to inconsistencies between antivirus engines. In view of these con-
cerns, Rossow et al. [11] have also proposed a set of recommendations to design
prudent experiments on malware. Kantchelian et al. [10] referred to Li et al. [14]
study to point out that malware datasets obtained from a single source (e.g.
antivirus vendors) could implicitly remove the most difficult cases. They thus
propose supervised models to weight AV labels.

Another work related to malware experiments is AV-Meter by Mohaisen and
Alrawi [5]. In their paper, the authors have described four metrics to assess the
performance of antivirus scanners on a reference set of malwares. To our knowl-
edge, this is the first attempt to formalize the comparison of security datasets.
Their study also revealed that multiple antivirus are necessary to obtain com-
plete and correct detections of malwares. Yet, AV-meter can not fully qualify
datasets used in most common experiments. First, the metrics proposed by
Mohaisen and Alrawi [5] are only applicable on ground-truth datasets where
applications are known to expose malicious behaviors. In reality, this constraint
can not be met due to the rising number of new malware samples which are
created each year [10]. For instance, GData [17] experts identified more than
575 000 new malware samples between July and September 2015. This is an
increase of 50 % compared to the same period in 2014. Consequently, their study
relied on a small dataset of 12 000 samples in order to ensure the correctness of
their labels. In comparison, Arp et al. [8] performed a recent experiment on more
than 130 000 samples. Finally, only four metrics were proposed by the authors,
which may not describe all the characteristics necessary to avoid potential biases
as mentioned in [3,11,14].

146 M. Hurier et al.

2.3 Experiments in Android ML-based Malware Detection

Android malware has attracted a lot of attention from the research commu-
nity [18–22], and a number of machine learning based approaches have been
proposed recently [8,23,24]. State-of-the-art work, such as DREBIN [8] have even
shown promising results. However, we observe that machine learning approaches
have not been widely implemented in the malware detection industry. Sommer
and Paxson [25] have presented multiple reasons which distinguish the security
domain from other Computer Science areas, such as image recognition or nat-
ural language translation, where machine learning has been applied successfully.
In previous work, we have shown how experimental scenarios can artificially
improve the performance of detectors in the lab and make them unreliable on
real-world settings [26,27].

Our work here is about providing metrics to help researchers characterize
their datasets and highlight their potential biases, as was recommended by
Rossow et al. [11] and Sommer and Paxson [25].

3 Preliminaries

3.1 Dataset of Android Apps and Antivirus

Our study leverages a large dataset of 2 117 825 Android applications and their
analysis reports by 66 antivirus engines hosted by VirusTotal.

App Dataset: Our application samples have been obtained by crawling well-
known app stores, including Google Play (70.33 % of the dataset), Anzhi
(17.35 %) and AppChina (8.44 %), as well as via direct downloads (e.g., Genome
- 0.06 %) [28].

AV Reports: The AV reports were collected from VirusTotal2, an online platform
that can test files against commercial antivirus engines3. For each app package
file (APK) sent to VirusTotal, the platform returns, among other information,
two pieces of information for each antivirus:

– A binary flag (True = positive detection, False = negative detection)
– A string label to identify the threat (e.g. Trojan:AndroidOS/Ginger

Master.A)

Overall, we managed to obtain AV reports for 2 063 674 Android apps4. In this
study we explore those reports and define metrics to quantify the characteristics
of several tentative ground truths.

2 https://www.virustotal.com.
3 Since the goal of this study is not to evaluate the individual performance of antivirus

engines, their names have been omitted and replaced by an unique number (ID).
4 We could not obtain the results for 54 151 (2.56 %) applications because of a file size

limit by VirusTotal.

https://www.virustotal.com

On the Lack of Consensus in Anti-Virus Decisions 147

3.2 Variations in Experimental Ground Truth Settings

When experimenting with machine learning-based malware detector, as it is nowa-
days common among security researchers, one of the very first steps is to build a
ground truth, for training and also assessing the detector. The question is then how
to derive a ground truth based on AV reports of the millions of apps in existence.
In particular, we focus on which samples are considered as malicious and included
in the malware set of the ground truth. Based on methods seen in the literature,
we consider the following three settings for building a ground truth:

Baseline settings: In these settings, we consider a straightforward process often
used [9,26] where a sample is considered malicious as long as any AV reports it
with a positive detection. Thus, our ground truth with the Baseline settings
and based on our 2 million apps, contains 689 209 “malware” apps. These
samples are reported by AVs with 119 156 distinct labels.

Genome settings: In a few papers of the literature, researchers use for ground
truth smaller datasets constituted of manually compiled and “verified” mali-
cious samples. We consider such a case and propose such settings where the
malware set of the ground truth is the Genome [29] dataset containing 1 248
apps. AV reports on these apps have yielded 7 101 distinct labels.

Filtered settings: Finally we consider a refined process in the literature where
authors attempt to produce a clean ground truth dataset using heuristics. We
follow the process used in a recent state-of-the-art work [8]:

1. Use a set of 10 popular AV scanners5.
2. Select apps detected by at least two AVs in this set.
3. Remove apps whose label from any AV include the keyword “adware”.

With these settings the malware set of the ground truth include 44 615 apps
associated with 20 308 distinct labels.

In the remainder of this paper, we use Dgenome, Dbase, and Dfiltered to refer
to the three ground truth datasets. We did not performed supplementary pre-
processings besides the heuristics we mentioned in the previous paragraph to
avoid potential biases in our study.

3.3 Notations and Definitions

Given a set of n AV engines A = {a1, a2, · · · , an} and a set of m apps P =
{p1, p2, · · · , pm}, we collect the binary decisions and string labels in two n × m
matrices denoted B and L respectively:

B =

⎛

⎜⎜⎜⎝

a1 a2 . . . an

p1 b1,1 b1,2 . . . b1,n
p2 b2,1 b2,2 . . . b2,n
...

...
...

. . .
...

pm bm,1 bm,2 . . . bm,n

⎞

⎟⎟⎟⎠L =

⎛

⎜⎜⎜⎝

a1 a2 . . . an

p1 l1,1 l1,2 . . . l1,n
p2 l2,1 l2,2 . . . l2,n
...

...
...

. . .
...

pm lm,1 lm,2 . . . lm,n

⎞

⎟⎟⎟⎠

5 AVs considered in [8]: AntiVir, AVG, Bit- Defender, ClamAV, ESET, F-Secure,
Kaspersky, McAfee, Panda, Sophos.

148 M. Hurier et al.

where entry bi,j corresponds to the binary flag assigned by AV aj to application
pi and entry li,j corresponds to the string label assigned by AV aj to application
pi. String label li,j is ∅ (null or empty string) if the app pi is not flagged by AV
aj . For any settings under study, a ground truth D will be characterized by both
B and L.

Let note Ri = {mi,1,mi,2, · · · ,mi,n} the ith row vector of a matrix M, and
Cj = {m1,j ,m2,j , · · · ,mm,j} the jth column. The label matrix L can also be
vectorized as a column vector L′ = (l1, l2, · · · , lk) which includes all distinct
labels from matrix L, excluding null values (∅).

We also define six specific functions that will be reused through this paper:

– Let positives be the function which returns the number of positive detections
from matrix B, or the number of not null labels from matrix L.

– Let exclusives be the function which returns the number of samples detected
by only one AV in matrix B.

– Let distincts be the function which returns the number of distinct labels
(excluding ∅) in matrix L.

– Let freqmax be the function which returns the number of occurrences of the
most frequent label (excluding ∅) from matrix L.

– Let clusters be the function which returns the number of applications which
received a given label lo with lo ∈ L′.

– Let Ouroboros be the function which returns the minimum proportion of
groups including 50 % elements of the dataset, normalized between 0 and
1 [30]. This function is used to quantify the uniformity of a list of frequencies,
independently of the size of the list.

4 Definition of Metrics and Experiments

In this section we consider the two pieces of information, AV decision and AV
label, and perform analyses that investigate various aspects of the inconsistencies
that may be present among AV reports. We then propose metrics to quantify
these aspects and allow for comparison between different ground truth datasets.

4.1 Analysis of AV Decisions

The primary role of an AV engine is to decide whether a given sample should
be considered as malicious [13]. These decisions have important consequences in
production environments since a positive detection will probably trigger an alert
and an investigation to mitigate a potential threat. False positives would thus
lead to a waste of resources, while False negatives can have dire consequences
such as substantial losses. AV engines must then select an adequate trade-off
between a deterring high number of false positives and a damaging high number
of false negatives.

In this section, we analyze the characteristics of AV decisions and their dis-
crepancies when different engines are compared against each other.

On the Lack of Consensus in Anti-Virus Decisions 149

4.1.1 Equiponderance

The first concern in using a set of AV engines is to quantify their detection
accuracies. If there are extreme differences, the collected “ground truth” may be
polluted by decisions from a few engines. In the absence of a significant golden set
to compute accuracies, one can estimate, to some extent, the differences among
AVs by quantifying their detection rates (i.e., number of positive decisions).

Fig. 1. AVs positive detections in Dbase

Figure 1 highlights the uneven dis-
tribution of positive detections per
AV in the Dbase baseline ground
truth. The number of detected apps
indeed ranges from 0 to 367 435. This
raises the question of the confidence
in a “ground truth” when malicious
samples can be contributed by AVs
from the head and tail of the distri-
bution. Indeed, although we cannot
assume that AV engines with high (or
low) detection rates have better per-
formances, because of their potential
false positives (or false negatives), it
is important to consider the detection

rates of AVs for a given dataset to allow comparisons on a common ground.
A corollary concern is then to characterize the ground truth to allow compar-
isons. To generalize and quantify this characteristic of ground truth datasets, we
consider the following research question:

We answer this RQ with a single metric, Equiponderance, which measures
how balanced—or how imbalanced—are the contributions of each AV. Consid-
ering our baseline settings with all AV engines, we infer that 9, i.e., 13.5 %,
AVs provided as many positive detections as all the other AVs combined. The
Equiponderance aims to capture this percentage in its output. Because maximum
value for this percentage is 50 %6, we weigh this percentage, by multiplying it
by 2, to yield a metric between 0 and 1. We define the function Ouroboros [30]
which computes this value and also returns the corresponding number of AVs,
which we refer to as the Index of the Equiponderance.

Equiponderance(B) = Ouroboros(X) with X = {positives(Cj) : Cj ∈ B, 1 ≤ j ≤ n}
– Interpretation – minimal proportion of antivirus that detected at least 50% appli-

cations in the dataset. The metric value is weighted.
– Minimum: 0 – when a single antivirus made all the positive detections

6 If one set of AVs leads to a percentage x over 50 %, then the other set relevant value
is 100-x% < 50 %.

150 M. Hurier et al.

– Maximum: 1 – when the distribution of detection rates is perfectly even

When the Equiponderance is close to zero, the ground truth analyzed is
dominated by the extreme cases: a large number of AV engines provide only
a few positive detections, while only a few AVs engine provide most positive
detections. In comparison with Dbase’s Equiponderance value of 0.27, Dgenome

and Dfiltered present Equiponderance values of 0.48 and 0.59 respectively.

4.1.2 Exclusivity

Even in the case where several AVs would have the same number of detections,
it does not imply any agreement of AVs. It is thus important to also quantify to
what extent each AV tends to detect samples that no other AV detects.

Fig. 2. Relation between positive and
exclusive detections in Dbase

Figure 2 plots, for every AV prod-
uct, the proportion of exclusive detections
(i.e., samples no other AV detects) over
the total number of positive detection of
this AV. Five AVs provide a majority of
exclusive detections while a large part of
other AVs (45) provides less than 10 %
such detections. For the 21 AVs that made
the most positive detections, the propor-
tion of exclusive detections remains below
16 %, while the highest ratios of exclu-
sive detections are associated with AVs
that made a (relatively) small number of
positive detections. Figure 2 provides an
important insight into Android malware
detection by AVs: A very high absolute

number of detections comes from adding more non-exclusive detections—not
from detecting apps no other AV detects as could have been intuitively expected.
The following research question aims at formally characterizing this bias in
datasets:

To answer this RQ, we propose the Exclusivity metric, which measures the pro-
portion of a tentative ground truth that is specific to a single detector.

Exclusivity(B) =
exclusives(B)

m

– Interpretation – proportion of applications detected by only one antivirus
– Minimum: 0 – when every sample has been detected by more than one AV
– Maximum: 1 – when every sample has been detected by only one antivirus

On the Lack of Consensus in Anti-Virus Decisions 151

In Dbase, 31 % apps were detected exclusively by only one AV, leading to an
Exclusivity value of 0.31. On the contrary, both Dgenome and Dfiltered do not
include apps detected by only one AV and have an Exclusivity of 0.

4.1.3 Recognition

Because Equiponderance and Exclusivity alone are not sufficient to describe how
experimental ground truth datasets are built, we investigate the impact of the
threshold parameter that is often used in the literature of malware detection to
consolidate the value of positive detections [8]. A threshold τ indicates that a
sample is considered as a malware in the ground truth if and only if at least τ
AV engines have reported positive detections on it. Unfortunately, to the best
of our knowledge, there is no theory or golden rule behind the selection of τ .
On one hand, it should be noted that samples rejected because of a threshold
requirement may simply be either (a) new malware samples not yet recognized
by all industry players, or (b) difficult cases of malware whose patterns are not
easily spotted [10]. On the other hand, when a sample is detected by λ or γ AVs
(where λ is close to τ and γ is much bigger than τ), the confidence of including
the app in the malware set is not equivalent for both cases.

Fig. 3. Distribution of apps flagged by
τ AVs in Dbase (Color figure online)

Figure 3 explores the variations in the
numbers of apps included in the ground
truth dataset Dbase as malware when the
threshold value for detection rates (i.e.,
threshold number τ of AVs assigning a
positive detection a sample) changes. The
number of apps detected by more than τ
AVs is also provided for the different val-
ues of τ .

Both bar plots appear to be right-
skewed, with far more samples detected
by a small number of antivirus than by
the majority of them. Thus, any thresh-
old value applied to this dataset would
remove a large portion of the potential
malware set (and, in some settings, shift them into the benign set). To quan-
tify this property of ground truth datasets, we investigate the following research
question:

We answer this RQ with a single metric, Recognition, which simply computes
the average number of positive detections that are assigned to a sample. In other
words, it estimates the number of AVs agreeing on a given app.

Recognition(B) =

∑m
i=1 Xi

n × m
with X = {positives(Ri) : Ri ∈ B, 1 ≤ i ≤ m}

152 M. Hurier et al.

– Interpretation – proportion of antivirus which provided a positive detection to an
application, averaging on the entire dataset

– Minimum: 0 – when no detections were provided at all
– Maximum: 1 – when each AV have agreement to flag all apps

When a threshold is applied on an experimental dataset, the desired objective
is often to increase the confidence by ensuring that malware samples are widely
recognized to be malicious by existing antivirus engines. Although researchers
often report the effect on the dataset size, they do not measure the level of
confidence that was reached. As an example, the Recognition of Dbase is 0.09: on
average, 6 (9 %) AV engines provided positive detections per sample, suggesting a
marginal recognition by AVs. The Recognition values for Dfiltered and Dgenome

amounts to 0.36 and 0.48 respectively. These values characterize the datasets
by estimating the extent to which AVs agree more to recognize samples from
Dfiltered as positive detections more widely than in Dbase. AVs recognize samples
from Dgenome even more widely.

4.1.4 Synchronicity

In complement to Recognition and Exclusivity, we investigate the scenarios where
pairs of AV engines conflict in their detection decisions. Let us consider two AV
engines U and V and the result of their detections on a fixed set of samples. For
each sample, we can expect 4 cases:

Detected by U Not detected by U
Detected By V (True, True) (True, False)
Not detected by V (False, True) (False, False)

Even if the Equiponderance value of the dataset produced by AVs U and V
amounts to 1, one cannot conclude on the distribution of those cases. The most
extreme scenarios could be 50 % (True, True) and 50 % (False, False) or 50 %
(True, False) and 50 % (False, True). For the first one, both AVs are in perfect
synchrony while they are in perfect asynchrony in the second one.

Fig. 4. Overlap between pairs of
AVs in Dbase

Figure 4 is a heatmap representation of the
pairwise agreement among the 66 AV engines
on our dataset. For simplicity, we have ordered
the AV engines by their number of positive
detections (the top row—left to right— and the
left column—top to bottom—correspond to the
same AVs). For each of the

(
66
2

)
entries, we com-

pute the overlap function [31]:

overlap(X,Y) = |X ∩ Y |/min(|X|, |Y |)

This function normalizes the pairwise compar-
ison with the case of the AV presenting the
smallest number of positive detections. From

the heatmap, we can observe two patterns: (a) The number of cells where a

On the Lack of Consensus in Anti-Virus Decisions 153

full similarity is achieved is relatively small w.r.t the number of entries. Only
12 % of pairs of AVs achieved a pairwise similarity superior to 0.8, and only
1 % of pairs presented a perfect similarity. (b) There is no continuity from the
right to the left (nor from the top to the bottom) of the map. This indicates that
AVs with comparable number of positive detections do not necessarily detect the
same samples. We aim to quantify this level of agreement through the following
research question:

We answer this RQ with the Synchronicity metric which measures the ten-
dency of a set of AVs to provide positive detections at the same time as other
antivirus in the set:

Synchronicity(B) =

∑n
j=1

∑n
j′=1 PairwiseSimilarity(Cj , Cj′)

n(n − 1)
with j �= j′, Cj ∈ B, Cj′ ∈ B

– Interpretation – average pairwise similarity between pairs of AVs
– Minimum: 0 – when no sample is detected at the same time by more than

one AV
– Maximum: 1 – when each sample is detected by every AV
– Parameters

• PairwiseSimilarity: a binary distance function [31]
∗ Overlap: based on positive detections and normalized (default)
∗ Jaccard: based on positive detections, but not normalized
∗ Rand: based on positive and negative detections

High values of Synchronicity should be expected for datasets where no uncer-
tainty remains to recognize applications as either malicious or not malicious.
Dbase presents a Synchronicity of 0.32, which is lower than values for Dgenome

(0.41), and Dfiltered (0.75). The gap between values for Dgenome and Dfiltered

suggests the impact that a selection of Antivirus can have on artificially increas-
ing the Synchronicity of the dataset.

4.2 Analysis of Malware Labels

Besides binary decisions on detection of maliciousness in a sample, AV engines
also provide, in case of positive detection, a string label which indicates the
type/family/behavior of the malware or simply identifies the malicious trait.
These labels are thus expected to specify appropriately the threat in a meaning-
ful and consistent way. Nevertheless, previous work have found that the disagree-
ment of multiple AVs on labelling a sample malware challenges their practical
use [2–5].

In this section, we further investigate the inconsistencies of malware labels
and quantify different dimensions of disagreements in “ground truth” settings.

154 M. Hurier et al.

4.2.1 Uniformity

Fig. 5. Distribution of malware labels in
Dbase

Figure 5 represents the distribution
of the most frequently used labels
on our Dbase dataset. In total, the
689 209 samples detected by at least
one AV were labeled with 119 156 dis-
tinct labels.

68 % of positive detections were
associated with the most infrequent
labels, i.e., outside the top 20 labels
(grouped together under the ‘OTH-
ERS’ label). The most frequent label,
Android.Adware.Dowgin.I, is associ-
ated with 9 % of the positive detec-
tions. In a ground truth dataset, it
is important to estimate the balance
between different malicious traits, so as to ensure that the reported performance
of an automated detector can generalize. We assess this property of ground truth
by answering the following research question:

We answer this RQ with a single metric, Uniformity, which measures how
balanced—or how imbalanced—are the clusters of samples associated to the
different labels.

Uniformity(L′) = Ouroboros(X) with X = {clusters(lk) : lk ∈ L′, 1 ≤ k ≤ o}

– Interpretation – minimal proportion of labels assigned to at least 50 % of
total number of detected samples. The metric value is weighted

– Minimum: 0 – when each sample is assigned a unique label by each AV
– Maximum: 1 – when the same label is assigned to every sample by all AVs

The Uniformity metric is important as it may hint on whether some malware
families are undersampled w.r.t others in the ground truth. In can thus help, to
some extent, to quantify potential biases due to malware family imbalance. Dbase

exhibits a Uniformity value close to 0 (12 × 10−4) with an index of 75: 75 labels
occur as often in the distribution than the rest of labels (119 081), leading to
an uneven distribution. We also found extreme values for both Filtered and
Genome settings with Uniformity of 0.01 and 0.04 respectively. These values
raise the question of malware families imbalance in most ground truth datasets.
However, it is possible that some labels, although distinct, because of the lack of
naming standard, actually represent the same malware type. We thus propose
to further examine labels on other dimensions.

On the Lack of Consensus in Anti-Virus Decisions 155

4.2.2 Genericity

Fig. 6. Relation between distinct labels and
positive detections per AV in Dbase

Once the distribution of labels has
been extracted from the dataset, we
can also measure how often labels are
reused by antivirus. This property is
an interesting behavior that Bureau
and Harley highlighted [13]. If we
consider the two extreme cases, AVs
could either assign a different label to
every sample (e.g. hash value), or a
unique label to all samples. In both
scenarios, labels would be of no value
to group malware together [2].

In Fig. 6, we plot the number of
detections against the number of dis-
tinct labels for each AV. While two
AVs assign almost a different label for
each detected sample (points close to

the y = x line), the majority of AVs have much fewer distinct labels than detected
samples: they reuse labels amongst several samples. These two different behaviors
might be explained by different levels of genericity of labels. For example, using
very precise labels would make the sharing of labels among samples harder than
in the case of very generic labels that could each be shared by several samples.
To quantify this characteristic of labels produced by a set of AVs contributing
to define a ground truth, we raise the following research question:

We propose the genericity metric to quantify this information:

Genericity(L) = 1 − o − 1

positives(L) − 1
with o ← number of distinct labels

– Interpretation – ratio between the number of distinct labels and the number of
positive detections

– Minimum: 0 – when every assigned label is unique
– Maximum: 1 – when all labels are identical

Genericity assesses whether AVs assign precise labels or generic ones to sam-
ples. Although detectors with low Genericity would appear to be more precise
in their naming, Bureau and Harley [13] support that such engines may not
be the most appropriate w.r.t the exponential growth of malware variants. The
Genericity Dbase is 0.97, inline with our visual observation that there is far less
distinct labels than positive detections. The Genericity values of Dgenome and
Dfiltered are equal to 0.82 and 0.87 respectively.

156 M. Hurier et al.

4.2.3 Divergence

Fig. 7. Relation between distinct labels
and positive detections per app in Dbase

While Uniformity and Genericity can
evaluate the overall distribution of
labels that were assigned by AVs, they
do not consider the question of agree-
ment of AVs on each sample. Ideally,
AVs should be consistent and provide
labels similar to that of their peers.
Even if this ideal case can not be
achieved, the number of distinct labels
per application should remain limited
w.r.t the number of AVs agreeing to
detect it.

For Dbase, Fig. 7 plots the relation
between the number of positive detec-
tions of a sample and the average num-
ber of distinct labels associated to it. As a confidence margin, we also draw an
area of two standard deviations centered on the mean. We note that the mean
value for number of labels grows steadily with the number of detection, close to
the maximum possible values represented by the dotted line. The Pearson corre-
lation coefficient ρ between these variables evaluates to 0.98, indicating a strong
correlation. Overall, the results suggest not only that there is a high number
of different labels per application on our dataset, but also that this behavior is
true for both small and high values of positive detections. The following research
question investigates this characteristic of ground truth datasets:

We can quantify this factor with the following metric that measures the capacity
of a set of antivirus to assign a high number of different labels per application.

Divergence(L) =
(
∑m

i=1 Xi) − n

positives(L) − n
with X = {distincts(Ri) : Ri ∈ L, 1 ≤ i ≤ m}

– Interpretation: – average proportion of distinct labels per application w.r.t the
number of AVs providing positive detection flags

– Minimum: 0 – when AVs assign a single label to each application
– Maximum: 1 – when each AV assigns its own label to each application

Two conditions must be met in a ground truth dataset to reach a low Diver-
gence: AVs must apply the same syntax consistently for each label, and they
should refer to a common semantics when mapping labels with malicious behav-
iors/types. If label syntax is not consistent within the dataset, then the semantics
cannot be assessed via the Divergence metric. It is, however, often possible to
normalize labels through a basic preprocessing step.

On the Lack of Consensus in Anti-Virus Decisions 157

The Divergence values of Dbase, Dfiltered and Dgenome are 0.77, 0.87 and 0.95
respectively. These results are counter-intuitive, since they suggest that more
constrained settings create more disagreement among AVs in terms of labeling.

4.2.4 Consensuality

To complement the property highlighted by Divergence, we can look at the
most frequent label assigned per application. Indeed, while the previous met-
ric describes the number of distinct labels assigned per application, it does not
measure the weight of each label, notably that of the most used label. Yet, to
some extent, this label could be used to infer the family and the version of a
malware, e.g., if it used by a significant portion of AVs to characterize a sample.

To visualize this information, still for Dbase, we create in Fig. 8 a plot similar
to that of Fig. 7, looking now at the average number of occurrence of the Most
Frequent Label (MFL) against the number of positive detections per application.

Fig. 8. Relation between MFL/τ and positive
detections per app in Dbase

The correlation coefficient ρ
between the two variables is 0.76,
indicative of a correlation. Never-
theless, the relation is close to the
potential minimum (x-axis). This is
in line with our previous observa-
tions on Dbase that the number of
distinct labels per application was
high. The plot further highlights
that the most frequent label for an
application is assigned simultane-
ously by one to six AVs (out of
66) on average. This finding sug-
gests that, at least in Dbase, using
the most frequent label to charac-
terize the malicious sample is not
a sound approximation. The follow-
ing research question generalize the
dimension of disagreement that we investigate:

We answer this RQ with the Consensuality metric:

Consensuality(L) =
(
∑m

i=1 Xi) − n

positives(L) − n
with X = {freqmax(Ri) : Ri ∈ L, 1 ≤ i ≤ m}

– Interpretation – average proportion of AVs that agree to assign the most frequent
label. The frequency is computed per sample.

158 M. Hurier et al.

– Minimum: 0 – when each AV assigns to each detected sample its own label (i.e.,
unused by others on this sample)

– Maximum: 1 - when all AVs assign the same label to each sample. Different samples
can have different labels however

A high Consensuality value highlights that the used AVs agree on most appli-
cations to assign a most frequent label. This metric is important for validating,
to some extent, the opportunity to summarize multiple labels into a single one.
In the Dbase set, 79 % detection reports by AVs do not come with a label that,
for each sample, corresponds to the most frequent label on the sample. The Con-
sensuality value of the set evaluates to 0.21. In comparison, the Consensuality
values for Dfiltered and Dgenome are 0.05 and 0.06 respectively.

4.2.5 Resemblance

Divergence and Consensuality values on Dbase suggest that labels assigned to
samples cannot be used directly to represent malware families. Indeed, the num-
ber of distinct labels per application is high (high Divergence), and the most
frequent label per application does not occur often (low Consensuality). We fur-
ther investigate these disagreements in labels to verify whether the differences
between label strings are small or large across AVs. Indeed, in previous compari-
son, given the lack of standard naming, we have chosen to compute exact match-
ing. Thus, minor variations in label strings may have widely influenced our metric
values. We thus compute the similarity between label strings for each application

Fig. 9. String similarity between
labels per app in Dbase

and present the summary in Fig. 9. For each
detected sample, we computed the Jaro-
Winkler [32] similarity between pairwise
combinations of labels provided by AVs.
This distance metric builds on the same
intuition as the edit-disance (i.e., Leven-
shtein distance), but is directly normalized
between 0 and 1. A similarity value of 1
implies the identicality of strings while a
value of 0 is indicative of high difference.
We consider the minimum, mean and max-
imum of these similarity values and repre-
sent their distributions across all apps. The
median of mean similarity values is around
0.6: on average labels only slightly resemble
each other. The following research question
highlights the consensus that we attempt to measure:

We answer this metric with the Resemblance metric which measures the average
similarity between labels assigned by set of AVs to a given detected sample.

On the Lack of Consensus in Anti-Virus Decisions 159

Ressemblance(L) =
1

m

m∑

i=1

∑n′
i

j=1

∑n′
i

j′=1 Jaro − Winkler(li,j , li,j′)

n′
i(n

′
i − 1)

with j �= j′, li,j �= ∅, li,j′ �= ∅, li,j ∈ B, li,j′ ∈ B and n′
i = positives(Ri), 2 ≤ n′

i ≤ n

– Interpretation estimation of the global resemblance between labels for each app
– Minimum 0 when there is no similitude between labels of an application
– Maximum 1 when labels are identical per application

Resemblance assesses how labels assigned to a given application would be
actually similar across the considered AVs. This metric, which is necessary when
Divergence is high and Consensuality is low, can evaluate if the differences
between label strings per application are small or large. Dbase, Dfiltered and
Dgenome present Resemblance values of 0.63, 0.57 and 0.60 respectively. Com-
bined with the Divergence metric values, we note that reducing the set of AVs
has not yielded datasets where AVs agree more on the labels.

5 Discussions

5.1 Comparison of Ground-Truth Approaches

Table 1 summarizes the metric values for the three settings described in Sect. 3.3
that researchers may use to build ground truth datasets.

Table 1. Summary of Metrics for three common settings of Ground Truth constructions

Dbase

Dfiltered

Dgenome

The higher values of Recognition and Synchronicity for Dgenome and Dfiltered

in comparison with Dbase suggest that these datasets were built with sam-
ples that are well known to be malicious in the industry. If we consider that
higher Recognition and Synchronicity values provide guarantees for more reli-
able ground truth, then Dgenome and Dfiltered are better ground truth candidates
than Dbase. Their lower value of Genericity also suggests that AV labels pro-
vided are more precise than that in Dbase. At the same time, higher values of
Equiponderance and Uniformity imply that both AV detections and labels are
more balanced across AVs.

Divergence and Consensuality values however suggest that the general agree-
ment on AV labels has diminished in Dgenome and Dfiltered in comparison with
Dbase. The Exclusivity value of 0 for Dgenome and Dfiltered further highlights
that the constraints put on building those datasets may have eliminated corner
cases of malware that only a few, if not 1, AV could have been able to spot.

We also note that Dfiltered has a higher Synchronicity value than Dgenome,
indicating that its settings lead to a selection of AVs which were more in agree-
ment on their decision. In contrast, the Divergence values indicate that the

160 M. Hurier et al.

proportion of distinct labels for each sample was higher in Dfiltered than in
Dgenome, suggesting that decisions in Dgenome are easier to interpret for each
sample. Nevertheless, the classification of samples in malware families would be
more difficult because of the higher proportion of distinct labels to take into
consideration.

5.2 Limitations and Future Work

The collection of metrics proposed in this paper is focused on the quantification of
nine characteristics that we considered relevant based on our experience and the
literature related to malware experiments [3,10,11,13]. Hence, we do not attempt
to cover the full range of information that could be quantified from the output
of AV scans. In addition, our analysis of antivirus reports has exposed a global
lack of consensus that has been previously highlighted by other authors for other
computing platforms [2,4,13,33]. Our work cannot be used to solve the challenge
of naming inconsistencies directly. Instead, the metrics we presented can be used
to evaluate ground truth datasets prior and posterior to their transformation by
techniques proposed by other authors [6,10,34].

As future work, we will focus on surveying parameter values to yield ground
truths that are suitable to practionners’ constraints for consensus and reliability
in accordance to their use cases.

6 Conclusion

We have investigated the lack of consensus in AV decisions and labels using
the case study of Android samples. Based on different metrics, we assessed the
discrepancies between three ground truth datasets, independently of their size,
and question their reliability for evaluating the performance of a malware detec-
tor. The objective of our work was twofold: (1) to further motivate research on
aggregating AV decisions results and improving the selection of AV labels; (2) to
provide means to researchers to qualify their ground truth datasets, w.r.t AVs
and their heuristics, so as to increase confidence in performance assessment, and
take a step further to improve reproducibility of experimental settings, given the
limited sharing of security data such as samples.

Acknowledgment. This work was supported by the Fonds National de la Recherche
(FNR), Luxembourg, under the project AndroMap C13/IS/5921289.

References

1. Symantec: Symantec. istr 20 - internet security threat report, April 2015. http://
know.symantec.com/LP=1123

2. Bailey, M., Oberheide, J., Andersen, J., Mao, Z.M., Jahanian, F., Nazario,
J.: Automated classification and analysis of internet malware. In: Kruegel, C.,
Lippmann, R., Clark, A. (eds.) RAID 2007. LNCS, vol. 4637, pp. 178–197.
Springer, Heidelberg (2007)

http://know.symantec.com/LP=1123
http://know.symantec.com/LP=1123

On the Lack of Consensus in Anti-Virus Decisions 161

3. Canto, J., Sistemas, H., Dacier, M., Kirda, E., Leita, C.: Large scale malware col-
lection: lessons learned. In: 27th International Symposium on Reliable Distributed
Systems, vol. 52(1), pp. 35–44 (2008)

4. Maggi, F., Bellini, A., Salvaneschi, G., Zanero, S.: Finding non-trivial malware
naming inconsistencies. In: Jajodia, S., Mazumdar, C. (eds.) ICISS 2011. LNCS,
vol. 7093, pp. 144–159. Springer, Heidelberg (2011)

5. Mohaisen, A., Alrawi, O.: AV-Meter: an evaluation of antivirus scans and labels. In:
Dietrich, S. (ed.) DIMVA 2014. LNCS, vol. 8550, pp. 112–131. Springer, Heidelberg
(2014)

6. Perdisci, R., U, M.: Vamo: towards a fully automated malware clustering valid-
ity analysis. In: Annual Computer Security Applications Conference, pp. 329–338
(2012)

7. VirusTotal: VirusTotal about page. https://www.virustotal.com/en/about/
8. Arp, D., Spreitzenbarth, M., Malte, H., Gascon, H., Rieck, K.: Drebin: effective

and explainable detection of android malware in your pocket. In: Symposium on
Network and Distributed System Security (NDSS), pp. 23–26 (2014)

9. Yang, C., Xu, Z., Gu, G., Yegneswaran, V., Porras, P.: DroidMiner: automated
mining and characterization of fine-grained malicious behaviors in android appli-
cations. In: Kuty�lowski, M., Vaidya, J. (eds.) ICAIS 2014, Part I. LNCS, vol. 8712,
pp. 163–182. Springer, Heidelberg (2014)

10. Kantchelian, A., Tschantz, M.C., Afroz, S., Miller, B., Shankar, V., Bachwani, R.,
Joseph, A.D., Tygar, J.D.: Better malware ground truth: techniques for weighting
anti-virus vendor labels. In: AISec 2015, pp. 45–56. ACM (2015)

11. Rossow, C., Dietrich, C.J., Grier, C., Kreibich, C., Paxson, V., Pohlmann, N., Bos,
H., Van Steen, M.: Prudent practices for designing malware experiments: Status
quo and outlook. In: Proceedings of S&P, pp. 65–79 (2012)

12. Allix, K., Jérome, Q., Bissyandé, T.F., Klein, J., State, R., Le Traon, Y.: A forensic
analysis of android malware-how is malware written and how it could be detected?
In: COMPSAC 2014, pp. 384–393. IEEE (2014)

13. Bureau, P.M., Harley, D.: A dose by any other name. In: Virus Bulletin Conference,
VB, vol. 8, pp. 224–231 (2008)

14. Li, P., Liu, L., Gao, D., Reiter, M.K.: On challenges in evaluating malware clus-
tering. In: Jha, S., Sommer, R., Kreibich, C. (eds.) RAID 2010. LNCS, vol. 6307,
pp. 238–255. Springer, Heidelberg (2010)

15. Bayer, U., Comparetti, P.M., Hlauschek, C., Kruegel, C., Kirda, E.: Scalable,
behavior-based malware clustering. In: Proceedings of the 16th Annual Network
and Distributed System Security Symposium (NDSS 2009) (1) (2009)

16. Gashi, I., Sobesto, B., Mason, S., Stankovic, V., Cukier, M.: A study of the rela-
tionship between antivirus regressions and label changes. In: ISSRE, November
2013

17. GData: Mobile malware report (Q3 2015). https://secure.gd/dl-en-mmwr201503
18. Enck, W., Ongtang, M., McDaniel, P.: On lightweight mobile phone application

certification. In: Proceedings of the 16th ACM Conference on Computer and Com-
munications Security - CCS 2009, pp. 235–245 (2009)

19. Enck, W., Octeau, D., McDaniel, P., Chaudhuri, S.: A study of android application
security. In: Proceedings of the 20th USENIX Security, vol. 21 (2011)

20. Felt, A.P., Chin, E., Hanna, S., Song, D., Wagner, D.: Android permissions demys-
tified. In: Proceedings of the 18th ACM Conference on Computer and Communi-
cations Security, CCS 2011, pp. 627–638. ACM, New York (2011)

https://www.virustotal.com/en/about/
https://secure.gd/dl-en-mmwr201503

162 M. Hurier et al.

21. Yan, L., Yin, H.: Droidscope: seamlessly reconstructing the os and dalvik semantic
views for dynamic android malware analysis. In: Proceedings of the 21st USENIX
Security Symposium, vol. 29 (2012)

22. Zhou, Y., Wang, Z., Zhou, W., Jiang, X.: Hey, you, get off of my market: detecting
malicious apps in official and alternative android markets. In: Proceedings of the
19th Annual Network and Distributed System Security Symposium (2), pp. 5–8
(2012)

23. Barrera, D., Kayacik, H.G., van Oorschot, P.C., Somayaji, A.: A methodology
for empirical analysis of permission-based securitymodels and its application to
android. In: Proceedings of the 17th ACM CCS (1), pp. 73–84 (2010)

24. Peng, H., Gates, C., Sarma, B., Li, N., Qi, Y., Potharaju, R., Nita-Rotaru, C.,
Molloy, I.: Using probabilistic generative models for ranking risks of android apps.
In: Proceedings of the 2012 ACM CCS, pp. 241–252. ACM (2012)

25. Sommer, R., Paxson, V.: Outside the closed world: on using machine learning for
network intrusion detection. In: Proceedings of the 2010 IEEE S&P, pp. 305–316
(2010)

26. Allix, K., Bissyandé, T.F., Jérome, Q., Klein, J., State, R., Le Traon, Y.: Empirical
assessment of machine learning-based malware detectors for android. Empirical
Softw. Eng. 21, 183–211 (2014)

27. Allix, K., Bissyandé, T.F., Klein, J., Le Traon, Y.: Are your training datasets yet
relevant? In: Piessens, F., Caballero, J., Bielova, N. (eds.) ESSoS 2015. LNCS, vol.
8978, pp. 51–67. Springer, Heidelberg (2015)

28. Allix, K., Bissyandé, T.F., Klein, J., Le Traon, Y.: Androzoo: collecting millions
of android apps for the research community. In: MSR 2016 (2016)

29. Zhou, Y., Jiang, X.: Dissecting android malware: characterization and evolution.
In: Proceedings of the 2012 IEEE S&P, pp. 95–109. IEEE Computer Society (2012)

30. Hurier, M.: Definition of ouroboros. https://github.com/freaxmind/ouroboros
31. Pfitzner, D., Leibbrandt, R., Powers, D.: Characterization and evaluation of simi-

larity measures for pairs of clusterings. Knowl. Inf. Syst. 19(3), 361–394 (2009)
32. Cohen, W.W., Ravikumar, P., Fienberg, S.E.: A comparison of string metrics for

matching names and records. In: KDD Workshop on Data Cleaning and Object
Consolidation, vol. 3 (2003)

33. Harley, D.: The game of the name malware naming, shape shifters and sympathetic
magic. In: CEET 3rd International Conference on Cybercrime Forensics Education
& Training, San Diego, CA (2009)

34. Wang, T., Meng, S., Gao, W., Hu, X.: Rebuilding the tower of babel: towards cross-
system malware information sharing. In: Proceedings of the 23rd ACM CIKM, pp.
1239–1248 (2014)

https://github.com/freaxmind/ouroboros

Evasion

Probfuscation: An Obfuscation Approach Using
Probabilistic Control Flows

Andre Pawlowski(B), Moritz Contag, and Thorsten Holz

Horst Görtz Institute for IT-Security (HGI), Ruhr-Universität Bochum,
Bochum, Germany

andre.pawlowski@rub.de

Abstract. Sensitive parts of a program, such as proprietary algorithms
or licensing information, are often protected with the help of code obfus-
cation techniques. Many obfuscation schemes transform the control flow
of the protected program. Typically, the control flow of obfuscated pro-
grams is deterministic, i.e., recorded execution traces do not differ for
multiple executions using the same input values. An adversary can take
advantage of this behavior and create multiple traces to perform analy-
ses on the target program in order to deobfuscate it.

In this paper, we introduce an obfuscation approach which yields prob-
abilistic control flow within a given method. That is, for the same input
values, multiple execution traces differ, whilst preserving semantics. This
effectively renders analyses relying on multiple traces impractical. We
have implemented a prototype and applied it to several different pro-
grams. Our experimental results show that our approach can be used
to ensure divergent traces for the same input values and that it can
significantly improve the resilience against dynamic analysis.

1 Introduction

Obfuscation (lat. obfuscare = darken) is the art of disguising a given system such
that the analysis becomes harder. In the area of software engineering, obfusca-
tion can be used on either the source code or binary level to obscure the code or
data flow. Generally speaking, the goal is to hamper reverse engineering. Code
obfuscation plays an important role in practice and such techniques are widely
used. On the one hand, obfuscation techniques can be used to protect programs
from reverse engineering or to at least increase the costs for such an analysis.
Examples include protection systems for sensitive parts or proprietary algorithms
of a given program, or digital rights management systems that contain licens-
ing information. On the other hand, obfuscation is widely used by attackers
to impede analysis of malicious software such that antivirus companies have a
harder time to analyze new samples. As a result, many different kinds of obfus-
cation techniques were proposed in the last years (e.g., [6,10,13,15]). Note that
all obfuscation techniques have one constraint in common: the transformations
used to obfuscate the program must ensure that the semantic meaning of the
program is not changed.
c© Springer International Publishing Switzerland 2016
J. Caballero et al. (Eds.): DIMVA 2016, LNCS 9721, pp. 165–185, 2016.
DOI: 10.1007/978-3-319-40667-1 9

166 A. Pawlowski et al.

Current state-of-the-art obfuscation techniques translate the target pro-
gram’s code into custom bytecode [17,22]. This bytecode is generated specifically
for the obfuscated program and an interpreter is embedded which handles execu-
tion of said bytecode. When analyzed statically, the translation to an unknown
instruction set forces an analyst to examine the bytecode interpreter first, before
actually reverse engineering the original algorithm. Because obfuscation schemes
are often difficult to analyze statically, most deobfuscation approaches make use
of dynamic analysis [7,21,25]. A drawback of current obfuscation techniques is
the fact that the control flow does not differ for multiple program executions
when using the same input values. Thus, it is easier for an analyst to monitor
control flow, which exposes parts of the semantic of the target program. Note
that state-of-the-art deobfuscation tools utilize a dynamic trace of the program
to reconstruct an unobfuscated version of the program.

In this paper, we propose a novel obfuscation approach that tackles the afore-
mentioned problem. Our obfuscation scheme is constructed in such a way that
multiple traces of the same function with the same input values lead to different
observed control flows, whilst preserving semantics. Our approach is inspired by
the idea of Collberg et al. [5], which uses opaque predicates constructed using a
specifically crafted graph data structure. However, their technique is based on
a problem that is only difficult to tackle when the attacker is limited to static
analysis. Hence, if an analyst employs dynamic analyses, she can easily determine
the value of an opaque predicate which has been executed in the recorded trace.
In an empirical evaluation, we show that our proposed obfuscation approach
successfully introduces probabilism to the control flow of the target program.
Thus, it thwarts dynamic analysis operating on multiple executions of the pro-
tected program significantly and does not focus solely on static analysis like
other state-of-the-art obfuscation approaches [6,13,17,22].
In summary, we make the following contributions:

– We present a novel obfuscation scheme that introduces probabilistic con-
trol flow, but still ensures that the code’s semantics are preserved. Due the
probabilistic nature of our scheme, it can withstand proposed deobfuscation
approaches that rely on a trace-based analysis of several execution runs.

– We implemented a proof-of-concept obfuscation tool in the managed code
programming language C# targeting .NET applications. The tool is freely
available at https://github.com/RUB-SysSec/Probfuscator.

– We evaluate the prototype and demonstrate that probabilistic obfuscation is
a viable obfuscation technique to protect sensitive parts of a given program.

2 Technical Background

The transformations applied by the obfuscation process aim to hide the pro-
gram’s semantics. If successful, the analysis and deobfuscation effort is consider-
ably higher than feasible for an analyst. In the following, we refer to an analyst
as adversary given that we study an obfuscation algorithm.

https://github.com/RUB-SysSec/Probfuscator

Probfuscation: An Obfuscation Approach Using Probabilistic Control Flows 167

The main class of obfuscation schemes, as well as ours, target the control flow
of the target program since it contains vital information about the general struc-
ture of a program and exposes high-level constructs such as loops or if-clauses.
Doing so, these obfuscation schemes thwart attempts to statically analyze the
target program. One building block used by said schemes is the construct of
opaque predicates [5]. An opaque predicate is a boolean expression whose value
is known at obfuscation time. However, its value is difficult to infer by an (auto-
mated) attacker. Collberg et al. introduce three types of opaque predicates which
we will refer to as true opaque predicates, false opaque predicates, and random
opaque predicates, whose expressions evaluate to the boolean values true, false
or evaluate randomly to either, respectively [5]. In the following, we will denote
by (always) taken branch the branch of an opaque predicate which is known to
be always taken.

In case of a true opaque predicate, its taken branch will always be taken, as it
corresponds to the predicate evaluating to true. Its other branch also has to point
to meaningful code, though, and points to a block of dead code. From the obfus-
cator’s point of view, it should be difficult to distinguish dead from live code.
False opaque predicates operate analogously. Random opaque predicates differ
in that their expression yields a random value and both branches may be taken.
Consequently, the code blocks the branches point to have to be semantically
equivalent for the obfuscation to be semantics-preserving. A resilient random
opaque predicate aims to hide this fact by employing several transformations on
the blocks to make comparison of their semantics harder.

Attacks against opaque predicates make use of data flow analysis and try
to prove that the expression the predicate checks are in fact constant. More
resilient opaque predicates hence build expressions involving pointer aliases by
making use of the hardness of the intraprocedural may-alias analysis problem [20].
This problem states that it is generally undecidable if two given pointers into a
complex data structure alias each other, i.e., point to the same location in the
structure. While algorithms that tackle the problem do exist, many of them are
incapable of handling special cases like recursive or cyclic data structures [5].

3 Adversary Model

The goal of the adversary is to analyze and understand a protected algorithm
inside the obfuscated method (e.g., a serial key check algorithm or a propri-
etary algorithm embedded in the method). To this end, the adversary has to
understand the effect of the input values on the program’s observable behavior,
among others. We assume an adversary that bases her deobfuscation attempts
solely on dynamic analysis techniques, a common attacker model found in recent
literature on attacks against obfuscation schemes [7,21,25].

The adversary is able to record multiple traces of the obfuscated method for
any inputs as well as set breakpoints on specific points in the control flow. Note
that deobfuscation with the help of static analysis is already tackled by obfus-
cation techniques proposed previously [1,5,20,23], which are orthogonal to our

168 A. Pawlowski et al.

/

/

/

/

Fig. 1. Overview of the eight steps of the obfuscation process. On the top, it is noted
which entity is targeted by the current obfuscation step.

approach. However, the adversary is subject to time constraints in her analysis.
Given that modern programs change their protection implementations with the
release of new versions (e.g., anti-cheat systems, [14]) and recent deobfuscation
approaches work solely on execution traces [7,21,25], we deem these assumptions
reasonable.

4 Approach

Our approach makes use of an artificial graph, called obfuscation graph, whose
nodes consist of objects of classes provided by the target program. Each protected
method in the target program holds a pointer to the graph, linking both together.
Each basic block of the protected method is linked to one or multiple nodes in the
obfuscation graph. During the execution of the protected method, the pointer to
the obfuscation graph is moved from node to node. The obfuscation only forwards
the pointer to nodes linked to the basic blocks which are to be executed next.
With the help of opaque predicates, the scheme ensures that tampering with the
link most likely results in a crash of the program.

The obfuscation scheme consists of eight steps which are illustrated in Fig. 1
and shortly described in the following.

1. Adding properties. The scheme uses properties of the nodes in the obfuscation
graph for opaque predicates. In order to increase the number of possible
opaque predicates, additional properties are added to the nodes.

2. Generating the obfuscation graph. The obfuscator then builds the obfuscation
graph with the help of the properties. It is then added to the class that
contains the method that should be protected.

3. Adding initialization code. This step adds additional logic to initialize the
obfuscation scheme for all methods that are to be protected.

Probfuscation: An Obfuscation Approach Using Probabilistic Control Flows 169

4. Linking basic blocks. The basic blocks of the control flow graph (CFG) are
linked to the nodes of the obfuscation graph. This connection is needed to
ensure correct evaluation of the boolean expressions of the opaque predicates.

5. Transforming control flow. The CFG of the method is transformed with the
help of the linked obfuscation graph in such a way that multiple paths through
the CFG yield the same output.

6. Injecting opaque predicates. Opaque predicates are injected that only evaluate
correctly if the pointer to the obfuscation graph points to the correct location
during the execution.

7. Generating dead code. Dead basic blocks added during the insertion of opaque
predicates are filled with artificially created code.

8. Transforming basic blocks. The basic blocks themselves are transformed to
obfuscate the method’s original code.

In the following, the eight steps are described in detail.

Adding Properties. In order to provide a diverse range of opaque predicates
for the same node, the nodes should either have a large number of properties
or a property which allows a wide range of different states. Note that all nodes
in the obfuscation graph have to implement the same properties, which may
be uncommon for a set of entities in non-obfuscated applications. Therefore, the
obfuscator adds a set of random properties to all possible nodes of the obfuscation
graph (i.e., to all classes, as a node is an object of a class). However, the random
properties use different states.

For our obfuscation approach, a property can be anything that can be added
to all nodes of the obfuscation graph and can hold different states, so that boolean
expressions for opaque predicates can be built. For example, common attributes
or metadata of a class, like implemented interfaces, can be used. The state of an
interface would be a boolean variable indicating whether the class implements
the interface.

Generating the Obfuscation Graph. The obfuscation graph is embedded
into the class that contains the method(s) that should be protected. If multiple
methods of the same class should be protected, the same obfuscation graph can
be used multiple times. The nodes of the graph consist of objects of different
classes of the target program. Hence, every node is related to a specific class
of the program and therefore has different states for the added properties. The
graph is a tree-like graph structure where the leaf nodes have back-edges to the
root of the “tree” (semi-cyclic structure).

The structure of the obfuscation graph allows traversal on multiple paths.
The obfuscator chooses random paths through the obfuscation graph and
declares them to be vpaths (as in valid paths). The number of vpaths is given
by the user. An example for an obfuscation graph is shown in Fig. 2. Classes are
randomly assigned to the nodes of the graph. The property states of the nodes
on the vpaths are later used to build opaque predicates.

170 A. Pawlowski et al.

Fig. 2. An example obfuscation graph with one vpath printed as a dotted line. All
classes for the nodes are picked randomly by the obfuscator. The classes and properties
that are used for the nodes on the vpath are used to build opaque predicates.

The obfuscation graph is parametrized by its depth and dimension. The depth
specifies the maximum length of a path whereas the dimension specifies the
number of children of each node. These parameters can be chosen arbitrarily
and determine the obfuscation graph’s layout. An evaluation of the effect of
chosen parameters is given in Sect. 6.1.

Adding Initialization Code. Because the opaque predicates use properties
of the nodes on the vpaths, each method to protect needs a pointer into the
obfuscation graph. In order to be consistent between executions, the pointer has
to point to the same starting point each time. Therefore, in the beginning of the
method, the pointer is reset to the root node of the graph. This pointer realizes
the link between executed basic blocks and the nodes in the obfuscation graph.

Obviously, a single vpath can be easily monitored by an adversary using
dynamic analysis. Thus, at least two distinct vpaths have to exist in the graph.
Probabilistic control flow can then be ensured by letting the obfuscated method
determine randomly at runtime which vpath is used. Therefore, a vpath state is
added to each method which determines the vpath used in current transition. It
is initialized randomly in the beginning of the method at runtime.

Linking Basic Blocks. The nodes on the vpaths are linked to basic blocks
in the CFG. Detailed information about the links are used later in the obfusca-
tion process to transform the control flow of the method and to build opaque
predicates (e.g., the properties used to construct the opaque predicates). This
information is only needed during the obfuscation process. During execution of
the method, only the states of the properties are used with the help of opaque
predicates to position the pointer into the obfuscation graph. The detailed infor-
mation is merely kept at obfuscation time.

Probfuscation: An Obfuscation Approach Using Probabilistic Control Flows 171

Fig. 3. An example relation between the obfuscation graph and the method’s control
flow. On the right side, a part of the control flow graph is shown. On the left side, the
obfuscation graph is shown, where the vpath is printed as a dotted line. The relation
between the nodes of the vpath and the basic blocks is printed using dash-dotted lines.

An example relation of the obfuscation graph and the CFG of the method
to protect is shown in Fig. 3. The obfuscator links the first basic block of the
CFG to the root node of the obfuscation graph (where the first block is the
one executed first once the method is called). This is the initial position of the
pointer into the graph, which is set by the initialization code added previously.
The algorithm then iterates over all remaining basic blocks of the CFG and links
each basic block to a node on the vpath of the obfuscation graph. During this
process, the obfuscator checks for each basic block which node the preceding
block is linked to. It then decides randomly to link the current processed basic
block to the same node or to the next node on the vpath. This is done for each
vpath the obfuscation graph possesses. Hence, each basic block has a link to one
node of each vpath. The algorithm terminates when all basic blocks are linked
to a node of the obfuscation graph.

Transforming Control Flow. The outgoing branches of each basic block are
processed exactly once. In the following, we describe the control flow transfor-
mation process on the basis of the example shown in Fig. 4:

1. Each basic block has a link to one node in every vpath. The vpath state (intro-
duced to the protected method while adding the initialization code) deter-
mines which of the vpaths is currently active during execution. In order to
divert the control flow depending on the currently used vpath, logic must
be added that switches the control flow accordingly. Hence, the obfusca-
tor replaces the branch of basic block A to B with one branch for every

172 A. Pawlowski et al.

Fig. 4. The control flow transformation process operating on two consecutive basic
blocks A and B. The target of the transformation is depicted by dotted lines. The
caption “vpath: X” denotes the control flow path corresponding to the respective vpath
in the obfuscation graph.

existing vpath (in this example there are two vpaths). At runtime, the branch
corresponding to the vpath state is taken.

2. In order to avoid all of these new branches having the same target basic block,
the obfuscator either duplicates the target basic block or randomly chooses a
semantically equivalent basic block. The list of semantically equivalent basic
blocks consists of the target basic block itself and all duplicates of this basic
block. In this example, the basic block B is duplicated and the new basic
block B’ is executed when vpath 2 is currently active.

3. The source basic block of a branch and the target basic block may be linked to
different nodes on the vpath. Hence, the pointer into the obfuscation graph
has to be moved from the node the source basic block is linked to to the
node the target basic block is linked to (compare Fig. 3). As depicted in our
example, basic block B is linked to the same node on vpath 1 as basic block
A, but basic block B’ is not linked to the same node on vpath 2 as A. Thus,
a move block has to be inserted in between A and B’. Said block moves the
pointer into the obfuscation graph to point to the node B’ is linked to.

4. The current approach would not yield probabilistic control flow at all, as the
vpath state is only set once in the initialization code of a method. Hence, for
each outgoing branch of a basic block, logic may be added (determined during
the obfuscation process) that may switch the vpath the method currently
follows. The switching decision is made at runtime and at random. If switching
occurs, the pointer into the graph has to be moved according to the chosen
vpath.

Injecting Opaque Predicates. In this step of the obfuscation process, the
obfuscator adds opaque predicates to the method that should be protected. For
each basic block, the obfuscator randomly decides whether to inject an opaque
predicate into the incoming branch. If an opaque predicate is injected, the obfus-
cator randomly decides to either create a true, false, or random opaque predi-
cate. For the true and false opaque predicates, the never taken branch points to
a newly created basic block that is marked as dead.

Probfuscation: An Obfuscation Approach Using Probabilistic Control Flows 173

During the execution, the method’s pointer into the obfuscation graph has
to point to the exact node in the active vpath that is linked to the currently
executed basic block. For each opaque predicate, the properties that are given by
this node are used for its boolean expression. For example, with the obfuscation
graph in Fig. 2, the obfuscator can build a true opaque predicate for a basic
block that is linked to node N1 with the boolean expression q == 2. Note that
this boolean expression is not unique to this node in the obfuscation graph, since
it is also fulfilled by node N7 (and probably by other nodes that do not reside
on the vpath). This design decision was made to ensure that an attacker is not
able to distinctively connect the opaque predicate to a node in the obfuscation
graph. Even if the focus of our approach lies on dynamic analysis, the obfuscation
scheme should withstand a shallow static analysis.

Furthermore, true and false opaque predicates are deterministic and do not
contribute to the probabilism of the control flow. But since the attacker is allowed
to conduct a manual dynamic analysis and change the program state during the
execution, it adds a tamper proofing mechanism: if the attacker changes the
pointer to the obfuscation graph or the obfuscation graph itself in order to affect
execution, one of the following opaque predicates would divert the control flow
and with a high probability crash the program. This is an advantage over a solely
use of random opaque predicates to create probabilistic control flow.

Generating Dead Code. Basic blocks marked as dead are filled with artifi-
cially generated code. During this process the obfuscator randomly chooses the
terminating instruction (called exit) of the dead basic block. If the chosen exit is
a branch, the target can either be an arbitrary (existing) basic block in the CFG
or a new dead basic block. If the target is a new dead basic block, the process is
repeated. Otherwise, if the target is an existing basic block, the interconnectivity
of the method’s CFG is increased.

Transforming Basic Blocks. The transformation of basic blocks is necessary
because the algorithm duplicated basic blocks during the control flow transfor-
mation step. If no transformation was applied, a pattern matching of basic blocks
could be sufficient to detect the always taken branch of an opaque predicate.

In order to make semantically equivalent blocks harder to detect, the obfus-
cator employs standard obfuscation techniques [4]. We focus on those affecting
control flow (like splitting blocks or outsourcing the last instructions to a com-
mon block for a subset of blocks), but other techniques can be applied as well.
This includes instruction re-ordering, replacement of instruction sequences with
equal ones, or usage of opaque expressions.

5 Implementation

Our prototype obfuscator is written in C# and targets .NET programs. It uses the
CCI Metadata libraries [11] in order to transform the target program. For now,

174 A. Pawlowski et al.

the prototype of our obfuscation scheme operates on the bytecode of individual
methods a user wishes to protect. In general, however, the approach is not limited
to bytecode or methods only (or managed code programming languages). As
mentioned in Sect. 4, the user chooses the method(s) he wants to protect. Note
that typically only a very small number of methods in a given software project
contain sensitive and valuable information that need to be protected.

All random numbers that are required during the obfuscation process are
fetched from the same pseudo random number generator (PRNG). Hence, the
seed of the PRNG can be used as a key for the obfuscation. This means the same
seed used for the same target method results in the same obfuscated output.

The vpath through the obfuscation graph that is used for the current run is
randomly determined during execution of the protected method. This random-
ness is used to implement non-deterministic control flow. We stress that these
random numbers are created during the execution of the obfuscated method and
not during the obfuscation process.

In our prototype implementation, the random number generator of the .NET
System namespace is used. This implementation is sufficient for our proof-of-
concept tool, but not for a real-world application. An attacker can potentially
determine the points in the control flow which generates random numbers and
replace them with fixed values. A detailed discussion about the random number
generation during the execution of the obfuscated method is given in Sect. 7.
More information about the actual implementation is available in a technical
report [18]. The prototype implementation of our tool is freely available at
https://github.com/RUB-SysSec/Probfuscator.

6 Evaluation

In this section, we evaluate the prototype of our proposed obfuscation technique.
Since it is hard to evaluate obfuscation techniques in general, we evaluate it using
the four aspects proposed by Collberg et al. [5]:

1. Cost gives a measurement of the time and space overhead that is induced by
the obfuscation technique.

2. Resilience measures how well the protected program resists deobfuscation
attempts.

3. Potency measures how complex the program has become after the obfuscation
process.

4. Stealth measures how well the obfuscation blends into the original program.

Given that our obfuscation is parametrized, we evaluate the effect of the
parameters on the obfuscation first. Afterwards, the four aspects cost, resilience,
potency, and stealth are measured.

6.1 Obfuscator Parameters

The obfuscation graph is the only component of the obfuscation scheme that is
memory dependent. Its size is mainly characterized by its depth and dimension.

https://github.com/RUB-SysSec/Probfuscator

Probfuscation: An Obfuscation Approach Using Probabilistic Control Flows 175

Table 1. Size of the obfuscation graph and its dependency to the graph’s depth and
dimension.

Depth Dim. # Nodes Depth Dim. # Nodes Depth Dim. # Nodes

6 4 1,365 7 4 5,461 8 4 21,845

6 5 3,906 7 5 19,531 8 5 97,656

6 6 9,331 7 6 55,987 8 6 335,923

Table 2. Relation between the number of vpaths and the size of the obfuscated method.

vpaths # Basic blocks Growth factor # Branches Growth factor

4 2,520 504 3,059 611.8

5 5,963 1192.6 7,272 1454.4

6 15,418 3083.6 18,804 3760.8

7 26,215 5243 31,848 6369.6

Each node of the graph is represented by an object of a class in the target
program and incurs an overhead dependent on the classes that are instantiated.
Table 1 shows the size of the obfuscation graph for a range of parameters.

The length of the vpath is determined by the depth of the obfuscation graph.
The number of vpaths affects the number of possible control flows of the method
for the same input and thus influences the method’s size as well. The effect of
multiple possible control flows is further evaluated in Sect. 6.3. Table 2 shows the
outcome of the obfuscation process for different numbers of vpaths for the same
example method. The original method’s CFG consists of five basic blocks and
five edges. As evident from the table, the growth of the method’s size proceeds
exponentially.

While larger values for the parameters yield better protection levels, one has
to weigh up the desired protection level with penalties in terms of size and speed.
These penalties are evaluated in detail in Sect. 6.2.

6.2 Measuring Costs

In order to evaluate the cost of the obfuscation scheme on the program, we mea-
sure its performance, file size, and memory consumption during execution. These
values are compared to the execution of the original, unobfuscated program. The
tests were run on an Intel Core i7 870 CPU with 2.93 GHz using Windows 8.1
as operating system (OS). We set the number of vpaths through the obfuscation
graph to six, the depth of the obfuscation graph to seven, and the dimension of
the obfuscation graph to five. The chosen numbers provide a balance between
the penalty introduced by the obfuscation scheme and the protection level that
is provided, as described in Sect. 6.1. Since obfuscation introduces a performance
overhead and is therefore usually only used to protect important parts of the pro-
gram, we evaluate our approach only on the implementation of certain algorithms

176 A. Pawlowski et al.

(representative of any intellectual property one wishes to protect). Because of
its nested loop structure and variable input length, we deem the SHA-256 hash
computation as best suited to represent a worst case for our obfuscation scheme
in terms of performance penalties. The nested loop structure increases the effect
of the probabilistic control flow and therefore slows down the computation. In
the following, we describe this test case in detail. The evaluation of additional
test cases can be found in our technical report [18].

Size. To quantify the impact of our obfuscation scheme on the file size, we
measure the file size in bytes. In our setting, the size of the original binary is
12,288 bytes and the obfuscated binary has a file size of 7,666,688 bytes. This
implies that the obfuscated binary is about 624 times larger than the original
binary. This result is similar to the other test cases in the corresponding technical
report [18]. Note that, as discussed in Sect. 6.1, the size of the obfuscated binary
highly depends on the parameters chosen for the obfuscator. In order to ensure
a variety of possible control flows, the obfuscator has to clone the basic blocks
of the target method multiple times. Therefore, our obfuscation scheme also
increases the size of the target method multiple times. We stress that the growth
of the size is dependent on the target method and not on the entire program. A
large program has the same growth as a small program if they implement the
same method that is the target of the obfuscation.

Performance. The performance is measured by calculating the SHA-256 hash
of a 10 MB file. In order to compensate for outliers, we repeat the calculation
1000 times and calculate the average time. We take two different timings. First,
the time needed for the creation of an object of the obfuscated class, and second
the time needed for the actual computation of the hash is measured. During the
creation of the object itself, the obfuscation graph is built by the constructor of
the class. The creation of the obfuscation graph impacts the overall performance
depending on the parameters specified by the user. Therefore, we also have to
take timings for the creation and not only for the actual computation. Timings
are measured with a resolution of 1 ms.

The original binary takes less than 1 ms for object creation. The obfus-
cated binary takes 3,925 ms to create the object (and therefore to build the
obfuscation graph). The calculation of the hash is performed in 785 ms by the
original binary, whereas 5,658 ms are needed by the obfuscated binary. While
the obfuscated SHA-256 algorithm takes around 7 times longer to perform the
same calculation, we stress that this case constitutes a worst case scenario for
our obfuscation scheme in terms of performance. The other tested algorithms
in our technical report [18] need roughly the same time to create the object,
but only need around 1.6 times longer to perform the same calculation. Again,
these values are dependent on the parameters of the obfuscation graph. While
parameters exists for which obfuscation graph creation consumes less time, the
protection level for the obfuscated method is lowered as well. Additionally, algo-
rithms that are usually protected with obfuscation in real-world applications are

Probfuscation: An Obfuscation Approach Using Probabilistic Control Flows 177

sparsely performed during the execution of a program. Therefore, we regard the
introduced performance penalty as acceptable.

Memory. The only memory dependent component of the proposed obfuscation
technique is the obfuscation graph. Hence, the memory consumption of the graph
is measured after the object of the protected class is created in the program. The
parameters yield an obfuscation graph with 19,531 nodes. The original program
consumes 1,480 kB of memory after the object is created. The protected program
needs 28,852 kB after the target object is allocated. Therefore, the obfuscation
graph needs about 27,372 kB for the used parameters. This is similar to the mem-
ory consumption of the other test cases in our technical report [18]. Note that
the memory required for one obfuscation graph is constant. Larger applications
embedding the same obfuscation graph will face the same memory requirements.

6.3 Measuring Resilience

Resilience measures the resistance of the obfuscation scheme against deobfusca-
tion attempts. Since we focus on thwarting dynamic analyses, we measure the
resilience of our obfuscation scheme by quantifying the probabilistic control flow.
Therefore, we trace the execution of an obfuscated method with the same input
values and compare the similarity of these traces. To this end, we generate a
graph from the traced basic blocks in the obfuscated method and compute the
graph-edit distance between two execution traces using the algorithm proposed
by Hu et al. [12]. The graph-edit distance yields the number of edits needed to
transform one graph into another graph. Edits are node insertions/deletions and
edge insertions/deletions.

We follow the proposal of Chan et al. [2] and normalize the graph-edit dis-
tance such that it computes a similarity score using the following formula:

similarity(G1, G2) = 1 −
(

graph-edit distance
|G1| + |G2|

)
,

where the size of the graph Gi is given by the total number of nodes and edges
and is denoted by |Gi|. The output of the similarity function is a value between
0.0 and 1.0. A result of 1.0 means that the two graphs are identical, whereas a
result of 0.0 means they are completely different.

Results. As test case we use our running example, the SHA-256 hash computa-
tion. We generated 100 traces by executing the program 100 times in a row with
the same input. Since the graph-edit distance calculation is NP-hard in general
[26], we have to choose an input size that creates traces with graph dimensions
that are still comparable. To this end, we used 100 bytes of random data. Since
the SHA-256 hash computation operates on blocks of 512 bits, the algorithm
runs through multiple iterations until it terminates. As obfuscation parameters
we use the settings evaluated in Sect. 6.2.

178 A. Pawlowski et al.

Fig. 5. The 4,950 similarity values of the traces displayed as a histogram. The bin size
amounts to 0.05. The smallest similarity was 0.35 and the greatest 0.88. The majority
of the values have a similarity of under 0.75.

In total, we calculated 4,950 graph comparisons (as graph comparison is
commutative). The greatest similarity of two traces was 88.45 %. The small-
est similarity was 35.29 %, while the average of all similarities is 69.65 %. An
overview of the similarity between the traces is given in Fig. 5 as histogram. As
can be seen, most of the similarity values are near the calculated average value
in the range of 60 % to 75 %.

The smallest trace regarding the number of unique basic blocks visited 359
unique basic blocks and took 367 unique branches. The largest trace reached
1,183 unique basic blocks and took 1,255 unique branches. On average, 753
unique basic blocks were visited and 793 unique branches were taken by the
traces. The number of all visited unique basic blocks and taken unique branches
is given in Fig. 6. As evident from the figure, the number of visited unique basic
blocks and taken unique branches correlate. If more unique basic blocks were
executed, more unique branches were used. But still, the number of basic blocks
and branches vary greatly between single executions. The size of the traces of
our other test cases is provided in the corresponding technical report [18].

These results show that multiple executions for the same input values do not
even once have the same execution path. This effectively hinders deobfuscation
approaches working on multiple traces, such as state-of-the-art deobfuscation
methods like the one proposed by Yadegari et al. [25]. In addition, a manual
analysis using breakpoints is rendered unreliable in presence of the probabilistic
control flow, as we explain in Sect. 7.

6.4 Measuring Potency

Potency measures how complex and confusing the program becomes after obfus-
cation. In order to evaluate the potency of our obfuscation scheme regarding

Probfuscation: An Obfuscation Approach Using Probabilistic Control Flows 179

200

400

600

800

1000

1200

1400

0 10 20 30 40 50 60 70 80 90

Unique Branches SHA-256
Unique Basic Blocks SHA-256

Fig. 6. The number of unique basic blocks and branches each trace used ordered by the
number of reached basic blocks. The gray + dots depict the used unique branches and
the black x dots show the visited unique basic blocks. On the x-axis the trace number
is given. On the y-axis the number of unique basic blocks/unique branches are given.

dynamic analysis, we measure the differences between the original and an obfus-
cated control flow. Therefore, we recorded an execution trace for the original
and obfuscated program with the same input. During the obfuscation process,
all semantically equivalent basic blocks were labeled in order to recognize them in
the obfuscated CFG. Note that this information is not available for an adversary
trying to analyze the obfuscated method.

In order to quantify the utilization of the different semantically equivalent
basic blocks we visited with respect to all available semantically equivalent basic
blocks and the number of executions, we make the following case distinction:

utilization =

{ |diff|
|exec| , if |exec| < |avail|
|diff|

|avail| , otherwise
,

where |exec| gives the number of times one of the semantically equivalent basic
blocks were visited, |avail| gives the number of available semantically equiva-
lent basic blocks, and |diff | gives the number of visited different semantically
equivalent basic blocks. This way we can differentiate between cases where the
total number of visited semantically equivalent basic blocks is lower than the
available number of semantically equivalent basic blocks and vice versa. Con-
sider for example a case where only one of the available semantically equivalent
basic blocks is executed. If this is the case during multiple iterations of a loop,
its utilization of the available semantically equivalent basic blocks is obviously
not optimal because control flow visits only this available basic block multiple
times. On the other hand, utilization is good if the code contains no loop and

180 A. Pawlowski et al.

Table 3. The results of the comparison of the obfuscated method trace with the trace
of the original method for the same input (ID = ID for semantically equivalent basic
blocks, |avail| = number of available semantically equivalent basic blocks, |exec| = total
number of times one of the semantically equivalent basic blocks were visited, |diff | =
number of different semantically equivalent basic blocks executed, Util = utilization
of the reached different semantically equivalent basic blocks with respect to available
semantically equivalent basic blocks and the total number of executions in percent).

ID 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Total

|avail| 9 43 40 30 35 24 22 20 29 18 22 31 25 22 43 23 33 469

|exec| 1 20 1 19 3 1 2 1 34 2 32 98 2 96 130 2 128 572

|diff| 1 10 1 8 3 1 2 1 15 1 10 4 1 4 24 2 20 108

Util 100 50 100 42.1 100 100 100 100 51.7 50 45.5 12.9 50 18.2 55.8 100 60.6 71

control flow visits only one of the semantically equivalent basic blocks during
the execution only one single time. Therefore, we have to differentiate.

Results. As input data we used 100 bytes of random data and as obfuscation
parameters we use the settings evaluated in Sect. 6.2. We recorded a trace by exe-
cuting the obfuscated and original program with the same input. The resulting
traces were compared with respect to their executed basic blocks.

The obfuscator cloned the basic blocks of the original method multiple times
during the obfuscation process. Remember that the decision to clone a basic
block is made randomly during the obfuscation process. The minimum number
of semantically equivalent basic blocks in the obfuscated method amounts to 9
and the maximum number to 43. On average, the control flow has 27 different
possibilities per basic block to exhibit the same behavior.

During the execution of the obfuscated method, the control flow has visited
572 relevant basic blocks that contribute to the calculation of the result. These
basic blocks consist of the basic blocks of the original method and transformed
copies of these original basic blocks. The utilization of the available semantically
equivalent basic blocks ranges from 12.9 % to 100 %. In total, 71 % of the available
semantically equivalent basic blocks were utilized during the execution of the
obfuscated method. The results for our test case are shown in Table 3. All test
cases in our technical report [18] have similar results.

The results show that an execution of the obfuscated method uses a variety
of different but semantically equivalent basic blocks to compute its result. Hence,
the number of basic blocks that are actually involved in the computation has
been increased by our approach and with it the complexity of the control flow.

6.5 Measuring Stealth

Stealth measures the difficulty for an adversary to determine if the given
method is obfuscated, i.e., how well the obfuscated entity fits in legitimate code.
Although stealth is not an objective of our approach, we evaluate it for the
sake of completeness. Recently published obfuscation papers measure this aspect

Probfuscation: An Obfuscation Approach Using Probabilistic Control Flows 181

based on the distribution of instructions [3,19,24]. However, as Collberg et al. [5]
describe it, stealth is a context-sensitive metric. Hence, instead of pursuing a
static approach for evaluating stealth, we consider the dynamic behavior of the
obfuscated program. This fits our general focus on dynamic analysis.

Given that our approach is by design supposed to yield different execution
traces for the same input, stealth is inherently hard. An adversary only has to
execute the program two times with the same input and compare the recorded
execution traces. If they differ, the adversary can conclude that the program is
most likely protected by our obfuscation approach.

7 Discussion

In the following, we discuss potential limitations of our approach.

Dynamic Analysis. Our approach aims to transform methods such that mul-
tiple traces of the same function using the same inputs differ, which implies
that dynamic deobfuscation approaches are hampered [7,21]. Furthermore, this
is done to thwart dynamic analyses operating on multiple executions (like [25]).
For example, manual dynamic analysis of the obfuscated method is hindered by
probabilistic control flow: an adversary observing the control flow at some fixed
point during execution of the method cannot depend on the program reaching
the exactly same point during a following run. Hence, pausing execution using
breakpoints is rendered unreliable in presence of our obfuscation approach.

Single Trace Analysis. If an adversary knows that our obfuscation scheme is
used, the best way to attack it is by resorting to work on a single execution trace.
Since the goal of probabilistic control flow is to make dynamic analyses based
on multiple traces harder, deobfuscation methods operating on only one trace
are only affected if at least one loop is present. In this case, our scheme increases
the size of the recorded trace because the obfuscator clones basic blocks in order
to have multiple possible control flows to choose from. As shown in Sect. 6.4,
the execution of multiple iterations of a loop results in different semantically
equivalent basic blocks that are reached. Algorithms processing the recorded
trace dismiss basic blocks that do not affect the outcome of the method [7,21,
25]. Since the visited semantically equivalent basic blocks of the probabilistic
control flow affect the outcome of the method, they can not be dismissed. As
a result, subsequent analysis of the recorded trace is more complicated due to
our obfuscation scheme. As future work, we propose to integrate the use of the
obfuscation graph into the calculations of the protected method. This way it gets
harder to dismiss instructions based on their usage of the obfuscation graph.

Furthermore, deobfuscation methods operating on only one trace do not per-
form as good in terms of code coverage compared to those using multiple execu-
tion paths. This poses a problem for an adversary who wants to analyze multiple
execution paths in an algorithmic manner in order to understand the obfuscated

182 A. Pawlowski et al.

program better. Often, multi-path exploration techniques are considered when
tackling this problem [21,25]. This is where our approach proves useful: It intro-
duces a variety of valid, but distinct control flows and adds probabilism. For the
adversary, it is hard to distinguish whether a branch was taken due to prob-
abilistic control flow or because the function was run with different input. In
order to improve this aspect, we currently work on extending our approach by
merging the semantics of multiple methods into one method. The semantic that
is actually executed when the method is called is then determined with the help
of the obfuscation graph and opaque predicates. Therefore, the same method can
have multiple semantics and, depending on the vpath that is used, the correct
semantic of the method is chosen.

Probabilistic Control Flow. An important component of our proposed app-
roach is the obfuscation graph with its vpaths. The vpaths are used to select the
current control flow through the obfuscated method and therefore to introduce
probabilistic control flow. Which vpath is to be used is decided by a random
value. In our prototype implementation, the used vpath is merely chosen using
the PRNG as provided by the .NET System namespace. This implementation is
obviously vulnerable, as the call to the PRNG could be replaced by the usage
of fixed values. As a result, the probabilistic control flow is then merely reduced
to a deterministic one.

A straightforward approach to make the random number generation more
resilient is not to use any external PRNG. Instead, one could build a PRNG into
the obfuscated method itself and replace the calls to the external PRNG with
code sequences that generate random numbers. This way, the random number
generation is harder to pinpoint by an adversary because the code that generates
the random number is concealed by the code of the obfuscated method. The
obfuscator is not limited to build only one PRNG into the obfuscated method
but could inject multiple ones to make it even harder to find the code sequences
that generate random numbers. Furthermore, the random number generation can
be protected by additional layers of obfuscation like translating the obfuscated
method to custom bytecode [1,17,22].

However, even this construct suffers from the problem that it needs an initial
random seed to create different control flows every time it is executed. If an
adversary is able to set this initial random seed to a fixed value, the PRNG in
the obfuscated method generates the same sequence of random numbers every
time the program is executed. Even if the user input influences the calculation of
the random numbers, the program would only have different traces for different
inputs (which still hampers analysis of the program with different inputs, but
allows debugging of the function with the same input). This circumstance poses
the greatest limitation of our current implementation of the proposed obfuscation
scheme. However, due to their huge number, it is not easy in practice to detect
every single state that is fetched by a program from the OS or to set every
internal state of an OS every time to the exact same value in order to fix the seed.
One approach to circumvent fixed OS states would be using non-deterministic

Probfuscation: An Obfuscation Approach Using Probabilistic Control Flows 183

sources like the intentional use of race conditions. For future work, we propose
to develop methods to conceal the fetching of external states for the random
number generation.

8 Related Work

The basic technique our approach is based on is presented in a paper by Collberg
et al. [5]. They propose a method to create opaque constructs based on objects
and pointer aliases. They also suggest a directed graph as concrete data type.
However, their approach is mainly concerned with the creation of cheap, stealthy
and resilient opaque constructs. We extend this approach and focus on the dif-
ferent paths we can insert into a target using their construct. This stems from
the insight that while their technique efficiently makes static analysis harder,
the traces obtained using dynamic analyses are very much the same. This, in
turn, helps in determining the concrete value of an opaque predicate and might
allow to partly reconstruct the control flow of the program.

Wang et al. describe a technique to obfuscate a target program using control
flow transformations as well [23]. They transform a method’s CFG in such a way
that a new basic block in the beginning of the method decides which original
basic block is executed next. These control flow decisions are made based on a
state variable which gets updated after every basic block. Similar to the approach
of Collberg et al., they transform the control flow analysis problem into a data
flow analysis problem. However, their approach also merely aims to make static
analysis of an obfuscated program harder.

More recent work focuses on deobfuscation of obfuscated programs [7,21,25].
All of them have in common that they are based on dynamic analysis. Traces
of the program’s execution are recorded and subsequently used to remove the
applied obfuscation schemes. Approaches working on multiple traces in order to
tackle the code coverage problem [16] of dynamic analysis are challenged by the
probabilistic control flow introduced by our technique.

The recent work of Crane et al. also makes use of probabilistic control flow [8].
It enables them to thwart cache side-channel attacks. To this end, they clone
program fragments and transform the clone in order to avoid making an exact
copy. A stub is used to decide randomly if the clone or the original fragment is
executed. Because an attacker has no knowledge about which was executed, it
hampers cache side-channel attacks. Additionally, Davi et al. [9] use probabilistic
control flow in combination with memory randomization in order to prevent
conventional return-oriented programming (ROP) and JIT (just-in-time)-ROP
attacks. To this end, they clone and diversify the code that is loaded into memory.
Whenever a function is called, their system randomly decides if the original or
cloned function is executed. Once the executed function returns, the system
checks if execution shall continue at the normal or cloned version of the function
caller by adding an offset to the return address. Therefore, an attacker is not
able to precisely predict where execution will resume and cannot reliably perform
an attack.

184 A. Pawlowski et al.

9 Conclusion

In this paper, we introduce a novel approach to obfuscate software, including,
but not limited to, those written in managed code programming languages. The
proposed scheme is based on a construct introduced by Collberg et al. [5]. How-
ever, instead of focusing on protecting the program against static analysis, we
introduce a scheme achieving probabilistic control flow, aiming to make dynamic
analysis harder. This is achieved by embedding an obfuscation graph containing
multiple virtual paths. Based on these paths, opaque predicates are constructed
and added to the target method. Consequently, control flow may take different
paths exhibiting the same observable semantics.

We have implemented a prototype obfuscator for .NET applications and eval-
uated it using multiple programs. The experiments have shown that the obfus-
cated methods do not exhibit the same execution trace after executing it 100
times in a row with the same input. Inevitably, this comes with a significant
performance and memory penalty. Resilience against dynamic analyses thus has
to be weighed up with constraints on time and space. We are confident that the
overhead is still acceptable to protect sensitive parts or proprietary algorithms of
a given program. Since we believe our obfuscation approach provides a new strat-
egy for tackling dynamic analysis and hence a building block for future research,
we are making our obfuscation tool available to the research community.

References

1. Anckaert, B., Jakubowski, M., Venkatesan, R.: Proteus: virtualization for diversi-
fied tamper-resistance. In: Proceedings of the ACM Workshop on Digital Rights
Management (2006)

2. Chan, P.P., Collberg, C.: A method to evaluate CFG comparison algorithms. In:
International Conference on Quality Software (QSIC) (2014)

3. Chen, H., Yuan, L., Wu, X., Zang, B., Huang, B., Yew, P.C.: Control flow obfus-
cation with information flow tracking. In: Annual IEEE/ACM International Sym-
posium on Microarchitecture (2009)

4. Collberg, C., Thomborson, C., Low, D.: A Taxonomy of Obfuscating Transfor-
mations. Technical report, Department of Computer Science, The University of
Auckland, New Zealand (1997)

5. Collberg, C., Thomborson, C., Low, D.: Manufacturing cheap, resilient, and
stealthy opaque constructs. In: ACM Symposium on Principles of Programming
Languages (POPL) (1998)

6. Collberg, C.: The Tigress C Diversifier/Obfuscator. http://tigress.cs.arizona.edu
7. Coogan, K., Lu, G., Debray, S.: Deobfuscation of virtualization-obfuscated soft-

ware: a semantics-based approach. In: ACM Conference on Computer and Com-
munications Security (CCS) (2011)

8. Crane, S., Homescu, A., Brunthaler, S., Larsen, P., Franz, M.: Thwarting cache
side-channel attacks through dynamic software diversity. In: Symposium on Net-
work and Distributed System Security (NDSS) (2015)

9. Davi, L., Liebchen, C., Sadeghi, A.R., Snow, K.Z., Monrose, F.: Isomeron: code
randomization resilient to (just-in-time) return-oriented programming. In: Sympo-
sium on Network and Distributed System Security (NDSS) (2015)

http://tigress.cs.arizona.edu

Probfuscation: An Obfuscation Approach Using Probabilistic Control Flows 185

10. Fang, H., Wu, Y., Wang, S., Huang, Y.: Multi-stage binary code obfuscation using
improved virtual machine. In: Lai, X., Zhou, J., Li, H. (eds.) ISC 2011. LNCS, vol.
7001, pp. 168–181. Springer, Heidelberg (2011)

11. Guy Smith: Common Compiler Infrastructure: Metadata API. https://
ccimetadata.codeplex.com/

12. Hu, X., Chiueh, T.C., Shin, K.G.: Large-scale malware indexing using function-call
graphs. In: ACM Conference on Computer and Communications Security (CCS)
(2009)

13. Junod, P.: Obfuscator-LLVM. https://github.com/obfuscator-llvm/obfuscator/
wiki

14. Kushner, D.: Steamed: Valve Software Battles Video-game Cheaters. http://
spectrum.ieee.org/consumer-electronics/gaming/steamed-valve-software-battles-
videogame-cheaters

15. Lee, B., Kim, Y., Kim, J.: binOb+: a framework for potent and stealthy binary
obfuscation. In: ACM Symposium on Information, Computer and Communications
Security (ASIACCS) (2010)

16. Moser, A., Kruegel, C., Kirda, E.: Exploring multiple execution paths for malware
analysis. In: IEEE Symposium on Security and Privacy (S&P) (2007)

17. Oreans Technologies: Code Virtualizer: Total Obfuscation against Reverse Engi-
neering. http://oreans.com/codevirtualizer.php

18. Pawlowski, A., Contag, M., Holz, T.: Probfuscation: An Obfuscation Approach
using Probabilistic Control Flows. In: Technical Report TR-HGI-2016-002, Ruhr
University Bochum (2016)

19. Popov, I.V., Debray, S.K., Andrews, G.R.: Binary obfuscation using signals. In:
USENIX Security Symposium (2007)

20. Ramalingam, G.: The undecidability of aliasing. ACM Trans. Program. Lang. Syst.
(TOPLAS) 16(5), 1467–1471 (1994)

21. Sharif, M., Lanzi, A., Giffin, J., Lee, W.: Automatic reverse engineering of malware
emulators. In: IEEE Symposium on Security and Privacy (S&P) (2009)

22. VMProtect Software: VMProtect: Software protection against reversing and crack-
ing. http://vmpsoft.com/

23. Wang, C., Davidson, J., Hill, J., Knight, J.: Protection of software-based surviv-
ability mechanisms. In: International Conference on Dependable Systems and Net-
works, 2001, DSN 2001 (2001)

24. Wang, P., Wang, S., Ming, J., Jiang, Y., Wu, D.: Translingual obfuscation. In:
IEEE European Symposium on Security and Privacy (Euro S&P) (2016)

25. Yadegari, B., Johannesmeyer, B., Whitely, B., Debray, S.: A generic approach to
automatic deobfuscation of executable code. In: IEEE Symposium on Security and
Privacy (S&P) (2015)

26. Zeng, Z., Tung, A.K., Wang, J., Feng, J., Zhou, L.: Comparing stars: on approxi-
mating graph edit distance. In: International Conference on Very Large Data Bases
(VLDB) (2009)

https://ccimetadata.codeplex.com/
https://ccimetadata.codeplex.com/
https://github.com/obfuscator-llvm/obfuscator/wiki
https://github.com/obfuscator-llvm/obfuscator/wiki
http://spectrum.ieee.org/consumer-electronics/gaming/steamed-valve-software-battles-videogame-cheaters
http://spectrum.ieee.org/consumer-electronics/gaming/steamed-valve-software-battles-videogame-cheaters
http://spectrum.ieee.org/consumer-electronics/gaming/steamed-valve-software-battles-videogame-cheaters
http://oreans.com/codevirtualizer.php
http://vmpsoft.com/

RAMBO: Run-Time Packer Analysis
with Multiple Branch Observation

Xabier Ugarte-Pedrero1,2(B), Davide Balzarotti3, Igor Santos1,
and Pablo G. Bringas1

1 University of Deusto, Bilbao, Spain
{xabier.ugarte,isantos,pablo.garcia.bringas}@deusto.es

2 Cisco Talos Security Intelligence and Research Group, San Jose, USA
xabipedr@cisco.com

3 Eurecom, Sophia Antipolis, France
davide.balzarotti@eurecom.fr

Abstract. Run-time packing is a technique employed by malware
authors in order to conceal (e.g., encrypt) malicious code and recover
it at run-time. In particular, some run-time packers only decrypt indi-
vidual regions of code on demand, re-encrypting them again when they
are not running. This technique is known as shifting decode frames and
it can greatly complicate malware analysis. The first solution that comes
to mind to analyze these samples is to apply multi-path exploration to
trigger the unpacking of all the code regions. Unfortunately, multi-path
exploration is known to have several limitations, such as its limited scal-
ability for the analysis of real-world binaries. In this paper, we propose
a set of domain-specific optimizations and heuristics to guide multi-path
exploration and improve its efficiency and reliability for unpacking bina-
ries protected with shifting decode frames.

Keywords: Malware · Unpacking · Multi-path exploration

1 Introduction

Malware authors employ a large variety of techniques to conceal their code and
make reverse engineering and automatic detection more difficult. One of these
techniques is packing, which consists in encoding or encrypting the code and
data in the binary and revealing them only at run-time.

Packers have been widely studied by researchers and, as a result, many
generic unpacking techniques have been proposed in the literature. In partic-
ular, researchers have addressed this problem from different perspectives: (i)
by making the analysis platform resilient to anti-analysis techniques [1], (ii) by
tracing the execution of the binary at different granularity levels [2,3], (iii) by
adopting different heuristics to detect the original entry point of the binary [4], or
by dumping the code at the appropriate moment [5], and (iv) by improving the
efficiency of the unpacking process [6]. Although some of these approaches use
static analysis techniques [7], the majority rely on the execution of the sample.
c© Springer International Publishing Switzerland 2016
J. Caballero et al. (Eds.): DIMVA 2016, LNCS 9721, pp. 186–206, 2016.
DOI: 10.1007/978-3-319-40667-1 10

RAMBO: Run-Time Packer Analysis with Multiple Branch Observation 187

Nevertheless, there is a specific protection technique that takes advantage of
an intrinsic limitation of dynamic analysis, i.e., the fact that it only explores a
single execution path. Shifting-decode-frames or partial code revelation consists
of unpacking the code on demand, just before its execution. These packers only
reveal one code region at a time, decrypting only the code covered by a single
execution path. In previous work [8], we classified this behavior at the highest
level of complexity (with the exception of virtualization based packers). One of
the most common and famous packers that employ this technique is Armadillo,
which is widely used among malware writers.

These protection scheme is particularly effective in cases in which the sample
employs anti-sandbox techniques to conditionally execute the payload, or when it
is designed to communicate with external entities (e.g., a Command and Control
Server). If the sample is executed inside an isolated environment or the server
is unavailable, certain parts of its code will never be executed under a single-
path dynamic execution engine. In both cases, a packer like Armadillo would
not reveal the portions of the code that are not executed.

Therefore, the first solution that may come to mind to deal with these packers
is to resort to some form of multi-path exploration. Several works [9–13] have
studied multi-path exploration to improve coverage in dynamic analysis. While
these works address some of the limitations of dynamic analysis, none of them
has addressed the specific problems that may arise when adopting this technique
for the generic unpacking of samples protected with shifting-decode-frames.

On the one hand, packers heavily rely on self-modifying code and obfus-
cated control flow, making very hard to automatically explore different execution
paths. One of the major limitations of multi-path exploration is its computa-
tional overhead, making the approach almost infeasible for large-scale malware
analysis. On the other hand, in our case we do not need to execute all possible
paths, but only to guide the execution in a way to maximize the recovered code.
Moreover, as the program does not need to continue once the code has been
unpacked, the memory consistency is less of an issue in the unpacking prob-
lem. As a result, multi-path exploration of packed programs is still an open and
interesting problem, that requires a new set of dedicated and custom techniques.

Peng et al. [13] proposed the application of a fully inconsistent multi-path
exploration approach and applied their technique to improve the execution path
coverage in malware, focusing in particular on environment sensitive malware.
In this paper, however, we focus on the specific characteristics of the described
packing technique. These particularities allow us to apply different optimiza-
tions and heuristics to multi-path exploration, improving the feasibility of this
technique, especially for complex cases.

In particular, in this paper we want to answer two questions: Is it possible
to apply new optimizations to the classic multi-path exploration to efficiently
uncover protected regions of code for packers using shifting-decode-frames? And
is it possible to design new heuristics specific to the unpacking domain, that can
guide the multi-path exploration and increase the recovery of the protected code?

188 X. Ugarte-Pedrero et al.

Fig. 1. General workflow of our approach.

Our main contributions are oriented to answer these questions: (i) we propose
a set of optimizations for the application of multi-path exploration to binaries
protected by shifting-decode-frames, (ii) we introduce a new heuristic that can
guide multi-path exploration to unpack previously unseen regions of code and
(iii) we evaluate this approach and present three different case studies.

2 Approach

Moser et al. [14] proposed for the first time the application of multi-path explo-
ration for the analysis of environment-sensitive malware. This approach lever-
aged dynamic taint analysis, symbolic execution, and process snapshotting in
order to explore multiple execution paths in depth-first order.

In order to evaluate our system, we implemented a modified version of multi-
path exploration applying a set of domain specific optimizations that allow us
to selectively explore certain interesting regions of code: which in our case is the
code of the original program protected by the packer.

Our multi-path exploration engine is built on top of TEMU and Vine, the
components of the Bitblaze [15] platform. TEMU allows to trace the execution
of a binary, applying dynamic taint analysis, whereas Vine is an analysis engine
based on Vine-IL, an intermediate language, that allows to design control-flow
and data-flow analysis algorithms.

The general workflow of our solution is as follows (see Fig. 1). We first exe-
cute the sample in a single-path execution mode and extract different pieces of
information. We analyze the packer structure and identify the regions of memory
that contain the protected code, by applying the techniques developed in previ-
ous work [8]. In a second step, we extract the memory that was unpacked in this
first run, and compute the control flow graph of the unpacked code in order to
find interesting points in the code (i.e., control flow instructions that lead to the
unpacking of new regions of code). This process provides us a list containing the
control flow instructions that lead to new regions. We use this list as part of a

RAMBO: Run-Time Packer Analysis with Multiple Branch Observation 189

heuristic to guide multi-path exploration. Finally, we apply our optimized multi-
path exploration engine using this pre-computed information to prioritize paths
that will likely drive to the unpacking of new regions. This two-step process is
repeated until our system cannot recover any additional code.

This section is divided in three parts. First, we introduce our multi-path
exploration approach, and describe several design decisions. Second, we describe
a set of optimizations we developed over this model, and third, we present the
heuristic that allows us to prioritize execution paths in this specific domain.

2.1 General Approach

Symbolic Execution. Symbolic execution allows to evaluate a program over a
set of symbolic inputs instead of concrete values. A constraint solver can evaluate
the symbolic expression that must be satisfied to follow a given path, providing
an appropriate set of values for each input variable. The reader can refer to
previous literature [14,16] for a better understanding of symbolic execution and
its limitations.

Some symbolic execution engines [17,18] simplify symbolic expressions to
enhance the efficiency of the computations of the constraint solver. Alternatively,
other works [19,20] propose the use of weakest preconditions, a method that
keeps the computational complexity and size of the formulas O(n2) [16]. We
leveraged Vine, a tool that can compute the weakest precondition of an execution
trace and to generate a query to the STP constraint solver.

Indirect memory accesses (i.e., memory access instructions in which the
address itself is tainted and it depends on program input) are a recurrent problem
in symbolic execution. When the program is evaluated symbolically, the address
can contain any value constrained by the symbolic expression. This limitation
is specially problematic for the symbolic execution of jump tables, a mechanism
widely used by compilers to implement switch statements.

Some approaches let the constraint solver reason about the possible values,
while other approaches perform alias analysis in order to determine the possible
memory ranges pointed by the index [16]. In our case, we let Vine adopt the
concrete value observed during the execution for every tainted memory index
avoiding symbolic processing. Although this unsound assumption implies that
some paths will never be executed, it simplifies the reasoning process involved in
multi-path exploration. This limitation can be eventually mitigated in cases in
which several paths in the program trigger the execution of a page or function,
successfully triggering its unpacking routine.

System-Level Snapshots. In order to save the execution state at a given point
(before a conditional jump is evaluated), we collect a system-snapshot. Previous
approaches have proposed the use of process snapshots, a technique more effi-
cient in terms of computational overhead and disk space. Nevertheless, making
snapshots of the process state (memory and registers) involves many technical
problems that are not easy to address. Processes running on the system gen-
erally use resources provided by the operating system like files, sockets, or the

190 X. Ugarte-Pedrero et al.

registry. Besides, the kernel of the operating system maintains many structures
with information regarding the memory assignment, heaps, stacks, threads, and
handles. While saving and recovering the memory and register state is not diffi-
cult to implement, it is hard to maintain the system consistency when the state
of a process is restored. Moser et al. [14] proposed several methods to ensure
that the process can continue running even if it is restored to a previous state
(e.g., avoiding closing handles).

Since the optimization of process snapshots is beyond the scope of this study
and stands as a research problem by itself, we adopt a system-snapshot approach
that, in spite of sacrificing system efficiency, allows us to securely restart the
execution of a program at any point maintaining the consistency of the whole
system.

Taint Sources. We taint the output of the APIs that are most interesting for
our goals, including network operations such as connect, recv, gethostbyname
or gethostbyaddr, file operations such as ReadFile or CreateFile, command
line argument related functions such as wgetmainargs or ReadConsoleInput,
and other functions typically used to query the system state like GetSystemTime
or Process32First/Process32Next.

Target Code Selection. In shifting-decode-frames, we can distinguish two
parts in the code. First, there must be a decryption routine that is usually highly
obfuscated and armored with anti-analysis tricks. This routine is in charge of
taking control when the execution of the protected code jumps from one region
to another, decrypting the next region of code, and encrypting the previous one.

Our goal only requires to apply multi-path exploration to the protected code,
avoiding the decryption and anti-analysis routines. In order to do this, we first
need to determine the place where the original code is decrypted and executed.
This problem has been widely studied in the past and researchers have proposed
different heuristics. To this end, we implemented a framework based on a pre-
vious approach [8] to analyze the execution trace of the binary and divide the
execution into layers. Our framework also incorporates several heuristics that
can highlight the code sections that likely contain the original code. This infor-
mation is also presented to the analyst who may select other regions to explore
on demand, if necessary.

2.2 Domain Specific Optimizations

In this section we introduce six custom optimizations that simplify the multi-
path exploration problem in the case of binary unpacking.

Inconsistent Multi-path Exploration. In some cases, traditional symbolic
execution approaches cannot execute certain paths that, despite of being feasible,
are difficult to solve for a constraint solver. For instance, a parser routine may

RAMBO: Run-Time Packer Analysis with Multiple Branch Observation 191

access tables with a symbolic index. Reasoning about indirect symbolic memory
accesses requires a complex processing such as alias analysis.

In these cases, when our constraint solver cannot provide a solution, we
take an unsound assumption and query the constraint solver ignoring the path
restrictions imposed by the previous instructions in the trace. This approach lets
us explore the path by forcing a set of values consistent with the last tainted jump
instruction, but potentially inconsistent with the previous path restrictions.

In our specific domain, maintaining the consistency of the system is only
important in order to avoid system crashes until every protected region of code
has been unpacked. While other domains may suffer from this unsound imple-
mentation (e.g., malware analysis may require to know under which circum-
stances a certain path is triggered), in our case this information is not relevant,
as long as the system remains stable enough to unpack the different regions.

Partial Symbolic Execution. In order to reduce the size of the code to be
explored symbolically, we restrict symbolic execution to the original malicious
code (i.e., unpacking routines are explored in single-path execution mode). One
may think that the unpacking code will never have conditional branches that
depend on system input, but there are packers, like Armadillo, that apart from
protecting the original code of the binary, apply licensing restrictions. Moreover,
this packer fetches the system date using the GetSystemTime API function in
kernel32.dll, and executes conditional jumps that depend on the information
collected. Nevertheless, this code will not trigger the unpacking of new regions of
code. Also, this code is generally highly obfuscated and does not follow standard
calling conventions, making more difficult to correctly trace and symbolically
process this code. For these reasons, we restrict multi-path exploration to the
regions suspected to contain the code of the original application.

Local and Global Consistency. Another aspect to consider is the consistency
of the symbolic execution engine. For example, the S2E project [18] allows to
run programs at different consistency levels.

In order to minimize the computational overhead we apply a locally consis-
tent multi-path exploration approach. This means that we respect the consis-
tency within the regions that contain the original code of the binary, but we
allow the variables in this region to adopt values that are inconsistent with the
rest of the code (e.g., system libraries). For instance, a program may update
a variable with a value coming from keyboard input after a scanf call. This
function applies some restrictions to the input, as well as some parsing. As a
result, the value adopted by the variable would be restricted by the (potentially
complex code) present in the library. In order to avoid this complexity, we let
the variable adopt any value creating a fresh symbolic variable for it.

First, we avoid tracing any taint-propagating instruction if it is executed
outside the explored regions. In this way, when the execution trace is processed
in the symbolic engine, only the instructions in the explored regions impose
restrictions over the symbolic variables.

192 X. Ugarte-Pedrero et al.

Second, the first time a new taint (that has been created outside the interest-
ing regions of code), is propagated to our explored code, we create a completely
new taint value for each of the memory bytes affected by this taint, in such a
way that our system will consider those bytes as free variables.

Finally, whenever the program calls to a function outside the region delim-
ited, if the arguments of the call are tainted then the result of the call can be
consequently tainted. As we do not record the execution of such code, the taint
propagation chain will be broken and our tool will be unable to provide a solu-
tion. Executing symbolically all the code present in these API functions can
become computationally infeasible. For this reason, we avoid recording the exe-
cution of code outside the boundaries of our regions of interest. In order to allow
Vine to process these traces with broken taint propagation, we create a new
independent symbolic variable whenever necessary. In this case, again, we lose
program consistency. Nevertheless, as we describe in Sect. 2.2, this inconsistency
does not affect our approach but on the contrary, lets us explore as many paths
as possible (triggering the execution and thus the unpacking of new regions of
code).

State Explosion. One of the limitations that make multipath exploration infea-
sible to analyse large programs is the well-known state explosion problem [21]:
when the number of state variables increases, the number of states grows expo-
nentially. Many samples may have infinite program states, for example when
unbounded loops are implemented in the explored code.

Unfortunately, constraint solvers are not suitable to reason about long exe-
cution traces. In our case, we configured our multi-path exploration engine to
discard execution paths with a trace longer than a given threshold. This parame-
trization allows us to keep the analysis as simple as possible and computationally
feasible.

Blocking API Calls. Our system uses a mechanism to bypass blocking API
function calls. In some cases, the program gets blocked waiting for user input
or certain events in the system. For this reason, when certain APIs such as the
read or recv functions are called, instead of letting the program run, we restore
the instruction pointer to the return address in the moment of the call. Also, we
fill the output buffers and output values with fake data, and taint those buffers.
This approach allows us to successfully run the samples that would otherwise
need some network simulation or external interaction.

String Comparison Optimization. The last optimization implemented is
related to string comparisons, an operation commonly performed by malware to
parse commands (e.g., IRC or HTTP bots). These string comparisons are com-
monly implemented by means of system API calls such as strcmp and strlen.

Some functions can return different non-tainted constant values depending
on the path followed during execution (that may depend on tainted conditional

RAMBO: Run-Time Packer Analysis with Multiple Branch Observation 193

jumps). Nevertheless, since the code is outside the boundaries of the protected
code, these paths will not be explored. For instance, an strlen-like function will
have a character counter that is incremented for each non-null character found
in the string. This counter is a non-tainted value, and our approach does not
explore any alternative paths inside the function. As a result, the function will
return a non-tainted constant value although the input parameter is tainted.

In order to deal with this limitation and to minimize the processing overhead
in such string operations, we hooked 15 different string comparison functions in
several DLLs in order to taint the return value of the function whenever a tainted
value is provided as input parameter to it.

2.3 Heuristic to Guide the Multipath Exploration

One way to reduce the state space and thus the complexity of multipath explo-
ration is to apply heuristics in order to determine which paths should be
expanded first. We propose a heuristic based on the intuition that, for a packer
protected using the shifting-decode-frames technique, a subset of its execution
paths (i.e., one or several instructions in the program) can trigger the execution
of a region (e.g., function or memory page). Therefore, in these cases, it is not
necessary to explore all the possible paths in order to fully unpack all the content
of a binary.

First, our system extracts all the executed code and unpacked memory
regions from a single-path execution trace in order to recover as much code
as possible. Then, it analyzes this code and determines the instructions that
reference locations in the program that have not been unpacked yet. The sys-
tem then constructs the call graph and control flow graph of the trace and finds
the paths that lead to interesting instructions, and finally it provides this infor-
mation as input to our multi-path exploration engine in order to prioritize the
execution of certain paths that would trigger the unpacking of new regions of
code. The next sections detail how this process is performed.

Dumping Unpacked Memory Regions. Our framework monitors memory
writes and execution, and allows us to dump the unpacked and re-packed memory
regions after each run. Once we obtain a complete memory dump, we filter it
in order to keep only the regions susceptible of being explored in a multi-path
fashion. In order to do this, we first indicate which regions we want to explore,
and then we generate a filtered memory dump containing (i) the memory blocks
that overlap those regions, and (ii) all the execution blocks traced for those
regions.

Disassembly and Translation to Intermediate Language. In order to
analyze the memory dumped by our tool, we implemented our custom disassem-
bly engine to process the unpacked frames of code. This engine is based on the
binutils disassembly interface and the libdisasm library.

194 X. Ugarte-Pedrero et al.

First, for each execution block recorded during the analysis of the packer, we
perform a linear sweep disassembly. Execution blocks do not contain any instruc-
tion that affects the control flow of the program and therefore a linear-sweep
algorithm will always successfully extract the code for these blocks. Second, for
each conditional jump pointing to blocks that were not executed, we disassem-
ble the target blocks if they are located in memory already dumped. In this
case, we follow a recursive-traversal algorithm in order to disassemble as many
instructions as possible from the non-executed parts of the unpacked frames, fol-
lowing any jump, conditional jump or call instruction found. Finally, this code
is translated to Vine Intermediate Language (Vine IL) for further processing.

Obtaining Interesting Points in the Code. Next, we build the Control
Flow Graph for every function found in the disassembled code. We then process
the result in order to find points in the code that may trigger the unpacking of
other regions of code.

– Control flow instructions. Control flow instructions (jmp,call, and cjmp)
alter the execution flow of the binary and therefore are susceptible of triggering
the unpacking of new frames of code. First, if a non-conditional control flow
instructions is executed, then the address pointed by the instruction will be
executed next. In the case of cjmp instructions, it is possible to find cases
in which only one of the branches is executed. Nevertheless, considering that
we also disassemble non-executed instructions extracted from the unpacked
memory frames, we can also find jump and call instructions that lead to
regions of code not previously observed.

– Direct memory addressing. Instructions that access a memory address not
previously unpacked can trigger the decryption of a new region.

– Indirect function calls. Indirect function calls constitute a problem in multi-
path exploration. When the register containing the call address is tainted,
we need to reason about all the possible values that it can adopt. In our
case, we have simplified this problem by concretely evaluating the call address
regardless of its taint value. In order to allow our system to explore different
targets for the call, we consider these instructions as interesting points in the
program. Our engine will try to explore all the different paths that drive the
execution to this point, since they may write different values over the register
or memory address used in the indirect call.

– Constants. Finally, we also analyze the constant values provided as imme-
diate values in the code and check if they may reference a memory address
contained in the original code. This approach allows us to consider potential
register-indirect or memory-indirect addressing operations.

Finding Interesting Paths. Once we have identified the interesting points in
the code, we can distinguish three different cases:

– Non-conditional instructions that were executed and triggered the unpack-
ing of a region of code. Examples are direct memory addressing operations,

RAMBO: Run-Time Packer Analysis with Multiple Branch Observation 195

constants, or unconditional jumps. We discard these points in the code since
they are no longer interesting for guiding the execution.

– Conditional jumps in which only one of the possible branches was executed. In
these cases, we notify our engine that the alternative branch is an interesting
point that should be reached in the next iteration.

– We include any instruction that can potentially trigger the unpacking of a new
region, if it is located at a memory address not executed before.

Finally, functions calls represent a special case that must be considered. For
instance, there may be a case in which a fully unpacked function (that was
executed) has unexplored paths that drive to new regions of code. There will
be one or several points in the code that trigger a call to such function. Even if
all these points were executed during previous runs, there are still unexplored
paths in the function so we need to keep them in the list of interesting points.
This can be applied recursively to all the inter-procedural calls we find in the
code.

Once we have identified the list of interesting points in the code, we compute
the paths that reach each of them. Whenever a loop in the CFG is detected,
we consider two possible paths: one that enters the loop, and another one that
does not satisfy the loop condition. We keep iterating the ancestor basic blocks
until we reach the function entry point. The final result will be a sequence of
(cjmp,address) pairs. For each conditional jump, we indicate the address that
should be executed next in order to reach the interesting point in the code.

Eventually, there might be several different paths reaching interesting points
in the code. Instead of simplifying the list, we keep all the possible paths because
they might introduce different path restrictions during execution. In fact, many
of the paths computed will not be feasible (i.e., there is no possible assignment
for the variables in order to force the path). This feasibility will be tested by the
constraint solver during multi-path exploration.

The output of our system is a complete list of the interesting points that
can be reached for each of the two possible branches of each cjmp. This list is
provided as input to the multi-path exploration engine to guide the execution
to the interesting parts of the code.

Queries to the SMT Solver. Whenever a tainted conditional jump is exe-
cuted, we check if it is present in the list of interesting conditional jumps com-
puted in the previous phase. If the cjmp is present in the list, we inspect the
number of interesting points that can be reached from each of its paths. Then,
we query the SMT solver:
– If the two paths drive to interesting points.
– If only one of the paths leads to an interesting region, but it is not the path

taken by default.

If the solver cannot provide a feasible solution, we query the solver again ignoring
the path restrictions imposed by the execution trace. If there is a feasible set
of values that can be forced in order to follow the alternative path, we create a
snapshot and decide the next path to execute.

196 X. Ugarte-Pedrero et al.

Path Selection Algorithm. In order to select the next path to execute, we
iterate the execution tree in Breath First Search order. This approach allows us
to incrementally expand all the paths in the execution tree. More specifically,
we select the first path that meets the following conditions:

– The path has been forced less times than the rest of paths.
– If several paths have been forced the same number of times, we prioritize those

that were solved by the SMT solver in a consistent manner.

This approach allows us to avoid the recursive exploration of loops, in cases
in which there are other paths that will reach the same region more efficiently.

During exploration, we update the list of interesting paths whenever a new
memory region is unpacked, removing all the entries that refer to the region.

Path Brute-Forcing. In order to avoid exploring repeatedly the same paths
in cases in which there is a complex logic with loops, we limit the maximum
number of times that a path can be forced. When we reach this limit, we query
the list of conditional jumps we obtained from static analysis, and try to force the
execution of conditional jumps that have never been tainted. Since the branch is
not tainted, the SMT solver cannot be queried to compute a set of values to force
the branch consistently. While this method to force the execution may result
into an undetermined behavior or the instability of the process, there are cases
in which this unsound approach lets the system reach other interesting regions
of code. For instance, a command parsing routine may divide the input strings
into tokens and have a complex parsing logic with plenty of loops. There may be
cases in which a loop has to be repeated many times (i.e. loop condition is not
tainted). If this loop includes tainted branches and a complex logic inside it, it
would unnecessarily make the system expand the execution tree too many times.
In these cases, when we reach a certain limit of expansions for each conditional
jump, our approach forces the exit of the loop and continues execution. A similar
case occurs when a loop variable is not tainted itself, but it is set to a constant
value (that triggers the exit) when a specific path is followed. This path may
only be triggered once we fully explore inner loops, growing the execution tree
excessively. In this case our system will inconsistently force the path to reach
this point before expanding further the tree. A different case may occur when the
variable is updated using instructions that do not involve tainted values (e.g.,
inc, or add an immediate value). In this last case, our approach would force the
exit of the loop even if the variable is never set with the correct value.

In conclusion, if a certain memory region can be reached from different exe-
cution paths, even if the constraint solver is not capable of providing a feasible
set of values, our approach will reach the region if there is at least one path that
can be forced in a consistent or inconsistent manner, always trying to maintain
system consistency to avoid exceptions and system instability.

Also, in cases like page-granularity protection, we only need to trigger a
subset of the paths in order to reach all the code pages, avoiding to explore the
rest of paths and thus reducing the complexity of the problem.

RAMBO: Run-Time Packer Analysis with Multiple Branch Observation 197

3 Evaluation

In order to evaluate our approach, we implemented our engine on top of TEMU,
totalling 7,500 C/C++, 1,300 Python and 500 OCaml lines of code.

In this section we present three different case studies corresponding to packers
that protect samples at different granularity levels. On the one hand, Backpack is
a packer proposed by Bilge et al. [22] that protects the binary with function-level
granularity. On the other hand, Armadillo is a well-known commercial packer
that allows to protect binaries with a page granularity.

3.1 Backpack

In order to test our approach against Backpack, we downloaded the source code
of the Kaiten IRC bot, reported to be distributed using the shellshock bash
vulnerability1. This sample connects to an IRC channel and receives commands
to perform actions such as remote command execution or network flooding.
Backpack is designed to protect the binary at compile time and it is implemented
as an LLVM plugin to protect C programs. However, due to a limitation of the
plugin, to successfully compile Kaiten using Backpack we had to modify the
command dispatching routines of the malware to substitute function pointers
with direct calls. Given the functionality of the malware, we configured our
system to taint network input considering the recv, connect, read, write and
inetaddr system API functions. Also, we parametrized our system to expand
each tainted conditional jump a maximum of 8 times. Once this limit is reached,
our system inconsistently forces the conditional jumps that were visited but not
tainted.

Table 1 shows the results obtained for this experiment. The sample consists
of 31 protected functions that implement a total of 22 different commands, trig-
gered by IRC commands and private messages. The unpacking is performed
iteratively. In the first iteration we run the malware without applying any multi-
path exploration, revealing only 5 out of 31 functions.

Our heuristic engine reported 52 interesting points and 36 conditional jumps
in the code. In the first multi-path iteration, 6 new functions were unpacked
requiring a total of 167 snapshots. These functions correspond to the 6 different
IRC commands implemented by the bot. One of these commands is PRIVMSG,
that triggers the execution of a function that processes the rest of arguments
to trigger different bot commands. Once this function was unpacked in the first
multi-path iteration, our static analysis found 96 interesing points in the code
and 110 conditional jumps that could drive the execution to functions not yet
unpacked. In the last iteration, 27 functions were triggered requiring 525 snap-
shots. These results show that a concrete execution only reveals a little portion
of the real contents of the binary. Also, the heuristic allows to discover new
functions in the binary exploring a relatively low number of paths.

1 http://blog.trendmicro.com/trendlabs-security-intelligence/shellshock-vulnerability-
downloads-kaiten-source-code/. (Accessed: 2015-11-13).

http://blog.trendmicro.com/trendlabs-security-intelligence/shellshock-vulnerability-downloads-kaiten-source-code/
http://blog.trendmicro.com/trendlabs-security-intelligence/shellshock-vulnerability-downloads-kaiten-source-code/

198 X. Ugarte-Pedrero et al.

Table 1. Results obtained for the Kaiten malware packed with backpack.

Iteration 0 Iteration 1 Iteration 2 No heuristics

Functions unpacked 5/31 11/31 27/31 8/31

Interesting points - 52 96 -

Cjmps - 36 110 -

Snapshots - 167 544 6015

Tainted-consistent cjmps - 161 525 5888

Tainted-inconsistent cjmps - 6 19 127

Untainted cjmps - 0 40 -

Long traces discarded - 6 0 -

Time 5m 24m 1.2 h 8 h

Table 1 also shows the number of tainted conditional jumps forced consis-
tently and inconsistently. The number of inconsistently forced cjmps is very low
in both cases. Our local-consistency based exploration algorithm and the rest
of domain-specific optimizations allow us to tolerate certain inconsistencies with
the rest of the system, improving the ability of the approach to force locally
consistent paths. Nevertheless, there are still a few cases in which inconsistent
assumptions allow to explore alternative paths that otherwise would be infeasible
to explore.

We can also observe that our system recovered the code of almost all the
protected functions. More specifically, the 22 main commands were revealed,
and only 4 helper functions remained protected due to the early termination of
the process. In the last multi-path exploration run, up to 40 untainted condi-
tional jumps were forced inconsistently in order to trigger the unpacking of new
functions. These cases correspond to non-tainted conditional jumps that were
identified by our heuristic engine as points that could potentially lead to the
unpacking of still protected regions of code. These inconsistencies caused the
process to terminate when trying to access inexistent strings.

The last row shows the total time required in order to run the python and
OCaml code in charge of postprocessing the execution traces, computing the
heuristic, and the multi-path exploration itself. For this sample, the scripts
related to the heuristic accounted for the 18 % of the total processing time.

The last column shows the results when only the domain specific optimiza-
tions were applied (no heuristics were used for path selection). In this case, we
let the system run for a total of 8 h. In this time, the system explored up to
6,000 conditional branches, but was only able to recover 8 functions.

3.2 Armadillo

Armadillo is one of the most popular packers among malware writers. It allows
to protect binaries with page granularity. This technique, also named CopyMem-
II, consists of creating two separate processes. The first process attaches to the

RAMBO: Run-Time Packer Analysis with Multiple Branch Observation 199

second one as a debugger, capturing its exceptions. When this process starts
the execution at a region not present in memory, an exception is produced and
the debugger process takes control. This process makes sure that the exception
corresponds to a protected memory page, and then it decrypts the page and on
the memory of the debugged process, protecting again the previously executed
memory page so that it cannot be collected by an analyst. Following this scheme,
only one single page of memory is present in memory at any given time, making
extremely difficult for an analyst to recover the entire code of the malware.

We used Armadillo 8.0 to protect two different samples with several pages of
code and a complex internal logic. These samples belong to the SDBot and the
SpyBot malware families. These families of bots typically connect to IRC servers
and accept complex IRC commands. However, only the code of the requested
functionality is decrypted in memory. Moreover, these specific samples present
a very complex command parsing routine that triggers, at different points, code
in memory pages that cannot be reached in any other way. We selected these
samples in order to properly test our heuristics, and to demonstrate how our
optimizations allow to reduce the complexity of multi-path exploration allowing
to drive the execution towards the most interesting points in the execution tree,
recovering all the code pages efficiently.

In order to measure the complexity of these samples, we applied the IDA-
Metrics2 plugin. The most complex function in SDBot has 417 branches and a
cyclomatic complexity of 321. Overall, it has 104 functions with a total cyclo-
matic complexity of 674. SpyBot, in contrast, has its command parsing routine
spread in 4 functions, and although the most complex function presents a cyclo-
matic complexity of 135, its overall complexity is 953, significantly higher than
SDBot.

Table 2 shows the results obtained for the SDBot sample protected by
Armadillo. The malware contains 7 pages of code, but a first concrete execution
only reveals code in the first and last pages, leaving a total of 5 protected pages.
To fully recover every page, we needed to run our engine in 3 iterations. Also,
for this sample, it is strictly necessary to trigger some specific paths inside the
command parsing routine in order to reach certain pages of code. This function
was reached in the first multi-path run, that revealed 2 more memory pages.
A second run revealed 2 more pages that were reached through the function,
and the last run reached the last memory page. We can observe that the num-
ber of interesting points (i.e. targets in the control flow graph that trigger the
unpacking of a previously unseen region) is always very low because only a few
paths linked the code in one page to code in the next. Although this means that
it is only possible to reach these pages by executing those points in the code,
it also means that our system only needs to focus on steering the execution
towards those points in the code, ignoring all other paths that are not related to
them. This brings a very large improvement over a classic multi-path execution
approach.

2 https://github.com/MShudrak/IDAmetrics.

https://github.com/MShudrak/IDAmetrics

200 X. Ugarte-Pedrero et al.

Table 2. Results obtained for the SDBot malware and Armadillo 8.0.

Iter. 0 Iter. 1 Iter. 2 Iter. 3 No heuristics

Pages unpacked 2/7 4/7 6/7 7/7 4/7

Interesting points - 3 2 7 -

Cjmps - 65 162 264 -

Snapshots - 14 366 367 3974

Tainted-consistent cjmps - 13 295 296 3660

Tainted-inconsistent cjmps - 1 71 71 314

Untainted cjmps - 0 1 1 -

Long traces discarded - 1 14 14 -

Time 30m 2.2 h 2.8 h 3.2 h 8 h

Table 3. Results obtained for the SpyBot malware and Armadillo 8.0.

Iteration 0 Iteration 1 Iteration 2 No heuristics

Pages unpacked 3/9 8/9 9/9 6/9

Interesting points - 26 1 -

Cjmps - 163 214 -

Snapshots - 113 153 4466

Tainted-consistent cjmps - 17 31 4096

Tainted-inconsistent cjmps - 96 122 370

Untainted cjmps - 17 34 -

Long traces discarded - 9 34 -

Time 30 m 3 h 2.75 h 8 h

Despite the high number of conditional jumps reported in Table 2, we can
observe that the number of snapshots remains low because our heuristics and
optimizations allow to priorities the paths and to limit the depth of the execution
tree in presence of loops. The number of inconsistent queries is lower than the
number of consistent queries, as a result of the local consistency model described
that allows tainted variables to adopt free symbolic values (i.e., not tied to global
restrictions). We can also observe that our system only needed to force one
untainted conditional jump in the second and third iterations, in order to force
the exit of complex loops in the command parsing routine.

The last column shows the results for multi-path exploration without heuris-
tics. Similarly to the previous experiment, we let the system run for 8 h and
observed that although the number of expanded conditional jumps was much
higher (3660 snapshots), only 4 pages were recovered.

Finally, Table 3 shows the results obtained for the SpyBot malware. In this
case, the command parsing routine is spread in several functions that combined
together present a more complex logic than SDBot and an higher number of

RAMBO: Run-Time Packer Analysis with Multiple Branch Observation 201

untainted conditional jumps. This sample was unpacked in 2 multi-path explo-
ration runs. In this case, the concrete execution revealed 3/9 code pages, the
first multi-path exploration revealed 8 pages, and finally one last multi-path
exploration reached the last page.

We can observe that the number of conditional jumps that can drive the
execution to the interesting points is similar but there is a higher number of
interesting points. Nevertheless, for this sample there was one single transition
point to reach the last code page, located deep into the last command parsing
routine of the bot. In this experiment, we can notice that the number of queries
that the SMT solver was not able to solve is higher, resulting into more tainted
and untainted conditional jumps forced inconsistently. Again, like in previous
cases, when the system was run without heuristics, only 6 pages were recovered
after 8 h, requiring a much higher number of snapshots. In this last case, the
postprocessing scripts represented the 59 % of the processing time.

4 Discussion

In order to evaluate our approach we have presented three case studies cor-
responding to samples with complex routines, hundreds of conditional jumps
depending on program input, and many string parsing loops. The results of
our experiments show that, by adding several domain specific optimizations and
heuristics, it is feasible to apply multi-path exploration to unpack complex bina-
ries protected with shifting-decode-frames.

We selected three case studies in order to test our approach, using two dif-
ferent packers for protection. Although the number of tests is low, we selected
representative samples with complex logic and different protection granularities.
In fact, most of the packers reveal all the protected code at once and only few
present this advanced protection mechanism. Beria applies the same approach
as Armadillo, but presents a lower overall complexity. Unfortunately, it is not a
common packer, and thus we found no interesting samples available.

We only tested one sample protected with Backpack because was developed
for GNU/Linux and it requires the source code of the malware in order to apply
the protection at compilation time. Given this restriction, we selected the most
complex GNU/Linux malware source code we could compile with Backpack.

In the case of Armadillo, we needed to meet several requirements in order
to properly test our approach and heuristics. First, we needed samples with
complex routines depending on program input. These samples had to trigger the
execution of new regions of code (not executed in a single concrete run), only
after executing a fairly complex amount of code. Also, we selected samples that
did not already present a custom packing routine. Otherwise, only that routine
would be protected by Armadillo, greatly simplifying our job and not providing
a challenge for our system. Similarly, we had to discard samples that decode and
inject all their code into another process once the execution starts, as well as
droppers, downloaders, and simple spyware due to their simplicity.

Our approach is based on whole system emulation, which has a number of
well-known limitations. For instance, red-pills can be used to determine if the

202 X. Ugarte-Pedrero et al.

execution environment in which it runs is a virtual/emulated environment or
a real machine. In fact, Paleari et al. [23] proposed a method to automatically
discover and generate red-pills in system emulators. In particular, during this
project we found two implementation errors in the Dynamic Binary Translation
engine of QEMU that affected all its versions and impeded the correct emulation
of the Armadillo packer. In this context, several publications and projects [3,24,
25] have reported the incapacity of emulators to correctly execute the Armadillo
packer. We solved this issue and reported it to the QEMU developers.

Finally, although the samples evaluated in this study were not affected by the
following techniques, complex packers may leverage them to hinder our approach.

– Calling convention violation. Malware can violate calling conventions in
order to obfuscate the code. If these techniques are employed to obfuscate API
function calls (e.g., stolen bytes), our tracing mechanisms could fail to locate
string parsing functions, affecting some of our optimizations.

– Alternative methods to redirect control-flow. In order to evade multi-
path exploration, malware samples may potentially use alternative methods
to redirect the control flow: alternative combinations of instructions such as
push + ret, indirect calls, call + pop + push + jmp, SEH or VEH based
redirection, opaque predicates in branch instructions, or even obfuscating the
computation of triggers [26].

– Resource exhaustion. Our techniques reduce the computing overhead of
multi-path exploration. Nevertheless, creating memory snapshots and query-
ing SMT solvers over long traces still requires significant computing resources.
A packer may increase the complexity of the code affecting impacting the per-
formance of multi-path exploration. A malware writer may design a complex
CFG with a high number of loops and conditional jumps specifically crafted
to increase the number of paths to explore with our heuristic.

– Nanomites. This technique consists in replacing conditional branch instruc-
tions by software interrupts (e.g. INT 3) that cause the execution to break.
A parent process intercepts the exception and then overwrites the conditional
jump. A more complicated example involves redirecting the execution of the
child by evaluating its context (state of the EFLAGS register) and redirecting
its execution to the appropriate address, without even replacing the interrupt
instruction with the original instruction. This technique would break taint
propagation and prevent us from successfully reconstructing the CFG.

5 Related Work

Manual unpacking requires a substantial reverse engineering effort. Conse-
quently, many researchers have focused on generic unpacking in recent years.
Both dynamic and static [7] approaches have been proposed, but due to the
complexity of static approaches, most of the authors have focused on dynamic
analysis, installing drivers in the system [6,27] or tracing the execution [3].

RAMBO: Run-Time Packer Analysis with Multiple Branch Observation 203

Some of these systems rely on heuristics or monitor coarse-grained events [27],
while others monitor memory writes and memory execution at different granular-
ity levels [3,6,28,29], compare the static and run-time version of the memory [2],
perform statistical analysis [5], or measure the entropy variation [4].

Other approaches rely on hybrid static and dynamic analysis [30]. Virtualiza-
tion based packers constitute a special category of protection techniques. Several
authors have focused on unpacking these packers from different perspectives [31–
33]. Nevertheless, these protection engines are a different challenge that require
other techniques in order to recover the original code.

Transparent execution [1,34,35] is focused on dealing with malware capa-
ble of detecting the analysis environment and modifying its execution to evade
detection. Nevertheless, these techniques do not explore the different execution
paths that a binary may have. Bilge et al. [22] demonstrated that this limitation
can be leveraged by an attacker in order to defeat unpackers that assume that
all the code will be present in memory at some moment in time.

In order to improve the test coverage in malware analysis, Moser et al. [14]
proposed a system to explore different execution paths based on taint analysis
and symbolic execution. Our work is built on top of this research, adding a set
of optimizations and heuristics to deal with a specific use-case.

Almost in parallel, Song et al. [15] developed a platform for binary analysis.
This platform was used in many different follow-up works, including identifica-
tion of trigger-based behaviour [10], reasoning about code paths in malware using
mixed concrete and symbolic execution [11], or even triggering the unpacking
routine of environment sensitive malware [12]. Another closely related project is
S2E [18], a platform that introduces the concept of selective symbolic execution
(application of symbolic execution to only certain memory regions) and exe-
cution consistency models. Schwartz et al. [16] summarized the challenges and
limitations that affect efficiency and feasibility of symbolic execution. Taint poli-
cies and the sanitization of tainted values have a direct impact on over-tainting
and under-tainting errors. Indirect memory accesses with symbolic addresses,
jump tables, or the size of the constraint systems are aspects that have no clear
solution. Finally, X-Force [13] is a system capable of forcing execution paths
inconsistently and recovering from execution errors by dynamically allocating
memory and updating related pointers. More specifically, they focus on 3 dif-
ferent goals: (i) constructing the control flow graph of a binary, type reverse
engineering, and discovering hidden behavior in malware. Our approaches share
some concepts, such as forcing the execution inconsistently. However, their main
contribution is a technique to recover from errors (which is not as important in
our domain), while our contributions are a set of domain-specific optimizations,
and a heuristic to drive the exploration. Also, we focus on applying multi-path
exploration to unpacking samples with a complex command parsing logic, a
problem that typically presents a high complexity. To this aim, our approach
mixes consistent and inconsistent multi-path exploration to maximise system
consistency in order to reach deep execution paths. Overall, our goal is not to
improve multi-path exploration, but to show if and how this technique can be

204 X. Ugarte-Pedrero et al.

used for unpacking, and which customizations are required in order to improve
its results. To sum up, all these approaches suffer from the well-known path
explosion problem [21]. This limitation makes necessary to develop heuristics
and optimizations in order to improve the feasibility of multi-path exploration,
and this is the main contribution of our paper.

6 Conclusions

In previous sections we have described the domain-specific optimizations and
heuristics that can be implemented over multi-path exploration to unpack
shifting-decode-frames protectors. We have evaluated our approach over three
different case studies covering Backpack, a function granularity based packer, and
Armadillo, a well-known packer that protects binaries with a page-granularity.
Our test cases cover different samples with complex command parsing logic.

Multi-path exploration has been addressed by several researchers but it is not
generally used for real-scale malware analysis due to its technical complexity and
its limitations. Our results show that it is possible to apply optimizations and
heuristics to multi-path exploration in order to address specific problems such
as the malware protection technique covered by this study.

Acknowledgements. We would like to thank the reviewers for their insightful com-
ments and our shepherd Brendan Dolan-Gavitt for his assistance to improve the quality
of this paper. This research was partially supported by the Basque Government under
a pre-doctoral grant given to Xabier Ugarte-Pedrero.

References

1. Dinaburg, A., Royal, P., Sharif, M., Lee, W.: Ether: malware analysis via hard-
ware virtualization extensions. In: Proceedings of the 15th ACM Conference on
Computer and Communications Security, pp. 51–62. ACM (2008)

2. Royal, P., Halpin, M., Dagon, D., Edmonds, R., Lee, W.: Polyunpack: automating
the hidden-code extraction of unpack-executing malware. In: Proceedings of the
22nd Annual Computer Security Applications Conference, pp. 289–300 (2006)

3. Kang, M., Poosankam, P., Yin, H.: Renovo: a hidden code extractor for packed
executables. In: Proceedings of the 2007 ACM Workshop on Recurring Malcode,
pp. 46–53 (2007)

4. Cesare, S., Xiang, Y.: Classification of malware using structured control flow. In:
Proceedings of the Eighth Australasian Symposium on Parallel and Distributed
Computing, vol. 107, pp. 61–70. Australian Computer Society, Inc. (2010)

5. Sharif, M., Yegneswaran, V., Saidi, H., Porras, P.A., Lee, W.: Eureka: a framework
for enabling static malware analysis. In: Jajodia, S., Lopez, J. (eds.) ESORICS
2008. LNCS, vol. 5283, pp. 481–500. Springer, Heidelberg (2008)

6. Martignoni, L., Christodorescu, M., Jha, S.: Omniunpack: fast, generic, and safe
unpacking of malware. In: Computer Security Applications Conference, 2007,
ACSAC 2007, Twenty-Third Annual, pp. 431–441. IEEE (2007)

RAMBO: Run-Time Packer Analysis with Multiple Branch Observation 205

7. Coogan, K., Debray, S., Kaochar, T., Townsend, G.: Automatic static unpacking
of malware binaries. In: 16th Working Conference on Reverse Engineering, 2009,
pp. 167–176. IEEE (2009)

8. Ugarte-Pedrero, X., Balzarotti, D., Santos, I., Bringas, P.G.: [SoK] Deep packer
inspection: a longitudinal study of the complexity of run-time packers. In: Proceed-
ings of the IEEE Symposium on Security and Privacy. IEEE Computer Society,
May 2015

9. Moser, A., Kruegel, C., Kirda, E.: Limits of static analysis for malware detection.
In: Proceedings of the 23rd Annual Computer Security Applications Conference
(ACSAC), pp. 421–430 (2007)

10. Brumley, D., Hartwig, C., Liang, Z., Newsome, J., Song, D., Yin, H.: Automatically
identifying trigger-based behavior in malware. In: Lee, W., Wang, C., Dagon, D.
(eds.) Botnet Detection, pp. 65–88. Springer, USA (2008)

11. Brumley, D., Hartwig, C., Kang, M.G., Liang, Z., Newsome, J., Poosankam, P.,
Song, D., Yin, H.: Bitscope: Automatically dissecting malicious binaries. School of
Computer Science, Carnegie Mellon University, Technical report CMU-CS-07-133
(2007)

12. Jia, C., Wang, Z., Lu, K., Liu, X., Liu, X.: Directed hidden-code extractor for
environment-sensitive malwares. Phys. Procedia 24, 1621–1627 (2012)

13. Peng, F., Deng, Z., Zhang, X., Xu, D., Lin, Z., Su, Z.: X-force: force-executing
binary programs for security applications. In: Proceedings of the 2014 USENIX
Security Symposium, San Diego, CA (2014)

14. Moser, A., Kruegel, C., Kirda, E.: Exploring multiple execution paths for malware
analysis. In: IEEE Symposium on Security and Privacy, 2007, pp. 231–245. IEEE
(2007)

15. Song, D., et al.: BitBlaze: a new approach to computer security via binary analysis.
In: Sekar, R., Pujari, A.K. (eds.) ICISS 2008. LNCS, vol. 5352, pp. 1–25. Springer,
Heidelberg (2008)

16. Schwartz, E.J., Avgerinos, T., Brumley, D.: All you ever wanted to know about
dynamic taint analysis and forward symbolic execution (but might have been afraid
to ask). In: IEEE Symposium on Security and Privacy 2010, pp. 317–331. IEEE
(2010)

17. Cadar, C., Dunbar, D., Engler, D.R.: Klee: unassisted and automatic generation
of high-coverage tests for complex systems programs. In: Proceedings of the 8th
USENIX Conference on Operating Systems Design and Implementation (OSDI),
vol. 8, pp. 209–224 (2008)

18. Chipounov, V., Kuznetsov, V., Candea, G.: S2e: a platform for in-vivo multi-path
analysis of software systems. ACM SIGARCH Comput. Archit. News 39(1), 265–
278 (2011)

19. Brumley, D., Wang, H., Jha, S., Song, D.: Creating vulnerability signatures using
weakest preconditions. In: 20th IEEE Computer Security Foundations Symposium
(CSF), pp. 311–325. IEEE (2007)

20. Leino, K.R.M.: Efficient weakest preconditions. Inf. Process. Lett. 93(6), 281–288
(2005)

21. Clarke, E.M., Klieber, W., Nováček, M., Zuliani, P.: Model checking and the state
explosion problem. In: Meyer, B., Nordio, M. (eds.) LASER 2011. LNCS, vol. 7682,
pp. 1–30. Springer, Heidelberg (2012)

22. Bilge, L., Lanzi, A., Balzarotti, D.: Thwarting real-time dynamic unpacking. In:
Proceedings of the 4th European Workshop on System Security, Article No. 5.
ACM (2011)

206 X. Ugarte-Pedrero et al.

23. Paleari, R., Martignoni, L., Roglia, G.F., Bruschi, D.: A fistful of red-pills: how to
automatically generate procedures to detect cpu emulators. In: Proceedings of the
USENIX Workshop on Offensive Technologies (WOOT), vol. 41, p. 86 (2009)

24. Deng, Z., Zhang, X., Xu, D.: Spider: stealthy binary program instrumentation
and debugging via hardware virtualization. In: Proceedings of the 29th Annual
Computer Security Applications Conference, pp. 289–298. ACM (2013)

25. Balzarotti, D., Cova, M., Karlberger, C., Kirda, E., Kruegel, C., Vigna, G.: Efficient
detection of split personalities in malware. In: Network and Distributed System
Security Symposium (NDSS) (2010)

26. Sharif, M.I., Lanzi, A., Giffin, J.T., Lee, W.: Impeding malware analysis using
conditional code obfuscation. In: Network and Distributed System Security
Symposium (NDSS) (2008)

27. Guo, F., Ferrie, P., Chiueh, T.C.: A study of the packer problem and its solutions.
In: Lippmann, R., Kirda, E., Trachtenberg, A. (eds.) RAID 2008. LNCS, vol. 5230,
pp. 98–115. Springer, Heidelberg (2008)

28. Stewart, J.: Ollybone: semi-automatic unpacking on ia-32. In: Proceedings of the
14th DEF CON Hacking Conference (2006)

29. Kim, H.C., Inoue, D., Eto, M., Takagi, Y., Nakao, K.: Toward generic unpacking
techniques for malware analysis with quantification of code revelation. In: The 4th
Joint Workshop on Information Security (2009)

30. Caballero, J., Johnson, N., McCamant, S., Song, D.: Binary code extraction and
interface identification for security applications. In: Proceedings of the 17th Annual
Network and Distributed System Security Symposium, ISOC, pp. 391–408 (2009)

31. Rolles, R.: Unpacking virtualization obfuscators. In: 3rd USENIX Workshop on
Offensive Technologies (WOOT) (2009)

32. Sharif, M., Lanzi, A., Giffin, J., Lee, W.: Automatic reverse engineering of malware
emulators. In: 30th IEEE Symposium on Security and Privacy, pp. 94–109. IEEE
(2009)

33. Coogan, K., Lu, G., Debray, S.: Deobfuscation of virtualization-obfuscated soft-
ware: a semantics-based approach. In: Proceedings of the 18th ACM Conference
on Computer and Communications Security, pp. 275–284. ACM (2011)

34. Vasudevan, A., Yerraballi, R.: Cobra: fine-grained malware analysis using stealth
localized-executions. In: IEEE Symposium on Security and Privacy, 15-pp (2006)

35. Kang, M.G., Yin, H., Hanna, S., McCamant, S., Song, D.: Emulating emulation-
resistant malware. In: Proceedings of the 1st ACM Workshop on Virtual Machine
Security, pp. 11–22. ACM (2009)

Detecting Hardware-Assisted Virtualization

Michael Brengel(B), Michael Backes, and Christian Rossow

CISPA, Saarland University, Saarbrücken, Germany
mbrengel@mmci.uni-saarland.de

Abstract. Virtualization has become an indispensable technique for
scaling up the analysis of malicious code, such as for malware analy-
sis or shellcode detection systems. Frameworks like Ether, ShellOS and
an ever-increasing number of commercially-operated malware sandboxes
rely on hardware-assisted virtualization. A core technology is Intel’s VT-
x, which — compared to software-emulated virtulization — is believed
to be stealthier, especially against evasive attackers that aim to detect
virtualized systems to hide the malicious behavior of their code.

We propose and evaluate low-level timing-based mechanisms to detect
hardware-virtualized systems. We build upon the observation that an
adversary can invoke hypervisors and trigger context switches that are
noticeable both in timing and in their side effects on caching. We have
locally trained and then tested our detection methodology on a wide vari-
ety of systems, including 240 PlanetLab nodes, showing a high detection
accuracy. As a real-world evaluation, we detected the virtualization tech-
nology of more than 30 malware sandboxes. Finally, we demonstrate how
an adversary may even use these detections to evade multi-path explo-
ration systems that aim to explore the full behavior of a program. Our
results show that VT-x is not sufficiently stealthy for reliable analysis of
malicious code.

1 Introduction

Malicious code continues to be a major security threat. The economics of cyber
crime tempt attackers to improve their attacks in both quantity and quality. As
such, analysts are confronted with a large number of sophisticated new attacks on
a daily basis. This sheer volume of threats renders manual analysis impractical,
which is why defenders seek to automate the analysis of potentially malicious
code. In terms of automated analysis, defenders usually prefer dynamic over
static analysis, since malware is usually heavily obfuscated [18,21,31]. While
ideas exist to cope with this problem [4,11,12,25,27,28], in practice, a satisfying
notion of static code analysis automation is still far from being established.

Dynamic analysis executes unknown programs in a controlled environment
and monitors this execution to look for malicious behavior. The large number of
dynamic malware analysis systems demonstrates their utility [6]. The security
industry has also taken up the concept of malware sandboxes and one can choose
from a variety of open-source and commercial systems, such as Cuckoo [19], Joe
Sandbox, GFI Sandbox, VMRay or FireEye.
c© Springer International Publishing Switzerland 2016
J. Caballero et al. (Eds.): DIMVA 2016, LNCS 9721, pp. 207–227, 2016.
DOI: 10.1007/978-3-319-40667-1 11

208 M. Brengel et al.

Realizing the benefits of dynamic analysis, attackers started to evade sand-
boxes. Evasion enables an attacker to discover that the execution takes place in
a controlled environment and to suppress any malicious behavior because of this
insight. In its simplest form, evasion leverages the fact that most dynamic code
analysis systems use some kind of virtualization solution and that these solutions
usually come with artifacts such as specific device drivers or known hardware
serial numbers, for example. By probing for those artifacts, the attacker can
detect the analysis system and suppress any malicious behavior. Note that this
approach relies on the assumption that virtualized code execution is equivalent
to dynamic code analysis. While this is not generally true, e.g., due to cloud com-
puting, typically attack targets can be assumed to operate on native systems.
Virtual machine (VM) detection approaches are widely popular among attack-
ers in the wild. Malware (e.g., the families Dyre, CryptoWall, Shifu, Kronos and
Shylock) hide their actual behavior if they are executed in a VM.

When it comes to the choice of virtualization solution, defenders usually build
upon hardware-assisted virtualization techniques such as Intel VT-x or AMD-V.
Besides being faster due to hardware support, hardware-assisted virtualization
also greatly reduces the number of artifacts, giving the attacker less room for
simple evasion. Analysis systems such as Ether [5] and CXPInspector [30] use
VT-x to analyze malware in a transparent manner. The authors of Ether have
shown that malware that does not show behavior on other software-virtualized
systems suddenly becomes active in their systems, which highlights the impor-
tance of hardware-assisted virtualization.

In this paper, we therefore aim at a more generic form of evasion. While
an artifact indicates that the system might be virtualized, there is no semantic
connection between the presence of an artifact and the concept of virtualiza-
tion. Instead, we follow the intuition that virtualized guests operate more slowly
than native systems. To this end, we propose three timing-based and assembly-
level mechanisms to detect hardware-assisted virtualization from user space, i.e.,
without using privileged instructions. We first consider measuring the execution
time of special x86 instructions, that cause a trap to the hypervisor, which will
not occur during native execution. We then discuss how a hypervisor might try
to hide the involved timing artifacts, and propose a second detection technique
which exploits the Translation Lookaside Buffer (TLB) and which cannot be
protected against in the same fashion. We leverage timing differences during
accesses to pages whose address translations have been cached in the TLB, but
whose cache entries a hypervisor has evicted due to the limited size of the TLB.
We then consider the stealthiness of those two approaches. Given that the first
two methods use special instructions excessively, we argue that those methods
are not stealthy. Therefore, we propose a third method which is stealthier in
that it limits the use of possibly suspicious instructions and resorts to a different
timing source.

We evaluate our methods on a large variety of native and VT-x-based systems
and show that the detection methods have a 99.4% true positive rate on average.
We then turn to a few practical use cases. First, we deploy our detection routine

Detecting Hardware-Assisted Virtualization 209

on 31 public malware sandboxes, all of which we can detect using the described
methods. Second, we demonstrate that even a commercial sandbox with anti-
evasion features falls for our caching-based detection mechanism. Finally, we
show how an adversary may combine the detection results to evade multi-path
exploration systems and demonstrate this with the use case of ShellOS [29], a
VT-based shellcode detection framework.

2 Background

2.1 Hardware Virtualization

Most malware analysis systems that use hardware-assisted virtualization rely on
Intel VT (or VT-x) as an underlying virtualization technique. With VT-x, the
Virtual Machine Monitor (VMM, or hypervisor) can create and launch multiple
virtual machines. Once the VM is running, the guest can return to the hyper-
visor; this is called a VM Exit. The guest can explicitly invoke the exit handler
of the hypervisor, e.g., to establish communication between the host and the
guest. After the hypervisor has performed the desired operations, control can be
returned to the guest; this is called a VM Entry.

In addition to the explicit calls to the exit handler, the hypervisor also implic-
itly traps in certain occasions. We will use exactly these implicit traps as part
of our timing side-channels, and thus briefly explain them in the following. For
example, VM Exits are implicitly caused if the guest executes a sensitive instruc-
tion. This behavior is crucial, since it gives the hypervisor the chance to emulate
important data structures and monitor the VM. Intel specifies all such VMM
trap instructions in their manual. Since VM Exits are an inherent difference
between virtualized and native executions, we use them as a way of detecting
the presence of a VT-x hypervisor. While VT-x offers the possibility to dis-
able traps for some instructions, Intel enforces VM Exits on a selected set of
instructions in hardware. We also argue that in order to monitor the guest, the
hypervisor has to use some kind of traps, which also gives additional space for
evasion.

2.2 Translation Lookaside Buffer

One of the side effects of hypervisors that we will use targets the TLB, as outlined
in the following. Modern operating systems use the concept of virtual memory
to give each running process the impression of having a large contiguous space
of memory, whereas in reality there is a mapping between virtual and physical
memory in a non-contiguous manner. Resolving this mapping is called a page
walk. Since a page walk can be costly, hardware developers introduced the TLB,
which caches the mapping from virtual pages to physical pages. When a process
accesses a virtual address v, it first checks if the virtual page of v is in the TLB.
If it is, the physical address can be obtained from the TLB. Otherwise, the MMU
needs to do a page walk and then caches the result in the TLB. Therefore, when

210 M. Brengel et al.

accessing multiple addresses on the same page, it is likely that only the first
access is slow relative to all subsequent accesses, as long as the TLB entry is not
evicted in the meantime.

If we switch from a process p1 to a process p2 (context switch), the TLB will
most likely contain invalid entries, since p1 and p2 have their own virtual memory
and thus use different address space mappings. The simplest way to deal with
this problem is to completely flush the TLB upon context switches. However, this
strategy had severe performance penalties, as every VM Exit causes a context
switch. To cope with this problem, Intel introduced a feature called VPID. With
VPID enabled, the TLB entries are tagged with the ID of the virtual machine. As
a consequence, when a virtual address is accessed, the MMU will only consider
TLB entries which are tagged with the current VM’s ID. Hence, there is no need
to flush the TLB, resulting in better performance.

3 Threat Model

Throughout the remainder of this paper, we envision an adversary that has
implemented an arbitrary program (e.g., malware) and tries to detect if this
program is being executed in a virtualized environment. We aim to explore
generic evasion attempts, i.e., those that (i) do not focus on particular analysis
environments, but instead on inherent characteristics of such systems, (ii) an
approach that is independent from the malicious payload that the adversary may
aim to hide, and (iii) mechanisms that are not restricted to a certain operating
system. All these requirements make our methods applicable to a wide set of
programs, explicitly including typical malware targeting Windows or Linux.

Furthermore, we restrict ourselves to developing detection mechanisms that
operate purely in user mode, i.e., unprivileged code that executes in ring 3. This
assumption varies from existing approaches that aim to detect virtualization by
using privileged instructions, such as reading the contents of the page tables or
using nested virtualization. Approaches using privileged code (ring 0) are well
known to be effective, but may raise suspicions to an analyst or even during auto-
mated program analysis. In contrast, our assumption on user-mode execution is
in line with the use case of in-the-wild malware, such as a myriad of banking
trojans, droppers, clickbots, spambots, denial-of-service bots and even targeted
malware—all of which typically run in user space. The most notable exceptions
are malware families with a kernel-mode rootkit, which, however, could also use
our proposed user-mode detection methods. For example, a user-space dropper
could try to detect virtualization prior to installing further modules (such as
kernel-mode rootkits), such that the second- or third-stage malware samples are
not exposed to the analyst. In fact, this concept is common in the wild [15,26].

Finally, we assume that the actual target systems of an attacker, i.e., those
that the attacker aims to infect, are not virtualized. While it is conceivable that
an attacker may miss target systems that are indeed virtualized, widespread
malware will still be successful in infecting the vast majority of native systems.

Detecting Hardware-Assisted Virtualization 211

4 Timing-Based VT-x Detection

VT-x was invented with the goal to increase the performance as well as the trans-
parency of virtualization. In this section, we aim to undermine that transparency
by proposing three timing-based methods to detect virtualization.

4.1 Measuring Elapsed CPU Cycles

The first two proposed detection methods are based on a technique to accurately
determine the execution time of machine code. To this end, we measure the
number of CPU cycles that elapse when a piece of code is executed. To do so, we
use the rdtsc instruction to read the CPU’s time stamp counter (TSC), which
is incremented every clock cycle. Upon execution of rdtsc, the edx register is
loaded with the high-order 32 bits and eax holds the low-order 32 bits of the
TSC. Reading the TSC before and after the machine code helps us to measure
the number of cycles that have elapsed. We can thus execute rdtsc, save the
TSC, execute the instructions to be measured, execute rdtsc again and subtract
the saved TSC from the current TSC. To get more accurate results, we need to
serialize the instruction stream to prevent out-of-order execution. We use the
mfence instruction, which will serialize rdtsc with respect to load-from-memory
and store-to-memory instructions.

This method over-approximates the execution time. This is a bias introduced
by the measurement code, which also consumes CPU cycles. If necessary, to
counteract this influence, we can measure the measuring overhead and subtract
it from the measured time. To this end, we measure how long it takes to execute
no code. We then subtract this overhead from subsequent measuring results to
get a more realistic measurement of the actual clock cycles. We will use this
technique for our implementation of a TLB-based VT detection that demands
a higher measuring accuracy.

Finally, measurements may not be accurate due to context switches that
occur during the measurement phase, in which another process would execute
and implicitly increase the TSC. To tackle this problem, we repeatedly measure
the same sequences of instructions, record the time of each execution, and then
use the minimum of all measurements. Our assumption here is that at least one
out of these many executions will not be clobbered by a context switch.

4.2 Method 1: Detecting VM Exit Overhead

Based on the timing measurements, we will now describe our first method to
detect hardware virtualization. We follow the intuition that a VM Exit consumes
CPU cycles. In particular, we leverage the fact that some CPU instructions
provoke a VM Exit, which does not occur on native systems. The Intel manual
specifies over 30 of such instructions, most of which are privileged and thus not
usable in ring 3. Also, trapping of some instructions can be disabled during the
VM setup phase. We will thus leverage cpuid, the only unprivileged instruction
whose hypervisor traps cannot be disabled.

212 M. Brengel et al.

A näıve approach to detect VT-x would be to measure the execution time of
a cpuid instruction and determine a threshold above which VT-x is detected.
The threshold could be determined by comparing the execution time on native
and virtualized systems. Whenever executing cpuid is below this threshold, the
environment is believed to be native, and virtualized otherwise. However, this
simple measurement suffers from the inaccuracy that the absolute execution time
of instructions varies per CPU type, and it is thus not trivial to determine a
reasonable absolute threshold. Instead, we follow the intuition that two different
instructions execute similarly slower or faster on a different CPU model. We
thus propose to compare the execution time of cpuid with the execution time
of another instruction in terms of a ratio.

We proceed as follows: We measure both cpuid and a baseline instruction
i times, compute the ratio and check if the ratio is larger than some threshold
α. We chose nop as the baseline instruction, but found that other fast instruc-
tions are equally suitable (e.g., we experimented with add, lea, and sub). Given
the short execution time of the baseline instruction, the measurement overhead
dominates our measurements (as described in Sect. 4.1). Still, the execution time
of cpuid is significantly higher than the baseline instruction. Thus, we decided
not to deduct the overhead. To account for context switches, we compare these
two minima and return true if the ratio r exceeds our threshold α, which will be
determined in Sect. 5.

4.3 Method 2: Detecting TLB Evictions

The first method is susceptible to hypervisors that manipulate the TSC value.
For example, upon each cpuid trap, the hypervisor can deduct the time that
it spent in the exit handler from the value returned to rdtsc, which effec-
tively evades our first detection method. We will now describe a second method,
which does not fall for this evasion. Our second idea is again to detect whether
the hypervisor was invoked, though this time by inspecting cache evictions in
the TLB.

The idea behind our detection is to identify TLB entry evictions that were
caused by VM Exits. The intuition is that the hypervisor needs to execute code
and has to access data (e.g., the VM Exit reason), all of which requires memory
translations. The CPU will cache these memory translations in the TLB. This
inevitably changes the TLB, which we aim to detect. To this end, we allocate
fresh memory pages and access them, e.g., using a read operation. This precaches
the pages to the TLB. We then iterate twice over the pages and measure the
time to access the pages. However, in the second iteration, prior to reading, we
execute a cpuid. This will trigger a VM Exit, causing a context switch, evicting
entries of the pre-filled TLB. In such a case, we can measure a notable difference
in access times when revisiting the evicted page.

The details of the detection are as follows: After allocating n pages, we access
all pages once to fill the TLB. We access a page by writing a 4-byte value to the
start of the page. We then access all pages again i times, and for each iteration
we record the maximum access time. Out of those maxima we then compute

Detecting Hardware-Assisted Virtualization 213

the minimum. The intuition behind this is that we want to find the minimum
time that it took for the slowest of all n page accesses. Using the minimum also
eliminates outliers. In addition, compared to similar measures like the median,
computing the minimum has a relatively small assembly code size and a lower
computational complexity. Then, we repeat this step, but execute cpuid before
each memory access. To set up equivalent conditions, we also access each page
once before entering the second outer loop. Finally, the ratio of both minima
t0 and t1 is computed and compared against a threshold β. Again, we refer the
reader to the evaluation for choosing the detection threshold.

A few implementation details require attention. First, after accessing a page,
we use the clflush instruction to invalidate the corresponding cache lines from
all levels of the processor cache. Doing so makes it more likely that timing
discrepancies actually stem from the TLB (and not from other types of caches).
Second, when we measure the page access time, we subtract the overhead of the
measuring method. We do this since the difference in access time for TLB misses
tends to be rather small and the influence of measurement overhead would thus
be too high otherwise.

Finally, we need to know how many pages we should allocate. The difficulty
here is that we have to prefill approximately as many pages as will fit in the
TLB. On the one hand, we need enough pages to fill the TLB and to guarantee
that the hypervisor evicts our TLB entries. On the other hand, choosing too
many pages will itself cause TLB evictions in all loops, regardless of cpuid,
and therefore undermine our detection. However, the exact number of pages
is unpredictable and depends heavily on the TLB size and its page eviction
strategy. To counter this problem, we will perform the detection multiple times
with various page numbers and consider a system to be running VT-x if at least
one detection finds a suspicious ratio. That is, we chose to run the algorithm for
n = 64, 128, . . . , 4096 pages, which covers typical TLB sizes.

4.4 Method 3: Stealth VM Exit Detection

The two aforementioned methods have the drawback that they make excessive
use of two instructions (cpuid and rdtsc) that may not be as common in benign
user-mode programs. This may raise suspicion in the analysis system, automati-
cally flagging the program as malicious. Therefore, we advance the current state
of research by studying stealth timing-based mechanisms, i.e., ones that do not
use suspicious instructions. To this end, we (i) have to avoid excessive use of
cpuid to trap the hypervisor, and (ii) require a reliable but less suspicious and
non-modifiable source for timing information.

To invoke the hypervisor, we first inspected less suspicious alternatives to
cpuid. However, the alternatives are either privileged or their VMM traps are
optional. Thus, we explore detection methods that conservatively use cpuid.
Note that cpuid is not suspicious per se. However, calling cpuid thousands of
times—as done in our first two methods—may seem suspicious. As we will show,
our discovered method will not trigger more than 3–4 cpuid calls on virtualized
systems, which makes this behavior indistinguishable from benign usage.

214 M. Brengel et al.

Replacing the timing source (rdtsc) is trickier, as reliable and accurate tim-
ing sources are scarce and only accessible with privileged instructions. To mea-
sure the duration of a cpuid instruction, we therefore leverage parallel compu-
tation. Technically, we create a program which spawns a thread B in its main
thread A. B continuously executes cpuid and increments a counter c after each
execution. After spawning B, A performs a busy wait until it notices that B has
started by examining c. After that, we wait a small amount of time by executing
a short busy loop after which we can inspect c. We determine that the system
is virtualized if the counter is smaller or equal than some threshold γ, following
the intuition that more cpuid executions fit in the time window on a native
system without context switches to they hypervisor. We will see in Sect. 5 that
the number of cpuid instructions being executed will be fairly low for virtualized
systems, which greatly contributes to the stealthiness of the detection.

5 Evaluation

5.1 Local Experiments

The accuracy of our VT-x detection methods greatly depends on reasonable
detection thresholds. To determine the thresholds, we conducted the following
experiment: We created a tool that measures the ratio of the execution time of
cpuid to the execution time of nop. In addition, we measured the ratio of page
accesses as described. To account for different TLB sizes and eviction strategies,
we measured this ratio for n = 64, 128, 256, . . . , 4096 pages, where we use the
maximum of those ratios as the final ratio to on which base the detection. We
measure the access time of nop and cpuid 1000 times and take the minimum,
and the page accesses are measured 500 times for each page size. Finally, we
also measure the number of times cpuid was executed during the busy loop of
method 3. To create realistic conditions, we executed the tool 100 times each on
ten native Windows/Linux systems. The systems used nine distinct CPUs. In
addition, we executed the tool in 5 different Windows/Linux VMs using various
hypervisors running on Windows, Mac OS and Linux.

Method 1: VM Exit Overhead (M1). Figure 1a shows the cpuid/nop ratio.
The x-axis shows the hosts and the y-axis the distribution of the ratios in a
boxplot. The boxes show the 25–75 % intervals, the whiskers indicate 10–90 %
intervals. For nine out of the ten native hosts (n0–n9), the ratio is between 2 and
4. Host n4 is an outlier, with its ratio being constantly about 6.7. Hosts 11–15
represent VMs (v0–v4). The majority of the ratios of the VMs are significantly
larger than the ratios of the native hosts. There is quite some variation among the
different VMs. This can mainly be attributed to the hypervisor. For example,
VMs 1 and 2 were running on the same physical machine; VM 1 was using
VMware, whereas VM 2 was using VirtualBox. Given those results, we choose
the threshold α = 9 as indicated by the horizontal dashed line in the figure.
Everything above this line indicates a VM, whereas everything below this line is

Detecting Hardware-Assisted Virtualization 215

(a) M1 (b) M2 (c) M3

Fig. 1. Boxplots of the local experiments. Hosts n0–n9 are native; hosts v0–v4 are
virtualized. The horizontal lines show the detection threshold that we derived from
these local experiments: α = 9 (left), β = 2 (center) and γ = 4 (right).

determined to be a native machine. We chose the threshold to tune the detection
rates of the local experiment towards a low false positive rate: Out of the total
of 1000 runs of the tool on the 10 native systems, we detect all systems as
native systems, which gives us a true negative (TN) rate of 100% and thus a
false positive (FP) rate of 0%. The executions on the VMs resulted in 17 ratios
being below 9, which implies a true positive (TP) rate of 96.6% and a false
negative (FN) rate of 3.4%. An adversary may adapt the detection thresholds
depending on her goal. In particular, it is reasonable for an attacker to trade off
false positives for false negatives, since losing a single victim is less critical than
having the malware exposed in an analysis environment.

Method 2: TLB Eviction Overhead (M2). Figure 1b shows the computed
ratios of the TLB-based measurements. As we can see, page accesses are more
prone to variance than the previous measurements. This can be explained by the
fact that the time window in which context switches would bias the measure-
ment is significantly longer for the second method. While in the first method
a context switch is only critical during the cpuid measurements, the second
method assumes that the process is not interrupted during the entire measure-
ment period, as otherwise the cached TLB entries would be overwritten (even
on native systems). We will discuss how the system load may influence the mea-
surements in Sect. 6. That being said, we see that for native hosts the median of
the ratios is still about 1 and the majority of the ratios is in the range [0.9, 2].

Similar to the previous results, we can again see a clear difference between
native and virtual machines, although the effect is smaller this time. This is
caused by the fact that a TLB miss is rather cheap compared to a context
switch caused by a VM Exit. VM v0 is an outlier, with the ratio being constantly
larger than 2600. We suspect that this is caused by some VMware artifact, as
the ratios of the other hypervisors are three orders of magnitude smaller. Using
these results, we set the threshold β = 2 for M2. That is, out of the 1000 native

216 M. Brengel et al.

runs we misclassify 17 runs, resulting in a TN rate of 98.3% and thus a FP rate
of 1.7%. On the VMs, we detect 24 out of 500 runs as native, which results in
a TP rate of 95.2% and a FN rate of 4.8%.

Finally, the attacker could combine both of the above methods and determine
that a system is virtualized if at least one of the methods says so. By doing this,
we would misclassify only 3 out of 500 virtualized executions, decreasing the FN
rate to 0.6%. Note that this would not change the FP rate, as only the TLB
detection produced FPs.

Method 3: Counting Thread (M3). Finally, we evaluate our stealth method
M3 separately from the non-stealth methods M1 and M2. Figure 1c shows the
results of the thread counting measurements, where the y-axis indicates how
often cpuid was executed. We can observe that the counter is much larger for
the native hosts as the cpuid instruction is faster in that case. In contrast, the
virtual hosts execute cpuid only a few times due to the significant overhead
caused by the VM Exit. Using the gathered results, we determine the threshold
γ = 4 as indicated by the horizontal line. Everything above this line is considered
a native system and everything below it is detected as a virtualized system. This
yields a TN rate of 99.9% (n8 fails the test once) and a TP rate of 99.2% (v3
fails this test 4 times).

5.2 Evasion Detection

Although the ratios of methods M1 and M2 work quite well in a normal setting,
they may be biased if virtualized sandboxes hide timing artifacts to evade VM
detection methods. For example, a hypervisor could trap rdtsc and set the TSC
to a constant c before returning to the guest. The ratio for both M1 and M2 would
then always be 1, which hides the hypervisor from our detection methods. To
detect such anti-detection methods, we add sanity checks on top of our detection.
In the following, we will describe four sanity checks, which we will use throughout
the remainder of the evaluation for the rdtsc-based methods. The thresholds
of these sanity checks were derived from the absolute values gathered from our
local experiment in Sect. 5.1.

Measuring Overhead: First, we execute the measuring method without any
instructions to get the measuring overhead. We will use these results to detect
costly rdtsc traps. The measurements showed that rdtsc never takes more
than 100 cycles to execute (including the overhead introduced by mfence and
moving the TSC into a temporary register). To account for variance, we relax
this threshold and say that the system is virtualized if executing rdtsc takes
500 or more cycles.

Execution Time of cpuid: Second, we inspect the absolute execution time
of cpuid to get a lower bound in order to detect if a hypervisor returns suspi-
ciously low values. Given the results of the measurements, we determine that a
hypervisor tampers with the TSC if executing cpuid takes less than 20 cycles.

Detecting Hardware-Assisted Virtualization 217

Execution Time of nop: Third, we verify if a hypervisor returns suspiciously
high values for the execution time of a nop instruction. Given the results, we
determine that a system is virtualized if executing a nop instruction takes 500
or more cycles.

TLB Delta: Fourth, the execution time overhead introduced by a TLB miss
tends to be rather small compared to the time of a cached page access. The ratio
is thus sometimes not sufficient to detect a hypervisor, especially if both values
are rather large. To tackle this problem, we additionally inspect the absolute
difference between t0 and t1 in M2. We say that a system is virtualized if r ≥
β, or if t0 − t1 ≥ 150, a carefully chosen threshold. We observed that only
five runs resulted in a difference larger than 150. However, in those runs the
ratio was above 2, which means that we will not change the results for the
local experiments by including the TLB delta in the detection. Compared to
the previous three thresholds, this one was chosen rather aggressively. We did
this, since the previous parameters are used only to detect trivial anti-detection
methods and for this purpose a conservatively chosen threshold is sufficient.
However, in the case of TLB-based detection the window for optimization gets
quite narrow, which is why we chose a more aggressive optimization. We refer
to this optimized method as M2’.

5.3 PlanetLab

We then deployed our detection on a wider variety of systems. To this end, we
identified 239 stable nodes in the PlanetLab [3] testbed. To check if a PlanetLab
node is virtualized, we verified if the hypervisor bit returned by cpuid (with leaf
1) is set. Although a stealthy hypervisor does not have to set this bit, we find it
unlikely that stealthy hypervisors are present in PlanetLab. We found that 233
of the 239 nodes are native and six are virtualized. On all hosts, we performed
our detection methods 10000 times each, with α = 9, β = 2, γ = 4 and i = 1000.

M1 We detected 232 out of the 233 non-virtualized nodes as native systems
with 100% confidence. On the remaining native node, 3 out of the 10000 runs
misclassified the node as virtualized. Overall, this gives us a true negative rate
of 99.99%. All of the six virtualized nodes were correctly classified as virtualized
with 100% confidence, which gives us a true positive rate of 100%.

M2 We detected the non-virtualized nodes as native systems with an overall true
negative rate of 99.96%. However, the detection rate for 7 out of those 232 nodes
was below 99% and as low as 73.1% for one node. We suspect that this is due to
high system load, since concurrent memory accesses cause TLB evictions, which
does not favor M2. Out of the six virtualized nodes, we detected 3 nodes with
100% confidence and failed to detect the remaining three virtualized nodes. We
discovered that this is because our detection assumes a page size of 4 KiB, which
was not true for the PlanetLab nodes in question as they are using the Page Size
Extension feature of x86, which allows for pages larger than the traditional 4

218 M. Brengel et al.

KiB limit for performance reasons. This is not a restriction for an adversary in
practice, since huge pages are not enabled by default in Windows user space.
While huge pages are used by recent Windows kernels, enabling huge pages in
user-space processes on Windows requires the “lock pages in memory” privilege.

M3 For M3, we had to use a different set of 185 stable nodes in the PlanetLab
testbed, since the nodes of the first two methods were not available any longer
when the experiments for the third method was conducted. Out of those nodes,
182 were native and 3 nodes were virtualized. We detected both the virtualized
and the native systems with a confidence of 100 % giving us a true positive and
a true negative rate of 100 % each.

5.4 Sandboxes

So far we have only tested our methods in a controlled environment. In the
following, we will apply our detection methods in real-world use cases that are
relevant in practice: malware sandboxes. We thus uploaded the detection tool
(cf. Sect. 5.1) to 17 malware analysis services, such as VirusTotal and ThreatEx-
pert. Despite the fact that bare-metal sandboxes have been proposed [13,14], we
argue that most automated sandboxes are virtualized to cope with the masses of
user submissions. We thus assume that a sandbox uses VT-x, provided that
the reported CPU brand string indicates a processor model which supports
hardware-assisted virtualization.

To collect the detection results, we configured the tool to send the results to
a server under our control. In total, we received 76 measurement reports. We did
not have any influence on how often our sample was run per sandbox. Some of
the sandboxes repeatedly executed the same sample, i.e., increasing the number
of reports. In total, 74 of 76 reports indicated a processor model which supports
VT-x. The remaining two reports came from the same sandbox and showed
the CPU brand string “Intel(R) Atom(TM) CPU D525 @ 1.80 GHz”. For this
sandbox, none of our detection methods indicated the presence of a hypervisor.
We group the remaining reports based on the host names of the analysis systems,
which clusters these 74 reports into 31 sandboxes. For a detailed overview of the
results, see Fig. 2.

We observe that method 1 detects 89.19% of the sandboxes. The improve-
ments for method 2 increased the detection rate from 14.86% to 60.81%. By
combining method 1 and method 2—that is, we detect a system if M1 or M2
detects it—we can detect 90.54% of the sandboxes. By combining M1 with the
improved version of M2, we can improve again and get a detection rate of 95.95%.
This shows that the proposed methods work well in a real-world setting.

A few sandboxes remain undetected, which is where the sanity checks help.
The sanity checks themselves have a rather low detection rate of 18.92%. Worst,
the cpuid sanity check has a detection rate of 0%. But the nop and rdstc
measures alone are also not very helpful. However, recall that the sanity checks
are mainly relevant for systems that tamper with the TSC to evade detection.
When used in combination with the proposed two methods, they significantly

Detecting Hardware-Assisted Virtualization 219

Sandbox M1 M2 M2’ M1+M2 M1+M2’ RDTSC CPUID NOP S S+M1+M2’

s0 5/5 2/5 3/5 5/5 5/5 0/5 0/5 0/5 0/5 5/5
s1 10/10 2/10 5/10 10/10 10/10 0/10 0/10 0/10 0/10 10/10
s2 4/4 0/4 4/4 4/4 4/4 0/4 0/4 0/4 0/4 4/4
s3 2/2 0/2 0/2 2/2 2/2 0/2 0/2 0/2 0/2 2/2
s4 1/1 0/1 1/1 1/1 1/1 0/1 0/1 0/1 0/1 1/1
s5 1/3 0/3 0/3 1/3 1/3 0/3 0/3 3/3 3/3 3/3
s6 1/1 0/1 1/1 1/1 1/1 0/1 0/1 0/1 0/1 1/1
s7 3/3 1/3 1/3 3/3 3/3 0/3 0/3 0/3 0/3 3/3
s8 1/1 0/1 0/1 1/1 1/1 0/1 0/1 1/1 1/1 1/1
s9 3/3 0/3 2/3 3/3 3/3 0/3 0/3 0/3 0/3 3/3
s10 6/6 0/6 3/6 6/6 6/6 0/6 0/6 0/6 0/6 6/6
s11 1/1 0/1 1/1 1/1 1/1 0/1 0/1 0/1 0/1 1/1
s12 1/1 1/1 1/1 1/1 1/1 0/1 0/1 0/1 0/1 1/1
s13 . . . s17 3/5 0/5 3/5 3/5 4/5 4/5 0/5 4/5 4/5 5/5
s18 6/6 0/6 4/6 6/6 6/6 0/6 0/6 0/6 0/6 6/6
s19 3/3 0/3 1/3 3/3 3/3 0/3 0/3 0/3 0/3 3/3
s20 1/1 1/1 1/1 1/1 1/1 0/1 0/1 1/1 1/1 1/1
s21 3/3 0/3 1/3 3/3 3/3 0/3 0/3 0/3 0/3 3/3
s22 1/1 0/1 1/1 1/1 1/1 0/1 0/1 0/1 0/1 1/1
s23 2/2 2/2 2/2 2/2 2/2 0/2 0/2 0/2 0/2 2/2
s24 0/2 1/2 2/2 1/2 2/2 2/2 0/2 2/2 2/2 2/2
s25, s26 2/2 0/2 1/2 2/2 2/2 0/2 2/2 2/2 2/2 2/2
s27 1/1 1/1 1/1 1/1 1/1 0/1 0/1 0/1 0/1 1/1
s28 1/3 0/3 3/3 1/3 3/3 3/3 0/3 3/3 3/3 3/3
s29 3/3 0/3 3/3 3/3 3/3 0/3 0/3 0/3 0/3 3/3
s30 1/1 0/1 0/1 1/1 1/1 0/1 0/1 0/1 0/1 1/1

66/74 11/74 45/74 67/74 71/74 9/74 0/74 14/74 14/74 74/74
89.19% 14.86% 60.81% 90.54% 95.95% 12.16% 0.00% 18.92% 18.92% 100.00%

Fig. 2. Detection results per sandbox (1st major column) for both methods, the
improved version of method 2 and their combinations (2nd major column), the sanity
checks (3rd major column) and the overall combination (4th major column). Sandboxes
s13, . . . , s17 and s25, s26 are aggregated due to similar hostnames

improve the detection rate. By combining the sanity checks with M1 and the
improved version of method 2, we can detect all 74 hosts, resulting in a true
positive rate of 100%.

As the observed sandboxes are single-core VMs, there was no possibility to
evaluate M3 using this dataset. Instead, we successfully detected these hosts as
single-core systems using a simple load detection. In short, the load detection
method leverages the fact that the OS cannot schedule two threads in parallel on
single-core systems (or on systems with a high load). The load detection method
thus schedules two threads in parallel and measures how many rescheduling
events occur in a given time span. Rescheduling is an indicator for (i) high load
or (ii) a single-core system. Although only allowing multi-core systems seems to
restrictive at first, it is worth noting that this is also done by malware in practice
to avoid sandboxes. For example, the popular banking trojan Dyre shows its real
behavior only if executed on multi-core systems.

220 M. Brengel et al.

In conclusion, with high reliability, we could detect the virtualization in sand-
boxes using our timing-based methods. This demonstrates how a malware author
may use similar techniques to hide the actual behavior of the malware.

5.5 Stealth Sandbox

Seeing our success in identifying sandboxes, we now test whether cutting-edge
commercial sandboxes can evade our detection. We contacted a popular vendor
that advertises their sandbox technology as being evasion-resistant. The sandbox
is based on VT-x and implements a thin hypervisor. The vendor graciously
allowed us to run our detection sample in their latest development version of the
sandbox. We supplied the same tool to the system as for the other experiments.

In the first experiment, we managed to detect the presence of a hypervisor
with M1 and M2’. We then interacted with the vendor and explained our detec-
tion methodologies. It turns out that their anti-evasion tricks mainly focused on
removing system artifacts, and did not yet counter timing attacks. The vendor
then implemented a countermeasure to tackle timing-based detection. Techni-
cally, the improved hypervisor measures its own execution time and then sub-
tracts its overhead from the actual TSC. VT-x features the TSC OFFSET para-
meter so that the hypervisor can adjust the TSC accordingly—an anti-evasion
technique that was mentioned by Dinaburg et al. [5].

We then re-ran our experiment on the updated sandbox. This time, the
timing-based detection failed to detect VT-x. In fact, the measured ratios in
M1 looked quite similar to the ones measured on native systems, rendering M1
ineffective. However, M2’ could still identify the virtualization. This is also intu-
itive, as the anti-evasion technique does not take into account overhead caused
by caching. M2’ does not measure the time spent in the hypervisor, but instead
measures caching side effects of context switches.

Similar to the public sandboxes, the commercial sandbox can also be detected
using M3 in combination with the load detection mechanism, as the sandbox
operates on a single-core system. In fact, our load check is more reliable and
cannot easily be fooled, unlike to existing methods such as reading the number
of cores using the Windows PEB. Thus it presents a generic detection method
for single-core systems.

5.6 ShellOS

push MAGIC
; is_vm := vm_detect ()
if (not is_vm)

pop edx
mov esi , [fs:edx+0x30 -MAGIC]
...

Fig. 3. ShellOS evasion.

Finally, we turn to systems that aim
to detect potential shellcode in arbi-
trary code. Snow et al. proposed
ShellOS [29], a VT-x-based frame-
work that deploys heuristics to detect
shellcode. ShellOS uses a small kernel
coupled with hardware-assisted vir-
tualization by using the KVM hyper-
visor to detect and analyze shellcode.

Detecting Hardware-Assisted Virtualization 221

To this end, ShellOS uses the heuristic proposed by Polychronakis et al. [23],
monitoring and detecting accesses to the Windows PEB. We will evaluate
whether we can combine our VT-x detection with an evasion for ShellOS.
Our goal is to convert a shellcode that ShellOS flags as malicious to one
that is not detected. The obvious idea in the form of if (vm) {benign} else
{shellcode} will, however, not work, since ShellOS uses the concept of execu-
tion chains. ShellOS will execute the payload from each possible offset and will
therefore flag the payload as malicious if it starts executing from the shellcode
offset. To understand how an adversary may overcome this problem, recall that
Windows shellcode usually starts by reading the PEB with an instruction like
mov esi, [fs:edx+030] where edx is set to zero beforehand. The malicious
behavior of all the following instructions depends on this first instruction, which
in turn depends on the content of one register (edx in the example). Using this
insight, we can evade ShellOS’s execution chains with the idea illustrated in
Fig. 3. We push some magic random number MAGIC > 0 on the stack, and only
if the detection indicates the presence of a native system, we pop this magic
number into edx. We then use this magic number in the calculation of the PEB
in the first instruction of the shellcode. If ShellOS executes the code from any
offset other than the actual start, the edx register will not contain the right
value to correctly calculate the PEB offset. If ShellOS starts executing from the
actual start, our detection will detect VT-x and the code will not be flagged as
malicious, since the PEB will not be calculated correctly in this case either.

We injected the VM Exit-based detection method (M1) into the template in
Fig. 3 with parameters i = 20 and α = 9. We reduced the number of iterations
to 20, since ShellOS imposes timeout limits on the payloads to be executed.
We injected several shellcodes with our detection methods, but we intentionally
left out the determining ratio check to provoke malicious behavior. All those
shellcodes were flagged as malicious by ShellOS. After including the ratio check,
ShellOS failed to detect the modified shellcodes, while the same payloads were
properly executed on native systems.

We did the same for TLB-based detection (M2). Unfortunately, ShellOS
responded with errors and the debug traces indicated that something went
wrong. The ShellOS authors could not resolve the problem in the time avail-
able, which is why we cannot evaluate TLB-based detection for this use case.
Since ShellOS does not support threading, we unfortunately could not evaluate
M3 on ShellOS.

6 Discussion

In this section we discuss several aspects of our proposed methods, including
countermeasures, limitations when facing target systems that are virtualized,
other virtualization methods than VT-x and finally how an adversary can use
our methods to defeat multi-path exploration techniques.

222 M. Brengel et al.

6.1 Countermeasures

Our detection methods are based on timing differences introduced by VM Exits.
To evade detection, the hypervisor may tamper with the time-stamp counter
(TSC) or avoid VM Exits. We first discuss techniques that aim to evade detec-
tion. In addition, we describe a technique for how our detection methods them-
selves can be detected at the hypervisor level.

Tampering with Timing Resources. In principle, the hypervisor has complete
control of the timing resources. The hypervisor could disable rdtsc for use in
ring 3, subtract the VM Exit overhead or try to return sane estimated values.
Disabling the instruction is not a beneficial option, since the usage of rdtsc is
not malicious per se. Subtracting the VM Exit overhead works for protecting
against M1 as described in Sect. 5.5. It will, however, fail for the TLB based
detection method M2, for reasons described in the same section. Estimating
sane return values is not feasible in practice as it requires complete knowledge
about the emulated hardware.

Not Trapping cpuid. Our detection methods rely on cpuid to trigger VM Exits.
Disabling these exits by the hypervisor would thus evade detection. However,
according to the Intel manuals, the VM Exit caused by cpuid cannot be disabled
by the hypervisor. Therefore, a potential hardware-based solution could be to
make traps to cpuid optional. But even then it would be likely that other timing
biases remain, as hypervisors may need to trap on system calls or page faults to
inspect host-based behavior.

Detecting Suspicious Timing-Based Evasion. Instead of evading our methods,
the hypervisor can just try to detect them. This is useful for sandboxes that just
aim to find suspicious programs, rather than exploring their behavioral profile.
Our first two methods can be detected by the hypervisor due to the excessive use
of rdtsc and cpuid. If encountered too often, the program is at least suspicious.
However, this is no help to sandboxes that not only flag a program as malicious,
but also aim to reveal program behavior. Finally, as we have shown, an attacker
can even avoid excessive use of suspicious instructions by using counter-based
as opposed to timing-based detection.

6.2 Virtualization on Target Systems

The main use case of our methods is attacks that aim to evade virtualized analy-
sis systems, such as sandboxes or other types of code analysis systems (like Shel-
lOS). Such evasions are effective if we assume that the actual target systems (the
victims) are not virtualized. However, research has suggested that virtualization
will become more widespread in the future [2,9,32].

We argue that VM detection will still play an important role in the future.
First, when looking at consumer devices, the degree of virtualization is negligible.
Thus mass-targeting malware (such as ransomware, spambots, denial-of-service
bots, or banking trojans) does not risk losing many potential victims by declin-
ing to run on VMs, while it can hide its behavior in virtualized sandboxes.

Detecting Hardware-Assisted Virtualization 223

(a) (b) (c)

init

if a < b:

foo

else:

bar

init

cmp a, b

ja bar

foo:

...

jmp end

bar:

...

end:

init

mov reg , 1

sub a, b

sbb reg , 0

imul reg , dist

add reg , foo

jmp reg

foo:

...

jmp end

bar:

...

end:

Fig. 4. Overcoming multiple execution paths.

In addition, even in targeted attacks, an adversary may be able to first spy on
the exact environment, including the virtualization technology (if any), and then
adapt her attack accordingly.

6.3 Multi-Path Exploration

Facing the problem of evasion, researchers proposed new techniques to analyze
the hidden behavior of evasive malware. A generic approach to counter evasive
behavior is exploring multiple execution paths (or multi-path exploration), as
introduced by Moser et al. [17]. The idea is to explore all input-driven parts of
the program to trigger behavior that may otherwise remain hidden. For instance,
assume program (a) in Fig. 4, which first initializes, then does a check, and if the
check succeeds, executes foo, or bar otherwise. Using multiple execution paths,
we can explore all possible executions of the program, namely init→foo and
init→bar, regardless of the values of a and b.

Kolbitsch et al. [16] proposed to identify and escape execution-stalling code
during dynamic analysis. Their idea is to invert conditional branches once they
are detected as such, e.g., turn a greater-than operation to a less-or-equal, with
the goal to eventually explore all code regions. Related to this, Egele et al. [7] pro-
posed Blanket Execution, a technique to cover all instructions within a function
at least once during dynamic analysis [7]. In addition, the commercial sandbox
vendor VMray has announced a technique to trigger dormant program function-
ality by inverting branch conditions, leveraging the history of recent branches in
the Processor Tracing history of recent Intel CPUs1. All these techniques aim to
explore the entire functionality of a program or its functions.

We can overcome these approaches by converting conditional branches to
indirect jumps/calls. Doing so removes the outgoing edge of the source basic
blocks, as the address of the target basic block is computed dynamically. For
example, consider the assembly representation of program (a) in Fig. 4(b). Multi-
path execution would identify the conditional jump ja bar as a control flow
1 http://www.vmray.com/back-to-the-past-using-intels-processor-trace-for-enhanced-

analysis/.

http://www.vmray.com/back-to-the-past-using-intels-processor-trace-for-enhanced-analysis/
http://www.vmray.com/back-to-the-past-using-intels-processor-trace-for-enhanced-analysis/

224 M. Brengel et al.

decision provided that a or b is considered interesting. As a consequence, both
possible execution paths will be identified and executed regardless of the actual
values of a and b. Now let dist be the distance between foo and bar and
consider program (c). If a is smaller than b, then the sub a, b instruction will
set the carry flag. Hence, the register reg will contain the address of foo and
therefore the program will jump to foo. Conversely, if a ≥ b, reg will hold
the address of bar to which the program will jump. Programs (b) and (c) are
thus semantically equivalent. However, in (c), one cannot identify the branching
alternatives, since the conditional direct jump ja bar has been replaced with
the unconditional direct jump jmp reg. By applying this transformation, an
attacker can undermine multi-path execution to hide the malicious behavior of
the program.

6.4 Non-Intel Virtualization

In this paper we have limited our analysis to Intel VT-x. We have shown that VT-
x is the dominating virtualization technique used by sandboxes. In future work,
we investigate whether our results are also applicable to other virtualization
techniques, such as AMD-V. Due to the inherent timing artifacts introduced
by the hypervisor, it is likely that the same concepts also apply to AMD-V.
However, AMD-V enables the hypervisor to disable the cpuid trap, which is a
notable difference between the two virtualization solutions. Therefore, AMD-V
represents a stealthier alternative to VT-x. However, the presence of traps is
inherent to the concept of sandbox monitoring, which likely introduces detection
vectors other than cpuid traps.

7 Related Work

7.1 Virtualization Detection

In 2006, Ferrie [8] was one of the first to evaluate the transparency of software
emulators, reduced privileged guests and hardware-assisted virtualization. Ferrie
found bugs in the software emulators Hydra, Bochs and QEMU, which could be
used to detect their presence. For reduced-privilege guests of the time, such as
VMware, Virtual PC and Parallels, Ferrie found several artifacts. Ferrie con-
cluded that reduced privilege guests cannot hide their presence, as their design
does not allow them to intercept non-sensitive instructions, which will always
imply detectable behavior.

Ferrie also mentioned timing-based attacks to detect hardware-assisted vir-
tualization [8], such as measuring the overhead caused by VM Exits or consid-
ering a TLB-based attack. However, despite giving the general idea, he did not
describe technical challenges, nor demonstrate or evaluate the methods. Research
similar to Ferrie’s work was conducted by Paleari et al. [20] in 2009 and by
Raffetseder et al. [24] in 2007 to detect software emulators by exploiting imple-
mentation bugs. Raffetseder et al. additionally examined VT-x and observed

Detecting Hardware-Assisted Virtualization 225

that it is not possible to disable caching in a virtualized environment. We were
inspired by these initial ideas, but are the first to go into detail and bring them
to a realistic setting of user-mode code. In addition, we are the first to present
a thorough evaluation of timing-based attacks to detect hardware-assisted vir-
tualization in real-world use cases. Third, we also proposed a stealth method
that is much harder to detect than existing approaches. Finally, we have demon-
strated the risk that adversaries may combine the detection mechanisms to evade
multi-path exploration systems.

In 2006, Rutkowska proposed a rootkit based on hardware-assisted virtu-
alization called Blue Pill2. Blue Pill is a thin hypervisor which will virtualize
the existing OS once started. By doing so, the hypervisor (and therefore the
attacker) gains full control over the OS. Blue Pill can be detected in the same
way any VM can be detected by using our methods. Garfinkel et al. [10] proposed
a TLB-based solution without using timing resources to detect such rootkits by
manipulating the page table entries. Manipulating those entries is, however, not
possible in user mode and therefore outside of the range of our threat model
where malware usually operates.

7.2 Sandboxes and Evasion

In addition to the discussed VM detection methods, others have documented the
problem of evasive malware through real-world studies. Chen et al. [2] were the
first to study the behavior of malware that tries to detect VMs. They ran 6900
different malware samples under different environments and noted that 4 % of
the samples reduced their malicious behavior in the presence of a VM.

Balzarotti et al. [1] propose a system that records the system call trace of a
program when it is executed on a non-virtualized reference system. This trace
is then compared against the trace of the same program being executed on a
virtualized system, revealing possibly split behavior of the malware. Lindorfer
et al. [16] describe a similar system and additionally introduce techniques for
distinguishing between spurious differences in behavior and actual environment-
sensitive behavior to cope with false positives.

The phenomenon of environment-aware malware forced sandbox maintain-
ers and researchers to develop more transparent systems which are harder to
detect. Dinaburg et al. proposed Ether [5], a malware analysis system using
hardware-assisted virtualization which aims at remaining transparent to mali-
cious software. Ether tries to maintain a clear time-stamp counter, as discussed
in Sect. 6. However, Ether is still prone to TLB-based detection methods, which
the authors of Ether classify as “architectural limitations” of VT-x. Additionally,
Pék et al. presented a detection method for Ether [22]. Their method builds upon
the observation that between two rdtsc instructions, Ether tends to increase the
TSC by only 1 as long as there are no trapping instructions in between. This
is an implementation-specific artifact that is not necessarily shared by other
sandboxes.

2 http://theinvisiblethings.blogspot.com/2006/06/introducing-blue-pill.html.

http://theinvisiblethings.blogspot.com/2006/06/introducing-blue-pill.html

226 M. Brengel et al.

To cope with the fundamental difficulties of creating a truly transparent
hypervisor, Kirat et al. have suggested using bare-metal sandboxes [13,14].
Although bare-metal sandboxes can evade VM-based detection mechanisms,
they are less scalable and harder to maintain than virtualized sandboxes. Alter-
natively, Moser et al. proposed multi-path exploration systems [17]. We have
shown that adversaries can evade those systems and render them ineffective.
The same holds for the brute force mechanism deployed by ShellOS [29], which
simply aims to execute shellcode from every possible offset.

8 Conclusion

We have shown that hardware-assisted virtualization can be reliably detected
by an adversary using timing-based measures. Unfortunately, not all of these
methods can be detected as such, nor is there an effective and transparent way to
evade all of them. This threatens important virtualized security infrastructures,
such as malware sandboxes and state-of-the-art shellcode detection systems. Our
attacks against multi-path exploration systems demonstrated that there is a need
for further research to restore the guarantees that the full (possibly hidden)
behavior of malicious code can be revealed with dynamic code analysis.

References

1. Balzarotti, D., Cova, M., Karlberger, C., Kruegel, C., Kirda, E., Vigna, G.: Efficient
detection of split personalities in malware. In: Proceedings of NDSS (2010)

2. Chen, X., Andersen, J., Morley, M.Z., Bailey, M., Nazario, J.: Towards an under-
standing of anti-virtualization and anti-debugging behavior in modern malware.
In: DSN (2008)

3. Chun, B., Culler, D., Roscoe, T., Bavier, A., Peterson, L., Wawrzoniak, M.,
Bowman, M.: PlanetLab: an overlay testbed for broad-coverage services. SIGC
OMM Comput. Commun. Rev. 33(3), 3–12 (2003)

4. Coogan, K., Lu, G., Debray, S.: Deobfuscation of virtualization-obfuscated soft-
ware: a semantics-based approach. In: Proceedings of the CCS (2011)

5. Dinaburg, A., Royal, P., Sharif, M., Lee, W.: Ether: malware analysis via hardware
virtualization extensions. In: CCS (2008)

6. Egele, M., Scholte, T., Kirda, E., Kruegel, C.: A survey on automated dynamic
malware-analysis techniques and tools. ACM Comput. Surv. 44(2), 6:1–6:42 (2012)

7. Egele, M., Woo, M., Chapman, P., Brumley, D.: Blanket execution: dynamic sim-
ilarity testing for program binaries and components. In: USENIX Security (2014)

8. Ferrie, P.: Attacks on Virtual Machine Emulators. Technical report, Symantec
(2006)

9. Franklin, J., Luk, M., McCune, J.M., Seshadri, A., Perrig, A., van Doorn, L.:
Towards sound detection of virtual machines. In: Lee, W., Wang, C., Dagon,
D. (eds.) Botnet Detection: Countering the Largest Security Threat, pp. 89–116.
Springer, Heidelberg (2008)

10. Garfinkel, T., Adams, K., Warfield, A., Franklin, J.: Compatibility is not trans-
parency: VMM detection myths and realities. In: Proceedings of USENIX HotOS
(2007)

Detecting Hardware-Assisted Virtualization 227

11. Kang, M.G., Poosankam, P., Yin, H.: Renovo: a hidden code extractor for packed
executables. In: Proceedings of the 2007 ACM Workshop on Recurring Malcode
(2007)

12. Kinder, J.: Towards static analysis of virtualization-obfuscated binaries. In: WCRE
(2012)

13. Kirat, D., Vigna, G., Kruegel, C.: BareBox: efficient malware analysis on bare-
metal. In: Proceedings of ACSAC (2011)

14. Kirat, D., Vigna, G., Kruegel, C.: Barecloud: bare-metal analysis-based evasive
malware detection. In: Proceedings of the USENIX Security (2014)

15. Kwon, B.J., Mondal, J., Jang, J., Bilge, L., Dumitras, T.: The dropper effect:
insights into malware distribution with downloader graph analytics. In: CCS (2015)

16. Lindorfer, M., Kolbitsch, C., Milani Comparetti, P.: Detecting environment-
sensitive malware. In: Sommer, R., Balzarotti, D., Maier, G. (eds.) RAID 2011.
LNCS, vol. 6961, pp. 338–357. Springer, Heidelberg (2011)

17. Moser, A., Kruegel, C., Kirda, E.: Exploring multiple execution paths for malware
analysis. In: Proceedings of the S&P (2007)

18. Moser, A., Kruegel, C., Kirda, E.: Limits of static analysis for malware detection.
In: Proceedings of ACSAC (2007)

19. Oktavianto, D., Muhardianto, I.: Cuckoo Malware Analysis. Packt Publishing,
Birmingham (2013)

20. Paleari, R., Martignoni, L., Roglia, G.F., Bruschi, D.: A fistful of Red-pills: how
to automatically generate procedures to detect CPU emulators. In: Usenix WOOT
(2009)

21. Ugarte Pedrero, X., Balzarotti, D., Santos, I., Bringas, P.G.: SoK: deep packer
inspection: a longitudinal study of the complexity of run-time packers. In: S&P
(2015)

22. Pék, G., Bencsáth, B., Buttyán, L.: nEther: in-guest detection of out-of-the-guest
malware analyzers. In: CCS (2011)

23. Polychronakis, M., Anagnostakis, K.G., Markatos, E.P.: Comprehensive shellcode
detection using runtime heuristics. In: Proceedings of ACSAC (2010)

24. Raffetseder, T., Kruegel, C., Kirda, E.: Detecting system emulators. In: ICISC
(2007)

25. Rolles, R.: Unpacking virtualization obfuscators. In: Usenix WOOT (2009)
26. Rossow, C., Dietrich, C., Bos, H.: Large-scale analysis of malware downloaders. In:

Proceedings of DIMVA (2013)
27. Royal, P., Halpin, M., Dagon, D., Edmonds, R., Lee, W.: PolyUnpack: automating

the hidden-code extraction of unpack-executing malware. In: CCS (2006)
28. Sharif, M., Lanzi, A., Giffin, J., Lee, W.: Automatic reverse engineering of malware

emulators. In: Proceedings of the 2009 30th IEEE Symposium on Security and
Privacy (2009)

29. Snow, K.Z., Krishnan, S., Monrose, F., Provos, N.: ShellOS: enabling fast detection
and forensic analysis of code injection attacks. In: Proceedings of USENIX Security
(2011)

30. Willems, C., Hund, R., Holz, T.: CXPInspector: Hypervisor-based, hardware-
assisted system monitoring. Technical report, Horst Görtz Institute for IT Security
(2012)

31. You, I., Yim, K.: Malware obfuscation techniques: a brief survey. In: Proceedings
of BWCCA (2010)

32. Zhao, X., Borders, K., Prakash, A.: Virtual machine security systems. In: Advances
in Computer Science and Engineering. Springer (2009)

Web Security

Financial Lower Bounds
of Online Advertising Abuse

A Four Year Case Study of the TDSS/TDL4 Botnet

Yizheng Chen1(B), Panagiotis Kintis1, Manos Antonakakis2, Yacin Nadji1,
David Dagon1, Wenke Lee1, and Michael Farrell3

1 School of Computer Science, Georgia Institute of Technology, Atlanta, GA, USA
{yzchen,kintis,yacin}@gatech.edu, dagon@m.sudo.sh,

wenke.lee@cc.gatech.edu
2 School of Electrical and Computer Engineering,

Georgia Institute of Technology, Atlanta, GA, USA
manos@gatech.edu

3 Institute for Internet Security and Privacy,
Georgia Institute of Technology, Atlanta, GA, USA

michael.farrell@iisp.gatech.edu

Abstract. Online advertising is a complex on-line business, which has
become the target of abuse. Recent charges filed from the United
States Department of Justice against the operators of the DNSChanger
botnet stated that the botnet operators stole approximately US $14
million [11,18] over two years. Using monetization tactics similar to
DNSChanger, several large botnets (i.e., ZeroAccess and TDSS/TDL4)
abuse the ad ecosystem at scale. In order to understand the depth of
the financial abuse problem, we need methods that will enable us to
passively study large botnets and estimate the lower bounds of their
financial abuse. In this paper we present a system, A2S, which is able
to analyze one of the most complex, sophisticated, and long-lived bot-
nets: TDSS/TDL4. Using passive datasets from a large Internet Service
Provider in north America, we conservatively estimate lower bounds
behind the financial abuse TDSS/TDL4 inflicted on the advertising
ecosystem since 2010. Over its lifetime, less than 15 % of the botnet’s
victims caused at least US$346 million in damages to advertisers due to
impression fraud. TDSS/TDL4 abuse translates to an average US$340
thousand loss per day to advertisers, which is three times the ZeroAc-
cess botnet [27] and more than ten times the DNSChanger botnet [2]
estimates of fraud.

1 Introduction

Many researchers have observed a shift in how botnets are monetized [33], away
from traditional spam and bank fraud applications, towards advertising oriented
abuse [5]. Large botnets such as Kelihos [25] and Asprox [1] have moved to
monetization methods that abuse the online ad ecosystem. Unlike other types
c© Springer International Publishing Switzerland 2016
J. Caballero et al. (Eds.): DIMVA 2016, LNCS 9721, pp. 231–254, 2016.
DOI: 10.1007/978-3-319-40667-1 12

232 Y. Chen et al.

of abuse, impression and click fraud are “low risk/high reward” for botmasters,
given the inherent difficulty in attributing specific advertising events due to the
complexity of the ad ecosystem [37].

To date, the evidence about the amount of ad-abuse attributed to modern
botnets is sporadic, mainly because of measurement challenges. Studying the
monetization components of botnets in a controlled environment (i.e., honey-
pots, dynamic malware analysis) requires researchers to actively engage in the
abuse, which poses ethical challenges. In addition, dynamic malware analysis
methods often fall short as botnets move their monetization components away
from binaries [20,36], and instead deliver them as separate, non-executable add-
on modules. Such drawbacks point to the need for an efficient passive analy-
sis system that can estimate the long-term monetization campaign separately
from the traditional infection, command and control (C&C) and malware update
methods.

To enable efficient, independent, and passive analysis of the long-term ad-
abuse caused by botnets, we introduce a novel Ad-abuse Analysis System (A2S).
A2S leverages spectral clustering methods on passive DNS datasets to identify
the network infrastructure (domain names and IP addresses) the botnet under
examination uses to perform ad-abuse. It also employs sinkhole datasets to esti-
mate lower bounds of financial loss caused by the botnet’s past DNS activities.
This technique can estimate financial loss for any botnet where the monetiza-
tion channel can be mapped to DNS requests. To demonstrate this we analyze
a specific botnet’s fiscal damage to the advertising world.

Using four years of network datasets, we use A2S to estimate the scale of
the ad-abuse potentially inflicted to advertisers from one of the most notori-
ous botnets in history — TDSS/TDL4. Our conservative estimation shows that
TDSS/TDL4 caused financial damage of at least US$346 million, or US$340
thousand per day. This estimate was made using less than 15 % of the botnet’s
population, which suggests that the global lower bound describing the financial
damages towards the advertisers is likely to be higher.

While these numbers may appear large, they remain an underestimation of
the true abuse due to the choices in our measurement methodology. We must
emphasize that at every step of our analysis, we err on the side of being overly
conservative, as we are interested in lower bounds. This will help us establish an
as conservative of a lower bound as possible, using aggressive, empirically driven
filtering and relying on the lowest possible estimates for constants used in our
financial abuse calculation. We intentionally exclude highly likely TDSS/TDL4
domains in exchange for a safer lower bound estimate.

Our contributions in this paper include:

– An Ad-abuse Analysis System (A2S) that enables researchers to independently
and passively analyze the ad-abuse a botnet inflicts to advertisers. The goal of
A2S is to estimate lower bounds of the advertisers’ financial loss caused by the
botnet using data-driven approaches. With this knowledge, network operators,
such as large ISPs, can design network policies to reduce both (1) the economic
gains for adversaries that monetize ads and (2) the overall impact a botnet
may have to the online ad ecosystem and the advertisers.

Financial Lower Bounds of Online Advertising Abuse 233

Fig. 1. An overview of the advertising ecosystem.

– We use A2S to study the ad-abuse component of TDSS/TDL4, one of the most
complex, sophisticated, and long-lived botnets in the history of the Internet.
Using four years of network datasets from one of the largest Internet Service
Providers (ISPs) in North America, we study: (1) the network infrastruc-
ture necessary to support the ad-abuse operation and (2) the financial model
to estimate abuse inflicted by the botnet on advertisers. Our major findings
include:
• Online advertisers lost at least US$346 million to TDSS/TDL4. This

amount is based solely on actions by less than 15 % of the botnet popula-
tion. This translates to more than US$340 thousand per day on average,
and the abuse was mostly accomplished by impression fraud. It is worth
noting that daily abuse levels are three times of recent results reported
for ZeroAccess botnet [27] and as large as ten times of the short-lived
DNSChanger [2] botnet.

• With respect to the infrastructure that supported this botnet operation,
adversaries employed a similar level of network agility to achieve moneti-
zation as they do with traditional botnet C&C communication. At least
228 IP addresses and 863 domain names were used to support the entire
ad-abuse operation over four years. The domain names are available at
authors’ homepages [3].

2 Background

2.1 The Ad Ecosystem

Figure 1 shows a conceptual view of the overall online advertising ecosystem. In
general, when a user visits a website (Step (1)), a JavaScript or IFrame dynami-
cally inserts ads. The HTTP session requesting an ad is called an “impression”,
and the content is sourced at Step (2) via an ad server. Ad servers typically work
with an ad network to serve the impression (Step (3)) and log traffic source for
payment. The ad networks are increasingly operated as free services to attract
the “long tail” of content owners, but are otherwise monetized through CPM
charges (Cost Per Mille, i.e., cost per 1,000 impressions) for undifferentiated
impressions.

Publishers who source their ads from a search ad network can choose to syn-
dicate the ads to other publishers. Search ad networks usually allow syndication
in order to reach a wider audience who do not use their own search engines. Thus,
there can be several redirections among publishers before Step (2) happens.

234 Y. Chen et al.

Fig. 2. A high level overview of DNS resolution (1–8), the sinkholing processes (A)
and the points where ad-abuse can be observed (B and C).

Some advertisers work directly with the ad network (Step (7)). However, if
a given impression cannot be fulfilled, it is sent to an ad exchange (Step (4)).
The ad exchange provides market clearance for serving impressions, typically on
an individual basis. Other advertisers work with demand-side platform providers
(DSPs) to “broker” real-time bidding on impressions through ad exchanges (Step
(5) and (6)). DSPs determine how much to bid, based on user-centric features
such as IP addresses, cookies, referrers, etc. Instead of charging on CPM basis,
they claim anywhere from 5 % to 60 % of the revenue spent by the advertiser.

If the displayed ad was clicked, the ad server logs which publisher the click
comes from, and redirects the user to the advertiser’s page. After the click, the
advertiser is then charged based on CPC (Cost Per Click). The CPC for each
click varies based on keywords, publisher popularity, user’s profile, location, etc.

Entities in the ad ecosystem perform fraud detection independently. The
technical details are not disclosed in public documents [13,17,34]. As a counter-
measure for fraud, ad networks employ smart pricing to normalize CPC (Cost-
Per-Click) for publishers based on relative conversion rates [13,14]. Examples
of conversions include product news subscription, purchase activity, completing
an online survey, etc. If click traffic from a publisher results in a low conversion
rate compared to other publishers serving similar ads, the ad network may use
smart pricing to reduce the CPC used to calculate payment to that publisher.
The drawback of the smart pricing policy is that the conversion data are often
considered sensitive information and therefore advertisers typically are not will-
ing to share them with the ad networks. In practice, ad networks take many
factors into account that would indicate the probability for a conversion [12].
Nevertheless, since the conversion data are limited, attackers have been able to
get positive CPC values even after smart pricing discounts [36].

While smart pricing could reduce the levels of abuse from fraudulent clicks,
this is not the case with fraudulent impressions. Only recently, Google and IAB
announced the Ad “Viewability” standard in an effort to combat invalid impres-
sions: at least 50% of ad pixels need to be in view for a minimum of one
second [8,15]. Advertisers can now choose whether to only bid on viewable
impressions in the Real Time Bidding process.

Financial Lower Bounds of Online Advertising Abuse 235

2.2 Botnets and Sinkholes

In the Domain Name System (DNS) [23,24], domain names are composed of
labels, separated by periods, which correspond to namespaces in a hierarchical
tree structure. Each label is a node, and the root label (.) is root of the tree.
The hierarchical concatenation of nodes creates a fully qualified domain name.
A zone is a collection of nodes that constitute a subtree with DNS author-
ity servers responsible for its content. Figure 2 illustrates a typical resolution
process. It begins with a stub resolver issuing a domain name resolution request
for a domain, example.com, to the local recursive DNS server (RDNS) (see step
1, Fig. 2). In the event that the RDNS does not have the resolution answer in its
cache, it will begin an iterative process to discover it. The RDNS will iteratively
“walk” the DNS hierarchy, starting from root server (steps 2 and 3), to the next
level of effective top-level domain (TLD) server (steps 4 and 5), and down to the
authority name server (ANS) for the requested zone (steps 6). Once the RDNS
receives (step 7) the authoritative mapping between the requested domain names
and its corresponding answer (e.g., IP address) from the authority, it forwards
the answer back to the stub resolver (step 8).

After a command and control (C&C) domain for a botnet is resolved, the
next step is a connection attempt (e.g., HTTP GET) from the stub to the C&C
server. Network administrators and security researchers often take over such
C&C domain names to change their DNS setting, effectively making them point
to a new location. This is commonly known as “sinkholing” a domain name [6]. If
example.com is sinkholed, the stub resolver will establish any future connections
to the sinkhole (step 9, Fig. 2) rather the adversary’s C&C server.

In addition to sinkholing a domain’s A/AAAA record, one can also sinkhole
the authority name server that serves it. For instance, example.com can be
sinkholed by changing the ANS to a server under the control of the sinkholing
party. Such an action would have the following result: during the DNS lookup
chain in Fig. 2, after steps 1 to 5, the recursive DNS server will ask the new
DNS sinkhole server controlled by the sinkholing party about the authoritative
answer for the domain name. Sinkholing both the domain name and the ANS
server is a common practice in the security community as it provides telemetry
from both the DNS resolution and network communication planes of the threat
being sinkholed.

Attackers often change C&C domains to avoid sinkholing. Domain name
Generation Algorithms (DGAs) [4,36] can be used to rapidly update the C&C
domains to remain agile against sinkholing efforts. A DGA can be implemented
client-side in the malware sample itself, or server-side in the C&C server. Intu-
itively, client-side DGAs can be reverse engineered from the malware sample.
Unfortunately, server-side DGAs are much more difficult to understand as reverse
engineering requires obtaining the C&C server code, which is often heavily pro-
tected by the author. However, monitoring traffic from infected hosts guarantees
the observation of C&C domain changes.

236 Y. Chen et al.

2.3 Observing Ad-abuse in Local Networks

To understand where and what an operator can monitor, we need to examine
the typical life cycle of a host already infected with malware. First, the malware
contacts the C&C server to get its commands. These vary from search engine syn-
dication abuse to traditional impression and click fraud. Next, the malware will
attempt to execute the commands by interacting with the ad ecosystem. Stealthy
malware carries out these tasks by blending in with users’ normal web browsing
activities in order to evade detection from anti-abuse components within the
ad ecosystem. Additionally, the malware often reports back to the botmaster
various byproducts from the monetization activities (e.g., user’s search history
during the impression or click event) in order to maintain “bookkeeping” for the
entire monetization campaign.

Typical egress monitoring functionality can be used to observe different
aspects of ad-abuse. Administrators who can inspect the egress of their networks
(points A, B and C in Fig. 2) are able to independently observe the interactions
over DNS and the C&C protocol between the infected hosts, the ad ecosystem,
and the ad-abuse infrastructure that supports the particular monetization cam-
paign. From the network’s point of view, this observation takes the form of DNS
resolutions (i.e., for the domain facilitating ad-abuse from point C in Fig. 2) and
any application-layer communications between local victims and the ad ecosys-
tem (point B in Fig. 2). We select observation points A and C in Fig. 2, so we can
mine sinkhole and DNS datasets. We should also note that HTTP connections
can be observed for the sinkholed domain names (point A in Fig. 2). The com-
munications to the sinkhole did not, at any point, reach the ad ecosystem. This
means that our efforts to study the botnet did not contribute any additional
abuse to the advertisers and other parts of the online advertising ecosystem.

3 Ad-abuse Analysis System

In this section we introduce the Ad-abuse Analysis System (A2S, Fig. 3) that
allows administrators to systematically analyze ad-abuse in their networks. The
goal of the system is to provide a detailed analysis of the Internet infrastructure
that supports ad-abuse. Such information helps administrators to independently
(1) estimate the level of ad-abuse that victims in the local networks contributed
to the entire ad ecosystem and (2) obtain a set of domain names and IPs that can
be used for network policy actions. We begin by providing an overview of A2S.

3.1 System Overview

The input of A2S is ground truth obtained by either external threat reports or
manual analysis of a particular threat (Step (1), Fig. 3). These are added to our
knowledge base for two modules: the DNS Ad-abuse Rate Module (Step (2)) and
the Spectral Expansion Module (Step (3)).

Financial Lower Bounds of Online Advertising Abuse 237

Fig. 3. Overview of the Ad-abuse analysis system (A2S).

The Passive DNS and Sinkhole datasets are the input datasets for A2S.
At a high-level, the sinkhole dataset is used to identify the specifics of the com-
mand and control communication for monetization purposes and the passive
DNS datasets are used to identify the botnet’s full infrastructure, and estimate
fraud costs at a larger scale. Collecting and handling these datasets are described
in more detail in Sect. 4.

The DNS Ad-abuse Rate Module estimates how many ad-abuse events
(i.e., C&C connections for impression or click fraud) are typically triggered after
a single DNS resolution request for any ad-abuse domain (Step (4)). Multiple
ad-abuse actions are often requested by each command received from the C&C
server. This can be achieved by “taking-over” a small portion of such ad-abuse
domain names for a period of time. Traditional sinkhole methods or commonly
used walled garden policy techniques [21] at the recursive DNS level and perime-
ter egress points of a network can help administrators achieve this goal.

The Spectral Expansion Module identifies a set of domain names that
have been used by the ad-abuse campaign historically. This can be done by com-
bining ground truth from external threat intelligence with large passive DNS
datasets (Step (5)). The passive DNS datasets enable the creation of graph
between the botnet’s victims and the Internet infrastructure that have been
contacted by the local botnet victims. Using different sliding temporal windows,
the spectral clustering of this graph enables operators to extend the ad-abuse
domains to a larger set that is highly related to the ground truth. The module
iteratively expands the set of ad-abuse domain names and improves our under-
standing behind the long-term ad-abuse operation (Step (3)). After expansion,
the module sanitizes extended ad-abuse domains using historical WHOIS infor-
mation in order to eliminate false positives.

The resulting output from both modules will be combined (Step (6)) to derive
the final report (Step (7)), which includes all domain names and IP addresses
that have been used to facilitate the ad-abuse campaign. The expanded set of
ad-abuse domains and their historical DNS lookup volumes are used to approxi-
mate a lower bound of financial loss caused by the particular ad-abuse campaign
against the ad ecosystem, and in particular the advertisers.

3.2 DNS Ad-abuse Rate Module

The DNS Ad-abuse Rate module quantifies the number of ad-abuse events that
are performed after a single DNS request. In this case, the ad-abuse events are

238 Y. Chen et al.

Fig. 4. Association matrix for domain, RDATA, and host.

the C&C connections issued for impression or click fraud. This allows accurate
projection of DNS lookup volumes to the number of total ad-abuse events. To
compute the rate, the module needs to analyze DNS queries and application-layer
HTTP requests to sinkholed domains that are part of the ad-abuse campaign.

We define the “DNS Ad-abuse Rate” as ζ = y/x, where x is the number of
domain name resolution requests for the sinkholed domains and y is the number
of application-layer communication attempts that reflect ad-abuse events. In
other words, the module needs to observe x domain name resolution requests
and y HTTP connections to the sinkhole, within a time window t, to safely
assume a ζ level of ad-abuse happened with each historical ad-abuse domain
lookup. Administrators can collect such sinkhole datasets either by acquiring
a commercial sinkhole data feed or by independently taking over the ad-abuse
domains, locally or globally.

Using ζ, the module can provide the system the ability to pivot from “short-
term” sinkhole observations to “long-term” passive DNS observations. More
specifically, we can project the DNS Ad-abuse Rate over many years of DNS
traffic related to the ad-abuse operation using such passive DNS datasets. We
now discuss how A2S mines these datasets.

3.3 Spectral Expansion Module

The Spectral Expansion module uses local network traffic to reason about the
domain names used for the ad-abuse operation, over a long time period. The
module accurately identifies additional domains based on original ground truth
knowledge of the ad-abuse operation, using a large passive DNS dataset. The
module derives a larger set of ad-abuse domains, DA, from the ground truth
domains, D$ using spectral methods on DNS datasets from the local network.
The spectral expansion algorithm iterates through the entire DNS query dataset.
Each iteration walks over DNS data for a given day, with the ultimate goal of
discovering new ad-abuse domains that will be added to the DA set.

We conservatively assume that unknown ad-abuse domains were queried by a
common group of infected hosts, or they pointed to the same Internet infrastruc-
ture that served the known ad-abuse domains over the same temporal window.
Each day, we create a tripartite graph that “links” candidate domain names,
their resolved IP addresses or Canonical Names (CNAMEs), and the network
hosts that queried them. The association matrix representing such a graph can

Financial Lower Bounds of Online Advertising Abuse 239

Algorithm 1. Spectral Expansion Algorithm
Require:δ

1: H ← {h|∃q ∈ DA : h queried q on day di}
2: D ← {q|∃h ∈ H : h queried q on di}
3: Rdata ← {ip|∃q ∈ D : q resolved to ip historically} ∪ {cname|∃q ∈ D : q resolved

to cname historically}
4: Apply thresholds α and β to the sets of Rdata and H, respectively, to remove noisy

IPs and hosts.
5: M ← relationship between D and (Rdata, H). Normalize by IPs, CNAMEs and

Hosts.
6: S ← M × MT

7: UΣV ∗ ← SV D(S)
8: clusters ← XMeans(U)
9: DA ← Analyze clusters.

10: i = i + δ, Go to line 1.

be seen in Fig. 4. Spectral decomposition of this matrix enables this module to
group candidate domain names that either share common Internet infrastructure
and/or local network hosts that queried them, via standard clustering methods.
Then we analyze the clusters to add domain names to DA. Domains are added if
they have explicit relationships with already known ad-abuse Internet infrastruc-
ture or share common infected hosts.

Algorithm 1 formally describes the spectral expansion process. Each iteration
of the algorithm processes the DNS resolutions of day, di, to update the ad-abuse
domain set, DA. The operator can set δ to determine how the algorithm iterates
through time.

Next we discuss the steps in detail for one iteration. Initially we assume
that DA = D$. The first four steps prepare necessary data for assembling the
association matrix between domains of interest and their resolved answers. In the
first step, the algorithm identifies all internal network hosts (H) querying any
known ad-abuse domain in DA. In the second step, the algorithm narrows down
potential unknown ad-abuse domains to all domains (D) queried by infected
hosts (H). In the third step, we obtain all historical IP addresses and CNAMEs
for domain names in D from the local passive DNS database, denoted as Rdata.

During the fourth step, the algorithm removes any “noisy IP addresses”
from Rdata and “noisy hosts” from H. IP addresses that are likely used for
parking or sinkholing and hosts that are probably a large gateway or part of
security research infrastructure can introduce noisy association between domains
that do not reflect ad-abuse behavior. The algorithm excludes such “noisy” IPs
and internal hosts by using two aggressive thresholds. Note that aggressively
removing domains will not affect our lower-bound computation, it will only make
our estimates safer.

The first threshold (α) denotes the number of related historical domain names
for an IP address from typical network traffic on the local network. We exclude
IPs with an unusually high number of domains. The second threshold (β) relates

240 Y. Chen et al.

to the cardinality of set D queried by an infected host. In this case, if the number
of domains queried by a host is over what we consider as typical for infected hosts
in the local network, we exclude it from the set H. The way we reason and select
the actual values of α and β will be discussed in Sect. 5.2.

In the fifth step, the algorithm builds an association matrix linking the
domains in D with the IP addresses and CNAMEs in Rdata and the internal
hosts in H that queried them (Fig. 4). The rows represent all the domains queried
by infected hosts, and the columns reflect historically resolved IPs/CNAMEs and
the hosts that queried the domains in the day. We compute two types of weights
to assemble the matrix. The first weight reflects the DNS lookup properties from
the domains in Rdata, with the respect of IPs and CNAMEs. Specifically, the
weights wij and w

′
ij reflect the timestamp for the first day (wij) and the last day

(w
′
ij) we observed domain name qi resolving to IPj . And the weights wik and

w
′
ik reflect the timestamp for the first and last day that domain name qi resolved

to CNAME CNk. The second weight reflects a binary indicator of whether the
particular domain name in Rdata was queried in day di by an internal host in H.
Specifically, if host hostl queried domain qi on day di, the weight value wil equals
1; otherwise, wil equals 0. After the matrix has been assembled, the algorithm
will normalize by row (for each qi) the sum of “IP” values to one, the sum of
“CNAME” values to one, and the sum of “Host” values to one.

In step six the algorithm transforms the association matrix Mm×n to
its corresponding similarity matrix Sm×m. This matrix represents how simi-
lar domain name qi is to any other domain qj . During the seventh step, the
algorithm performs Singular Value Decomposition (SVD) on S, and obtains
UΣV ∗ = SV D(S). The first twenty left-singular vectors are kept for step eight,
which are clustered by XMeans [28].

Step nine analyzes the resulting clusters and finds new ad-abuse domain
names. This cluster characterization process propagates the existing labels from
ad-abuse domains in our knowledge base to unknown domains. The label prop-
agation rules are based on IP infrastructure overlap and querying host overlap
between domains. We discuss how we propagate labels based on cluster specific
thresholds in Sect. 5.2. The known ad-abuse domain names set DA is updated
with the newly discovered domains.

The tenth and final step of the algorithm restarts the algorithm from the
first step. Depending on the value δ set by the administrator, the algorithm
determines the day to check next; for δ equals to 1, the algorithm proceeds to
the next day, whereas −1 forces it to go backwards in time. This is very useful
when the original ground truth resides in the center of time for our network
observations. Taking advantage of the updated set DA, the system can identify
more ad-abuse domains. After reaching the last day of available data according
to the iterating direction specified by δ, the algorithm stops.

Finally, the module sanitizes the derived DA to exclude mistakenly charac-
terized ad-abuse domains. We extract email addresses and name servers from
WHOIS for domains in DA, and compare these with known emails and name
servers used for the domains in D$. If either email or name server matches, the

Financial Lower Bounds of Online Advertising Abuse 241

newly discovered domain is kept in DA. Otherwise, we exclude the domain for
financial analysis. Thus, the derived DA will be used to estimate conservative
lower bounds of ad-abuse in the local network.

3.4 Reports on Ad-abuse and Financial Models

Outputs from the DNS Ad-abuse Rate and Spectral Expansion Modules are
combined with further analysis of pDNS-DB to generate two reports. The first
report describes the network infrastructure used to facilitate the ad-abuse, using
historical IP addresses derived from the extended ad-abuse domains DA. These
domains, along with the DNS Ad-abuse Rate and the daily DNS lookup volumes,
will help generate the second report that estimates the daily and overall financial
impact of ad-abuse to the online advertising ecosystem.

Our financial model to calculate the lower bound of abuse M to the adver-
tisers is:

Mimpression =
∑

i

ζ ∗ Ri ∗ (pim ∗ μim

1000
∗ CPM) (1)

For each day i, advertisers’ loss is calculated based on the number of DNS
requests Ri to d ∈ DA observed in the local network. ζ ∗ Ri reflects the total
number of ad-abuse HTTP connections for C&C purposes. We consider the
connections in ζ ∗Ri that result into the pclk component, which reflects the per-
centage of HTTP connections that corresponds to impression fraud communica-
tions. Since each connection may contain multiple impressions, μim represents
the multiplicative factor necessary for the model to derive the total number of
impressions. The number of thousand impressions multiplied by the CPM (cost-
per-thousand impressions) allows us to calculate the financial loss from the fake
impressions.

Using model Mimpression we assume that smart pricing policies were perfect
across the entire ecosystem and no click fraud was successful at any point in the
lifetime of the botnet operation, whereas the attackers were able to monetize
fraudulent impressions from infected hosts. This assumption is realistic since
detecting impression fraud has been extremely challenging to date [31,33].

4 Dataset Collection

To increase the situational awareness behind the problem of long-term ad abuse,
we chose to analyze the ad-abuse component of the TDSS/TDL4 botnet, which
uses a server-side DGA to generate its C&C domains. We describe the collected
datasets in this section.

4.1 Sinkhole Datasets

We obtained sinkhole DNS and HTTP traces for the ad-abuse component of
TDSS/TDL4 from two security companies. The datasets span over 10 months.
All domain names that were sinkholed had a zero time-to-live (TTL) setting,

242 Y. Chen et al.

Table 1. Summary of datasets.

Date range Size Records (millions)

DNS Sinkhole 8/1/2012–5/31/2013 6.9 G 565

HTTP Sinkhole 8/1/2012–5/31/2013 248.6 G 919

NXDOMAIN 6/27/2010–9/15/2014 133.5 G 13,557

pDNS-DB 1/1/2011–11/6/2014 17.9 T 10,209

which prevented caching at the recursive DNS server level, forcing it to contact
the DNS sinkhole server for every lookup. Moreover, the HTTP sinkhole returned
“HTTP 200 OK” answers back to the victims with no content. That is, the
sinkhole administrator did not actively engage in ad-abuse (Table 1).

In order to quantify the DNS Ad-abuse Rate (Sect. 3.2), we need to under-
stand the type of HTTP connections in the datasets. TDSS/TDL4 employs two
C&C protocols to facilitate its ad-abuse operation. Both protocols were present
in the HTTP datasets we obtained. The first protocol, “Protocol 1”, is the pri-
mary mechanism through which the botnet performs impression fraud. This is
achieved via an HTTP GET request to the active C&C, which will reply back
with a set of advertisement URLs used for impression fraud. Among other infor-
mation, Protocol 1 also reports the version of the malware behind the infection
and a unique identifier for each victim, namely bid. All these observations are
in-line with data collected and analyzed by other security researchers [26,29].
The second protocol, “Protocol 2”, is used to report back information regard-
ing search terms from the victim’s browser, the publisher’s website where ads
have been replaced and clicked on, and the original ad that was replaced from
the publisher’s website. A semantically similar behavior of TDSS/TDL4 botnet
is identified by Vacha et al. [10], where fraudulent clicks were only generated
when a user engaged in real clicks. In order to protect infected users’ privacy,
the search terms were given to us in an aggregated form such that they cannot
be mapped to the individual ID and the infected IP.

In total, we observed 565 million unique DNS resolution requests. 544 mil-
lion were for Protocol 1 and 21 million were for Protocol 2 connections. This
traffic was produced by 47,525 different recursive DNS servers (RDNS) around
the world. Hosts with 66,669 unique identifiers (ID) contacted the HTTP sink-
hole, using 615,926 different IP addresses. They made 343 million unique HTTP
GET requests using properly formatted base64 encoded URLs. 919 million con-
nections were recorded, only 0.87 % of which reflected Protocol 2 communica-
tion, while the rest 99.13% reflected Protocol 1 connections. Thus, we assigned
pim = 99.13% for Eq. (1).

4.2 Passive DNS Datasets

We gathered two types of DNS datasets from a large US ISP that represents
approximately 30 % of DNS traffic in the US. The first is the NXDOMAIN
dataset, which covers over four years of DNS queries from clients of the ISP

Financial Lower Bounds of Online Advertising Abuse 243

Fig. 5. Top: The line plot shows victim population of the botnet sample that contacted
the sinkhole infrastructure, with y-axis on the left. The area plot shows the number of
sinkholed domains with y-axis on the right. Bottom: Percent change.

for domains that did not resolve at the time of query. The second dataset
we obtained is a historical passive DNS database (pDNS-DB), from the same
ISP, containing DNS resource records (RR) [23,24] collected from 1/1/2011 to
11/5/2014.

The queries from the NXDOMAIN dataset are DNS answers with a return
code of “NXDOMAIN”. The dataset was collected below the recursive DNS
servers, effectively capturing the queries from hosts to the recursive DNS servers.
Throughout the four-year period, we gained access to 1,295 days of NXDOMAIN
data (as the DNS query dataset) from the ISP sensors.

The pDNS-DB dataset contains over 10 billion RRs. Each RR provides
resolved data and the daily lookup volume of a queried domain name. The
pDNS-DB was collected from 24 geographically diverse ISP collection points
in the United States.

5 Analysis and Measurements

In this section, we discuss how we compute the DNS Ad-abuse Rate, and how
we propagate ad-abuse domains from ground truth D$ to the larger set DA.

5.1 Computing the DNS Ad-abuse Rate

As a sanity check, we measure the average infection duration, the victim popu-
lation, and the geographic distribution of sinkholed infections.

Figure 6a shows the cumulative distribution function of the average infection
duration based on IP address and victim ID, a 40-byte long hexadecimal value
that was tagged by TDSS/TDL4 malware as bid in Protocol 1 communications.
The results show a relatively longer infection lifetime for the victims based on
the unique identifier than using the victim’s IP address. This is reasonable due
to the complexity of network egress points, Network Address Translation (NAT)
points, and DHCP churn rates [32], as other researchers have already noted.

Second, we measured the victim population coverage of the sinkhole traf-
fic, using the number of unique daily IDs that contacted the sinkhole. Figure 5

244 Y. Chen et al.

illustrates how the number of daily victims changes over time and the percent-
age of change [16] for the botnet observed from the sinkhole data. In the first
two months of the datasets, the number of infected IDs reached a maximum of
almost 30,000. After a sudden 6.7 % drop in October, the number of IDs seen
daily in our datasets decreased, until the middle of November 2012. The decrease
indicates that the malware changed C&C domains from sinkholed domains to
others. At that point the sinkhole administrators “refreshed” the sinkhole by
adding six new domain names for the same botnet. This caused an increase in
the number of IDs that were found in the sinkhole datasets. A large number
of old IDs reappeared in the sinkhole data after the addition of these six new
domains. This observation is expected, as the server side DGA churns through
new domains and old infections catch up with the new sinkholed domain names.
After a peak of almost 8.9 % increase at the end of 2012, the daily victim pop-
ulation remained around 23,000 until the middle of February 2013. Afterwards,
the size decreased by a factor of almost 2 % daily.

Finally, we examined the geographic distribution of the infected population.
As our passive DNS datasets were collected at a US ISP, we want to make sure
that the sinkhole dataset contains a reasonable size of victims located in the US.
We identified the corresponding CIDR and Autonomous System Number (ASN)
for each victim IP address [22], and used historical data from Regional Internet
Registries (RIR) to find the country codes for the identified ASNs. Almost half
of the sinkhole traffic originates from victims in the US (46.77%). In total,
174 countries were affected, however, only 15,802 infections resided in countries
outside the top six countries (US, EU, DE, CA, FR, UK). These results show
that TDSS/TDL4 traffic in our pDNS-DB dataset will allow us to study less
than 15% of the entire botnet. This is due to the fact that the passive DNS
dataset is collected from an ISP in the United States, which represents 30% of
the overall DNS traffic in the US.

Computing the DNS Ad-abuse Rate ζ: Since our pDNS-DB dataset was
obtained from a US ISP, we calculated the DNS Ad-abuse Rate ζUSISP based
on the sinkhole traffic that reflected victims in the particular ISP. This resulted
in 9,664 unique victim IDs, 28,779,830 DNS connections, 154,634,443 HTTP
Protocol 1 connections and 1,159,027 HTTP Protocol 2 connections over an
observation window of 10 months. The mean for the entire ISP as ζUSISP

mean =
27.62. Which we used as the final DNS Ad-abuse Rate for our experiments. As
discussed in Sect. 4.1, DNS caching will not bias our rate, since the sinkhole
administrators had set a TTL equal to zero for the domains they sinkholed.

5.2 Spectral Analysis

We used Algorithm 1 described in Sect. 3.3 to derive ad-abuse domains set DA

starting from our limited ground truth D$. In this section we discuss the oper-
ational challenges we faced while running this algorithm.

Financial Lower Bounds of Online Advertising Abuse 245

Assembling the Association Matrix. Before we constructed the association
matrix (see Fig. 4), we removed noisy IPs and internal hosts from the sets Rdata
and H.

Threshold (α) for Noisy IPs: Figure 6b shows the number of histori-
cal domain names per IP address, which were manually labeled from the
TDSS/TDL4 ad-abuse domains in D$. We observed that under 40 % of con-
firmed TDSS/TDL4 C&C IPs historically have fewer than 1,000 domains point-
ing to them. The IPs having more historical domains are likely used for parking
or sinkholing. We conducted a one-time manual analysis of a set of IP addresses
around the limit of 1,000 related historical domains. The analysis revealed that
considering IPs with more than 1,000 historical domains as noisy is an aggressive
threshold. However, since we are estimating the lower-bound of TDSS/TDL4 ad-
abuse operation, falsely removing IPs that were not used for parking or sinkhol-
ing will only help our lower bounds goal. That is, such an aggressive threshold
will only remove links within the association matrix that would have allowed us
to discover additional ad-abuse domains to be added to the set DA.

Threshold (β) for Noisy Hosts: Figure 6c shows the cumulative distribution
of the number of domains queried by infected hosts in a day. Note that the x-axis
is in log scale and the y-axis starts at 90 %. The plot shows that only 0.7 % of
infected hosts queried more than 1,000 domain names in a day. These hosts are
likely gateways or research infrastructure that cannot link known and unknown
ad-abuse domains reliably during the clustering process. Thus, we used the 1,000
mark as threshold. This means that any host that queried more than 1,000
domains in a day was instantly excluded. This should take care any network
address translation (NAT) points and complex infrastructure within the ISP.
Again, this is an aggressive threshold, which rather forces us to underestimate
the infected hosts (and yield again closer to lower bounds).

Fig. 6. a: Cumulative distribution function (CDF) for the infection duration based on
the infection ID and IP address. b: CDF for number of related historical domain names
per IP from initial ground truth (D$). c: CDF for the number of domains queried by
internal hosts (H).

246 Y. Chen et al.

Table 2. Categories of newly detected ad-abuse domains with obfuscated email
addresses.

Detected Labeled Lookup Vol. (millions)

Shared Email Address

email1@nhjhajsukk.cc 216 12 425

email2@aol.com 73 63 205

email3@dikloren.biz 65 9 144

email4@rocketmail.com 112 9 64

email5@kraniccky.com 6 3 57

email6@u7.eu 0 171 261

email7@gmx.com 0 20 28

Shared TDSS Name Server 6 - 4

No Active IP Address

Sinkholed 64 9

Two TDSS Parking Services 25 -

Never Registered 268 -

Non TDSS/TDL4 3 -

Total 838 296

Using these thresholds, we constructed the sparse matrix, performed Singular
Value Decomposition, and extracted the first 20 left-singular vectors, which we
used to cluster the domains in the matrix using XMeans [28].

Cluster Analysis. After clustering, we labeled ad-abuse domains based on IP
infrastructure and infected hosts.

IP Infrastructure: From clusters containing known ad-abuse domains, we label
unknown domains as ad-abuse domains if they share the same IP infrastructure.

Internal (Infected) Hosts: Since TDSS/TDL4 uses a server-side DGA,
unknown C&C domains can also be nonexistent domains that never resolve.
Therefore, we cannot rely solely on infrastructure to derive the set of domains
DA. Our intuition is that, if a NXDOMAIN is queried by a large percentage of
known infected hosts, it is likely to be an ad-abuse domain. We use an aggres-
sive filtering process to find such domains based on internal host overlaps. The
internal host overlap was the percentage of the infected hosts that queried the
domain names. We used an aggressive cutoff to on keep NXDOMAINs with the
strongest 5 % host overlaps, which is in line with our lower-bound goal.

Correctness of Spectral Expansion Module. We bootstrapped the spectral
expansion process with 296 TDSS/TDL4 domains recovered from various public
resources. After operating Algorithm 1 2,590 times, going over every day of the
NXDOMAIN dataset twice, we discovered 838 new TDSS/TDL4 domains. This
means that the total number of TDSS/TDL4 domain names in the set DA

Financial Lower Bounds of Online Advertising Abuse 247

was 1,134. Next, the sanitization process reduced DA to 765 domains based on
historical WHOIS (WHOWAS) information from DomainTools. These domains
match known TDSS/TDL4 domain registration email addresses or name servers,
as shown in Table 2. The lookup volume for these domains will be used for the
financial analysis in Sect. 6.2.

We manually analyzed the rest of the domains, and found that only three
domains were mistakenly added to the set DA by the spectral expansion module,
while the rest were related to ad-abuse. The category “No Active IP Address” in
Table 2 contains domains that only resolved to known sinkholes, parking IPs, and
domains that were never registered. “Sinkholed” represents domains sinkholed
by researchers. “Two TDSS Parking Services” refers to domains pointed to the
same two parking services used by known TDSS domains during the same time.
Lastly, 268 of newly detected domains were never registered. However, based
on the large host overlap of these domains with known TDSS domains and
name string characteristics, we concluded that these domains were related to
the TDSS/TDL4 botnet.

6 Ad-abuse Reports

This section discusses the two reports that summarize the network infrastructure
properties behind the ad-abuse component of TDSS/TDL4 and our estimation
around financial impact that the botnet brought to the advertisers over four
years.

6.1 C&C Infrastructure

Using the 1,131 domains in set DA, we analyzed the network infrastructure used
by the ad-abuse component of the botnet. We separated IP addresses used by
these domains into parking, sinkhole, and active categories. Besides well-known
parking and sinkholing IPs, we consider IPs with more than 1,000 historical
domains to be parking IPs because of the α threshold discussed in Sect. 5.2. All
other IP addresses were considered to be active. Figure 7 shows the number of
domains resolving into each category over the four year observation period. In
total, at least 863 domains were registered and the botnet used 228 IP addresses.
These IP addresses were used for two years and ten months, until 10/15/2013.
These domains were mostly active before the middle of 2012. We should note
that during July 2012, a number of researchers started sinkholing some of the
TDSS/TDL4 domains. This perhaps forced the botmasters to change monetiza-
tion tactics as security researchers were investigating the ad-abuse component.

The botnet used a variety of hosting infrastructures to facilitate the abuse.
We obtained ASN information for 195 out of 228 total active IP addresses used
by the ad-abuse C&C. They are under 49 different Autonomous System Numbers
(ASN), 59 CIDRs and 24 countries. Table 3a shows the distribution of the servers
around the globe, used by TDSS/TDL4 domains.

248 Y. Chen et al.

Fig. 7. Evolution of TDSS/TDL4 domains and their IP infrastructure. The number of
active domain names daily increased from 2010, and reached the maximum (333) on
4/9/2012. None of the domains resolved to any active IP after 10/15/2013.

Fig. 8. Top: Daily advertisers’ money loss caused by the ad-abuse component of
TDSS/TDL4. Bottom: Cumulative financial loss for advertisers. Less than 15% of the
botnet population have been involved in ad fraud that cost at least US$346 million.

6.2 Financial Analysis

We used Eq. (1) to estimate the advertisers’ financial loss. For our local network
(the US ISP) we calculated the DNS Ad-abuse Rate to be ζ = 27.62 (Sect. 5.1)
and the percentage for impression fraud as pim = 99.13% (Sect. 4.1). We cal-
culated the daily number of DNS requests Ri to domains used for ad-abuse
that resolved to active IP addresses. This is an under-estimation since we used
aggressive thresholds to exclude potentially parked domains in our passive DNS
traces (as we discussed in Sect. 5.2). This resulted in 1.2 billion DNS requests
in total. μim denotes the number of ads returned by each Protocol 1 request
(which relates to impression fraud activity). During our analysis, we identified
instances where as many as 50 ads were returned from the C&C after each Pro-
tocol 1 request. We never saw fewer than 5 ads per request according to network
traces of malware execution reported by [26]. Therefore, we used μim = 5 for
our lower bound estimate.

Throughout the lifetime of TDSS/TDL4, we estimate levels of ad-abuse on
the order of at least US$346 million using Eq. (1). This lower bound is only based
on the DNS datasets from the American ISP network to which we had access.
Figure 8 shows the distribution of the financial loss caused by TDSS/TDL4 to
advertisers. The daily financial loss is shown at the top of the figure, and the
cumulative financial loss is at the bottom. We observed 1,018 days of active
ad-abuse C&C DNS communications, caused by victims in the American ISP.

Financial Lower Bounds of Online Advertising Abuse 249

Table 3. a: The top 8 countries where C&C infrastructure has been identified. They
count towards 71 % of the IP addresses. b: Financial break down approximation among
the entities of the online ad ecosystem, in millions of dollars.

Country IP Addresses %
RU 42 18.42
US 34 14.91
LV 20 8.77
PT 19 8.33
DE 18 7.90
EU 17 7.46
NL 13 5.70
Other (17) 32 14.04
Unknown 33 14.47
Total 228 100.00

Money
Stakeholders (millions)
Advertisers’ Capital 346.00
DSP 45% 155.70
Ad Exchange (inbound) 8% 27.68
Ad Exchange (outbound) 8% 27.68
Ad Networks 32% 110.72
Ad Server/Publisher (Affiliates) 7% 24.22

(b) Financial Break Down

This resulted to an average of US$340 thousand lost daily loss for advertisers.
However, before the first sinkholed domain was registered on 7/11/2012, the
daily estimate was on average US$616 thousand and peaked to US$1.97 million,
on 1/7/2012. After the sinkholing action, the financial impact to the advertisers
drastically decreased as the plateau of the bottom plot in Fig. 8 shows.

We strongly believe that other networks in the world were affected by this
threat based on our sinkhole analysis described in Sect. 5.1. The victims in the
entire ISP roughly accounted for 30 % of the total botnet population in the US.
The infected hosts in the US were less than 50 % of the entire botnet population
in the world. Thus, our lower bounds may only conservatively estimate loss
caused by less than 15 % of the entire botnet population.

Cost for Operating the TDSS/TDL4 Infrastructure: The ad-abuse host-
ing infrastructure was located in 228 different IPs. Without knowing the hosting
plans actually used by the botmasters, we have to consider an average cost plan
for each service provider to approximate the cost of running the TDSS/TDL4
botnet. Using manual analysis, we conclude that the average minimum (i.e., the
botmaster is using the least expensive plan) cost is approximately US $33.62 per
month, whereas the average maximum cost is almost US $444 per month. We
assume infrastructure is used around the clock. For IPs that we could not link to
a particular AS, we assume a flat rate. This rate corresponds to the median of
the observed prices around the world. Using this information, we conclude the
cost to operate the TDSS/TDL4 C&C infrastructure to be between US $44,000
and US $260,000 over four years.

Potential Financial Reward for the Botnet Operators/Affiliates: While
it is impossible to know for sure what the exact reward may have been, we tried
to approximate the revenue that went to the affiliate TDSS/TDL4 entities. To
derive the stakeholder and the break-down described in Table 3b we consulted the
Chief Technology Officer (CTO) of a large Demand Service Platform company.
According to his expert opinion, these are the most typical breakdowns to various
entities in the ad ecosystem. As we can see from Table 3b, the potential financial
reward for the affiliates is in the order of tens of millions of dollars.

250 Y. Chen et al.

The botmasters and affiliates are likely getting paid as publishers or traffic
resellers. In this role, the estimated revenue is 7 % of money spent by advertisers,
US$24.22 million. Our estimates are in-line with investigations from law enforce-
ment on the amount stolen by fraudulent advertisement campaigns [11,18]. For
example, law enforcement agencies recently estimated a minimum level of finan-
cial gains on the order of US $14 million dollars for the botmasters behind the
DNSChanger botnet [35]. Note that DNSChanger was a significantly smaller
botnet that operated over less than half the time period that TDSS/TDL4 was
active.

7 Discussion

Our study aims to increase the situation awareness behind botnets that employ
sophisticated techniques to abuse the online ad ecosystem and hopefully motivate
further research in the space of ad-abuse. In this section we will discuss the most
important challenges we faced while analyzing TDSS/TDL4.

7.1 Ground Truth Behind the Financial Loss

The botnets that interact with and monetize the ad ecosystem typically do not
target a single entity (i.e., Google, Facebook, or Microsoft etc.). Due to the
secrecy within the ecosystem, it is very hard to gather all the datasets from
different entities necessary to verify whether the abuse levels we estimated are
actually what the advertisers lost. For example, however unlikely it may be,
we cannot exclude the possibility that some percentage of the impression fraud
could have been detected and stopped by some entities in the ad ecosystem.
Unfortunately, we cannot determine how much impression fraud, if any, was
blocked, nor by whom. Thus, we had to rely on our own assumptions to estimate
the lower bound. However, even in the scenario where one entity had perfect
defenses, we cannot reliably assume it to be true for all the other entities in
the ad ecosystem. While we contacted several entities in the ad ecosystem, they
remain secretive about the methodology and tools that they use to detect fraud.
Even if a small percentage (i.e., 30 %) of the reported fraudulent traffic evades
detection, the losses are still significant.

7.2 Ground Truth Behind TDSS/TDL4

Our goal was to get ground truth around the way the TDSS/TDL4 botnet oper-
ates in the wild without contributing to online abuse. To that extent, we decided
to gather the ground truth from external reports, and also from analyzing the
sinkholing datasets of DGA domain names that supported the monetization
module in TDSS/TDL4. Observation of DNS Ad-abuse Rate was made passively
from actual infected hosts around the world. The TDSS/TDL4 victims were noti-
fied behind this sinkholing operation, and the sinkhole data were released to the
operational community and several entities in the online ad ecosystem.

Financial Lower Bounds of Online Advertising Abuse 251

7.3 Smart Pricing Data for Impressions and Clicks

We assumed that perfect smart pricing for CPC was successfully used across
the ad ecosystem, whereas all fraudulent impressions impacted the advertisers.
However, attackers most likely can still profit from fraudulent clicks after smart
pricing. For instance, recent work shows the actual CPC charged after smart
pricing was between 10 to 30 cents for ZeroAccess [27]. Smart pricing is hard
since not all conversion rates can be effectively measured. Not all conversion
actions were logged and shared between advertisers and ad networks/exchanges.
The fact that TDSS/TDL4 does both impression and click fraud implies that
the monetization technique tried to avoid detection by generating positive click-
through rates.

We chose to account for all the impressions since we do not have knowl-
edge about how impression fraud was actually handled by the ad networks and
ad exchanges. Although new standard of Ad Viewability has been announced
and deployed to prevent advertisers from spending money on invalid ad impres-
sions [8,15]. However, since there is almost no documentation about how impres-
sion fraud was dealt with by ad networks and ad exchanges when TDSS/TDL4
was active (before October 2013), it is not unreasonable to assume that a signif-
icant portion (if not all) of the impressions most likely went undetected.

8 Related Work

Operating a sinkhole is a safe, passive way to collect data regarding network con-
nections between malware and the servers they try to contact. Malware needs
to find a way to contact its Command and Control (C&C) server [7], which can-
not always be done through P2P protocols, since network operators often block
them. In the case of TDSS/TDL4, the malware uses P2P as an alternative com-
munication method [30]. Data collected from a sinkhole operation can be used
to measure the network behavior of a botnet. For example, [32] used sinkhole to
uniquely identify infected hosts.

Studies on ad abuse often focus on the ad network’s perspective [10,19].
Daswani et al. [9] showed how the value chain of ad-abuse operates online through
the “Clickbot.A” botnet of 100,000 hosts. Springborn et al. [31] studied pay-
per-view networks and described how millions of dollars are lost by fraudulent
impressions annually. Moreover, Stone-Gross et al. [33], studied abuse from both
a botnet’s and ad network’s point of view, showing the large amount of money
the botnet can make. These works carefully focus on specific parts of the ad
ecosystem, while ours characterizes overall abuse impact by using edge-based
metrics.

The work most similar to ours is the recent ZeroAccess study [27] that esti-
mated daily advertising losses caused by the botnet by analyzing one week of click
fraud activities during a takedown against the ad-abuse component of ZeroAc-
cess, mainly from the view of a single ad network. While the ZeroAccess study
was novel, it did not help large network administrators independently measure

252 Y. Chen et al.

the levels of ad-abuse originating from their network environments. Our sys-
tem addresses these limitations from previous studies by studying the ad-abuse
problem passively at the edge of the Internet over a multi-year time period.

9 Conclusion

This study aims to quantify the scale of online advertising abuse. To achieve this
we present a novel system, Ad-abuse Analysis System (A2S), able to conserv-
atively estimate the long-term damage of the monetization component botnets
use against the ad ecosystem. Using A2S we studied one of the most noto-
rious botnets that fraudulently monetized the ad ecosystem for four years:
TDSS/TDL4. Using passive DNS and sinkhole observations, we were able to
estimate TDSS/TDL4’s lower bounds for its ad-abuse: no more than 15 % of
botnet victims were responsible for at least US$346 million in financial loss to
online advertisers since 2010. This includes a peak average daily loss of almost
US $2 million at the height of the botnet’s ad-abuse activity in early 2012. Over-
all, these figures reveal the extent of the abuse that botnets could bring to the
advertisers over time, making ad-abuse a low risk and high reward monetization
method for botmasters. The estimated lower bounds suggests the importance of
additional research efforts in the ways botnets are being monetized.

Acknowledgements. The authors would like to thank Dr. Brett Stone-Gross and Dag
Liodden for their comments and feedback. This material is based upon work supported
in part by the US Department of Commerce under grant no. 2106DEK and Georgia
Tech Research Institute (GTRI) IRAD grant no. 21043091. Any opinions, findings, and
conclusions or recommendations expressed in this material are those of the authors and
do not necessarily reflect the views of the US Department of Commerce nor GTRI.

References

1. Click-Fraud Attacks Being Used to Deliver More Sinister Threats. http://
www.tripwire.com/state-of-security/security-data-protection/cyber-security/
click-fraud-attacks-being-used-to-deliver-more-sinister-threats/

2. DNS Changer Remediation Study. https://www.m3aawg.org/sites/default/files/
document/GeorgiaTech DNSChanger Study-2013-02-19.pdf

3. TDSS/TDL4 Domain Names. http://www.cc.gatech.edu/∼ychen462/files/misc/
tdssdomains.pdf

4. Antonakakis, M., Demar, J., Stevens, K., Dagon, D.: Unveiling the Network Crim-
inal Infrastructure of TDSS/TDL4 DGAv14: A case study on a new TDSS/TDL4
variant. Technical report, Damballa Inc., Georgia Institute of Technology (GTISC)
(2012)

5. Blizard, T., Livic, N.: Click-fraud monetizing malware: a survey and case study.
In: 2012 7th International Conference on Malicious and Unwanted Software (MAL-
WARE), pp. 67–72. IEEE (2012)

6. Bruneau, G.: DNS sinkhole (2010). http://www.sans.org/reading room/white
papers/dns/dns-sinkhole 33523

http://www.tripwire.com/state-of-security/security-data-protection/cyber-security/click-fraud-attacks-being-used-to-deliver-more-sinister-threats/
http://www.tripwire.com/state-of-security/security-data-protection/cyber-security/click-fraud-attacks-being-used-to-deliver-more-sinister-threats/
http://www.tripwire.com/state-of-security/security-data-protection/cyber-security/click-fraud-attacks-being-used-to-deliver-more-sinister-threats/
https://www.m3aawg.org/sites/default/files/document/GeorgiaTech_DNSChanger_Study-2013-02-19.pdf
https://www.m3aawg.org/sites/default/files/document/GeorgiaTech_DNSChanger_Study-2013-02-19.pdf
http://www.cc.gatech.edu/~ychen462/files/misc/tdssdomains.pdf
http://www.cc.gatech.edu/~ychen462/files/misc/tdssdomains.pdf
http://www.sans.org/reading_room/whitepapers/dns/dns-sinkhole_33523
http://www.sans.org/reading_room/whitepapers/dns/dns-sinkhole_33523

Financial Lower Bounds of Online Advertising Abuse 253

7. Bruneau, G., Wanner, R.: DNS Sinkhole. Technical report, SANS Institute InfoSec
Reading Room, August 2010. http://www.sans.org/reading-room/whitepapers/
dns/dns-sinkhole-33523

8. Bureau, I.A.: Viewability Has Arrived: What You Need To Know To See Through
This Sea Change (2014). http://www.iab.net/iablog/2014/03/viewability-has-
arrived-what-you-need-to-know-to-see-through-this-sea-change.html

9. Daswani, N., Stoppelman, M.: The anatomy of Clickbot.A. In: Proceedings of the
First Conference on First Workshop on Hot Topics in Understanding Botnets, p.
11. USENIX Association (2007)

10. Dave, V., Guha, S., Zhang, Y.: Measuring and fingerprinting click-spam in ad
networks. In: Proceedings of the ACM SIGCOMM 2012 Conference on Applica-
tions, Technologies, Architectures, and Protocols for Computer Communication,
pp. 175–186. ACM (2012)

11. FBI New York Field Office: Defendant Charged In Massive Internet Fraud Scheme
Extradited From Estonia Appeared In Manhattan Federal Court, April 2012.
http://tinyurl.com/7mfrtqs

12. Google: About smart pricing. https://support.google.com/adwords/answer/2604
607?hl=en

13. Google: Ad traffic quality resource center. http://www.google.com/ads/adtraffic
quality/

14. Google: How Google uses conversion data. https://support.google.com/adwords/
answer/93148?hl=en

15. Google: Just in time for the holidays – viewability across the google display net-
work, December 2013. http://adwords.blogspot.co.uk/2013/12/just-in-time-for-
holidays-viewability.html

16. Hyndman, R.J.: Transforming data with zeros (2010). http://robjhyndman.com/
hyndsight/transformations/

17. Kelleher, T.: How Microsoft advertising helps protect advertisers from invalid
traffic. http://advertise.bingads.microsoft.com/en-us/blog/26235/how-microsoft-
advertising-helps-protect-advertisers-from-invalid-traffic

18. LawFuel(ed.): Massive Internet Fraud Nets Extradicted Estonian Defendant
at Least $14 Million, October 2014. http://www.lawfuel.com/massive-internet-
fraud-nets-extradicted-estonian-defendant-least-14-million

19. Li, Z., Zhang, K., Xie, Y., Yu, F., Wang, X.: Knowing your enemy: understanding
and detecting malicious web advertising. In: Proceedings of the 2012 ACM Con-
ference on Computer and Communications Security, pp. 674–686. ACM (2012)

20. Matrosov, A.: TDSS part 1 through 4 (2011). http://resources.infosecinstitute.
com/tdss4-part-1/

21. Messaging Anti-Abuse Working Group and others: MAAWG Best Practices for the
use of a Walled Garden, San Francisco, CA (2007)

22. Meyer, D., et al.: University of Oregon Route Views Project (2005)
23. Mockapetris, P.: Domain names - concepts and facilities (1987). http://www.ietf.

org/rfc/rfc1034.txt
24. Mockapetris, P.: Domain names - implementation and specification (1987). http://

www.ietf.org/rfc/rfc1035.txt
25. Neville, A.: Waledac reloaded: Trojan.rloader.b. (2013). http://www.symantec.

com/connect/blogs/waledac-reloaded-trojanrloaderb
26. Parkour, M.: Collection of pcap files from malware analysis (2013). http://

contagiodump.blogspot.com/2013/04/collection-of-pcap-files-from-malware.html

http://www.sans.org/reading-room/whitepapers/dns/dns-sinkhole-33523
http://www.sans.org/reading-room/whitepapers/dns/dns-sinkhole-33523
http://www.iab.net/iablog/2014/03/viewability-has-arrived-what-you-need-to-know-to-see-through-this-sea-change.html
http://www.iab.net/iablog/2014/03/viewability-has-arrived-what-you-need-to-know-to-see-through-this-sea-change.html
http://tinyurl.com/7mfrtqs
https://support.google.com/adwords/answer/2604607?hl=en
https://support.google.com/adwords/answer/2604607?hl=en
http://www.google.com/ads/adtrafficquality/
http://www.google.com/ads/adtrafficquality/
https://support.google.com/adwords/answer/93148?hl=en
https://support.google.com/adwords/answer/93148?hl=en
http://adwords.blogspot.co.uk/2013/12/just-in-time-for-holidays-viewability.html
http://adwords.blogspot.co.uk/2013/12/just-in-time-for-holidays-viewability.html
http://robjhyndman.com/hyndsight/transformations/
http://robjhyndman.com/hyndsight/transformations/
http://advertise.bingads.microsoft.com/en-us/blog/26235/how-microsoft-advertising-helps-protect-advertisers-from-invalid-traffic
http://advertise.bingads.microsoft.com/en-us/blog/26235/how-microsoft-advertising-helps-protect-advertisers-from-invalid-traffic
http://www.lawfuel.com/massive-internet-fraud-nets-extradicted-estonian-defendant-least-14-million
http://www.lawfuel.com/massive-internet-fraud-nets-extradicted-estonian-defendant-least-14-million
http://resources.infosecinstitute.com/tdss4-part-1/
http://resources.infosecinstitute.com/tdss4-part-1/
http://www.ietf.org/rfc/rfc1034.txt
http://www.ietf.org/rfc/rfc1034.txt
http://www.ietf.org/rfc/rfc1035.txt
http://www.ietf.org/rfc/rfc1035.txt
http://www.symantec.com/connect/blogs/waledac-reloaded-trojanrloaderb
http://www.symantec.com/connect/blogs/waledac-reloaded-trojanrloaderb
http://contagiodump.blogspot.com/2013/04/collection-of-pcap-files-from-malware.html
http://contagiodump.blogspot.com/2013/04/collection-of-pcap-files-from-malware.html

254 Y. Chen et al.

27. Pearce, P., Dave, V., Grier, C., Levchenko, K., Guha, S., McCoy, D., Paxson, V.,
Savage, S., Voelker, G.M.: Characterizing large-scale click fraud in zeroaccess. In:
Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communica-
tions Security, CCS 2014, NY, USA, pp. 141–152. ACM, New York (2014). http://
doi.acm.org/10.1145/2660267.2660369

28. Pelleg, D., Moore, A.W.: X-means: extending k-means with efficient estimation of
the number of clusters. In: Proceedings of the Seventeenth International Conference
on Machine Learning, ICML 2000, Morgan Kaufmann Publishers Inc., San Fran-
cisco, CA, USA, pp. 727–734 (2000). http://dl.acm.org/citation.cfm?id=645529.
657808

29. Rodionov, E., Matrosov, A.: The evolution of TDL: Conquering x64. ESET, June
2011

30. Rossow, C., Andriesse, D., Werner, T., Stone-Gross, B., Plohmann, D., Dietrich,
C.J., Bos, H.: Sok: P2pwned-modeling and evaluating the resilience of peer-to-peer
botnets. In: 2013 IEEE Symposium on Security and Privacy (SP), pp. 97–111.
IEEE (2013)

31. Springborn, K., Barford, P.: Impression fraud in online advertising via pay-per-view
networks. In: Proceedings of the 22nd USENIX Security Symposium (Washington,
DC). Citeseer (2013)

32. Stone-Gross, B., Cova, M., Cavallaro, L., Gilbert, B., Szydlowski, M., Kemmerer,
R., Kruegel, C., Vigna, G.: Your botnet is my botnet: analysis of a botnet takeover.
In: Proceedings of the 16th ACM Conference on Computer and Communications
Security, pp. 635–647. ACM (2009)

33. Stone-Gross, B., Stevens, R., Zarras, A., Kemmerer, R., Kruegel, C., Vigna, G.:
Understanding fraudulent activities in online AD exchanges. In: Proceedings of
the 2011 ACM SIGCOMM Conference on Internet Measurement Conference, pp.
279–294. ACM (2011)

34. Tuzhilin, A.: The lane’s gifts v. google report. Official Google Blog: Findings on
invalid clicks, posted, pp. 1–47 (2006)

35. United States District Court: Sealed Indictment, October 2011. http://www.wired.
com/images blogs/threatlevel/2011/11/Tsastsin-et-al.-Indictment.pdf

36. Wyke, J.: ZeroAccess (2012). http://sophosnews.files.wordpress.com/2012/04/
zeroaccess2.pdf

37. Zhang, Q., Ristenpart, T., Savage, S., Voelker, G.M.: Got traffic?: an evaluation of
click traffic providers. In: Proceedings of the 2011 Joint WICOW/AIRWeb Work-
shop on Web Quality, pp. 19–26. ACM (2011)

http://doi.acm.org/10.1145/2660267.2660369
http://doi.acm.org/10.1145/2660267.2660369
http://dl.acm.org/citation.cfm?id=645529.657808
http://dl.acm.org/citation.cfm?id=645529.657808
http://www.wired.com/images_blogs/threatlevel/2011/11/Tsastsin-et-al.-Indictment.pdf
http://www.wired.com/images_blogs/threatlevel/2011/11/Tsastsin-et-al.-Indictment.pdf
http://sophosnews.files.wordpress.com/2012/04/zeroaccess2.pdf
http://sophosnews.files.wordpress.com/2012/04/zeroaccess2.pdf

Google Dorks: Analysis, Creation,
and New Defenses

Flavio Toffalini1(B), Maurizio Abbà2, Damiano Carra1, and Davide Balzarotti3

1 University of Verona, Verona, Italy
flavio.toffalini@gmail.com, damiano.carra@univr.it

2 LastLine, London, UK
mabba@lastline.com

3 Eurecom, Sophia-Antipolis, France
davide.balzarotti@eurecom.fr

Abstract. With the advent of Web 2.0, many users started to maintain
personal web pages to show information about themselves, their busi-
nesses, or to run simple e-commerce applications. This transition has
been facilitated by a large number of frameworks and applications that
can be easily installed and customized. Unfortunately, attackers have
taken advantage of the widespread use of these technologies – for exam-
ple by crafting special search engines queries to fingerprint an application
framework and automatically locate possible targets. This approach, usu-
ally called Google Dorking, is at the core of many automated exploitation
bots.

In this paper we tackle this problem in three steps. We first perform
a large-scale study of existing dorks, to understand their typology and
the information attackers use to identify their target applications. We
then propose a defense technique to render URL-based dorks ineffective.
Finally we study the effectiveness of building dorks by using only com-
binations of generic words, and we propose a simple but effective way to
protect web applications against this type of fingerprinting.

1 Introduction

In just few years from its first introduction, the Web rapidly evolved from a
client-server system to deliver hypertext documents into a complex platform to
run stateful, asynchronous, distributed applications. One of the main character-
istics that contributed to the success of the Web is the fact that it was designed
to help users to create their own content and maintain their own web pages.

This has been possible thanks to a set of tools and standard technologies
that facilitate the development of web applications. These tools, often called
Web Application Frameworks, range from general purpose solutions like Ruby
on Rails, to specific applications like Wikis or Content Management Systems
(CMS). Despite their undisputed impact, the widespread adoption of such tech-
nologies also introduced a number of security concerns. For example, a severe
vulnerability identified in a given framework could be used to perform large-scale

c© Springer International Publishing Switzerland 2016
J. Caballero et al. (Eds.): DIMVA 2016, LNCS 9721, pp. 255–275, 2016.
DOI: 10.1007/978-3-319-40667-1 13

256 F. Toffalini et al.

attacks to compromise all the web applications developed with that technology.
Therefore, from the attacker viewpoint, the information about the technology
used to create a web application is extremely relevant.

In order to easily locate all the applications developed with a certain frame-
work, attackers use so-called Google Dork Queries [1] (or simply dorks). Infor-
mally, a dork is a particular query string submitted to a search engine, crafted
in a way to fingerprint not a particular piece of information (the typical goal of a
search engine) but the core structure that a web site inherits from its underlying
application framework. In the literature, different types of dorks have been used
for different purposes, e.g., to automatically detect mis-configured web sites or
to list online shopping sites that are built using a particular CMS.

The widespread adoption of frameworks on one side, and the ability to abuse
search engines to fingerprint them on the other, had a very negative impact
on web security. In fact, this combination lead to complete automation, with
attackers running autonomous scout and exploitation bots, which scan the web
for possible targets to attack with the corresponding exploit [2]. Therefore, we
believe that a first important step towards securing web applications consists of
breaking this automation. Researcher proposed software diversification [3] as a
way to randomize applications and diversify the targets against possible attacks.
However, automated diversification approaches require complex transformations
to the application code, are not portable between different languages and tech-
nologies, often target only a particular class of vulnerabilities, and, to the best
of our knowledge, have never been applied to web-based applications.

In this paper we present a different solution, in which a form of diversification
is applied not to prevent the exploitation phase, but to prevent the attackers
from fingerprinting vulnerable applications. We start our study by performing
a systematic analysis of Google Dorks, to understand how they are created and
which information they use to identify their targets. While other researchers
have looked at the use of dorks in the wild [4], in this paper we study their
characteristics and their effectiveness from the defendant viewpoint. We focus in
particular on two classes of dorks, those based on portions of a website URL, and
those based on a specific sequence of terms inside a web page. For the first class,
we propose a general solutions – implemented in an Apache Module – in which
we obfuscate the structure of the application showing to the search engine only
the information that is relevant for content indexing. Our approach does not
require any modification to the application, and it is designed to work together
with existing search engine optimization techniques.

If we exclude the use of simple application banners, dorks based on generic
word sequences are instead rarely used in practice. Therefore, as a first step we
created a tool to measure if this type of dorks is feasible, and how accurate it is
in fingerprinting popular CMSes. Our tests show that our technique is able to
generate signatures with over 90 % accuracy. Therefore, we also discuss possible
countermeasures to prevent attackers from building these dorks, and we propose
a novel technique to remove the sensitive framework-related words from search
engines results without removing them from the page and without affecting the
usability of the application.

Google Dorks: Analysis, Creation, and New Defenses 257

To conclude, this paper makes the following contributions:

– We present the first comprehensive study of the mechanisms used by dorks
and we improve the literature classification in order to understand the main
issues and develop the best defenses.

– We design and implement a tool to block dorks based on URL information
without changing the Web application and without affecting the site ranking
in the search engines.

– We study dorks based on combinations of common words, and we implement a
tool to automatically create them and evaluate their effectiveness. Our exper-
iments demonstrate that it is possible to build a dork using non-trivial infor-
mation left by the Web application framework.

– We propose a simple but effective countermeasure to prevent dorks based on
common words, without removing them from the page.

Thanks to our techniques, we show that there are no more information avail-
able for an attacker to identify a web application framework based on the queries
and the results displayed by a search engine.

2 Background and Classification

The creation, deployment and maintenance of a website are complex tasks. In
particular, if web developers employ modern CMSes, the set of files that compose
a website contain much more information than the site content itself and such
unintentional traces may be used to identify possible vulnerabilities that can be
exploited by malicious users.

We identify two types of traces: (i) traces left by mistake that expose sensitive
information on the Internet (e.g., due to misconfiguration of the used tool), and
(ii) traces left by the Web Application Framework (WAF) in the core structure
of the website. While the former type of traces is simple to detect and remove,
the latter can be seen as a fingerprint of the WAF, which may not be easy to
remove since it is part of the WAF itself.

There are many examples of traces left by mistake. For instance, log files
related to the framework installation may be left in public directories (indexed
by the search engines). Such log files may show important information related
to the machine where the WAF is installed. The most common examples related
to the fingerprint of a WAF are the application banners, such as “Powered by
Wordpress”, which contain the name of the tool used to create the website.

Google Dorks still lack a formal definition, but they are typically associated
to queries that take advantage of advanced operators offered by search engines to
retrieve a list of vulnerable systems or sensitive information. Unfortunately this
common definition is vague (what type of sensitive information?) and inaccurate
(e.g., not all dorks use advanced operators). Therefore, in this paper we adopt
a more general definition of dorks: any query whose goal is to locate web sites
using characteristics that are not based on the sites content but on their structure
or type of resources. For example, a search query to locate all the e-commerce

258 F. Toffalini et al.

applications with a particular login form is a dork, while a query to locate e-
commerce applications that sell Nike shoes is not.

Dorks often use advance operators (such as inurl to search in a URL) to
look for specific content in the different parts of the target web sites. Below, we
show two examples of dorks, where the attacker looks for an installation log (left
by mistake) or for a banner string (used to fingerprint a certain framework):

inurl :"installer -log.txt" AND intext :" DUPLICATOR INSTALL -LOG"
intext :" Powered by Wordpress"

Note that all search engine operators can only be used to search keywords
that are visible to the end users. Any information buried in the HTML code,
but not visible, cannot be searched. This is important, since it is often possible
to recognize the tool that produced a web page by looking at the HTML code,
an operation that however cannot be done with a traditional search engine.

Since there are many different types of information that can be retrieved
from a search engine, there are many types of dorks that can be created. In the
following, we revise the classification used so far in the literature.

2.1 Existing Dorks Classification

Previous works (for a complete review, please refer to Sect. 6) divide dorks into
different categories, typically following the classification proposed in the Google
Hacking Database (GHDB) [5,6], which contains 14 categories. The criteria used
to define these categories is the purpose of the dork, i.e., which type of informa-
tion an attacker is trying to find. For instance, some of the categories are:

Advisories and Vulnerabilities: it contains dorks that are able to locate
various vulnerable servers, which are product or version-specific.

Sensitive Directories: these dorks try to understand if some directories (with
sensitive information) that should remain hidden, are made public.

Files Containing Passwords: these dorks try to locate files containing pass-
words.

Pages Containing Login Portals: it contains dorks to locate login pages for
various services; if such pages are vulnerable, they can be the starting point
to obtain other information about the system.

Error Messages: these dorks retrieve the pages or the files with errors messages
that may contain some details about the system.

Different categories often rely on different techniques – such as the use of
some advance operators or keywords – and target different parts of a website –
such as its title, main body, files, or directories.

While this classification may provide some hints on the sensitive information
a user should hide, the point of view is biased towards the attacker. From the
defendant point of view, it would be useful to have a classification based on the
techniques used to retrieve the information, so that it would be possible to check
if a website is robust against such techniques (independently from the aim for
which the technique is used). For this reason, in this paper we adopt a different
classification based on the characteristics of the dorks.

Google Dorks: Analysis, Creation, and New Defenses 259

2.2 Alternative Classification

We implemented a crawler to download all the entries in the GHDB [5,6] and
a set of tools to normalize each dork and automatically classify it based on the
information it uses1.

We have identified three main categories, which are not necessarily disjoint
and may be combined together in a single query:

URL Patterns: This category contains the dorks that use information present
in the structure of the URL.

Extensions: It contains the dorks used to search files with a specific extension,
typically to locate misconfigured pages.

Content-Based: These dorks use combination of words in the content of the
page – both in the body, and in the title.

Since the content-based category is wide, we subsequently split such category
into four sub-categories:

Application Banners: This category contains strings or sentences that identify
the underlying WAF (e.g., “Powered by Wordpress”). These banners can be
found in the body of the page (often in the foothold) or in the title.

Misconfiguration Strings: This category contains strings which correspond
to sensitive information left accessible by mistake by human faults (such as
database logs, string present in configuration files, or part of the default instal-
lation pages).

Errors Strings: Dorks in this category use special strings to locate unhandled
errors, such as the ones returned when a server-side script is not able to read
a file or it processes wrong parameters. Usually, besides the error, it is also
possible to find on the page extra data about the server-side program, or
other general information about the system.

Common Words: This class contains the dorks that do not fit in the other
categories. They are based on combinations of common words that are not
related to a particular application. For instance, these dorks may search for
(“insert”, “username”, and “help”) to locate a particular login page.

Table 1 shows the number of dorks for each category. Since some of the dorks
belongs to different categories, the sum of all categories is greater than the total
number of entries. The classification shows that most of the dorks are based on
banners and URL patterns. In particular, 89.5 % of the existing dorks use either
a URL or a banner in their query.

Besides the absolute number of dorks, it is interesting to study the evolution
of the dork categories over time. This is possible since the data from GHDB [6]
contains the date in which the dork was added to the database. Figure 1 shows
the percentage over time of the proposed dorks, grouped by category. It is inter-
esting to note that banner-based dorks are less and less used in the wild, probably
1 Not all dorks have been correctly classified automatically, so we manually inspected

the results to ensure a correct classification.

260 F. Toffalini et al.

Table 1. Number of dorks and relative percentage for the different categories. Since
a dork may belong to different categories, the sum of the entries of all categories is
greater than the total number of entries extracted from GHDB.

Category Number perc. (%)

URL pattern 2267 44

Extensions 318 6

Content-based Banners 2760 54

Misconfigurations 414 8

Errors 71 1

Common words 587 11

Total entries in GHDB [6] 5143

Fig. 1. Dorks evolution by category.

as a consequence of users removing those strings from their application. In fact,
their popularity decreased from almost 60 % in 2010 to around 20 % in 2015 –
leaving URL-based dorks to completely dominate the field.

2.3 Existing Defenses

Since the classification of the dorks has traditionally taken the attacker view-
point, there are few works that provide practical information about possible
defenses. Most of the them only suggests some best practices (e.g., remove all sen-
sitive information), without describing any specific action. Unfortunately, some
of these best practice are not compatible with Search Engine Optimizations
(SEOs). SEOs are a set of techniques used to improve the webpage rank – e.g.,
by including relevant keywords in the URL, in the title, or in the page headers.
When removing a content, one should avoid to affect such SEOs.

As previously noted, most of the dorks are based on banners and URL pat-
terns, with mis-configuration strings at the third place. While this last category
is a consequence of human faults, which are somehow easier to detect, the other
dorks are all based on the fingerprint of the WAFs.

Google Dorks: Analysis, Creation, and New Defenses 261

Banners are actually simple to remove, but the URL patterns are consider-
ably more complex to handle. In fact, the URL structure is inherited from the
underlying framework, and therefore one should modify the core structure of the
WAF itself – a task too complex and error prone for the majority of the users.
Finally, word-based dorks are even harder to handle because it is not obvious
which innocuous words can be used to precisely identify a web application.

In both cases we need effective countermeasures that are able to neutralize
such dorks. In the next sections, we show our solutions to these issues.

3 Defeating URL-Based Dorks

The URLs of a web application can contain two types of information. The first
is part of the structure of the web application framework, such as the name
of sub-directories, and the presence of default administration or login pages.
The second is part of the website content, such as the title of an article or the
name of a product (that can also be automatically generated by specific SEO
optimization plugins). While the second part is what a search engine should
capture and index, we argue that there is no reason for search engines to also
maintain information about the first one.

The optimal solution to avoid this problem would be to apply a set of random
transformations to the structure of the web application framework. However, the
diversity and complexity of these frameworks would require to develop an ad-hoc
solution for each of them. To avoid this problem, we implement the transforma-
tion as a filter in the web server. To be usable in practice, this approach needs
to satisfy some constraints. In particular, we need a technique that:

1. It is independent from the programming language and the WAF used to
develop the web site.

2. It is easily deployable on an existing web application, without the need to
modify the source code.

3. It supports dynamically generated URLs, both on the server side and on the
client side (e.g., through Javascript).

4. It can co-exist with SEO plugins or other URL-rewriting components.

The basic idea of our solution is to obfuscate (part of) the URLs using a
random string generated at installation time. Note that the string needs to be
random but it does not need to be secret, as its only role is to prevent an
attacker for computing a single URL that matches all the applications of a give
type accessible on the Web.

Our solution relies on two components: first, it uses standard SEO techniques
to force search engines to only index obfuscated URLs, and then applies a filter
installed in the web server to de-obfuscate the URLs in the incoming requests.

3.1 URL Obfuscation

The obfuscation works simply by XOR-ing part of the original URL with the
random seed. Our technique can be used in two different ways: for selective-
protection or for global protection. In the first mode, it obfuscates only particular

262 F. Toffalini et al.

pieces of URLs that are specified as regular expressions in a configuration file.
This can be used to selectively protect against known dorks, for instance based
on particular parameters or directory names.

When our solution is configured for global protection, it instead obfuscate all
the URLs, except for possible substrings specified by regular expressions. This
mode provides a better protection and simplifies the deployment. It can also
co-exist with other SEO plugins, by simply white-listing the portions of URLs
used by them (for example, all the URLs under /blog/posts/*). The advantage
of this solution is that it can be used out-of-the-box to protect the vast majority
of small websites based on popular CMSs. But it can also be used, by properly
configuring the set of regular expressions, to protect more complex websites that
have specific needs and non-standard URL schemes.

Finally, the user can choose to apply the obfuscation filter only to particu-
lar UserAgent strings. Since the goal is to prevent popular search engines from
indexing the original URLs, the entire solution only needs to be applied to the
requests coming from their crawlers. As we discuss in the next session, our tech-
nique works also if applied to all incoming requests, but this would incur a
performance penalty for large websites. Therefore, by default our deployment
only obfuscates the URLs provided to a configurable list of search engines2.

3.2 Delivering Obfuscated URLs

In this section, we explain our strategy to show obfuscated URLs, and hide
the original ones, in the results of search engines. The idea is to influence the
behavior of the crawlers by using common SEO techniques.

Redirect 301. The Redirect 301 is a status code of the HTTP protocol used
for permanent redirection. As the name suggests, it is used when a page changes
its URL, in combination with a “Location” header to specify the new URL to
follow. When the user-agent of a search engine sends a request for a cleartext
URL, our filter returns a 301 error with a pointer to the obfuscated URL.

The advantage of this technique is that it relies on a standard error code
which is supported by the all the search engines we tested. Another advantage
of this approach is that the search engines move the current page rank over to
the target of the redirection. Unfortunately, using the 301 technique alone is not
sufficient to protect a page, as some search engines (Google for instance) would
store in their database both the cleartext and the obfuscated URL.

Canonical URL Tag. The Canonical URL Tag is a meta-tag mainly used in
the header of the HTML documents. It is also possible to use this tag as HTTP
header to manage non-HTML documents, such as PDF files and images. Its main
purpose is to tell search engines what is the real URL to show in their results.

For instance, consider two pages that show the same data, but generated
with a different sorting parameter, as follow:

2 Here we assume that search engines do not try to disguise their requests, as it is the
case for all the popular ones we encountered in our study.

Google Dorks: Analysis, Creation, and New Defenses 263

http://www.abc.com/order-list.php?orderby=data\&direct=asc
http://www.abc.com/order-list.php?orderby=cat\&direct=desc

In the example above, the information is the same but the two pages risk to
be indexed as two different entries. The Canonical tag allows the site owner to
show them as a single entry, improving the page rank. It is also important that
there is only a single tag in the page, as if more tags are presents search engines
would ignore them all.

Our filter parses the document, and it injects a Canonical URL Tag with the
obfuscated URL. To avoid conflict with other Canonical URL Tags, we detect
their presence and replace their value with the corresponding obfuscated version.

A drawback of this solution is that the Canonical URL Tag needs to contain
a URL already present in the index of the search engine. If the URL is not
indexed, the search engine ignores the tag. This is the reason why we use this
technique in conjunction with the 301 redirection.

Site Map. The site map is an XML document that contains all the public links
of a web site. The crawler uses this document to get the entire list of the URLs
to visit. For instance, this document is used in blogs to inform the search engine
about the existence of new entries, as for the search engine it is more efficient to
poll a single document rather than crawling the entire site each time.

If a search engine tries to get a site map, our filter replaces all the URLs with
their obfuscated versions. This is another technique to inform the crawler about
the site structure and populate its cache with the obfuscated URLs.

Obfuscation Protocol. In this section, we show how the previous techniques
are combined together to obtain our goal. Figure 2 shows the behavior of our tool
when a crawler visits a protected web site. When the crawler requests a resource
‘a’ our tool intercepts the request and redirect it to the obfuscated URL O(a).
The crawler then follows the redirect and requests the obfuscated resource. In
this case, the system de-obfuscates the request, and then serves it according to
the logic of the web site. When the application returns the result page, our filter
adds the Canonical URL Tag following the rules described previously.

In Fig. 2, we also show how the tool behaves when normal users visit the web
site. Typically, users would first request an obfuscated URL (as returned by a
query to a search engine, for example). In this case, the request is de-obfuscated
and forwarded to the web application as explained before. This action incurs
a small penalty in the time required to serve the requests. However, once the
user gets the page back, he can interact with the websites following links and/or
forms that contain un-obfuscated URLs. In this case, the requests are served by
the web server without any additional computation or delay.

Even if this approach might appear as a form of cloaking, the clocking defi-
nition requires an application to return different resources for a crawler and for
other clients, as described in the guidelines of the major search engines [7–9].
Our technique only adds a meta-tag to the page, and does not modify the rest
of the content and its keywords.

http://www.abc.com/order-list.php?orderby=data&direct=asc
http://www.abc.com/order-list.php?orderby=cat&direct=desc

264 F. Toffalini et al.

Browser URL Obfuscator Web site

O(a)

a

resp. of a

resp. of a

b

b

resp. of b

resp. of b

Crawler URL Obfuscator Web site

a

redirect to O(a)

O(a)

a

resp. of a

resp. of a + canonical tag

Fig. 2. On the left side: messages exchanged between a protected application ad a
normal user. On the right side: messages exchanged between a protected application
and a search engine crawler.

3.3 Implementation

Our approach is implemented as a module for the Apache web server. When
a web site returns some content, Apache handles the data using the so-called
buckets and brigades. Basically, a bucket is a generic container for any kind of
data, such as a HTML page, a PDF document, or an image. In a bucket, data
is simply organized in an array of bytes. A brigade is a linked list of buckets.
The Apache APIs allow to split a bucket and re-link them to the corresponding
brigade. Using this approach, it is possible to replace, remove, or append bytes
to a resource, without re-allocating space. We use this technique to insert the
Canonical URL Tag in the response, and to modify the site map. In addition,
the APIs also permit to manage the header of the HTTP response, and our tool
use this feature in order to add the Canonical URL Tag in the headers.

Since the Apache server typically hosts several modules simultaneously, we
have configured our plugin to be the last, to ensure that the obfuscation is applied
after any other URL transformation or rewriting step. Our obfuscation module
is also designed to work in combination with the deflate module. In particular,
it preserves the compression for normal users but it temporarily deactivate the
module for requests performed by search engine bots. The reason is that a client
can request a compressed resource, but in this case our module is not able to
parse the compressed output to insert the Canonical Tag or to obfuscate the
URLs in the site-map. Therefore, our solution removes the output compression
from the search engine requests – but still allows compressed responses in all
other cases.

Finally, to simplify the deployment of our module, we developed an instal-
lation tool that takes as input a web site to protect, generate the random seed,
analyzes the site URL schema to create the list of exception URLs, and generate
the corresponding snippet to insert into the Apache configuration file. This is
sufficient to handle all simple CMS installations, but the user can customize the
automatically generated configuration to accommodate more complex scenarios.

Google Dorks: Analysis, Creation, and New Defenses 265

3.4 Experiments and Results

We tested our solution on Apache 2.4.10 running two popular CSMs: Joomla!
3.4, and Wordpress 4.2.5. We checked that our websites could be easily identified
using dorks based on “inurl:component/user” and “inurl:wp-content”.

We then protected the websites with our module and verified that a number
of popular search engines (Google, Bing, AOL, Yandex, and Rambler) were only
able to index the obfuscated URLs and therefore our web sites were no longer
discoverable using URL-based dorks.

Finally, during our experiments we also traced the number of requests we
received from search engines. Since the average number was 100 access per day,
we believe that our solution does not have any measurable impact on the per-
formance of the server or on the network traffic.

4 Word-Based Dorks

As we already observed in the Sect. 2, dorks based on application banners are
rapidly decreasing in popularity, probably because users started removing these
banners from their web applications. Therefore, it is reasonable to wonder if is
also possible to create a precise fingerprint of an application by using only a set
of generic and seemingly unrelated words.

This section is devoted to this topic. In the first part we show that it is indeed
possible to automatically build word-based dorks for different content manage-
ment systems. Such dorks may be extremely dangerous because the queries sub-
mitted to the search engines are difficult to detect as dorks (since they do not
use any advanced operator or any string clearly related to the target CMS). In
the second part, we discuss possible countermeasures for this type of dorks.

4.1 Dork Creation

Given a set of words used by a CMS, the search for the optimal combination
that can be used as fingerprint has clearly an exponential complexity. Therefore,
we need to adopt a set of heuristics to speed up the generation process. Before
introducing our technique we need to identify the set of words to analyze, and
the criteria used to evaluate such words.

Building Blocks. The first step to build a dork is to extract the set of words
that may characterize the CMS. To this aim, we start from a vanilla installation
of the target website framework, without any modification or personalization.
From this clean instance, we remove the default lorem ipsum content, such as
“Hello world” or “My first post”. Then, using a custom crawler, our tool extracts
all the visible words from all the pages of the web site, i.e., the words that are
actually displayed by a browser and that are therefore indexed by search engines.
After removing common stop words, usually discarded also by the search engines
(e.g., and, as, at, . . .), our crawler groups the remaining words by page and also
maintains a list with all the words encountered so far.

266 F. Toffalini et al.

In order to build an automatic tool that creates word-based dorks for the
different CMSes, we need two additional building blocks: (i) a set of APIs to
interrogate a search engine, and (ii) an oracle that is able to understand if a
website has been created with a specific CMS.

As for the APIs, we make use of the Bing APIs in order to submit a query to
the Bing search engine. Clearly, any other search engine would be equivalent: we
have chosen Bing since it has less restrictions in terms of the number of queries
per day that a user can make. Given a query, Bing provides the total number
of entries found for that query: this value represents the coverage of a query.
Among these entries, our tool retrieve the first 1000 results. For each of these
pages, we use the Wappalyzer-python library [10] to confirm whether the page is
built using the target CMS. Wappalyzer looks at the HTML code of the page and
tries to understand if there are traces left by a given CMS: this is fundamentally
different from looking at the visible words, because to take a decision the tool
needs to process the HTML content of the web page that is not indexed by the
traditional search engines. Using this technique, we compute the hit rank, i.e.,
the number of results that are actually built with a given CMS divided by the
number of results obtained by the query3.

To build a dork, we need to evaluate its precision during the building process:
the precision is a combination of the coverage and the hit rank, i.e., a good dork
is the one that obtains the largest number of results with the highest accuracy.

Dork Generation. The basic idea used in our prototype is to build the dork
step by step, adding one word at a time in a sort of gradient ascent algorithm.
The first observation is that when a new word is added to an existing dork, its
coverage can only decrease, but the hit rank may increase or decrease. As an
example, in Fig. 3 we show the impact of adding a new word wi while building a
dork (in this case, the initial dork contained three words, with a hit rank equal
to 30 %). For each word wi we measure the new coverage and the new hit rank
of the whole dork (three words with the addition of wi), and we order the results
according to the hit rank. As we can see, half of the new words decreases the
hit rank, and therefore can be discarded from our process. Words that result in
a higher hit rank usually considerably decrease the coverage – i.e., they return
very few results. The goal is to find the best compromise, where we still retain
a sufficiently high coverage while we increase the hit rank.

Our solution is to compute at each step the median coverage of all the candi-
date words for which the hit rank increases – shown in the figure as an horizontal
dashed line at 16.6 M; we then choose the word that provides the highest hit rank
and a coverage above the median – in this case, the word “posts”.

The complete algorithm is shown in Algorithm 1. One of the inputs to the
procedure is an initial set of words D for a given page, i.e., a basic dork to which
new words should be added. Ideally we should start from an empty dork, and
then we should evaluate the first word to add. However, since the coverage and
the hit rank of a single word may be extremely variable, we decided to start
3 For efficiency reasons, we compute the hit rank by visiting a random sample that

covers 30% of the first 1000 results.

Google Dorks: Analysis, Creation, and New Defenses 267

Fig. 3. Evolution of hit rank and coverage for a dork while adding different words.

from an initial dork of at least three words, so that to obtain meaningful values
for the coverage and the hit rank.

As initial dork, we have chosen the top three words with the highest coverage
(singularly) and that would provide a hit rank higher than 30 % (together).
While the choice of the initial point may seem critical, we have tested different
combinations of words obtaining similar results (in terms of final coverage and
hit rank). However, it is important to stress the fact that our goal is not to find
the best dork, but to find at least one that can be used to find websites created
with a specific CMS. In other words, our algorithm can return a local optimum
solution that changes depending on the initial point. However, any dork that
provides results in the same order of magnitude of other classes of dorks (such
as URL or banner-based) is satisfactory for our study.

The other input of the procedure is the set of words V that has been extracted
from the vanilla instance of the CMS, without the words used in the starting
dork, i.e., V ′ = V \ D. Finally, we need to specify which CMS should be used to
compute the hit rank.

The algorithm keeps adding words to the dork until the final hit rank is
greater than or equal to 90 % or there are no more words to add. For each word
in V ′, it computes the new hit rank and the new coverage, and it stores the entry
in a table only if the word improves the hit rank (line 10).

If none of the words are able to improve the hit rank (line 14), the algo-
rithm stops and returns the current dork. Otherwise, the algorithm computes
the median coverage which is used as a reference to obtain the best word. The
best word is the word with the highest hit rank among the ones with a cover-
age above the median. Finally, the best word is added to the dork and removed
from V ′.

Experiments and Results. In order to test our solution, we consider five well
known Web Application Frameworks: three general purpose CMSes (Wordpress,
Joomla!, and Drupal) and two E-Commerce CMSes (Magento and OpenCart).

268 F. Toffalini et al.

Algorithm 1. Our algorithm to create a word-based dork
1: procedure getDork(D,V′,CMS)
2: url list ← apiBing.search(D) � retrive a list of URL given D
3: max hr ← calcHitRank(url list,CMS) � calculate hit rank from URL List
4: while max hr < 90% ∧ V′ �= ∅ do
5: table ← empty()
6: for all w ∈ V′ do
7: cov ← calcCoverage(D ∪ w)
8: url list ← api bing.search(D ∪ w)
9: hr ← calcHitRank(url list,CMS)

10: if hr > max hr then
11: table ←row (w, hr, cov)
12: end if
13: end for
14: if table == ∅ then
15: return D � final dork
16: end if
17: median ← calcMedian(table)
18: (best word, hr) ← getBestWord(table, median)
19: D ← D ∪ best word
20: max hr ← hr
21: V′ ← V′ \ {best word}
22: end while
23: return D � final dork

24: end procedure

We run the tests on a machine with Ubuntu 15.10, Python 3.4, BeautifulSoup,
and Wappalyzer-python.

For each CMS, we have created dorks starting from two different installations:

– Vanilla: we consider the basic out-of-the-box installation, with no changes to
the default website obtained from the CMS;

– Theme: we add some personalization to the website, such as changing the
basic graphical theme.

For two CMSes, Drupal and Opencart, the lists of words extracted with our
crawler from the two installations (Vanilla and Theme) are the same, therefore
the dorks obtained from the Vanilla and Theme installations are the same too.

We compare the results of the dorks created with our tool with the banner-
based dorks. Table 2 shows, for each CMS, the hit rank and the coverage for the
two dorks (derived from the Vanilla and Theme installations), as well as for the
dork taken as a reference.

The results show that our dorks obtain a coverage with the same order of
magnitude of the reference dork, with similar hit rank, i.e., they are as effective as
banner-based dorks in finding targeted CMSes. It is interesting to note also that
the differences between the Vanilla and the Theme dorks are small, suggesting
that minor customizations of the website have little impact on our methodology.

Customized Websites. While a little customization have a small impact on the
effectiveness of the dorks we created, it is interesting to understand if, instead,
major modifications may make our methodology ineffective. In other words, we
investigate if customization can compromise the fingerprint left by the CMS,
and implicitly be a countermeasure to word-based dorks.

Google Dorks: Analysis, Creation, and New Defenses 269

Table 2. Hit rank and coverage of the dorks created with our GetDork tool, compared
with a reference banner-based dork. For each CMS, we consider the dorks derived from
two installations, Vanilla and Theme.

Vanilla Theme Reference

Wordpress 93.8 % 74.1 % 96.7 % hits

47.1 M 22 M 83.6 M cover

Joomla 87.8 % 75.6 % 88.7 % hits

7.24 M 1.44 M 3.73 M cover

Drupal 82.7 % 82.7 % 99.7 % hits

7.87 M 7.87 M 3.27 M cover

Magento 87.1 % 93.2 % 85.2 % hits

0.39 M 0.22 M 0.68 M cover

OpenCart 89.1 % 89.1 % 99.8 % hits

0.59 M 0.59 M 1.42 M cover

Fig. 4. Graph of common words for CMSs

To this aim, we selected and analyzed a set of popular websites built with
known CMSes but largely customized, such as www.toyota.com, www.linux.com,
and www.peugeot.com. For each CMS, we collected ten websites and extracted
the list of words with our crawler. We then compared these lists with the corre-
sponding lists extracted from the vanilla instances. Figure 4 shows the percentage
of common words that each customized website has with the vanilla instance – for
each CMS we have ordered the websites according to this percentage, therefore
the x-axis shows the ranking, and not a specific website.

The point where the x-axis is labeled with “v” represents the vanilla
instances, while the point “a” represents the intersection of all custom websites
for that CMS with the vanilla instance. These points indicate the percentage of
words that are common to all the websites, including the vanilla, and therefore
represent the starting point for the creation of a dork. Except for Wordpress,

www.toyota.com
www.linux.com
www.peugeot.com

270 F. Toffalini et al.

most of the customized websites have high percentage of common words with
the vanilla instance. Nevertheless, finding a common subset of words is not easy.
We have actually tried to build a dork starting from the intersection of the sets
of words of all the customized website and the vanilla instance, and we were
successful only for Drupal and Opencart. This means that large customizations
may be indeed a countermeasure for word-based dorks, but not for all CMSes.
It is also important to note that such high customization is typical of a lim-
ited number of websites that are managed by large organizations, therefore the
probability that such websites are vulnerable due to limited maintenance is not
high.

4.2 Defense Against Word-Based Dorks

In the previous sections, we discuss an alternative method to create dorks using
a combination of common words. While slightly less effective than banner-based
dorks, we were able to achieve a relevant combination of hit rank and coverage,
showing that this technique can be used by criminals to locate their victims.

To protect against this threat, we propose a simple solution in which we insert
invisible characters into the application framework keywords. Luckily, in the
Unicode standard there is a set of empty special characters that are not rendered
in web browser. Thus, the appearance of the web sites does not change but
a search engine would index the keywords including these invisible characters,
preventing an attacker from finding these keywords in her queries. This technique
also allows the obfuscation of the application banners without removing them.

Moreover, this technique does not influence the search engine optimization
and ranking, because the obfuscated keywords are only part of the template,
and not of the website content. In our prototype we use the Invisible Separator
character with code “U+2063” in the Unicode standard. As the name suggests,
it is a separator between two characters that does not take any physical space
and it is used in mathematical applications to formally separate two indexes
(e.g., ij). It is possible to insert this character in the HTML page using the
code “⁣”. For instance, an HTML code for a banner like “Powered by
Wordpress” can be automatically modified to:

<div class ="site -info">

Power ⁣ed by Wor⁣dpress

</div >

The characters are ignored by search engines, effectively breaking each keyword
in a random combination of sub-words. Obviously, this technique only works if
a random number of invisible characters are placed at random locations inside
each template keyword, so that each web application would have a different
footprint. The highest combination that can be obtained using this technique is
on the order of magnitude of O(2n), where n is the sum of entire characters of
all the words that can be used to create a signature.

Google Dorks: Analysis, Creation, and New Defenses 271

To test the effectiveness of this solution, we created a test web site containing
two identical pages – one of which uses our system to obfuscate its content using
the invisible separator character. We then performed queries on Google, Bing,
AOL, and Rambler and we were able to confirm that all of them properly indexed
the content of web site. However, while it was possible to find the website by
searching for its cleartext content, we were not able to locate the obfuscated
page by querying for its keywords.

5 Discussion

When a new vulnerability is disclosed, attackers rely on the ability to quickly
locate possible targets. Nowadays, this is usually done by exploiting search
engines with specially crafted queries called dorks. In Sect. 2.2 we showed that
there are three main ways to fingerprint an application: using banner strings,
using URL patterns, or using combination of words. The first type is easy to
prevent, and in fact many popular websites are not identifiable in this way. This
is also confirmed by our longitudinal study, which shows that the percentage of
dorks belonging to this category is steadily decreasing over time.

In this paper we show that it is also possible to prevent the other two classes of
dorks, without affecting the code or the rank of a web application. We believe this
is a very important result, as it undermines one of the main pillar of automated
web attacks. If criminals were unable to use dorks to locate their target, they
would need to find workarounds that, however, either increase the cost or reduce
the coverage of their operations.

The only way left to fingerprint an application is by looking at its HTML
code. To do that, attacker needs to switch to special search engines that also
index the raw content of each web pages. However, these tools (such as Mean-
path [11]) have a much smaller coverage compared to traditional search engines,
and typically require the user to pay a registration to get the complete list of
results. Either way, this would slow down and reduce the number of attacks.
Another possible venue for criminals would be to implement their own crawlers,
using special tools that can automatically identify popular CMS and web appli-
cation frameworks (such as Blind Elephant [12] and WhatWeb [13]). However,
this requires a non negligible infrastructure and amount of time, so again it
would considerably raise the bar – successfully preventing most of the attacks
that are now compromising million of web sites.

6 Related Work

Google hacking has been the subject of several recent studies. Most of them
discuss tricks and techniques to manually build dorks, and only few propose
limited defenses, statistics, or classification schemes.

Moore and Clayton [14] studied the logs of compromised websites, and iden-
tified three classes of “evil queries”: the ones looking for vulnerabilities, the ones
looking for already compromised websites, and the ones looking for web shells.

272 F. Toffalini et al.

SearchAudit [15] is a technique used to recognize malicious queries from the
logs of a search engine. The study provides an interesting perspective on dorks
that are used in the wild. In particular, the authors identify three classes of
queries: to detect vulnerable web sites, to identify forums for spamming, and
a special category used in Windows Live Messenger phishing attacks. While
the first category is predominantly dominated by URL-based and banner-based
dorks, the forum identification also included common strings such as “Be the first
to comment this article”. John et al., [16] then use SearchAudit to implement an
adaptive Honeypot that changes its content in order to attract malicious users
and to study their behaviors. The purpose of the study is to gain information
about the attackers, and not to propose countermeasures.

Two books discuss Google Hacking: “Google Hacking for Penetration
Tester” [1] and “Hacking: The Next Generation” [17]. Both of them show the
techniques required to build dorks [18,19] using banner strings or URL pat-
terns. These books adopt the same classification proposed by Johnny Long [5]
and exploit-db.com [6]. As we already discussed in Sect. 2, this classification is
focused on the goal of the dork (e.g., detect a vulnerable web sites, the pres-
ence of sensitive directories, or a mis-configuration error), while, in our work,
we propose a classification based on the information that are used to build the
fingerprint. Moreover, the defenses proposed in these books, as well as the ones
proposed by Lancor [20], only discuss simple best practices – such as removing
the name of the web application framework from the HTML footer.

Zhang et al., [4] study the type of vulnerabilities searched by the dorks (such
as SQL-injection, XSS, or CSRF), and they compared them with the corre-
sponding CVE. The authors also study the relation between dorks and advanced
operators, but without considering the countermeasures as we do in this paper.
Pelizzi et al. [21] propose a technique to create URL-based dorks to automat-
ically look-up web sites affected by XSS vulnerabilities. Other works, such as
Invernizzi et al. [22], and Zhang et al. [23], propose different techniques to create
word dorks to identify malicious web sites. Their aim is to enlarge a database
of compromised pages and not to find a fingerprint for a target web applica-
tion framework. They create word dorks only with the common content of the
infected pages without discussing how to improve the quality of the results.

Billing et al. [24] propose a tool to tests a list of provided dorks to find the
ones that match a given web site. Similarly, several tools exist to audit a target
site using public dorks databases, such as GooScan [25], Tracking Dog [26], or
Diggity [27]. Sahito et al. [28] show how dorks can be used to retrieve private
information from the Web (e.g., credit card numbers, private addresses, and tele-
phone numbers). Similarly, Tath et al. [29,30] show how to use Google hacking
in order to find hashed password, private keys or private information.

The literature also includes works not strictly related to dorks, but that deal
with the problem of similarity of Web pages. For example, Soska et al. [31]
show a correlation between attacked Web sites and future victims. The authors
use comparison techniques (which include DOM features, common words, and
URL patterns) in order to demonstrate that Web pages with similar features of

http://exploit-db.com

Google Dorks: Analysis, Creation, and New Defenses 273

compromised ones have high probability to be attacked too. Vasel et al. [32] use
a database of compromised Web sites to calculate a risk-factor of future victims.
They also seek common features of Web pages as Soska. Although their aims is
different from ours, it could be intriguing to use their approach to improve our
algorithm to create word-based dorks.

Finally, some studies discuss dorks as a propagation vector for malware.
For example, Cho et al., [33] show a technique to retrieve C&C botnet servers
using Google Hacking. Provos et al., [28] and Yu et al., [34] analyze a set of
worms able to find other vulnerable machines using dorks. In these papers, the
authors propose a system to block the malicious queries in order to stop the
worm propagation.

7 Conclusion

In this paper we presented the first study about the creation, classification, and
accuracy of different categories of Google dorks. We started by improving previ-
ous classifications by performing an analysis of a large database of dorks used in
the wild. Our measurements showed that most of the dorks are based on URL
patterns or banner strings, with the last category in constant declining. There-
fore, we proposed a novel technique to randomize parts of the website URLs,
in order to hide information that can be used as fingerprint of the underlying
WAF. Our tool, implemented as a module for the Apache web server, does not
require any modification to the sources of the WAF, and it does not decrease
the rank of the web site.

We then showed how it is possible to combine common words in a CMS
template to build a signature of a web application framework, with an accuracy
and a coverage comparable to URL-based dorks. We implemented a tool to
build these signatures and tested it on five popular CMS applications. Finally,
we proposed a new technique to prevent this kind of dorks. The idea is inject
invisible Unicode characters in the template keywords, which does alter the web
site appearance or its usability.

References

1. Long, J., Skoudis, E.: Google Hacking for Penetration Testers. Syngress, Rockland
(2005)

2. Provos, N., McClain, J., Wang, K.: Search worms. In: Proceedings of the 4th ACM
Workshop on Recurring Malcode, pp. 1–8 (2006)

3. Christodorescu, M., Fredrikson, M., Jha, S., Giffin, J.: End-to-end software diver-
sification of internet services. Moving Target Defense 54, 117–130 (2011)

4. Zhang, J., Notani, J., Gu, G.: Characterizing Google hacking: a first large-scale
quantitative study. In: Tian, J., et al. (eds.) SecureComm 2014. LNICST, vol. 152,
pp. 602–622. Springer, Heidelberg (2015). doi:10.1007/978-3-319-23829-6 46

5. Johnny Google hacking database. http://johnny.ihackstuff.com/ghdb/
6. Exploit database. https://www.exploit-db.com/

http://dx.doi.org/10.1007/978-3-319-23829-6_46
http://johnny.ihackstuff.com/ghdb/
https://www.exploit-db.com/

274 F. Toffalini et al.

7. Yandex cloacking condition. https://yandex.com/support/webmaster/yandex-
indexing/webmaster-advice.xml

8. Baidu cloacking condition. http://baike.baidu.com/item/Cloaking
9. Google cloacking condition. https://support.google.com/webmasters/answer/663

55?hl=en
10. Wappalyzer-python. https://github.com/scrapinghub/wappalyzer-python
11. meanpath. https://meanpath.com/
12. Blind elephant. https://community.qualys.com/community/blindelephant
13. Whatweb. http://www.morningstarsecurity.com/research/whatweb
14. Moore, T., Clayton, R.: Evil searching: compromise and recompromise of internet

hosts for phishing. In: Dingledine, R., Golle, P. (eds.) FC 2009. LNCS, vol. 5628,
pp. 256–272. Springer, Heidelberg (2009)

15. John, J.P., Yu, F., Xie, Y., Abadi, M., Krishnamurthy, A.: Searching the searchers
with searchaudit. In: Proceedings of the 19th USENIX Conference on Security,
Berkeley, CA, USA, p. 9 (2010)

16. John, J.P., Yu, F., Xie, Y., Krishnamurthy, A., Abadi, M.: Heat-seeking honeypots:
design and experience. In: Proceedings of WWW, pp. 207–216 (2011)

17. Michael, K.: Hacking: The Next Generation. Elsevier Advanced Technology, Oxford
(2012)

18. Google advanced operators. https://support.google.com/websearch/answer/2466
433?hl=en

19. Bing advanced operators. https://msdn.microsoft.com/en-us/library/ff795667.
aspx

20. Lancor, L., Workman, R.: Using Google hacking to enhance defense strategies.
In: Proceedings of the 38th SIGCSE Technical Symposium on Computer Science
Education, pp. 491–495 (2007)

21. Pelizzi, R., Tran, T., Saberi, A.: Large-scale, automatic XSS detection using Google
dorks (2011)

22. Invernizzi, L., Comparetti, P.M., Benvenuti, S., Kruegel, C., Cova, M., Vigna, G.:
Evilseed: a guided approach to finding malicious web pages. In: IEEE Symposium
on Security and Privacy, pp. 428–442 (2012)

23. Zhang, J., Yang, C., Xu, Z., Gu, G.: PoisonAmplifier: a guided approach of dis-
covering compromised websites through reversing search poisoning attacks. In:
Balzarotti, D., Stolfo, S.J., Cova, M. (eds.) RAID 2012. LNCS, vol. 7462, pp.
230–253. Springer, Heidelberg (2012)

24. Billig, J., Danilchenko, Y., Frank, C.E.: Evaluation of Google hacking. In: Pro-
ceedings of the 5th Annual Conference on Information Security Curriculum Devel-
opment, pp. 27–32. ACM (2008)

25. Gooscan. http://www.aldeid.com/wiki/Gooscan
26. Keßler, M., Lucks, S., Tatlı, E.I.: Tracking dog-a privacy tool against Google hack-

ing. In: CoseC b-it, p. 8 (2007)
27. Pulp google hacking: the next generation search engine hacking arsenal
28. Sahito, F., Slany, W., Shahzad, S.: Search engines: the invader to our privacy -

a survey. In: International Conference on Computer Sciences and Convergence
Information Technology, pp. 640–646, November 2011

29. Tatlı, E.I.: Google hacking against privacy (2007)
30. Tatlı, E.I.: Google reveals cryptographic secrets. In: Kryptowochenende 2006-

Workshop über Kryptographie Universität Mannheim, p. 33 (2006)
31. Soska, K., Christin, N.: Automatically detecting vulnerable websites before they

turn malicious. In: Proceedings of USENIX Security, San Diego, CA, pp. 625–640
(2014)

https://yandex.com/support/webmaster/yandex-indexing/webmaster-advice.xml
https://yandex.com/support/webmaster/yandex-indexing/webmaster-advice.xml
http://baike.baidu.com/item/Cloaking
https://support.google.com/webmasters/answer/66355?hl=en
https://support.google.com/webmasters/answer/66355?hl=en
https://github.com/scrapinghub/wappalyzer-python
https://meanpath.com/
https://community.qualys.com/community/blindelephant
http://www.morningstarsecurity.com/research/whatweb
https://support.google.com/websearch/answer/2466433?hl=en
https://support.google.com/websearch/answer/2466433?hl=en
https://msdn.microsoft.com/en-us/library/ff795667.aspx
https://msdn.microsoft.com/en-us/library/ff795667.aspx
http://www.aldeid.com/wiki/Gooscan

Google Dorks: Analysis, Creation, and New Defenses 275

32. Vasek, M., Moore, T.: Identifying risk factors for webserver compromise. In: Finan-
cial Cryptography and Data Security, pp. 326–345 (2014)

33. Cho, C.Y., Caballero, J., Grier, C., Paxson, V., Song, D.: Insights from the inside:
a view of botnet management from infiltration. In: Proceedings of the USENIX
Workshop on Large-Scale Exploits and Emergent Threats, San Jose, CA, April
2010

34. Yu, F., Xie, Y., Ke, Q.: Sbotminer: large scale search bot detection. In: ACM
International Conference on Web Search and Data Mining, February 2010

Data Leaks

Flush+Flush: A Fast and Stealthy Cache Attack

Daniel Gruss(B), Clémentine Maurice, Klaus Wagner, and Stefan Mangard

Graz University of Technology, Graz, Austria
daniel.gruss@iaik.tugraz.at

Abstract. Research on cache attacks has shown that CPU caches leak
significant information. Proposed detection mechanisms assume that all
cache attacks cause more cache hits and cache misses than benign appli-
cations and use hardware performance counters for detection.

In this article, we show that this assumption does not hold by develop-
ing a novel attack technique: the Flush+Flush attack. The Flush+Flush
attack only relies on the execution time of the flush instruction, which
depends on whether data is cached or not. Flush+Flush does not make
any memory accesses, contrary to any other cache attack. Thus, it causes
no cache misses at all and the number of cache hits is reduced to a mini-
mum due to the constant cache flushes. Therefore, Flush+Flush attacks
are stealthy, i.e., the spy process cannot be detected based on cache hits
and misses, or state-of-the-art detection mechanisms. The Flush+Flush
attack runs in a higher frequency and thus is faster than any existing
cache attack. With 496KB/s in a cross-core covert channel it is 6.7 times
faster than any previously published cache covert channel.

1 Introduction

The CPU cache is a microarchitectural element that reduces the memory access
time of recently-used data. It is shared across cores in modern processors, and is
thus a piece of hardware that has been extensively studied in terms of informa-
tion leakage. Cache attacks include covert and cryptographic side channels, but
caches have also been exploited in other types of attacks, such as bypassing kernel
ASLR [14], detecting cryptographic libraries [17], or keystroke logging [10]. Hard-
ware performance counters have been proposed recently as an OS-level detection
mechanism for cache attacks and Rowhammer [5,13,31]. This countermeasure
is based on the assumption that all cache attacks cause significantly more cache
hits and cache misses than benign applications. While this assumption seems
reasonable, it is unknown whether there are cache attacks that do not cause a
significant number of cache hits and cache misses.

In this article, we present the Flush+Flush attack. Flush+Flush exploits the
fact that the execution time of the clflush instruction is shorter if the data is not
cached and higher if the data is cached. At the same time, the clflush instruc-
tion evicts the corresponding data from all cache levels. Flush+Flush exploits

C. Maurice—Part of the work was done while author was affiliated to Technicolor
and Eurecom.

c© Springer International Publishing Switzerland 2016
J. Caballero et al. (Eds.): DIMVA 2016, LNCS 9721, pp. 279–299, 2016.
DOI: 10.1007/978-3-319-40667-1 14

280 D. Gruss et al.

the same hardware and software properties as Flush+Reload [45]: it works on
read-only shared memory, cross-core attack and in virtualized environments. In
contrast to Flush+Reload , Flush+Flush does not make any memory accesses
and thus does not cause any cache misses at all and only a minimal number of
cache hits. This distinguishes Flush+Flush from any other cache attack. How-
ever, with both Flush+Reload and Flush+Flush the victim process experiences
an increased number of cache misses.

We evaluate Flush+Flush both in terms of performance and detectability
in three scenarios: a covert channel, a side-channel attack on user input, and a
side-channel attack on AES with T-tables. We implement a detection mechanism
that monitors cache references and cache misses of the last-level cache, similarly
to state of the art [5,13,31]. We show that existing cache attacks as well as
Rowhammer attacks can be detected using performance counters. However, we
demonstrate that this countermeasure is non-effective against the Flush+Flush
attack, as the fundamental assumption fails. The Flush+Flush attack is thus
more stealthy than existing cache attacks, i.e., a Flush+Flush spy process cannot
be detected based on cache hits and cache misses. Thus, it cannot be detected
by state-of-the-art detection mechanisms.

The Flush+Flush attack runs in a higher frequency and thus is faster than
any existing cache attack in side-channel and covert channel scenarios. It achieves
a cross-core transmission rate of 496 KB/s, which is 6.7 times faster than any
previously published cache covert channel. The Flush+Flush attack does not
trigger prefetches and thus allows to monitor multiple addresses within a 4 KB
memory range in contrast to Flush+Reload that fails in these scenarios [10].

Our key contributions are:

– We detail a new cache attack technique that we call Flush+Flush. It relies
only on the difference in timing of the clflush instruction between cached
and non-cached memory accesses.

– We show that in contrast to all other attacks, Flush+Flush is stealthy, i.e.,
it cannot be detected using hardware performance counters. We show that
Flush+Flush also outperforms all existing cache attacks in terms of speed.

The remainder of this paper is organized as follows. Section 2 provides back-
ground information on CPU caches, shared memory, and cache attacks. Section 3
describes the Flush+Flush attack. Section 4 investigates how to leverage hard-
ware performance counters to detect cache attacks. We compare the performance
and detectability of Flush+Flush attacks compared to state-of-the-art attacks in
three scenarios: a covert channel in Sect. 5, a side-channel attack on keystroke
timings in Sect. 6, and on cryptographic algorithms in Sect. 7. Section 8 discusses
implications and countermeasures. Section 9 discusses related work. Finally, we
conclude in Sect. 10.

2 Background

2.1 CPU Caches

CPU caches hide the memory accesses latency to the slow physical memory
by buffering frequently used data in a small and fast memory. Modern CPU

Flush+Flush: A Fast and Stealthy Cache Attack 281

architectures implement n-way set-associative caches, where the cache is divided
into cache sets, and each cache set comprises several cache lines. A line is loaded
in a set depending on its address, and each line can occupy any of the n ways.

On modern Intel processors, there are three cache levels. The L3 cache, also
called last-level cache, is shared between all CPU cores. The L3 cache is inclusive,
i.e., all data within the L1 and L2 caches is also present in the L3 cache. Due
to these properties, executing code or accessing data on one core has immediate
consequences even for the private caches of the other cores. This can be exploited
in so called cache attacks. The last-level cache is divided into as many slices as
cores, interconnected by a ring bus. Since the Sandy Bridge microarchitecture,
each physical address is mapped to a slice by an undocumented so-called complex-
addressing function, that has recently been reversed-engineered [27].

A cache replacement policy decides which cache line to replace when loading
new data in a set. Typical replacement policies are least-recently used (LRU),
variants of LRU and bimodal insertion policy where the CPU can switch between
the two strategies to achieve optimal cache usage [33]. The unprivileged clflush
instruction evicts a cache line from all the cache hierarchy. However, a program
can also evict a cache line by accessing enough memory.

2.2 Shared Memory

Operating systems and hypervisors instrument shared memory to reduce the
overall physical memory utilization and the TLB utilization. Shared libraries
are loaded into physical memory only once and shared by all programs using
them. Thus, multiple programs access the same physical pages mapped within
their own virtual address space.

The operating system similarly optimizes mapping of files, forking a process,
starting a process twice, or using mmap or dlopen. All cases result in a memory
region shared with all other processes mapping the same file.

On personal computers, smartphones, private cloud systems and even in pub-
lic clouds [1], another form of shared memory can be found, namely content-based
page deduplication. The hypervisor or operating system scans the physical mem-
ory for byte-wise identical pages. Identical pages are remapped to the same phys-
ical page, while the other page is marked as free. This technique can lower the use
of physical memory and TLB significantly. However, sharing memory between
completely unrelated and possibly sandboxed processes, and between processes
running in different virtual machines brings up security and privacy concerns.

2.3 Cache Attacks and Rowhammer

Cache attacks exploit timing differences caused by the lower latency of CPU
caches compared to physical memory. Access-driven cache attacks are typically
devised in two types: Prime+Probe [30,32,39] and Flush+Reload [11,45].

In Prime+Probe attacks, the attacker occupies a cache set and measures
whenever a victim replaces a line in that cache set. Modern processors have a

282 D. Gruss et al.

physically indexed last-level cache, use complex addressing, and undocumented
replacement policies. Cross-VM side-channel attacks [16,24] and covert chan-
nels [28] that tackle these challenges have been presented in the last year.
Oren et al. [29] showed that a Prime+Probe cache attack can be launched from
within sandboxed JavaScript in a browser, allowing a remote attacker to eaves-
drop on network traffic statistics or mouse movements through a website.

Flush+Reload is a two phase attack that works on a single cache line. First,
it flushes a cache line using the clflush instruction, then it measures the time
it takes to reload the data. Based on the time measurement, the attacker deter-
mines whether a targeted address has been reloaded by another process in the
meantime. In contrast to Prime+Probe, Flush+Reload exploits the availability
of shared memory and especially shared libraries between the attacker and the
victim program. Applications of Flush+Reload have been shown to be reliable
and powerful, mainly to attack cryptographic algorithms [12,17,18,48].

Rowhammer is not a typical cache attack but a DRAM vulnerability that
causes random bit flips by repeatedly accessing a DRAM row [20]. It however
shares some similarities with caches attacks since the accesses must bypass all
levels of caches to reach DRAM and trigger bit flips. Attacks exploiting this
vulnerability have already been demonstrated to gain root privileges and to
evade a sandbox [36]. Rowhammer causes a significant number of cache hits and
cache misses, that resemble a cache attack.

3 The Flush+Flush Attack

The Flush+Flush attack is a faster and stealthier alternative to existing cache
attacks that also has fewer side effects on the cache. In contrast to other cache
attacks, it does not perform any memory accesses. For this reason it causes
no cache misses and only a minimal number of cache hits. Thus, proposed
detection mechanisms based on hardware performance counters fail to detect
the Flush+Flush attack. Flush+Flush exploits the same hardware and software
properties as Flush+Reload . It runs across cores and in virtualized environments
if read-only shared memory with the victim process can be acquired.

Our attack builds upon the observation that the clflush instruction can
abort early in case of a cache miss. In case of a cache hit, it has to trigger
eviction on all local caches. This timing difference can be exploited in form of a
cache attack, but it can also be used to derive information on cache slices and
CPU cores as each core can access its own cache slice faster than others.

The attack consists of only one phase, that is executed in an endless loop. It
is the execution of the clflush instruction on a targeted shared memory line.
The attacker measures the execution time of the clflush instruction. Based
on the execution time, the attacker decides whether the memory line has been
cached or not. As the attacker does not load the memory line into the cache, this
reveals whether some other process has loaded it. At the same time, clflush
evicts the memory line from the cache for the next loop round of the attack.

Flush+Flush: A Fast and Stealthy Cache Attack 283

The measurement is done using the rdtsc instruction that provides a sub-
nanosecond resolution timestamp. It also uses mfence instructions, as clflush
is only ordered by mfence, but not by any other means.

100 110 120 130 140 150 160 170 180 190 200
0%

25%

50%

75%

100%

Execution Time (in cycles)

N
u
m
b
e
r
o
f
c
a
s
e
s

Sandy Hit Sandy Miss Ivy Hit Ivy Miss Haswell Hit Haswell Miss

Fig. 1. Execution time of the clflush instruction on cached and uncached memory on
different CPU architectures (Color figure online)

Figure 1 shows the execution time histogram of the clflush instruction for
cached and non-cached memory lines, run on the three setups with different
recent microarchitectures: a Sandy Bridge i5-2540M, an Ivy Bridge i5-3320M
and a Haswell i7-4790. The timing difference of the peaks is 12 cycles on Sandy
Bridge, 9 cycles on Ivy Bridge, and 12 cycles on Haswell. If the address maps to
a remote core, another penalty of 3 cycles is added to the minimum execution
time for cache hits. The difference is enough to be observed by an attacker. We
discuss this timing difference and its implications in Sect. 9.1. In either case the
execution time is less than the access time for both memory cached in the last-
level cache and memory accesses that are not cached. Therefore, Flush+Flush is
significantly faster than any other last-level cache attack.

The Flush+Flush attack inherently has a slightly lower accuracy than the
Flush+Reload technique in some cases, due to the lower timing difference
between a hit and a miss and because of a lower access time on average. Neverthe-
less, the same amount of information is extracted faster using the Flush+Flush
attack due to the significantly lower execution time. Furthermore, the reload-step
of the Flush+Reload attack can trigger the prefetcher and thus destroy measure-
ments by fetching data into the cache. This is the case especially when moni-
toring more than one address within a physical page [10]. As the Flush+Flush
attack never performs any memory accesses, this problem does not exist and the
Flush+Flush attack achieves an even higher accuracy here. For the same reason,
the Flush+Flush attack causes no cache misses and only a minimal number of
cache hits. Thus, recently proposed detection mechanisms using cache references
and cache misses fail to detect Flush+Flush.

4 Detecting Cache Attacks with Hardware Performance
Counters

Cache attacks can lead to an increased number of cache hits or cache misses in
the attacker process or in other processes. Thus, it may be possible to detect

284 D. Gruss et al.

Table 1. List of hardware performance events we use.

Name Description

BPU RA/ RM Branch prediction unit read accesses/misses

BRANCH INSTRUCTIONS/ MISSES Retired branch instructions/mispredictions

BUS CYCLES Bus cycles

CACHE MISSES/ REFERENCES Last-level cache misses/references

UNC CBO CACHE LOOKUP C-Box events incl. clflush (all slices)

CPU CYCLES/REF CPU CYCLES CPU cycles with/without scaling

DTLB RA/ RM/ WA/ WM Data TLB read/write accesses/misses

INSTRUCTIONS Retired instruction

ITLB RA/ RM Instruction TLB read/write accesses

L1D RA/ RM/ WA/ WM L1 data cache read/write accesses/misses

L1I RM L1 instruction cache read misses

LL RA/ WA Last-level cache read/write accesses

abnormal behavior on a system level. However, to stop or prevent an attack, it
is necessary to identify the attacking process. Therefore, we consider an attack
stealthy if the attacking spy process cannot be identified.

Hardware performance counters are special-purpose registers that are used to
monitor special hardware-related events. Events that can be monitored include
cache references and cache misses on the last-level cache. They are mostly used
for performance analysis and fine tuning, but have been found to be suitable
to detect Rowhammer and the Flush+Reload attack [5,13,31]. The focus of our
work is to show that detection of existing attacks is straight-forward, but detec-
tion of the Flush+Flush attack using these performance counters is infeasible,
due to the absence of cache misses and the minimal number of cache references.

We analyze the feasibility of such detection mechanisms using the Linux
perf event open syscall interface that provides userspace access to a subset of
all available performance counters on a per-process basis. The actual accesses to
the model specific registers are performed in the kernel. The same information
can be used by a system service to detect ongoing attacks. During our tests we
ran the performance monitoring with system service privileges.

We analyzed all 23 hardware and cache performance events available with
the Linux syscall interface on our system. Additionally, we analyzed the so
called uncore [15] performance monitoring units and found one called C-Box
that is influenced by cache hits, misses and clflush instructions directly. The
UNC CBO CACHE LOOKUP event of the C-Box allows monitoring a last-level cache
lookups per cache slice, including by the clflush instruction. The C-Box moni-
toring units are not available through a generic interface but only through model
specific registers. Table 1 lists all events we evaluated. We found that there are
no other performance counters documented to monitor cache hits, misses or
clflush instructions specifically. Furthermore, neither the hypervisor nor the

Flush+Flush: A Fast and Stealthy Cache Attack 285

operating system can intercept the clflush instruction or monitor the frequency
of clflush instructions being executed using performance counters.

The number of performance events that can be monitored simultaneously is
limited by hardware. On all our test systems it is possible to monitor up to 4
events simultaneously. Thus, any detection mechanism can only use 4 perfor-
mance events simultaneously.

We evaluated the 24 performance counters for the following scenarios:

1. Idle: idle system,
2. Firefox: user scrolling down a chosen Twitter feed in Firefox,
3. OpenTTD: user playing a game
4. stress -m 1: loop reading and writing in dynamically allocated 256 MB arrays,
5. stress -c 1: loop doing a CPU computation with almost no memory,
6. stress -i 1: loop calling the I/O sync() function,
7. Flush+Reload : cache attack on the GTK library to spy on keystroke events,
8. Rowhammer: Rowhammer attack.

The first 3 scenarios are casual computer usage scenarios, the next 3 cause a
benign high load situation and the last 2 perform an attack. A good detection
mechanism classifies as benign the scenarios 1 to 6 and as attacks 7 and 8.

We use the instruction TLB (ITLB) performance counters (ITLB RA +
ITLB WA) to normalize the performance counters to make cache attacks easier to
detect, and prevent scenarios 2 and 3 from being detected as malicious. Indeed,
the main loop that is used in the Flush+Reload and Rowhammer attacks causes
a high number of last-level cache misses while executing only a small piece of
code. Executing only a small piece of code causes a low pressure on the ITLB.

Table 2 shows a comparison of performance counters for the 8 scenarios tested
over 135 s. These tests were performed in multiple separate runs as the perfor-
mance monitoring unit can only monitor 4 events simultaneously. Not all cache
events are suitable for detection. The UNC CBO CACHE LOOKUP event that counts
cache slice events including clflush operations shows very high values in case
of stress -i. It would thus lead to false positives. Similarly, the INSTRUCTIONS
event used by Chiappetta et al. [5] has a significantly higher value in case of
stress -c than in the attack scenarios and would cause false positives in the
case of benign CPU intensive activities. The REF CPU CYCLES is the unscaled
total number of CPU cycles consumed by the process. Divided by the TLB
events, it shows how small the executed loop is. The probability of false positive
matches is high, for instance in the case of stress -c.

Thus, 4 out of 24 events allow detecting both Flush+Reload and Rowhammer
without causing false positives for benign applications. The rationale behind
these events is as follows:

1. CACHE MISSES occur after data has been flushed from the last-level cache,
2. CACHE REFERENCES occur when reaccessing memory,
3. L1D RM occur because flushing from last-level cache also flushes from the lower

cache levels,
4. LL RA are a subset of the CACHE REFERENCES counter, they occur when reac-

cessing memory,

286 D. Gruss et al.

Table 2. Comparison of performance counters normalized to the number of ITLB
events in different cache attacks and normal scenarios over 135 s in separate runs.

Event/Test Idle Firefox OTTD stress -m stress -c stress -i F+R Rowhammer

BPU RA 4.35 14.73 67.21 92.28 6109 276.79 3.23 127443.28 23778.66

BPU RM 0.36 0.32 1.87 0.00 12320.23 0.36 694.21 25.53

BRANCH INST 4.35 14.62 74.73 92.62 6094264.03 3.23 127605.71 23834.59

BRANCH MISS 0.36 0.31 2.06 0.00 12289.93 0.35 693.97 25.85

BUS CYCLES 4.41 1.94 12.39 52.09 263816.26 6.2 30420.54 98406.44

CACHE MISSES 0.09 0.15 2.35 58.53 0.06 1.92 693.67 13766.65

CACHE REFER 0.4 0.98 6.84 61.05 0.31 2.28 693.92 13800.01

UNC CBO LOO 432.99 3.88 18.66 4166.71 0.31 343224.44 2149.72 50094.17

CPU CYCLES 38.23 67.45 449.23 2651.60 9497363.56 237.62 1216701.51 3936969.93

DTLB RA 5.11 19.19 123.68 31.78 6076031.42 3.04 47123.44 25459.36

DTLB RM 0.07 0.09 1.67 0.05 0.05 0.04 0.05 0.03

DTLB WA 1.7 11.18 54.88 30.97 3417764.10 1.13 22868.02 25163.03

DTLB WM 0.01 0.01 0.03 2.5 0.01 0.01 0.01 0.16

INSTRUCTIONS 20.24 66.04 470.89 428.15 20224639.96 11.77 206014.72 132896.65

ITLB RA 0.95 0.97 0.98 1.00 0.96 0.97 0.96 0.97

ITLB RM 0.05 0.03 0.02 0.00 0.04 0.03 0.04 0.03

L1D RA 5.11 18.3 128.75 31.53 6109271.97 3.01 47230.08 26173.65

L1D RM 0.37 0.82 8.47 61.63 0.51 0.62 695.22 15630.85

L1D WA 1.7 10.69 57.66 30.72 3436461.82 1.13 22919.77 25838.20

L1D WM 0.12 0.19 1.5 30.57 0.16 0.44 0.23 10.01

L1I RM 0.12 0.65 0.21 0.03 0.65 1.05 1.17 1.14

LL RA 0.14 0.39 5.61 30.73 0.12 0.47 695.35 9067.77

LL WA 0.01 0.02 0.74 30.3 0.01 0.01 0.02 4726.97

REF CPU CYC 157.70 69.69 445.89 1872.05 405922.02 223.08 1098534.32 3542570.00

Two of the events are redundant: L1D RM is redundant with CACHE MISSES, and
LL RA with CACHE REFERENCES. We will thus focus on the CACHE MISSES and
CACHE REFERENCES events as proposed in previous work [5,13,31].

We define that a process is considered malicious if more than km cache miss
or kr cache reference per ITLB event are observed. The attack is detected if

CCACHE MISSES

CITLB RA + CITLB WA
≥ km, or

CCACHE REFERENCES

CITLB RA + CITLB WA
≥ kr,

with C the value of the corresponding performance counter. The operating sys-
tem can choose the frequency in which to run the detection checks.

The thresholds for the cache reference and cache hit rate are determined
based on a set of benign applications and malicious applications. It is chosen
to have the maximum distance to the minimum value for any malicious appli-
cation and the maximum value for any benign application. In our case this is
km = 2.35 and kr = 2.34. Based on these thresholds, we perform a classifica-
tion of processes into malicious and benign processes. We tested this detection
mechanism against various cache attacks and found that it is suitable to detect
different Flush+Reload , Prime+Probe and Rowhammer attacks as malicious.
However, the focus of our work is not the evaluation of detection mechanisms
based on performance counters, but to show that such detection mechanisms can-
not reliably detect the Flush+Flush attack due to the absence of cache misses
and a minimal number of cache references.

Flush+Flush: A Fast and Stealthy Cache Attack 287

In the following sections, we evaluate the performance and the detectability
of Flush+Flush compared to the state-of-the-art cache attacks Flush+Reload
and Prime+Probe in three scenarios: a covert channel, a side channel on user
input and a side channel on AES with T-tables.

5 Covert Channel Comparison

In this section, we describe a generic low-error cache covert channel framework.
In a covert channel, an attacker runs two unprivileged applications on the sys-
tem under attack. The processes are cooperating to communicate with each
other, even though they are not allowed to by the security policy. We show how
the two processes can communicate using the Flush+Flush, Flush+Reload , and
Prime+Probe technique. We compare the performance and the detectability of
the three implementations. In the remainder of the paper, all the experiments
are performed on a Haswell i7-4790 CPU.

5.1 A Low-Error Cache Covert Channel Framework

In order to perform meaningful experiments and obtain comparable and fair
results, the experiments must be reproducible and tested in the same condi-
tions. This includes the same hardware setup, and the same protocols. Indeed,
we cannot compare covert channels from published work [24,28] that have dif-
ferent capacities and error rates. Therefore, we build a framework to evaluate
covert channels in a reproducible way. This framework is generic and can be
implemented over any covert channel that allows bidirectional communication,
by implementing the send() and receive() functions.

The central component of the framework is a simple transmission protocol.
Data is transmitted in packets of N bytes, consisting of N − 3 bytes payload, a
1 byte sequence number and a CRC-16 checksum over the packet. The sequence
number is used to distinguish consecutive packets. The sender retransmits pack-
ets until the receiver acknowledges it. Packets are acknowledged by the receiver
if the checksum is valid.

Although errors are still possible in case of a false positive CRC-16 checksum
match, the probability is low. We choose the parameters such that the effective
error rate is below 5%. The channel capacity measured with this protocol is
comparable and reproducible. Furthermore, it is close to the effective capacity in
a real-world scenario, because error-correction cannot be omitted. The number of
transmitted bits is the minimum of bits sent and bits received. The transmission
rate can be computed by dividing the number of transmitted bits by the runtime.
The error rate is given by the number of all bit errors between the sent bits and
received bits, divided by the number of transmitted bits.

5.2 Covert Channel Implementations

We first implemented the Flush+Reload covert channel. By accessing fixed mem-
ory locations in a shared library the a 1 is transmitted, whereas a 0 is transmitted

288 D. Gruss et al.

by omitting the access. The receiver performs the actual Flush+Reload attack to
determine whether a 1 or a 0 was transmitted. The bits retrieved are then parsed
as a data frame according to the transmission protocol. The sender also monitors
some memory locations using Flush+Reload for cache hits too, to receive packet
acknowledgments.

Fig. 2. Illustration of the Flush+Flush covert channel.

The second implementation is the Flush+Flush covert channel, illustrated by
Fig. 2. It uses the same sender process as the Flush+Reload covert channel. To
transmit a 1 (Fig. 2-a), the sender accesses the memory location, that is cached
(step 1). This time, the receiver only flushes the shared line. As the line is
present in the last-level cache by inclusiveness, it is flushed from this level (step
2). A bit also indicates that the line is present in the L1 cache, and thus must
also be flushed from this level (step 3). To transmit a 0 (Fig. 2-b), the sender
stays idle. The receiver flushes the line (step 1). As the line is not present in the
last-level cache, it means that it is also not present in the lower levels, which
results in a faster execution of the clflush instruction. Thus only the sender
process performs memory accesses, while the receiver only flushes cache lines.
To send acknowledgment bytes the receiver performs memory accesses and the
sender runs a Flush+Flush attack.

The third implementation is the Prime+Probe covert channel. It uses the
same attack technique as Liu et al. [24], Oren et al. [29], and Maurice et al. [28].
The sender transmits a 1 bit by priming a cache set. The receiver probes the same
cache set. Again the receiver determines whether a 1 or a 0 was transmitted. We
make two adjustments for convenience and to focus solely on the transmission
part. First, we compute a static eviction set by using the complex addressing
function [27] on physical addresses. This avoids the possibility of errors intro-
duced by timing-based eviction set computation. Second, we map the shared
library into our address space to determine the physical address to attack to
make an agreement on the cache sets in sender and receiver. Yet, the shared
library is never accessed and unmapped even before the Prime+Probe attack
is started. We assume that the sender and receiver have agreed on the cache sets
in a preprocessing step. This is practical even for a timing-based approach.

Flush+Flush: A Fast and Stealthy Cache Attack 289

5.3 Performance Evaluation

Table 3 compares the capacity and the detectability of the three covert chan-
nels in different configurations. The Flush+Flush covert channel is the fastest
of the three covert channels. With a packet size of 28 bytes the transmission
rate is 496 KB/s. At the same time the effective error rate is only 0.84%. The
Flush+Reload covert channel also achieved a good performance at a packet size
of 28 bytes. The transmission rate then is 298 KB/s and the error rate < 0.005%.
With a packet size of 4 bytes, the performance is lower in all three cases.

Table 3. Comparison of capacity and detectability of the three cache covert channels
with different parameters. Flush+Flush and Flush+Reload use the same sender process.

Technique Packet

size

Capacity

in KB/s

Error

rate

Sender

references

Sender

misses

Sender

stealth

Receiver

references

Receiver

misses

Receiver

stealth

Flush+Flush 28 496 0.84% 1809.26 96.66 ✗ 1.75 1.25 ✓

Flush+Reload 28 298 0.00% 526.14 56.09 ✗ 110.52 59.16 ✗

Flush+Reload 5 132 0.01% 6.19 3.20 ✗ 45.88 44.77 ✗

Flush+Flush 5 95 0.56% 425.99 418.27 ✗ 0.98 0.95 ✓

Prime+Probe 5 67 0.36% 48.96 31.81 ✗ 4.64 4.45 ✗

Flush+Reload 4 54 0.00% 0.86 0.84 ✓ 2.74 1.25 ✗

Flush+Flush 4 52 1.00% 0.06 0.05 ✓ 0.59 0.59 ✓

Prime+Probe 4 34 0.04% 55.57 32.66 ✗ 5.23 5.01 ✗

A Prime+Probe covert channel with a 28-byte packet size is not realistic.
First, to avoid triggering the hardware prefetcher we do not access more than
one address per physical page. Second, for each eviction set we need 16 addresses.
Thus we would require 28B · 4096 · 16 = 14GB of memory only for the evic-
tion sets. For Prime+Probe we achieved the best results with a packet size of
5 bytes. With this configuration the transmission rate is 68 KB/s at an error
rate of 0.14%, compared to 132 KB/s using Flush+Reload and 95 KB/s using
Flush+Flush.

The Flush+Flush transmission rate of 496 KB/s is significantly higher than
any other state-of-the-art cache covert channels. It is 6.7 times as fast as the
fastest cache covert channel to date [24] at a comparable error rate. Our covert
channel based on Flush+Reload is also faster than previously published cache
covert channels, but still much slower than the Flush+Flush covert channel.
Compared to our Prime+Probe covert channel, Flush+Flush is 7.3 times faster.

5.4 Detectability

Table 3 shows the evaluation of the detectability for packet sizes that yielded
the highest performance in one of the cases. Flush+Reload and Flush+Flush
use the same sender process, the reference and miss count is mainly influenced
by the number of retransmissions and executed program logic. Flush+Reload

290 D. Gruss et al.

Table 4. Comparison of performance counters normalized to the number of ITLB
events for cache attacks on user input.

Technique Cache references Cache misses Stealthy

Flush+Reload 5.140 5.138 ✗

Flush+Flush 0.002 0.000 ✓

is detected in all cases either because of its sender or its receiver, although its
sender process with a 4-byte packet size stays below the detection threshold. The
Prime+Probe attack is always well above the detection threshold and therefore
always detected as malicious. All Flush+Flush receiver processes are classified
as benign. However, only the sender process used for the Flush+Flush and the
Flush+Reload covert channels with a 4-byte packet size is classified as benign.

The receiver process performs most of the actual cache attack. If it is sufficient
to keep the receiver process stealthy, Flush+Flush clearly outperforms all other
cache attacks. If the sender has to be stealthy as well, the sender process used by
Flush+Flush and Flush+Reload performs better than the Prime+Probe sender
process. However, due to the high number of cache hits it is difficult to keep
the sender process below the detection threshold. An adversary could choose to
reduce the transmission rate in order to be stealthier in either case.

6 Side-Channel Attack on User Input

Another cache attack that has been demonstrated recently using Flush+Reload ,
is eavesdropping on keystroke timings. We attack an address in the GTK library
invoked when processing keystrokes. The attack is implemented as a program
that constantly flushes the address, and derives when a keystroke occurred, based
on memory access times or the execution time of the clflush instruction.

6.1 Performance Evaluation

We compare the three attacks Flush+Flush, Flush+Reload , and Prime+Probe,
based on their performance in this side-channel attack scenario. During each
test we simulate a user typing a 1000-character text into an editor. Each test
takes 135 s. As expected, Flush+Reload has a very high accuracy of 96.1%. This
allows direct logging of keystroke timings. Flush+Flush performs notably well,
with 74.7% correctly detected keystrokes. However, this makes a practical attack
much harder than with Flush+Reload . The attack with Prime+Probe yielded no
meaningful results at all due to the high noise level. In case of Flush+Reload and
Flush+Flush the accuracy can be increased significantly by attacking 3 addresses
that are used during keystroke processing simultaneously. The decision whether a
keystroke was observed is then based on these 3 addresses increasing the accuracy
significantly. Using this technique reduces the error rate in case of Flush+Reload
close to 100% and above 92% in case of Flush+Flush.

Flush+Flush: A Fast and Stealthy Cache Attack 291

Fig. 3. Comparison of Cache Templates (address range of the first T-table) generated
using Flush+Reload (left), Flush+Flush (middle), and Prime+Probe (right). In all
cases k0 = 0x00.

6.2 Detectability

To evaluate the detectability we again monitored the cache references and cache
misses events, and compared the three cache attacks with each other and with an
idle system. Table 4 shows that Flush+Reload generates a high number of cache
references, whereas Flush+Flush causes a negligible number of cache references.
We omitted Prime+Probe in this table as it was not sufficiently accurate to
perform the attack.

Flush+Reload yields the highest accuracy in this side-channel attack, but it
is easily detected. The accuracy of Flush+Flush can easily be increased to more
than 92% and it still is far from being detected. Thus, Flush+Flush is a viable
and stealthy alternative to the Flush+Reload attack as it is not classified as
malicious based on the cache references or cache misses performance counters.

7 Side-Channel Attack on AES with T-Tables

To round up our comparison with other cache attacks, we compare Flush+Flush,
Flush+Reload , and Prime+Probe in a high frequency side-channel attack sce-
nario. Finding new cache attacks is out of scope of our work. Instead, we try to
perform a fair comparison between the different attack techniques by implement-
ing a well known cache attack using the three techniques on a vulnerable imple-
mentation of a cryptographic algorithm. We attack the OpenSSL T-Table-based
AES implementation that is known to be susceptible to cache attacks [2,30].
This AES implementation is disabled by default for security reasons, but still
exists for the purpose of comparing new and existing side-channel attacks.

The AES algorithm uses the T-tables to compute the ciphertext based on
the secret key k and the plaintext p. During the first round, table accesses are
made to entries Tj [pi ⊕ ki] with i ≡ j mod 4 and 0 ≤ i < 16. Using a cache
attack it is possible to derive values for pi⊕ki and thus, possible key-byte values
ki in case pi is known.

7.1 Attack Implementation Using Flush+Flush

The implementation of the chosen-plaintext attack side-channel attacks for the
three attack techniques is very similar. The attacker triggers an encryption,

292 D. Gruss et al.

Table 5. Number of encryptions to determine the upper 4 bits of a key byte.

Technique Number of encryptions

Flush+Reload 250

Flush+Flush 350

Prime+Probe 4 800

Table 6. Comparison of the performance counters when performing 256 million encryp-
tions with different cache attacks and without an attack.

Technique Cache
references

Cache
misses

Execution
time in s

References
(norm.)

Misses
(norm.)

Stealthy

Flush+Reload 1 024 · 106 19 284 602 215 2 513.43 47.33 ✗

Prime+Probe 4 222 · 106 294 897 508 234 1 099.63 76.81 ✗

Flush+Flush 768 · 106 1 741 163 1.40 0.00 ✓

choosing pi while all pj with i �= j are random. One cache line holds 16 T-Table
entries. The cache attack is now performed on the first line of each T-Table. The
attacker repeats the encryptions with new random plaintext bytes pj until only
one pi remains to always cause a cache hit. The attacker learns that pi⊕ki ≡�4� 0
and thus ki ≡�4� pi. After performing the attack for all 16 key bytes, the attacker
has derived 64 bits of the secret key k. As we only want to compare the three
attack techniques, we do not extend this attack to a full key recovery attack.

7.2 Performance Evaluation

Figure 3 shows a comparison of cache templates generated with Flush+Reload ,
Flush+Flush, and Prime+Probe using 1 000 000 encryptions to create a visible
pattern in all three cases. Similar templates can be found in previous work [10,30,
37]. Table 5 shows how many encryptions are necessary to determine the upper 4
bits correctly. We performed encryptions until the correct guess for the upper 4
bits of key byte k0 had a 5% margin over all other key candidates. Flush+Flush
requires around 1.4 times as many encryptions as Flush+Reload , but 13.7 times
less than Prime+Probe to achieve the same accuracy.

Flush+Flush is the only attack that does not trigger the prefetcher. Thus, we
can monitor multiple adjacent cache sets. By doing this we double the number
of cache references, but increase the accuracy of the measurements so that 275
encryptions are sufficient to identify the correct key byte with a 5 % margin.
That is only 1.1 times as many encryptions as Flush+Reload and 17.5 times
less than Prime+Probe. Thus, Flush+Flush on multiple addresses is faster at
deriving the same information as Flush+Reload .

7.3 Detectability

Table 6 shows a comparison of the performance counters for the three attacks
over 256 million encryptions. The Flush+Flush attack took only 163 s whereas

Flush+Flush: A Fast and Stealthy Cache Attack 293

Flush+Reload took 215 s and Prime+Probe 234 s for the identical attack. On a
system level, it is possible to notice ongoing cache attacks on AES in all three
cases due to the high number of cache misses caused by the AES encryption
process. However, to stop or prevent the attack, it is necessary to detect the
spy process. Prime+Probe exceeds the detection threshold by a factor of 468
and Flush+Reload exceeds the threshold by a factor of 1070. To stay below the
detection threshold, slowing down the attack by at least the same factor would
be necessary. In contrast, Flush+Flush is not detected based on our classifier
and does not have to be slowed down to be stealthy.

8 Discussion

8.1 Using clflush to Detect Cores and Cache Slices

The Flush+Flush attack can be used to determine on which CPU core a process is
running or to which cache slice an address maps. Indeed, a clflush on a remote
cache slice takes longer than a clflush on a local cache slice, as shown in Fig. 4.
This is due to the ring bus architecture connecting remote slices. Knowing the
physical address of a memory access on a local slice, we can then use the complex
addressing function [27] to determine on which core the process runs. However,
this would require high privileges. Yet, it is possible to determine to which slice
an address maps without knowing the physical address by performing a timing
attack. This can be done by an unprivileged process, as pinning a thread to a
CPU core requires no privileges.

This can be exploited to detect colocation on the same CPU, CPU core or
hyperthreading core in restricted environments even if the cpuid instructions is
virtualized. It is more difficult to determine which CPU core a thread runs on
based on memory access timings because of the influence of lower level caches.
Such an attack has also not been demonstrated yet. The information on the
executing CPU core can be used to enhance cache attacks and other attacks such
as the Rowhammer attack [9,20]. Running clflush on a local slice lowers the
execution time of each Rowhammer loop round by a few cycles. The probability
of bit flips increases as the execution time lowers, thus we can leverage the
information whether an address maps to a local slice to improve this attack.

140 142 144 146 148 150 152 154 156 158 160

0

2

4

6

·105

Execution Time (in cycles)

N
u
m
b
e
r
o
f
c
a
s
e
s

Core 0

Core 1

Core 2

Core 3

Fig. 4. Excerpt of the clflush histogram for an address in slice 1 on different cores.
The lower execution time on core 1 shows that this address maps to slice 1.

294 D. Gruss et al.

A similar timing difference also occurs upon memory accesses that are served
from the local or a remote slice respectively. The reason again is the direct con-
nection to the local cache slice while remote cache slices are connected via a ring
bus. However, as memory accesses will also be cached in lower level caches, it is
more difficult to observe the timing difference without clflush. The clflush
instruction directly manipulates the last-level cache, thus lower level caches can-
not hide the timing difference.

While the operating system can restrict access on information such as the
CPU core the process is running on and the physical address mapping to make
efficient cache attacks harder, it cannot restrict access to the clflush instruc-
tion. Hence, the effect of such countermeasures is lower than expected.

8.2 Countermeasures

We suggest modifying the clflush instruction to counter the wide range of
attacks that it can be used for. The difference in the execution time of clflush
is 3 cycles depending on the cache slice and less than 12 cycles depending on
whether it is a cache miss. In practice the clflush instruction is used only in
rare situations and not in a high frequency. Thus, a hypothetical performance
advantage cannot justify introducing these exploitable timing differences. We
propose making clflush a constant-time instruction. This would prevent the
Flush+Flush attack completely, as well as information leakage on cache slices
and CPU cores.

Flush+Flush is the only cache attack that does not perform any memory
accesses and thus causes no cache misses and only a minimal number of cache
references. One theoretical way to detect our attack would be to monitor each
load, e.g., by timing, and to stop when detecting too many misses. However,
this solution is currently not practical, as a software-based solution that mon-
itors each load would cause a significant performance degradation. A similar
hardware-based solution called informing loads has been proposed by Kong et al.
[21], however it needs a change in the instruction set. Without hardware modi-
fications it would be possible to enable the rdtsc instruction only in privileged
mode as can be done using seccomp on Linux [25] since 2008. Fogh [7] pro-
posed to simulate the rdtsc in an interrupt handler, degrading the accuracy of
measurements far enough to make cache attacks significantly harder.

Flush+Reload and Flush+Flush both require shared memory. If shared mem-
ory is not available, an attacker would have to resort to a technique that even
works without shared memory such as Prime+Probe. Furthermore, making the
clflush instruction privileged would prevent Flush+Reload and Flush+Flush as
well. However, this would require changes in hardware and could not be imple-
mented in commodity systems.

9 Related Work

9.1 Detecting and Preventing Cache Attacks

Zhang et al. [47] proposed HomeAlone, a system-level solution that uses
a Prime+Probe covert channel to detect the presence of a foe co-resident

Flush+Flush: A Fast and Stealthy Cache Attack 295

virtual machine. The system monitors random cache sets so that friendly vir-
tual machines can continue to operate if they change their workload, and that
foe virtual machines are either detected or forced to be silent. Cache Template
Attacks [10] can be used to detect attacks on shared libraries and binaries as a
user. However, such a permanent scan increases the system load and can only
detect attacks in a small address range within a reasonable response time.

Herath and Fogh [13] proposed to monitor cache misses to detect
Flush+Reload attacks and Rowhammer. The system would slow down or halt
all attacker processes. With the detection mechanism we implemented, we show
that this technique is feasible for previous attacks but not for the Flush+Flush
attack. Chiappetta et al. [5] proposed to build a trace of cache references and
cache misses over the number of executed instructions to detect Flush+Reload
attacks. They then proposed three methods to analyze this trace: a correlation-
based method, and two other ones based on machine learning techniques. How-
ever, a learning phase is needed to detect malicious programs that are either from
a set of known malicious programs or resemble a program from this set. They
are thus are less likely to detect new or unknown cache attacks or Rowhammer
attacks, in contrast to our ad-hoc detection mechanism. Payer [31] proposed a
system called HexPADS to use cache references, cache misses, but also other
events like page faults to detect cache attacks and Rowhammer at runtime.

Cache attacks can be prevented at three levels: at the hardware level, at
the system level, and finally, at the application level. At the hardware level,
several solutions have been proposed to prevent cache attacks, either by remov-
ing cache interferences, or randomizing them. The solutions include new secure
cache designs [23,41,42] or altering the prefetcher policy [8]. However, hard-
ware changes are not applicable to commodity systems. At the system level,
page coloring provides cache isolation in software [19,34]. Zhang et al. [49] pro-
posed a more relaxed isolation like repeated cache cleansing. These solutions
cause performance issues, as they prevent optimal use of the cache. Application-
level countermeasures seek to find the source of information leakage and patch
it [4]. However, application-level countermeasures are bounded and cannot pre-
vent cache attacks such as covert channels and Rowhammer. In contrast with
prevention solutions that incur a loss of performance, using performance counters
does not prevent attacks but rather detect them without overhead.

9.2 Usage of Hardware Performance Counters in Security

Hardware performance counters are made for performance monitoring, but secu-
rity researchers found other applications. In defensive cases, performance coun-
ters allow detection of malware [6], integrity checking of programs [26], control
flow integrity [44], and binary analysis [43]. In offensive scenarios, it has been
used for side-channel attacks against AES [40] and RSA [3]. Performance coun-
ters have also been used by Maurice et al. [27] to reverse engineer the complex
addressing function of the last-level cache of modern Intel CPUs.

296 D. Gruss et al.

9.3 Cache Covert Channels

Cache covert channels are a well-known problem, and have been studied rel-
atively to the recent evolutions in microarchitecture. The two main types of
access-driven attacks can be used to derive a covert channel. Covert channels
using Prime+Probe have already been demonstrated in [24,28]. Flush+Reload
has been used for side-channels attacks [45], thus a covert channel can be derived
easily. However, to the best of our knowledge, there was no study of the perfor-
mance of such a covert channel.

In addition to building a covert channel with our new attack Flush+Flush,
we re-implemented Prime+Probe and implemented Flush+Reload .1 We thus pro-
vide an evaluation and a fair comparison between these different covert channels,
in the same hardware setup and with the same protocol.

9.4 Side-Channel Attacks on User Inputs

Section 6 describes a side channel to eavesdrop on keystrokes. If an attacker
has root access to a system, there are simple ways to implement a keylogger.
Without root access, software-based side-channel attacks have already proven
to be a reliable way to eavesdrop on user input. Attacks exploit the execution
time [38], peaks in CPU and cache activity graphs [35], or system services [46].
Zhang et al. [46] showed that it is possible to derive key sequences from inter-
keystroke timings obtained via procfs. Oren et al. [29] demonstrated that cache
attacks in sandboxed JavaScript inside a browser can derive user activities, such
as mouse movements. Gruss et al. [10] showed that auto-generated Flush+Reload
attacks can be used to measure keystroke timings as well as identifying keys.

10 Conclusion

In this paper we presented Flush+Flush, a novel cache attack that, unlike any
other, performs no memory accesses. Instead, it relies only on the execution
time of the flush instruction to determine whether data is cached. Flush+Flush
does not trigger prefetches and thus is applicable in more situations than other
attacks. The Flush+Flush attack is faster than any existing cache attack. It
achieves a transmission rate of 496 KB/s in a covert channel scenario, which is 6.7
times faster than any previous cache covert channel. As it performs no memory
accesses, the attack causes no cache misses at all. For this reason, detection
mechanisms based on performance counters to monitor cache activity fail, as
their underlying assumption is incorrect.

While the Flush+Flush attack is significantly harder to detect than existing
cache attacks, it can be prevented with small hardware modifications. Making
the clflush instruction constant-time has no measurable impact on today’s

1 After public disclosure of the Flush+Flush attack on November 14, 2015,
Flush+Flush has also been demonstrated on ARM-based mobile devices [22].

Flush+Flush: A Fast and Stealthy Cache Attack 297

software and does not introduce any interface changes. Thus, it is an effective
countermeasure that should be implemented.

Finally, the experiments led in this paper broaden the understanding of the
internals of modern CPU caches. Beyond the adoption of detection mechanisms,
the field of cache attacks benefits from these findings, both to discover new
attacks and to be able to prevent them.

Acknowledgements. We would like to thank Mathias Payer, Anders Fogh, and our
anonymous reviewers for their valuable comments and suggestions.

Supported by the EU Horizon 2020 programme under GA No.
644052 (HECTOR), the EU FP7 programme under GA No. 610436
(MATTHEW), the Austrian Research Promotion Agency (FFG) and

Styrian Business Promotion Agency (SFG) under GA No. 836628 (SeCoS), and Crypta-
cus COST Action IC1403.

References

1. Barresi, A., Razavi, K., Payer, M., Gross, T.R.: CAIN: silently breaking ASLR in
the cloud. In: WOOT 2015 (2015)

2. Bernstein, D.J.: Cache-timing attacks on AES. Technical report, Department of
Mathematics, Statistics, and Computer Science, University of Illinois at Chicago
(2005)

3. Bhattacharya, S., Mukhopadhyay, D.: Who watches the watchmen?: Utilizing Per-
formance Monitors for Compromising keys of RSA on Intel Platforms. Cryptology
ePrint Archive, Report 2015/621 (2015)

4. Brickell, E., Graunke, G., Neve, M., Seifert, J.P.: Software mitigations to hedge
AES against cache-based software side channel vulnerabilities. Cryptology ePrint
Archive, Report 2006/052 (2006)

5. Chiappetta, M., Savas, E., Yilmaz, C.: Real time detection of cache-based side-
channel attacks using hardware performance counters. Cryptology ePrint Archive,
Report 2015/1034 (2015)

6. Demme, J., Maycock, M., Schmitz, J., Tang, A., Waksman, A., Sethumadhavan,
S., Stolfo, S.: On the feasibility of online malware detection with performance
counters. ACM SIGARCH Comput. Archit. News 41(3), 559–570 (2013)

7. Fogh, A.: Cache side channel attacks (2015). http://dreamsofastone.blogspot.co.
at/2015/09/cache-side-channel-attacks.html

8. Fuchs, A., Lee, R.B.: Disruptive prefetching: impact on side-channel attacks and
cache designs. In: Proceedings of the 8th ACM International Systems and Storage
Conference (SYSTOR 2015) (2015)

9. Gruss, D., Maurice, C., Mangard, S.: Rowhammer.js: a remote software-induced
fault attack in javascript. In: DIMVA 2016 (2016)

10. Gruss, D., Spreitzer, R., Mangard, S.: Cache template attacks: automating attacks
on inclusive last-level caches. In: USENIX Security Symposium (2015)

11. Gullasch, D., Bangerter, E., Krenn, S.: Cache games - Bringing access-based cache
attacks on AES to practice. In: S&P 2011 (2011)

12. Gülmezoğlu, B., İnci, M.S., Irazoqui, G., Eisenbarth, T., Sunar, B.: A faster and
more realistic Flush+Reload attack on AES. In: Mangard, S., Poschmann, A.Y.
(eds.) COSADE 2015. LNCS, vol. 9064, pp. 111–126. Springer, Heidelberg (2015)

http://dreamsofastone.blogspot.co.at/2015/09/cache-side-channel-attacks.html
http://dreamsofastone.blogspot.co.at/2015/09/cache-side-channel-attacks.html

298 D. Gruss et al.

13. Herath, N., Fogh, A.: These are Not Your Grand Daddy’s CPU Performance Coun-
ters - CPU Hardware Performance Counters for Security. Black Hat 2015 Briefings.
https://www.blackhat.com/docs/us-15/materials/us-15-Herath-These-Are-Not-
Your-Grand-Daddys-CPU-Performance-Counters-CPU-Hardware-Performance-
Counters-For-Security.pdf

14. Hund, R., Willems, C., Holz, T.: Practical timing side channel attacks against
kernel space ASLR. In: 2013 IEEE Symposium on Security and Privacy, pp. 191–
205 (2013)

15. Intel: Intel R© 64 and IA-32 Architectures Software Developer’s Manual, vol. 3 (3A,
3B & 3C): System Programming Guide 253665 (2014)

16. Irazoqui, G., Eisenbarth, T., Sunar, B.: S$A: a shared cache attack that works
across cores and defies VM sandboxing - and its application to AES. In: S&P 2015
(2015)

17. Irazoqui, G., Inci, M.S., Eisenbarth, T., Sunar, B.: Know thy neighbor: crypto
library detection in cloud. In: Proceedings on Privacy Enhancing Technologies,
vol. 1(1), pp. 25–40 (2015)

18. Irazoqui, G., Inci, M.S., Eisenbarth, T., Sunar, B.: Lucky 13 strikes back. In:
AsiaCCS 2015 (2015)

19. Kim, T., Peinado, M., Mainar-Ruiz, G.: StealthMem: system-level protection
against cache-based side channel attacks in the cloud. In: Proceedings of the 21st
USENIX Security Symposium (2012)

20. Kim, Y., Daly, R., Kim, J., Fallin, C., Lee, J.H., Lee, D., Wilkerson, C., Lai,
K., Mutlu, O.: Flipping bits in memory without accessing them: an experimental
study of DRAM disturbance errors. In: Proceeding of the 41st Annual International
Symposium on Computer Architecuture (ISCA 2014) (2014)

21. Kong, J., Acıiçmez, O., Seifert, J.P., Zhou, H.: Hardware-software integrated
approaches to defend against software cache-based side channel attacks. In: Pro-
ceedings of the 15th International Symposium on High Performance Computer
Architecture (HPCA 2009), pp. 393–404 (2009)

22. Lipp, M., Gruss, D., Spreitzer, R., Mangard, S.: Armageddon: Last-level cacheat-
tacks on mobile devices. CoRR abs/1511.04897 (2015)

23. Liu, F., Lee, R.B.: Random fill cache architecture. In: IEEE/ACM International
Symposium on Microarchitecture (MICRO 2014), pp. 203–215 (2014)

24. Liu, F., Yarom, Y., Ge, Q., Heiser, G., Lee, R.B.: Last-level cache side-channel
attacks are practical. In: S&P 2015 (2015)

25. lwn.net: 2.6.26-rc1 short-form changelog, May 2008. https://lwn.net/Articles/
280913/

26. Malone, C., Zahran, M., Karri, R.: Are hardware performance counters a cost
effective way for integrity checking of programs. In: Proceedings of the Sixth ACM
Workshop on Scalable Trusted Computing (2011)

27. Maurice, C., Le Scouarnec, N., Neumann, C., Heen, O., Francillon, A.: Reverse
engineering intel complex addressing using performance counters. In: RAID (2015)

28. Maurice, C., Neumann, C., Heen, O., Francillon, A.: C5: cross-cores cache covert
channel. In: Almgren, M., Gulisano, V., Maggi, F. (eds.) DIMVA 2015. LNCS, vol.
9148, pp. 46–64. Springer, Heidelberg (2015)

29. Oren, Y., Kemerlis, V.P., Sethumadhavan, S., Keromytis, A.D.: The spy in the
sandbox: practical cache attacks in JavaScript and their implications. In: CCS
2015 (2015)

30. Osvik, D.A., Shamir, A., Tromer, E.: Cache attacks and countermeasures: the
case of AES. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 1–20.
Springer, Heidelberg (2006)

https://www.blackhat.com/docs/us-15/materials/us-15-Herath-These-Are-Not-Your-Grand-Daddys-CPU-Performance-Counters-CPU-Hardware-Performance-Counters-For-Security.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Herath-These-Are-Not-Your-Grand-Daddys-CPU-Performance-Counters-CPU-Hardware-Performance-Counters-For-Security.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Herath-These-Are-Not-Your-Grand-Daddys-CPU-Performance-Counters-CPU-Hardware-Performance-Counters-For-Security.pdf
https://lwn.net/Articles/280913/
https://lwn.net/Articles/280913/

Flush+Flush: A Fast and Stealthy Cache Attack 299

31. Payer, M.: HexPADS: a platform to detect “Stealth” attacks. In: Caballero, J., et al.
(eds.) ESSoS 2016. LNCS, vol. 9639, pp. 138–154. Springer, Heidelberg (2016).
doi:10.1007/978-3-319-30806-7 9

32. Percival, C.: Cache missing for fun and profit. In: Proceedings of BSDCan (2005)
33. Qureshi, M.K., Jaleel, A., Patt, Y.N., Steely, S.C., Emer, J.: Adaptive insertion

policies for high performance caching. ACM SIGARCH Comput. Archit. News
35(2), 381–391 (2007)

34. Raj, H., Nathuji, R., Singh, A., England, P.: Resource management for isolation
enhanced cloud services. In: Proceedings of the 1st ACM Cloud Computing Secu-
rity Workshop (CCSW 2009), pp. 77–84 (2009)

35. Ristenpart, T., Tromer, E., Shacham, H., Savage, S.: Hey, you, get off of my cloud:
exploring information leakage in third-party compute clouds. In: CCS 2009 (2009)

36. Seaborn, M., Dullien, T.: Exploiting the DRAM rowhammer bug to gain kernel
privileges. In: Black Hat (2015)

37. Spreitzer, R., Plos, T.: Cache-access pattern attack on disaligned AES T-tables. In:
Prouff, E. (ed.) COSADE 2013. LNCS, vol. 7864, pp. 200–214. Springer, Heidelberg
(2013)

38. Tannous, A., Trostle, J.T., Hassan, M., McLaughlin, S.E., Jaeger, T.: New side
channels targeted at passwords. In: ACSAC, pp. 45–54 (2008)

39. Tromer, E., Osvik, D.A., Shamir, A.: Efficient cache attacks on AES, and counter-
measures. J. Cryptology 23(1), 37–71 (2010)

40. Uhsadel, L., Georges, A., Verbauwhede, I.: Exploiting hardware performance coun-
ters. In: 5th Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC
2008) (2008)

41. Wang, Z., Lee, R.B.: New cache designs for thwarting software cache-based side
channel attacks. ACM SIGARCH Comput. Archit. News 35(2), 494 (2007)

42. Wang, Z., Lee, R.B.: A novel cache architecture with enhanced performance and
security. In: IEEE/ACM International Symposium on Microarchitecture (MICRO
2008), pp. 83–93 (2008)

43. Willems, C., Hund, R., Fobian, A., Felsch, D., Holz, T., Vasudevan, A.: Down
to the bare metal: using processor features for binary analysis. In: ACSAC 2012
(2012)

44. Xia, Y., Liu, Y., Chen, H., Zang, B.: CFIMon: detecting violation of control flow
integrity using performance counters. In: DSN 2012 (2012)

45. Yarom, Y., Falkner, K.: Flush+Reload: a high resolution, low noise, L3 cache side-
channel attack. In: USENIX Security Symposium (2014)

46. Zhang, K., Wang, X.: Peeping tom in the neighborhood: keystroke eavesdropping
on multi-user systems. In: USENIX Security Symposium (2009)

47. Zhang, Y., Juels, A., Oprea, A., Reiter, M.K.: HomeAlone: co-residency detection
in the cloud via side-channel analysis. In: S&P 2011 (2011)

48. Zhang, Y., Juels, A., Reiter, M.K., Ristenpart, T.: Cross-tenant side-channel
attacks in PaaS clouds. In: CCS 2014 (2014)

49. Zhang, Y., Reiter, M.: Düppel: retrofitting commodity operating systems to miti-
gate cache side channels in the cloud. In: CCS 2013 (2013)

http://dx.doi.org/10.1007/978-3-319-30806-7_9

Rowhammer.js: A Remote Software-Induced
Fault Attack in JavaScript

Daniel Gruss(B), Clémentine Maurice, and Stefan Mangard

Graz University of Technology, Graz, Austria
daniel.gruss@iaik.tugraz.at

Abstract. A fundamental assumption in software security is that a
memory location can only be modified by processes that may write to
this memory location. However, a recent study has shown that parasitic
effects in DRAM can change the content of a memory cell without access-
ing it, but by accessing other memory locations in a high frequency. This
so-called Rowhammer bug occurs in most of today’s memory modules
and has fatal consequences for the security of all affected systems, e.g.,
privilege escalation attacks.

All studies and attacks related to Rowhammer so far rely on the avail-
ability of a cache flush instruction in order to cause accesses to DRAM
modules at a sufficiently high frequency. We overcome this limitation by
defeating complex cache replacement policies. We show that caches can
be forced into fast cache eviction to trigger the Rowhammer bug with
only regular memory accesses. This allows to trigger the Rowhammer
bug in highly restricted and even scripting environments.

We demonstrate a fully automated attack that requires nothing but
a website with JavaScript to trigger faults on remote hardware. Thereby
we can gain unrestricted access to systems of website visitors. We show
that the attack works on off-the-shelf systems. Existing countermeasures
fail to protect against this new Rowhammer attack.

1 Introduction

Hardware-fault attacks have been a security threat since the first attacks in 1997
by Boneh et al. [10] and Biham et al. [9]. Fault attacks typically require physical
access to the device to expose it to physical conditions which are outside the
specification. This includes high or low temperature, radiation, as well as laser
on dismantled microchips. However, software-induced hardware faults are also
possible, if the device can be brought to the border or out of the specified oper-
ation conditions using software. Kim et al. [20] showed that frequently accessing
specific memory locations can cause random bit flips in DRAM chips. 85% of
the DDR3 modules they examined are vulnerable. The number of bit flips varies
from one module to another, i.e. some modules can be more vulnerable than oth-
ers. More recently, DDR4 modules have been found to be vulnerable as well [32].

C. Maurice—Part of the work was done while author was affiliated to Technicolor
and Eurecom.

c© Springer International Publishing Switzerland 2016
J. Caballero et al. (Eds.): DIMVA 2016, LNCS 9721, pp. 300–321, 2016.
DOI: 10.1007/978-3-319-40667-1 15

Rowhammer.js: A Remote Software-Induced Fault Attack in JavaScript 301

Bit flips can be triggered by software by flushing a memory location from the
cache and reloading it. Seaborn [36] demonstrated that an attacker can exploit
such bit flips for privilege escalation. These exploits are written in native code
and use special instructions to flush data from the cache.

We show that it is possible to trigger hardware faults by performing fast cache
eviction on all architectures, if the DRAM modules are vulnerable. Compared
to previous work, we do not use any specific instruction, but only regular mem-
ory accesses to evict data from the cache. The attack technique is thus generic
and can be applied to any architecture, programming language and runtime
environment that allows producing a fast stream of memory accesses. Therefore,
proposed countermeasures such as removing the clflush instruction cannot pre-
vent attacks. Even more severe, we show that on vulnerable modules, we can
also perform remote JavaScript-based Rowhammer attacks.

Since an attack through a website can be performed on millions of victim
machines simultaneously and stealthily, it poses an enormous security threat.
Rowhammer.js is independent of the instruction set of the CPU. It is the first
remote software-induced hardware-fault attack. As a proof of concept, we imple-
mented a JavaScript version that as of today runs in all recent versions of Firefox
and Google Chrome.

For a Rowhammer attack in JavaScript we perform the following steps:

1. Find 2 addresses in different rows
2. Evict and reload the 2 addresses in a high frequency
3. Search for an exploitable bit flip
4. Exploit the bit flip (e.g. manipulate page tables, remote code execution).

Steps 3 and 4 have already been solved in previous work [36], but step 1 and 2
remain open challenges.

The challenge in step 1 is to retrieve information on the physical addresses
from JavaScript. It is strictly sandboxed and provides no possibility to retrieve
virtual or physical addresses. To tackle this challenge, we determine parts of the
physical addresses using large arrays that are allocated by operating systems on
large pages. We thus do not exploit any weaknesses in JavaScript or the browser,
but only OS-level optimizations.

The challenge in step 2 is to find fast cache eviction strategies to replace
the clflush instruction. On older CPUs, simply accessing n + 1 addresses is
sufficient to evict lines for an n-way cache [23,27]. On Intel CPUs produced in
the last 4 years, i.e.post Sandy Bridge, the replacement policy has changed and
is undocumented. Consequently, known eviction strategies have a low eviction
rate or a high execution time, which is not suitable for Rowhammer attacks. To
tackle this challenge, we present a novel generic method for finding cache eviction
strategies that achieve the best performance in both timing and eviction rate
by comprehensively exploring the parameter space. We present the best eviction
strategies so far, outperforming previous ones on all recent Intel architectures.
Based on this method, we build a two-phase online attack for remote systems
with unknown hardware configuration.

302 D. Gruss et al.

Table 1. Experimental setups.

Platform CPU Architecture RAM

Lenovo T420 i5-2540M Sandy bridge Corsair DDR3-1333 8 GB and
Samsung DDR3-1600 4 GB (2×)

Lenovo x230 i5-3320M Ivy bridge Samsung DDR3-1600 4 GB (2×)

Asus H97-Pro i7-4790 Haswell Kingston DDR3-1600 8 GB

ASRock Z170 ITX i7-6700K Skylake G.Skill DDR4-3200 8 GB (2×) and
Crucial DDR4-2133 8 GB (2×)

We compare the different implementations of the Rowhammer attacks on
a fixed set of configurations (see Table 1), some vulnerable in default settings,
others at decreased refresh rates.

As of today, software countermeasures against Rowhammer native code
attacks only target specific exploits, and, as we show, do not protect sufficiently
against attacks from JavaScript. Hardware countermeasures are harder to deploy,
since they do not affect legacy hardware including recent vulnerable DDR4 mod-
ules. BIOS updates can be used to solve the problem on commodity systems,
however it is only a practical solution for very advanced users.

Summarizing, our key contributions are:

– We provide the first comprehensive exploration of the cache eviction parameter
space on all recent Intel CPUs. This also benefits broader domains, e.g. cache
attacks, cache-oblivious algorithms, cache replacement policies.

– We build a native code implementation of the Rowhammer attack that only
uses memory accesses. The attack is successful on Sandy Bridge, Ivy Bridge,
Haswell and Skylake, in various DDR3 and DDR4 configurations.

– We build a pure JavaScript Rowhammer implementation, showing that an
attacker can trigger Rowhammer bit flips remotely, through a web browser.

The remainder of this paper is organized as follows. In Sect. 2, we provide
background information on DRAM, the Rowhammer bug, CPU caches, and
cache attacks. In Sect. 3, we describe a two-phase automated attack to trig-
ger bit flips on unknown systems. In Sect. 4, we demonstrate the Rowhammer
bug without clflush in native code and in JavaScript. In Sect. 5, we provide
a discussion of our proof-of-concept exploit, limitations, and countermeasures.
Finally, we discuss future work in Sect. 6 and provide conclusions in Sect. 7.

2 Background

2.1 DRAM

Modern memory systems have multiple channels of DRAM memory connected
to the memory controller. A channel consists of multiple Dual Inline Memory
Modules (DIMMs), that are the physical modules on the motherboard. Each

Rowhammer.js: A Remote Software-Induced Fault Attack in JavaScript 303

DIMM has one or two ranks, that are the sides of the physical module. Each
rank is a collection of chips, that are further composed of banks. Accesses to
different banks can be served concurrently. Each bank is an array of capacitor
cells that are either in a charged or discharged state, representing a binary data
value. The bank is represented as a collection of rows, typically 214 to 217.

The charge from the cells is read into a row buffer on request and written
back to the cells as soon as another row is requested. Thus, access to the DRAM
is done in three steps: 1. opening a row, 2. accessing the data in the row buffer,
3. closing the row before opening a new row, writing data back to the cells.

DRAM is volatile memory and discharges over time. The refresh interval
defines when the cell charge is read and restored to sustain the value. DDR3 and
DDR4 specifications require refreshing all rows at least once within 64ms [1,20].

The selection of channel, rank, bank and row is based on physical address
bits. The mapping for Intel CPUs has recently been reverse engineered [32,35].

2.2 The Rowhammer Bug

The increase of DRAM density has led to physically smaller cells, thus capable
of storing smaller charges. As a result, cells have a lower noise margin, and cells
can interact electrically with each other although they should be isolated. The
so called Rowhammer bug consists in the corruption of data, not in rows that
are directly accessed, but rather in rows nearby the accessed one.

DRAM and CPU manufacturers have known the Rowhammer bug since at
least 2012 [5,6]. Hammering DRAM chips is a quality assurance tests applied to
modules [3]. As refreshing DRAM cells consumes time, DRAM manufacturers
optimize the refresh rate to the lowest rate that still works reliably.

The Rowhammer bug has recently been studied [16,20,29] and the majority
of off-the-shelf DRAM modules has been found vulnerable to bit flips using
the clflush instruction. The clflush instruction flushes data from the cache,
forcing the CPU to serve the next memory access from DRAM. Their proof-of-
concept implementation frequently accesses and flushes two memory locations
in a loop, causing bit flips in a third memory location.

Seaborn implemented Rowhammer exploits [36] in native code with the
clflush instruction: a privilege escalation on a Linux system caused by a bit
flip in a page table and an escape from the Google Native Client sandbox caused
by a bit flip in indirect jumps. As a countermeasure, the clflush instruction
was removed from the set of allowed instructions in Google Chrome Native
Client [36].

2.3 CPU Caches

A CPU cache is a small and fast memory inside the CPU hiding the latency
of main memory by keeping copies of frequently used data. Modern Intel CPUs
have three levels of cache, where L1 is the smallest and fastest cache and L3
the slowest and largest cache. The L3 cache is an inclusive cache, i.e. all data

304 D. Gruss et al.

Table 2. Complex addressing function from [24].

Address Bit

3 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 0 0 0 0

2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6

2 cores o0 ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
4 cores o0 ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

o1 ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

in L1 and L2 cache is also present in the L3 cache. It is divided into one slice
per CPU core, but shared, i.e. cores can access all slices. The undocumented
complex addressing function that maps physical addresses to slices was recently
reverse engineered [18,24,40]. We used the results published by Maurice et al.
[24], shown in Table 2. The table shows how address bits 6 to 32 are xor’d into
one or two output bits o0 and o1. In case of a dual-core CPU, output bit o0
determines to which of the two cache slices the physical address maps. In case
of a quad-core CPU, output bits o1 and o0 determine the slice.

Caches are organized in sets of multiple lines. The mapping from physi-
cal addresses to sets is fixed. Addresses that map to the same set and slice
are called congruent. To load a new line from memory, the replacement policy
decides which line to evict. Intel has not disclosed the cache replacement policy of
their CPUs. However, the replacement policies for some architectures have been
reverse-engineered: Sandy Bridge has a pseudo-LRU replacement policy and Ivy
Bridge a modification of the pseudo-LRU replacement policy [38]. Moreover, Ivy
Bridge, Haswell and Skylake use adaptive cache replacement policies which only
behave as pseudo-LRU in some situations [33]. These CPUs can switch the cache
replacement policy frequently.

2.4 Cache Attacks and Cache Eviction

Cache side-channel attacks exploit timing differences between cache hits and
cache misses. Practical attacks on cryptographic algorithms have been explored
thoroughly [8,31]. There are two main types of cache attacks called Prime+Probe
and Flush+Reload. The Prime+Probe attack has been introduced by Perci-
val [31] and Osvik et al. [28]. It determines activities of a victim process by
repeatedly measuring the duration to access once every address in a set of
congruent addresses, i.e. a so-called eviction set. Prime+Probe on the last-
level cache enables cross-core cache attacks such as cross-VM attacks without
shared memory [19,23], covert channels [25] and attacks from within sandboxed
JavaScript [27]. Oren et al. [27] and Liu et al. [23] compute the eviction set by
adding addresses to the eviction set until eviction works. Flush+Reload has been
introduced by Gullasch et al. [14] and Yarom and Falkner [39]. It exploits shared
memory between attacker and victim and is very fine-grained. Cache lines are
flushed with the clflush instruction or using cache eviction [13].

Rowhammer.js: A Remote Software-Induced Fault Attack in JavaScript 305

Evicting data from the cache is just as crucial to cache attacks as it is for
the Rowhammer attack. Previous work either uses the clflush instruction or
hand-crafted eviction loops. Hund et al. [17] showed that data can be evicted by
filling a large memory buffer the size of the cache. However, this is very slow and
thus not applicable to fine-grained cache attacks or Rowhammer attacks. Using
the reverse-engineered complex addressing function solves the problem of finding
addresses that are congruent in the cache, but it leaves the non-trivial problem
of finding access sequences to achieve high eviction rates while maintaining a
low execution time.

3 Cache Eviction Strategies

In this section, we describe how to find cache eviction strategies in a fully
automated way for microarchitectures post Sandy Bridge. An eviction strategy
accesses addresses from an eviction set in a specific access pattern and can ide-
ally be used as a replacement for clflush. Eviction set is commonly defined as
a set of congruent addresses. The access pattern defines in which order addresses
from the eviction set are accessed, including multiple accesses per address.

An efficient eviction strategy can replace the clflush instruction in any
cache attack and significantly improves cache attacks based on Prime+Probe,
like JavaScript-based attacks [27] or cross-VM cache attacks [23]. It also allows
to replace the clflush instruction in a Rowhammer attack (see Sect. 4).

The replacement policy of the CPU influences the size of the eviction set and
the access pattern necessary to build an efficient eviction strategy. For a pseudo-
LRU replacement policy, accessing as many congruent locations as the number
of ways of the L3 cache (for instance 12 or 16) once, evicts the targeted address
with a high probability. For adaptive cache replacement policies, an eviction
strategy that is effective for one policy is likely to be ineffective for the other.
Thus it is necessary to craft an eviction strategy that causes eviction for both
policies and ideally does not introduce a significant timing overhead.

We distinguish between the following ways to generate an eviction strategy:

1. Static eviction set and static access pattern: uses information on cache slice
function and physical addresses, and generates a pre-defined pattern in negli-
gible time. Sections 3.2 and 3.3 describe new efficient eviction strategies com-
puted this way.

2. Dynamic eviction set and static access pattern: computes the eviction set in
an automated way, without any knowledge of the system, e.g. the number
of cores. A good access pattern that matches the replacement policy of the
targeted system is necessary for a successful attack. Section 3.3 describes this
approach.

3. Dynamic eviction set and dynamic access pattern: automatically computes
the eviction set and the access pattern based on randomness. This comes
at the cost of performing a huge number of eviction tests, but it has the
advantage to require almost no information on the system, and allows to

306 D. Gruss et al.

implement fully automated online attacks for unknown systems. Section 3.3
describes this approach.

4. Static eviction set and dynamic access pattern: uses a pre-defined eviction
set, but a random pattern that is computed in an automated way. This is
possible in theory, but it has no advantage over automatically testing static
access patterns. We thus do not further investigate this approach.

We first describe a model to represent access patterns, given several parame-
ters. To find a good eviction strategy for a given system, we define an offline and
an online phase. In the offline phase, the attacker explores the parameter space
to find the best eviction strategies for a set of controlled systems. The goal is
to find a eviction strategy that matches the undocumented replacement policy
the closest, including the possibility of policy switches. In the online phase, the
attacker targets an unknown system, with no privileges.

3.1 Cache Eviction Strategy Model

The success of a cache eviction strategy is measured by testing whether the tar-
geted memory address is not cached anymore over many experiments, i.e. average
success rate. For such cases, we made the following three observations.

First, only cache hits and cache misses to addresses in the same cache set
have a non-negligible influence on the cache, apart from cache maintenance and
prefetching operations to the same cache set. We verified this by taking an evic-
tion algorithm and randomly adding memory accesses that are not congruent.
The eviction rate is the average success rate of the eviction function. It does not
change by adding non-congruent accesses to an eviction strategy as long as the
timing does not deviate. Thus, the eviction set only contains congruent addresses
and the effectiveness of the eviction strategy depends on the eviction set size.

Second, addresses are indistinguishable with respect to the cache. Thus, we
represent access patterns as sequences of address labels ai, e.g. a1a2a3 Each
address label is set to a different address and thus for each time frame the
sequence defines which address to access. A pattern a1a2a3 is equivalent to any
pattern akalam where k �= l �= m. If run in a loop, the number of different
memory addresses has an influence on the effectiveness on the eviction strategy.

Third, repeated accesses to the same address are necessary to keep it in
the cache, as replacement policies can prefer to evict recently added cache
lines over older ones. Changing the eviction sequence from a1a2 . . . a17 to
a1a1a2a2 . . . a17a17 reduces the execution time by more than 33% on Haswell,
and increases the eviction rate significantly if executed repeatedly, as the cache
remains filled with our eviction set. However, we observed a diminishing mar-
ginal utility for the number of accesses to the same address. For all addresses we
observed that after a certain number of accesses, further accesses do not increase
and can even decrease the eviction rate. Thus, we describe eviction strategies
as a loop over an eviction set of size S, where only a subset of D addresses is
accessed per round. A parameter L allows to make accesses overlap for repeated
accesses.

Rowhammer.js: A Remote Software-Induced Fault Attack in JavaScript 307

1 for (s = 0; s <= S-D; s += L)
2 for (c = 0; c <= C; c += 1)
3 for (d = 0; d <= D; d += 1)
4 *a[s+d];

Listing 1. Eviction loop for pattern testing.

While testing all possible sequences even for very small sequence lengths is
not possible in practical time (c.f., Stirling numbers of second kind as a good esti-
mate), a systematic exploration of influential parameters is possible. In theory,
better eviction strategies may lie outside of this reduced search space. However
using this method, we found eviction strategies that allowed us to successfully
trigger bit flips using eviction-based Rowhammer (see Sect. 4). To discuss and
compare eviction strategies systematically, we use the following naming scheme
in this paper to describe parametrized eviction strategies as depicted in List-
ing 1. The eviction strategy name has the form P-C-D-L-S, with C, the number
of accesses to each memory address per loop round, D, the number of differ-
ent memory addresses accessed per loop round, L, the step size/increment of
the loop (for overlapping accesses), and S, the eviction set size. For instance,
LRU-eviction is P-1-1-1-S with an access sequence of a1a2a3 . . . aS .

3.2 Offline Phase

In the offline phase, the attacker has at his disposal a set of machines and tries
to learn the eviction strategy that matches the replacement policy the closest for
each machine. While it is not strictly a reverse engineering of the replacement
policy, by knowing the best eviction strategy, the attacker gains knowledge on
the systems. In this phase, the attacker has no time constraints.

We discuss the evaluation in detail for the Haswell platform with a single
DIMM in single channel mode. We explored the parameter space up to degree
6 in the dimensions of C, D and L and 23 different eviction set sizes each, in
order to find eviction strategies that are fast and effective enough to perform
Rowhammer attacks. Including the equivalent eviction strategies we evaluated
a total of 18293 eviction strategies on 3 of our test platforms. We tested each
eviction strategy in 20 double-sided Rowhammer tests with 2 million hammering
rounds (i.e. 80 million evictions per eviction strategy) and evaluated them using
different evaluation criteria including eviction rate, runtime, number of cache hits
and misses. The runtime was more than 6 days. The hammering was performed
on a fixed set of physical addresses congruent to one specific cache set to allow for
a fair comparison of the eviction strategies. Half of the evictions, i.e. 40 millions,
were used to measure eviction rate, cache hits and cache misses. The other half
was used to measure the average execution time per eviction. We verified that
the sample size is high enough to get reproducible measurements.

The number of bit flips is not suitable for the evaluation of a single eviction
strategy, but only to determine whether and how cache hits, cache misses, the
execution time and the eviction rate influence the probability of a bit flip. Bit

308 D. Gruss et al.

flips are reproducible in terms of the memory location, but the time and the
number of memory accesses until a bit flip occurs again varies widely. In order
to measure the average number of bit flips for a eviction strategy, we would have
to test every eviction strategy for several hours instead of minutes. This would
increase the test time per machine to several weeks, and even then, it would
not yield reproducible results, as it has been observed that the DRAM cells get
permanently damaged if hammered for a long time [20].

0 2,000 4,000 6,000
0
5

10
15
20

Execution time in ns

#
B

it
fl
ip

s

(a) Low execution time is better.

98.0% 98.5% 99.0% 99.5% 100%
0
5

10
15
20

Eviction rate
#

B
it

fl
ip

s
(b) High eviction rate is better. Average
over all eviction strategies is 73.96%.

100 200 300
0
5

10
15
20

Cache hits

#
B

it
fl
ip

s

(c) Number of cache hits is not a good
criteria for bit flips.

0 100 200 300
0
5

10
15
20

Cache misses

#
B

it
fl
ip

s

(d) Number of cache misses is not a
good criteria for bit flips.

Fig. 1. Relation between the number of bit flips and average execution time, cache
hits and cache misses per eviction and the eviction rate of the corresponding eviction
strategy measured in 40 million samples. One point per eviction strategy that caused
a bit flip, others are omitted. The darker the more points overlay. Average over all
eviction strategies shown as dashed line. Good eviction strategies have high eviction
rates and low execution times.

High execution times are too slow to trigger bit flips and low execution times
are useless without a good eviction rate. The execution time of the eviction
strategy is directly related to the number of memory accesses to the two vic-
tim addresses. Hence, it influences the probability of a bit flip directly. On our
default configured Ivy Bridge notebook we observed bit flips even with execution
times of 1.5µs per hammering round, that is approximately 21,500 accesses per
address within the specified total refresh interval of 64ms. This maps to the aver-
age periodic refresh interval tREFI by dividing 64ms by 8192 [26]. Double-sided
rowhammering using clflush takes only 60 ns on our Haswell test system, that
is approximately 0.6 million accesses per address in 64 ms. Figure 1a shows how
bit flips are correlated with the eviction execution time.

The eviction rate has to be very high to trigger bit flips. Figure 1b shows
how many bit flips occurred at which eviction rate. We observe that 81% of the

Rowhammer.js: A Remote Software-Induced Fault Attack in JavaScript 309

bit flips occurred at an eviction rate of 99.75% or higher and thus use this as a
threshold for good eviction strategies on our Haswell system. Even though a bit
flip may occur at lower eviction rates, the probability is significantly lower.

The eviction loop contributes to a high number of cache hits and cache misses,
apart from the two addresses we want to hammer. We measure the number of
cache hits and cache misses that occur during our test run using hardware perfor-
mance counters through the Linux syscall interface perf event open. Cache hits
have a negligible influence on the execution time and no effect on the DRAM.
Cache misses increase the execution time and, if performed on a different row
but in the same channel, rank and bank, additional DRAM accesses. However,
Figs. 1c and 1d show that both cache hits and cache misses do not impact the
number of bit flips significantly, as the average for all eviction strategies is in the
range of the eviction strategies that triggered a bit flip.

Thus, we thus use the eviction rate as a criteria for good eviction strategies,
and among those eviction strategies, we prefer those with a lower average exe-
cution time. This method requires no access to any system interfaces and can be
implemented in any language and execution environment that allows to measure
time and perform arbitrary memory accesses, such as JavaScript.

Table 3. The fastest 5 eviction strategies with an eviction rate above 99.75 % compared
to clflush and LRU eviction on the Haswell test system.

C D L S Accesses Hits Misses Time (ns) Eviction

− − − − − 2 2 60 99.9999 %

5 2 2 18 90 34 4 179 99.9624 %

2 2 1 17 68 35 5 180 99.9820 %

2 1 1 17 34 47 5 191 99.8595 %

6 2 2 18 108 34 5 216 99.9365 %

1 1 1 17 17 96 13 307 74.4593 %

4 2 2 20 80 41 23 329 99.7800 %

1 1 1 20 20 187 78 934 99.8200 %

Table 3 shows a comparison of the fastest 5 of these eviction strategies with
an eviction rate above 99.75% (see Fig. 1b) and clflush based rowhammering
as well as the fastest LRU (P-1-1-1-20) eviction strategy that achieves the same
eviction rate. The best two eviction strategies are P-5- 2-2-18 and P-2-2-1-17,
both with an execution time around 180 ns.

Accessing each address in the eviction set only once (LRU eviction) is far from
optimal for cache attacks and impractical for Rowhammer. Although counterin-
tuitive, adding more accesses to the eviction loop will lower the overall execution
time. We can observe this for instance by comparing the eviction strategies P-
1-1-1-20 and P-4-2-2-20. While both access the same set of 20 addresses, the
latter one performs 4 times as many memory accesses, yet its execution time is

310 D. Gruss et al.

300 400 500 600 700 800 900 1,000 1,100 1,200 1,300 1,400

0.8

0.9

1

Round execution time in ns

E
v
ic

ti
o
n

ra
te

Fig. 2. Average execution time and eviction rate per eviction strategy on Ivy Bridge
measured in 40 million samples per eviction strategy. One point per eviction strategy
that caused a bit flip, others are omitted. The darker the more points overlay. Average
over all eviction strategies shown as dashed line.

only one third. Comparing the best eviction strategy we found to LRU eviction
as described in previous work, performs only as good if the set size is at least
S = 25, increasing the average execution time 9 times higher than the one of
the best eviction strategy we found. On the other hand, the eviction set size in
previous work is typically specified as S = 17. For P-1-1-1-17 we measured an
eviction rate of 74.5% and even then a 1.7 times higher execution time than with
the best eviction strategy we found. This shows that the eviction strategies we
found are a significant improvement over previously published eviction methods.

We performed the same evaluation for the other architectures. The distri-
bution of bit flips on our Ivy Bridge test system relative to eviction rate and
execution time is shown in Fig. 2. Most bit flips occurred at eviction rates above
99%. The fastest 5 of these eviction strategies are shown in Table 4 in comparison
with clflush and the fastest LRU (P-1-1-1-15) eviction strategy.

Table 4. clflush and LRU eviction compared to the fastest 5 eviction strategies above
99 % eviction rate on the Ivy Bridge test system (left) and compared to the fastest 5
eviction strategies above 99.9 % eviction rate on the Skylake DDR4 test system (right).

C D L S Acc. Hits Misses Time (ns) Eviction

- - - - - 2 2 40 100.000%
4 5 5 20 80 43 35 327 99.514%
1 1 1 13 13 52 33 333 72.145%
3 1 1 17 51 46 41 341 99.081%
4 5 5 17 68 45 37 345 99.604%
3 1 1 19 57 50 47 369 99.267%
3 2 2 18 54 48 43 376 99.412%
1 1 1 15 15 97 84 632 99.085%

C D L S Acc. Hits Misses Time (ns) Eviction

- - - - - 2 2 47 100.000%
3 1 1 22 66 48 45 218 99.937%
2 2 1 22 88 47 45 222 99.932%
3 3 3 24 72 50 45 222 99.938%
3 3 3 21 63 51 45 223 99.937%
4 3 3 24 96 49 45 225 99.905%
1 1 1 17 17 240 36 240 82.959%
1 1 1 21 21 145 87 495 99.970%

According to our measurements the complex addressing function on Skylake
is not the same as in Haswell, but it can be trivially derived from the reverse
engineered 8-core function. We again found that LRU eviction performs much
worse than the best eviction strategy we found as shown in Table 4.

Rowhammer.js: A Remote Software-Induced Fault Attack in JavaScript 311

3.3 Online Phase

In the online phase, the attacker targets an unknown system. In particular,
microarchitecture and number of CPU cores are unknown to the attacker. The
attacker has the knowledge gained from the offline phase at his disposal. How-
ever, he has no privilege on the victim’s machine and no time to run the exten-
sive search from the offline phase. The online phase consists in two attacks: an
assumption-based attack, and a fall-back attack in case the first one does not
work. In both cases the attack is based on a series of timing attacks and no
access to specific system interfaces is necessary.

Assumption-Based Attack. The attacker first tests whether the targeted sys-
tem resembles a system tested in the offline phase, by performing timing attacks.
No access to syscalls or system interfaces is required for this step. The attacker
defines a threshold eviction rate based on the results from the offline phase (for
instance 99.75%) and searches for eviction strategies above this threshold on
the system under attack. By testing a set of eviction strategies from the offline
phase, the attacker learns whether the architecture of the system under attack
resembles an architecture from the offline phase. In this case the best eviction
strategy for the system under attack is within the set of eviction strategies pre-
viously tested. The number of eviction strategies to test is as low as the number
of targeted CPU architectures and thus it only takes a few seconds to compute.

Fig. 3. Slice patterns for 64-byte offsets on 4KB pages on a 4-core system. An attacker
can derive which addresses map to the same cache slice. Substituting 2 by 0 and 3 by
1 gives the slice pattern for 2-core systems.

The eviction set can be computed in a static or dynamic way. Without any
further assumptions we can run modified versions of the algorithms by Oren et al.
[27] or Liu et al. [23]. Instead of the P-1-1-1 access pattern they implement, we
use one of the suspected eviction strategies to build a dynamic assumption-based
algorithm. This improves the success rate of their algorithms on recent architec-
tures. However, we make additional assumptions to reduce the execution time to
a minimum and build a static assumption-based algorithm. One assumption is
that large arrays are allocated on large pages, as has been observed before [11].
Based on this assumption we can use the complex addressing function from
Table 2 to determine the slice patterns for 4KB and 2MB pages as shown in
Fig. 3. These distinct patterns in the mapping from physical addresses to cache
slices depend only on the number of cache slices and are the same for Intel
CPUs since the Sandy Bridge architecture. The algorithm by Oren et al. [27]
or Liu et al. [23] finds only addresses in the same cache slice and cache set. We

312 D. Gruss et al.

use it to build an eviction set of 2MB-aligned congruent addresses in the same
slice. Subsequent eviction set computations are performed statically based on
the complex addressing function and the identified 2MB offsets.

Fall-Back Attack. If the assumption-based phase does not work on a system
under attack, e.g. because the unknown system is none of the systems tested in
the offline phase, the attacker runs a fall-back phase to find an eviction strategy
that is sufficient to trigger a bit flip with Rowhammer.

Oren et al. [27] and Liu et al. [23] compute a dynamic eviction set with a
static access pattern P-1-1-1. We extend their algorithms to compute eviction
strategies with dynamic eviction sets and dynamic access patterns. In the first
step, we continuously add addresses to the eviction strategy multiple times to
create eviction strategies with multiple accesses to the same address. We know
that the eviction strategy is large enough as soon as we can clearly measure the
eviction of the target physical address. In a second step, when the eviction rate
is above the attacker chosen threshold, eviction addresses that do not lower the
eviction rate are removed by replacing them with other addresses that are still
in the eviction set. Thus, the number of memory accesses does not decrease,
but the eviction set is minimized. This decreases the number of cache misses
and thus the execution time. Finally, we randomly remove accesses that do not
decrease the eviction rate and do not increase the execution time. This again
decreases the number of unnecessary cache hits and thus the execution time.

100 500 1000 5000 10000 50000

75.0%

95.0%

99.0%
99.7%

Number of eviction tests

E
v
ic

ti
o
n

ra
te

Eviction rate

Execution time

30 s

300 s

3000 s

E
x
ec

u
ti

o
n

ti
m

e

Fig. 4. The eviction rate and execution time of the dynamic eviction strategy when
implementing the cached(p) function with n eviction tests.

The resulting eviction strategy can neither access less addresses nor can any
duplicate accesses be removed without lowering the eviction rate. They thus
perform similarly to statically computed eviction strategies. The result of the
algorithm is a series of accesses that fulfill the eviction rate threshold chosen by
the attacker and that has a low execution time on the system under attack. If
the threshold was set high enough so that bit flips are likely to occur in practice,
the eviction strategy found by the fall-back algorithm can be used for an attack.

The algorithm uses a function cached(p) that tries to evict a target address
p using the current eviction strategy and set and decides whether p is cached or
not based on the access time. The quality of the solution depends on the number
of tests that are performed in this function. The function only returns true, if an

Rowhammer.js: A Remote Software-Induced Fault Attack in JavaScript 313

eviction rate below the attacker defined threshold is measured. A higher number
of tests increases the execution time and the accuracy of this binary decision.
Figure 4 shows how the number of tests influences the eviction rate and the exe-
cution time of the resulting eviction strategy. If a high eviction rate is necessary,
the execution time of the algorithm is can exceed 40 min. Thus, our algorithm
can precompute a working eviction strategy once and subsequent eviction set
computations are done with the fixed eviction strategy within seconds.

4 Implementation of Eviction-Based Rowhammer

We now perform Rowhammer attacks using the eviction strategies from Sect. 3
instead of clflush in different scenarios. First, we demonstrate that it is possible
to trigger bit flips in the same conditions as in the existing attacks where an
attacker is able to execute native code on the system under attack. We then show
that given knowledge about the physical addresses, it is possible to trigger bit
flips even from a remote website using JavaScript. In a third step, we show that
the full Rowhammer attack is possible from a remote website using JavaScript
without any additional information on the system.

4.1 Rowhammer in Native Code

We extended the double sided rowhammer program by Dullien [36] by using the
best eviction strategy we have found. The two clflush instructions were first
replaced by the eviction code described in Sect. 3.1, with parameters for a P-2-
2-1 eviction strategy. The eviction sets are either precomputed statically using
the physical address mapping and the complex addressing function in Table 2,
or using a dynamic eviction strategy computation algorithm.

This way, we were able to reproducibly flip bits on our Sandy Bridge and
Ivy Bridge test machine using different eviction strategies when running with
the Samsung DDR3 RAM and our Skylake test machine when running with the
Crucial DDR4 RAM. The machines were operated in default configuration.

On our Haswell test machine we were not able to reproducibly flip bits with
the default settings, not even with the clflush instruction. However, the BIOS
configuration allows setting a custom refresh rate by setting the average periodic
refresh interval tREFI. We had to increase the tREFI value from 6,549 to over
19,000 just to be able to trigger bit flips with the clflush instruction. The
refresh interval is a typical parameter used by computer gaming enthusiasts and
the overclocking community to increase system performance. However, while
this might also be an interesting target group, we rather want to analyze the
influence of the refresh interval on the applicability of the Rowhammer attack
using cache eviction and the Rowhammer attack in JavaScript. Kim et al. [20]
observed that the refresh interval directly influences the number of bit flips that
occur and that below a module dependent tREFI value no bit flips occur. We
will show that their observation also applies to Rowhammer with cache eviction
and Rowhammer in JavaScript.

314 D. Gruss et al.

Lowering the refresh interval is not part of an actual attack. Existing work
has already examined the prevalence of the Rowhammer and found that 85% of
the DDR3 modules examined are susceptible to Rowhammer bit flips [20]. Also
in our case only the modules of the Haswell test system and the G.Skill DIMMs in
the Skylake test system were not susceptible to Rowhammer bit flips at default
settings, whereas it was possible to induce Rowhammer bit flips in the other
three DIMMs at default settings. Thus, our results do not contradict previous
estimates and we must assume that millions of systems are still vulnerable.

Rowhammer with eviction in native code revives the Google Native Client
exploit [36] that allows privilege escalation in Google Chrome. The clflush
instruction has been blacklisted to solve this vulnerability, however, this is inef-
fective and a sandbox escape is still possible, as we can trigger bit flips in Google
Native Client based on eviction.

4.2 Rowhammer in JavaScript

Triggering the Rowhammer bug from JavaScript is more difficult as JavaScript
has no concept of virtual addresses or pointers and no access to physical address
mappings. We observed that large typed arrays in JavaScript in all recent Fire-
fox and Google Chrome versions on Linux are allocated 1MB aligned and use
anonymous 2MB pages when possible. The reason for this lies in the memory
allocation mechanism implemented by the operating system. Any memory allo-
cation in a comparable scripting language and environment will also result in
the allocation of anonymous 2MB pages for large arrays.

By performing a timing attack similar to the one performed by Gruss et al.
[11], we can determine the 2MB page frames in the browser. In this attack we
iterate over an array and measure the access latency. The latency peaks during
memory initialization are caused by the pagefaults that occur with the start
of each new 2MB page, as shown in Fig. 5. This also works in recent browser
versions with a reduced timer resolution as suggested by Oren et al. [27] and
added to the HTML5 standard by the W3C [37]. Thus, we know the lowest 21
bits of the virtual and physical address by knowing the offset in the array.

As a first proof-of-concept we reproduced bit flips in JavaScript in Firefox
by hammering the exact physical addresses as in native code. In order to do this
we built a tool to translate physical to virtual addresses for another process.

0 512 1,024 1,536 2,048 2,560 3,072
0

200

400

Page index

L
a
te

n
cy

in
µ
s

Fig. 5. Access latency of 4KB aligned addresses in a large array in JavaScript. Page-
faults cause the latency peaks at the start of the 2MB pages.

Rowhammer.js: A Remote Software-Induced Fault Attack in JavaScript 315

To compute the eviction sets we use the assumption-based algorithm from
Sect. 3.2. We observed that simple memory accesses as in our native code imple-
mentation are not optimized out by the just-in-time-compiler.

The final JavaScript-based attack does not require any outside computation
and thus, runs entirely without user interaction in the browser. It exploits the
fact that large typed arrays are allocated on 2MB pages. Thus, we know that each
2MB region of our array is divided into 16 row offsets of size 128KB (depends
on the lowest row index bit). We can now perform double-sided hammering in
these 2MB regions to trigger a bit flip within the 2MB region or amplified single-
sided hammering on the outer two rows of every 2MB pages to induce a bit flip
in another physical 2MB region. The result is the first hardware-fault attack
implemented in JavaScript on a remote website.

4.3 Attack Evaluation

As described by Kim et al. [20] not all addresses in a DRAM are equally suscepti-
ble to bit flips. Therefore, to provide a fair comparison of the different techniques,
we measured the number of bit flips for a fixed address pair already known to
be susceptible. Figure 6 shows how different refresh rates influence the number
of bit flips for a fixed time interval in different setups. The system was under
slight usage during the tests (browsing, typing in an editor, etc.). We see that the
clflush instruction yields the highest number of bit flips. If the refresh interval
was set to a value where bit flips can be triggered using clflush, they can be
triggered using native code eviction as well. To trigger bit flips in JavaScript, a
slightly higher refresh interval was necessary. Again, it depends on the particular
DIMM whether the refresh interval is chosen correctly so that no bit flips occur.

20 30 40 50 60 70
102

103

104

105

Refresh interval in ns

B
it

fl
ip

s

Flush (native)

Evict (native)

Evict (JavaScript)

Fig. 6. Number of bit flips within 15 min on a fixed address pair for different values for
the average periodic refresh interval tREFI on Haswell in three different setups. (Color
figure online)

The probability for bit flips in JavaScript is slightly lower than in native code,
as native code is slightly faster. However, if a machine is vulnerable to our native
code implementation it is likely vulnerable using our JavaScript implementation
as well. While these plots were obtained on the Haswell machine, we were also
able to trigger bit flips on our Ivy Bridge laptop with default settings from

316 D. Gruss et al.

JavaScript. However, as the Laptop BIOSes did not allow to set the refresh
interval tREFI directly, we could not obtain a comparable plot.

While DDR4 was assumed to have countermeasures against rowhammering,
countermeasures are not part of the final DDR4 standard [1]. Using the Crucial
DDR4 DIMMs we even were able to induce bit flips at default system settings
and with the most recent BIOS version, after applying the functions reverse
engineered by Pessl et al. [32]. On the G.Skill DDR4 DIMMs we could only induce
bit flips at an increased refresh interval. Thus, even on these very recent and up-
to-date systems Rowhammer countermeasures have not been implemented in
hardware and those implemented in software are ineffective. Whether a system
is vulnerable to Rowhammer-based attacks still crucially depends on the refresh
interval chosen by DIMM.

5 Discussion and Related Work

5.1 Building an Exploit with Rowhammer.js

Existing exploits assume that a page table is mapped in a row between two
rows occupied by the attacker. However, we observed that this situation rarely
occurs in practice. The operating system prefers to use large pages to reduce
the pressure on the TLB. To make the organization and changes to physical
address mappings easier the operating system will also group small pages into
the same organizational physical frames. Page tables are only allocated between
two user pages in a near-out-of-memory situation. Thus, the exploits allocate
almost all system memory to enforce such a situation [36]. However, swapping
is enabled by default in all major operating systems and thus the system will be
severely unresponsive due to swapping. In our proof-of-concept exploit, we per-
form “amplified single-sided hammering”. By hammering two adjacent rows we
increase the probability for a bit flip in a surrounding row significantly compared
to single-sided hammering. This allows to induce bit flips even across the borders
of physically coherent 2MB regions with a high probability. As we already have
been able to trigger bit flips in JavaScript we will only focus on how to manip-
ulate a page table similar to previous exploits [36]. The attacker can repeat any
step of the attack as long as necessary to be successful.

In the first step, the exploit locates an exploitable bit flip as described in
Sect. 4.2, i.e. a bit flip in the 1

3 of the page table bits that are used for physical
addresses. An exploitable bit flip changes an address bit in a page table that
is in an adjacent 2MB region. We have found such bit flips on our all our test
machines. In the second step, the exploit script releases all pages but the two
that have previously been hammered and the ones that are required for cache
eviction. Thus, also the page that contained the bit flip is released. Allocating
arrays requires the browser to reserve virtual memory regions and to map them
to physical memory upon the first access. The attacker determines the largest
array size that still triggers the allocation of a page table in a timing attack
(see 4.2). The array size was 1MB on all our test systems. We only access and
thus allocate one 4KB page per 1MB array and thus 2 user pages per page table.

Rowhammer.js: A Remote Software-Induced Fault Attack in JavaScript 317

The probability to place a group of page tables in the targeted 2MB region is
≈ 1

3 . In the third step, the exploit script triggers the bit flip again and may
find that its own memory mappings changed. With a chance of ≈ 1

3 the memory
mapped is now one of the attackers page tables. The attacker can now change
mapped addresses in that page table and if successful, has gained full access to
the physical memory of the system. Our proof-of-concept works on recent Linux
systems with all recent versions of Firefox and it does not require a near-out-
of-memory situation. It does not work in Google Chrome due to the immediate
allocation of all physical memory for an allocated 1MB array after a single access.

5.2 Limitations

In JavaScript we use 2MB pages to find congruent addresses and adjacent rows
efficiently. If the operating system does not provide 2MB pages, we cannot per-
form double-sided or amplified single-sided hammering. However, the probabil-
ity of a bit flip with single-sided hammering is significantly lower. Exploiting
double-sided hammering with 2MB pages is not possible because we can then
only induce bit flips in our own memory. Thus, an attack is only possible with
amplified single-sided hammering to induce a bit flip in an adjacent row in an
adjacent 2MB page. There is only a limited number of such rows in a system.
Still the search for an exploitable bit flip can easily take several hours, especially
as the probability of a bit flip in JavaScript is lower than in native code. Further-
more, if we cannot guess the best eviction strategy for the system, it will take
up to an hour of precomputations to find a good eviction strategy. The victim
has to stay on the website for the duration of the attack. While this was the case
in our proof-of-concept attack it is less realistic for a real-world attack.

5.3 Countermeasures

The operating system allocates memory in large physical memory frames (often
2MB) for reasons of optimization. Page tables, kernel pages and user pages are
not allocated in the same memory frame, unless the system is close to out-of-
memory (i.e. allocating the last few kilobytes of physical memory). Thus, the
most efficient Rowhammer attack (double-sided hammering) would not possi-
ble if the operating system memory allocator was less aggressive in near-out-
of-memory situations. Preventing (amplified) single-sided hammering is more
difficult, as hammering across the boundaries of a 2MB region is possible.

To fully close the attack vector for double-sided hammering, we also have to
deal with read-only shared code and data, i.e. shared libraries. If the attacker
hammers on a shared library, a fault can be induced in this library. Therefore,
shared libraries should not be shared over processes that run at different privilege
levels or under different users. As a consequence, the attacker would be unable
to escape from a sandbox or gain access to a higher privilege level using clflush
or eviction-based Rowhammer.

Kim et al. [20] proposed several countermeasures which should be imple-
mented for new DRAM modules, including increasing the refresh rate. However,

318 D. Gruss et al.

this would cause significant performance impacts. BIOS updates supplied so far
only double the refresh rate, which is insufficient to prevent attacks on all DRAM
modules. Moreover, many users to not update the BIOS unless it is unavoidable.

Pseudo Target Row Refresh (pTRR) and Target Row Refresh (TRR) are
features that refresh neighboring rows when the number of accesses to one row
exceeds a threshold. They have less overhead compared to double the refresh
rate. Although TRR has been announced as implemented in all DDR4 modules
it has been removed from the final DDR4 standard. Manufacturers can still
choose to implement it in their devices, but if the memory controller does not
support it, it has no effect.

Error-correcting code (ECC) memory is often mentioned as a countermeasure
against Rowhammer attacks. However, recent work shows that it cannot reliably
protect against Rowhammer attacks.cases [2,21].

At the software level, one proposed countermeasure is the detection using
hardware performance counters [4,12,15,30]. The excessive number of cache ref-
erences and cache hits allows to detect on-going attacks. However, this counter-
measure can suffer from false positives, so it needs further evaluation before it
can be brought to practice.

5.4 Related Work

The initial work by Kim et al. [20] and Seaborn’s [36] root exploit made the
scientific community aware of the security implications of a Rowhammer attack.
However, to date, there have been very few other publications, focusing on dif-
ferent aspects than our work. Barbara Aichinger [1] analyzed Rowhammer faults
in server systems where the problem exists in spite of ECC memory. She remarks
that it will be difficult to fix the problem in the millions or even billions of DDR3
DRAMs in server systems. Rahmati et al. [34] have shown that bit flips can be
used to identify a system based on the unique and repeatable error pattern that
occurs at a significantly increased refresh interval. Our paper is the first to exam-
ine how to perform Rowhammer attacks based on cache eviction.1 Our cache
eviction techniques facilitated cache side-channel attacks on ARM CPUs [22].
Concurrent and independent work by Aweke et al. [4] has also demonstrated bit
flips without clflush on a Sandy Bridge laptop. They focus on countermeasures,
whereas we focus on attacking a wider range of architectures and environments.

6 Future Work

While we only investigated the possibility of a JavaScript Rowhammer attack in
Firefox and Google Chrome on Linux, the attack exploits fundamental concepts
that are inbuilt in the way hardware and operating system work. Whenever the
operating system uses 4KB pages, page tables are required and at latest allocated
when one of the 4KB pages belonging to this page table is accessed. Thus, the

1 A draft of this paper was published online since July 24, 2015.

Rowhammer.js: A Remote Software-Induced Fault Attack in JavaScript 319

operating system cannot prevent that 1
3 of memory is allocated for page tables.

The same attack approach could be applied to hypervisors that allocate 4KB
pages to virtual machines, even if they applies similar allocation mechanisms
as the Linux kernel. While it might seem unreasonable and not realistic that
hypervisors allocate 4KB pages, it in fact makes cross-VM page deduplication
easier. According to Barresi et al. [7], page deduplication is in fact still widely
used in public clouds. Our work opens the possibility for further investigation
on whether page deduplication in fact is not only a problem for security and
privacy of virtual machines, but a security problem for the hypervisor itself.

7 Conclusion

In this paper, we presented Rowhammer.js, an implementation of the Rowham-
mer attack using fast cache eviction to trigger the Rowhammer bug with only
regular memory accesses. It is the first work to investigate eviction strategies to
defeat complex cache replacement policies. This does not only enable to trigger
Rowhammer in JavaScript, it also benefits research on cache attacks as it allows
to perform attacks on recent and unknown CPUs fast and reliably. Our fully
automated attack runs in JavaScript through a remote website and can gain
unrestricted access to systems. The attack technique is independent of CPU
microarchitecture, programming language and execution environment.

The majority of DDR3 modules are vulnerable and DDR4 modules can be
vulnerable too. Thus, it is important to discover all Rowhammer attack vectors.
Automated attacks through websites pose an enormous threat as they can be
performed on millions of victim machines simultaneously.

Acknowledgments. We would like to thank our shepherd Stelios Sidiroglou-
Douskos and our anonymous reviewers for their valuable comments and sug-
gestions. We would also like to thank Mark Seaborn, Thomas Dullien, Yossi
Oren, Yuval Yarom, Barbara Aichinger, Peter Pessl and Raphael Spreitzer
for feedback and advice. Supported by the EU Horizon 2020 programme

under GA No. 644052 (HECTOR), the EU FP7 programme under
GA No. 610436 (MATTHEW), the Austrian Research Promotion
Agency (FFG) and Styrian Business Promotion Agency (SFG)

under GA No. 836628 (SeCoS), and Cryptacus COST Action IC1403.

References

1. Aichinger, B.: DDR memory errors caused by Row Hammer. In: HPEC 2015 (2015)
2. Aichinger, B.: Row Hammer Failures in DDR Memory. In: memcon 2015 (2015)
3. Al-Ars, Z.: DRAM fault analysis and test generation. TU Delft (2005)
4. Aweke, Z.B., Yitbarek, S.F., Qiao, R., Das, R., Hicks, M., Oren, Y., Austin, T.:

ANVIL: Software-based protection against next-generation rowhammer attacks.
In: ASLPOS 2016 (2016)

5. Bains, K., Halbert, J.: Row hammer monitoring based on stored row hammer
threshold value (Jun 5 2014), US Patent App. 13/690,523

320 D. Gruss et al.

6. Bains, K., Halbert, J., Mozak, C., Schoenborn, T., Greenfield, Z.: Row hammer
refresh command (Jan 2 2014), US Patent App. 13/539,415

7. Barresi, A., Razavi, K., Payer, M., Gross, T.R.: CAIN: silently breaking ASLR in
the cloud. In: WOOT 2015 (2015)

8. Bernstein, D.J.: Cache-timing attacks on AES. Technical report, Department of
Mathematics, Statistics, and Computer Science, University of Illinois at Chicago
(2005)

9. Biham, E., Shamir, A.: Differential fault analysis of secret key cryptosystems. In:
Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 513–525. Springer,
Heidelberg (1997)

10. Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of checking crypto-
graphic protocols for faults. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol.
1233, pp. 37–51. Springer, Heidelberg (1997)

11. Gruss, D., Bidner, D., Mangard, S.: Practical memory deduplication attacks in
sandboxed javascript. In: Pernul, G., et al. (eds.) ESORICS 2015. LNCS, vol. 9326,
pp. 108–122. Springer, Heidelberg (2015). doi:10.1007/978-3-319-24174-6 6

12. Gruss, D., Maurice, C., Wagner, K., Mangard, S.: Flush+Flush: a fast and stealthy
cache attack. In: DIMVA 2016 (2016)

13. Gruss, D., Spreitzer, R., Mangard, S.: Cache template attacks: automating attacks
on inclusive last-level caches. In: USENIX Security 2015 (2015)

14. Gullasch, D., Bangerter, E., Krenn, S.: Cache games - bringing access-based cache
attacks on AES to practice. In: S&P 2011 (2011)

15. Herath, N., Fogh, A.: These are Not Your Grand Daddys CPU Performance Coun-
ters - CPU Hardware Performance Counters for Security. Black Hat (2015)

16. Huang, R.F., Yang, H.Y., Chao, M.C.T., Lin, S.C.: Alternate hammering test for
application-specific DRAMs and an industrial case study. In: DAC 2012 (2012)

17. Hund, R., Willems, C., Holz, T.: Practical timing side channel attacks against
kernel space ASLR. In: S&P 2013 (2013)

18. Inci, M.S., Gulmezoglu, B., Irazoqui, G., Eisenbarth, T., Sunar, B.: Seriously, get
off my cloud! Cross-VM RSA Key Recovery in a Public Cloud. Cryptology ePrint
Archive, Report 2015/898, pp. 1–15 (2015)

19. Irazoqui, G., Eisenbarth, T., Sunar, B.: S$A: a shared cache attack that works
across cores and defies VM sandboxing - and its application to AES. In: S&P 2015
(2015)

20. Kim, Y., Daly, R., Kim, J., Fallin, C., Lee, J.H., Lee, D., Wilkerson, C., Lai, K.,
Mutlu, O.: Flipping bits in memory without accessing them: an experimental study
of DRAM disturbance errors. In: ISCA 2014 (2014)

21. Lanteigne, M.: How rowhammer could be used to exploit weakness weaknesses in
computer hardware, March 2016. http://www.thirdio.com/rowhammer.pdf

22. Lipp, M., Gruss, D., Spreitzer, R., Mangard, S.: Armageddon: last-level cache
attacks on mobile devices. CoRR abs/1511.04897 (2015)

23. Liu, F., Yarom, Y., Ge, Q., Heiser, G., Lee, R.B.: Last-level cache side-channel
attacks are practical. In: S&P 2015 (2015)

24. Maurice, C., Le Scouarnec, N., Neumann, C., Heen, O., Francillon, A.: Reverse
engineering intel last-level cache complex addressing using performance counters.
In: RAID 2015 (2015)

25. Maurice, C., Neumann, C., Heen, O., Francillon, A.: C5: cross-cores cache covert
channel. In: Almgren, M., Gulisano, V., Maggi, F. (eds.) DIMVA 2015. LNCS, vol.
9148, pp. 46–64. Springer, Heidelberg (2015)

26. Micron: Designing for 1Gb DDR SDRAM (2003). https://www.micron.com/∼/
media/documents/products/technical-note/dram/tn4609.pdf

http://dx.doi.org/10.1007/978-3-319-24174-6_6
http://www.thirdio.com/rowhammer.pdf
https://www.micron.com/~/media/documents/products/technical-note/dram/tn4609.pdf
https://www.micron.com/~/media/documents/products/technical-note/dram/tn4609.pdf

Rowhammer.js: A Remote Software-Induced Fault Attack in JavaScript 321

27. Oren, Y., Kemerlis, V.P., Sethumadhavan, S., Keromytis, A.D.: The spy in the
sandbox: practical cache attacks in javascript and their implications. In: CCS 2015
(2015)

28. Osvik, D.A., Shamir, A., Tromer, E.: Cache attacks and countermeasures: the
case of AES. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 1–20.
Springer, Heidelberg (2006)

29. Park, K., Baeg, S., Wen, S., Wong, R.: Active-precharge hammering on a row
induced failure in DDR3 SDRAMs under 3x nm technology. In: IIRW 2014 (2014)

30. Payer, M.: HexPADS: a platform to detect “stealth” attacks. In: Caballero, J., et al.
(eds.) ESSoS 2016. LNCS, vol. 9639, pp. 138–154. Springer, Heidelberg (2016).
doi:10.1007/978-3-319-30806-7 9

31. Percival, C.: Cache missing for fun and profit. In: Proceedings of BSDCan (2005)
32. Pessl, P., Gruss, D., Maurice, C., Mangard, S.: Reverse engineering intel DRAM

addressing and exploitation. CoRR abs/1511.08756 (2015)
33. Qureshi, M.K., Jaleel, A., Patt, Y.N., Steely, S.C., Emer, J.: Adaptive insertion

policies for high performance caching. ACM SIGARCH Comput. Archit. News
35(2), 381 (2007)

34. Rahmati, A., Hicks, M., Holcomb, D.E., Fu, K.: Probable cause: the deanonymizing
effects of approximate DRAM. In: ISCA 2015 (2015)

35. Seaborn, M.: How physical addresses map to rows and banks in DRAM, May 2015.
http://lackingrhoticity.blogspot.com/2015/05/how-physical-addresses-map-to-
rows-and-banks.html. Accessed 20 July 2015

36. Seaborn, M., Dullien, T.: Exploiting the DRAM rowhammer bug to gain kernel
privileges. In: Black Hat (2015)

37. W3C: High Resolution Time Level 2–W3C Working Draft 21, July 2015. http://
www.w3.org/TR/2015/WD-hr-time-2-20150721/#privacy-security

38. Wong, H.: Intel Ivy Bridge Cache Replacement Policy. http://blog.stuffedcow.net/
2013/01/ivb-cache-replacement/. Accessed 16 July 2015

39. Yarom, Y., Falkner, K.: FLUSH+RELOAD: a high resolution, low noise, L3 cache
side-channel attack. In: USENIX Security 2014 (2014)

40. Yarom, Y., Ge, Q., Liu, F., Lee, R.B., Heiser, G.: Mapping the Intel Last-Level
Cache. Cryptology ePrint Archive, Report 2015/905, pp. 1–12 (2015)

http://dx.doi.org/10.1007/978-3-319-30806-7_9
http://lackingrhoticity.blogspot.com/2015/05/how-physical-addresses-map-to-rows-and-banks.html
http://lackingrhoticity.blogspot.com/2015/05/how-physical-addresses-map-to-rows-and-banks.html
http://www.w3.org/TR/2015/WD-hr-time-2-20150721/#privacy-security
http://www.w3.org/TR/2015/WD-hr-time-2-20150721/#privacy-security
http://blog.stuffedcow.net/2013/01/ivb-cache-replacement/
http://blog.stuffedcow.net/2013/01/ivb-cache-replacement/

Detile: Fine-Grained Information Leak Detection
in Script Engines

Robert Gawlik, Philipp Koppe(B), Benjamin Kollenda, Andre Pawlowski,
Behrad Garmany, and Thorsten Holz

Horst Görtz Institute for IT-Security (HGI),
Ruhr-Universität Bochum, Bochum, Germany

philipp.koppe@rub.de

Abstract. Memory disclosure attacks play an important role in the
exploitation of memory corruption vulnerabilities. By analyzing recent
research, we observe that bypasses of defensive solutions that enforce
control-flow integrity or attempt to detect return-oriented programming
require memory disclosure attacks as a fundamental first step. However,
research lags behind in detecting such information leaks.

In this paper, we tackle this problem and present a system for
fine-grained, automated detection of memory disclosure attacks against
scripting engines. The basic insight is as follows: scripting languages, such
as JavaScript in web browsers, are strictly sandboxed. They must not
provide any insights about the memory layout in their contexts. In fact,
any such information potentially represents an ongoing memory disclo-
sure attack. Hence, to detect information leaks, our system creates a clone
of the scripting engine process with a re-randomized memory layout. The
clone is instrumented to be synchronized with the original process. Any
inconsistency in the script contexts of both processes appears when a
memory disclosure was conducted to leak information about the memory
layout. Based on this detection approach, we have designed and imple-
mented Detile (detection of information leaks), a prototype for the
JavaScript engine in Microsoft’s Internet Explorer 10/11 on Windows
8.0/8.1. An empirical evaluation shows that our tool can successfully
detect memory disclosure attacks even against this proprietary software.

1 Introduction

Over the last years, many different techniques were developed to prevent attacks
that exploit spatial and temporal memory corruption vulnerabilities (see for
example the survey by Szekeres et al. [52]). As a result, modern operating sys-
tems deploy a wide range of defense methods to impede a successful attack. For
example, Data Execution Prevention (DEP) [38] marks data as non-executable
and thus an attacker is prohibited from injecting data into a vulnerable appli-
cation that is later on interpreted as code. Furthermore, Address Space Layout
Randomization (ASLR) [43] randomizes the memory layout either once during
the boot process or every time a process is started. Since the attacker lacks infor-
mation about the exact memory layout, it is harder for her to predict where her
shellcode or reusable code are located.
c© Springer International Publishing Switzerland 2016
J. Caballero et al. (Eds.): DIMVA 2016, LNCS 9721, pp. 322–342, 2016.
DOI: 10.1007/978-3-319-40667-1 16

Detile: Fine-Grained Information Leak Detection in Script Engines 323

Besides these widely deployed techniques, many other defenses were proposed
in the literature in the last years [52]. Most notably, the enforcement of control
flow integrity (CFI) is a promising technique to prevent a whole class of memory
corruption vulnerabilities [1]. The basic idea behind CFI is to verify that each
control flow transfer leads to a valid target based on a control flow graph that
is either statically pre-computed or dynamically generated. Several implementa-
tions of CFI with different design constraints, security goals, and performance
overheads were published (e.g., [21,65,66]).

A general observation is that the first step in modern attacks is based on a
memory disclosure attack (also referred to as information leak): the adversary
finds a way to read a (raw) memory pointer to learn some information about
the virtual address space of the vulnerable program. Generally speaking, the
attacker can then de-randomize the address space based on this leaked pointer
(thus bypassing ASLR), use ROP to bypass DEP, and finally execute shellcode of
her choice. Modern exploits leverage information leaks as a fundamental primi-
tive. Furthermore, recent CFI and ROP defense bypasses use memory disclosures
as well. For example, Snow et al. introduced Just-In-Time Code Reuse attacks
(JIT-ROP [48]) to bypass fine-grained ASLR implementations by repeatedly
utilizing an information leak. G-Free [39], a compiler-based approach against
any ROP attack, was recently circumvented by Athanasakis et al. [3]. Their
technique requires successive information leaks to disclose enough needed infor-
mation. Göktaş et al. demonstrated several bypasses of proposed ROP defenses
and their exploit needs an information leak as a first step [27]. An information
leak is also needed by Song et al., who showed that dynamic code generation is
vulnerable to code injection attacks [49]. Similarily, Counterfeit Object-oriented
Programming (COOP [44]) needs to disclose the location of vtables to mount a
subsequent control-flow hijacking attack by reusing them. Disclosures are also
utilized by memory oracles to weaken various defenses [24]. All of these offensive
bypasses utilized an information leak as a first step and implemented the attack
against a web browser.

Another general observation is that script engines in web browsers are com-
monly utilized by adversaries to abuse information leaks in practice. Browser
vulnerabilities are prevalent and as the yearly pwn2own competition shows,
researchers successfully use them to take control of the machine. Notably, most
of these attacks are based on vulnerabilities that create an information leak
utilizing the script engine.

In this paper, we take these observations into account and propose a tech-
nique for fine-grained, automated detection of memory disclosure attacks against
script engines at runtime. Our approach is based on the insight that informa-
tion leaks are leveraged by state-of-the-art exploits to learn the placement of
modules—and thereby code sections—in the virtual address space in order to
bypass ASLR. Any sandboxed script context is forbidden to contain memory
information, i.e., no script variable is allowed to provide a memory pointer. As
such, a viable approach to detect information leaks is to create a clone of the
to be protected process with a re-randomized address space layout, which is

324 R. Gawlik et al.

Table 1. Defenses and offensive approaches utilizing an information leak in browsers to
weaken or bypass the specific defense. All mentioned attacks are mitigated by Detile.

Protection flavor Defense Weakened/Bypassed by Mitigated by Detile

Address randomization Fine-grained

ASLR [29]

Just-In-Time Code

Reuse [48]

√

Code-reuse protection RopGuard [23],

KBouncer [41],

ROPecker [12]

Size Does Matter [27],

Anti-ROP

Evaluation [45],

COOP [44]

√

Code-reuse protection G-Free [39] Browser JIT Defense

Bypass [3],

COOP [44]

√

Coarse-grained CFI CCFIR [65],

BinCFI [66]

Stitching the

Gadgets [18], Out of

Control [26],

COOP [44]

√

Fine-grained CFI IFCC [53],

VTV [53]

Losing Control [13]
√

Information-hiding Oxymoron [4] Vtable disclosure [19],

Crash-Resistance [24],

COOP [44]

√

Information-hiding CPI linear

region [33]

Crash-Resistance [24]
√

Execution randomization Isomeron [19] Crash-Resistance [24]
√

Randomization/Information-hiding Readactor [15] Crash-Resistance [24],

COOP [44]

√

instrumented to be synchronized with the original process. An inconsistency in
the script contexts of both processes can only occur when a memory disclosure
vulnerability was exploited to gain information about the memory layout. In
such a case, the two processes can be halted to prevent further execution of the
malicious script. An overview of bypassed defenses by specific attacks which are
mitigated by our approach is shown in Table 1.

We have implemented a prototype of our technique in a tool called Detile
(detection of information leaks). We extended Internet Explorer 10/11 (IE) on
Windows 8.0/8.1 to create a synchronized clone of each tab and enforce the infor-
mation leak checks. We chose this software mainly due to two reasons. First, IE is
an attractive target for attackers as the large number of vulnerabilities indicates.
Second, IE and Windows pose several interesting technical challenges since it is
a proprietary binary system that we need to instrument and it lacks fine-grained
ASLR. Evaluation results show that our prototype is able to re-randomize sin-
gle processes without significant computational impact. Additionally, running
IE with our re-randomization and information leak detection engine imposes a
performance hit of ∼17 % on average. Furthermore, empirical tests with real-
world exploits also indicate that our approach is usable to unravel modern and
unknown exploits which target browsers and utilize memory disclosures.
In summary, our main contributions in this paper are:

– We present a system to tackle the problem of information leaks, which are fre-
quently used in practice by attackers as an exploit primitive. More specifically,

Detile: Fine-Grained Information Leak Detection in Script Engines 325

we propose a concept for fine-grained, automated detection of information
leaks with per process re-randomization, dual process execution, and process
synchronization. An extended version of this paper with more technical details
is available as a technical report [25].

– We show that dual execution of highly complex, binary-only software such as
Microsoft’s Internet Explorer is possible without access to the source code,
whereby two executing instances operate deterministic to each other.

– We implemented a prototype for IE 10/11 on Windows 8.0/8.1. We show that
our tool can successfully detect several real-world exploits, while producing
no alerts on highly complex, real-world websites.

2 Technical Background

In the following, we briefly introduce several concepts needed to understand the
challenges we were confronted with when developing Detile.

2.1 N-Variant Systems

N-Variant or Multi-Execution systems evolved from fault-tolerant environments
to mitigation systems against security critical vulnerabilities [9,14,30,54]. Our
concept of Detile incorporates similar ideas like dual process execution and
dual process synchronization. However, our approach is constructed specifically
for scripting engines, and thus, is more fine-grained: While Detile operates and
synchronizes processes on the scripting interpreter’s bytecode level, n-variant sys-
tems intercept only at the system call level. One drawback for these conventional
systems is that they are prone to Just-In-Time Code-Reuse (JIT-ROP [48]) and
Counterfeit Object-oriented Programming (COOP [44]) attacks, while Detile
is able to detect these (see Sects. 3.1 and 6 and for details).

2.2 Windows ASLR Internals

Address Space Layout Randomization (ASLR) is a well-known security mech-
anism that involves the randomization of stacks, heaps, and loaded images in
the virtual address space. Its purpose is to leave an attacker with no knowl-
edge about the virtual memory space in which code and data lives. Combined
with DEP, ASLR makes remote system exploitation through memory corruption
techniques a much harder task. While brute-force attacks against services that
automatically restart are possible [6], such attacks are typically not viable in
practice against web browsers.

In Windows, whenever an image is loaded into the virtual address space, a
section object is created, which represents a section of memory. These objects
are managed system-wide and can be shared among all processes. Once a DLL is
loaded, its section object remains permanent as long as processes are referencing
it. This concept has the benefit that relocation takes place once and whenever
a process needs to load a DLL, its section object is reused and the view of

326 R. Gawlik et al.

the section is mapped into the virtual address space of the process, making the
memory section visible. This way, physical memory is shared among all processes
that load a specific DLL whose section object is already present. In particular,
as long as the virtual address is not occupied, each image is loaded at the same
virtual address among all running usermode processes.

2.3 WOW64 Subsystem Overview

64-bit operating systems are the systems of choice for today’s users: 64-bit
processors are widely used in practice, and hence Microsoft Windows 7 and
later versions are usually running in the 64-bit version on typical desktop sys-
tems. However, most third-party applications are distributed in their 32-bit form.
This is for example the case for Mozilla Firefox, and also for parts of Microsoft’s
Internet Explorer. As our framework should protect against widely attacked tar-
gets, it needs to support 32-bit and 64-bit processes. Therefore, the Windows
On Windows 64 (shortened as WOW64) emulation layer plays an important
role, as it allows legacy 32-bit applications to run on modern 64-bit Windows
systems.

Executing a user-mode 32-bit application instructs the kernel to create a
WOW64 process. According to our observations, it creates the program’s address
space and maps the 64-bit and 32-bit NT Layer DLL (ntdll.dll) and the
main executable into it. Even when a program may have been started in sus-
pended mode, these three modules are already available. Afterwards, WOW64
layer DLLs are mapped, which mediate several necessary transitions between
64-bit and 32-bit at runtime [43]. Subsequent 32-bit DLLs are mapped into
the address space via LdrLoadDll of the 32-bit ntdll.dll. The first of them is
kernel32.dll. The loader assures that it is mapped to the same address in each
WOW64 process system wide, using a unique address per reboot. It therefore
compares its name to the hardcoded “KERNEL32.DLL” string in ntdll.dll
upon loading. If the loader is not able to map it to its preferred base address,
process initialization fails with a conflicting address error. As process based
re-randomization plays a crucial role in our framework, this issue is handled
such that each process contains its kernel32.dll at a different base address
(see Sect. 4.1). After mapping kernel32.dll, all other needed 32-bit DLLs are
mapped into the address space.

2.4 Internet Explorer Architecture

IE is developed as multi-process application [64]. That means, a 64-bit main
frame process governs several 32-bit WOW64 tab processes, which are isolated
from each other. The frame process runs with a medium integrity level and
isolated tab processes run with low integrity levels. Hence, tab processes are
restricted and forbidden to access all resources of processes with higher integrity
levels [37]. This architecture implies that websites opened in new tabs can lead to
the start of new tab processes. These have to incorporate our protection in order
to protect IE as complete application against information leaks (see Sect. 4).

Detile: Fine-Grained Information Leak Detection in Script Engines 327

2.5 Scripting Engines

In the context of IE, mainly two scripting engines are relevant and we briefly
introduce both.

Internet Explorer Chakra. With the release of Internet Explorer 9, a new
JavaScript engine called Chakra was introduced. Since Internet Explorer 11,
Chakra exports a documented API which enables developers to embed the engine
into their own applications. However, IE still uses the undocumented internal
COM interface. Nevertheless, some Chakra internals were learned from the offi-
cial API. The engine supports just-in-time (JIT) compiling of JavaScript byte-
code to speed up execution. Typed arrays like integer arrays are stored as native
arrays in heap memory along with metadata to accelerate element access. Script
code is translated to JS bytecode on demand in a function-wise manner to min-
imize memory footprint and avoid generating unused bytecode. The bytecode is
interpreted within a loop, whereby undocumented opcodes govern the execution
of native functions within a switch statement. Dependent on the opcode, the
desired JavaScript functionality is achieved with native code.

ActionScript Virtual Machine (AVM). The Adobe Flash plugin for browsers and
especially for IE is a widely attacked target. Scripts written in ActionScript are
interpreted or JIT-compiled to native code by the AVM. There is much unofficial
documentation about its internals [7,34]. Most importantly, it is possible to
intercept each ActionScript method with available tools [28]. Thus, no matter
whether bytecode is interpreted by the opcode handlers or JIT code is executed,
we are able to instrument the AVM.

2.6 Adversarial Capabilities

Memory disclosure attacks are an increasingly used technique for the exploita-
tion of software vulnerabilities [47,48,51]. In the presence of full ASLR, DEP,
CFI, or ROP defenses, the attacker has no anchor to a memory address to jump
to, even if in control of the instruction pointer. This is the moment where infor-
mation leaks come into play: an attacker needs to read—in any way possible—a
raw memory pointer in order to gain a foothold into the native virtual address
space of the vulnerable program. As soon as the attacker can read process mem-
ory, she can learn the base addresses of loaded modules. Then, any code reuse
primitives can be conducted to exploit a vulnerability in order to bypass DEP,
ASLR, CFI [18] and ROP defenses [11,27]. Another possibility is to leak code
directly in order to initiate an attack and bypass ASLR [48]. Other mitigations
like Microsoft’s Enhanced Mitigation Experience Toolkit (EMET) [36] cannot
withstand capabilities of sophisticated attackers.

For applications with scripting capabilities, untrusted contexts are sandboxed
(e.g., JavaScript in web browsers) and must not provide memory information.
Thus, attackers use different vulnerabilities to leak memory information into that
context [26,47,58]. We assume that the program we want to protect suffers from

328 R. Gawlik et al.

such a memory corruption vulnerability that allows the adversary to corrupt
memory objects. In fact, a study shows that any type of memory error can
be transformed into an information leak [52]. Furthermore, we assume that the
attacker uses a scripting environment to leverage the obtained memory disclosure
information at runtime for her malicious computations. This is consistent with
modern exploits in academic research [11,18,26,27,45] as well as in-the-wild [46,
55,58–60]. Our goal is to protect script engines against such powerful, yet realistic
adversaries.

3 System Overview

In the following, we explain our approach to tackle the challenge of detecting
information leaks in script engines. Hence, we introduce the needed building
blocks, namely per process re-randomization and dual process execution.

3.1 Main Concept

As described above, information leaks manifest themselves in the form of memory
information inside a context which must not reveal such insights. In our case, this
is any script context inside an application: high-level variables and content in a
script must not contain memory pointers, which attackers could use to deduce
image base addresses of loaded modules.

Unfortunately, a legitimate number and a memory pointer in data bytes
received via a scripting function are indistinguishable. This leads us to the follow-
ing assumption: a memory disclosure attack yields a memory pointer, which may
be surrounded by legitimate data. The same targeted memory disclosure, when
applied to a differently randomized, but otherwise identical process, will yield
the same legitimate data, but a different memory pointer. Due to the varying
base addresses of modules, different heap and stack addresses, a memory pointer
will have a different address in the second process than in the first process.
Thus, a master process and a cloned twin process—with different address space
layout randomization—can be executed synchronized side-by-side and perform
identical operations, e.g., execute a specific JavaScript function. In benign cases,
the same data getting into the script context is equal for both processes. When
comparing the received data of one process to the same data received in the
second process, the only difference can arise because of a leaked memory pointer
pointing to equal memory, but having a different address. In order to compare
the data of the master and twin process, we have to instrument the interpreter
loop of the script engine. We can instrument the call and return bytecodes to
precisely check all outgoing data and therefore to detect an information leak.

Based on this principle, our prototype system launches the same script engine
process twice with diverse memory layouts (see also Fig. 1). The script engines
are coupled to run in sync which enables checking for information leaks. In
spirit, this is similar to n-variant systems [9,14] and multi-execution based
approaches [10,17,20]. However, our approach is more fine-grained since it checks

Detile: Fine-Grained Information Leak Detection in Script Engines 329

Fig. 1. Overview of our main information leak detection concept: The master process is
synchronized with a re-randomized, but otherwise identical twin process. If a memory
disclosure attack is conducted in the master, it appears as well in the twin. Due to the
different randomization, the disclosure attack manifests itself in different data flowing
into the script context and can be detected (0x727841F0 vs. 0x86941F0)

and synchronizes the processed data on the bytecode level of the script context
and is capable of detecting the actual information leak, instead of merely detect-
ing an artifact of a successful compromise (i.e., divergence in the control flow).

3.2 Per Process Re-randomization

To overcome the dilemma of modules having equal base addresses in different
processes, we collect all base addresses of modules a process loads during its
runtime. We refer to this first process, which is launched, as master process. A
second process instance of the application known as the twin process is spawned.
Upon its initialization, the base addresses gained from the master are occu-
pied in the virtual address space of the twin. This forces the image loader to
map the modules to other addresses than in the master process, as they are
already allocated. We save us the time and trouble to re-randomize the stack
and heap process-wise, as modern operating systems (e.g., Windows 8 on 64-
bit) support it natively. Finally, we establish an inter-process communication
(IPC) bridge between the master and twin process. This enables synchronized
execution between them and comparison of data flows into their script contexts.

3.3 Dual Process Synchronization

After the re-randomization phase, both processes are ready to start execution at
their identical entrypoints. After exchanging a handshake, both resume execu-
tion. In order to achieve comparable data for information leak checking, the exe-
cutions of script interpreters in both processes have to be synchronized precisely.
This is accomplished by intercepting an interpreter’s native methods. Addition-
ally, we install hooks inside the bytecode interpreter loop at positions where
opcodes are interpreted and corresponding native functions are called. Thus, we
perceive any high-level script method call at its binary level. The master drives

330 R. Gawlik et al.

execution and these hooks are the points where the master and twin process
are synchronized via IPC. We check for information leaks by comparing binary
data which returns as high-level data into the script context. All input data the
master loads are stored in a cache and replayed to the twin process to ensure
they operate on the same source (e.g., web pages a browser loads). Built-in script
functions that potentially introduce entropy (e.g., Math.random, Date.now, and
window.screenX in JavaScript) interfere with our deployed detection mecha-
nism, since they generate values inside the script context that are different from
each other in the master and twin processes, respectively. Additionally, they
may induce a divergent script control flow. Both occurrences would be falsely
detected as memory disclosure. Thus we also synchronize the entropy of both
processes by copying the generated value from the master to the twin process.
This way the twin process continues working on the same data as the master
process and we are creating a co-deterministic script execution.

4 Implementation Details

Based on the concepts of per process re-randomization and dual process execu-
tion, we implemented a tool called Detile for Windows 8.0 and 8.1 64-bit. The
current prototype is able to re-randomize on a per process basis and instrument
Internet Explorer 10 and 11 to run in dual process execution mode.

4.1 Duplication and Re-randomization

In order to re-randomize processes and load images at different base addresses,
we developed a duplicator which creates a program’s master process. It enu-
merates the master’s initial loaded images with the help of the Windows API
(CreateToolHelp32Snapshot) before the master starts execution. Then, the
twin process is created in suspended mode, and a page is allocated in the twin
at all addresses of previously gathered image bases. We then need to trick the
Windows loader into mapping kernel32.dll at a different base in the twin.
This is achieved by leveraging the DebugAPI and via manipulating parameters
at calls of RtlEqualUnicodeString in the 32-bit loader in the ntdll.dll. This
way, the loader believes that a different DLL than kernel32.dll is going to be
initialized and allows the mapping to a different base. It is the first DLL which
is loaded after the WOW64 subsystem. Thus, all subsequent libraries that are
loaded and import functions from kernel32.dll have no problems to resolve
their dependencies using the remapped kernel32.dll. The loader maps them
to different addresses, as their preferred base addresses are reserved. Although
the DebugAPI is used, all steps run in a fully automated way. As a next step, the
DebugAPI is detached and the main image is remapped to a different address.
As it is already mapped even in suspended processes, this has to be done specifi-
cally. Additionally, LdrLoadDll in the twin process is detoured to intercept new
library loads and map incoming images to different addresses than in the master.
Technical details about our remapping can be found in the technical report [25].

Detile: Fine-Grained Information Leak Detection in Script Engines 331

Fig. 2. Detile running with Internet Explorer. A 64-bit duplicator library is injected
into the main IE frame process to enable it creating and rerandomizing twin tab
processes for each master tab process, by itself. The main IE frame also injects a
32-bit DLL into each tab process to allow synchronization, communication between
master and twin, and information leak detection.

We were not able to re-randomize ntdll.dll because it is mapped into the
virtual address space very early in the process creation procedure. Attempts to
remap ntdll.dll later on did not succeed due to callbacks invoked by the kernel.
The implications of a non re-randomized ntdll.dll are discussed in Sect. 7.

Note that this design works also with pure 64-bit processes. However, fre-
quently attacked applications like tab processes of Internet Explorer are 32-bit
and are running in the WOW64 subsystem. Hence, our framework has to protect
them as well. The following explains how Detile achieves this support.

While the above explained logic is sufficient to duplicate and re-randomize a
single-process program, additional measures have to be taken in the case of multi-
process architecture applications like Internet Explorer. Therefore, we developed
a wrapper which starts the 64-bit main IE frame process and injects a 64-bit
library, which we named duplicator library (see Fig. 2). This way, we modify the
frame process, such that each time a tab process is started by the frame process, a
second tab process is spawned. The first becomes the master, the second the twin.
This is achieved via detouring and modifying the process creation of the IE frame.
Additionally, our above explained re-randomization logic is incorporated into the
duplicator library to allow the main IE frame process itself to re-randomize its
spawned twins at creation time. To protect each new tab which is run by the
IE frame, we ensure that each tab is run in a new process and gets a twin. To
enable communication, synchronization, and detection of information leaks, the
duplicator injects also a 32-bit library into the master and the twin upon their
creation by the main IE frame process.

4.2 Synchronization

We designed our prototype to be contained in a DLL which is loaded into both
target instances. To reliably intercept all script execution, we hook LdrLoadDll
to initialize our synchronization as early as possible once the engine has been
loaded. After determining the role (master or twin), the processes exchange a

332 R. Gawlik et al.

short handshake and wait for events from the interpreter instrumentation. While
most of our work is focused on the scripting engine, we also instrument parts of
wininet.dll to provide basic proxy functionality. The twin receives an exact
copy of the web data sent to the master to ensure the same code is executed.

Entropy Normalization. The synchronization of script execution relies heavily
on the identification of functions and objects introducing entropy into the script
context. Values classified as entropy are overwritten in the twin with the value
received from the master. This ensures that functions such as Math.random and
Date.now return the exact same value, which is crucial for synchronous exe-
cution. While it is obvious for Date.now, it is not immediately clear for other
methods. Therefore, entropy inducing methods are detected and filtered incre-
mentally during runtime. Hence, if a detection has triggered but the cause was
not an information leak, it is included into the list of entropy methods.

Rendezvous and Checking Points. Vital program points where master and twin
are synchronized are bytecode handler functions. If a handler function returns
data into the script context, it is first determined if the handler function is
an entropy inducing function. However, the vast majority of function invoca-
tions and object accesses do not introduce entropy and are checked for equality
between master and twin on the fly. If a difference is encountered that is not clas-
sified as entropy, we assume that an information leak occurred and take actions,
namely logging the incident and terminating both processes.

4.3 Chakra Instrumentation

The Chakra JavaScript Engine contains a JIT compiler. It runs in a dedicated
thread, identifies frequently executed (so called hot) functions and compiles them
to native code. Our current implementation works on script interpreters, hence
we disabled the JIT compiler. This is currently a prototype limitation whose
solution we discuss in Sect. 7.

In order to synchronize execution and check for information leaks, we instru-
mented the main loop of the Chakra interpreter, which is located in the
Js::InterpreterStackFrame::Process function. It is invoked recursively for
each JavaScript call and iterates over the variable length bytecodes of the
JavaScript function. The main loop contains a switch statement, which selects
the corresponding handler for the currently interpreted bytecode. The handler
then operates on the JavaScript context dependent on the operands and the
current state. In the examined Chakra versions, we observed up to 648 unique
bytecodes. Prior to the invocation of a bytecode handler, our instrumentation
transfers the control flow to a small, highly optimized assembly stub, which
decides whether the current bytecode is vital for our framework to handle.

We intercept all call and return as well as necessary conversion bytecodes
in order to extract metadata such as JavaScript function arguments, return val-
ues, and conversion values. Conversion bytecodes handle dynamic type casting,

Detile: Fine-Grained Information Leak Detection in Script Engines 333

native value to JavaScript object and JavaScript object to native value conver-
sions. Additionally, we intercept engine functions that handle implicit type casts
at native level, because they are invoked by other bytecode handlers as required
and have no bytecode equivalents themselves. Furthermore, all interception sites
support the manipulation of the outgoing native value or JavaScript object for
the purpose of entropy elimination in the JavaScript context of the twin process.

4.4 AVM Instrumentation

Instrumentation of the AVM is based on prior work of F-Secure [28] and
Microsoft [34]. We hook at the end of the native method verifyOnCall inside
verifyEnterGPR to intercept ActionScript method calls and retrieve Action-
Script method names. At these points, master and twin can be synchronized.
Parameters flowing into an ActionScript method and return data flowing back
into the ActionScript context can be dissected, too. They are also processed
inside the method verifyEnterGPR. Based on their high level ActionScript
types, the parameters and return data can be compared in the master and twin.
This way, we can keep the master and twin in sync at method calls, check for
information leaks and mediate entropy data from the master to the twin.

5 Evaluation

In the following, we present evaluation results for our prototype implementation
of Detile in the form of performance and memory usage benchmarks. The
benchmarks were conducted on a system running Windows 8.0/8.1 that was
equipped with a 4th generation Intel i7-4710MQ quad-core CPU and 8GB DDR3
RAM. Furthermore, we demonstrate how our prototype can successfully detect
several kinds of real-world information leaks.

5.1 Re-randomization of Process Modules

We evaluated our re-randomization engine according to its effectiveness, memory
usage, and performance.

Effectiveness. We applied re-randomization to internal Windows applications
and third-party applications, to verify that modules in the twin are based at
different addresses than in the master. We therefore compared base addresses of
all loaded images between the two processes and confirmed that all images in the
twin process had a different base address than in the master, except ntdll.dll.
See the discussion in Sect. 7 for details on the difficulties of remapping the 64-bit
and 32-bit NT Layer DLLs. The extended version of this paper lists important
Windows DLLs, re-randomized in different processes running simultaneously on
a single user session [25].

334 R. Gawlik et al.

Fig. 3. Memory overhead of re-randomization and dual execution measured via working
set (WS) consumption in megabytes (M): Native processes on Windows 8.0 and 8.1
are contrasted to their counterparts running in re-randomized dual execution mode
(master and twin).

Physical Memory Usage. To inspect the memory overhead of our re-
randomization scheme, we measured the working set characteristics for different
master and re-randomized twin processes compared to native processes. Figure 3
shows the memory working sets of three applications. ReASLR denotes thereby
the re-randomization within a single process. DE means that two processes are
running, whereby the master’s randomization is kept native while the twin is
re-randomized. The applications besides IE are only included to measure the
memory overhead and are not synchronized. We calculate the memory overhead
of per process re-randomization (ReASLR) of a single process as follows:

Overhead(ReASLR) =
WS(Twin)
WS(Native)

− 1

Thus, the overall memory overhead based on working sets is 0.46 times. When
running a program or process in per process re-randomization and dual process
execution (DE), we have to include both master and twin into the memory
overhead calculation. Therefore, the overhead is calculated by

Overhead(ReASLR + DE) =
WS(Twin) + WS(Master)

WS(Native)
− 1

Its overall value is 1.45 times. Note that memory working sets can highly
vary during an application’s runtime, and thus, are difficult to quantify. The
measurements shown in Fig. 3 were performed after the application has finished
startup, and was waiting for user input (i.e., it was idle and all modules were
loaded and initialized). Due to additional twins for master processes, the overall
additional memory is about one to two times per protected process. The technical
report provides more details on the working set characteristics [25].

Re-randomization and Startup Time. When a program is started the first time
after a reboot, the kernel needs to create section objects for image modules.
Hence, the first start of a program always takes longer than subsequent starts of
the same program. To measure the additional startup and module load times our

Detile: Fine-Grained Information Leak Detection in Script Engines 335

Table 2. Startup times in seconds and startup slowdowns of native 32-bit applications
compared to their counterparts running with per process re-randomization and dual
process execution on Windows 8.0 and Windows 8.1 (both 64-bit).

Native (8.0) ReASLR+DE (8.0) Slowdown Native (8.1) ReASLR+DE (8.1) Slowdown

IE tab spawn 0.9163 s 2.0710 s 1.3x 0.5194 s 1.3082 s 1.5x

Firefox 0.9624 s 1.8064 s 0.9x 1.3823 s 1.5441 s 0.1x

Calculator 0.3484 s 0.3610 s 0.0x 0.4391 s 0.6599 s 0.5x

Table 3. Native script execution of IE 11 on Windows 8.1 64-bit compared to the
script execution of IE 11 instrumented with Detile. Execution time is measured in
milliseconds using the internal F12 developer tools provided by IE.

Website g
o
o
g
le
.c
o
m

fa
c
e
b
o
o
k
.c
o
m

y
o
u
tu

b
e
.c
o
m

y
a
h
o
o
.c
o
m

b
a
id

u
.c
o
m

w
ik
ip

e
d
ia
.o
rg

tw
it
te

r.
c
o
m

q
q
.c
o
m

ta
o
b
a
o
.c
o
m

li
n
k
e
d
in

.c
o
m

a
m
a
z
o
n
.c
o
m

li
v
e
.c
o
m

g
o
o
g
le
.c
o
.i
n

si
n
a
.c
o
m
.c
n

h
a
o
1
2
3
.c
o
m

Native 425 774 1196 3674 1108 472 599 2405 645 439 958 254 483 3360 373
Detile 482 961 1519 4722 1339 513 623 2724 824 517 1210 275 517 4269 379
Overhead 13.4% 24.1% 27% 28.5% 20.8% 8.6% 4% 13.2% 27.7% 17.7% 26.3% 8.2% 7% 27% 1.6%

protection introduces, we first run each program natively once to allow the kernel
to create section objects of most natively used DLLs, and close it afterwards.
We then start the program natively without protection and measure the time
until it is idle and all of its initial modules are loaded. In the same way, we
measure the time from process creation until both the master and twin process
have their inital modules loaded. The startup comparison can be seen in Table 2.
As expected, the startup times of applications protected with our approach are
approximately doubled. This is caused by the fact that a twin process needs to
be spawned for each master that should be protected.

5.2 Detection Engine

Next, we evaluate the impact of Detile on the user experience and its effec-
tiveness in detecting information leaks (Table 3).

Script Execution Time and Responsiveness. We used the 15 most visited websites
worldwide [2] to test how the current prototype interferes with the normal usage of
these pages. Besides the subjective impression while using the page, we utilized the
F12 developer tools of Internet Explorer 11 to measure scripting execution time
provided by the UI Responsiveness profiler tab. These tests were performed using
Windows 8.1 64-bit and Internet Explorer 11. While we introduce a performance
hit of around 17.0 % on average, the subjective user experience was not noticeably
affected. This is due to IE’s deferred parsing, which results in displaying content
to the user before all computations have finished.

Information Leak Detection. We tested our approach on a pure memory dis-
closure vulnerability (CVE-2014-6355) which allows illegitimately reading data
due to a JPEG parsing flaw in Microsoft’s Windows graphics component [61].

336 R. Gawlik et al.

It can be used to defeat ASLR by reading leaked stack information back to the
attacker via the toDataURL method of a canvas object. We successfully detected
this leak at the point of the call to toDataURL in the master and twin process.
In the same way, detection was successful for an exploit for a similar bug (CVE-
2015-0061 [62]).

To further verify our prototype, we evaluated it against an exploit for CVE-
2011-1346, a vulnerability that was used in the pwn2own contest 2011 to bypass
ASLR [63]. As this memory disclosure bug is specific for IE 8, we ported the vul-
nerability into IE 11. An uninitialized index attribute of a new HTML option
element is used to leak information. Similarly, we successfully detected this
exploitation attempt when the index attribute was accessed.

Additionally, we tested our prototype on another real-world vulnerability
(CVE-2014-0322) that was used in targeted attacks [22]. It is a use-after-free
error that can be utilized to increase an arbitrary bit, which is enough to create
information leaks. Detile triggered as a Vtable pointer was returned into the
JavaScript context. Therefore, the information leak was detected successfully.

We also constructed a toy example in which our native code creates an infor-
mation leak by overwriting the length field of an array. Additionally, the image
base of jscript9.dll is written after the array data. In our tests, we reliably
detected the out-of-bounds read of the image base and stopped the execution of
the process. Exploit details are provided in the technical report [25].

False Positive Analysis. We analyzed the 100 top websites worldwide [2] to
evaluate if our prototype can precisely handle real-world, complex websites and
their JavaScript contexts without triggering false alarms. None of the tested
websites did generate an alert, indicating that the prototype can accurately
synchronize the master and twin process.

6 Related Work

In the following, we review work closely related to ours and discuss differences
to our approach.

Randomization Techniques. Several approaches have been proposed to either
improve address space layout randomization, randomize the data space, or ran-
domize on single instruction level. For example, binary stirring [56] re-randomizes
code pages at a high rate for a high performance cost. While it hinders attackers
to use information leaks in code-reuse attacks, it does not impede their creation
by itself. In contrast, our re-randomization scheme reuses the native operating
system loader and is the base to allow information leak detection with dual
process execution. Other solutions [32,40,40] are prone to JIT-ROP code-reuse
attacks [48], which are based on information leaks. Address space layout per-
mutation is an approach to scramble all data and functions of a binary [32].
Therefore, a given ELF binary has to be rewritten and randomization can be
applied on each run. ORP [40] rewrites instructions of a given binary and reorders

Detile: Fine-Grained Information Leak Detection in Script Engines 337

basic blocks. As discussed above, it is prone to information leak attacks, which
we detect. Instruction set randomization [5,31] complicates code-reuse attacks
as it encrypts code pages and decrypts it on the fly. However, in the presence
of information leaks combined with key guessing [48,50,57] it can be circum-
vented. Instruction layout randomization (ILR) [29] randomizes the location of
each instruction on each run, but no re-randomization occurs. Thus, the layout
can be reconstructed with the help of an information leak. Readactor is a defen-
sive system that aims to be resilient against just-in-time code-reuse attacks [15].
It hides code pointers behind execute-only trampolines and code itself is made
execute-only, to prevent an attacker building a code-reuse payload just-in-time.
However, it has been shown that it is vulnerable against an attack named COOP,
which reuses virtual functions [44]. Unlike Readactor, Detile prevents COOP,
as this attack needs an information leak as first step. Crane et al. recently pre-
sented an enhanced version of Readactor, dubbed Readactor++ [16], that also
protects against whole function reuse attacks such as COOP. This is achieved
through function pointer table randomization and insertion of booby traps. Con-
sequently, an adversary can no longer obtain meaningful code locations that can
be leveraged for code-reuse attacks. Readactor++ also does not detect or prevent
the exploitation of memory disclosures, which poses a potential attack vector.

Multi-Execution Approaches. Most closely related to our research are n-variant
systems, which run variants of the same program with diverse memory layout
and instructions [14]. Similar work runs program replicæ synchronized at system
calls to demonstrate the detection of memory exploits against the lightweight
server thttpd on the Linux platform [9,30].

The major drawback of theses systems is the detection approach: if a mem-
ory error is abused, one of the variants eventually crashes, which indicates an
attack. As information leaks do not constitute a memory error, they do not raise
any exception-based signal. Thus, they remain undetected in these systems. One
significant implication is that unlike Detile, n-variant systems do not protect
against just-in-time code-reuse attacks such as JIT-ROP [48]. Similarily, this is
the case with COOP attacks in browsers [44]. N-variant systems prevent con-
ventional ROP attacks [42,54] with multi process execution and disjunct virtual
address spaces: An attacker supplied absolute address (e.g., obtained through
a remote memory disclosure vulnerability) is guaranteed to be invalid in n − 1
replicas. Hence, any system call utilizing this address will trigger a detection.
However, JIT-ROP attacks may performs several memory disclosures and mali-
cious computations without executing a system call inbetween, and thus, can
evade traditional n-variant systems. COOP attacks may as well perform touring-
complete computations on disclosed memory without executing a system call and
evade these systems.

7 Discussion

In the following, we discuss potential shortcomings of our approach and the
prototype, and also sketch how these shortcomings can be addressed in the
future.

338 R. Gawlik et al.

Further Information Leaks. Serna provided an in-depth overview of techniques
that utilize information leaks for exploit development [47]. The techniques he
discussed during the presentation utilize JavaScript code. As our prototype
leverages the JavaScript engine of the browser itself, each information leak that
is based on these techniques is detected. This implies that memory disclosure
attacks that leverage other (scripting) contexts (e.g., VBScript) can potentially
bypass our implementation. However, in practice exploits are typically triggered
via JavaScript and thus our prototype can detect such attacks. Furthermore, due
to the generic nature of our approach, our current prototype can be extended
by instrumenting other scripting engines as well.

Prototype Limitations. In the unlikely event one of the functions we classified as
entropy source, such as Math.random or Date.now, contain a memory disclosure
bug, our approach can lead to an under-approximation of detected information
leaks. In this specific case, the master confuses the leaked pointer with data
from the entropy source and transfers it to the twin process. This is an unde-
sirable state, because Detile does not prevent the memory layout information
to leak into the script context. However, the obtained pointer is only valid in
the master process. An attempt to leverage the pointer to mount a code-reuse
attack crashes the twin. As a consequence, Detile halts the master process and
prevents further damage.

The current prototype disables the JIT Engine as we protect the interpreter
only. However, dynamic binary instrumentation (DBI [8,35]) frameworks allow
to synchronize processes on the instruction or basic block level, and hence, make
it possible to hook emitted JIT code to dispatch our assembly stub in order to
synchronize and check within the JIT code.

Asynchronious JavaScript events are currently not synchronized. This is solv-
able with DBI frameworks as well: If an event triggers in the master process, we
let the twin execute to the same point. Then Detile sets up and triggers the
same event in the twin process.

One additional shortcoming of our prototype implementation is the identical
mapping of ntdll.dll in all processes. As this DLL is initialized already at
startup, remapping it is a cumbersome operation. JavaScript, HTML, and other
contexts in browsers normally do not interact directly with native ntdll.dll
Windows structures, and thus internal JavaScript objects, do not contain direct
memory references to it. Hence, attackers resort to disclose addresses from
libraries other than ntdll.dll at first. On the contrary, there might be script
engines which directly interact with ntdll.dll. Still, the issue is probably solv-
able with a driver loaded during boot time.

Another technical drawback is the application of re-randomization on every
process on the OS, as DLL modules of each process would turn into non-shareable
memory and increase physical memory consumption. This can be avoided by
protecting only critical processes that represent a valid target for attacks.

Deployment. The current prototype is not meant to be a protection framework
for end users of web browsers. It is intended to be deployed as a system for

Detile: Fine-Grained Information Leak Detection in Script Engines 339

scanning web pages to discover unknown exploits which utilize information leaks.
As ASLR needs to be circumvented as a first step of each modern exploit against
web browsers, Detile has the advantage to provide an early detection of the
exploit process.

8 Conclusion

Over the last years, script engines were used to exploit vulnerable applications.
Especially web browsers became an attractive target for a plethora of attacks.
State-of-the-art vulnerability exploits, both in academic research [11,18,26,27,
45] and in-the-wild [46,55,58–60], rely on memory disclosure attacks.

In this work, we proposed a fine-grained, automated scheme to reliably detect
such information leaks in script engines. It is based on the insight that informa-
tion leaks result in a noticable difference in the script context of two synchronized
processes with different randomization. We implemented a prototype of this idea
for the proprietary browser IE to demonstrate that our approach is viable even
on closed-source systems. An empirical evaluation demonstrates that we can
reliably detect real-world attack vectors and that the approach induces a mod-
erate performance overhead only (around 17 % overhead on average). While most
research focused on mitigating specific types of vulnerabilities, we address the
root cause behind modern attacks since most of them rely on information leaks
as a first step. Our approach thus serves as another defense layer to complement
defenses such as DEP and ASLR.

Acknowledgements. We would like to thank the anonymous reviewers for their valu-
able comments. This work was supported by the European Commission through the
ERC Starting Grant No. 640110 (BASTION).

References

1. Abadi, M., Budiu, M., Erlingsson, U., Ligatti, J.: Control-flow integrity. In: ACM
Conference on Computer and Communications Security (CCS) (2005)

2. Alexa. The top 500 sites on the web (2014). http://www.alexa.com/topsites
3. Athanasakis, M., Athanasopoulos, E., Polychronakis, M., Portokalidis, G.,

Ioannidis, S.: The devil is in the constants: bypassing defenses in browser JIT
engines. In: Symposium on Network and Distributed System Security (NDSS)
(2015)

4. Backes, M., Nürnberger, S.: Oxymoron: making fine-grained memory randomiza-
tion practical byallowing code sharing. In: USENIX Security Symposium (2014)

5. Barrantes, E.G., Ackley, D.H., Palmer, T.S., Stefanovic, D., Zovi, D.D.: Random-
ized instruction set emulation to disrupt binary code injection attacks. In: ACM
Conference on Computer and Communications Security (CCS) (2003)

6. Bittau, A., Belay, A., Mashtizadeh, A., Mazieres, D., Boneh, D.: Hacking blind.
In: IEEE Symposium on Security and Privacy (2014)

7. Blazakis, D.: Interpreter Exploitation: Pointer Inference and JIT Spraying.
BlackHat DC, USA (2010)

http://www.alexa.com/topsites

340 R. Gawlik et al.

8. Bruening, D., Duesterwald, E., Amarasinghe, S.: Design and implementation of
a dynamic optimization framework for windows. In: 4th ACM Workshop on
Feedback-Directed and Dynamic Optimization (FDDO-4) (2001)

9. Bruschi, D., Cavallaro, L., Lanzi, A.: Diversified process replicæ for defeating mem-
ory error exploits. In: IEEE International Performance, Computing, and Commu-
nications Conference, 2007, IPCCC 2007 (2007)

10. Capizzi, R., Longo, A., Venkatakrishnan, V., Sistla, A.P.: Preventing information
leaks through shadow executions. In: Annual Computer Security Applications Con-
ference (ACSAC) (2008)

11. Carlini, N., Wagner, D.: ROP is still dangerous: breaking modern defenses. In:
USENIX Security Symposium (2014)

12. Cheng, Y., Zhou, Z., Yu, M., Ding, X., Deng, R.H.: ROPecker: a generic and
practical approach for defending against ROP attacks. In: Symposium on Network
and Distributed System Security (NDSS) (2014)

13. Conti, M., Crane, S., Davi, L., Franz, M., Larsen, P., Negro, M., Liebchen, C.,
Qunaibit, M., Sadeghi, A.-R.: Losing control: on the effectiveness of control-flow
integrity understack attacks. In: ACM Conference on Computer and Communica-
tions Security (CCS) (2015)

14. Cox, B., Evans, D., Filipi, A., Rowanhill, J., Hu, W., Davidson, J., Knight, J.,
Nguyen-Tuong, A., Hiser, J.: N.-variant Systems: a secretless framework for secu-
rity through diversity. In: USENIX Security Symposium (2006)

15. Crane, S., Liebchen, C., Homescu, A., Davi, L., Larsen, P., Sadeghi, A.-R.,
Brunthaler, S., Franz, M.: Readactor: practical code randomization resilient to
memory disclosure. In: IEEE Symposium on Security and Privacy (2015)

16. Crane, S., Volckaert, S., Schuster, F., Liebchen, C., Larsen, P., Davi, L., Sadeghi,
A.-R., Holz, T., Sutter, B.D., Franz, M.: It’s a TRAP: table randomization and
protection against functionreuse attacks. In: ACM Conference on Computer and
Communications Security (CCS) (2015)

17. Croft, J., Caesar, M.: Towards practical avoidance of information leakage in enter-
prise networks. In: HotSec (2011)

18. Davi, L., Lehmann, D., Sadeghi, A.-R., Monrose, F.: Stitching the gadgets: on
the ineffectiveness of coarse-grainedcontrol-flow integrity protection. In: USENIX
Security Symposium (2014)

19. Davi, L., Liebchen, C., Sadeghi, A.-R., Snow, K.Z., Monrose, F.: Isomeron: code
randomization resilient to (just-in-time) return-oriented programming. In: Sympo-
sium on Network and Distributed System Security (NDSS) (2015)

20. Devriese, D., Piessens, F.: Noninterference through secure multi-execution. In:
IEEE Symposium on Security and Privacy (2010)

21. Erlingsson, U., Abadi, M., Vrable, M., Budiu, M., Necula, G.C.: XFI: Software
guards for system address spaces. In: Symposium on Operating Systems Design
and Implementation (OSDI) (2006)

22. FireEye. Operation SnowMan (2014). http://www.fireeye.com/blog/technical/
cyber-exploits/2014/02/operation-snowman-deputydog-actor-compromises-us-
veterans-of-foreign-wars-website.html

23. Fratric, I.: Runtime Prevention of Return-Oriented Programming Attacks. http://
ropguard.googlecode.com/svn-history/r2/trunk/doc/ropguard.pdf

24. Gawlik, R., Kollenda, B., Koppe, P., Garmany, B., Holz, T.: Enabling client-side
crash-resistance to overcome diversification and information hiding. In: Symposium
on Network and Distributed System Security (NDSS) (2016)

http://www.fireeye.com/blog/technical/cyber-exploits/2014/02/operation-snowman-deputydog-actor-compromises-us-veterans-of-foreign-wars-website.html
http://www.fireeye.com/blog/technical/cyber-exploits/2014/02/operation-snowman-deputydog-actor-compromises-us-veterans-of-foreign-wars-website.html
http://www.fireeye.com/blog/technical/cyber-exploits/2014/02/operation-snowman-deputydog-actor-compromises-us-veterans-of-foreign-wars-website.html
http://ropguard.googlecode.com/svn-history/r2/trunk/doc/ropguard.pdf
http://ropguard.googlecode.com/svn-history/r2/trunk/doc/ropguard.pdf

Detile: Fine-Grained Information Leak Detection in Script Engines 341

25. Gawlik, R., Koppe, P., Kollenda, B., Pawlowski, A., Garmany, B., Holz, T., Report,
T.: Detile: Fine-Grained Information Leak Detection in Script Engines. Technical
report, Ruhr-University Bochum (2016)

26. Göktaş, E., Athanasopoulos, E., Bos, H., Portokalidis, G.: Out of control: Over-
coming control-flow integrity. In: IEEE Symposium on Security and Privacy (2014)

27. Göktaş, E., Athanasopoulos, E., Polychronakis, M., Bos, H., Portokalidis, G.: Size
does matter: why using gadget-chain length to prevent code-reuseattacks is hard.
In: USENIX Security Symposium (2014)

28. Hirvonen, T.: Dynamic flash instrumentation for fun and profit. Black Hat, USA
(2014)

29. Hiser, J., Nguyen-Tuong, A., Co, M., Hall, M., Davidson, J.W.: ILR: Where’d my
gadgets go? In: IEEE Symposium on Security and Privacy (2012)

30. Hosek, P., Cadar, C.: Varan the unbelievable: an efficient n-version execution frame-
work. In: International Conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS) (2015)

31. Kc, G.S., Keromytis, A.D., Prevelakis, V.: Countering code-injection attacks with
instruction-set randomization. In: ACM Conference on Computer and Communi-
cations Security (CCS) (2003)

32. Kil, C., Jim, J., Bookholt, C., Xu, J., Ning, P.: Address space layout permutation
(ASLP): towards fine-grained randomization of commodity software. In: Annual
Computer Security Applications Conference (ACSAC) (2006)

33. Kuznetsov, V., Szekeres, L., Payer, M., Candea, G., Sekar, R., Song, D.: Code-
pointer integrity. In: Symposium on Operating Systems Design and Implementa-
tion (OSDI) (2014)

34. Li, H.: Inside AVM. In: REcon (2012)
35. Luk, C.-K., Cohn, R., Muth, R., Patil, H., Klauser, A., Lowney, G., Wallace, S.,

Reddi, V.J., Hazelwood, K.: Pin: building customized program analysis tools with
dynamic instrumentation. In: ACM Sigplan Notices (2005)

36. Microsoft. EMET 5.1 is available (2014). http://blogs.technet.com/b/srd/archive/
2014/11/10/emet-5-1-is-available.asp

37. Microsoft. What is the Windows Integrity Mechanism? (2014). http://msdn.
microsoft.com/en-us/library/bb625957.aspx

38. Molnar, I.: Exec Shield, new Linux security feature. News-Forge, May 2003
39. Onarlioglu, K., Bilge, L., Lanzi, A., Balzarotti, D., Kirda, E.: G-free: defeating

return-oriented programming through gadget-lessbinaries. In: Annual Computer
Security Applications Conference (ACSAC) (2010)

40. Pappas, V., Polychronakis, M., Keromytis, A.D.: Smashing the gadgets: hindering
return-oriented programming usingin-place code randomization. In: IEEE Sympo-
sium on Security and Privacy (2012)

41. Pappas, V., Polychronakis, M., Keromytis, A.D.: Transparent ROP exploit miti-
gation using indirect branch tracing. In: USENIX Security Symposium (2013)

42. Prandini, M., Ramilli, M.: Return-oriented programming. In: IEEE Symposium on
Security and Privacy (2012)

43. Russinovich, M., Solomon, D., Ionescu, A.: Windows Internals, Part 2. Microsoft
Press, Redmond (2012)

44. Schuster, F., Tendyck, T., Liebchen, C., Davi, L., Sadeghi, A.-R., Holz, T.: Coun-
terfeit object-oriented programming. In: IEEE Symposium on Security and Privacy
(2015)

http://blogs.technet.com/b/srd/archive/2014/11/10/emet-5-1-is-available.asp
http://blogs.technet.com/b/srd/archive/2014/11/10/emet-5-1-is-available.asp
http://msdn.microsoft.com/en-us/library/bb625957.aspx
http://msdn.microsoft.com/en-us/library/bb625957.aspx

342 R. Gawlik et al.

45. Schuster, F., Tendyck, T., Pewny, J., Maaß, A., Steegmanns, M., Contag, M.,
Holz, T.: Evaluating the effectiveness of current Anti-ROP defenses. In: Stavrou,
A., Bos, H., Portokalidis, G. (eds.) RAID 2014. LNCS, vol. 8688, pp. 88–108.
Springer, Heidelberg (2014)

46. Security, V.: Advanced Exploitation of Mozilla Firefox Use-after-free (MFSA2012-
22) (2012). http://www.vupen.com/blog/20120625.Advanced Exploitation of
Mozilla Firefox UaF CVE-2012-0469.php

47. Serna, F.J.: The info leak era on software exploitation. In: Black Hat USA (2012)
48. Snow, K.Z., Monrose, F., Davi, L., Dmitrienko, A., Liebchen, C., Sadeghi, A.-R.:

Just-in-time code reuse: on the effectiveness of fine-grained addressspace layout
randomization. In: IEEE Symposium on Security and Privacy (2013)

49. Song, C., Zhang, C., Wang, T., Lee, W., Melski, D.: Exploiting and protecting
dynamic code generation. In: Symposium on Network and Distributed System
Security (NDSS) (2015)

50. Sovarel, A.N., Evans, D., Paul, N.: Where’s the FEEB? the effectiveness of instruc-
tion set randomization. In: USENIX Security Symposium (2005)

51. Strackx, R., Younan, Y., Philippaerts, P., Piessens, F., Lachmund, S., Walter,
T.: Breaking the memory secrecy assumption. In: ACM European Workshop on
System Security (EUROSEC) (2009)

52. Szekeres, L., Payer, M., Wei, T., Song, D.: SoK: eternal war in memory. In: IEEE
Symposium on Security and Privacy (2013)

53. Tice, C., Roeder, T., Collingbourne, P., Checkoway, S., Erlingsson, Ú., Lozano, L.,
Pike, G.: Enforcing forward-edge control-flow integrity in gcc & llvm. In: USENIX
Security Symposium (2014)

54. Volckaert, S., Coppens, B., De Sutter, B.: Cloning your gadgets: complete rop
attack immunity with multi-variant execution. IEEE Trans. Dependable Secure
Comput. (2015)

55. Vreugdenhil, P.: A browser is only as strong as its weakest byte - Part 2 (2012)
56. Wartell, R., Mohan, V., Hamlen, K.W., Lin, Z.: Binary stirring: self-randomizing

instruction addresses of legacy x86 binary code. In: ACM Conference on Computer
and Communications Security (CCS) (2012)

57. Weiss, Y., Barrantes, E.G.: Known/chosen key attacks against software instruc-
tion set randomization. In: ACM Conference on Computer and Communications
Security (CCS) (2006)

58. Yan, T.: The art of leaks: the return of heap feng shui. In: CanSecWest (2014)
59. Yu, Y.: ROPs are for the 99 %. In: CanSecWest (2014)
60. Yu, Y.: Write Once, Pwn Anywhere. In: Black Hat USA (2014)
61. Zalewski, M.: Two more browser memory disclosure bugs (2014). http://lcamtuf.

blogspot.de/2014/10/two-more-browser-memory-disclosure-bugs.html
62. Zalewski, M.: Bi-level TIFFs and the tale of the unexpectedly early patch (2015).

http://lcamtuf.blogspot.de/2015/02/bi-level-tiffs-and-tale-of-unexpectedly.html
63. ZDI.CVE-2011-1346, (Pwn2Own) Microsoft Internet Explorer Uninitialized

Variable Information Leak Vulnerability. http://www.zerodayinitiative.com/
advisories/ZDI-11-198/

64. Zeigler, A.: IE8 and Loosely-Coupled IE (LCIE) (2008). http://blogs.msdn.com/
b/ie/archive/2008/03/11/ie8-and-loosely-coupled-ie-lcie.aspx

65. Zhang, C., Wei, T., Chen, Z., Duan, L., Szekeres, L., McCamant, S., Song, D.,
Zou, W.: Practical control flow integrity & randomization for binary executables.
In: IEEE Symposium on Security and Privacy (2013)

66. Zhang, M., Sekar, R.: BinCFI: control flow integrity for COTS binaries. In:
USENIX Security Symposium (2013)

http://www.vupen.com/blog/20120625.Advanced_Exploitation_of_Mozilla_Firefox_UaF_CVE-2012-0469.php
http://www.vupen.com/blog/20120625.Advanced_Exploitation_of_Mozilla_Firefox_UaF_CVE-2012-0469.php
http://lcamtuf.blogspot.de/2014/10/two-more-browser-memory-disclosure-bugs.html
http://lcamtuf.blogspot.de/2014/10/two-more-browser-memory-disclosure-bugs.html
http://lcamtuf.blogspot.de/2015/02/bi-level-tiffs-and-tale-of-unexpectedly.html
http://www.zerodayinitiative.com/advisories/ZDI-11-198/
http://www.zerodayinitiative.com/advisories/ZDI-11-198/
http://blogs.msdn.com/b/ie/archive/2008/03/11/ie8-and-loosely-coupled-ie-lcie.aspx
http://blogs.msdn.com/b/ie/archive/2008/03/11/ie8-and-loosely-coupled-ie-lcie.aspx

Understanding the Privacy Implications of ECS

(Extended Abstract)

Panagiotis Kintis1(B), Yacin Nadji1, David Dagon1, Michael Farrell2,
and Manos Antonakakis3

1 School of Computer Science, Georgia Institute of Technology, Atlanta, GA, USA
{kintis,yacin}@gatech.edu, dagon@m.sudo.sh

2 Institute for Internet Security and Privacy, Georgia Institute of Technology,
Atlanta, GA, USA

michael.farrell@iisp.gatech.edu
3 School of Electrical and Computer Engineering, Georgia Institute of Technology,

Atlanta, GA, USA
manos@gatech.edu

Abstract. The edns-client-subnet (ECS) is a new extension for the
Domain Name System (DNS) that delivers a “faster Internet” with the
help of client-specific DNS answers. Under ECS, recursive DNS servers
(recursives) provide client network address information to upstream
authorities, permitting topologically localized answers for content deliv-
ery networks (CDNs). This optimization, however, comes with a privacy
penalty that has not yet been studied. Our analysis concludes that ECS
makes DNS communications less private: the potential for mass surveil-
lance is greater, and stealthy, highly targeted DNS poisoning attacks
become possible.

Despite being an experimental extension, ECS is already deployed,
and users are expected to “opt out” on their own. Yet, there are no
available client-side tools to do so. We describe a configuration of an
experimental recursive tool to reduce the privacy leak from ECS queries
in order to immediately allow users to protect their privacy. We recom-
mend the protocol change from “opt out” to “opt in”, given the experi-
mental nature of the extension and its privacy implications.

1 Introduction

In 2011, an experimental Internet draft [5], suggesting some extensions to the
Domain Name System (DNS), was proposed to the Internet Engineering Task
Force (IETF). The proposed changes enable more efficient content delivery ser-
vices, especially when edge devices make use of remote, open recursive servers.
These changes specifically call for the addition of the edns-client-subnet (ECS)
extension, and as part of this effort, an initiative for “a faster Internet” [17]
was announced to promote collaboration. The latest update of the ECS Inter-
net draft, including the technical and implementation details, was published in
November 2014 [7].
c© Springer International Publishing Switzerland 2016
J. Caballero et al. (Eds.): DIMVA 2016, LNCS 9721, pp. 343–353, 2016.
DOI: 10.1007/978-3-319-40667-1 17

344 P. Kintis et al.

ECS has seen increased adoption and delivered on its promise of a faster Inter-
net for end users [21]. This improvement in performance, however, was achieved
by changing the data shared between recursive DNS servers and authoritative
DNS servers, which we will henceforth refer to as recursives and authoritatives.
Historically, the authoritative only received (1) the fully qualified domain name
and (2) the IP address of the recursive attempting to resolve the domain on
behalf of the end user (located at the edge). The authoritative used the fully
qualified domain name in order to provide an answer for the given DNS request.
Optionally, the authoritative could provide an “optimized” answer based on the
recursive’s IP. In the past, this was a reasonable optimization because the recur-
sive and client were more closely linked to each other. For example, the recur-
sive was often provided by the client’s Internet Service Provider (ISP). With the
advent of large open recursives this is no longer a safe assumption.

By using ECS, the recursive can reveal a truncated portion of the client’s IP
address, such as the first three octets of the IP. This allows the authoritative to
optimize answers for the client issuing the DNS request, rather than the client’s
recursive. This is particularly useful for content delivery networks (CDN). If a
client uses a large open recursive, adding ECS provides better performance due
to the improved localization in the authoritative’s answers. Studies have shown
that ECS not only decreases latency for end users but also has seen increased
adoption worldwide [4], perhaps due to these benefits. While the performance
improvements are clear, ECS allows anyone in the path between the authoritative
and the recursive to surreptitiously read some bits of the client’s IP address,
which may raise privacy concerns.

Despite the IETF draft acknowledging that there might be privacy issues for
clients using an ECS-speaking recursive, very little attention has been paid to
identify and evaluate any possible privacy issues with the new extension. In fact,
the IETF draft states that there should be a way for users to “opt out” of ECS.
The draft also suggests that users should be able to specify how much of their
IP address they wish to reveal to the remote authoritative. However, nearly five
years after the ECS draft was proposed, there are still no client centric tools
that empower users to control how much of their IP address is revealed. Thus,
ECS is effectively opt-out in nature. In this study, we argue that ECS should
be opt-in by default. As we discuss in detail, ECS could be “weaponized” for
surveillance or targeted DNS poisoning attacks.

In summary, the study aims to increase the situational awareness around the
use of ECS by making the following observations:

1. We describe the potential for novel surveillance and targeted cache poison-
ing attacks that are made possible by ECS. ECS adds an additional loca-
tion where surveillance can be performed: between a client’s recursive and
the domain’s authority. The targeted cache poisoning attack can selectively
reroute users, down to the granularity of an IP address and be performed
while making postmortem forensic analysis difficult.

Understanding the Privacy Implications of ECS 345

2. We describe how to set up a custom version of Unbound to opt out of ECS
that can be used by end users now who are concerned about their privacy.
Prior to this, there was no way for users to opt out.

2 Background

In the following sections, we will discuss ECS and the fundamental technologies
on which it relies. Since ECS is simply an extension on top of existing DNS
infrastructure, we will start with a short discussion of DNS in Sect. 2.1. This will
be followed by a more thorough discussion of the changes introduced by ECS in
Sect. 2.2.

2.1 DNS Basics

The Domain Name System (DNS) [15] is a fundamental service that enables
ease of use of the Internet. Its primary goal, is to translate human readable
text (domain names) to IP addresses, like example.com to 93.184.216.34. In
order for this process to happen, a series of eight steps must take place. In
step one a stub resolver or client (i.e. web browser, application, etc.), submits
a DNS resolution request to a DNS recursive server, referred to as recursive
from this point on. The recursive server will look for the domain name to IP
address mapping in its cache memory; if found there, the latter will inform
the stub of the IP address and the process will end. In the case where the IP
address(es) is not available in the cache memory, the recursive will ask one of
the 13 root servers for the IP address to which the domain name points, on
behalf of the stub resolver (step two). The root server will reply with the IP
address of the Top Level Domain server (or TLD) of the domain name for which
it was queried (step three). During step four, the recursive will submit a query
to that TLD for the domain server. The TLD will respond with the IP address of
the Authoritative Server (referred to as authoritative from now on) and complete
step five. Lastly, during steps six and seven, the recursive will communicate with
the authoritative, asking for the IP address of the domain name and the latter
will reply with it, in the simple case. Finally, step eight concludes the process,
during which the recursive informs the stub resolver the IP address of the domain
name it looked up.

This process can be divided in two communication phases: (1) the first one is
between the stub resolver and the recursive, also known as below the recursive;
and (2) the second is between the recursive and the servers queried in the DNS
hierarchy, commonly referred to as above the recursive. The next section describes
how the adoption of ECS affects the communication above the recursive.

2.2 Evolution of DNS with ECS

The previous section discussed the domain name resolution process. The adop-
tion of ECS does not change that process, however, the information exchanged

346 P. Kintis et al.

between recursives and authoritatives does change. Prior to ECS, only commu-
nication below the recursive contained information about the client performing
a DNS query. Thus, any communication with the authoritative happened above
the recursive, and the authoritative received no information about the client
responsible for a particular request. ECS, embeds a truncated portion of the
client’s IP address, referred to as the source netmask, into communication above
the recursive. According to the ECS RFC [7], the source netmask should be deter-
mined using the most detailed network information available to the recursive,
but by default, it will include the first three octets of a client’s IP address. The
authoritative’s reply will contain a scope netmask that may guide a recursive’s
future choice of source netmask. The scope netmask indicates the authoritative’s
desired source netmask length and should indicate the minimum source netmask
required to return an optimal answer, with respect to network performance.

These changes were prompted due to the introduction and growing use of
large, open recursives [10,11,16]. Traditionally, recursives were strongly tied to
a client’s network, and therefore, they served as a reasonable proxy for a client’s
location. Public recursives, however, need not be related to a client’s network or
be in close geographic proximity to the client.

Fig. 1. The image shows the DNS resolution process. The last step of the resolution
request (5), is split in two cases. The first case shows how the resolution would take
place without using ECS, in step 5(a), whereas the second one shows the different reply
when utilizing the client subnet, in step 5(b).

Figure 1 shows an example of the problems that widespread use of public
recursives can cause and how ECS can help. In the figure, a client in Spain
connects to a public recursive in Czech Republic to resolve the domain name
for a web server. Steps (1) to (4) are part of every resolution process, when a
domain name is not stored in a recursive’s cache, as described in Sect. 2.1. In this
particular case, when the authority notices the IP address of the recursive being

Understanding the Privacy Implications of ECS 347

in Czech Republic, it will assume that the client is in the same geographical
region and therefore reply with an IP address for the web service close to that.
Provided that the web service is using a CDN or load balancing techniques
to increase efficiency for both the provider and the client, this geographical
assumption can actually be detrimental. As shown in step 5(a), the client will
connect to a web server located in Germany, which is far less efficient than the
one in Portugal. When ECS is used, the authority will be able to identify the
geographic location of the client since the client’s subnet is shared. Thus the
authority will make an informed decision about the reply it will provide. In step
5(b), we can see that now the client is provided with an IP address of the web
service located in Portugal and connects to that one instead.

3 Surveillance and Selective Cache Poisoning

Spurious ECS “speakers” enable Internet miscreants to potentially perform dis-
creet and powerful surveillance and targeted cache poisoning attacks. The tar-
geted poisoning can selectively reroute users, even down to the granularity of a
specific IP address, to hosts under their control. It is important to note these
attacks only require visibility of the path between a recursive and authoritative
DNS server.

3.1 Surveillance

State sponsored surveillance has seen increased coverage in the press [9], with
nation states using a myriad of techniques to monitor users. In light of such
revelations, it is more important than ever to evaluate the privacy impact new
technologies may have on the public – even if negative consequences are unin-
tended. ECS provides another means for nation states or network operators to
monitor individuals or groups on the Internet.

ECS simply makes surveillance easier. First, the introduction of ECS allows
client information to be collected from a different vantage point: where an adver-
sary is located between a client’s recursive and the domain’s authoritative. Sec-
ond, since surveillance is done based on the domain name of the target server
rather than its IP address, surveillance can be more fine-grained in instances
where hosting is shared.

Prior to ECS, collecting DNS traffic above the recursive only revealed the IP
address of the recursive; nothing was revealed about the user responsible for the
original request. However, this is no longer true for ECS enabled domains. As
discussed in Sect. 2.2, ECS allows a truncated version of the user’s IP address to
be embedded in a DNS request; this allows user-level surveillance to be approx-
imated above the recursive, increasing the usefulness of DNS for surveillance of
individual users on the Internet.

This change allows surveillance to be performed if the spying party is located
in the path between the user’s recursive and the authoritative of the domain

348 P. Kintis et al.

name the user is querying (steps 2 and 3 in Fig. 1). This surveillance is less infor-
mative but more specific than IP-based surveillance that would occur between
the user and the application server (steps 1 and 4 in Fig. 1). With ECS sur-
veillance, only a portion of the user’s IP address will be revealed, however, this
will often allow the organization the user is connecting from to be identified.
One benefit, however, is the specificity offered by performing surveillance on the
server’s domain name, rather than its IP address.

In a shared hosting environment, one IP address can host many distinct
services separated by the domain name they use. For example, popular HTTP
server software allows multiple websites to be hosted differentiated only by the
domain name used to resolve the server’s IP address. In instances where ECS
enabled surveillance is performed, this can be catered specifically to the domain
name used rather than the server’s IP such that fewer packets have to be ana-
lyzed. For example, multiple blogs each using a distinct domain can resolve to
one IP address. In the ECS surveillance case, monitoring a specific blog is easier.
Furthermore, if used in concert with existing IP-based surveillance between the
client and the server, an exact client IP match can be unified with more specific
ECS enabled match by the server’s domain name. Even more unsettling is the
possibility of selective cache poisoning.

3.2 Selective Cache Poisoning

In the traditional context, a DNS Cache Poisoning attack, aims to insert false
domain name to IP address mapping pairs in a recursive’s cache memory. As
explained in Sect. 2.1 the recursive server will store a response it receives from
an authoritative for as long as it is instructed; this information is in the TTL
field of the response. A fundamental problem in DNS is that the recursive cannot
be sure that the response it received was actually from the authoritative or a
rogue entity that submitted a response faster. To mitigate this problem random-
ization has been introduced in the DNS packets. This makes it harder for an
adversary to correctly craft a packet that matches the response expected by the
recursive. Countermeasures include the Transaction ID field, source port ran-
domization [15] and 0× 20 [8]. DNSSEC [2] is probably the best defense against
cache poisoning, since the authoritative can use public/private key encryption to
certify its identity to the recursive. It is worth noting that, besides DNSSEC, any
other attempt to increase the packet entropy and make it harder for the attacker
to succeed is only plaintext information within the packet itself. Anyone with
access to the packet is able to construct a response, exactly as the authoritative
would.

ECS information carried in the DNS packet when a resolution request takes
place allows the authoritative to approximate with increased accuracy the geo-
graphic location of the entity that initiated the recursive procedure. This is
also true for every other entity that is able to monitor the traffic between the
recursive and the authoritative servers. For instance, a third party, can tap the
wire and start collecting information about the clients performing resolution
requests. Accessing the question packet means that any arbitrary response can

Understanding the Privacy Implications of ECS 349

be constructed, which will be accepted by the recursive server. Of course this is
not something new and any network administrator between a recursive and an
authoritative would be able to do it, but the consequence would have been to
redirect all traffic around the world to a different IP address than the real one.

Using the client subnet within the ECS-enabled DNS packets, a network
administrator could be motivated to change a response and make a recursive
server “think” that a domain name points to a different IP address. In this
case, a network administrator would do this if she wanted to impact a specific
IP address, subnet or geographic location. The current implementation of ECS
not only supports such behavior (it is in fact the reason ECS was created), but
also understands the difference in caching for the affected subnet. For example,
someone might be interested in manipulating only hosts in 10.0.0.0/24. Crafting
a response for a resolution request that contains this subnet mask in the payload
will force the recursive to cache this domain name to IP address mapping. This
will happen for future client DNS lookup requests where the IP address is within
that network. This network can be arbitrarily small, even targeting a specific
IP address, i.e., 10.0.0.0/32. Every other client will be served with a different
mapping pair. A truly stealthy adversary could set the time-to-live (TTL) of the
DNS packet to zero to leave the minimum possible forensic trail.

Fig. 2. An adversary monitoring the traffic between the recursive and the authoritative
is able to selectively poison the cache of the recursive, even without ever capturing
traffic from the clients initiating the requests.

Figure 2 shows how this scenario is possible to occur, when the adversary has
access to the network traffic between the recursive and the authoritative server.
The adversary will need to be able to process the incoming UDP DNS packets
to the network and construct a reply faster than the authoritative. To prove the
practicality of the attack, we used our ECS enabled domain name and targeted
all IP addresses in a network we have machines located in (***.251.0.0/16).
Using a simple network packet sniffer we were able to parse the DNS packets,
extract the transaction ID, source port and requested domain fields, which are

350 P. Kintis et al.

randomized by most recursive servers, and craft a custom response for requests
with subnet masks within the aforementioned network. We used Google Public
DNS (8.8.8.8) as the ECS-enabled recursive server, for the requests we submitted
to be resolved for our clients. We have made a video1 that demonstrates the
feasibility of this attack, where a request is first sent from an IP address outside
of the network and then another one with source IP address that matches our
filters. The video shows the network topology on which the attack took place
and is similar to Fig. 2. In the first case, the machine is not targeted and the
poisoning attack does not occur. In the second case, however, the IP address is
changed using a VPN service, making the filters trigger and the RDNS replies
with the injected IP address 1.3.3.7. The output of both the packet sniffer that
performs the injection and the tcpdump tool running on the authority is shown
during the resolution requests.

Things can be more serious when one considers that the edns-client-subnet
draft does not specify whether the DNS requests to the root and Top Level
DNS (TLD) servers should carry the client’s subnet mask or not. It explicitly
states that the recursive servers MAY be configured to not send the ECS option
to them, but it is not enough to ensure security. In a case where the recursive
shares the exact same packet with the root and TLD servers, then the adversary
does not need to be between the recursive and the authoritative exclusively. All
an attacker needs is the recursion path to include a root or TLD server within
the network she is able to monitor. Thus, any DNS query that the adversary is
in position to identify can result to a selective cache poisoning attack.

4 Remedies

ECS enables potentially devastating attacks, but these shortcomings can be alle-
viated easily while maintaining the known performance improvements of ECS.
First, ECS should be opt-in by default rather than opt-out to protect potential
victims of surveillance and cache poisoning. Second, despite the fact that the
RFC for ECS allows clients to specify the number of bits in their source net-
mask, there is currently no method for users to do this; this issue is exacerbated
by the fact that ECS is already deployed. To this end, we provide instructions for
configuring a personal recursive to specify a source netmask of 0 bits, effectively
opting out of ECS entirely.

Opt-in vs. Opt-out. Many of the privacy issues that stem from ECS are due to
the rapid deployment of ECS and the assumption that all users want to enable
ECS by default. We argue that ECS should be disabled by default and users
and networks should opt in to the service, rather than have it enabled by default
and force users to opt out. In instances where performance is key, ECS is clearly
beneficial, but ECS has the potential to be abused to infringe on users’ privacy.

Tools to Opt Out. While the RFC suggests users can adjust the source netmask
setting to cater to their privacy needs, this is not possible with standard tools.
1 https://youtu.be/U1ehqjGwETc.

https://youtu.be/U1ehqjGwETc

Understanding the Privacy Implications of ECS 351

Fig. 3. Installation and configuration for Unbound recursive software to send scope-0
by default.

To assist privacy-conscious users we have provided instructions to compile and
configure the ECS version of the Unbound recursive in Fig. 3. This configuration
will forward connections to the recursive specified while sending scope-0.

5 Related Work

DNS is already known to be able to interfere with a user’s privacy. Krishnan
et al. [14] have shown how DNS prefetching can leak information regarding
users’ activity online, to a degree that information regarding web searches can
be inferred by simply logging the resolution requests a web browser is making.
Zhao et al. [22] performed a deep analysis on each step of a domain name res-
olution process, showing information that can be inferred from users’ private
data by only looking at public data. They also propose a simple range query
scheme that can be used to protect the user. In the same context, Guha and
Francis [12] describe an attack against the DNS by passively monitoring DNS-
related traffic. This attack can provide a variety of information about a user
that includes location, habits, and commute patterns. Lastly, an Internet Draft
by Bortzmeyer [3] attempts to enumerate DNS-only attacks and their privacy
implications. These are aggregated into six different categories, and the authors
concluded their work with several security considerations on the matter. Some
work has extended this to ECS, identifying cases where details of the infrastruc-
ture can be uncovered [21] identify more accurate geographic locations [6,18],
but the implications for surveillance and poisoning have not been studied so far.

DNS cache poisoning attacks are well understood outside of the context of
ECS. In [20], Stewart Joe describes two types of attacks and provides a brief
history of the DNS cache poisoning evolution. In 2008, Kaminsky [13] demon-
strated a new version that was able to cache poison DNS recursives much more
efficiently and overcame all known countermeasures at the time. New controls

352 P. Kintis et al.

and mitigation techniques were suggested and deployed: (1) Anax is a system
able to identify poisoned records in the cache of a recursive resolver [1]; and (2)
WSEC DNS [19] utilizes random subdomain strings for entropy WSEC DNS [19],
utilizes random subdomain strings for entropy increase and poison resistance for
the packets exchange between DNS servers. Lastly, 0× 20 [8] proposed to ran-
domize the case of the question a recursive submits to other DNS servers. This
is effective since the protocol is case-insensitive, further increasing the number
of attempts needed to successfully poison the cache of a recursive.

6 Conclusions

In this work we discussed ways that ECS can be used to help augment surveil-
lance, and enable extremely targeted cache poisoning attacks against DNS. The
latter is especially concerning. Even though ECS has not been officially stan-
dardized, it has seen increased adoption over the last several years. Therefore,
the unintended consequences introduced by ECS represent current threats to
Internet users and should be addressed sooner rather than later. To this end,
we acknowledge the benefits that ECS provides, but we propose that it should
be Opt-In instead of Opt-Out. We also propose a patch to the popular Unbound
recursive DNS server that helps users opt-out of using ECS. However, in order to
have broader impact, popular public recursives should provide their own mech-
anisms for disabling ECS, and they should make ECS usage opt-in only.

Acknowledgments. This material is based upon work supported in part by the US
Department of Commerce under grant no. 2106DEK and Sandia National Laborato-
ries grant no. 2106DMU. Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do not necessarily reflect the
views of the US Department of Commerce nor Sandia National Laboratories.

References

1. Antonakakis, M., Dagon, D., Luo, X., Perdisci, R., Lee, W., Bellmor, J.: A central-
ized monitoring infrastructure for improving DNS security. In: Jha, S., Sommer, R.,
Kreibich, C. (eds.) RAID 2010. LNCS, vol. 6307, pp. 18–37. Springer, Heidelberg
(2010)

2. Arends, R., Austein, R., Larson, M., Massey, D., Rose, S.: DNS Security Intro-
duction and Requirements. RFC 4033 (Proposed Standard), March 2005. http://
www.ietf.org/rfc/rfc4033.txt, updated by RFCs 6014, 6840

3. Bortzmeyer, S.: DNS Privacy Considerations, April 2014. https://tools.ietf.org/id/
draft-bortzmeyer-dnsop-dns-privacy-02.txt

4. Calder, M., Fan, X., Hu, Z., Katz-Bassett, E., Heidemann, J., Govindan, R.: Map-
ping the expansion of Google’s serving infrastructure. In: Proceedings of the 2013
Conference on Internet Measurement Conference, IMC 2013, pp. 313–326. ACM,
New York (2013). http://doi.acm.org/10.1145/2504730.2504754

5. Contavalli, C., Gaast, W.V.D., Leach, S., Rodden, D.: Client Subnet in DNS
Requests (draft-vandergaast-edns-client-subnet-00) (2011). https://www.ietf.org/
archive/id/draft-vandergaast-edns-client-subnet-00.txt

http://www.ietf.org/rfc/rfc4033.txt
http://www.ietf.org/rfc/rfc4033.txt
https://tools.ietf.org/id/draft-bortzmeyer-dnsop-dns-privacy-02.txt
https://tools.ietf.org/id/draft-bortzmeyer-dnsop-dns-privacy-02.txt
http://doi.acm.org/10.1145/2504730.2504754
https://www.ietf.org/archive/id/draft-vandergaast-edns-client-subnet-00.txt
https://www.ietf.org/archive/id/draft-vandergaast-edns-client-subnet-00.txt

Understanding the Privacy Implications of ECS 353

6. Contavalli, C., Leach, S., Lewis, E., Gaast, W.V.D.: Client subnet in DNS requests
(2013)

7. Contavalli, C., Leach, S., Lewis, E., Gaast, W.V.D.: Client Subnet in DNS
Requests (draft-vandergaast-edns-client-subnet-02) (2014). https://datatracker.
ietf.org/doc/draft-ietf-dnsop-edns-client-subnet/

8. Dagon, D., Antonakakis, M., Vixie, P., Jinmei, T., Lee, W.: Increased DNS forgery
resistance through 0x20-bit encoding: security via leet queries. In: Proceedings of
the 15th ACM Conference on Computer and Communications Security, pp. 211–
222. ACM (2008)

9. Electronic Frontier Foundation: Mass Surveillance Technologies (2015). https://
www.eff.org/issues/mass-surveillance-technologies

10. Federrath, H., Fuchs, K.-P., Herrmann, D., Piosecny, C.: Privacy-preserving DNS:
analysis of broadcast, range queries and mix-based protection methods. In: Atluri,
V., Diaz, C. (eds.) ESORICS 2011. LNCS, vol. 6879, pp. 665–683. Springer,
Heidelberg (2011)

11. Google: Introduction to Google Public DNS. https://developers.google.com/
speed/public-dns/docs/intro. Accessed 07 Apr 2015

12. Guha, S., Francis, P.: Identity trail: covert surveillance using DNS. In: Borisov,
N., Golle, P. (eds.) PET 2007. LNCS, vol. 4776, pp. 153–166. Springer, Heidelberg
(2007)

13. Kaminsky, D.: Black ops 2008: It’s the end of the cache as we know it. Black Hat
USA (2008)

14. Krishnan, S., Monrose, F.: DNS prefetching and its privacy implications: when
good things go bad. In: Proceedings of the 3rd USENIX Conference on Large-
scale Exploits and Emergent Threats: Botnets, Spyware, Worms, and More, p. 10.
USENIX Association (2010)

15. Mockapetris, P.: Domain names - implementation and specification. RFC 1035
(INTERNET STANDARD), November 1987. http://www.ietf.org/rfc/rfc1035.txt

16. OpenDNS: The OpenDNS Global Network Delivers a Secure Connection
Every Time, Everywhere (2010). http://info.opendns.com/rs/opendns/images/
TD-Umbrella-Delivery-Platform.pdf

17. OpenDNS: A Faster Internet (2011). http://www.afasterinternet.com
18. Otto, J.S., Sánchez, M.A., Rula, J.P., Bustamante, F.E.: Content delivery and the

natural evolution of DNS: remote DNS trends, performance issues and alternative
solutions. In: Proceedings of the 2012 ACM Conference on Internet Measurement
Conference, pp. 523–536. ACM (2012)

19. Perdisci, R., Antonakakis, M., Luo, X., Lee, W.: WSEC DNS: protecting recursive
DNS resolvers from poisoning attacks. In: IEEE/IFIP International Conference on
Dependable Systems & Networks 2009, DSN 2009, pp. 3–12. IEEE (2009)

20. Stewart, J.: DNS cache poisoning-the next generation (2003)
21. Streibelt, F., Böttger, J., Chatzis, N., Smaragdakis, G., Feldmann, A.: Explor-

ing EDNS-client-subnet adopters in your free time. In: Proceedings of the 2013
Conference on Internet Measurement Conference, pp. 305–312. ACM (2013)

22. Zhao, F., Hori, Y., Sakurai, K.: Analysis of privacy disclosure in DNS query. In:
International Conference on Multimedia and Ubiquitous Engineering, 2007, MUE
2007, pp. 952–957. IEEE (2007)

https://datatracker.ietf.org/doc/draft-ietf-dnsop-edns-client-subnet/
https://datatracker.ietf.org/doc/draft-ietf-dnsop-edns-client-subnet/
https://www.eff.org/issues/mass-surveillance-technologies
https://www.eff.org/issues/mass-surveillance-technologies
https://developers.google.com/speed/public-dns/docs/intro
https://developers.google.com/speed/public-dns/docs/intro
http://www.ietf.org/rfc/rfc1035.txt
http://info.opendns.com/rs/opendns/images/TD-Umbrella-Delivery-Platform.pdf
http://info.opendns.com/rs/opendns/images/TD-Umbrella-Delivery-Platform.pdf
http://www.afasterinternet.com

Authentication

Analysing the Security of Google’s
Implementation of OpenID Connect

Wanpeng Li(B) and Chris J. Mitchell

Information Security Group, Royal Holloway, University of London, Egham, UK
Wanpeng.Li.2013@live.rhul.ac.uk, C.Mitchell@rhul.ac.uk

Abstract. Many millions of users routinely use Google to log in to rely-
ing party (RP) websites supporting Google’s OpenID Connect service.
OpenID Connect builds an identity layer on top of the OAuth 2.0 pro-
tocol, which has itself been widely adopted to support identity manage-
ment. OpenID Connect allows an RP to obtain authentication assurances
regarding an end user. A number of authors have analysed OAuth 2.0
security, but whether OpenID Connect is secure in practice remains an
open question. We report on a large-scale practical study of Google’s
implementation of OpenID Connect, involving forensic examination of
103 RP websites supporting it. Our study reveals widespread serious
vulnerabilities of a number of types, many allowing an attacker to log
in to an RP website as a victim user. These issues appear to be caused
by a combination of Google’s design of its OpenID Connect service and
RP developers making design decisions sacrificing security for ease of
implementation. We give practical recommendations for both RPs and
OPs to help improve the security of real world OpenID Connect systems.

1 Introduction

In order to help alleviate the damage caused by identity attacks and simplify
management of identities, a range of identity management systems, such as
OAuth 2.0, Shibboleth, CardSpace and OpenID, have been put forward [1–3]. As
a replacement for the well-established OpenID [3] scheme, OpenID Connect 1.0
[4] builds an identity layer on top of the OAuth 2.0 framework [2]. The OAuth
2.0 framework enables an RP to obtain profile information about the end user,
but does not provide any means for the RP to obtain information about the
authentication of the end user. In OpenID Connect, in addition to obtaining
profile information about the end-user, RPs can obtain assurances about the
end user’s identity from an OpenID Provider (OP), which itself authenticates
the user.

OpenID Connect involves interactions between four core parties:

1. the End User (U), who accesses on-line services of the RP;
2. the User Agent (UA), typically a web browser, that is employed by an end

user to transmit requests to, and receive responses from, web servers;

c© Springer International Publishing Switzerland 2016
J. Caballero et al. (Eds.): DIMVA 2016, LNCS 9721, pp. 357–376, 2016.
DOI: 10.1007/978-3-319-40667-1 18

358 W. Li and C.J. Mitchell

3. the OpenID Provider (OP), e.g. Google, which provides methods to authenti-
cate an end user and generates assertions regarding the authentication event
and the attributes of the end user;

4. the Relying Party (RP), e.g. Wikihow, which provides protected on-line ser-
vices and consumes the identity assertion generated by the OP in order to
decide whether or not to grant access to the end user.

In summary, the end user employs a UA to access resources provided by the
RP, which relies on the OP to provide authentic information about the user.
Even though OpenID Connect was only finalised at the start of 2014, there are
already more than half a billion OpenID Connect-based user accounts provided
by Google [5], PayPal [6] and Microsoft [7]. This large user base has led very
large numbers of RPs to integrate their services with OpenID Connect.

The security of OAuth 2.0, the foundation for OpenID Connect, has been
analysed using formal methods [8–10]. Research focusing on implementations of
OAuth 2.0 has also been conducted [11–15]. However, as a newly standardised
protocol, it is not yet clear how secure practical implementations of OpenID
Connect really are. Given the large scale use of Google’s service, clarifying this
issue is vitally important. To help answer the question, the operation of all
one thousand sites from the GTMetrix Top 1000 Sites [16] providing services
in English was examined. Of these sites, 103 were found to support the use of
the Google’s OpenID Connect service at the time of our survey (early 2015).
All 103 of these websites were further examined for potential vulnerabilities,
with results as reported below. All RPs and the Google OP site were treated
as black boxes, and the HTTP traffic sent between RP and OP via the browser
was carefully analysed. For every identified vulnerability, we implemented and
tested an exploit to evaluate the possible attack surface.

Our study reveals serious vulnerabilities of a number of types, occurring in
many of the examined sites; they either allow an attacker to log in to the RP as
the victim user or enable compromise of potentially sensitive user information.
Google has customised its implementation of OpenID Connect by combining
SDKs, web APIs and sample code, and so the OpenID Connect specification
only acts as a loose guide to what RPs actually implement. Further examina-
tion suggests that the identified vulnerabilities are mainly caused by Google’s
implementation of its Hybrid Server-side Flow , and by RP developers making
design decisions sacrificing security for simplicity of implementation. Some of
the attacks use cross-site scripting (XSS) [17–20] and cross site request forgeries
(CSRFs) [21–26], well-established and widely exploited attack techniques.

OpenID Connect is used to protect millions of user accounts and sensitive
user information stored at RPs and the Google OP server. Moreover, as of April
20th 2015, Google shut down its OpenID 2.0 [27] service; as a result a huge
number of RPs have had to upgrade their Google sign-in service to use OpenID
Connect. It is therefore vitally important that the issues we have identified are
addressed urgently, and that Google considers issuing updated advice to all
RPs using its service. In this connection we have notified all the RPs in whose

Analysing the Security of Google’s Implementation of OpenID Connect 359

OpenID Connect service we have identified the most serious vulnerabilities, as
well as Google itself. To summarise, we make the following contributions:

– We report on the first field study of the security properties of Google’s imple-
mentation of OpenID Connect.

– We examined the security of all 103 of the RPs supporting the Google OpenID
Connect service from the GTMetrix list of the Top 1000 Sites.

– We discovered a number of vulnerabilities which allow an attack to log in to
the RP as a victim user, we reported our findings to the most serious affected
websites and Google, and helped these RPs fix the identified problems.

– We propose practical improvements which can be adopted by OpenID Connect
RPs and OPs that address the identified problems.

The paper is organised as follows. In Sect. 2 we review OpenID Connect.
We describe our adversary model in Sect. 3. Section 4 describes the experiments
we performed. Possible reasons for the identified vulnerabilities are discussed
in Sect. 5. In Sect. 6 we propose mitigations for these vulnerabilities, we review
related work in Sects. 7, and 8 concludes the paper.

2 OpenID Connect

As already noted, OpenID Connect 1.0 [4] builds an identity layer on the OAuth
2.0 protocol. The added functionality enables RPs to verify an end user identity
by relying on an authentication process performed by an OpenID Provider (OP).

2.1 OpenID Connect Tokens

In order to enable an RP to verify the identity of an end user, OpenID Connect
adds a new type of token to OAuth 2.0, namely the id token. This complements
the access token and code, which are already part of OAuth 2.0. These three
types of token are all issued by an OP, and have the following functions.

– A code is an opaque value which is bound to an identifier and a URL of
the RP. Its main purpose in OpenID Connect is as a means of giving an RP
authorisation to retrieve other tokens from the OP. In order to help minimise
threats arising from its possible exposure, it has a limited validity period and
is typically set to expire shortly after issue to the RP [2].

– An access token is a credential used to authorise access to protected resources
stored at a third party (e.g. the OP). Its value is an opaque string representing
an authorization issued to the RP. It encodes the right for the RP to access
data held by a specified third party with a specific scope and duration, granted
by the end user and enforced by the RP and the OP.

– An id token contains claims about the authentication of an end user by an
OP together with any other claims requested by the RP. Claims that can be
inserted into such a token include: the identity of the OP that issued it, the
user’s unique identifier at this OP, the identity of the intended recipient, the
time at which it was issued, and its expiry time. It takes the form of a JSON
Web Token [28] and is digitally signed by the OP.

360 W. Li and C.J. Mitchell

Both an access token [29] and an id token [30] can be verified by making a
call to the web API of the issuing OP.

2.2 Authentication Flows

OpenID Connect builds on user agent HTTP redirections. We suppose an end
user wants to access RP services, which consumes OP-generated tokens. The
RP generates an authorization request on behalf of the end user and sends it
to the OP via the UA (typically a web browser). The OP provides ways to
authenticate the end user, asks the end user to allow the RP to access the user
attributes, and generates an authorization response which includes tokens of
two types: access tokens and id tokens, where the latter contain claims about
user authentication. The RP can use a received access token to access end user’s
attributes using the OP-provided API, and after receiving an id token the RP
learns about the user authentication, as summarised in Fig. 1.

Fig. 1. OpenID connect protocol overview

OpenID Connect [4] supports four authentication flows [5], i.e. ways in which
the system can operate, namely Hybrid Server-side Flow (or Hybrid Flow) [31],
Authorization Code Flow, Client-side Flow (or Implicit Flow), and Pure Server-
side Flow. We describe the first two, since they are most relevant here.

An RP must register with the OP before using Google OpenID Connect.
During registration, the OP gathers security-critical information about the RP,
including either the RP’s redirect URI or its origin. The redirect URI is used in
the Authorization Code Flow , and the user agent is redirected to it after step
5 of Sect. 2.2. The origin is used in the Hybrid Server-side Flow and Client-
side Flow , and points to the RP’s domain name. The OP issues the RP with a
unique identifier (client id) and a secret (client secret), used to authenticate the
RP when using the Authorization Code Flow or Hybrid Server-side Flow .

Hybrid Server-Side Flow. Google’s OpenID Connect uses postMessage
[32–35] to enable cross domain communication between an RP and Google’s

Analysing the Security of Google’s Implementation of OpenID Connect 361

OP. Normally, scripts on different pages can only access each other if the web
pages that caused them to execute are at locations sharing the same protocol,
port number and host. The postMessage method gives a way to securely pass
messages across domains — see, for example, in Son and Shmatikov [35]. In the
Hybrid Server-side Flow (see Fig. 2) and Client-side Flow , an RP JavaScript
Client (RPJC) runs on the UA and listens for the postMessage event.

We now describe the Hybrid Server-side Flow , which is summarised in Fig. 2
where the numbers correspond to the numbered steps below.

1. U → UA → RPJC: The user clicks the Google button on the RP website,
causing the UA to trigger the RPJC to generate an authorization request.

2. RPJC → UA → OP: The RP generates an OpenID Connect authorization
request and sends it to the OP via the UA. This request includes client id, an
identifier the RP registered with the OP previously; response type=code token
id token, requesting that a code, an access token and an id token be returned
directly from Google; redirect uri=postmessage, indicating postMessage is
being used; state, used by the RP JavaScript Client to maintain state between
the request and the callback (step 5 below); origin, a URL without a path
appended; and the scope of the requested permission.

3. OP → UA: If the OP has already authenticated the user then this step and the
next are skipped. If not, the OP returns a login form to collect authentication
information (e.g. user account and password).

4. U → UA → OP: The user completes the login form and grants permission
for the RP to access the attributes stored by the OP.

5. OP → UA: After receiving the permission grant, the OP generates an HTML
document containing the authorization response and returns it to the UA. The
authorization response contains the code, access token and id token generated
by the OP; and state as sent in step 2.

6. UA → RPJC → RP: The UA executes the JavaScript inside the HTML
document it received in the previous step. The JavaScript sends the autho-
rization response using postMessage to the RPJC which is running on the
UA and listening for the postMessage event. After the RPJC receives the
authorization response it extracts the code and sends it back to the RP.

7. RP → OP: The RP produces an access token request and sends it to the
OP token endpoint directly (i.e. not via the UA). The request includes
grant type=authorization code, indicating that the RP wants to use the code
to retrieve an access token from the OP; the code generated in step 5; redi-
rect uri=postmessage, indicating that postMessage has been used to get the
code; and client secret, the secret shared by the RP and OP.

8. OP → RP: The OP checks the code, client secret and redirect uri and, if
correct, responds to the RP with access token and id token, the latter of
which is the same as the id token sent in step 5.

9. RP → OP: The RP verifies the id token. If valid, the RP knows the user has
been authenticated. If necessary it can make a web API call to retrieve user
attributes from the OP, using the access token as authorisation.

362 W. Li and C.J. Mitchell

Fig. 2. Google’s hybrid server-side flow

Authorization Code Flow. One advantage of this flow is that no tokens are
available to the UA or any malicious application able to access the UA. If either
of the tokens are compromised they could be used to access sensitive user data
and/or successfully masquerade as the user. The OP must authenticate the RP
before it issues the tokens, and hence use of the Authorization Code Flow requires
that an RP shares a secret with the OP. The flow involves the OP returning an
authorization code, typically a short-lived opaque string, to the RP, which uses
it to obtain the id token and access token directly from the OP’s access token
endpoint, i.e. not via the UA. The main steps are as follows.

1. U → RP: The user clicks a button on the RP website, as displayed by the
UA, causing the UA to send an HTTP or HTTPS request to the RP.

2. RP → UA → OP: The RP generates and sends an OpenID Connect authoriza-
tion request to the OP via the UA, including client id, previously registered
by the RP with the OP; response type=code, indicating use of Authorization
Code Flow ; redirect uri, to which the OP will redirect the UA after granting
access; state, used by the RP to maintain state between request and callback
(step 5 below); and the scope of the requested permission.

3. OP → UA: If the OP has already authenticated the user then this step and
the next are skipped. If not, the OP returns a login form to collect user
authentication data.

4. U → UA → OP: The user completes the login form and grants permission
for the RP to access the attributes stored by the OP.

5. OP → UA: After using the information provided in the login form to authen-
ticate the user, the OP generates an authorization response and sends it back
to the UA. The authorization response contains code, the authorization code
generated by the OP; and state, the value sent in step 2.

6. UA → RP: The UA redirects the response received in Step 5 to the RP.
7. RP → OP: The RP produces an access token request and sends it to the

OP token endpoint directly (i.e. not via the UA). The request includes

Analysing the Security of Google’s Implementation of OpenID Connect 363

grant type=code, indicating the RP wants to use the code to retrieve an
access token; the code sent in step 5; the redirect uri ; and client secret, the
secret shared by the RP and OP.

8. OP → RP: The OP checks the code, client secret and redirect uri and if all
are correct responds to the RP with an access token and id token.

9. RP → OP: The RP verifies the id token. If valid, the RP now knows that the
user has been authenticated. If necessary it can also make a call to the OP’s
web API, using the access token for authorisation, to retrieve user attributes.

3 Adversary Model

In our assessment of the security of Google’s OpenID Connect service, and of
RPs using the service, we consider two adversary scenarios.

– A Web Attacker can share malicious links or post comments containing
malicious content (e.g. stylesheets or images) on a benign website; and/or
exploit vulnerabilities in an RP website. Malicious content forged by a web
attack might trigger the UA to send HTTP(S) requests to an RP and OP
using GET or POST methods, or execute attacker JavaScripts. For example,
a web attacker could operate an RP website to collect access tokens.

– A Passive Network Attacker can intercept unencrypted data sent between
an RP and a UA (e.g. by monitoring an open Wi-Fi network).

Conducting a security analysis of commercially deployed OpenID Connect
SSO systems requires various challenges to be addressed. These include lack of
detailed specifications for the SSO systems, undocumented RP and OP source
code, and the complexity of APIs and/or SDK libraries in deployed SSO systems.
The methodology we used is similar to that of Wang et al. [14] and Sun and
Beznosov [13], i.e. we treated the RPs and OP as black boxes and analysed
the BRMs produced during authorization. Since we used a black-box approach,
there may be vulnerabilities and implementation flaws we did not uncover.

4 A Security Study

We used Fiddler1 to capture BRMs sent between RPs and the OP; we also
developed a Python program to parse the BRMs to simplify analysis and avoid
mistakes arising from manual inspections. All experiments were performed using
accounts set up specially for the purpose, i.e. at no time was any user’s account
accessed without permission. Of the 103 RPs supporting Google OpenID Con-
nect that we examined, 69 (67 %) adopt the Authorization Code Flow , 33 (32 %)
use the Hybrid Server-side Flow , and just 1 adopted the Client-side Flow .

1 http://www.telerik.com/fiddler.

http://www.telerik.com/fiddler

364 W. Li and C.J. Mitchell

4.1 Studying the Security of the Hybrid Server-Side Flow

As described in Sect. 2.2, Google’s OpenID Connect API uses postMessage
to deliver the authorization response from the OP to an RP. When the RPJC
running on the user’s browser receives the authorization response from the OP,
it extracts the code from the authorization response and then submits the code
back to the RP’s OpenID Connect sign-in endpoint.

Authentication by Google ID. As stated above, the RPJC running on the
UA submits the code it receives from the Google OP back to the RP’s Google
sign-in endpoint (see step 6 in Sect. 2.2). The RP is meant to use the code to
retrieve the access token and id token from the OP. However, we observed that
18 % of the RPs using the Hybrid Server-side Flow (i.e. 6 of 33) simply submit the
user’s Google ID to the RP’s Google sign-in endpoint; of these, two submit the
user’s Google ID without appending a code, and one submits the user’s Google
ID with an access token. This led us to suspect that such RPs might be basing
their verification of user identity solely on the Google ID, and not using the code
as intended. If so, then a web attacker knowing a user’s Google ID could use it
to log in to the user’s RP account. We tested this, and found that 9 % of the
RPs using the Hybrid Server-side Flow (i.e. 3 of 33) have this vulnerability.

Learning a user’s Google ID can be relatively simple, as a user’s Google+
post URL reveals it. An attacker can use the Google+ search for people func-
tion to find a victim user to attack, and can then visit the chosen user’s
Google+ page to learn the ID. For example, https://plus.google.com/u/0/
115722834054889887046/posts is the Google+ post URL for a Gmail account,
for which the ID is 115722834054889887046.

We reported our findings to the three affected websites, and recommendations
were also provided to enable the RP developers to fix the problem (see also
Subsect. 6.3).

Using theWrongToken. An access token is a bearer token, so anyone can use it
to get access to the associated user attributes stored by Google. By contrast, the
id token is designed for use in providing assurances about user authentication.
However, in practice, some RPs use an access token to obtain user authentica-
tion assurances without verifying it (i.e. making a web API call to the OP token
information endpoint [29]). In such a case, any party with a user’s access token
can impersonate that user to the RP simply by submitting it. This is a particu-
lar threat for a malicious RP, which can routinely obtain access tokens from the
Google OP. In other words, any RP using Google OpenID Connect can log in as
a victim user to any RPs using an access token to authenticate the user without
verifying it. Unfortunately, we found that 58 % of RPs using the Hybrid Server-
side Flow (i.e. 19 of 33) submit an access token back to their Google sign-in end-
point (see step 6 in Sect. 2.2) and 45 % (i.e. 15 of these 19) use the access token
to authenticate the user; of these 15 RPs, only two RPs verify the access token
before using it to retrieve user attributes. As a result, 39 % of the RPs (i.e. 13 of
33) we examined are vulnerable to this impersonation attack.

https://plus.google.com/u/0/115722834054889887046/posts
https://plus.google.com/u/0/115722834054889887046/posts

Analysing the Security of Google’s Implementation of OpenID Connect 365

We tested the above attack using Burp Suite2 by submitting an access token
obtained from a randomly chosen RP using the Hybrid Server-side Flow to the
target RP’s Google sign-in endpoint. If the attack succeeds, we are able to log
in to the target RP as the victim user. As noted above, as many as 39 % of the
RPs using the Hybrid Server-side Flow are vulnerable to this attack. Some of
the vulnerable RPs (i.e. 3 out of 13) require additional evidence of the user to
be submitted with the access token, in the form of the Google ID or the user’s
email address. However, an attacker with an access token can readily use it to
get the user’s Google ID or email address from Google, and so such additional
steps do not prevent the attack.

Intercepting an access token . As stated above, 58 % of RPs using the Hybrid
Server-side Flow require the submission of an access token back to their Google
sign-in endpoint (see step 6 in Sect. 2.2). If the RPJC running on the UA sends
an access token back to its Google sign-in endpoint without SSL protection, a
passive network attacker is able to intercept it (see Sect. 3). According to the
OAuth 2.0 specification [36], an access token should never be sent unencrypted
between the user browser and the RP. However, we found that 12 % of RPs using
the Hybrid Server-side Flow (i.e. 4 out of 33) send the access token unprotected.
A sniffer written in Python was implemented to test this.

We also observed that one additional site, namely TheFreeDictionary3 does
use SSL to protect the transfer of the code to its Google sign-in endpoint. How-
ever, the access token is subsequently stored in a cookie, and when the cookie is
sent from the browser back to TheFreeDictionary the link is not SSL-protected.
That is, the access token is observable by a passive eavesdropper.

Privacy Issues. When a user chooses to use OpenID Connect to log in to an
RP website, the user attributes (e.g. email address, name) that the RP retrieves
from the OP should never be revealed to parties other than the RP. SSL con-
nections should be established to protect user information transmitted between
the browser and the RP or OP.

However, as explored below, user information leakage might happen if:

– the RPJC running on the user’s browser sends user information, the id token
or the access token back to its Google sign-in endpoint without SSL protection
(see step 6 in Sect. 2.2);

– the RP Google sign-in endpoint sends the user information directly to the
user’s browser without SSL protection; or

– the RP uses SSL to protect the link to the Google sign-in endpoint, but changes
to http when sending user information back to the UA.

As described in Sect. 4.1, a passive eavesdropper can intercept the
access token for 12 % of the RPs that use the Hybrid Server-side Flow (i.e. 4

2 http://portswigger.net/burp/.
3 http://www.thefreedictionary.com.

http://portswigger.net/burp/
http://www.thefreedictionary.com

366 W. Li and C.J. Mitchell

of 33), and can then use it to retrieve potentially sensitive user information, e.g.
including Google ID and email address. As stated in Sect. 2.1, the id token is a
JSON web token in which the user email address and Google ID are encoded in
cleartext; so anyone obtaining the token can immediately obtain the information
within. One of the four RPs referred to above sends an id token in addition to
the access token to its Google sign-in endpoint, and thus a passive web attacker
can retrieve the token’s user information without requesting it from Google. We
also found that one RP did not enable SSL to protect its Google sign-in end-
point, and returned user information directly to the UÄ. Another RP sends user
information back to its Google sign-in endpoint without SSL protection. Yet
another RP uses SSL to protect the link to the Google sign-in endpoint, but
changes to HTTP when sending user information back to the UA. As a result,
user privacy cannot be guaranteed for 21 % of the RPs we examined (i.e. 7 out
of 33). As noted above, a sniffer in Python was implemented to demonstrate the
feasibility of the attack.

Session Swapping. As discussed earlier, the RPJC running on the UA sends
the user’s OpenID tokens (i.e. a code, an access token, an id token, and/or the
user’s Google ID) back to its Google sign-in endpoint (see step 6 in Sect. 2.2). The
OpenID Specification [4] recommends a state value should be appended when
the RPJC sends the tokens back, and that this state value should be bound to
the session. If the RPJC fails to send state, an attacker can execute a session
swapping attack [13,21,37] as follows.

1. The attacker logs in to the RP website using his/her own account (step 4 in
Sect. 2.2), and intercepts the Google-generated tokens (step 5 in Sect. 2.2).

2. The attacker constructs a request to the RP’s Google sign-in endpoint, includ-
ing the attacker’s own tokens.

3. The attacker inserts the request in an HTML document (e.g. in the src
attribute of a img or iframe tag) made available via an HTTP server.

4. The victim user is now, by some means, induced to visit the website offering
the attacker’s page. The HTML can be constructed in such a way (described
in detail below) that the victim’s UA will automatically use GET or POST to
send the attacker-constructed request to the RP; as a result the user session
on the RP website will be bound to the attacker’s account.

We observed that 42 % of the RPJCs using Hybrid Server-side Flow (i.e.
14 of 33) use POST to submit the tokens back to the RP’s server without an
accompanying state. Use of a static img or iframe tag to perform an attack of
the above type does not work against these RPs, as the browser will automat-
ically use GET to retrieve the img and iframe data. In order to use POST to
submit those tokens, we created a special HTML page to conduct the attack. We
used JavaScript to create an iframe with a unique name in the browser. We then
constructed a form inside the iframe whose action points to the RP’s Google
sign-in endpoint, put the attacker’s tokens into the form input, and configured
the HTML to submit the form whenever the HTML is loaded by a browser.

Analysing the Security of Google’s Implementation of OpenID Connect 367

To deploy the attack, the constructed HTML page is made available via a
web server. If a victim’s UA visits the page, the JavaScript inside the HTML
automatically submits the attacker’s tokens to the RP using POST; as a result
the victim user’s session at the RP is bound to the attacker’s, i.e. a session-
swapping attack has been performed. An attacker could use such an attack to
collect sensitive user information, e.g. if the victim user updates his credit card
information on the RP website, this information will be written to the attacker’s
account.

Sadly, we found that 73 % of RPs using Hybrid Server-side Flow (i.e. 24 of
33) are vulnerable. Of these 24 RPs, eight (i.e. 24 % of this category) submit a
code to their Google sign-in endpoint; as code is a one-time value, the attacker
must update it within the attack HTML every time the page is retrieved by a
victim. For the other 48 % of vulnerable RPs (i.e. 16 of 33), an access token or
the user’s Google ID is submitted back to the Google sign-in endpoint, in which
case the attacker does not need to update the attack page HTML as frequently.

4.2 Studying the Security of the Authorization Code Flow

We first observe that Google’s OAuth 2.0 Authorization Code Flow implementa-
tion [38] has similar steps to those in Subsect. 2.2. The token endpoint provided
as part of Google’s implementation of OAuth 2.0 (as checked on April 22, 2015)
returns an id token to the RP. That is, without knowing details of the RP’s inter-
nals, we cannot tell whether an RP is using OpenID Connect or OAuth 2.0. We
therefore cover all cases where Google returns a code to the RP’s Google sign-in
endpoint under our discussion of the OpenID Connect Authorization Code Flow ,
even though some of the RPs may actually be using OAuth 2.0. However, this
makes no difference to our security analysis.

Around 67 % of the RPs we examined (i.e. 69 of 103) use Authorization
Code Flow . Unlike the Hybrid Server-side Flow , Google’s implementation of
Authorization Code Flow uses HTTP status code redirect techniques (using code
302) to deliver the authorization response to the RP’s Google sign-in endpoint.

Intercepting an access token . In the Authorization Code Flow , a code is
returned by Google to the RP’s Google sign-in endpoint (see step 6 in Sect. 2.2).
No tokens are transmitted during the authorization procedure. After the RP
receives the code, it can use it to retrieve an access token from Google (steps 7/8
in Subsect. 2.2); it can then use the access token to retrieve user attributes from
Google (step 9 in Subsect. 2.2). The RP then logs the user in to its website.

If an RP does not use SSL to protect communications with its Google sign-in
endpoint, a passive web attacker may be able to intercept the code. A passive
web attacker cannot use the code to retrieve an access token from Google, as it
will not know the RP’s client secret (shared by the RP and Google). However,
we observed that, of the RPs using the Authorization Code Flow , 6 % of their
Google sign-in endpoints (i.e. 4 out of 69) return an access token to the user’s
browser instead of binding the user to the RP’s session. As these RPs do not use

368 W. Li and C.J. Mitchell

SSL to protect the transfer of the access token, a passive web attacker is able to
obtain the user’s access token returned from the RP’s Google sign-in endpoint.

Stealing an access token via Cross-site Scripting. Google’s ‘automatic
authorization granting’ feature [13] generates an authorization response auto-
matically if a user has a session with Google and previously granted permission
for the RP concerned. Using this feature, an attacker might be able to steal a
user access token by exploiting an XSS vulnerability in the RP or UA.

To test the feasibility of such an attack, an exploit written in JavaScript was
implemented. The exploit takes advantage of a recently revealed vulnerability in
Android’s built-in browser [39] which allows an attacker to conduct a universal
XSS attack [17–20]. The exploit uses a browser window.open event to send
a forged authorization request to Google’s authorization server, within which
response type=code (see step 2 in Sect. 2.2) is changed to response type=code
token id token. If the user is logged in to his or her Google account and has
previously granted permission for this RP, Google automatically generates an
authorization response without the involvement of the user; this response is
appended as a URI fragment (#) to the redirect URI (see step 5 in Sect. 2.2) and
is sent back to the RP (see step 6 in Sect. 2.2). As the RP Google sign-in endpoint
does not expect an URI fragment, a predefined error page will be generated by
the RP (e.g. a ‘404 not found’ or ‘Failed connection’ error). The exploiting
JavaScript can now extract the authorization response from the URL of the
error page and send it to its opener window, where the window.open event
is triggered. The opener window then sends the access token to the attacker’s
server.

Unfortunately, we found that all the RPs using Authorization Code Flow are
vulnerable to this attack. The vulnerability affects all Android versions up to
4.4, which as of April 6, 2015 still accounted for 53.2 % of Android devices4.

Privacy Issues. Unlike the Hybrid Server-side Flow , only a code is submit-
ted back to the RP’s Google sign-in endpoint (see step 6 in Sect. 2.2). No user
information (e.g. a Google ID or id token) is transmitted during authorisation.
However, user information might still leak if the RP Google sign-in endpoint
sends the user data directly to the UA without SSL.

We found that 16 % of RPs using the Authorization Code Flow (i.e. 11 of 69)
return user information to the browser directly without SSL protection. Thus a
passive web attacker is able to intercept potentially sensitive user information,
e.g. if the user is using an open Wi-Fi network (see Sect. 3).

Session Swapping. If an RP using Authorization Code Flow does not enable
anti-CSRF measures (e.g. by appending a state bound to the browser session to
the tokens) to protect its Google sign-in endpoint, a web attacker can launch
4 https://developer.android.com/about/dashboards/index.html?

utm source=suzunone.

https://developer.android.com/about/dashboards/index.html?utm_source=suzunone
https://developer.android.com/about/dashboards/index.html?utm_source=suzunone

Analysing the Security of Google’s Implementation of OpenID Connect 369

a session swapping attack, as described in Subsect. 4.1 for Hybrid Server-side
Flow .

Unlike the session swapping attack in Subsect. 4.1, in the Authorization Code
Flow only the GET method is used to submit the code back to the RP’s Google
sign-in endpoint. This means that the attacker can simply insert the forged
request in the src attribute of a img or iframe tag of an HTML document.
When the victim user visits the malicious HTML, the browser will automatically
send the request to the RP’s Google sign-in endpoint using the GET method.

We found that 35 % of the RPs using the Authorization Code Flow (i.e. 24
of 69) are vulnerable to this attack. However, as code is a one time value, the
attacker must update it every time the attack page is visited by a victim. Thus
such an attack is not as harmful as session swapping in the Hybrid Server-side
Flow , where an access token which can be used multiple times is submitted back
to the RP’s Google sign-in endpoint.

Forcing a Login Using a CSRF Attack. A CSRF login attack operates in
the context of an ongoing interaction between a target UA (running on behalf of
a target user) and a target RP. A malicious website somehow causes the target
UA to initiate an OpenID Connect authorization request to the OP. Because
of Google’s ‘automatic authorization granting’ feature, receiving such a request
can cause the Google OP to generate an authorization response, which is deliv-
ered to the RP without involvement by the user. If the target user is logged
in to Google, the UA will send cookies containing the target user’s Google OP-
generated tokens, along with the attacker-supplied authorization request, to the
OP. The OP will process the malicious authorization request as if initiated by
the target user, and will generate and send an authorization response to the RP.
The target UA could be made to send the spurious request in various ways; for
example, a visited malicious site could use the HTML img tag’s src attribute
to specify the URL of a malicious request, causing the UA to silently use a GET
method to send the request.

We found that 35 % of the RPs using Authorization Code Flow (i.e. 24 of 69)
are vulnerable to such an attack. One consequence is that an attacker can cause
a victim user to log in to the RP, as long as the user has previously logged in to
Google. This could damage the user experience of the RP website, as the victim
user might dislike such a potentially annoying ‘automatic login’ feature.

5 Security Concerns over Google’s Implementation of
OpenID Connect

In the Hybrid Server-side Flow , any authorization request generated by an RPJC
using Google’s OpenID Connect API will always include response type=code
token id token; as a result, the authorization response returned by Google to
the RPJC always contains a code, access token and id token. Unfortunately,
this feature is the source of many security threats to the system. First, as the
access token and id token are directly transferred to the UA, this means that

370 W. Li and C.J. Mitchell

these tokens are potentially revealed to the user agent and any applications
which might be able to access the user agent. Second, it gives RP developers a
choice — that is, they can choose which token will be submitted back to the
RP server by the RPJC. We found that 67 % (i.e. 22 out of 33) of RPs using
the Hybrid Server-side Flow design their RPJC to submit an access token or a
user’s Google ID back to the RP’s Google sign-in endpoint, and this leads to
most of the attacks described in Sect. 4.1.

5.1 Giving RPs the Ability to Customise the Hybrid-Server-side
Flow

According to the OpenID Connect specification [4], a code must be returned by
the OP to the RP’s Google sign-in endpoint (see step 6 in the Hybrid Server-
side Flow). However, as described above, in Google’s implementation of the
Hybrid Server-side Flow, a code, access token and id token are always returned
by Google to the RPJC running on the user’s browser. Unlike the Authorization
Code Flow , where only a code is returned to the RP’s Google sign-in endpoint
(see step 6 in Sect. 2.2) and no RPJC exists, this gives RPs the ability to cus-
tomise their Hybrid Server-side Flow . In fact our experiments have shown that
as many as 67 % of RPs (i.e. 22 out of 33) customise their implementation of
the Hybrid Server-side Flow by submitting an access token or a user’s Google
ID back to the RP’s Google sign-in endpoint. Among these RPs, 73 % (16 out of
22) are vulnerable to the first two attacks (namely Authentication by Google
ID which allows an attacker to log in to the RP as any victim user and Using
the Wrong Token which allows an attacker to impersonate the victim user
using an access token generated for another RP) described in Sect. 4.1. More-
over, as the code, access token and id token are returned by Google inside a
HTML document, these values are also revealed to the user agent and hence
to any applications (e.g. browser plug-ins), which might be able to access the
user agent. If the plug-in or user agent has vulnerabilities which could allow an
attacker to access these values, the attacker can steal the user’s access token; for
example a malicious plug-in which has the right to read the content of HTML
pages could obtain the access token.

5.2 No CSRF Countermeasures in the Hybrid-Server-side Flow

In Google’s implementation of the Hybrid Server-side Flow , the authorization
request generated by the RPJC includes a state value which is designed to pre-
vent CSRF attacks [21,23–25]. However, we found that the state value extracted
by the RPJC is actually a null value; this means that Google itself fails to
deliver the state value to the RPJC, and hence the state value cannot be used
to mitigate the threat of a CSRF attack. We also observed that one of the RPs
using the Authorization Code Flow sends a null state value back to its Google
sign-in endpoint. As the state value generated by the RPJC is not bound to the
RP’s session and cannot be extracted by the RPJC, another state value which

Analysing the Security of Google’s Implementation of OpenID Connect 371

is bound to the session needs to be implemented to protect the RP’s Google
sign-in endpoint against a CSRF attack.

In addition, checking the Google OpenID Connect sample code [40] reveals
that Google has not included a state value in its example of an RPJC-generated
AJAX request, used to send data back to the RP [31] (see step 6 in Hybrid
Server-side Flow). The lack of a state parameter in the sample code and the
complexity of implementing anti-CSRF measures helps to explain why 73 % of
the RPs using the Hybrid Server-side Flow are vulnerable to this attack.

5.3 Automatic Authorization Granting

The ‘automatic authorization granting’ feature of Google’s OpenID Connect
significantly enhances the user experience and system performance. Without
this, users would have to click an “OK” button in a popup window whenever
they wished to log in to an RP, in order to grant authorisation. However, it
can also be harmful, since it may allow an attacker to steal an access token (see
Sect. 4.2) and force a user log in to the RP (see Sect. 4.2).

We also found that, in the Hybrid Server-side Flow , iframes are used to
manage the session [33] between the RPJC and the OP. Suppose a user, who
has previously both granted permission for the RP and logged in to his or her
Google account, visits the RP login page which contains an iframe pointing to the
authorization request. Because of the ‘automatic authorization granting’ feature,
the browser can use the GET method to retrieve the authorization response
from Google without involvement by the user. The UA and any applications
(e.g. plug-ins) which can access the UA are able to extract the authorization
response, which might expose the Hybrid Server-side Flow to new attacks.

6 Recommendations

OpenID Connect has been deployed by many RPs and OPs, and increasing num-
bers of RPs supporting the Google service will likely implement it now Google
has shut down its OpenID service. We found serious vulnerabilities in existing
deployments of OpenID Connect, and there is a significant danger that these
vulnerabilities will be replicated in the future. Below we make a number of rec-
ommendations designed to address the identified vulnerabilities. These recom-
mendations primarily apply to RPs using the Google service and to the Google
OP itself, but some may have broader applicability. These recommendations are
intended both to try to address the problems that exist in current systems, and
to help ensure that future systems are built more robustly.

6.1 Recommendations for RPs

When using OpenID Connect, especially the Hybrid Server-side Flow , RP devel-
opers are responsible for designing the RPJC action on receiving an authorization
response from the Google OP. As a result, system security for the RP largely
depends on its developers. We have the following recommendations for RPs.

372 W. Li and C.J. Mitchell

– Do not customise the Hybrid Server-side Flow: One reason OpenID
Connect is vulnerable to the attacks in Sect. 4.1 is that some RPs customise the
Hybrid Server-side Flow . In particular, instead of submitting a code back to its
Google sign-in endpoint, the RPJC running in the UA submits an access token
or Google ID, which is then used by the RP to authenticate the user. Such a
customised Hybrid Server-side Flow might improve user experience and RP
website efficiency, but this is at the cost of opening serious vulnerabilities.
RPs must implement the OpenID Connect Hybrid Server-side Flow strictly
conforming to the OpenID Connect Specification.

– Deploy countermeasures against CSRF attacks: One reason the
OpenID Connect systems we investigated are vulnerable to CSRF and session
swapping attacks is that the RPs have not implemented any of the well-known
countermeasures. In order to prevent CSRF attacks, Google recommends that
RPs include the state parameter in the OpenID Connect authorization request
and response, and RPs should follow this recommendation.

– Do not use a constant or predictable state value: Some RPs include
a fixed state value in the OpenID Connect authorization request. If the state
value is fixed, it cannot be uniquely bound to the browser session, thereby
allowing an attacker to successfully forge a response, since the RP cannot
distinguish between a legitimate response produced by a valid user and a
forged response produced by an attacker. Hence, in such a case, the inclusion
of the state value does not protect against CSRF attacks. Thus RPs must
generate a non-guessable state value which should be bound to the browser
session so that the state value can used to verify the validity of the response.

6.2 Recommendations for OPs

In an OpenID Connect SSO system, the OP designs the process and provides
the API for RPs. An RP supporting a particular OP must therefore comply with
the requirements of that OP, and so OPs play a critical role in the system. We
have the following recommendations for OPs (and in particular for Google).

– Remove the token from the authorization request in the Hybrid
Server Flow: In the Hybrid Server-side Flow , the token in the authorization
request causes Google to return an access token to the RPJC. This allows
RPJCs to submit an access token back to their Google sign-in endpoints, as
was the case for 58 % of the RPs using the Hybrid Server-side Flow that
we investigated. This practice gives rise to a range of possible impersonation
attacks. Sending the access token also creates further risks, since if the RP
does not enable SSL to protect its Google sign-in endpoint, a passive network
attacker could steal it. This would not only enable a malicious RP to imper-
sonate a user to those RPs which submit an access token to the Google sign-in
endpoint, but also allow the possibility of other misuses of this token, e.g. to
compromise sensitive user data.

– Add a state value to the sample code: OPs typically provide sample
code to help RP developers make their website interact appropriately with

Analysing the Security of Google’s Implementation of OpenID Connect 373

the OP. As we discovered, Google does not include a state value in its sample
code for the Hybrid Server-side Flow . It seems reasonable to speculate that
this is the main reason why 73 % of the RP-OP interactions we analysed (see
Sect. 4.1) are vulnerable to session swapping attacks. However, for cases where
a state value is included in Google’s sample code, this number fell to 35 % (see
Sect. 4.2).

– Allow the RP to specify the state value in the Hybrid Server Flow:
The state value in the authorization request of the Hybrid Server-side Flow
is automatically handled by the Google OpenID Connect API. However, the
RPJC cannot extract the state as it is null. As the state value is not bound to
the browser session, it does not protect the RP against CSRF attacks. It would
probably be better to let the RP handle the state rather than the Google API.
Google should also check the source code of its postmessage.js script to ensure
that state can be extracted by the RPJC.

6.3 Notifying Affected Parties

Given their seriousness, we reported the Authentication by Google ID issues
directly to the affected parties in Feb. 2015 and also gave advice to help fix the
problems. As of 16/11/15, one had fixed the problem, one ignored our warning,
and the third terminated support for Google SSO. On 17/4/15 we notified Google
of all the issues described here. Google acknowledged the problem in Sect. 5.2
and notified their OpenID Connect group. However, as of 16/11/15 we are not
aware of any other steps taken by Google.

7 Related Work

OAuth 2.0 has been analysed using formal methods. Pai et al. [9] confirmed
a security issue described in the OAuth 2.0 Thread Model [8] using the Alloy
Framework [41]. Chari et al. analysed OAuth 2.0 in the Universal Composability
Security framework [42] and showed that OAuth 2.0 is secure if all the com-
munications links are SSL-protected. Frostig and Slack [10] discovered a cross
site request forgery attack in the Implicit Grant flow of OAuth 2.0, using the
Murphi framework [43]. Bansal et al. [44] analysed the security of OAuth 2.0
using the WebSpi [45] and ProVerif models [46]. However, all this work is based
on abstract models, and so delicate implementation details are ignored.

Meanwhile, the security properties of real-world OAuth 2.0 implementations
have also been examined. Wang et al. [14] examined deployed SSO systems,
focussing on a logic flaw present in many such systems, including OpenID. In
parallel, Sun and Beznosov [13] also studied deployed systems of OAuth 2.0. Li
and Mitchell [12] examined the security of deployed OAuth 2.0 systems provid-
ing services in Chinese. In parallel, Zhou and Evans [15] conducted a large scale
study of the security of Facebook’s OAuth 2.0 implementation. Chen et al. [11],
and Shehab and Mohsen [47] have looked at the security of OAuth 2.0 imple-
mentations on mobile platforms. However, unlike OAuth, very little research

374 W. Li and C.J. Mitchell

has been conducted on OpenID Connect security, except for the recent work of
Mladenov et al. [48] who looked at the security of the OpenID Connect Discovery
and Dynamic Registration extensions.

8 Concluding Remarks

We have reported on the first field study of the security properties of Google’s
implementation of OpenID Connect. We examined the security of all 103 of
the RPs that implement support for the Google OpenID Connect service from
the GTMetrix list of the Top 1000 Sites. Our study reveals widespread serious
vulnerabilities of a number of types, many allowing an attacker to log in to an
RP website as a victim user. We give practical recommendations for both RPs
and OPs to help improve the security of real world OpenID Connect systems.

References

1. Chappell, D.: Introducing windows cardspace (2006). http://msdn.microsoft.com/
en-us/library/aa480189.aspx

2. Hardt, D.: The OAuth 2.0 authorization framework (2012). http://tools.ietf.org/
html/rfc6749

3. Recordon, D., Fitzpatrick, B.: OpenID Authentication 2.0 – Final (2007). http://
openid.net/specs/openid-authentication-2 0.html

4. Sakimura, N., Bradley, J., Jones, M., de Medeiros, B., Chuck, M.: OpenID Connect
Core 1.0 (2014). http://openid.net/specs/openid-connect-core-1 0.html

5. Google Inc.: Google OpenID Connect 1.0 (2015). https://developers.google.com/
accounts/docs/OpenIDConnect

6. PayPal Holdings Inc.: PayPal OpenID Connect 1.0 (2014). https://developer.
paypal.com/docs/integration/direct/identity/log-in-with-paypal/

7. Microsoft Inc.: Microsoft OpenID Connect (2014). https://msdn.microsoft.com/
en-us/library/azure/dn645541.aspx

8. Lodderstedt, T., McGloin, M., Hunt, P.: OAuth 2.0 Threat Model and Security
Considerations (2013). http://tools.ietf.org/html/rfc6749

9. Pai, S., Sharma, Y., Kumar, S., Pai, R.M., Singh, S.: Formal verification of OAuth
2.0 using alloy framework. In: Proceedings of the International Conference on Com-
munication Systems and Network Technologies (CSNT), 2011, pp. 655–659. IEEE
(2011)

10. Slack, Q., Frostig, R.: Murphi Analysis of OAuth 2.0 Implicit Grant Flow (2011).
http://www.stanford.edu/class/cs259/WWW11/

11. Chen, E.Y., Pei, Y., Chen, S., Tian, Y., Kotcher, R., Tague, P.: Oauth demystified
for mobile application developers. In: Ahn, G., Yung, M., Li, N. (eds.) Proceedings
of the 2014 ACM SIGSAC Conference on Computer and Communications Security,
Scottsdale, AZ, USA, 3–7 November 2014, pp. 892–903. ACM (2014)

12. Li, W., Mitchell, C.J.: Security issues in OAuth 2.0 SSO implementations. In:
Chow, S.S.M., Camenisch, J., Hui, L.C.K., Yiu, S.M. (eds.) ISC 2014. LNCS, vol.
8783, pp. 529–541. Springer, Heidelberg (2014)

13. Sun, S.T., Beznosov, K.: The devil is in the (implementation) details: an empirical
analysis of OAuth SSO systems. In: Yu, T., Danezis, G., Gligor, V.D. (eds.) The
ACM Conference on Computer and Communications Security, CCS 2012, Raleigh,
NC, USA, 16–18 October 2012, pp. 378–390. ACM (2012)

http://msdn.microsoft.com/en-us/library/aa480189.aspx
http://msdn.microsoft.com/en-us/library/aa480189.aspx
http://tools.ietf.org/html/rfc6749
http://tools.ietf.org/html/rfc6749
http://openid.net/specs/openid-authentication-2_0.html
http://openid.net/specs/openid-authentication-2_0.html
http://openid.net/specs/openid-connect-core-1_0.html
https://developers.google.com/accounts/docs/OpenIDConnect
https://developers.google.com/accounts/docs/OpenIDConnect
https://developer.paypal.com/docs/integration/direct/identity/log-in-with-paypal/
https://developer.paypal.com/docs/integration/direct/identity/log-in-with-paypal/
https://msdn.microsoft.com/en-us/library/azure/dn645541.aspx
https://msdn.microsoft.com/en-us/library/azure/dn645541.aspx
http://tools.ietf.org/html/rfc6749
http://www.stanford.edu/class/cs259/WWW11/

Analysing the Security of Google’s Implementation of OpenID Connect 375

14. Wang, R., Chen, S., Wang, X.: Signing me onto your accounts through face-
book and google: a traffic-guided security study of commercially deployed single-
sign-on web services. In: IEEE Symposium on Security and Privacy, SP 2012,
San Francisco, California, USA, 21–23 May 2012, pp. 365–379. IEEE Computer
Society (2012)

15. Zhou, Y., Evans, D.: SSOScan: automated testing of web applications for sin-
gle Sign-On vulnerabilities. In: Fu, K., Jung, J. (eds.) Proceedings of the
23rd USENIX Security Symposium, San Diego, CA, USA, 20–22 August 2014,
pp. 495–510. USENIX Association (2014)

16. GTmetrix: GTmetrix Top 1000 Sites (2015). http://gtmetrix.com/top1000.html
17. Nadji, Y., Saxena, P., Song, D.: Document structure integrity: a robust basis for

cross-site scripting defense. In: Proceedings of the Network and Distributed System
Security Symposium, NDSS 2009, San Diego, California, USA, 8th February–11th
February 2009. The Internet Society (2009)

18. Vogt, P., Nentwich, F., Jovanovic, N., Kirda, E., Krügel, C., Vigna, G.: Cross site
scripting prevention with dynamic data tainting and static analysis. In: Proceed-
ings of the Network and Distributed System Security Symposium, NDSS 2007,
San Diego, California, USA, 28th February–2nd March 2007. The Internet Society
(2007)

19. Wassermann, G., Su, Z.: Static detection of cross-site scripting vulnerabilities.
In: Schäfer, W., Dwyer, M.B., Gruhn, V. (eds.) 30th International Confer-
ence on Software Engineering (ICSE 2008), Leipzig, Germany, 10–18 May 2008,
pp. 171–180. ACM (2008)

20. Kirda, E., Krügel, C., Vigna, G., Jovanovic, N.: Noxes: a client-side solution for
mitigating cross-site scripting attacks. In: Haddad, H. (ed.) Proceedings of the 2006
ACM Symposium on Applied Computing (SAC), Dijon, France, 23–27 April 2006,
pp. 330–337. ACM (2006)

21. Barth, A., Jackson, C., Mitchell, J.C.: Robust defenses for cross-site request forgery.
In: Ning, P., Syverson, P.F., Jha, S. (eds.) Proceedings of the 2008 ACM Conference
on Computer and Communications Security, CCS 2008, Alexandria, Virginia, USA,
27–31 October 2008, pp. 75–88. ACM (2008)

22. De Ryck, P., Desmet, L., Joosen, W., Piessens, F.: Automatic and precise client-
side protection against CSRF attacks. In: Atluri, V., Diaz, C. (eds.) ESORICS
2011. LNCS, vol. 6879, pp. 100–116. Springer, Heidelberg (2011)

23. Jovanovic, N., Kirda, E., Kruegel, C.: Preventing cross site request forgery attacks.
In: Second International Conference on Security and Privacy in Communication
Networks and the Workshops, SecureComm 2006, Baltimore, MD, 28 August 2006–
1 September 2006, pp. 1–10. IEEE (2006)

24. Mao, Z., Li, N., Molloy, I.: Defeating cross-site request forgery attacks with
browser-enforced authenticity protection. In: Dingledine, R., Golle, P. (eds.) FC
2009. LNCS, vol. 5628, pp. 238–255. Springer, Heidelberg (2009)

25. Zeller, W., Felten, E.W.: Cross-Site Request Forgeries: Exploitation and Preven-
tion. Princeton University, Bericht (2008)

26. Shernan, E., Carter, H., Tian, D., Traynor, P., Butler, K.: More guidelines
than rules: CSRF vulnerabilities from noncompliant OAuth 2.0 implementations.
In: Almgren, M., Gulisano, V., Maggi, F. (eds.) DIMVA 2015. LNCS, vol. 9148,
pp. 239–260. Springer, Heidelberg (2015)

27. Google Inc.: Google OpenID 2.0 (2015). https://developers.google.com/accounts/
docs/OpenID

28. Jones, M., Sakimura, N., Bradley, J.: JSON Web Token (JWT) (2014). http://
tools.ietf.org/html/draft-ietf-oauth-json-web-token-21

http://gtmetrix.com/top1000.html
https://developers.google.com/accounts/docs/OpenID
https://developers.google.com/accounts/docs/OpenID
http://tools.ietf.org/html/draft-ietf-oauth-json-web-token-21
http://tools.ietf.org/html/draft-ietf-oauth-json-web-token-21

376 W. Li and C.J. Mitchell

29. Google Inc.: Google OAuth 2.0 Client-side (2015). https://developers.google.com/
identity/protocols/OAuth2UserAgent?hl=es

30. Bray, T.: Verify ID Tokens (2015). https://www.tbray.org/ongoing/When/201x/
2013/04/04/ID-Tokens

31. Google Inc.: Google OpenID Connect Server-side Flow (2015). https://developers.
google.com/+/web/signin/server-side-flow

32. W3C: HTML5 Web Messaging (2012). http://www.w3.org/TR/2012/
WD-webmessaging-20120313/

33. de Medeiros, B., Agarwal, N., Sakimura, N., Bradley, J., Jones, M.B.:
OpenID Connect Session Management (2014). http://openid.net/specs/
openid-connect-session-1 0.html

34. Barth, A., Jackson, C., Mitchell, J.C.: Securing frame communication in browsers.
Commun. ACM 52, 83–91 (2009)

35. Son, S., Shmatikov, V.: The postman always rings twice: attacking and defending
postmessage in HTML5 websites. In: 20th Annual Network and Distributed System
Security Symposium, NDSS 2013, San Diego, California, USA, 24–27 February
2013. The Internet Society (2013)

36. Jones, M., Hardt, D. (eds.): The OAuth 2.0 Authorization Framework: Bearer
Token Usage (2012). https://tools.ietf.org/html/rfc6750

37. van Delft, B., Oostdijk, M.: A security analysis of OpenID. In: de Leeuw, E.,
Fischer-Hübner, S., Fritsch, L. (eds.) IDMAN 2010. IFIP AICT, vol. 343, pp.
73–84. Springer, Heidelberg (2010)

38. Google Inc.: OAuth 2.0 Authorization Code Flow (2015). https://developers.
google.com/identity/protocols/OAuth2WebServer

39. Baloch, R.: Android Browser Same Origin Policy Bypass (2014). http://www.
rafayhackingarticles.net/2014/08/android-browser-same-origin-policy.html

40. Google Inc.: Google OpenID Connect Hybrid Server-side Flow (2014). https://
developers.google.com/+/web/signin/

41. Jackson, D.: Alloy 4.1 (2010). http://alloy.mit.edu/community/
42. Chari, S., Jutla, C.S., Roy, A.: Universally composable security analysis of OAuth

v2.0. IACR Cryptology ePrint Archive 2011 526 (2011)
43. Dill, D.L.: The murphi verification system. In: Alur, R., Henzinger, T.A. (eds.)

CAV 1996. LNCS, vol. 1102, pp. 390–393. Springer, Heidelberg (1996)
44. Bansal, C., Bhargavan, K., Delignat-Lavaud, A., Maffeis, S.: Discovering concrete

attacks on website authorization by formal analysis. J. Comput. Secur. 22, 601–657
(2014)

45. Bansal, C., Bhargavan, K., Maffeis, S.: WebSpi and web application models (2011).
http://prosecco.gforge.inria.fr/webspi/CSF/

46. Blanchet, B., Smyth, B.: (ProVerif: Cryptographic protocol verifier in the formal
model) http://prosecco.gforge.inria.fr/personal/bblanche/proverif/

47. Shehab, M., Mohsen, F.: Securing OAuth implementations in smart phones. In:
Bertino, E., Sandhu, R.S., Park, J. (eds.) Fourth ACM Conference on Data and
Application Security and Privacy, CODASPY 2014, San Antonio, TX, USA, 03–05
March 2014, pp. 167–170. ACM (2014)

48. Mladenov, V., Mainka, C., Krautwald, J., Feldmann, F., Schwenk, J.: On
the security of modern Single Sign-On protocols: OpenID Connect 1.0. CoRR
abs/1508.04324 (2015)

https://developers.google.com/identity/protocols/OAuth2UserAgent?hl=es
https://developers.google.com/identity/protocols/OAuth2UserAgent?hl=es
https://www.tbray.org/ongoing/When/201x/2013/04/04/ID-Tokens
https://www.tbray.org/ongoing/When/201x/2013/04/04/ID-Tokens
https://developers.google.com/+/web/signin/server-side-flow
https://developers.google.com/+/web/signin/server-side-flow
http://www.w3.org/TR/2012/WD-webmessaging-20120313/
http://www.w3.org/TR/2012/WD-webmessaging-20120313/
http://openid.net/specs/openid-connect-session-1_0.html
http://openid.net/specs/openid-connect-session-1_0.html
https://tools.ietf.org/html/rfc6750
https://developers.google.com/identity/protocols/OAuth2WebServer
https://developers.google.com/identity/protocols/OAuth2WebServer
http://www.rafayhackingarticles.net/2014/08/android-browser-same-origin-policy.html
http://www.rafayhackingarticles.net/2014/08/android-browser-same-origin-policy.html
https://developers.google.com/+/web/signin/
https://developers.google.com/+/web/signin/
http://alloy.mit.edu/community/
http://prosecco.gforge.inria.fr/webspi/CSF/
http://prosecco.gforge.inria.fr/personal/bblanche/proverif/

Leveraging Sensor Fingerprinting for Mobile
Device Authentication

Thomas Hupperich(B), Henry Hosseini, and Thorsten Holz

Horst Görtz Institute for IT-Security (HGI), Ruhr-Universität Bochum,
Bochum, Germany

{thomas.hupperich,henry.hosseini,thorsten.holz}@rub.de

Abstract. Device fingerprinting is a technique for identification and
recognition of clients and widely used in practice for Web tracking
and fraud prevention. While common systems depend on software
attributes, sensor-based fingerprinting relies on hardware imperfections
and thus opens up new possibilities for device authentication. Recent
work focusses on accelerometers as easily accessible sensors of modern
mobile devices. However, it has remained unclear if device recognition
via sensor-based fingerprinting is feasible under real-world conditions.

In this paper, we analyze the effectiveness of a specialized feature set
for sensor-based device fingerprinting and compare the results to feature-
less fingerprinting techniques based on raw measurements. Furthermore,
we evaluate other sensor types—like gravity and magnetic field sensors—
as well as combinations of different sensors concerning their suitability for
the purpose of device authentication. We demonstrate that combinations
of different sensors yield precise device fingerprints when evaluating the
approach on a real-world data set consisting of empirical measurement
results obtained from almost 5,000 devices.

Keywords: Device fingerprinting · Sensor fingerprinting · Device
authentication

1 Introduction

Many providers of modern Web services aim to recognize the device a user
accesses their services from. An emerging functionality is the detection whether
a user has changed the device, e. g., owns a new smartphone. The main target
of this is authentication of a user’s hardware to detect malicious activity like
account theft: If a user logs in from a device never used before, this might be
a hint that the login credentials have been stolen and are abused for malicious
purposes. If a user logs in from an authenticated device which is known to be
the user’s device, it is probably a legitimate login. Google+ already implements
such a detection: If a group member performs a login from a device never seen
before and this login is deemed suspicious, a security alert is raised resulting in
an email to the group’s administrator. Facebook keeps track of its users’ devices
and aims to associate all systems belonging to a single user. Hence, detecting
c© Springer International Publishing Switzerland 2016
J. Caballero et al. (Eds.): DIMVA 2016, LNCS 9721, pp. 377–396, 2016.
DOI: 10.1007/978-3-319-40667-1 19

378 T. Hupperich et al.

whether a login is performed either from a known or a new device is essential for
fraud detection and account theft. Authenticating a device—and consequently
binding an action to a specific device—can be an important step to achieve this
security goal.

For this purpose, often the browser is fingerprinted at login time. Finger-
printing describes the process of obtaining a set of characteristic attributes from
a system and assembling them to features which can be used to recognized or
identify unique systems among all others. This technique usually complements
cookie-based recognition which has been state of the art for many years. In the
course of browser fingerprinting, software attributes like user-agent and installed
plugins are leveraged [1,10,18,23]. Previous research found that software-based
device fingerprinting performs reasonably well for highly customized commodity
systems like desktop computers, mainly since the configurations of these devices
vary significantly [8,26]. In contrast, mobile devices like smartphones and tablets
are highly standardized. Still, it is possible to gather characteristic attributes of
such systems and even about its user using Web technologies only [15]. However,
device fingerprinting is strongly dependent on software attributes.

For device authentication, the fingerprint should be as immutable as pos-
sible and thus it should be hardware-based. As cookies may be deleted and
software can be changed, device authentication should not rely on these fac-
tors. A hardware-based fingerprint should stay the same if a users decides to use
another browser or even installs a different operating system. A devices’ sensors
seem to be suitable for this purpose and offer essential advantages:

1. Sensors are easily accessible: accelerometers and gyroscope data can be
obtained even via JavaScript without special permissions needed.

2. Sensors yield measurable hardware imperfections which can be leveraged for
fingerprinting a device.

3. These imperfections are immune to most software changes.

Due to their manufacturing processes, hardware sensors exhibit imperfections
which cause minimal yet measurable deviations between every single sensor [5].
Hence, several sensors provide distinguishable measurements for the same events,
making them a suitable source for device fingerprinting. Dey et al. proposed
a system called AccelPrint introducing a thorough feature set setting new
standards for accelerometer fingerprinting [7]. However, mobile devices typically
contain several sensors and an open challenge is to figure out which sensor (or
combination of sensors) yields the best device fingerprint in practice. Further-
more, the performance of such sensor-based device fingerprinting techniques was
only analyzed in lab settings so far, thus it remains unclear if these techniques
could actually be applied in practice, e. g., for device authentication.

In this paper, we address these open research gaps and focus on two different
aspects of sensor-based fingerprinting: First, we evaluate the features proposed
by AccelPrint on a data set containing almost 5,000 devices. This data set
includes more than eight million accelerometer events collected by an app we
developed and enables us to review the performance of such an approach in
real-world conditions: While the mathematical features introduced by Dey et al.

Leveraging Sensor Fingerprinting for Mobile Device Authentication 379

enable device recognition based on accelerometer data under scientific/ideal cir-
cumstances in a lab, our goal is to shed light on how precise sensor-based finger-
printing can be in the real world and what limitations such an approach yields
in practice. We also compare the recognition precision of the introduced features
and the raw measurement data to determine whether there is a realistic need
for these features. Second, we study other sensors available on modern devices
(e. g., gyroscope and magnetic field sensors) and assess how device fingerprinting
techniques can be improved by leveraging this information. We extend current
research by investigating how the seven most common sensor types can be used
for fingerprinting devices on a hardware level and empirically verify our proposed
approach. Our analysis is based on five different machine learning algorithms and
three data preparation processes in order to perform a comprehensive feasibility
study. We evaluate the precision at which a unique device and a device model
can be recognized.
In summary, we make the following contributions:

– We examine the performance and necessity of the state-of-the-art feature set
for accelerometer fingerprinting on a large, real-world data set.

– We investigate how other kinds of sensors available on modern devices can
extend hardware-based fingerprinting for the goal of device authentication.

– We show how sensor data from several sensors can be combined to achieve a
better device recognition precision.

2 Sensor-Based Device Authentication

In contrast to user authentication which aims to prove a user’s identity, we target
to confirm a specific device (e. g., a unique smartphone) with device authenti-
cation. The overall goal is to bind an action performed by a user to a specific
system (device) which is used to perform this action. Hence, if a device is authen-
ticated, one can be sure that a specific user action was performed using exactly
this device.

Use cases include online banking, handling of suspicious logins, and password
reset requests. If a user of an online platform has forgotten his password and
requests a new one, he usually has to answer a security question. Instead of
proving his identity with the knowledge of the answer, he could authenticate his
device which would make this an authentication by possession. This also applies
for suspicious logins: large Web service providers keep track of the devices which
are used to access their services and consequently check if a user performs a
login from a known or a never-seen-before system. If a login attempt seems sus-
picious, a user could authenticate his device to prove his identity. Another use
case is online banking: In Europe and in several countries around the world,
online banking transactions—no matter if Web-based or app-based—need to be
confirmed via a transaction number (TAN). Additionally to this established
method, device authentication could be performed for crucial actions like trans-
actions above a certain amount or voiding a lost credit card. This way, the bank
can be sure from which device this action was performed.

380 T. Hupperich et al.

In a practical attack, an attacker may get hold of an original SIM card or
a replacement card of a victim’s phone number and abuse it (e. g., for app-
based banking as the phone number is commonly used as identifier). Implement-
ing a hardware-based mechanism for device authentication may remedy this
fault: Binding transactions to hardware—in this case a user’s mobile device—
enables the detection of such fraud attempts as the service provider is capable
to recognize that the attacker’s action is not performed on the user’s device.
With hardware-based device authentication, SIM card theft and spoofing may
be detected before a crucial action can be carried out by an attacker.

In any case, the hardware of the device to be authenticated needs to be finger-
printed as relying on software fingerprints may not be robust enough for this
purpose. We differentiate between two types of use cases:

1. Web context: The provider operates an online platform and fingerprint tech-
niques are restricted to Web technologies like HTML5 and JavaScript.

2. App context: The provider has deployed an app for using the service. As such
an application may possess more permissions than a browser, it is able to
access more of the device’s resources (namely its sensors) for fingerprinting.

Although device authentication is not user authentication, it may be used as a
second factor for user authentication as it constitutes that a specific user owns a
specific device. This can be used as second factor, e.g. besides a knowledge-based
authentication like passwords.

2.1 Device Registration

In order to use a device’s sensor fingerprint for authentication, it needs to be
registered first. The provider obtains the fingerprint belonging to a device which
is to be registered and stores it in the fingerprint database.

During this registration process, the device needs to stay still for some
seconds. In this time, the sensors’ manufacturing imperfections are measured
resulting in the device’s sensor fingerprint. These specific measuring errors
are an inherence factor of the device. In contrast to knowledge and owner-
ship/possession factors of authentication, one could refer to these hardware pecu-
liarities as “biometrics of hardware”, thus to be considered as authentication by
inherence.

The registration procedure is crucial and needs to be secured against adver-
saries. An attacker could try to register a device for a targeted user account
as legitimate user device and consequently authorize banking transactions or
perform successful logins or password resets. Therefore, the registration of a
new device must only be possible after a successful user authentication, e. g.,
login at a provider’s website. For example, a user may login to his online bank-
ing account and register a new device which needs to be confirmed via email.
Only when such a second channel is used, the registration process can be per-
formed, so that an attacker is not able to register a device without the user’s
knowledge and confirmation. Hence, the registration should be on-demand only.

Leveraging Sensor Fingerprinting for Mobile Device Authentication 381

Additionally, for banking scenarios the device registration could be confirmed
by a device-independent TAN method to avoid malicious registrations.

2.2 Device Authentication

Once the registration is done, a provider is able to distinguish and recognize
devices based on their sensor fingerprints. In practice, this additional authentica-
tion could be performed to authorize crucial transactions in online banking (e. g.,
transactions above a certain threshold) or password resets at online platforms.
It could also be used to verify a login attempt which is considered suspicious by
common methods to clarify whether it is a legitimate login or a possible attack.

In any of these cases, a user would have to let the phone lay still for a few
seconds, e. g., by laying it on a table. Previous work has proven that sensor
imperfections can be measured in a duration of less than 30 s [7]. During this
time, the device’s sensors are fingerprinted again by measuring their hardware
imperfections. The fingerprint can then be checked against previously registered
devices by the provider, resulting either in a match which represents a legitimate
user action or a reject possibly indicating illicit behavior. Figure 1 illustrates
this procedure.

Device

Sensor
Fingerprint

Provider

Authentication
Attempt

Device
Database

User
Password

knows

owns

inherents

Fingerprint
Matching

Password
Matching

User
Database

Fig. 1. Sensor-based device authentication for user authentication

In practice, if a device cannot be recognized exactly, instead of failing the
authentication immediately there could be a fallback solution: The unique device
may not be determined but at least the device model could be recognized from
the sensor data. So, instead of being sure that a user performs an action from a
specific device, at least information about the device type and model are available
as enrichment for other fingerprint mechanisms. We included this scenario in our
experiments as well.

As the sensor data is transferred to the provider during authentication, an
attacker could try to replay a specific device fingerprint instead of her own to
perform a successful authentication without the previously registered device.

382 T. Hupperich et al.

However, obtaining the victim’s sensor fingerprint or even mimic the devices’
sensors’ peculiarity is hard to achieve in practice given that the sensor imper-
fections are hard to replicate. An attacker would either have to possess a special
mobile device to intercept its sensor readings by manipulating system drivers
or she has to setup a computer to simulate the targeted mobile device exactly.
Consequently, if any other fingerprinting or system check is assembled by the
provider, this has to be deceived as well, resulting in an increased effort for
such a mimicry attack. Furthermore, sensor-based device authentication is an
enhancement to other mechanisms and designed as reinforced user authentica-
tion. An attacker would still need to obtain user credentials or break other user
authentication methods to successfully perform an attack.

3 Fingerprinting Sensors

Modern mobile devices contain a multitude of hardware sensors like accelerome-
ters, gyroscopes and sensors for rotation, magnetic fields and gravity. Accelerom-
eter and gyroscope sensor readings are usually accessible via JavaScript and
therefore useful for Web-based fingerprinting and tracking. Although other sen-
sors are accessible via native applications and may be accessible from within
a Web browser in the future, recent research mostly addresses accelerome-
ters [5,6,14]. We investigate the effectiveness of the state-of-the-art features
for accelerometer-based device recognition introduced by Dey et al. [7]. First,
we compare the recognition precision utilizing these features to the recogni-
tion precision when using raw accelerometer data to provide insights on the
usefulness of specialized features for device fingerprinting. Second, we extend
current research by taking other sensor types into account to determine whether
accelerometer-based results can be extrapolated. This includes common sensors
of mobile devices as well as combinations of different sensors’ data.

All these sensors exhibit hardware imperfections due to the manufactur-
ing process which results in quivering measurement readings even for unmoved
devices. These imprecisions usually affect the measurement value to a thousandth
and are expected to be characteristic features for different sensors.

3.1 Data Set

The first step of our analysis is the preparation of a comprehensive data set of
sensor measurements collected from a diverse set of mobile devices. We developed
a sensor benchmarking app designed to collect raw sensor readings of accelerom-
eters and other sensors from mobile devices in two stages: First, the user is
instructed to put the mobile device on a flat table and leave it still to gather
clean measurements for calibration. Second, the user is asked to turn the device
in different directions, so we can collect readings when an actual interaction is
happening. During both of these stages, the time window of each measurement
is 2 s at the highest possible sampling frequency available, just like proposed
by Dey et al. [7]. The app is available for Android and Blackberry phones and

Leveraging Sensor Fingerprinting for Mobile Device Authentication 383

was distributed via the vendors’ app stores. We made sure that users of the app
were aware of the fact that they participated in a scientific study and that we
collected information about the sensors in their mobile device. We did not store
any personally identifiable information. Note that a user of the app is instructed
to follow the two phases, but a user might not follow these instructions and thus
the collected data might contain outliers or even wrong measurement readings.
Therefore, significant movements have been detected as outliers and filtered out
for our analyses. Minor movements may be included and represent real-world
settings for device authentication as a user may have to authenticate her device
being on the go.

We collected 41,610 benchmarks consisting of 58,280,607 raw measurement
events in total from 7 different types of sensors and from nearly 5,000 devices.
Every event yields a value for x, y and z axes coordinates as well as a timestamp
to specify when the event was measured. A benchmark consists of all events which
occurred within a 10 s time slot. Depending on the sensor type and model, there
are different numbers of events per benchmark. The precise numbers of events,
benchmarks, and devices per sensor are shown in Table 1. Although data from
other sensors (e. g., proximity sensors) was collected by the app, only a minority
of devices possess such sensors: Only a few benchmarks for these sensor types
could be obtained and hence the data might not be substantive enough to make
a claim about the recognition precision in general. For this reason, we take only
those sensors into account having representative benchmark data available.

As different devices happen to integrate sensors manufactured by the same
vendor, we show in Table 2 the number of different sensors in our data set. Taken
from our representative data set, we see that there are many different vendors
for general purpose accelerometers (275), but only a few for gravity sensors or
linear acceleration sensors (each 37).

There is a unique identifier within the data set for every single device such
that we can recognize specific devices as a ground truth. Furthermore, we store an
identifier for every device model (e. g., “Google Nexus 5”). These two identifiers
enable us to group the sensor measurement data by device model as well as by
single devices. Hence, we are able to determine the effectiveness of fingerprinting
features for recognizing device types (e. g., are hardware imperfections of iPhone
6 devices significantly different compared to hardware imperfections of Nexus 5
devices?) and for recognizing single devices (e. g., is it possible to tell one Nokia
Lumia 930 apart from another?). In the following, we use the term ModelID to
describe the identifier used to group data by device model and the term DeviceID
for the identifier used to group data by single devices. For every sensor type in
the data set, we group the data once per DeviceID and once per ModelID. For
both groups, we compute the features described in Sect. 3.2 from the raw sensor
readings obtained by our app. This builds up four data sets in total:

1. Raw sensor measurements grouped by DeviceID called RDeviceID.
2. Feature set grouped by DeviceID defined as FDeviceID.
3. Raw sensor measurements grouped by ModelID named RModelID.
4. Feature set grouped by ModelID which we define as FModelID.

384 T. Hupperich et al.

Table 1. Numbers of events, benchmarks
and devices per sensor type

Sensor type Events Benchmarks Devices

Acceleration 8,005,352 7,004 4,179

Magnetic field 2,855,199 5,230 3,676

Orientation 8,047,497 6,228 4,963

Gyroscope 12,578,437 6,342 4,698

Gravity 9,061,253 5,726 4,374

Linear acceleration 8,687,132 5,556 4,297

Rotation vector 9,045,737 5,524 4,401

Table 2. Number of different sensor
hardware models by sensor type

Sensor type No. of sensor

models

Acceleration 275

Magnetic field 179

Orientation 147

Gyroscope 100

Rotation vector 43

Gravity 37

Linear acceleration 37

3.2 Feature Set

As the second step of our analysis, we extract state-of-the-art features described
below, originally proposed by Dey et al. [7], from the raw data records. We
analyze if such features can be leveraged for other sensors as well and thus
briefly introduce the feature set in the following.

Preliminary, we calculate the Root Sum Square (RSS) of the x, y, and z axes.
Then, we extract the time domain features utilizing NumPy [33] and SciPy [17]
libraries. In order to extract the frequency domain features, we have to transfer
the raw sensor readings from time domain into frequency domain. For this pur-
pose, we interpolated the RSS data. We applied a cubic spline interpolation as it
addresses the accuracy of the minimal hardware deviations in our data set. For
having less than 4 samples per measurement or lack of sensor readings from all
three axes, 183 measurements had to be omitted during the interpolation phase.
This might happen on hardware failure, broken sensors, or faulty drivers. After
completing this task, we utilize the Fast Fourier Transformation (FFT) to trans-
fer the interpolated measurements into the frequency domain. The frequency
domain features are extracted from the transformed data. Finally, we vectorize
the data to obtain sensor fingerprints utilizing the following features:

Time Domain Features. Mean is described as the result of dividing the sum
of measurements to the number of samples in a specified time window: x̄ =
1
N

∑N
i=1 x(i).

Standard Deviation describes how much the measurements deviate from the
mean of all measurements in a specified time window. This feature provides the

ability to consider noisy signals in our tests [32]: σ =
√

1
N−1

∑N
i=1 (x(i) − x̄)2.

Average Deviation provides the mean of the deviations of all samples in a speci-
fied time frame. By definition, only the absolute value of amplitudes are consid-
ered [32]: Dx̄ = 1

N

∑N
i=1 |x(i) − x̄|.

Skewness measures the (lack of) symmetry of a distribution in a specified time
frame. If the data set is symmetric, it looks even on the left and right side of the

Leveraging Sensor Fingerprinting for Mobile Device Authentication 385

mean. Skewness can be positive or negative if the data set is more distributed to
the left or right, respectively. The skewness of symmetric data is near zero [29]:
γ = 1

N

∑N
i=1(

(x(i)−x̄)
σ)3.

Kurtosis states how much the data points are distributed near or far from the
mean, i.e., whether a peak of data points exists near the mean or not. The ideal
kurtosis is three according to our formula [29]: β = 1

N

∑N
i=1(

x(i)−x̄
σ)4 − 3.

Root Mean Square (RMS) Amplitude measures the mean of all amplitudes over
time. In order to calculate this feature, first all amplitudes are squared, so that
both negative and positive values become positive. After calculating the mean
of these values, they are scaled back to the right size by calculating the square

root: A =
√

1
N

∑N
i=1(x(i))2 The RMS amplitude is normally equal to 70.7 % of

the peak amplitude [11].

Lowest Value is the smallest amount among the measurements in a specified
time window: L = Min(x(i))|i=1 to N .

Highest Value is the greatest value among the measurements in a specified time
window: H = Max(x(i))|i=1 to N .

Frequency Domain Features. Spectral Standard Deviation shows the spread
of the frequencies in a spectrum relative to its mean along the frequency axis [13,

28]: σs =
√
∑N

i=1(yf (i))2∗ym(i)
∑N

i=1 ym(i)
.

Spectral Centroid can be considered as the middle point of the amplitude spec-
trum [3]: ζs =

∑N
i=1 yf (i)ym(i)
∑N

i=1 ym(i)
.

Spectral Skewness measures the symmetry of the distribution of the spectral
magnitude values relative to their mean [19,22,30]: γs =

∑N
i=1(ym(i)−ζs)

3∗ym(i)

σ3
s

.

Spectral Kurtosis determines if the distribution of the spectral magnitude values
contains non-Gaussian components [34]: βs =

∑N
i=1(ym(i)−ζs)

4∗ym(i)

σ4
s−3 .

Spectral Crest measures the peakiness of a spectrum and is inversely proportional
to the flatness feature [36]: CRs = (Max(ym(i))|i=1 toN

ζs
.

Irregularity-K measures the degree of variation of successive peaks in a spectrum.
Irregularity-K refers to the definition of Krimphoff et al. [21] where irregularity
is the sum of the amplitude minus the mean of the preceding, same and next
amplitude: IKs =

∑N−1
i=2

∣∣∣ym(i) − ym(i−1)+ym(i)+ym(i+1)
3

∣∣∣ .

Irregularity-J measures the same as irregularity-K, but refers to the definition
of Jensen [16] where irregularity is defined as the sum of squaring the differences

in amplitude between adjoining partials [35]: IJs =
∑N−1

i=1 (ym(i)−ym(i+1))2
∑N−1

i=1 (ym(i))2
.

386 T. Hupperich et al.

Smoothness measures the degree of differences between adjacent amplitudes [24,
27]: Ss =

∑N−1
i=2 |20.log(ym(i))− (20.log(ym(i−1))+20.log(ym(i))+20.log(ym(i+1)))

3 .

Flatness measures the flatness of a spectrum and is inversely proportional to
the spectral crest. The differences between spectral crest and flatness are in the
less required computational power for spectral crest, but more accurate results in
spectral flatness since not normalized signals have less influence on the result [9]:

Fs =
N
√

(
∏N

i=1 ym(i))
1
N

∑N
i=1 ym(i)

.

3.3 Classifier

In the third step of our analysis, we apply five field-tested classification algo-
rithms to all data sets described in Sect. 3.1. We chose algorithms from different
machine learning categories to address the model selection problem. Note that
our scenario for device or model recognition does not pose a typical classification
problem, as every device and model which needs to be “classified” has been seen
during the training phase. This circumstance is more likely related to matching
problems. We evaluate the following five classification and ensemble methods in
our experiments:

– k-NN: The k-Nearest-Neighbor classifier is a basic ML algorithm. We chose
k = 1 as this correlates with the fact that we want to achieve a matching.

– SVM: As Support Vector Machines are designed to handle numeric values,
they are naturally suitable for processing our data set.

– Bagging Tree: This classifier has been used originally by Dey et al. [7]. In
order to evaluate the effectiveness on the basis of real-world data, we must
evaluate this classifier as well.

– Random Forest: The Random Forest classifier combines the merits of Bag-
ging Tree and a random selection of features. This method remedies tendencies
of overfitting.

– Extra Trees: Extra Trees is an averaging ensemble method known for a
high prediction accuracy. The drawback is that it usually grows bigger than
Random Forests, especially on large data like our sensor measurements.

In every test, we split the existing data into a training set and a test set.
The training set is used for cross validating the classifiers’ parameters before
creating a model and testing the test set. In the research of Guyon [12] and
Amari et al. [2], the ratio of the test set to the training set is proposed to be
inversely proportional to the square root of the number of features if the number
of features is greater than one. For the 17 features described above, this means:

1√
#features

=
1√
17

≈ 0.243

Hence, we use a split of 75 % of the data for training and 25 % for testing.
Please note that we did not use the same machine learning classification

models for recognition of device manufacturing models and for recognition of

Leveraging Sensor Fingerprinting for Mobile Device Authentication 387

single devices. We conducted these experiments separately and trained classifi-
cation models for the specific tasks. To perform a comprehensive analysis, we
prepared each data set in three different ways for every experiment and applied
the classifiers to the data (i) as-is, (ii) normalized and (iii) scaled.

Finally, we determine the maximum recognition precision of all raw classifi-
cations and features classification for each data set in order to clarify whether
classification of models and devices can be performed better on raw data or the
introduced features. Every test—from splitting the data set into training set
and test set up to classification—has been performed three times and the mean
of these repetitions is represented to mitigate “lucky strikes”, which may occur
when a data set is split randomly.

3.4 Formalization

In the following, we work with the four data sets RModelID, FModelID, RDeviceID,
and FDeviceID described in Sect. 3.1. Consequently, R represents all raw sensor
measurements and F represents the features calculated on the basis of R. Hence,
the feature set is derived as a function from raw sensor events: F = f(R).

The function f includes the steps for feature extraction described in Sect. 3.2
including calculations of Root Sum Square, interpolation and Fast Fourier Trans-
formation. Consequently, F includes all features from time domain and frequency
domain. Please keep in mind that every data set is split into a training subset
and a test subset for subsequent machine learning procedures.

Every data record of these data sets consists of a data vector and a class
attribute. The data vector D includes all attributes which are used for recog-
nition by machine learning. For data vectors of the raw sensor measurements
data sets, the single values are plain readings of the dimensions x, y and z
provided by the sensors directly: DR = r1, r2, ..., rn, n ∈ N. Consequently, for
data vectors of the examined feature sets, every value represents a feature:
DF = f1, f2, ..., fn, n ∈ N. The class attribute c is derived from the chosen
identifier which is either the ModelID or the DeviceID.

In order to calculate the recognition precision, we define a match as true
positive. A match will be achieved if a data vector of a test set is related to
a data vector with the same class c of the corresponding training set by the
machine learning algorithm. A correct reject expresses a true negative, meaning
that a non-trained device is not matched accidentally to a trained device. If a
device which has been in the training set gets rejected while testing, it is a false
negative while a non-trained device which is matched with a device from the
training set poses a false positive.

Finally, we are able to define the recognition precision P for specific data
sets and feature sets as

PS,Mid
= ML(SetTraining, SetTest),

where S is a sensor type, M ∈ {R,F}, id ∈ {ModelID, DeviceID}, ML is
the chosen machine learning algorithm and trainingset and testset are subsets

388 T. Hupperich et al.

corresponding to S and id. For instance, the recognition precision achieved by
a Bagging Tree classifier (BT) for the data set of features grouped by DeviceID
and based on gravity sensor data will be

PGravity,FDeviceID
= BT (trainFDeviceID

, testFDeviceID
).

4 Evaluation

We conducted recognition experiments for every sensor type with each data set
utilizing each classifier seeking for the best precision to use for device authentica-
tion. Hence, we present only the results of the best performing classifiers for each
experiment. More specifically, for each sensor type and each data set we applied
the algorithms described in Sect. 3.3, but for comparison we take the maximum
recognition rate of all classifiers into account. Furthermore, we repeated every
test with the data set three times using it (i) as-is, (ii) scaled and (iii) normal-
ized to ensure to have the best preprocessing for every test. Again, we describe
only the best results of all preprocessing methods in the following to compare the
results of the best performing fingerprinting processes. A comparison of non-best
performing classifiers and preprocessing methods would be possible but does not
support our aim to find the best method for hardware-based fingerprinting for
the purpose of device authentication.

In order to determine the effectiveness of state-of-the-art features over raw
data for sensor fingerprinting, we carried out several tests in two phases: First,
we ran comparison tests for every single sensor listed in Table 1. The goal of
these tests is to compare the recognition precision between utilizing the raw
sensor data and the extracted features for fingerprints for each sensor. Second,
we combined the data from different sensors to multi-sensor tests and applied
the described methods to clarify the recognition precision when taking several
sensors into account. We determined five combinations to be of interest due to
results from previous experiments:

1. Accelerometers including sensors for measuring acceleration and linear accel-
eration. Recognizing this data precisely has been the explicit purpose of the
fingerprint features.

2. Accelerometers & Gyroscope extends the combination by gyroscope sensor
readings. Usually, if a device embeds accelerometers, a gyroscope is built-in.

3. All Available Sensors includes data from all sensors listed in Table 2.
4. No Accelerometers takes only sensors into account that do not measure accel-

eration. This is the “inverse scenario” of 1.
5. No Accelerometers & Gyroscope is the “inverse scenario” of 2 and excludes

acceleration sensors as well as gyroscope measurements.

In the following, we present the results of the single sensor tests as well as the
combination tests.

Leveraging Sensor Fingerprinting for Mobile Device Authentication 389

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Raw Data Features
Fig. 2. Recognition precisions per sen-
sor for device recognition

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Raw Data Features
Fig. 3. Recognition precisions per sen-
sor for model recognition

4.1 Single Sensor Tests

Our experiments confirm the overall result by Dey et al. [7]: The presented
features provide the best precision for recognizing single devices on the basis of
general purpose accelerometer data. Nevertheless, the precision of this case is
about 78 %, leaving room for improvement. Our results indicate that for linear
accelerometer sensors as well as for gyroscope data, the proposed feature set
provides a better recognition rate than using the raw sensor readings. But the
corresponding precision rates of about 49 % and 59 % are not suitable for device
authentication in practice. Hence, device authentication methods should not rely
on accelerometers and gyroscopes only.

For all other sensors, the utilization of features leads to a lower precision
compared to the raw sensor measurements. The highest recognition precision
could be achieved with plain sensor measurements and more different sensor
types lead to a better precision. Thus, device authentication does not need to
be based on a mathematical feature set but is feasible using raw sensor data as
well. Table 3 summarizes the results of all single-sensor recognition experiments.

It is tempting to suspect a connection between a high device recognition
precision and the number of different sensor hardware models shown in Table 2.
Nevertheless, we could not show a significance to substantiate this assumption:
Linear accelerometers and rotation sensors both have low model diversity and
while the first are not suitable for device recognition showing a maximum pre-
cision of about 59 %, the second show an outstanding precision for recognizing
single devices of almost 100 %. These differences are visualized in Fig. 2.

As shown in Fig. 3, the precision based on accelerometers, magnetic field sen-
sors, orientation sensors and rotation sensors is significantly lower compared to
when raw measurement events are used when it comes to model recognition. Con-
currently, using raw data for model recognition fails for data from gyroscopes,
gravity sensors and linear accelerometers. Using the feature set performs better
for these sensors, but still the recognition precision does not exceed 55 % and
cannot be considered for a reliable model recognition in a practical setting. In
summary, recognizing device models by only one sensor type does not require the
use of features and can be done on the basis of raw sensor data for four of seven

390 T. Hupperich et al.

Table 3. Recognition precisions per sensor type, identifier and data set of single-sensor
tests in percent

Sensor Identifier Data Classifier Average precision

Acceleration Device F ET 78.2300

Device R k-NN 62.6781

Model F ET 69.3900

Model R BT 76.4570

Magnetic field Device F ET 78.0100

Device R RF 96.3808

Model F ET 57.9100

Model R ET 96.4232

Orientation Device F ET 75.2400

Device R k-NN 98.2033

Model F ET 58.7400

Model R k-NN 98.1090

Gyroscope Device F BT 49.4400

Device R k-NN 41.4460

Model F BT 50.5000

Model R k-NN 45.1595

Gravity Device F ET 60.9500

Device R k-NN 82.9912

Model F ET 54.7200

Model R k-NN 9.9967

Lin. acceleration Device F BT 58.9200

Device R k-NN 18.8124

Model F BT 48.3500

Model R k-NN 10.1388

Rotation vector Device F ET 70.7200

Device R k-NN 99.8063

Model F ET 55.5700

Model R k-NN 99.8216
R = raw data, F = features, k-NN = k-NearestNeighbor, BT = Bag-
gingTree, ET = ExtraTrees, RF = RandomForest; showing only best per-
forming classifiers; bold rows show maximum precision rate

sensor types, while the other three sensor types cannot be used to distinguish
between device models at all.

In summary, the state-of-the-art feature set for accelerometer fingerprinting
serves its purpose and is a reasonable way for device recognition based on
accelerometers and gyroscope data. However, it is not suitable to distin-
guish devices based on data from other sensor types. Furthermore, using raw

Leveraging Sensor Fingerprinting for Mobile Device Authentication 391

82% 84% 86% 88% 90% 92% 94% 96% 98% 100%

Accelerometers Accel & Gyro All Sensors No Accelerometers No accel. & Gyro Raw Data Features
Fig. 4. Recognition precisions per com-
bination for model recognition

84% 86% 88% 90% 92% 94% 96% 98% 100%

Accelerometers Accel & Gyro All Sensors No Accelerometers No accel. & Gyro Raw Data Features
Fig. 5. Recognition precisions per com-
bination for model recognition

measurements of these other sensor types enables an even higher recognition
precision. The use of accelerometer-based fingerprinting utilizing mathematical
features for device authentication is questionable as fingerprinting based on other
sensors performs significantly better.

4.2 Multi Sensor Tests

While the use of single sensors does not seem to provide a reliable method for
device or model recognition—and thus for device authentication—precision rates
increase generally when sensor types are combined.

The first combination includes both types of accelerometers. In this case,
using the feature set for device recognition performs well and achieves a precision
of about 92 %. For every other case we tested, the utilization of features did not
exceed the precision achieved by the use of raw measurements. Especially when
accelerometers are left out (cases four and five), the recognition based on raw
data is more effective. In total, there is no precision result lower than 88.5 %,
while the maximum of 99.99 % can be achieved by using raw data of all sensors
except accelerometers. Table 4 shows the results for all combination test.

Consequently, using raw measurements of sensors for magnetic field, orienta-
tion, gravity, rotation and gyroscope is most effective for fingerprinting mobile
devices. These sensors, which are common in modern devices, improve sensor-
based fingerprinting significantly and can be used as a basis for reliable device
fingerprinting in practice. Figure 4 shows the achieved maximum precisions of
each sensor combination described above.

This finding is also valid for model recognition: Again, for accelerometers the
feature set yields the best precision, but in all other combinations, features are
not necessary to achieve recognition rates of up to 99.995 %. Figure 5 shows the
results of the combination tests per model.

4.3 Discussion

While we found the feature set to be most precise for device recognition on the
basis of accelerometer data, best recognition rates for devices and models can

392 T. Hupperich et al.

Table 4. Recognition precisions per sensor combination, identifier and data set of
combination tests in percent

Sensors Identifier Data Classifier Average precision

Accelerometers Device F BT 92.4782

Device R BT 88.6941

Model F ET 91.5432

Model R BT 89.6469

Accelerometers gyroscope Device F ET 88.5019

Device R BT 88.8444

Model F ET 92.3950

Model R RF 95.0076

All available sensors Device F ET 98.6026

Device R ET 99.9806

Model F ET 98.1615

Model R RF 99.9950

No accelerometers Device F RF 97.2484

Device R ET 99.9922

Model F ET 97.4589

Model R ET 99.9821

No accelerometers &no gyroscope Device F RF 94.6407

Device R RF 99.9848

Model F RF 96.0450

Model R ET 99.9671
R = raw data, F = features, k-NN = k-NearestNeighbor, BT = BaggingTree, ET = Extra-
Trees, RF = RandomForest; showing only best performing classifiers; bold rows show maximum
precision rate

be achieved by sensor combinations without accelerometers applied to raw mea-
surements. Taking common sensors together, recognition precisions of 99.98 %
up to 99.995 % can be achieved without needing to consider complex features.
Our experiments indicate that combining the data of different sensors leads to
a more effective fingerprinting than the application of the proposed features.

The feature set is suitable for the case of recognizing single devices by
accelerometer data, but not reliable in any other case. Furthermore, given a
large quantity of real-world data, the same results can be achieved without these
features using the same or comparable machine learning techniques. For other
sensor types, using raw sensor data is more effective, esp. for recognition of sin-
gle devices. However, both data types yield disadvantages: On the one hand,
calculating features needs computational power but also condenses the data.
On the other hand, storing all events’ raw measurements requires more storage
capacities but no mathematical calculations need to be made. Ultimately, single
devices as well as device models can be recognized best when combining the
measurement data of several sensors.

Leveraging Sensor Fingerprinting for Mobile Device Authentication 393

For the purpose of device authentication, sensor fingerprinting is a valid
method: High recognition rates can be achieved under realistic conditions in
a real-world data set. While previous research mostly focusses on accelerome-
ters and gyroscopes as these are accessible via the Web, we found other sensor
types’ hardware imperfections to be more characteristic making them even more
important in this context. As sensor-based hardware fingerprinting opens up the
possibility to distinguish unique devices at very high precision, it does not seem
to be necessary to have a fallback solution like device model recognition at all.

Additional to the adversarial scenarios described in Sect. 2, it may be pos-
sible to randomize sensor measurements in order to prevent a recognition of a
specific device. However, tampering sensor readings with random data requires a
customization of the device’s software like its browser when sensors are queried
by websites or even the operating system when apps access the sensors for finger-
printing. Furthermore, tampering sensor readings raises a problem in practice:
Sensors are used for specific reasons and adding randomness to their measure-
ments may be helpful to evade fingerprinting their hardware imperfections but
may also result in unwanted behavior of functionalities which rely on sensors.
For instance, if a websites accesses a device’s accelerometers or gyroscope and
their data is randomized or tampered by the device first, the website’s func-
tionality and hence the user experience may be affected. Ultimately, as the goal
is to authenticate a device and randomization is only capable of preventing a
recognition, the more relevant attack would be the imitation of a specific device.

For such a mimic attack, an attacker would need to fake her own sensor data
and replace it by the target device’s sensor data. As described in Sect. 2.2, an
attacker has to solve some challenges to perform this attack while having little
chances of success. Although such an attack is difficult to carry out in practice,
we will investigate this scenario in future work.

As more and more sensors are embedded in modern mobile devices, examining
more sensor types for the purpose of hardware-based device fingerprinting will
be the subject of future work. The availability of other sensors may lead to even
better recognition results.

5 Related Work

Dey et al. [7] proposed mathematical features based on accelerometer readings
for fingerprinting mobile devices. Their work illustrates the possibility to identify
devices by conducting a series of training and test set scenarios on 107 different
stand-alone chips, smartphones, and tablets under laboratory conditions. While
their work focuses on accelerometers only, we also inspected other sensor types
like magnetic field or rotation vector sensors. The usefulness of the feature set
could be verified for accelerometers on a large real-world dataset of nearly 5,000
devices. We have also shown that fingerprinting mobile devices is more precise
when taking other available sensor data into account. Furthermore, our results
indicate that machine learning algorithms can be applied on the raw measure-
ment events and specific features used for pre-processing the raw measurements
do not yield better results.

394 T. Hupperich et al.

Several studies focus on real-world accelerometer data for recognizing
movement or behavior. For instance, it has been shown that steps of a walk-
ing or running person can be detected clearly with the help of a smartphone’s
accelerometers [31]. Dargie and Denko studied the behavior of accelerometers
during similar movements and placed accelerometers on moving humans and
cars [6]. They conclude that the extracted frequency domain features remain
generally more robust than time domain features. In our study, we applied sensor
readings gathered from both resting and moving devices and included features
of time domain as well as frequency domain.

A study by He utilized machine learning techniques to recognize human activ-
ities by accelerometer and gyroscope data [14]. Three feature sets were applied
including 561, 50 and 20 features to distinguish between six different human
activities. While this work aims to detect activities, our experiments do not con-
sider the current movement as artefact, but aim to identify devices (and group
devices by model) on the basis of real-world sensor data.

A non sensor-based method for hardware fingerprinting has been introduced
by Moon et al. [25] as well as Kohno et al. [20]. The identification of devices is
achieved by measuring clock skews. While the common idea is the recognition of
devices by hardware differences, these studies focus on time differences and do
not consider any of a device’s sensors.

Bates et al. explored mobile device model recognition and showed that man-
ufacturer models can be distinguished by USB data with an accuracy of 97 % [4].
Notwithstanding, our experiments have shown that an even higher accuracy can
be achieved by sensor-based hardware fingerprinting.

6 Conclusion

In this paper, we performed a detailed assessment of the effectiveness of sensor-
based fingerprinting. We compared the benefit of using a well-defined feature
set including attributes from time domain as well as frequency domain to using
raw sensor data as input. We utilized five different machine learning techniques
together with three data preparation processes and compared the precision at
which a single device or a device model can be recognized on the basis of its
hardware. To base our work upon real-world conditions, we gathered sensor
data of almost 5,000 mobile devices. As a part of our work, we implemented the
signal feature extraction process described by Dey et al. [7].

While we found the proposed feature set suitable for accelerometer-based
recognition of single devices we have shown that it lacks precision for other sen-
sor types. For non-accelerometer sensors the use of raw sensor readings as a
basis for hardware fingerprinting results in a higher recognition precision. Fur-
thermore, combining different sensor types leads to an even better precision
and a higher robustness. We find that accelerometer measurements combined
with other sensor data yield real-world recognition precisions of 99.98 % up to
99.995 %. In general, taking other common sensor types into account for fin-
gerprinting results in a better precision than utilizing the previously proposed
feature set.

Leveraging Sensor Fingerprinting for Mobile Device Authentication 395

Given these findings, hardware-based device fingerprinting with sensor data
is feasible and a valid method for device authentication. However, device authen-
tication methods should not rely on accelerometers and gyroscopes only but on
combinations of different sensor types. For these, the calculation of features
means computational effort without improving device recognition. Ultimately,
using raw measurements of different sensor types is the most accurate way
to instrument sensor-based hardware fingerprinting for device authentication.
Implementing such an authentication mechanism may help handling suspicious
login attempts, password resets, and even remedy SIM spoofing.

References

1. Acar, G., Juarez, M., Nikiforakis, N., Diaz, C., Gürses, S., Piessens, F., Preneel, B.:
FPDetective: dusting the web for fingerprinters. In: ACM Conference on Computer
and Communications Security (CCS) (2013)

2. Amari, S.I., Murata, N., Muller, K.R., Finke, M., Yang, H.H.: Asymptotic statis-
tical theory of overtraining and cross-validation. IEEE Trans. Neural Netw. 8(5),
985–996 (1997)

3. Bader, R.: Nonlinearities and Synchronization in Musical Acoustics and Music Psy-
chology. Current Research in Systematic Musicology. Springer, Heidelberg (2013)

4. Bates, A., Leonard, R., Pruse, H., Butler, K., Lowd, D.: Leveraging USB to estab-
lish host identity using commodity devices. In: Proceedings of the Network and
Distributed System Security Symposium (NDSS) (2014)

5. Bojinov, H., Michalevsky, Y., Nakibly, G., Boneh, D.: Mobile Device Identification
via Sensor Fingerprinting. arxiv preprint arXiv:1408.1416. (2014)

6. Dargie, W., Denko, M.K.: Analysis of error-agnostic time-and frequency-domain
features extracted from measurements of 3-D accelerometer sensors. IEEE Syst. J.
4(1), 26–33 (2010)

7. Dey, S., Roy, N., Xu, W., Choudhury, R.R., Nelakuditi, S.: AccelPrint: imperfec-
tions of accelerometers make smartphones trackable. In: Proceedings of the Net-
work and Distributed System Security Symposium (NDSS) (2014)

8. Eckersley, P.: How unique is your web browser? In: Atallah, M.J., Hopper, N.J.
(eds.) PETS 2010. LNCS, vol. 6205, pp. 1–18. Springer, Heidelberg (2010)

9. Eisenberg, G.: Identifikation und Klassifikation von Musikinstrumentenklängen in
monophoner und polyphoner Musik. Cuvillier (2008)

10. Eubank, C., Melara, M., Perez-botero, D., Narayanan, A.: Shining the floodlights
on mobile web tracking - a privacy survey. In: Web 2.0 Security & Privacy Con-
ference (W2SP) (2013)

11. Gelfand, S.: Essentials of Audiology. Thieme, Stuttgart (2011)
12. Guyon, I.: A scaling law for the validation-set training-set size ratio. In: AT & T

Bell Laboratories (1997)
13. Hardcastle, W., Laver, J., Gibbon, F.: The Handbook of Phonetic Sciences. Black-

well Handbooks in Linguistics, Wiley (2012)
14. He, H.: Human Activity Recognition on Smartphones Using Various Classifiers

(2013)
15. Hupperich, T., Maiorca, D., Kührer, M., Holz, T., Giacinto, G.: On the robust-

ness of mobile device fingerprinting. In: Annual Computer Security Applications
Conference (ACSAC) (2015)

http://arxiv.org/abs/1408.1416

396 T. Hupperich et al.

16. Jensen, K.: Timbre models of musical sounds. Ph.D. thesis, Department of Com-
puter Science, University of Copenhagen (1999)

17. Jones, E., Oliphant, T., Peterson, P., et al.: SciPy: open source scientific tools for
Python (2001), 26 April 2016. http://scipy.org

18. Kamkar, S.: Evercookie - never forget (2010). http://samy.pl/evercookie/. Accessed
June 2015

19. Klapuri, A., Davy, M.: Signal Processing Methods for Music Transcription.
Springer, Heidelberg (2007)

20. Kohno, T., Broido, A., Claffy, K.C.: Remote physical device fingerprinting. IEEE
Trans. Dependable Secure Comput. 2(2), 93–108 (2005)

21. Krimphoff, J., McAdams, S., Winsberg, S.: Caractérisation du timbre des sons
complexes. ii. Analyses acoustiques et quantification psychophysique. Le. J. Phys.
IV 4, 625–628 (1994)

22. Lerch, A.: An Introduction to Audio Content Analysis: Applications in Signal
Processing and Music Informatics. Wiley, New York (2012)

23. Liang, B., You, W., Liu, L., Shi, W., Heiderich, M.: Scriptless timing attacks on web
browser privacy. In: Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN) (2014)

24. Mcadams, S.: Perspectives on the contribution of timbre to musical structure.
Comput. Music J. 23(3), 85–102 (1999)

25. Moon, S.B., Skelly, P., Towsley, D.: Estimation and removal of clock skew from
network delay measurements. In: Proceedings of the IEEE, INFOCOM 1999, Eigh-
teenth Annual Joint Conference of the IEEE Computer and Communications Soci-
eties, vol. 1, pp. 227–234. IEEE (1999)

26. Nikiforakis, N., Kapravelos, A., Joosen, W., Kruegel, C., Piessens, F., Vigna, G.:
Cookieless monster: exploring the ecosystem of web-based device fingerprinting.
In: IEEE Symposium on Security and Privacy (2013)

27. Park, T.H.: Salient feature extraction of musical instrument signals. Ph.D. thesis,
DARTMOUTH COLLEGE Hanover, New Hampshire (2000)

28. Peeters, G., Giordano, B.L., Susini, P., Misdariis, N., McAdams, S.: The timbre
toolbox: extracting audio descriptors from musical signals. J. Acoust. Soc. Am.
130(5), 2902–2916 (2011)

29. Sanei, S., Chambers, J.: EEG Signal Processing. Wiley, New York (2013)
30. Satapathy, S., Udgata, S., Biswal, B.: Advances in intelligent systems and com-

puting. In: Proceedings of the International Conference on Frontiers of Intelligent
Computing: Theory and Applications (FICTA) 2013. Springer (2013)

31. Sinofsky, S.: Supporting sensors in Windows 8 (2012), 6 May 2016. http://blogs.
msdn.com/b/b8/archive/2012/01/24/supporting-sensors-in-windows-8.aspx

32. Smith, S.W.: Digital Signal Processing: a Practical Guide for Engineers and Sci-
entists. Newnes, Oxford (2003)

33. Van Der Walt, S., Colbert, S.C., Varoquaux, G.: The NumPy array: a structure
for efficient numerical computation. Comput. Sci. Eng. 13(2), 22–30 (2011)

34. Wang, J., Yen, G., Polycarpou, M.: Advances in Neural Networks ISNN 2012. 9th
International Symposium on Neural Networks, ISNN 2012, Shenyang, China, July
11-14, 2012. Proceedings, Part II. Springer, Heidelberg (2012)

35. Yang, Y., Chen, H.: Music Emotion Recognition. Multimedia Computing, Com-
munication and Intelligence. CRC Press, Boca Raton (2011)

36. Zelkowitz, M.: Advances in Computers: Improving the Web. Elsevier Science,
San Diego (2010)

http://scipy.org
http://samy.pl/evercookie/
http://blogs.msdn.com/b/b8/archive/2012/01/24/supporting-sensors-in-windows-8.aspx
http://blogs.msdn.com/b/b8/archive/2012/01/24/supporting-sensors-in-windows-8.aspx

Malware Classification

MtNet: A Multi-Task Neural Network
for Dynamic Malware Classification

Wenyi Huang1 and Jack W. Stokes2(B)

1 Information Sciences and Technology, Pennsylvania State University,
University Park, PA 16802, USA

wzh112@ist.psu.edu
2 Microsoft Research, One Microsoft Way, Redmond, WA 98052, USA

jstokes@microsoft.com

Abstract. In this paper, we propose a new multi-task, deep learning
architecture for malware classification for the binary (i.e. malware versus
benign) malware classification task. All models are trained with data
extracted from dynamic analysis of malicious and benign files. For the
first time, we see improvements using multiple layers in a deep neural
network architecture for malware classification. The system is trained
on 4.5 million files and tested on a holdout test set of 2 million files
which is the largest study to date. To achieve a binary classification error
rate of 0.358 %, the objective functions for the binary classification task
and malware family classification task are combined in the multi-task
architecture. In addition, we propose a standard (i.e. non multi-task)
malware family classification architecture which also achieves a malware
family classification error rate of 2.94 %.

1 Introduction

PandaLabs recently reported that 27 % of all of malware detected by their
antivirus engine was first encountered in 2015 [16]. Malware authors continue to
accelerate the automation of malware production using techniques such as poly-
morphism at an alarming rate. Clearly, automated detection employing highly
accurate malware classifiers is the only option to combat this problem long term.

Recently, deep learning has led to significant improvements in diverse areas
including object recognition in images [14] and speech recognition [8]. Broadly
speaking, deep learning is a branch of machine learning which includes algo-
rithms that learn a distributed feature representation of a training set using a
neural network architecture composed of multiple non-linear hidden layers. For
supervised deep learning algorithms where the training set includes labels, a
deep learning classifier such as a deep neural network (DNN) can be trained to
predict the label of unseen examples. DNNs are typically considered to be neural
networks composed of two or more hidden layers while a neural network with
a single hidden layer is known as a shallow neural network. Given the impres-
sive vision and speech results, it is important that malware researchers explore

c© Springer International Publishing Switzerland 2016
J. Caballero et al. (Eds.): DIMVA 2016, LNCS 9721, pp. 399–418, 2016.
DOI: 10.1007/978-3-319-40667-1 20

400 W. Huang and J.W. Stokes

different deep learning models to hopefully discover improved architectures for
detecting malware.

Given the potential repercussions of installing malware on a corporate or
personal computer, there have been many proposed solutions for automated
malware classification [10]. Recently, researchers have been attempting to use
deep learning models to improve malware classification. In 2013, Dahl et al. [7]
first studied deep learning for malware classification in the context of dynamic
analysis, and their best single neural network architecture has an error rate
of 0.49 %. Their architecture consists of a random projection layer to reduce
the high dimensional (179 thousand) sparse binary input feature vector to a
4000 dimensional dense feature vector suitable for training a neural network.
The authors found that adding a second and third hidden layer to the neural
network did not improve the overall accuracy compared to a shallow architecture.
Pascanu et al. [20] recently proposed a two component, dynamic analysis system
for malware classification including a lower-level recurrent model, which learns
a feature representation for API events, and a higher-level, potentially deep,
classifier which uses the output of the recurrent model as features. The authors
proposed eight different recurrent models, based on variants of either a recurrent
neural network or an echo state network, and some of these models did learn a
better representation for the input sequence compared to a bag of words model or
a collection of trigrams. Similar to [7], the authors found that adding additional
layers to the classifier again did not improve the overall accuracy presumably
due to the small training set size of 65 thousand samples. Saxe and Berlin [21]
proposed a static malware analysis classification system which consists of a two
hidden layer DNN where the features are derived from the structure, including
elements from the header, of a Windows portable execution (PE) file. However in
this paper, the authors do not compare the results for their DNN with a shallow
neural network or a DNN with more than two layers so we do not know if deep
learning improves their classification rate.

While deep learning has achieved state-of-the-art classification results in
speech recognition and visual object recognition, no one has been able to demon-
strate any gains for deep learning applied to malware classification. In this paper,
we propose MtNet, a new deep learning malware classification architecture which
shows for the first time that deep learning offers a modest improvement com-
pared to a shallow neural architecture. To achieve these results, MtNet includes
several improvements over Dahl’s architecture. Multi-task learning encourages
the hidden layers to learn a more generalized representation at lower levels in the
neural architecture. Our architecture also employees rectified linear unit (ReLU)
activation functions and dropout for the hidden layers. ReLU activations and
dropout were also used in [20,21], but the effects of these components were not
analyzed. In our work, we study the contributions of these components and show
that ReLU activation functions cut the number of epochs needed for training a
binary malware classifier in half while dropout leads to significant reductions in
the test error rate. When trained and tested on a dataset consisting of 6.5 mil-
lion files these modifications allow MtNet to achieve a binary malware error rate

MtNet: A Multi-Task Neural Network for Dynamic Malware Classification 401

of 0.358 % and family error rate of 2.94 % beating the previous best architectures
by 26.17 % and 19.21 %, respectively. Contributions of our work include:

1. We propose and implement a novel multi-task neural network malware classi-
fication architecture. This architecture leads to modest gains for deep learning
with a detection threshold of 0.5 where a file is predicted to be malware if
the probability that file is malicious exceeds the probability that it is benign.

2. We conduct a deep learning study on an extremely large dataset trained with
4.5 million files and test the model with an additional 2 million files.

3. We demonstrate that dropout significantly reduces the error rate for both
shallow and deep neural architectures.

4. We show that rectified linear activation functions allow a binary neural net-
work model to be trained in half the number epochs compared to sigmoid
activation functions which were used in previous work.

2 Deep Learning

To better understand deep learning, we next provide background on several
key concepts. Figure 1 depicts a typical deep neural network architecture. A
DNN usually consists of an input layer followed by several hidden layers and an
output layer. The input layer consumes an input feature vector representing the
object to be classified. The output layer is responsible for producing the class
probability vector associated with the input vector. In total, the deep neural
network predicts the class for the input vector.

Output Layer

Prediction

Input Vector

Multiple Hidden Layers

Input Layer

Deep Neural Network

Fig. 1. A standard feed forward, deep learning architecture.

Hidden Units and Activation Functions: The basic component in a neural
network is the hidden unit. A hidden unit takes an n-dimensional feature vector

402 W. Huang and J.W. Stokes

x = [x1, x2, · · · , xn] from the input vector or the lower-level hidden units, and
outputs a numerical output yj = f(

∑n
i=1 wjixi+bj) to the hidden units in higher

layers or the output layer. For hidden unit j, yj is the output, bj is the bias term,
while wji are the elements of a layer’s weight matrix. The function f(·) is often
referred to as the activation function which determines the hidden unit’s output.
The activation function introduces non-linearities to the neural network model.
Otherwise, the network remains a linear transformation of its input signals.

Hidden Layers: A group of m hidden units forms a hidden layer which outputs
a feature vector y = [y1, y2, · · · , ym]. Each hidden layer takes the previous layer’s
output vector as the input feature vector and calculates a new feature vector for
the layer above it:

yn = f (Wnyn−1 + bn) (1)

where yn, Wn, and bn are the output feature vector, the weight matrix, and the
bias of the nth layer. Proceeding from the input layer at the bottom of the DNN
in Fig. 1, each subsequent higher hidden layer learns a more complex and abstract
feature representation which captures higher-level structure. The underlying idea
of adding multiple layers is that these layers correspond to improved levels of
abstraction or composition of the observed data.

Input and Output Layers: The lowest level of a deep neural network which
receives the original feature vector is known as the input layer. The original fea-
ture vector is passed to the hidden layers from bottom to top and is transformed
into a fixed-dimensional vector that the final layer can process. The final layer,
which interacts with and presents the processed data, is called the output layer.
The behaviour of the output layer depends on the problem we are solving. For
example, in a classification task, the output layer transforms the last hidden
layer’s activation into a probability distribution that estimates the input sam-
ple’s class. So far we have introduced the most basic components and concepts
in deep learning. Next we consider deep learning’s ability to improve the model’s
feature representation.

Feature Representation Learning: One of the promises of deep neural net-
works is that the model reduces the need for feature engineering. Instead, deep
learning provides a way to automatically extract more complex, higher-level fea-
tures derived from simple lower-level features. For example, in the case of object
recognition of transportation vehicles in images, the lowest-level input layer con-
sumes the raw pixel information from an image. The first hidden layer usually
learns a set of edge-like features. Then, the second layer learns to combine the
lower-level features from the first hidden layer to produce a slightly richer set of
features. In our image recognition example, features extracted at higher levels
might represent different types of components from the vehicles such as a door,
wing, tire or handle bars. Finally, the output layer fine tunes the final classifi-
cation based on the object labels allowing the system to distinguish between a
car, an airplane, a motorcycle, and so on.

MtNet: A Multi-Task Neural Network for Dynamic Malware Classification 403

3 MtNet System

Figure 2 depicts the high-level overview for training the MtNet system and eval-
uating unknown files with the trained model. The top row provides the steps
required for identifying the selected features and training the MtNet model,
while the bottom row indicates the process for evaluating an unknown file given
a set of selected features and the trained MtNet model. For training, raw data
is extracted from labeled files during dynamic analysis by a modified version
of a production anti-malware engine. Unlike in-depth emulation executed on a
fully capable virtual machine (VM) such as Anubis [4], the anti-malware engine
used in this study only provides lightweight emulation of the operating system
and tries to coax the file into execution. Since anti-malware engines are designed
to quickly scan unknown files for viruses, many more files can be evaluated
with this method than using full VMs. Once the raw data has been collected
from the labeled files for the training set, feature selection training is performed
to produce the final sparse binary features (File Extracted Features) required
for training MtNet. Next, the MtNet model is trained for two tasks includ-
ing binary classification which predicts whether an unknown file is malicious or
benign and 100-class family classification which predicts if the file belongs to
one of 98 important families, a generic malware class, or the benign class. In our
data, analysts provide labels for tens of thousands of individual malware families.
However, they selected 98 families for the family classifier based on their severity
and prevalence of infection. Files in the long tail belonging to the remaining fam-
ilies are assigned to the generic “Malware” class. All legitimate files belong to the
“Benign” class. After training, the Selected Features are then used to restrict the
features extracted by emulating unknown files and these File Extracted Features
can then be evaluated by the trained MtNet model. The MtNet binary predic-
tion score is used to automatically classify the unknown file as either malicious
or benign. Likewise the family classifier attempts to assign a specific family label
to the unknown file. We next consider some of these steps in more detail.

Instrumented Anti-Malware Engine

Labeled
Files

Labeled
Extracted

Data

MtNet
Model

Training

Unknown
Files

Unlabeled
Extracted

Data

Unknown File
Predictions

Lightweight
File

Emulation

Feature
Selection
Training

File Extracted
Features

Feature
Selection

File Extracted
Features

Training with Labeled Files

Evaluating Unknown Files

MtNet ModelSelected Features

MtNet
Evaluation

Fig. 2. High-level overview of MtNet training and unknown file evaluation.

404 W. Huang and J.W. Stokes

Dataset: We were provided a large corpus of labeled, raw data by analysts
from the Microsoft Corporation which was extracted from 6.5 million files. We
believe this is the largest dataset used in a published malware classification study.
Among this data collection, 2.85 million examples were extracted from malicious
files and 3.65 million from benign files. The set of malicious files contained 1.3
million belonging to the 98 malware families and 1.55 million from the generic
malware class. We randomly selected 4.5 million examples for training and 2.0
million for a hold out test set. All of the samples were scanned with a single
combination of the anti-malware engine software and signature set. This dataset
allows us to measure the performance of our system without introducing noise
from varying anti-malware engine and signature set updates. Malicious files are
labeled by professional analysts and anti-malware engine detections. The benign
file collection is used in a production environment to prevent false positives by the
anti-malware engine and was obtained either directly from legitimate companies
or downloaded from verified web sites.

Features: Much research in the area of malware classification has focussed on
improved feature generation. The underlying strategy is that malware experts
handcraft potentially complex features using domain knowledge which hopefully
leads to better overall classification performance. Deep learning takes the oppo-
site approach and instead tries to learn the distributed feature representation
from the raw input data. Just as in object recognition which learns from the raw
pixels, we use low-level features extracted from dynamic analysis of the file as
input for training.

For each executable file which is emulated by the anti-malware engine,
two sets of raw information are extracted: a sequence of application program-
ming interface (API) call events plus their parameters and a sequence of null-
terminated objects recovered from system memory during emulation. A large
percentage of malicious files are packed. During the unpacking process, null-
terminated objects are often written to system memory by the malware. We find
that the majority of the null-terminated objects are indeed unpacked strings but
a few correspond to individual code fragments.

For the API and parameter stream, we use a many-to-one mapping to repre-
sent the API events. In the Windows software environment, there are multiple
APIs which can be used to achieve the same objective. For example, three dif-
ferent ways to create a file include calling the CreateFile() method from user
mode, the ZwCreateFile() method from kernel mode, or the fopen() call from
C. All three of these create file API calls are mapped to a single higher-level
CreateFile event. In total, there are 114 such high-level API events in our data.

Three sets of sparse binary features are derived from the two data sources.
A sparse binary feature is set if the feature is present in the data; we do not
use feature counts in MtNet to prevent missed detections due to attackers poly-
morphically varying the number of critical features. The presence or absence
of the null-terminated objects are used directly as one of the feature sets. Two
additional feature sets are derived from the API and parameter stream. The
first feature set is derived from each unique combination of high-level API event

MtNet: A Multi-Task Neural Network for Dynamic Malware Classification 405

and one individual input parameter setting. As a result, several sparse binary
features are generated from each API call. The second feature set consists of tri-
grams of API events. An API trigram event feature is generated by the unique
combination of three consecutive API events. A trigram feature provides a small
amount of context for each central API call.

Feature Selection: The combined feature set consisting of null-terminated
tokens, API event plus parameter value, and API trigrams contains millions of
potential features. In order to reduce the input space so that it can be classified
by a deep neural network, we perform feature selection using mutual informa-
tion [17] to generate features that best characterize each class. The output of the
feature selection process is a ranked set of 50,000 features which is input to the
MtNet system. The 50,000 features are initially selected during training. Later,
these features are applied when evaluating an unknown file.

4 Multi-Task Neural Malware Classification

Figure 3 depicts the architecture of the proposed deep, multi-task malware clas-
sification model. We seek to use the features described in the previous section to
identify whether unknown files are malicious or benign. We also want to classify
the malicious files into different malware families with 100 classes.

Softmax Output Layer (2)

Sparse Binary Input Vector
(50000)

Random Projection
(50000 -> 4000)

Multiple Hidden Layers
(ReLU, Dropout)

(2000, 2000, 2000, 2000)

Input Layer
(4000)

Deep Neural Network

2-Class Labels 100-Class Labels

Softmax Output Layer (100)

Fig. 3. Proposed deep model for multi-task learning.

406 W. Huang and J.W. Stokes

4.1 Random Projections

After feature selection, the dimension of the input feature vector is reduced to
50,000. However, training a neural network with such a large input dimension is
still computationally prohibitive. To overcome this problem, this original input
feature vector must be projected to a lower dimensional subspace which then
serves as the input vector to the neural network. Dahl et al. [7] experimented with
principal component analysis (PCA) but were only able to project the original
data down to 500 dimensions due to its O(N3) computational requirements.
Therefore to further reduce the data size to a suitable dimension for the neural
network’s input layer, we use the random projection technique [15] which is also
used in [7]. The core idea of random projections, which has been shown to work
well in practice [15], is that a sparse matrix that is randomly initialized can
be used to project the original input feature vector to the reduced dimension
subspace. The sparse random projection matrix R is initialized with 1 and -1 as

Pr(Ri,j = 1) = Pr(Ri,j = −1) =
1

2
√

d
(2)

where d is the size of the original input feature vector. For MtNet, the dense,
projected feature space of the random projection is reduced to 4,000 as in [7].
With d = 50,000 in our model, R is highly sparse and includes 0.22% of its
values set to 1 and another 0.22 % of its values set to −1. The remaining 99.56%
of the values in the sparse, random project matrix have an implied value of 0.

4.2 Deep Neural Network

We next train a deep feed-forward neural network from the projected features for
malware classification. The network architecture is identical to that described in
Sect. 2 with the following details.

Normalized Input: Before inputting the feature vectors to the deep neural net-
work, we first normalize the input vector so that every dimension has zero mean
and unit variance. The normalized input makes the network training converge
faster.

ReLU: The sigmoid activation function, used in [7], and the tanh activation
function typically exhibit the vanishing gradient problem which makes the deep
neural networks hard to train [9]. To overcome this problem, we use the rectified
linear unit (ReLU) activation function for each layer. The ReLU function is
defined as:

f(γ) = max(0, γ) (3)

for any input value γ. It not only solves the vanishing gradient problem but
also accelerates the convergence of stochastic gradient descent compared to the
sigmoid and tanh activation functions.

Dropout: Dropout [24] is a regularization technique proposed for training deep
neural networks. The core idea is that when updating a hidden layer, the algo-
rithm randomly chooses not to update (i.e. “dropout”) a subset of the hidden

MtNet: A Multi-Task Neural Network for Dynamic Malware Classification 407

units. The intuition for dropout is that when randomly zeroing out hidden units
in a layer, the network is forced to learn several independent representations of
the patterns with identical input and output. In our model, we use dropout for
all hidden layers of the neural network.

Loss function: The deep neural network learns different feature representations
at each layer. The output layer implemented with the softmax function is used
to output the categorical probability distribution. In our case for binary classi-
fication, the output is two dimensional representing malware and benign, while
for the family classification task, the output size is 100 representing the different
malware families, the generic malware class, and the benign files. To fine tune
the deep model, we use the cross entropy loss function to quantify the quality of
the neural network’s classification results. The cross entropy loss is defined as

LC(θ(x)) = −
∑

c∈C

gc(x) log θc(x) (4)

where x is the input feature vector, c is the class, C is the collection of classes to
predict, θ(x) is the probability distribution output by the deep neural network,
and g is the ground truth distribution.

Multi-Task Learning: In order to improve the generalization of the deep
model, we train both the 2-class classification output and the 100-class clas-
sification output together with the same neural network. The multi-task model
shares the same feature learning in the hidden layers, while the two top-level
output softmax layers project these learned features into 2- or 100-dimensional
vectors to calculate the probability distribution for each task. We define the
multi-task loss function to be a weighted sum of each of the individual loss
functions,

LM (θ(x)) = α1L2(θ(x)) + α2L100(θ(x)) (5)

where the multi-task weights are α1 and α2, and α1+α2 = 1.0. The two tasks are
trained simultaneously with mini-batch stochastic gradient descent and back-
propagation, and the gradients at each layer are updated with respect to the
weight of each task.

5 Experimental Results

In this section, we evaluate the performance of our multi-task MtNet model,
along with several baseline models, and seek to answer several questions about
malware classification with deep learning including the following. Does adding
additional hidden layers in a deep neural network improve binary and family
classification? Do larger datasets allow deep learning to help improve malware
classification accuracy? How do the various deep learning components affect the
classification accuracy? Can we improve detection rates at extremely low false
positive rates?

We implemented all models in this section, including the baseline system
proposed in [7], using the computational neural toolkit (CNTK)[1]. The sparse,

408 W. Huang and J.W. Stokes

binary feature vectors for each file are extracted as described in Sect. 4. For all
neural network models, we fix the input layer size to 4,000 and the hidden layer
size to 2,000 for all layers. We choose the input layer size to match [7], whereas the
hidden layer size is chosen by hyper-parameter tuning. The mini-batch size for
stochastic gradient descent (SGD) is set to 300 samples, and the initial learning
rate for mini-batch SGD is initialized to 0.01. The momentum of the gradient
update is set to 0.9 to avoid getting trapped in a local minimum. We dynamically
adjust the learning rate during training. If the loss does not drop after the current
epoch, we reload the previous epoch’s model, halve the current learning rate, and
retrain the model for this epoch. After each epoch, the entire dataset is shuffled
so that the data samples in each mini-batch are randomly selected. We train each
model until convergence but no more than 200 epochs. Each model is trained and
tested on a single NVIDIA Tesla K40 GPU. To evaluate the MtNet model, we
report the test error rate which is defined as the ratio of misclassification in the
entire test dataset. During test, an unknown file is predicted to belong to each
class represented in the softmax layer. For binary classification, a file is predicted
to malicious if P (c = malware|x) ≥ P (c = benign|x) which corresponds to a
detection threshold of 0.5 in Tables 1 and 3. In addition we also plot the receiver
operating characteristic (ROC) curves of different models.

5.1 Comparison of the Baseline and Single-Task Baseline Models

Before investigating the performance of the multi-task MtNet model in the next
section, we first evaluate the test error rates for a hold out test set on two base-
line architectures for both binary and malware family classification. Tables 1
and 2, respectively, summarize the results of our best single-task deep models
compared with the baseline method proposed in [7]. For reference, the second
column presents the test error rates in [7] for up to three hidden layers originally
evaluated using their implementation and dataset. The third column presents the
results from our re-implementation of their architecture in CNTK and trained
and tested with our new dataset. The number of epochs required for training to
converge is listed in column 4. It should be noted that our CNTK implementation
of Dahl’s previously proposed models is independent and provides confirmation
of their earlier results. In the final two columns, we present the results for the
single task baseline versions of the MtNet model depicted in Fig. 3 trained and
tested with our dataset. For example, the single-task baseline model for binary
classification, whose results are found in Table 1, only includes the top left soft-
max output layer. Similarly the single-task malware family classification model,
whose results are listed in Table 2, only uses the righthand softmax output layer.
Both of these baseline models employ rectified linear units and dropout.

Comparing the results for Dahl’s model in [7] with our implementation of
their model for binary classification in Table 1, we see that the best perform-
ing baseline model in our implementation uses three hidden layers compared
to one in the original study. Several factors changed between these two experi-
ments. The training and test set sizes were essentially doubled, the number of
features and families both decreased, and the underlying implementation was

MtNet: A Multi-Task Neural Network for Dynamic Malware Classification 409

completely changed. In addition, only family-based models were trained in [7],
and the binary classification results were computed based on whether or not
the predicted family was malicious or benign. In this study, the 2-class models
were trained with the true binary labels. It is interesting that the lowest test
error rates for the two implementations are essentially identical (i.e. 0.49 % for
their implementation and 0.4845 % for ours). In addition to the hidden layer
size, this single-task version of MtNet differs from [7] in two aspects: the sigmoid
activation function is replaced with the rectified linear activation function and
dropout is included. For both binary and family classification, our single-task
models significantly improve the baseline classification results by 23.98 % and
19.21 %, respectively. These results indicate that switching to the ReLU activa-
tion function and adding dropout help the deep model to learn a better feature
representation of the file for classification. In both tables, we also show the
number of epochs needed to reach convergence. We found that although adding
dropout to the hidden layers generally increases the number of required training
epochs, ReLU accelerates the convergence of the mini-batch stochastic gradi-
ent descent process for binary classification. Compared to sigmoid activation
functions, rectified linear activation functions significantly reduce the number of
iterations required for training a binary classifier.

Table 1. Comparison of two implementations of the baseline model versus our best
single-task baseline model on 2-class binary classification.

Layers Baseline model
(Original
results [7])

Baseline model
(Our data)

Single task
model (Our
data)

Test error(%) Test error(%) Epoch Test error(%) Epoch

1 0.49 0.5906 190 0.3711 64

2 0.50 0.4882 186 0.3702 82

3 0.51 0.4845 200 0.3686 77

4 0.4934 200 0.3683 81

5.2 Multi-Task Results

Table 3 compares the test error rates for the multi-task models with their single-
task counterparts. Using hyper-parameter tuning, we set the weights for the
binary classification task to α1 = 0.8 and for the family classification task to α2 =
0.2. We observe that for binary classification, classifiers trained with the multi-
task models consistently improve the error rate. However, the multi-task, family
classification models perform worse than the single-task variants. Compared to
the baseline results shown in Tables 1 and 2, we observe that both classifiers
obtain significant improvements. While the family test error rate remains at

410 W. Huang and J.W. Stokes

Table 2. Comparison of two implementations of the baseline model versus our best
single-task baseline model on 100-class family classification.

Layers Baseline model
(Original
results [7])

Baseline model
(Our data)

Single task
model (Our
data)

Test error(%) Test error(%) Epoch Test error(%) Epoch

1 9.53 3.633 152 2.935 124

2 9.55 3.652 70 2.983 130

3 9.74 3.715 96 2.982 122

4 3.795 96 2.970 146

2.935 % with a 19.21 % improvement compared to the baseline result, the multi-
task binary test error rate drops further to 0.3577 % with a relative improvement
of 26.17 %.

Table 3. Test error rates for multi-task training vs. single-task training on 2-class and
100-class classification.

Layers 2-Class Test error(%) 100-Class Test error(%)

Multi-task Single-task Multi-task Single-task

1 0.3657 0.3711 2.935 2.935

2 0.3577 0.3702 3.025 2.983

3 0.3618 0.3686 3.026 2.982

4 0.3655 0.3683 3.070 2.970

In Fig. 4, we compare the ROC curves at very low false positive rates with
α1 = 0.8 and α2 = 0.2. Although we do see some improvement in Table 3 for
binary classification by adding additional layers, the 1- and 2-layer networks
offer comparable performance for very low false positive rates.

In Fig. 5, we compare the ROC curves for binary classification for the single-
task model with two different MtNet models using α1 = 0.8 and α1 = 0.9.
All models have a single hidden layer. This figure indicates that the multi-task
MtNet model outperforms the single-task model at very low false positive rates;
including the family classification task helps regularize the neural network model
to learn better feature abstractions for binary classification.

5.3 Model Parameter Contributions

We perform hyper-parameter tuning on two additional parameters in MtNet, the
dropout rate and the multi-task mixing weight, and measure their contribution
to the MtNet model test error.

MtNet: A Multi-Task Neural Network for Dynamic Malware Classification 411

10−2 10−185

90

95

100

False Positive Rate (%)

Tr
ue

 P
os

iti
ve

 R
at

e
(%

)

1 Layer
2 Layer
3 Layer
4 Layer

Fig. 4. ROC curves for the best performing multi-task MtNet at very low false positive
rates. (Color figure online)

Dropout Rate: Figures 6 and 7, respectively, show the test error rates for binary
and family classification with different dropout settings. It is clear that dropout
is the main contributor to the improvement in classification accuracy in both
cases. The best dropout setting for binary classification is 0.25, where MtNet is
able to learn a better feature representation with more hidden layers. Although
the 0.25 dropout rate also improves the family classification test error rate sig-
nificantly, adding more hidden layers fails to learn better feature representations
for this task.

Multi-Task Weight: We next vary the multi-task weight corresponding to
binary classification task α1, in (5), and measure its impact on MtNet’s binary
classification error rate in Fig. 8 and family classification error rate in Fig. 9. From
Fig. 8, we observe that as α1 increases, the test error decreases until α1 = 0.8
for all models. Whereas in Fig. 9, we observe that the error rate of the family
classification models generally increases as α1 increases. Note that setting α1 = 1,
in the multi-task model, is equivalent to the single-task binary classification
model, and setting α1 = 0 corresponds to the single-task family classification
model. These two figures show that multi-task learning favors the task with the
larger weight. In summary when α1 = 0.8, multi-task modelling significantly
improves the binary classification result with the help of the family class labels.

5.4 Dataset Size and Deep Learning

Based on the published results, we believe this is the largest malware classifica-
tion experiment run to date. We essentially doubled the number of training and
test samples compared to [7]. However compared to the results reported in [7],
our CNTK implementation of the baseline model shows similar test error rates.
In addition, although we found modest gains by increasing the number of layers

412 W. Huang and J.W. Stokes

10−2 10−185

90

95

100

False Positive Rate (%)

Tr
ue

 P
os

iti
ve

 R
at

e
(%

)

Single−Task
Multi−Task, α1 = 0.9

Multi−Task, α1 = 0.8

Fig. 5. ROC curves for binary classification by multi-task MtNet model versus single-
task model for different binary classification task weights α1. (Color figure online)

0.5 0.25 0.1 No Dropout
0.36

0.38

0.4

0.42

0.44

0.46

0.48

0.5

Dropout Rate

Te
st

 E
rro

r (
%

)

1 Layer
2 Layer
3 Layer
4 Layer

Fig. 6. MtNet test error rates for binary classification with different dropout rates of
0.5, 0.25, 0.1 and without dropout. (Color figure online)

in MtNet in the case of 2-class binary classification, we did not find significant
improvements using deep learning compared to other domains such as object and
speech recognition. As a result, we do not believe that adding even more sam-
ples to our training set will enable deep learning to offer significant performance
increases for the dynamic analysis features investigated in this study.

5.5 Training and Testing Efficiency

An important aspect of training large-scale neural network architectures is the
training and testing efficiency. Table 4 presents the time required to train and
test the large-scale MtNet multi-task, deep neural networks for up to four layers.

MtNet: A Multi-Task Neural Network for Dynamic Malware Classification 413

0.5 0.25 0.1 No Dropout
2.9

3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

Dropout Rate

Te
st

 E
rro

r (
%

)

1 Layer
2 Layer
3 Layer
4 Layer

Fig. 7. MtNet test error rates for family classification with different dropout rates of
0.5, 0.25, 0.1 and without dropout. (Color figure online)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.355

0.36

0.365

0.37

0.375

0.38

0.385

0.39

0.395

Multi−Task Learning Weight α1

Te
st

 E
rro

r (
%

)

1 Layer
2 Layer
3 Layer
4 Layer

Fig. 8. MtNet test error rates for 2-class classification with different values of the multi-
task learning weight α1. (Color figure online)

These times are listed in (hours:minutes). The reason that the training times are
similar for the 3 and 4 layer networks is because the 3 layer network trained for
181 epochs before the early stopping criterion halted training while the 4 layer
network only required 144 epochs. The most time consuming aspect of training
and testing the system is the extraction of the data which required approximately
2 weeks on a single computer.

414 W. Huang and J.W. Stokes

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

2.95

3

3.05

3.1

3.15

3.2

3.25

3.3

Multi−Task Learning Weight α1

Te
st

 E
rro

r (
%

)

1 Layer
2 Layer
3 Layer
4 Layer

Fig. 9. MtNet test error rates for 100-class classification with different values of the
multi-task learning weight α1. (Color figure online)

Table 4. Training and test times required in (hours:minutes) for evaluating up to four
layers in the MtNet DNN malware classifier.

Layers Training time Test time

1 06:58 01:34

2 12:34 02:09

3 18:08 02:41

4 18:12 02:32

6 Discussions

We now discuss several aspects of our proposed MtNet multi-task, neural clas-
sification system and then consider how attackers may attempt to evade its
detection.

Achieving improvements using deep learning for malware classification is
extremely challenging. The primary issue is that the classification accuracy for
a neural network architecture with millions of files is already so good that it
is difficult for additional layers to offer significant performance increases. For
example, the best accuracy from the previous large-scale malware classification
study [7] for a single neural network with one hidden layer is 99.51 %. Figure 4
indicates that the ROC curves for this dataset are beginning to approach the
ideal classifier. Although we do find some gains in Tables 1, 2 and 3, there is
not much room for significant improvement in the binary classification results
by including additional hidden layers. In contrast, the detection error rates for
object recognition and speech recognition were much higher prior to the signifi-
cant improvements using deep learning. However, this study confirms that using
other types of algorithmic techniques from the deep learning literature, such as

MtNet: A Multi-Task Neural Network for Dynamic Malware Classification 415

dropout and rectified linear unit activation functions, can further improve the
test error rate of a neural network malware classifier.

Even though it is somewhat disappointing that we cannot obtain significant
improvements in malware classification using deep learning, this result has a
major benefit. Shallow networks can evaluate unknown files more quickly because
the computational complexity for each hidden layer is O(H2) where H is the
size of the hidden layer. As a result, we can scan more files with a shallow neural
network than with a DNN.

All of the samples were analyzed at the same time with the same version
of the anti-malware engine. Thus we expect the performance to be worse when
analyzing new samples in a production setting where the anti-malware engine
and its signatures are updated frequently.

As with many other malware detection systems, MtNet is susceptible to
attacks and can be evaded. MtNet relies on dynamic analysis of a PE file. As
such, the well known anti-emulation attack where the malware detects that it
is being emulated and halts any malicious activity [3] will prevent MtNet from
detecting the malicious file. In addition, MtNet is also vulnerable to the recently
reported attack for deep neural networks proposed by Papernot, et al. [19]. In
this attack, the authors construct adversarial samples and demonstrate that all
ten digits in the MNIST database can be altered in such a way as to confuse
a DNN classifier thereby producing any other digit. This attack is based upon
computing the forward derivative of the DNN evaluated at the proposed initial
input sample. Given this attack, the MtNet classifier should not be run on the
client computer where the parameters of the DNN can be recovered by reverse
engineering. However assuming a secure machine learning infrastructure with no
intrusions, MtNet can still be run on the backend to evaluate unknown files.

7 Related Work

Previous research most closely related to the MtNet system broadly falls into
two main areas, deep learning and automated malware classification.

Neural networks have been explored for over three decades. Deep learning has
recently become popular in many areas such as computer vision [14] and speech
recognition [8]. Training deep models was not practical until the recent growth
of computational power and large datasets. Newly proposed techniques such as
dropout [24], and rectified linear units [18] solved several problems such as over-
fitting and the vanishing gradient problem. The multi-task learning approach [6]
has recently gained popularity among deep learning models. It usually leads to
a better primary task model when training simultaneously with other related
tasks. Multi-task learning has been adapted in several applications such as text
recognition [11] and speech recognition [23].

Given the problems associated with stolen credentials and data exfiltration,
malware classification has been an active research area since 1994. Idika and
Mathur [10] present a good overview of malware classification. Kephart et al. [12]
were the first to use neural networks for malware classification. Later important

416 W. Huang and J.W. Stokes

malware classification studies include the works by Schultz et al. [22] and Kolter
et al. [13]. Random projections were first proposed for malware classification by
Atkinson [2].

A few researchers have started to explore deep learning architectures for
malware classification. Dahl et al. [7] proposed a simple feed-forward neural net-
work with random projections [15] to learn from a selected feature set extracted
from the executable files. Dahl’s shallow neural architecture is the current best
performing malware classification model in terms of binary and family classifi-
cation accuracy, but the deep models fail to improve the classification accuracy
in their study. Our proposed model is closely related to Dahl’s architecture [7].
We utilize multi-task learning and recent deep learning techniques which allow
our deep model to outperform their model. Benchea and Gavrilut [5] combine a
Restricted Boltmann Machine (RBM) with a One-Sided Perceptron for detecting
malware. Their study is quite large consisting of over 1.2 million files although
only 31,507 are malicious. An RBM is an unsupervised method for learning a
stochastic neural network. It learns one set of weights from an input layer to a
single hidden layer. Dahl et al. [7] found that pre-training their neural network
classifier with an RBM slightly degraded the performance. Recurrent neural
networks and echo state networks have been used to analyze executable files to
identify malware [20]. However, recurrent models are computationally expensive
when trained with many files and long sequences. Finally, a static analysis-based
DNN was proposed by Saxe and Berlin [21].

8 Conclusions

In this paper, we propose and implement several different binary and family
malware classifier architectures. The best binary classifier employs multi-task
learning for the binary and family malware classification tasks. In particular,
multi-task learning improves the classification results for extremely low false
positive rates under 0.07 %. The best performing two-class, binary classification
architecture in Table 3 uses two hidden layers and multi-task learning while a
shallow, multi-task network performs best for family classification. These results
are achieved using rectified linear unit activation functions and dropout. Includ-
ing dropout is the key to the majority of the accuracy improvement compared
to Dahl’s architecture, and rectified linear units reduce the number of epochs
required for training by almost half. Given these results, we believe that training
neural network architectures with millions of files offers the best overall perfor-
mance for malware classification.

Acknowledgements. The authors would like to thank Mady Marinescu with helping
in the data collection. We also thank our shepherd Juan Tapiador and the anonymous
reviewers for their very valuable feedback.

MtNet: A Multi-Task Neural Network for Dynamic Malware Classification 417

References

1. Agarwal, A., Akchurin, E., Basoglu, C., Chen, G., Cyphers, S., Droppo, J., Ever-
sole, A., Guenter, B., Hillebrand, M., Hoens, R., Huang, X., Huang, Z., Ivanov, V.,
Kamenev, A., Kranen, P., Kuchaiev, O., Manousek, W., May, A., Mitra, B., Nano,
O., Navarro, G., Orlov, A., Padmilac, M., Parthasarathi, H., Peng, B., Reznichenko,
A., Seide, F., Seltzer, M.L., Slaney, M., Stolcke, A., Wang, Y., Wang, H., Yao, K.,
Yu, D., Zhang, Y., Zweig, G.: An introduction to computational networks and
the computational network toolkit. Technical report MSR-TR-2014-112. https://
github.com/Microsoft/CNTK

2. Atkison, T.: Applying randomized projection to aid prediction algorithms in detect-
ing high-dimensional rogue application. In: Proceedings of the Annual Southeast
Regional Conference (ACMSE) (2009)

3. Balzarotti, D., Cova, M., Karlberger, C., Kruegel, C., Kirda, E., Vigna, G.: Efficient
detection of split personalities in malware. In: Proceedings of the Network and
Distributed System Security Symposium (NDSS) (2010)

4. Bayer, U., Kruegel, C., Kirda, E.: TTAnalyze: A tool for analyzing malware. In:
Proceedings of 15th Annual Conference of the European Institute for Computer
Antivirus Research (EICAR) (2006)

5. Benchea, R., Gavriluţ, D.T.: Combining restricted boltzmann machine and one
side perceptron for malware detection. In: Hernandez, N., Jäschke, R., Croitoru,
M. (eds.) ICCS 2014. LNCS, vol. 8577, pp. 93–103. Springer, Heidelberg (2014)

6. Caruana, R.: Multitask learning. Mach. Learn. 28(1), 41–75 (1997)
7. Dahl, G.E., Stokes, J.W., Deng, L., Yu, D.: Large-scale malware classification using

random projections and neural networks. In: Proceedings of the IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 3422–3426.
IEEE (2013)

8. Hinton, G., Deng, L., Yu, D., rahman Mohamed, A., Jaitly, N., Senior, A., Van-
houcke, V., Nguyen, P., Sainath, T., Dahl, G., Kingsbury, B.: Deep neural networks
for acoustic modeling in speech recognition. In: IEEE Signal Processing Magazine,
vol. 29, pp. 82–97 (2012)

9. Hochreiter, S., Bengio, Y., Frasconi, P., Schmidhuber, J.: Gradient flow in recurrent
nets: the difficulty of learning long-term dependencies. In: Kolen, J.F., Kremer,
S.C. (eds.) A Field Guide to Dynamical Recurrent Neural Networks. IEEE Press,
Wiley-IEEE Press (2001)

10. Idika, N., Mathur, A.P.: A survey of malware detection techniques. Techni-
cal report, Purdue University. http://www.eecs.umich.edu/techreports/cse/2007/
CSE-TR-530-07.pdf

11. Jaderberg, M., Vedaldi, A., Zisserman, A.: Deep features for text spotting. In:
Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014, Part IV. LNCS,
vol. 8692, pp. 512–528. Springer, Heidelberg (2014)

12. Kephart, J.O.: A biologically inspired immune system for computers. In: Proceed-
ings of the Fourth International Workshop on the Synthesis and Simulation of
Living Systems, pp. 130–139. MIT Press (1994)

13. Kolter, J., Maloof, M.: Learning to detect and classify malicious executables in the
wild. J. Mach. Learn. Res. (JMLR) 7, 2721–2744 (2006)

14. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. In: Advances in neural information processing systems,
pp. 1097–1105 (2012)

https://github.com/Microsoft/CNTK
https://github.com/Microsoft/CNTK
http://www.eecs.umich.edu/techreports/cse/2007/CSE-TR-530-07.pdf
http://www.eecs.umich.edu/techreports/cse/2007/CSE-TR-530-07.pdf

418 W. Huang and J.W. Stokes

15. Li, P., Hastie, T.J., Church, K.W.: Very sparse random projections. In: Proceedings
of the ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (ICDM), pp. 287–296 (2006)

16. Lopez, M.: 27% of all recorded malware appeared in 2015 (2016). http://www.
pandasecurity.com/mediacenter/press-releases/all-recorded-malware-appeared-in-
2015/

17. Manning, C.D., Raghavan, P., Schutze, H.: An Introduction to Information
Retrieval. Cambridge University Press, New York (2009)

18. Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann
machines. In: Proceedings of the International Conference on Machine Learning
(ICML), pp. 807–814 (2010)

19. Papernot, N., McDaniel, P., Jha, S., Fredrikson, M., Celik, Z.B., Swamix, A.: The
limitations of deep learning in adversarial systems. In: IEEE European Symposium
on Security and Privacy (2016)

20. Pascanu, R., Stokes, J.W., Sanossian, H., Marinescu, M., Thomas, A.: Malware
classification with recurrent networks. In: Proceeding of the IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1916–1920.
IEEE (2015)

21. Saxe, J., Berlin, K.: Deep neural network based malware detection using two dimen-
sional binary program features. arXiv preprint (2015). arXiv:1508.03096v2

22. Schultz, M., Eskin, E., Zadok, E., Stolfo, S.: Data mining methods of detection
of new malicious executables. In: Proceedings of the 2001 IEEE Symposium on
Security and Privacy (SP), pp. 38–49. IEEE Press, New York (2001)

23. Seltzer, M.L., Droppo, J.: Multi-task learning in deep neural networks for
improved phoneme recognition. In: Proceedings of IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP). IEEE (2013)

24. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.:
Dropout: a simple way to prevent neural networks from overfitting. J. Mach.
Learn. Res. 15(1), 1929–1958 (2014). http://dl.acm.org/citation.cfm?id=2627435.
2670313

http://www.pandasecurity.com/mediacenter/press-releases/all-recorded-malware-appeared-in-2015/
http://www.pandasecurity.com/mediacenter/press-releases/all-recorded-malware-appeared-in-2015/
http://www.pandasecurity.com/mediacenter/press-releases/all-recorded-malware-appeared-in-2015/
http://arxiv.org/abs/1508.03096v2
http://dl.acm.org/citation.cfm?id=2627435.2670313
http://dl.acm.org/citation.cfm?id=2627435.2670313

Adaptive Semantics-Aware Malware
Classification

Bojan Kolosnjaji(B), Apostolis Zarras, Tamas Lengyel, George Webster,
and Claudia Eckert

Technical University of Munich, Munich, Germany
{kolosnjaji,zarras,tklengyel,webstergd,eckert}@sec.in.tum.de

Abstract. Automatic malware classification is an essential improve-
ment over the widely-deployed detection procedures using manual signa-
tures or heuristics. Although there exists an abundance of methods for
collecting static and behavioral malware data, there is a lack of adequate
tools for analysis based on these collected features. Machine learning is
a statistical solution to the automatic classification of malware variants
based on heterogeneous information gathered by investigating malware
code and behavioral traces. However, the recent increase in variety of
malware instances requires further development of effective and scalable
automation for malware classification and analysis processes.

In this paper, we investigate the topic modeling approaches as
semantics-aware solutions to the classification of malware based on
logs from dynamic malware analysis. We combine results of static and
dynamic analysis to increase the reliability of inferred class labels. We
utilize a semi-supervised learning architecture to make use of unlabeled
data in classification. Using a nonparametric machine learning approach
to topic modeling we design and implement a scalable solution while
maintaining advantages of semantics-aware analysis. The outcomes of
our experiments reveal that our approach brings a new and improved
solution to the reoccurring problems in malware classification and
analysis.

1 Introduction

Malware has evolved over the years to the point where it generates a global threat
for our digital lives. Nowadays, the amount of malware that arises every day has
increased exponentially. Security companies currently need to analyze hundreds
of thousands of malicious samples on a daily basis, which directly affects their
performance. In some cases, this number can be larger than one million distinct
files per day [34]. Meanwhile, malware classification is becoming increasingly
critical as new malware instances integrate sophisticated techniques to deceive
the signature-based detectors and operate under the radar for longer period.
This fact, along with the rapid increase in the number of malware samples,
presents a very real challenge that cannot be met by manual reverse engineering
efforts or by generating static signatures. Specifically, while it is relatively easy

c© Springer International Publishing Switzerland 2016
J. Caballero et al. (Eds.): DIMVA 2016, LNCS 9721, pp. 419–439, 2016.
DOI: 10.1007/978-3-319-40667-1 21

420 B. Kolosnjaji et al.

for antivirus and other security companies to obtain large numbers of malicious
samples, it requires significant effort to successfully classify them.

To address this problem, researchers proposed statistical machine learning
methods that can enable analysts to focus on new and previously unseen attacks
by classifying malware as being part of a larger family [29]. These methods
leverage gathered static and behavioral malware data to generate statistically
confident knowledge. Towards this direction, Schultz et al. [29] used statisti-
cal methods to detect malicious executables based on n-grams of instructions.
Rieck et al. [27], on the other hand, utilized behavioral features of malware
for both detection and classification, and proved the superiority of this approach
against the traditional signature-based methods. This performance improvement
is explained with the inherent advantages of statistical methods in capturing the
variety of malware samples.

Nevertheless, statistical malware classification systems are not without their
own problems. Foremost, there is a scarcity of reliable labels for fully super-
vised malware classification systems. Malware analysts could potentially retrieve
antivirus results and use them to label malware samples. Although this approach
seems ideal, unfortunately, many times it is difficult to provide confident labels
this way. Antivirus companies offer malware signatures, which are mostly used in
the academic community for testing the malware classification systems. However,
we have observed by manual inspection of antivirus results that the reliability
of those signatures is not always high. Every antivirus program has its own sys-
tem of labeling malware, and although sometimes the signatures match between
different antivirus programs, very often they are different or even contradictory.
Furthermore, there is a limited public information about the process by which
companies assign these signatures and how accurate these signatures are. Yet
another problem is the very high data dimensionality when the execution logs
contain whole system behaviors [6]. Finally, the malware analysis tools provide
different features of malware with respect to static and dynamic analysis [1–
3,19]. Using multiple tools ensures that all the information is considered, yet,
there exist only few efforts that try to join this information [4]. This problem
is non-trivial because data retrieved from the analysis tools is heterogeneous,
which means that different machine learning models might be optimal for dif-
ferent data. For example, dynamic malware analysis results have a sequential
nature, while metadata from static analysis, such as code entropy or size of code
sections, do not always have such interdependencies.

The number and variety of malware samples that need to be processed has
surpassed the ability of the classical approaches that analyze the static and
behavioral characteristics of malicious samples and create signatures. Automa-
tion of detection and classification procedures that take into account the afore-
mentioned approaches is becoming less effective when dealing with large amount
of data, let alone extracting useful knowledge about malware. Since the problem
is essentially the automatic analysis of high amounts of noisy data, statistical
machine learning methods constitute a superior approach. These methods, how-
ever, need to be adapted to online setting, where a high influx of samples imposes

Adaptive Semantics-Aware Malware Classification 421

a necessity for retraining of machine learning models in order to maintain accu-
rate label predictions.

In this paper, we evaluate and improve the use of statistical topic modeling
with respect to the curse of dimensionality of long execution sequences. Further,
combined with semi-supervised learning methods of exploiting unlabeled sam-
ples, we effectively overcome the problem of the lack of labeled data. Finally, we
show how the use of data obtained from static and dynamic analysis increases
the reliability of the classification results, demonstrating that data heterogeneity
can in fact boost confidence in classification. In essence, we use a nonparametric
machine learning approach, where parameter set is not set up in advance, but
depends on the training data. Nonparametric approach is, to the best of our
knowledge, novel in malware classification problems. This enables a more stable
approach, where semantic interpretation is automatically updated on arrival of
new malware samples. Our evaluation reveals that our model achieves over 90 %
precision and recall in classification for most of the tested malware families, while
it retains stability in classification performance and retraining speed.

In summary, we make the following main contributions:

– We create a semi-supervised malware classification system that unifies views
of static and dynamic malware analysis.

– We perform an automatic extraction of semantic behavioral features from the
results of dynamic malware analysis.

– We design and evaluate a nonparametric model that is adaptive in a setting
of online training.

2 Background

The key concepts from the area of machine learning that constitute the lifeblood
of our approach are topic modeling, semi-supervised learning, and nonparametric
learning. In this section, we briefly introduce the aforementioned concepts.

2.1 Topic Modeling

As behavioral malware execution data is a sequence of tokens taken from a pre-
defined dictionary, it closely resembles text documents by structure. Therefore,
methods of information retrieval designed for extracting latent properties of text
can be of great importance. In machine learning, data is very often organized in
long sequences. Most explored examples of this kind of data are audio and video
recordings, genetic sequences, and text documents. For instance, it has been
determined that very often news articles belong to a smaller set of latent topics
such as Basketball, Tour De France, Hollywood, FBI Investigation, etc. [22]. On
a higher level, topics could be sports, culture, and finance. Furthermore, words in
text documents belong to these topics with certain probability, where one word
can be attributed with multiple different topics as well. If topics are semantically
interpretable, created model also has a semantic meaning. This text modeling
problem and vocabulary can be translated to problems with other types of data.

422 B. Kolosnjaji et al.

Topic modeling methods are mostly constructed as generative methods: they
are not designed just for classification but also for generation of data based on
the probability distributions inferred from the model. In essence, the topics are
constructed in such a way that the training documents can be generated with
high probability using just the topics inferred from the model. Given a reasonable
assumption that our documents can be confidently described by a smaller set of
topics, we can determine these topics and their distribution by training a topic
model. We do not need to know the topics in advance, as they can be inferred
from the data (i.e., from the documents and the words contained in them).

Overall, topic modeling is a method to statistically explain a large set of
documents using a small set of clusters (topics), based on frequency of different
words in these documents. Note that it counts the words independently without
a specific interest of their sequences inside the documents. This approach has
been often called bag-of-words and it greatly simplifies document analysis.

One of the most adequate random processes used for topic modeling is the
Dirichlet process. This is a suitable model especially for datasets where only few
latent topics can describe a large set of documents. The notion of latent top-
ics was popularized with the development of Latent Dirichlet Allocation (LDA)
method [7]. In this method the topic structure is sampled from a Dirichlet dis-
tribution as prior, which gives more flexibility in training the generative model.
Although there exist related methods of topic modeling [10], LDA is the most
used regarding document information retrieval because of its flexibility and mod-
ular structure. This method has been further adapted to discriminative learning,
i.e., classification [25]. In its standard form, LDA uses a bag-of-words assumption,
which means that it does not capture the sequential nature of the document: it
only counts words independently.

2.2 Semi-supervised Learning

The lack of proper labeling has already been defined as an important problem
in malware research [5]. Consequently, one would benefit from a method that
offers maximum utilization of a minimal number of highly confident labels. This
setting is known in machine learning as semi-supervised learning and is halfway
between supervised and unsupervised algorithms. While supervised learning is a
paradigm that encompasses machine learning methods where the training data is
labeled and the purpose of the algorithm is to optimize the classification of data
on the test dataset, unsupervised learning discovers the underlying structure in
the data such as locating clusters in the dataset. We use unsupervised learning
when we do not have information about labels in the time of training. Since
in semi-supervised setting we do have labeled data, but it is scarce, we com-
bine the advantages of two separate methods to overcome this limitation. More
specifically, in semi-supervised learning we leverage the property of data that it
forms natural clusters. Even if we only have a small number of labeled data that
identifies the clusters that exist in the dataset, we can propagate these labels
in the neighborhood of the labeled data, by considering the clusters detected in
the dataset.

Adaptive Semantics-Aware Malware Classification 423

Fig. 1. Malware classification architecture.

2.3 Nonparametric Learning

In many scenarios the parameter set of machine learning models cannot be always
defined in advance. This is also the case with malware classification, as high influx
of malware samples imposes a need to adapt the model incrementally. This can
be done using a nonparametric approach, where parameter set grows with the
size of the dataset. Since this growth of the parameter set increases complexity
of the model, additional effort is needed to stabilize the classifier. We utilize an
improved approach in order to maintain this stability.

3 Methodology

We propose a classification scheme aimed at solving the problems indicated in
the introductory sections. In particular, we want to be able to discover semantic
features of malware classes, maintain an adaptive topic model, and maximize
the utilization of a semi-labeled dataset from heterogeneous data sources. To
do so, we first emphasize on extracting semantic features from high-dimensional
and noisy data. Second, we optimize the classification mechanism under the
setting where low number of labeled samples is available. To this end, we join
results of static and dynamic malware analysis to unify these different views
on properties of malware samples. Finally, we design an architecture that is
adaptive in the online training setting. In summary, our malware classification
architecture complies with the scheme displayed on Fig. 1.

3.1 Experimental Environment

To perform data extraction against malware samples we employ a malware zoo,
in which we can execute malicious samples while monitoring their behavior. The
zoo back-end infrastructure is composed of a custom version of CRITs [33] that
utilizes large scale analysis concepts proposed by Hanif et al. [15]. Specifically, our
modifications use custom CRITs Services to extract API call information from
Cuckoo [1] and execute the requested work in a distributed fashion. The mal-
ware samples were collected over multiple months from three primary sources:
Virus Share [28], Maltrieve [21], and private collections. We chose these sources
to provide a large and diverse volume of samples for evaluation.

424 B. Kolosnjaji et al.

Data acquisition is done using widely available tools for the static and
dynamic malware analysis. On the one hand, static analysis provides us with
features extracted from the code of the malware samples. For this purpose, we
use two sources aimed for static analysis: PEInfo [33,38] and Yara [3]. We lever-
age PEInfo to extract entropy, size of different PE sections, and the collection
of imported libraries. Similarly, Yara provides us with a list of used function
calls to the Windows kernel API and other custom signatures extracted from
the code.

On the other hand, dynamic analysis enables us to gather reliable behavioral
data without the need for deobfuscation. There exist various tools that enable
tracing the execution of malware and gather logs of execution sequences [1,19].
We select the Cuckoo Sandbox, which provides a controlled environment for
executing malware. During the execution of malware samples we record calls
to the kernel API that we later use to characterize malware activity. For each
sample we obtain a sequence of API calls, which is preprocessed by removing
subsequences where one API call is repeated multiple times in a row. We cut
these subsequences by using only one kernel API call instance as representative
in the resulting sequence. In multiple samples we have noticed the repetition of
one API call; for example, when malware repeatedly tries to open a file.

In addition, we leverage VirusTotal [2] by extracting antivirus signatures
from its web service, for each malware sample we use. Users can upload MD5
hashes of malware executables to VirusTotal and retrieve results from multiple
antivirus engines through the VirusTotal API. These engines are signature-based
and compare the submitted hash to the data in their own database. By using
the VirusTotal services we access malware analysis results and signatures, out
of which we are mostly interested in retrieving ground truth labels for our clas-
sification. In a lack of other label sources, we use antivirus signatures in label
construction for training and testing our classification scheme. Since antivirus
programs use customized strategies for signature generation, we need to find a
way to extract one numerical training label per unique sample using the diverse
antivirus signatures. We use signature clustering to achieve this goal.

3.2 Signature Clustering

To get more confident training and testing labels, we perform a selection process
that uses a simplified version of signature clustering method introduced in
VAMO [23]. Specifically, we create signature vectors for every malware sam-
ple that contains signatures given by different antivirus engines. We use boolean
features to generate these vectors, where each feature reveals presence or absence
of a certain antivirus signature. Our assumption is that the malware samples of
the same family will have the same or similar boolean feature vector. Next, we
use a variant of cosine distance as a measure of difference among signature vec-
tors for our clustering process. We cluster the samples using DBSCAN [12], as
we do not know their number in advance. Finally, we select ten clusters with
the highest number of members as classes for classification. This way we cover

Adaptive Semantics-Aware Malware Classification 425

most of our labeled dataset. Since the classes assigned to our malware resem-
ble the families defined by antivirus engines, we use the terms class and family
interchangeably.

3.3 Feature Selection

Static analysis tools provide us with a high number of features. In detail, we
retrieve 23,060 features from PEInfo and 3805 features from Yara extracted from
the malware binary files. Using a high number of features makes the classification
problem ill-posed and therefore we choose to utilize feature selection methods to
obtain an optimal feature set. We use univariate feature selection approach and
perform a χ2 test for all training samples. This way we can extract the features
that are most relevant to our classification problem and reduce the computational
effort needed for the training process. For our purpose we achieve best results
by selecting 10,000 features for PEInfo and 1000 features for Yara.

3.4 Topic Modeling Algorithms

To extract features from the kernel API call sequences we utilize the topic mod-
eling approach, which includes a well-developed set of methods already heavily
used for automatic information retrieval from text and image data.
General Approach. As we already mentioned, topic modeling is a method
based on the fact that a collection of tokens (words) from documents can be
grouped to a limited set of topics. More specifically, we apply topic modeling to
process data from dynamic malware analysis, as we consider that a list of API
calls can be divided into a smaller number of latent activities. In our case, docu-
ments are malware execution logs and words are elements of malware execution
sequences—calls to the Windows Kernel API. Additionally, topics are groups
of these elements that constitute an elementary operation, for instance, registry
access and modification, file manipulation, process creation and invocation.

This analogy justifies the attempt to adapt the topic modeling approach for
the malware classification problem. The general topic modeling scheme can be
represented with the following formulas:

G ∼ DP (α,H) (1)

θi | G ∼ G (2)

xj,i | θi ∼ F (θi) (3)

where parameter G (a Dirichlet distribution) controls the topics and generates
the parameter θi. Words (xj,i) are generated based on this parameter. Dirichlet
process is actually a distribution of distributions. The draws from Dirichlet
processes are probability distributions, which are inferred for the next para-
meter in the chain. This parameter controls the word distribution for single
topics. Topic modeling based on a Dirichlet process enables us to define a gen-
erative model, where each document is a mixture of a small number of topics.

426 B. Kolosnjaji et al.

It is important to note that topics are not known in advance, but are inferred
by the topic modeling methods. This enables us to uncover previously unknown
semantics from the malware execution logs. Parameters are approximately deter-
mined using variational inference and Markov Chain Monte Carlo methods [35],
as exact inference is not tractable. This also enables fast retraining in case of
need for online update of the model. Figure 2 contains a graphical model used for
topic inference, where the directed edges show the process of word generation.

Fig. 2. Graphical model for our Hier-
archical Dirichlet Process.

Topic models can be essential for
classification performance, as important
latent structure is inferred and noise can-
celing is implicitly executed by extract-
ing the important topics. However, even
more crucial is the possibility of seman-
tic interpretation. Although malware ana-
lysts are able to get a rich set of informa-
tion from the dynamic malware analysis
tools, this information needs to be further
analyzed and significant expert knowledge
is required to extract the important infor-
mation out of the logs retrieved from these
tools. Thus, it would be extremely useful
to automate this procedure and to extract
relevant data about the malware activity.
This would enable analysts to achieve their goals faster and with statistically
confident results. Therefore, we develop a more efficient alternative to the cum-
bersome deterministic manual analysis procedure. Even if the topics do not have
an obvious semantic meaning, comparing the topic structure among different
malware families can enhance the classification process and provide new knowl-
edge about the dataset in use.

Previous work demonstrated the utility of topic modeling for extracting
semantics out of kernel API call logs by using LDA, where topic parameters
are drawn out of the Dirichlet distribution [7]. Furthermore, this method was
adapted from a bag-of-words method to a new scheme that takes account of
sequential data ordering [39]. However, this approach is not scalable on large
sets of malware and online learning, and is sensitive to noisy sequences. It also
requires a predefined number of topics, which would need to be manually updated
by the malware analyst as new data is acquired. In case of an organization that
maintains its own malware dataset and receives a high amount of submissions
on a daily basis, this kind of setting may not be satisfactory.

Hierarchical Dirichlet Processes. Given the limitations of LDA, we take
a different approach, using methods that bring the required improvement to
online learning. More precisely, we utilize an adaptive method called Hierarchical
Dirichlet Process (HDP) [32]. In this method the topic distributions are also
determined by Dirichlet processes, yet there exist different processes for each
document. These processes, however, are not independent. They are drawn from

Adaptive Semantics-Aware Malware Classification 427

a prior Dirichlet process, which depends on parameters that control the growth
of topics and their distribution as the dataset grows in time:

G0 ∼ DP (α0,H) (4)

Gj | G0 ∼ DP (αj , G0) (5)

where Dirichlet processes Gj are conditioned by the prior G0.
Overall, the general setting of the topic modeling remains the same: docu-

ments belong to multiple topics and words depend on topic distributions. HDP
is an instance of nonparametric machine learning methods. As a difference from
parametric methods, like LDA, nonparametric methods are used when we want
the parameter set to change with the dataset. HDP introduces a more flexible
approach, which is also more computationally demanding. Actually, this is the
case with all the nonparametric machine learning methods. Nevertheless, there
exist modifications that trade the accuracy of the method for performance in
an online setting [36]. We use these modifications to create a scalable approach
with respect to the computational demand. Our implementation is based on the
GenSim library [26], developed for the estimation of text document similarity.

3.5 Semi-supervised Malware Classification

Fig. 3. Semi-supervised learning scheme.

Accurate malware classification is
often difficult due to lack of
confident label sources. We can
find proper signatures only for
a small subset of malware sam-
ples, even by utilizing services
such as VirusTotal. To deal with
the scarceness of labeled data,
we use semi-supervised learning,
where we influence the usual mal-
ware clustering procedure with
high-confidence labels. Figure 3 dis-
plays our semi-supervised classifi-
cation scheme. Our system unifies
advantages of topic modeling and
semi-supervised learning. To this
end, data retrieved from static and
dynamic analysis tools are run through feature extraction and forwarded to the
classification stage.

To achieve an effective semi-supervised learning model, we take two sepa-
rate approaches to classify the static and dynamic analysis results. For results
retrieved from static analysis we use label propagation. This method uses labeled
data and density-based clustering to propagate the given labels through the
dataset. The propagation of labels is conditioned by the similarity structure

428 B. Kolosnjaji et al.

between data samples. In particular, we use a regularized variant of label prop-
agation, to take account of the possible noise in labeling [42].

For dynamic analysis results we use another alternative. In a semi-supervised
setting we can use unlabeled data for initial pretraining of topic models before
using the actual labeled data. To discriminate between classes of malware, we
make use of a maximum-a-posteriori (MAP) approach. This approach is used in
machine learning very often when estimating distributions and parameters of a
model. As a result, when classifying, we assign the class label to the data that
is inferred with a highest probability.

We create a topic model for every existing class, based on the available logs of
API calls. For each new log we evaluate the likelihood that its API call sequence
would be generated from each topic model (P (D = x | y = ci)). We also estimate
independent prior probability of a certain class (P (y = ci)) by simply calculating
the share of certain class in the labeled dataset. Using the MAP approach, we
evaluate the conditional probability of a certain sample belonging to the class i:

P (y = ci | D = x) =
P (D = x | y = ci)P (y = ci)∑
i P (D = x | y = ci)P (y = ci)

(6)

After computing the conditional probabilities for all classes, we find the most
probable class by maximization:

CLASS(x) = argmax
i

(P (y = ci | D = x)) (7)

Malware sample is classified to the class to which it belongs with the highest
probability.

Once the separate classification procedures finish for the outputs of available
static and dynamic malware analysis tools, we forward the classification results
to the aggregation and postprocessing stage.

3.6 Result Aggregation and Postprocessing

Our semi-supervised learning method returns probabilities of malware belonging
to the predefined classes. These probabilities are results of separate classification
using our three data sources (i.e., PEInfo, Yara, and Cuckoo). We combine these
results to get a reliable class probability estimation. In machine learning-based
classification it is often beneficial to combine multiple data sources and different
classifiers to reduce model overfitting and use advantages of different methods
in one system [18]. This approach is called ensemble learning. Multiple methods
of various sophistication exist for combining different classifiers. We argue that,
since we do not have a large set of classifiers, there is no need for complicated
ensemble learning approaches. In case of a larger number of data sources, an
approach such as mixture of experts can be used, however, we did not notice any
advantage of this approach in our case. For our experiments we use median and
average of probability values, and majority voting of class assignments resulting
from the three data sources. By aggregating the classification results, we get

Adaptive Semantics-Aware Malware Classification 429

a more robust classifier. In fact, we combine the advantages of the static and
dynamic analysis, to get a better classification performance. The combination of
multiple views on data makes our results more reliable.

During the online classification procedure our system can detect the appear-
ance of a new cluster. This can happen in one of the following cases: (i) new
data has been put in the learning algorithm that contains a previously unknown
label, or (ii) there is a new region of high local density that is detected during
the execution of the learning algorithm. With the postprocessing algorithm, it is
determined if the new sample can be confidently assigned to one of the existing
classes, or a new class needs to be defined. Introduction of new classes can be
done automatically by tuning the machine learning model, and in addition the
new labels can be approved by a malware analyst. If we do not expect the new
classes to appear very often, we can assign this job to the analyst, who can give
a reliable estimation and help avoid possible mistakes in labeling. If indeed a
new cluster is confirmed, the algorithm must be retrained in order to include
this new fact into the machine learning model.

4 Evaluation

In this section we evaluate our approach. The extracted results prove advantages
of topic models, semi-supervised methods, and combining results of static and
dynamic malware analysis into a unified classification procedure.

Fig. 4. Samples distribution by family.

For this purpose, we took ten
recurring malware families from
our labeled dataset of 2000 mal-
ware samples. The class titles were
directly extracted from VirusTo-
tal, where we manually chose signa-
tures from multiple antivirus pro-
grams that were most prominent
in our dataset. In addition to the
labeled samples, we had 15,000
samples that we used as unlabeled,
as the results of VirusTotal did
not provide us with signatures for
them. We then divided the dataset
into training and test sets using a
variant of three-fold cross-validation. More precisely, the dataset is divided ran-
domly in three parts, where two parts are used for training and the last part for
evaluation. This division and accuracy experiment were repeated ten times and
we took the average of the results. The distribution of samples in our dataset
is mostly uniform, except for one significantly bigger and three smaller families
(see Fig. 4). However, we take this into account in cross-validation when deter-
mining the training and test set, as well as during the evaluation of our approach.

430 B. Kolosnjaji et al.

Table 1. Accuracy evaluation of LDA for different number of topics.

Family LDA for a different number of topics HDP

1(%) 5(%) 10(%) 20(%) 40(%) 80(%)

Amonetize 0.0 0.0 10.0 100.0 100.0 100.0 100.0

Somoto 0.0 0.0 0.1 30.3 20.4 30.0 99.8

Kryptik 0.0 18.0 30.0 70.0 60.0 30.5 91.5

Multiplug 0.0 57.4 80.0 30.0 40.0 69.4 80.0

Bladabindi 0.0 1.7 5.7 4.0 7.0 10.3 93.0

Eldorado 0.0 0.0 0.0 0.0 0.0 0.0 54.4

Morstar 0.0 0.0 0.0 0.0 0.0 0.0 100.0

Preloader 0.0 0.0 7.5 71.0 50.0 60.0 100.0

SProtector 100.0 100.0 100.0 100.0 100.0 100.0 100.0

SoftPulse 0.0 4.2 4.1 6.7 5.0 6.9 86.2

4.1 Topic Models

Using the training set, we created a topic model for each class using HDP.
We computed the statistical likelihood of drawing each particular sample from
the model. Based on this likelihood we classified the samples using the already
described MAP approach. Next, we executed ten cross-validation tests with a
random division into training and test set and averaged the obtained results.
We also executed the equivalent tests for LDA with different number of topics
in order to compare our work with this approach. Table 1 displays the aver-
aged results for different malware families. These results are obtained using the
supervised learning approach, however, the distribution is similar in the semi-
supervised case. The outcomes justify the use of Hierarchical Dirichlet Processes
over the Latent Dirichlet Allocation. More specifically, the classification accu-
racy is higher for most classes in case of using HDP, and in the worst case the
performance is equal. This result along with the property that the HDP can
automatically optimize the number of topics, gives us an adaptive and accurate
classification component.

An interesting aspect of using LDA is that depending on the malware family
we want to detect, we should apply different number of topics. Although the
overall results reveal a significant advantage when using a higher number of
topics on average, the correlation is not clear for all the families we tested. An
example of this is Multiplug which exhibits better detection accuracy by selecting
just ten topics, while Amonetize offers better accuracy when selecting 20 or more
topics. Unfortunately, we could not detect any samples that belong to Eldorado
and Morstar families using LDA. One possible reason is that we did not find the
optimal number of topics for these samples.

In our experiments we noticed that the topics that were results of our topic
modeling experiment often have an obvious semantic meaning. This makes our

Adaptive Semantics-Aware Malware Classification 431

Table 2. Overview of main semantically relevant topics.

Registry manipulation Memory management File manipulation Process handling

NtWriteFile VirtualAllocEx NtReadFile OpenProcess

RegOpenKeyExW VirtualQueryEx NtWriteFile ReadProcessMemory

RegCloseKey VirtualQuery NtDelayExecution WriteProcessMemory

RegEnumValueW VirtualFreeEx LdrGetProcedureAddress CloseHandle

RegQueryValueExW VirtualFree NtSetInformationFile LocalAlloc

LdrGetProcedureAddress LdrGetProcedureAddress NtCreateFile LocalFree

RegOpenKeyExA NtQueryDirectoryFile

Table 3. Comparative accuracy test using results from static and dynamic malware
analysis data, separately and combined.

Family [Cuckoo + [Yara + [PEInfo + Average(%) Median(%) Majority(%)

HDP](%) LP](%) LP](%)

Amonetize 100.0 99.6 100.0 100.0 100.0 100.0

Somoto 99.0 100.0 51.0 100.0 100.0 100.0

Kryptik 100.0 100.0 100.0 100.0 100.0 100.0

Multiplug 99.2 100.0 100.0 100.0 100.0 100.0

Bladabindi 93.2 96.6 100.0 96.6 96.6 99.0

Eldorado 56.6 80.2 83.0 84.9 86.8 81.0

Morstar 100.0 40.0 100.0 40.0 100.0 100.0

Preloader 100.0 100.0 100.0 100.0 100.0 100.0

SProtector 100.0 100.0 100.0 100.0 100.0 100.0

SoftPulse 86.1 88.8 0.0 88.8 88.8 77.8

Average 93.4 90.5 83.4 91.0 97.2 95.8

classification approach semantics-aware. Some examples of semantically mean-
ingful topics are presented in Table 2. It is worth to mention that some kernel
API calls belong to different topics simultaneously, which is a useful property
of topic models, since activities represented by topics can consist of overlapping
sets of operations.

4.2 Static and Dynamic Analysis Combination

Table 3 illustrates a comparison of classification accuracy of our three data
sources, determined by executing cross-validation with these sources separately,
using a semi-supervised procedure. More specifically, we combined on the one
hand the Cuckoo sandbox with HDP, and on the other hand Yara and PEInfo
with label propagation. It is evident from the results that even in cases with
a small number of labeled samples we can achieve a sufficient accuracy. Fur-
thermore, we notice that each separate data source is significant for the overall
performance, as none of the data sources gives maximal classification accuracy

432 B. Kolosnjaji et al.

for all classes. The maximal accuracy is, however, achieved when combining the
three data sources. All the methods of combining results give a high accuracy
for most of the families, with slight advantage for median and majority voting.
These results justify our motivation for combining multiple data sources in order
to get a better performance.

4.3 Comparing Supervised and Semi-supervised Learning

We gathered results from semi-supervised and fully supervised learning. Table 4
shows the comparison of results of both approaches, when taking median class
probability from all available data sources as classification criterion. The two
colons for semi-supervised learning represent two separate experiments that we
executed in order to evaluate the advantages and disadvantages of a partially
labeled sample set.

The first experiment for supervised and semi-supervised methods is done
using the same set of labeled examples, with the difference that in the semi-
supervised case two thirds of the labeled data are used as unlabeled. We can
notice that despite of using only a small number of labeled examples, we can get
an adequate performance in classification. This performance is provided by our
label propagation procedure, where we used the local density around the labeled
points to propagate the class affiliation through the affinity matrix.

For the second experiment we used the samples for which we do not have
antivirus labels as unlabeled samples and attempt to improve the classification
performance. This approach shows that in most classes we can obtain a marginal
improvement in the classification performance, as the unlabeled data helps in
inferring the high density regions in the dataset.

Finally, we compared our classification performance with the results from
related papers. Our results on average represent a significant improvement with
respect to the related work in terms of average accuracy.

4.4 Open World vs. Closed World

We measured the performance of our closed world experiment to an open world
situation, where not all classes are known in advance. We did this by executing
the cross-validation test, always leaving out one class from the training set. In
the test phase, we classified the samples that belonged to one of the training
classes with probability higher than 50 % into the appropriate training class. We
put the samples which did not belong to any classes with such a high probability
into the “outlier” class. Our hypothesis is that the “outlier” samples will be the
ones belonging to the class that is missing from the training set. This method
was previously used by Rieck et al. [27], where the drop in accuracy in the open
world was around 20 %. Our experiments showed that in our case, for most of the
families, the performance dropped by 10 % or less. However, our system could
not reliably detect the family Eldorado in the open setting, as the performance
drop was over 40 %. This may be due to the comparatively shorter system call
sequences, which makes the discrimination against other classes more difficult.

Adaptive Semantics-Aware Malware Classification 433

Table 4. Performance experiment with fully supervised and semi-supervised classifi-
cation models regarding the accuracy, precision, and recall.

Family Supervised(%) Semi-supervised(%)

1st Experiment 2nd Experiment

ACC PR RC ACC PR RC ACC PR RC

Amonetize 100.0 100.0 100.0 100.0 88.3 100.0 100.0 98.4 100.0

Somoto 100.0 100.0 100.0 93.6 72.2 93.3 100.0 96.8 100.0

Kryptik 100.0 100.0 100.0 100.0 86.4 100.0 100.0 100.0 100.0

Multiplug 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Bladabindi 99.4 98.1 96.0 83.5 95.4 82.9 96.6 95.8 96.6

Eldorado 75.6 26.3 86.0 31.4 98.1 31.6 86.8 98.9 86.8

Morstar 100.0 98.5 100.0 99.2 97.5 99.2 100.0 99.0 100.0

Preloader 100.0 100.0 100.0 57.1 100.0 55.4 100.0 100.0 100.0

SProtector 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

SoftPulse 64.4 75.4 87.0 49.5 51.1 50.8 88.9 86.5 88.9

Average 93.9 89.8 96.9 81.4 88.9 81.3 97.2 97.5 97.2

Rieck et al. [27] 88.0 - - - - - - - -

Dahl et al. [9] 90.5 - - - - - - - -

4.5 Time of Training

Fig. 5. Time of training.

In our last experiment we wanted to
measure the time of training of our
approach. Therefore, we executed
various number of samples and mea-
sured the time frame in which the
training was complete. Figure 5 illus-
trates the distribution of the time
it takes to retrain the topic mod-
els on arrival of new data points.
It is noticeable that training time
growth is linear, which is acceptable
in online setting, considering that
usually computational complexity of
topic models grows not only with the number of documents, but also with the
number of topics [7].

4.6 Summary of Findings

The outcomes of our experiments reveal that our methodology is adaptive, as our
topic model can deal with varying number of topics and with this outperforms the
standard LDA approach. Additionally, we show the semantic awareness of our

434 B. Kolosnjaji et al.

method by displaying topics retrieved from system call sequences. Furthermore,
we justify our approach by showing performance advantages of semi-supervised
learning and joining static and dynamic analysis results. Finally, we compare
the performance of our approach to previous works and show improvement in
classification accuracy. Overall, our approach can assist analysts by offering them
a more accurate malware classification.

5 Discussion

The experiments provide an insight into the performance of the methods used in
our classification system. Our classification accuracy experiment on topic models
shows a comparison of HDP and LDA, where HDP outperforms LDA in most
classes. Nevertheless, it is also noticeable that the overall accuracy varies between
different classes. For most of the classes the accuracy is high, yet there exist
outliers. An explanation for this would be the overall limited reliability of the
ground truth labels based on the antivirus signatures and lack of possibility of
explicit evaluation of label confidence. The results could be more reliable if a
more trustworthy source of labels was available. For instance, it would be useful
to initially perform unsupervised learning with unknown number of clusters and
in addition enhance the results with custom labeling using the analyst domain
knowledge. As a difference from work done by Xiao and Stibor [40], we use the
sequence of kernel API calls as a bag-of-words (i.e., we ignore the information
about order between the calls). This gives flexibility to our model, however,
it may reduce accuracy. A further study is needed to experimentally compare
these two approaches. Aside from the obtained accuracy of our classification,
we are able to add another feature to our approach. This feature is the ability
to extract semantics out of kernel API logs using inferred topics of Hierarchical
Dirichlet Processes. Although a minority of the extracted topics has such an
obvious semantic interpretation as in the presented examples, it can be very
useful for a malware analyst to have such an insight.

In our evaluation, we compared results of static and dynamic malware analy-
sis. While both static and dynamic analysis data were very useful for malware
classification, the combination of the two methods proves to be the best of both
worlds. Unfortunately, we had two data sources for static analysis data and only
one source of dynamic analysis results. Therefore, the utilization of more data
sources that provide additional data related to the program execution path, such
as Drakvuf [19], would enhance the inference capability of our method.

Finally, we evaluated precision and recall of our classification and compared
it with related work. Overall our system achieves a significant improvement
over the previously published work in terms of classification performance, while
retaining semantic model interpretation.

6 Related Work

This section contains the description of the research efforts that precede our
work. These efforts are mostly divided into research dedicated to (i) application

Adaptive Semantics-Aware Malware Classification 435

of machine learning methods in malware analysis and (ii) designing systems to
support the malware analysis process. Therefore we explain the evolution and
current state of those two groups of methods separately. Furthermore, we explain
how the methodology used in our approach takes into account the related papers
and builds a new approach upon this work.

6.1 Machine Learning Methods for Malware Detection

Machine learning has been used in multiple research efforts as a malware
detection and classification method. Various features that characterize pro-
gram behavior have been used as input data for the machine learning-based
procedures: system calls [37], registry accesses [16], and network packets [31].
These event sequences are analyzed using unsupervised (e.g., clustering), semi-
supervised, or supervised learning (classification) methods. Static program code
features have also been deployed for malware classification [29]. The classifi-
cation methods can be further divided into one-class anomaly detection [16],
binary classification [24], and multiclass learning [27]. One-class classification is
used in case that we want to create a model for normal behavior (benign sam-
ples) and detect malware as a deviation from that model. In binary classification
we optimize the classification boundary between benign and malicious samples.
Multiclass classification methods are able to differentiate between different—
previously known and defined—classes of malware instead or in addition to dif-
ferentiating between benign and malicious samples.

Researchers that perform malware detection, usually maintain a sample set
from different malware families with their static and behavioral patterns, and use
them as a baseline to properly classify the suspicious applications. For instance,
in the case of sequential data, automatic methods for extraction of relevant fea-
tures can be used to cope with the possibly noisy and high-dimensional data.
An example of this is given by recent application of statistical topic modeling
approaches to the classification of system call sequences [40]. This approach
could be extended by taking system call arguments as additional information
and including memory allocation patterns and other traceable operations [39].
Support vector machines with string kernels represent an another novel method-
ology, where a standard classification scheme is augmented to work robustly with
system call sequences of variable length [24]. However, most of these approaches
only consider malware detection, and do not focus on classifying malware sam-
ples into families. Another example of sequential data is the network traffic.
Towards this direction, the network traffic produced by the analyzed samples can
be classified by taking into account the frequency and length of different types
of packets or generating n-gram features out of packet payloads. As a matter of
fact, researchers have already proposed various approaches to model the network
data and design anomaly detection procedures for network infrastructures with
purpose of network security [13,20,30,41].

Previous works have considered many potential solutions for semantics-aware
malware classification and analysis, including topic modeling. However, they
have not dealt with the typical setting in malware analysis systems where a high

436 B. Kolosnjaji et al.

number of samples is acquired online and models must be updated to give an
accurate result. Therefore their methodology is only adequate in a scenario of
offline malware analysis.

6.2 Big Data Malware Analysis Systems

Since security companies get overwhelmed with hundreds of thousands of mal-
ware samples on a daily basis, the problem of malware classification can be
defined as a Big Data problem. Recently, there have been many efforts to create
Big Data platforms for malware analysis. Examples of such systems are Bina-
ryPig [14], Polonium [8], BitShred [17], and WINE [11]. BinaryPig is a system for
distributed processing of data obtained by static malware analysis, leveraging
the recent advances in tools for Big Data domain. It uses Hadoop File Sys-
tem, MapReduce, and ElasticSearch as building blocks for scalable processing
of static analysis data. Polonium is an another system for large-scale mining of
malware. It leverages graph mining approaches to build a reputation-based sys-
tem to identify malware among terabytes of anonymously submitted suspicious
files. BitShred, on the other hand, is an attempt to design and build a scalable
malware analysis system. It focuses on increasing efficiency of similarity analy-
sis with feature hashing and uses similarity information for clustering. Finally,
WINE is an approach that leverages Big Data and creates a scalable reputation-
based security intelligence system, which also includes intrusion detection for
network-based attacks.

These systems use machine learning-based technology and represent advances
in scalability of malware detection and feature extraction. However, they do
not emphasize on the development of statistical methods and do not consider
semantic interpretability of the statistical models. Machine learning models very
often need tuning and the absence of semantics can make such efforts extremely
difficult for malware analysts. It is very important for analysts to be able to
interpret the model in order to focus their efforts properly. In our approach, we
do not only consider advanced topic modeling methodology for semantics-aware
modeling, but we also take into account the scenario that a high influx of mal-
ware induces changes in the dataset and requires adaptation of the classification
model. We automate this adaptation in order to maintain topic modeling fea-
ture extraction, using the nonparametric modeling methodology. Furthermore,
our approach joins results of static and dynamic malware analysis and acknowl-
edges the case where labeled examples are scarce.

7 Conclusion

In this paper, we presented an improved semi-supervised malware classification
approach that joins the results from static and dynamic malware analysis to
give an optimal classification performance. It uses separate algorithms for clas-
sification of static and dynamic analysis results: static analysis results are classi-
fied using a semi-supervised label propagation procedure, while the results from

Adaptive Semantics-Aware Malware Classification 437

dynamic malware analysis are preprocessed by statistical topic modeling, which
uncovers the latent semantically interpretable topics that capture the important
properties of malware families. The method used for topic modeling is flexible
and offers automatic adjustment of the topic set in case of online learning. Over-
all, our nonparametric approach creates an adaptive online system for malware
classification that outperforms previous approaches.

Acknowledgments. The research was supported by the German Federal Ministry of
Education and Research under grant 16KIS0328 (IUNO) and by the Bavarian State
Ministry of Education, Science and the Arts as part of the FORSEC research associa-
tion.

References

1. The Cuckoo Sandbox. https://www.cuckoosandbox.org/
2. VirusTotal. http://www.virustotal.com
3. Alvarez, V.M.: Yara. http://plusvic.github.io/yara/
4. Anderson, B., Storlie, C., Lane, T.: Improving malware classification: bridging the

static/dynamic gap. In: Workshop on Security and Artificial Intelligence (AISec)
(2012)

5. Bailey, M., Oberheide, J., Andersen, J., Mao, Z.M., Jahanian, F., Nazario, J.:
Automated classification and analysis of internet malware. In: Kruegel, C.,
Lippmann, R., Clark, A. (eds.) RAID 2007. LNCS, vol. 4637, pp. 178–197. Springer,
Heidelberg (2007)

6. Bayer, U., Comparetti, P.M., Hlauschek, C., Kruegel, C., Kirda, E.: Scalable,
behavior-based malware clustering. In: ISOC Network and Distributed System
Security Symposium (NDSS) (2009)

7. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet allocation. J. Mach. Learn.
Res. 3, 993–1022 (2003)

8. Chau, D.H., Nachenberg, C., Wilhelm, J., Wright, A., Faloutsos, C.: Polonium:
tera-scale graph mining and inference for malware detection. In: SIAM Interna-
tional Conference on Data Mining (SDM) (2011)

9. Dahl, G.E., Stokes, J.W., Deng, L., Yu, D.: Large-scale malware classification using
random projections and neural networks. In: IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP) (2013)

10. Dumais, S.T.: Latent semantic analysis. Ann. Rev. Inf. Sci. Technol. 38(1), 188–230
(2004)

11. Dumitras, T., Shou, D.: Toward a standard benchmark for computer security
research: the Worldwide Intelligence Network Environment (WINE). In: Work-
shop on Building Analysis Datasets and Gathering Experience Returns for Security
(BADGERS) (2011)

12. Ester, M., Kriegel, H.-P., Sander, J., Xu, X.: A density-based algorithm for discov-
ering clusters in large spatial databases with noise. In: Kdd (1996)

13. Garcia-Teodoro, P., Diaz-Verdejo, J., Maciá-Fernández, G., Vázquez, E.: Anomaly-
based network intrusion detection: techniques, systems and challenges. Comput.
Secur. 28(1), 18–28 (2009)

14. Hanif, Z., Calhoun, T., Trost, J.: Binarypig: Scalable Static Binary Analysis Over
Hadoop. Black Hat, USA (2013)

https://www.cuckoosandbox.org/
http://www.virustotal.com
http://plusvic.github.io/yara/

438 B. Kolosnjaji et al.

15. Hanif, Z., Lengyel, T.K., Webster, G.D.: Internet-Scale File Analysis. Black Hat,
USA (2015)

16. Heller, K., Svore, K., Keromytis, A.D., Stolfo, S.: One class support vector
machines for detecting anomalous windows registry accesses. In: Workshop on Data
Mining for Computer Security (DMSEC) (2003)

17. Jang, J., Brumley, D., Venkataraman, S.: Bitshred: feature hashing malware for
scalable triage and semantic analysis. In: Conference on Computer and Communi-
cations Security (CCS) (2011)

18. Kuncheva, L.I.: Combining Pattern Classifiers: Methods and Algorithms. Wiley,
New York (2004)

19. Lengyel, T.K., Maresca, S., Payne, B.D., Webster, G.D., Vogl, S., Kiayias, A.:
Scalability, fidelity and stealth in the Drakvuf dynamic malware analysis system.
In: Annual Computer Security Applications Conference (ACSAC) (2014)

20. Leung, K., Leckie, C.: Unsupervised anomaly detection in network intrusion detec-
tion using clusters. In: Australasian Conference on Computer Science (2005)

21. Maxwell, K.: Maltrieve. https://github.com/krmaxwell/maltrieve
22. Newman, D., Chemudugunta, C., Smyth, P., Steyvers, M.: Analyzing entities and

topics in news articles using statistical topic models. In: Mehrotra, S., Zeng, D.D.,
Chen, H., Thuraisingham, B., Wang, F.-Y. (eds.) ISI 2006. LNCS, vol. 3975,
pp. 93–104. Springer, Heidelberg (2006)

23. Perdisci, R., U, M.C.: VAMO: towards a fully automated malware clustering valid-
ity analysis. In: Annual Computer Security Applications Conference (ACSAC)
(2012)

24. Pfoh, J., Schneider, C., Eckert, C.: Leveraging string kernels for malware detec-
tion. In: Lopez, J., Huang, X., Sandhu, R. (eds.) NSS 2013. LNCS, vol. 7873,
pp. 206–219. Springer, Heidelberg (2013)

25. Ramage, D., Hall, D., Nallapati, R., Manning, C.D.: Labeled LDA: a supervised
topic model for credit attribution in multi-labeled corpora. In: Conference on
Empirical Methods in Natural Language Processing (2009)

26. Řeh̊uřek, R., Sojka, P.: Software framework for topic modelling with large corpora.
In: Workshop on New Challenges for NLP Frameworks (2010)

27. Rieck, K., Holz, T., Willems, C., Düssel, P., Laskov, P.: Learning and classifica-
tion of malware behavior. In: Zamboni, D. (ed.) DIMVA 2008. LNCS, vol. 5137,
pp. 108–125. Springer, Heidelberg (2008)

28. Roberts, J.-M.: Virus Share. https://virusshare.com/
29. Schultz, M.G., Eskin, E., Zadok, E., Stolfo, S.J.: Data mining methods for detection

of new malicious executables. In: Symposium on Security and Privacy (2001)
30. Stringhini, G., Egele, M., Zarras, A., Holz, T., Kruegel, C., Vigna, G.: B@bel:

leveraging email delivery for spam mitigation. In: USENIX Security Symposium
(2012)

31. Tegeler, F., Fu, X., Vigna, G., Kruegel, C.: Botfinder: finding bots in network
traffic without deep packet inspection. In: International Conference on Emerging
Networking Experiments and Technologies (CoNEXT) (2012)

32. Teh, Y.W., Jordan, M.I., Beal, M.J., Blei, D.M.: Hierarchical Dirichlet processes.
J. Am. Stat. Assoc. 101(476), 1566–1581 (2006)

33. The MITRE Corporation. CRITS. https://crits.github.io/
34. VirusTotal. File Statistics. https://www.virustotal.com/en/statistics/
35. Wainwright, M.J., Jordan, M.I.: Graphical models, exponential families, and vari-

ational inference. Found. Trends Mach. Learn. 1, 1–305 (2008)

https://github.com/krmaxwell/maltrieve
https://virusshare.com/
https://crits.github.io/
https://www.virustotal.com/en/statistics/

Adaptive Semantics-Aware Malware Classification 439

36. Wang, C., Paisley, J.W., Blei, D.M.: Online variational inference for the hierar-
chical Dirichlet process. In: International Conference on Artificial Intelligence and
Statistics (2011)

37. Warrender, C., Forrest, S., Pearlmutter, B.: Detecting intrusions using system calls:
alternative data models. In: Symposium on Security and Privacy (1999)

38. Wicherski, G.: Pehash: a novel approach to fast malware clustering. In: USENIX
Workshop on Large-Scale Exploits and Emergent Threats (LEET) (2009)

39. Xiao, H., Eckert, C.: Efficient online sequence prediction with side information. In:
IEEE International Conference on Data Mining (ICDM) (2013)

40. Xiao, H., Stibor, T.: A supervised topic transition model for detecting malicious
system call sequences. In: Workshop on Knowledge Discovery, Modeling and Sim-
ulation (2011)

41. Zarras, A., Papadogiannakis, A., Gawlik, R., Holz, T.: Automated generation of
models for fast and precise detection of HTTP-based malware. In: Annual Confer-
ence on Privacy, Security and Trust (PST) (2014)

42. Zhou, D., Bousquet, O., Lal, T.N., Weston, J., Schölkopf, B.: Learning with local
and global consistency. Adv. Neural Inf. Process. Syst. 16(16), 321–328 (2004)

Author Index

Abbà, Maurizio 255
Afroz, Sadia 122
Allix, Kevin 142
Antonakakis, Manos 231, 343
Arp, Daniel 101

Bachwani, Rekha 122
Backes, Michael 207
Balzarotti, Davide 3, 186, 255
Bissyandé, Tegawendé F. 142
Böttinger, Konstantin 25
Brengel, Michael 207
Bringas, Pablo G. 186

Carra, Damiano 255
Chen, Yizheng 231
Coglio, Alessandro 37
Contag, Moritz 165

Dagon, David 231, 343

Eckert, Claudia 25, 419
Eikenberry, Jordan 37

Faizullabhoy, Riyaz 122
Farrell, Michael 231, 343
Flore, Lorenzo 3

Garmany, Behrad 322
Gawlik, Robert 322
Graziano, Mariano 3
Gruss, Daniel 279, 300

Holz, Thorsten 165, 322, 377
Hosseini, Henry 377
Huang, Ling 122
Huang, Wenyi 399
Hupperich, Thomas 377
Hurier, Médéric 142

Joseph, Anthony D. 122

Kantchelian, Alex 122
Kintis, Panagiotis 231, 343

Klein, Jacques 142
Kollenda, Benjamin 322
Kolosnjaji, Bojan 419
Koppe, Philipp 322

Lanzi, Andrea 3
Le Traon, Yves 142
Lee, Wenke 231
Lengyel, Tamas 419
Li, Wanpeng 357

Mangard, Stefan 279, 300
Maurice, Clémentine 279, 300
Miller, Brad 122
Mitchell, Chris J. 357

Nadji, Yacin 231, 343

Pastrana, Sergio 58
Pawlowski, Andre 165, 322
Peris-López, Pedro 58
Perkins, Jeff 37

Rieck, Konrad 78, 101
Rinard, Martin 37
Rossow, Christian 207

Santos, Igor 186
Seifert, Jean-Pierre 78
Shankar, Vaishaal 122
Shastry, Bhargava 78
Sidiroglou-Douskos, Stelios 37
Stokes, Jack W. 399
Suarez-Tangil, Guillermo 58

Tapiador, Juan 58
Toffalini, Flavio 255
Tschantz, Michael Carl 122
Tygar, J.D. 122

Ugarte-Pedrero, Xabier 186

Wagner, Klaus 279
Webster, George 419

Willenson, Daniel 37

Wressnegger, Christian 101

Wu, Tony 122

Yamaguchi, Fabian 78, 101
Yiu, George 122

Zarras, Apostolis 419

442 Author Index

	Preface
	Organization
	Contents
	Attacks
	Subverting Operating System Properties Through Evolutionary DKOM Attacks
	1 Introduction
	2 Evolutionary DKOM Attacks
	3 Threat Model
	4 Subverting the Scheduler
	4.1 Goal
	4.2 An Overview of the CFS Algorithm
	4.3 CFS Internals
	4.4 Scheduler E-DKOM Attack

	5 Attack Evaluation
	6 Mitigation
	6.1 Defense Mechanism Principles
	6.2 Defense Framework Architecture
	6.3 Implementation Details
	6.4 Evaluation
	6.5 False Positives and False Negatives

	7 Discussion
	7.1 Generality
	7.2 Limitations

	8 Related Work
	9 Conclusion and Future Work
	References

	DeepFuzz: Triggering Vulnerabilities Deeply Hidden in Binaries
	1 Introduction
	2 Related Work
	3 The DeepFuzz Algorithm
	3.1 Initial Seed Generation
	3.2 Concolic Execution
	3.3 Distribution of Path Probabilities
	3.4 Path Selection
	3.5 Constrained Fuzzing
	3.6 Joining the Pieces

	4 Conclusion
	References

	Defenses
	AutoRand: Automatic Keyword Randomization to Prevent Injection Attacks
	1 Introduction
	1.1 SQL Keyword Randomization
	1.2 AutoRand
	1.3 Augmented Strings
	1.4 Experimental Evaluation
	1.5 Contributions

	2 Example
	2.1 Vulnerable Code
	2.2 Automatic Hardening by AutoRand

	3 Technical Approach
	3.1 Correctness
	3.2 String Randomization
	3.3 SQL API Calls
	3.4 String Manipulations
	3.5 External API Calls
	3.6 Standard Java Library
	3.7 Extensibility

	4 Threats to Validity
	5 Experimental Evaluation
	5.1 Programs with Inserted Vulnerabilities
	5.2 SQL Injection Test Programs
	5.3 Overhead

	6 Related Work
	6.1 Manual Prevention
	6.2 Randomization
	6.3 Dynamic Tainting
	6.4 Parse Tree Structure
	6.5 Static Analysis

	7 Conclusion
	References

	AVRAND: A Software-Based Defense Against Code Reuse Attacks for AVR Embedded Devices
	1 Introduction
	2 Background
	2.1 The AVR Architecture
	2.2 Arduino Yun

	3 Code Reuse Attacks in AVR
	3.1 Assumptions and Adversarial Model
	3.2 Attack Overview
	3.3 Attack Implementation in Arduino Yun

	4 Design and Overview of AVRAND
	5 Implementation
	5.1 Preprocessing Module
	5.2 Runtime Module

	6 Discussion
	6.1 Suitability of AVRAND
	6.2 Limitations
	6.3 Overhead Incurred by AVRAND

	7 Conclusions
	References

	Towards Vulnerability Discovery Using Staged Program Analysis
	1 Introduction
	2 Background: Clang and LLVM
	2.1 Clang Static Analyzer
	2.2 LLVM Pass Infrastructure

	3 Mélange
	3.1 Analysis Utilities
	3.2 Source Analyzer
	3.3 Whole-Program Analyzer

	4 Evaluation
	4.1 Deployability
	4.2 NIST Benchmarks
	4.3 Detection of Known Vulnerabilities
	4.4 Case Studies
	4.5 Limitations

	5 Related Work
	6 Conclusion
	References

	Malware Detection
	Comprehensive Analysis and Detection of Flash-Based Malware
	1 Introduction
	2 System Overview
	3 Structural Analysis
	4 Guided Code-Execution
	4.1 Control-Flow Analysis
	4.2 Annotating Control-Flow Edges
	4.3 Path Exploration

	5 Learning-Based Detection
	6 Evaluation
	6.1 Dataset Composition
	6.2 Coverage Analysis
	6.3 Comparative Evaluation
	6.4 Temporal Evaluation

	7 Limitations
	8 Related Work
	9 Conclusions
	References

	Reviewer Integration and Performance Measurement for Malware Detection
	1 Introduction
	2 Prior Work
	3 Detector Design
	3.1 Approaches to Feature Vectorization
	3.2 Attributes of Binaries
	3.3 Training Label Harmonization and Reviewer Query Strategy
	3.4 Model Training and Integration of Reviewer Labels

	4 Dataset and Evaluation Labeling Overview
	5 Experimental Results and System Evaluation
	5.1 System Implementation
	5.2 Impact of Performance Measurement Techniques
	5.3 Detection System Evaluation

	6 Conclusion
	References

	On the Lack of Consensus in Anti-Virus Decisions: Metrics and Insights on Building Ground Truths of Android Malware
	1 Introduction
	2 Related Work
	2.1 Security Assessment Datasets
	2.2 Studies on Anti-Virus Decisions and Labels
	2.3 Experiments in Android ML-based Malware Detection

	3 Preliminaries
	3.1 Dataset of Android Apps and Antivirus
	3.2 Variations in Experimental Ground Truth Settings
	3.3 Notations and Definitions

	4 Definition of Metrics and Experiments
	4.1 Analysis of AV Decisions
	4.2 Analysis of Malware Labels

	5 Discussions
	5.1 Comparison of Ground-Truth Approaches
	5.2 Limitations and Future Work

	6 Conclusion
	References

	Evasion
	Probfuscation: An Obfuscation Approach Using Probabilistic Control Flows
	1 Introduction
	2 Technical Background
	3 Adversary Model
	4 Approach
	5 Implementation
	6 Evaluation
	6.1 Obfuscator Parameters
	6.2 Measuring Costs
	6.3 Measuring Resilience
	6.4 Measuring Potency
	6.5 Measuring Stealth

	7 Discussion
	8 Related Work
	9 Conclusion
	References

	RAMBO: Run-Time Packer Analysis with Multiple Branch Observation
	1 Introduction
	2 Approach
	2.1 General Approach
	2.2 Domain Specific Optimizations
	2.3 Heuristic to Guide the Multipath Exploration

	3 Evaluation
	3.1 Backpack
	3.2 Armadillo

	4 Discussion
	5 Related Work
	6 Conclusions
	References

	Detecting Hardware-Assisted Virtualization
	1 Introduction
	2 Background
	2.1 Hardware Virtualization
	2.2 Translation Lookaside Buffer

	3 Threat Model
	4 Timing-Based VT-x Detection
	4.1 Measuring Elapsed CPU Cycles
	4.2 Method 1: Detecting VM Exit Overhead
	4.3 Method 2: Detecting TLB Evictions
	4.4 Method 3: Stealth VM Exit Detection

	5 Evaluation
	5.1 Local Experiments
	5.2 Evasion Detection
	5.3 PlanetLab
	5.4 Sandboxes
	5.5 Stealth Sandbox
	5.6 ShellOS

	6 Discussion
	6.1 Countermeasures
	6.2 Virtualization on Target Systems
	6.3 Multi-Path Exploration
	6.4 Non-Intel Virtualization

	7 Related Work
	7.1 Virtualization Detection
	7.2 Sandboxes and Evasion

	8 Conclusion
	References

	Web Security
	Financial Lower Bounds of Online Advertising Abuse
	1 Introduction
	2 Background
	2.1 The Ad Ecosystem
	2.2 Botnets and Sinkholes
	2.3 Observing Ad-abuse in Local Networks

	3 Ad-abuse Analysis System
	3.1 System Overview
	3.2 DNS Ad-abuse Rate Module
	3.3 Spectral Expansion Module
	3.4 Reports on Ad-abuse and Financial Models

	4 Dataset Collection
	4.1 Sinkhole Datasets
	4.2 Passive DNS Datasets

	5 Analysis and Measurements
	5.1 Computing the DNS Ad-abuse Rate
	5.2 Spectral Analysis

	6 Ad-abuse Reports
	6.1 C&C Infrastructure
	6.2 Financial Analysis

	7 Discussion
	7.1 Ground Truth Behind the Financial Loss
	7.2 Ground Truth Behind TDSS/TDL4
	7.3 Smart Pricing Data for Impressions and Clicks

	8 Related Work
	9 Conclusion
	References

	Google Dorks: Analysis, Creation, and New Defenses
	1 Introduction
	2 Background and Classification
	2.1 Existing Dorks Classification
	2.2 Alternative Classification
	2.3 Existing Defenses

	3 Defeating URL-Based Dorks
	3.1 URL Obfuscation
	3.2 Delivering Obfuscated URLs
	3.3 Implementation
	3.4 Experiments and Results

	4 Word-Based Dorks
	4.1 Dork Creation
	4.2 Defense Against Word-Based Dorks

	5 Discussion
	6 Related Work
	7 Conclusion
	References

	Data Leaks
	Flush+Flush: A Fast and Stealthy Cache Attack
	1 Introduction
	2 Background
	2.1 CPU Caches
	2.2 Shared Memory
	2.3 Cache Attacks and Rowhammer

	3 The Flush+Flush Attack
	4 Detecting Cache Attacks with Hardware Performance Counters
	5 Covert Channel Comparison
	5.1 A Low-Error Cache Covert Channel Framework
	5.2 Covert Channel Implementations
	5.3 Performance Evaluation
	5.4 Detectability

	6 Side-Channel Attack on User Input
	6.1 Performance Evaluation
	6.2 Detectability

	7 Side-Channel Attack on AES with T-Tables
	7.1 Attack Implementation Using Flush+Flush
	7.2 Performance Evaluation
	7.3 Detectability

	8 Discussion
	8.1 Using clflush to Detect Cores and Cache Slices
	8.2 Countermeasures

	9 Related Work
	9.1 Detecting and Preventing Cache Attacks
	9.2 Usage of Hardware Performance Counters in Security
	9.3 Cache Covert Channels
	9.4 Side-Channel Attacks on User Inputs

	10 Conclusion
	References

	Rowhammer.js: A Remote Software-Induced Fault Attack in JavaScript
	1 Introduction
	2 Background
	2.1 DRAM
	2.2 The Rowhammer Bug
	2.3 CPU Caches
	2.4 Cache Attacks and Cache Eviction

	3 Cache Eviction Strategies
	3.1 Cache Eviction Strategy Model
	3.2 Offline Phase
	3.3 Online Phase

	4 Implementation of Eviction-Based Rowhammer
	4.1 Rowhammer in Native Code
	4.2 Rowhammer in JavaScript
	4.3 Attack Evaluation

	5 Discussion and Related Work
	5.1 Building an Exploit with Rowhammer.js
	5.2 Limitations
	5.3 Countermeasures
	5.4 Related Work

	6 Future Work
	7 Conclusion
	References

	Detile: Fine-Grained Information Leak Detection in Script Engines
	1 Introduction
	2 Technical Background
	2.1 N-Variant Systems
	2.2 Windows ASLR Internals
	2.3 WOW64 Subsystem Overview
	2.4 Internet Explorer Architecture
	2.5 Scripting Engines
	2.6 Adversarial Capabilities

	3 System Overview
	3.1 Main Concept
	3.2 Per Process Re-randomization
	3.3 Dual Process Synchronization

	4 Implementation Details
	4.1 Duplication and Re-randomization
	4.2 Synchronization
	4.3 Chakra Instrumentation
	4.4 AVM Instrumentation

	5 Evaluation
	5.1 Re-randomization of Process Modules
	5.2 Detection Engine

	6 Related Work
	7 Discussion
	8 Conclusion
	References

	Understanding the Privacy Implications of ECS
	1 Introduction
	2 Background
	2.1 DNS Basics
	2.2 Evolution of DNS with ECS

	3 Surveillance and Selective Cache Poisoning
	3.1 Surveillance
	3.2 Selective Cache Poisoning

	4 Remedies
	5 Related Work
	6 Conclusions
	References

	Authentication
	Analysing the Security of Google's Implementation of OpenID Connect
	1 Introduction
	2 OpenID Connect
	2.1 OpenID Connect Tokens
	2.2 Authentication Flows

	3 Adversary Model
	4 A Security Study
	4.1 Studying the Security of the Hybrid Server-Side Flow
	4.2 Studying the Security of the Authorization Code Flow

	5 Security Concerns over Google's Implementation of OpenID Connect
	5.1 Giving RPs the Ability to Customise the Hybrid-Server-side Flow
	5.2 No CSRF Countermeasures in the Hybrid-Server-side Flow
	5.3 Automatic Authorization Granting

	6 Recommendations
	6.1 Recommendations for RPs
	6.2 Recommendations for OPs
	6.3 Notifying Affected Parties

	7 Related Work
	8 Concluding Remarks
	References

	Leveraging Sensor Fingerprinting for Mobile Device Authentication
	1 Introduction
	2 Sensor-Based Device Authentication
	2.1 Device Registration
	2.2 Device Authentication

	3 Fingerprinting Sensors
	3.1 Data Set
	3.2 Feature Set
	3.3 Classifier
	3.4 Formalization

	4 Evaluation
	4.1 Single Sensor Tests
	4.2 Multi Sensor Tests
	4.3 Discussion

	5 Related Work
	6 Conclusion
	References

	Malware Classification
	MtNet: A Multi-Task Neural Network for Dynamic Malware Classification
	1 Introduction
	2 Deep Learning
	3 MtNet System
	4 Multi-Task Neural Malware Classification
	4.1 Random Projections
	4.2 Deep Neural Network

	5 Experimental Results
	5.1 Comparison of the Baseline and Single-Task Baseline Models
	5.2 Multi-Task Results
	5.3 Model Parameter Contributions
	5.4 Dataset Size and Deep Learning
	5.5 Training and Testing Efficiency

	6 Discussions
	7 Related Work
	8 Conclusions
	References

	Adaptive Semantics-Aware Malware Classification
	1 Introduction
	2 Background
	2.1 Topic Modeling
	2.2 Semi-supervised Learning
	2.3 Nonparametric Learning

	3 Methodology
	3.1 Experimental Environment
	3.2 Signature Clustering
	3.3 Feature Selection
	3.4 Topic Modeling Algorithms
	3.5 Semi-supervised Malware Classification
	3.6 Result Aggregation and Postprocessing

	4 Evaluation
	4.1 Topic Models
	4.2 Static and Dynamic Analysis Combination
	4.3 Comparing Supervised and Semi-supervised Learning
	4.4 Open World vs. Closed World
	4.5 Time of Training
	4.6 Summary of Findings

	5 Discussion
	6 Related Work
	6.1 Machine Learning Methods for Malware Detection
	6.2 Big Data Malware Analysis Systems

	7 Conclusion
	References

	Author Index

