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Abstract As a discipline, archaeology is poised to fully embrace both the power and
the peril of big data analysis. Our datasets are growing ever larger, especially those
generated via remote sensing and geospatial processing activities, as is the computa-
tional complexity of algorithms designed to exploit them. Analyses are quickly out-
pacing what can be done using a single processing core on a desktop computer,
leveraging off-the-shelf commercial and open source software. Our research needs are
becoming increasingly sophisticated, to the point where relying wholly on outside
experts in computer science and related fields is untenable.While the above statements
could be viewed primarily as challenges, it is better to think of them as opportunities for
archaeology to grow technologically and retain more ownership of our hardest prob-
lems. High performance computing, i.e., supercomputing, is already having an impact
on the field, but we are moving into an era that promises to put the power of the world’s
largest and fastest computers at archaeologists’ fingertips.What does the state of the art
look like? How could we use the coming power? What lines of inquiry and analysis
could we pursue once long-standing technical limitations have been removed? This
chapter will focus on the present and the future of archaeological high performance
computing, using several ongoing projects across a broad swath of the discipline as
examples of where we are now and signposts for where we are heading.

Introduction

As a discipline, archaeology is poised to fully embrace both the power and the peril
of big data analysis. Our datasets are growing ever larger, especially those gener-
ated via remote sensing and geospatial processing activities, as is the computational
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complexity of algorithms designed to exploit them. Analyses are quickly outpacing
what can be done using a single processing core on a desktop computer, leveraging
off-the-shelf commercial and open source software. Our research needs are
becoming increasingly sophisticated, to the point where relying wholly on outside
experts in computer science and related fields is untenable. While the above
statements could be viewed primarily as challenges, it is better to think of them as
opportunities for archaeology to grow technologically and retain more ownership of
our hardest problems. High performance computing, i.e., supercomputing, is
already having an impact on the field, but we are moving into an era that promises
to put the power of the world’s largest and fastest computers at archaeologists’
fingertips. What does the state of the art look like? How could we use the power
already available, much less what is coming next? What lines of inquiry and
analysis could we pursue once long-standing technical limitations have been
removed? How will fieldwork be transformed?

This chapter, after an introduction to the world of high performance computing,
will focus on the present and the future of archaeological supercomputing, using
several ongoing projects across a broad swath of the discipline as examples of
where we are now and signposts for where we are heading, concluding with some
thoughts on the art of the possible, given current and emerging technological trends.
It is hoped that the reader will come away feeling less intimidated by the idea of
using supercomputing to solve archaeological problems, and knowing that they can
and should take full advantage of the computing power available today as well as
help drive how the systems of tomorrow are designed.

The Current State of the Art for High Performance
Computing

“Supercomputing” is the widely-recognized name for what has now become a much
more varied computational landscape, driven largely by the commoditization,
democratization, and more recently, miniaturization of the necessary hardware and
software. The three trends have created, and will continue to create, opportunities
for archaeologists to generate, process, analyze, visualize, and contextualize data
more quickly, accurately, and creatively. To do so most effectively, and to better
imagine what could come next, it is important to appreciate the current state of the
art and to understand that there are resources available to scientists at multiple
levels, some of which are relatively straightforward to access and leverage. This
section will serve as a relatively non-technical primer on high performance com-
puting (the more proper term), focusing on the definition and function of a broad set
of technologies archaeologists are already using, would like to use, or may not even
know exist. To that end, it lays the foundation and establishes a frame of reference
for the illustrative use cases highlighted below and sets the stage for the subsequent
discussion on the art of the possible.
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The most fundamental concept associated with high performance computing
(HPC) is that of parallelism. In its simplest form, parallelism is the process by
which a large problem is broken up into smaller, more manageable pieces and
distributed to a large number of computers (hereafter referred to as nodes) that can
each work on their assigned piece independently. The two most common problems
encountered are (1) single case, where one larger set of calculations is run to
produce a single result, and (2) ensemble case, where multiple smaller sets of
calculations are run to produce multiple results. The latter is generally used when
exploratory research is required to understand the full behavior of an algorithm or
model, so many variations on inputs are supplied and the output is analyzed sta-
tistically to derive meaningful trends. When all of the pieces have been worked on,
the individual results are brought together to form the final output. This is the ideal
case, where little to no communication between nodes is required. There are far
more complicated cases, which is more of the norm, where nodes must update each
other on what they are doing and exchange data. There are several different ways,
with respect to both hardware and software, that parallelism is “expressed” in HPC
systems, and they are not always mutually exclusive. Each one, discussed below,
was born of a different computational need and thus will differentially apply to a
problem of interest—and may even be combined when it is advantageous to do so.
A scientist working within the HPC domain is primarily trying to figure out how to
break up a problem so that it can run most efficiently on the hardware and software
they have available (square peg in round hole) or trying to seek out the right
hardware and software to meet the requirements of their current solution (square
peg in square hole). Both avenues create challenges and opportunities. It is best to
begin with an overview of hardware, after which software will be discussed.

HPC Hardware

Modern computers, with rare exceptions, have a central processing unit (CPU) that
is made up of multiple cores. Each core is capable of executing a computational
task independently of the others, but can do so within the same workspace (system
memory), enabling each of them to easily talk to one another and exchange data
while they are working on a common problem. In this tightly-coupled arrangement,
sometimes referred to as strong parallelism, each core can be thought of as a very
efficient node. Sadly, most of today’s desktop software—especially the applications
focused on image processing and geospatial data analysis—is not written to take
advantage of multiple cores despite their widespread availability, but the situation is
slowly improving and archaeologists are beginning to benefit from the more rapid
data analysis available through tools they are already using. The size of strongly
parallel solutions, which tend to work best for problems that require a significant
amount of communication between nodes and/or for inputted data to remain whole
throughout the process, are most often limited by the number of cores and the
amount of available memory on the system. While these numbers are always
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increasing (for example, this manuscript was written on a system with 32 cores and
512 GB of RAM, which is close to the high end at present), they cannot keep pace
with the exponentially-growing size of big data problems. Larger problems are
handled one of two ways: (1) build a larger tightly-coupled system or (2) find a way
to use a more loosely-coupled approach.

Larger systems, known as Symmetric Multiprocessing (SMP) solutions, can be
thought of as gigantic workstations. They generally have hundreds or thousands of
cores that all have access to a large pool of shared memory. SMPs are purpose-built
and not very common, but for certain classes of problems that simply cannot be
solved in a loosely-coupled way, or where doing so would be prohibitively
expensive, they are the best option. For scientists who have access to such systems,
they are also a great way to test the scalability of an existing tightly-coupled
approach, i.e., the efficiency of it when a much larger amount of resources are
available and used. In some cases, simply throwing a bigger system at the problem
does not help, which is when the overall approach has to be rethought.

A special case of strong parallelism is massive parallelism, which is more
commonly referred to as hardware acceleration. Massively parallel arrangements
are the domain of General Purpose Graphics Processing Units (GPGPUs) and more
specialized devices called coprocessors. Both, but primarily GPGPUs, have revo-
lutionized HPC over the past decade. Originally designed to rapidly process data for
display on individual computers, in particular to support the video game industry,
they have been repurposed, or even purpose-built, to instead execute mathematical
operations of interest to scientists. The highest end GPGPU available today, the
NVIDIA Tesla K80, has the equivalent of 4992 cores, which is on par with what
one finds in SMP solutions, but the required hardware is the size of a small book
(Fig. 1). The smaller size, and its design legacy, imposes some very significant
restrictions on the type of problems it can solve. First, it is not a computer in its own
right—it has to be connected to a traditional computer, but more than one can
generally be connected to the same computer (an important distinction that will be
revisited below). Second, it is designed to execute a massive number of very simple
calculations that don’t depend on one another, which is what is needed for data
display. As communication requirements gradually increase, the utility of a
GPGPU, or even a coprocessor, rapidly decreases. Developing software that can
effectively run on this kind of hardware is often a laborious, expensive, frustrating,
and counter-intuitive process, but when done right, the resulting speedups are
extremely impressive. One area where archaeologists are already benefiting from
GPGPUs is in viewshed analysis, exactly the kind of problem the hardware was
designed to solve. You are in essence creating a three-dimensional environment and
determining what can be seen from a particular vantage point, which is a crucial
element of modern, immersive video games.

A loosely-coupled arrangement, sometimes referred to as weak parallelism, is
traditionally associated with the notion of a cluster, which many readers are likely
familiar with. A cluster is a collection of individual nodes that can act as a greater
whole through software-based orchestration, but the connections between them are
very tenuous and computationally expensive to use, and resources like memory are
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not shared. As such, they work best when communication is kept to a minimum. It
might be surprising to the reader, but all of the leading supercomputers in the world,
including Titan at Oak Ridge National Laboratory, employ this arrangement
(Fig. 2). Titan is composed of 18,688 nodes (16 cores and 32 GB of RAM per
node), each of which is capable of operating as an individual workstation. The
modern science (and art) of HPC is centered on how to use a system like that to its
fullest potential. Apart from ease of maintenance (nodes can be easily replaced),
one of the main advantages of loose coupling is that the solution can more easily
scale in a physical sense, i.e., nodes can be quickly added or removed as needed to
meet the requirements of a specific problem. There are two common types of loose
coupling arrangements, most often differentiated by whether or not the nodes exist
in the same physical location. When that is the case, and every effort is made to
accelerate communication between nodes through specialized hardware and soft-
ware, the arrangement is scientific. When off-the-shelf hardware and software are
used, or more importantly, the nodes are scattered across a wide geographic area
and talk to one another over the internet, the arrangement is commercial, what we
generally think of as “the cloud.” The former (think Titan) is built for absolute
speed, the latter (think Google) is built for more general purpose computing tasks
like sending email and streaming movies. An apt comparison would be that of a
sports car to a minivan: They each excel at certain tasks, and can each do what the
other is good at, but not necessarily very well. They also have very different price
tags, due to how they are designed and built. Examples of archaeologists using
large clusters are few and far between, but that is beginning to change as they begin
to explore large-scale modeling and simulation frameworks (scientific) and/or need
to process massive quantities of data using off-the-shelf software (commercial).

An increasingly common approach to problem-solving in the HPC domain is to
combine the different types of parallelism, leveraging each one for its strengths, an
arrangement known as hybrid parallelism. For example, a single case problem can

Fig. 1 GPGPUs, and related
hardware known as
coprocessors, are small
devices capable of quickly
executing massive numbers of
calculations, but they have to
be connected to a regular
computer to function.
The NVIDIA Tesla
K80 GPGPU, currently the
fastest in the world, is
pictured here. Image courtesy
of NVIDIA Corporation
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be broken down into several large chunks, each of which is passed to a strongly
parallel node on a weakly parallel system, which then further breaks down the
chunk so each of its CPU cores is working on a different sub-chunk, and some of
those cores might be passing part of their sub-chunk to one or more
locally-connected massively parallel GPGPUs for rapid analysis (because at this
point the calculations are simple). A scientist that is able to successfully harness the
available parallelism at all of these levels is akin to a symphony conductor. It
should be noted that it is not necessary, or even advantageous, to do this for every
problem. Archaeologists reconstructing three-dimensional scenes from large vol-
umes of imagery have probably taken advantage of hybrid parallelism and did not
even know it. Most desktop commercial photogrammetry software (e.g., PhotoScan
and Pix4D) can take advantage of multiple CPU cores and multiple GPGPUs, if
they are present, but the advantage does not extend beyond a single machine.

There are two additional hardware trends worth noting here, as they will be
particularly useful for archaeologists: miniaturization and specialization. Within the
past few years, innovative hardware manufacturers have found ways to shrink the
size of the components required to make a functional computer, resulting in
affordable units that are the size of candy bars (and smaller). The two most
well-known examples at present are the Raspberry Pi and the NVIDIA Jetson. Both
are smaller than a GPGPU and are full-fledged computers with no moving parts,
running regular operating system software, capable of completing a wide range of
tasks. It did not take long for curious scientists to find ways to link several of them
together to create what is essentially a desktop supercomputer that runs exactly the
same software as larger machines and, with some creativity, can harness hybrid

Fig. 2 ORNL’s Titan supercomputer, which employs weak parallelism to connect a large number
of individual computers for complex problem-solving. This is the most common arrangement for
today’s high-end scientific systems. Only a small part of Titan, currently the second-fastest
computer in the world, is pictured here

328 D.A. White



parallelism to solve problems. One of these, dubbed Tiny Titan (Fig. 3), is used at
ORNL as an instructional aid during visits by local schoolchildren, but it is capable
of doing much more and cost very little to make. Imagine being able to take a small,
lightweight, durable, cheap supercomputer with you to the field. At the other end of
the spectrum are increasingly specialized machines that are designed to solve one
type of problem extremely well, which in some ways brings HPC full circle to its
early days, when custom-built computers were the norm. The most notable example
at present is the “graph discovery” appliance built by Cray, which at every level,
from basic design and construction to the software it runs, is focused on quickly
analyzing extremely large networks, which has been a very difficult problem for
traditional HPC systems to solve due to the amount of shared memory and com-
munication required. Given that archaeologists are beginning to more seriously
focus on social network analysis, and are rapidly running into limits with respect to
the amount of data they can process, a specialized system like this could be very
helpful.

HPC Software

Hardware serves as the physical foundation layer for HPC, but there is an equally
important virtual foundation layer that is important to briefly review here: The
software that governs how the various components of the system are exposed to the
scientist, communicate with one another, and exchange data. As with the hardware

Fig. 3 ORNL’s Tiny Titan supercomputer, built from nine Raspberry Pi computers, pictured in
front of Titan for comparison. It can run many of the same applications as its larger cousin, albeit
more slowly and at a smaller scale
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discussion above, the review will begin with what can run on a single computer
(node) and build upwards and outwards from there.

For strongly parallel systems, where CPU cores and shared memory are the main
units of currency, there are several software frameworks available that make it
relatively easy for a scientist to develop a parallel application. The most popular of
them is OpenMP (http://openmp.org/wp/), but an alternative is Intel’s Threading
Building Blocks (https://www.threadingbuildingblocks.org/), also called TBB.
They are both written in C/C++, work across multiple operating systems, and enjoy
widespread support within the scientific HPC community. C/C++ is not often
considered to be an approachable language, though, so it is important to note that
similar functionality is available in many of the cross-platform languages that are
popular with archaeologists, specifically Python, R, MATLAB, IDL, Java, and
JavaScript. In many cases, all one has to do is add a small amount of new code to an
existing application to get an instantaneous boost in performance. It may not be the
largest possible boost, but it generally helps and allows you to better understand
what your application is capable of. Some languages, like MATLAB and IDL, will
automatically detect and use all available cores for certain tasks.

For massively parallel systems, where GPGPUs and coprocessors are the main
units of currency, there are two main software frameworks available, both of which
are becoming easier for scientists to use, but generally speaking require signifi-
cantly more experience to leverage to their fullest potential. The most popular one
by a large margin is CUDA (http://www.nvidia.com/object/cuda_home_new.html),
which only works with GPGPUs manufactured by NVIDIA. The alternative, which
works with all types of hardware accelerators, is OpenCL (https://www.khronos.
org/opencl/). Both are written in C/C++ (CUDA also offers a Fortran version) and
are relatively difficult to master. They each, like OpenMP and Threading Building
Blocks, enjoy widespread use within the scientific HPC community—especially
since many of the world’s largest and fastest computers have at least one GPGPU or
coprocessor attached to each node, as do miniaturized systems like Raspberry Pi
and NVIDIA Jetson. They are also widely used in the computer vision and com-
putational photogrammetry communities due to their unique ability to quickly
process imagery. As a result, many desktop image processing packages used by
archaeologists are already taking advantage of CUDA and/or OpenCL. It should be
noted that many of the archaeologist-friendly languages mentioned above do pro-
vide methods for communicating with CUDA and OpenCL, but they are primarily
limited to offering “faster” versions of specific, popular computational tasks (e.g.,
multiplying matrices, filtering images) if acceptable hardware is available on the
computer. In other words, one gives up all control, but some results may come back
faster than if no hardware acceleration was available.

For weakly parallel systems, where nodes are the main units of currency, there
are also two main software frameworks available. One is specific to scientific
systems and the other to commercial systems. Message Passing Interface, or MPI, is
the standard way nodes communicate with one another on a scientific system, and
there are several flavors available, including MPICH, MVAPICH, and Open MPI.
They are all written in C/C++ and have moderate learning curves with respect to
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picking up the basics. MapReduce, specifically the free and open source imple-
mentation of it called Hadoop (https://hadoop.apache.org/), is hugely popular
within the commercial HPC space. The paradigm was originally developed by
Google, but quickly caught on with non-scientists because it is written in Java, runs
on almost anything, and has a relatively shallow learning curve. The core concept
behind the framework is that a single problem can be broken down into smaller
pieces and distributed to several nodes (mapping), where the pieces are analyzed to
generate a small number of meaningful values (reducing), which are then aggre-
gated to create output. A very large community has built up around it, even on the
academic side, but interestingly enough, Google has already moved on to some-
thing else. MPI and MapReduce each have strengths and weaknesses, and there are
passionate supporters on both sides, but at a higher level, while they share the basic
concept of passing information between nodes, MapReduce performs only a subset
of what MPI is capable of—but it is a very useful subset for a wide variety of
relatively simple problems that require quickly processing a large amount of data
and for which it is possible for each node to work independently. It is possible to be
very creative in using Hadoop to solve far more complex problems, but there is a lot
of overhead, and some risk, involved in doing so. Unlike MPI, which is tied to a
specific system, it is also capable of using networked nodes that are scattered across
a wide geographic region (i.e., the cloud) and most commercial cloud vendors
already support it. It is at a distinct disadvantage compared to MPI when it comes to
hybrid parallelism, though. For example, a single node with multiple CPU cores is
generally treated as multiple single-core nodes in MapReduce, greatly limiting the
potential to break down a large problem even further or leverage the strengths of all
available hardware. Again, archaeologist-friendly languages like Python and R
provide ways for scientists to quickly and easily tackle big data problems on weakly
parallel systems, especially in the area of statistical analysis, by leveraging MPI or
Hadoop behind the scenes if either framework is present, but one loses a great deal
of control over how that happens. Lower-level access, where one can more fully
control how nodes communicate with one another, is also available, but it does
require the programmer to do a lot more work to manage the entire process.

As a footnote to the above discussions on hardware and software, the line
between weakly parallel scientific and commercial HPC systems has started to blur
in the past few years. Scientific HPC researchers are finding ways to run Hadoop
efficiently on their systems so that they do not have to rewrite useful software and
commercial HPC providers are teaming up with those researchers to find ways to
run MPI-based scientific applications in the cloud. There is a price to pay in terms
of performance when going either of those directions, but the end results are that
(1) software that is easier to write is becoming easier to run on large supercomputers
that already exist, lowering the barrier to entry for archaeologists who might already
have access to those kinds of systems through their home institutions, and (2) it is
becoming possible to temporarily and inexpensively build a traditional scientific
supercomputer whose nodes could exist all over the world, when the need arises.

At this point in the discussion, the reader’s head is most likely spinning, given
the wide array of available hardware and software options that vary substantially
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with respect to availability and usability. Table 1 provides a summary of the
software paradigms mentioned above, organized by hardware paradigm, and also
indicates which ones can be accessed through several archaeologist-friendly lan-
guages (and at what level). The take home message for the reader should be that
there are several levels at which HPC can be applied to archaeological problems,
and those levels can be initially explored easily through languages like Python and
R. When more sophisticated control is required, or a problem outgrows
locally-available computing resources, more complicated frameworks do exist that
can help, but finding the right one(s) to use and exploiting them to their fullest
extent may require teaming up with a computer scientist.

Available Resources Beyond the Desktop

There is a wide array of HPC hardware and software resources available to
archaeologists, some of which might be free or very low cost to use—if one knows
who to talk to and what questions to ask.

On the scientific side, the prime example is the National Science Foundation’s
Extreme Science and Engineering Discovery Environment (https://www.xsede.org/
), also known as XSEDE. Scientists can apply for computing grants, ranging from
small seed projects that test out ideas to large projects that might consume a
significant amount of resources, and the program has several machines distributed
around the country that specialize in different aspects of HPC. Before a large project
grant is awarded, the scientists submitting it must document their application’s
performance on several systems of increasing size and complexity and thoroughly
justify why one of the NSF’s largest machines is required. No direct funding is
awarded at any level. Instead, grantees are given time allocations that roughly
equate to the number of hours a single CPU core can be used. So, for example, if a
grant is awarded for 100,000 h on a system with 100,000 CPU cores (Titan has
almost 300,000), a scientist could theoretically use up their entire allotment in an
hour if they ran an application such that it requested and used all available
resources. Generally speaking, multiple projects are running on large systems at the
same time, so it is very rare to have access to all of it, but it is something that should
be kept in mind.

Other countries with robust scientific research programs have similar grant ini-
tiatives, as do most universities. In almost all cases, both during the application
process and after a grant is awarded, the scientists are paired with one or more
technical support liaisons whose job may include translating algorithms so that they
can run on the requested system—especially when the scientists come from a
non-traditional computing discipline like archaeology. It is important to note that as
of the time this chapter is being written, social science is still considered a novel
focus area for scientific HPC, so there is great interest from that community and
many opportunities to find support for little or no cost.
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The situation on the commercial side is more heterogeneous, given that the
suppliers of available computing resources are focused on making a profit. The
three largest are Amazon Elastic Compute Cloud (http://aws.amazon.com/ec2/),
Microsoft Azure (http://azure.microsoft.com/en-us/), and Google Compute Engine
(https://cloud.google.com/compute/). All of them, as noted above, support Hadoop,
but support for MPI is minimal to nonexistent. For scientists working with satellite
imagery and derived products, there are two additional options worth considering:
Google Earth Engine (https://earthengine.google.org/), which is focused on ana-
lyzing coarse-grained data produced by sensors like Landsat and MODIS, and
DigitalGlobe’s Geospatial Big Data platform (https://www.digitalglobe.com/),
which at present is focused on analyzing the fine-grained data produced by their
own sensors. In both cases, the user can access data stored in the cloud and analyze
it in place, which can be very fast and convenient. The simplest usage option in this
for-profit environment is to pay for the compute time you need, but that can quickly
deplete project funds, even when the expense is built into a traditional research
grant—especially if you underestimate your project’s resource requirements. Most
companies have nonprofit arms that award time grants that are similar to those
available on the scientific side of HPC, but the biggest differences between the two
are that the awards tend to be a lot smaller and, more importantly, you are largely
on your own to figure out how to use those resources to solve your problem.

Archaeological Supercomputing: Illustrative Use Cases

The goal of this section is to highlight several active research areas within ar-
chaeology that have benefitted from, or could definitely benefit from, the use of
HPC hardware and software as described above. Specific projects will be discussed
for each one to give the reader an idea of what has been attempted, where successes
were achieved, and where challenges still remain. In other words, this is a tour of
the state of art in archaeological supercomputing. To that end, the emphasis will be
on what the researchers did, not what they specifically discovered. As a discipline,
we are only beginning to take advantage of available resources, altering our
thinking about the scale and scope of the questions we can ask and the problems we
can solve. Once the tour is complete, this chapter will conclude with a discussion of
the art of the possible, i.e., thoughts on where we can go from here.

Four areas will be highlighted here: landscape recording and reconstruction,
terrain analysis, social network analysis, and complex adaptive systems. The
examples of each discussed below do not, and cannot, cover the entire breadth and
depth of archaeological supercomputing. They do, however, represent a reasonable
cross-section of computationally intense problem solving and touch upon many
topics of current interest to the discipline. One thread that ties all of them together is
their geospatial focus. While that is likely not surprising to the reader, it is
important to point out.
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Landscape Recording and Reconstruction

The processing of capturing accurate, detailed three-dimensional information at the
feature, site, and regional levels has undergone a revolution over the past decade.
While traditional survey methods are still widely used, active scanning technologies
like LIDAR and passive methods like photogrammetry-based Structure from
Motion (SfM) are starting to play integral roles in most field projects (Opitz and
Cowley 2013). Each is capable of producing massive numbers of precise point
measurements, on the order of billions and trillions, that can be used to create
models of the environment that can be analyzed and visualized in a wide variety of
ways, a process that often involves fusing imagery, often collected simultaneously,
to make the results more realistic-looking and to provide more quantitative depth.
While the analytical and visual techniques employed are generally not novel,
working with that much data is definitely a new frontier for archaeology, but has
been explored at great lengths within the established HPC community—especially
on the scientific side. Desktop software designed to exploit point clouds, as they are
called, quickly breaks down at that scale. To make the situation even more chal-
lenging, archaeologists are working at multiple levels, from documenting excava-
tions at individual sites to scanning huge swaths of jungle.

The two most noteworthy large-scale landscape recording LIDAR projects in
recent years, ones that have pushed the boundaries of the discipline, are centered on
the site of Caracol in Belize and Angkor Wat in Cambodia. Over two collection
campaigns spanning several years, Arlen and Diane Chase have collected LIDAR
data for more than 1200 km2 of the triple-canopied Belizean rainforest, a region
that they have been painstakingly, and slowly, exploring via traditional pedestrian
survey for three decades (Chase et al. 2012, 2014). The resulting point cloud,
consisting of trillions of points, required a great deal of trial-and-error processing
via specialized software in order to remove the trees and underlying vegetation that
was obscuring features of archaeological interest, ranging from agricultural terraces
to roads and household groups. The result, even though far from perfect, was an
incredibly detailed bare earth digital elevation model that could be run through
traditional GIS software to generate standard products like shaded relief maps and
hydrological flow models. They have also, through a hybrid parallelized application
provided by the author of this chapter, created a Sky-View Factor map for the entire
region, which is a substantial improvement over shaded relief due to its
omni-directionality (Zakšek et al. 2011), as can be seen in Fig. 4. Not satisfied with
stopping there, the Chases are now embarking on the creation of an automated
framework for classifying features of interest in the terrain data to make map
creation, and subsequent interpretation, possible for the entire region. Doing so
manually would require many years and a substantial amount of funding, but the
machine-learning-based automated approach carries a cost as well: required com-
puting power. It simply cannot be done within a desktop environment. Damian
Evans has faced similar survey challenges in Cambodia and was able to reveal a
much larger, better organized, and more varied landscape surrounding Angkor Wat
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than anyone anticipated (Evans et al. 2013). The data collected for that project
included next-generation full waveform LIDAR, but the computational require-
ments for fully exploiting it far outstrip the capacities of all but the largest com-
puters in the world, so only a traditional point cloud was provided by the vendor.
Full waveform, already shown to be valuable to archaeologists who are attempting
to produce more accurate bare earth models in challenging terrain (Doneus et al.
2008; Lasaponara et al. 2011), will become more common in the next decade. What
both projects clearly demonstrate is that this is just the beginning. LIDAR tech-
nology, deployed via manned aircraft and drones, is quickly dropping in price and it
is only a matter of time before it is a mainstay for any field project.

Landscapes come in many sizes, though, and the challenges being faced by those
working at the regional level are faced by those working at the individual site level,
too. LIDAR data can be collected using a sensor mounted on a tripod, and can
produce point counts of a similar volume, but what is far more practical for most
projects on a budget is to use SfM (Structure from Motion) to record individual site
features and, when possible, every aspect of an excavation (Green et al. 2014; Opitz
and Cowley 2013; Remondino 2011). SfM uses specialized photogrammetry
software and a large number of images of an object, taken from different per-
spectives, to reconstruct that object’s three-dimensional characteristics and even
build immersive environments. It requires a great deal of computing power if one
wants the results for a small area quickly, or to do a large area at all. For an
individual site, running the software on a desktop computer, which is common for
archaeologists working with true color or thermal imagery collected by a low-flying
drone to create digital elevation models and orthophotos, is usually sufficient
(Casana et al. 2014). However, what happens when your area of interest is much

Fig. 4 High spatial resolution LIDAR data from Caracol, Belize, visualized using a traditional
shaded relief method (left) and an inverted version of a more computationally intensive method
known as Sky-View Factor (right). Note how many more potential features of interest are visible
in the latter image
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larger? The Center for Advanced Spatial Technologies at the University of
Arkansas has experimented with running PhotoScan on their institutional scientific
cluster in an ad hoc hybrid parallel framework, with mixed results, but the approach
shows a lot of promise. As with the LIDAR examples discussed above, the amount
of three-dimensional data being collected, and associated imagery, is only going to
increase. In light of how inexpensive it is to produce mass quantities of photos, and
how affordable handheld active scanners like Google’s Project Tango (https://www.
google.com/atap/project-tango/) are quickly coming to market, we will all be
drowning in useful, multidimensional data. We have mastered many of the ana-
lytical and visual techniques we want to use through existing software, but there is a
huge gap between where that software and expertise ends and where we want to
(and need to) be as a discipline.

A special case of recording and reconstruction worth mentioning here is the
CORONA Atlas of the Middle East (http://corona.cast.uark.edu/), a multi-year
project that was originally designed to recreate the landscape of the Fertile Crescent
during the time when now-declassified spy satellites collected imagery over the
entire region (Casana and Cothren 2013). In many cases, sites visible in those
images no longer exist, destroyed through processes as diverse as agricultural
expansion, urban sprawl, and armed conflict. Working with the imagery is extre-
mely difficult, but in partnership with a photogrammetrist, archaeologists were able
to properly geolocate a large number of historical stereo pairs, which can now be
publicly accessed and used to produce orthophotos and terrain models using the
techniques mentioned above. Creating those usable images required a hybrid par-
allel computing framework that leveraged GPGPUs, where possible. There is a
great deal more the authors want to do with the Atlas, including an expansion into
new regions and creating an automated process for detecting unrecorded sites, but
recording damage at known sites has become a more pressing focus (Casana 2014;
Casana and Panahipour 2014), at least in the short term.

Terrain Analysis

Terrain analysis, specifically the extraction of meaningful information from ana-
lyzing digital elevation models, has been a staple of archaeological GIS for at least
two decades. The most common products generated are slope and shaded relief
(mentioned above), both of which are relatively fast to calculate and are relatively
easy to move into HPC environments because the mathematical operations required
are embarrassingly parallel, as in they can map well into strong, weak, or even
hybrid parallel frameworks because each one is completely independent and not
very complex. This is also the case for Sky-View Factor, but that approach does
require more time to compute than the others. There are three types of analysis that
are far from embarrassingly parallel, though, and they are growing in significance
for archaeologists who are interested in how things (people, water, ideas, social
connections, goods, etc.) flow across landscapes. They are focused on watershed,
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peoplesheds, and viewsheds. It should be noted that all three are of interest to the
researchers recording and reconstructing landscapes in the ways discussed in the
previous section, in particular those struggling with how to effectively process large
datasets without sacrificing fidelity.

The first is hydrological flow modeling, which has been used by archaeologists
for many years, but requires a significant amount of computing power to execute
and has been limited to the desktop environment, so regions of interest have
remained somewhat small. A given terrain model is analyzed to find all high points
from which will always flow downhill. Water is placed in those locations and the
flow to all possible low points is modeled, after which a virtual stream network is
extracted and its components are classified by rate of flow, creating a “realistic”
representation of local watersheds along the way. While this can be done in tra-
ditional GIS software, that software cannot handle the size of landscapes that are
now of interest to archaeologists, where “size” refers to how much data one has, not
its physical geographic extents. Work has been done in the HPC domain to solve
this problem, though, so archaeologists are encouraged to use tools like TauDEM
(http://hydrology.usu.edu/taudem/taudem5/index.html), which leverages MPI and
can be accessed through an ArcGIS extension, if needed.

The second is least cost analysis. What if one is interested in modeling how
people, not water, flow across landscapes? Traditional GIS software allows for the
generation of a small number of least cost paths across relatively small landscapes
(it suffers the same technical limitations as hydrological analysis), but that is rarely
the scale at which archaeologists are thinking about connections between, and travel
to, locations of interest within a region. What if you are not sure where travelers are
coming from or going to, but instead want a more general sense of how a landscape
might channel movement, akin to water flow? The only feasible way to answer
either of those questions, especially when one is working with a very large land-
scape, is to use some form of HPC. The From Everywhere To Everywhere (FETE)
project, initially focused on the state of Oaxaca in Mexico, is doing just that (White
and Barber 2012). The software written for FETE is capable of using strong par-
allelism on a desktop or hybrid parallelism on a cluster to quickly generate tens to
hundreds of millions of theoretical travel routes across a region, which are then
aggregated into a map that indicates the rate of people-flow, creating something
akin to a “peopleshed.” If locations of interest are known, they can be used, but it
starts with the assumption of no a priori knowledge and instead samples terrain to
build up an understanding of how it directs movement. The more samples
requested, the more complex the overall set of calculations. Figure 5, where all of
Mesoamerica has been analyzed at relatively high spatial resolution to highlight
potential pedestrian trade routes across the entire region, demonstrates some of
what can be done with the approach. It is somewhat reminiscent of a circulatory
system, which makes sense.

The third is viewshed analysis, which like the previous two, can and is often
done to a limited extent with GIS software packages. The traditional approach is to
pick a small number of points of interest, specify a visibility extent, and generate a
map of what can be seen from which points. Also like the previous two, calculating
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a viewshed is computationally expensive, but the end result is extremely useful. As
early as 2003, archaeologists began to hit a substantial computational wall with
respect to viewshed analysis, expressing an interest in producing two types of
products: aggregate viewsheds, where results are built up in a fashion similar to
FETE through directed or systematic sampling, and total viewsheds, where results
are built up for every single cell in the supplied elevation model (Llobera 2003).
Figure 6 shows an example of an aggregate viewshed, created for a large region in
the North American Southwest using a massively parallelized algorithm running on
a GPGPU. In either approach, the main goal is to highlight prominent features on a
landscape through sheer computational brute force, which requires HPC. To date,
that brute force has been expressed most elegantly through the visual prominence
research of Bernardini, who was interested in finding out which communities on a
landscape could see the same prominent features and might then be considered part
of the same “sight communities” (Bernardini et al. 2013; Bernardini and Peeples
2015), which could possibly share other things in common as well—despite great
distances between them. Creating the baseline visual prominence map, derived from
skylines extracted from viewsheds, involved deploying traditional GIS software in a
weak parallel arrangement in a commercial-style cloud, a process that required a
month to complete due to the inefficient, single-core nature of the software. Work is
ongoing to translate the algorithms so that they can run within a hybrid parallel
framework and leverage GPGPUs for the viewshed calculations, leveraging con-
cepts developed by the broader Geographic Information Science community (Zhao
et al. 2013). When complete, the anticipated speedup, and the overall extent of a
region that can be analyzed, will be significant.

Fig. 5 Theoretical, terrain-based pedestrian trade routes throughout all of Mesoamerica,
generated at relatively high spatial resolution using the FETE HPC application. Hundreds of
millions of least cost routes were required to create the map. Green routes are high traffic, yellow
are higher traffic, and red are highest traffic
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Fig. 6 An aggregate viewshed model for the entire Chaco regional system, which spans
158,000 km2 in the North American Southwest. Blue areas are the least visible, red areas the most
visible. Hundreds of thousands of viewshed analyses were executed using a GPGPU at regular
spatial intervals, and then consolidated, to produce the output
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Social Network Analysis

Social network analysis (SNA) has only recently been embraced by archaeologists,
but the broader quantitative social science community has been exploring its utility
for almost fifteen years (Borgatti et al. 2009) and it is an integral underpinning of
Silicon-Valley-based social media outlets like Facebook and Twitter.
Archaeologists have been able to benefit from those earlier explorations, as well as
more recent research within the commercial sector, translating some of the core
methods so that they have meaning within our discipline. At its heart, SNA is graph
theory, which for the purposes of this discussion is a branch of mathematics and
computer science concerned with how entities are connected to one another and
how information flows between them. Given that archaeologists are interested in the
flow of ideas, goods, and people between discrete locations, for example, using
SNA would appear to be a natural fit for the discipline. The most substantial and
ambitious efforts to date have come out of the Southwest Social Networks Project,
which is examining community interactions (via a large standardized ceramics and
architecture database) across space and time in the North American Southwest
(Mills et al. 2013, 2015). Where their research, and ultimately all SNA projects, run
into issues is when their graphs get so large that they cannot be processed on a
single workstation or, if they can be processed, doing so requires a great deal of
time. That is becoming increasingly common. As mentioned above, graph com-
puting is a challenging problem, even for HPC. Many advances have been made,
including the development of specialized computers and open source software
packages like GraphLab and GoldenOrb, the latter of which is based on another
Google standard named Pregel, but none of these are particularly easy for
archaeologists to use at present. Where the situation becomes even more interesting
is when SNA is combined with one or more of the terrain analysis techniques
discussed above (Bernardini and Peeples 2015). As the reader has seen, each one is
challenging on its own, but the results are highly complementary because they each
speak to a different aspect of flow across a landscape. The use of SNA, in particular
the combining of it with other more well-established quantitative methods, will
continue to grow in the coming years and eventually become a common approach
within the discipline. Making it a practical one will take time, though.

Complex Adaptive Systems

Modeling and simulating complex adaptive systems, like SNA, has quickly moved
from a niche research space to one that is being more fully embraced by archae-
ologists as established projects have published their findings and clearly demon-
strated its utility. The software required has also become much easier to use, with
two packages being the most prominent at the time of writing: NetLogo (https://ccl.
northwestern.edu/netlogo/) and Repast Simphony (http://repast.sourceforge.net/).
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Both make it relatively easy to create what are known as agent-based models
(ABMs), where complex (and nonlinear) interactions between people can be sim-
ulated over varying amounts of time and space. The most well-known ABM effort
in archaeology to date is the Village Ecodynamics Project (VEP), a multi-year effort
focused on understanding the formation and eventual abandonment of villages in
the Mesa Verde Region of the North American Southwest (Kohler and van der
Leeuw 2007; Kohler and Varien 2012). ABMs are by far the most computationally
demanding entities discussed in this chapter. Communication between all of the
elements of a model is required, so as the model scales to larger numbers of people
and/or larger or more fine-grained space-time contexts, desktop software solutions
quickly break down. NetLogo, by its own admission, is designed to be an educa-
tional tool, not a production-level solution, so models must be kept small. Repast
Simphony can operate at the production level, but even it runs into technical
limitations as a model grows in size. VEP has run into several issues related to
computing capacity, which has constrained their ability to look at more regions at
great levels of spatial and temporal detail. This is a common problem for archae-
ologists working with ABMs, who are generally interested in exploring the inter-
actions of many people in very detailed ways. One solution is available at present,
which is to employ an HPC-enabled version of Repast, unsurprisingly called
Repast HPC (http://repast.sourceforge.net/repast_hpc.html). One archaeologist has
already attempted to use Repast HPC to explore an entire Hohokam irrigation
system in southern Arizona and the results to date are promising (Murphy 2012). As
with many of the technologies discussed above, there is a steep learning curve
associated with the framework, but the hope is that it will become more accessible
in the coming years because the disciplinary need is definitely present.

Concluding Thoughts: The Art of the Possible

Roughly speaking, there has been a trillion-fold increase in computing power since
1956 (for more details, see http://pages.experts-exchange.com/processing-power-
compared/). To put that increase in perspective, the newly-released Apple Watch is
on par with a Cray-2 from 1985, which means we can now walk around with a
thirty-year-old supercomputer on our wrist, one that can connect to a much deeper
pool of computing power via the internet. Smartphones are even more powerful
(fifteen to twenty times greater). Where will computing power be in thirty years?
Will we be able to walk around with the equivalent of Titan on our wrists? What
can archaeologists possibly do with that much power, given that we take so little
advantage of what is already available to us on the scientific and commercial sides?
Granted, it is not necessarily easy to use what is available today, but it is hoped that
the survey provided above will open new doors for archaeologists and help them
connect with the right technical resources who can help them, with the ultimate goal
being empowered archaeologists, fluent in the languages of computer science,
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helping themselves. We should, in the end, completely own our problems and their
solutions.

A more important question to ask is this: If unlimited computing power was
available, how would archaeologists interact with that technology, what questions
could they ask, and what problems could they solve? As archaeologists broaden
their regions of interest and/or examine smaller areas at increasingly finer levels of
detail, with respect to both space and time, the amount, variety, and complexity of
the data they must work with grows exponentially, which means that HPC will
inevitably become a deeply integrated and transformative element of the discipline,
much in the same way as radiocarbon dating and LIDAR/SfM. What would that
look like?

A natural place to start would be the “grand challenge” topics proposed by
Kintigh et al. in PNAS (2014), topics that until very recently could not be realis-
tically explored at a global scale due to data sparsity, lack of sufficient technical
expertise, and lack of available computing power:

• Emergence, communities, and complexity
• Resilience, persistence, transformation, and collapse
• Movement, mobility, and migration
• Cognition, behavior, and identity
• Human-environment interactions

Beneath each of these general topics are multiple questions and the reader is
encouraged to consult the article for more detailed information (Kintigh et al. 2014).
Archaeologists have attempted to address these topics in relatively small, focused
ways over the past several decades, but momentum has built up recently to address
them in a cross-cultural way that incorporates as much space and time as the extant
archaeological record will allow. The recent work by Kohler on the spatially
variable Neolithic Demographic Transition in the North American Southwest is an
excellent example of this trend (Kohler and Reese 2014). That is not just a big data
problem, it is a massive data problem, one that is fraught with peril due to the
fragmented and inconsistent nature of global archaeological datasets. Two initia-
tives are taking the first steps towards creating a consolidated archaeological
database for the world: the Digital Archaeological Record (http://core.tdar.org/),
also known as tDAR, which is focused on archiving all types of critical archaeo-
logical data, from site reports to datasets, and the Digital Index of North American
Archaeology (http://ux.opencontext.org/blog/archaeology-site-data/), also known as
DINAA, which is focused on creating interoperability models between archaeo-
logical site databases, thus enabling analysis at larger scales and finer spatiotem-
poral resolutions. Between the two, assuming enough compute power is present,
archaeologists can now ask regional and even continental-level questions in a way
that was not possible previously. Whether tDAR and DINAA specifically persist is
not really the point here: consolidated archaeological databases are the future and
will enable researchers to finally, after centuries of trying, ask the really big
questions in a quantitatively defensible way (Kintigh 2006). It is important to note,
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however, that those topics are just a subset of a much richer tapestry of “big
questions” that HPC and the data analytics it supports, in the hands of archaeolo-
gists, can address.

Putting aside grand challenges, there are practical areas where
increasingly-available and increasingly-accessible HPC can and should transform
the discipline. They are summarized here as a series of desires, something all
archaeologists should want: everything global, everything detailed, everything
mobile, everything fast, and everything smart.

What is meant by everything global is the desire to have the world’s archaeo-
logical knowledge base available at one’s fingertips for analysis, visualization, and
contextualization, no matter the location, with the ability to contribute back to it in
real time. Repositories like tDAR and DINAA are an excellent start, but the broader
knowledge base should include the entire breadth and depth of the discipline. Given
how compute power and storage capacities continue to rapidly increase, this is an
achievable goal.

What is meant by everything detailed is the desire to have fine-grained spa-
tiotemporal (four-dimensional) models of archaeological features, sites, regions,
cultures, continents, and even the entire world. The standard can and should be the
digital capture of archaeological information in multiple dimensions and the ability
to immerse oneself in it at multiple scales, from virtually exploring the intricacies of
an individual artifact to experience a reconstruction of an ancient city, complete
with people. More nuanced reconstructions based on existing data is one path, but
another is to more fully embrace the wide array of options now available for
recording data in the field, not the least of which are smartphones, drones,
Microsoft Kinect, and laser scanners. A logical extension of this desire would be the
ability to test out hypotheses in virtual environments, seeing how events might play
out under varying circumstances over large expanses of space and/or time. Many of
the foundational technologies, including compute power, are already available to
reach this goal, but the discipline (like so many others) currently lacks the technical
expertise and resources to take full advantage of it. As costs continue to drop, and
technological barriers continue to fall, the situation will greatly improve.

What is meant by everything mobile and everything fast is the desire to have
HPC resources available at one’s fingertips, regardless of location, as quickly as
possible (at the speed of research). That means being able to collect and analyze
mass quantities of data in the field, perhaps in a disconnected fashion (no internet
access), including accurate real-time recording and analysis of excavations by
multiple sensors (terrestrial and airborne) and being able to use augmented reality
displays while one works. This mobility and speed should extend to the lab envi-
ronment as well.

Lastly, what is meant by everything smart is the desire to have the equivalent of
IBM’s Watson for archaeology. Artificial intelligence research is currently under-
going a renaissance and human-trained systems like Watson are now able, in fields
like medicine, to digest vast storehouses of information, find non-obvious con-
nections between elements, and make suggestions to researchers, in close to real
time. By connecting a system with this kind of potential to others that address the
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previous four desires, archaeologists will be able to explore the past in ways that we
cannot even possibly imagine.

At the center of this new type of exploration are archaeologists who are not just
passive recipients of technologies and methods developed by others. We can, and
should, harness the potential of HPC for ourselves. This chapter, only the latest step
in that direction, has introduced the reader to the current landscape of HPC, how to
take advantage of it, and some of what archaeologists have already attempted. It is
very exciting to think of what could happen next.
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