
Obfuscator Synthesis for Privacy and Utility

Yi-Chin Wu1,2(B), Vasumathi Raman3, Stéphane Lafortune2,
and Sanjit A. Seshia1

1 UC Berkeley, Berkeley, USA
yichin.wu@berkeley.edu, sseshia@eecs.berkeley.edu

2 University of Michigan, Ann Arbor, USA
stephane@umich.edu

3 United Technologies Research Center, Berkeley, USA
ramanv@utrc.utc.com

Abstract. We consider the problem of synthesizing an obfuscation pol-
icy that enforces privacy while preserving utility with formal guarantees.
Specifically, we consider plants modeled as finite automata with pre-
defined secret behaviors. A given plant generates event strings for some
useful computation, but meanwhile wants to hide its secret behaviors
from any outside observer. We formally capture the privacy and utility
specifications using the automaton model of the plant. To enforce both
specifications, we propose an obfuscation mechanism where an edit func-
tion “edits” the plant’s output in a reactive manner. We develop algo-
rithmic procedures that synthesize a correct-by-construction edit func-
tion satisfying both privacy and utility specifications. To address the
state explosion problem, we encode the synthesis algorithm symbolically
using Binary Decision Diagrams. We present EdiSyn, an implementa-
tion of our algorithms, along with experimental results demonstrating
its performance on illustrative examples. This is the first work, to our
knowledge, to successfully synthesize controllers satisfying both privacy
and utility requirements.

1 Introduction

Many systems transmit information to the outside world during their opera-
tion. For example, location-based services require devices such as smartphones
to transmit location information to other devices or to servers in the cloud. Sim-
ilarly, in defense and aerospace applications, a network of drones may need to
broadcast location information to a variety of agents, including other drones,
ground personnel, and remote base stations. These settings often involve nodes
that are resource-constrained or connected in ad-hoc, dynamically-changing net-
works. Some of the transmitted information may reveal secrets about the system

This work was supported in part by TerraSwarm, one of six centers of STARnet, a
Semiconductor Research Corporation program sponsored by MARCO and DARPA,
and in part by the National Science Foundation under grants CCF-1138860 and
CCF-1139138 (NSF Expeditions in Computing project ExCAPE: Expeditions in
Computer Augmented Program Engineering) and CNS-1421122.

c© Springer International Publishing Switzerland 2016
S. Rayadurgam and O. Tkachuk (Eds.): NFM 2016, LNCS 9690, pp. 133–149, 2016.
DOI: 10.1007/978-3-319-40648-0 11

134 Y.-C. Wu et al.

or its users; therefore, privacy is an important design consideration. At the same
time, the agents to which this information is being sent must have enough infor-
mation to provide relevant services or perform other actions. Thus, the trans-
mission of information from the system to the outside world needs to balance
the contrasting requirements of privacy and utility.

Consider the following illustrative example:

Example 1. We consider a user Alice moving in a building. Information about
Alice’s location needs to be sent to a server and other agents in order to perform
some useful actions; e.g., adjusting the heating system based on Alice’s location
and other occupancy levels in the building, or directing her to the closest coffee
machine. Suppose also that there are some “secret” locations, and that Alice
does not want others to know when or whether she visits these locations. An
example could be a room containing highly sensitive data, such that the mere
act of being able to visit it discloses compromising information that Alice wishes
to protect (i.e., there are only a handful of people who can visit this room, and
their identity is to be kept secret). However, Alice also wants the server to be
able to compute some information that is useful based on her location, because
otherwise Alice is always cold and uncaffeinated.

Suppose that an “event generator” (e.g., on Alice’s phone) generates events
based on her movements, and broadcasts these events to other agents. Suppose
further that the quality of the service that requires tracking Alice’s reported
location degrades based on the Euclidean distance from her true location. How
can one generate an output event stream that does not reveal whether Alice
visited a secret location while also providing sufficient accuracy for determining
her location for the relevant services?

Following the terminology used in supervisory control of discrete event sys-
tems [9], we refer to the combination of the event generator and the process it
is based on (Alice, in our example) as the plant. Our goal is to introduce an
element of decision-making into the event generator so that it can modify the
events to be output before relaying them in order to meet both the privacy and
utility requirements. We refer to this decision-making as an obfuscation policy.

In this paper, we present a formalization of this problem, along with an
algorithm to synthesize an obfuscation policy. We are given a plant modeled as
a finite automaton, with formally specified secret behaviors and a specification
of utility. The plant must generate event strings that provide sufficient utility
while hiding its secret behaviors from an outside observer. The privacy and
utility specifications are captured as automata-theoretic requirements on the
model of the plant. To enforce both specifications, we propose an obfuscation
mechanism whereby the plant edits its output in a reactive manner, such that
all resulting output strings provably satisfy the specifications. The presented
algorithm synthesizes a correct-by-construction edit function that maps true
executions of the plant to ones that achieve the privacy and utility specifications.

The paper is structured as follows. We first define the obfuscation problem in
Sect. 2. In Sect. 3 we describe our algorithm for automatically editing reported

Obfuscator Synthesis for Privacy and Utility 135

values. The treatment in this section is “explicit”, i.e., in terms of graph oper-
ations on discrete game structures. To address the state explosion problem, we
encode the synthesis algorithm symbolically using Binary Decision Diagrams
(BDDs) [1], as described in Sect. 4. We then demonstrate our approach empir-
ically in Sect. 5, using EdiSyn, an open source Python toolkit we developed
for this purpose. We conclude after a discussion about related work and future
directions.

2 Preliminaries and Problem Statement

2.1 Preliminaries

A Nondeterministic Finite Automaton (NFA) is a tuple G = (Q,Σ, δ,Q0) with
a finite set of states Q, a finite set of events Σ, a state transition function
δ : Q × Σ → 2Q, and a set of initial states Q0 ⊆ Q. An NFA G is called a
Deterministic Finite Automaton (DFA) when |Q0| = 1 and |δ(q, e)| ≤ 1 for every
state q ∈ Q and event e ∈ Σ. More explicitly, for a DFA as G = (Q,Σ, δ, q0), the
single initial state is q0 ∈ Q and the transition function is δ : Q×Σ → Q, which
deterministically defines the next state given the current state and the event.

Given an NFA transition function δ : Q × Σ → 2Q, we extend it to
δ∗ : Q × Σ∗ → 2Q recursively as follows: δ∗(q, ε) = {q}, δ∗(q, e) = δ(q, e),
δ∗(q, e1e2 · · · en) = ∪q′∈δ∗(q,e1)δ

∗(q′, e2 · · · en), where Σ∗ is the set of finite strings
of events and ε denotes the empty string. The language generated by G is the
set of strings defined by L(G) := {t ∈ Σ∗ : ∃q0 ∈ Q0 s.t. δ∗(q0, t) �= ∅}. A DFA
transition function δ : Q × Σ → Q is extended to δ∗ : Q × Σ∗ → Q in a similar
manner. Also, the language of a DFA is defined similarly. Given string t, we use
t′ � t to denote that string t′ is a prefix of t, and use t1:k to denote the length-k
prefix of t. Finally, |t| denotes the length of t.

In this paper, the system of interest, called the plant, is modeled as a DFA
G = (Q,Σ, δ, q0). In our model, the state of the plant cannot be observed directly.
However, upon each transition, an event is emitted and can be observed by an
outside observer. Hence, an outside observer can infer the state of the plant
based on the observation of the string of events emitted upon transitions.

2.2 Threat Model

We consider a scenario where the plant G has a set of secret states QS ⊂ Q that
need to be kept hidden from the outside observer. The observer of the plant’s
output strings is a passive-but-curious adversary that has a copy of G, and can
see all strings output by the plant; the observer can mimic transitions in its
copy of G based on the output strings. We assume that the observer is also a
legitimate recipient in the sense that the plant emits strings in order to deliver
some information to the observer. However, the plant also wants to hide from
the observer whether it is ever in a secret state.

In the following, we will call a string t ∈ L(G) a secret string if δ∗(q0, t) ∈ QS

and a public string otherwise.

136 Y.-C. Wu et al.

Example 2. Alice and Bob are trying to arrange a secret meeting to exchange a
top secret package in a m × n grid world. We model the generator of Alice and
Bob’s movements as a plant G = (Q,Σ, δ, q0) with secret states QS , where

– The set of states is Q = Loc2 ∪ {init} where Loc = {1, · · · ,m × n} contains
the set of all locations on the grid word.

– The set of events is Σ = {aijbkl : i, j, k, l ∈ Loc}, where aijbkl specifies Alice’s
movement from i to j and Bob’s movement from k to l.

– The transition function δ is defined such that, for both Alice and Bob, only
moving to neighboring locations or staying at the current location is allowed.

– The set of secret states is QS = {(i, k) ∈ Loc : i = k}, where Alice and Bob
are in the same location.

We show in Fig. 1 the 2 × 2 grid world and a partial plant automaton of G
representing the generator of Alice and Bob’s movements. The full model of
G contains 17 states and 144 events. Because of space limitations, we do not
draw all the states and transitions, and only show a partial plant automaton
of G. State init is introduced to model the initial moment when no locations
from Alice and Bob have been reported. For each state (i, j) ∈ Loc2, there is a
transition from init to (i, j) with event label aiibjj . For each state (i, j), there is a
transition from (i, j) to (k, l) with event label aikbjl as long as k is a neighboring
location of i and l is a neighboring location of j. The red states in G are secret
where Alice and Bob meet in the same location.

Let the quality of the service degrade with the L1 distance from Alice’s and
Bob’s true locations. That is, the quality loss from state (i, j) to state (k, l) is
||(ix, iy, jx, jy)−(kx, ky, lx, ly)||1 = |ix −kx|+ |iy −ky|+ |jx − lx|+ |jy − ly|, where
ix and iy are the x-coordinate and y-coordinate of location i, and similarly for
locations j, k, l. Hence, in reporting the locations of Alice and Bob, we would like
to maintain the L1-distance between the real and the reported locations within
some allowable range. This could be because we want an external observer to be
able to track the progress of Alice and Bob towards their goal of meeting, while
not knowing exactly when or where they meet.

2.3 Edit Functions

To defend against attacks as described in the previous section, we propose to add
an interface at the output of the plant that hides secret strings while preserving
the utility of the original string. The interface edits the plant’s original string t
as it is produced (“online”), such that the resulting string t̃ after editing never
reveals the secret, and yet preserves the utility of t within an allowable range. As
this interface is a function that maps each plant output event to another event
or string, we refer to it as an edit function.

We permit edit functions fe : Σ∗ × Σ → Σ∗ that map an output event to
another event or string with one replacement, deletion, or insertion operation.
Given past output string t, fe(t, e) = o means that the plant’s output event e
is edited to o. Note that o ∈ Σ∗ in general because we allow event insertion as

Obfuscator Synthesis for Privacy and Utility 137

Fig. 1. The 2×2 grid world and a partial plant automaton G representing the generator
of Alice and Bob’s movements. (Color figure online)

well as deletion. If event e is deleted, then the output is o = ε; on the other
hand, if a string tI is inserted before e, then the output is o = tIe. Every edit
function is causal : it can only edit the current output event e and not any
previous output. For convenience of notation, we also define a string-based edit
function f̂e : Σ∗ → Σ∗ recursively from fe such that f̂e(ε) = ε and f̂e(te) =
f̂e(t)fe(t, e). Note that, in general, f̂e is a partial function, and f̂e(t) may only be
defined for selected t ∈ Σ∗. Also, since an edit function is causal, its string-based
version is prefix-preserving : ∀t1, t2 ∈ Σ∗, t1 � t2 ⇒ fe(t1) � fe(t2). An edit
function of the above form can be implemented by a deterministic, potentially
infinite-state automaton, which we call the edit automaton, and denote by EA =
(S,Σ, Trans, s0). The elements of the EA tuple are the set of states S, the set of
events Σ, the transition relation Trans ⊆ S×Σ×Σ∗×S, and the initial state s0.
Each transition in Trans is a tuple (s, e, o, s′) of the starting state s, the input
event e, the output string o, and the target state s′. Given an edit function fe,
there is a corresponding transition relation Trans with (s, e, o, s′) ∈ Trans iff
fe(t, e) = o and s is the state reached on input string t. The transition relation
for fe is deterministic: ∀s ∈ S,∀e ∈ Σ, |{s′ : (s, e, o, s′) ∈ Trans, o ∈ Σ∗}| = 1.

Throughout the paper, we use “edit” to collectively refer to any replacement,
deletion, and insertion operation. We will call the output string from the plant
as the original string t, and call the string after editing as the obfuscated string t̃.

2.4 Problem Formulation

Our goal is to synthesize an edit function fe that hides the plant’s secret strings
while preserving the utility of the original strings within some allowable range.
We capture the utility of each original string t by the final state that is reached
by t in the plant DFA, and define the utility loss in mapping t to t̃ by the utility

138 Y.-C. Wu et al.

difference between the states reached by t and t̃. Without loss of generality, we
model the utility loss by an integer-valued distance metric D : Q × Q → N. The
formal statement of the synthesis problem is as follows:

Problem 1 (Edit Synthesis). Given a plant modeled as DFA G = (Q,Σ, δ, q0)
with a set of secret states QS ⊂ Q, utility distance D : Q × Q → N, and
accuracy budget W ∈ N, construct an edit automaton EA = (S,Σ, Trans, s0)
implementing an edit function fe such that:

(1) ∀t ∈ L(G), f̂e(t) is defined
(2) ∀t ∈ L(G), δ∗(q0, f̂e(t)) �= ∅ and δ∗(q0, f̂e(t)) �∈ QS (privacy specification)
(3) ∀te ∈ L(G) where t ∈ Σ∗ and e ∈ Σ, D

(
δ∗(q0, te), δ∗(q0, f̂e(t)o)

) ≤ W and
D

(
δ∗(q0, t), δ∗(q0, f̂e(t)o1:k)

) ≤ W where o = fe(t, e), for k = 1, . . . , |o| − 1
(utility specification)

Remark 1. Note that the privacy specification is a safety property on the output
of the edit function.

3 Edit Synthesis Algorithm

We solve Problem 1 by formulating it as a safety game between the edit function
and the plant. Such game formulations are common for program synthesis, where
the program is modeled as a protagonist playing against the adversarial envi-
ronment, with the goal of satisfying a given specification. For the edit synthesis
problem, the edit function is the “program” to be synthesized, and the plant is
the environment that provides inputs to the edit function: adversarialism here
means that the plant can evolve arbitrarily, and the edit function must satisfy
the specification under all possible evolutions.

3.1 Edit Patterns Satisfying the Specifications

To construct the game, we first want to easily determine whether an edit pattern
satisfies the privacy and utility specifications. One challenge is that determining
whether an edit pattern satisfies the privacy and utility specifications requires
examining not only the obfuscated string, but also its distance from the origi-
nal string. Fortunately, we can construct an NFA that recognizes all valid edit
patterns.

Lemma 1. There exists an NFA PA, with state space O(|Q|2), that recognizes
all edit patterns satisfying the privacy specification in Problem 1.

Proof Sketch. Given G, we first build the “edit-pattern”NFA Ge = (Q,Σ ∪
{ε}, δe, q0) that recognizes all edit patterns, by adding transitions to G. Transi-
tion function δe is defined with respect to decomposition δe := δ ∪ δr ∪ δi. More
concretely, consider the plant G in Fig. 1(b). The corresponding Ge is built as
shown in Fig. 2(a), such that (i) all original transitions exist, as depicted by the
(black) solid arrows; (ii) the replacement transitions δr are defined by adding

Obfuscator Synthesis for Privacy and Utility 139

a replacement transition for every event in parallel with the original transition,
as depicted by the (red) dashed arrows; and (ii) the insertion transitions δi are
defined by adding a self loop for every event at every state, as depicted by the
(blue) dotted arrows. No replacement or insertion transition is added if an origi-
nal transition for the given event already exists. Deletion is subsumed by replace-
ment, as deleting an event is the same as replacing the event by the empty string
ε. We then construct in Fig. 2(b) the “public-behavior” DFA Gp = (Q,Σ, δp, q0)
from G, by pruning away all secret states. Finally, to find all edit patterns sat-
isfying the privacy specification, we compose Ge and Gp and build the product
automaton PA. Specifically, the composition synchronizes δ and δp (the original
transitions), δr and δp (the replacement transitions), and δi and δp (the insertion
transitions), thereby preserving the edit choices. In sum, since Ge recognizes all
edit patterns and Gp recognizes all public behaviors, PA recognizes each edit
pattern for which no obfuscated string ever visits secret states. �

Fig. 2. Partial automata of the edit-pattern NFA Ge and the public-behavior DFA Gp

for the plant G in Fig. 1(b). In Ge, the solid black arrows depict the original transitions,
the dotted blue arrows depict the insertion transitions, and the dashed red arrows depict
the replacement transitions. (Color figure online)

Note that, as an interface at the output of the plant, the edit function does not
change the plant’s original dynamics. This feature is captured in our construction
of Ge: neither insertion nor replacement transition changes the real plant state
in Ge. Consider an edit pattern with t, t̃, and edit operations. We can uniquely
determine a path because each edit transition function is deterministic. Given
an edit pattern from t to t̃, by the construction of PA, the ending state of the
trace of this edit pattern in PA is a state pair (qe, qp) where qe = δ∗(q0, t) is the
plant’s real state and qp = δ∗(q0, t̃) is the state perceived by the outside observer
based on t̃. Hence, with PA capturing the pair (qe, qp) = (δ∗(q0, t), δ∗(q0, t̃)) for
every t, we can now build from PA an NFA that recognizes all edit patterns
satisfying both the privacy and the utility specifications.

140 Y.-C. Wu et al.

Lemma 2. There exists an NFA A, with state space O(|Q|2), that recognizes all
edit patterns satisfying the privacy and the utility specifications in Problem 1.

Proof. Consider PA from Lemma 1 that recognizes all edit patterns satisfying
the privacy specification. Because the distance function D is defined with respect
to state pairs, we can determine if the given edit pattern violates the utility
specification based on the reached state pair in PA. That is, we can build A
from PA by pruning all (qe, qp) where D(qe, qp) > W . �

3.2 Safety Game Formulation

The edit synthesis problem is formulated as a safety game between the edit
function and the plant. In the safety game, the outputs of the plant are the
inputs to the edit function, and the edit function must react to its inputs (i.e.,
the plant’s outputs) and satisfy both the privacy and the utility specifications. If
the edit function can reactively satisfy the specifications regardless of what the
plant does, then its reactions form a winning strategy in the formulated safety
game. Conversely, a winning strategy in the safety game can be converted into
an edit function that solves the edit synthesis problem.

Formally, a two-player safety game structure is GS = (V1, V2, Σ, ρ1, ρ2, v0)
where V1 and V2 are sets of game positions, Σ is the action set, ρ1 : V1×Σ → V2

and ρ2 : V2 × Σ∗ → (V1 ∪ ⊥) are the transition functions, and v0 ∈ V1 is the
initial position. We note that, actions of the edit function are strings in Σ∗ and
ρ2 has a domain of V2 × Σ∗ because the edit function can react by inserting a
string. The game starts with player 1, and subsequent plays alternate between
players 1 and 2. Position ⊥ is a special position where player 2 loses and player
1 wins.

In the game corresponding to the edit synthesis problem, player 1 is the plant,
who moves on positions in V1 according to transition function ρ1, and player 2
is the edit function, who moves on positions in V2 according to ρ2. A play of
GS is a sequence of positions v0v1v2 · · · ∈ (V1V2)∗ that starts from the initial
position. Given a play, the edit function wins if ⊥ is never visited, and the plant
wins otherwise.

Consider the automaton A = (Q2, Σ∪{ε}, δA, qA,0) in Lemma 2. Recall from
Lemma 1 that the transition function of Ge is decomposed, and the synchronous
composition used to obtain PA distinguishes edit choices. Hence, δA can also be
decomposed into the original transition function δA,o, the replacement transition
function δA,r, and the insertion transition function δA,i. We build the safety
game structure GS = (V1, V2, Σ, ρ1, ρ2, v0) between the edit function and the
plant from A as follows.

– V1 = Q2 ∪ {⊥}, V2 = Q2 × Σ
– ρ1 : V1 × Σ → V2 is defined such that ∀(qe, qp) ∈ V1,∀e ∈ Σ,

ρ1((qe, qp), e) = ((qe, qp), e) if δ(qe, e) �= ∅
– ρ2 : V2 × Σ∗ → V1 is defined such that ∀((qe, qp), e) ∈ V2,∀o ∈ Σ∗, we have

the following four cases:

Obfuscator Synthesis for Privacy and Utility 141

(i) ρ2
(
((qe, qp), e), o

)
= δA,o((qe, qp), e) if o = e and δA,o((qe, qp), e) �= ∅

(ii) ρ2
(
((qe, qp), e), o

)
= δA,r((qe, qp), o) = (q′

e, q
′
p) if o ∈ (Σ \ {e}) ∪ {ε},

δA,r((qe, qp), o) �= ∅, and q′
e = δ(qe, e)

(iii) ρ2
(
((qe, qp), e), o

)
= δA,o

(
δ∗
A,i((qe, qp), tI), e

)
if o = tIe, tI ∈ Σ∗, and

δA,o

(
δ∗
A,i((qe, qp), tI), e

) �= ∅
(iv) ρ2

(
((qe, qp), e), o

)
= ⊥ if none of cases (i)–(iii) holds

– v0 = qA,0 = (q0, q0)

Transition functions ρ1 and ρ2 define all possible actions of the plant and the
edit function, respectively. Specifically, ρ1 captures the plant dynamics and is
determined by the plant’s transition function δ. On the other hand, ρ2 defines
all edit actions. Cases (i)–(iii) are edit actions defined in A, which by Lemma 2
satisfy both the private and the utility specifications. In particular, the edit
function outputs the original event from the plant in case (i), replace or delete
the plant’s original output event in case (ii), insert events before the plant’s
original output event in case (iii). In case (iv), the edit action cannot satisfy the
specifications and leads to the losing position ⊥. For every plant’s output event,
the edit function reacts with one edit operation.

4 Symbolic Encoding of Edit Synthesis

So far we have assumed that the plant automaton model in the edit synthesis
problem is given explicitly, i.e., as an explicit list of states and transitions. How-
ever, in practice, such explicit representations lead to what is known as the state
explosion problem: a system with n variables that take k possible values requires
at least kn states to model, and thus these models quickly become impractical.
In order to mitigate the state explosion problem, we represent the plant model
symbolically using sets of states and sets of transitions, both represented com-
pactly as implicit solutions to logical equations. We can then analyze the state
space symbolically using Binary Decision Diagrams (BDDs) [1]. By using BDDs
to reason about propositional formulas representing the state space, we avoid
building the state graph explicitly.

In this section, we present our encoding of the given plant automaton sym-
bolically using propositional formulae. We will explain how the safety game can
be constructed symbolically, as well as how to extract a winning edit strategy
from the symbolic encoding of the safety game.

4.1 Symbolic Automata

Given an explicit DFA G = (Q,Σ, δ,Q0), we encode G symbolically as
(BQ, BΣ ,Δδ, bq0), where BQ = {yq

1, · · · , yq
n} is the set of Boolean variables that

encode the states, BΣ = {ye
1, · · · , ye

m} is the set of Boolean variables encoding
the events, Δδ : BQ ×BΣ ×BQ′ → {0, 1} is the propositional formula represent-
ing the transition function δ, and bq0 is the Boolean encoding of the initial state.
The primed set BQ′

= {yq′
1 , · · · , yq′

n } is the Boolean variables that encode the

142 Y.-C. Wu et al.

target states in transitions. Given Boolean variable set {y1, · · · , yn}, we use y
to denote the variable tuple (y1, · · · , yn). We will write χ(b) if a function χ over
variables y is evaluated with the Boolean vector b = (b1, · · · , bn). For a function
χ of variables y, we use χ{y ← z} to denote the new function obtained from χ
with the variable yi renamed to zi.

With a slight abuse of notation, we write bq ∈ Q if bq is the Boolean encoding
of a state in Q and use bq directly to refer to the given state; similar notation
applies for events and primed states. We use Δ to denote the propositional
formulae for transition functions. Propositional formula Δδ is defined such that
Δδ(bq, bΣ , bq′) = 1 iff bq′ ∈ δ(bq, bΣ).

To symbolically solve the edit synthesis problem, it remains for us to encode
the privacy and utility specifications. We encode the secret state set QS as a
Boolean function χQS

: BQ → {0, 1} such that χQs
(bq) = 1 iff state bq ∈ QS .

Given the utility distance function D and the accuracy budget W , we construct
a propositional function ΔDW

: BQ × BQ′ → {0, 1} such that ΔDW
(bq, bq′) = 1

iff D(bq, bq′) ≤ W ; i.e., the accuracy loss in obfuscating state bq to state bq′ is
bounded by the given budget.

4.2 Symbolic Game Structure

We are now ready to solve the edit synthesis problem symbolically. Consider
the plant modeled as a symbolic automaton G = (BQ, BΣ ,Δδ, bq0), the sym-
bolic encoding of secret states χQS

, and the propositional formula for the utility
specification ΔDW

. We follow the procedures in Sect. 3, first building symbolic
intermediate automata Ge, Gp, PA, and A and then build the symbolic game
structure.

First, we construct the symbolic edit-pattern NFA Ge = (Be, BΣ ,Δδe
, be0)

where:

– Be = {yq
1, · · · , yq

n} are the Boolean variables for the original plant states.
– Δδe

= Δδ ∨ Δδr
∨ Δδi

where
• Δδ defines the original transitions.
• Δδr

= (∃yΣ .Δδ) ∧ ¬Δδ defines the replacement transitions.
• Δδi

= (yq ⇔ yq′) ∧ ¬Δδ defines the insertion transitions.
– be0 = bq0

We can similarly build the symbolic public-behavior DFA Gp =
(Bp, BΣ ,Δδp

, bp0), where Bp are the Boolean variables for the fake states and
Δδp

prunes all secret states. Next, we build the product automaton PA from
Ge and Gp, and then prune the state pairs that violate the utility specifica-
tion to obtain A = (BA, BΣ ,ΔδA

, bA0). Here ΔδA
= Δδe

∧ Δδp
∧ χDW

{yq′ ←
yp} = ΔδA,o

∨ΔδA,r
∨ΔδA,i

is decomposed into the original transitions ΔδA,o
, the

replacement transitions ΔδA,r
, and the insertion transitions ΔδA,i

for technical
convenience later. Symbolic automaton A recognizes all edit patterns satisfying
the privacy and utility specifications.

Obfuscator Synthesis for Privacy and Utility 143

Finally, we build the symbolic game structure GS = (BV , BI , BO,Δρ1 ,

Δρ2 , b
v0). Let yA = (yq

1, · · · , yq
n, yp

1 , · · · , yp
n), we will use yA

⇓q to denote the

projection of of yA onto variables yq
i . That is, yA

⇓q = (yq
1, · · · , yq

n). Similarly,

yA
⇓p = (yp

1 , · · · , yp
n).

– BV = BA are the Boolean variables encoding the game positions.
– BI = BΣ are the Boolean variables for the plant’s actions. Superscript I

means they are input variables to the edit function.
– BO = {yO

1 , · · · , yO
m} are the Boolean variables for the edit function’s actions.

Superscript O means they are output variables of the edit function.
– Δρ1 : BV × BI → {0, 1} such that Δρ1(yA, yΣ , yA′) = Δδ(yA

⇓q, y
Σ , yA′

⇓q)
– Δρ2 : BV × BI × BO × BV ′ → {0, 1} that is decomposed into Δρ2,or ∨ Δρ2,i

• Δρ2,or(yA, yΣ , yO, yA′) =(
Δδ(yA

⇓q, y
Σ , yA′

⇓q) ∧ ΔδA,o
(yA, yΣ , yA′){yΣ ← yO}

)
∨

(
Δδ(yA

⇓q, y
Σ , yA′

⇓q) ∧ ΔδA,r
(yA, yΣ , yA′){yΣ ← yO}

)

• Δρ2,i(yA, yΣ , yO, yA′) =

∃yA′′ .
(
yA′′ ∈ Reachi(yA) ∧ ΔδA,o

(yA′′ , yΣ , yA′)
)
, where

∗ Posti(Z) = {yA′ | ∃yΣ∃yA.(yA ∈ Z) ∧ ΔδA,i
(yA, yΣ , yA′)}

∗ Reachi(yA) = μZ.Posti(yA) ∨ Posti(Z)
– bv0 = bA0

Observe that Δρ2 is decomposed into two parts, one containing the original
and the replacement actions Δρ2,or, and another containing only the insertion
actions Δρ2,i. We make this partition because the outputs for insertion actions
are in general strings whose lengths are not known in advance. To symboli-
cally encode all such output strings, we would need to introduce a potentially
unbounded number of Boolean variables corresponding to all possible events and
intermediate states on allowed output strings. To avoid this, we only encode in
the game construction whether it is possible for the edit function to react with
an insertion action. That is, a transition (bV , bI , bO, bV ′) |= Δρ2,i if it is possi-
ble to move from position bV to position bV ′ with insertion. Here, the output
bO is unconstrained as it is not used: the actual insertion string will be com-
puted explicitly in the synthesis algorithm in Sect. 4.3. We use μ-calculus [3,6]
to formulate the problem of determining whether it is possible to apply insertion
actions. The μ-calculus formula μZ.Posti(yA)∨Posti(Z) is the least fixed point
that computes all positions that are reachable from yA via a non-zero length
insertion string.

When computing Δρ2,i(yA, yΣ , yO, yA′), the intermediate steps of the fix-
point computation Reachi(yA) encode the insertions themselves, and are stored
in a data structure ins to be used later to extract the edit function. Informally,
we store in ins

yA,yΣ [i] the set of positions reachable from yA via an insertion

string of length i followed by an input event yΣ .

144 Y.-C. Wu et al.

4.3 Synthesis

With the game structure GS, we now compute the set of winning positions for
the edit function and synthesize a winning edit strategy in Algorithm 1. We
characterize the set of winning positions W using a μ-calculus formula. Specif-
ically, in step 2, the μ-calculus formula νZ.Pre(Z) is the greatest fixed point
containing all positions where the edit function can continuously react to the
plant with a winning edit action. If W does not contain the initial position bv0 ,
then Algorithm 1 returns that the edit synthesis problem is not feasible; i.e.,
Problem 1 has no solution. Otherwise, there exists a winning edit strategy and
we synthesize, starting from step 4, a winning edit automaton EA by breadth-
first search on the winning positions. The initial state of EA is the initial position
bv0 of GS. Steps 6–18 compute concrete winning actions and construct the cor-
responding explicit edit automaton. χs is the set of explored positions in GS.
In each iteration, we take newly-reached positions χs,diff and compute in step 9
the one-step winning actions act from χs,diff , using function Winning Actions.
With act being computed, in the inner while loop, we extract concrete transi-
tions in act. In step 12, function Extract One extracts one concrete transition.
Then, in step 18, we subtract from act all transitions with the same game posi-
tion bV and plant output event bI , as an edit action for that position and event
has already been found. This inner while loop terminates until act is empty. In
each iteration, if the extracted transition is an insertion action, then we compute
the output string for the insertion action using function Compute Insert Out.
Otherwise, the output is the event bO in the extracted transition.

Function Compute Insertion returns a string o of legal insertion events lead-
ing from position bV to bV ′ on input bI , and we describe it here informally. Recall
the data structure ins stored during the fixpoint computation that defines Δρ2,i

in Sect. 4.2. Since (bV , bI , bO, bV ′) |= Δρ2,i, we have bV ′ ∈ ins
bV ,bI [i] for some

i ≥ 0. Informally, bV ′ is reachable from bV via an insertion string of length
i followed by bI . Note that we will want to find a shortest such i, for which
bV ′ ∈ ins

bV ,bI [i] but bV ′ �∈ ins
bV ,bI [i − 1]. Now, we can reconstruct a path of

insertions from bV to bV ′ by working backwards from ins
bV ,bI [i] as follows. Set

oi = bI . At each iteration, we extract an insertion action oi−1 that leads from
ins

bV ,bI [i − 1] to ins
bV ,bI [i]. We repeat this until we arrive at ins

bV ,bI [0] = bV .
The resulting o = o0o1...oi is the output after insertion.

Theorem 1. Given a plant G with a set of secret states QS, utility dis-
tance D, and accuracy budget W , Algorithm 1 returns a finite edit automaton
EA = (S, Trans, s0) that solves Problem 1, if one exists, and declares infeasibility
otherwise.

Proof. Recall that the game structure GS is constructed from Ge that recognizes
all edit patterns. Hence, the symbolic GS enumerates all edit strategies in a finite
structure that satisfy the privacy and utility specifications before potentially
reaching a losing position. Because the winning set W is a set of positions where
the edit function can continuously react to the plant with an edit action satisfying

Obfuscator Synthesis for Privacy and Utility 145

Algorithm 1. Edit function synthesis
input : G = (Q, Σ, δ, q0), QS ⊂ Q, D : Q × Q → N, W ∈ N

output: EA = (S, Trans, s0)

1 Construct GS = (BV , BI , BO, Δρ1 , Δρ2 , bv0) per Sect. 4.2
2 Compute winning set W = νZ.Pre(Z) where

Pre(Z) =

{yA | ∀yΣ ∀yA′
⇓q ∃yA′

⇓p ∃yO.
[
Δρ1(y

A, yΣ , yA′) ⇒ yA′ ∈ Z ∧ Δρ2(y
A, yΣ , yO, yA′)

]
}

3 if W ∧ bv0 = False then
return Infeasible

4 s0 := bv0 , S ← {s0}
5 χs ← bv0 , χs,old ← False

6 while χs
= χs,old do
7 χs,diff ← χs ∧ ¬χs,old

8 χs,old ← χs

9 act ← Winning Actions(χs,diff , Δρ1 , Δρ2 , W)

10 χs ← χs,old ∨ act⇓A{yA′ ← yA}
11 while act
= False do

12 (bV , bI , bO, bV ′) ← Extract One(act)

13 S ← S ∪ {bV ′}
14 if (bV , bI , bO, bV ′) |= Δρ2,i then

15 o ← Compute Insertion((bV , bI , bO, bV ′))

else

16 o ← bO

17 Trans ← Trans ∪ {(bV , bI , o, bV ′)}
18 act ← act ∧ ¬(bV ∧ bI)

19 return (S, Trans, s0)

the specifications, we can synthesize an edit automaton that solves Problem 1
iff the initial game position is winning. A winning edit strategy can in general
require memory: it can choose different edit actions based on the history. But
because the game is a safety game, we can convert any such strategy to a winning
memoryless strategy by repeatedly selecting the same edit action every time it
visits the same game position. In fact, Algorithm 1 considers only memoryless
edit strategies. Therefore, the synthesized edit automaton is guaranteed to be
finite.

4.4 Complexity

Computing the winning set W, which is expressed as a μ-calculus formula of
alternation depth 1, can be solved with effort O(N) where N is the number of
states the game structure GS, which is O(n2) if n is the number of states in
the plant G. Here effort is measured in symbolic steps, i.e., in the number of
preimage computations in the fixpoint in step 1 of the Algorithm. Extracting an

146 Y.-C. Wu et al.

edit function also takes O(N), and hence Algorithm 1 has complexity = O(N) =
O(n2). However, constructing the game structure GS has additional complexity
O(N2) = O(n4) because of the least fixpoint computation for every state in the
game structure when computing Δρ2,i. In all, Algorithm 1 has complexity of
O(n4).

5 Case Studies and Experiments

We demonstrate our approach empirically using EdiSyn, an open source Python
toolkit we developed for this purpose1. EdiSyn implements the synthesis algo-
rithm based on Binary Decision Diagrams (BDDs), and relies on the cudd BDD
library [11] and dd [5], an open source Python binding to cudd. We ran EdiSyn
with Example 2 introduced in Sect. 2.2. The utility distance is defined based on
the L1 distance, as defined in Sect. 2.2. Finally, we let the accuracy budget be 2.

We shown in Fig. 3 the real and the obfuscated moving traces of Alice and
Bob. ti’s denote the time points where their locations are reported. The left
figure depicts the real moving traces. At time t2, Alice and Bob meet at location
(2, 2), which corresponds to a secret state. The right figure depicts the traces
output from the edit function. The edit function obfuscates their traces such
that Alice and Bob are never reported to be in the same location. Furthermore,
the distance between the original and the obfuscated locations always remain
within 2.

t0

t0,t2 t1 t2

t1 t0

t0,t2
t1 t2

t1

Fig. 3. Left: The original moving traces of Alice (in blue) and Bob (in red).
Right: The obfuscated moving traces output from the synthesized edit function. (Color
figure online)

We also ran EdiSyn with examples in the same settings but increasing grid
sizes. Gridk×k is the example where Alice and Bob move in the k × k grid world
and want to hide their secret meetings. The accuracy budget is set to 2 in all
examples. The results of this experiment are summarized in Table 1. For each
grid example, Table 1 shows the number of plant variables (i.e., the number
of states plus the number of events), the computation time of the symbolic
implementation, the peak number of BDD nodes, and the memory used during
the synthesis computation. The experiment was performed on an Intel Core i5
(2.4 GHz, 4 GB) machine running Mac OS X 10.10.5 Yosemite. While we also
1 EdiSyn is available at https://bitbucket.org/yichinwu/edisyn.

https://bitbucket.org/yichinwu/edisyn

Obfuscator Synthesis for Privacy and Utility 147

implemented the explicit (non-symbolic) algorithm, the explicit implementation
threw outOfMemory errors on all of the grid examples.

These are preliminary results based on a simple, unoptimized implementa-
tion. In addition to optimizing the implementation in terms of memory usage
and efficiency of operations, comparison of various variable ordering strategies for
the BDDs and reuse of intermediate stages of the fixpoint computations while
constructing the game structure are also acknowledged as worthy of further
exploration. Finally, observe that the synthesis algorithm is computed offline.
Once an edit function is synthesized, it can be used to efficiently edit the plant’s
output online.

Table 1. Scalability test for the grid world example, with a timeout of 60 minutes.

Example Variables Synthesis time (min) Peak nodes Memory (MB)

Grid2×2 161 0.05 21274 30.8

Grid3×3 1171 2.90 261446 151.3

Grid4×4 4353 42.37 1103200 637.7

Grid5×5 11651 Timeout N/A N/A

6 Related Work

This work combines perspectives and techniques from computer security and
formal synthesis. Our threat model and problem formulation are inspired by the
definition of differential privacy [2], where the consumers of data include both
legitimate receivers and adversaries, and the goal is to provide privacy while pre-
serving utility with respect to the desired data analytics. Informally, ε-differential
privacy guarantees that the resulting output is insensitive (up to a factor depen-
dent on ε) to the modification, deletion or addition of any single record in the
original dataset. Utility of a differentially private mechanism is evaluated using
query-dependent measures of the deviation between results obtained from the
original dataset obtained by applying the mechanism to the original dataset.
The edit functions in this work can be viewed as a discrete logic counterpart
of differentially private mechanisms; privacy and accuracy here are captured by
logical conditions on the edited executions of the plant in comparison with the
real executions. Additionally, most traditional approaches to providing privacy
rely on cryptographic primitives; however, such schemes require an infrastruc-
ture to create and distribute secret keys. In the settings we consider, especially
those involving ad-hoc and dynamic networks, and resource-constrained devices,
a non-cryptographic solution such as ours may be preferred.

There has been some previous work on the synthesis of artifacts enforcing
privacy requirements in the discrete logic setting. Specifically, synthesis for a
privacy notion called opacity has been explored by researchers in discrete event
systems; see e.g., [4,10,12]. The edit mechanism in this paper is related to but

148 Y.-C. Wu et al.

more powerful than the insertion mechanism developed in [12]. The most distin-
guishing feature of this work is the threat model. All existing works on synthesis
for opacity consider an threat model where every outside observer of the sys-
tem is malicious. In contrast, the malicious outside observer in this paper is
also endowed with some legitimate observational needs. As a consequence of this
different threat model, none of the above works addresses questions of the pre-
serving utility of observations. To the best of our knowledge, this paper is the
first attempt to formulate the synthesis problem for both privacy and utility.
Our work is also distinguished by the presentation of a symbolic encoding of
the solution. We encode the synthesis problems symbolically using Binary Deci-
sion Diagrams, and are thereby better equipped to address the state explosion
problem.

In addition to the field of discrete event systems, we draw inspiration from
recent work in robotics that considers the design of discrete filters satisfying pri-
vacy and utility constraints provided as pairwise distinguishability (and indis-
tinguishability) requirements on states [8]. Our work is most similar in spirit to
this effort, but our privacy and utility constraints are specified as automata the-
oretic winning conditions instead of pairwise requirements on states. In [8], the
requirements are satisfied via graph colorings: states that must be indistinguish-
able have the same color and ones to be distinguished are colored differently.
Our edit mechanism is more general, in that it also allows inserting fictitious
events.

Finally, the idea of editing event labels on automaton transitions is also
employed in [7], where the authors considered a selfish environment that edits the
inputs to the plant automaton. However, the focus in [7] is on deciding whether
the plant is resilient to such a selfish environment rather than on synthesizing
an edit strategy with privacy and utility objectives.

7 Conclusion and Future Work

We have defined the problem of synthesizing an obfuscation policy that enforces
privacy specifications while preserving utility. The specifications in this work
were captured as automata-theoretic requirements on a finite state model of
the plant’s outputs. Our method allows plants to generate and broadcast event
strings for some useful computation, while simultaneously hiding certain secret
behaviors from an outside observer. To enforce the privacy and utility specifica-
tions, we automatically synthesized an edit function that reacts to the plant’s
outputs and transforms them in a way that meets both requirements. Our syn-
thesis algorithm was encoded symbolically, improving the efficiency of obtaining
a solution. This is, to our knowledge, the first work to consider synthesis for
both privacy and utility specifications.

In this work, we considered simple privacy and utility specifications: in fact, our
privacy requirement is a safety guarantee. In the future, we will explore the use of
more complicated specifications to express these desirables. For example, temporal
logics are expressive tools for stating requirements. Formulating privacy andutility

Obfuscator Synthesis for Privacy and Utility 149

as temporal logic formulae would allow a much richer set of specifications. Also, so
far our utility specification has taken the form of an accuracy budget constraining
the distance between the real and released states. In the future, we will tackle an
optimization problem that asks the question, what is the smallest budget for which
the problem in this paper becomes feasible?

References

1. Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. IEEE
Trans. Comput. C–35(8), 677–691 (1986)

2. Dwork, C.: Differential privacy. In: International Conference on Automata, Lan-
guages and Programming, pp. 1–12 (2006)

3. Emerson, E.A.: Model checking and the mu-calculus. DIMACS Ser. Discrete Math.
31, 185–214 (1997)

4. Falcone, Y., Marchand, H.: Runtime enforcement of K-step opacity. In: 52nd IEEE
Conference on Decision and Control (2013)

5. Filippidis, I.: https://github.com/johnyf/dd
6. Kozen, D.: Results on the propositional μ-calculus. Theor. Comput. Sci. 27(3),

333–354 (1983)
7. Kupferman, O., Tamir, T.: Coping with selfish on-going behaviors. In: Clarke,

E.M., Voronkov, A. (eds.) LPAR-16 2010. LNCS, vol. 6355, pp. 501–516. Springer,
Heidelberg (2010)

8. O’Kane, J.M., Shell, D.A.: Automatic design of discreet discrete filters. In: IEEE
International Conference on Robotics and Automation (ICRA), pp. 353–360 (2015)

9. Ramadge, P.J., Wonham, W.M.: Supervisory control of a class of discrete event
processes. SIAM J. Control Optim. 25(1), 206–230 (1987)

10. Saboori, A., Hadjicostis, C.N.: Opacity-enforcing supervisory strategies via state
estimator constructions. IEEE Trans. Autom. Control 57(5), 1155–1165 (2012)

11. Somenzi, F.: CUDD: CU decision diagram package release 2.3.0. University of
Colorado at Boulder (1998)

12. Wu, Y.-C., Lafortune, S.: Synthesis of insertion functions for enforcement of opacity
security properties. Automatica 50(5), 1336–1348 (2014)

https://github.com/johnyf/dd

	Obfuscator Synthesis for Privacy and Utility
	1 Introduction
	2 Preliminaries and Problem Statement
	2.1 Preliminaries
	2.2 Threat Model
	2.3 Edit Functions
	2.4 Problem Formulation

	3 Edit Synthesis Algorithm
	3.1 Edit Patterns Satisfying the Specifications
	3.2 Safety Game Formulation

	4 Symbolic Encoding of Edit Synthesis
	4.1 Symbolic Automata
	4.2 Symbolic Game Structure
	4.3 Synthesis
	4.4 Complexity

	5 Case Studies and Experiments
	6 Related Work
	7 Conclusion and Future Work
	References

