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Preface

The NASA Formal Methods (NFM) Symposium is a forum for theoreticians and
practitioners from academia, industry, and government, with the goals of identifying
challenges and providing solutions to achieving assurance in mission- and safety-critical
systems. Examples of such systems at NASA include advanced separation assurance
algorithms for aircraft, Next-Generation Air Transportation (NextGen), autonomous
rendezvous and docking for spacecraft, on-board software for Unmanned Aerial Systems
(UAS), UAS Traffic Management (UTM), autonomous robots, and systems for fault
detection, diagnosis, and prognostics. The topics covered by the NASA Formal Methods
Symposia include: model checking, theorem proving, SAT and SMT solving, symbolic
execution, automated testing and simulation, model-based development, static and
dynamic analysis techniques, runtime verification, safety assurance, fault tolerance,
compositional verification techniques, cyber security, specification formalisms,
requirements analysis, certification, and applications of formal methods in systems
development.

This volume contains the papers presented at NFM 2016, the 8th NASA Formal
Methods Symposium, co-organized by NASA Ames Research Center and the
University of Minnesota Software Engineering Center, in Minneapolis, MN, June 7-9,
2016. Previous symposia were held in Pasadena, CA (2015), Houston, TX (2014),
Moffett Field, CA (2013), Norfolk, VA (2012), Pasadena, CA (2011), Washington, DC
(2010), and Moffett Field, CA (2009). The series started as the Langley Formal
Methods Workshop, and was held under that name in 1990, 1992, 1995, 1997, 2000,
and 2008. Papers were solicited for NFM 2016 under two categories: regular papers
describing fully developed work and complete results or case studies, and short papers
describing tools, experience reports, and work in progress or preliminary results. The
symposium received 70 submissions for review (51 regular papers and 19 short papers)
out of which 29 were accepted for publication (19 as regular papers and 10 as short
papers). These submissions went through a rigorous reviewing process, where each
paper was first independently reviewed by three reviewers and then subsequently
discussed by the Program Committee.

In addition to the refereed papers, the symposium featured three invited presenta-
tions: “Using Formal Methods to Eliminate Exploitable Bugs” by Kathleen Fisher,
Professor in the Computer Science Department at Tufts University; “Where Formal
Methods Might Find Application on Future NASA Missions” by Michael L. Aguilar,
NASA Technical Fellow in Software Engineering and the NASA Engineering and
Safety Center Discipline Expert in Software, NASA Langley Research Center; and
“Murphy Was Here” by Kevin Driscoll, Engineering Fellow, Honeywell. The sym-
posium also featured breakout sessions to explore the application of formal methods to
future NASA missions and to connect the dots between capabilities that need to be
matured for NASA missions and formal methods.



VI Preface

The organizers are grateful to the authors for submitting their work to NFM 2016
and to the invited speakers for sharing their insights. NFM 2016 would not have been
possible without the collaboration of the outstanding Program Committee and addi-
tional reviewers, the support of the Steering Committee, the efforts of the staff at the
University of Minnesota and NASA Ames Research Center who made this event
possible, and the general support of the NASA Formal Methods community.

The NFM 2016 website can be found at: http://nasaformalmethods.org.

Support for the preparation of these proceedings was provided under a contract
between the NASA Ames Research Center and the University of Minnesota Software
Engineering Center.
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Using Formal Methods to Eliminate
Exploitable Bugs

Kathleen Fisher

Tufts University, Medford, MA 02155
kfisher@eecs.tufts.edu

Abstract. For decades, formal methods have offered the promise of software
that doesn’t have exploitable bugs. Until recently, however, it hasn’t been
possible to verify software of sufficient complexity to be useful. Recently, that
situation has changed. Sel4 is an open-source operating system microkernel
efficient enough to be used in a wide range of practical applications. It has been
proven to be fully functionally correct, ensuring the absence of buffer overflows,
null pointer exceptions, use-after-free errors, etc., and to enforce integrity and
confidentiality properties. The CompCert Verifying C Compiler maps source
C programs to provably equivalent assembly language, ensuring the absence of
exploitable bugs in the compiler.

A number of factors have enabled this revolution in the formal methods
community, including increased processor speed, better infrastructure like the
Isabelle/HOL and Coq theorem provers, specialized logics for reasoning about
low-level code, increasing levels of automation afforded by tactic languages and
SAT/SMT solvers, and the decision to move away from trying to verify existing
artifacts and instead focus on co-developing the code and the correctness proof.

In this talk, I will explore the promise and limitations of current formal
methods techniques for producing useful software that provably does not con-
tain exploitable bugs. I will discuss these issues in the context of DARPA’s
HACMS program, which has as its goal the creation of high-assurance software
for vehicles, including quad-copters, helicopters, and automobiles.



Where Formal Methods Might Find
Application on Future NASA Missions

Michael L. Aguilar

NASA Langley Research Center, Hampton, VA 23681
Michael.L.Aguilar@nasa.gov

Abstract. In many cases, formal methods are a solution looking for a problem.
NASA recently released the 2015 NASA Technology Roadmaps that describe
numerous possible future missions. Within these descriptions are capabilities
that need to be matured in order for mission success. Many of these future
capabilities could be accomplished through the use of formal methods. The
future capabilities identified by NASA in these roadmaps may just be the
problems formal methods have been seeking. Think of these roadmaps as “on-
ramps” for engineering using formal methods.

These missions include joint robotic and human exploration of Mars,
robotic probes of the icy moons of the outer planets where there is evidence of
organic chemistry. Sophisticated earth-orbiting satellites to advance earth sci-
ence, and possible robotic refueling and maintenance missions of these satellites.

One of the predominant cross-cutting challenges is autonomy and its veri-
fication: the capability of automation to make and execute decisions in-situ;
necessitated in part by the long light-time delays from Earth for deep space
spacecraft. Another challenge is the high expense of achieving high assurance
for software intensive systems.

And then there are the overarching issues of budget, schedule, and design.
It is highly unlikely these system-of-systems will be implemented and inter-
faced, tested and verified, before deployment. How could formal methods define
the requirements for these systems such that the protocols and interfaces,
functions and fault management execute as intended for integration that may
occur for the first time off-planet?

In my experience, NASA can accept new techniques where it can be
demonstrated that current practices are not sufficient. For these future system-of-
systems, formal methods may prove to be not only sufficient but necessary.



Murphy Was Here

Kevin Driscoll

Honeywell, Golden Valley, Minnesota 55422
kevin.driscoll@honeywell.com

Abstract. My boss once said that “All system failures are caused by design
faults.” This is because, regardless of the requirements, critical systems should
be designed to never fail. It is extremely rare for a critical system to fail in a way
that was anticipated by the designers (e.g., redundancy exhaustion). This key-
note will explore the factors that lead to designers underestimating the possi-
bility/probabilities of certain failures. Examples of rare, but actually occurring,
failures will be given. These will include Byzantine faults, component trans-
mogrification, “evaporating” software, and exhaustively tested software that still
failed. Problems that Formal Methods could have found before actual occur-
rence will be identified as well as problems that are still intractable with the
current state of the art. The well known Murphy’s Law states that: “If anything
can go wrong, it will go wrong.” For critical systems, the following should be
added: “And, if anything can’t go wrong, it will go wrong anyway.”
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Temporal Logic Framework for Performance
Analysis of Architectures of Systems

Ariane Piel®™) | Jean Bourrely, Stéphanie Lala, Sylvain Bertrand,
and Romain Kervarc

ONERA — The French Aerospace Lab, 91123 Palaiseau, France
ariane.piel@onera.fr

Abstract. This paper presents a formal mathematical framework for
performance analysis (in terms of success of given tasks) of complex
systems, ATLAS. This method interestingly combines temporal aspects
(for the description of the complex system) and probabilities (to repre-
sent performance). The system’s task to be evaluated is described using a
temporal language, the ATLAS language: the architecture of the task is
decomposed into elementary functionalities and temporal operators spec-
ify their arrangement. Starting with the success probabilities of the ele-
mentary functionalities, it is then possible to compute the overall success
probability of the task using mathematical formulae which are proven
in this paper. The method is illustrated with a deorbitation task for a
retired satellite called ENVISAT.

Keywords: Probabilistic performance analysis - Time-dependant sys-
tems - Temporal logic

1 Introduction

To keep up with the complexification of systems, novel performance analysis
and evaluation methods have to be developed to validate new designs. In this
context, architecture models of complex systems may be used to assess dynamic
system performances with regard to the time necessary for the desired task to be
fulfilled. The work presented here provides a generic formal framework and a tool
designed for such performance analysis, called ATLAS (Analysis by Temporal
Logic of Architectures of Systems).

The proposed approach interestingly combines temporal and probabilistic
aspects by computing the success probability of the complex system’s global task
at a given instant in time and with respect to the beginning of the task. The task
itself is described temporally. It is assumed that the system’s achievements may
be organised as a hierarchy of functionalities: at the top, the global functional-
ity represents the general expected behaviour of the system, i.e. its task. This
global functionality may generally be split into simpler sub-functionalities, and
this recursively, until reaching an elementary functionality associated to an iden-
tifiable component of the system. The success probabilities of these elementary

© Springer International Publishing Switzerland 2016
S. Rayadurgam and O. Tkachuk (Eds.): NFM 2016, LNCS 9690, pp. 3-18, 2016.
DOI: 10.1007/978-3-319-40648-0-1



4 A. Piel et al.

functionalities are supposed to be known. This system architecture is described
by a temporal language, the ATLAS language, which allows expressing tem-
poral constraints between the realisations of each functionality and is derived
from Allen’s interval logic [1]. According to this architecture with the associated
underlying temporal constraints, the global performance of the system may be
computed from the individual elementary functionalities.

The aim of this approach is to avoid extensive simulations and Monte-Carlo
methods which are very costly in computing time. With this respect, the benefit
of this method is two-fold. First of all, since the elementary functionalities are
of smaller scale, if Monte-Carlo methods are necessary to assess their proba-
bilities, their computing time should still be reasonable. Secondly, the division
into smaller scale functionalities allows isolating the different disciplines. Thus,
already existing domain-specific simulation tools may be used without having to
combine them all as would have been necessary for the whole task. The level of
precision of each elementary functionality may be individually adjusted.

Related Work. This approach was initiated about ten years ago with a tool
called OLIGRAAL [17] which considered the average duration time of the task,
along with its success probability. For a more precise expression of temporal
constraints, the approach was shifted to the one presented in this paper with
ATLAS which distinguishes precisely each eventuality so that individual start
and end times may be considered for the verification of the temporal constraints.

An extensive overview of probabilistic performance analysis methods for large
scale and time-dependant systems may be found in [19]. The most notable frame-
works dealing with stochastic approaches for time-dependent systems are gener-
ally based on one of the three following approaches [5]: Bayesian networks [15],
stochastic Petri nets [11,20], and fault trees [10,25] or related formalisms [7,24].
Among these approaches, those based on stochastic Petri nets, though of inter-
est, require heavy simulation (combined for example with Monte-Carlo meth-
ods). Although the Bayesian network approach is interesting, large Bayesian
networks reflecting complex systems are difficult to design and maintain, and
have limited temporal expressivity. Dynamic Bayesian networks consider ran-
dom variables on the state of the system with a time parameter, while ATLAS
considers the timing of the functionalities as the random variables. Finally, with
fault trees, the potential causes of a system hazard are recursively organised
into a tree structure reflecting causality - which is a crucial notion in the frame-
work of safety analysis - so as to figure out all of the credible ways in which the
hazard may occur. The representation of temporal consistency by a modal logic
allowing the expression of time may be linked to the fault tree approaches using
time propagation such as [12,23] based on the Interval Temporal Logic and the
Duration Calculus Interval [2,8,13]. The association of Allen’s logic with prob-
abilities as in ATLAS is natural to manipulate probabilised durations. In [14],
these two approaches are coupled with the aim of diagnosing with logic formu-
las, by manipulating facts represented with uncertain durations. In ATLAS, the
aim is shifted to the performance evaluation of a task. The time interval doesn’t
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represent a fact but the conditional realisation of a functionality so the nature
of the manipulated probabilities is different.

ATLAS is a very generic framework which has and may be applied to a
wide variety of systems such as space systems’ vulnerability assessment to space
debris [4,16,18] and ballistic missile defence performance assessment [3].

The performance analysis performed by ATLAS allows for:

— comparing different physical or functional configurations of the system:;
— assessing the sensibility of the task with regard to the external conditions.

This paper presents the formal framework behind the ATLAS tool. A case
study of the deorbitation of a retired satellite serves as an illustration of the
method but has no purpose of realism concerning the data used. Section 2
describes the task of the chosen case study and the system configurations to
be compared. Section 3 sets the mathematical framework around ATLAS and
Sect. 4 uses ATLAS to evaluate the configurations of the case study.

2 Case Study: Deorbitation of Retired Satellite
ENVISAT

The case study presented here serves as an illustration of the ATLAS perfor-
mance analysis method and has no purpose of realism concerning the data used.
It shows what could be achieved with the intervention of technical experts to
determine the data associated to each elementary functionality.

Let us consider the task of completing the deorbitation of retired satellite
ENVISAT [6]. ENVISAT (“Environmental Satellite”) is an inoperative Earth-
observing satellite still in orbit. It was launched in 2002, into a Sun synchronous
polar orbit at an altitude of 790km, and the task ended in 2012. It is now
considered as a big debris: 26 m x 10m x 5m and 8 200 kg. For this reason it a
candidate for a space debris removal task. The aim is to study different possible
ways of removing ENVISAT with a chaser. The general task may be decomposed
as follows: (1) launching the chaser; (2) reaching ENVISAT’s orbit; (3) placing
the chaser; (4) capturing ENVISAT; (5) initiating deorbitation.

fimb
Caplure device

foint

(a) ROGER net system [9] (b) Canadarm-2 ISS operating arm principle [9]

Fig. 1. Different possible equipments for the chaser
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We choose to compare the following different configurations:

— the choice of the launcher between Vega and Soyuz;

the choice of the chaser (Fig.1): with two nets or a robotic arm;

— the choice of the deorbitation technique: with a deorbitation kit (propulsive
element appended to the debris) or by dragging the debris.

3 Formal Framework Behind ATLAS

The aim of this paper is to build a formal framework for the performance analy-
sis of such complex systems. The studied system is characterised by a given
number of functionalities. The evaluation of system performance, of its condi-
tions of success or failure, relies on the hypothesis that the functionalities which
characterise it have an uncertain and temporal behaviour.

The task to be fulfilled by the complex system is described using a tempo-
ral language derived from Allen’s temporal logic [1]. This temporal description
has a tree structure the root of which represents the whole task with a cou-
ple (start time tgqpt, end time t.,q) allowing for the achievement of the task,
and the leaves of which are the same kind of couples (tstqrt, tend) corresponding
to the elementary functionalities of the studied system. The nodes of the tree are
the temporal operators which define the sequencing of the task’s functionalities.
To take into account the uncertainty pertaining to the realisation of each func-
tionality, a discrete probability distribution function is associated to each tgszqps.
It represents the probability that the functionality succeeds at tenq knowing it
has started at ts:q¢+. Following the temporal description from the nodes of the
tree, one may then compute the probability distribution functions associated to
the root of the tree, i.e. the whole task.

In this Section, the mathematical framework for these computations is for-
malised. First of all, the probability space is defined, followed by the temporal
language used to describe the architecture of system’s task. With that founda-
tion, the probability distribution functions used may be built and then computed
for each operator of the language. The uninterrupted sequence operator “meets”
is chosen as a representative operator to detail the operator-dependant defini-
tions and proofs.

3.1 Elementary Functionalities of the System

Let 2 be a probability sample space, with its o-algebra P(£2) and its probability
measure P. The elementary functionalities decomposing the task of the system
are characterised as follows.

Definition 1 (Discrete elementary functionalities, associated random
variables). Let F be the set of the elementary functionalities such that:

— Fach elementary functionality F' € F is characterised by three discrete random
variables on £2, where R = R U oo:
o Sp: 2 — R, start time of the functionality,
o Tr: 2 — R, end time of the functionality,
e Bp: 2 — {0,1}, success/failure indicator of the functionality.
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— The three random wvariables of an elementary functionality F follow the con-
dition that, for all w € £2:
e P(Brp(w) = 1,Tp(w) = o0) = 0, i.e. a functionality which doesn’t end

cannot succeed, (C1)
o P(Sp(w) > Tr(w)) = 0, ie. a functionality may only end if it has started
beforehand. (C2)

3.2 ATLAS Formulae or Functionalities of the System

Complex functionalities of the system (i.e. arrangements of elementary function-
alities) may be defined using temporal operators most of which are inspired from
Allen’s interval logic [1]. These descriptions of complex and more global func-
tionalities of the system are called ATLAS formulae. The language is built by
induction with the elementary functionalities of the system and a set of operators
which lead to the tree structure of the system’s task.

Table 1 graphically represents the sequencing of the intervals of the studied
functionalities as expressed by the operators. The semantics of the language,
presented in Sect. 3.5, formally defines these temporal arrangements. When one
or two of these intervals is reduced to a point, the arrangement could be classified
in several categories (for instance, at first sight, if both functionalities were
reduced to one point in time, they would verify “equals” but also comply with
“starts”). The semantics is defined so that the operators be strictly disjointed,
and the last column of the table details the affiliation of such degenerate cases.

Definition 2 (ATLAS formula or system functionality). Let F be the
set of elementary system functionalities. The set of ATLAS formulae over F,
denoted L(F), is defined by induction as follows: - if F € F, then F € L(F);

—if F € L(F) and G € L(F) then

o FleqlG € L(F), “equals” i.e. exact temporal conjunction;

o F[me]G € L(F), “meets” i.e. uninterrupted sequence;

o Flbe]G € L(F), “before” i.e. sequence with interruption;

o Flov]G € L(F), “overlaps”;

o F[st]G € L(F), “starts” i.e. with identical start times;

o Fldu]lG € L(F), “during” i.e. inclusion;

o F[fi]G € L(F), “finishes” i.e. with identical end times;

o FlcolG € L(F), “concurrent” i.e. disjunction with parallel start times.

The random wariables Bp, Sp, and Tg characterising ATLAS formulae
F € L(F) are also defined by induction:

- if F € F, then Bp, Sp, and Tr are defined as in Definition 1;

- if F = G®H with ® € {[eq], [me], [be], [ov], [st], [du], [fi], [co]}, the definition of
Bp, Sp, and Tr depends on Bqg, Sa, Ta, By, Su, and Ty, and expresses the
temporal constraints of operator ®. The definition corresponding to operator
“meets” is given as a representative example in Sect. 3.5.
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Table 1. Graphical representation of ATLAS operators

Operator Symbol Sequencing Degenerate cases
— e
equals  Fleq|G G G
meets  F[me]G G
G
before  F[be]G G ——
G
overlaps  Flov]G G
starts Fst]G G G
M — —
during  F[du]G G G
finishes  F[fi]G G G

concurrent F[co]G }7} one succeeds
G

Proposition 1 (Constraints on random variables of an ATLAS for-
mula). The three random variables of an ATLAS formula F € L(F) follow
both constraints (C1) and (C2) of Definition 1.

Proof. This proof depends on the inductive definition of Br, Sg, and Tx, and
is detailed as a representative example for operator “meets” in Sect. 3.5.
From constraints (C1) and (C2), there directly results that:

Corollary 1. The random variables Br, Sp, and Tr of a formula F € L(F)
follow two additional constraints:

P(Br(w)=1, Sp(w)=00)=0, if F' doesn’t start it cannot succeed; (C3)
P(Sp(w)=00,Tr(w)eR)=0, if F' doesn’t start it cannot end. (C4)

3.3 Conditional and Prior Probabilities

The probability functions associated to each ATLAS node, i.e. to each system
functionality, correspond to the conditional probability of success at a given
instant knowing the starting instant of the functionality.
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Definition 3 (Conditional probability of success of a functionality).
The conditional probability of success of functionality F € L(F) at instant t,
knowing starting instant s, is a function from R x R into [0, 1]:
P(BF = 1,SF = S,TF = t) .
f P(Sp = 0
]P;(SF _ S) 1 ( F S) 7é

V(s,t) eRxR ITp(s,t) =

0 otherwise
This probability function may be extended to R x R by taking into account
(C1) and (C3) which imply that a functionality may not succeed if it didn’t end
or didn’t start: (s, 00) = (00, 00) = 0.

Definition 4 (Prior probability of a functionality). The prior probability
to start F' at a given instant is a function of R into [0,1]: Kp(s) =P(Sp = s).

We now have a mathematical foundation to define, prove, and compute
recursively the conditional success probabilities for all ATLAS formulae. The
calculations now have to be done for each ATLAS operator in order to obtain
mathematical formulae which will then be available to be combined according
to the structure of the task to be analysed.

3.4 Generic Method for Operators Derived from Allen’s Logic

The formalisations of the different operators derived from Allen’s temporal logic
are all analogous and follow a generic method which is presented here. The
application of this method for the representative operator “meets” is detailed in
Sect. 3.5.

1. Define the three random variables as announced in Definition 2 and along the
following guidelines, where ® represents the studied operator:
(a) Srgg: the temporal constraints related to S and S are expressed,
(b) Treq: some temporal constraints on Sg, Sg, Tr and T are expressed,
(c) Brec is the conjunction of a generic condition BpBgls,,cerlTpgccr
(expressing that both F' and G succeed, and that the temporal constraints
from Spec and Trec are followed) and the remaining temporal con-
straints on Tr and T so that all temporal constraints pertaining to
operator ® are imposed;
2. Check that these random variables indeed follow constraints (C1) and (C2)
as announced in Proposition 1;
3. Calculate ITpga and Kpga, with possible particular hypotheses.

3.5 The “meets” Operator

Definition 5 (“meets” operator). F[me]G is a system functionality associ-
ated to the following random variables:

{ s if Sg(w)>Sp(w)=s€R

= Srpmejc 1 2 = R, Sppmejo(w) = oo otherwise
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. _ t if Sp(w)<Tp(w)=Sq(w)<Te(w)=teR
- TF[nLe]G 12— R’ TF[me]G(w) - 0o otherwise

- BF[me]G 12— {07 1} ) BF[me]G(w) = BF(w)BG(w)]lSF[me]G(w)GRﬂTF[me]G(w)GR

It is straightforward to show that constraints (C1) and (C2) are verified.

Conditional and Prior Probabilities. The direct application of the definition
gives the following results:

Vs €R Kppec(s)= > P(Sp=s5,8 =d)
d>s,deSq(w)

Kppmea(00) =P(Sp = 00,S¢ =00) + > > P(Sp=15,8 =d)

s€Sp(w) d<s

S P(Bp =1,8r = 5,Tr =d, Bc = 1,S¢ = d, T = t)
d>s

2 —
V(S,t) cR Hp[me]g(s,t) = P(SF - S,SG - d)

d>s,d€Sg(w)

Results with Independance Hypothesis. If an independance hypothesis
is taken on the random variables of two functionalities (that is, if the random
variables of the two functionalites F' and G are independant), the calculations
of IIpjneic and of Kppy,ec may be simplified.

Theorem 1. If functionalities F' and G are independant, then the success prob-
abilities may be computed with the following formulas:
Vs € R KF[me}G(s) = KF(S) Z Kg(d),
d>s,deSg(w)

Krpmeg(00) = Kp(o0)Kg(oo) + 32 Kr(s) X Ka(d)
s€Sp(w) d<s

V(S,t) € R? HF[me]G(Svt) =

1
Z KG(d) dX: HF(57d)HG(d7 t)KG(d)
d>s,deSq(w) -

Proof. From the independance, it results that if Kp(s) > Kg(d) #0:
d>s,deSq(w)
Z P(BF:1,SF:S,TF:d)P(Bczl,SG:d,TG:t)
d>s
Hrpmea(s,t) = = O )

d>s,dESq(w)

Results with Exact Sequencing Hypothesis. In this paragraph, we study
the particular case of systematic exact sequencing of functions F € L(F) and
G € L(F) as expressed by the two following hypotheses:
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Definition 6 (Exact sequencing hypothesis for “meets”)

— The success of functionality F implies the start of functionality G at the
instant of success of F. Conversely, for functionality G to start at an instant,
it is mecessary that functionality F' have succeeded at this same instant and
that it not be reduced to a point (Sp < Tr). Formally:

Ywe 2 Sgw)=de€R < Bpw)=1ASpw)<Trw)=deR (1)

— The success of G only depends on the instant of success of F' (and on the start
of G because of (1)), but not on the start instant of F.

V(s,t) € R? P(Bg=1,Te=t | Sg=d, Sp=s) = P(Bg=1,Tg=t | Sa=d) (2)
Proposition 2. Hypothesis (1) implies that: Vwe(? Sp(w)ER=Sg(w)>SF(w).

Proof. By case disjunction. Let w € 2 such that Sp(w) € R.

Sa(w) = oo Then, Sg(w) > Sp(w);

Sg(w) € R Then (1) implies in particular that S¢=TF and Sp<TF, so
Sr<Sq.

Theorem 2. If functionalities F € L(F) and G € L(F) follow hypotheses (1)
and (2), then: -
Vs €ER  Kpmea(s) = Kr(s)

and:
V(Sat) € R? HF[me]G(Sat) = ZHF(svd)HG(dv t)
d>s

Proof. For all s € R:

KF[me]G(S) - Z ]P(SF =S, SG = d)
d>s,deSq(w)

Pr0po§tion 2 Z P(Sp =s,5¢ = d)
deSg(w)

= P(SF = 8) = KF(S)

Kppmea(00) = P(Sp = 00,56 =00) + > > P(Sp =s5,5¢ = d)
s€ESF(w) d<s

=P(SF = 00, Sg = o0)
Proposition 2

=P(Sp=00,Bpr=0)+ Y P(Sp=00,Bp=1Tp=5)
@) seSp(w)
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For all (s,t) € R%:

E ]P)(Blea SF:$7TF:d7 BG::[} SG:d7 TG:t)

d>s
I ,t) =
F[me]G('s ) ]P’(SF:S, SGZd)
d>s,d€SG (w)
> P(Brp=1,Sp=s,Tr=d)P(Bg=1, Sg=d,Tg=t | Br=1, Sp=s, Tr=d)
_ d>s
Propogtion 2 Z P(SF:S, SG:d)
deSa(w)
> P(Bp=1,Sp=s,Tr=d)P(Bg=1, Sg=d, Tc=t | Sp=s, Sc=d)
_ d>s
® P(Sp=s)
=Y g (s,d)P(Ba=1,Se=d, To=t | Sp=s, Sa=d)
d>s
= > Hp(s,d)P(Bg=1,Tg=t | Sg=d)
(2)d>3
= " Hp(s,d)a(dt)
d>s

This completes the formalisation of operator “meets”. The semantics and cal-
culations of the other operators are analogous and Table 2 presents the resulting
formulae to compute the success probabilities for all ATLAS operators.

FO F3 F5
Launch Placing Deor-

bitation

(a) Decomposition of the whole task (b) Decomposition of F1

Fig. 2.

4 Application of ATLAS to the Case Study
of ENVISAT’s Deorbitation

This Section will now illustrate the use of the ATLAS method on the case study
presented in Sect. 2.
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4.1 Task Description

The first step is to detail each elementary functionality of the task and spec-
ify both the temporal constraints between these elementary functionalities and
the success probabilities associated to them. As described in Sect. 2, the task
is decomposed in five elementary functionalities displayed in Fig.2(a). These
functionalities have to exactly follow each other, so the appropriate operator to
be used between all functionalities is operator “meets” detailed in Sect.3. In
addition, by definition of the elementary functionalities, they are always exactly
sequenced so follow the “exact sequencing hypotheses” of Definition 6 and the
corresponding formula may be applied. Each elementary functionality must now
be precisely detailed to assess its associated success probabilities.

Functionality 1. The launcher launches the chaser in the orbital plane of the
debris. The launching may not be operated all the time and is only possible
during a 2h period each day of the first trimester of 2020. If the task manager
decides anyhow to launch out of this time-slot, the launch is operated at the
beginning of the next slot. If the order is initiated inside a nominal slot, the
chaser is immediately launched. Weather and other external conditions aren’t
considered here since they would have the same impact on the task for all studied
configurations. For similar reasons, it is considered that, if the launch vehicle
takes off, the probability of success of this functionality is 1.

Functionality 2. The goal of this functionality is to manoeuvre the chaser to
phase it with the debris. Placing the chaser in the right orbit (ENVISAT’s orbit)
depends on the choice of the launcher. Vega places it on an orbit of around 300 km
in about 800s [21]. One must wait several minutes to a few hours to compensate
the possible phasing difference between ENVISAT and the chaser. It is assumed
that the launching slots have been judiciously chosen so that the phase difference
be minimised. To simplify this example that has a strictly illustrative vocation,
the 2h time-slot is divided into three time-slots (0 to 40 min, 40 to 80 min, and
80 to 120 min). The time necessary to reach the orbit is respectively of 10 min,
20 min, and 30 min. The success probability of this function is 90 % (respectively
40 %, 30 %, and 20 % according to launching time). The situation is simpler for
the Soyuz launcher since it places the chaser directly in the correct orbit (790 km)
in about 60 min [22].

Functionality 3. This functionality varies depending on the equipment of the
chaser. In the case of a chaser equipped with nets:

F3.1 This corresponds to the observation and debris evaluation phase and may
take more or less time to succeed. A delay of one or two minutes is considered.

F3.2 The chaser manoeuvres to move closer to the debris (to reach a distance of
about 100 m) and positions itself so as to be able to observe the debris with a
dedicated sensor. It is assumed that the duration of this functionality is either
5min, 7min or 10 min and that these three durations are equiprobable.



Temporal Logic Framework for Performance Analysis 15

In the case of a chaser equipped with a robotic arm:

F3.1 Greater precision is required for the operation. If necessary three attempts
may be made, with delays respectively of 5 min, 10 min, and 15 min, and each
with a success probability of 50 %.

F3.2 The chaser manoeuvres to reach a distance of about 1 m close to the debris
and positions itself. It is assumed that the duration of this functionality is
either 30 min, 40 min or 50 min and that these 3 durations are equiprobable.

Functionality 4. This functionality aims at establishing the mechanical contact
with the debris. It also varies depending on the equipment used.

In the case of nets, it is considered that two nets are on-board. If the first
net fails, a second net is launched 5 min later. It is assumed that both nets have
the same success probability which is estimated at 60 %. The capture time is
constant (about 1min).

In the case of a robotic arm, the functionality has three chances to succeed in
hitching the debris, after 5 min, 6 min, and 7 min, each of which has a probability
of success or 30 %. In this case, a de-tumbling must be operated by the robotic
arm. This takes about 30 min and has a high success probability of 95 %.

Functionality 5. Two options are considered here. If a deorbitation kit is cho-
sen, it has to be attached to the debris so as to change its trajectory. It is assumed
that this functionality would take about 1 min and would have a success prob-
ability of 80 %. If the debris is dragged, the success probability is evaluated to
90 %. For practical reasons, the deorbitation kit is only considered when using a
robotic arm since the latter would be necessary to append it to the debris.

4.2 ATLAS Results

The results presented here do not have the vocation to provide an actual answer
to the studied issue since the data used is approximative. The aim is to give an
idea of the types of result the ATLAS method may offer.

002 Vega— Robotic Arm—Kit Soyuz — Robotic Arm —Kit

&0 0 #0-40 0.045
0018 *00 000
W40-80 0.04
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¥l - = 0025
© 0.010 2
) o 8 om
& 0os 0 w0 e o 000 000 w00
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Fig. 3. Graphical representation of the ATLAS results
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If M is the whole task, ATLAS provides the probability ITps(s,t) that the
deorbitation be successful depending on the chosen configuration, at a given
instant ¢, knowing the task has started at instant s. Different post-treatments
may then be applied to the resulting data to interpret it.

For instance, since the launching 2h time-slot has been divided into three
with the Vega launcher (¢f. Functionality 2), it may be interesting to con-
sider the overall success probability in each time-slot, i.e. for the first slot:
> >> IIn(s,t). These results are presented in Table 3. If the duration of the
t 0<s<40
task_is_crucial, it is also possible to take into account a time limit. For instance,
if the duration should be limited to 100 min because of a limited quantity of
propellant (so that the chaser doesn’t become a debris to be deorbitised), the

success probabilities are Y > (s, t) presented in the last column
t,t—s<100 0<s<40
of Table 3.
It may also be interesting to consider the success probability of the task with

regard to the task duration, i.e. for the first time-slot > ITps(s, s+ d) where
0<s<40
d is the task’s length. These results are presented as graphs in Fig. 3.

Beyond the straightforward conclusion that the Soyuz launcher with a robotic
arm and the dragging option is the best configuration, ATLAS details the precise
delays linked to the successful realisation of the overall task. Post-treatments
such as presented here may thus be applied to the result data to bring to light
different aspects. In addition, changes in configuration may easily be compared,
which allows to study the sensitivity of the system.

5 Conclusion and Perspectives

This paper has presented a formal framework, ATLAS; to efficiently compute the
probability of a successful task for complex systems. This method may be used
for the evaluation and liability assessment of different system configurations. An
advantage of this method is that the heterogeneity of the system (components,
granularity of description, etc.) is not problematic since their performance is
summarised by their stochastic performance. However, this representation has an
intrinsic limitation: it may only represent the success or failure of a functionality.
An adapted choice of the success threshold, a parameter which has a strong
influence on the final result, allows to bypass this issue. We are also working on
developing a full model of both success and failure probabilities by defining a
symmetrical conditional probability to ITr but with respect to Bp = 0. Indeed,
in the framework presented here, it isn’t possible to distinguish the cases of
failure at an instant ¢ and the cases where the functionality never succeeds.
The framework presented here has been implemented in C++ and may be
used for actual applications as illustrated in this paper with a case study for the
deorbitation of a retired satellite. The ATLAS tool is integrated in a graphical
interface called ASAP (ATLAS-based System Assessment Platform) which is
not described in this paper. ASAP provides two graphical interfaces for task
description as well as an interface for the post-treatment of the result data.
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Table 3. Success probabilities and task length of ENVISAT deorbitation

Swm Duration | Success | Success with
d (min) d <100
Vega | Net Drag |0-40 |30-43 29.0% 29.0%
40-80 | 40-53 21.8% | 21.8%
80-120 | 50-63 14.6% |14.6%

0-120 | 30-63 65.4% | 65.4%
Robotic Arm | Drag | 0-40 |93-125 26.9% |7.7%
40-80 |103-135 [202% |0%
80-120 | 113-145 135% |0%
0-120 | 93-145 60.6 % | 7.7 %
Kit |0-40 |94-126 23.9% 6.1%
40-80 |104-136 180% |0%
80-120 | 114-146 12.0% | 0%
0-120 | 94-146 53.9% 6.1 %
Soyuz | Net Drag | 0-120 |67-80 72.6% | 72.6%
Robotic Arm | Drag  0-120 | 130-162 60.6% | 0%
Kit |0-120 |131-163 |53.9% |0%

In order to refine the representation of the system, we plan to introduce
the notion of resources that may be produced or consumed during the task.
A resource refers to a material means used during the task and which could
prove to be a physical constraint and cause the failure of the task. For instance,
one could consider electrical power, fuel, memory for data storage, a number of
available planes, etc. In addition, the theoretical framework is limited to discrete
probabilities. We are currently working on extending this framework to contin-
uous probabilities, with the aim of providing a generic framework allowing for
mixed probabilities, i.e. random variables with both discrete and continuous
components, thus encompassing all situations.
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Abstract. English language requirements are often used to specify
the behavior of complex cyber-physical systems. The process of trans-
forming these requirements to a formal specification language is often
challenging, especially if the specification language does not contain
constructs analogous to those used in the original requirements.
For example, requirements often contain real-time constraints, but
many specification languages for model checkers have discrete time
semantics. Work in specification patterns helps to bridge these gaps,
allowing straightforward expression of common requirements patterns in
formal languages. In this work we demonstrate how we support real-time
specification patterns in the Assume Guarantee Reasoning Environment
(AGREE) using observers. We demonstrate that there are subtle chal-
lenges, not mentioned in previous literature, to express real-time patterns
accurately using observers. We then demonstrate that these patterns
are sufficient to model real-time requirements for a real-world avionics
system.

1 Introduction

Natural language requirements specifications are often used to prescribe the
behavior of complex cyber-physical systems. Regrettably, such specifications can
be incomplete, inconsistent, or ambiguous. For these reasons, researchers have
long advocated the use of formal languages, such as temporal logics to describe
requirements. Unfortunately, the process of formalizing natural language require-
ments using formal specification languages is often challenging, especially if the
specification language does not contain constructs analogous to those used in
the original requirements.

Specification patterns [1,2] are an approach to ease the construction of for-
mal specifications from natural language requirements. These patterns describe
how common reasoning patterns in English language requirements can be rep-
resented in (sometimes complex) formulas in a variety of formalisms. Follow-
ing the seminal work of Dwyer [1] for discrete time specification patterns, a
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variety of real-time specification pattern taxonomies have been developed [2-6].
An example of a timed specification pattern expressible in each is: “Globally, it is
always the case that if P holds, then S holds between low and high time unit(s).”

In most of this work, the specification patterns are mapped to real-time tem-
poral logics, such as TCTL [7], MTL [8], RTGIL [9], and TILCO-X [4]. As an
alternative, researchers have investigated using observers to capture real-time
specification patterns. Observers are code/model fragments written in the mod-
eling or implementation language to be verified, such as timed automata, timed
Petri nets, source code, and Simulink, among others. For example, Gruhn [3] and
Abid [10] describe real-time specifications as state machines in timed automata
and timed Petri nets, respectively. A benefit of this approach is that rather than
checking complex timed temporal logic properties (which can be very expensive
and may not be supported by a wide variety of analysis tools), it is possible to
check simpler properties over the observer.

Despite this benefit, capturing real-time specification patterns with observers
can be challenging, especially in the presence of overlapping “trigger events.”
That is, if P occurs multiple times before low time units have elapsed in the
example above. For example, most of the observers in Abid [10] explicitly are
not defined for ‘global’ scopes, and Gruhn, while stating that global properties
are supported, only checks a pattern for the first occurrence of the triggering
event in an infinite trace.

In this work, we examine the use of observers and invariant properties to
capture specification patterns that can involve overlapping triggering events.
We use the Lustre specification language [11] to describe synchronous observers
involving a real-valued time input to represent the current system clock'. We
describe the conditions under which we can use observers to faithfully represent
the semantics of patterns, for both positive instances of patterns and negations
of patterns. We call the former use properties and the latter use constraints.

The reason that we consider negations of patterns is that our overall goal
is to use real-time specification patterns in the service of assume/guarantee
compositional reasoning. In recent efforts [12,13], we have used the AGREE
tool suite [14] for reasoning about discrete time behavioral properties of com-
plex models described in the Architectural Analysis and Design Language [15]%.
Through adding support for Requirements Specification Language (RSL) pat-
terns [16] and calendar automata [17-19], it becomes possible to lift our analysis
to real-time systems. In AGREE, we prove implicative properties: given that
subcomponents satisfy their contracts, then a system should satisfy its contract.
This means that the RSL patterns for subsystems are used under a negation.
We describe the use of these patterns in AGREE and demonstrate their use on
a real avionics system. Thus, the contributions of this work are as follows:

1 Although our formalisms are expressed as Lustre specifications, the concepts and
proofs presented in this paper are applicable to many other popular model checking
specification languages.

2 AGREE is available at: http://loonwerks.com.
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— We demonstrate a method for translating RSL Patterns into Lustre observers
and system invariants.

— We prove that it is possible to efficiently capture patterns involving arbitrary
overlapping intervals in Lustre using non-determinism.

— We argue that there is no method to efficiently encode a transition system in
Lustre that implements the exact semantics of all of the RSL patterns when
considering their negation.

— We demonstrate how to encode these patterns as Lustre constraints for prac-
tical systems.

— We discuss the use of these patterns to model a real-world avionics system.

2 Definitions

AGREE proves properties of architectural models compositionally by proving a
series of lemmas about components at different levels in the model’s hierarchy.
A description of how these proofs are constructed is provided in [12,14] and a
proof sketch of correctness of these rules is described in [14,20]. For the purpose of
this work, it is not important that the reader has an understanding of how these
proofs are constructed. The AGREE tool translates AADL models annotated
with component assumptions, guarantees, and assertions into Lustre programs.
Our explanations and formalizations in this paper are described by these target
Lustre specifications. Most other SMT-based model checkers use a specification
language that has similar expressivity as Lustre; the techniques we present in this
paper can be applied generally to other model checking specification languages.

A Lustre program M = (V, T, P) can be thought of as a finite collection of
named variables V', a transition relation 7', and a finite collection of properties P.
Each named variable is of type bool, integer, or real. The transition relation is a
Boolean constraint over these variables and theory constants; the value of these
variables represents the program’s current state, and the transition relation con-
strains how the state changes. Each property p € P is also a Boolean constraint
over the variables and theory constants. We sometimes refer to a Lustre program
as a model, specification, or transition system. The AGREE constraints specified
via assumptions, assertions, or guarantees in an AADL model are translated to
either constraints in the transition relation or properties of the Lustre program.

The expression for T' contains common arithmetic and logical operations (+,
—, %, =, V, A, =, 7, =) as well as the “if-then-else” expression (ite) and two
temporal operations: — and pre. The — operation evaluates to its left hand
side value when the program is in its initial state. Otherwise it evaluates to its
right hand side value. For example, the expression: true — false is true in the
initial state and false otherwise. The pre operation takes a single expression as
an argument and returns the value of this expression in the previous state of the
transition system. For example, the expression: z = (0 — pre(z) + 1) constrains
the current value of variable = to be 0 in the initial state otherwise it is the value
of x in the previous state incremented by 1.

In the model’s initial state the value of the pre operation on any expression
is undefined. Every occurrence of a pre operator must be in a subexpression
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of the right hand side of the — operator. The pre operation can be performed
on expressions containing other pre operators, but there must be — operations
between each occurrence of a pre operation. For example, the expression: true —
pre(pre(x)) is not well-formed, but the expression: true — pre(z — pre(x)) is
well-formed.

A Lustre program models a state transition system. The current values of
the program’s variables are constrained by values of the program’s variables in
the previous state. In order to model timed systems, we introduce a real-valued
variable ¢t which represents how much time has elapsed during the previous tran-
sitions of the system. We adopt a similar model as timeout automata as described
in [17]. The system that is modeled has a collection of timeouts associated with
the time of each “interesting event” that will occur in the system. The current
value of ¢ is assigned to the least timeout of the system greater than the previous
elapsed time. Specifically, ¢ has the following constraint:

t =0 — pre(t) + min_pos(t; — pre(t), ..., t, — pre(t)) (1)

where t1,...,t, are variables representing the timeout values of the system.
The function min_pos returns the value of its minimum positive argument. We
constrain all the timeouts of the system to be positive. A timeout may also
be assigned to positive infinity (00)?. There should always be a timeout that is
greater than the current time (and less than co). If this is true, then the invariant
true — t > pre(t) holds for the model, i.e., time always progresses.

A sequence of states is called a trace. A trace is said to be admissible (w.r.t.
a Lustre model or transition relation) if each state and its successor satisfy the
transition relation. We adopt the common notation (o, 7) to represent a trace of a
timed system where o is a sequence of states (0 = 010203 ...) and 7 is a sequence
of time values (7 = 747273 ...) such that Vi : 7, < 7,41. In some literature, state
transitions may take place without any time progress (i.e., Vi : 73 < 7i41). We
do not allow these transitions as it dramatically increases the complexity of a
model’s Lustre encoding.

A Lustre program implicitly describes a set of admissible traces. Each state
op, in the sequence represents the value of the variables V' in state n. Each time
value 7, represents the value of the time variable ¢ in state n. We use the notation
on = e, where e is Lustre expression over the variables V' and theory constants,
if the expression e is satisfied in the state o,,. Similarly, we use o, }~ e when e
is not satisfied in the state o,. A property p is true (or invariant) in a model
if and only if for every admissible trace Vn : o, |= p. For the purposes of this
work, we only consider models that do not admit so-called “Zeno traces” [21]. A
trace (o, 7) is a Zeno trace if and only if JoVi : 7; < v, i.e., time never progresses
beyond a fixed point.

3 In practice, we allow a timeout to be a negative number to represent infinity. This
maintains the correct semantics for the constraint for ¢ in Formula 1.
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3 Implementing RSL Patterns

3.1 Formalizing RSL Patterns Semantics

For this work, we chose to target the natural language patterns proposed in the
CESAR project because they are representative of many types of natural lan-
guage requirements [16]. These patterns are divided into a number of categories.
The categories of interest for this work are the functional patterns and the timing
patterns. Some examples of the functional patterns are:

1. Whenever event occurs event occurs during interval

2. Whenever event occurs condition holds during interval

3. When condition holds during interval event occurs during interval
4. Always condition

Some examples of timing patterns are:

1. Event occurs each period [with jitter jitter]
2. Event occurs sporadic with IAT interarrivaltime [and jitter jitter]

Generally speaking, the timing patterns are used to constrain how often a
system is required to respond to events. For instance, a component that listens to
messages on a shared bus might assume that new messages arrive at most every
50ms. The second timing pattern listed above would be ideal to express this
assumption. In AGREE, this requirement may appear as a system assumption
using the pattern shown in Fig. 1.

new message occurs sporadic with TAT 50.0

Fig. 1. An instance of a timing pattern to represent how frequently a message arrives
on a shared bus.

The functional patterns can be used to describe how the system’s state
changes in response to external stimuli. Continuing with the previous example,
suppose that the bus connected component performs some computation when-
ever a new message arrives. The functional patterns can be used to describe
when a thread is scheduled to process this message and how long the thread
takes to complete its computation. The intervals in these patterns have a speci-
fied lower and upper bound, and they may be open or closed. The time specified
by the lower and upper bound corresponds to the time that progresses since
the triggering event occurs. Both the lower and upper bounds must be positive
real numbers, and the upper bound must be greater than or equal to the lower
bound. An AGREE user may specify the instances of patterns shown in Fig. 2
as properties she would like to prove about this system. For the purposes of
demonstration we assume that the thread should take 10 ms to 20 ms to execute.
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Always new_message = thread_start
Whenever thread_start occurs thread_stop occurs during [10.0, 20.0]

Fig. 2. Two instances of a functional patterns used to describe when a thread begins
executing, and how long it takes to execute.

C e
1 1 1 1
l, 1+l t, t.+h

whenever ¢ occurs e occurs during [I, h]

Fig. 3. A graphical representation for the RSL pattern

Figure 3 shows a graphical representation of the first functional pattern listed
at the beginning of this section. The variable . represents the time that event
¢ occurs. Similarly, the variable t. represents the time that event e occurs. The
formal semantics for many of the RSL patterns are described in [5]. The seman-
tics for the pattern described in Fig. 3 are represented by the set of admissible
traces Lpqs described below.

Lpai ={(o,7) |Vidj:o, Ec=G>)N(n+I<7<1+h)A(0; = e)}

The remainder of this section discusses how the pattern in Fig.3 can be trans-
lated into either a Lustre property or a constraint on the admissible traces of
a transition system described by Lustre. Although we discuss only this pattern,
the techniques that we present can be applied generally to all except one of the
functional and timing RSL patterns?.

3.2 Implementing RSL Patterns as Lustre Properties

One can determine if a transition system described in Lustre admits only traces
in L4 by adding additional constraints over fresh variables (variables that are
not already present in the program) to the model. This commonly used technique
is referred to as adding an observer to the model. These constraints are over fresh
variables: run,timer,rec. and pass; they are shown in Fig.4. The constraints
only restrict the values of the fresh variables, therefore they do not restrict the
traces admissible by the transition relation.

The intuition behind these constraints is that one can record how much time
progresses since an occurrence of c¢. This time is recorded in the timer variable.
The value of the timer variable only increases if the previous value of the run

4 The single pattern that cannot be implemented requires an independent event to
occur for each of an unbounded number of causes. There are 12 functional and
timing RSL patterns in total.
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1. run = (rec. — ite(pre(run) Ae Al < timer < h,
false,
ite(rece, true, pre(run))))
2. timer = (0 — ite(pre(run), pre(timer) + (t — pre(t)),0))
rece = ¢
4. pass = (timer < h)

@

Fig. 4. The constraints added to a transition relation to verify if only the traces of
Lpatt are admissible. The transition relation only admits traces of Ly if and only if
the variable pass is invariant.

variable is true. The run variable is true if an occurrence of ¢ is recorded and no
occurrence of e happens until after the timer counts to at least [. The variable
rec. non-deterministically records an occurrence of c. If the transition system
admits a trace outside of L4+, then the rec. variable can choose to record only
an event that violates the conditions of L,4. In this case the pass variable will
become false in some state.

Theorem 1. Let Ly; represent the admissible traces of a transition system con-
taining the constraints of Fig. 4. The transition system admits only traces in
Lpate if and only if the property pass is invariant. Formally: (Lar C Lpar) <
(Vo,7,i: (0,7) € Ly = 0 = pass)

Proof. First we show that if pass is invariant for a trace of the transition relation,
then that trace is in L,q4.

Lemma 1. (Vo,7,i: (0,7) € Ly = 05 |= pass) = (Lar C Lpatt).

Proof. Towards contradiction, assume Lyr € Lpaue. Let (o, 7) be a trace in Ly
but not in Lyq¢¢. Since (0, 7) ¢ Lyatt, by definition there exists ¢ such that o; = ¢
and

Vi:(G>i)An+I<7m<m+h=o0;Fe (2)

Without loss of generality, we can assume that this is the only time when c is
recorded. That is, o; | rec. and Vk : k # i = oy, [~ rec.. From constraint 1 in
Fig. 4 we have

Vi ((j <i)= o5 FErun) A((r <75 <7 +1) = 0j = run)

This can actually be strengthened more. From Formula 2 the event e does not
occur between 7; + [ and 7; + h. So the variable run will become invariant after 7;.

Vi:((j <i)=0oj Erun) A(1; < 1j) = 0j = run)
From this and constraint 2 in Fig. 4, we have

Vi:(j <i)=o0; = timer=0
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and
Vj:(m <15) = (0; | timer = (pre(timer) + (15 — 7j-1)))

From this and the invariant Vi : 7,41 > 7, we have
Vi:(m < 15) = (05 = timer > pre(timer))

Therefore since the value of timer is zero before 7; and always increasing after 7;,
and since we only consider non-Zeno traces (Vo3i : v < 7;), eventually timer > h
and so pass becomes false. This contradicts the assumption (Vo, 7,7 : (0,7) €
Ly = 0; = pass). Therefore Loy C Lpass. m|

Next we show if a trace of Ly is in Lpas, then pass is invariant for this trace.

Lemma 2. (Ly C Lpour) = (Yo, 7,1 : (0,7) € Ly = 05 = pass)

Proof. Towards contradiction, assume that there exists a trace of £ for which
pass is not invariant. This means that for some state o; = timer > h. For
this to be true, the timer must be running continuously since it started with
some recorded occurrence of c¢. That is there exists ¢ such that o; = timer = 0,
o | rece, 0y = ¢, Vk i < k < j= o, E run, and 7, — 7, > h. Thus
Vk:i<k<j= o | timer = 1, — 7;. By the definition of L. we have a
k such that 7; +1 < 7, < 7, + h and o = e. This means [ < 7, — 7; < h and
so o = I < timer < h. Therefore oy, [~ run. We also have 7, <7, + h < 75 s0
that k < j. Thus from Vk : i < k < j = o = run we have oy, |= run which is
a contradiction. Therefore, pass is invariant. O

From Lemmas 1 and 2 we have (Ly C Lpait) < (Vo,7,i: (0,7) € Ly =
o; = pass). O

3.3 Implementing RSL Patterns as Lustre Constraints

As we demonstrated with Fig. 4, one can specify a Lustre property that verifies
whether or not some transition system only admits traces of Lyq.. However, it
is surprisingly non-trivial to actually implement a transition system that admits
exzactly the traces of L4 Naively, one could attempt to add the constraints
of Fig.4 to a transition system and then assert that pass is invariant. However,
this transition system will admit all traces where every occurrence of ¢ is never
recorded (Vo; : 0; = rec.). Clearly some of these traces would not be in Lpq.
We conjecture that given the Lustre expression language described in Sect. 2
it is not possible to model a transition system that admits only and all of the
traces of Lpq+. The intuition behind this claim is that Lustre specifications con-
tain a fixed number of state variables, and variables have non-recursive types.
Thus a Lustre specification only has a finite amount of memory (though it can,
for example, have arbitrary sized integers). If a Lustre specification has n vari-
ables we can always consider a trace in L,q where event ¢ occurs more than n
times in a tiny interval. In order for the pattern to hold true, the Lustre specifi-
cation must constrain itself so that at least one occurrence of e occurs precisely
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between t. + [ and t. + h after each event c¢. This requires “more memory” than
the Lustre specification has available.

Rather than model the exact semantics of this pattern, we choose to take a
more pragmatic approach. We model a strengthened version of Fig. 3 which does
not allow overlapping instances of the pattern. That is, after an event ¢ there
can be no more occurrences of ¢ until the corresponding occurrence of e. We do
this by proving that ¢ cannot occur frequently enough to cause an overlapping
occurrence of the pattern. Then if we constrain the system based on a simple
non-overlapping check of the pattern, the resulting system is the same as if we
had constrained it using the full pattern. This simple non-overlapping check and
the property limiting the frequency of ¢ are both easily expressed in Lustre since
they only look back at the most recent occurrence of c. Moreover, they can both
be used freely in positive and negative contexts. Formally, the property we prove
is Lprop and the constraints we make are Leons:

Lprop ={(o,7) | Viioo Eec=Vi:G>)OAN(<Ti+h)Aogj Ec=
er(i,j]:Ti+l§TkA0k ): e}

Econs:{(077)|VifUi ': Céﬂjt(]’>i)/\
(m+l<Tj<mi+hAo; Ee)V(<m+hAo; = )}

The correctness of Ly,.0p and Leons are captured by the following theorem.

Theorem 2. Let M be a transition system and Ly its corresponding set of
admissible traces. Suppose Lar C Lprop. Then Leons and Lpque are equivalent
restrictions on Lyr, that is Ly N Leons = Lar N Lpatt-

Proof. We prove the theorem by showing that the subset relationship between
Lar N Leons and Las N Lyge holds in both directions.

Lemma 3. Ly N Lparr C Lar N Leons

Proof. From the definitions of L4+ and Leons it follows directly that Ly C
Lecons. Therefore Lar N Lpare S Lar N Leons- O

Lemma 4. Suppose Lar C Lyprop, then Lar N Leons S Lar N Lpatt

Proof. Suppose towards contradiction that Las N Leons € LarNLpatt. Consider a
trace (0,7) € Lar N Leons With (0, 7) & Lar N Lpgse. Then we have (0, 7) € Leons,
(0,7) € Lprop, and (0,7) ¢ Lpast. From the definition of £,q:+ we have an ¢ such
that o; | ¢ and

Vi:(G>)A(m+1<1 <7+ h)=0;Fe (3)

Then from the definition of L.ons with o; = ¢ we have a j such that j > ¢
and either (; +1 <717, <7 +hAo; E e or(r; <7,+hAo; = ¢). The
former option directly contradicts Formula 3, so we must have 7; < 7; + h and
o; = c. From the definition of L., with o; = ¢ and our j, we have a k in
(t,j] such that 7; +1 < 7, and o, |= e. From k < j we have 7, < 7; and thus
7i+1 < 1 < 7;+h. Instantiating Formula 3 with & yields oy, [~ e, a contradiction.
Therefore Ly N Leons S Lar N Lpgtt- O
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From Lemmas 3 and 4 have Ly N Leons = Lar N Lpgre- O

Ezample 1. Suppose we want to model a system of components communicating
on a shared bus. The transition relation for this system must contain constraints
that dictate when threads can start and stop and how frequently new messages
may arrive. First we constrain the event new_message from occurring too fre-
quently according to the pattern instance in Fig. 1. Let £, represent the set of
admissible traces for this pattern. This set is defined explicitly in Formula 1.

Lom ={(0,7) | Vi:0o; E new_message =
=[F7: (G >9) A (15 <7i+50) A(0; = new-message)]}

Suppose we wish to constrain the system to the pattern instances in Fig. 2. The
first pattern instance is represented by the set L4+ and the second by Lop:

Lstart = {(0,7) | Vi : 0; E new_message = o; = thread_start}

Lstop = {(0,7) | ViTj : 0y = thread_start =
>IN (m+1<1 <7+ h)A(0; = thread_stop)}

Let Lj; denote the admissible traces of the transition system that is being
modeled. The goal is to specify the transition system in Lustre such that £y, =
Lym N Lstart N Letop. Writing a Lustre constraint to represent the set of traces
Lgiare 1s trivial. The traces that are contained in Lg;,,+ are those whose states
all satisfy the expression new_message = thread_stop. However, as we noted
earlier, it is not possible to develop a set of Lustre constraints that admit only
(and all of) the traces of Lsiop.

Note that the second pattern in Fig. 2 is an instance of the pattern described
in Fig. 3. Therefore we can split the set Ly0p into two sets, Lgiope and Leiopp:

Lstope = {(0,7) | Vi:0; |= thread_start = 35 : (j > i) A
(m+1<1 <7, +hAo; = thread_stop) V
(rj <7+ hAo; = thread_start)]}

Lstopp = {(0,7) | Vi : 0, = thread_start = Vj: (j > i) A
(r; <7+ h)ANo; = thread_start =
dk € (4,7] : 7 +1 < 7 Aoy |= thread_stop}

In this example, the sets of admissible traces representing the patterns hap-
pen to have the following relationship:

‘Cnm N ['start g ‘Cstopp (4)

This is because for every trace in L., the event new_message only occurs
at most every 50ms. Likewise, for each state of every trace of Lg:q+ the vari-
able thread_start is true if and only if new_message is true. Finally, the set
Lstopp contains every trace where thread_start occurs at most every 20 ms. From
Formula 4 and Theorem 2 we have Ly N Lstart N Lstope = Lnm N Lstart N Lstop-
Thus the system L, NLstareNLstope, Which we can model in Lustre, is equivalent
to a system constrained by the pattern instances in Figs.1 and 2.
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Example 1 is meant to demonstrate that, in practical systems, there is usually
some constraint on how frequently events outside the system may occur. Systems
described by the functional RSL patterns generally have some limitations on how
many events they can respond to within a finite amount of time. The L