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Abstract. In a computer program, basic functionalities may be imple-
mented using bit-wise operations. To formally specify the expected
behavior of such a low-level program, it is desirable that the specification
should be at a more abstract level. Formally proving that low-level code
conforms to a higher-level specification is challenging, because of the gap
between the different levels of abstraction. We address this challenge by
designing a rich formal theory of fixed-sized bit vectors, which on the one
hand allows a user to write abstract specifications close to the human—
or mathematical—level of thinking, while on the other hand permits a
close connection to decision procedures and tools for bit vectors, as they
exist in the context of the Satisfiability Modulo Theory framework. This
approach is implemented in the Why3 environment for deductive pro-
gram verification, and also in its front-end environment SPARK for the
development of safety-critical Ada programs. We report on several case
studies used to validate our approach.

1 Introduction

It is quite common in computer programs that some basic functionality is imple-
mented, for efficiency reasons, using bit-wise operations. There is even a famous
book, Hacker’s delight [24], which is dedicated only to this kind of smart and
efficient code.

An extreme example is the following 2-line C program (a so-called “signature
program” designed by Marcel van Kervinc, http://www.iwriteiam.nl/SigProgC.
html).

t(a,b,c){int d=0,e=a&~b&~c,f=1;if(a)for(f=0;d=(e-=d)&-e;f+=t(a-d,(b+d)*2,(

c+d)/2));return f;}main(q){scanf("%d",&q);printf("%d\n",t(~(~0<<q),0,0));}

It reads an integer n and prints another integer f(n). Assuming n is smaller than
the machine word size in bits (say 32), then f(n) appears to be the number of
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solutions to the n-queens problem: the number of ways of placing n queens on a
n×n chessboard so that they do not threaten each other. Even more remarkable,
this program implements the most efficient algorithm known so far to solve this
problem.

Solving the n-queens problem was used in the past as a challenge for deduc-
tive program verification. The challenge is to attach to such code a formal spec-
ification, expressing its expected behavior at an abstract mathematical level
(i.e. expressing that it really computes the number of solutions to the n-queens
problem), and to prove formally that the code respects this specification. The
solutions presented by Filliâtre [15], and other authors for a simplified version
computing only the first solution [18], considered more abstract implementations,
that do not operate directly on bits.

Deductive program verification typically proceeds by generating, from both
the code and the formal specification, a set of logic formulas. These are called
verification conditions because if one proves they are all tautologies, then the
program is guaranteed to respect its specification. In program verification envi-
ronments like Dafny [19] and Why3 [7], verification conditions are discharged
using theorem provers, in particular those of the Satisfiability Modulo Theories
(SMT) family such as Alt-Ergo [6], CVC4 [3], and Z3 [22]. The SMT approach
is very promising for one who seeks to verify programs operating at the level of
bits, because, in this context, theories for fixed-size bit vectors have been investi-
gated for quite a long time and efficient decision procedures are known [4,10,12].
The SMT-LIB international initiative (http://smtlib.cs.uiowa.edu/) aims at pro-
viding standard languages and descriptions of theories for interacting with SMT
solvers. SMT-LIB provides a fairly rich standard theory for fixed-size bit vectors,
and decision procedures for this theory are implemented in several SMT solvers,
including CVC4 and Z3.

Our objective is to add support for bit-wise operations in Why3 and its front-
end SPARK2014 [21] that deals with safety-critical Ada programs. In particular,
we want to exploit the bit vector decision procedures provided by SMT solvers.
However, in such a context, bit-wise operations are mixed with other objects
occurring in programs and specifications, such as unbounded integers, arrays,
and records. We need to rely on other theories supported by SMT solvers, and
also on their support for quantified axioms. Exploiting an SMT solver when
several theories are mixed together with quantified axioms requires special care.
This paper reports on our design choices and on some experiments we made.
We start in Sect. 2 by illustrating our approach on a short (although non-trivial)
example. In Sect. 3 we describe the theories for bit vectors we designed for use
in Why3. In Sect. 4 we present how our Why3 theories are exploited in the
SPARK2014 front-end. In Sect. 5 we illustrate our approach on a case study orig-
inating from industrial code. Our developments are distributed in SPARK Pro
16.0 and will be in the release 0.87 of Why3. More details and more case studies
(including the 2-line n-queens program) are discussed in a technical report [14]
and the files for the case studies are available on Toccata’s Web gallery of verified
programs (http://toccata.lri.fr/gallery/bitwise.en.html).

http://smtlib.cs.uiowa.edu/
http://toccata.lri.fr/gallery/bitwise.en.html
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2 Illustrative Example

We want to specify, at an abstract level, programs that directly manipulate bits.
Our approach is to exploit in parallel the theory of bit vectors supported by
SMT-solvers, and their support for arithmetic and quantifiers. We provide a
theory that allows the use of both on the same program. In order to do so, the
intended methodology to use this theory is to specify programs at an abstract
level, closer to the human mind, e.g. with mathematical integers, while at the
same time exploiting the bit vector theories of SMT solvers, by providing explicit
hints for provers (typically under the form of extra assertions in the code) when
it is necessary to help them to make the appropriate bridge between the bit
vector level and the abstract level.

Let us consider an example from the Esterel compiler [5]. Each instruction
returns an integer code between 1 and a fixed N . Parallel execution returns
the maximum of the codes of its branches. A static analysis approximates
programs by considering the set P of all possible return codes of P . Hence
P ||Q = {max(p, q)|p ∈ P , q ∈ Q}. Sets of return codes are implemented as bit
vectors, a 1 at position i in P meaning that i ∈ P . It was suggested by Gonthier
that P ||Q can be computed as (P |Q)&(P | − P )&(Q| − Q).

We want to formally specify this behavior at an abstract level, not using any
low-level operation like a bit-wise ‘and’. Let us consider the case where N = 32.

Fig. 1. maxUnion: formal specification

Formal Specification. Fig. 1 presents
how this code is formally specified
in our setting (see [14] for details
on Why3’s syntax). The use decla-
rations import the theory of 32-bit
bit vectors we designed and the the-
ory of finite set of integers from the
Why3 library. From the former the-
ory we use the type t of bit vectors,
and the operator nth: nth x n is the
n-th bit of x as a Boolean.

We want to relate a bit vector to
its abstract view as a set of integers.
We introduce a record type s with
a field bv : t, and a ghost field mdl
: set int a set of integers. A type
invariant specifies that for each a :
s the elements of a.mdl are the indexes of the 1-bits in a.bv. The precondition
requires of maxUnion that the inputs are not zeros. The postcondition formal-
izes the former informal specification. The important point is that the formal
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Fig. 2. maxUnion: annotated code

specification is at an abstract mathematical level which is quite far from the code
in the body of the function. Proving that the code satisfies the specification is
thus a difficult task.

Proof. The code of maxUnion is split in three sub-functions shown in Fig. 2. It
makes use of additional operations:

– of int x: integer x converted to a bit vector
– eq sub bv x y i l: means that the bits of a and b between positions i and

i + l − 1 are equal
– bw or, bw and, neg, sub: bit-wise and arithmetic operators on bit vectors
– min elt a: the minimal element of a
– interval i j: the set {i . . . j − 1}

We emphasize that the code of aboveMin contains three assertions involving
only bit vectors and bit-wise operators. This form of intermediate assertion is
an example of a general strategy that we explain in Sect. 3.3.
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VC for intersection 0.18 505.55 0.10 (10m) (6G)
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in 1. assertion 0.28 (10m) 0.16 (10m) (6G)
2. assertion (10m) 0.42 (10m) 1.09 (6G)
3. assertion (10m) 0.86 (10m) (10m) (6G)
4. type invariant 0.64 (10m) 0.31 (10m) (6G)
5. postcondition 0.02 0.03 0.05 0.01 0.00

V
C
fo
r
ab

ov
eM

in 1. precondition 0.01 0.05 0.07 0.01 0.01
2. precondition 0.02 0.05 0.08 0.01 0.01
3. assertion 0.45 0.25 0.22 0.48 (6G)
4. postcondition 1.70 0.26 0.27 (10m) (6G)
5. postcondition (10m) 0.06 0.15 (6G) (6G)

0.43 0.31 0.26 466.08 (6G)

Fig. 3. maxUnion: proof results

The proof results are dis-
played in Fig. 3. A red back-
ground indicates an unsuc-
cessful proof, (10 m) meaning
that the timeout of 10 min
is reached, (6G) meaning
that the memory limit of
6 GB is reached. We stress
that we use CVC4 and Z3
in two different modes. The
default mode exploits their
native support for bit vec-
tors, whereas the other mode,
nicknamed ‘noBV’ for ‘no bit
vectors’, does not. The two
VCs, 2 and 3 for aboveMin,
are proved using the native
bit vector support. On the
contrary VCs 1 and 4 for
aboveMin and the VCs for
union and intersection are proved only in the mode not using native sup-
port. This need for two modes for one prover shows up in all the case studies
that we considered [14]. We detail the design of these two modes in Sect. 3.3.

3 The Why3 Bit Vector Theory

Our theory of bit vectors is generic with respect to the size of bit vectors. It is
then instantiated for size 8, 16, 32 and 64. In Why3, such an instance is possible
through the so-called cloning feature: when a theory has one or more components
that are declared abstract (a type, a function symbol) then one can clone that
theory while giving some instance to some or all of these abstract components.
This results in a new theory containing a copy of the original theory, with all
declarations appropriately instantiated.

In the following, we only describe a representative part of the theory. We
refer to the report [14] for its full description as well as a discussion of its consis-
tency and soundness, which is established through realizations in the Coq proof
assistant and in Isabelle/HOL as well.

3.1 Bit-Wise Operators

The first part of the theory is shown in Fig. 4. It starts with the declaration of
the (positive) parameter size, representing the number of bits of all bit vectors.
The type of bit vectors is introduced as an abstract type t equipped with one
uninterpreted function nth. The intended meaning is that (nth b n) gives the
n-th bit of b, as a Boolean. Note the convention that bit 0 is the least significant
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Fig. 4. Generic theory for bit vectors: core, bit-wise Boolean operators and shifts

bit, and (nth b n) returns False when n is out of the range 0 . . . size − 1. We
introduce two constants zeros and ones for the bit vectors that have all bits
not set or set, respectively. These are axiomatized using nth.

The bit-wise operators ‘and’, ‘or’, ‘xor’ and ‘not’ come next. Their behavior
is axiomatized with the help of the nth operator as seen in Fig. 4. Shift operators
are also axiomatized using the nth operator. Notice that the second argument
of shift operators is an integer and not a bit vector.

3.2 Conversion To and From Integers

The second part of our theory, presented in Fig. 5, deals with conversion between
bit vectors and integers. For lack of space, we only describe here the interpre-
tation of bit vectors as non-negative integers, that interprets bn−1 · · · b1b0 as∑n−1

i=0 bi × 2i. We start by defining the maximum representable integer, and
its successor: 2 to the power of size. Then we introduce two abstract func-
tions for the conversions. These are not fully specified from nth; it would be a
very involved axiomatization that is unlikely to be useful for automated provers.
Instead, we provide a few useful axioms on those functions, regarding constants
size, zeros and ones, and relation to equality.
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Fig. 5. Bit Vector theory: conversions and arithmetic

Arithmetic operations do not need to distinguish between signed and
unsigned variants, except for division and remainder. Their behavior is axiom-
atized via to uint to express that computation is done modulo 2size. Derived
lemmas like add bounded are added to help provers.

3.3 Strategy for Isolating Bit-Level Reasoning

The set of operators that we defined so far is expressive enough to formally spec-
ify programs. In order to discharge VCs a first idea would be to map each symbol
of our theory to the corresponding symbol in the SMT-LIB theory, provided such
a symbol exists, whilst keeping the other symbols uninterpreted and keeping all
the axioms. However, we observed that this is not sufficient in practice: provers
do not work well on VCs mixing bit-wise operators and conversions with integers
(provers with native support for bit vectors have a hard time mixing bit vectors
and integers, provers without it have a hard time to reason on bit-wise operators
with the axioms only). Our approach to overcome this issue is two-fold. First,
we provide a means for the user to isolate pure bit vector VCs from other VCs.
Second, we provide to provers two alternative translations of our bit vector the-
ory, to target specifically either provers with native support, or provers without
it. The proof strategy used for the Rightmost Bit trick example (Fig. 3) exploits
this approach.
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Fig. 6. Additional operators in the bit vector theory

Bit-Level Operator Variant. The theory is augmented with the additional oper-
ators presented in Fig. 6. We provide pure bit vector alternatives for nth and
shifts. We also introduce the eq sub operator and its bit-level variant eq sub bv.

The Two Drivers. Why3’s driver mechanism allows us to tell for each object
(type, function symbol) of the Why3 theory what is the syntax for the corre-
sponding object of the target prover. Figure 7 summarizes the two driver variants
for the instance of the theory with size=32. The second column is the mapping
for provers with native bit vector support, the third column is for the other
provers as well as for the noBV variants of CVC4 and Z3. The driver for provers
with native support maps the type t to the corresponding type in SMT-LIB.
Each operator is mapped to the corresponding symbol in the SMT-LIB theory,
if it exists, and is kept uninterpreted otherwise. The axioms that link the unin-
terpreted operators with the native ones are kept as-is. The remaining axioms
are removed. There are two exceptions: nth bv and eq sub bv are not in the
SMT-LIB theory. Therefore, we keep the axioms that define them in term of
pure bit-level operators. The driver for provers without native support keeps all
symbols uninterpreted. All the axioms are kept except the ones that define the
bit-wise operators, in order to prevent the provers from trying to prove bit-level
properties.
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prover with prover without
object native BV support native BV support
type t abstract

nth uninterpreted uninterpreted
zeros uninterpreted
ones uninterpreted

bw_and bvand uninterpreted
axioms {zeros,ones,bw _and} _spec removed kept

add bvadd uninterpreted
axiom add_spec removed removed

lemma add_bounded removed kept
lsr uninterpreted uninterpreted

axioms lsr _spec _{low,high} removed kept
to _uint bv2nat kept

axiom to _uint _extensionality removed kept
of _int nat2bv kept
nth _bv uninterpreted uninterpreted

axiom nth _bv_def kept removed
axiom nth _bv_is _nth kept kept

lsr _bv bvlshr uninterpreted
axiom lsr _bv_is _lsr kept kept

eq_sub uninterpreted uninterpreted
eq_sub _bv uninterpreted uninterpreted

axiom eq_sub _bv_def kept removed

Fig. 7. Mapping to SMT-LIB, for the case size=32

4 Adding Support for Bit Vectors in SPARK2014

Ada 2012 is the latest version of the Ada language [1], a programming lan-
guage targeting real-time embedded software that requires a high level of safety,
security, and reliability. This version adds new features for specifying the behav-
ior of programs, such as subprogram contracts and type invariants. SPARK is a
subset of Ada targeting formal verification [11,21]. Its restrictions ensure that the
behavior of a SPARK program is unambiguously defined. The SPARK language
and toolset for static verification has been applied for many years in on-board
aircraft systems, control systems, cryptographic systems, and rail systems. It
provides dedicated features that are not part of Ada 2012. Essential constructs
for formal verification (e.g. loop invariants) have also been introduced. To for-
mally prove a SPARK 2014 program, GNATprove uses the language WhyML
as an intermediate. The SPARK program is translated into a WhyML program
which can then be verified using the Why3 tool.

Modular Integer Types. Ada’s very rich type system allows us to define various
kinds of integer types. There are mostly of two kinds, namely signed and modular
integer types. Modular integer types are defined by specifying a modulus, and
are the types on which bit-wise operations apply. For example
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type BV8 is mod 2**8;

defines a type BV8 that contains unsigned integers between 0 and 28 − 1. Over-
flows never occur when computing with it: computations use modular arithmetic
semantics. The package Interfaces from Ada’s standard library introduces
predefined names Unsigned 8, Unsigned 16, Unsigned 32 and Unsigned 64,
respectively for the modular types modulo 28, 216, 232 and 264. Bit-wise
Boolean operations are written as infix operators and, or, xor, not. Ada
provides, in its standard library, functions Shift Left, Shift Right, and
Shift Right Arithmetic. These are defined only when the first argument is
a modular type for the standard bit sizes 8, 16, 32, and 64. The second argu-
ment of these operations is not of modular type but of type Natural, that is
the signed integer type of only non negative values defined in Ada’s standard
library.

Handling of Modular Types in SPARK 2014. GNATprove translates each Ada
variable, resp. each expression, into a Why3 variable, resp. expression, of some
adequate type [17]. Variables and expressions of some modular type are trans-
lated into variables and expressions of some bit vector type of the Why3 theory
described in the previous section. Their size is either 8, 16, 32, or 64, the small-
est of those that can represent all the values of the original Ada type. To sim-
plify the presentation below, we consider only the four predefined modular types
Unsigned 8, Unsigned 16, Unsigned 32 and Unsigned 64 corresponding to 8,
16, 32, and 64-bits integers. The translation of the Boolean bit-wise operations is
directly the equivalent introduced in our Why3 theory. The translation of shifts
is just slightly more complex because their second argument in Ada is a signed
type and not a modular type. For instance, we translate Shift Left(X,Y) as
(lsl_bv X (if Y < size then (of_int Y) else size_bv)).

5 The “Bitwalker” Case Study, Using SPARK2014

The original C version of the BitWalker was provided by Siemens in the context
of the ITEA 2 project OpenETCS. The version presented here was rewritten by
Fraunhofer FOKUS to simplify the formal verification with Frama-C/WP [16].
The formal specification relies on a theory of bit vectors designed in the Coq proof
assistant, and a significant part of the proofs were done interactively within Coq.

Byte sequence
↓ ↓ ↓ ↓
0 start start+ length 8∗ size−1

↓ ↓ ↓ ↓ ↓
000Result

Fig. 8. Schematic view of the Peek function (on 8-bit instead of 64-bit)
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Fig. 9. The BitWalker, C version, the Peek function

Bitwalker is about interacting with a stream of bytes. One of the two main
functions, Peek, copies a value from the byte stream to a 64-bit unsigned integer.
The expected behavior of Peek, illustrated in Fig. 8, can be expressed at a high-
level by saying that the integer value of the result is the value read in the byte
stream starting from the bit number start and reading length bits. The most
significant bits of the result, of index larger or equal to length, must be all
zero. Figure 9 presents the C source code of Peek as well as one of its main
auxiliary function, PokeBit64. The code of Peek does not make use of low-
level bit-wise operators, but calls instead auxiliary functions. On the contrary,
the code of low-level auxiliary functions PeekBit8 and PokeBit64 make use
of bit-wise operators, so there is a need at some point to relate those bit-wise
operations with more high-level arithmetic notions. In the following, we propose
a SPARK program equivalent to the C code of Fig. 9, with appropriate formal
specifications.

Specification and Verification of PokeBit64. The function PokeBit64 writes a
bit in an Unsigned 64 value at the given position Left. In order to specify this
we need to: first write that the mentioned bit is correctly set after the function is
called, and then not to forget that all other bits remain unchanged. Its SPARK
specification is given in Fig. 10. A first difference between the C and SPARK
version appears in the types: in C, the first two parameters are unsigned types
and the third parameter is an integer. In Ada, since the function manipulates
the first parameter’s bits, it has to be of modular type. However, the parameter
Left represents a position: it is not intended to be manipulated at the level of
its bits and we do not want a modular arithmetic semantics, hence we set its
type to Natural. This is consistent with the typing of shifts in Ada as described
in Sect. 4. The last parameter, as it represents the state of a bit, is naturally
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given the type Boolean. Note the use of function Nth which refers to the Why3
operator nth. While the SPARK language does not have this function built in,
we use the SPARK feature external axiomatization to lift it, as well as some
others, to the level of SPARK language [14].

Fig. 10. Specifications of auxiliary functions for Peek

The verification of PokeBit64 is not straightforward: we are in the case of
a mix of bit vectors and integers. Following the proof strategy of Sect. 3.3 we
introduce assertions to separate the part dischargeable by provers with native
bit vector support from the rest. The code, with the assertions used to prove
the specification, is given in Fig. 11. The third and last assertions reformulate
the postcondition for CVC4 and Z3 at the bit level. The three other assertions
deal with conversions between modulars and integers, and are proved by other
provers.
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1. assertion 0.05 (10m) 0.08 0.33 7.95
2. precondition 0.03 0.11 0.08 0.03 0.14
3. assertion 0.29 (10m) 0.07 0.14 (6G)
4. precondition 0.04 0.14 0.05 0.02 0.11
5. range check 0.03 0.05 0.04 0.01 0.01
6. range check 0.03 0.04 0.04 0.01 0.00
7. assertion (10m) 0.44 (10m) 0.21 (6G)
8. assertion 0.36 (10m) 0.10 0.23 (6G)
9. range check 0.06 0.03 0.04 0.01 0.00
10. assertion (10m) 0.15 (10m) 0.10 (6G)
11. precondition 0.08 0.04 0.02 0.01 0.01
12. range check 0.04 0.04 0.04 0.00 0.01
13. range check 0.05 0.03 0.04 0.01 0.00
14. range check 0.04 0.03 0.04 0.01 0.00
15. postcondition (10m) 0.23 0.11 (10m) (6G)

Fig. 11. PokeBit64: annotated code and proof results

Specification and Proof of Bitwalker Peek. The SPARK specification of the main
function Peek is given in Fig. 12. As for PokeBit64 there is a difference in the
types: in Ada, Start and Length are naturals, by extension to what was said on
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Fig. 12. Ada specification and body of Peek function

PokeBit64 type. Note also the absence of the parameter size: it corresponds to
Addr’Length in Ada. The precondition starts on line 13, by specifying that the
first index of our byte sequence is 0, as in the C code. We then bound Length, the
number of bits to copy, by 64. The last two preconditions are here to avoid any
arithmetic overflow with Start, Length, and the size of Addr. The postcondition
starts on line 17, and is made of two disjoint cases. First, if the last bit to copy is
out of the bounds of the byte sequence the default value 0 is returned. In the other
case, we specify two things: that the i-th bit of the result, for 0 ≤ i < Length is
equal to the bit of the sequence at position Start + Length − i − 1, as shown
in Fig. 8. The n-th bit of a ByteSequence is specified by the auxiliary function
Nth8 Stream given on line 3 of Fig. 12. Finally we specify that the other bits of
the result are set to zero.

The Ada code of Peek is very close to the original C code of Fig. 9. We only
add two loop invariants (lines 12–18) that are directly derived from the post-
conditions. These invariants are the expected ones in presence of such a loop.
Note that, following our reasoning on type assignment, Start and Length are
Naturals, whereas the contents of the array Addr are 8-bit modular types, and
the result of Peek is a 64-bit modular. As expected, since there is no bit-level
code in Peek, there is no need for bit-level assertions and the proof does not
need the provers with native bit vector support.
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6 Conclusions

We designed a rich formal theory including arbitrary fixed-size bit vectors, a
large set of bit-wise operations, and a large set of operations involving both
bit vectors and unbounded integers. Thanks to the driver mechanism of Why3,
proof obligations that make use of this theory can be discharged either by SMT
solvers with bit vector support (CVC4, Z3) or by solvers that handle this theory
as an axiomatic first-order theory (Alt-Ergo, and CVC4 and Z3 in non native
support mode). We presented several case studies illustrating how one can specify
and prove bit-level code correct with respect to a high-level specification. We
emphasize that it is important for the user to understand well the respective
capabilities of the provers (do they support bit vector theories or not) and to
respect a refinement-like methodology when writing annotations: to prove that
bit-level code satisfies a high-level postcondition, one may need to provide a
hint in the form of an assertion rephrasing the postcondition at the bit-level,
and help the provers with assertions to enforce them to convert bit vectors to
integers when required. Fortunately, as shown by proof of Peek in BitWalker,
our approach allows a good modularity principle: as soon as low-level code is
given a high-level specification, the procedures calling such code do not need to
be aware that the low-level code operates at the bit level. The support of Ada’s
modular types via bit vectors is included since 2015 in SPARK releases. The first
feedback from AdaCore’s customers is very positive: many proof obligations that
were not checked automatically before are now proved by CVC4 or Z3.

About SPARK Interpretation of Signed Integers. We chose to map Ada’s signed
integer types to mathematical unbounded integers. Another choice would be
to map them to bit vectors and use the signed arithmetic operators provided
by SMT-LIB. We tried this alternative and noticed regressions in the rate of
automatically proved VCs: on the SPARK test suite the support for unbounded
integer arithmetic in SMT solvers is better than the support for arithmetic oper-
ators of BV theory.

Related Tools and Experiments. Stefan Berghofer (Secunet, Germany) is
using the support for bit vectors in SPARK, on the big number package
of libsparkcrypto (https://bitbucket.org/sberghofer/libsparkcrypto/). He uses
Isabelle/HOL to interactively discharge the VCs that cannot be proved auto-
matically. The BitWalker case study was initially written in C and specified
using the ACSL specification language of Frama-C. For that purpose a theory of
bit vectors of unbounded size was designed using the Coq proof assistant, and the
proofs were done with a significant amount of interaction within Coq. Thanks
to the mapping of our bit vector theory to SMT-LIB we were able to prove Bit-
Walker fully automatically. The source language, C or Ada, is not important,
although the choice between signed versus unsigned types in the source makes a
difference: in Ada their semantics are significantly different. The Boogie [2] ver-
ifier and its front-ends VCC [13] and Dafny [19] also use the built-in bit vector

https://bitbucket.org/sberghofer/libsparkcrypto/
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support of Z3, to model machine words. We are not aware of any work, in this
context, about the problem of mixing bit vectors with high-level specifications.

Future Work. The need to use two different drivers for the same prover is some-
how unsatisfactory. The decision of using the native support for bit vectors in
provers could be made by an automatic analysis of the goal. A possible alterna-
tive would be to provide appropriate constructs in the specification language so
that the user could indicate the intended level of abstraction in her code. For
instance, in our solution to the n-queens example [14], it would have been con-
venient to express with a source annotation that we want to interpret a machine
word into the set of positions of its bits set to 1.

There is some need to apply the same approach to floating-point numbers, in
order to exploit decision procedures for floating-point arithmetic that are now
available in SMT solvers [9] (http://www.cprover.org/SMT-LIB-Float/). In the
past, floating-point programs were specified in terms of real numbers [8] and
proved by specific solvers. As we did for bit vectors and integers, it is therefore
desirable to design a theory that would allow the combination of floating-point
numbers with real numbers and at the same time would make use of SMT-LIB
support for floating-point arithmetic. Last but not least, there are some programs
that operate on floating-point numbers at the bit-level [20]. Proving such code
would be a hard challenge [23].
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