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Preface

The NASA Formal Methods (NFM) Symposium is a forum for theoreticians and
practitioners from academia, industry, and government, with the goals of identifying
challenges and providing solutions to achieving assurance in mission- and safety-critical
systems. Examples of such systems at NASA include advanced separation assurance
algorithms for aircraft, Next-Generation Air Transportation (NextGen), autonomous
rendezvous and docking for spacecraft, on-board software for Unmanned Aerial Systems
(UAS), UAS Traffic Management (UTM), autonomous robots, and systems for fault
detection, diagnosis, and prognostics. The topics covered by the NASA Formal Methods
Symposia include: model checking, theorem proving, SAT and SMT solving, symbolic
execution, automated testing and simulation, model-based development, static and
dynamic analysis techniques, runtime verification, safety assurance, fault tolerance,
compositional verification techniques, cyber security, specification formalisms,
requirements analysis, certification, and applications of formal methods in systems
development.

This volume contains the papers presented at NFM 2016, the 8th NASA Formal
Methods Symposium, co-organized by NASA Ames Research Center and the
University of Minnesota Software Engineering Center, in Minneapolis, MN, June 7–9,
2016. Previous symposia were held in Pasadena, CA (2015), Houston, TX (2014),
Moffett Field, CA (2013), Norfolk, VA (2012), Pasadena, CA (2011), Washington, DC
(2010), and Moffett Field, CA (2009). The series started as the Langley Formal
Methods Workshop, and was held under that name in 1990, 1992, 1995, 1997, 2000,
and 2008. Papers were solicited for NFM 2016 under two categories: regular papers
describing fully developed work and complete results or case studies, and short papers
describing tools, experience reports, and work in progress or preliminary results. The
symposium received 70 submissions for review (51 regular papers and 19 short papers)
out of which 29 were accepted for publication (19 as regular papers and 10 as short
papers). These submissions went through a rigorous reviewing process, where each
paper was first independently reviewed by three reviewers and then subsequently
discussed by the Program Committee.

In addition to the refereed papers, the symposium featured three invited presenta-
tions: “Using Formal Methods to Eliminate Exploitable Bugs” by Kathleen Fisher,
Professor in the Computer Science Department at Tufts University; “Where Formal
Methods Might Find Application on Future NASA Missions” by Michael L. Aguilar,
NASA Technical Fellow in Software Engineering and the NASA Engineering and
Safety Center Discipline Expert in Software, NASA Langley Research Center; and
“Murphy Was Here” by Kevin Driscoll, Engineering Fellow, Honeywell. The sym-
posium also featured breakout sessions to explore the application of formal methods to
future NASA missions and to connect the dots between capabilities that need to be
matured for NASA missions and formal methods.



The organizers are grateful to the authors for submitting their work to NFM 2016
and to the invited speakers for sharing their insights. NFM 2016 would not have been
possible without the collaboration of the outstanding Program Committee and addi-
tional reviewers, the support of the Steering Committee, the efforts of the staff at the
University of Minnesota and NASA Ames Research Center who made this event
possible, and the general support of the NASA Formal Methods community.

The NFM 2016 website can be found at: http://nasaformalmethods.org.
Support for the preparation of these proceedings was provided under a contract

between the NASA Ames Research Center and the University of Minnesota Software
Engineering Center.

May 2016 Sanjai Rayadurgam
Oksana Tkachuk
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Using Formal Methods to Eliminate
Exploitable Bugs

Kathleen Fisher

Tufts University, Medford, MA 02155
kfisher@eecs.tufts.edu

Abstract. For decades, formal methods have offered the promise of software
that doesn’t have exploitable bugs. Until recently, however, it hasn’t been
possible to verify software of sufficient complexity to be useful. Recently, that
situation has changed. SeL4 is an open-source operating system microkernel
efficient enough to be used in a wide range of practical applications. It has been
proven to be fully functionally correct, ensuring the absence of buffer overflows,
null pointer exceptions, use-after-free errors, etc., and to enforce integrity and
confidentiality properties. The CompCert Verifying C Compiler maps source
C programs to provably equivalent assembly language, ensuring the absence of
exploitable bugs in the compiler.

A number of factors have enabled this revolution in the formal methods
community, including increased processor speed, better infrastructure like the
Isabelle/HOL and Coq theorem provers, specialized logics for reasoning about
low-level code, increasing levels of automation afforded by tactic languages and
SAT/SMT solvers, and the decision to move away from trying to verify existing
artifacts and instead focus on co-developing the code and the correctness proof.

In this talk, I will explore the promise and limitations of current formal
methods techniques for producing useful software that provably does not con-
tain exploitable bugs. I will discuss these issues in the context of DARPA’s
HACMS program, which has as its goal the creation of high-assurance software
for vehicles, including quad-copters, helicopters, and automobiles.



Where Formal Methods Might Find
Application on Future NASA Missions

Michael L. Aguilar

NASA Langley Research Center, Hampton, VA 23681
Michael.L.Aguilar@nasa.gov

Abstract. In many cases, formal methods are a solution looking for a problem.
NASA recently released the 2015 NASA Technology Roadmaps that describe
numerous possible future missions. Within these descriptions are capabilities
that need to be matured in order for mission success. Many of these future
capabilities could be accomplished through the use of formal methods. The
future capabilities identified by NASA in these roadmaps may just be the
problems formal methods have been seeking. Think of these roadmaps as “on-
ramps” for engineering using formal methods.

These missions include joint robotic and human exploration of Mars,
robotic probes of the icy moons of the outer planets where there is evidence of
organic chemistry. Sophisticated earth-orbiting satellites to advance earth sci-
ence, and possible robotic refueling and maintenance missions of these satellites.

One of the predominant cross-cutting challenges is autonomy and its veri-
fication: the capability of automation to make and execute decisions in-situ;
necessitated in part by the long light-time delays from Earth for deep space
spacecraft. Another challenge is the high expense of achieving high assurance
for software intensive systems.

And then there are the overarching issues of budget, schedule, and design.
It is highly unlikely these system-of-systems will be implemented and inter-
faced, tested and verified, before deployment. How could formal methods define
the requirements for these systems such that the protocols and interfaces,
functions and fault management execute as intended for integration that may
occur for the first time off-planet?

In my experience, NASA can accept new techniques where it can be
demonstrated that current practices are not sufficient. For these future system-of-
systems, formal methods may prove to be not only sufficient but necessary.



Murphy Was Here

Kevin Driscoll

Honeywell, Golden Valley, Minnesota 55422
kevin.driscoll@honeywell.com

Abstract. My boss once said that “All system failures are caused by design
faults.” This is because, regardless of the requirements, critical systems should
be designed to never fail. It is extremely rare for a critical system to fail in a way
that was anticipated by the designers (e.g., redundancy exhaustion). This key-
note will explore the factors that lead to designers underestimating the possi-
bility/probabilities of certain failures. Examples of rare, but actually occurring,
failures will be given. These will include Byzantine faults, component trans-
mogrification, “evaporating” software, and exhaustively tested software that still
failed. Problems that Formal Methods could have found before actual occur-
rence will be identified as well as problems that are still intractable with the
current state of the art. The well known Murphy’s Law states that: “If anything
can go wrong, it will go wrong.” For critical systems, the following should be
added: “And, if anything can’t go wrong, it will go wrong anyway.”
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Temporal Logic Framework for Performance
Analysis of Architectures of Systems

Ariane Piel(B), Jean Bourrely, Stéphanie Lala, Sylvain Bertrand,
and Romain Kervarc

ONERA – The French Aerospace Lab, 91123 Palaiseau, France
ariane.piel@onera.fr

Abstract. This paper presents a formal mathematical framework for
performance analysis (in terms of success of given tasks) of complex
systems, ATLAS. This method interestingly combines temporal aspects
(for the description of the complex system) and probabilities (to repre-
sent performance). The system’s task to be evaluated is described using a
temporal language, the ATLAS language: the architecture of the task is
decomposed into elementary functionalities and temporal operators spec-
ify their arrangement. Starting with the success probabilities of the ele-
mentary functionalities, it is then possible to compute the overall success
probability of the task using mathematical formulae which are proven
in this paper. The method is illustrated with a deorbitation task for a
retired satellite called ENVISAT.

Keywords: Probabilistic performance analysis · Time-dependant sys-
tems · Temporal logic

1 Introduction

To keep up with the complexification of systems, novel performance analysis
and evaluation methods have to be developed to validate new designs. In this
context, architecture models of complex systems may be used to assess dynamic
system performances with regard to the time necessary for the desired task to be
fulfilled. The work presented here provides a generic formal framework and a tool
designed for such performance analysis, called ATLAS (Analysis by Temporal
Logic of Architectures of Systems).

The proposed approach interestingly combines temporal and probabilistic
aspects by computing the success probability of the complex system’s global task
at a given instant in time and with respect to the beginning of the task. The task
itself is described temporally. It is assumed that the system’s achievements may
be organised as a hierarchy of functionalities: at the top, the global functional-
ity represents the general expected behaviour of the system, i.e. its task. This
global functionality may generally be split into simpler sub-functionalities, and
this recursively, until reaching an elementary functionality associated to an iden-
tifiable component of the system. The success probabilities of these elementary
c© Springer International Publishing Switzerland 2016
S. Rayadurgam and O. Tkachuk (Eds.): NFM 2016, LNCS 9690, pp. 3–18, 2016.
DOI: 10.1007/978-3-319-40648-0 1



4 A. Piel et al.

functionalities are supposed to be known. This system architecture is described
by a temporal language, the ATLAS language, which allows expressing tem-
poral constraints between the realisations of each functionality and is derived
from Allen’s interval logic [1]. According to this architecture with the associated
underlying temporal constraints, the global performance of the system may be
computed from the individual elementary functionalities.

The aim of this approach is to avoid extensive simulations and Monte-Carlo
methods which are very costly in computing time. With this respect, the benefit
of this method is two-fold. First of all, since the elementary functionalities are
of smaller scale, if Monte-Carlo methods are necessary to assess their proba-
bilities, their computing time should still be reasonable. Secondly, the division
into smaller scale functionalities allows isolating the different disciplines. Thus,
already existing domain-specific simulation tools may be used without having to
combine them all as would have been necessary for the whole task. The level of
precision of each elementary functionality may be individually adjusted.

Related Work. This approach was initiated about ten years ago with a tool
called OLIGRAAL [17] which considered the average duration time of the task,
along with its success probability. For a more precise expression of temporal
constraints, the approach was shifted to the one presented in this paper with
ATLAS which distinguishes precisely each eventuality so that individual start
and end times may be considered for the verification of the temporal constraints.

An extensive overview of probabilistic performance analysis methods for large
scale and time-dependant systems may be found in [19]. The most notable frame-
works dealing with stochastic approaches for time-dependent systems are gener-
ally based on one of the three following approaches [5]: Bayesian networks [15],
stochastic Petri nets [11,20], and fault trees [10,25] or related formalisms [7,24].
Among these approaches, those based on stochastic Petri nets, though of inter-
est, require heavy simulation (combined for example with Monte-Carlo meth-
ods). Although the Bayesian network approach is interesting, large Bayesian
networks reflecting complex systems are difficult to design and maintain, and
have limited temporal expressivity. Dynamic Bayesian networks consider ran-
dom variables on the state of the system with a time parameter, while ATLAS
considers the timing of the functionalities as the random variables. Finally, with
fault trees, the potential causes of a system hazard are recursively organised
into a tree structure reflecting causality - which is a crucial notion in the frame-
work of safety analysis - so as to figure out all of the credible ways in which the
hazard may occur. The representation of temporal consistency by a modal logic
allowing the expression of time may be linked to the fault tree approaches using
time propagation such as [12,23] based on the Interval Temporal Logic and the
Duration Calculus Interval [2,8,13]. The association of Allen’s logic with prob-
abilities as in ATLAS is natural to manipulate probabilised durations. In [14],
these two approaches are coupled with the aim of diagnosing with logic formu-
las, by manipulating facts represented with uncertain durations. In ATLAS, the
aim is shifted to the performance evaluation of a task. The time interval doesn’t
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represent a fact but the conditional realisation of a functionality so the nature
of the manipulated probabilities is different.

ATLAS is a very generic framework which has and may be applied to a
wide variety of systems such as space systems’ vulnerability assessment to space
debris [4,16,18] and ballistic missile defence performance assessment [3].

The performance analysis performed by ATLAS allows for:

– comparing different physical or functional configurations of the system;
– assessing the sensibility of the task with regard to the external conditions.

This paper presents the formal framework behind the ATLAS tool. A case
study of the deorbitation of a retired satellite serves as an illustration of the
method but has no purpose of realism concerning the data used. Section 2
describes the task of the chosen case study and the system configurations to
be compared. Section 3 sets the mathematical framework around ATLAS and
Sect. 4 uses ATLAS to evaluate the configurations of the case study.

2 Case Study: Deorbitation of Retired Satellite
ENVISAT

The case study presented here serves as an illustration of the ATLAS perfor-
mance analysis method and has no purpose of realism concerning the data used.
It shows what could be achieved with the intervention of technical experts to
determine the data associated to each elementary functionality.

Let us consider the task of completing the deorbitation of retired satellite
ENVISAT [6]. ENVISAT (“Environmental Satellite”) is an inoperative Earth-
observing satellite still in orbit. It was launched in 2002, into a Sun synchronous
polar orbit at an altitude of 790 km, and the task ended in 2012. It is now
considered as a big debris: 26 m × 10 m × 5 m and 8 200 kg. For this reason it a
candidate for a space debris removal task. The aim is to study different possible
ways of removing ENVISAT with a chaser. The general task may be decomposed
as follows: (1) launching the chaser; (2) reaching ENVISAT’s orbit; (3) placing
the chaser; (4) capturing ENVISAT; (5) initiating deorbitation.

Fig. 1. Different possible equipments for the chaser
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We choose to compare the following different configurations:

– the choice of the launcher between Vega and Soyuz;
– the choice of the chaser (Fig. 1): with two nets or a robotic arm;
– the choice of the deorbitation technique: with a deorbitation kit (propulsive

element appended to the debris) or by dragging the debris.

3 Formal Framework Behind ATLAS

The aim of this paper is to build a formal framework for the performance analy-
sis of such complex systems. The studied system is characterised by a given
number of functionalities. The evaluation of system performance, of its condi-
tions of success or failure, relies on the hypothesis that the functionalities which
characterise it have an uncertain and temporal behaviour.

The task to be fulfilled by the complex system is described using a tempo-
ral language derived from Allen’s temporal logic [1]. This temporal description
has a tree structure the root of which represents the whole task with a cou-
ple (start time tstart, end time tend) allowing for the achievement of the task,
and the leaves of which are the same kind of couples (tstart, tend) corresponding
to the elementary functionalities of the studied system. The nodes of the tree are
the temporal operators which define the sequencing of the task’s functionalities.
To take into account the uncertainty pertaining to the realisation of each func-
tionality, a discrete probability distribution function is associated to each tstart.
It represents the probability that the functionality succeeds at tend knowing it
has started at tstart. Following the temporal description from the nodes of the
tree, one may then compute the probability distribution functions associated to
the root of the tree, i.e. the whole task.

In this Section, the mathematical framework for these computations is for-
malised. First of all, the probability space is defined, followed by the temporal
language used to describe the architecture of system’s task. With that founda-
tion, the probability distribution functions used may be built and then computed
for each operator of the language. The uninterrupted sequence operator “meets”
is chosen as a representative operator to detail the operator-dependant defini-
tions and proofs.

3.1 Elementary Functionalities of the System

Let Ω be a probability sample space, with its σ-algebra P(Ω) and its probability
measure P. The elementary functionalities decomposing the task of the system
are characterised as follows.

Definition 1 (Discrete elementary functionalities, associated random
variables). Let F be the set of the elementary functionalities such that:

– Each elementary functionality F ∈ F is characterised by three discrete random
variables on Ω, where R = R ∪ ∞:
• SF : Ω → R, start time of the functionality,
• TF : Ω → R, end time of the functionality,
• BF : Ω → {0, 1}, success/failure indicator of the functionality.
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– The three random variables of an elementary functionality F follow the con-
dition that, for all ω ∈ Ω:
• P(BF (ω) = 1, TF (ω) = ∞) = 0, i.e. a functionality which doesn’t end

cannot succeed, (C1)
• P(SF (ω) > TF (ω)) = 0, i.e. a functionality may only end if it has started

beforehand. (C2)

3.2 ATLAS Formulae or Functionalities of the System

Complex functionalities of the system (i.e. arrangements of elementary function-
alities) may be defined using temporal operators most of which are inspired from
Allen’s interval logic [1]. These descriptions of complex and more global func-
tionalities of the system are called ATLAS formulae. The language is built by
induction with the elementary functionalities of the system and a set of operators
which lead to the tree structure of the system’s task.

Table 1 graphically represents the sequencing of the intervals of the studied
functionalities as expressed by the operators. The semantics of the language,
presented in Sect. 3.5, formally defines these temporal arrangements. When one
or two of these intervals is reduced to a point, the arrangement could be classified
in several categories (for instance, at first sight, if both functionalities were
reduced to one point in time, they would verify “equals” but also comply with
“starts”). The semantics is defined so that the operators be strictly disjointed,
and the last column of the table details the affiliation of such degenerate cases.

Definition 2 (ATLAS formula or system functionality). Let F be the
set of elementary system functionalities. The set of ATLAS formulae over F ,
denoted L(F), is defined by induction as follows: - if F ∈ F , then F ∈ L(F);

– if F ∈ L(F) and G ∈ L(F) then
• F [eq]G ∈ L(F), “ equals” i.e. exact temporal conjunction;
• F [me]G ∈ L(F), “meets” i.e. uninterrupted sequence;
• F [be]G ∈ L(F), “ before” i.e. sequence with interruption;
• F [ov]G ∈ L(F), “ overlaps”;
• F [st]G ∈ L(F), “ starts” i.e. with identical start times;
• F [du]G ∈ L(F), “ during” i.e. inclusion;
• F [fi]G ∈ L(F), “ finishes” i.e. with identical end times;
• F [co]G ∈ L(F), “ concurrent” i.e. disjunction with parallel start times.

The random variables BF , SF , and TF characterising ATLAS formulae
F ∈ L(F) are also defined by induction:

– if F ∈ F , then BF , SF , and TF are defined as in Definition 1;
– if F = G�H with � ∈ {[eq], [me], [be], [ov], [st], [du], [fi], [co]}, the definition of

BF , SF , and TF depends on BG, SG, TG, BH , SH , and TH , and expresses the
temporal constraints of operator �. The definition corresponding to operator
“meets” is given as a representative example in Sect. 3.5.
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Table 1. Graphical representation of ATLAS operators

Proposition 1 (Constraints on random variables of an ATLAS for-
mula). The three random variables of an ATLAS formula F ∈ L(F) follow
both constraints (C1) and (C2) of Definition 1.

Proof. This proof depends on the inductive definition of BF , SF , and TF , and
is detailed as a representative example for operator “meets” in Sect. 3.5.

From constraints (C1) and (C2), there directly results that:

Corollary 1. The random variables BF , SF , and TF of a formula F ∈ L(F)
follow two additional constraints:
P(BF (ω)=1, SF (ω)=∞)=0, if F doesn’t start it cannot succeed; (C3)
P(SF (ω)=∞, TF (ω)∈R)=0, if F doesn’t start it cannot end. (C4)

3.3 Conditional and Prior Probabilities

The probability functions associated to each ATLAS node, i.e. to each system
functionality, correspond to the conditional probability of success at a given
instant knowing the starting instant of the functionality.
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Definition 3 (Conditional probability of success of a functionality).
The conditional probability of success of functionality F ∈ L(F) at instant t,
knowing starting instant s, is a function from R × R into [0, 1]:

∀(s, t) ∈ R × R ΠF (s, t) =

⎧
⎪⎪⎨

⎪⎪⎩

P(BF = 1, SF = s, TF = t)
P(SF = s)

if P(SF = s) �= 0

0 otherwise
This probability function may be extended to R × R by taking into account

(C1) and (C3) which imply that a functionality may not succeed if it didn’t end
or didn’t start: ΠF (s,∞) = ΠF (∞,∞) = 0.

Definition 4 (Prior probability of a functionality). The prior probability
to start F at a given instant is a function of R into [0, 1]: KF (s) = P(SF = s).

We now have a mathematical foundation to define, prove, and compute
recursively the conditional success probabilities for all ATLAS formulae. The
calculations now have to be done for each ATLAS operator in order to obtain
mathematical formulae which will then be available to be combined according
to the structure of the task to be analysed.

3.4 Generic Method for Operators Derived from Allen’s Logic

The formalisations of the different operators derived from Allen’s temporal logic
are all analogous and follow a generic method which is presented here. The
application of this method for the representative operator “meets” is detailed in
Sect. 3.5.

1. Define the three random variables as announced in Definition 2 and along the
following guidelines, where � represents the studied operator:
(a) SF�G: the temporal constraints related to SF and SG are expressed,
(b) TF�G: some temporal constraints on SF , SG, TF and TG are expressed,
(c) BF�G is the conjunction of a generic condition BF BG1SF �G∈R1TF �G∈R

(expressing that both F and G succeed, and that the temporal constraints
from SF�G and TF�G are followed) and the remaining temporal con-
straints on TF and TG so that all temporal constraints pertaining to
operator � are imposed;

2. Check that these random variables indeed follow constraints (C1) and (C2)
as announced in Proposition 1;

3. Calculate ΠF�G and KF�G, with possible particular hypotheses.

3.5 The “meets” Operator

Definition 5 (“meets” operator). F [me]G is a system functionality associ-
ated to the following random variables:

– SF [me]G : Ω → R, SF [me]G(ω) =
{

s if SG(ω)>SF (ω)=s ∈ R

∞ otherwise
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– TF [me]G : Ω → R, TF [me]G(ω) =
{

t if SF (ω)<TF (ω)=SG(ω)<TG(ω)=t∈R
∞ otherwise

– BF [me]G : Ω → {0, 1} , BF [me]G(ω) = BF (ω)BG(ω)1SF [me]G(ω)∈R1TF [me]G(ω)∈R

It is straightforward to show that constraints (C1) and (C2) are verified.

Conditional and Prior Probabilities. The direct application of the definition
gives the following results:

∀s ∈ R KF [me]G(s) =
∑

d>s,d∈SG(ω)

P(SF = s, SG = d)

KF [me]G(∞) = P(SF = ∞, SG = ∞) +
∑

s∈SF (ω)

∑

d≤s

P(SF = s, SG = d)

∀(s, t) ∈ R
2 ΠF [me]G(s, t) =

∑

d>s

P(BF = 1, SF = s, TF = d, BG = 1, SG = d, TG = t)

∑

d>s,d∈SG(ω)

P(SF = s, SG = d)

Results with Independance Hypothesis. If an independance hypothesis
is taken on the random variables of two functionalities (that is, if the random
variables of the two functionalites F and G are independant), the calculations
of ΠF [me]G and of KF [me]G may be simplified.

Theorem 1. If functionalities F and G are independant, then the success prob-
abilities may be computed with the following formulas:

∀s ∈ R KF [me]G(s) = KF (s)
∑

d>s,d∈SG(ω)

KG(d),

KF [me]G(∞) = KF (∞)KG(∞) +
∑

s∈SF (ω)

KF (s)
∑

d≤s

KG(d)

∀(s, t) ∈ R
2 ΠF [me]G(s, t) =

⎛

⎜
⎝

1
∑

d>s,d∈SG(ω)

KG(d)

⎞

⎟
⎠

∑

d>s

ΠF (s, d)ΠG(d, t)KG(d)

Proof. From the independance, it results that if KF (s)
∑

d>s,d∈SG(ω)

KG(d) �= 0:

ΠF [me]G(s, t) =

∑

d>s

P(BF =1,SF =s,TF =d)P(BG=1,SG=d,TG=t)

KF (s)
∑

d>s,d∈SG(ω)
KG(d)

Results with Exact Sequencing Hypothesis. In this paragraph, we study
the particular case of systematic exact sequencing of functions F ∈ L(F) and
G ∈ L(F) as expressed by the two following hypotheses:
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Definition 6 (Exact sequencing hypothesis for “meets”)

– The success of functionality F implies the start of functionality G at the
instant of success of F . Conversely, for functionality G to start at an instant,
it is necessary that functionality F have succeeded at this same instant and
that it not be reduced to a point (SF < TF ). Formally:

∀ω ∈ Ω SG(ω) = d ∈ R ⇐⇒ BF (ω) = 1 ∧ SF (ω) < TF (ω) = d ∈ R (1)

– The success of G only depends on the instant of success of F (and on the start
of G because of (1)), but not on the start instant of F .

∀(s, t) ∈ R
2
P(BG=1, TG=t | SG=d, SF =s) = P(BG=1, TG=t | SG=d) (2)

Proposition 2. Hypothesis (1) implies that: ∀ω∈Ω SF (ω)∈R⇒SG(ω)>SF (ω).

Proof. By case disjunction. Let ω ∈ Ω such that SF (ω) ∈ R.
SG(ω) = ∞ Then, SG(ω) ≥ SF (ω);
SG(ω) ∈ R Then (1) implies in particular that SG=TF and SF <TF , so

SF <SG.

Theorem 2. If functionalities F ∈ L(F) and G ∈ L(F) follow hypotheses (1)
and (2), then:

∀s ∈ R KF [me]G(s) = KF (s)

and:
∀(s, t) ∈ R

2 ΠF [me]G(s, t) =
∑

d>s

ΠF (s, d)ΠG(d, t)

Proof. For all s ∈ R:

KF [me]G(s) =
∑

d>s,d∈SG(ω)

P(SF = s, SG = d)

=
Proposition 2

∑

d∈SG(ω)

P(SF = s, SG = d)

= P(SF = s) = KF (s)

KF [me]G(∞) = P(SF = ∞, SG = ∞) +
∑

s∈SF (ω)

∑

d≤s

P(SF = s, SG = d)

=
Proposition 2

P(SF = ∞, SG = ∞)

=
(1)

P(SF = ∞, BF = 0) +
∑

s∈SF (ω)

P(SF = ∞, BF = 1, TF = s)

= P(SF = ∞) = KF (∞)
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For all (s, t) ∈ R
2:

ΠF [me]G(s, t) =

∑

d>s
P(BF=1, SF=s, TF=d, BG=1, SG=d, TG=t)

∑

d>s,d∈SG(ω)

P(SF=s, SG=d)

=
Proposition 2

∑

d>s
P(BF=1, SF=s, TF=d)P(BG=1, SG=d, TG=t | BF=1, SF=s, TF=d)

∑

d∈SG(ω)

P(SF=s, SG=d)

=
(1)

∑

d>s
P(BF=1, SF=s, TF=d)P(BG=1, SG=d, TG=t | SF=s, SG=d)

P(SF=s)

=
∑

d>s

ΠF (s, d)P(BG=1, SG=d, TG=t | SF=s, SG=d)

=
(2)

∑

d>s

ΠF (s, d)P(BG=1, TG=t | SG=d)

=
∑

d>s

ΠF (s, d)ΠG(d, t)

This completes the formalisation of operator “meets”. The semantics and cal-
culations of the other operators are analogous and Table 2 presents the resulting
formulae to compute the success probabilities for all ATLAS operators.

(a) Decomposition of the whole task (b) Decomposition of F1

Fig. 2.

4 Application of ATLAS to the Case Study
of ENVISAT’s Deorbitation

This Section will now illustrate the use of the ATLAS method on the case study
presented in Sect. 2.
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4.1 Task Description

The first step is to detail each elementary functionality of the task and spec-
ify both the temporal constraints between these elementary functionalities and
the success probabilities associated to them. As described in Sect. 2, the task
is decomposed in five elementary functionalities displayed in Fig. 2(a). These
functionalities have to exactly follow each other, so the appropriate operator to
be used between all functionalities is operator “meets” detailed in Sect. 3. In
addition, by definition of the elementary functionalities, they are always exactly
sequenced so follow the “exact sequencing hypotheses” of Definition 6 and the
corresponding formula may be applied. Each elementary functionality must now
be precisely detailed to assess its associated success probabilities.

Functionality 1. The launcher launches the chaser in the orbital plane of the
debris. The launching may not be operated all the time and is only possible
during a 2 h period each day of the first trimester of 2020. If the task manager
decides anyhow to launch out of this time-slot, the launch is operated at the
beginning of the next slot. If the order is initiated inside a nominal slot, the
chaser is immediately launched. Weather and other external conditions aren’t
considered here since they would have the same impact on the task for all studied
configurations. For similar reasons, it is considered that, if the launch vehicle
takes off, the probability of success of this functionality is 1.

Functionality 2. The goal of this functionality is to manoeuvre the chaser to
phase it with the debris. Placing the chaser in the right orbit (ENVISAT’s orbit)
depends on the choice of the launcher. Vega places it on an orbit of around 300 km
in about 800 s [21]. One must wait several minutes to a few hours to compensate
the possible phasing difference between ENVISAT and the chaser. It is assumed
that the launching slots have been judiciously chosen so that the phase difference
be minimised. To simplify this example that has a strictly illustrative vocation,
the 2 h time-slot is divided into three time-slots (0 to 40 min, 40 to 80 min, and
80 to 120 min). The time necessary to reach the orbit is respectively of 10 min,
20 min, and 30 min. The success probability of this function is 90 % (respectively
40 %, 30 %, and 20 % according to launching time). The situation is simpler for
the Soyuz launcher since it places the chaser directly in the correct orbit (790 km)
in about 60 min [22].

Functionality 3. This functionality varies depending on the equipment of the
chaser. In the case of a chaser equipped with nets:

F3.1 This corresponds to the observation and debris evaluation phase and may
take more or less time to succeed. A delay of one or two minutes is considered.

F3.2 The chaser manoeuvres to move closer to the debris (to reach a distance of
about 100 m) and positions itself so as to be able to observe the debris with a
dedicated sensor. It is assumed that the duration of this functionality is either
5 min, 7 min or 10 min and that these three durations are equiprobable.
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In the case of a chaser equipped with a robotic arm:

F3.1 Greater precision is required for the operation. If necessary three attempts
may be made, with delays respectively of 5 min, 10 min, and 15 min, and each
with a success probability of 50 %.

F3.2 The chaser manoeuvres to reach a distance of about 1 m close to the debris
and positions itself. It is assumed that the duration of this functionality is
either 30 min, 40 min or 50 min and that these 3 durations are equiprobable.

Functionality 4. This functionality aims at establishing the mechanical contact
with the debris. It also varies depending on the equipment used.

In the case of nets, it is considered that two nets are on-board. If the first
net fails, a second net is launched 5 min later. It is assumed that both nets have
the same success probability which is estimated at 60 %. The capture time is
constant (about 1 min).

In the case of a robotic arm, the functionality has three chances to succeed in
hitching the debris, after 5 min, 6 min, and 7 min, each of which has a probability
of success or 30 %. In this case, a de-tumbling must be operated by the robotic
arm. This takes about 30 min and has a high success probability of 95 %.

Functionality 5. Two options are considered here. If a deorbitation kit is cho-
sen, it has to be attached to the debris so as to change its trajectory. It is assumed
that this functionality would take about 1 min and would have a success prob-
ability of 80 %. If the debris is dragged, the success probability is evaluated to
90 %. For practical reasons, the deorbitation kit is only considered when using a
robotic arm since the latter would be necessary to append it to the debris.

4.2 ATLAS Results

The results presented here do not have the vocation to provide an actual answer
to the studied issue since the data used is approximative. The aim is to give an
idea of the types of result the ATLAS method may offer.

Fig. 3. Graphical representation of the ATLAS results



16 A. Piel et al.

If M is the whole task, ATLAS provides the probability ΠM (s, t) that the
deorbitation be successful depending on the chosen configuration, at a given
instant t, knowing the task has started at instant s. Different post-treatments
may then be applied to the resulting data to interpret it.

For instance, since the launching 2 h time-slot has been divided into three
with the Vega launcher (cf. Functionality 2), it may be interesting to con-
sider the overall success probability in each time-slot, i.e. for the first slot:∑

t

∑

0≤s≤40

ΠM (s, t). These results are presented in Table 3. If the duration of the

task is crucial, it is also possible to take into account a time limit. For instance,
if the duration should be limited to 100 min because of a limited quantity of
propellant (so that the chaser doesn’t become a debris to be deorbitised), the
success probabilities are

∑

t,t−s≤100

∑

0≤s≤40

ΠM (s, t) presented in the last column

of Table 3.
It may also be interesting to consider the success probability of the task with

regard to the task duration, i.e. for the first time-slot
∑

0≤s≤40

ΠM (s, s+d) where

d is the task’s length. These results are presented as graphs in Fig. 3.
Beyond the straightforward conclusion that the Soyuz launcher with a robotic

arm and the dragging option is the best configuration, ATLAS details the precise
delays linked to the successful realisation of the overall task. Post-treatments
such as presented here may thus be applied to the result data to bring to light
different aspects. In addition, changes in configuration may easily be compared,
which allows to study the sensitivity of the system.

5 Conclusion and Perspectives

This paper has presented a formal framework, ATLAS, to efficiently compute the
probability of a successful task for complex systems. This method may be used
for the evaluation and liability assessment of different system configurations. An
advantage of this method is that the heterogeneity of the system (components,
granularity of description, etc.) is not problematic since their performance is
summarised by their stochastic performance. However, this representation has an
intrinsic limitation: it may only represent the success or failure of a functionality.
An adapted choice of the success threshold, a parameter which has a strong
influence on the final result, allows to bypass this issue. We are also working on
developing a full model of both success and failure probabilities by defining a
symmetrical conditional probability to ΠF but with respect to BF = 0. Indeed,
in the framework presented here, it isn’t possible to distinguish the cases of
failure at an instant t and the cases where the functionality never succeeds.

The framework presented here has been implemented in C++ and may be
used for actual applications as illustrated in this paper with a case study for the
deorbitation of a retired satellite. The ATLAS tool is integrated in a graphical
interface called ASAP (ATLAS-based System Assessment Platform) which is
not described in this paper. ASAP provides two graphical interfaces for task
description as well as an interface for the post-treatment of the result data.
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Table 3. Success probabilities and task length of ENVISAT deorbitation

SM Duration
d (min)

Success Success with
d ≤ 100

Vega Net Drag 0–40 30–43 29.0 % 29.0 %

40–80 40–53 21.8 % 21.8 %

80–120 50–63 14.6 % 14.6 %

0–120 30–63 65.4% 65.4%

Robotic Arm Drag 0–40 93–125 26.9 % 7.7 %

40–80 103–135 20.2 % 0%

80–120 113–145 13.5 % 0%

0–120 93–145 60.6% 7.7%

Kit 0–40 94–126 23.9 % 6.1 %

40–80 104–136 18.0 % 0%

80–120 114–146 12.0 % 0%

0–120 94–146 53.9% 6.1%

Soyuz Net Drag 0–120 67–80 72.6 % 72.6 %

Robotic Arm Drag 0–120 130–162 60.6 % 0%

Kit 0–120 131–163 53.9 % 0%

In order to refine the representation of the system, we plan to introduce
the notion of resources that may be produced or consumed during the task.
A resource refers to a material means used during the task and which could
prove to be a physical constraint and cause the failure of the task. For instance,
one could consider electrical power, fuel, memory for data storage, a number of
available planes, etc. In addition, the theoretical framework is limited to discrete
probabilities. We are currently working on extending this framework to contin-
uous probabilities, with the aim of providing a generic framework allowing for
mixed probabilities, i.e. random variables with both discrete and continuous
components, thus encompassing all situations.
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Abstract. English language requirements are often used to specify
the behavior of complex cyber-physical systems. The process of trans-
forming these requirements to a formal specification language is often
challenging, especially if the specification language does not contain
constructs analogous to those used in the original requirements.
For example, requirements often contain real-time constraints, but
many specification languages for model checkers have discrete time
semantics. Work in specification patterns helps to bridge these gaps,
allowing straightforward expression of common requirements patterns in
formal languages. In this work we demonstrate how we support real-time
specification patterns in the Assume Guarantee Reasoning Environment
(AGREE) using observers. We demonstrate that there are subtle chal-
lenges, not mentioned in previous literature, to express real-time patterns
accurately using observers. We then demonstrate that these patterns
are sufficient to model real-time requirements for a real-world avionics
system.

1 Introduction

Natural language requirements specifications are often used to prescribe the
behavior of complex cyber-physical systems. Regrettably, such specifications can
be incomplete, inconsistent, or ambiguous. For these reasons, researchers have
long advocated the use of formal languages, such as temporal logics to describe
requirements. Unfortunately, the process of formalizing natural language require-
ments using formal specification languages is often challenging, especially if the
specification language does not contain constructs analogous to those used in
the original requirements.

Specification patterns [1,2] are an approach to ease the construction of for-
mal specifications from natural language requirements. These patterns describe
how common reasoning patterns in English language requirements can be rep-
resented in (sometimes complex) formulas in a variety of formalisms. Follow-
ing the seminal work of Dwyer [1] for discrete time specification patterns, a
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variety of real-time specification pattern taxonomies have been developed [2–6].
An example of a timed specification pattern expressible in each is: “Globally, it is
always the case that if P holds, then S holds between low and high time unit(s).”

In most of this work, the specification patterns are mapped to real-time tem-
poral logics, such as TCTL [7], MTL [8], RTGIL [9], and TILCO-X [4]. As an
alternative, researchers have investigated using observers to capture real-time
specification patterns. Observers are code/model fragments written in the mod-
eling or implementation language to be verified, such as timed automata, timed
Petri nets, source code, and Simulink, among others. For example, Gruhn [3] and
Abid [10] describe real-time specifications as state machines in timed automata
and timed Petri nets, respectively. A benefit of this approach is that rather than
checking complex timed temporal logic properties (which can be very expensive
and may not be supported by a wide variety of analysis tools), it is possible to
check simpler properties over the observer.

Despite this benefit, capturing real-time specification patterns with observers
can be challenging, especially in the presence of overlapping “trigger events.”
That is, if P occurs multiple times before low time units have elapsed in the
example above. For example, most of the observers in Abid [10] explicitly are
not defined for ‘global’ scopes, and Gruhn, while stating that global properties
are supported, only checks a pattern for the first occurrence of the triggering
event in an infinite trace.

In this work, we examine the use of observers and invariant properties to
capture specification patterns that can involve overlapping triggering events.
We use the Lustre specification language [11] to describe synchronous observers
involving a real-valued time input to represent the current system clock1. We
describe the conditions under which we can use observers to faithfully represent
the semantics of patterns, for both positive instances of patterns and negations
of patterns. We call the former use properties and the latter use constraints.

The reason that we consider negations of patterns is that our overall goal
is to use real-time specification patterns in the service of assume/guarantee
compositional reasoning. In recent efforts [12,13], we have used the AGREE
tool suite [14] for reasoning about discrete time behavioral properties of com-
plex models described in the Architectural Analysis and Design Language [15]2.
Through adding support for Requirements Specification Language (RSL) pat-
terns [16] and calendar automata [17–19], it becomes possible to lift our analysis
to real-time systems. In AGREE, we prove implicative properties: given that
subcomponents satisfy their contracts, then a system should satisfy its contract.
This means that the RSL patterns for subsystems are used under a negation.
We describe the use of these patterns in AGREE and demonstrate their use on
a real avionics system. Thus, the contributions of this work are as follows:

1 Although our formalisms are expressed as Lustre specifications, the concepts and
proofs presented in this paper are applicable to many other popular model checking
specification languages.

2 AGREE is available at: http://loonwerks.com.

http://loonwerks.com
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– We demonstrate a method for translating RSL Patterns into Lustre observers
and system invariants.

– We prove that it is possible to efficiently capture patterns involving arbitrary
overlapping intervals in Lustre using non-determinism.

– We argue that there is no method to efficiently encode a transition system in
Lustre that implements the exact semantics of all of the RSL patterns when
considering their negation.

– We demonstrate how to encode these patterns as Lustre constraints for prac-
tical systems.

– We discuss the use of these patterns to model a real-world avionics system.

2 Definitions

AGREE proves properties of architectural models compositionally by proving a
series of lemmas about components at different levels in the model’s hierarchy.
A description of how these proofs are constructed is provided in [12,14] and a
proof sketch of correctness of these rules is described in [14,20]. For the purpose of
this work, it is not important that the reader has an understanding of how these
proofs are constructed. The AGREE tool translates AADL models annotated
with component assumptions, guarantees, and assertions into Lustre programs.
Our explanations and formalizations in this paper are described by these target
Lustre specifications. Most other SMT-based model checkers use a specification
language that has similar expressivity as Lustre; the techniques we present in this
paper can be applied generally to other model checking specification languages.

A Lustre program M = (V, T, P ) can be thought of as a finite collection of
named variables V , a transition relation T , and a finite collection of properties P .
Each named variable is of type bool, integer, or real. The transition relation is a
Boolean constraint over these variables and theory constants; the value of these
variables represents the program’s current state, and the transition relation con-
strains how the state changes. Each property p ∈ P is also a Boolean constraint
over the variables and theory constants. We sometimes refer to a Lustre program
as a model, specification, or transition system. The AGREE constraints specified
via assumptions, assertions, or guarantees in an AADL model are translated to
either constraints in the transition relation or properties of the Lustre program.

The expression for T contains common arithmetic and logical operations (+,
−, ∗, ÷, ∨, ∧, ⇒, ¬, =) as well as the “if-then-else” expression (ite) and two
temporal operations: → and pre. The → operation evaluates to its left hand
side value when the program is in its initial state. Otherwise it evaluates to its
right hand side value. For example, the expression: true → false is true in the
initial state and false otherwise. The pre operation takes a single expression as
an argument and returns the value of this expression in the previous state of the
transition system. For example, the expression: x = (0 → pre(x) + 1) constrains
the current value of variable x to be 0 in the initial state otherwise it is the value
of x in the previous state incremented by 1.

In the model’s initial state the value of the pre operation on any expression
is undefined. Every occurrence of a pre operator must be in a subexpression
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of the right hand side of the → operator. The pre operation can be performed
on expressions containing other pre operators, but there must be → operations
between each occurrence of a pre operation. For example, the expression: true →
pre(pre(x)) is not well-formed, but the expression: true → pre(x → pre(x)) is
well-formed.

A Lustre program models a state transition system. The current values of
the program’s variables are constrained by values of the program’s variables in
the previous state. In order to model timed systems, we introduce a real-valued
variable t which represents how much time has elapsed during the previous tran-
sitions of the system. We adopt a similar model as timeout automata as described
in [17]. The system that is modeled has a collection of timeouts associated with
the time of each “interesting event” that will occur in the system. The current
value of t is assigned to the least timeout of the system greater than the previous
elapsed time. Specifically, t has the following constraint:

t = 0 → pre(t) + min pos(t1 − pre(t), . . . , tn − pre(t)) (1)

where t1, . . . , tn are variables representing the timeout values of the system.
The function min pos returns the value of its minimum positive argument. We
constrain all the timeouts of the system to be positive. A timeout may also
be assigned to positive infinity (∞)3. There should always be a timeout that is
greater than the current time (and less than ∞). If this is true, then the invariant
true → t > pre(t) holds for the model, i.e., time always progresses.

A sequence of states is called a trace. A trace is said to be admissible (w.r.t.
a Lustre model or transition relation) if each state and its successor satisfy the
transition relation. We adopt the common notation (σ, τ) to represent a trace of a
timed system where σ is a sequence of states (σ = σ1σ2σ3 . . .) and τ is a sequence
of time values (τ = τ1τ2τ3 . . .) such that ∀i : τi < τi+1. In some literature, state
transitions may take place without any time progress (i.e., ∀i : τi ≤ τi+1). We
do not allow these transitions as it dramatically increases the complexity of a
model’s Lustre encoding.

A Lustre program implicitly describes a set of admissible traces. Each state
σn in the sequence represents the value of the variables V in state n. Each time
value τn represents the value of the time variable t in state n. We use the notation
σn |= e, where e is Lustre expression over the variables V and theory constants,
if the expression e is satisfied in the state σn. Similarly, we use σn �|= e when e
is not satisfied in the state σn. A property p is true (or invariant) in a model
if and only if for every admissible trace ∀n : σn |= p. For the purposes of this
work, we only consider models that do not admit so-called “Zeno traces” [21]. A
trace (σ, τ) is a Zeno trace if and only if ∃v∀i : τi < v, i.e., time never progresses
beyond a fixed point.

3 In practice, we allow a timeout to be a negative number to represent infinity. This
maintains the correct semantics for the constraint for t in Formula 1.
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3 Implementing RSL Patterns

3.1 Formalizing RSL Patterns Semantics

For this work, we chose to target the natural language patterns proposed in the
CESAR project because they are representative of many types of natural lan-
guage requirements [16]. These patterns are divided into a number of categories.
The categories of interest for this work are the functional patterns and the timing
patterns. Some examples of the functional patterns are:

1. Whenever event occurs event occurs during interval
2. Whenever event occurs condition holds during interval
3. When condition holds during interval event occurs during interval
4. Always condition

Some examples of timing patterns are:

1. Event occurs each period [with jitter jitter]
2. Event occurs sporadic with IAT interarrivaltime [and jitter jitter]

Generally speaking, the timing patterns are used to constrain how often a
system is required to respond to events. For instance, a component that listens to
messages on a shared bus might assume that new messages arrive at most every
50 ms. The second timing pattern listed above would be ideal to express this
assumption. In AGREE, this requirement may appear as a system assumption
using the pattern shown in Fig. 1.

new message occurs sporadic with IAT 50.0

Fig. 1. An instance of a timing pattern to represent how frequently a message arrives
on a shared bus.

The functional patterns can be used to describe how the system’s state
changes in response to external stimuli. Continuing with the previous example,
suppose that the bus connected component performs some computation when-
ever a new message arrives. The functional patterns can be used to describe
when a thread is scheduled to process this message and how long the thread
takes to complete its computation. The intervals in these patterns have a speci-
fied lower and upper bound, and they may be open or closed. The time specified
by the lower and upper bound corresponds to the time that progresses since
the triggering event occurs. Both the lower and upper bounds must be positive
real numbers, and the upper bound must be greater than or equal to the lower
bound. An AGREE user may specify the instances of patterns shown in Fig. 2
as properties she would like to prove about this system. For the purposes of
demonstration we assume that the thread should take 10 ms to 20 ms to execute.
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Always new message = thread start
Whenever thread start occurs thread stop occurs during [10.0, 20.0]

Fig. 2. Two instances of a functional patterns used to describe when a thread begins
executing, and how long it takes to execute.

Fig. 3. A graphical representation for the RSL pattern

Figure 3 shows a graphical representation of the first functional pattern listed
at the beginning of this section. The variable tc represents the time that event
c occurs. Similarly, the variable te represents the time that event e occurs. The
formal semantics for many of the RSL patterns are described in [5]. The seman-
tics for the pattern described in Fig. 3 are represented by the set of admissible
traces Lpatt described below.

Lpatt = {(σ, τ) | ∀i∃j : σi |= c ⇒ (j > i) ∧ (τi + l ≤ τj ≤ τi + h) ∧ (σj |= e)}
The remainder of this section discusses how the pattern in Fig. 3 can be trans-
lated into either a Lustre property or a constraint on the admissible traces of
a transition system described by Lustre. Although we discuss only this pattern,
the techniques that we present can be applied generally to all except one of the
functional and timing RSL patterns4.

3.2 Implementing RSL Patterns as Lustre Properties

One can determine if a transition system described in Lustre admits only traces
in Lpatt by adding additional constraints over fresh variables (variables that are
not already present in the program) to the model. This commonly used technique
is referred to as adding an observer to the model. These constraints are over fresh
variables: run, timer, recc and pass; they are shown in Fig. 4. The constraints
only restrict the values of the fresh variables, therefore they do not restrict the
traces admissible by the transition relation.

The intuition behind these constraints is that one can record how much time
progresses since an occurrence of c. This time is recorded in the timer variable.
The value of the timer variable only increases if the previous value of the run

4 The single pattern that cannot be implemented requires an independent event to
occur for each of an unbounded number of causes. There are 12 functional and
timing RSL patterns in total.
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1. run = (recc → ite(pre(run) ∧ e ∧ l ≤ timer ≤ h,
false,
ite(recc, true, pre(run))))

2. timer = (0 → ite(pre(run), pre(timer) + (t − pre(t)), 0))
3. recc ⇒ c
4. pass = (timer ≤ h)

Fig. 4. The constraints added to a transition relation to verify if only the traces of
Lpatt are admissible. The transition relation only admits traces of Lpatt if and only if
the variable pass is invariant.

variable is true. The run variable is true if an occurrence of c is recorded and no
occurrence of e happens until after the timer counts to at least l. The variable
recc non-deterministically records an occurrence of c. If the transition system
admits a trace outside of Lpatt, then the recc variable can choose to record only
an event that violates the conditions of Lpatt. In this case the pass variable will
become false in some state.

Theorem 1. Let LM represent the admissible traces of a transition system con-
taining the constraints of Fig. 4. The transition system admits only traces in
Lpatt if and only if the property pass is invariant. Formally: (LM ⊆ Lpatt) ⇔
(∀σ, τ, i : (σ, τ) ∈ LM ⇒ σi |= pass)

Proof. First we show that if pass is invariant for a trace of the transition relation,
then that trace is in Lpatt.

Lemma 1. (∀σ, τ, i : (σ, τ) ∈ LM ⇒ σi |= pass) ⇒ (LM ⊆ Lpatt).

Proof. Towards contradiction, assume LM �⊆ Lpatt. Let (σ, τ) be a trace in LM

but not in Lpatt. Since (σ, τ) /∈ Lpatt, by definition there exists i such that σi |= c
and

∀j : (j > i) ∧ τi + l ≤ τj ≤ τi + h ⇒ σj �|= e. (2)

Without loss of generality, we can assume that this is the only time when c is
recorded. That is, σi |= recc and ∀k : k �= i ⇒ σk �|= recc. From constraint 1 in
Fig. 4 we have

∀j : ((j < i) ⇒ σj �|= run) ∧ ((τi ≤ τj < τi + l) ⇒ σj |= run)

This can actually be strengthened more. From Formula 2 the event e does not
occur between τi + l and τi +h. So the variable run will become invariant after τi.

∀j : ((j < i) ⇒ σj �|= run) ∧ (τi ≤ τj) ⇒ σj |= run)

From this and constraint 2 in Fig. 4, we have

∀j : (j ≤ i) ⇒ σj |= timer = 0
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and
∀j : (τi < τj) ⇒ (σj |= timer = (pre(timer) + (τj − τj−1)))

From this and the invariant ∀i : τi+1 > τi, we have

∀j : (τi < τj) ⇒ (σj |= timer > pre(timer))

Therefore since the value of timer is zero before τi and always increasing after τi,
and since we only consider non-Zeno traces (∀v∃i : v < τi), eventually timer > h
and so pass becomes false. This contradicts the assumption (∀σ, τ, i : (σ, τ) ∈
LM ⇒ σi |= pass). Therefore LM ⊆ Lpatt. ��

Next we show if a trace of LM is in Lpatt, then pass is invariant for this trace.

Lemma 2. (LM ⊆ Lpatt) ⇒ (∀σ, τ, i : (σ, τ) ∈ LM ⇒ σi |= pass)

Proof. Towards contradiction, assume that there exists a trace of LM for which
pass is not invariant. This means that for some state σj |= timer > h. For
this to be true, the timer must be running continuously since it started with
some recorded occurrence of c. That is there exists i such that σi |= timer = 0,
σi |= recc, σi |= c, ∀k : i ≤ k < j ⇒ σk |= run, and τj − τi > h. Thus
∀k : i ≤ k ≤ j ⇒ σk |= timer = τk − τi. By the definition of Lpatt we have a
k such that τi + l ≤ τk ≤ τi + h and σk |= e. This means l ≤ τk − τi ≤ h and
so σk |= l ≤ timer ≤ h. Therefore σk �|= run. We also have τk ≤ τi + h < τj so
that k < j. Thus from ∀k : i ≤ k < j ⇒ σk |= run we have σk |= run which is
a contradiction. Therefore, pass is invariant. ��

From Lemmas 1 and 2 we have (LM ⊆ Lpatt) ⇔ (∀σ, τ, i : (σ, τ) ∈ LM ⇒
σi |= pass). ��

3.3 Implementing RSL Patterns as Lustre Constraints

As we demonstrated with Fig. 4, one can specify a Lustre property that verifies
whether or not some transition system only admits traces of Lpatt. However, it
is surprisingly non-trivial to actually implement a transition system that admits
exactly the traces of Lpatt. Naively, one could attempt to add the constraints
of Fig. 4 to a transition system and then assert that pass is invariant. However,
this transition system will admit all traces where every occurrence of c is never
recorded (∀σi : σi �|= recc). Clearly some of these traces would not be in Lpatt.

We conjecture that given the Lustre expression language described in Sect. 2
it is not possible to model a transition system that admits only and all of the
traces of Lpatt. The intuition behind this claim is that Lustre specifications con-
tain a fixed number of state variables, and variables have non-recursive types.
Thus a Lustre specification only has a finite amount of memory (though it can,
for example, have arbitrary sized integers). If a Lustre specification has n vari-
ables we can always consider a trace in Lpatt where event c occurs more than n
times in a tiny interval. In order for the pattern to hold true, the Lustre specifi-
cation must constrain itself so that at least one occurrence of e occurs precisely
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between tc + l and tc + h after each event c. This requires “more memory” than
the Lustre specification has available.

Rather than model the exact semantics of this pattern, we choose to take a
more pragmatic approach. We model a strengthened version of Fig. 3 which does
not allow overlapping instances of the pattern. That is, after an event c there
can be no more occurrences of c until the corresponding occurrence of e. We do
this by proving that c cannot occur frequently enough to cause an overlapping
occurrence of the pattern. Then if we constrain the system based on a simple
non-overlapping check of the pattern, the resulting system is the same as if we
had constrained it using the full pattern. This simple non-overlapping check and
the property limiting the frequency of c are both easily expressed in Lustre since
they only look back at the most recent occurrence of c. Moreover, they can both
be used freely in positive and negative contexts. Formally, the property we prove
is Lprop and the constraints we make are Lcons:

Lprop = {(σ, τ) | ∀i : σi |= c ⇒ ∀j : (j > i) ∧ (τj ≤ τi + h) ∧ σj |= c ⇒
∃k ∈ (i, j] : τi + l ≤ τk ∧ σk |= e}

Lcons = {(σ, τ) | ∀i : σi |= c ⇒ ∃j : (j > i) ∧
[(τi + l ≤ τj ≤ τi + h ∧ σj |= e) ∨ (τj ≤ τi + h ∧ σj |= c)]}

The correctness of Lprop and Lcons are captured by the following theorem.

Theorem 2. Let M be a transition system and LM its corresponding set of
admissible traces. Suppose LM ⊆ Lprop. Then Lcons and Lpatt are equivalent
restrictions on LM , that is LM ∩ Lcons = LM ∩ Lpatt.

Proof. We prove the theorem by showing that the subset relationship between
LM ∩ Lcons and LM ∩ Lpatt holds in both directions.

Lemma 3. LM ∩ Lpatt ⊆ LM ∩ Lcons

Proof. From the definitions of Lpatt and Lcons it follows directly that Lpatt ⊆
Lcons. Therefore LM ∩ Lpatt ⊆ LM ∩ Lcons. ��
Lemma 4. Suppose LM ⊆ Lprop, then LM ∩ Lcons ⊆ LM ∩ Lpatt

Proof. Suppose towards contradiction that LM ∩Lcons �⊆ LM ∩Lpatt. Consider a
trace (σ, τ) ∈ LM ∩Lcons with (σ, τ) /∈ LM ∩Lpatt. Then we have (σ, τ) ∈ Lcons,
(σ, τ) ∈ Lprop, and (σ, τ) /∈ Lpatt. From the definition of Lpatt we have an i such
that σi |= c and

∀j : (j > i) ∧ (τi + l ≤ τj ≤ τi + h) ⇒ σj �|= e. (3)

Then from the definition of Lcons with σi |= c we have a j such that j > i
and either (τi + l ≤ τj ≤ τi + h ∧ σj |= e) or (τj ≤ τi + h ∧ σj |= c). The
former option directly contradicts Formula 3, so we must have τj ≤ τi + h and
σj |= c. From the definition of Lprop with σi |= c and our j, we have a k in
(i, j] such that τi + l ≤ τk and σk |= e. From k ≤ j we have τk ≤ τj and thus
τi+l ≤ τk ≤ τi+h. Instantiating Formula 3 with k yields σk �|= e, a contradiction.
Therefore LM ∩ Lcons ⊆ LM ∩ Lpatt. ��
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From Lemmas 3 and 4 have LM ∩ Lcons = LM ∩ Lpatt. ��
Example 1. Suppose we want to model a system of components communicating
on a shared bus. The transition relation for this system must contain constraints
that dictate when threads can start and stop and how frequently new messages
may arrive. First we constrain the event new message from occurring too fre-
quently according to the pattern instance in Fig. 1. Let Lnm represent the set of
admissible traces for this pattern. This set is defined explicitly in Formula 1.

Lnm = {(σ, τ) | ∀i : σi |= new message ⇒
¬[∃j : (j > i) ∧ (τj < τi + 50) ∧ (σj |= new message)]}

Suppose we wish to constrain the system to the pattern instances in Fig. 2. The
first pattern instance is represented by the set Lstart and the second by Lstop:

Lstart = {(σ, τ) | ∀i : σi |= new message ⇒ σi |= thread start}
Lstop = {(σ, τ) | ∀i∃j : σi |= thread start ⇒

(j > i) ∧ (τi + l ≤ τj ≤ τi + h) ∧ (σj |= thread stop)}
Let LM denote the admissible traces of the transition system that is being

modeled. The goal is to specify the transition system in Lustre such that LM =
Lnm ∩ Lstart ∩ Lstop. Writing a Lustre constraint to represent the set of traces
Lstart is trivial. The traces that are contained in Lstart are those whose states
all satisfy the expression new message = thread stop. However, as we noted
earlier, it is not possible to develop a set of Lustre constraints that admit only
(and all of) the traces of Lstop.

Note that the second pattern in Fig. 2 is an instance of the pattern described
in Fig. 3. Therefore we can split the set Lstop into two sets, Lstopc and Lstopp:

Lstopc = {(σ, τ) | ∀i : σi |= thread start ⇒ ∃j : (j > i) ∧
[(τi + l ≤ τj ≤ τi + h ∧ σj |= thread stop) ∨
(τj ≤ τi + h ∧ σj |= thread start)]}

Lstopp = {(σ, τ) | ∀i : σi |= thread start ⇒ ∀j : (j > i) ∧
(τj ≤ τi + h) ∧ σj |= thread start ⇒
∃k ∈ (i, j] : τi + l ≤ τk ∧ σk |= thread stop}

In this example, the sets of admissible traces representing the patterns hap-
pen to have the following relationship:

Lnm ∩ Lstart ⊆ Lstopp (4)

This is because for every trace in Lnm the event new message only occurs
at most every 50 ms. Likewise, for each state of every trace of Lstart the vari-
able thread start is true if and only if new message is true. Finally, the set
Lstopp contains every trace where thread start occurs at most every 20 ms. From
Formula 4 and Theorem 2 we have Lnm ∩Lstart ∩Lstopc = Lnm ∩Lstart ∩Lstop.
Thus the system Lnm∩Lstart∩Lstopc, which we can model in Lustre, is equivalent
to a system constrained by the pattern instances in Figs. 1 and 2.
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Example 1 is meant to demonstrate that, in practical systems, there is usually
some constraint on how frequently events outside the system may occur. Systems
described by the functional RSL patterns generally have some limitations on how
many events they can respond to within a finite amount of time. The Lustre
implementations of Lcons and Lprop are simpler than Fig. 4, and their proof of
correctness is also simpler then Theorem 1, though we omit both due to space
limitations.

4 Application

We implemented a number of RSL patterns into the AGREE tool. These pat-
terns were used to reason about the behavior of a real-world avionics system.
Specifically, the patterns were used to model the logic and scheduling constraints
of threads running on a real-time operating system on an embedded computer
on an air vehicle. Each thread in the system has a single entry point that is dis-
patched by some sort of event. The event may be the arrival of data from a bus
or a signal from another thread. When a thread receives an event, the current
state of the thread’s inputs are latched. Each thread runs at the same priority as
every other thread (no thread may preempt any other thread). A thread begins
executing after it receives an event and no other thread is executing.

The patterns in Figs. 1 and 2 are actually fairly representative of the con-
straints used in this model. Figure 5 shows some of the RSL patterns that were
used to describe these scheduling constraints. We added an additional tag “exclu-
sively” before the second event in the patterns to indicate that the second event
occurs only in the specified interval after the first pattern (and never any other
time). We found that this was a useful shorthand because one often wants to
specify a signal that only occurs under a specified condition and not at any other
time.

assert “thread A runtime” : whenever thread A start running occurs
thread A finish exclusively occurs during [10.0, 50.0];

assert “thread B runtime” : whenever thread B start running occurs
thread B finish exclusively occurs during [10.0, 50.0];

assert “thread C runtime” : whenever thread C start running occurs
thread C finish exclusively occurs during [10.0, 50.0];

Fig. 5. Assertions about the how the operating system schedules threads

The results that each thread produces after it finishes executing are described
by an assume-guarantee contract. Generally speaking, the assumptions restrict
the values of inputs that the thread expects to see. Likewise, the thread’s guar-
antees constrain the values of the thread’s outputs based on it’s current state and
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input values. The AADL component that contains the threads has assumptions
about how frequently it receives inputs and has guarantees about how quickly it
produces outputs. These assumptions are translated to constraints in the Lus-
tre transition system, and the guarantees are translated to properties. Figure 6
illustrates one of these assumptions and guarantees.

The “eq” statements in Fig. 6 are used to constrain a variable to an expres-
sion. They are usually used as a convenient short hand to make AGREE contracts
easier to read. In this case, the first “eq” statement is used to set the variable
change status request to true if and only if a new message has arrived and the
content of the message is requesting that the vehicle change its status. Likewise,
the second statement is used to record the last requested change value into the
change request variable. The contract assumes that this new message arrives
periodically (with some jitter). The contract guarantees that if a new message
arrives requesting that the vehicle change its status, then the vehicle’s status
will be set to the requested value within 500 ms. In this application we assumed
that all time units are expressed in microseconds. This means that the timing
constraints expressed in Fig. 5 are also expressed in microseconds. Other con-
straints are used to assert that the vehicle status variable corresponds to one of
the state variables in the component’s threads.

eq change status event : bool =
new message and message content.change vehicle status;

eq change request : bool =
ite(change status event,

message content.status,
false → pre(change request));

assume “periodic messages” : new message occurs
each 10000.0 with jitter 50.0;

guarantee “new message can change vehicle status” :
whenever change status event occurs

vehicle status = change request during [0.0, 500.0];

Fig. 6. Assumptions and guarantees about the component containing the threads.

The guarantee of this component is invariant if and only if the threads in
the component’s implementation are scheduled in such a way that whenever a
new message arrives its content is parsed and sent to the correct threads to be
processed in a timely manner. The logic expressed in the contract of each thread
determines how the content of this message is transmitted to other threads in
the system.
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4.1 Results

We had three properties of interest for the vehicle. These properties were related
to timing, schedulability, and behavior of the system’s threads. We ran the trans-
lated Lustre file, which contained about 1000 lines, from the AADL/AGREE
model on the latest version of JKind on a Linux machine with an Intel(R)
Xeon(R) E5-1650 CPU running at 3.50 GHz. JKind uses k-induction, property
directed reachability, and invariant generation engines to prove properties of Lus-
tre models. In the case of this experiment, it took about 8 h to prove all three
properties. One of the properties was proved via k-induction, the other two were
proved by the property directed reachability engine.

JKind allows users to export the lemmas used to prove a property. These
lemmas can be exported and used again in order to speed up solving for similar
models and properties. We found that when these lemmas were used again to
prove the properties a second time all of the properties were proved in less than
10 s. This seems to indicate that the properties are not particularly deep. That is
to say, to prove the properties via k-induction, the inductive step does not need
to unroll over many steps. We are currently exploring techniques for lemma
discovery for properties specified with RSL patterns.

5 Related Work

Our work focuses on the real-time patterns in the Requirements Specification
Language (RSL) [5] that was created as part of the CESAR project [16]. This
language was an extension and modularization of the Contract Specification
Language (CSL) [22]. The goal of both of these projects was to provide contract-
based reasoning for complex embedded systems. We chose this as our initial
pattern language because of the similarity in the contract reasoning approach
used by our AGREE tool suite [14].

There is considerable work on real-time specification patterns for different
temporal logics. Konrad and Cheng [2] provide the first systematic study of real-
time specification patterns, adapting and extending the patterns of Dwyer [1]
for three different temporal logics: TCTL [7], MTL [8], and RTGIL [9]. Indepen-
dently, Gruhn [3] constructed a real-time pattern language derived from Dwyer,
presenting the patterns as observers in timed automata. In Konrad and Cheng,
multiple (and overlapping) occurrences of patterns are defined in a trace, whereas
in Gruhn, only the first occurrence of the pattern considered. This choice side-
steps the question of adequacy for overlapping triggering events (as discussed
in Sect. 3), but limits the expressiveness of the specification. We use a weaker
specification language than Konrad [2] which allows better scaling to our analy-
sis, but we also consider multiple occurrences of patterns, unlike Gruhn [3].
Bellini [4] creates a classification scheme for both Gruhn’s and Konrad’s pat-
terns and provides a rich temporal language called TILCO-X that allows more
straightforward expression of many of the real-time patterns. Like [2], this work
considers multiple overlapping occurrences of trigger events.



32 J.D. Backes et al.

The closest work to ours is probably that of Abid et al. [10], who encode a
subset of the CSL patterns as observers in a timed extension of Petri nets called
TTS, and supplement the observers with properties that involve both safety
and liveness in LTL. For most of the RSL patterns considered, the patterns are
only required to hold for the first triggering event, rather than globally across the
input trace. In addition, the use of full LTL makes the analysis more difficult with
inductive model checkers. Other recent work [6] considers very expressive real-
time contracts with quantification for systems of systems. This quantification
makes the language expressive, but difficult to analyze.

Other researchers including Pike [23] and Sorea [24] have explored the idea
of restricting traces to disallow overlapping events in order to reason about
real-time systems using safety properties. The authors of [25] independently
developed a similar technique of using a trigger variable to specify real-time
properties that quantify over events.

6 Conclusion

We have presented a method for translating RSL patterns into Lustre observers.
While we only specifically discussed a single pattern in detail, the techniques
we presented can be applied analogously to other functional or timing patterns.
Similarly, the techniques we presented can be applied to other synchronous data
flow languages. The RSL patterns have been incorporated into the AGREE
plugin for the OSATE AADL integrated development environment. We used
these patterns to show that we could successfully model, and prove properties
about, scheduling constraints for a real-world avionics application. Future work
will focus on lemma generation to improve scalability for reasoning about real-
time properties.
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Abstract. Avionic systems involve complex time-dependent behaviors
across interacting components. This paper presents a contract-based app-
roach for formally verifying these behaviors in a compositional manner. A
unique feature of our contract-based tool is the support of architectural
specification for multi-rate platforms. An abstraction technique has also
been developed for properties related to variable time bounds. Prelimi-
nary results on applying this approach to the verification of an aircraft
cabin pressure control system are promising.

Recent years have seen a large growth in the size and complexity of avionics
systems due to increasing system functionality and closer integration among
existing and new aircraft subsystems. Verifying the safety of these systems and
their compliance with their intended functional requirements is a critical certifi-
cation objective that is becoming prohibitively expensive due to this increasing
complexity. Compositional verification approaches [1,2] manage the verification
complexity by decomposing requirements into component-level contracts and
applying assume-guarantee reasoning. Contract-based tools such as AGREE [3]
and OCRA [2] have been used in recent effort to formally verify control mod-
ules in avionic systems. Most existing work has focused primarily on verifying
safety properties, e.g., the system must not exhibit behaviors that can result
in a catastrophic failure. Using such techniques to verify complex behavioral
requirements of a system in a distributed setting, however, has not received
much attention. In many avionics application domains such as flight controls,
cockpit displays, flight management, and environment control systems, a vari-
ety of complex time-dependent behaviors are present that can cut across several
components. Verifying such behaviors for compliance to the intended functional
requirements is essential and has been traditionally accomplished using testing
techniques that can be expensive but still not exhaustive in revealing the pres-
ence of errors. There is a strong need for a verification approach that can enable
scalable use of formal verification (e.g., model checking) tools for complex time-
bounded properties and the composition of such properties over components in
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a distributed environment. This short paper presents a compositional approach
of verifying such systems involving complex time-dependent behaviors.

1 Case Study Example

The motivating case study for this work comes from aircraft cabin pressure
and environment control system applications. In a typical mechanical system
with sensors and actuators, it is necessary to perform calibration, initialization,
or other built-in-tests on these components (e.g., a pressure sensor) only at
certain specific times in successive aircraft takeoff and landing cycles. The specific
signal to invoke this activity is called finalize event in this example, and
it is triggered after the aircraft door is open for a minimum amount of time.
Figure 1 shows the components involved in triggering this event. The Timing
Computation module computes the amount of time the door should be open
before the finalize event is triggered as a function of altitude reached during
flight. The Mode Transition Logic controls the changes in aircraft modes, for
example LANDING (L) to GROUND (G). The Mode Detect Logic module evaluates
sensor values to determine the current aircraft state, for example, if the aircraft
is on the ground or climbing. The mode, state, and timing all inform the decision
when to finalize the aircraft. This example illustrates an end-to-end subsystem
from sensors to actuator, even though it is only a small part of an environmental
control system. Depending on the architectural platform, components in this
subsystem may be physically distributed across the aircraft. For instance, each
component executes periodically (with different rates) and communicates with
one another over a shared bus.

Fig. 1. Case study example – diagram of interacting component subsystems

The finalize event signal is activated by several events and aircraft states
occurring in a particular temporal sequence shown in the Simulink diagram of
Fig. 2. The door may open any time after landing, and once it has been open
continuously for door open time, the finalize event is broadcast.

Additionally, the activation must occur only once in a landing-to-takeoff cycle
even through certain states of aircraft (e.g., door opening or closing) may change
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Fig. 2. Diagram of “Post Landing Finalize” subsystem

Table 1. Requirements for the “Post Landing Finalize” subsystem

Requirement 1 A finalize event will be broadcast after the aircraft door has been
open continuously for door open time seconds while the aircraft
is on the ground after a successful landing.

Requirement 2 A finalize event is broadcast only once while the aircraft is on the
ground.

Requirement 3 The finalize event will not occur during flight.

Requirement 4 The finalize event will not be enabled while the aircraft door is
closed.

multiple times after a landing and before the next takeoff. It is also essential that
the activation state for finalize event is reset after broadcast so that it is ready
to be activated for the next landing-takeoff cycle. The requirements for the “Post
Landing Finalize” subsystem are outlined in Table 1.

The assumptions in Table 2 must be proven on upstream components. The
proofs of the requirements for this module depend on the possibility of the nec-
essary sequence of inputs. Note that because the modules may run at different
rates, the assumption that mode transitions directly from LANDING to GROUND
does not require a direct transition in the Mode Transition Logic module. It
could be possible to transition through a third state, as long as it is possible
to reach Ground before Post Landing Finalize can see the intermediate state.
The translation of assumptions to requirements on upstream components must
take into account different rates of execution. Assumption 3 is not specific about
the definition of “aircraft is on the ground.” This would likely be formalized
as altitude is within some tolerance of zero since that is the only signal into
the Timing Computation module on which the proof of this assumption will fall.
Assumption 4 is more of an assertion that the door will not be open during flight.
As an user-driven input signal, this cannot be proven using upstream modules;
but it does assure Requirement 3.
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Table 2. Assumption for the “Post Landing Finalize” subsystem

Assumption 1 ac on ground can be true before the mode transitions to GROUND.

Assumption 2 The mode can transition directly from LANDING to GROUND as
observed by “Post Landing Finalize.”

Assumption 3 door open time does not change while the aircraft is on the ground.

Assumption 4 door closed must be true if ac on ground is false.

2 Verification Techniques and Tools

2.1 Translation of Simulink Models and Contract Language

The integration of Simulink into a high-assurance design flow can bring signifi-
cant benefits especially for safety-critical applications. Our tool Sim2SAL auto-
mates the generation of formal models by translating Simulink designs into tran-
sition systems in SAL. A unique feature in our tool is the support for real-time
multi-rate systems. Sim2SAL allows the specification of the multi-rate architec-
ture as annotations attached to Simulink subsystems. An example annotation is
shown below that describes the timing characteristics of a periodically executing
subsystem.
arch_begin

period: 5 ms; /* the subsystem executes every 5 ms */

jitter: 0.1 ms; /* max jitter of the clock is 0.1 ms */

latency[1]: 1 ms; /* max latency at input port 1 is 1 ms */

init[1]: 0; /* initial value at input port 1 is 0 */

arch_end

The formal model of computation for these systems is given in [4]. Several
abstractions of multi-rate systems are also possible and handled automatically,
including zero communication delays and zero jitters. In this paper, we present
the use of Sim2SAL in verifying the properties of the case study example in the
discrete-time setting. In reality, the system is implemented on a distributed archi-
tecture with periodic components. Hence, the multi-rate model is more faithful
to the actual implementation. In such a setting, conventional assume-guarantee
methods are insufficient since they were developed for discrete transition systems.
We explore compositional techniques for verifying these models in future work.

In short, the contract language of Sim2SAL consists of two parts – behavioral
specification and architectural specification. Similar to OCRA [2], the behavioral
part is based on Linear Temporal Logic (LTL) [5] over assume-guarantee pairs.
In addition to the typical syntax of LTL, additional constructs are provided
for simplifying expressions that involve large step sizes. For instance, we use
G [0,50] f to specify that the formula f has to hold true during the next 50 time
steps including the current one. Certain real-time properties can also be specified
at the system level. For example, an end-to-end property may require that a
request will always be serviced by a response within some t time units, where
t ∈ R. Sim2SAL uses additional timer constructs and translates these properties
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to an equivalent LTL formula involving these timers. We refer interested readers
to [4] for details of this technique. Currently, Sim2SAL can handle a subset of
Simulink’s discrete blocks. Sim2SAL takes the Simulink model (.mdl file) and
the contract annotations as input and generates an encoding of the model and
properties in SAL.

2.2 Abstraction Pattern for Variable Time Bounds

Dwyer et al. have created a Specification and Pattern System [6] for defining
various types of behaviors. Tool chains have been prototyped [7] to facilitate the
capture of requirements using such patterns such as minimum duration, bounded
response etc. For example, the minimum duration pattern specifies the minimum
amount of time a formula must hold once it becomes true. There are, however,
practical considerations of model-checking complexity; a large time bound can
translate into a large number of discrete steps to be explored, resulting in expo-
nential growth of the search space. Another consideration in many systems is
that variable time bounds are provided to a component that are dynamically
computed by another component.

For example, for the “Post Landing Finalize” component, Requirement
1 in Table 1 specifies a timed response where the value of door open time
for the response is dynamically computed by “Timing Calculation” compo-
nent. The Simulink model of this component (Fig. 2) contains a block named
variableTimer that receives a variable external input door open time. Due
to the dynamic value of time, one cannot express the LTL property for this
requirement as a fixed duration response. Furthermore, a proof of the require-
ment’s property for a fixed value of time will not be valid when the value of time
can be different in the dynamical system.

A Timer Abstraction Pattern. Our approach is to create a timer abstraction
pattern to construct and verify properties related to variable time bounds in
a compositional manner. Consider the changes to the states and signals in the
model of Fig. 2, as the behavior for Requirement 1 is realized. Initially the state of
the finalize event is false when the aircraft is landing: the door closed input
is true and ac on ground is true before mode changes from LANDING to GROUND.
When the door closed input is false (the door is open), the variableTimer
block starts counting. Note that the relevant state variables do not change in
the time steps when the timer is just counting up. This establishes a bound
on the minimum number of steps to which the timer behavior can be collapsed
while still preserving the properties. Such an abstraction is useful in making the
verification problem tractable for the compositional verification of interacting
components with variable time bounds. For example, we can prove the properties
on the “Post Landing Finalize” component using a small time bound, tmin, and
specify that as an assumption for this component. We can then independently
prove this assumption, using a static analysis tool, as a guarantee provided by
the “Timing Calculation” component that it will always produce a value of
door open time ≥ tmin. This allows the application of different types of model
checking and static analysis tools for proving properties for different components.
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Computation of Minimum Time-Steps Bound for the Timer
Abstraction. We briefly describe the algorithm to compute the minimum num-
ber of time steps tstepsmin required to explore all possible input to output
behaviors in the model while the timer (e.g., variableTimer) is counting. We
start by noting that all states in the Simulink model of interest are expressed
by unit delay blocks: a unit delay block stores the last value of its input and
outputs that stored value in the current step (higher-level blocks such as latch
and rise1Shot use unit delay blocks to hold a state variable). If a path from
an input to an output contains a unit delay in series (e.g., block prevStep) then
that adds 1 step to tstepsmin since with 1 additional step one can produce a
value at the output of the unit delay that is possible to be created at its input.
A Boolean unit delay in a feedback loop (e.g., delay2) also adds 1 to tstepsmin,
since the feedback of a Boolean variable creates a repeating sequence the sec-
ond time around the loop. Feedback loops that create an accumulator using a
numeric variable can exhibit a long non-repeating sequence of values and such
models are excluded from our analysis. Our observations across avionics systems
show that most instances of timer patterns do not have other accumulators in
the same subgraph as the timer. The algorithm is simply to enumerate all unique
paths from models inputs to relevant outputs, count the number of unit delays
(including feedback) in each path, then compute tstepsmin as the largest count
across all paths. This algorithm provides a conservative bound on tstepsmin. A
precise smaller bound can be derived by considering constraints on the variables
used in the property. Such a computation, however, complicates the analysis
algorithm while yielding little practical benefit.

3 Preliminary Results and Future Work

The LTL specifications of the properties from Sect. 1 are listed in Table 3.
We have introduced two auxiliary variables. We use latch so we need not repeat
the entire landing condition in both Property 1.2 and 1.3; it also allows arbi-
trary time between landing and the opening of the door. With the timer count
variable we can capture the properties without nested temporal operators.

Table 3. Formal requirements for “Post Landing Finalize” in LTL

Requirement 1 Property 1.1 G

⎛

⎜
⎜
⎝

ac on ground ∧ mode = L ∧ door closed ∧
X (mode = G ∧ door closed ∧ ac on ground)

⇒ X (latch)

⎞

⎟
⎟
⎠

Property 1.2 G (¬finalize event ⇒ timer count ≤ 4 ∨ ¬latch)

Property 1.3 G

(
timer count ≥ 4 ∧ ¬door closed ∧ latch

⇒ finalize event

)

Requirement 2 Property 2.1 G

(
finalize event ⇒ X (G (¬finalize event ∨
(latch ∧ timer count ≥ 4 ∧ ¬door closed)))

)

Requirement 3 Property 4.1 G (door closed ⇒ X (¬finalize event))

Requirement 4
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In this case, timer count = x is equivalent to G [0,x] (¬door closed) because
timer count counts the time the door is open, and resets to 0 when the door is
closed. For these properties, we used the minimum bound analysis in Sect. 2.2
to show that four time-steps are sufficient to prove any property in the model.
All properties were proven in SAL using k-induction.

The assumptions in Sect. 1 implicitly underlie these proofs. As model inputs,
mode, ac on ground, and door closed are not constrained in successive values
or interaction. The fact that the finalize event follows the appropriate input
sequence does not indicate that sequence is possible. We are working to automate
the translation of those assumptions into guarantees that can be proven on
the upstream components. Other future work includes feeding the computed
minimum time bound directly to Sim2SAL to generate the timer abstraction and
translate the properties to utilize the new bound, and compositional techniques
for multi-rate systems.

Open Access. This chapter is distributed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, duplication, adaptation, distribution and reproduction in anymedium
or format, as long as you give appropriate credit to the original author(s) and the source,
a link is provided to the Creative Commons license and any changes made are indicated.

The images or other third party material in this chapter are included in the work’s
Creative Commons license, unless indicated otherwise in the credit line; if such mate-
rial is not included in the work’s Creative Commons license and the respective action
is not permitted by statutory regulation, users will need to obtain permission from the
license holder to duplicate, adapt or reproduce the material.
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Abstract. Requirements are informal and semi-formal descriptions of
the expected behavior of a complex system from the viewpoints of
its stakeholders (customers, users, operators, designers, and engineers).
However, for the purpose of design, testing, and verification for criti-
cal systems, we can transform requirements into formal models that can
be analyzed automatically. ARSENAL is a framework and methodology
for systematically transforming natural language (NL) requirements into
analyzable formal models and logic specifications. These models can be
analyzed for consistency and implementability. The ARSENAL method-
ology is specialized to individual domains, but the approach is general
enough to be adapted to new domains.

1 Introduction

Requirements specify important properties of software systems, e.g., conditions
required to achieve an objective, or desired system invariants. Requirements
in formal languages can be cumbersome but are precise and useful for check-
ing consistency and verifying properties. NL requirements can be written easily
without burden of formal rigor, but can be inherently imprecise, incomplete,
and ambiguous. The main objective of this paper is to answer the question:
“Can we design a methodology that combines the strengths of natural
and formal languages for requirements engineering?”. To this end, we
present the methodology of ARSENAL: “Automatic Requirements Specification
Extraction from Natural Language’. In this paper, we focus on mapping NL
requirements to transition systems expressed in SAL and logic specifications in
Linear Temporal Logic (LTL), for safety critical systems (e.g., in Sect. 4.1, Fig. 5
shows the SAL model corresponding to the requirements sentence REQ1).

ARSENAL is able to generate a full model from multiple requirements sen-
tences in an automated fashion by using a combination of approaches: pre-
processing, type rules, intermediate language representation, output adapters,
and powerful formal methods tools. ARSENAL has two stages — Sect. 2 gives an
overview of the Natural Language Processing (NLP) stage, while Sect. 3 gives an
overview of the Formal Methods (FM) stage. We evaluate ARSENAL in Sect. 4
and conclude in Sect. 5.
c© Springer International Publishing Switzerland 2016
S. Rayadurgam and O. Tkachuk (Eds.): NFM 2016, LNCS 9690, pp. 41–46, 2016.
DOI: 10.1007/978-3-319-40648-0 4
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2 Natural Language Processing

The NLP stage takes NL requirements as input and generates a set of logical
formulas as output. The different components of the NLP stage are shown in
Fig. 1 — more details about the NLP stage are available in [3].

Fig. 1. NLP stage of ARSENAL pipeline.

3 Formal Analysis

In this section, we discuss the Formal Methods (FM) stage. The overall flow of
the FM stage is shown in Fig. 2 — this stage takes as input the set of logical
formulas as generated by the NLP stage and creates a composite formal model.
The FM stage uses a combination of consistency, satisfiability and realizability
checks to formally validate the completeness/correctness of the requirements.

3.1 Consistency Analysis

Requirements can be error-prone and inconsistent. In our context, inconsistencies
can arise from human errors in writing the NL requirements or from inaccuracies
introduced by ARSENAL. Given a set of requirements formalized as LTL for-
mulas, we check if there exists a model for the formulas, i.e., they are satisfiable.
If the formulas are unsatisfiable, then it can be due to errors in the specification
or due to errors in the NLP stage. The problem of LTL satisfiability checking
can be reduced to checking emptiness of Büchi automata [9]. Given an LTL for-
mula φ, we can construct a Büchi automaton Aφ such that the language of Aφ

is exactly equivalent to the model of φ. If the language of Aφ is empty then φ is
unsatisfiable, indicating an inconsistency in the requirements — we report this
inconsistency to the ARSENAL end-user. Otherwise, we proceed to creating the
SAL model.
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Fig. 2. FM stage of ARSENAL pipeline.

3.2 Model Checking

A transition system like SAL [2] is composed of modules, where each module
consists of a state type, an invariant definition, an initialization condition, and
a binary transition relation on the state type. Creating a complete SAL model
directly from text with correct semantics is non-trivial, since formulas need to
be categorized as definition, initialization, transition, or theorem. Each variable
in SAL is also typed, which needs to be explicitly specified. During the model
generation stage, ARSENAL gathers type evidences for each variable across all
sentences, and then performs type inference by merging them into equivalence
classes (details of the type merging algorithm are outlined in [3]). Further, in
case of a type conflict, an inconsistency warning is generated, thus helping the
user to refine their NL requirements at an early stage. When the model does
not satisfy the specification, a negative answer (often in the form of a coun-
terexample) is presented to the user as a certificate of how the system fails the
specification — if SAL finds a counterexample, we know the property encoded
in the requirements does not hold. If SAL does not find a counterexample at
a known depth of model-checking, we next try to see if the LTL formulas are
realizable. Once the specification becomes realizable, an implementation can be
generated automatically, e.g., in Verilog1.

3.3 Temporal Logic Synthesis

Given an LTL specification, it may also be possible to directly synthesize an
implementation that satisfies the specification. It has been shown that a sub-
class of LTL, known as Generalized Reactivity (1) [GR(1)], is more amenable
to synthesis [5] and is also expressive enough for specifying complex industrial
designs. We have incorporated into ARSENAL a counterstrategy-guided assump-
tion mining approach developed for GR(1) LTL formulas [4], which allows adding
assumptions to the formulas until either the specification is realizable or all the
recommendations are rejected by the user.

1 An example of a synthesized Verilog model for the FAA domain is available at:
http://www.csl.sri.com/users/shalini/arsenal/faa-isolette.v.

http://www.csl.sri.com/users/shalini/arsenal/faa-isolette.v
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4 Evaluation

We ran extensive experiments analyzing ARSENAL’s ability in handling complex
NL sentences and different corpora, and measuring it’s robustness to noise. We
also analyzed the accuracy of the NLP stage, and analyzed case studies on two
real domains — TTEthernet and FAA-Isolette. In this section, we present the
case study on TTEthernet — further experiments and case studies can be found
in [3] (Fig. 3).

Fig. 3. Original FSM (a) and modified FSM
(b) for regulator.

Fig. 4. Synchronization FSM in
TTEthernet

4.1 Case Study: TTEthernet (TTE)

In the TTEthernet corpus, we consider the NL requirements that describe the
synchronization state machine in TTEthernet. Figure 4 shows the diagram of
this state machine (conditions for transitions are not shown). The machine starts
at the ES INTEGRATE state, and the ES SYNC ABS state indicates that the end-
system has synchronized with other systems in the cluster. This corpus contains
36 sentences. ARSENAL can handle complex requirements sentences, generating
the correct formula automatically. An example, describing part of the behavior
in the ES UNSYNC state, is shown below.

REQ1: When an end system is in ES UNSYNC state and receives a cold-
start frame, it shall (a) transit to ES FLOOD state, (b) set local timer to
es cs offset, (c) set local clock to 0, (d) set local integration cycle to 0, and (e)
set local membership comp to 0.

From the overall SAL model generated automatically, the part correspond-
ing to REQ1 is shown in Fig. 5. Observe that ARSENAL was able to infer that
the end-system has an enumerated type (Type0) which contains named values
ES UNSYNC state and ES FLOOD state. It was also able to set correctly the type
of local integration cycle and local membership comp to INTEGER. In this
example, the user asserted that all the five LOCAL variables are state variables.
Hence, the actions over these variables were considered as state updates and
mapped to the TRANSITION section. The formula generated by the SAL adapter
corresponding to REQ1 is therefore placed in this section of the SAL model.
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Fig. 5. SAL model for REQ1.

A formal method expert was asked to review the model and found it was
compatible with (and in fact, included more information than) a similar model
that he handcrafted in [8]. We then asked one of the original creators of the
TTEthernet documentation to provide a high-level specification that should be
verified for this model. The sentence in English is given below, followed by the
corresponding LTL theorem in SAL syntax generated by ARSENAL.

REQ2: If the end system is in ES FLOOD state, it shall eventually not be
in ES FLOOD state.

THEOREM main |- G((end_system = ES_FLOOD_state =>
F(NOT(end_system = ES_FLOOD_state))));

We applied bounded model checking, a model checking technique that checks
if the model satisfies the requirement within a bounded number of transitions,
and found a counterexample. This counterexample reveals that if the environ-
ment keeps sending a coldstart frame to this module, then local timer, which
maintains a count to timeout in the ES FLOOD state, will keep resetting to 0
and thus preventing any transition out of the ES FLOOD state to occur. This
helped us identify the missing assumption (absent in the original documenta-
tion) that was needed for system verification. In fact, modular verification is one
of the most difficult tasks in verification since it requires the precise specifica-
tions of the constraints on the environment. These constraints are often implicit
and undocumented. In this case, the interaction of multiple end-systems should
ensure that any end-system will not receive a coldstart frame infinitely often
before it can exit the ES FLOOD state.
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5 Conclusion and Future Work

ARSENAL converts NL requirements to formal models in an automated fashion,
which can be further refined through iterations with a human in the loop. It
provides an NL front-end to formal analysis that is flexible to adapt to usages
in different domains. To that end, ARSENAL can be an important aid for a
system designer in designing high-assurance systems, while reducing cost in the
overall design and manufacturing process. The main advantages of ARSENAL
over prior work [7,10] in requirements engineering is that it has a less restrictive
NL front-end, a more powerful FM analysis framework, and has the ability to
generate a full formal model directly from NL text.

In the future, we want to test ARSENAL on other domains, generate other
models (e.g., Markov Logic Networks), and go beyond NL text to handle flow-
charts, diagrams and tables. We would also like to explore learning, e.g., in the
NLP stage we currently create the type rules manually — we would like to use a
learning algorithm like FOIL [6] or Propminer [1] to learn type rules. We would
also like to explore active learning for incorporating user feedback.

References

1. Akbik, A., Konomi, O., Melnikov, M.: Propminer: a workflow for interactive infor-
mation extraction and exploration using dependency trees. In: Proceedings of the
ACL: System Demonstrations (2013)

2. Bensalem, S., Ganesh, V., Lakhnech, Y., Munoz, C., Owre, S., Rueß, H., Rushby,
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Abstract. Malfunction of safety-critical systems may cause damage to
people and the environment. Software within those systems is rigor-
ously designed and verified according to domain specific guidance, such
as ISO26262 for automotive safety. This paper describes academic and
industrial co-operation in tool development to support one of the most
stringent of the requirements — achieving full code coverage in require-
ments-driven testing. We present a verification workflow supported by
a tool that integrates the coverage measurement tool RapiCover with
the test-vector generator FShell. The tool assists closing the coverage
gap by providing the engineer with test vectors that help in debugging
coverage-related code quality issues and creating new test cases, as well
as justifying the presence of unreachable parts of the code in order to
finally achieve full effective coverage according to the required criteria.
We illustrate the tool’s practical utility on automotive industry bench-
marks. It generates 8× more MC/DC coverage than random search.

1 Introduction

Software within safety-critical systems must undergo strict design and verifica-
tion procedures prior to their deployment. The ISO26262 standard [1] describes
the safety life cycle for electrical, electronic and software components in the
automotive domain. Different activities are required at different stages of the
life cycle, helping ensure that system safety requirements are met by the imple-
mented design. The rigor to which these are carried out depends on the severity
of consequences of failure of the various components. Components with auto-
motive safety integrity level (ASIL) D have the most stringent requirements,
and ASIL A the least strict. One of the key required activities for software is to
demonstrate the extent to which testing has exercised source code, also known
as code coverage. This can be a challenging and expensive task [4], with much
manual input required to achieve adequate coverage results.

The research leading to these results has received funding from the ARTEMIS Joint
Undertaking under grant agreement number 295311 “VeTeSS”.

c© Springer International Publishing Switzerland 2016
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This paper presents work undertaken within the Verification and Testing
to Support Functional Safety Standards (VeTeSS) project, which develops new
tools and processes to meet ISO26262. The paper contains three contributions:

1. We integrated the FShell tool [7] with an industrial code coverage tool (Rapi-
Cover) in order to generate extra test cases and increase code coverage results.
This work represents an effort in the integration of formal-methods based tools
with industrial testing software. In the safety-critical domain these two areas
are generally separated from one another, with formal methodology used only
for small and critical sections of software to prove correctness and viewed as
an expensive procedure. The tool is at an evaluation stage of development,
assessing future improvements to prepare its commercialisation.

2. We present a discussion as to how this technology is most appropriately used
within the safety life cycle. Achieving 100 % code coverage can be a complex
and difficult task, so tools to assist the process are desirable, however there
is a need to ensure that any additional automatically generated tests still
address system safety requirements.

3. Finally, we apply the technology to three sizeable automotive benchmarks to
demonstrate the utility and the limitations in practice.

Safety standards require different depths of coverage depending on the ASIL
of the software. The requirements of ISO26262 are summarized in Table 1. The
aim of requirements-based software testing is to ensure the different types of
coverage are achieved to 100 % for each of the categories required. In practice
this can be extremely difficult, e.g. defensive coding can be hard to provide test
vectors for. Another example is code that may be deactivated in particular modes
of operation. Sometimes there is not an obvious cause for lack of coverage after
manual review. In this situation, generating test vectors automatically can be
beneficial to the user providing faster turnaround and improved coverage results.

Table 1. ISO26262 Coverage Requirements (HR = highly recommended, R = recommended)

Type Description ASIL

Function Each function in the code is exercised at least once A, B (R); C, D (HR)

Statement Each statement in the code is exercised at least
once

A, B (HR); C, D (R)

Branch Each branch in the code has been exercised for
every outcome at least once

A (R); B, C, D (HR)

MC/DC Each possible condition must be shown to
independently affect a decision’s outcome

A, B, C (R); D (HR)

This paper is laid out as follows. In Sect. 2 we provide background to the
coverage problem being tackled, and criteria for success. In Sect. 3 we describe
the specific tool integration. Sect. 4 describes an industrial automotive case study.
Sect. 5 looks at both previous work and some of the lessons learnt from the
implementation experience.
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2 Assisted Coverage Closure

Testing has to satisfy two objectives: it has to be effective, and it has to be
cost-effective. Testing is effective if it can distinguish a correct product from one
that is incorrect. Testing is cost-effective if it can achieve all it needs to do at
the lowest cost (which usually means the fewest tests, least amount of effort and
shortest amount of time).

Safety standards like ISO26262 and DO-178B/C demand requirements-driven
testing to increase confidence in correct behavior of the software implemented.
Correct behavior means that the software implements the behavior specified in
the requirements and that it does not implement any unspecified behaviors. As
a quality metrics they demand the measurement of coverage according to certain
criteria as listed in Table 1, for instance. The rationale behind using code coverage
as a quality metrics for assessing the achieved requirements coverage of a test suite
is the following: Suppose we have a test suite that presumably covers each case
in the requirements specification, then, obviously, missing or erroneously imple-
mented features may be observed by failing test cases, whereas the lack of cov-
erage, e.g. according to the MC/DC criterion, indicates that there is behavior in
the software which is not exercised by a test case. This may hint at the following
software and test quality problems:

(A) Some cases in the requirements specification have been forgotten. These
requirements have to be covered by additional test cases.

(B) Features have been implemented that are not needed. Unspecified features
are not allowed in safety-critical software and have to be removed.

(C) The requirements specification is too vague or ambiguous to describe a
feature completely. The specification must be disambiguated and refined.

(D) Parts of the code are unreachable. The reasons may be:
(1) A programming error that has to be fixed.
(2) Code generated from high-level models often contains unreachable code

if the code generator is unable to eliminate infeasible conditionals.
(3) It may actually be intended in case of defensive programming and error

handling.
In the latter case, fault injection testing is required to exercise these fea-
tures [8]. Dependent on the policy regarding unreachable code, case (2) can
be handled through justification of non-coverability, tuning the model or
the code generator, or post-processing of generated code.

The difficulty for the software developer consists in distinguishing above
cases. This is an extremely time consuming and, hence, expensive task that
calls for tool assistance.

2.1 Coverage Closure Problem

Given

– an implementation under test (e.g. C code generated from a Simulink model),
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– an initial test suite (crafted manually or generated by some other test suite
generation techniques), and

– a coverage criterion (e.g. MC/DC),

we aim at increasing effective test coverage by automatically

– generating test vectors that help the developer debug the software in order to
distinguish above reasons (A)–(D) for missing coverage;

– in particular, suggesting additional test vectors that help the developer create
test cases to complete requirements coverage in case (A);

– proving infeasibility of non-covered code, thus giving evidence for arguing non-
coverability.

Note that safety standards like to DO-178C [11] allow only requirements-
driven test-case generation and explicitly forbid to achieve full structural code
coverage by blindly applying automated test-vector generation. This can easily
lead to confusion if the distinction between test-case generation and test-vector
generation is not clearly made. Test-vector generation can be applied blindly
to achieve full coverage, but it is without use by itself. A test vector is only
a part of a test case because it lacks the element that provides information
about the correctness of the software, i.e. the expected test result. Only the
requirements can tell the test engineer what the expected test result has to be.
Test-case generation is thus always based on the requirements (or a formalized
model thereof if available). Our objective is to provide assistance for test-case
generation to bridge the coverage gap.

2.2 Coverage Measurement

Combining a test-case generator with a coverage tool provides immediate access
to test vectors needed to obtain the level of coverage required for your qual-
ification level. Coverage tools determine which parts of the code have been
executed by using instrumentation. Instrumentation points are automatically
inserted at specific points in the code. If an instrumentation point is executed,
this is recorded in its execution data. After test completion, the coverage tool
analyzes the execution data to determine which parts of the source code have
been executed. The tool then computes the level of coverage achieved by the
tests. We use the coverage tool RapiCover, which is part of the RVS tool suite
developed by Rapita Systems Ltd.

2.3 Test Vector Generation by Bounded Model Checking

We use the test vector generator, FShell [7] (see Sect. 3.2 for details), which is
based on the Software Bounded Model Checker for C programs, CBMC [3].

Viewing a program as a transition system with initial states described by the
propositional formula Init , and the transition relation Trans, Bounded Model
Checking (BMC) [2] can be used to check the existence of a path π of length k
from Init to another set of states described by the formula ψ. This check is
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Initial test suite Test suite New test cases New test vectors

Infeasible test goals

Coverage measurement Program Test-vector generation

Full coverage Non-covered test goals

Fig. 1. The Coverage Closure Process

performed by deciding satisfiability of the following formula using a SAT or
SMT solver:

Init(s0) ∧
∧

0≤j<k

Trans(sj , ij , sj+1) ∧ ψ(sk) (1)

If the solver returns the answer “satisfiable”, it also provides a satisfying assign-
ment to the variables (s0, i0, s1, i1, . . . , sk−1, ik−1, sk). The satisfying assignment
represents one possible path π = 〈s0, s1, . . . , sk〉 from Init to ψ and identifies the
corresponding input sequence 〈i0, . . . , ik−1〉.

Besides being useful for refuting safety properties (where ψ defines the error
states), BMC can be used for generating test vectors (where ψ defines the test
goal to be covered).

The analysis performed by CBMC is bit-exact w.r.t. the machine semantics
of the execution target and CBMC provides full bit-exact support for floating
point arithmetic. Architecture-specific settings can be configured via command
line in FShell and RapiCover supports on-target coverage measurement. We are
hence guaranteed that the generated test vectors are going to cover the test
goals. In addition, using BMC in a test-vector generator permits generating the
shortest test vectors possible to cover a certain test goal or even a whole group
of test goals, which helps keeping test suites concise and test execution fast [12].

An advantage of using a model checker is also its ability to find test vectors
for corner cases (“Under which conditions can this floating point variable take
the value NaN?”). Moreover, in our experience, due to the high precision of
the analysis, it is even very likely to discover inconsistencies and holes in the
requirements specification during test-vector generation.

BMC can give a proof of unreachability of a test goal in certain conditions,
e.g., if loops can be unrolled completely or using k-induction [13], which is a
BMC-based technique for unbounded model checking.

2.4 The Coverage Closure Process

The algorithm that we implement to assist the coverage closure process is given
in Fig. 1. It proceeds as follows:

1. We start with an initial test suite that has been crafted manually or has been
generated using other test-case generation techniques like directed random
testing. The initial test suite may be empty, but many test goals can be easily
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covered using test-case generation methods that are cheaper than Bounded
Model Checking. It is thus recommended to start with such a base test suite.

2. In the next step, this test suite is run using the coverage measurement tool in
order to obtain a list of non-covered test goals. Coverage measurement can be
performed on a developer machine to obtain approximate coverage, but final
certification data has to be obtained by running the test suite on the actual
target platform.

3. The test-vector generator takes the list of non-covered test goals and tries
to compute input values to cover them. Ideally, the test-vector generator
is parametrized with the architectural parameters of the target platform in
order to obtain guarantees that the goals are indeed going to be covered. As
our test-vector generator is a Bounded Model Checker, there will be three
possible outcomes of an attempt to cover test goals:
(a) A test goal has been covered. In this case this new test vector is presented

to the user who has to turn it into a new test case to be added to the test
suite. Note that building the new test case is the only part of the process
(bold edge) that is not fully automatic since human judgment is required
to identify why the corresponding test goal has not been covered in the
first place, i.e. distinguishing reasons (A)–(D) in Sect. 2.

(b) It is infeasible to cover a test goal. This happens when the test-vector
generator comes up with a proof of unreachability of the test goal. As
mentioned above, a Bounded Model Checker can provide such proofs if
the loops have been unwound completely, for instance. In this case, the
corresponding test goal can be annotated in the coverage report as proven
infeasible to justify its non-coverability. This increases effective coverage
by reducing the number of genuinely coverable test goals.

(c) The goal has not been covered and we were unable to prove infeasibility
of the test goal. With a Bounded Model Checker this can happen if the
chosen bound k has been too low. In this case the test goal will remain
uncovered and it can be tried to cover it with a higher value for k in the
next iteration of the process.

4. Coverage of the enhanced test suite is then measured again to identify test
goals that remain uncovered, and the process is repeated. Generated tests typ-
ically will cover more test goals than intended. Measuring coverage between
generating tests increases cost-effectiveness of the process by eliminating
unnecessary test-case generations.

5. If there are no more non-covered test goals we have achieved full coverage
and the process terminates.

Note that the process depicted in Fig. 1 is not specific to our tool but applies
in general. In particular, it does not rely on the test-vector generator to guarantee
that a generated test vector covers the test goal it has been generated for, because
the coverage measurement tool will check all generated test cases anyway for
increasing the coverage. However, the generation of useless test cases can be
avoided by using a tool such as FShell that can provide such guarantees.

Then, in theory, termination of the process achieving full coverage can be
guaranteed, because embedded software is finite state. In practice, however, this
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depends on the reachability diameter of the system [10] and the capacity of the
test-vector generator to cope with the system’s size and complexity.

3 FShell Plugin for RVS Implementation

The input to the tool1. is a C program with an initial test suite. The output
of the tool is twofold. The first output is a set of generated test vectors that
augment the initial test suite to increase its coverage. The second output is a
coverage report detailing the level of coverage achieved by the initial test suite,
and the extra coverage added by the generated test cases.

Fig. 2. RVS Process

FShell has been inte-
grated into RapiCover as
context menu option, illus-
trated in Fig. 3. Rapi-
Cover can be used to
select a single function,
call, statement, decision
or branch. The tool then
uses FShell to generate a
test vector for this ele-
ment. Alternatively, the
tool has a button to gen-
erate as much coverage as
possible. When this option
is chosen, the tool goes
around the loop described
in Fig. 1, using FShell to
repeatedly generate test cases to increase the coverage as much as possible,
verifying the obtained coverage with RapiCover.

There is tension between the need to demonstrate that the activities pre-
scribed by ISO26262 have been met in spirit as well as with quantifiable criteria.
Recall that achieving 100 % code coverage during testing does not ensure the
code meets its intent. Consequently the FShell plug-in would be provided as
advisory service, generating candidate test vectors, which a user can examine to
help them identify why their planned testing was inadequate. Values generated
need to be assessed for being valid for the system under test, i.e. reflect real
world values that could be input to a function, e.g. from a sensor.

1 RVS is licensed software. An evaluation version can be requested from
http://www.rapitasystems.com. The licensing policy disallows anonymous licenses.
To compensate for this, we provide a video showing the plug-in here:
http://www.cprover.org/coverage-closure/rvs-fshell-demo.mp4.

http://www.rapitasystems.com
http://www.rapitasystems.com
http://www.cprover.org/coverage-closure/rvs-fshell-demo.mp4
http://www.cprover.org/coverage-closure/rvs-fshell-demo.mp4
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Fig. 3. Screenshot of RapiCover with the FShell Plug-in

3.1 Introduction to RapiCover

RapiCover2 uses instrumentation to determine which program parts have been
executed. Instrumentation points are automatically inserted at specific points
in the code. Execution of an instrumentation point is recorded in its execution
data. Upon test completion, RapiCover analyzes the execution data to determine
which instrumentation points have been hit.

The first step in the RapiCover analysis process is to create an instrumented
build of the application ((1) in Fig. 2). RapiCover automatically adds instrumen-
tation points ((2) in Fig. 2) to the source code. The instrumentation code itself
takes the form of very lightweight measurement code that is written for each
target to ensure minimal impact on the performance of the software, and to sup-
port on target testing for environments with limited resources. The instrumented
software and possibly an instrumentation library are compiled and linked using
the standard compiler tool chain. The executable produced is then downloaded
onto the target hardware. The executable is exercised and instrumentation data
((3) in Fig. 2) is generated and retrieved. This data is used to generate coverage
metrics.

3.2 Introduction to FShell

FShell3 is an extended testing environment for C programs supporting a rich
scripting language interface. FShell’s interface is designed as a database engine,
dispatching queries about the program to various program analysis tools. These
queries are expressed in the FShell Query Language (FQL). Users formulate test

2 http://www.rapitasystems.com/products/rapicover.
3 Available from: http://forsyte.at/software/fshell.

http://www.rapitasystems.com/products/rapicover
http://forsyte.at/software/fshell
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specifications and coverage criteria, challenging FShell to produce test suites
and input assignments covering the requested patterns. The program supports a
rich and extensive interface. The expressions used for the FShell plugin for RVS
implementation are listed in Table 2 with syntax and examples.

Table 2. FShell expressions

Expression Name Syntax Example

Function Call @CALL(. . . ) @CALL(X)

Concatenation . @CALL(X).@CALL(Y)

Sequence -> @CALL(X)->@CALL(Y)

Negation “NOT(. . . )” “NOT(@CALL(X))”

Repetition * @CALL(X)*

Alternative + (@CALL(X) + @CALL(Y))

@CALL(X) requires
generated test cases to
call function X. This is
the only primitive expres-
sion used in the module.
The concatenation oper-
ator . joins two expres-
sions, requiring them to
be satisfied subsequently.
As an example, a test case
generated by @CALL(X).@CALL(Y) covers a call to X immediately followed
by Y. This is similar to the sequence operator ->, which requires the second
call to occur eventually. @CALL(X)->@CALL(Y) is thus fulfilled if a call to
X is eventually followed by a call to Y. The negation “NOT(@CALL(X))” is
satisfied by every statement except a call to function X. The repetition opera-
tor is implemented along the lines of its regular expression pendant, such that
@CALL(X)* is satisfied by a series of calls to X. Finally, the alternative operator
implements logical disjunction, such that (@CALL(X) + @CALL(Y )) will be
satisfied if either a call to X or Y occurs.

The expressions and operators above are all that is used by the FShell plug-in
to generate the test vectors requested by RapiCover. Section 3.3 illustrates how
these expressions are used to convert test goals to equivalent FQL queries.

3.3 Use of FShell Within RapiCover

Java
Module

FShell

RapiCover
Test Goals

FQL Queries

Test Vectors

Test Suites

Fig. 4. Plugin Architecture

The FShell plugin for RVS trans-
lates test goals requested by Rapi-
Cover into FQL queries covering these
goals in FShell, as illustrated in Fig. 4.
Test goals are specified using marker
elements from the RapiCover instru-
mentation, which can identify arbi-
trary statements in the source code
by assigning them an instrumentation
point id. In accordance with MC/DC criteria, decisions and their constituting
conditions are further identified using unique decision and condition point ids.

Figure 5 shows an example program before and after instrumentation. The
module supports two categories of test goals: Instrumentation Point Path Test
Goals and Condition Test Goals. The former specifies a simple series of points to
be covered by FShell. The system also permits inclusive or and negation opera-
tors in instrumentation point paths, allowing to specify a choice of instrumenta-
tion points to be covered or to make sure that a requested instrumentation point
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int main() {
// ...
if (a == b || b != c) {

printf (”%d %d\n”, a, b);
}
return 0;

}

int main() {
// ...
Ipoint (1);
if (Ipoint(4, Ipoint(2, a == b) ||

Ipoint(3, b != c))) {
Ipoint (5);
printf (”%d %d\n”, a, b);

}
Ipoint (6);
return 0;

}

Fig. 5. Code example before and after after RapiCover instrumentation

is not covered by the provided test vector. As an example, the instrumentation
point path 1->5->6 in Fig. 5 is only covered if the decision in the if state-
ment evaluates to true. Conversely, the path 1->NOT(5)->6 is only covered
if it evaluates to false. The former can be achieved with inputs a=1, b=1, c=2,
whereas the latter could be covered using the input vector a=1, b=2, c=2. Con-
dition Test Goals on the other hand are specified by a single decision point and
multiple condition points, as well as the desired truth value for each decision and
condition. This allows us to cover branch conditions with precise values for its
sub-conditions. As an example, the condition test goal (4,true) -> (2,false) ->
(3,true) would be covered by the input vector a=1, b=2, c=3.

Table 3. Test Goal Types and FShell Queries

Category Goal FQL

Instrumentation Simple @CALL(Ipoint5) ->@CALL(Ipoint6) ->. . .

Point Path Goal Disjunction (@CALL(Ipoint5) + @CALL(Ipoint6) + . . . )

Complement @CALL(Ipoint1).“NOT(@CALL(Ipoint5))*”.@CALL(Ipoint6)->. . .

Condition Goal Condition @CALL(Ipoint2f).“NOT(@CALL(Ipoint1))*”.

@CALL(Ipoint2t).“NOT(@CALL(Ipoint1))*”.+. . .

Decision @CALL(Ipoint4t)

The instrumentation elements introduced by RapiCover need to be mapped
to an equivalent FQL query using the features presented in Table 2. For this
purpose, we replace their default implementation in RapiCover by synthesized
substitutions which are optimized for efficient tracking by FShell. These mock
implementations are synthesized for each query and injected into the program
on-the-fly at analysis time. Standard FQL queries are then enough to examine
these augmented models for the specified coverage goals. Table 3 shows explicitly
how these goals can described using the FShell query syntax.
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4 Evaluation

The FShell plugin for RVS has been tested on three industrial automotive use
cases: an airbag control unit (“airbag”), a park control unit (“eshift”), a break-
by-wire controller (“vtec”) and a smaller message handler benchmark (“msg”).4

4.1 Case Study: e-Shift Park Control Unit

To illustrate the characteristics of these benchmarks we describe the e-Shift Park
Control Unit.5 This system is in charge of the management of the mechanical
park lock that blocks or unblocks the transmission to avoid unwanted movement
of the vehicle when stopped. The park mode is enabled either by command of
the driver via the gear lever (PRND: park/rear/neutral/drive) or automatically.

Figure 6 shows the architectural elements the e-Park system is communicat-
ing with. The vehicle control unit monitors the status of the vehicle via sensors
and informs the driver, in particular, about the speed of the vehicle and the
status of the gears via the dashboard. The e-Park Control Unit is responsible
for taking control decisions when to actuate the mechanical park lock system.

Among many others, the following requirements have to be fulfilled:

1. Parking mode is engaged if vehicle speed is below 6 km/h and the driver
presses parking button (P) and brake pedal.

2. If vehicle speed is above 6 km/h and the driver presses the parking button
(P) and brake pedal then commands from the accelerator pedal are ignored;
parking mode is activated as soon as speed decreases below 6 km/h.

3. If vehicle speed is below 6 km/h and the driver presses the driving button (D)
and brake pedal, then forward driving mode is enabled.

4. If vehicle speed is above 6 km/h then backward driving mode (R) is inhibited.

vehicle
control
unit

dashboard
ě-Park
Control
Unit

PRND
switches powertrain park lock

Fig. 6. e-Shift Park Control Unit

As is typical for embedded soft-
ware, the e-Park Control Unit soft-
ware consists of tasks that —
after initialization of the system on
start-up — execute periodically in
the control loop until system shut-
down. A test vector hence consists
of a sequence of input values (sen-
sor values and messages received
via the communication system) that may change in each control loop iteration.
We call the number of iterations the length of the test vector.

To generate valid test vectors, a model of the vehicle is required. Otherwise,
the test vector generator may produce results that are known not to occur in the

4 The code for these benchmarks was provided by the respective companies
under a GPL-like license and can be downloaded here: http://www.cprover.org/
coverage-closure/nfm-package.zip.

5 Provided by Centro Ricerche Fiat.

http://www.cprover.org/coverage-closure/nfm-package.zip
http://www.cprover.org/coverage-closure/nfm-package.zip
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Table 4. Experimental setup of the two approaches that we compare.

running system, such as infinite vehicle velocity. For the case study this model
consisted of assumptions about the input value ranges, such as “The speed of
the car will not exceed 1000 km/h, or reduce below 0 km/h.” These assumptions
are part of the admissible operating conditions as stated in the requirements
specification.

4.2 Experimental Setup

In order to evaluate the FShell plugin for RVS, we used four different industrial
C source code case studies with a cumulative ∼6700 LOC. We started out with
an initial test suite consisting of 100 random test vectors of length 5 uniformly
distributed over the admissible input ranges6.

Then we incrementally extended this test suite by test vectors generated by
the following two approaches:

1. FShell plugin for RVS following the process illustrated in Fig. 1.
2. A combination of test vector generation based on random search and greedy

test suite reduction.

We compared the achieved coverage gain and resulting test suite sizes after
running both approaches for 8 days, with the exception of the message handler,
6 We chose length 5 because it seemed a good compromise between increasing coverage

and keeping test execution times short for these case studies: on the e-Shift case
study, adding 100 test vectors of length 5 increased coverage by 1.1 %; 100 test
vectors of length 10 increased it by only 1.3 % while test execution times would
double and only half as many test vectors could be explored.



Assisted Coverage Closure 61

Table 5. Evaluation results: comparing FShell plugin for RVS against test vectors
generated by random search.

airbag eshift vtec msg

Test Cases Init Rnd FS Init Rnd FS Init Rnd FS Init Rnd FS

Generated 100 35k 6 100 35k 6 100 16k 4 - 9k 1

New - 0 6 - 13 6 - 2 4 - 0 1

Coverage (%) Init Rnd FS Init Rnd FS Init Rnd FS Init Rnd FS

Statement 41.6 41.6 83.8 52.2 53.0 53.2 76.3 77.3 79.3 87.9 87.9 89.6

Increase - 0.0 42.2 - 0.8 1.0 - 1.0 3.0 - 0.0 1.7

MC/DC 16.0 16.0 68.0 31.2 34.5 36.8 40.0 48.0 64.0 53.8 53.8 61.5

Increase - 0.0 52.0 - 3.3 5.6 - 8.0 24.0 - 0.0 7.7

which we only ran for 3 hours due to its smaller code size.7 Table 4 describes our
experimental setup.

The runtime of FShell is worst-case exponential in the loop bound of this main
loop. Choosing a too high loop bound results in FShell taking prohibitively long
to run, yet setting the loop bound too low results in some branches not being
coverable. As mitigation, we started the experiment with a loop bound of 1, then
we gradually increased the loop bound to cover those branches that we were not
able cover in previous iterations. As explained in Sect. 2.1, step 6 in Table 4 is
not automatic since it needs information from the requirements specification.
For the sake of our comparison that does not care about the pass/fail status of
the test, we skipped the manual addition of the expected test outcome.

4.3 Results

The results of our experiment are detailed in Table 5. They indicate that more
than 99.99 % of the generated test vectors added by the random search are
redundant and do not increase coverage. This confirms that these case studies
represent particularly challenging cases for black-box test vector generation and
that only very few test vectors in the input range lead to actual coverage increase.

The FShell plugin for RVS outperforms the random search strategy in all
tested benchmarks. The difference between the two approaches becomes more
pronounced for more complex benchmarks, which is expected. As an example,
the random search is unable to generate any coverage for the complicated, multi-
threaded airbag example, whereas the FShell plugin for RVS more than triples
the initial coverage. On average our approach increased MC/DC coverage by
22.3 % and statement coverage by 11.9 %. By comparison, the random search
only achieved an average 2.8 % and 0.5 % increase. The average test vector length
generated by FShell plugin for RVS is 7.4.

7 The msg benchmark achieved 100 loop unwindings in 3 hours, compared to 37, 6
and 58 unwindings for airbag, eshift and vtec in 8 days.
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This evaluation thus underlines the benefit from our tool integration to sup-
port the coverage closure process on industrial case studies. The expected reduc-
tion in manual work needs to be investigated in a broader industrial evaluation
involving verification engineers performing the entire coverage closure process.

5 Background and Applicability

There is much work existing for test case generation using Model Checking
techniques [5], but a smaller amount targeted directly at the high criticality
safety domain where the criterion and frameworks for test case generation are
restricted. A useful survey relating to MC/DC can be found in [15]. In [6] Ghani
and Clark present a search-based approach to test generation for Java—a lan-
guage which is rarely used for safety-critical software, and particularly not for the
most critical software. Their goal is to generate tests to ensure that the minimal
set of truth tables for MC/DC were exercised, but without consideration of the
validity of any of the test data by on-target coverage measurement. Additionally,
we emphasize that our approach takes into account existing coverage that has
already been achieved and complements the requirements based testing, rather
than completely replacing it. Other work such as [9] looks at modification of the
original source through mutation testing in order to assess effectiveness of the
tests. This could be considered a useful adjunct to our methodology.

Lessons Learnt. In order to encourage wider adoption of this integrated tool, we
need to consider where it would fit in users’ workflow and verification processes,
as well as meeting the practical requirements of the standard. As noted earlier,
fully automated code coverage testing is not desirable as it misses the intent
of the requirements based testing process. However, achieving full code cover-
age often requires a large amount of manual inspection of coverage results to
examine what was missing. Hence providing the user with suggested test data
is potentially very valuable and could improve productivity in one of the most
time consuming and expensive parts of the safety certification process.

Another benefit of integrating test case generation and coverage measurement
is test suite reduction. The coverage measurement tool returns for each test case
a list of covered goals. Test suite reduction is hence the computation of a minimal
set cover (an NP -complete problem). Approximate algorithms [14] may be used
to achieve this in reasonable runtimes.

FShell uses a class of semantically exact, but computationally expensive,
NP -complete algorithms relying on SAT solvers. Depending on the programs
or problems posed to the solver the analysis may take long time to complete.
Initial feedback on the tool showed that the concept was very well received by
automotive engineers. Speed was considered an issue, however, keeping in mind
that today’s practice for full coverage testing may take several person months
with an estimated cost of $100 per LOC,8 there is great potential for cutting
8 Atego. “ARINC 653 & Virtualization Solutions Architectures and Partitioning”,

Safety-Critical Tools Seminar, April 2012.
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down time and cost spent in verification by running an automated tool in the
background for a couple of days.

Initially, we sometimes failed to validate that a test vector that was gener-
ated to cover a test goal actually covers that test goal. E.g., one reason were
imprecise decimal number representations in the test vector output. Using the
exact hexadecimal representation for floating point constants fixed the prob-
lem. This highlights the value of bit-exact analysis as well as the importance of
re-validating coverage using RapiCover in the process (Fig. 1).

Note also that this process itself is independent of the tools used which offers
a high degree of flexibility. On the one hand, it is planned that in future RVS will
support alternative backends in place of FShell. On the other hand, FShell can be
combined – without changing the picture in Fig. 1 – with a mutation testing tool
(in place of RapiCover) to generate test vectors to improve mutation coverage.

6 Conclusion

This paper has demonstrated the successful integration of the FShell tool with an
industrial code coverage tool. Using the integrated tools we were able to increase
MC/DC code coverage of four industrial automotive case studies by 22.3 % on
average. When compared to a random black-box test vector generation strategy,
our approach was on average able to generate 796 % more MC/DC coverage
within the same amount of time. Our tool achieves this coverage gain with
half as many test vectors, and these test vectors are much shorter than those
generated by random search, leading to more compact test suites and faster test
execution cycles. Moreover, the integration of the two tools simplifies test case
generation and coverage measurement work flows into a unified process.

Future work will consider better integration with the debugging environment
to inspect test vectors, and warning the user about potentially unrealistic envi-
ronment assumptions such as ∞ for vehicle speed. In addition, better support
should be provided for exporting the test vectors into the users’ existing test
suite and testing framework. Moreover, we would like to compare with other
tools and further evaluate the coverage benefit from the exact floating point
reasoning that we use in comparison to, e.g., rational approximations.
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Abstract. We propose a game-based method for synthesizing a run-
time enforcer for a reactive system to ensure that a set of safety-critical
properties always holds even if errors occur in the system due to design
defect or environmental disturbance. The runtime enforcer does not mod-
ify the internals of the system or provide a redundant implementation;
instead, it monitors the input and output of the system and corrects
any erroneous output signal that may cause a safety violation. Our main
contribution is a new algorithm for synthesizing a runtime enforcer that
can respond to violations instantaneously and guarantee the safety of the
system under burst error. This is in contrast to existing methods that
either require significant delay before the enforcer can respond to viola-
tions or do not handle burst error. We have implemented our method in
a synthesis tool and evaluated it on a set of temporal logic specifications.
Our experiments show that the enforcer synthesized by our method can
robustly handle a wide range of properties under burst error.

1 Introduction

A reactive system is a system that continuously responds to external events.
In practice, reactive systems may have strict timing requirements that demand
them to respond without any delay. Furthermore, they are often safety-critical
in that a violation may lead to catastrophe. In this context, it is important to
guarantee with certainty that the system satisfies a small set of safety properties
even in the presence of design defect and environmental disturbance. However,
traditional verification and fault-tolerance techniques cannot accomplish this
task. In particular, fault-tolerance techniques are not effective in dealing with
design defects whereas verification techniques are not effective in dealing with
transient faults introduced by the environment. Furthermore, formal verification
techniques such as model checking are limited in handling large designs and
third-party IP cores without the source code.

In this paper, we propose a new method for synthesizing a runtime enforcer
to make sure that a set of safety-critical properties are always satisfied even if the
original reactive system occasionally makes mistakes. Unlike the replica in fault-
tolerance techniques, our runtime enforcer is significantly cheaper in that it does
not attempt to duplicate the functionality of the original system. Instead, it aims
at preventing the violation of only a handful of safety properties whose violations
c© Springer International Publishing Switzerland 2016
S. Rayadurgam and O. Tkachuk (Eds.): NFM 2016, LNCS 9690, pp. 65–81, 2016.
DOI: 10.1007/978-3-319-40648-0 6
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may lead to catastrophe. Our approach also differs from classic methods for
synthesizing a reactive system itself from the complete specification [14], which
is known to be computationally expensive. In our approach, for example, it
is perfectly acceptable for the system to violate some liveness properties, e.g.,
something good may never happen, as long as it guarantees that safety-critical
violations never happen.

Fig. 1. Synthesizing the safety shield.

The overall flow of our synthesis
method is shown in Fig. 1, which takes
a safety specification ϕs of the reactive
system D(I,O) as input, and returns
another reactive system S(I,O,O′) as
output. Following Bloem et al. [3], we
call S the shield. We use I and O
to denote the set of input and output
signals of the original system, respec-
tively, and define the runtime enforcer
S(I,O,O′) as follows: It takes I and O
as input and returns a modified version of O as output to guarantee the com-
bined system satisfies the safety specification; that is, ϕs(I,O′) holds even if
ϕs(I,O) is violated. Furthermore, the shield modifies O only when ϕs(I,O) is
violated, and even in that case, it tries to minimize the deviation between O
and O′. This approach has several advantages. First, since S is a reactive sys-
tem, it can correct the erroneous output in O in the same clock cycle. Second,
since S is agnostic to the size and complexity of the system D, it is cheaper and
more scalable than fault-tolerance techniques. Finally, the approach works even
if the design contains third-party IP cores.

Bloem et al. [3] introduced the notion of safety shield and the first algorithm
for synthesizing the runtime enforcer, but the method does not robustly handle
burst error. Specifically, the shield synthesized by their method minimizes the
deviation between O and O′ only if no two errors occur within the same k steps.
If, for example, another error occurs before the end of this k-step recovery period,
the shield would enter the fail-safe state and stop minimizing the deviation. In
other words, the shield may generate O′ arbitrarily to satisfy ϕs(I,O′) while
ignoring the actual value of O. This often is not the desired behavior, e.g., when
the shield enforces mutual-exclusion of a bus arbiter by hard-wiring all output
signals to decline all requests.

Our new method, in contrast, can robustly handle burst error. Whenever
the design D satisfies the specification ϕs, our shield ensures that O′ = O (no
deviation). Whenever D violates ϕs, our shield takes the best recovery strategy
among the set of all possible ones and, unlike the method by Bloem et al. [3],
it never enters the fail-safe state. In order words, our method guarantees that
the shield S keeps minimizing the deviation between O to O′ even under burst
error. We have implemented our new method in a software tool and evaluated it
on a range of safety specifications. The experimental results show that the shield
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Fig. 2. Example safety specificationϕs.
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Fig. 3. The 2-stabilizing shield [3].
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Fig. 4. Our new shield for burst error.

synthesized by our method can robustly handle burst error, whereas the shield
synthesized by Bloem et al. [3] cannot.

To summarize, this paper makes the following contributions: (1) We propose
a new method for synthesizing a runtime enforcer from a set of safety properties
that can robustly handle burst error. (2) We implement the method in a software
tool and evaluate it on a large set of benchmarks to demonstrate its effectiveness.

The remainder of this paper is organized as follows. First, we illustrate the
main ideas of our new method using a motivating example in Sect. 2. Then, we
establish the notation in Sect. 3 and present our method in Sect. 4. We develop
a technique for improving the performance of our synthesis algorithm in Sect. 5.
We describe our experimental results in Sect. 6. We review the related work in
Sect. 7 and then give our conclusions in Sect. 8.

2 Motivation

In this section, we use an example to illustrate the main advantage of our shield
synthesis method, which is the capability of handling burst error. Consider the
automaton representation of a safety specification in Fig. 2, which has three
states, one Boolean input signal, and two Boolean output signals. Here, the
state 0 is the initial state and the state 2 is the unsafe state. Every edge in
the figure represents a state transition. The edge label represents the values
of the input and output signals, where the digit before the comma is for the
input signal and the two digits after the comma are for the output signals. X
stands for don’t care, meaning that the digit can be either true (1) or false (0).
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Among other things, the safety specification in Fig. 2 states that when the input
value is 0, the two output values cannot be 11; furthermore, in state 1, the two
output values cannot be 00.

Assume that the design D(i, o1o2) occasionally violates the safety specifica-
tion, e.g., by generating 11 for the output signals o1o2 when the input i is 0,
which forces the automaton to enter the unsafe state. We would like to have the
shield S(i, o1o2, o′

1o
′
2) to produce correct values for the modified output o′

1o
′
2 as

either 10, 01, or 00. Furthermore, whenever the design satisfies the specification
or recovers from transient errors, we would like to have the shield produce the
same (correct) output as the design; that is, o′

1 = o1 and o′
2 = o2.

Unfortunately, the shield synthesized by Bloem et al. [3] can not always
accomplish this task. Indeed, if given the safety specification in Fig. 2 as input,
their method would report that a 1-stabilizing shield, which is capable of recov-
ering from a violation in one clock cycle, does not exist, and the best shield their
method can synthesize is a 2-stabilizing shield, shown in Fig. 3 (to make it sim-
ple, we omit part of the shield unrelated to handling burst error), which requires
up to 2 clock cycles to fully recover from a property violation. For example,
starting from the initial state S0, if the shield sees i, o1o2 = 0, 01, which satisfies
ϕs, it will produce o′

1o
′
2 = 01 and go to the state S1. From S1, if the shield sees

i, o1o2 = 0, 11, which violates ϕs, it will produce o′
1o

′
2 = 01 and go to the state

S3. At this moment, if the second violation i, o1o2 = 0, 11 occurs, the shield will
enter a fail-safe state Sf , where it stops minimizing the deviation between o′

1o
′
2

and o1o2.

Step 0 1 2 3 4 5 6 7 8 9
Input i 0 0 1 0 0 0 0 0 0 ...
Output o1o2 00 01 10 11 11 10 10 00 00 ...
Shield output o1o2 00 01 10 01 01 01 01 01 01 ...
State in Fig. 3 S0 S0 S1 S1 S3 Sf Sf Sf Sf ...

Fig. 5. Simulation trace of 2-stabilizing
shield.

Step 0 1 2 3 4 5 6 7 8 9
Input i 0 0 1 0 0 0 0 0 0 ...
Design Output o1o2 00 01 10 11 11 10 10 00 00 ...
Shield output o1o2 00 01 10 01 01 10 10 00 00 ...
State in Fig. 4 S0 S0 S1 S1 S3 S3 S0 S0 S0 ...

Fig. 6. Simulation trace of our new
shield.

Figure 5 shows the simulation trace where two consecutive errors occur in
Steps 3 and 4, forcing the shield to enter the fail-safe state sf where it no longer
responds to the original output o1o2. This is shown in Steps 5–8, where the
original output no longer violates ϕs and yet the shield still modifies the values
to 01.

In contrast, our new method would synthesize the shield shown in Fig. 4,
which never enters any fail-safe state but instead keeps minimizing the deviation
between o′

1o
′
2 and o1o2 even in the presence of burst error. As shown in the simu-

lation trace in Fig. 6, when the two consecutive violations occur in Steps 3 and 4,
our new shield will correct the output values to 01. Furthermore, immediately
after the design recovers from the transient errors, the shield stops modifying the
original output values. Therefore, in Steps 5–8, our shield maintains o′

1o
′
2 = o1o2.
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3 Preliminaries

In this section, we establish the notation used in the remainder of this paper.

The Reactive System. The reactive system to be protected by the shield is
represented as a Mealy machine D = 〈S, s0, ΣI , ΣO, δ, λ〉, where S is a finite set
of states, s0 ∈ S is the initial state, ΣI is the set of values of the input signals,
ΣO is the set of values of the output signals, δ is the transition function, and λ
is the output function. More specifically, δ(s, σI) returns the unique next state
s′ ∈ S for a given state s ∈ S and a given input value σI ∈ ΣI , while λ(s, σI)
returns the unique output value σO ∈ ΣO.

The safety specification that we want to enforce is represented as a finite
automaton ϕs = 〈Q, q0, Σ, δϕ, Fϕ〉, where Q is a finite set of states, q0 ∈ Q is the
initial state, Σ = ΣI × ΣO is the input alphabet, δϕ is the transition function,
and Fϕ ⊆ Q is a set of unsafe (error) states. Let σ = σ0σ1 . . . be an input trace
where for all i = 0, 1, . . . we have σi ∈ Σ. Let q = q0q1 . . . be the corresponding
state sequence such that, for all i = 0, 1, . . ., we have qi+1 = δϕ(qi, σi).

We assume the input trace σ of ϕs is generated by the reactive system D.
We say that σ satisfies ϕs if and only if the corresponding state sequence q visits
only the safe states; that is, for all i = 0, 1, . . . we have qi ∈ (Q \ Fϕ). We say
that D satisfies ϕs if and only if all input traces generated by D satisfy ϕs. Let
L(ϕs) be the set of all input traces satisfying ϕs. Let L(D) be the set of all input
traces generated by D. Then, D satisfies ϕs if and only if L(D) ⊆ L(ϕs).

The Safety Shield. Following Bloem et al. [3], we define the shield as another
reactive system S such that, even if D violates ϕs, the combined system (D ◦ S)
still satisfies ϕs. We define the synchronous composition of D and S as follows:

Let the shield be S = 〈S′, s′
0, Σ,ΣO′ , δ′, λ′〉, where S′ is a finite set of states,

s′
0 ∈ S′ is the initial state, Σ = ΣI × ΣO is the input alphabet, ΣO′ , which is

the set of values of O′, is the output alphabet, δ′ : S′ × Σ → S′ is the transition
function, and λ′ : S′ × Σ → ΣO′ is the output function.

The composition is D ◦ S = 〈S′′, s′′
0 , ΣI , ΣO′ , δ′′, λ′′〉, where S′′ = (S × S′),

s′′
0 = (s0, s′

0), ΣI is the set of values of the input of D, ΣO′ is the set of values
of the output of S, δ′′ is the transition function, and λ′′ is the output function.
Specifically, λ′′((s, s′), σI) is defined as λ′(s′, σI · λ(s, σI)), which first applies
λ(s, σI) to compute the output of D and then uses σI ·λ(s, σI) as the new input
to compute the final output of S. Similarly, δ′′ is a combined application of δ and
λ from D and δ′ from S. That is, δ′′((s, s′), σI) = (δ(s, σI), δ′(s′, σI · λ(s, σI))).

Let L(D ◦ S) be the set of input traces generated by the composed system.
Clearly, if L(D) ⊆ L(ϕs), the shield S should simply maintain σO

′ = σO. But if
L(D) �⊆ L(ϕs), the shield S needs to modify the original output of D to eliminate
the erroneous behaviors in L(D) \ L(ϕs).

In general, there are multiple ways for S to change the original output σO ∈
ΣO into σO

′ ∈ ΣO′ to eliminate the erroneous behaviors, some of which are
better than others in minimizing the deviation. Ideally, we would like the shield
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to do nothing when D satisfies ϕs; that is, σO
′ = σO. However, when D violates

ϕs, the deviation is inevitable. Although the shield synthesis method by Bloem
et al. [3] guarantees minimum deviation if no more than one error occurs in each
k-step recovery period, under burst error, the shield would enter a fail-safe mode
where it stops minimizing the deviation. This is undesirable because, even after
the transient errors disappear, their shield would still keep modifying the output
values.

4 The Synthesis Algorithm

In this section, we present our new shield synthesis algorithm for handling burst
error.

4.1 The Overall Flow

Algorithm 1 shows the overall flow of our synthesis procedure. The input of the
procedure consists of the safety specification ϕs(I,O), and the set of signals in
I, O, and O′. The output of the procedure is the safety shield S(I,O,O′).

Algorithm 1. Synthesizing the shield S(I,O,O′) from the safety specifi-
cation ϕs(I,O).

1: Synthesize (specification ϕs, input I, output O, modified output O′) {
2: Q(I, O′) ← genCorrectnessMonitor(ϕs)
3: E(I, O, O′) ← genErrorAvoidingMonitor(ϕs)
4: G ← Q ◦ E // create the safety game
5: ρ ← computeWinningStragety(G)
6: S(I, O, O′) ← constructShield(ρ)
7: return S
8: }

Starting from the safety specification ϕs, our synthesis procedure first con-
structs a correctness monitor Q(I,O′). The correctness monitor Q ensures that
the composed system, whose input is I and output is O′, always satisfies the
safety specification. That is, ϕs(I,O′) holds even if ϕs(I,O) occasionally fails.
Note that Q(I,O′) alone may not be sufficient as a specification for synthesizing
the desired shield S, because it refers only to O′ but not to O. For example, if
we give Q to a classic reactive synthesis procedure, e.g., Pnueli and Rosner [14],
it may produce a shield that ignores the original output O of the design and
arbitrarily generates O′ to satisfy ϕs(I,O′).

To minimize the deviation from O to O′, we construct an error-avoiding mon-
itor E(I,O,O′) from ϕs. In this work, we use the Hamming distance between O
and O′ as the measurement of the deviation. Therefore, when the design D(I,O)
satisfies ϕs(I,O), the error-avoiding monitor ensures that O′ = O. When D(I,O)
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violates ϕs(I,O), however, we have to modify the output to avoid the violation of
ϕs(I,O′); in such cases, we want to impose constraints in E so as to minimize the
deviation from O to O′. The detailed algorithm for constructing E is presented
in Sect. 4.2. Essentially, E(I,O,O′) captures all possible ways of modifying O to
O′ to minimize the deviation. To pick the best possible modification strategy, we
formulate the synthesis problem as a two-player safety game, where the shield
corresponds to a winning strategy. Toward this end, we define a set of unsafe
states of E as follows: they are the states where ϕs(I,O) holds but O′ �= O, and
they must be avoided by the shield while it modifies O to O′.

The two-player safety game is played in the game graph G = Q ◦ E , which is
a synchronous composition of the correctness monitor Q and the error-avoiding
monitor E . Recall that Q is used to make sure that ϕs(I,O′) holds, and E is
used to make sure that O′ = O whenever ϕs(I,O) holds. Therefore, the set of
unsafe states of G is defined as follows: they are the states that are unsafe in
either Q or E . Conversely, the safe states of G are those that simultaneously
guarantee ϕs(I,O′) and minimum deviation from O to O′. The main difference
between our new synthesis method and the method of Bloem et al. [3] is in the
construction of this safety game: their method does not allow the second error
to occur in O during the k-step recovery period of the first error, whereas our
new method allows such error.

After solving the two-player safety game denoted as G(I,O,O′), we obtain a
winning strategy ρ = (δρ, λρ), which allows us to stay in the safe states of G by
choosing proper values of O′ regardless of the values of I and O. The winning
strategy consists of two parts: δρ is the transition function that takes a present
state of G and values of I and O as input and returns a new state of G, and λρ

is the output function that takes a present state of G and values of I and O as
input and returns a new value for O′. Finally, we convert the winning strategy
ρ into the shield S, which is a reactive system that implements the transition
function and output function in ρ.

4.2 Constructing the Safety Game

We first use an example to illustrate the construction of the safety game G
from ϕs. Consider Fig. 7 (a), which shows the automaton representation of a
safety property of the ARM bus arbiter [2]; the LTL formula is G(¬R → X(¬S)),
meaning that transmission cannot be started (S is the output) if the bus is not
ready (R is the input signal). In Fig. 7 (a), the state 2 is unsafe. The first step of
our synthesis procedure is to construct the correctness monitor Q(R,S′), shown
in Fig. 7 (b), which is a duplication of ϕs(R,S) except for replacing the original
output S with the modified output S′.

The next step is to construct the error-avoiding monitor E(R,S, S′), which
captures all possible ways of modifying S into S′ to avoid reaching the unsafe
state. This is where our method differs from Bloem et al. [3] the most. Specifi-
cally, Bloem et al. [3] assume that the second violation from the design will not
occur during the k-step recovery period of the first violation. If there are more
than one violations within k steps, it would enter a fail-safe state Sf , where it
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Fig. 7. Example: (a) safety specification ϕs(R, S) and (b) correctness monitor Q(R, S′).

stops tracking the deviation from S to S′. Our method, in contrast, never enters
the fail-safe state. It starts from the safety specification ϕs and replaces all tran-
sitions to the unsafe state with transitions to some safe states. This is achieved
by modifying the value of the output signal S so that the transition matches
some existing transition to a safe state. If there are multiple ways of modifying
S to redirect the edges leading to unsafe states in ϕs, we simultaneously track
all of these choices until the ambiguity is completely resolved. In other words,
we keep correcting consecutive violations without ever giving up (entering Sf ).
This is done by modifying the error tracking automaton which is responsible
for motoring the behavior of design: we conservatively assume the design will
make mistakes at any time, so whenever there is a chance for the design to make
mistakes, we generate a new abstract state to guess its correct behaviors.

Construction of E(I, O,O′). Algorithm 2 shows the pseudocode for construct-
ing the error-avoiding monitor E . At the high level, E = U ◦ T , where U(I,O) is
called the violation monitor and T (O,O′) is called the deviation monitor.

– To construct the violation monitor U , we start with a copy of the specification
automaton ϕk, and then replace each existing edge to a failing state, denoted
as (s, l) → t, with an edge to a newly added abstract state sg, denoted as
(s, l) → sg. The abstract state sg represents the set of possible safe states
to which we may redirect the erroneous edge. That is, each safe state s′ ∈
sg.states may be reached from s through (s, l′) → t′, where l, l′ share common
input label. Since each guessing state sg represents a subset of the safe states in
ϕs, the procedure for constructing U(I,O) from ϕs(I,O) resembles the classic
procedure for subset construction.

– To construct the deviation monitor T , we start by creating two states A and B
and treating values of O and O′ as the input symbols. Whenever O = O′, the
state transition goes to state A, and whenever O �= O′, the state transition
goes to B. Finally, we label A as the safe state and B as the unsafe state.
Figure 10 shows the deviation monitor.

Consider the safety specification ϕs(R,S) in Fig. 7 (a) again. To construct
the violation monitor U(R,S), we first make a copy of the automaton ϕs, as
shown in Line 2 of Algorithm 2. Then, starting from Line 3, we replace the edge
to the unsafe state 2, denoted as (1, S) → 2, with the edge to a guessing state,
denoted as (1, S) → 2g, where the set of safe states in 2g is {0, 1}. That is, if we
modify the output value S to the new value ¬S, the transition from state 1 may
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Algorithm 2. Generating error-avoiding monitor E from safety specifica-
tion ϕs.

1: genErrorAvoidingMonitor ( specification ϕs ) {
2: U ← copy of the specification automaton ϕs

3: while (∃ edge (s, l) → t in U where t is an unsafe state) {
4: Delete edge (s, l) → t from U
5: Add abstract state sg and edge (s, l) → sg into U //{t′} ⊆ sg.states
6: foreach (edge (s, l′) → t′ such that t′ is safe, and l, l′ share common input)

7: foreach (outgoing edge (t′, l′′) → t′′)
8: Add edge (sg, l′′) → t′′ into U
9: U ← mergeEdgesWithSameLabel(U)

10: }
11: T ← the deviation monitor

12: E ← U ◦ T
13: return E
14: }
15: mergeEdgesWithSameLabel(monitor U) {
16: while (∃ edges (sg, l1) → t1 and (sg, l2) → t2 in U where l1 ∧ l2 is not false) {
17: Delete edges (sg, l1) → t1 and (sg, l2) → t2 from U
18: if (l1 ∧ ¬l2 is not false) Add edge (sg, l1 ∧ ¬l2) → t1 back to U
19: if (l2 ∧ ¬l1 is not false) Add edge (sg, l2 ∧ ¬l1) → t2 back to U
20: Add abstract state sm and edge (sg, l1 ∧ l2) → sm to U //{t1, t2} ⊆ sm.states
21: foreach (outgoing edge of t1 and t2, denoted as (t12, l′) → t′)
22: Add edge (sm, l′) → t′ into U
23: if (t1 or t2 is unsafe) return U
24: }
25: }

go to either state 0 or state 1. This is shown in Fig. 8 (a). In Lines 6–8, for each
outgoing edge of the states in {0, 1}, we add an outgoing edge from 2g.

Next, we merge the outgoing edges with the same label in Line 9. This acts
like a subset construction. For example we may first merge two edges with the
label R∧¬S, both of them lead to state 0. Then, we merge the two edges with the
label ¬R∧¬S. Then, consider the edge label ¬R∧S: starting from state 0 ∈ 2g,
the next state is 1, and starting from state 1 ∈ 2g, the next state is 2. Therefore,
the outgoing edge labeled ¬R ∧ S goes to the abstract state 4m, whose set of
states is {1, 2}. Since 2 is an unsafe state, we return back to Line 3 in Algorithm 2
and replace it with other guessing states. More specifically, the state 2 is replaced
with the state 1 and 4m becomes 4g. After adding all outgoing edges of 4g, the
resulting U is shown in Fig. 8 (a). Similarly, we merge the remaining outgoing
edges of 2g that are labeled R ∧ S and create the abstract state 3m, whose set
of states is {0, 2}. Since 2 is an unsafe state, we go back to Line 3 and replace it
again. This turns 3m into 3g and the resulting automaton is shown in Fig. 8 (b).
At this moment, all error states (state 2) are eliminated and therefore U is fully
constructed.

Unsafe States of E = U ◦ T . The error-avoiding monitor E is a synchronous
composition of U and T , where the unsafe states are defined as the union of the
following sets:
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Fig. 8. Constructing the violation monitor U(R, S): Replacing edge 1 → 2 with 1 →
{0, 1}.

– {(s,B) | s is a safe state in U coming from ϕs},
– {(sm, B) | sm results from merging edges and it contains no unsafe state}, and
– {(sg, A) | sg results from replacing some unsafe states}.

The reason is, when s is a safe state and sm contains only safe states, the
specification ϕs is not violated and therefore we must ensure O′ = O (state
A in T ). In contrast, since sg is created by replacing some originally unsafe
states, the specification ϕs(I,O) is violated, in which case O′ �= O in order to
avoid the violation of ϕs(I,O′). Figures 9, 10 and 11 show the resulting error-
avoiding automaton. For brevity, only safe states and edges among these states
are shown in Fig. 11. Note that 2gB, 3gB, 4gB are there because they are created
by replacing some unsafe states and O′ �= O holds in the B states.

Figure 12 shows the game graph G = Q ◦ E for the correctness monitor Q
in Fig. 7 (b) and the error-avoiding monitor E in Fig. 11. For brevity, only the
safe states in G and edges among these states are shown in Fig. 12. A safe state
in G is a state (gQ, gE) where gQ is safe in Q and gE is safe in E . The winning
strategy of this safety game is denoted as ρ = (δρ, λρ), where δρ is the transition
function capturing a subset of the edges in Fig. 12, and λρ is the output function
determining the value of S′ based on the current state and values of R and S.
The shield S(R,S, S′) is a reactive system that implements function δρ and λρ

of ρ.

5 Solving the Safety Game

We compute the winning strategy ρ = (δρ, λρ) by solving the two-player safety
game G = (G, g0, Σ,ΣO′ , δ, F ), where G is a finite set of game states, g0 ∈ G
is the initial state, F ⊆ G are the final (unsafe) states, δ : G × Σ × ΣO′ → G
is a complete transition function. The two players of the game are the shield
and the environment (including the design D). In every game state g ∈ G, the
environment first chooses an input letter σ ∈ Σ, and then the shield chooses
some output letter σO

′ ∈ ΣO′ , leading to the next state g′ = δ(g, σ, σO
′).
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Fig. 9. Violation monitor U(R, S).

Fig. 10. Deviation monitor T (S, S′). Fig. 11. Error-avoiding monitor E(R, S, S′).

The sequence g = g0g1 . . . of game states is called a play. We say that a play is
won by the shield if and only if, for all i = 0, 1, . . . we have gi ∈ G \ F .

5.1 Fix-Point Computation

In this work, we use the algorithm of Mazala [12] to solve the safety game. In
this algorithm, we compute “attractors” for a subset of safe states (G \ F ) and
final states (F ), until reaching the fix-point. Specifically, we maintain two sets
of states: F and the winning region W. F is the set of states from which the
shield will inevitably lose, while W is the set of states from which the shield has
a strategy to win. We also define a function

MX(Z) = {q | ∃σ ∈ Σ . ∀σO
′ ∈ ΣO′ . q′ = δ(q, σ, σO

′) ∧ (q′ ∈ Z)}
That is, MX(Z) is the set of states from which the environment can force the
transition to a state in Z regardless of how the shield responds.

The fix-point computation starts with W = G \ F and F = F . In each
iteration, W = W \ MX(F) and F = F ∪ MX(F). The computation stops
when both W and F reach the fix-point.

5.2 Optimization

The computation of the winning strategy ρ in the safety game G = E ◦ Q is
time-consuming. In this section, we propose a new method for speeding up this
computation. First, we note that a safe state in G must be safe in both E and Q,
meaning that a winning play in G must be winning in both of the subgames
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Fig. 12. The game graph G(R, S, S′), which is the composition of Q(R, S′) and
E(R, S, S′).

E and Q. Therefore, instead of directly computing the winning region W of G,
which can be expensive due to the size of G, we first compute the winning region
W1 of the smaller subgame G1 = E , then compute the winning region W2 of the
smaller subgame G2 = Q, and finally compute the winning region W of the game
G by using W1 × W2 as the starting point. Since a winning play in G is winning
in both G1 and G2, we know W ⊆ W1 × W2.

Furthermore, due to the unique characteristics of the subgames G1 = E and
G2 = Q, in practice, W1 × W2 is often close to the final fix-point W. This is
because both E(I,O,O′) and Q(I,O′) are derived from the specification automa-
ton ϕs. Specifically, each state in Q is simply a copy of the corresponding state
in ϕs, whereas each state in E is either a copy of a safe state s in ϕs, or a
new abstract state sg that replaces some unsafe states in ϕs, or a new abstract
state sm consisting of only safe states in ϕs. Since it is cheaper to compute W1

and W2, this optimization can significantly speed up the fix-point computation.
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6 Experiments

We have implemented our new method in the same software tool that also imple-
ments the method of Bloem et al. [3]. The fix-point computation for solving
safety games is implemented symbolically, using CUDD [19] as the BDD library,
whereas the construction of the various monitors and the game graph are carried
out explicitly. The tool takes the automaton representation of the safety speci-
fication ϕs as input and returns the Verilog program of the synthesized shield S
as output.

We have evaluated our method on a range of safety specifications, including
temporal logic properties from (1) the Toyota powertrain control verification
benchmark [9], (2) an automotive design for engine and brake controls [13], (3)
the traffic light controller example from the VIS model checker [4], (4) LTL
property specification patterns from Dwyer et al. [6], and (5) parts of the ARM
AMBA bus arbiter specification [2]. Specifically, properties from [9] are on the
model of a fuel control system, specifying the performance requirements in vari-
ous operation modes. Originally, they were represented in signal temporal logic
(STL). We translated them to LTL by replacing the predicates over real vari-
ables with boolean variables. The properties for engine and brake control [13] are
related to the safety of the brake overriding mechanism. The properties for traffic
light controller [4] are for safety of a crossroads traffic light. The AMBA bench-
mark [2] includes combinations of various properties of an ARM bus arbiter.
We also translate liveness properties in Dwyer et al. [6] to safety properties by
adding a bound on the reaction time steps. For example, in the first columns
of Table 1, the numbers besides F and U are the bound number, where F and U
mean Finally and Until respectively. Details of these benchmarks can be found
in the supplementary document on our tool repository website [20].

Table 1 shows the results of running our tool on these benchmarks and com-
paring it with the method of Bloem et al. [3]. Columns 1–2 show the benchmark
name and the number of states of the safety specification ϕs. Columns 3–5 show
the results of applying the k-stabilizing shield synthesis algorithm [3], including
whether the resulting shield can handle burst error, the shield size in terms of the
number of states, and the synthesis time in seconds. Similarly, Columns 6–8 show
the results of applying our new synthesis algorithm. Note that the k-stabilizing
shields do not guarantee to handle burst error, and as shown in Table 1, only
some of them can actually handle burst error. Here, “no (1-step)” means the
shield needs at least one more clock cycle to recover from the previous error
before it can take on the next error, and “no (2-step)” means the shield needs at
least two more clock cycles to recover. In contrast, the shield synthesized by our
new method can recover instantaneously and therefore can always handle burst
error.

In terms of the synthesis time, the result is mixed in that our new method
is sometimes slower and sometimes faster than the existing method. There are
two reasons for such results. On the one hand, our method is searching through
a significantly larger game graph than the existing method in order to find the
best winning strategy for handling burst error. On the other hand, our method



78 M. Wu et al.

Table 1. Experimental results for comparing the two shield synthesis algorithms.

Property ϕs Sates K-Stabilizing Shield [3] Burst-Error Shield (New)

Handle-Burst- States Time (s) Handle-Burst- States Time (s)

Error in S Error in S
Toyota powertrain [9] 23 yes 38 0.2 yes 38 0.3

Engine and brake ctrl [13] 5 yes 7 0.1 yes 7 0.1

Traffic light [4] 4 yes 7 0.1 yes 7 0.2

F64p [6] 67 yes 67 0.7 yes 67 0.5

F256p 259 yes 259 46.9 yes 259 10.5

F512p 515 yes 515 509.1 yes 515 54.4

G(¬q) ∨ F64(q ∧ F64p) [6] 67 yes 67 0.7 yes 67 0.6

G(¬q) ∨ F256(q ∧ F256p) 259 yes 259 46.9 yes 259 10.7

G(¬q) ∨ F512(q ∧ F512p) 515 yes 515 517.7 yes 515 54.5

G(q ∧ ¬r → (¬r U4 (p ∧ ¬r))) [6] 6 yes 15 0.1 yes 145 0.1

G(q ∧ ¬r → (¬r U8 (p ∧ ¬r))) 10 yes 109 0.2 yes 5,519 4.5

G(q ∧ ¬r → (¬r U12 (p ∧ ¬r))) 14 yes 753 6.3 yes 27,338 1,414.5

AMBA G1+2+3 [2] 12 yes 22 0.1 yes 22 0.1

AMBA G1+2+4 [2] 8 no (1-step) 61 6.3 yes 78 2.2

AMBA G1+3+4 [2] 15 no (1-step) 231 55.6 yes 640 97.6

AMBA G1+2+3+5 [2] 18 no (1-step) 370 191.8 yes 1,405 61.8

AMBA G1+2+4+5 [2] 12 no (1-step) 101 3,992.9 yes 253 472.9

AMBA G4+5+6 [2] 26 no (2-step) 252 117.9 yes 205 26.4

AMBA G5+6+10 [2] 31 no (2-step) 329 9.8 yes 396 31.4

AMBA G5+6+9e4+10 [2] 50 no (2-step) 455 17.6 yes 804 42.1

AMBA G5+6+9e8+10 [2] 68 no (2-step) 739 34.9 yes 1,349 86.8

AMBA G5+6+9e16+10 [2] 104 no (2-step) 1,293 74.7 yes 2,420 189.7

AMBA G5+6+9e64+10 [2] 320 no (2-step) 4,648 1,080.8 yes 9,174 2,182.5

AMBA G8+9e4+10 [2] 48 no (2-step) 204 7.0 yes 254 6.1

AMBA G8+9e8+10 [2] 84 no (2-step) 422 22.5 yes 685 33.7

AMBA G8+9e16+10 [2] 156 no (2-step) 830 83.7 yes 1,736 103.1

AMBA G8+9e64+10 [2] 588 no (2-step) 3,278 2,274.2 yes 7,859 2,271.5

utilizes the new optimization technique described in Sect. 5.2 for symbolically
computing the winning region, which can significantly speed up the fix-point
computation.

Table 2 shows the results of our synthesis algorithm with and without opti-
mization. Columns 1–2 show the benchmark name and the size of the safety
specification. Columns 3–4 show the size of the resulting shield and the syn-
thesis time without using the optimization. Columns 5–6 show the shield size
and the synthesis time with the optimization. In almost all cases, there is sig-
nificant reduction in the synthesis time when the optimization is used. At the
same time, there is slightly difference in the number of states in the resulting
shield. This is because the game graph often contains multiple winning strate-
gies, and currently our method for computing the winning strategy tends to pick
an arbitrary one. Furthermore, since the shield is implemented in hardware, the
difference in the number of bit-registers (flip-flops) needed to implement the two
shields will be further reduced. For example, in the last benchmark, we have

log2(3278)� = 12, whereas 
log2(7859)� = 13, meaning that the shield requires



Synthesizing Runtime Enforcer of Safety Properties Under Burst Error 79

Table 2. Experimental results for synthesizing the shield with and without
optimization.

Property ϕs States Burst Error Shield Burst Error Shield

Syn. (w/o Opt) Syn. (w/ Opt)

States in S Time (s) States in S Time (s)

Toyota powertrain [9] 23 38 0.3 38 0.3

Engine and brake ctrl [13] 5 7 0.1 7 0.1

Traffic light [4] 4 7 0.2 7 0.2

F64p [6] 67 67 0.7 67 0.5

F256p 259 259 45.5 259 10.5

F512p 515 5157 511.0 515 54.4

G(¬q) ∨ F64(q ∧ F64p) [6] 67 67 0.8 67 0.6

G(¬q) ∨ F256(q ∧ F256p) 259 259 46.2 259 10.7

G(¬q) ∨ F512(q ∧ F512p) 515 515 668.1 515 54.5

G(q ∧ ¬r → (¬r U4 (p ∧ ¬r))) [6] 6 98 0.1 145 0.1

G(q ∧ ¬r → (¬r U8 (p ∧ ¬r))) 10 4,002 3.9 5,519 4.5

G(q ∧ ¬r → (¬r U12 (p ∧ ¬r))) 14 95,357 1,506.9 27,338 1,414.5

AMBA G1+2+3 [2] 12 22 0.1 22 0.1

AMBA G1+2+4 [2] 8 69 2.3 78 2.2

AMBA G1+3+4 [2] 15 566 99.5 640 97.6

AMBA G1+2+3+5 [2] 18 1,256 58.4 1,405 61.8

AMBA G1+2+4+5 [2] 12 193 479.2 253 472.9

AMBA G4+5+6 [2] 26 206 26.3 205 26.4

AMBA G5+6+10 [2] 31 413 30.5 396 31.4

AMBA G5+6+9e4+10 [2] 50 796 40.4 804 42.1

AMBA G5+6+9e8+10 [2] 68 1,287 80.8 1,349 86.8

AMBA G5+6+9e16+10 [2] 104 2,334 194.2 2,420 189.7

AMBA G5+6+9e64+10 [2] 320 8,618 2,865.6 9,174 2,182.5

AMBA G8+9e4+10 [2] 48 233 5.6 254 6.13

AMBA G8+9e8+10 [2] 84 601 30.5 685 33.7

AMBA G8+9e16+10 [2] 156 1,344 111.0 1,736 103.1

AMBA G8+9e64+10 [2] 588 5,848 7,843 7,859 2,271.5

either 12 or 13 bit-registers. Nevertheless, for future work, we plan to investigate
new ways of computing the winning strategy to further reduce the shield size.

7 Related Work

As we have already mentioned, our method for ensuring that the design D always
satisfies the safety specification ϕs differs from both model checking [5,15], which
checks whether D |= ϕs but does not enforce ϕs, and conventional reactive
synthesis techniques [2,7,14,18], which synthesizes the design D from a complete
specification. Since our method is agnostic to the size and complexity of D, it can
be significantly more scalable than reactive synthesis in practice. Our method
differs from the existing shield synthesis method of Bloem et al. [3] in that it
can robustly handle burst error.

Our shield is a reactive system that can respond to a safety violation instanta-
neously, e.g., in the same clock cycle where the violation occurs, and therefore dif-
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fers from the many existing methods for enforcing temporal properties [8,10,17]
that have to buffer the erroneous output before correcting them. Similarly, it
differs from the methods [11,22] for enforcing temporal properties in concurrent
software, which relies on delaying the execution of one or more threads to avoid
unsafe states. It also differs from the method by Yu et al. [21], which aims at
minimizing the edit-distance between two strings, but requires the entire input
string to be available prior to generating the output string.

Renard et al. [16] proposed a runtime enforcement method for timed-
automaton properties, but the method differs from ours as it assumes that the
controllable input events can be delayed or suppressed, whereas our method
relaxes such an assumption. Bauer et al. [1] and Falcone et al. [8] also studied
what type of temporal logic properties can or cannot be monitored and enforced
at run time. These works are orthogonal and complementary to ours. In this
work, we focus on enforcing safety specification only. We leave the enforcement
of liveness properties for future work.

8 Conclusions

We have presented a new method for synthesizing a runtime enforcer to ensure
that a small set of safety-critical properties always hold in a reactive system.
The shield responds to property violations instantaneously and robustly handles
burst error. We have also presented an optimization technique for speeding up
the symbolic fix-point computation for solving the underlying safety games. We
have implemented our method in a software tool and evaluated it on a set of
benchmarks. Our experimental results show that the new method is significantly
more effective than existing methods for handling burst error.
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Abstract. Runtime enforcement is a methodology used to enforce that
the output of a running system satisfies a desired property. Given a prop-
erty, an enforcement monitor modifies an (untrusted) sequence of events
into a sequence that complies to that property. In practice, we may have
not one, but many properties to enforce. Moreover, new properties may
arise as new capabilities are added to the system. It then becomes inter-
esting to be able to build not a single, monolithic monitor that enforces
all the properties, but rather several monitors, one for each property. The
question is to what extent such monitors can be composed, and how. This
is the topic of this paper. We study two monitor composition schemes,
serial and parallel composition, and show that, while enforcement under
these schemes is generally not compositional, it is for certain subclasses
of regular properties.

1 Introduction

Runtime enforcement (RE) is a technique [5,11–14] to monitor the execution of
a system at runtime and ensure its compliance against a set of formal require-
ments. An enforcement monitor (EM) is generally synthesized from a property
expressed in a high-level formalism [5,11–14]. Similar to enforcement mechanisms
in [13], we focus on online enforcement of regular properties defined as automata,
where an EM is placed between an event emitter and an event receiver, operating
at runtime. An EM takes as input a sequence of events σ (modeling an untrust-
worthy execution) and transforms it into a sequence of events o that complies
with a given property ϕ that we want to enforce. The monitor is equipped with
internal memory and is able to store some input events and release them later,
after it receives some expected input.

For any complex system, we generally have several critical properties to
enforce. Suppose that we want to enforce properties ϕ1, ϕ2, · · · ϕn. An obvious
approach is to take the conjunction of all these properties, ϕ := ϕ1 ∧ · · · ∧ ϕn,
and synthesize an EM for the resulting property ϕ (illustrated in Fig. 1a). This
monolithic approach has several drawbacks. First and foremost, is not modular.
As the functionality of the system evolves, additional properties may be added
to the set of properties we want to enforce. With a monolithic approach, a new
EM needs to be constructed from scratch every time a new property is added. In
addition to problems of performance and scalability, this also has implications to
c© Springer International Publishing Switzerland 2016
S. Rayadurgam and O. Tkachuk (Eds.): NFM 2016, LNCS 9690, pp. 82–99, 2016.
DOI: 10.1007/978-3-319-40648-0 7
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ϕ1 ϕ2 · · · ϕn

Combine Properties
ϕ = ϕ1 ∩ ϕ2 · · · ∩ ϕn

Enforcement
Monitor (Mϕ)

ϕ

σ ∈ Σ∗ o ∈ ϕ

(a) Monolithic approach.

ϕ1 ϕ2 · · · ϕn

Mϕ1 Mϕ2 Mϕn

Composition of EMs⊗ ∈ {�, ||}

Mϕ1

⊗
Mϕ2

⊗ · · ·Mϕn

σ ∈ Σ∗ o ∈ ϕ1 ∩ ϕ2 · · · ∩ ϕn?

(b) Composing enforcement monitors.

Fig. 1. Monolithic and compositional runtime enforcement approaches.

system security. Indeed, in order to construct a monolithic EM for the conjunc-
tion ϕ1 ∧· · ·∧ϕn, every ϕi needs to be known. It may be the case, however, that
some of these properties are unknown, or even secret. In that case, we would like
to add new monitors that enforce new properties, without affecting the currently
enforced properties, some of which may be unknown. We call this methodology
compositional runtime enforcement (CRE).

CRE is particularly relevant in a security context. For instance, when an
attack is detected, one may consider adding an additional property to the set of
properties to be enforced. The additional property tries to prevent the detected
attack. When a new property is added, it is natural to consider adding an addi-
tional layer on top of an existing one, i.e., a new enforcer on top of an existing
one. This naturally leads to considering the composition of EMs. To continue
this example, suppose that we already have an EM for some property ϕ1, but ϕ1

is secret and unknown. We are now given a new property ϕ2, and we are asked
to develop a system that enforces ϕ2, without compromising ϕ1. Therefore, the
resulting system must enforce both ϕ1 and ϕ2. Since we don’t know ϕ1, we have
no way of computing a monolithic EM for the conjunction ϕ1 ∧ ϕ2. Therefore,
a compositional approach is necessary. We need to build an EM for ϕ2, and
somehow compose it with the existing EM for ϕ1, so that the resulting system
satisfies ϕ1 ∧ ϕ2.

How to compose two or more enforcement monitors? As illustrated in Fig. 1b,
we consider serial and parallel composition of EMs, denoted by � and ||, respec-
tively. Serial composition means that the output of one enforcer is fed as input
to a next enforcer in a chain. Parallel composition means that all the EMs run in
parallel and receive the same input, and that their outputs are merged somehow.
Our results are as follows:

– We show that runtime enforcement is not compositional for general regular
properties, neither w.r.t. serial nor parallel composition. This means that if
EMs M1 and M2 enforce properties ϕ1 and ϕ2, respectively, neither M1 � M2

nor M1||M2 generally enforce ϕ1 ∧ ϕ2.
– We show that compositionality holds for certain subclasses of regular proper-

ties, for instance when both ϕ1 and ϕ2 are safety (or co-safety) properties.



84 S. Pinisetty and S. Tripakis

– We also investigate whether the order of serial composition of enforcers matters.
By definition, the order does not matter in the case of parallel composition.

– Surprisingly, we show that in a serial composition setting M1 � M2, where
M1 enforces ϕ1 and M2 enforces ϕ2, using the predictive runtime enforcement
methodology [13] for constructing M2 does not have any advantage over stan-
dard RE. Predictive RE is generally useful when the input to an enforcer is
known to satisfy a certain property [13]. case of M1 � M2, the input to M2

is known to satisfy ϕ1 (since M1 enforces that). Despite this, we show that
using predictive RE to construct M2 is equivalent to using standard RE.

– In all above cases we also investigate whether the final result produced by the
composite enforcers is the same as what a monolithic enforcer would produce.

Outline. In Sect. 2 we introduce preliminaries and notation, and recall the run-
time enforcement framework from previous work. In Sect. 3 we discuss the three
enforcement approaches, namely, monolithic, using composition in series, and
using composition in parallel. We show by example that RE is generally not
compositional w.r.t. neither serial nor parallel composition. We also show that
predictive RE does not help in a serial composition setting. In Sect. 4 we consider
subclasses of regular properties, and show that the serial and parallel compo-
sition approaches work for these subclasses. Section 6 presents conclusions and
future work.

2 Background

2.1 Preliminaries and Notation

Languages. A (finite) word over a finite alphabet Σ is a finite sequence w =
a1a2 · · · an of elements of Σ. The length of w is n and is noted |w|. The empty
word over Σ is denoted by εΣ , or ε when clear from the context. The sets of
all words and all non-empty words are denoted by Σ∗ and Σ+, respectively. A
language or a property over Σ is any subset L of Σ∗.

The concatenation of two words w and w′ is noted w · w′. A word w′ is a
prefix of a word w, noted w′ � w, whenever there exists a word w′′ such that
w = w′ · w′′; conversely w is said to be an extension of w′.

The set pref(w) denotes the set of prefixes of w and subsequently, pref(L) def=⋃
w∈L pref(w) is the set of prefixes of words in L. A language L is prefix-closed

if pref(L) = L and extension-closed if L · Σ∗ = L.
Given an n-tuple of symbols e = (e1, . . . , en), for i ∈ [1, n], Πi(e) is the

projection of e on its i-th element (Πi(e)
def= ei).

Deterministic and Complete Automata. A deterministic and complete automa-
ton A = (Q, q0, Σ, δ, F ) is a tuple where, Q is the set of locations, q0 ∈ Q is the
initial location, Σ is the alphabet, δ : Q × Σ → Q is the transition function and
F ⊆ Q is the set of accepting locations1.
1 In the rest of the paper the term automaton refers to a deterministic and complete

automaton.



Compositional Runtime Enforcement 85

Function δ is extended to words by setting δ(q, ε) = ε, and δ(q, a · σ) =
δ(δ(q, a), σ). A word σ is accepted by A starting from location q if δ(q, σ) ∈ F ,
and σ is accepted by A if σ is accepted starting from the initial location q0. The
language of A, denoted L(A), is is the set of all accepted words from location q0.

Classification of Properties. A regular property is a language accepted by an
automaton. In the sequel, we consider only regular properties and we refer to
them as just properties. Safety (res. co-safety) properties are sub-classes of reg-
ular properties. Safety properties are the prefix-closed languages that can be
accepted by an automaton. The set of safety properties is denoted as ρs. Co-
safety properties are the extension-closed languages that can be accepted by an
automaton. The set of co-safety properties is denoted as ρcs. We define another
subset of regular properties ρ = ρs ∪ρcs. A regular property that belongs to this
subset is either a safety or a co-safety property.

Thus, an automaton A = (Q, q0, Σ, δ, F ) is a safety automaton if ∀a ∈ Σ, q 	∈
F : δ(q, a) 	∈ F , and is a co-safety automaton if ∀a ∈ Σ, q ∈ F : δ(q, a) ∈ F .
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Fig. 2. Automata defining properties RE1, RE2, S1, S2, CS1 and CS2.

Example 1 (Properties Defined as Automata). Consider the following properties:

- RE1: Action a followed by b or c should alternate starting with an a.
- RE2: The first action should be an a, immediately followed by a b, then imme-

diately followed by another a. This sequence can be repeated again with a c.
- S1: After a b occurs, it is forbidden to have an a.
- S2: We can have at most two a actions.
- CS1: The first two actions should be a followed by b.
- CS2: The first three actions should be a followed by b followed by c.
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The set of actions Σ = {a, b, c}. The automata in Fig. 2 define these properties.
Properties RE1 and RE2 are regular properties (that are neither safety nor co-
safety), and are defined by automata in Fig. 2a and b respectively. Properties
S1 and S2 are safety properties defined by safety automata in Fig. 2c and d
respectively. Properties CS1 and CS2 are co-safety properties defined by co-
safety automata in Fig. 2e and f respectively.

Intersection of Automata. Let A = (Q, q0, Σ, δ, F ) and A′ = (Q′, q′
0, Σ, δ′, F ′)

be two automata over the same alphabet Σ. The intersection of A and A′,
denoted A ∩ A′, is defined as (Q × Q′, (q0, q

′
0), Σ, δ × δ′, F × F ′), where

(δ × δ′)((q, q′), a) = (δ(q, a), δ′(q′, a)). We have L(A ∩ A′) = L(A) ∩ L(A′).

s0 s1 s2

s3

b

a

b

a

b

a

Σ

Fig. 3. AS1∩S2.

Example 2 (Intersection of Automata). Consider proper-
ties S1 and S2 from Example 1. Intersection of properties
S1 and S2 informally mean that “We can have at most
two “a” actions before a ‘b” action occurs.” The automa-
ton in Fig. 3 is a minimized equivalent of the automaton
AS1 ∩AS2 and defines the property S1∩S2. A word over
Σ is accepted by the automaton AS1∩S2 if it is accepted
by both automata AS1 and AS2.

2.2 Runtime Enforcement

Several runtime enforcement frameworks exist, already mentioned in the
introduction. In this paper, we follow the framework of [13], where enforcement
monitors are synthesized from regular properties modeled as automata. The
input-output behavior of an enforcement monitor is specified by an enforcement
function. The enforcement function Eϕ transforms some input word σ which is
possibly incorrect w.r.t. ϕ. Enforcement mechanism has the ability of blocking
events when a violation is detected. The output Eϕ(σ) is a prefix of the input
word σ. Some requirements are defined on the enforcement function: soundness,
transparency andmonotonicity. Soundness means that for any input word σ, if the
output Eϕ(σ) is not empty (	= ε), then it must satisfy ϕ. Transparency expresses
how an enforcement mechanism is allowed to correct the input sequence: the out-
put word is a prefix of the input, and if the input word satisfies the property, the
output should be equal to the input. Monotonicity is related to online behavior of
the enforcement mechanism, that it cannot undo what is already released as out-
put during the incremental computation, and new events can be only appended to
the tail of the output. Formal constraints are detailed in [13]. Let us see a definition
of an enforcement function that incrementally builds the output.

Definition 1 (Enforcement Function). Given a property ϕ ⊆ Σ∗, the
enforcement function is Eϕ : Σ∗ → Σ∗, and is defined as Eϕ(σ) =

Π1

(
storeϕ(σ)

)
.
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where:

- κϕ(σ) = (σ ∈ ϕ)
- storeϕ : Σ∗ → Σ∗ × Σ∗ is defined as:

storeϕ(ε) = (ε, ε)

storeϕ(σ · a) =

{
(σs · σc · a, ε) if κϕ(σs · σc · a),
(σs, σc · a) otherwise

with (σs, σc) = storeϕ(σ).

Function storeϕ takes a word over Σ as input and returns a pair of words
over Σ, and the first element of the output of function storeϕ is the output of
the enforcement function. The first element of the output of function storeϕ is
a prefix of the input that satisfies property ϕ; and the second element is a suffix
of the input that the enforcer cannot output yet. Function storeϕ is defined
inductively (see [13] for detailed explanation).

Predictive Runtime Enforcement. In predictive RE setting [13], instead of con-
sidering Σ∗ as the language of possible inputs, another property ψ ⊆ Σ∗ defines
the set of possible sequences that the EM receives as input at runtime. ψ is
considered to be an abstract model or knowledge of the system obtained using
some static-analysis techniques.

In addition to soundness2, transparency and monotonicity constraints, a
predictive enforcement function should satisfy an additional constraint called
urgency. Constraint urgency expresses that if the input received so far does not
satisfy the property ϕ, it can still be released as output if all possible inputs that
the EM will receive in the future will allow to satisfy ϕ. A predictive enforcement
function takes words that belong to the input property ψ as input and outputs
words that belong to ϕ. In addition to property ϕ, a predictive enforcement
function also requires property ψ as input.

Definition 2 (Predictive Enforcement Function). Given ϕ,ψ ⊆ Σ∗, the
predictive enforcement function is Eψ�ϕ : Σ∗ → Σ∗, defined as Eψ�ϕ(σ) =

Π1

(
storeψ�ϕ(σ)

)
.

The only difference in storeψ�ϕ compared to storeϕ (Definition 1) is in the
condition that is checked upon receiving a new event a (to output events that
were not released earlier (σc) followed by the received event a). In the non-
predictive case function κϕ is used for this purpose, which checks whether the
input sequence received so far belongs to property ϕ. In the predictive case, it
is replaced with the following function κψ�ϕ.

κψ�ϕ(σ) = (∀σcon ∈ Σ∗ : σ · σcon ∈ ψ =⇒ ∃σ′ ∈ Σ∗ : σ′ � σcon ∧ σ · σ′ ∈ ϕ).

2 In the predictive setting, soundness is restricted to input words that belong to ψ.
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Function κψ�ϕ uses input property ψ to anticipate the future and release the
received input earlier. It takes a word over Σ as input and returns a Boolean
as output. If every possible continuation σcon of the received input σ according
to ψ allows to satisfy ϕ in the future, then it returns true. It returns false if the
received input sequence does not satisfy ϕ, and there is a continuation σcon of
the received input σ that will not allow to satisfy ϕ (i.e., there is no prefix σ′ of
σcon such that σ · σ′ ∈ ϕ).

Remark 1. In [13] we prove that the predictive enforcement function (Def-
inition 2) satisfies soundness, transparency, monotonicity and urgency con-
straints. When ψ = Σ∗, we show that the urgency constraint reduces to one
of the transparency constraints and the function κψ�ϕ(σ) can be simplified as
κψ�ϕ(σ) = (σ ∈ ϕ). Thus, Definition 2 reduces to Definition 1 when ψ = Σ∗.

Algorithms and Implementation. Algorithms describing how to implement the
enforcement functions are detailed in [13]. An implementation of these algorithms
in Python is available for download at: https://github.com/SrinivasPinisetty/
PredictiveRE.

3 Monolithic Vs. Compositional Runtime Enforcement
Approaches

In this section we discuss three different approaches for enforcing multiple prop-
erties, namely, monolithic RE, and RE using serial or parallel composition of
EMs. To simplify notation and explanations, we consider the enforcement of
only two properties ϕ1 and ϕ2. The results generalize to any number of prop-
erties. Properties ϕ1 and ϕ2 are assumed to be regular properties defined by
complete and deterministic automata Aϕ1 and Aϕ2 over some alphabet Σ.

3.1 Monolithic Approach

In the monolithic approach, properties are first combined using intersection and
an EM for the resulting property is synthesized (See Fig. 1a). Specifically, given
any two regular properties ϕ1 and ϕ2, to enforce both these properties, we first
compute ϕ = ϕ1∩ϕ2 (by computing the product of the automata for ϕ1 and ϕ2).
Then we synthesize an EM for ϕ using the approach described in Sect. 2.2. For
any input word σ, Eϕ(σ) is sound and transparent with respect to ϕ1 ∩ϕ2. Since
Eϕ(σ) satisfies ϕ1 ∩ ϕ2, Eϕ(σ) obviously satisfies both ϕ1 and ϕ2. Regarding
transparency, if the input satisfies only ϕ1 (or only ϕ2), then the output will not
be equal to the input. The output will be equal to the input only if the input
satisfies ϕ1 ∩ ϕ2 (i.e., the input satisfies both ϕ1 and ϕ2).

Remark 2 (Maximality). From [13] we know that for any given regular property
ϕ, for any sequence σ ∈ Σ∗, if Eϕ(σ) 	= ε then it is the maximal prefix of σ that
satisfies ϕ. Thus, for any given regular properties ϕ1 and ϕ2, for any input word
σ ∈ Σ∗, if Eϕ1∩ϕ2(σ) 	= ε, it is the maximal prefix of σ that satisfies both
properties ϕ1 and ϕ2 (i.e., maximal prefix that belongs to ϕ1 ∩ ϕ2).

https://github.com/SrinivasPinisetty/PredictiveRE
https://github.com/SrinivasPinisetty/PredictiveRE
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Table 1. Counterexamples to compositionality of the serial approach.

σ ERE1(σ) ERE2(ERE1(σ)) ERE2(σ) ERE1(ERE2(σ))

a ε ε ε ε

ab ab ε ε ε

aba ab ε aba ab �∈ RE1 ∩ RE2

abac abac aba �∈ RE1 ∩ RE2 aba ab �∈ RE1 ∩ RE2

Example 3. Consider the property S1 ∩ S2 defined by the automaton in Fig. 3,
where Σ = {a, b}. Consider input sequence σ = abbb. The output of the EM
ES1∩S2(abbb) = abbb. Notice that the word abbb is accepted by the automaton
AS1∩S2, and it is also accepted by automata AS1 and AS2. Consider another
input sequence σ = aaabb. The output of the EM will be aa which is the maximal
prefix of σ accepted by AS1∩S2. Notice that the input word aaabb is accepted
by AS1, but is not accepted by AS2.

3.2 Serial Composition of Enforcement Monitors

Eϕ1 � Eϕ2

Eϕ1 Eϕ2

σ ∈ Σ∗

Eϕ1(σ) ∈ ϕ1

Eϕ2(Eϕ1(σ)) ∈
ϕ1 ∩ ϕ2?

Fig. 4. Serial composition.

Given two properties ϕ1 and ϕ2, we
can synthesize EMs Eϕ1 and Eϕ2 for
each of them, and then compose them
in series, as illustrated in Fig. 4. In
this type of serial composition the
output of Eϕ1 is fed as input to Eϕ2 .
As a result we obtain a new EM,

denoted Eϕ1 � Eϕ2 . In this section we investigate whether Eϕ1 � Eϕ2 gen-
erally enforces ϕ1 ∩ ϕ2. We are also interested to see whether the final output
that we obtain using the serial composition approach is equal to the output we
would obtain using the monolithic approach.

Let us now formally define serial composition of two EMs.

Definition 3 (Serial Composition of Enforcement Monitors). Let Eϕ1 :
Σ∗ → Σ∗ be the enforcer for a property ϕ1 ⊆ Σ∗, and Eϕ2 : Σ∗ → Σ∗ be the
enforcer for a property ϕ2 ⊆ Σ∗. Their serial composition is a new enforcer
Eϕ1 � Eϕ2 : Σ∗ → Σ∗ defined as follows: ∀σ ∈ Σ∗, (Eϕ1 � Eϕ2)(σ) =
Eϕ2(Eϕ1(σ)).

Example 4 (Composing Enforcers in Series does Not Generally Enforce Both
Properties). Let the automaton in Fig. 2a define property ϕ1, and the automa-
ton in Fig. 2b define property ϕ2. Table 1 shows the outputs ERE1(σ),
ERE2(ERE1(σ)), ERE2(σ), and ERE1(ERE2(σ)), when the input sequence σ =
abac is processed incrementally. We notice that generally ERE2(ERE1(σ)) 	=
ERE1(ERE2(σ)), which implies that Eϕ1 � Eϕ2 and Eϕ2 � Eϕ1 generally dif-
fer. Also notice that ERE1(ERE2(abac)) is ab which does not satisfy RE1∩RE2,
and ERE2(ERE1(abac)) is aba which also does not satisfy RE1 ∩ RE2.
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What the above example shows is that, independently of the order used, the
serial approach is generally non-compositional. In particular, given regular prop-
erties ϕ1, ϕ2, and input sequence σ ∈ Σ∗, neither Eϕ1(Eϕ2(σ)) nor Eϕ2(Eϕ1(σ))
generally satisfy ϕ1 ∩ ϕ2. This is despite the fact that Eϕ1(σ) is guaranteed to
satisfy ϕ1 and Eϕ2(σ) is guaranteed to satisfy ϕ2. As we shall see later in Sect. 4,
the serial approach is compositional for certain subclasses of regular properties.

3.3 Predictive Runtime Enforcement in Serial Composition (does
Not Help)

Let us now consider the predictive RE mechanism in a serial composition setting.
Predictive RE mechanism makes use of knowledge of the system allowing to
output some events immediately instead of delaying or blocking them [13]. In
predictive RE, instead of letting the input sequence σ range over Σ∗, we let it
range over a given property ψ ⊆ Σ∗ where ψ captures a model or some knowledge
that we have about the system.

When we consider serial composition of enforcers Eϕ1 � Eϕ2 , we know that
every input received by Eϕ2 belongs to ϕ1. This is because every input received
by Eϕ2 is an output generated by Eϕ1 , and the latter is guaranteed to enforce ϕ1.
Thus, it makes sense to use the predictive method to generate the downstream
enforcer, hoping that this will result in improved enforcement behavior. Let us
now see whether this is indeed the case, i.e., whether taking the downstream
enforcer to be Eϕ1�ϕ2 instead of Eϕ2 , will be of any advantage.3

Eϕ1 � Eϕ1�ϕ2

Eϕ1 Eϕ1�ϕ2

σ ∈ Σ∗

Eϕ1(σ) ∈ ϕ1

Eϕ1�ϕ2(Eϕ1(σ))

Fig. 5. Serial composition with prediction.

This alternative approach with pre-
diction is illustrated in Fig. 5. We
consider serial composition where the
downstream EM (i.e., the EM for
ϕ2) is the predictive EM Eϕ1�ϕ2 . The
input that Eϕ1�ϕ2 receives is Eϕ1(σ),
which is guaranteed to belong to ϕ1.

One generally expects that in some cases, considering predictive RE for
the second EM in serial composition allows to output some events earlier, and
there may be some situations where Eϕ1�ϕ2(Eϕ1(σ)) 	= Eϕ2(Eϕ1(σ)) (in fact
Eϕ1�ϕ2(Eϕ1(σ)) to be longer compared to Eϕ2(Eϕ1(σ))). Surprisingly, we found
that this is not the case. For any given regular properties ϕ1 and ϕ2, we show
that considering predictive enforcement for the second EM in serial composition
has no advantage and the output for any input sequence will be equal to the
output that we obtain using standard EM.

According to the definition of predictive enforcer (Definition 2), given proper-
ties ψ,ϕ ⊆ Σ∗, where ψ is the property defining the input and ϕ is the property
we want to enforce, at runtime though the received input sequence σo does not
satisfy the property ϕ, it is still immediately released as output if for every pos-
sible extension σcon of σo such that σo ·σcon ∈ ψ, there is a prefix σ′ � σcon such
that σo · σ′ satisfies ϕ.

3 Note that in order to compute Eϕ1�ϕ2 both ϕ1 and ϕ2 need to be known.
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Table 2. Comparing predictive RE, and serial composition with/without prediction.

σo Eψ(σo) Eψ�ϕ(Eψ(σo)) Eϕ(Eψ(σo)) Eψ�ϕ(σo)

r ε ε ε r

ra ε ε ε ra

rag ∈ ψ rga rga rga rga

ragr rga rga rga rgar

ragra rga rga rga rgara

ragrag ∈ ψ ragrag ragrag ragrag ragrag

As illustrated in Example 5, during some steps at runtime, the received input
may not belong to the input property ψ (but we know that it will be eventually
in the future according to ψ). According to the definition of κψ�ϕ, predicting
future input sequences helps only at those moments when the received input σo

does not belong to ψ, and it also does not belong to ϕ (the property we want to
enforce), but if every extension of σo according to ψ allows to satisfy ϕ, then σo

is output immediately since according to ψ we will receive some more events in
the future that will certainly allow to satisfy ϕ.

Consequently, in the serial composition approach, where we consider the
enforcer for the second property ϕ2 as predictive enforcer and the input prop-
erty for it to be ϕ1, in serial composition Eϕ1 � Eϕ1�ϕ2 , first notice that Eϕ1

(standard non-predictive enforcer for ϕ1) will only output sequences that belong
to ϕ1. When the observed input does not satisfy ϕ1, then Eϕ1 will block and
wait for more events to be received. So, what the second enforcer Eϕ1�ϕ2 receives
as input will always belong to ϕ1. Thus, knowledge of ϕ1 for the second enforcer
in serial composition is not useful in any case.

Example 5 Consider two properties ψ and ϕ defined by the automata in Fig. 6,
where the set of actions Σ = {r, a, g}. Let us consider input sequence σ =
ragrag ∈ ψ. Table 2 illustrates the output at each step when the input word σ
is processed incrementally. At each step, the observation of the input is a prefix
of σ (denoted as σo). In the third column (Eψ�ϕ(Eψ(σo))), we consider serial
composition of the enforcer for ψ and Eψ�ϕ (thus, Eψ(σo) is fed as input to
Eψ�ϕ). In the fifth column (Eψ�ϕ(σo)), ψ is considered as a model of the system,
and the observed input σo is fed as input to Eψ�ϕ.

l0 l1

l2

r

Σ \ {r}

ag l0 l1

r

Σ \ {r}

g

a

Fig. 6. Aψ (left), Aϕ (right).

We can clearly notice that from where the pre-
dictive enforcer Eψ�ϕ receives the input also
matters. If Eψ�ϕ receives the input event after
event from some system (event emitter), where
ψ is a model of the system, then prediction
indeed helps to release events earlier as illus-
trated in this example (column Eψ�ϕ(σo) in
Table 2) and other examples in [13]. If Eψ�ϕ

receives the input from a standard enforcer for
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ψ (column Eψ�ϕ(Eψ(σo)) in Table 2) which is the case in serial composition,
knowledge of ψ for the second enforcer is not useful. In this particular example,
we can also notice that Eψ�ϕ(Eψ(σo)) = Eϕ(Eψ(σo)).

Theorem 1 (Serial Composition with Prediction does Not Help). For
any two regular properties ϕ1 ⊆ Σ∗ and ϕ2 ⊆ Σ∗, ∀σ ∈ Σ∗, Eϕ1�ϕ2(Eϕ1(σ)) =
Eϕ2(Eϕ1(σ)).

We prove that given any two regular properties ϕ1 and ϕ2, in the serial com-
position approach, considering predictive enforcement for the second enforcer
(when we do not have a model of the system and when the first enforcer is a
standard non-predictive one) has no advantage, and for any input, the output
will be equal to the output we obtain using standard non-predictive enforcer
for ϕ2.

We thus conclude that if we do not have a model or knowledge of the sys-
tem, and if the first enforcer in non-predictive, using predictive RE for second
enforcer (though we know that the input words it receives belongs to ϕ1) is
not useful. When we have a property describing possible input sequences that
the enforcement mechanism receives from a system, and if first enforcer is a
predictive enforcer, then using predictive RE for the second enforcer in serial
composition is useful.

3.4 Parallel Composition of Enforcement Monitors

M

Eϕ1 Eϕ1(σ)

Eϕ2
Eϕ2(σ)σ

σ
σ (Eϕ1 ||Eϕ2)(σ)

Fig. 7. Parallel composition.

We now introduce the parallel composi-
tion of two EMs Eϕ1 and Eϕ2 , denoted
Eϕ1 ||Eϕ2 , and check whether it enforces
ϕ1 ∩ ϕ2. As illustrated in Fig. 7, in the
parallel composition approach, the input
sequence σ is fed into both Eϕ1 and Eϕ2

simultaneously. The enforcement monitors
Eϕ1 and Eϕ2 run in parallel. Then their

outputs Eϕ1(σ) and Eϕ2(σ) are somehow merged (block denoted M in the figure)
in order to obtain the output of the composite enforcer Eϕ1 ||Eϕ2 .

In our case, the merge block outputs the maximal common prefix of its inputs.
Formally, we define the merge of two words σ1, σ2 ∈ Σ∗ as merge(σ1, σ2) =
max�{σ ∈ Σ∗|σ � σ1 ∧ σ � σ2}.

Definition 4 (Parallel Composition of Enforcement Monitors). Let
Eϕ1 : Σ∗ → Σ∗ be the enforcer for a property ϕ1 ⊆ Σ∗, and Eϕ2 : Σ∗ → Σ∗

be the enforcer for a property ϕ2 ⊆ Σ∗. Their parallel composition is the
enforcer Eϕ1 ||Eϕ2 : Σ∗ → Σ∗ defined as follows: ∀σ ∈ Σ∗, (Eϕ1 ||Eϕ2)(σ) =
merge(Eϕ1(σ), Eϕ2(σ)).

Example 6 (Composing Enforcers in Parallel does Not Generally Enforce Both
Properties). Consider two regular properties RE1 and CS2, defined by
automata in Figs. 2a and f. Table 3 illustrates the outputs of ERE1, ECS2, and
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ERE1||ECS2 when the input sequence abc is processed incrementally. Notice that
(ERE1||ECS2)(abc) is ab which does not satisfy RE1 ∩ CS2.

For some regular properties ϕ1, ϕ2, for some input sequence σ ∈ Σ∗,
(Eϕ1 ||Eϕ2)(σ) may not satisfy ϕ1 ∩ ϕ2. Thus, when we want to enforce two
regular properties ϕ1 and ϕ2, we cannot use parallel composition since the final
output may not belong to ϕ1 ∩ ϕ2 as illustrated in our example. As we shall see
later in Sect. 4, parallel composition is compositional for certain subclasses of
regular properties.

Remark 3 (Merge). Our merge function is independent of the properties and
also of the enforcers. This is intentional, as we want to achieve maximal modu-
larity. We are currently exploring alternative merge operations which are com-
positional for all regular properties, yet exhibit the same degree of modularity.
A potential such alternative is a merge which outputs the maximal prefix of the
input streams that it receives only when new “chunks” are added to both input
streams. We plan to formalize and study further the compositionality properties
of this alternative merge operator in future work.

4 Compositionality for Subclasses of Regular Properties

Table 3. Counterexample to composi-
tionality of the parallel approach.

σ ERE1(σ) ECS2(σ) (ERE1||ECS2)(σ)

a ε ε ε

ab ab ε ε

abc ab abc ab �∈ RE1 ∩ CS2

In Sect. 3, we saw that the serial and par-
allel approaches are not compositional
for all regular properties. In this section
we consider subclasses of regular proper-
ties, and in particular, safety or co-safety
properties, and investigate composition-
ality for these subclasses.

Safety and Co-Safety Properties. Given two properties ϕ1 and ϕ2 such that one
is a safety property and the other is a co-safety property, for some input words,
the output of serial and parallel composition of EMs Eϕ1 and Eϕ2 may not sat-
isfy ϕ1 ∩ϕ2. Moreover, the output obtained using serial and parallel composition
approaches may not be equal to the output obtained using the monolithic app-
roach. For serial composition, the order of composition of enforcers also matters.
We illustrate this via Example 7.

Table 4. Composing enforcers of a safety and a co-safety property.

σ ES1(σ) ECS2(σ) ES1∩CS2(σ) ECS2(ES1(σ)) ES1(ECS2(σ)) (ES1||ECS2)(σ)

ε ε ε ε ε ε ε

a a ε ε ε ε ε

ab ab ε ε ε ε ε

abc ab abc ε ε ab ab
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Example 7 (Composing Enforcers of a Safety and a Co-Safety Property does
Not Generally Enforce Both Properties). Consider the safety automaton in
Fig. 2c and the co-safety automaton in Fig. 2f defining properties S1 and CS2
respectively. Table 4 presents ES1(σ), ECS2(σ), ES1∩CS2(σ), ECS2(ES1(σ)),
ES1(ECS2(σ)) and (ES1||ECS2)(σ) when the input sequence σ = abc is
processed incrementally. We can notice that in the last step, upon receiving
abc, ES1(ECS2(σ)) and (ES1||ECS2)(σ) is ab which does not satisfy CS2 and
thus also does not satisfy S1 ∩ CS2.

Composing in Series Enforcers of a Safety Property and a Regular Property. In
Sect. 3 we already saw that for two regular properties serial composition may not
work. Via Example 7 we also saw that when one property is a safety property
and the other property is a co-safety property, then serial composition approach
may not work. However, in Example 7, we can also notice that at every step
ECS2(ES1(σ)) satisfies S1 ∩ CS2.

In fact, we show that given two properties ϕ1 and ϕ2, if one of them is
identified to be a safety property (say ϕ1), then serial composition approach
works by fixing the order of composition. Property ϕ1 should be considered as
the first (upstream) property in serial composition. The second (downstream)
property ϕ2 can be any regular property.

Since ϕ1 is a safety property, for any input word σ, all the prefixes of Eϕ1(σ)
satisfies ϕ1. Thus when Eϕ1(σ) is fed as input to Eϕ2 (where ϕ2 is any regular
property), its output will be the maximal prefix of Eϕ1(σ) that satisfies ϕ2,
which will be the maximal prefix of σ satisfying both properties ϕ1 and ϕ2.

Theorem 2 (Serial Composition of a Safety and a Regular Property).
Given a safety property ϕ1 ⊆ Σ∗, and a regular property ϕ2 ⊆ Σ∗, ∀σ ∈ Σ∗,

Eϕ2(Eϕ1(σ)) = Eϕ1∩ϕ2(σ).

Let us now see whether serial or parallel composition works when both properties
ϕ1 and ϕ2 are safety (or both co-safety).

Serial Composition (Safety Properties). When both ϕ1 and ϕ2 are safety prop-
erties, it is straightforward from Theorem 2 that serial composition approach
works and the order of composition of enforcers also does not matter. To under-
stand further, consider Eϕ1 � Eϕ2 . For any word σ, Eϕ1(σ) is the maximal
prefix of σ satisfying ϕ1. Since ϕ1 is prefix-closed, any prefix of Eϕ1(σ) satisfies
ϕ1. Eϕ2(Eϕ1(σ)) will be the maximal prefix of Eϕ1(σ) satisfying ϕ2, which also
satisfies ϕ1. Similarly, we can also easily notice that Eϕ2 � Eϕ1 will also satisfy
both ϕ1 and ϕ2 since both are safety properties.

Corollary 1. Given any two safety properties ϕ1 and ϕ2, ∀σ ∈ Σ∗,
Eϕ1(Eϕ2(σ)) = Eϕ2(Eϕ1(σ)) = Eϕ1∩ϕ2(σ).

Corollary 1 is a direct consequence of Theorem 2. When both ϕ1 and ϕ2 are safety
properties, for any input word, the output we obtain by composing enforcers
Eϕ1 and Eϕ2 in series will be equal to the output obtained using the monolithic
approach and thus satisfies ϕ1 ∩ ϕ2 (if it is 	= ε).
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Parallel Composition (Safety Properties). When both ϕ1 and ϕ2 are safety prop-
erties, then parallel composition also works. Since both ϕ1 and ϕ2 are prefix-
closed, any prefix of Eϕ1(σ) satisfies ϕ1, and any prefix of Eϕ2(σ) satisfies ϕ2.
(Eϕ1 ||Eϕ2)(σ) is the maximal common prefix of both these words which also
satisfies both ϕ1 and ϕ2.

Theorem 3 (Parallel Composition of Safety Properties). Given any two
safety properties ϕ1 and ϕ2, ∀σ ∈ Σ∗, (Eϕ1 ||Eϕ2)(σ) = Eϕ1∩ϕ2(σ).

Theorem 3 shows that when both ϕ1 and ϕ2 are safety properties, for any
input word, the output we obtain by composing enforcers Eϕ1 and Eϕ2 in parallel
will be equal to the output obtained using the monolithic approach and thus
satisfies ϕ1 ∩ ϕ2 (if it is 	= ε).

Table 5. Composing enforcers of two safety properties.

σ ES1(σ) ES2(σ) ES1∩S2(σ) ES2(ES1(σ)) ES1(ES2(σ)) (ES2||ES1)(σ)

a a a a a a a

aa aa aa aa aa aa aa

aaa aaa aa aa aa aa aa

aaab aaab aa aa aa aa aa

Example 8 (Composing Enforcers of Two Safety Properties). Let us consider
properties S1 and S2 defined by automata in Fig. 2c and d. Table 5 illustrates
the output of different methods for enforcing S1 ∩ S2 when the input sequence
aaab is processed incrementally. We can notice that at every step, all the methods
result in the same output which satisfies the property S1 ∩ S2.

Co-Safety Properties. When both ϕ1 and ϕ2 are co-safety properties, then both
serial and parallel composition work. Regarding serial composition, consider
Eϕ1 � Eϕ2 . For any input word σ ∈ Σ∗, since ϕ1 is extension-closed, if σ 	∈ ϕ1,
then Eϕ1(σ) = ε and thus Eϕ2(Eϕ1(σ)) = ε (irrespective of whether σ ∈ ϕ2 or
not). If σ ∈ ϕ1, then Eϕ1(σ) = σ. In this case, if σ ∈ ϕ2, then Eϕ2(Eϕ1(σ)) = σ
which is the maximal prefix of σ satisfying both ϕ1 and ϕ2. But if σ 	∈ ϕ2,
then since ϕ2 is extension-closed, there is no prefix of Eϕ1(σ) (which is σ) that
satisfies ϕ2, and the output will be ε.

Regarding parallel composition, for any input word σ if σ 	∈ ϕ1 and σ 	∈ ϕ2,
then Eϕ1(σ) and Eϕ2(σ) will be ε (since the properties are extension-closed) and
thus (Eϕ1 ||Eϕ2)(σ) will also be ε. If σ satisfies only one property among ϕ1 and
ϕ2, then the output of one of the enforcers will be ε, and thus the final output
(which is the maximal common prefix of both the outputs) will be ε. Finally, if
σ satisfies both ϕ1 and ϕ2 then Eϕ1(σ) and Eϕ2(σ) will be σ, the final output
will thus be σ in this case.
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Table 6. Composing enforcers of two co-safety properties.

σ ECS1(σ) ECS2(σ) ECS1∩CS2(σ) ECS2(ECS1(σ)) ECS1(ECS2(σ)) (ECS1||ECS2)(σ)

a ε ε ε ε ε ε

ab ab ε ε ε ε ε

abc abc abc abc abc abc abc

abca abca abca abca abca abca abca

Example 9 (Composing Enforcers of Two Co-Safety Properties). Consider two
co-safety properties CS1 and CS2 defined by automata in Fig. 2e and f. From
Table 6, when the input sequence abc is processed incrementally, we can notice
that at every step, the output of all the three methods (monolithic, serial and
parallel composition) are equal and belongs to CS1 ∩ CS2 (if 	= ε).

Theorem 4 (Serial and Parallel Composition of Co-Safety Properties).
Given any two co-safety properties ϕ1 and ϕ2, ∀σ ∈ Σ∗,

1. Eϕ1(Eϕ2(σ)) = Eϕ2(Eϕ1(σ)) = Eϕ1∩ϕ2(σ),
2. (Eϕ1 ||Eϕ2)(σ) = Eϕ1∩ϕ2(σ).

Theorem 4 shows that when both ϕ1 and ϕ2 are co-safety properties, for any
input word, the output we obtain by composing enforcers Eϕ1 and Eϕ2 in series
(or parallel) will be equal to the output obtained using the monolithic approach
and thus satisfies ϕ1 ∩ ϕ2 (if it is 	= ε).

Monolithic, Serial and Parallel Composition Approaches. From Theorems 2, 3
and 4 (also illustrated by our examples), we conclude that for safety (or co-
safety) properties, all the three approaches are equivalent with respect to the
input-output behavior. For any input word σ, we obtain the same output using
any of these three approaches, which is the maximal prefix of σ that satisfies all
the properties (if the output is 	= ε).

Corollary 2. Given two safety (co-safety) properties ϕ1 and ϕ2, for any input
sequence σ ∈ Σ∗ the output of the enforcer that we obtain for enforcing ϕ1 ∩ ϕ2

using any of the methods (composing properties and synthesising a single EM,
serial composition of enforcers, and parallel composition of enforcers) will be
equal.

∀σ ∈ Σ∗, Eϕ1∩ϕ2(σ) = Eϕ2(Eϕ1(σ)) = Eϕ2(Eϕ1(σ)) = (Eϕ1 ||Eϕ2)(σ).

5 Related Work

Compositionality is essential for the design, analysis and verification of large and
complex systems, and has been extensively studied in various settings such as
test generation [7], model-checking [3,8] and reactive synthesis [9].
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In the area of runtime monitoring, [10] deals with composition of monitors
for runtime verification. Composition of two monitors raises an alarm whenever
one of them does so, and the authors discuss about different ways to organize
monitors (based on how information flows between them). In [4] authors inte-
grate runtime verification in to the BIP (Behavior, Interaction and Priority)
framework, which is a component-based framework that allows to build com-
plex systems by coordinating the behavior of atomic components described as
labeled transition systems (LTS). However, it does consider sub-properties, and
composition of monitors, and deals with integrating verification monitor for a
property in to the BIP framework.

Runtime enforcement was initiated by security automata proposed by
Schneider [14] that focus on safety properties, and blocks the execution when an
illegal sequence of actions (not compliant with the property) is recognized. Sev-
eral enforcement models have been proposed later which also allow a monitor to
correct the input sequence by suppressing and (or) inserting events [11]. Bloem
et al. [2] presented a framework to synthesize enforcement monitors for reactive
systems, called shields, from a set of safety properties. In all these approaches,
system is considered as a black-box. Recently, predictive RE framework pre-
sented in [13] makes use of a-priori knowledge of the system for providing better
quality-of-service. All these approaches focus mainly on synthesis of an EM for
a given property but do not handle compositionality of EMs. If enforcing a set
of properties is considered, is is done using the monolithic approach.

The framework in [5] deals with producing a monitor from a property defined
as a Street automaton. Enforcers in [5] are finite state machines with auxiliary
memory, and can be composed by a product-automaton type of construction.
This resembles our parallel composition of enforcers, but with a different merge
operation which is less modular as product of automata requires the “internals”
(e.g., state-space) of both enforcers to be known. Also, serial composition is not
discussed in [5].

Polymer [1] is a programming language supporting definition and composition
of runtime security policies for Java applications. Policies in Polymer specify
runtime constraints on un-trusted Java programs. Polymer allows composition
of smaller sub-policy modules.

6 Conclusion

When we want to enforce multiple properties on a system, an obvious solution
is to use a monolithic approach, where the properties are first combined into one
single property ϕ, and a single enforcer is synthesized for ϕ. The drawback of this
approach is that it is not modular. In this paper, we study the compositionality
of runtime enforcement, with the goal of developing modular approaches which
address scalability, reuse, and security concerns.

On the negative side, we showed that enforcement of regular properties is
generally non-compositional, w.r.t. both serial and parallel composition. On the
positive side, we identified special cases (subclasses of regular properties, such
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as safety or co-safety properties) for which enforcement is compositional. We
also showed that using the predictive RE method to compute the downstream
enforcer in a serial composition setting does not improve quality-of-service. This
is a surprising result, since predictive RE generally results in enforcers which
anticipate their input to reduce delays in their output [13].

In addition to the benefits listed above, the compositional approach presented
in this paper allows for easier fault localization compared to the monolithic app-
roach (e.g., identifying which sub-property is causing the problem, when it is
impossible to correct a given input stream). We plan to investigate such local-
ization in future work. Future work also includes studying compositionality in
the context of runtime enforcement for real-time systems. (Monolithic) RE for
real-time systems has been studied in [6,12]. We intend to study serial and par-
allel composition schemes in these timed settings.

In our earlier work [13] we described a prototype implementation of
enforcer synthesis algorithms, now also available at https://github.com/Srinivas
Pinisetty/PredictiveRE. This prototype can be used straightaway to synthesize
enforcers for each individual property in our compositional schemes. Then it
remains to provide implementations of auxiliary operators such as merge. We
plan to do so, and therefore have a complete implementation of the composi-
tional RTE framework presented here. We also plan to evaluate our approach
on case studies, for instance in the context of security [14].
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10. Levy, J., Säıdi, H., Uribe, T.E.: Combining monitors for runtime system verifica-
tion. Electron. Notes Theor. Comput. Sci. 70(4), 112–127 (2002). runtime Verifi-
cation

11. Ligatti, J., Bauer, L., Walker, D.: Run-time enforcement of non safety policies.
ACM Trans. Inf. Syst. Secur. 12(3), 19:1–19:41 (2009)
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Abstract. We present an SMT solving based test generation approach
for MATLAB Simulink designs, implemented in the HiLiTE tool devel-
oped by Honeywell for verification of avionic systems. The test require-
ments for a Simulink model are represented by a set of behavioral equiv-
alence classes for each block in the model, in terms of its input(s) and
output. A unique feature of our approach is that the equivalence class
definitions, as well as the upstream subgraph of a block under test, are
translated as constraints into SMT expressions. An SMT solver is called
at the back-end of HiLiTE to find a satisfiable solution that is further
augmented into an end-to-end test case at the model level.

1 Introduction

As the industry practices engage model-based design increasingly, model-based
verification and testing [1] techniques emerge to keep up with the trends. In
avionics area, comprehensive testing methods and tools are required to assure
that safety-critical systems like flight controls are certified to the guidelines
established by standard processes such as the DO-178C [2].

At Honeywell, researchers have developed the Honeywell Integrated Lifecycle
Tools & Environment (HiLiTE) suite of tools for the automated verification
of avionics applications developed using MATLAB Simulink/Stateflow. HiLiTE
performs automatic test generation [3] on Simulink models based upon the low-
level requirements (LLRs) expressed by the model elements. The tests are then
applied to the executable object code generated from the model to verify that the
code complies with the LLRs in the design model. HiLiTE has been qualified as a
DO-178C verification tool and deployed in several avionics product certifications
to deliver significant cost savings in the verification effort.

This paper presents an SMT solving technique to extend the earlier
heuristics-based test case generation approaches implemented in HiLiTE, pro-
viding improved performance on models with complex constraints or non-linear

This research was supported in part by NASA Contract NNA13AC55C.

c© The Author(s) 2016
S. Rayadurgam and O. Tkachuk (Eds.): NFM 2016, LNCS 9690, pp. 100–106, 2016.
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arithmetic computations. SMT solving is the decision procedure of determining
whether a formula in first-order-logic is satisfiable and finding a concrete solution
if it is. SMT Solvers, such as Z3 [4], Yices [5], etc., have rapidly matured over
the last 5 years and have been used in various areas including automated test
case generation [6,7]. In our SMT solving based approach, each LLR equivalence
class for a block type is represented by a set of constraints, applied on block-level
input(s) and expected output. Meanwhile, test space is also constrained by the
subgraph environment that the block under test (BUT) is embedded in. The
collection of constraints can be formulated as an SMT problem and expressed in
a standard format by HiLiTE in an automatic fashion. SMT solver is then called
to generate the satisfiable solution once for all ports in the related subgraph. The
solution is merged back to the entire graph for a complete model-level input-to-
output test case. With the integration of heuristics and SMT solving techniques,
HiLiTE has been successfully used to generate requirement-based test cases for
a great range of large-scale complex constrained avionics models.

Section 2 describes the HiLiTE normal test case generation approach and the
need for improvements. Section 3 describes the formalized language of equiva-
lence classes of block’s behaviors and SMT solving based test case generation
approach. Finally, the conclusion and future work are discussed in Sect. 4.

2 HiLiTE Test Generation Approach

HiLiTE generates specific tests at the model level to exercise the equivalence
classes of the behavior of each block embedded in the model. In the original
HiLiTE tool, each equivalence class of a block’s behavior is represented by a set
of test case templates, each of which uses heuristics to select a specific combina-
tion of values for the block under test (BUT) input(s) and output that satisfy this
equivalence class. Backward and forward propagation search through the com-
putations of other blocks in the model generates a test vector in terms of model
inputs and outputs to ensure controllability of the BUT inputs and observability
of the expected BUT output. Figure 1 shows a Simulink model extracted from a
complex industrial model to illustrate this.

Fig. 1. Test case generation for product block.
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When the product block is the BUT, the test case template (Fig. 2) assigns
the two inputs with non-zero values 2 and 4 respectively. After the backward and
forward propagation search, the generated test vectors are given in Fig. 2 where
blue column heading denotes model input and green denotes model output.

Fig. 2. Test case template (top) and test vector for the product block in Fig. 1.

When the switch block is the BUT, the equivalence class requires different
values at its data inputs (FalseIn, TrueIn) to verify unique impact of an input
on the block’s output. One test case template assigns 44 to FalseIn and 46 to
TrueIn, but this leads to a conflict at the model input AdjustPct after backward
computation through the two look-up tables since their data points are in the
same range. HiLiTE then further tries several alternative templates based on
heuristics, yet all result in search failure. The root cause is that HiLiTE templates
heuristics in the equivalence class domain prematurely pick block’s local input
values, while this problem involves taking into account constraints imposed by
the look-up table blocks driven by the same input AdjustPct.

3 Applying SMT Solving in Test Case Generation

Test generation difficulties such as those noted above can be addressed by an
approach that solves computational constraints of the upstream subgraph of
BUT in conjunction with the constraints on BUT inputs imposed by the behav-
ior equivalence class. SMT can be thought of the constraint satisfaction prob-
lem expressed in Boolean formulas, linear/nonlinear arithmetic in integer/real
domain, bit-vectors and so on. In HiLiTE, we added SMT solving based approach
that embodies formulating test case generation constraints from both equivalence
classes, constraints related to upstream source ports and the subgraph compu-
tations upstream of the BUT into an SMT problem. Therefore, constraints can
be solved together to find a satisfying solution which excludes any conflicts.

3.1 Formal Specification of Equivalence Classes of Block Behaviors

An equivalence class of a block behavior, which represents a test requirement, is
now expressed in HiLiTE with formalized rules on the block’s input and output
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Table 1. Equivalence class definitions for switch block.

Equiv. Class Definition for each input and output

Equiv. Class Name TrueIn FalseIn Control Output

Verify TRUE Input Exists NEQ(FalseIn, TrueIn) EQ(Control, 1) Valid

Verify FALSE Input Exists NEQ(FalseIn, TrueIn) EQ(Control, 0) Valid

ports. These rules are expressed in a language as shown in Table 1 for switch
block with rule names in blue. Each rule is automatically translated, based
upon formal definitions, into SMT logic formula in a straightforward way.
For example, “Exists” for port TrueIn is evaluated to “true” if any value is
present, “NEQ(FalseIn, TrueIn)” of port FalseIn is interpreted as “FalseIn �=
TrueIn”, and “Equal(Control, 1)” of port Control is interpreted as “Control =
true” since Control has a Boolean type. The overall SMT logic formula for an
equivalence class is the conjunction of individual formulas translated from equiv-
alence class rules for each block port. E.g., the equivalence class “Verify TRUE
Input” corresponds to “(FalseIn �= TrueIn)∧(Control = true)”.

3.2 SMT Logic Formula for the Blocks’ Computation

SMT logic formula for a block captures the block’s mathematical computation for
each time step; block formulas are stitched together to yield a subgraph formula.
Let m be the number of time steps tried in test case generation. Examples:

– Sum:
∧m−1

j=0 (Outj = Σn
i=1In ij).

– Comparator:
∧m−1

j=0 (Outj = In 1j ∼ In 2j), ∼∈ {=, �=, >,<,≥,≤}.
– Switch:

∧m−1
j=0 (((!In 3j) ∧ (Outj = In 1j)) ∨ (In 3j ∧ (Outj = In 2j))).

– 1D Look-up Table:
∧m−1

j=0 ((
∨n

i=1((Inj ∈ Rangei)∧(Outj = fi(Inj)))), where
fi is a linear function of Inj given the value of Inj in Rangei.

– UnitDelay: (Out0 = initial constant) ∧ ∧m−1
j=1 (Outj = Inj−1).

Note: support for time-dependent blocks (e.g., UnitDelay) also allows us to
explore feedback loops in the model for bounded number of steps.

3.3 Formulated SMT Problem

HiLiTE explores the upstream subgraph of the BUT to ensure all constraints
imposed by the subgraph computations on the test case generation are included.
The subgraph exploration uses depth-first search, starting from the inputs of the
BUT identified in its equivalence class, all the way back to the model inputs.
Once the SMT-available subgraph is obtained, HiLiTE loops through each block
in it to collect its SMT logic formulas. SMT logic formulas are further translated
into expressions in SMT-LIB 2.0 standard format, recognized by popular SMT
solvers like Z3, with actual port names as variables. Additionally, to specify
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the block connections, each input in the formula is replaced by its source block
output. For instance, the SMT expression for the switch block in Fig. 1 is (assert
(and (not (= gainTable 1.O1 gainTable 2.O1)) (= equalTo.O1 true))). Finally,
the variables in the SMT expressions are substituted by a short form y i j (time
step subscript j is omitted if there are no time-dependent blocks), where each
block is assigned with a unique index i as shown in Fig. 3.

Fig. 3. Input file for SMT solver Z3 of test generation for switch block in Fig. 1.

The SMT logic formula is built initially with the number of time steps m
determined by the equivalence class of the BUT: if the result of SMT solving is
“unsat”, the formula is then updated with m ← m+ 1. The process is repeated
until either SMT solver returns “sat” or a pre-defined time step limit is reached.
In the worst case, m may become very large before a value at some point (such as
the output of a timer/integrator/counter) of the model is accumulated to satisfy
the constraints, in which case SMT solver may break down or return “unknown”.
To bypass blocks causing over-sized formulas, and certain mathematical blocks
(e.g., sin) not supported by SMT solving, HiLiTE identifies those blocks, records
them as pending, and explores the neighbor paths, resulting in an incomplete
subgraph. The pending blocks and their upstream blocks are excluded from the
solution returned by SMT solver. HiLiTE normal method then picks up from
here to further propagate the pending values. An improvement can be done if
the backward search goes through a switch block, only one data input of which
has pending block(s) on its upstream. The values on the branch with pending
block(s) do not matter if we force the switch block to disable that branch. This
is done by modifying the SMT logic formula of that switch block. Suppose port
In 1 of block switch is to be disabled, then the SMT logic formula becomes∧m−1

j=0 (In 3j ∧ (Outj = In 2j)).
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Fig. 4. Architecture of SMT solving in test case generation.

3.4 Tool Architecture

The SMT solving based test case generation is implemented by HiLiTE as a
fully automated process shown in Fig. 4. Test cases needing SMT solving based
approach are identified by the complexity of relationships detected during model
analysis. For these, the test generation module formulates a collection of SMT
expressions and writes them into a .smt2 file as described in Sect. 3. The SMT
solver is called as a back-end, generating a solution which is then merged into
test generation search space. HiLiTE normal method takes over from here to
propagate the switch block output through the forward path to the model
output GainAdj via the intervening product block, using a non-zero value for
the second input of product block to ensure observability. This process results
in valid test cases (Fig. 5) for the switch block in Fig. 2.

Fig. 5. Test vector generated for the switch block in Fig. 2 via SMT solving.

3.5 Nonlinear Applications

Modern SMT solvers are capable of solving a great range of non-linear problems
used be computational intractable. Figure 6 shows a simple two-variable 2nd-
order polynomial model. Z3 returns an answer for this case (as shown in Fig. 6)
as in many other nonlinear problems.
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Fig. 6. A polynomial model and the test vector for the product block via SMT solving.

4 Conclusion and Future Work

We extended the HiLiTE test generation capability with an SMT solving based
approach for solving certain complex constrained problems. The improved tool
combines HiLiTE normal search method and SMT solving, and has been suc-
cessfully applied on many large-scale industrial models. HiLiTE is also being
extended to derive invariant bounds on the number of time steps (e.g., for a
timer) that will help bound the array size. We are also applying SMT solving to
support such invariant generation, in which each condition-guarded path that
captures a certain pattern of model behavior can be validated by SMT solving.

Open Access. This chapter is distributed under the terms of the Creative Com-
mons Attribution 4.0 International License (http://creativecommons.org/licenses/by/
4.0/), which permits use, duplication, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and
the source, a link is provided to the Creative Commons license and any changes made
are indicated.

The images or other third party material in this chapter are included in the work’s
Creative Commons license, unless indicated otherwise in the credit line; if such mate-
rial is not included in the work’s Creative Commons license and the respective action
is not permitted by statutory regulation, users will need to obtain permission from the
license holder to duplicate, adapt or reproduce the material.

References

1. Bhatt, D., Madl, G., Oglesby, D.: System Architecture Driven Software Design
Analysis Methodology and Toolset. In: SAE International (2012)

2. RTCA DO-178C, Software Considerations in Airborne Systems and Equipment Cer-
tification, RTCA Inc. (2011)

3. Bhatt, D., Madl, G., Oglesby, D., Schloegel, K.: Towards scalable verification of
commercial avionics software. In: Proceedings of the AIAA Infotech @ Aerospace
Conference, April 2010

4. Z3Prover. https://github.com/Z3Prover/z3/wiki/
5. The Yices SMT Solver. http://yices.csl.sri.com/
6. Beyer, D., Chlipala, A.J., Henzinger, T.A., Jhala, R., Majumdar, R.: Generating

Tests from Counterexamples. In: ICSE (2004)
7. Peleska, J., Vorobev, E., Lapschies, F.: Automated test case generation with SMT-

solving and abstract interpretation. In: Bobaru, M., Havelund, K., Holzmann, G.J.,
Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617, pp. 298–312. Springer, Heidelberg
(2011)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://github.com/Z3Prover/z3/wiki/
http://yices.csl.sri.com/


The comKorat Tool: Unified Combinatorial
and Constraint-Based Generation
of Structurally Complex Tests

Hua Zhong1(B), Lingming Zhang2, and Sarfraz Khurshid1

1 Department of Electrical and Computer Engineering,
The University of Texas at Austin, Austin 78712, USA

{hzhong,khurshid}@utexas.edu
2 Department of Computer Science, The University of Texas at Dallas,

Richardson 75080, USA
lingming.zhang@utdallas.edu

Abstract. This tool paper presents comKorat, which unifies constraint-
based generation of structurally complex tests with combinatorial
testing. Constraint-based test generation is an effective approach for gen-
erating structurally complex inputs for systematic testing. While this
approach can typically generate large numbers of tests, it has limited
scalability – tests generated are usually only up to a small bound on
input size. Combinatorial test generation, e.g., pair-wise testing, is a more
scalable approach but is challenging to apply on commercial software
systems that require complex input structures that cannot be formed
by using arbitrary combinations. The comKorat tool integrates Korat
and ACTS test generators to generate test suites for large scale com-
mercial systems. This paper presents a case-study of applying comKorat
on a software application developed at Yahoo!. The experimental results
show that comKorat outperforms existing solution in execution time and
finds a total of 23 previously unknown bugs in the application.

1 Introduction

In this tool paper, we present comKorat, which combines constriant-based test
generation [2] and combinatorial testing [3] – two approaches for automated test
generation [1] – and applies them in synergy to benefit from their strengths.
Specifically, comKorat builds on the Korat [2] test generator, which generates
non-equivalent input structures using imperative constraints, and the ACTS [4]
combinatorial testing tool, which generates combinatorial tests to populate the
structures generated by Korat.

A key strength of constraint-based test generation, is that it can systemati-
cally generate such complex inputs [2]. While this approach is very effective for
testing some programs, scaling it to commercial software applications is chal-
lenging for two reasons. One, the underlying search spaces are usually too large
to be explored exhaustively. Two, systematic generation will likely create an
enormous number of test inputs, which are impractical to run.
c© Springer International Publishing Switzerland 2016
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A key strength of combinatorial testing is its effectiveness at reducing test
input combinations [3–5]. It usually enables a significant reduction in the number
of test cases without compromising much functional coverage. For example, to
test a program with 10 binary parameters, an exhaustive suite has 210 tests,
whereas the pair-wise setting would use just 6. However, combinatorial testing
cannot be directly applied to create diverse suites of structurally complex tests.

This tool paper makes the following contributions [6]:

– Tool. We present the comKorat tool for integrating constraint-based test
generation with combinatorial testing.

– Case-Study. We present a case study on a commercial software applica-
tion developed at Yahoo!. The results show that comKorat can substantially
reduce the search space and the number of structurally complex tests gener-
ated. comKorat generated tests detected 23 previously unknown defects.

2 Motivating Example

The benchmark system we tested with comKorat is a backend system within
the Yahoo! search engine. This system demands the test generation algorithm to
explore a generic tree data structure (master tree) and return a set of subtrees
from the master tree (Fig. 1). These subtrees serve as test inputs to the system.

Fig. 1. A sample master tree

A typical master tree has 4 types of nodes: a Root, a set of L nodes, a set of
D nodes, and a set of B nodes. The master tree has a few constraints: (1) a B
node can only be a leaf node in the master tree; (2) the parent of a B node is
an L node; the parent of a D node is an L node; and the parent of an L node is
either the Root or a D node; (3) the children of Root are L nodes. A valid test
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Fig. 2. comKorat’s workflow on the master tree example. (1) a master tree. (2) a
newTree and HashMap M with L nodes as key and lists of B nodes as value. (3)
comKorat generated subtrees. (4) complete test case trees with ACTS generated B
nodes combinations.

case is a subtree of the master tree and there are also some constraints on the
test cases: (1) all test case trees have the same root as the master tree; (2) a test
case tree must contain two or more B nodes and it cannot contain two B nodes
from the same parent; (3) all leaf nodes in a test case tree are B nodes; (4) if two
B nodes have two different D nodes as their ancestors and those two D nodes
share the same parent, these two B nodes are in “conflict” with each other and
thus cannot be in the same test case; (5) a parameter size is introduced to limit
the number of B nodes(leaves) in a test case. When size is equal to 3, it means
all generated subtrees have up to 3 B nodes. The ideal test suite should cover all
possible combinations of B nodes. A naive implementation of such a test suite
could exhaustively enumerates all possible subtrees in the master tree to cover
the above combinations. However, most of the exhaustively generated subtrees
will violate some of the structural constraints described above and will become
invalid inputs to the system.

We developed comKorat to resolve the above issues.

3 The comKorat Tool

Given constraints that describe desired tests, comKorat divides the test gen-
eration problem into generating back-bone structure by solving structural
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constraints and populating data values in those structures using combinatorial
testing. comKorat performs the following four steps for test generation:

1. comKorat creates the two sub-problems for generation: (1) generation of back-
bone structure, and (2) generation of data values;

2. comKorat adopts Korat to generate structures with respect to the structural
invariants;

3. For each generated structure, comKorat applies ACTS to generate t-way com-
binations of the data fields; and

4. For each generated combination, comKorat makes a copy of the base structure
and adds the value combination to the structure to create a complete test
input.

Figure 2 illustrates comKorat’s generation using our running example
(Sect. 2). comKorat first removes all B nodes from the master tree and cre-
ates a new tree newTree. A HashMap M is then created to store those B nodes.
The keys in M are L nodes and the values in M are lists of B nodes. Inside the
map, each L node is mapped to a list of it’s child B nodes. This data structure
preserves the relationship between B nodes and L nodes. comKorat then uses
Korat to generate subtrees subtree from newTree. Each subtree generated by
Korat contains two or more leaf L nodes. In the next step, comKorat uses these
L nodes to retrieve a set of B node lists listSet from M . Finally, comKorat
adopts ACTS to generate combinatorial tests using listSet. We use the gener-
ated B nodes to grow subtree to a complete test case tree and add the test case
to the test suite. comKorat uses a t-way combinatorial method to cover the B
nodes combinations. comKorat can also uses a smaller size parameter to reduce
the number of tests generated by Korat, while retaining a t-way combination
coverage of B nodes.

4 Case Study

The case study discussed in this paper are performed on a Mac machine with a
2.5 GHz Intel Core i7 processor and 16 GB 1600 MHz DDR3 RAM running JVM
1.8.0-45 on OS X Yosemite 10.10.1.

4.1 Result Analysis

Table 1 presents the test generation result of comKorat. Empirical investigations
suggest 90 % of the problems can be triggered by the interaction of three or
fewer parameters in commercial web applications [4]. We also found out that
our comKorat technique which exercises high degree interaction combinations
(4-way or above) will either generate an enormous large number of tests or
timeout during test generation. Therefore, we tried 2 to 4 way combinatorial
generation.

comKorat can generate all tests even for very large state spaces because
separation of structure generation and value generation allows Korat to explore



The comKorat Tool 111

Table 1. comKorat’s performance. size is the parameter used to limit the maximum
number of B nodes in a test case. Time is the elapsed real time in seconds for the 2-way
generation.

Benchmark Size Time (s) Struc. gen. Candi. expl. Combinatorial tests

2-way 3-way 4-way

Yahoo! prod. 3 2.53 31 71 16970 32114 32114

4 4.29 458 2521 260214 500312 826404

5 10.94 4298 66221 2210309 4883621 10383222

Table 2. Performance comparison. Performance of comKorat (use 2-way combination)
and Korat are compared.

comKorat Korat

Benchmark Size Struc. gen Test gen. (2-way) Total time Struc. gen Total time

Yahoo! prod. 3 31 16970 2.53s 32114 3.43s

4 458 260214 4.29s 826404 17.72s

5 4298 2210309 10.94s 27653142 986.63s

only a tiny fraction of the input space. Shown in Column 5 of Table 1, comKorat
only needs to check a small number of candidates during it’s structure generation
stage. The number of structures generated by Korat is also very small, and ACTS
is brought in to search rest of the space to reduce the number of generated tests.
Without ACTS, Korat would generate infeasibly many tests.

Table 2 compares the performance between comKorat and Korat. We com-
pare the total number of structures/tests and the time to generate them for a
range of parameter values. From Table 2, we can see that comKorat significantly
reduced the number of tests. During our experiment, we found out that it is not
feasible to execute Korat generated tests directly as these large test suites will
cause the execution framework to timeout. However, the performance of Korat is
quite robust, e.g., Korat generated 387175 tests in less than 20 s. For our study,
comKorat largely reduced the execution time and allowed the system to explore
subtrees with up to 5 B nodes (size=5) in less than 11 s.

Table 3 compares the performance between comKorat generated suite with
existing test suite. comKorat also reveals new defects from the program. After
the comparison, we can find that automated test generation using comKorat not
only removes the laborious human effort, but also reduces human bias and thus
can have higher fault detection rate.

4.2 Qualitative Analysis

To further understand the performance of comKorat, we manually select some
interesting defects found by the tool to analyze why comKorat outperforms the
existing solution and why it is infeasible to use only Korat or ACTS to generate
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Table 3. Performance comparison between existing test suites and comKorat.

comKorat Existing solution

Benchmark # Tests # New defects Time # Tests Time

Yahoo! prod. 260214 23 4.29 s 5815 146.30 s

(size=4) (size=2)

those tests. We also select one user reported issue and analyze why comKorat
failed to produce an input to uncover this defect.

Defect 1. In comKorat generated suites, 3 test case trees caused backend sys-
tem to return empty responses for the given inputs. These B nodes combinations
(size=3) caused backend system unable to locate information in data store to
rank a particular search result and the system times out searching for the infor-
mation. As we introduced in above sections, existing solution can not generate
t-way combinations on test case trees and failed to uncover the issue.

Defect 2. During our study, we found one end user reported defect which
comKorat failed to discover. The root cause is the same as the above defect,
but the difference is that it is caused by a combination of 5 B nodes. Although
comKorat has the ability to generate 5 way combinations, the generated test
suite is too large and we are unable to execute all of them in practice.

In summary, comKorat is able to generate t-way combination tests for struc-
turally complex test inputs. comKorat outperforms existing solutions in test gen-
eration time and fault detection. Given a small number of t (t ≤ 4), comKorat
can generate effective test suites for commercial software while significantly reduc-
ing the number of tests. However, it is still difficult to use comKorat to enable
extremely thorough testing of applications with manageable numbers of test cases,
and we plan to further explore this direction in our future work.

5 Conclusions

This tool paper presents the comKorat test generator for creating structurally
complex test inputs. comKorat integrates the strengths of two approaches for
test generation: constraint-based generation and combinatorial generation, which
are traditionally employed separately. Specifically, comKorat builds on Korat
and ACTS to embody a synergistic approach. We applied comKorat for testing
a commercial application developed at Yahoo!. The experimental results show
that it is feasible to automate generation of test cases for such applications, even
when the search space for inputs is very large. Furthermore, comKorat detected
23 previously unknown bugs in the studied application.
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Abstract. Autonomous vehicles have found wide-ranging adoption in
aerospace, terrestrial as well as marine use. These systems often oper-
ate in uncertain environments and in the presence of noisy sensors, and
use machine learning and statistical sensor fusion algorithms to form an
internal model of the world that is inherently probabilistic. Autonomous
vehicles need to operate using this uncertain world-model, and hence,
their correctness cannot be deterministically specified. Even once proba-
bilistic correctness is specified, proving that an autonomous vehicle will
operate correctly is a challenging problem. In this paper, we address these
challenges by proposing a correct-by-synthesis approach to autonomous
vehicle control. We propose a probabilistic extension of temporal logic,
named Chance Constrained Temporal Logic (C2TL), that can be used to
specify correctness requirements in presence of uncertainty. We present
a novel automated synthesis technique that compiles C2TL specification
into mixed integer constraints, and uses second-order (quadratic) cone
programming to synthesize optimal control of autonomous vehicles sub-
ject to the C2TL specification. We demonstrate the effectiveness of the
proposed approach on a diverse set of illustrative examples.

1 Introduction

Intelligent systems with varying degrees of autonomy, from recommendation
systems [34] to fully autonomous aerial vehicles [23], have been widely adopted
for controlling ground, air and under-water vehicles. These systems are increas-
ingly deployed in safety-critical applications, both in military domains such as
aerospace missions, search and rescue, and surveillance, as well as in civilian
infrastructure like factories and farms. Their increasing prevalence makes it vital
to be able to ensure the correctness of their operation in an efficient and reliable
manner. Currently, these systems are often designed manually, and their certi-
fication relies on tests and extensive requirements on the design process. These
are complex systems with tightly-coupled components that implement control,
perception and logical decision making, and proving the correctness of manual
designs is challenging [26,33]. The difficulty of this task is further amplified by
the uncertain environment in which these systems operate, and the inherent
probabilistic nature of the statistical techniques used to observe the environ-
ment. In this paper, we address this challenge by defining a new specification
c© Springer International Publishing Switzerland 2016
S. Rayadurgam and O. Tkachuk (Eds.): NFM 2016, LNCS 9690, pp. 117–132, 2016.
DOI: 10.1007/978-3-319-40648-0 10
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language, Chance Constrained Temporal Logic (C2TL), that extends linear tem-
poral logic to capture uncertainty in environment and perception. We present a
novel approach to designing autonomous control algorithms that are guaranteed
to satisfy C2TL properties.

An autonomous control system can be conceptually divided into two key
subsystems: a perception pipeline to observe the world, and a control pipeline
comprising high-level reasoning and low-level motion planning. Both these sub-
systems are well-studied in the control and robotics literatures, but the quantifi-
cation of uncertainty in perception [14] and control under uncertainty [4] remain
challenging. The traditional approach to the design of autonomous systems
decouples perception uncertainty and control by using probabilistic thresholds in
perception, and building a conservative world model: the control is designed with
respect to this conservative model. This decoupling leads to overly conservative
control in practice, and also makes it difficult to establish formal guarantees
and prove safety of these systems. For example, it is clear that any qualitative
Boolean property would be violated with non-zero probability in a setting with
perception uncertainty modeled using Gaussian noise. Chance constraints [31]
provide a natural way to specify probabilistic correctness properties, but have
so far only be shown useful for specifying invariant-like properties. On the other
hand, temporal logics such as signal temporal logic (STL) [15] and linear tempo-
ral logic (LTL) [27] have emerged as effective specification languages for verifying
and synthesizing automated control subject to complex specifications, including
history-dependent and timing requirements.

C2TL extends temporal logic with chance constraints, thus providing an
effective specification language for the autonomous control of systems operating
under uncertainty. We show that C2TL formulae can be compiled into mixed
integer constraints; thus, C2TL strikes the right balance between expressiveness
and ease of reasoning. Quadratic cone programming can be used to automatically
synthesize optimal control satisfying the C2TL specifications.
We make the following contributions:

1. We define Chance Constrained Temporal Logic (C2TL) and demonstrate its
use to specify correctness of autonomous vehicle system control.

2. We formulate the problem of synthesizing autonomous vehicle control subject
to C2TL specifications while optimizing a quadratic cost function; we reduce
this problem to a second order (quadratic) cone program that can be solved
using scalable tools such as CVXOPT [3].

3. We demonstrate the effectiveness of our approach on a diverse set of examples.

2 Background and Related Work

Projects such as the Defense Advanced Research Projects Agency (DARPA)
Urban Challenge [32] and the VisLab Intercontinental Autonomous Chal-
lenge [10] have been instrumental in spurring the development and maturation
of autonomous vehicle technology. One key area where autonomous systems still
struggle is in dealing with uncertainty, arising from stochastic environments
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or noisy perception. Most autonomous systems learn about their environment
using sensors such as cameras and LIDAR units to infer the environment state,
which is maintained in the form of probabilistic beliefs. Uncertainty in these
probabilistic beliefs arise from two sources [13,20,21,25]. First, the environment
states are often dynamic and change over time. Second, the information gathered
from sensors is often not sufficient to exactly infer the environment state. As an
example, consider a popular perception technique like simultaneous localization
and mapping [5](SLAM), which is used for determining the current position of
an autonomous vehicle. The estimated position of the vehicle and the coordi-
nates of other entities in the map are often assumed to have Gaussian noise.
Aside from localization and mapping, another critical perception challenge for
autonomous vehicles is obstacle detection and tracking [9,22]. Camera and laser
range finders are used to locally detect and avoid obstacles during navigation
for a previously constructed map. This is particularly useful in the presence of
dynamic objects whose locations are not fixed in the environment map. The
uncertainty in the parametric models representing the obstacles is usually also
modeled using Gaussian random variables. The proposed C2TL specifications
incorporate these Gaussian models of uncertainty in perception by allowing the
predicates in the formulae to be chance constraints [31] over Gaussian random
variables.

The control of stochastic systems has been extensively investigated, begin-
ning with the work of Pontryagin [28] and Bellman [7], and extending to more
recent literature [11,17,29,30]. Its applications include optimal guidance for
spacecrafts [2] and flight-controllers [6]. The focus has been on the safety prob-
lem, where the goal is to determine a control policy that maximizes the prob-
ability of remaining within a safe set during a finite time horizon [1]. This safe
control problem is usually reformulated as a stochastic optimal control problem
with multiplicative costs over a controlled Markov chain. In contrast, our goal
is to satisfy a probabilistic temporal logic specification while optimizing over a
given cost metric. This can be naturally modeled using chance constrained pro-
grams [12,24], used for uncertainty modeling in various engineering fields [19,37].
For a detailed recent survey of the literature on chance constrained program-
ming approaches, the interested reader is directed to [31]. Here we extend these
approaches to temporal logic specifications. Another dimension along which we
extend existing stochastic control techniques [36] is in our consideration of non-
convex feasible spaces, which is critical for autonomous vehicles operating in
environments with obstacles.

Recent work has developed scalable, optimization-based methods for the
automatic synthesis of controllers from temporal logic specifications with deter-
ministic constraints [16]. Signal temporal logic (STL) [15] has been proposed for
controller synthesis, because it combines dense time modalities with numerical
predicates over continuous state variables. C2TL extends STL to specify prob-
abilistic temporal properties, by allowing predicates to be chance constraints
over continuous state variables rather than just real-valued functions. The uncer-
tainty is restricted to probabilistic predicates, and temporal operators are not
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probabilistic; this is in contrast to other probabilistic extensions of temporal log-
ics [18]. We show that C2TL can be used to specify correctness requirements for
an autonomous vehicle under perception uncertainty. We also present a reduc-
tion from C2TL constraints to mixed integer constraints which are linear in the
state variables. Thus, C2TL provides a balance between expressiveness of the
specification language and efficiency of automated synthesis.

3 Automated Synthesis of Autonomous Vehicle Control

We first define Chance Constrained Temporal Logic (C2TL), and then illustrate
how the correctness of autonomous vehicle control can be specified using C2TL.
We then describe how C2TL specifications can be compiled into deterministic
mixed integer conic constraints. We then formulate the problem of synthesizing
the correct control of autonomous systems as a second order cone programming
problem. The cost being optimized is quadratic and optimization is done with
respect to conic constraints that are bilinear in the state variables and perception
coefficients.

Notation: The correctness property is specified over the system state variables
X = {x1, x2, . . . , xn}, which can represent the position of the vehicle, its velocity,
acceleration, orientation, angular velocities and other relevant parameters. The
domain of X is denoted Dom(X), and is usually a subset of IRn. The state of
the system at time t is denoted by xt ∈ Dom(X).

In this work, half-planes form the basic unit of representation of knowledge
acquired through perception. This is motivated by the observation that percep-
tion algorithms often employ half-plane learning techniques such as Bayesian
linear regression and classifiers. For example, an obstacle can be perceived as
an intersection of half-planes which represent the convex hull of the obstacle.
Half-planes are represented as φlin : aixt + bi ≤ 0 or aixt + bi < 0, where the
coefficients ai, bi are inferred by perception algorithms. Due to uncertainty in
perception, the coefficients are not deterministically known: rather, we only know
the probability distribution over the coefficients. Let Dom(ai),Dom(bi) denote
the domain of the coefficients, and p(ai), p(bi) denote the respective probability
density functions. So, the constraints from perception are not tautological, but
instead hold with an associated probability, that is, Pr(aixt + bi ≤ 0) ≥ 1 − δ
or Pr(aixt + bi < 0) ≥ 1 − δ.

We denote the control inputs of the autonomous system, which are the values
to be synthesized, by U ; the value at each time instant t is ut. A trace of system
states and control values is denoted by τ : IR≥0 → X × U where τ(t) = (xt,ut).

3.1 Chance Constrained Temporal Logic

We now define chance constrained temporal logic as a probabilistic extension of
signal temporal logic, motivated by two key observations:
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– For specifications applied to autonomous systems, temporal aspects of cor-
rectness arise from mission requirements such as reaching specific positions in
sequence while staying away from particular regions. These temporal aspects
of mission requirements do not usually have any associated uncertainty.

– Perception gathers information about a particular instant of time, and uncer-
tainty in perception is hence reflected only in the predicates computed on the
system states at a given time, and not on the temporal operators.

We therefore introduce chance constraints at the atomic predicate level of our
logic. The syntax definition of C2TL is as follows:

φdet := φlin | φlin ∧ φlin | ¬φlin

φcc := [Pr(φdet) ≥ 1 − δ] | ¬φcc | ∼φcc | φcc ∧ φcc | φcc ∨ φcc | φccU[a,b]φcc,

where:

– linear predicate φlin over the variables v ⊆ X ∪ U is of the form

φlin(v) : aiv + bi ≤ 0 or aiv + bi < 0

– deterministic predicate φdet is a Boolean combination of linear predicates.
– chance-constraint [12] is a probabilistic extension of deterministic predicates

and is of the form Pr(φdet) ≥ 1 − δ. where 0 ≤ δ ≤ 1 represents uncertainty
about whether the inequality holds.

– The coefficients ai, bi of the chance constraints are random variables with
Gaussian probability distributions, rather than constants.

The set of coefficients that satisfy a deterministic predicate φdet over vari-
ables v is denoted by R(φdet, v). So, the probability of satisfying φdet when the
coefficients are probabilistic is given by pc(φdet, v) =

∫

c∈R(φdet,v)
p(c)dc where

c = (a, b). C2TL admits the standard globally (G), eventually (F ) and until (U)
operators of temporal logic; here we restrict discussion to the until (U) operator,
which can be used to represent all of the others. The subscripts of the operators
denote the time interval associated with the property, as in STL.

The satisfaction of a C2TL formula over a trace τ at time t is defined recur-
sively as follows:

τ(t) |= φlin ⇔ φlin(τ(t))

τ(t) |= ¬φ1
lin ∧ φ2

lin ⇔ φ1
lin(τ(t)) ∧ φ2

lin(τ(t))
τ(t) |= ¬φlin ⇔ ¬φlin(τ(t))
τ(t) |= [Pr(φdet) ≥ 1 − δ] ⇔ pc(φdet, τ(t)) ≥ 1 − δ

τ(t) |= ¬[Pr(φdet) ≥ 1 − δ] ⇔ pc(φdet, τ(t)) < 1 − δ

τ(t) |= ∼[Pr(φdet) ≥ 1 − δ] ⇔ τ(t) |= [Pr(¬φdet) ≥ 1 − δ]

τ(t) |= φ1
cc ∧ φ2

cc ⇔ τ(t) |= φ1
cc ∧ τ(t) |= φ2

cc

τ(t) |= φ1
cc ∨ φ2

cc ⇔ τ(t) |= φ1
cc ∨ τ(t) |= φ2

cc

τ(t) |= φ1
ccU[a,b]φ

2
cc ⇔ ∃t1 t + a ≤ t1 ≤ t + b ∧ τ(t1) |= φ2

cc

∧ (∀t2 t ≤ t2 ≤ t1 ⇒ τ(t2) |= φ1
cc)
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As a special case, when δ = 0, chance constraints become deterministic. Chance
constraints have two kinds of negations: logical negation denoted by ¬ and proba-
bilistic negation denoted by ∼. Consider a deterministic formula φdet and its log-
ical negation ¬φdet, and corresponding chance constraints φcc ≡ Pr(φdet) ≥ 1−δ
and the probabilistic negation ∼φcc ≡ Pr(¬φdet) ≥ 1 − δ. If δ = 0.8, then
φcc ≡ Pr(φdet) ≥ 0.2, that is, Pr(¬φdet) < 0.8. This is consistent with
∼φcc ≡ Pr(¬φdet) ≥ 0.2. Thus, it is possible for both φcc and its probabilis-
tic negation ∼φcc to simultaneously be true.

The following theorem relates probabilistic negation and logical negation
when δ < 0.5. This case is relevant because it corresponds to “likely” chance
constraints, where the probability of violation is less than 0.5. In practice, most
useful constraints obtained from perception have significantly high confidence
and δ is very small.

Theorem 1. If δ < 0.5, probabilistic negation is equivalent to logical negation,
that is, ¬φcc ≡ ∼φcc.

Proof. ¬φcc ≡ ¬[Pr(φdet) ≥ 1−δ] ≡ ¬[Pr(¬φdet) < δ]. Now, δ < 0.5 ≡ δ < 1−δ.
Thus, ¬φcc ≡ ¬[Pr(¬φdet) < δ < 1 − δ], that is, ¬φcc ≡ ¬[Pr(¬φdet) < 1 − δ]
when δ < 0.5. Further, ¬[Pr(¬φdet) < 1 − δ] ≡ [Pr(¬φdet) ≥ 1 − δ] ≡ ∼φcc.
Hence, ¬φcc ≡ ∼φcc if δ < 0.5. ��

3.2 C2TL Specification for Autonomous Vehicle Control

We now describe how the correctness properties of an autonomous system can
be specified using C2TL.

Obstacles: Any obstacle can be approximated by a union of a finite number of
convex polytopes. The planes forming the convex polytopes are only probabilis-
tically known, due to perception uncertainty. A convex polytope is a conjunction
of half-planes (linear constraints), and can be represented as

∧
i(aixt + bi > 0),

where the coefficients ai ∼ N (aμ
i ,aΣ

i ) are assumed to be Gaussian variables
whose mean and variance are estimated by the perception pipeline. Since the
coefficients are Gaussian, collision with obstacles cannot be ruled out deter-
ministically. Let δobs be the user-specified threshold for the maximum allowable
probability of collision with obstacles. This collision avoidance property is spec-
ified in C2TL as: Pr(

∨
i aixt + bi ≤ 0) ≥ 1 − δobs. The property of avoiding

multiple obstacles j is specified as: Pr(
∧

j

∨

i

aijxt + bij ≤ 0) ≥ 1 − δobs.

We assume that the map consists of static and dynamic obstacles as well as
real or virtual walls that restrict the vehicle to be within a bounded region, but
outside of obstacle areas. Let aij be the coefficients of the obstacles and wij be
the coefficients of the perceived walls. The unobstructed map with uncertainty
can thus be represented using a formula φmap :=

[Pr(
∧

j

∨

i

aijxt + bij ≤ 0) ≥ 1 − δobs] ∧ [Pr(
∧

j

∨

i

wijxt + bij ≤ 0) ≥ 1 − δwall]
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where aij ∼ N (aμ
ij ,a

Σ
ij) represents the uncertain perception of obstacles, and

wij ∼ N (wμ
ij ,w

Σ
ij) represents the uncertain perception of walls (which in prac-

tice includes uncertainty in self-localization). Similar constraints can be added
for other parameters of an autonomous system such as constraints on speed or
acceleration based on the system’s current region in the map.

Mission: Apart from the safe navigation requirement represented by the global
property G(φmap), a second set of useful specifications on autonomous vehicles
corresponds to mission requirements. For example, the vehicle must reach its
final destination within some time-bound tmax. Because of uncertainty in percep-
tion, we can not guarantee this property deterministically. Given a user-specified
probability threshold δmission of failing to achieve the mission goals, the goal of
reaching the destination is specified as F[0,tmax](Pr(x = xdest) ≥ 1 − δmission).
Other examples include the requirement that an autonomous car wait at a stop
sign until all cross-traffic arriving at the intersection before it has passed, and
that an aircraft flies straight without turning till it reaches the safe velocity range
for turning. These properties can be specified using until properties, φ1U[0,t]φ2.
We denote the set of mission constraints by φmission.

The overall specification for the safe control of autonomous system is thus
φmap∧φmission: that is, the system achieves the temporal specification of mission
goals while remaining safe with respect to the map. We note that the focus of
this paper is on autonomous vehicles, but C2TL can also be used to specify
behavior of other autonomous systems such as robotic manipulators, and the
techniques presented in this paper extend beyond this application domain.

3.3 C2TL to Conservative Linear Constraints

In this section, we present a translation of C2TL constraints over Gaussian ran-
dom variables to deterministic linear constraints. The constraints are linear with
respect to system (state) variables and conic overall due to uncertain coefficients.
The first part of the translation deals with temporal logic formulae and Boolean
combinations of elementary chance constraints. The second part of translation
focuses on elementary chance constraints, and reduces those to deterministic
constraints linear in the state variables.

We focus on chance constraints with violation probability threshold less than
0.51. Similar to the STL encoding provided in [16], we introduce Boolean, that
is, {0, 1} integer variables mφcc

t for each chance constraint φcc and time t. These
Boolean variables are related in the same way as for the STL encoding.

1 As discussed in Sect. 3.1, probabilistic negation is not the same as logical negation
when violation probability (δ) can be 0.5 or more, and hence, we will need two
{0, 1} integer variables to represent the truth value of each chance constraint, to
account for four cases depending on the truth value of the chance constraint and its
probabilistic negation. For likely (violation probability δ < 0.5) chance constraints,
one {0, 1} integer variable is sufficient by Theorem 1.
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– Negation: m¬φcc

t = 1 − mφcc

t

– Conjunction: m
φ1
cc∧φ2

cc
t = min(mφ1

cc
t ,m

φ2
cc

t )
– Disjunction: m

φ1
cc∨φ2

cc
t = max(mφ1

cc
t ,m

φ2
cc

t )
– Until: m

φ1
ccU[a,b]φ

2
cc

t = maxt′∈[t+a,t+b](min(mφ2
cc

t′ ,mint′′∈[t,t′](m
φ1
cc

t′′ )))

The next challenge is in translating the probabilistic chance constraints over
Gaussian variables to deterministic mixed integer constraints that are linear in
the state variables. We consider chance constraints of the form:

φelem
cc ≡ Pr(

∧

j

Nj∨

i

aijxt + bij ≤ 0) ≥ 1 − δtm.

In the rest of the section, we show how we can conservatively over-approximate
φelem

cc using mixed integer constraints which are satisfiable only if φelem
cc is satis-

fiable. We first note that φelem
cc ≡ :

Pr(
∧

i,j

aijxt + bij − Mzij ≤ 0) ≥ 1 − δtm ∧
∧

j

(
∑

i

zij < Nj ∧ zij ∈ {0, 1}
)

,

where M is a sufficiently large positive number. This transformation uses the
big-M reduction common in non-convex optimization, see [8] for examples. The
above equivalence holds because at least one zij is 0 for each j since

∑
i zij < Nj

and zij ∈ {0, 1}, and thus, at least one of the constraints in
∨Nj

i aijxt + bij ≤ 0
must be true for each j.

Next, we use Boole’s inequality to decompose the conjunction in the proba-
bilistic chance constraint as follows.

Pr(
∧

i,j

aijxt + bij − Mzij ≤ 0)≥1 − δtm ⇔ Pr(
∨

i,j

aijxt + bij − Mzij > 0)<δtm.

Further, Pr(
∨

i,j

aijxt + bij − Mzij > 0) <
∑

i,j

Pr(aijxt + bij − Mzij > 0)

since the probability of union of events is less than the sum of the individual
probabilities of the occurrence of each event.

Next, we introduce new variables 0 ≤ εij ≤ 1 with
∑

i,j εij < δtm, and
conservatively approximate the chance constraint as:

Pr(
∧

j

Nj∨

i

aijxt + bij ≤ 0) ≥ 1 − δtm ⇐
∧

i,j

Pr(aijxt + bij − Mzj ≤ 0) ≥ 1 − εij

∧
∧

ij

0 ≤ εij ≤ 1 ∧
∑

ij

εij < δtm ∧
∑

j

zj < Nj ∧
∧

j

zj ∈ {0, 1}

With N =
∑

j Nj , we choose εij = δtm/N , which corresponds to uniform
risk allocation among the probabilistic constraints above. However, more effi-
cient risk allocation techniques [38] can also be used. Since aij is a Gaussian
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random variable, the linear combination of Gaussian variables aijxt + bij −Mzj

is also Gaussian. Further, the uniform risk allocation ensures that the violation
probability bounds are constant. So, Pr(aijxt + bij − Mzj ≤ 0) ≥ 1 − εij can
be translated to a deterministic constraint aijxt + bij − Mzj ≤ ErfInv(εij)
where ErfInv is the Gaussian inverse error function computed using the table
for Gaussian distributions, as discussed in [36]. Consequently, the probabilistic
chance constraints are reduced to a set of deterministic constraints. This com-
pletes the translation of C2TL constraints to a set of deterministic mixed integer
linear constraints over the system variables.

The following theorem summarizes the conservative nature of the above
translation. Given the control specification for an autonomous vehicle ψC2TL, the
above translation generates ψMILP which conservatively approximates ψC2TL.

Theorem 2. Given C2TL constraints ψC2TL, the translation presented above
will generate a set of mixed integer constraints ψMILP such that ψC2TL ⇒
ψMILP .

There are two sources of conservativeness of ψMILP :

– We use the sum of the probabilities of chance constraints to upper-bound the
probability of their disjunction. If the constraints are completely independent
of each other, the sum of their individual probabilities is exactly the proba-
bility of their disjunction. The approximation is small if the constraints are
mostly independent, which is often the case for specifying autonomous vehicle
systems, since obstacles usually do not overlap.

– We use a uniform risk allocation of the violation probability bounds for each
individual constraint. This can be further improved using more effective risk
allocation techniques [38].

Thus, the translation of C2TL constraints to mixed integer constraints is
conservative, but the approximation introduced is expected to be tight for C2TL
specifications used for automated vehicle control.

3.4 Optimal Autonomous Vehicle Control

The goal of synthesizing optimal control for autonomous vehicles is to automat-
ically generate the control inputs u. The control inputs applied at time k are
denoted by uk. Often, the dynamical system can be approximated by linearizing
the system around the current point of operation and using model predictive or
receding horizon control. A detailed discussion on model predictive control for
signal temporal logic can be found in [16]. We employ a similar approach here.

A finite parametrization of a linear system assuming piecewise constant con-
trol inputs yields the following difference equation:

xk+1 = Akxk + Bkuk,

where xk ∈ Rnx is the system state in nx dimensions, uk ∈ Rnu denotes the nu

control inputs, and Ak, Bk are coefficients representing linear system dynamics
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around the state xk. We consider the control problem over a bounded time
horizon T , that is, 0 ≤ k ≤ T .

Further, the control inputs uk at all time steps k are required to be in a
convex feasible region Fu, that is,

Fu ≡
Ng∧

i=1

(gT
i u ≤ ci);

∧

k

uk ∈ Fu

where the convex region Fu is represented as intersection of Ng half-planes.
The state variables are required to satisfy the autonomous vehicle correct-

ness specification ψC2TL
ap , that is, xk |= ψC2TL

ap for all k. We can conservatively
approximate the autonomous vehicle correctness specification by ψMILP

ap as dis-
cussed earlier, that is, xk |= ψMILP

ap ⇒ xk |= ψC2TL
ap

In addition to correctness specification, the synthesized vehicle control is
also expected to minimize a user-specified cost function J(x,u). We restrict
the cost function J to be quadratic in order to ensure that solving the control
synthesis problem is computationally efficient. Quadratic functions can capture
cost metrics of the form

∑
i u

†
kU†Uuk+x†

kS†Sxk with appropriate scaling vectors
U and S, where † denotes the transpose of a matrix. These can represent metrics
such as fuel consumption as well as metrics on the vehicle path.

Problem 1 (Autonomous Vehicle Control)

arg min
u

J(x,u)

s.t. xk+1 = Akxk + Bkuk, k = 1 . . . T,uk ∈ Fu,xk |= ψC2TL
ap

Problem 2 (Conservative Autonomous Control)

arg min
u

J(x,u)

s.t. xk+1 = Akxk + Bkuk, k = 1 . . . T,uk ∈ Fu,xk |= ψMILP
ap

Recall that every solution to Problem 2 also solves Problem 1. Moreover, for
a bounded time horizon T and a quadratic cost function, since all the con-
straints are linear in system variables and conic due to the presence of uncertain
coefficients, the conservative autonomous control problem can be solved using
scalable second order (quadratic) cone programming tools such as CVXOPT [3].
The following theorem summarizes the correctness guarantee:

Theorem 3. The solution to Problem 2 is sound with respect to Problem 1: if
control inputs are synthesized for the conservative problem, they are guaranteed
to satisfy the specified correctness property ψC2TL

ap .

This theorem follows from Theorem 2 because xk |= ψC2TL
ap ⇐ xk |= ψMILP

ap .
Note, however, that the proposed synthesis method (i.e. solving the more effi-
ciently solvable conservative problem using second order cone programming) is
incomplete for the autonomous control problem due to the conservative approx-
imation of C2TL constraints (ψC2TL

ap ⇐ ψMILP
ap ).

The incompleteness relates to degree of conservative approximation intro-
duced in the translation of C2TL constraints to MILP constraints.



Automated Synthesis of Safe Autonomous Vehicle Control 127

4 Case Studies

We now experimentally demonstrate the effectiveness of our approach. All exper-
iments were done on a Intel Core-i7 2.9 GHz x 8 machine with 16 GB memory.
Where applicable, we use a baseline comprised of a modified LQG-based motion
planning algorithm [35] and a Monte Carlo sampling-based search algorithm
to find an optimal trajectory over the uncertain world model. Our technique
is more general than sampling-based approaches because we can enforce tem-
poral logic specifications beyond reachability goals common in classical motion
planning. Additionally, the uncertainty in our problem lies within the perceived
world model rather than the system evolution.

Fig. 1. Navigation in an uncertain map

Navigation in an Uncertain Map:
The first case-study considers the prob-
lem of navigation in an uncertain map
from [39]. Parameter values and other
details of the map can be found in [39].
A point mass with two modes – moving
forward and turning – is expected to nav-
igate safely in the map shown in Fig. 1.
The walls in the map and the obstacle in
the center are modeled using probabilis-
tic constraints that incorporate the uncer-
tainty in perception. The uncertain walls
are illustrated in the map by sampling values of the coefficients and drawing the
corresponding walls. The probabilistic safety requirement in this case is a global
property requiring that the vehicle avoid the walls and obstacles with a very
high probability. The objective function being optimized is quadratic in the final
state as well as the control inputs:

f(x,u) = 50(xN − xdest)T (xN − xdest) + 0.001
∑

i

uT
i ui,

where xdest is the destination state (2, 1). Observe that although the cost func-
tion drives the optimization to minimize the path length, the generated path
goes around the obstacle, taking the longer path. This is because the shorter
path would violate the C2TL safety constraints due to the uncertainty in the
location of the obstacles and walls. This is illustrated in Fig. 1.

When compared to the approach in [39], the method proposed in this paper
takes 4.1 s instead of 25.2 s to compute a sequence of control inputs. Monte Carlo
simulation was used to estimate the probability of constraint violation. For each
simulation, the location of the walls and the obstacles was determinized by sam-
pling from the corresponding Gaussian distribution. We then checked whether
the automatically generated path intersected with the walls or obstacles, violat-
ing the safety requirement. When the violation probability in the C2TL specifi-
cation was set to 0.001, Monte Carlo trials did not find a single instance out of
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10000 simulations in which the property was violated. We increased the viola-
tion probability to 0.01, and found 8 out of 10000 simulations that violated the
probability; i.e., the estimated violation probability was 0.0008. This demon-
strates how the proposed approach conservatively approximates the specified
probabilistic constraint, generating a motion plan that satisfies the probabilistic
safety property.

Lane Change: The second case-study is on the synthesis of control for an
autonomous vehicle such as a car, trying to pass a tractor-trailer in an adjacent
lane, as described in [40]. The trailer can probabilistically switch into the passing
car’s lane. If the car is ahead of the trailer when the trailer initiates a lane change,
then the car should accelerate, and if the car is behind the trailer when the trailer
initiates the lane change, the car should decelerate. If the trailer switches lanes
when it is just adjacent to the car, the car has no action to prevent an accident.
Thus, a completely safe course of action is not possible for the autonomous
car and it can only try to keep the risk below a user-specified threshold by
passing the trailer quickly and not staying in the unsafe region for long. The
uncertainty arises due to a probabilistic model of when the trailer will switch
lanes, based on the car’s observations of its behavior. This case-study assumes
a static jump Markov model of this uncertainty, as shown in Fig. 3 of [40]. The
safety specification requires that the passing car is either decelerating and behind
the trailer until the trailer make the lane switch, or the trailer remains in its lane
until the passing the car is accelerating and ahead of the trailer. We also require
the separation between the car and trailer to be above a safe limit with a high
probability. The threshold of violing the specification was set to 0.015. The cost
function was the time spent behind the trailer but not in the same lane. Autopilot
generation took 5.8 s, and Monte Carlo simulations of the generated autopilot
showed that the actual threshold of violation is 0.0004.

(b)(a)

Fig. 2. (a) Runtime Comparison, (b) Accuracy Comparison. (Color figure online)

In order to compare with LQG-based sampling techniques, we change the
cost function to incorporate temporal logic requirements by penalizing the car for
coming close to trailer, and rewarding it for either passing the trailer or traveling
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behind it in the same lane if the trailer changed lanes. In Fig. 2(a), we compare
runtime of the synthesis technique for each specified violation probability. While
our proposed technique’s runtime is not very sensitive to the violation proba-
bility, the runtime of the sampling-based approach increases sharply due to the
increase in the number of required simulation runs. In Fig. 2(b), we present the
violation probability observed in Monte Carlo simulations when both approaches
are given the same runtime, by restricting the number of simulation runs. All
bars above the diagonal line satisfy the probabilistic constraint, while bars below
it do not (note the negative log scale on y-axis as well as x-axis). No violations
were found for our proposed technique for error bounds 10−6 and lower. Thus,
the proposed method always satisfies the specification, whereas sampling fails to
do so for smaller error bounds.

Passing a Vehicle Using Oncoming Traffic Lane: The third case-study
is from recent work by Xu et al. [41]. In this case-study, a vehicle’s lane is
blocked and it needs to move into the lane of oncoming traffic to go around
the obstacle. The perception pipeline on the vehicle estimates the position and
the speed of oncoming traffic before deciding to get into the oncoming traffic
lane. The dynamics and parameters are described in [41], and we discuss only
the results here. Due to uncertainty in perception, we can not deterministically
guarantee safe maneuvering of the vehicle, but we require that the probability of
collision with oncoming traffic or with the obstacle in the vehicle’s lane is below a
threshold of ε. The uncertainty in perception of the speed of the oncoming traffic
is represented by the standard deviation sd of the random variable representing
the speed. We modify the cost function from the original case-study, because
we use C2TL constraints to specify the safety conditions. The cost function
measures the time taken to re-enter the lane after crossing the obstacle.

1
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(a) Illustration of Synthesized Control (b) Runtime vs − log(ε)

Fig. 3. Left: Positions of the autonomous vehicle (circle) and oncoming traffic (rectan-
gle) at different (1–6) time steps are shown. The red rectangle is the obstacle. Right:
Runtime comparison for different violation probability bounds. (Color figure online)
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We illustrate the qualitative nature of the synthesized control in Fig. 3(a).
For violation probability ε = 0.0001, the control synthesized by the sampling-
based technique in time comparable to our approach (4 s) is not probabilistically
safe. The control synthesized using the proposed technique relies on speeding up
and getting around the obstacle before the oncoming traffic. When we increase
the standard deviation in the perception of the speed of the oncoming traffic by
10X, the control synthesized by our approach picks a less optimum, higher-cost
solution in order to meet the safety violation probability requirement, which
slows the vehicle and waits for the oncoming traffic to pass before going around
the obstacle. Figure 3(b) shows that the runtime of the sampling-based approach
increases rapidly with a decrease in ε, while it does not change significantly for
our technique.

5 Conclusion

In this paper, we present a formal approach to synthesizing autonomous vehi-
cle control in presence of perception uncertainty. Chance constrained temporal
logic (C2TL) is proposed to capture correctness specifications in the presence
of uncertainty. The autonomous vehicle control synthesized by our technique is
guaranteed to satisfy the probabilistic specifications, as demonstrated in several
case studies.
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Abstract. We consider the problem of synthesizing an obfuscation pol-
icy that enforces privacy while preserving utility with formal guarantees.
Specifically, we consider plants modeled as finite automata with pre-
defined secret behaviors. A given plant generates event strings for some
useful computation, but meanwhile wants to hide its secret behaviors
from any outside observer. We formally capture the privacy and utility
specifications using the automaton model of the plant. To enforce both
specifications, we propose an obfuscation mechanism where an edit func-
tion “edits” the plant’s output in a reactive manner. We develop algo-
rithmic procedures that synthesize a correct-by-construction edit func-
tion satisfying both privacy and utility specifications. To address the
state explosion problem, we encode the synthesis algorithm symbolically
using Binary Decision Diagrams. We present EdiSyn, an implementa-
tion of our algorithms, along with experimental results demonstrating
its performance on illustrative examples. This is the first work, to our
knowledge, to successfully synthesize controllers satisfying both privacy
and utility requirements.

1 Introduction

Many systems transmit information to the outside world during their opera-
tion. For example, location-based services require devices such as smartphones
to transmit location information to other devices or to servers in the cloud. Sim-
ilarly, in defense and aerospace applications, a network of drones may need to
broadcast location information to a variety of agents, including other drones,
ground personnel, and remote base stations. These settings often involve nodes
that are resource-constrained or connected in ad-hoc, dynamically-changing net-
works. Some of the transmitted information may reveal secrets about the system
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or its users; therefore, privacy is an important design consideration. At the same
time, the agents to which this information is being sent must have enough infor-
mation to provide relevant services or perform other actions. Thus, the trans-
mission of information from the system to the outside world needs to balance
the contrasting requirements of privacy and utility.

Consider the following illustrative example:

Example 1. We consider a user Alice moving in a building. Information about
Alice’s location needs to be sent to a server and other agents in order to perform
some useful actions; e.g., adjusting the heating system based on Alice’s location
and other occupancy levels in the building, or directing her to the closest coffee
machine. Suppose also that there are some “secret” locations, and that Alice
does not want others to know when or whether she visits these locations. An
example could be a room containing highly sensitive data, such that the mere
act of being able to visit it discloses compromising information that Alice wishes
to protect (i.e., there are only a handful of people who can visit this room, and
their identity is to be kept secret). However, Alice also wants the server to be
able to compute some information that is useful based on her location, because
otherwise Alice is always cold and uncaffeinated.

Suppose that an “event generator” (e.g., on Alice’s phone) generates events
based on her movements, and broadcasts these events to other agents. Suppose
further that the quality of the service that requires tracking Alice’s reported
location degrades based on the Euclidean distance from her true location. How
can one generate an output event stream that does not reveal whether Alice
visited a secret location while also providing sufficient accuracy for determining
her location for the relevant services?

Following the terminology used in supervisory control of discrete event sys-
tems [9], we refer to the combination of the event generator and the process it
is based on (Alice, in our example) as the plant. Our goal is to introduce an
element of decision-making into the event generator so that it can modify the
events to be output before relaying them in order to meet both the privacy and
utility requirements. We refer to this decision-making as an obfuscation policy.

In this paper, we present a formalization of this problem, along with an
algorithm to synthesize an obfuscation policy. We are given a plant modeled as
a finite automaton, with formally specified secret behaviors and a specification
of utility. The plant must generate event strings that provide sufficient utility
while hiding its secret behaviors from an outside observer. The privacy and
utility specifications are captured as automata-theoretic requirements on the
model of the plant. To enforce both specifications, we propose an obfuscation
mechanism whereby the plant edits its output in a reactive manner, such that
all resulting output strings provably satisfy the specifications. The presented
algorithm synthesizes a correct-by-construction edit function that maps true
executions of the plant to ones that achieve the privacy and utility specifications.

The paper is structured as follows. We first define the obfuscation problem in
Sect. 2. In Sect. 3 we describe our algorithm for automatically editing reported
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values. The treatment in this section is “explicit”, i.e., in terms of graph oper-
ations on discrete game structures. To address the state explosion problem, we
encode the synthesis algorithm symbolically using Binary Decision Diagrams
(BDDs) [1], as described in Sect. 4. We then demonstrate our approach empir-
ically in Sect. 5, using EdiSyn, an open source Python toolkit we developed
for this purpose. We conclude after a discussion about related work and future
directions.

2 Preliminaries and Problem Statement

2.1 Preliminaries

A Nondeterministic Finite Automaton (NFA) is a tuple G = (Q,Σ, δ,Q0) with
a finite set of states Q, a finite set of events Σ, a state transition function
δ : Q × Σ → 2Q, and a set of initial states Q0 ⊆ Q. An NFA G is called a
Deterministic Finite Automaton (DFA) when |Q0| = 1 and |δ(q, e)| ≤ 1 for every
state q ∈ Q and event e ∈ Σ. More explicitly, for a DFA as G = (Q,Σ, δ, q0), the
single initial state is q0 ∈ Q and the transition function is δ : Q×Σ → Q, which
deterministically defines the next state given the current state and the event.

Given an NFA transition function δ : Q × Σ → 2Q, we extend it to
δ∗ : Q × Σ∗ → 2Q recursively as follows: δ∗(q, ε) = {q}, δ∗(q, e) = δ(q, e),
δ∗(q, e1e2 · · · en) = ∪q′∈δ∗(q,e1)δ

∗(q′, e2 · · · en), where Σ∗ is the set of finite strings
of events and ε denotes the empty string. The language generated by G is the
set of strings defined by L(G) := {t ∈ Σ∗ : ∃q0 ∈ Q0 s.t. δ∗(q0, t) �= ∅}. A DFA
transition function δ : Q × Σ → Q is extended to δ∗ : Q × Σ∗ → Q in a similar
manner. Also, the language of a DFA is defined similarly. Given string t, we use
t′ � t to denote that string t′ is a prefix of t, and use t1:k to denote the length-k
prefix of t. Finally, |t| denotes the length of t.

In this paper, the system of interest, called the plant, is modeled as a DFA
G = (Q,Σ, δ, q0). In our model, the state of the plant cannot be observed directly.
However, upon each transition, an event is emitted and can be observed by an
outside observer. Hence, an outside observer can infer the state of the plant
based on the observation of the string of events emitted upon transitions.

2.2 Threat Model

We consider a scenario where the plant G has a set of secret states QS ⊂ Q that
need to be kept hidden from the outside observer. The observer of the plant’s
output strings is a passive-but-curious adversary that has a copy of G, and can
see all strings output by the plant; the observer can mimic transitions in its
copy of G based on the output strings. We assume that the observer is also a
legitimate recipient in the sense that the plant emits strings in order to deliver
some information to the observer. However, the plant also wants to hide from
the observer whether it is ever in a secret state.

In the following, we will call a string t ∈ L(G) a secret string if δ∗(q0, t) ∈ QS

and a public string otherwise.
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Example 2. Alice and Bob are trying to arrange a secret meeting to exchange a
top secret package in a m × n grid world. We model the generator of Alice and
Bob’s movements as a plant G = (Q,Σ, δ, q0) with secret states QS , where

– The set of states is Q = Loc2 ∪ {init} where Loc = {1, · · · ,m × n} contains
the set of all locations on the grid word.

– The set of events is Σ = {aijbkl : i, j, k, l ∈ Loc}, where aijbkl specifies Alice’s
movement from i to j and Bob’s movement from k to l.

– The transition function δ is defined such that, for both Alice and Bob, only
moving to neighboring locations or staying at the current location is allowed.

– The set of secret states is QS = {(i, k) ∈ Loc : i = k}, where Alice and Bob
are in the same location.

We show in Fig. 1 the 2 × 2 grid world and a partial plant automaton of G
representing the generator of Alice and Bob’s movements. The full model of
G contains 17 states and 144 events. Because of space limitations, we do not
draw all the states and transitions, and only show a partial plant automaton
of G. State init is introduced to model the initial moment when no locations
from Alice and Bob have been reported. For each state (i, j) ∈ Loc2, there is a
transition from init to (i, j) with event label aiibjj . For each state (i, j), there is a
transition from (i, j) to (k, l) with event label aikbjl as long as k is a neighboring
location of i and l is a neighboring location of j. The red states in G are secret
where Alice and Bob meet in the same location.

Let the quality of the service degrade with the L1 distance from Alice’s and
Bob’s true locations. That is, the quality loss from state (i, j) to state (k, l) is
||(ix, iy, jx, jy)−(kx, ky, lx, ly)||1 = |ix −kx|+ |iy −ky|+ |jx − lx|+ |jy − ly|, where
ix and iy are the x-coordinate and y-coordinate of location i, and similarly for
locations j, k, l. Hence, in reporting the locations of Alice and Bob, we would like
to maintain the L1-distance between the real and the reported locations within
some allowable range. This could be because we want an external observer to be
able to track the progress of Alice and Bob towards their goal of meeting, while
not knowing exactly when or where they meet.

2.3 Edit Functions

To defend against attacks as described in the previous section, we propose to add
an interface at the output of the plant that hides secret strings while preserving
the utility of the original string. The interface edits the plant’s original string t
as it is produced (“online”), such that the resulting string t̃ after editing never
reveals the secret, and yet preserves the utility of t within an allowable range. As
this interface is a function that maps each plant output event to another event
or string, we refer to it as an edit function.

We permit edit functions fe : Σ∗ × Σ → Σ∗ that map an output event to
another event or string with one replacement, deletion, or insertion operation.
Given past output string t, fe(t, e) = o means that the plant’s output event e
is edited to o. Note that o ∈ Σ∗ in general because we allow event insertion as
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Fig. 1. The 2×2 grid world and a partial plant automaton G representing the generator
of Alice and Bob’s movements. (Color figure online)

well as deletion. If event e is deleted, then the output is o = ε; on the other
hand, if a string tI is inserted before e, then the output is o = tIe. Every edit
function is causal : it can only edit the current output event e and not any
previous output. For convenience of notation, we also define a string-based edit
function f̂e : Σ∗ → Σ∗ recursively from fe such that f̂e(ε) = ε and f̂e(te) =
f̂e(t)fe(t, e). Note that, in general, f̂e is a partial function, and f̂e(t) may only be
defined for selected t ∈ Σ∗. Also, since an edit function is causal, its string-based
version is prefix-preserving : ∀t1, t2 ∈ Σ∗, t1 � t2 ⇒ fe(t1) � fe(t2). An edit
function of the above form can be implemented by a deterministic, potentially
infinite-state automaton, which we call the edit automaton, and denote by EA =
(S,Σ, Trans, s0). The elements of the EA tuple are the set of states S, the set of
events Σ, the transition relation Trans ⊆ S×Σ×Σ∗×S, and the initial state s0.
Each transition in Trans is a tuple (s, e, o, s′) of the starting state s, the input
event e, the output string o, and the target state s′. Given an edit function fe,
there is a corresponding transition relation Trans with (s, e, o, s′) ∈ Trans iff
fe(t, e) = o and s is the state reached on input string t. The transition relation
for fe is deterministic: ∀s ∈ S,∀e ∈ Σ, |{s′ : (s, e, o, s′) ∈ Trans, o ∈ Σ∗}| = 1.

Throughout the paper, we use “edit” to collectively refer to any replacement,
deletion, and insertion operation. We will call the output string from the plant
as the original string t, and call the string after editing as the obfuscated string t̃.

2.4 Problem Formulation

Our goal is to synthesize an edit function fe that hides the plant’s secret strings
while preserving the utility of the original strings within some allowable range.
We capture the utility of each original string t by the final state that is reached
by t in the plant DFA, and define the utility loss in mapping t to t̃ by the utility
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difference between the states reached by t and t̃. Without loss of generality, we
model the utility loss by an integer-valued distance metric D : Q × Q → N. The
formal statement of the synthesis problem is as follows:

Problem 1 (Edit Synthesis). Given a plant modeled as DFA G = (Q,Σ, δ, q0)
with a set of secret states QS ⊂ Q, utility distance D : Q × Q → N, and
accuracy budget W ∈ N, construct an edit automaton EA = (S,Σ, Trans, s0)
implementing an edit function fe such that:

(1) ∀t ∈ L(G), f̂e(t) is defined
(2) ∀t ∈ L(G), δ∗(q0, f̂e(t)) �= ∅ and δ∗(q0, f̂e(t)) �∈ QS (privacy specification)
(3) ∀te ∈ L(G) where t ∈ Σ∗ and e ∈ Σ, D

(
δ∗(q0, te), δ∗(q0, f̂e(t)o)

) ≤ W and
D

(
δ∗(q0, t), δ∗(q0, f̂e(t)o1:k)

) ≤ W where o = fe(t, e), for k = 1, . . . , |o| − 1
(utility specification)

Remark 1. Note that the privacy specification is a safety property on the output
of the edit function.

3 Edit Synthesis Algorithm

We solve Problem 1 by formulating it as a safety game between the edit function
and the plant. Such game formulations are common for program synthesis, where
the program is modeled as a protagonist playing against the adversarial envi-
ronment, with the goal of satisfying a given specification. For the edit synthesis
problem, the edit function is the “program” to be synthesized, and the plant is
the environment that provides inputs to the edit function: adversarialism here
means that the plant can evolve arbitrarily, and the edit function must satisfy
the specification under all possible evolutions.

3.1 Edit Patterns Satisfying the Specifications

To construct the game, we first want to easily determine whether an edit pattern
satisfies the privacy and utility specifications. One challenge is that determining
whether an edit pattern satisfies the privacy and utility specifications requires
examining not only the obfuscated string, but also its distance from the origi-
nal string. Fortunately, we can construct an NFA that recognizes all valid edit
patterns.

Lemma 1. There exists an NFA PA, with state space O(|Q|2), that recognizes
all edit patterns satisfying the privacy specification in Problem 1.

Proof Sketch. Given G, we first build the “edit-pattern”NFA Ge = (Q,Σ ∪
{ε}, δe, q0) that recognizes all edit patterns, by adding transitions to G. Transi-
tion function δe is defined with respect to decomposition δe := δ ∪ δr ∪ δi. More
concretely, consider the plant G in Fig. 1(b). The corresponding Ge is built as
shown in Fig. 2(a), such that (i) all original transitions exist, as depicted by the
(black) solid arrows; (ii) the replacement transitions δr are defined by adding
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a replacement transition for every event in parallel with the original transition,
as depicted by the (red) dashed arrows; and (ii) the insertion transitions δi are
defined by adding a self loop for every event at every state, as depicted by the
(blue) dotted arrows. No replacement or insertion transition is added if an origi-
nal transition for the given event already exists. Deletion is subsumed by replace-
ment, as deleting an event is the same as replacing the event by the empty string
ε. We then construct in Fig. 2(b) the “public-behavior” DFA Gp = (Q,Σ, δp, q0)
from G, by pruning away all secret states. Finally, to find all edit patterns sat-
isfying the privacy specification, we compose Ge and Gp and build the product
automaton PA. Specifically, the composition synchronizes δ and δp (the original
transitions), δr and δp (the replacement transitions), and δi and δp (the insertion
transitions), thereby preserving the edit choices. In sum, since Ge recognizes all
edit patterns and Gp recognizes all public behaviors, PA recognizes each edit
pattern for which no obfuscated string ever visits secret states. 
�

Fig. 2. Partial automata of the edit-pattern NFA Ge and the public-behavior DFA Gp

for the plant G in Fig. 1(b). In Ge, the solid black arrows depict the original transitions,
the dotted blue arrows depict the insertion transitions, and the dashed red arrows depict
the replacement transitions. (Color figure online)

Note that, as an interface at the output of the plant, the edit function does not
change the plant’s original dynamics. This feature is captured in our construction
of Ge: neither insertion nor replacement transition changes the real plant state
in Ge. Consider an edit pattern with t, t̃, and edit operations. We can uniquely
determine a path because each edit transition function is deterministic. Given
an edit pattern from t to t̃, by the construction of PA, the ending state of the
trace of this edit pattern in PA is a state pair (qe, qp) where qe = δ∗(q0, t) is the
plant’s real state and qp = δ∗(q0, t̃) is the state perceived by the outside observer
based on t̃. Hence, with PA capturing the pair (qe, qp) = (δ∗(q0, t), δ∗(q0, t̃)) for
every t, we can now build from PA an NFA that recognizes all edit patterns
satisfying both the privacy and the utility specifications.
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Lemma 2. There exists an NFA A, with state space O(|Q|2), that recognizes all
edit patterns satisfying the privacy and the utility specifications in Problem 1.

Proof. Consider PA from Lemma 1 that recognizes all edit patterns satisfying
the privacy specification. Because the distance function D is defined with respect
to state pairs, we can determine if the given edit pattern violates the utility
specification based on the reached state pair in PA. That is, we can build A
from PA by pruning all (qe, qp) where D(qe, qp) > W . 
�

3.2 Safety Game Formulation

The edit synthesis problem is formulated as a safety game between the edit
function and the plant. In the safety game, the outputs of the plant are the
inputs to the edit function, and the edit function must react to its inputs (i.e.,
the plant’s outputs) and satisfy both the privacy and the utility specifications. If
the edit function can reactively satisfy the specifications regardless of what the
plant does, then its reactions form a winning strategy in the formulated safety
game. Conversely, a winning strategy in the safety game can be converted into
an edit function that solves the edit synthesis problem.

Formally, a two-player safety game structure is GS = (V1, V2, Σ, ρ1, ρ2, v0)
where V1 and V2 are sets of game positions, Σ is the action set, ρ1 : V1×Σ → V2

and ρ2 : V2 × Σ∗ → (V1 ∪ ⊥) are the transition functions, and v0 ∈ V1 is the
initial position. We note that, actions of the edit function are strings in Σ∗ and
ρ2 has a domain of V2 × Σ∗ because the edit function can react by inserting a
string. The game starts with player 1, and subsequent plays alternate between
players 1 and 2. Position ⊥ is a special position where player 2 loses and player
1 wins.

In the game corresponding to the edit synthesis problem, player 1 is the plant,
who moves on positions in V1 according to transition function ρ1, and player 2
is the edit function, who moves on positions in V2 according to ρ2. A play of
GS is a sequence of positions v0v1v2 · · · ∈ (V1V2)∗ that starts from the initial
position. Given a play, the edit function wins if ⊥ is never visited, and the plant
wins otherwise.

Consider the automaton A = (Q2, Σ∪{ε}, δA, qA,0) in Lemma 2. Recall from
Lemma 1 that the transition function of Ge is decomposed, and the synchronous
composition used to obtain PA distinguishes edit choices. Hence, δA can also be
decomposed into the original transition function δA,o, the replacement transition
function δA,r, and the insertion transition function δA,i. We build the safety
game structure GS = (V1, V2, Σ, ρ1, ρ2, v0) between the edit function and the
plant from A as follows.

– V1 = Q2 ∪ {⊥}, V2 = Q2 × Σ
– ρ1 : V1 × Σ → V2 is defined such that ∀(qe, qp) ∈ V1,∀e ∈ Σ,

ρ1((qe, qp), e) = ((qe, qp), e) if δ(qe, e) �= ∅
– ρ2 : V2 × Σ∗ → V1 is defined such that ∀((qe, qp), e) ∈ V2,∀o ∈ Σ∗, we have

the following four cases:
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(i) ρ2
(
((qe, qp), e), o

)
= δA,o((qe, qp), e) if o = e and δA,o((qe, qp), e) �= ∅

(ii) ρ2
(
((qe, qp), e), o

)
= δA,r((qe, qp), o) = (q′

e, q
′
p) if o ∈ (Σ \ {e}) ∪ {ε},

δA,r((qe, qp), o) �= ∅, and q′
e = δ(qe, e)

(iii) ρ2
(
((qe, qp), e), o

)
= δA,o

(
δ∗
A,i((qe, qp), tI), e

)
if o = tIe, tI ∈ Σ∗, and

δA,o

(
δ∗
A,i((qe, qp), tI), e

) �= ∅
(iv) ρ2

(
((qe, qp), e), o

)
= ⊥ if none of cases (i)–(iii) holds

– v0 = qA,0 = (q0, q0)

Transition functions ρ1 and ρ2 define all possible actions of the plant and the
edit function, respectively. Specifically, ρ1 captures the plant dynamics and is
determined by the plant’s transition function δ. On the other hand, ρ2 defines
all edit actions. Cases (i)–(iii) are edit actions defined in A, which by Lemma 2
satisfy both the private and the utility specifications. In particular, the edit
function outputs the original event from the plant in case (i), replace or delete
the plant’s original output event in case (ii), insert events before the plant’s
original output event in case (iii). In case (iv), the edit action cannot satisfy the
specifications and leads to the losing position ⊥. For every plant’s output event,
the edit function reacts with one edit operation.

4 Symbolic Encoding of Edit Synthesis

So far we have assumed that the plant automaton model in the edit synthesis
problem is given explicitly, i.e., as an explicit list of states and transitions. How-
ever, in practice, such explicit representations lead to what is known as the state
explosion problem: a system with n variables that take k possible values requires
at least kn states to model, and thus these models quickly become impractical.
In order to mitigate the state explosion problem, we represent the plant model
symbolically using sets of states and sets of transitions, both represented com-
pactly as implicit solutions to logical equations. We can then analyze the state
space symbolically using Binary Decision Diagrams (BDDs) [1]. By using BDDs
to reason about propositional formulas representing the state space, we avoid
building the state graph explicitly.

In this section, we present our encoding of the given plant automaton sym-
bolically using propositional formulae. We will explain how the safety game can
be constructed symbolically, as well as how to extract a winning edit strategy
from the symbolic encoding of the safety game.

4.1 Symbolic Automata

Given an explicit DFA G = (Q,Σ, δ,Q0), we encode G symbolically as
(BQ, BΣ ,Δδ, bq0), where BQ = {yq

1, · · · , yq
n} is the set of Boolean variables that

encode the states, BΣ = {ye
1, · · · , ye

m} is the set of Boolean variables encoding
the events, Δδ : BQ ×BΣ ×BQ′ → {0, 1} is the propositional formula represent-
ing the transition function δ, and bq0 is the Boolean encoding of the initial state.
The primed set BQ′

= {yq′
1 , · · · , yq′

n } is the Boolean variables that encode the
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target states in transitions. Given Boolean variable set {y1, · · · , yn}, we use y
to denote the variable tuple (y1, · · · , yn). We will write χ(b) if a function χ over
variables y is evaluated with the Boolean vector b = (b1, · · · , bn). For a function
χ of variables y, we use χ{y ← z} to denote the new function obtained from χ
with the variable yi renamed to zi.

With a slight abuse of notation, we write bq ∈ Q if bq is the Boolean encoding
of a state in Q and use bq directly to refer to the given state; similar notation
applies for events and primed states. We use Δ to denote the propositional
formulae for transition functions. Propositional formula Δδ is defined such that
Δδ(bq, bΣ , bq′) = 1 iff bq′ ∈ δ(bq, bΣ).

To symbolically solve the edit synthesis problem, it remains for us to encode
the privacy and utility specifications. We encode the secret state set QS as a
Boolean function χQS

: BQ → {0, 1} such that χQs
(bq) = 1 iff state bq ∈ QS .

Given the utility distance function D and the accuracy budget W , we construct
a propositional function ΔDW

: BQ × BQ′ → {0, 1} such that ΔDW
(bq, bq′) = 1

iff D(bq, bq′) ≤ W ; i.e., the accuracy loss in obfuscating state bq to state bq′ is
bounded by the given budget.

4.2 Symbolic Game Structure

We are now ready to solve the edit synthesis problem symbolically. Consider
the plant modeled as a symbolic automaton G = (BQ, BΣ ,Δδ, bq0), the sym-
bolic encoding of secret states χQS

, and the propositional formula for the utility
specification ΔDW

. We follow the procedures in Sect. 3, first building symbolic
intermediate automata Ge, Gp, PA, and A and then build the symbolic game
structure.

First, we construct the symbolic edit-pattern NFA Ge = (Be, BΣ ,Δδe
, be0)

where:

– Be = {yq
1, · · · , yq

n} are the Boolean variables for the original plant states.
– Δδe

= Δδ ∨ Δδr
∨ Δδi

where
• Δδ defines the original transitions.
• Δδr

= (∃yΣ .Δδ) ∧ ¬Δδ defines the replacement transitions.
• Δδi

= (yq ⇔ yq′) ∧ ¬Δδ defines the insertion transitions.
– be0 = bq0

We can similarly build the symbolic public-behavior DFA Gp =
(Bp, BΣ ,Δδp

, bp0), where Bp are the Boolean variables for the fake states and
Δδp

prunes all secret states. Next, we build the product automaton PA from
Ge and Gp, and then prune the state pairs that violate the utility specifica-
tion to obtain A = (BA, BΣ ,ΔδA

, bA0). Here ΔδA
= Δδe

∧ Δδp
∧ χDW

{yq′ ←
yp} = ΔδA,o

∨ΔδA,r
∨ΔδA,i

is decomposed into the original transitions ΔδA,o
, the

replacement transitions ΔδA,r
, and the insertion transitions ΔδA,i

for technical
convenience later. Symbolic automaton A recognizes all edit patterns satisfying
the privacy and utility specifications.
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Finally, we build the symbolic game structure GS = (BV , BI , BO,Δρ1 ,

Δρ2 , b
v0). Let yA = (yq

1, · · · , yq
n, yp

1 , · · · , yp
n), we will use yA

⇓q to denote the

projection of of yA onto variables yq
i . That is, yA

⇓q = (yq
1, · · · , yq

n). Similarly,

yA
⇓p = (yp

1 , · · · , yp
n).

– BV = BA are the Boolean variables encoding the game positions.
– BI = BΣ are the Boolean variables for the plant’s actions. Superscript I

means they are input variables to the edit function.
– BO = {yO

1 , · · · , yO
m} are the Boolean variables for the edit function’s actions.

Superscript O means they are output variables of the edit function.
– Δρ1 : BV × BI → {0, 1} such that Δρ1(yA, yΣ , yA′) = Δδ(yA

⇓q, y
Σ , yA′

⇓q)
– Δρ2 : BV × BI × BO × BV ′ → {0, 1} that is decomposed into Δρ2,or ∨ Δρ2,i

• Δρ2,or(yA, yΣ , yO, yA′) =(
Δδ(yA

⇓q, y
Σ , yA′

⇓q) ∧ ΔδA,o
(yA, yΣ , yA′){yΣ ← yO}

)
∨

(
Δδ(yA

⇓q, y
Σ , yA′

⇓q) ∧ ΔδA,r
(yA, yΣ , yA′){yΣ ← yO}

)

• Δρ2,i(yA, yΣ , yO, yA′) =

∃yA′′ .
(
yA′′ ∈ Reachi(yA) ∧ ΔδA,o

(yA′′ , yΣ , yA′)
)
, where

∗ Posti(Z) = {yA′ | ∃yΣ∃yA.(yA ∈ Z) ∧ ΔδA,i
(yA, yΣ , yA′)}

∗ Reachi(yA) = μZ.Posti(yA) ∨ Posti(Z)
– bv0 = bA0

Observe that Δρ2 is decomposed into two parts, one containing the original
and the replacement actions Δρ2,or, and another containing only the insertion
actions Δρ2,i. We make this partition because the outputs for insertion actions
are in general strings whose lengths are not known in advance. To symboli-
cally encode all such output strings, we would need to introduce a potentially
unbounded number of Boolean variables corresponding to all possible events and
intermediate states on allowed output strings. To avoid this, we only encode in
the game construction whether it is possible for the edit function to react with
an insertion action. That is, a transition (bV , bI , bO, bV ′) |= Δρ2,i if it is possi-
ble to move from position bV to position bV ′ with insertion. Here, the output
bO is unconstrained as it is not used: the actual insertion string will be com-
puted explicitly in the synthesis algorithm in Sect. 4.3. We use μ-calculus [3,6]
to formulate the problem of determining whether it is possible to apply insertion
actions. The μ-calculus formula μZ.Posti(yA)∨Posti(Z) is the least fixed point
that computes all positions that are reachable from yA via a non-zero length
insertion string.

When computing Δρ2,i(yA, yΣ , yO, yA′), the intermediate steps of the fix-
point computation Reachi(yA) encode the insertions themselves, and are stored
in a data structure ins to be used later to extract the edit function. Informally,
we store in ins

yA,yΣ [i] the set of positions reachable from yA via an insertion

string of length i followed by an input event yΣ .
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4.3 Synthesis

With the game structure GS, we now compute the set of winning positions for
the edit function and synthesize a winning edit strategy in Algorithm 1. We
characterize the set of winning positions W using a μ-calculus formula. Specif-
ically, in step 2, the μ-calculus formula νZ.Pre(Z) is the greatest fixed point
containing all positions where the edit function can continuously react to the
plant with a winning edit action. If W does not contain the initial position bv0 ,
then Algorithm 1 returns that the edit synthesis problem is not feasible; i.e.,
Problem 1 has no solution. Otherwise, there exists a winning edit strategy and
we synthesize, starting from step 4, a winning edit automaton EA by breadth-
first search on the winning positions. The initial state of EA is the initial position
bv0 of GS. Steps 6–18 compute concrete winning actions and construct the cor-
responding explicit edit automaton. χs is the set of explored positions in GS.
In each iteration, we take newly-reached positions χs,diff and compute in step 9
the one-step winning actions act from χs,diff , using function Winning Actions.
With act being computed, in the inner while loop, we extract concrete transi-
tions in act. In step 12, function Extract One extracts one concrete transition.
Then, in step 18, we subtract from act all transitions with the same game posi-
tion bV and plant output event bI , as an edit action for that position and event
has already been found. This inner while loop terminates until act is empty. In
each iteration, if the extracted transition is an insertion action, then we compute
the output string for the insertion action using function Compute Insert Out.
Otherwise, the output is the event bO in the extracted transition.

Function Compute Insertion returns a string o of legal insertion events lead-
ing from position bV to bV ′ on input bI , and we describe it here informally. Recall
the data structure ins stored during the fixpoint computation that defines Δρ2,i

in Sect. 4.2. Since (bV , bI , bO, bV ′) |= Δρ2,i, we have bV ′ ∈ ins
bV ,bI [i] for some

i ≥ 0. Informally, bV ′ is reachable from bV via an insertion string of length
i followed by bI . Note that we will want to find a shortest such i, for which
bV ′ ∈ ins

bV ,bI [i] but bV ′ �∈ ins
bV ,bI [i − 1]. Now, we can reconstruct a path of

insertions from bV to bV ′ by working backwards from ins
bV ,bI [i] as follows. Set

oi = bI . At each iteration, we extract an insertion action oi−1 that leads from
ins

bV ,bI [i − 1] to ins
bV ,bI [i]. We repeat this until we arrive at ins

bV ,bI [0] = bV .
The resulting o = o0o1...oi is the output after insertion.

Theorem 1. Given a plant G with a set of secret states QS, utility dis-
tance D, and accuracy budget W , Algorithm 1 returns a finite edit automaton
EA = (S, Trans, s0) that solves Problem 1, if one exists, and declares infeasibility
otherwise.

Proof. Recall that the game structure GS is constructed from Ge that recognizes
all edit patterns. Hence, the symbolic GS enumerates all edit strategies in a finite
structure that satisfy the privacy and utility specifications before potentially
reaching a losing position. Because the winning set W is a set of positions where
the edit function can continuously react to the plant with an edit action satisfying
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Algorithm 1. Edit function synthesis
input : G = (Q, Σ, δ, q0), QS ⊂ Q, D : Q × Q → N, W ∈ N

output: EA = (S, Trans, s0)

1 Construct GS = (BV , BI , BO, Δρ1 , Δρ2 , bv0) per Sect. 4.2
2 Compute winning set W = νZ.Pre(Z) where

Pre(Z) =

{yA | ∀yΣ ∀yA′
⇓q ∃yA′

⇓p ∃yO.
[
Δρ1(y

A, yΣ , yA′) ⇒ yA′ ∈ Z ∧ Δρ2(y
A, yΣ , yO, yA′)

]
}

3 if W ∧ bv0 = False then
return Infeasible

4 s0 := bv0 , S ← {s0}
5 χs ← bv0 , χs,old ← False

6 while χs 
= χs,old do
7 χs,diff ← χs ∧ ¬χs,old

8 χs,old ← χs

9 act ← Winning Actions(χs,diff , Δρ1 , Δρ2 , W)

10 χs ← χs,old ∨ act⇓A{yA′ ← yA}
11 while act 
= False do

12 (bV , bI , bO, bV ′) ← Extract One(act)

13 S ← S ∪ {bV ′}
14 if (bV , bI , bO, bV ′) |= Δρ2,i then

15 o ← Compute Insertion((bV , bI , bO, bV ′))

else

16 o ← bO

17 Trans ← Trans ∪ {(bV , bI , o, bV ′)}
18 act ← act ∧ ¬(bV ∧ bI)

19 return (S, Trans, s0)

the specifications, we can synthesize an edit automaton that solves Problem 1
iff the initial game position is winning. A winning edit strategy can in general
require memory: it can choose different edit actions based on the history. But
because the game is a safety game, we can convert any such strategy to a winning
memoryless strategy by repeatedly selecting the same edit action every time it
visits the same game position. In fact, Algorithm 1 considers only memoryless
edit strategies. Therefore, the synthesized edit automaton is guaranteed to be
finite.

4.4 Complexity

Computing the winning set W, which is expressed as a μ-calculus formula of
alternation depth 1, can be solved with effort O(N) where N is the number of
states the game structure GS, which is O(n2) if n is the number of states in
the plant G. Here effort is measured in symbolic steps, i.e., in the number of
preimage computations in the fixpoint in step 1 of the Algorithm. Extracting an
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edit function also takes O(N), and hence Algorithm 1 has complexity = O(N) =
O(n2). However, constructing the game structure GS has additional complexity
O(N2) = O(n4) because of the least fixpoint computation for every state in the
game structure when computing Δρ2,i. In all, Algorithm 1 has complexity of
O(n4).

5 Case Studies and Experiments

We demonstrate our approach empirically using EdiSyn, an open source Python
toolkit we developed for this purpose1. EdiSyn implements the synthesis algo-
rithm based on Binary Decision Diagrams (BDDs), and relies on the cudd BDD
library [11] and dd [5], an open source Python binding to cudd. We ran EdiSyn
with Example 2 introduced in Sect. 2.2. The utility distance is defined based on
the L1 distance, as defined in Sect. 2.2. Finally, we let the accuracy budget be 2.

We shown in Fig. 3 the real and the obfuscated moving traces of Alice and
Bob. ti’s denote the time points where their locations are reported. The left
figure depicts the real moving traces. At time t2, Alice and Bob meet at location
(2, 2), which corresponds to a secret state. The right figure depicts the traces
output from the edit function. The edit function obfuscates their traces such
that Alice and Bob are never reported to be in the same location. Furthermore,
the distance between the original and the obfuscated locations always remain
within 2.

t0 

t0,t2 t1 t2 

t1 t0 

t0,t2 
t1 t2 

t1 

Fig. 3. Left: The original moving traces of Alice (in blue) and Bob (in red).
Right: The obfuscated moving traces output from the synthesized edit function. (Color
figure online)

We also ran EdiSyn with examples in the same settings but increasing grid
sizes. Gridk×k is the example where Alice and Bob move in the k × k grid world
and want to hide their secret meetings. The accuracy budget is set to 2 in all
examples. The results of this experiment are summarized in Table 1. For each
grid example, Table 1 shows the number of plant variables (i.e., the number
of states plus the number of events), the computation time of the symbolic
implementation, the peak number of BDD nodes, and the memory used during
the synthesis computation. The experiment was performed on an Intel Core i5
(2.4 GHz, 4 GB) machine running Mac OS X 10.10.5 Yosemite. While we also
1 EdiSyn is available at https://bitbucket.org/yichinwu/edisyn.

https://bitbucket.org/yichinwu/edisyn
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implemented the explicit (non-symbolic) algorithm, the explicit implementation
threw outOfMemory errors on all of the grid examples.

These are preliminary results based on a simple, unoptimized implementa-
tion. In addition to optimizing the implementation in terms of memory usage
and efficiency of operations, comparison of various variable ordering strategies for
the BDDs and reuse of intermediate stages of the fixpoint computations while
constructing the game structure are also acknowledged as worthy of further
exploration. Finally, observe that the synthesis algorithm is computed offline.
Once an edit function is synthesized, it can be used to efficiently edit the plant’s
output online.

Table 1. Scalability test for the grid world example, with a timeout of 60 minutes.

Example Variables Synthesis time (min) Peak nodes Memory (MB)

Grid2×2 161 0.05 21274 30.8

Grid3×3 1171 2.90 261446 151.3

Grid4×4 4353 42.37 1103200 637.7

Grid5×5 11651 Timeout N/A N/A

6 Related Work

This work combines perspectives and techniques from computer security and
formal synthesis. Our threat model and problem formulation are inspired by the
definition of differential privacy [2], where the consumers of data include both
legitimate receivers and adversaries, and the goal is to provide privacy while pre-
serving utility with respect to the desired data analytics. Informally, ε-differential
privacy guarantees that the resulting output is insensitive (up to a factor depen-
dent on ε) to the modification, deletion or addition of any single record in the
original dataset. Utility of a differentially private mechanism is evaluated using
query-dependent measures of the deviation between results obtained from the
original dataset obtained by applying the mechanism to the original dataset.
The edit functions in this work can be viewed as a discrete logic counterpart
of differentially private mechanisms; privacy and accuracy here are captured by
logical conditions on the edited executions of the plant in comparison with the
real executions. Additionally, most traditional approaches to providing privacy
rely on cryptographic primitives; however, such schemes require an infrastruc-
ture to create and distribute secret keys. In the settings we consider, especially
those involving ad-hoc and dynamic networks, and resource-constrained devices,
a non-cryptographic solution such as ours may be preferred.

There has been some previous work on the synthesis of artifacts enforcing
privacy requirements in the discrete logic setting. Specifically, synthesis for a
privacy notion called opacity has been explored by researchers in discrete event
systems; see e.g., [4,10,12]. The edit mechanism in this paper is related to but
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more powerful than the insertion mechanism developed in [12]. The most distin-
guishing feature of this work is the threat model. All existing works on synthesis
for opacity consider an threat model where every outside observer of the sys-
tem is malicious. In contrast, the malicious outside observer in this paper is
also endowed with some legitimate observational needs. As a consequence of this
different threat model, none of the above works addresses questions of the pre-
serving utility of observations. To the best of our knowledge, this paper is the
first attempt to formulate the synthesis problem for both privacy and utility.
Our work is also distinguished by the presentation of a symbolic encoding of
the solution. We encode the synthesis problems symbolically using Binary Deci-
sion Diagrams, and are thereby better equipped to address the state explosion
problem.

In addition to the field of discrete event systems, we draw inspiration from
recent work in robotics that considers the design of discrete filters satisfying pri-
vacy and utility constraints provided as pairwise distinguishability (and indis-
tinguishability) requirements on states [8]. Our work is most similar in spirit to
this effort, but our privacy and utility constraints are specified as automata the-
oretic winning conditions instead of pairwise requirements on states. In [8], the
requirements are satisfied via graph colorings: states that must be indistinguish-
able have the same color and ones to be distinguished are colored differently.
Our edit mechanism is more general, in that it also allows inserting fictitious
events.

Finally, the idea of editing event labels on automaton transitions is also
employed in [7], where the authors considered a selfish environment that edits the
inputs to the plant automaton. However, the focus in [7] is on deciding whether
the plant is resilient to such a selfish environment rather than on synthesizing
an edit strategy with privacy and utility objectives.

7 Conclusion and Future Work

We have defined the problem of synthesizing an obfuscation policy that enforces
privacy specifications while preserving utility. The specifications in this work
were captured as automata-theoretic requirements on a finite state model of
the plant’s outputs. Our method allows plants to generate and broadcast event
strings for some useful computation, while simultaneously hiding certain secret
behaviors from an outside observer. To enforce the privacy and utility specifica-
tions, we automatically synthesized an edit function that reacts to the plant’s
outputs and transforms them in a way that meets both requirements. Our syn-
thesis algorithm was encoded symbolically, improving the efficiency of obtaining
a solution. This is, to our knowledge, the first work to consider synthesis for
both privacy and utility specifications.

In this work, we considered simple privacy and utility specifications: in fact, our
privacy requirement is a safety guarantee. In the future, we will explore the use of
more complicated specifications to express these desirables. For example, temporal
logics are expressive tools for stating requirements. Formulating privacy andutility
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as temporal logic formulae would allow a much richer set of specifications. Also, so
far our utility specification has taken the form of an accuracy budget constraining
the distance between the real and released states. In the future, we will tackle an
optimization problem that asks the question, what is the smallest budget for which
the problem in this paper becomes feasible?
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Abstract. Reference counting is a popular technique for memory man-
agement. It tracks the number of active references to a data object during
the execution of a program. Reference counting allows the memory used
by a data object to be freed when there are no active references to it. We
develop the metatheory of reference counting by presenting an abstract
model for a functional language with arrays. The model is captured by
an intermediate language and its operational semantics, defined both
with and without reference counting. These two semantics are shown to
correspond by means of a bisimulation. The reference counting imple-
mentation allows singly referenced data objects to be updated in place,
i.e., without copying. The main motivation for our model of reference
counting is in soundly translating programs from a high-level functional
language, in our case, an executable fragment of the PVS specification
language, to efficient code with a compact footprint in a small subset of
a low-level imperative language like C.

1 Introduction

We present an abstract formal model of reference counting [4] in the context of
a simple intermediate language with an applicative semantics. We demonstrate
the soundness of an operational semantics with reference counting and in-place
updates for this model by establishing a bisimulation between it and the idealized
version. The intermediate language is used to generate efficient imperative code
with a small footprint in the C programming language from executable PVS
specifications. We present some performance comparisons against code written
directly in C.

The background for this work is the translation of programs in a high-level
specification language, in our case PVS [10], to a low-level language such as C
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using a code generator called PVS2C. Our formal model of reference counting
can also be used in other contexts, including other source and target languages,
in specific applications requiring memory management, and as a semantic frame-
work for static analysis. Strong typechecking in PVS ensures that the intermedi-
ate language programs generated from it do not trigger runtime errors including
type errors, out-of-bounds array accesses, null dereferences, or division by zero.
The only way they can fail is by exhausting stack or heap space.

To keep things simple, we restrict ourselves to arrays as the only aggre-
gate data structure accessed through references, since other data structures
can be handled similarly. The intermediate language contains constants, vari-
ables, let-bindings, conditionals, function application, new array constructors,
and updates. In PVS2C, the intermediate language has a type system to allow
bitwidths to be computed for numeric values, but we use an untyped interme-
diate language here to present the theory in its most general form. The syntax
of the intermediate language is flattened in a manner similar to the A-normal
form [6] so that compound expressions can only appear in the binding or body of
a let-expression or on the branches of a conditional expression. This allows the
order of evaluation to be fixed and simplifies the tracking of reference counts.

The idealized operational semantics for the intermediate language, given by
means of a small-step relation using evaluation contexts [5], implements array
updates nondestructively, i.e., by copying. We then augment the semantics with
a reference count that accurately tracks the number of active references during
evaluation. The semantics depends on a preprocessing step to eliminate redun-
dant let-bindings and to mark the final occurrence of each variable within its
scope. This allows the reference count for a reference to be decremented as soon
as a variable containing that reference is no longer active. The eager release of
references is critical since it allows the maximal safe use of in-place updates.
We then prove various metatheorems about the reference counting operational
semantics, including the main invariant that captures the meaning of the refer-
ence count. The operational semantics automatically discards data objects with
a zero reference count and admits in-place updates of references with a refer-
ence count of one. The use of evaluation contexts yields a simple proof for the
correctness of the operational semantics based on reference counting.

The formal model of reference counting allows a high-level language like
PVS with an applicative semantics to be implemented efficiently by means of
a low-level language like C without the need for an independent garbage col-
lector. Indeed, it is quite challenging to implement correct garbage collectors
directly for languages like C that admit explicit pointers, pointer arithmetic,
and typecasts [1]. Also, the use of a garbage collector does not help to identify
opportunities for safe in-place updates as reference counting does. Our reference
counting semantics correctly handles nested updates which pose challenges for
static update analysis employed in the existing PVS code generator [11]. Ref-
erence counting fails when there are reference cycles [9], but such cycles are
inadmissible in both the source language PVS and in the intermediate language.
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Our abstract model of reference counting is for an applicative language, such
as the functional subset of PVS. The reference counting semantics is exact, as is
demonstrated in Theorem 9. Our main result is captured in Theorem 10 which
establishes the correspondence between the idealized operational semantics of
the intermediate language and one based on reference counting and in-place
updates. The intermediate representation with the latter semantics can then be
translated to one of several implementation languages. The target language we
have used is C. Reference counting makes it easy to map executable operations
from a high-level representation like PVS to a low-level programming language
like C. We are currently working toward formally verifying the claims in this
paper using PVS, as a step toward establishing the semantic correspondence
between the generated C code and the source PVS definitions. The target C
code generated is suitable for compilation with the formally verified CompCert
compiler [8].

Reference counting is one of the oldest ideas in modern computing and there
is a large body of literature devoted to it. Much of the work on reference counting
is in the context of garbage collection [12]. Several popular programming lan-
guage, e.g., C++ (through smart pointers), D, Perl, PHP, Python, Smalltalk,
and Swift, support reference counting as a mechanism for memory management
that either avoids or reduces the need for garbage collection. Though reference
counting is a popular technique, both in language implementations and in appli-
cation software, there are very few abstract treatments of it in the literature.
Hudak [7] presents a denotational semantics for reference counting where each
occurrence of a variable is counted as a separate reference. Our model for ref-
erence counting does not count occurrences. Hudak’s semantic definition is pri-
marily used for abstract interpretation to compute useful approximations of the
reference counts. Chirimar et al. [2] describe an operational semantics for a com-
putational interpretation of linear logic based on reference counting. Their model
uses the primitives: share, to distribute a reference; dispose, to release a refer-
ence; store, creates a new shareable object (with reference counting) and fetch
accesses the value of a shareable reference. Since linearly typed variables can
be used exactly once along a branch of the computation, contents of shareable
variables, i.e., those of nonlinear type, have to be explicitly copied and disposed.
To our knowledge, none of the above models has been used in code generation.
Our approach is based on the more general case of an untyped intermediate lan-
guage with no explicit constructs for memory management. Reference counting
is directly embedded into the operational semantics of this language to sup-
port memory management and safe in-place updates. The theory underlying the
operational semantics covers any typed or untyped pure applicative functional
language with a fixed evaluation order.

2 Executing PVS Specifications

The PVS specification language is based on classical simply typed higher-order
logic augmented with predicate subtypes, dependent types, and algebraic and
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Fig. 1. PVS theory using nested arrays

coalgebraic datatypes. Here, we restrict our attention to a simple first-order
fragment of PVS. A PVS theory, as shown in Fig. 1, is a list of declarations of
constants, types, and formulas (axioms, lemmas, theorems). The types include
basic ones like bool and number, where the latter also has subtypes such as the
integers int the non-negative integers nat, the rational numbers rat, and the
real numbers real. A subtype of the elements of a type T satisfying a predicate
p can be defined as {x : T | p(x)}. For example, various subranges of integers can
be written this way, and a specific example of this is the type below(k) defined
as {x : nat | x < k}. For this presentation, the only number type used is nat32,
the type of unsigned 32-bit integers. An array type is any map from below(k) to
a range type, either nat32 or another array type as with the nestedArray type
shown in Fig. 1. Even though arrays are just functions in PVS, we treat them
as first-order entities for the present purpose. We also restrict ourselves to PVS
expressions consisting of constants, variables, function applications (including
array accesses), conditionals, let-expressions, updates, and lambda abstraction
(used solely to construct arrays). The code generator also handles records, tuples,
and algebraic datatypes.

3 The Intermediate Language and Its Operational
Semantics

We use a simple intermediate language based on A-normal form [6] to formalize
reference counting. We assume a set Θ of explicit reference constants excluding
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the empty reference nil and disjoint from the numeric constants. By convention,
the metavariables x, y, z range over variables, k ranges over numerals, c ranges
over numeric constants, u, v range over values (constants and explicit references),
w ranges over atomic expressions (i.e., variables and values), i and j range over
the natural numbers, a ranges over arrays, r ranges over reference constants
drawn from Θ, f ranges over function symbols, and d, e, g, and h range over
expressions. The language contains the following constructs.

1. Variables: x, y, z, etc.
2. Constants: Non-negative (machine) integers 0, 1, 2, etc., up to the maximum

representable, and explicit references from Θ.
3. Let: let x = e in h
4. Apply: f(x1, .., xn), where f is an n-ary operation.
5. Conditional: if x then e else g.
7. Update: x[y := z]
8. New Array: newInt(k) and newRef(k): Both operations create a fresh array

reference r of size k (a constant) with each r[i] initialized to 0 for newInt
and nil for newRef , for 0 ≤ i < k.

9. Array access: x[y]

The evaluation is carried out relative to a fixed program Δ where Δ(f) is a
definition of the form f(y1, . . . , yn) = e where yi �≡ yj for i �= j, and vars(e) ⊆
{y1, . . . , yn}. Expressions can also contain primitive operations like + and −
whose arguments and results must be non-references. The swap operation from
the PVS theory in Fig. 1 is represented in the intermediate language as shown
below.

swap(x, y, z)
= let y1 = x[y] in let z1 = x[z] in let x1 = x[y := z1] in x1[z := y1]

The expression grammar is extended to include explicit reference constants.
The initial expression being evaluated should be pure, i.e., not contain such
occurrences, but they can appear during evaluation, e.g., as the value of
newInt(k) or newRef(k)). We also add an expression form pop(e) that is
used during evaluation to record the need to pop the stack to terminate the
scope of a let-binding. A value v now is either a variable, a constant, or an
explicit reference. Let S(x) represent the topmost binding for x in stack S, and
S(v) is just v itself.

The operational semantics employs an evaluation context E{} which is a
kind of expression that contains exactly one occurrence of the hole {} as a
subexpression.1 The result of filling the hole in the evaluation context E{} with
an expression g is represented as E{g}. An expression e is evaluated by first
decomposing it as E{g} where g is a redex. The redex g is reduced to the residue
g′ in a single evaluation step, so that a single step of evaluation applied to e

1 Braces are used instead of square brackets to represent holes to avoid confusion with
array accesses and updates.
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yields E{g′} along with modifications to the store R and stack S. Evaluation
contexts can be defined by the grammar

K := {} | let x = K in g | pop(K)

From this definition, it follows that evaluation contexts are of one of the forms

1. {}
2. let x = {} in g
3. pop({})
4. The composition E1{E2{}} of two evaluation contexts E1{} and E2{}.

It also follows that any free variable occurrences in g are also free in E{g}.
The small-step operational semantics is given in terms of an evaluation state

that is a triple 〈e,R, S〉 consisting of

1. An expression e
2. A store R which is a partial map from nonempty references dom(R) ⊆ Θ, to

arrays, and
3. A stack S binding variables to values.

We define some purely mathematical operations that are used in the defini-
tion of the operational semantics of the intermediate language. For an array a of
size k, the operation update(a, i, v) for i < k defines an array a′ such that for any
j < k, a′(j) = a(j) if i �= j, and a(j) = v, otherwise. The operation pop(S) pops
the stack by dropping the top element, and push(x, v, S) is the stack obtained
by pushing the binding of x to v on the top of S. Let x represent a sequence
x1, . . . , xn of variables and v represent a sequence of v1, . . . , vn of values. We
overload S(x) to represent the sequence S(x1), . . . , S(xn), and push(x, v, S) to
represent push(xn, vn, . . . push(x1, v1, S) . . .) when x and v have the same length.
We assume that any intermediate expressions have been preprocessed to replace
let x = e in g by g, when x does not occur free in g, and let x = y in g by
g[x �→ y], the result of substituting y for the free occurrences of x in g. The
operation R{r �→ a} updates or extends the store R so that it maps r to a, and
behaves like R, otherwise.

The reduction rules are given below by the relation 〈e,R, S〉 −→ 〈e′, R′, S′〉.
In each of these rules, the left-hand side is a triple 〈e,R, S〉, where e is redex.

1. 〈let x = v in g,R, S〉 −→ 〈pop(g), R, push(x, v, S)〉.
2. 〈f(x1, . . . , xn), R, S〉 −→ 〈v,R, S〉, for a primitive operation f , where

f(S(x1), . . . , S(xn)) evaluates to v. The values v, S(x1), . . . , S(xn), must all
be non-references.

3. 〈f(x1, . . . , xn), R, S〉 −→ 〈popn(e), R, push(y, S(x), S)〉, where
Δ(f) = (f(y1, . . . , yn) = e).

4. 〈if v then e else g,R, S〉 −→
{ 〈e,R, S〉, if S(v) �= 0

〈g,R, S〉, if S(v) = 0
5. 〈x[y := z], R, S〉 −→ 〈r,R{r �→ update(R(u), v, w)}, S〉, where r is fresh,

u = S(x), v = S(y), w = S(z).
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6. 〈newInt(w), R, S〉 −→ 〈r,R′, S〉, where k = S(w), R′ = R{r �→ a}, a[i] = 0
for i from 0 to k − 1, r is fresh.

7. 〈newRef(w), R, S〉 −→ 〈r,R′, S〉, where k = S(w), R′ = R{r �→ a}, a[i] =
nil for i from 0 to k − 1, r is fresh.

8. 〈x[y], R, S〉 −→ 〈R(S(x))[S(y)], R, S〉.
9. 〈pop(v), R, S〉 −→ 〈v,R, pop(S)〉.

10. 〈pop(x), R, S〉 −→ 〈S(x), R, pop(S)〉.
The small step semantics operates on an evaluation state 〈e,R, S〉 consisting

of an expression e, a store R and a stack S. The evaluation starts in an initial
state with the original program e which contains no free variables, explicit ref-
erences, nor occurrences of the pop operation, along with an empty store and
stack: 〈e, ∅, ∅〉. In each evaluation step, we have 〈e,R, S〉 =⇒ 〈e′, R′, S′〉, if e can
be decomposed into an evaluation context E{e1}, where e1 is a redex such that
〈e1, R, S〉 −→ 〈e′

1, R
′, S′〉, and e′ ≡ E{e′

1}. If the evaluation encounters a state
〈e,R, S〉 that is not reducible according to one of the rules above and where e
is not a value, then 〈e,R, S〉 =⇒ ⊥, where ⊥ is an error state. A state 〈e,R, S〉
is well-formed if e is a well-formed expression, all the free variables in e are
defined in S, all the references in e, R, and S are defined in R, i.e., appear in the
domain dom(R) of R, and any explicit reference r in e occurs in a hole so that
e = E{r} for some context E that contains no explicit references. Theorem 1
below ensures that there is at most one explicit reference in e.

Figure 2 shows an example evaluation with the copying semantics of the
expression let z = {+(y, 1)} in swap(x, y, z) (with the context demarcated)
in a state with reference r mapped to the array [0, 1] in store R and x bound to
r and y bound to 0 in the stack S.

〈let z = {+(y, 1)} in swap(x, y, z), {r �→ [0, 1]}, (y �→ 0, x �→ r)〉
=⇒ 〈{let z = 1 in swap(x, y, z)}, {r �→ [0, 1]}, (y �→ 0, x �→ r)〉
=⇒ 〈pop({swap(x, y, z)}), {r �→ [0, 1]}, (z �→ 1, . . .)〉
=⇒ 〈. . . let y1 = {u[v]} in . . . , {r �→ [0, 1]}, (w �→ 1, v �→ 0, u �→ r, . . .)〉
=⇒ 〈. . . {let y1 = 0 in . . .}, {r �→ [0, 1]}, (w �→ 1, v �→ 0, u �→ r, . . .)〉
=⇒ 〈. . . let z1 = {u[w]} in . . . , {r �→ [0, 1]}, (y1 �→ 0, . . .)〉
=⇒ 〈. . . {let z1 = 1 in . . .}, {r �→ [0, 1]}, (y1 �→ 0, . . .)〉
=⇒ 〈. . . let x1 = {u[v := z1]} in . . . , {r �→ [0, 1]}, (z1 �→ 1, . . .)〉
=⇒ 〈. . . {let x1 = r′ in x1[w := y1]}, {r′ �→ [1, 1], . . .}, (z1 �→ 1, . . .)〉
=⇒ 〈. . . {x1[w := y1]}, {r′ �→ [1, 1], . . .}, (x1 �→ r′, . . .)〉
=⇒ 〈. . . {r′′}, {r′′ �→ [1, 0], . . .}, (x1 �→ r′, . . .)〉

∗=⇒ 〈r′′, {r′′ �→ [1, 0], . . .}, (y �→ 0, x �→ r)〉

Fig. 2. Example evaluation with copying semantics
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In the above operational semantics, each update step introduces a new array
that is a copy of the given array modified at the updated index. The binding
between the references and these arrays is maintained by the store R. There is
no garbage collection since nothing ever gets discarded from the store. We state
a few simple theorems about the idealized operational semantics given above.2

Theorem 1. For any well-formed expression e, either e is a value or there is
exactly one way to decompose an expression e as E{g} where E is an evaluation
context E and g is a redex.

Each evaluation step preserves the well-formedness of the state, and in par-
ticular, any occurrence of an explicit reference must be the residue of the
most recently reduced redex by one of the rules 5–10, or it appeared in e as
E{let x = r in g} for some reference-free E, and the resulting residue does not
contain any references.

Theorem 2. If 〈e,R, S〉 is a well-formed state and 〈e,R, S〉 =⇒ 〈e′, R′, S′〉,
then 〈e′, R′, S′〉 is also a well-formed state.

One important invariant is that for any state 〈e,R, S〉, there is at most one
occurrence of a reference in e, namely as the residue of the most recently reduced
redex.

Theorem 3. In any evaluation state 〈e,R, S〉, if an explicit reference r occurs
in e, then e is of the form E{r} where E contains no explicit references.

Another useful invariant is that the pop operation can only occur in an
evaluation context.

Theorem 4. For any expression e in an evaluation state 〈e,R, S〉, if it contains
a sub-expression pop(g), then e ≡ E{pop(g)} for some evaluation context E.

It follows from this theorem that all the occurrences of pop are linearly
nested since they must all contain, not necessarily strictly, the current redex.
The maximal depth of nesting corresponds to the depth of the stack. It follows
from this that the execution of the pop step will never try to pop an empty
stack. Furthermore, when the evaluation of a closed expression, i.e., one with no
free variables, has been completed, the stack is empty.

Next, we present the operational semantics for the intermediate language
with reference counting, and establish its equivalence with the semantics pre-
sented in this section.

4 Operational Semantics with Reference Counting

The operational semantics given above is enhanced by adding a component C to
the state to maintain reference counts for each reference in dom(R). Before aug-
menting the operational semantics with reference counting, we introduce some
useful operations.

swap(x, y, z)
= let y1 = x[y] in let z1 = x[z] in let x1 = x[y := z1] in x1[z := y1]

2 All proofs have been omitted due to lack of space.
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mark(x,X) =
{
x, if x ∈ X
x, otherwise

mark(c,X) = c

mark(let x = e in g,X) = let x = mark(e,X ∪ vars(g)) in mark(g,X − {x})
mark(if x then e else g,X) = if x′ then mark(e,X) else mark(g,X), where

x′ = mark(x,X ∪ vars(e) ∪ vars(g))
mark(x[y := z], X) = x′[y′ := z′], where

x′ = mark(x,X ∪ {y, z}),
y′ = mark(y,X ∪ {z}),
z′ = mark(z,X)

mark(x[y], X) = mark(x,X ∪ {y})[mark(y,X)]
mark(f(x1, . . . , xn), X) = f(y1, . . . , yn),

where yi ≡ mark(xi, X ∪ {xi+1, . . . , xn})
mark(pop(e), X) = pop(mark(e,X))

mark(e,X) = e, otherwise.

Fig. 3. Marking the last variable occurrence along each evaluation branch

The first operation marks the occurrences of a variable in an expression that
are evaluated last so that we can identify variables that are no longer live in
the evaluation. The operation mark(e,X) shown in Fig. 3 marks variables in the
expression e given that the variables in X are live, i.e., possibly used in the
evaluation following e.

In the definitions Δ, we replace each occurrence of f(y1, . . . , yn) = e by
f(y1, . . . , yn) = mark(e, ∅). For example, the swap operation can be defined as

swap(x, y, z)
= let y1 = x[y] in let z1 = x[z] in let x1 = x[y := z1] in x1[z := y1]

Let mvars(e) be the subset of marked variables in e from vars(e). Theorem 5
establishes that a marked variable in an expression is not live in the context.

Theorem 5. If e = E{g} then for any x ∈ vars(e), x is marked in g, i.e.,
x ∈ mvars(g), iff x does not occur in vars(E).

The new component C of the evaluation state maps each non-nil reference
r to C(r) its reference count. Unlike R, C is a total function: if r is not in the
domain of R, i.e., dom(R), then C(r) = 0. References are counted with respect
to e, R, and S, and the count C(r) for each reference r reflects the sum of the
occurrences of r including
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1. The single reference r that might occur directly in e,
2. References nested within R such that R(r′)(i) = r for some r′ and i, and
3. References bound within S such that S(x) = r for some x.

We define refCount(〈e,R, S〉, r) as

refCount(e, r) + refCount(R, r) + refCount(S, r), where

1. refCount(R, r) is the number of references to r nested in R.
2. refCount(e, r) is the number of references to r in e, either 0 or 1.
3. refCount(S, r) is the cardinality of {r|r = S(x), for some x}.

Next, we define two operations that increment and decrement reference
counts in C:

1. inc(C, r) defines a C ′ such that for each r′, C ′(r′) = C(r) if r′ �= r, and
C ′(r) = C(r) + 1, otherwise.

2. inc(C, c) = C.
3. dec(C, r) defines a C ′ such that for each r′, C ′(r′) = C(r′) if r′ �= r or

C(r) = 0, and C ′(r) = C(r) − 1, otherwise.
4. dec(C, c) = C.

Let size(a) be the size of the array a. We define three decrement opera-
tions on reference counts: release, releaseVar , and releaseVars. The operation
release(R,C, r) is defined to release a single reference to r from the store R. It
does this by checking the reference count C(r). If C(r) > 1, then the reference
count is reduced by one. If C(r) = 1, then the array R(r) is freed by recursively
releasing each reference in R(r) and replacing it by nil, and then dropping r
from dom(R). The recursive definition for release is terminating since the cumu-
lative reference count decreases by at least one with each recursive call.

release(R,C, r) = 〈R, dec(C, r)〉, if C(r) > 1
release(R,C, r) = 〈update(Rn, r,⊥), update(Cn, r, 0)〉, if C(r) = 1, where

〈R0, C0〉 = 〈R,C〉

〈Ri+1, Ci+1〉 =

⎧
⎨

⎩

release(R′
i, Ci, r

′), for r′ = R(r)(i) and
R′

i = update(Ri, r, update(Ri(r), i, nil))
〈Ri, Ci〉, otherwise

for i < n = size(R(r))

The key property of the release operation is that the change to the count
C(r′) for some reference r′ reflects the difference in the actual reference counts.

Theorem 6. For store R and reference r, if

1. C(r) > 0
2. C(r′) �= 0 ⇐⇒ r′ ∈ dom(R), for each r′ and
3. C(r′) ≥ refCount(R, r′) + refCount(r, r′) for each r′,

and 〈R′, C ′〉 = release(R,C, r), then for each r′ we have
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1. C ′(r′) �= 0 ⇐⇒ r′ ∈ dom(R′)
2. C(r′) − C ′(r′) = refCount(R, r′) − refCount(R′, r′) + refCount(r, r′)
3. C ′(r′) ≥ refCount(R′, r′).

The operation releaseVar(R,S,C, x) invokes release(R,C, S(x)) to decre-
ment the count for the reference S(x), while setting S(x) to nil.

releaseVar(R,S,C, x) = 〈R′, S′, C ′〉, where

〈R′, C ′〉 =
{

release(R,C, r), for r = S(x)
〈R,C〉, otherwise

S′ =
{

update(S, x, nil), for r = S(x)
S, otherwise

releaseVars(R,S,C, {x} � X) = releaseVars(R′, S′, C ′,X), where
〈R′, S′, C ′〉 = releaseVar(R,S,C, x)

releaseVars(R,S,C, ∅) = 〈R,S,C〉
Note that releaseVar(R,S,C, x) is just 〈R,S,C〉 when S(x) is not a refer-

ence. The key property of the releaseVar operation is captured by the following
theorem.

Theorem 7. For r = S(x) and 〈R′, S′, C ′〉 = releaseVar(R,S,C, x), if for each
reference r′, C(r′) = refCount(S, r′) + refCount(R, r′) and C(r′) > 0 ⇐⇒ r′ ∈
dom(R), then for each reference r′

1. S′ = update(S, x, nil)
2. C ′(r′) �= 0 ⇐⇒ r′ ∈ dom(R′)
3. C(r′) − C ′(r′) = refCount(R, r′) − refCount(R′, r′) + refCount(S(x), r′)

The operation incr(C,R, r) is defined to return a C ′ such that for each r′ ∈
dom(R), C ′(r′) = C(r′) + n, when r′ occurs n times in R(r). We also use the
notation [i : 0..(k − 1) | c] to represent a k-element array initialized to c.

The reduction rules for redexes are enumerated below. The reader should
check that the accounting behind the reference count in C reflects the sum of
occurrences of each reference in e, R, and S.

1. 〈let x = v in g,R, S,C〉 +−→ 〈pop(g), R, S′, C〉, where S′ = push(x, v, S).
Note that C is unchanged.

2. 〈f(x1, . . . , xn), R, S,C〉 −→ 〈v,R, S,C〉 for primitive f , where
f(S(x1), . . . , S(xn)) evaluates to v.

3. 〈f(x1, . . . , xn), R, S,C〉 +−→ 〈popn(e), R′, S′′, C ′′〉, where
Δ(f) = (f(y1, . . . , yn) = e), u = S(x), S′ = push(y, u, S),
C ′ = Cn, where C0 = C, Ci+1 = inc(Ci, ui+1), for 1 ≤ i < n,
〈R′, S′′, C ′′〉 = releaseVars(R,S′, C ′,X), where
X = mvars(f(x1, . . . , xn)) ∪ ({y1, . . . , yn} \ vars(e)).

4. 〈if x then e else g,R, S,C〉 +−→
{ 〈e,R′, S′, C ′〉, if S(x) �= 0

〈g,R′′, S′′, C ′′〉, if S(x) = 0
where X ′ = mvars(x)

⋃
(mvars(g) − mvars(e)),
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〈R′, S′, C ′〉 = releaseVars(R,S,C,X ′),
X ′′ = mvars(x)

⋃
(mvars(e) − mvars(g)), and

〈R′′, S′′, C ′′〉 = releaseVars(R,S,C,X ′′).
5. 〈x[y := z], R, S,C〉 +−→ 〈r′, R′′, S′, C ′′′〉, where

r = S(x), c = S(y), v = S(z),
C(r) > 1 or x is unmarked, r′ is fresh,
R′ = R{r′ �→ update(R(r), c, v)}, C ′ = C{r′ �→ 1}, C ′′ = incr(C ′, R′, r′),
〈R′′, S′, C ′′′〉 = releaseVars(R′, S, C ′′,mvars(z)),

6. 〈x[y := z], R, S,C〉 +−→ 〈r,R′′′, S′, C ′′〉, where
r = S(x), c = S(y), v = S(z),
C(r) = 1 and x is marked,
R′ = update(R, r, update(R(r), u, v)), C ′ = inc(inc(C, v), r),
〈R′′, C ′′〉 = release(R′, C ′, R(r)[c]), S′ = update(S, x, nil),
〈R′′′, S′, C ′′〉 = releaseVars(R′′, S, C ′,X), where X = mvars(x[y := z]).

7. 〈x[y], R, S,C〉 +−→ 〈v,R′, S′, C ′′〉, where
r = S(x), u = S(y), v = R(r)[u], C ′ = inc(C, v), and
〈R′, S′, C ′′〉 = releaseVar(R,S,C ′, x), if x is marked, and
〈R′, S′, C ′′〉 = 〈R,S,C ′〉, otherwise.

8. 〈newInt(w), S,R,C〉 +−→ 〈r, S,R′, C ′〉, where
k = S(w), R′ = R{r �→ [i : 0..k − 1 | 0]}, r fresh, and C ′ = C{r �→ 1}.

9. 〈newRef(w), S,R,C〉 +−→ 〈r, S,R′, C ′〉, where
k = S(w), R′ = R{r �→ [i : 0..k − 1 | nil]}, r fresh, and C ′ = C{r �→ 1}.

10. 〈pop(v), S,R,C〉 +−→ 〈v, pop(S), R,C〉.
11. 〈pop(x), S,R,C〉 +−→ 〈S(x), pop(S), R,C ′〉, where C ′ = C if x is marked,

and C ′ = inc(C,S(x)), otherwise.

The evaluation relation 〈e,R, S,C〉 +=⇒ 〈r′, R′, S′, C ′〉 holds when e can be
decomposed as E{g}, where 〈g,R, S,C〉 +−→ 〈g′, R′, S′, C ′〉 and e′ ≡ E{g}.
Note that the evaluation relation employs destructive, in-place array updates
in the reduction rule 6, and frees unused memory through the use of release
and releaseVars. An example evaluation using reference counts (indicated by
the superscript to the reference in the store) is shown in Fig. 4.

Theorem 8 notes that marking is preserved under evaluation, where
unmark(e) represents the result of replacing each marked x with x. Theorem 9
captures the main invariant about the accuracy of the reference counts.

Theorem 8. Each evaluation step preserves the consistency of the marking,
i.e., e = mark(unmark(e), ∅), of the evaluation state 〈e,R, S,C〉.
Theorem 9. The following invariants are preserved for any evaluation step
〈e,R, S,C〉 +−→ 〈e′, R′, S′, C ′〉:
1. The triple 〈e,R, S〉 is well-formed.
2. If for some variable x ∈ dom(S), x �∈ vars(e), then S(x) = c for some c or

S(x) = nil.
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〈let z = {+(y, 1)} in swap(x, y, z), {r1 �→ [0, 1]}, (y �→ 0, x �→ r)〉
+

=⇒ 〈{let z = 1 in swap(x, y, z)}, {r1 �→ [0, 1]}, (y �→ 0, x �→ r)〉
+

=⇒ 〈pop({swap(x, y, z)}), {r1 �→ [0, 1]}, (z �→ 1, . . .)〉
+

=⇒ 〈. . . let y1 = {u[v]} in . . . , {r1 �→ [0, 1]}, (w �→ 1, v �→ 0, u �→ r, . . . , x �→ nil, . . .)〉
+

=⇒ 〈. . . {let y1 = 0 in . . .}, {r1 �→ [0, 1]}, (w �→ 1, v �→ 0, u �→ r, . . .)〉
+

=⇒ 〈. . . let z1 = {u[w]} in . . . , {r1 �→ [0, 1]}, (y1 �→ 0, . . .)〉
+

=⇒ 〈. . . {let z1 = 1 in . . .}, {r1 �→ [0, 1]}, (y1 �→ 0, . . .)〉
+

=⇒ 〈. . . let x1 = {u[v := z1]} in . . . , {r1 �→ [0, 1]}, (z1 �→ 1, . . . , u �→ nil, . . .)〉
+

=⇒ 〈. . . {let x1 = r in x1[w := y1]}, {r1 �→ [1, 1]}, (z1 �→ 1, . . .)〉
+

=⇒ 〈. . . {x1[w := y1]}, {r1 �→ [1, 1]}, (x1 �→ r, . . .)〉
+

=⇒ 〈. . . {r}, {r1 �→ [1, 0]}, (x1 �→ nil, . . .)〉
∗

=⇒ 〈r, {r1 �→ [1, 0]}, (y �→ 0, x �→ nil)〉

Fig. 4. Example evaluation with reference counting

3. The reference count C(r) is refCount(〈e,R, S〉, r) for each r, and C(r) >
0 ⇐⇒ r ∈ dom(R).

With this invariant, we can establish a bisimulation between the basic evalua-
tion step and the reference counting one. This bisimulation ρ between 〈e1, R1, S1〉
and 〈e2, R2, S2, C2〉 is basically defined by an injection from the references in R2

to those in R1. We define ρ as holding when there exists an injection π from
dom(R2) to dom(R1) such that

1. e1 = π(e2), where π(e2) is the result of replacing each reference r in e2 with
π(r).

2. R1(π(r)) = π(R2(r)), for each r ∈ dom(R2), where π(R2(r)) is the result of
replacing each element r′ in R(r) with π(r′).

3. S1(x) = π(S2(x)), for each x ∈ dom(S2).

Theorem 10. The relation ρ defines a bisimulation between =⇒ and +=⇒.

We can thus conclude from Theorem 10 that the evaluation relation +=⇒
returns the same value (if numeric) as the evaluation relation =⇒, when these
are applied to the initial states 〈e, ∅, ∅, ∅〉 and 〈e, ∅, ∅〉, respectively.

5 Observations

The PVS2C code generator that implements the reference counting semantics
can be described briefly as follows. For each array type in the intermediate
representation, the code generator defines a struct type with a count field
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Matrix size 100 1000 10000 100000
Hand-written C 0m0.002s 0m0.013s 0m1.398s 6m26.415s
C generated from PVS 0m0.002s 0m0.013s 0m2.363s 12m58.976s

Fig. 5. Comparing the performance of hand-written C code with the generated C code

(for the reference count3) and an elems field (for the array). Each such type
also has operations for creating a new data object, copying an existing data
object while updating the reference counts of any embedded references, updating
a data object either by copying or by an in-place update as required, and an
operation for releasing a reference to a data object and possibly freeing it by
first decrementing the reference counts of any embedded references. The let-
expressions in the intermediate representation are transformed to assignment
statements. The array construction operations are implemented by creating a
new data object and initializing it. Conditional expressions are implemented by
C conditional statements, and similarly for function applications.

The PVS2C code generator has been applied to a small number of examples
covering arrays, records, and lists. Our preliminary experiments indicate that
the overhead of reference counting is quite manageable and the performance is
quite competitive with hand-written C programs. As a stress-test for reference
counting, we defined a matrix transpose operation in PVS and generated C code
from it. This matrix is represented as an array of nested arrays, one to each
row in the matrix. In the initial matrix, all the rows contain exactly the same
reference with a reference count of N . As the transposition proceeds, copies are
made until each row corresponds to a unique array reference that is updated
in place. The table in Fig. 5 compares the performance of the generated C code
against the matrix transpose procedure written directly in C for N ×N matrices
with N ranging from 100 (a 40 KB matrix) to 100,000 (a 40 GB matrix). Both
versions were compiled with the Clang compiler with the -O fast flag on a
MacBook Air with a 1.7 GHz Intel Core i7 processor and 8 GB of memory.

PVS itself does not generate any cyclic data structures, and it is impossible
to construct cyclic structures in the intermediate language. The only way to con-
struct a cyclic structure is through the evaluation of x[y := z] as a destructive
update since a non-destructive update returns a fresh reference. For the eval-
uation of x[y := z] to be destructive, the variable x must be marked and the
reference count C(S(x)) must one. In this case, the reference S(x) cannot be
accessible from z, since this would imply C(S(x)) > 1.

6 Conclusions

Wide-spectrum specification languages can be used to capture abstract mod-
els of software and hardware systems together with any relevant background
3 We do not check the count for possible overflow since it would take an extraordinarily

long computation to cause a 64-bit counter to overflow [3].
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mathematical theories. These models can be refined to a level of concreteness
where they are actually executable. By generating code in a practical program-
ming language, we can leverage the comprehensive libraries and advanced com-
piler technologies that accompany these languages. The generation of code from
specifications must be trusted to preserve the semantics of the source language.
This is particularly critical for a language like PVS where the generation of proof
obligations during typechecking ensures the absence of any runtime execution
errors (modulo resource bounds). This property has to be preserved in the gen-
erated code. We have described a workflow that generates code for definitions in
an executable fragment of the PVS specification language. We have presented a
formal model of reference counting that can be used to justify the correctness
of the transformation from PVS to C (and other languages). The proof of the
correctness of reference counting and the correspondence between the idealized
and reference counting operational semantics are both straightforward. The gen-
erated code is itself in a small fragment of the C programming language whose
semantics can be succinctly formalized. The C fragment is easily supported by
formally verified compilers such as CompCert [8]. The use of reference counting
makes the generated code efficient and self-contained. The theory we have pre-
sented also extends to closures and polymorphism, two features that have yet to
be implemented in PVS2C. The project we have described is itself a small step
in the larger vision of providing a single coherent development environment for
specifications, background theories, and software.
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Abstract. Event-B is a formal specification language and a methodol-
ogy used to build software systems. Formal specifications are more useful
when they can be executed. An executable formal specification provides
insight on the behaviour of the system being modelled w.r.t an expected
behaviour. This paper presents a tool that generates executable imple-
mentations of Event-B models. The tool is implemented as a plug-in of
the Rodin platform, an Eclipse IDE that provides a set of tools to work
with Event-B models. Our tool has extensively been used for generat-
ing code for Event-B models of Android applications, reactive systems,
Smart Cards, searching algorithms, among others. The first author reg-
ularly uses EventB2Java in teaching to help master students of Software
Engineering to get a better grasp of the behaviour of a model in Event-B
and to detect inconsistencies in the model.

Keywords: Code generation · Event-B · EventB2Java · Java · JML ·
Rodin

1 Introduction

Event-B [2] is a formal method technique to describe and analyse the behaviour
of reactive systems. Event-B language is based on predicate logic and set theory.
It includes a full-fledged battery of operations over sets and relations for model-
ing software systems. Event-B represents software systems as discrete transition
systems. It represents system components as a succession of states connected
through a series of transitions called events. States are composed of constants
and variables, and Events are composed of guards and actions. Event guards are
written in predicate logic, and event actions are encoded as assignments.

Software development with Event-B follows the Parachute strategy [2]. It
starts with an initial and very abstract model in Event-B. As the paratrooper
descends, more details become clearer to her, and thus she is able to add more
details to the initial model. How can the paratrooper make sure that what she
modelled in Event-B faithfully reflects what she saw when she was descending?
EventB2Java gives a key answer to that question. The EventB2Java tool is a
Java code generator for Event-B. It generates Java implementations of Event-B
models. Therefore, the paratrooper can generate a Java code for her Event-
B models, run them in Java, and check whether the running code meets her

c© Springer International Publishing Switzerland 2016
S. Rayadurgam and O. Tkachuk (Eds.): NFM 2016, LNCS 9690, pp. 166–171, 2016.
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expectations. That is, she can validate whether the behaviour of the running
code matches the behaviour she expects from the system.

This paper presents the EventB2Java tool that generates Java executable
implementations of Event-B models.

Fig. 1. Structure of the EventB2Java tool

2 Implementation of EventB2Java

The EventB2Java tool1 implements the rules presented in [13]. It is implemented
as a plug-in of Rodin [3]. Left part of Fig. 1 shows the main components of
Rodin as sub-packages and classes of the org package. The figure also shows
the relation among those components and the EventB2Java plug-in through
solid arrows. Rodin is built on top of Eclipse. The org.rodinp.core compo-
nent implements the core functionality of Rodin, e.g. it includes a database
for manipulating Event-B models, and classes for storing components such as
proofs and proof obligations. The org.eventb.core package implements all the
database elements needed for writing models in Event-B. It further includes a
static checker, a proof obligation generator and a prover. The org.eventb.-
core.ast component includes a library for manipulating mathematical for-
mulas in the form of Abstract Syntax Trees (ASTs). This component pro-
vides an abstract Visitor class for parsing mathematical formulas. The Sequent
Prover (org.eventb.core.seqprover) component contains a library for prov-
ing sequents. The Event-B User Interface (org.eventb.ui) component contains
the Graphic User Interfaces that permit users to feed Event-B models into Rodin
and discharge proof obligations. EventB2Java uses Rodin’s org.eventb.ui com-
ponent to manipulate context menus so as to enable users to select the type of
code implementation that is intended (sequential or multi-threaded). The rela-
tionship between org.eventb.ui and EventB2Java is depicted in Fig. 1 with a
double-headed arrow. org.eventb.ui passes EventB2Java a user request, and
this feeds back the generated code for the request.

1 The EventB2Java tool is hosted at http://poporo.uma.pt/EventB2Java/.

http://poporo.uma.pt/EventB2Java/
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Event-B models are written in predicate logic. The org.eventb.core.ast
component encodes Event-B’s mathematical language as ASTs. This component
provides various services such as parsing a formula (computing its AST from
a string of characters), pretty-printing it, constructing new formulas directly
using the API library, type-checking formulas (inferring the types of the expres-
sions occurring within and decorating them with their types), testing formu-
las for equality, among others. The org.eventb.core.ast component imple-
ments a library to traverse trees (a Visitor) and to attach information to
tree nodes. Figure 1 uses a single-headed arrow between org.eventb.core.-
ast and the EventB2Java tool since it does not modify any formula. The
input to org.eventb.core.ast is part of the information collected from the
org.eventb.core component. EventB2Java extends the Visitor class and gen-
erates code in one pass. After collecting information of contexts and machines
and parsing them using the Visitor implementation, the EventB2Java tool gen-
erates an Eclipse Java project, which includes a machine package that contains
the translation of the machines and contexts, and a main class with informa-
tion about carrier sets, constants, and variables from the Event-B model. This
package also contains the translation of each machine event. EventB2Java can
produce both multi-threaded and sequential implementations of Event-B mod-
els. For supporting multi-threaded Java implementations, EventB2Java extends
the standard Java Thread class by properly overriding the run() method.

Event-B relies on five mathematical languages (see Chap. 9 of [2]): (i.) a
Propositional Language, (ii.) a Predicate Language, (iii.) an Equality Language,
(iv.) a Set-Theoretic Language, and (v.) a Boolean and Arithmetic Language.
The eventb prelude package of EventB2Java includes classes with implemen-
tations of each respective language (some constructs are supported natively by
Java, for instance negation in Event-B (¬) is represented as ! in Java). These
classes are: BOOL, INT, NAT, NAT1, Enumerated, Pair, BSet, BRelation, and
ID, implementing, respectively, booleans, integers, natural numbers with and
without 0, the enumerated type, pairs of elements, sets, relations, and the iden-
tity relation. Finally, EventB2Java includes a Util class with methods such as
SomeVal that returns an arbitrary value within a set, and SomeSet that returns
an arbitrary subset of a set. The former is used to assign a variable or a constant
an arbitrary value.

3 Experience Using EventB2Java

EventB2Java has extensively been used to generate Java code for diverse Event-
B models of systems and programs of various types. Statistics about some of
these models are shown in Fig. 2, where “LOC” stands for Lines of Code in
Event-B, and “# Mch” and “# Evt ” are the number of machines and events
of each model, respectively2. For instance, the Event-B model for Social-Event
Planner contains 1326 lines of code in Event-B, it is composed of 9 machine
2 Event-B models and respective Java code generated by EventB2Java can be reached
at http://poporo.uma.pt/EventB2Java/EventB2Java studies.html.

http://poporo.uma.pt/EventB2Java/EventB2Java_studies.html
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Event-B Model LOC # Mch # Evt

Social-Event Planner [12] 1326 9 35

MIO [4] 586 7 21

Heating Controller [7] 458 15 32

State Machine [15] 86 2 5

Binary Search [1] 101 3 3

Linear Search [1] 54 2 2

Minimum Element [1] 64 2 3

Reversing Array [1] 64 2 2

Sorting Array [1] 137 3 4

Square Root Number [1] 84 3 2

Fig. 2. Statistics of the Event-B models

refinements and 35 events. The Social-Event Planner [12] is an Android applica-
tion of a planner for social events in which a user can create a social event and
invite a list of people to join it. The Android app was developed following the
MVC design pattern. The Model part is written in Event-B and EventB2Java
was used to generate code of the core functionality of the planner. MIO [4] is
an Event-B model of a massive transportation system that includes articulated
buses following the main corridor routes of a city. The Heating Controller [7] is
an Event-B model of a heating controller that provides an interface to adjust
and display a target temperature, and to sense and display the current tempera-
ture, among other functionality. The State Machine [15] is an Event-B model of
state machines. The rest of the examples are sequential program developments
written by Abrial in [1]. Linear and Binary Search are the Event-B models of the
respective searching algorithms. Minimum Element is an Event-B model for find-
ing the minimum element of an array of integers. Reversing and Sorting Array
are Event-B models for reversing and sorting an array respectively. Square Root
Number is an Event-B model for calculating the square root of a number. The
reader is encouraged to consult [14] for a full discussion on these examples.

3.1 Use of EventB2Java for Teaching

The first author has regularly used EventB2Java in several Formal Methods and
SE courses. In Fall 2015, he introduced Event-B and EventB2Java to students
of the MSIT-SE (Master of Science in Information Technology - Software Engi-
neering) at Carnegie Mellon University (CMU), Pittsburgh, USA. This course
is a mandatory course for master students. He used a social networking exam-
ple in Event-B [5] to motivate students and to introduce refinement calculus
techniques, and used EventB2Java to generate code. He has previously used
EventB2Java for teaching similar master courses at the University of Madeira,
Portugal, and universities EAFIT, Andes, and PUJ, in Colombia.

EventB2Java generates JML [8] annotations in addition to Java code. JML
and Java use less intimidating mathematical notations than Event-B, and so less
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expertise is required by students or engineers to use tools that provide support
to JML and Java. It seems thus reasonable that students can take full advantage
of the most appropriate software methodology and tools when developing their
software. EventB2Java bridges software development in Event-B with software
development with Java and JML, by using Design-by-Contract techniques [10].

4 Related Work

In [9], Méry and Singh present the EB2ALL tool-set that includes the EB2C,
EB2C++, EB2J, and EB2C# plug-ins, which translate Event-B machines into C,
C++, Java, and C� respectively. Unlike EventB2Java, EB2ALL provides support
for a small part of Event-B’s syntax, and users are required to write a final
Event-B implementation refinement in the syntax supported by the tool. In [11],
Ostroumov and Tsiopoulos present the EHDL prototype tool that generates
VHDL code from Event-B models. The tool supports a reduced part of Event-
B’s syntax and users are demanded to extend the Event-B model before it can
be translated. In [16], Wright defines a B2C extension to the Rodin platform
that translates Event-B models into C code. Also, the Code Generation tool [6]
generates concurrent Java and Ada programs for a tasking extension of Event-B.
As part of the process of generating code with the Code Generation tool, users
have to decompose the Event-B model by employing the Machine Decomposition
plug-in. The decomposed models are refined and non-deterministic assignments
are eliminated. Finally, users are requested to model the flow of the execution of
events in the tasking extension. Unlike all these tools, our tool does not require
user’s intervention, while it works on the proper syntax of the Event-B model.

5 Conclusion

EventB2Java generates Java implementations of Event-B models written at any
level of abstraction. It largely supports Event-B’s syntax and it’s fully integrated
to Rodin, but it has some limitations. Code generation of values that adhere
to a non-deterministic assignment is not automated. One could use SomeVal
(see Sect. 2) to generate an arbitrary value and then a constraint solver to check
if the value adheres to machine axioms, but this is still future work. EventB2Java
generates JML software contracts in addition to Java code. This is useful for
programmers who want to customise the generated Java code and want to check
if their customisations are correct.

The second author uses the Event-B tool regularly to generate code of
Android apps in his courses of Software Engineering and the Android labora-
tory of Programming Usable Interfaces lectured at Carnegie Mellon University
(CMU), the University of Madeira (UMa), the Pontificia Universidad Javeriana
(PUJ), and the EAFIT University. His students are always motivated by the pos-
sibility of being able to run mathematical Event-B models in Java automatically.
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Abstract. One barrier in introducing autonomous vehicle technology
is the liability issue when these vehicles are involved in an accident.
To overcome this, autonomous vehicle manufacturers should ensure that
their vehicles always comply with traffic rules. This paper focusses on the
safe distance traffic rule from the Vienna Convention on Road Traffic.
Ensuring autonomous vehicles to comply with this safe distance rule
is problematic because the Vienna Convention does not clearly define
how large a safe distance is. We provide a formally proved prescriptive
definition of how large this safe distance must be, and correct checkers for
the compliance of this traffic rule. The prescriptive definition is obtained
by: (1) identifying all possible relative positions of stopping (braking)
distances; (2) selecting those positions from which a collision freedom can
be deduced; and (3) reformulating these relative positions such that lower
bounds of the safe distance can be obtained. These lower bounds are then
the prescriptive definition of the safe distance, and we combine them into
a checker which we prove to be sound and complete. Not only does our
work serve as a specification for autonomous vehicle manufacturers, but
it could also be used to determine who is liable in court cases and for
online verification of autonomous vehicles’ trajectory planner.

1 Introduction

Liability is an important but rarely studied area in autonomous vehicle tech-
nology. For example, who should be held liable when a collision involving an
autonomous vehicle occurs? In our previous paper [23], we proposed to solve this
issue by formalising vehicles’ behaviours and traffic rules in higher-order logic
(HOL). This formalisation allows us to check formally whether an autonomous
vehicle complies with traffic rules. If autonomous vehicles always comply with
traffic rules, then they should not be held liable for any accident.

One of the most important traffic rules is to maintain a safe distance between
a vehicle and the vehicle in front of it. This notion of safe distance is crucial
for traffic simulation, automatic cruise controller (ACC), and safe intersections.
Traffic simulation [1] relies on this notion to update the speed and acceleration
of each vehicle such that a collision will not occur in the simulation, even when
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the front vehicle brakes abruptly. ACC [26] and safe intersection systems [14,16]
rely on this notion to control the engine and brake module such that a rear-end
collision can be avoided.

The Vienna Convention on Road Traffic defines a ‘safe distance’ as the dis-
tance such that a collision between vehicles can be avoided if the vehicle in front
performs an emergency brake [24]. Note that this rule states the requirement
for safe distance descriptively; there is no prescriptive expression against which
a distance can be compared. This makes the process of formally checking the
compliance of an autonomous vehicle’s behaviour with the safe distance rule
problematic.

We follow our previous design decision [23] to use Isabelle/HOL [18] for
three reasons. Firstly, it has rich libraries of formalised real analysis which is
required to turn the descriptive definition of safe distance into the prescriptive
one. Secondly, it allows us to generate code, which we use to evaluate a real data
set. Finally, as a theorem prover, Isabelle checks every reasoning step formally
and, hence, one only has to trust how we specify the notion of safe distance. Our
contributions are as follows:1

• We formalise a descriptive notion of safe distance from the Vienna Convention
on Road Traffic (Sect. 2).

• We turn this formalised descriptive definition of safe distance into a prescrip-
tive one through logical analysis (Sect. 3).

• We generate executable and formally verified checkers in SML for validating
the safe distance rule (Sect. 4).

• We evaluate the US Highway 101 data set from the Next Generation SIMu-
lation (NGSIM) project as benchmark for our checkers (Sect. 5).

• We argue that our prescriptive definition of safe distance generalises all defi-
nitions of safe distance in the literature (Sect. 6).

We conclude and outline the possible extension of our work in Sect. 7.

2 Formalising Safe Distance from the Vienna Convention

Figure 1 illustrates the scenario for the safe distance problem as defined in the
Vienna Convention on Road Traffic. The scenario consists of two vehicles: the
ego vehicle and the closest vehicle in front of it—which we term other vehicle2.
This scenario is uniquely characterised by six constants: s0,e, ve, ae ∈ R from the
ego vehicle and s0,o, vo, ao ∈ R from the other vehicle. Constants s0, v, a denote
the initial position, initial speed, and maximum deceleration value, respectively,
of a vehicle. Note that s0,e denotes the frontmost position of the ego vehicle,
while s0,o denotes the rearmost position of the other vehicle. Additionally, we
also make the following assumptions:
1 Our formalisation is available at http://home.in.tum.de/∼immler/safedistance/

index.html
2 NGSIM has identified the other vehicle for each ego vehicle in the US-101 Highway

data set.

http://home.in.tum.de/~immler/safedistance/index.html
http://home.in.tum.de/~immler/safedistance/index.html
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s0,e s0,o

Ego
Vehicle

Other
Vehicle

(ve, ae) (vo, ao)lane 0

lane 1

Fig. 1. Scenario for safe distance problem.

Assumption 1. The values of ve and vo are non-negative: 0 ≤ ve ∧ 0 ≤ vo.

Assumption 2. The values of ae and ao are negative: ae < 0 ∧ ao < 0.

Assumption 3. The other vehicle is located in front of the ego vehicle:
s0,e < s0,o.

Continuous Dynamics. As specified by the Vienna Convention on Road Traffic,
the ego vehicle needs to avoid collision with the other vehicle when both vehicles
are braking. To do so, the ego vehicle needs to predict its own braking movement
and that of the other vehicle over time. We formalise the prediction of this
braking movement p with a second-order ordinary differential equation (ODE)3

p′′(t) = a and initial value conditions p(0) = s0 and p′(0) = v. The closed-form
solution to this ODE is as follows:

p(t) := s0 + vt +
1
2
at2 . (1)

Hybrid Dynamics. Since Eq. (1) is a quadratic equation, it has the shape of a
parabola when a �= 0. This implies that a vehicle would move backward after
it stops. Hence, Eq. (1) is only valid for the interval [0, tstop] where tstop is the
stopping time. The stopping time tstop is the time when the first derivative of p
is zero, that is, p′(tstop) = 0. Substituting t with tstop in the derivative of Eq. (1)
results into the following expression for tstop:

tstop := −v

a
. (2)

Thus, we can extend the movement p of Eq. (1) by introducing discrete jumps
(the deceleration makes a jump from a < 0 to a = 0) into the overall movement
s as follows.
3 We use Lagrange’s notation f ′ and f ′′ to denote the first and the second derivative

of f .



178 A. Rizaldi et al.

s(t) :=

⎧
⎪⎨

⎪⎩

s0 if t ≤ 0
p(t) if 0 ≤ t ≤ tstop

p(tstop) if tstop ≤ t

(3)

Two-Vehicle Scenario. In Fig. 1, we assume that the other vehicle performs
an emergency brake with maximum deceleration ao, as specified in the Vienna
Convention on Road Traffic. As soon as the other vehicle brakes, the ego vehicle
reacts by performing an emergency brake too with maximum deceleration ae.
Since an autonomous vehicle can react almost instantly, we assume the reaction
time to be zero.

In order to determine whether the distance s0,o − s0,e is safe or not, we first
use Eq. (3) to predict the movement of the ego vehicle se(t) and the other vehicle
so(t) over time. Then, a collision will occur if we can find future time t such that
se(t) = so(t). To generalise this predicate, we define collision over a set of real
numbers T ⊆ R as follows:

collision(T ) := (∃t ∈ T. se(t) = so(t)) . (4)

Equations (1) to (3), assumptions 1 to 3, and the definition in (4) above are
our formalisation of the safe distance rule from the Vienna Convention on Road
Traffic. The remaining results presented in this paper are deduced from there.
The deductions are also formally checked by Isabelle theorem prover.

3 Logical Analysis of the Safe Distance Problem

This section analyses the safe distance problem by performing two case distinc-
tions based on stopping times and stopping distances. The first case distinction
(Sect. 3.1) is more suitable for checking whether there will be a collision or not.
The second case distinction (Sect. 3.2) meanwhile is about eliminating the exis-
tential quantifier in Eq. (4) and rearranging the resulting formula such that one
can obtain lower bounds for the initial distance s0,o − s0,e that is still safe. In
principle, after resolving the discrete jumps, this quantifier elimination for real
arithmetic could be achieved by automatic procedures as implemented in modern
computer algebra systems (CASs). There is even a proof-producing procedure
implemented in the HOL-Light theorem prover [17]. However, our seven-variable
formula appears to be too complex for HOL-Light’s quantifier elimination proce-
dure. Therefore, manually finding this lower bound with an interactive theorem
prover is necessary. This makes our results more robust against changes in the
formalisation and more readable compared to those from CASs’.

3.1 Case Distinction Based on Stopping Times

To check for collisions, we need to find the solution of Eq. (4). However, find-
ing the solution is problematic due to the occurrences of the if-construct in the
definition of the overall movement in Eq. (3). Therefore, we perform case dis-
tinction based on two stopping times conditions: 0 ≤ t ≤ tstop and tstop < t for
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Table 1. Four cases of stopping times and the corresponding equations of se(t) = so(t).

0 ≤ t ≤ tstop,e tstop,e < t

0 ≤ t ≤ tstop,o
a pe(t) = po(t)

b pe(tstop,e) = po(t)

tstop,o < t c pe(t) = po(tstop,o)
d pe(tstop,e) = po(tstop,o)

both vehicles. This produces four cases in total (see Table 1). Each case is the
equation where se(t) = so(t) with functions se(t) and so(t) are substituted as in
Eq. (3), depending on which stopping time condition holds. Since each case is a
pure quadratic equation, we can use a decision procedure for finding roots of uni-
variate polynomials for each case. A checker based on such a decision procedure
is described in Sect. 4.1.

t

s(t)

Case 1

Case 3

Case 2

s0,o

so(tstop,o)

tstop,e

so

se

Fig. 2. Three cases obtained from case distinction based on stopping distances.

3.2 Case Distinction Based on Stopping Distances

Figure 2 illustrates the case distinction based on stopping distances. It plots
an example of overall movement for the other vehicle so(t) and divides this
movement into three regions (cases) where a stopping distance of the ego vehicle
sstop,e := se(tstop,e) could be located:

1©. sstop,e < s0,o;
2©. sstop,o ≤ sstop,e.
3©. s0,o ≤ sstop,e < sstop,o.



180 A. Rizaldi et al.

These stopping distances can be obtained by substituting tstop in Eq. (2) to s in
Eq. (3) for the ego and the other vehicle as follows:

sstop,e = s0,e − v2e
2 · ae and sstop,o = s0,o − v2o

2 · ao . (5)

For any case in which collision freedom can be deduced, we rearrange the terms
and the deduction into the following pattern:

s0,o − s0,e > safe-distance (ae, ve, ao, vo) =⇒ precondition (ae, ve, ao, vo) =⇒
¬ collision [0;∞) .

(6)

This pattern has the interpretation that if the initial distance s0,o−s0,e is bigger
than the expression safe-distance (ae, ve, ao, vo) and the precondition (ae, ve, ao, vo)
holds, too, then we can guarantee that there will be no collision. We claim
that the expression safe-distance (ae, ve, ao, vo) defines the notion of safe distance
prescriptively ; one can easily check whether a collision exists by comparing the
initial distance with this expression.

In the rest of this section, we prove three theorems—one for each of these
three cases—which determine whether there is a collision or not. As an overview,
collision freedom can be deduced in case 1© while collision can be deduced in
case 2©. In case 3©, collision depends on further conditions than just the premise
s0,o ≤ sstop,e < sstop,o.

Background Formalisation. Consider the quadratic equations of the form p(x) :=
ax2+bx+c with the discriminant D := b2−4ac. The analysis of the movement can
be carried out with the following well-known mathematical facts about quadratic
forms.

– Solution of quadratic equation:

D ≥ 0 =⇒ x1,2 :=
−b ± √

D

2a
(7)

a �= 0 =⇒ p(x) = 0 ⇐⇒ (D ≥ 0 ∧ (x = x1 ∨ x = x2)) (8)
– Condition for convexity:

x < y < z ∧ p(x) > p(y) ≤ p(z) =⇒ a > 0 (9)

– Monotonicity:

(t ≤ u =⇒ s(t) ≤ s(u)) ∧ (t < u ∧ u ≤ tstop =⇒ s(t) < s(u)) (10)

– Maximum at the stopping time:

p(t) ≤ p(tstop) ∧ s(t) ≤ s(tstop) (11)

Because these are all basic, well-known facts, one can expect that the overhead of
using a theorem prover be kept within limits. Indeed, all of the facts in Eqs. (7)
to (11) can be proved automatically with one of Isabelle’s automatic provers: the
sum-of-squares methods (ported from Harrison [11]) or rewriting of arithmetic
expressions combined with classical reasoning.
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Theorems. We start with the first theorem for case 1© which states that this
case implies collision freedom. Intuitively speaking, there will be no collision in
this case because the ego vehicle is located so far that it stops before the initial
position of the other vehicle.

Theorem 1 (Obvious collision freedom in case 1©)

sstop,e < s0,o =⇒ ¬ collision [0;∞) (12)

Proof. This is true because se(t) < so(t) holds for every time t ≥ 0: se(t) ≤
se(tstop,e) = sstop,e < s0,o = so(0) ≤ so(t) due to transitivity, the assumption,
and monotonicity of s in Eq. (10), and the maximum at the stopping time in
Eq. (11). ��
Since this case implies absence of collision, we can unfold the definition of sstop,e
in Eq. (5) and rearrange Theorem 1 according to the pattern in Eq. (6) into the
following safe distance expression:

safe-distance1 := − v2e
2 · ae (13)

For case 2©, we first give the following lemma which provides a sufficient con-
dition for a collision in a bounded interval. It follows directly from the continuity
of s and an application of the intermediate value theorem for so − se between 0
and t.

Lemma 1 (Upper bounds on collision time)

(se(t) ≥ so(t) =⇒ collision [0; t]) ∧ (se(t) > so(t) =⇒ collision [0; t))

Then, the following theorem states that case 2© necessarily implies a collision.

Theorem 2 (Obvious Collision in Case 2©)

sstop,e ≥ sstop,o =⇒ collision [0;∞)

Proof. Since by definition sstop,e = se(tstop,e) and sstop,o = so(tstop,o), set-
ting t := max {tstop,e, tstop,o} in Lemma 1 above proves that this case implies
a collision. ��
Since case 2© implies collision, no safe distance expression is produced from the
logical analysis of case 2©.

We now consider case 3©, where the ego vehicle stops behind the other vehicle.
There can still be a collision, i.e. the movement of the ego vehicle can intersect the
movement of the other vehicle and still stop behind the other vehicle (see Fig. 2).
The following lemma states that a collision (if any) in case 3© must occur while
both cars are still moving. This lemma therefore allows us to reduce the reasoning
to the continuous part p of the movement s.
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Lemma 2 (Collision within stopping times in case 3©)

s0,o ≤ sstop,e < sstop,o =⇒
collision [0;∞) ⇐⇒ collision (0;min {tstop,e, tstop,o})

(14)

Proof. The “⇐=”-part is obvious and we only prove the “=⇒”-part. If a collision
happens at time t while one of the vehicles has already stopped, then it must
be the ego vehicle which has stopped (tstop,e < t). Also, we have se(tstop,e) >
so(tstop,e) because according to Eq. (10), so is strictly increasing in [tstop,e; t] (see
Fig. 2). Then, Lemma 1 yields a suitable witness for an earlier collision t′ < tstop,e.
The whole proof takes just about 80 lines in the formalisation. ��
Then, the following theorem characterises the conditions for ensuring a collision
in case 3©.

Theorem 3 Conditional collision in case 3©)

s0,o ≤ sstop,e < sstop,o =⇒ collision [0;∞) ⇐⇒

ao > ae ∧ vo < ve ∧ s0,o − s0,e ≤ (vo − ve)2

2 · (ao − ae)
∧ tstop,e < tstop,o

(15)

Proof. ( “⇐=”.) Case 3© and Eqs. (7), (8), and (15) yield a root of po−pe, which
is contained in the interval (0;min{tstop,e, tstop,o}). The root is therefore also a
root of so − se and therefore witnesses collision [0;∞).

Only if ( “=⇒”)-part of the conclusion. From collision [0;∞), we obtain a root
t with so(t) − se(t) = 0. Then, Lemma 2 allows us to deduce po(t) − pe(t) = 0
and condition (9) for convexity (for po − pe at times 0 < t < min{tstop,e, tstop,o})
yields ao > ae. This gives, together with the fact that the discriminant of po −pe
is nonnegative according to Eq. (8), the remaining conjuncts of Eq. (15) after
some arithmetic manipulations and reasoning. The whole proof takes about 130
lines in the formalisation. ��
In order to unify this theorem with the pattern in (6), we negate the logical
equivalence in (15) and rearrange the theorem as follows.

s0,o − s0,e >
v2o

2 · ao
− v2e

2 · ae
=⇒ s0,o − s0,e >

(vo − ve)
2

2 · (ao − ae)
=⇒ s0,o ≤ sstop,e =⇒

(ao > ae ∧ vo < ve ∧ tstop,e < tstop,o) =⇒ ¬ collision [0; ∞) (16)

This reformulation fits the pattern in (6) and now we have two possible safe
distance expressions and one for precondition:

safe-distance2 :=
v2o

2 · ao − v2e
2 · ae safe-distance3 :=

(vo − ve)2

2 · (ao − ae)
,

precondition := s0,o ≤ sstop,e ∧ (ao > ae ∧ vo < ve ∧ tstop,e < tstop,o) (17)

To choose between these two expressions, we use the following lemma which
determines their relative position.
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Lemma 3 (Relative position of safe distance expressions)

ao > ae =⇒ safe-distance2 ≤ safe-distance3

Proof. We prove this lemma by multiplying both sides with the multiplier 2 ·
(a0−ae) which is positive. Then, we reason backwards by performing arithmetical
reasoning which eventually leads to 0 ≤ (tstop,e−tstop,o)2 which is always true. ��
With this lemma, we choose safe-distance3 when the precondition holds. Other-
wise, it must be the case that ¬ (ao > ae ∧ vo < ve ∧ tstop,e < tstop,o)—since
we assume case 3©. Then, Theorem 3 ensures that safe-distance2 is indeed a pre-
scriptive definition of safe distance.

Overall Definition. To sum up our logical analysis, safe-distance1 always holds
as a prescriptive definition of the safe distance. Expression safe-distance3 holds
when it is case 3© and precondition holds, while safe-distance2 is valid when it is
still case 3© but precondition does not hold.

4 Designing Sound Checkers for the Safe Distance Rule

We use the analyses from Sect. 3 to guide the design of sound and complete
abstract checkers in Sect. 4.1; these checkers are defined in terms of real num-
bers and other non-executable constructs. We then show how to turn them into
executable checkers by using exact rational arithmetic, symbolic decision proce-
dures, or interval arithmetic in Sect. 4.2.

4.1 Abstract Checkers

We design two checkers here: a descriptive and a prescriptive version. Both check-
ers are derived from the case distinction in Sects. 3.1 and 3.2, respectively.

Descriptive Checker. From the case distinction based on stopping times in
Sec. 3.1, we conclude that the problem of detecting collision is reduced into
the problem of finding solutions for each entry in Table 1 in the correspond-
ing time interval. This is formalised with the predicate has-root-in, defined as
f(t) has-root-in T ←→ ∃t ∈ T. f(t) = 0. A checker based on this approach can
then be defined as follows.

checkerd := ¬

⎛

⎜
⎜
⎜
⎝

pe(t) − po(t) has-root-in [0;min {tstop,e, tstop,o}] ∨
pe(tstop,e) − po(t) has-root-in [tstop,e; tstop,o] ∨
po(tstop,o) − pe(t) has-root-in [tstop,o; tstop,e] ∨

pe(tstop,e) − po(tstop,o) has-root-in [max {tstop,e, tstop,e};∞)

⎞

⎟
⎟
⎟
⎠

The following theorem ensures that the checker is both sound and complete.
It follows immediately from the definitions of braking movement p, stopping
time tstop, predicate has-root-in, and predicate collision:

Theorem 4 (Correctness of abstract descriptive checker)

checkerd ⇐⇒ ¬collision [0;∞)
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Prescriptive Checker. From the case distinction based on stopping distances
in Sect. 3.2, we have defined three expressions of safe distances. Each expression
has associated preconditions for which the expression is valid. We can design the
prescriptive checker from these expressions as follows:

checkerp := let dist = s0,o − s0,e in

if dist > safe-distance1 then True

else if a0 > ae ∧ vo < ve ∧ tstop,e < tstop,o then dist > safe-distance3
else dist > safe-distance2

The following theorem states that the prescriptive checker is also sound and
complete.

Theorem 5 (Correctness of abstract prescriptive checker)

checkerp ⇐⇒ ¬collision [0;∞)

Proof. The soundness follows from the Theorems 1, 2, and 3 in Sect. 3 while the
completeness comes from the fact that case 1©, 2©, and 3© cover all possible
cases. ��

4.2 Executable Checkers

A fragment of HOL can be seen as a functional programming language. When
we talk about executable specifications, we talk about specifications within that
fragment. In principle, such specifications could be evaluated inside Isabelle’s
kernel. For a more efficient evaluation, Isabelle/HOL comes with a code gen-
erator [10], which translates executable specifications to code for (functional)
programming languages like SML, OCaml, Scala, or Haskell. We will generated
the code for SML to evaluate the US-101 Highway data set in Sect. 5.

The aforementioned checkers checkerd and checkerp are formally proved cor-
rect, but are not executable, because they involve e.g., real numbers or quan-
tifiers over real numbers (via has-root-in). We therefore refine them towards
executable formulations. To this end, Isabelle provides a variety of techniques,
and we explore the use of the following:

1. Exact arithmetic on rational numbers.
Exact arithmetic on rational numbers can be directly used for checkerp if all
parameters are rational numbers. It requires, however, the manual work of
formalising the analysis presented in Sect. 3.2.

2. Decision procedure for finding roots of univariate polynomials.
By contrast, using a decision procedure based on Sturm sequences for
has-root-in in checkerd requires almost no manual reasoning. However, it has
to be used as a black-box method and might not be easy to extend, if it is
required.

3. Interval arithmetic.
With interval arithmetic, one can include uncertainties into parameters of the
model and could even address non-polynomial problems. Numerical uncer-
tainties can, however, cause the checkers to be incomplete.
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Exact Rational Arithmetic. All the operations occurring in checkerp could be
executed on rational numbers. Under the assumption that all the parameters
are rational numbers, checkerp can be executed using the standard approach of
data-refinement [9] for real numbers in Isabelle/HOL. That is, the code gener-
ator is instructed to represent real numbers as a data type with a constructor
Ratreal : Q → R. Then, operations on the rational subset of the real numbers
are defined by pattern matching on the constructor, and performing the corre-
sponding operation on rational numbers. For example, addition +R on Ratreal-
constructed real numbers can be implemented with addition +Q on rational
numbers: Ratreal(p) +R Ratreal(q) = Ratreal(p +Q q). Therefore, as long as the
input is given as rational numbers, code generation for checkerp works without
further manual setup. Correctness follows from Theorem5.

Sturm Sequences. A different approach can be followed by looking at the pre-
scriptive formulation checkerd. To evaluate has-root-in, we can resort to a decision
procedure based on Sturm sequences which been formalised in Isabelle [5]. The
interface to this decision procedure is an executable function count-roots(p, I),
which returns the number of roots of a given univariate polynomial p in a given
interval I. It satisfies the proposition p has-root-in T ←− (count-roots(p, I) > 0)
and can therefore be used as an executable specification for the occurrences of
has-root-in in checkerd. Correctness follows from Theorem 4.

Interval Arithmetic. The previous two approaches both assume that the para-
meters are given as exact rational numbers. One could argue that this is an
unrealistic assumption, because real-world data cannot be measured exactly.
For this checker, we therefore allow intervals of parameters. Isabelle’s approxi-
mation [12] method allows us to interpret checkerp (a formula with inequalities
over real numbers) as an expression in interval arithmetic. The resulting checker
checkeri takes a Cartesian product of intervals as enclosure for the parameters
as input.

Theorem 6 (Correctness of Checker)
If (se, ve, ae, so, vo, ao) ∈ Se × Ve × Ae × So × Vo × Ao, then

checkeri (Se, Ve, Ae, So, Vo, Ao) =⇒ ¬collision[0;∞)

Proof. The theorem follows directly from the correctness of approximation. ��
Note that we lose completeness in this approach; the checker could fail to prove
collision-freedom because of imprecision in the approximate calculations. Such
imprecision occurs because of, e.g., finite precision calculations or case distinc-
tions that cannot be resolved. It might be that in a case distinction a < b∨a ≥ b,
none of the two disjuncts can be proved (consider e.g. a ∈ [0; 1], b ∈ [0; 1]) with
just interval arithmetic. Tracking dependencies between input variables or inter-
val constraint propagation approaches could alleviate this problem.
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5 Data Analysis of the Safe Distance Problem

The traffic data used in this evaluation are obtained from the Next Generation
SIMulation (NGSIM) project of the U.S. Department of Transportation Federal
Highway Administration (FHWA). We specifically focus on the data set for the
US Highway 101 (US-101). The length of the study area is about 640 m with five
lanes in total and the data was collected for 45 min. For every identified car, the
data set provides information such as the position, speed, acceleration, length of
the vehicle, and distance to the other vehicle with a time resolution of 0.1 s.

The US-101 data set does not provide any information about the maximum
deceleration of the vehicles. The maximum deceleration value can be obtain from
the values of tyre friction on dry condition. We take these values from the domain
of traffic collision reconstruction [6] which has been used by lawyers in court [3].
The tyre friction values for automobile and motorcycle are µmotor = 0.75 and
µauto = 0.8, respectively. As for truck and bus, we take the value from [19], i.e.,
µtruck = 0.7. By assuming g = 9.8 m s−2, these tyre friction values correspond
to maximum deceleration values of amotor = −7.35 m s−2, aauto = −7.84 m s−2,
and atruck = −6.86 m s−2.

Table 2. Number of detected safe distance situations and time performance of each
checker (for N = 3, 915, 006 data points).

Checker u Safe dist. (%) Time

DescriptiveSturm - 99.74 % 1068.32 s

Prescriptiveexact - 99.74 % 168.93 s

Prescriptiveinterval 7 99.05 % 352.73 s

Prescriptiveinterval 5 97.48 % 323.56 s

Prescriptiveinterval 3 90.92 % 324.23 s

We evaluate three executable checkers: (1) the exact rational arithmetic-
based prescriptive checker, (2) the Sturm sequences-based descriptive checker,
and (3) the interval arithmetic-based prescriptive checker. Interval arithmetic-
based checker is parameterised with uncertainty u which represents the measure-
ment error in the data. This parameter, however, does not represent the error
due to floating-point computation which is handled internally by the approxima-
tion decision procedure in this interval arithmetic-based checker. Each time this
checker evaluates an arithmetic expression, the interval of each evaluated subex-
pression is enlarged accordingly so as to include the error due to fixed precision
of floating-point numbers.

Two aspects are measured for each checker: the number of detected safe
distance situations and the CPU time for checking the whole data set. The
measurement is performed with an Intel i5-4330M 2.80 GHz processor and 12 GB
of RAM. We draw four conclusions from the results in Table 2:
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1. Both prescriptiveexact and descriptiveSturm checkers detect the same number
of safe distance situations. This is not surprising since we have formally proved
the correctness of both checkers and they use exact arithmetic.

2. Interval arithmetic-based checkers detect fewer safe distance situations than
the other checkers do. This shows that this checker is more conservative and
incomplete.

3. The number of safe distance scenario detected decreases as the uncertainty
parameter u decreases. This is because the uncertainty parameter u corre-
sponds to the uncertainty value of 2−u and, hence, a decrease of uncertainty
parameter u is equivalent to an increase of the uncertainty value.

4. The prescriptive checker has a better time performance than the descriptive
checker. This is understandable because the descriptive checker is based on
a more general decision procedure (Sturm sequences), and the prescriptive
checker is heavily tuned for this safe distance problem.

5. The prescriptiveexact checker detects safe distance situations approximately
two times faster than those prescriptiveinterval checkers. This is because the
critical factor in the time performance of these two types of checkers lies in the
computation of dist in checkerp. Subtracting an interval by another interval
essentially consists of two exact arithmetic subtractions — one each for the
lower bound and upper bound.

Two caveats regarding the results from Table 2 are worth mentioning here.
First, when the prescriptiveexact and descriptiveSturm checker return False, they
do not detect a collision but a guaranteed-to-happen collision if the ego and the
other vehicles brake with full deceleration. Second, when the prescriptiveinterval
checkers return False, no conclusion can be drawn concerning the potential colli-
sion due to violating safe distance rule (see Theorem 6). This inconclusive answer
is because either the uncertainty u for the data is too large or the precision for
the floating-point approximation is too limited.

6 Related Work

In this section, we compare our formalisation with results from the domain
of transportation engineering and formal verification. One notable difference
between our work with the others is that we ignore the reaction time for the ego
vehicle. Hence, when comparing our work with others, those parameters are set
to zero. In general, all related works discussed here except the work by Goodloe
et al. [8] are incomplete, and those in the domain of transportation engineering
(discussed here) are not formally proved.

In the domain of traffic engineering, there are two areas which are
related to our work: traffic simulation and collision warning. Mazda and
PATHS algorithms [1]—for collision warning—and Gipps’s model [7]—for traffic
simulation—formulate the notion of safe distance which exactly match our sec-
ond definition of safe distance in Eq. (17). Qu et al. [22] analyse the safe distance
problem by applying a technique from molecular dynamics. Unlike the case dis-
tinction in our work, they have three cases which depend on the relationship
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between ve and vo. Their notion of safe distance for case ve > vo and ve = vo
matches exactly with our second definition of safe distance in Eq. (17). However,
their notion of safe distance when ve < vo does not match with any of our def-
initions of safe distance due to different assumptions. A more detailed analysis
for the safe distance problem is given by Chen et al. [4]. If we consider their
single lane scenario only, their definitions of safe distance for stationary and
decelerating case exactly match our first and second definition of safe distance
in Eqs. (13) and (17), respectively.

The related work described up until now always assume that the maximum
deceleration for all vehicles is the same. Therefore, none of the works described
previously matches our third definition of safe distance. Wilson [25] performs
case distinction based on the stopping times and graphically identifies the region
called “envelope of opportunity” for each case. This envelope of opportunity
divides the plot between the reaction time and the deceleration of the ego vehicle
into safe and unsafe region. The envelope of opportunity for tstop,e > tstop,o and
tstop,e < tstop,o match our second and third definition of safe distance in Eq. (17),
respectively.

Loos et al. [15] verify ACC formally in KeYmaera where, in their model of
ACC, they axiomatise that a safe distance is formalised as the second safe dis-
tance definition in Eq. (17). This safe distance definition is then modified to take
into account all possible impacts of control decisions for the future of reaction time,
and then setting it as an invariant for the controller. They then use the proof cal-
culus for the quantified differential dynamic logic (QdL) [21] to prove that the
controller maintains this invariant, which in turn implies the axiomatised safe dis-
tance in Eq. (17) by transitivity. Our work completes theirs by proving that this
axiomatised safe distance is indeed safe. However, their controller is safe on the
assumption that all vehicles have the same braking performance.

Although Goodloe et al. [8] formally verify programs for aerospace appli-
cations, namely airborne conflict detection and resolution (CD&R), their app-
roach is in general very similar to ours. Their objective is to verify whether a
checker correctly determines that two aircraft maintain a minimum separation
distance. Similar to our work, they also define an abstract checker, prove its
soundness and completeness in PVS theorem prover, derive a concrete checker
in C, and prove that the refinement from abstract to concrete checker is correct
in Frama-C. Our work differs in the step to convert from abstract to concrete
checker. Thanks to the code generation facility in Isabelle, we can generate the
concrete checker automatically in SML.

7 Conclusion and Future Work

We have formalised descriptive and prescriptive versions of the safe distance traf-
fic rule from the Vienna Convention on Road Traffic. For each version, we have
also derived two corresponding abstract checkers, which operate on real num-
bers, and proved their soundness and completeness. The prescriptive checker is
refined further into a concrete checker in SML which operates on rational num-
bers. Interval arithmetic is used here to ensure that it preserves the soundness
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property despite the error due to the limited precision of floating-point numbers.
We then use these two checkers together with the Sturm sequences-based checker
to evaluate the US-101 Highway data set from NGSIM.

Our work serves as an example of how one can use theorem provers, especially
Isabelle, to turn a vague requirement from a legal text into a more precise and
concrete specification. Isabelle, as a framework, also provides us with a unified
platform to prove theorems, to design a checker, to prove the soundness of the
checker, and to generate the (functional) code automatically. From the evaluation
of the data set, we found that at least 90% of the time, each traffic participant—
if we assume them to be autonomous vehicles—obeys the safe distance rule. Our
work advances the state-of-the-art by providing a unique combination of formally
proved and complete safe distance definitions which generalise all definitions in
the literature, formally proved checkers without strict assumptions on braking
performance, and real data evaluation.

We wish to extend this work by considering the reaction time of the ego
vehicle. It might also be interesting to see how our third definition of safe distance
can be incorporated into the controller in [15] when considering vehicles with
different braking performance. To make the reasoning easier, we would like to
have more automation for real arithmetic in Isabelle/HOL. We assume that the
verification could be more organised by following a dedicated calculus for hybrid
systems [20], which could be embedded in Isabelle/HOL. Our checker could also
be extended with reachability analysis [2,13] in order to verify a continuous trace.
Lastly, aligned with our previous work in formalisation of traffic rules [23], we
wish to increase the number of formalised traffic rules such that the liability
issue can be deduced automatically with our checkers.
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Abstract. The objective of NASA’s Small Aircraft Transportation
System (SATS) Concept of Operations (ConOps) is to facilitate High
Volume Operation (HVO) of advanced small aircraft operating in non-
towered non-radar airports. Given the safety-critical nature of SATS, its
analysis accuracy is extremely important. However, the commonly used
analysis techniques, like simulation and traditional model checking, do
not ascertain a complete verification of SATS due to the wide range of
possibilities involved in SATS or the inability to capture the random-
ized and unpredictable aspects of the SATS ConOps environment in
their models. To overcome these limitations, we propose to formulate
the SATS ConOps as a fully synchronous and probabilistic model, i.e.,
SATS-SMA, that supports simultaneously moving aircraft. The distin-
guishing features of our work include the preservation of safety of aircraft
while improving throughput at the airport. Important insights related
to take-off and landing operations during the Instrument Meteorological
Conditions (IMC) are also presented.

Keywords: Formal verification · Probabilistic analysis · Model
checking · SATS · SATS Concept of Operations · Aircraft safety ·
Aircraft separation · Landing and departure operations

1 Introduction

Small Aircraft Transportation System (SATS) [13], developed by NASA, pro-
vides access to more communities with less time delays by leveraging upon the
recent advances in navigation and communication technologies. When a number
of aircraft are in different parts of the airport, aircraft safety has to be ensured
through timely separation and sequencing. Traditionally, non-towered non-radar
airports rely on procedural separation during Instrument Meteorological Condi-
tions (IMC), i.e., allowing only one aircraft to get access to the airport airspace
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at a given time, which significantly decreases the potential airport through-
put [23]. The main objective of SATS is to facilitate high volume operations
(HVO) of advanced small aircraft at such airports with minimum infrastructure
and low cost. Some representative SATS aircraft are Very Light Jet (VLJ) air-
craft, an advanced technology Single-Engine (SE), piston-powered aircraft and
an advanced technology Multi-Engine (ME), piston-powered aircraft [33].

Conventionally, SATS HVO simulations have been performed using com-
puter programs in which aircraft modules were operated manually by pilots.
These simulations develop the human-in-the-loop scenarios to check the effect
of SATS procedures in the operational environment, on the pilot’s responses in
terms of work load and situational awareness [12,16,31,32]. In [12], off-nominal
situations were also simulated, in addition to the nominal situations, to check the
resulting effect on the pilot’s state of mind. Proof-of-concept simulation studies
were performed in the Air Traffic Control (ATC) simulation pilot lab at Federal
Aviation Administration William J. Hughes Technical Center (FAATC) [30].
These simulations validated that the ATC can accept the SATS procedures, are
able to control SATS traffic into and out of the Self Controlled Area (SCA),
and support high volume operations. The simulations with pilots were used only
for validation purposes and confirmed that SATS procedures are manageable
by the airport management module (AMM). AMM’s performance during high
arrival rates of aircraft into the SCA has also been studied and found to have less
delays as compared to one-in-one-out method [27]. Recently, an algorithm has
been developed to optimize SATS landing sequence for multiple aircraft in [4], to
make it conflict-free and with less delays, using Microsoft VC++ 6.0 simulation
environment. However, these piloted simulation methods lack exhaustiveness [14]
in terms of coverage of all the possible states as a rigorous piloted simulation of
all possible scenarios requires a large number of tests, which in turn demands
a significant amount of computational power and time. This leads to another
major challenge of simulation-based verification of the SATS Concept of Opera-
tions (ConOps), i.e., selection of test vectors. A random selection of test vectors
cannot offer a guarantee of correctness of the SATS ConOps since it might miss
the meaningful portion of the design space. Moreover, it may not be possible to
consider or even foresee all corner cases. Consequently, simulation-based verifi-
cation of the SATS ConOps is incomplete with respect to error detection, i.e.,
all errors in a system cannot be guaranteed to be detected, which is a severe
limitation considering the safety-critical nature of passenger aircraft.

In order to have a complete analysis, automatic parameterized verification of
hybrid automata [19,20] was recently employed to verify properties of the SATS
ConOps using model checking principles, while considering position of the air-
craft as a continuous variable modeled either as a timer [19] or as a rectangular
differential inclusion [20]. While this methodology allows for verification regard-
less of the number of aircraft, a limitation of this work is that the methodology
requires the user to specify inductive invariants sufficient to establish safety.
While the process of finding inductive invariants sufficient to establish safety
of the SATS ConOps has been successfully automated through an extension of
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invisible invariants [3], this is an incomplete (heuristic) method that, in general,
may fail to find such inductive invariants [21]. The analysis and formal verifica-
tion of the timing constraints of SATS was done in [10] using Linear Real-Time
Logic (LRTL). The higher-order-logic theorem prover PVS [26] has also been
used for the safety verification of the SATS ConOps [9,13,23,29]. In particu-
lar, it has been formally verified that SATS rules and procedures can provide
minimum required spacing between two and more aircraft. A hybrid modeling
technique was also developed in PVS using the PVS tool Besc [25].

In the above-mentioned methods of validation and verification of SATS, only
the procedures and transition rules are considered. With these considerations,
any model with appropriate conditions can validate that the procedures are
enough for the assurance of safe separation between the aircraft. The missed
approach transition is dependent on many random factors, for instance, low vis-
ibility. In conventional airports, it is mainly caused by the bad weather, increased
air-borne traffic density, and ground traffic and its delays [15]. It is also required
upon the execution of a rejected landing because of objects, such as men, equip-
ment or animals, on the runway [1]. Due to such uncertainties involved, it is
necessary to incorporate the probabilistic considerations of the system into the
validation methods and safety verifications of SATS. Hence, we propose to use
probabilistic model checking [5,11] for the verification of the SATS ConOps. This
paper presents a fully synchronous Discrete-Time Markov Chain (DTMC) model
of the SATS ConOps and the verification of the safety properties of SATS, includ-
ing the landing and take-off procedures, using the probabilistic model checker
PRISM [22]. PRISM has been extensively used to formally model and analyze
a wide variety of systems, including communication and multimedia protocols,
randomised distributed algorithms, security protocols, biological systems and
many others, that exhibit random or probabilistic behaviour [2].

The rest of the paper is organized as follows: Sect. 2 describes the SATS
operational concept to facilitate the understanding of the rest of the paper.
Section 3 explains the main challenges that we faced in modeling the considered,
fully synchronous, system in PRISM and the assumptions used in our DTMC
model. In this section, our modeling methodology is also explained through dis-
cussion about each module, transition rules and procedures. Section 4 presents
the probabilistic verification results of the SATS ConOps and the novel obser-
vations made. Finally, Sect. 5 concludes this paper by drawing conclusions and
mentioning some directions of future work.

2 SATS ConOps

The ConOps for SATS is primarily a set of rules and procedures based on an
area surrounding the airport, called the SCA, a centralized automated system,
called the AMM, data communication between AMM and aircraft and state data
broadcast from the aircraft [7,8]. The SCA is typically taken as a region with 12–
15 NM radius and 3000 ft above the ground [8,9]. It is arranged in a T structure,
consisting of base, intermediate and final zones. It is divided into a number of
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segments and fixes which are the latitude/longitude points in space. The fixes
are initial arrival fixes (IAFs), intermediate fix (IF), final approach fix (FAF)
and departure fixes (DFs), as shown in Fig. 1. The IAFs serve two purposes, i.e.,
holding fix, when an aircraft enters the SCA, and missed approach holding fix
(MAHF), which is required when an aircraft misses landing, and flies back to
the IAF via missed approach path.

Fig. 1. Top view of the SCA [13]

There are two types of entries into the SCA: vertical entry and lateral entry
[9,25], as depicted in Fig. 2. Vertical entry is always made from the 3000 ft holding
fix at the left (above IAF-L) or right (above IAF-R). Thereafter, the aircraft
descends to the respective 2000 ft holding fix when it becomes available. Next,
under certain conditions, the aircraft moves to the base segment (IAF to IF).
On the other hand, in a lateral entry, the aircraft flies from the point of entry to
the base segment directly or through the 2000 ft holding fix. Once the aircraft
is in the base segment or 2000 ft holding fix, there is no dependency on its
type of entry. After base segment, the aircraft goes through the IF, FAF, and
finally reaches the runway. This procedure is primarily composed of a series
of transitions through different segments of the SCA that are conducted by
the aircraft if sufficient separation from the other aircraft is available and all
conditions for the given transitions hold. If an aircraft misses its landing, due
to any reason, it has to follow the missed approach path to move to the IAF
corresponding to its MAHF assignment, as shown in Fig. 1.

The AMM has the responsibility to grant permissions to the aircraft for
entering the SCA [7,31]. While granting the permission, the AMM assigns a
landing sequence and a MAHF to the aircraft. These landing sequence numbers
encode the leader information and also identify whether an aircraft is the first
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Fig. 2. Side view of the SCA [13]

Fig. 3. Zones of the SCA [13]

aircraft in a specific zone of SCA. The aircraft entering later thus follows the
leader during the transitions. The MAHF assignment is in terms of ‘side’, which
can assume values of right or left. If the entering aircraft is the first one in
sequence, then its MAHF will be in the same side from which it is entering.
Whereas, the next aircraft, with sequence other than 1, will have the MAHF
that is opposite to that of its leader.

Departure fixes are outside the SCA and under the ATC control. An aircraft
ready to depart requests ATC for clearance. After clearance, the departure oper-
ation starts at the runway and it moves to the departure fix corresponding to
its MAHF assignment. A safe distance of 10 or 5 NM has to be maintained from
the aircraft flying to the same or opposite departure fixes, respectively [13].

The SCA can be divided into different zones, illustrated in Fig. 3 and pre-
sented in Table 1. These zones represent the state of the aircraft. The com-
plete information about the aircraft will thus include the sequence and MAHF
assigned by AMM and the current location/zone of aircraft. The safety verifica-
tion is based on the number of aircraft in a zone and their separation from other
aircraft in other zones [23].
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Table 1. Zones of SCA [13]

Zone Symbol Description

1 h3-R Holding at 3000 ft at right side

2 h3-L Holding at 3000 ft at left side

3 h2-R Holding at 2000 ft at right side

4 h2-L Holding at 2000 ft at left side

5 lez-R Lateral entry zone at right side

6 lez-L Lateral entry zone at left side

7 base-R Right segment of base (IAF-R to IF)

8 base-L Left segment of base (IAF-L to IF)

9 int Intermediate segment (IF to FAF)

10 fin Final segment (FAF to runway)

11 run Runway

12 maz-R Missed approach zone at right of base

13 maz-L Missed approach zone at left of base

14 taxi Taxi

15 dep-R Right departure path towards right departure fix

16 dep-L Departure path towards left departure fix

3 Formal Modeling of SATS as a DTMC in PRISM

In this section, we first describe our refinements to the SATS ConOps. Then the
main challenges encountered in modeling the system in PRISM are presented.
This is followed by the description of how these challenges were tackled in our
model.

3.1 Refinements to Original SATS

The proposed model of the SATS ConOps in the PRISM language overcomes
some of the limitations of the non-deterministic, asynchronous transition system
presented by Dowek et. al [13]. Before presenting the details of our model, we
find it appropriate to point out the discrepancies in the existing algorithm and
our proposed solution.

1. In a non-deterministic model, if two or more rules are enabled simultaneously,
any one of them is allowed to be executed. In other words, only one non-
deterministic action happens at a time. This means that in such a model,
at each time step, only one aircraft will move to the next zone while all
other aircraft hold in the same zone, even if the conditions are satisfied for
all aircraft to move to their respective next zones. Thus, one aircraft could
change zones several times while another remains idle [13]. Hence, such a
model is unrealistic [23], as it fails to depict the real scenario.
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2. The lowest available altitude determination (Rule 12) [13] is a simultaneous
transition, potentially involving 2 aircraft, when the holding pattern at 3000 ft
is occupied but 2000 ft is available. In this case, the transition determines
3000 ft as the lowest available altitude and forces the aircraft holding at 3000 ft
to descend to the holding pattern at 2000 ft. This is a weakness of the model
because simultaneous transition is not possible in a fully non-deterministic
model.

Our proposed solution for both the above limitations is to build a fully syn-
chronous model that allows simultaneously moving aircraft. Hence, at each time
step, all aircraft satisfying conditions to move to their respective next zones
are allowed to proceed concurrently. Moreover, this model also facilitates the
simultaneous transition in the lowest available altitude determination.

3.2 Modelling Challenges of SATS in PRISM

Parallel Composition of Modules. Parallel composition of modules in
PRISM may seem to be the best option for developing the interleaved model
of concurrency of aircraft in the SCA, where each module represents an aircraft.
However, there are critical limitations in such a model, as discussed in Sect. 3.1.
When multiple commands (belonging to any of the modules) are enabled at the
same time, the choice between which command is executed by PRISM is non-
deterministic in case of Markov decision process (MDP) and probabilistic in case
of DTMC [2]. Specifically in the case of a DTMC, PRISM selects the command
for execution uniformly at random. For instance, if there are 4 aircraft in the
SCA and guards are satisfied for one command in each module, then there is a
probability of 0.25 for each aircraft to move forward to the next zone. But only
one of them is selected to move at a time.

Synchronization. PRISM supports synchronized transitions using synchroniza-
tion labels. In this case, commands can be labelled with actions, which can
be used to force two or more modules to make transitions simultaneously. By
default, all modules are combined using the standard CSP parallel composition,
i.e., modules synchronize over all their common actions [2]. However, in SATS
application, the aircraft can be in any of the 16 zones and thus only a specific
scenario can be modelled using synchronization labels. For instance, if there are
two aircraft and the command for the first aircraft to be in the third zone is
synchronized with the command for the second aircraft to be in the first zone,
then they will make the transition simultaneously, if available, but it models a
special case out of the many possibilities. They will no longer be synchronized
in some future time step when the first aircraft is, for instance, in the seventh
zone while the second aircraft is in the first zone.
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Global variables with Synchronization. Global variables seem useful in
modelling the state of the aircraft in the SCA as, unlike local variables, they are
modifiable from any module. However, an important restriction on the use of
global variables in PRISM is the fact that global variables cannot be updated
on a synchronized command [2]. PRISM detects this and reports an error if an
attempt is made to do so.

Probabilistic Updates. In order to correctly model the semantics of the com-
munication between aircraft and AMM, both aircraft and AMM should have
separate modules in PRISM. Unfortunately, there is no direct way of changing a
variable in a different module for only one probabilistic update of a command in
the same time step. However, such probabilistic updates are frequently required.
For instance, when an aircraft is in the final zone and it can move to the runway
or missed approach path with certain probabilities. In case a pilot chooses the
missed approach path, a new sequence number is to be assigned to the aircraft
by the AMM while in case of transition to runway, there is no change in the
sequence number. A possible solution could be to change the model such that
the relevant variable is part of the same module as the probabilistic update but
it will not represent the actual scenario of the communication between aircraft
and the AMM.

Therefore, the challenge is to achieve a synchronization such that all aircraft
move together whenever the guard conditions are satisfied, while incorporating
probabilistic updates from the AMM in the model.

3.3 Modeling SATS in PRISM

In our formal model [28], we formulate the SATS ConOps as a DTMC in the
PRISM model checker using an abstract timing model. Both sides of the app-
roach are symmetric [13,29] and there can be at most two aircraft on each side
of the SCA [13,23]. Therefore, we have assumed two aircraft in the right side of
the SCA in this work for the purpose of simplicity. Our model ensures that after
a landing aircraft has landed safely, it unloads passengers of the current flight in
the taxi state. Then, it loads passengers of the next flight and is ready for depar-
ture. After departure, it reaches its destination and the next time it becomes
a landing aircraft for the SCA. Hence, the process of landing and departure
continues.

Model of Concurrency. In order to cope with the challenges, described
in Sect. 3.2, we modeled the SATS ConOps as fully synchronously parallel
automata, as in [17], where each transition is labeled with the same synchro-
nization label, and therefore at each time step, at least one transition of each
module is active. Hence, in such a fully synchronous model, both aircraft move
concurrently to the next respective zones whenever the conditions are satisfied.
In order to use the same synchronization label t with all commands in all mod-
ules, we ensure that at least one condition is true for each module for each
reachable state in our model.
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Model of SATS Transition Rules and Procedures. The modules
aircraft1 and aircraft2 in our formal model [28], corresponding to each air-
craft, implement the rules of ConOps, i.e., under what conditions the aircraft
moves from one zone to the next. The modules are symmetric except that prior-
ity is assigned to aircraft1 in case of simultaneous entry. Due to our proposed
fully synchronous model, aircraft can enter inside the SCA individually or simul-
taneously with another aircraft. The state variables zone1 and zone2 represent
the current zone of aircraft1 and aircraft2, respectively. They are modelled
as integer variables with values in the range 0–16, and the encoding is listed
in Table 1. One additional zone is to be included into the model, which is the
‘fly zone’, for an aircraft outside the SCA. We encode it with a value of zero.
In our model, we used formulas for compact representation of the conditions
and to avoid repetition. For instance, z1 total represents the total number of
aircraft in zone 1 and z7 total R represents number of aircraft in zone 7 with
an MAHF assignment of right, as shown in the following lines of the code in
PRISM language:

formula z1 total = (zone1 = 1?1 : 0) + (zone2 = 1?1 : 0);

formula z7 total R = (zone1 = 7 & mahf1 = true?1 : 0)
+ (zone2 = 7 & mahf2 = true?1 : 0);

Model of the AMM. The AMM is the sequencer of the SCA. It typically
resides at airport ground and communicates with the aircraft via a data link
[8]. We model AMM as a separate module AMM in PRISM to represent this
communication with the aircraft. It has two state variables, i.e., seq and mahf for
each aircraft. For a landing aircraft, seq represents the relative landing sequence
number, such that the aircraft with landing sequence n is the leader of the
aircraft with landing sequence n+1, i.e., an aircraft with sequence number 1 is
leader of the aircraft with sequence number 2. It is modelled as an integer variable
with values in the range 0–10. When an aircraft enters the SCA, seq is assigned
a new value calculated by the formula nextseq. This value is calculated based
on the number of the aircraft already in the landing zones of the SCA. In case
of simultaneous entry by both aircraft, different sequence numbers are assigned
to both the aircraft, with priority to aircraft1. A new sequence number is also
assigned when an aircraft initiates a missed approach path and the sequence
numbers of all other aircraft in the landing zones of the SCA are decremented
by one. Moreover, when an aircraft enters runway, the sequence numbers of
all other aircraft in the SCA are again decremented by one. When an aircraft
moves to the taxi state, its sequence number becomes 0. For a departing aircraft,
seq represents the distance of the aircraft from runway in nautical miles. It is
incremented by one in each time step when it is in one of the departure zones,
until it becomes 10, where it is assumed to have left the SCA. The MAHF of an
aircraft, represented by mahf, is a boolean variable with true representing right
MAHF, and false representing left MAHF. It is assigned whenever an aircraft
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enters the SCA. Moreover, it is re-assigned when an aircraft executes a missed
path approach. We consider MAHF of only right side for simplicity of the model
in this paper.

Timing Model. We use an abstract timing model in our formalization of the
SATS ConOps. We assume that each aircraft stays in a zone for at least one
time step. So, an aircraft must transition to the next zone after one time unit
if the conditions for transition are satisfied. When the guard conditions are not
fulfilled, it stays in the zone until the conditions become true.

Randomness in Model. Since there is no direct way of changing a variable in a
different module for only one probabilistic update of a command in the same time
step, we introduce an additional chooser module for each probabilistic decision.
For instance, consider an aircraft in the final zone. Now it can either choose the
missed approach path with a probability p map or it can continue landing and
transit to the runway with probability 1-p map. In case of the missed approach
path, a new sequence number and MAHF is to be assigned to the aircraft.
However, there is no change in its sequence number and MAHF if it proceeds to
runway. We propose to use the chooser module, choose p map which contains a
single state variable p map state of type integer and with two possible values: 0
and 1. When the probability p map is selected, p map state is set to 1, otherwise
it is 0. This is achieved by using the following command in PRISM:

[t] Guard → p map : (p map state′ = 1) + (1 − p map) : (p map state′ = 0);

It is important to note that instead of setting true as a guard, we use the con-
ditions of transition to final zone, i.e., one step back condition as the guard [28].
This way, the command does not execute on each time step. p map state is
updated when the aircraft enters the final zone and is ready to be used when
checking conditions for the next transition to runway or missed approach zone
in the next time step.

The value of p map state is now used in such a way that the guard condition
of p map state=1 checks whether p map is selected. For instance, in the AMM
module, the following command ensures that seq1 and mahf1 are updated as
soon as it makes the transition to zone 12:

[t] Guard & p map state = 1 → (seq1′ = nextseq) & (mahf1′ = nextmahf1);

4 Verification Results

4.1 Safety Properties

Based on our model, explained in Sect. 3, safe separation is not maintained when
two aircraft reside simultaneously in the specific zones. These zones include the
approach, final approach, missed approach, runway and departure zones. Hence,
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we label this state danger as follows:

label “danger” = ((zone1 = 7&zone2 = 7) | (zone1 = 9&zone2 = 9)
| (zone1 = 10&zone2 = 10) | (zone1 = 11&zone2 = 11)
| (zone1 = 12&zone2 = 12) | (zone1 = 15&zone2 = 15));

Safety in all Paths: P =? [F “danger”];

We analyze safety in our model using the above property, which computes
the value of the probability that danger is satisfied in the future by the paths
from the initial state. PRISM shows a result of 0, which confirms that no
path leads to a collision from the initial state.

Safety in all Reachable States: filter (forall, P <= 0 [F “danger”]);

In order to confirm that the probability of occurrence of danger remains 0
for all reachable states, we formalize the property using filters as above. The
property verifies to be true in PRISM and thus guarantees the safety in our
model.

4.2 Analysis of Landing and Departure Operations

Expected Time for Landing: R =? [F “landings1”]; We utilize the reacha-
bility reward [2] in PRISM to find the expected time taken for the landing of an
aircraft in our model. In this case, a reward of unity is awarded to each state of
the model and the rewards are accumulated along a path until a certain point
is reached. We define this point as the state in which the aircraft is in the taxi
state, for instance, for aircraft1:

label “landings1” = (zone1 = 14);

Since very limited information is available on the probability of executing a
missed approach path p map for SATS, we leverage upon the PRISM’s parametric
model checking functionality to perform the sensitivity analysis on the values
of p map from 0.001 to 0.9. The results are shown in Fig. 4, which depict the
exponential increase in the expected time taken for landing with p map. Since
aircraft1 is assigned priority in case of simultaneous entry, the values for this
aircraft are slightly smaller as compared to those of aircraft2. The overall
expected time for any aircraft to land is also shown.

Expected Number of Departures in a Fixed Time: R =? [C <= T ]; We
leverage upon the cumulative reward properties [2] to find the expected number
of departures of the aircraft in a fixed time in our model. In this case, a reward
of unity is awarded to each transition of departure and the rewards are accumu-
lated until T time steps have elapsed. Figure 5 shows the results of an experiment
with T set to 10,00,000 which is large enough for the purpose of comparative
analysis. Since aircraft1 is assigned priority in case of simultaneous departure,
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Fig. 4. Expected time for landing vs. Probability of the Missed Approach Zone (Colour
figure online)

Fig. 5. Expected departures vs. Probability of the Missed Approach Transition (Color
figure online)

the expected number of departures for this aircraft are slightly larger as com-
pared to those of aircraft2.

Comparison of SATS and SATS-SMA. Reproduction of the correspond-
ing non-deterministic model [13] in PRISM shows that the expected number of
landing or departure operations are much greater in our proposed SATS-SMA
than the corresponding non-deterministic model. For instance, with no aircraft
executing a missed approach path, i.e., p map of 0, the expected operations in
the original non-deterministic asynchronous model and our refined SATS-SMA
are 51280 and 81081, respectively, i.e., around 1.6 times greater throughput.
The reason is that original SATS allows only one aircraft to move at a time
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while we allow all aircraft satisfying the conditions to move simultaneously to
the respective next zones.

The key advantages of this work include the increase in the throughput,
while maintaining aircraft safety, through simultaneous operations. The work
also provides important quantitative landing and departure insights of the SATS
ConOps. Our PRISM code and properties file is available for download [28],
and thus can be benefited by researchers and verification engineers for further
developments and analysis of the SATS ConOps.

5 Conclusion

Given the random and unpredictable nature of entry of aircraft into the SCA and
transitions between the zones, we propose to use a probabilistic model checker,
PRISM, to analyze the SATS ConOps in this paper. A fully synchronous DTMC
model of SATS is proposed and is verified to increase the expected throughput
of the airport as compared to the traditional non-deterministic, asynchronous
model. Moreover, the successful modeling and verification of the transition pro-
cedures for two aircraft moving concurrently, has verified the safety of aircraft in
terms of safe separation in all zones including take-off and landing. The landing
and departure operations of SATS are analyzed with respect to the probability
associated with the missed approach transition.

An important direction of future work is to improve the timing model
by incorporating zone distances and abstract aircraft kinematics [25]. A more
detailed analysis can be carried out by removing the simplifying assumptions
of 2 aircraft and right side MAHF. Similarly, detailed comparison of non-SATS
(one-in/one-out), SATS and SATS-SMA is an interesting direction for future
research. Furthermore, we also plan to conduct the probabilistic analysis of the
SATS ConOps under off-nominal conditions [6,12,24], such as equipment mal-
function and emergency situations, using the parametric model checking func-
tionality of PRISM, like it was utilized for the analysis of probability of missed
approach in this paper. Moreover, Continuous-Time Markov Chains (CTMCs) of
the SATS ConOps can also be developed to verify some time-related properties,
where Erlang distribution can be used to model discrete time delays [18].
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Abstract. The trip computers for the two reactor shutdown systems of
the Ontario Power Generation (OPG) Darlington Nuclear Power Gen-
erating Station (DNGS) are being refurbished due to hardware obsoles-
cence. For one of the systems, the general purpose computer originally
used is being replaced by a programmable logic controller (PLC). The
trip computer application software has been rewritten using function
block diagrams (FBDs), a commonly used PLC programming language
defined in the IEC 61131-3 standard. The replacement project’s qual-
ity assurance program requires that formal verification be performed to
compare the FBDs against a formal software requirements specification
(SRS) written using tabular expressions (TEs). The PVS theorem prov-
ing tool is used in the formal verification. Custom tools developed for
OPG are used to translate TEs and FBDs into PVS code. In this paper,
we present a method to rigorously translate the graphical FBD language
to a mathematical model in PVS using an abstract syntax to represent
the FBD constructs. We use an example from the replacement project
to demonstrate the use of the model to translate a FBD module into a
PVS specification.

Keywords: Safety critical systems · IEC 61131-3 · Function block
diagrams · Formal specification · PVS · Tabular expressions

1 Introduction

Many industrial, safety-critical control systems leverage programmable technolo-
gies for their flexibility and scalability. The use of programmable technologies
for safety-critical design is now commonplace in nuclear, aerospace and automo-
tive applications, and formal methods can play an important role in ensuring
that those applications are safe. In the aviation domain, DO-178C [2] advocates
the use of formal methods to create mathematical models for the specification
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and analysis of system behaviour. In the nuclear industry, IEEE 7-4.3.2 [1] lists
acceptance criteria for mission- or safety- critical systems that practitioners need
to comply with. In the context of formal methods, two important criteria are:
(1) the software requirements are both precise and complete; and (2) the software
implementation is correct with respect to specified behaviour. In the Canadian
nuclear industry, CE-1001-STD [7] governs the software engineering of safety
critical applications. It prescribes not only the formal specification of require-
ments and design, but also the formal proof of correctness of implementation
against requirements. Traditionally, CE-1001-STD has been applied to general
purpose computer languages. It is now being applied to the application-oriented
language paradigm of programmable logic controllers (PLCs). PLCs provide a
higher level of abstraction for the programmer via a set of built-in hierarchical
function blocks (FBs) that can be safety certified for use in critical applications.

The Ontario Power Generation (OPG) Darlington Nuclear Generating Sta-
tion (DNGS) in Ontario, Canada uses two diverse, computerised special safety
systems for emergency shutdown of the reactor. These are referred to as Shut-
down System One and Two (i.e., SDS1 and SDS2). They were completed in
the early 1990s and are based on an arrangement of real-time general purpose
computers. Each SDS has three redundant trip computers (TCs) in a 2-out-
of-3 voting configuration. The TCs are categorized as safety critical and were
engineered in compliance with CE-1001-STD, which defines a comprehensive
set of development, verification and validation processes. Formal requirements
and design specification were developed and documented using tabular expres-
sions (TEs) [13]. In addition to various review and overlapping testing processes,
formal proof of correctness was performed using a theorem prover Prototype Ver-
ification System PVS [9].

Currently, SDS1 and SDS2 are being refurbished to extend the nuclear plant’s
life and both hardware platforms are being replaced. A safety-certified PLC
compliant with IEC 61131-3 [4] was selected for the SDS1 TC replacement. As
with the original project, the software requirements are specified using TEs, but
the software design is now specified in a function block diagram (FBD) language
using built-in IEC 61131-3 FBs provided by a PLC vendor1,2. Using the PLC
platform, the detailed design automatically generates executable code. PVS is
used to formally verify the design against the requirements.

PVS provides an integrated environment with mechanized support for the
syntax and semantics of TEs and (higher-order) predicates. Based on [10], an
approach was developed for the replacement project to support the formal verifi-
cation of FBDs. The process is as follows: (1) the trip computer design, described
in a collection of FBDs, is translated into PVS; (2) the requirements described in
tabular expressions are translated into PVS; and (3) formal proofs for systematic
design verification are automated using PVS.

1 A small portion of the software design is written using structured text (ST), but
that is not relevant to the subject of this paper.

2 The use of IEC 61131-3 compliant built-in FBs eased formal specification and sub-
sequent verification of their behavior; one of many PLC qualification activities.
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Fig. 1. Framework diagram

Step (1) of the process is the subject of this paper and is based on our
experience in the replacement project. An abstract syntax is created to represent
the constructs of a FBD and rigorous translation rules are defined for the general
translation of FBDs into PVS specifications.

Figure 1 summarizes the overall verification process and contributions. As
shown on the left, the requirements are documented using tabular expressions.
The design is written in a FBD language that is complaint with IEC 61131-3. In
the center of the diagram, we highlight our main contributions within a dashed
rectangle. We define an abstract syntax for FBDs using a FBD design as input.
With values from the abstract syntax as input, we define an attribute map and
labelled directed graph to represent relationships in the FBD. Given an attribute
map and graph, we define an additional data structure, block groups, to reduce
the complexity of PVS translation. Shown on the right side of Fig. 1, the require-
ments are formalized in PVS whereas the FBD specification is produced from
our methodology. Based on [10], our technique also produces the consistency
theorems3 for FBDs, which are verified manually in PVS. The correctness the-
orems are manually specified and verified in PVS. The future automation of
consistency and correctness proofs is discussed in Sect. 8.

2 Preliminaries

2.1 Tabular Expressions

Tabular expressions [13] (a.k.a., function tables) are a proven and effective app-
roach for describing conditionals and relations, and thus are ideal for document-
ing many system requirements. They are arguably easier to comprehend and to

3 A FBD design is consistent if for every input there exists an output that satisfies the
internal relationships. Otherwise, a FBD design trivially satisfies any requirement.
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maintain than conventional mathematical expressions. Formal semantics for tab-
ular expressions have been well-developed in [6] and are useful for inspections,
testing and verification [17,18]. Tabular expressions were used on the original
SDS1 project and continue to be used on the replacement project for specify-
ing software requirements. As an example of a tabular expression (Fig. 2), we
consider the c PressParmTrip requirement that will be used as a running exam-
ple. The function calculates the parameter trip value using the process variable
m Presssure compared against the setpoint value k PressSP4. We present the
detailed discussion in Sect. 6.1.

Fig. 2. Tabular expression of c PressParmTrip

2.2 IEC 61131-3 FBDs

To unify the syntax and semantics of PLC programming languages, the Inter-
national Electrotechnical Committee (IEC) first published IEC 61131-3 in 1993,
with its latest version being published in 2013 [4]. The DNGS SDS1 trip com-
puter uses built-in IEC 61131-3 FBs as the basis of the formal software design.
The methodology outlined in [10,11], used as a basis for this paper, provides an
approach for formally verifying built-in IEC 61131-3 FBs. It also generalizes the
approach for verifying generic FBDs using tabular expressions (Sect. 2.1) and
PVS. Figure 3 presents an example FBD design (seeded with an error) for the
requirement described in Fig. 2, which is further discussed in Sect. 6.2.

2.3 PVS Grammar

The PVS specification language [9] is based on classical higher-order logic
equipped with dependent and subtyping mechanisms. PVS has a powerful inter-
active prover to perform sequent-style deductions. It is used in both academia
and industry to analyze formal software specifications. We rely on the syntax
and semantic mechanisms implemented in PVS to perform systematic design
verification on SDS1. To provide a formal translation to PVS, we select a subset
of the PVS grammar as a target language for FBD specifications.

4 The prefixes in this section refer to monitored variables (m ...), controlled variables
(c ...), enumerations (e ...), and constants (k ...).
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Fig. 3. FBD design for c PressParmTrip5

3 FBD Abstract Syntax

We propose an abstract mathematical model to represent various FBD compo-
nents. We consider FBDs as a named collection of variables and networks. In
practice, a FBD may consist of several networks used to specify the dataflow and
transitions between variables and internal FBs. We allow for negated statements
as well as feedback connections to support typical programming practices. In
addition, the variable set includes interface properties and a named instance for
each internal FB6.

Using basic mathematical constructs, we define recursive and terminal com-
ponents of a FBD. We use the following notations: “×” for Cartesian product,
“+” for disjoint union, “{}” for set, “〈〉” for sequence, “:” for type definition
and “→” for function. We begin by defining the following types: Iident is an
identifier type that has decidable equality; Kconn : type = {direct, feedback}
is an enumerated type for direct and feedback connections; Cclass : type =
{input, output, extern, local, wire} is an enumerated type containing five tokens
for FBD variable classification; and Iinit : type = Iident + ε is an initial value
that is either a value represented by an identifier or is empty.

Ffbd = Fident × Wvars × {Nntwk} (1)
Wvars = {Ddecl} (2)
Ddecl = Rvar + (Bident × Hident × {Rvar}) (3)
Rvar = Vident × Tident × Cclass × Iinit (4)

Nntwk = Nident × {Sstm} (5)
Sstm = Uvelm × Kconn × Uvelm (6)

Uvelm = Qsvar + Zneg (7)
Qsvar = Vident + (Bident × Pident) (8)
Zneg = Qsvar (9)

5 There are five internal FBs: subtraction (SUB), less than or equal to (LE), greater
than or equal to (GE), logical disjunction (OR) and logical conjunction (AND).

6 Concrete examples are available to assist the reader with the translation rules
(Sects. 3 and 4) at http://www.swi.com/research/NFM2016.

http://www.swi.com/research/NFM2016
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The abstract syntax is a recursive data structure, defined by Eqs. (1)–(9),
with an entry value of Ffbd. A Ffbd consists of an identifier accompanied by
a variable collection and a set of networks. The variable collection Wvars is
defined by a set of declarations; Ddecl is either a variable declaration or a block
declaration. A variable declaration Rvar consists of a variable identifier, a type
identifier, and a classification. The second variant of Ddecl is a block declaration
consisting of a block identifier and a block name, and a set of variable declarations
that describes the interface of the block. The variable names for the interface
are referred to as interface variable identifiers Pident. A network Nntwk contains
an identifer for the network and a set of statements. A statement consists of a
two variable elements and a connector. A variable element Uvelm consists of two
variants, Qsvar and Zneg. Zneg is a recursive reference to Qsvar and represents a
negated interface connection. Qsvar has two variants. The first represents a FBD
variable identifier and the second is a block identifier and an interface variable
identifier. Statements represent the connections between variables and blocks.

The graph models connections between FBD variables and FBs. Variable-
to-variable statements do not satisfy this condition. Representing block-to-block
statements is syntatic sugar. These statements are rewritten as block-to-variable
and a variable-to-block statements before producing the graph. The variable
introduced is refered to as an interconnector, which is necessary for the PVS
formalization. Lastly, the classification property for interface variables are exclu-
sively input or output values.

4 Graph Model

In this section we summarize our formalization technique using the abstract
syntax, previously defined, as input. We make use of an attribute map, and
labelled directed graph to represent interconnections in a FBD network. The
labels of the graph contain indices that are used to retrieve properties for blocks,
variables and connections from the attribute map. Given the abstract syntax,
we use Wvars and Nntwk to construct the attribute map and Nntwk to construct
the graph. We chose to use variable identifiers Iident to construct the indices.

4.1 Attribute Map

The attribute map is an associative structure that relates indicies to properties
for FBD variables and interface variables. It is created to separate attributes from
identifiers. The map is used in conjunction with the graph to retrieve properties
for nodes and edges in a FBD network.

Mmap = 〈(Iidf → Avarf ) + (Iidi → Avari)〉 (10)
Iidf = Vident (11)
Iidi = Bident × Pident (12)

Avarf = Tident × Vclass × Iinit (13)
Avari = Iident × Tident × Pclass (14)
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The attribute map, defined by Eqs. (10)–(14), is a sequence of functions from
indices to attributes as described by Mmap. The map has two possible function
variants. The first function is the mapping between the index of a FBD variable
to its attributes Avarf : FBD variable type, classification and initial value. The
second index is a block identifier and one of its interface variables. The second
function maps an index Iidi to the attributes Avari: block name, interface variable
type, and interface variable classication. For a given FBD network, a map is
defined to store each FBD, interface and interconnector variable.

4.2 Graph Model

A directed graph is mathematically defined as a pair of nodes N, and edges E.
Formally, a graph is defined by Eqs. (15) and (16). From the abstract syntax, we
construct a graph for each FBD network.

G = (N, E) (15)
E ⊆ N × N (16)

Lnode = Vident + Bident (17)
Ledge = Pident × B × B (18)

A labelled graph consists of a node and edge labelling function (i.e., lnode :
N → Lnode and ledge : E → Ledge) that is used to map nodes and edges with
their respective labels. We select labels, for the node and edge respectively, as
described by Eqs. (17) and (18). Lnode is either a variable identifier (i.e., Iident)
or a block identifier. Ledge contains an interface variable identifier, a boolean flag
identifying the edge as a feedback and a boolean flag identifying the negation of
a interface connection.

4.3 Block Groups

Given an attribute map and graph for a FBD network, we define an additional
data structure that reduces the complexity of our PVS translation by restructur-
ing the data to a format similar to the target expression. The block group data
structure, defined by Eqs. (19)–(22), is motivated by the PVS predicate expres-
sion for composite FBDs. In a composite FBD, the predicate for each internal
block consists of the internal block name and its associated arguments.

Block groups require two structures defined by Bio and Bgroup that depend
on the secondary structures Kblk and Iarg. Kblk consists of a block identifier
and block name. Iarg associates a FBD variable identifier to an interface vari-
able identifier, with boolean flags for feedback and negation. FB arguments are
ordered using the interface variable element index from an attribute map.
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Kblk = Bident × Hident (19)
Iarg = Vident × Iident × B × B (20)
Bio = Kblk × Iarg (21)

Bgroup = Kblk × 〈Iarg〉 (22)
fio : Mmap → G → N → {Bio} (23)

fgroup : Mmap → {Bio} → 〈Bgroup〉 (24)

We present two functions that describe the process for constructing block
group values in Eqs. (23) and (24). These functions implement the logic to group
and order various elements. Function fio constructs Bio values from an attribute
map, graph and block node. The attribute map is required to retrieve properties
for nodes and edges in the graph. Values constructed from variable nodes are
not valid. Bio consists of granular inputs or outputs for a block. Function fgroup
constructs Bgroup values from a set of Bio values by extracting inputs or outputs
and grouping the block identifier and block name. The resulting Bgroup set is
ordered using Mmap, as are individual Iarg sequences.

5 PVS Translation

We summarize our contributions for translating our mathematical model to PVS
expressions. Based on [11], the resulting expression is a predicate with input and
output arguments existentially quantified over all its internal FBs.

5.1 Identifying Predicate Arguments

The graph maps interconnections between variables and blocks. From this rela-
tionship, we determine whether variables behave as inputs or outputs in a given
FBD network. It is possible the determination differs from the classification
property in the attribute map since the classification does not represent the use
of a variable in a given network. For example, if a local variable is set at the end
of network 1 and used as input in network 2, then it is consistent with its use
as an output of network 1 and an input of network 2. Thus, it is not sufficent to
rely on the classification value of local from the attribute map.

From graph theory, the degree of a node is the number of incident edges to
and from a node. Since the graph is directed, we are able to determine the input
degree (i.e., deg+) and output degree (i.e., deg−) of a node based on the position
of the node in the ordered product of an edge. To find input variables, the graph
is searched for all nodes that have an input degree of zero, and nodes that satisfy
the variable predicate Pvar (i.e., nodes that are FBD variables and not blocks).
This is precisely described by inference rule (25), which is implemented by our
translation process.

n : N Pvar(n) deg+(n) = 0
Pinput(n)

(25)
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∀(e : E) : ¬Pfback(e) n : N Pvar(n) deg−(n) = 0
Poutput(n)

(26)

An output variable is defined as a terminal node in a dataflow. If an output
variable is used as feedback in a FBD, then it will have an edge with a feedback
property set to TRUE, thus the output degree will be non-zero. These edges
represent inputs from the previous cycle and satisfy the predicate Pfback. To
correctly identify output variables, feedback edges are excluded, which causes
the output degree to become zero for terminal nodes. This is precisely described
by inference rule (26). Using rules (25) and (26) we construct the predicate
arguments and resolve the type for each using the attribute map. This informa-
tion also allows us to construct the expression used in the consistency theorem
from [11].

5.2 Identifying Existential Variables

The next step of the predicate formalization is the existential quantification of all
interconnections between internal blocks. The determination of interconnectors
is performed using a similar search predicate from inference rule (26). Feedback
edges are excluded to avoid identifying output variables as interconnectors. As a
result, the input and output degree of a node should not be zero (i.e., each node
has at least one input and one output). This is precisely described by inference
rule (27), which is implemented by our translation process.

∀(e : E) : ¬Pfback(e) n : N Pvar(n) deg−(n) �= 0 deg+(n) �= 0
Pinternal(n)

(27)

Using rule (27), we construct the existential quantification over all internal
blocks using the attribute map to resolve types. This is the initial component
necessary to specify the predicate expression for a composite FBD.

5.3 Function Block Composition

The last step of the composite FBD formalization is a PVS expression consisting
of all internal FBs composed by logical conjunction. To define this, we consider
several functional structures interpreted with PVS syntactic types.

A fold is a higher order function that takes a binary function as input to
reduce a recursive data structure to a terminal value. We define a function fexpr
in Eq. (28) that translates a block grouping (i.e., Bgroup) to a PVS application
expression7. Considering fgroup, an ordered list of Expr elements is produced
using the function defined by the function fexprl from Eq. (29).

7 The application expression consists of the block name applied with ordered argu-
ments. An example of a PVS application expression is MOVE(input, output) where
MOVE is the block name, and input and output are the arguments.
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fexpr : Bgroup → Expr (28)
fexprl = map(fexpr, fgroup) (29)
Mexpr = (Expr, fand) (30)

fand : Expr → Expr → Expr (31)
fpexpr = fold(fand, fexprl) (32)

To specify a binary function for the fold, we define a monoid in Eq. (30), with
a signature defined in Eq. (31). The definition of fand constructs an “Expr AND
Expr” value from the two Expr inputs. Each Expr input is a PVS application
expression for a given composite block. Using the ordered list of Expr elements,
and the binary function from the monoid Mexpr, the completed conjunctive
expression is defined by the function fpexpr in Eq. (32).

6 Nuclear Industry Case Study

The DNGS SDS1 TCs monitor a diverse set of nuclear and secondary parameters
that cover all critical design basis accident scenarios. In the case of anomalous
behavior, the TCs respond via control logic to signal a reactor trip. Signals
from three redundant SDS1 TCs are connected to 2-out-of-3 voting logic that
ultimately initiates a reactor trip8. The SDS1 TC software requirements are for-
malized using TEs and the software is designed using FBDs. First, we present a
simplified example of verifying a parameter trip requirement. Second, we demon-
strate the application of our formal translation rules and discuss the verification
results from applying PVS.

6.1 Parameter Trip Setpoint Requirements

In this example, we consider the requirements of a generalized parameter trip.
The special safety system is designed to provide coverage of a pressure input
m Pressure. The TE (Fig. 2, Sect. 2.1) specifies that c PressParmTrip generates
a trip response, if the pressure input (m Pressure) is above or equal to the
setpoint (k PressSP). It will not generate a trip response, if the pressure input
is below or equal to the setpoint minus the deadband value. The deadband
value is assumed to be positive (or else the tabular expression is ill-formed), and
much smaller in value than the absolute value of the setpoint (or else it affects
behaviour rather than simply reducing noise). The value of c PressParmTrip
does not change at all if the pressure input is in the deadband region. Note
that, since the function value may be left unchanged, an initial value must be
provided. In keeping with the safety priority of the system, the initial value in
this case would be e tripped.

8 SDS2 uses diverse technologies to cause a reactor trip if SDS1 were to fail.
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6.2 Design and Formal Translation

An example design (Fig. 3, Sect. 2.2) uses several built-in IEC 61131-3 FBs to
specify the functional behaviour and uses a feedback connection for the hys-
teresis effect. It is important to note that the target PLC treats “de-energised”
(“FALSE” = 0) as the safe state, therefore c PressParmTrip = FALSE is equiv-
alent to c PressParmTrip = e tripped.

For this example, we use the prototype translator to demonstrate our transla-
tion rules. Mapping this diagram to an abstract syntax is performed by preparing
an ASCII input file and using a simple parser. We have implemented a function
to modify block-to-block connections by introducing an additional “wire” vari-
able. These variables are added to an attribute map and are used in the labels
of a graph, as illustrated in Fig. 4.

Fig. 4. Labelled directed graph for c PressParmTrip

The translation rules are further applied and the resulting PVS code is illus-
trated in Fig. 5. Using the input and output identification rules from Eqs. (25)
and (26), inputs and outputs of the graph in Fig. 4 are respectively: k PressSP,
k DeadBand, m Pressure, and c PressParmTrip. The existential identification
rule from Eq. (27) yields the internal variables: wire 0, wire 1, wire 2, and wire 4.
Lastly, the conjunction of internal blocks SUB, GE, LE, OR9 and AND com-
pletes the expression as shown10.

6.3 Verification

CE-1001-STD [7] specifies a set of complementary and overlapping verification
processes, one of them being systematic design verification (SDV). The objec-
tive of SDV is to verify that all functions in the design are equivalent to their
9 The underscore (... ) is used for generated names that conflict with PVS keywords.

10 The FBD is formalized over a discrete time series of equally distributed samplings,
i.e., ticks. The pre operator returns the previous time sample.
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Fig. 5. Generated PVS for c PressParmTrip

corresponding functions in the requirements using mathematical techniques or
rigorous argument. SDV uses a specialization of the four variable model [12] to
confirm the satisfaction of Eq. (33).

OUT ◦ SOF ◦ IN 	 REQ (33)

For the purposes of our example, REQ is the TE from Fig. 2 plus other
supporting information (not shown) that defines the monitored and controlled
variables, the constants, and the enumerated types. SOF is the FBD from Fig. 3
plus other supporting information (not shown) that defines the input and output
variables and constants used. IN and OUT are functions that translate moni-
tored variables to input variables and output variables to controlled variables,
respectively (an example of such a translation for c PressParmTrip is shown
in Sect. 6.2). Our verification was performed in PVS using cond expressions to
specify the requirements [18]. We then created a PVS specification containing a
theorem in the form of Eq. (33). By running PVS, we discovered an unprovable
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sequent that prevented us from discharging the proof. Upon investigation, we
recognize the design failed to add a negation to the first input of the AND
block. This is a clear demonstration of how formal verification detects subtle
design flaws that could potentially result in unintended behaviour.

The application of the approach11 for SDV on the DNGS SDS1 TC replace-
ment project helped identify design pattern inconsistencies that led to an
improved FBD-based design approach, uncovered inconsistencies in TEs that
led to a more precise requirements specification, and identified an omitted con-
version in the FBD for performing an average power calculation. PVS was used to
verify all FBDs in the design, which accounted for 80 % of the overall SDV effort.
Our approach was used to automatically discharge 70 % of the proof obligations.
The most complicated FBD, a module with 20 FBs and 39 variables, and mod-
ules with real-time properties, required user interaction with PVS to discharge
the proof.

7 Related Work

IEC 61131-3 provides definitions for five PLC languages12 and various research
work has produced formalization and verification of PLC programs. In terms of
the formal verification of PLC programs written in these languages, there are
typically two main approaches to prove or disprove the correctness of a design
with respect to a certain formal requirements specification or required property:
model checking and theorem proving.

In the case of model checking, [8] provides the formal verification of a safety
procedure in a nuclear power plant (NPP) in which a verified Coloured Petri
Net (CPN) model is derived by reinterpretation from the FBD description. [15]
transforms FBD descriptions to its logically equivalent Uppaal models that per-
form the verification of safety applications in the industrial automation domain.
[5] translates ST and FBD into a synchronized data-flow language SIGNAL to
compile and reason about the verification of specifications. In the case of theorem
proving, [3] uses Coq to check the correctness of SFC programs, which is auto-
matically generated from a graphical front-end. [16] formalizes PLC programs
using higher-order logic and uses HOL to discharge safety properties. Also, [14]
presents an algebraic approach to verify PLC programs.

In the case of model checking, there is difficulty scaling up to industrial-size
applications. In theorem proving, complex formalisms can be handled, but the
process of proofs is not fully automated and adds additional overhead to indus-
trial scale applications. Thus, the strengths and weaknesses for model checking
and theorem proving are complementary. To balance this issue, our technique
has been successfully used in an on-going nuclear industrial application, and it is

11 The approach was qualified using a combination of trial use, inspection and accep-
tance testing.

12 Function block diagram (FBD), structured text (ST), instruction list (IL), ladder
diagram (LD) and sequential function chart (SFC).
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novel in that: (1) we translate a FBD design to a formal PVS model; and (2) the
resulting PVS model can be verified against TE-based requirements input to
PVS.

8 Conclusion and Future Work

In this paper, we have extended the work presented in [10] with an industrial-
scaled methodology for the systematic translation of FBD designs compliant
with IEC 61131-3 into the PVS formal specification language. The approach
was developed for OPG and is in current use as part of the verification of the
DNGS SDS1 TCs. In combination with PVS, this work has proven effective in
uncovering subtle inconsistencies in applying design patterns, inconsistencies in
the requirements documented using TEs, and non-conformance between a FBD
design and its requirements.

As on-going and future work, we first aim to improve our translation rules
using PVS to provide more precision for potential tool designers. Secondly, we
are currently formalizing proof scripts to increase the level of automation, which
has potential application in other industrial domains, e.g., aerospace. Lastly,
we plan to extend our formalization technique to other IEC 61131-3 compliant
programming languages, e.g., Structured Text (ST).
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Abstract. This paper concerns the application of formal methods to
the definition of a detect and avoid concept for unmanned aircraft sys-
tems (UAS). In particular, it illustrates how formal analysis was used to
explain and correct unexpected behaviors of the logic that issues alerts
when two aircraft are predicted not to be well clear from one another. As
a result of this analysis, a recommendation was proposed to, and subse-
quently adopted by, the US standards organization that defines the min-
imum operational requirements for the UAS detect and avoid concept.

1 Introduction

One of the major challenges to the integration of Unmanned Aircraft Systems
(UAS) into the NAS (National Aerospace System) is the lack of an on-board
pilot to comply with US and international legal requirements [5,8]. In manned
aircraft operations, on-board pilots have the responsibility for not “operating an
aircraft so close to another aircraft as to create a collision hazard”, “to see and
avoid other aircraft”, and when complying with the particular rules addressing
right-of-way, on-board pilots “may not pass over, under, or ahead [of the right-
of-way aircraft] unless well clear”. To address the safety challenge and establish
parallel requirements for UAS, the final report of the Federal Aviation Admin-
istration (FAA) Sense and Avoid (SAA) Workshop [3] defined the concept of
sense and avoid as “the capability of a UAS to remain well clear from and avoid
collisions with other airborne traffic.” This concept, which is now called detect
and avoid, has been proposed as a means of compliance with the preceding legal
requirements.

In 2013, the RTCA organization established the Special Committee (SC)
228 to provide technical guidance to the FAA for defining minimum operational
performance standards for the UAS detect and avoid concept, based on a quan-
titative definition of the well-clear boundary. The well-clear boundary adopted
by RTCA SC-228 is defined by a Boolean formula based on the Resolution Advi-
sory (RA) detection logic of the second generation of the Traffic Alerting and
Collision Avoidance System (TCAS II) [2]. To accommodate sensor uncertainty
and other conditions, the detect and avoid concept considered by RTCA SC-228
c© Copyright 2016 U.S. Government, as represented by the Administrator of the National Aeronautics
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allows for the use of extended well-clear boundaries in the logic that issues alerts
when aircraft are predicted to lose well-clear status. This paper presents a for-
malization of extended well-clear boundaries and the verification of their main
properties. In particular, it presents a novel result that explains and corrects a
potentially unsafe property of extended well-clear boundaries when their thresh-
old parameters are not properly set. The formal analysis presented in this paper
resulted in a recommendation to RTCA SC-228 that has been adopted in the
current draft of the Minimum Operational Requirements Standards (MOPS) for
UAS.

The mathematical development in this paper has been conducted in the Pro-
totype Verification System (PVS) [7]. For readability, this paper uses mathe-
matical notation instead of concrete PVS syntax. For further information on
this formal development, the reader is referred to the directory WellClear in
the NASA PVS Library1.

2 Well-Clear Boundary and Its Extensions

This paper considers two aircraft, called ownship and intruder, whose states are
given by position and velocity vectors in a local East, North, Up (ENU) Cartesian
coordinate system. Since it is notationally convenient, horizontal and vertical
components of a three-dimensional vector are represented by a two-dimensional
vector and a scalar, respectively, and these components are presented in a relative
coordinate system where the intruder is at the origin and the ownship moves
relative to the intruder.

The set of relative aircraft states that are in well-clear violation, i.e., inside
the well-clear boundary, is defined as follows.

WCV(s, sz,v, vz) ≡ HWCV(s,v) ∧ VWCV(sz, vz), (1)

where s,v ∈ R
2 are the respective relative horizontal position and velocity vec-

tors of the aircraft, and sz, vz ∈ R are the respective relative vertical positions
and velocities. Informally, a well-clear violation, characterized by the predicate
WCV, occurs when the aircraft are in horizontal violation, characterized by
the predicate HWCV, and in vertical violation, characterized by the predicate
VWCV. The horizontal and vertical violation predicates are defined as follows.

HWCV(s,v) ≡ ‖s‖ ≤ DMOD ∨ (HMDF(s,v) ∧ 0 ≤ τmod(s,v) ≤ TAUMOD), (2)

VWCV(sz, vz) ≡ |sz| ≤ ZTHR ∨ 0 ≤ tcoa(sz, vz) ≤ TCOA, (3)

where TAUMOD and DMOD are horizontal time and distance thresholds, respec-
tively, and TCOA and ZTHR are vertical time and distance thresholds, respectively.
The predicate HMDF is called the horizontal miss-distance filter and is defined
as HMDF(s,v) ≡ dcpa(s,v) ≤ HMD, where HMD is the horizontal miss-distance
threshold and is usually set to the same value as DMOD. The distance function
1 https://github.com/nasa/pvslib.

https://github.com/nasa/pvslib
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dcpa computes the projected horizontal distance of the aircraft at their closest
point of approach, assuming constant relative horizontal velocity, v, and is for-
mally defined as dcpa(s,v) ≡ ‖s+ tcpa(s,v)v‖. The time function tcpa is the time
to closest point of approach, which is defined as tcpa(s,v) ≡ − s·v

v2 , when ‖v‖ �= 0,
and 0 otherwise. The time function τmod, called modified tau, was introduced in
the TCAS II RA logic [4]. In the vector notation used in this paper, modified
tau is defined as τmod(s,v) ≡ DMOD2−s2

s·v , when s ·v < 0, and -1 otherwise. The time
function tcoa computes the time to co-altitude assuming constant relative vertical
speed vz. It is defined as tcoa(sz, vz) ≡ − sz

vz
, when szvz < 0, and -1 otherwise.

The conditions s · v < 0 and szvz < 0 hold when the aircraft are horizontally
converging and vertically converging, respectively.

For arbitrary values of DMOD, ZTHR, TAUMOD, and TCOA, with HMD = DMOD,
Formula (1) satisfies several operational requirements [6]. The values of these
thresholds recommended by the UAS SARP [2] and adopted by the RTCA SC-
228 are DMOD = HMD = 4000ft, ZTHR = 450ft, TAUMOD = 35s, and TCOA = 0s. These
values were chosen using a collision-risk analysis and acceptability metrics aimed
to defining a well-clear boundary that is large enough to avoid safety concerns
for controllers and see-and-avoid pilots, but small enough to avoid disruptions to
traffic flow [1]. Furthermore, the detect and avoid concept considered by RTCA
SC-228 only applies to certain types of UAS and in classes of airspace that are
usually below 10,000 ft, that is, Class D, Class E, and perhaps Class G airspace.

The well-clear boundary defined by Formula (1) assumes perfect aircraft state
information. To accomodate for uncertainty in the position and velocity informa-
tion, the RTCA SC-228 requirements for the well-clear alerting logic allows for
the use of a larger set of threshold values within some ranges. An extended well-
clear boundary is characterized by a predicate WCV∗ defined by Formula (1), but
using parameters DMOD∗ ≥ DMOD, HMD∗ ≥ HMD, ZTHR∗ ≥ ZTHR, TAUMOD∗ ≥ TAUMOD,
and TCOA∗ ≥ TCOA. The following property, which is proven in PVS, guaran-
tees that the well-clear boundary, instantiated with standard threshold values,
is safely included in any of its extensions.

Theorem 1 (Extension). WCV is included in WCV∗, i.e., for all relative
states s, sz,v, vz, WCV(s, sz,v, vz) =⇒ WCV∗(s, sz,v, vz).

3 An Unexpected Result When HMD∗ > DMOD∗

In flight simulations at NASA, an unexpected behavior was observed in the
alerting logic. In some converging, non-maneuvering encounters (i.e., aircraft
flying converging straight line trajectories), alerts due to predicted violation of
an extended well-clear boundary suddenly disappear before the closest-point of
approach. This behavior was originally blamed on a possible coding error. To
understand the actual explanation of this behavior, it is necessary to review the
origins of the τmod function and the horizontal-miss distance filter in the TCAS II
RA detection logic.
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The definition of the UAS well-clear boundary in Sect. 2 closely follows the
detection logic of the TCAS II RA algorithm2. However, while Formula (1)
assumes state information in vector form, which is readily available through
modern global positioning systems such as GPS, the family of TCAS devices
assumes that aircraft are equipped with active transponders, which provide less
precise aircraft state information. Earlier versions of the TCAS alerting logic
used a simpler variant of Formula (2): ‖s‖ ≤ DMOD ∨ 0 ≤ τ(s,v) ≤ TAUMOD,
where τ is defined as range over closure rate or, in vector form, − s2

s·v when
s · v < 0 and −1 otherwise.

Two problems may arise with use of the simpler variant of Formula (2).
The first problem involves encounters with low closure rates. It holds that τ
tends to positive infinity as the aircraft reach the closest point of approach,
which is attained when the closure rate is 0, i.e., when s · v = 0. TCAS II
addresses this problem by using a modified version of τ , i.e., τmod. Both τmod

and τ are approximations of time to closest point of approach, tcpa. Indeed, it
has been formally proven that for horizontally converging trajectories whose
initial states are outside DMOD, i.e., s · v < 0, ‖s‖ > DMOD, and dcpa(s,v) ≤ DMOD,
τmod(s,v) ≤ tcpa(s,v) ≤ τ(s,v) [6]. In contrast to tcpa, the computations of τ and
τmod can be done without directional information. The second problem involves
high closure rates with large miss distances, which creates a high rate of false RA
alerts. TCAS II addresses this problem by employing a horizontal miss distance
filter [4]. The idea behind the filter is to stop RA issuances when the projected
future distance at the closest point of approach will be greater than a given
distance HMD. In TCAS II, the value HMD is set to be equal to DMOD. The actual
horizontal miss-distance filter in TCAS II employs a sophisticated parabolic
range tracker to provide projected range, range rate, and range acceleration.
Depending on the quality of the range rate estimate computed by the tracker and
other conditions, the TCAS II RA system may disable the use of the horizontal
miss distance filter. This is in contrast to the well-clear boundary definition where
the horizontal miss-distance filter is never disabled. This may cause situations
where aircraft are inside the TCAS II RA boundary, but not inside the well-clear
boundary. Hence, in the case of the UAS detect and avoid concept, it is tempting
to mitigate this problem by using an alerting logic with an extended well-clear
boundary where HMD∗ > DMOD∗.

One key property that can affect the properties of an extended well-clear
boundary is whether τmod, as a function of time for a straight line relative tra-
jectory, i.e., τmod : t → τmod(s + tv,v), is monotonically decreasing before clos-
est point of approach. The following lemma, which is proven in PVS, provides
a necessary and sufficient condition for the function τmod to be monotonically
decreasing for straight line trajectories.

Lemma 1. The function τmod is monotonically decreasing for straight line tra-
jectories if and only if ‖s + tv‖ ≤ DMOD∗ for some time t.

2 The TCAS II RA logic uses TAUMOD instead of TCOA in the vertical dimension.
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Consider an extended well-clear boundary where HMD∗ ≤ DMOD∗. Note that
this is actually the case in the current version of the TCAS II RA logic, where
HMD∗ is equal to DMOD∗. If there is an alert, then there must be some t where
‖s+tv‖ ≤ HMD∗ ≤ DMOD∗. By Lemma 1, this means that τmod is always decreasing.
Its graph is shaped as in Fig. 1. In this case, the following theorem, which is
proven in PVS, holds.

Theorem 2 (Convergence). An extended well-clear boundary where HMD∗ ≤
DMOD∗ is convergent, i.e., for all relative states s, sz,v, vz, with s·v ≤ 0, szvz ≤ 0,
and either vz = 0 or sz �= 0, if WCV∗(s, sz,v, vz) then for all 0 ≤ t ≤ t∗,
WCV∗(s+ tv, sz + tvz,v, vz), where t∗ is tcpa(s,v) if vz = 0, tcoa(sz, vz) if v = 0,
and, in any other case, min(tcpa(s,v), tcoa(sz, vz)).

The convergence property guarantees that, in a non-maneuvering encounter, a
violation of an extended well-clear boundary, where HMD∗ ≤ DMOD∗, never disap-
pears before closest point of approach.

On the other hand, when HMD∗ > DMOD∗, there are cases where ‖s + tv‖ >
DMOD∗ for every possible value of t but where ‖s + tv‖ < HMD∗ for some t. Thus,
there is some time region where τmod is increasing. In fact, just before closest
point of approach, the numerator of τmod is negative and its denominator is both
negative and approaching negative infinity. This case is illustrated in Fig. 2. This
observation leads to the following theorem, which is also proven in PVS.

Theorem 3. If HMD∗ > DMOD∗, then there exist relative vectors s,v such that
dcpa(s,v) < HMD∗, s · v < 0, and dcpa(s,v) > DMOD∗. In these situations, the
value of τmod(t) tends to positive infinity as the aircraft reach the closest point of
approach.

Fig. 1. Case HMD∗ ≤ DMOD∗ Fig. 2. Case HMD∗ > DMOD∗

From an operational point of view, a negative consequence of Theorem 3
is that in a non-maneuvering encounter where HMD∗ > DMOD∗, a violation of an
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extended well-clear boundary may disappear before the aircraft have reached the
closest point of approach. In this case, an alerting logic that protects against such
an extended well-clear boundary may unexpectedly stop issuing alerts before the
aircraft reach the closest point of approach.

4 Conclusion

This paper reported on the application of formal methods, in particular interac-
tive theorem proving in PVS, to the analysis of extended well-clear boundaries
based on the TCAS II alerting logic. In particular, it has been formally proven
that an extended well-clear boundary is convergent if HMD∗ ≤ DMOD∗. Further-
more, the analysis explains why, when HMD∗ > DMOD∗, an alerting logic that
protects against such an extended boundary may stop issuing alerts before the
aircraft reach the closest point of approach. To the knowledge of the authors,
there has been no prior report and explanation of this result. As result of this
analysis, the authors recommended to RTCA SC-228 that when an extended
well-clear boundary is used by a detect and avoid algorithm, the value of HMD∗

is set to DMOD∗ (the case HMD∗ < DMOD∗ is not operationally interesting). This
recommendation has been accepted and is part of the current draft of the RTCA
SC-228 MOPS for UAS.
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Abstract. This paper presents the interim results of a three-year NASA project
for the development of a comprehensive framework for the validation and
verification (V&V) of model-based control systems and adaptive control sys-
tems (MBCSs/ACSs), with focus on Unmanned Aircraft Systems (UAS) appli-
cations. The framework applies a formal V&V methodology based on a
combination of logic-dynamic model constructs and associated analysis pro-
cesses, to support the generation of a documentable assurance case for a UAS
control system, and to demonstrate its compliance with applicable aviation
system certification standards.

Keywords: Validation and verification � Safety case � Model based control
system � Adaptive control system � Unmanned aircraft system

1 Introduction

As part of the NASA System-Wide Safety and Assurance Technologies (SSAT) Pro-
ject, the Ames Research Center (ARC) is sponsoring research directed at developing
advanced V&V techniques for model based control systems (MBCSs) and adaptive
control systems (ACSs), including system applications for use in UASs. Within these
activities, the research presented in this paper seeks to develop a practically oriented
and risk-informed MBCS/ACS V&V approach, and characterize it in relation to the
current certification process for aeronautic control systems and software [1]. The
concept being developed utilizes time-dependent multi-valued discrete logic models,
and fits within the framework of an assurance case. The concept is being tested using
case studies of progressively increasing complexity.

Section 2 provides a brief overview of the assurance case framework and the
underlying time-dependent multi-valued logic models. Section 3 presents the devel-
opment of the case studies, Sect. 4 discusses the demonstration of the multi-valued
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logic tools, Sect. 5 describes the ongoing and future work, Sect. 6 provides a summary
and conclusions.

2 Validation and Verification Framework Concept

The V&V framework fits within the Goal Structure Notation (GSN) “safety case”
architecture developed by researchers at the NASA Ames Research Center (ARC) [2].
In this framework, compliance with overall safety goals is demonstrated by identifying
and addressing the significant hazard and risk scenarios arising from all aspects of UAS
operation, each decomposed in progressively greater levels of detail. “Interim” safety
cases are constructed in the early design phases with specification information, and
refined into final form as design/implementation details become available. The pre-
liminary concept for constructing a Risk Informed Safety Case (RISC) under the GSN
framework is shown in Fig. 1. Hazards and risk scenarios associated with each UAS
operational-phase and function are systematically identified in top-down fashion.
Proof of their control or mitigation to compliance level is then prioritized and provided
using the time-dependent multi-valued logic tools Dynamic Flowgraph Methodology
(DFM) and Markov Cell-to-Cell Mapping Technique (CCMT), as discussed in Sect. 4.
DFM and Markov CCMT models can be constructed to a level of detail consistent with
stage of system design development and corresponding data availability. Accordingly,
the V&V framework can be applied for early or detailed design validation, or for
system verification.

A significant subset of the system and software V&V activities discussed in the
DO-178C certification standard [1] can be accomplished with the DFM/Markov
CCMT-supported safety case framework. This subset of software verification activities
includes: (1) validation of high-level requirements, (2) validation of low-level
requirements, (3) verification of software source code, (4) software testing, and
(5) verification of test coverage. These findings have been fully documented in the
project annual report submitted to NASA [3].
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Fig. 1. Risk informed safety case development within the GSN framework

228 S. Guarro et al.



3 Case Study Design Specification and Development

The feasibility of the V&V framework concept is being demonstrated using UAS case
studies that include simulators of “next generation” UASs and associated MBCSs,
executing representative missions in progressive level of complexity. A simulator is
made up of several components with tasks assigned to each of them:

– A ground control station defines mission scenarios and handles data logging and
visualization.

– A model-based flight executive issues set-points for the autopilot and responds to
scenario contexts and conditions, including possible hazards and threats.

– An autopilot works at achieving the set-points and risk-response maneuvers gen-
erated by the flight executive while maintaining UAS stability.

– A Flight Dynamics Model emulates the real behavior of a UAS.

The flight executive was designed and developed using a top down approach,
decomposing the mission management from the overall “successful mission execution”
objective, down to a sequential set of clearly defined tasks for the flight executive to
achieve under pre-identified conditions, which also include risk-prioritized off-nominal
and hazard scenarios. A system functional hierarchy (SFH) of goals and tasks,
reflecting the main phases of the mission – e.g., Take-Off, Waypoint Following, and
Landing – was formulated and designed using the procedure described by [4], to
arrange the mission decision making and scenario-resolution process into a hierarchical
tree. A Finite State Machine (FSM) was then constructed using the end nodes of the
functional hierarchy. The FSM defines a mission in terms of the transitions between
mission phases and corresponding flight maneuvers the UAS may go through, and
identifies the functions of the flight executive that controls such transitions and chooses
the corresponding flight maneuvers at the higher level. At a lower level, an autopilot
consisting of multiple closed-loop controllers uses the set-points and controller
parameters generated by the flight executive to carry out maneuvers and control UAS
states.

In the first year of research, a 2-dimensional (2-D) simulator was designed and
constructed to demonstrate the feasibility of the design validation portion of the V&V
concept. A nonlinear longitudinal model was used to represent the 2-D simplified UAS
behavior. The 2-D equations of motion are mainly based on the ones in [5], with the
addition of the ground effects that occur in the Take Off and Landing phases. The
development of a more realistic and higher fidelity 3-D simulator has also been par-
tially completed. These simulators are also documented in [3].

4 Demonstration of Formal Multi-valued Logic Tools

As discussed earlier in Sect. 2, time-dependent multi-valued logic tools, namely DFM
and Markov CCMT, are used to produce evidence in support of a “safety case”. The
following steps for implementing this MBCS Logic-Dynamic Model V&V framework
were formulated, as also illustrated by Fig. 2:
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1. Define the nominal system functional hierarchy (SFH) of the control system,
2. Translate the SFH into a FSM model (without off-nominal response actions),
3. Augment the FSM model with off-nominal contingency and emergency actions

corresponding to a prioritized list of significant hazard and risk scenarios.
4. Develop an event tree model with pivotal events that include all the nominal, as

well as the pre-identified contingency and emergency actions,
5. Expand the pivotal events with DFM and Markov models for detailed analysis,
6. Analyze the DFM and Markov models to produce evidence of control action

coverage of the prioritized risk scenarios that have been identified.

4.1 Dynamic Flowgraph Methodology Modeling and Analysis

DFM were developed in the mid-90 s and refined over time, and currently are
implemented in a software tool [6]. They are visually constructed in digraph form, with
nodes representing variables and parameters within a given system, and edges repre-
senting, deterministic and/or probabilistically, the time-dependent cause-effect and
physical relations among such parameters. The basic combination of DFM elements
that represents a system physical or control relation can be expressed mathematically in
the form given below:

Vout@t ¼ 0b c ( Vin
1 @t ¼ �x1

� �
; . . .; Vin

N @t ¼ �xN
� �� �

; ð1Þ

where: Vout @t ¼ 0b c is the state of an “output parameter” at the current time t = 0 and
Vin
i @t ¼ �xj

� �
is the state of the i-th “input parameter” an integer j number of discrete

time steps before the current time.

Fig. 2. MBCS logic-dynamic model framework process steps
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In the early-design validation demonstration, DFM models of the 2-D UAS and
control simulator implementation of the FSM mission sequence phases, including
hazard and risk scenarios within the assumed control system “design envelope,” were
constructed and analyzed (Step 5 of V&V process summarized above). As an example,
one of these models represented the UAS during the “accelerate to take off velocity”
segment of the Take Off phase, and was analyzed via the automated DFM
deductive-inductive engine to prove correctness of the UAS control system behavior
under nominal and risk-scenario response conditions.

The validation of system design is supported by DFM analyses in two comple-
mentary modes, to prove that:

1. As-designed behavior is accomplished by UAS control system actions in nominal
conditions and in response to “recoverable failures” and off-nominal conditions
within the system design envelope.

2. Undesirable behavior cannot be caused by UAS control system actions, but only by
failures and off-nominal conditions within the system design envelope.

For example, DFM analyses validated the correctness of the flight control software
design specification addressing an engine thrust loss during the takeoff run, i.e., a
reduction of thrust and application of brakes commanded by the control executive to
abort the takeoff and bring the UAS to an off-nominal runway stop.

4.2 Markov/Cell-to-Cell Mapping Technique Modeling and Analysis

The Markov/Cell-to-Cell-Mapping (CCMT) technique [7] represents system evolution
in time through a series of discrete-time transitions among computational cells Vj that
partition the system state space in a manner similar to finite difference or finite element
methods. System state is defined in terms of the system location in the partitioned state
space, corresponding to specific hardware/software/firmware configurations and
time-dependent evolution. The cells Vj can be regarded as accounting for the uncer-
tainty in the location of the system state at a given point in time. System transition
among Vj is represented in terms of probabilities determined from a model describing
the dynamic behavior of the system and the system hardware/firmware/software states.

Similar to the DFM demonstration summarized above, a Markov/CCMT model
was constructed per V&V Step 5, to represent in further detail the behavior of the UAS
during takeoff acceleration. This model used a 6-parameter vector to represent the
process variables (such as velocity, position, etc.) and a 4-state parameter to represent
the engine states. The model was interfaced with the 2-D simulator (Sect. 3) to
determine the transition probabilities in the UAS dynamic behavior. An automated
scenario backtracking process was implemented to identify conditions in preceding
time steps that lead to any undesirable outcomes, and prove that such conditions do not
include control system erroneous specs or faults.
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5 Ongoing and Future Work

In the second year of research, the case study is being expanded into a full 3-dimension
(3-D), 6-degrees-of-freedom definition, to test the scalability of the design validation
concept and the implementation of the system verification portion of the V&V
framework. The 3-D includes system dynamics based on general nonlinear equations of
motion [8]. A version of this simulator can alternatively interface with the commercial
grade JSBSim software integrated with Simulink for higher fidelity dynamics.

In parallel, as the 3-D versions of the UAS simulator become available, the DFM
and Markov/CCMT analyses are being expanded and coupled with the latter to fully
demonstrate via a systematic set of inductive/deductive analysis test cases, the
logic-dynamic V&V framework capability to validate the design specifications and
verify the fully simulated system behavior.

In project final year, the V&V process will be adapted and demonstrated for
application to UAS adaptive control systems (ACSs).

6 Summary and Conclusions

With the present and future foreseeable growth in the use of model-based and adaptive
control paradigms, tools and methods are needed to support demonstration of com-
pliance of control system designs developed according to these paradigms with certi-
fication processes such as DO-178C. The V&V framework presented here addresses
this need by linking a logic set of design V&V processes and models within the GSN
safety case architecture. Preliminary design validation case-study tests indicate the
feasibility of this approach. Full design validation and scalability evaluation are cur-
rently being executed.
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Ames Research Center. The authors would like to thank the sponsor for this support.
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Abstract. Approximate computing is an emerging area for trading off
the accuracy of an application for improved performance, lower energy
costs, and tolerance to unreliable hardware. However, developers must
ensure that the leveraged approximations do not introduce significant,
intolerable divergence from the reference implementation, as specified by
several established robustness criteria. In this work, we show the appli-
cation of automated differential verification towards verifying relative
safety, accuracy, and termination criteria for a class of program approx-
imations. We use mutual summaries to express relative specifications for
approximations, and SMT-based invariant inference to automate the ver-
ification of such specifications. We perform a detailed feasibility study
showing promise of applying automated verification to the domain of
approximate computing in a cost-effective manner.

1 Introduction

Continuous improvements in per-transistor speed and energy efficiency are
fading, while we face increasingly important concerns of power and energy
consumption, along with ambitious performance goals. The emerging area of
approximate computing aims at lowering the computational effort (e.g., energy
and runtime) of an application through controlled (small) deviations from the
intended results [15,32,34,35]. These studies illustrate a large class of appli-
cations (e.g., machine learning, web search, multimedia, sensor data process-
ing) that can tolerate small approximations without significantly compromising
quality. Low-level approximation mechanisms include, for example, approximat-
ing digital logic elements, arithmetic, or sensor readings; high-level mechanisms
include approximating loop computations, generating multiple approximate can-
didate implementations, or leveraging neural networks.

There is a growing need to develop formal and automated techniques that
allow approximate computing trade-offs to be explored by developers. Prior
research has ranged from the use of type systems [35], to static analyses [6],
and interactive theorem provers [5] to study the effects of approximations while
also providing various correctness guarantees. While these techniques have sig-
nificantly increased the potential to employ approximate computing in practice,
c© Springer International Publishing Switzerland 2016
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a drawback is that they often either lack the required level of precision or degree
of automation.

In this work, we describe the application of SMT-based (Satisfiability Mod-
ulo Theories [2]) automated differential program verifiers [3,13] for specifying
and verifying properties of approximations. Such verifiers (e.g., SymDiff [17,18])
leverage SMT solvers to check assertions and semi-automatically infer inter-
mediate program invariants over a pair of programs. We describe three broad
classes of approximation robustness criteria that are amenable to SMT-based
automated checking: relative safety, relative accuracy, and relative termination.
Relative safety criteria ensure that approximations preserve a set of generic (pro-
gram agnostic) properties. For example, relative assertion safety [5,18] ensures
that the approximation does not introduce any new assertion failures over the
base program (e.g., it is desirable to ensure that an approximation does not intro-
duce an array out of bound access). Similarly, relative control flow safety ensures
that the approximation does not influence the control flow of a program [35].
Relative accuracy criteria specify the acceptable difference between precise and
approximate outputs for specific approximations [5]. In addition to these estab-
lished criteria, we propose the concept of relative termination [8,13] as another
important (program-agnostic) criterion for ensuring robustness of approxima-
tions. Intuitively, relative termination ensures that the approximation (such as
loop perforation) does not change a terminating execution to a non-terminating
one. We illustrate these on a few concrete examples next.

1.1 Motivating Examples

Relative Assertion Safety. Figure 1 describes two implementations of a string
copy procedure: Strcpy is the precise version and StrcpyApprox is the approximate
one. The approximate version implements a variant of loop perforation (a well-
known approximation technique [22]) that only copies every other element from
src to dst. The changes are highlighted using the underlined statements. The orig-
inal program scans the src array until a designated end marker (0 in this exam-
ple) is encountered, and copies the elements to the dst array. The approximation

Fig. 1. Approximating string copy.
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introduces a fresh index variable j for indexing dst and increments i twice every
iteration (unless the loop exit condition is true).

The memory safety of the program is ensured by a set of implicit assertions that
guard for out-of-bound access of the arrays (e.g., assert i < srcLen before the
access src[i]) — we only show a subset of assertions in the example. The bounds
srcLen and dstLen are additional parameters to represent the bounds of the arrays.
It is not hard to see that the base program Strcpy satisfies memory safety under
some non-trivial preconditions. For example, a caller needs to ensure that src con-
tains 0within its bounds, and that the dst array has enough capacity to copy src. In
addition, the client needs to ensure that the value of srcLen (resp. dstLen) is within
the runtime bounds of the src (resp. dst) array—such bounds are not readily avail-
able for low-level languages such as C. In other words, the proof of (absolute) array
bound safety of Strcpy requires access to additional runtime state for bounds, non-
trivial preconditions, and loop invariants for the loop.

On the contrary, it is relatively simple to establish that the approximate ver-
sion StrcpyApprox is relative assertion safe with respect to Strcpy. We provide an
almost automatic proof using a differential verifier1, without access to additional
runtime states or preconditions (Sect. 5). The intuition is that the approximation
StrcpyApprox does not access any additional indices that could not be accessed
in Strcpy. At the same time, the complexity of the example (loop exit condition
depends on array content) and approximation (introducing a break statement)
makes it difficult for any existing static-analysis-based approaches (e.g., [22,35])
to ensure the safety of the approximation.

Relative Termination. Just like preserving assertions, preserving terminat-
ing executions is an important criteria for almost any approximation. In other
words, if an input leads to a terminating execution on the precise program,
one needs to ensure that the approximation does introduce a non-terminating
behavior. Consider again procedure StrcpyApprox from Fig. 1, and let us assume
unbounded integers (i and j) and unbounded arrays (src and dst). Let us also
assume that assertion failure does not terminate the program. In such a case,
the base version Strcpy only terminates for those inputs where src has 0 as its
element — other inputs may cause non-termination. It is desirable to ensure
that StrcpyApprox at least terminates on all such inputs. For example, if the line
i := i + 1 is (mistakenly) replaced with i := i - 1, the verifier should reject the
approximation.

Similar to the proof of (absolute) assertion safety for Strcpy, a proof of
(absolute) termination would require (i) a non-trivial existentially quantified
precondition about the existence of 0 and (ii) a ranking function relating i with
the first index containing 0, among other ingredients. We show that we are able
to avoid these complexities by reasoning about relative termination [13], instead
of establishing each program terminates in isolation.

1 We required the user to provide a simple additional predicate and unroll the first
loop once.
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Fig. 2. Replacing a character in a string.

Control Flow Safety. The program in Fig. 2 replaces a given character x with
y in a character array str. The procedure Helper iterates over indices of the
array until the termination character (0 in this case) is reached. Consider the
approximation of the variable tmp indicated by the underlined statement — this
models a case where the variable tmp is stored in an unreliable memory that may
trade off cost for accuracy [24]. Approximating statements that impact control
flow often leads to serious problems such as unacceptably high corruptions in
output data and program crashes. Hence, preservation of control flow has been
identified as a natural and useful relaxed specification for approximations [35].
Since tmp flows into str that controls the conditional, a standard dataflow-based
analysis would mark the approximation as unsafe.

However, observe that the fragment of the array that stores the value in tmp

in fact never participates in the conditional. Our approach leverages differential
verification to check for control flow safety, which allows for precise analysis
(Sect. 3.2). Interestingly, we formalize the concept that an approximation does
not affect control as a pair of incomparable relative properties: (i) a relative
safety property that all pairs of terminating executions follow same control flow
sequence (Sect. 3.2), and (ii) a relative termination property that the sets of
terminating executions are identical in the two programs.

1.2 Our Approach and Contributions

In this paper, we perform a feasibility study of using a differential verifier (Sect. 2)
for expressing and verifying various relative specifications related to approxima-
tions (Sect. 3). We are the first to propose and demonstrate the idea of relative
termination to the problem of verifying approximations. We leverage and extend
the SymDiff infrastructure [13,17,18] to express and verify these specifications.
We describe some of the extensions needed to improve the automation for the
benchmarks we considered (Sect. 4). Overall, our verifier requires less than 1
manually supplied predicate on average to verify the safety of the approxima-
tions (Sect. 5). This is due to the fact that most proofs require relatively simple
2-program relational properties, as opposed to complex program-specific invari-
ants. Our results give us confidence to apply the prototype on original source
code written in languages such as C and Java, to serve as an independent val-
idator for approximations introduced by approximate compilers (i.e., translation
validation [23] for approximate compilers such as ACCEPT [35]).
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2 Background

2.1 Programs

A program P ∈ Programs consists of a set of procedures in Procedures and a
set of global variables. Each procedure p ∈ Procedures contains a list of input
and output parameters, local variables, and a body. A body for a procedure
p is an acyclic control flow graph with a set of nodes Nodesp and Edgesp ⊆
Nodesp×Nodesp, with an entry node ne

p ∈ Nodesp and an exit node nx
p ∈ Nodesp.

Each node n ∈ Nodesp in the control flow graph contains one of the following
statements in Stmts:

s, t ∈ Stmts ::= skip | assume e | assert e | havoc x |
x := e | call x1, . . . xk := q(e1, . . . , en)

where x, xi represent program variables and e, ei ∈ Exprs are expressions. The
precise set of types of variables and the expression language are left unspecified.
Types include Booleans and integers, while expressions are built up using con-
stants, interpreted (e.g. arithmetic and relational operations) or uninterpreted
functions. Arrays are modeled using interpreted functions select and update from
the logical theory of arrays [2].

We only sketch the semantics for the statements here — the semantics of
programs is built up using semantics of statements over control flow graphs and
is fairly standard [1]. A state σ ∈ Σ is an assignment of values to variables in
scope. To model assertions, we introduce a ghost Boolean global variable OK ,
and model assert e as an assignment OK := OK ∧ e. A state σ ∈ Σ for which
OK evaluates to false under σ is termed as an error state. Each statement
s ∈ Stmts defines a transition relation ‖s‖ ⊆ Σ × Σ, where skip represents the
identity relation and (σ, σ) ∈ ‖assume e‖ if σ evaluates the Boolean expression
e to true. Moreover, (σ, σ′) ∈ ‖x := e‖ if σ′ is obtained by updating the value of
variable x with the valuation of e in σ. Similarly, (σ, σ′) ∈ ‖havoc x‖ if σ′ and
σ agree on the value of all variables except x. The semantics of a call statement
is standard — it pushes the caller state on a call stack, executes the callee q with
values of ei as inputs, and upon termination pops the call stack and updates xi

variables with values of outputs of q. We denote a node n containing a call to q
as a callsite of q. Conditional statements are encoded using assume and skip
statements on the control flow graph [1]; loops are encoded using tail-recursive
procedures.

An execution is a sequence 〈(n0, σ0), . . . , (ni, σi), . . .〉 where either (i)
(ni, ni+1) ∈ Edgesp (for some p) and (σi, σi+1) ∈ ‖si‖ where si is a non-call
statement at ni, or (ii) ni is a callsite of q, ni+1 equals ne

q (the entry node of q),
and σi+1 is the input state of q obtained from the caller state σi, or (iii) ni is nx

q

(the exit node of q), ni+1 is the unique successor of the corresponding callsite of
q, and σi+1 is the caller state (after the call) obtained from the output state σi.
For each procedure p, we define its input-output transition relation Tp as the
set of pairs (σ, σ′) such that there is an execution of p starting in input state σ
(with an empty call stack) and terminating in output state σ′ (with an empty
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call stack). For the rest of the paper, we assume that we are given two versions
P1, P2 ∈ Programs of a program with disjoint sets of procedures and globals. We
distinguish components of the two versions using subscripts 1 and 2 respectively.

2.2 Mutual Summary Specifications

Given two procedures p1 ∈ P1 and p2 ∈ P2, we define a 2-program input-output
expression as an expression over inputs and outputs of p1 and p2. The inputs can
refer to the input parameters and globals (within an old(e) subexpression where
the construct old evaluates the subexpression at procedure entry), and outputs
can refer to the output parameters and globals. For example, if gi refers to global
variables, xi (resp. yi) refers to input (resp. output) parameters of a pair of
procedures p1, p2, the expression ¬ (old(g1 ≤ g2) ∧ x1 ≤ x2 ∧ g1 + y1 > g2 + y2)
is a 2-program input-output expression relating inputs and outputs of p1 and
p2. Given such a 2-program input-output expression e, and two pairs of input-
output states (σ1, σ

′
1) ∈ Tp1 and (σ2, σ

′
2) ∈ Tp2 , the value of e is obtained by

evaluating the inputs (resp. outputs) of fi under σi (resp. σ′
i).

Definition 1 (Mutual Summary [13]). Given two procedures p1 ∈ P1 and p2 ∈
P2, a 2-program input-output Boolean expression e is a mutual summary for
p1, p2 if the value of e evaluates to true for every pair of input-output states in
Tp1 × Tp2 .

We use mutual summaries to express relative safety and accuracy specifi-
cations over two programs. Intuitively, a mutual summary is a summary (or
postcondition) for the product procedure over the pair of procedures p1, p2.

2.3 Relative Termination Specifications

Given two procedures p1 ∈ P1 and p2 ∈ P2, we define a 2-program input
expression as an expression over inputs of p1 and p2. Such expressions do not
contain old(e) since they may only refer to the input globals. The expression
(g1 ≤ g2 ∧ x1 = x2) is an example of a 2-program input expression relating inputs
of two procedures.

Definition 2 (Relative Termination Conditions [13]). Given two procedures
p1 ∈ P1 and p2 ∈ P2, a 2-program input Boolean expression e is a relative
termination condition for p1, p2 if for each pair of input states σ1, σ2 of p1, p2
that evaluates e to true, if σ1 has at least one terminating execution for p1, then
so does σ2 for p2.

Note that for inputs satisfying the relative termination condition, the pro-
cedure p2 terminates at least as often as the procedure p1. This is helpful for
specifying intermediate relationships between recursive procedure pairs when p2
terminates in fewer iterations than p1 under the same input.
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3 Preserving Safety, Accuracy, and Termination

In this section, we first show that mutual summary specifications can be used to
capture both relative safety (assertion Sect. 3.1 and control flow Sect. 3.2) and
relative accuracy (Sect. 3.3) for approximations. Finally, we describe the use of
relative termination specifications for describing approximations (Sect. 3.4).

3.1 Preserving Assertion Safety

Recall from Sect. 1.1 that we informally describe relative assertion safety as a
robustness criterion that assertions in approximate programs should fail less
often than their counterparts in precise programs. We formalize this as follows:

A procedure p2 ∈ P2 has a differential error with respect to a procedure
p1 ∈ P1 if there exists a common input state σ such that (σ, σ1) ∈ Tp1

and σ1 is not an error state, and there exists (σ, σ2) ∈ Tp2 such that σ2

is an error state. Relative assertion safety of p2 with respect to p1 holds if
there are no differential errors in p2 with respect to p1.

Recall that assertions are desugared using a ghost variable OK (Sect. 2.1). Rel-
ative assertion safety is then encoded as the following mutual summary specifi-
cation for p1 and p2:

(
old(

∧
x∈X x1 = x2)

) ⇒ (OK 1 ⇒ OK 2), where X denotes
the set of input parameters and globals of p — each variable x ∈ X is named x1

(resp. x2) in program P1 (resp. P2).

3.2 Preserving Control Flow Safety

Preserving control flow safety has been identified as an important robustness cri-
terion for approximations (Sect. 1.1). Next, we show that we can use mutual sum-
maries to capture that the approximation does not affect control flow (modulo
termination). We first define an automatic program instrumentation for tracking
control flow. Let a basic block be the maximal sequence of statements that do not
contain any conditional statements. We also assume that each such basic block
has a unique identifier associated with it. To track the sequence of basic blocks
visited along any execution, we augment the state of a program by introducing an
integer-valued global variable cflow . Then, we instrument every basic block of the
program with a statement of the form cflow := trackCF (cflow , blockID), where
trackCF is an uninterpreted function defined as trackCF (int , int) returns int ,
and blockID is the unique integer identifier of the current basic block.

Let p1 ∈ P1 and p2 ∈ P2 be the two versions of a procedure p in the original
and the approximate program. We denote with X the set of input parameters and
globals of p — each variable x ∈ X is named x1 (resp. x2) in program P1 (resp.
P2). Then the mutual summary

(
old(

∧
x∈X x1 = x2)

) ⇒ (cflow1 = cflow2)
states that if the two procedures start out in the same state, the values of
the cflow variables are equal on termination. If p1 and p2 satisfy this mutual
summary specification, then the following holds:
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For any pair of executions (σ, σ1) ∈ Tp1 and (σ, σ2) ∈ Tp2 starting at the
same input state σ, the sequences of basic blocks in the two executions are
identical.

Note that the specification only ensures that every pair of terminating executions
from σ follow the same control flow. It does not preclude p2 to not terminate on
the input state σ. We address this issue using relative termination specifications
that further ensure that (for deterministic programs) if p1 terminates on σ, then
so does p2.

3.3 Preserving Accuracy

The accuracy criterion ensures that approximations do not cause unacceptable
divergence of outputs between two program versions. For example, a write oper-
ation to approximate memory may introduce a small error into the written
value [24]. Such errors can be amplified by a program (e.g., through multi-
plication by a large constant), and lead to significant and unintended output
difference between the original and approximate program. Hence, the accuracy
criterion is used to capture the acceptable quantitative gap between precise and
approximate outputs. Mutual summaries naturally express such specifications
by relating the inputs and outputs of a procedure pair.

Figure 3 gives the Swish++ open-source search engine example taken from
a recent approximate computing work by Carbin et al. [5]. The example is a
simple model that abstracts many implementation details. It takes as input a
threshold for the maximum number of results to display max r and the total
number of search results N, and returns the actual number of results to dis-
play num r bounded by max r and N. The approximation nondeterministically
changes the threshold to a possibly smaller number, without suppressing the
top 10 results. This allows the search engine to trade-off the number of search
results to display under heavy server load, since users are typically inter-
ested in the top few results. The predicate RelaxedEq denotes the relationship
between the original and the approximate value. We express and prove the accu-
racy criterion (akin to acceptability property [5,28]) as the mutual summary
old(max r1 = max r2 ∧ N1 = N2 ) ⇒ RelaxedEq(num r1 ,num r2 ).

Fig. 3. Swish++ open-source search engine example.
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3.4 Preserving Termination

We use relative termination conditions (Sect. 2.3) to specify that the approxi-
mate program terminates at least as often as the base program, and we note
the following. The relative termination conditions for a procedure pair may
not always be simple equalities over input states. For the pair of Helper pro-
cedures in Fig. 2, the relative termination condition satisfied by the two versions
is i1 = i2 ∧ (∀j :: j ≥ i1 ⇒ src1[j] = src2[j]) , since the recursive calls may not
preserve the segment of the array before i. In the presence of a havoc state-
ment in p2 (Fig. 2), the specification only guarantees that p2 has at least one
terminating execution on a common input to p1. To address this, we perform a
standard trick of modeling a havoc x statement as a read from a global stream
of unconstrained values [17]. This can be done using a global array a and a
counter c into the array, and replacing havoc x with x := a[c + +]. With this,
the array becomes a part of the input and the internal non-determinism is con-
verted into an input non-determinism. For the transformed program the relative
termination specification ensures that none of the terminating executions in p1
fails to terminate in p2.

4 Verifying Relative Specifications

In this section, we describe how we leverage and extend SymDiff [13,17,18], a
differential verifier for procedural programs that employs SMT-based checking
and automatic invariant inference. Although SymDiff already provided many
building blocks, we extended it to improve the automation of checking mutual
summaries and relative termination conditions. Previously, to verify the relative
specifications on the (top-level) entry procedures, the user had to fully annotate
all intermediate mutual summaries and relative specification conditions for every
pair of procedures [13]; SymDiff only provided a verifier for fully annotated pairs
of procedures. We improve the automation in three main directions:

1. We leverage a product program construction for procedural programs that
allows inferring relative specifications using off-the-shelf invariant inference
tools [18]. This product construction was already present in SymDiff but
was customized for checking a specific form of relative specifications (namely,
relative assertion safety).

2. We use inferred preconditions for the product program as candidate relative
termination conditions for intermediate procedure pairs.

3. We augment the specific invariant inference scheme used in SymDiff over the
product program to allow for the user to supply additional predicates.

We informally elaborate on these ideas next. The details of the product con-
struction [18] and checking relative termination conditions [13] are beyond the
scope of this paper.
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4.1 Procedural Product Programs

We recollect a particular product construction for procedural programs as imple-
mented in SymDiff [18]. The product construction is novel in several ways. First,
it can handle procedures (including recursion) in P1 and P2 unlike most other
product constructions that are intraprocedural [3]. Second, the product program
can be fed to any off-the-shelf invariant inference engine to infer mutual sum-
maries over P1 and P2.

Given P1 and P2, the product program P1×2 consists of procedures in P1,
P2 and a set of product procedures described below. The set of globals of P1×2

is the disjoint union of globals of P1 and P2. For a pair of procedures p1 ∈
P1 and p2 ∈ P2, we introduce a product procedure p1×2 whose input (resp.
output) parameters are the disjoint union of input (resp. output) parameters of
p1 and p2. The body of p1×2 is a sequential composition of bodies of p1 and p2
followed by a series of replay blocks. We informally sketch these replay blocks
using an example. Let q1 be a call within p1 body and q2 be a call within p2
body. For any path in p1×2 where q1 and q2 are executed with inputs i1, i2 resp.
and produce outputs o1, o2 resp. (where both inputs and outputs include global
mutable state), we constrain (o1, o2) to be the output of executing q1×2 over
inputs (i1, i2) in the product program. To perform the replay, each call site in
p1 and p2 is instrumented to record the inputs and outputs, and global state is
set/reset in the replay code.

The resultant product program (which is just another program in Programs)
has the following property (this paper is the first to formalize this connection):

For any product procedure p1×2 ∈ P1×2, if a 2-program 2-state expression
e is satisfied by every (σ1×2, σ

′
1×2) ∈ Tp1×2 , then e is a mutual summary

specification for (p1, p2).

In other words, if an expression e (over the two program states) is a valid sum-
mary (or postcondition) for p1×2, it is a valid mutual summary for the pair of
procedures p1 and p2. This provides a sound rule for proving mutual summaries
over P1 and P2: we can express a mutual summary over p1 and p2 (e.g., any of
the specifications in Sect. 3) as a specification over the product procedure p1×2,
and verify P1×2 using any off-the-shelf program verifier.

4.2 Invariant Inference

To verify a mutual summary, we annotate the resultant product program P1×2

with a summary of the top-level procedures, and let a program verifier infer inter-
mediate specifications (preconditions and postconditions of intermediate q1×2

procedures). It was noted in earlier work that most specifications on product
procedures tend to be relational or 2-program (e.g., i1 ≤ i2), which requires
exploiting the structural similarity between P1 and P2. Running an invariant
inference engine as is (e.g., Duality [20]) results in generation of single-program
invariants and fails to infer relational 2-program specifications. Therefore, SymD-
iff exploits the mapping between parameters and globals to automatically add
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candidate relational predicates such as i1 �� i2, where ��∈ {≤,≥, <,>,⇐,⇒,=},
for copies of a variable i in two programs. Relational specifications can be gen-
erated by composing these predicates using predicate abstraction [12] or Hou-
dini [10]. SymDiff leverages Houdini (that only infers subsets of these predicates)
since it is typically fast and predictable, and has been shown to scale to very
large programs [38]. We also added a facility for a user to augment the set of
automatically generated predicates. Our study shows that such a mechanism
was useful in several cases to provide domain-specific guesses for the required
predicates.

4.3 Inferring Relative Termination Conditions

The product program P1×2 is not suitable for proving termination related prop-
erties as it is meant for proving relative safety properties (on pairs of terminat-
ing executions). We therefore fall back to the technique proposed for checking
relative termination conditions [13]. We briefly sketch the technique before high-
lighting the inference extension we have implemented.

Given P1 and P2, we construct a product program P1⊗2 by creating product
procedures p1⊗2 for two versions of each procedure p. Let us assume that we
have a relative termination condition RT p1⊗2 for the procedure p1⊗2. Recall that
RT p1⊗2 is an expression over inputs of p1 and p2 (Sect. 2.3). For each procedure
p (in either version), we create an uninterpreted relation Rp containing all the
input-output state pairs of p (i.e., overapproximates Tp). We add a background
axiom encoding the assumption that if there exists (σ1, σ

′
1) ∈ Rp1 and (σ1, σ2) ∈

RT p1⊗2 , then there exists σ′
2 such that (σ2, σ

′
2) ∈ Rp2 :

∀σ1, σ
′
1, σ2 ::

(
Rp1(σ1, σ

′
1) ∧ RT p1⊗2 (σ1, σ2)

) ⇒ (∃σ′
2 :: Rp2(σ2, σ

′
2)).

Each procedure p1⊗2 starts by assuming the relative termination condition, fol-
lowed by the body of p1 and p2, all composed sequentially. Before any call (to
say q2) inside p2’s body, we add the assertion assert ∃σ′

2 ::Rq2(σ2, σ
′
2), where σ2

is the state of the input to the call to q2 and σ′
2 is the output state of q2. Since

Rq2 is uninterpreted, the only way to prove this assertion is to use an axiom like
above (just instantiated for procedure q), which requires Rq1 and RT q1⊗2 to hold.
Intuitively, such an assertion before every call (which is the only way to cause
non-termination in the absence of loops) when combined with the introduced
axioms ensures that a call to q2 must be preceded by a call to q1 in the path
inside p1⊗2 — in other words, q2 is called less often than q1 on any execution. If
all such assertions hold for the given RT q1⊗2 for all procedures q ∈ P , then the
relative termination of the entry level procedures is established.

Although the relative termination condition for the top-level procedures is
often simple (equality of the input states), intermediate procedures may only sat-
isfy weaker relationships. For example, sometimes a relationship such as i1 ≤ i2
holds for a loop index i to indicate that the second procedure terminates earlier.
Also, recall the non-trivial specification for the intermediate Helper procedure in
Sect. 3.4 where only segments of arrays are equal. Clearly, manually specifying
all the RT can be quite cumbersome in the presence of multiple procedures.
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We leverage the product program P1×2 used earlier to heuristically guess possi-
ble RT expressions. We have observed that the inferred preconditions to a product
procedure p1×2 often represent sound relationships between inputs of p1 and p2
in any execution. One can, however, construct examples where the inferred pre-
condition is not sound for relationship between inputs to p1 and p2 — e.g., due to
non-termination or fewer call-sites of a procedure in the new version. We heuris-
tically install a precondition to p1×2 (from P1×2) as RT p1⊗2 (in P1⊗2) and try
verifying P1⊗2. If verification succeeds, we have established the relative termina-
tion property. In the case study, we show that this heuristic suffices for all but one
of our benchmarks.

5 Case Study

In this section, we describe our feasibility study of using differential program
verification techniques for automatic verification of several classes of program
approximations.

Benchmarks. Table 1 lists our benchmarks and presents the results of ver-
ifying them using our framework. We used the following benchmarks in our
experiments:

– Case studies taken from previous work by Carbin et al. [5]: LU Decomposi-
tion, Water, and Swish++. We provide the same guarantees as this previous
work, and in addition we prove relative termination for a modified version of
Swish++.

– Array and string operations: Replace Character, Array Operations, Array
Search, String Hash, String Copy, Selection Sort, and Bubble Sort.

– Loop approximation examples: Cube Root, Gradient Descent, Loop Perfora-
tion, and Pointer Perforation.

– Image processing programs taken from the ACCEPT benchmark suite [33]:
ReadCell (extracts information from the header of an image file), Sobel (imple-
ments a Sobel image filter), and JPEG Quantization (quantization stage of a
JPEG encoder).

We only prove important criteria for every benchmark since some either do not
hold or are trivial to prove. All experiments were performed on a 2.3 GHz Intel
i7-3610QM machine with 8 GB RAM and running Microsoft Windows. They are
reproducible using a custom Apt platform profile at https://www.aptlab.net/p/
fmr/approx-nfm2016.

Discussion. As experimental results show, we successfully used our approach to
verify a variety of approximation robustness criteria. Verification of most bench-
marks terminates in under one minute, which indicates that our technique has
potential to scale to larger examples. Only two manual steps were occasionally
needed to complete the proof. First, in several benchmarks we had to unroll once

https://www.aptlab.net/p/fmr/approx-nfm2016
https://www.aptlab.net/p/fmr/approx-nfm2016
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Table 1. Experimental results. LOC is the number of lines of Boogie code in approxi-
mate programs; Criterion is the verified property; #Preds is the number of predicates
automatically generated by SymDiff; #Man is the number of manually provided pred-
icates; Time is the total runtime in seconds, including inference.

Benchmark LOC Criterion #Preds #Man Time(s)

Cube Root 7 Relative Termination 12 0 6.5

Loop Perforation 11 Relative Termination 10 0 4.8

Gradient Descent 17 Relative Termination 22 0 6.4

String Hash 19 Assertion Safety 25 0 7.8

Relative Termination 19 0 4.9

Swish++ 22 Accuracy 14 2 6.5

Relative Termination 14 0 4.8

Water 27 Assertion Safety 32 0 5.8

Pointer Perforation 28 Relative Termination 26 0 5.1

Replace Character 31 Assertion Safety 15 0 7.7

Control Flow Safety 15 0 7.9

Termination 5 0 5.1

String Copy 32 Assertion Safety 20 2 7.7

Relative Termination 14 0 6.5

LU Decomposition 33 Accuracy 32 2 5.7

Array Search 33 Relative Termination 30 0 7.1

Array Operations 43 Control Flow Safety 44 0 8.2

Sobel 49 Relative Termination 190 1 5.3

Selection Sort 57 Control Flow Safety 81 0 8.5

ReadCell 60 Assertion Safety 37 1 14.0

Control Flow Safety 37 1 14.0

Bubble Sort 67 Control Flow Safety 59 0 8.2

JPEG Quantization 96 Accuracy 19 3 6.3

tail-recursive procedures extracted from loops (e.g., String Copy, String Hash).
(This can be automated by trying in parallel all combinations of unrollings:
unroll first procedure, unroll second procedure, unroll both.) Second, we had
to provide additional predicates for the benchmarks with non-zero #Man field
in Table 1. The need for manual predicates can be broken down into roughly
two categories: (i) simple non-relational predicates such as j2 ≤ i2 (e.g., String
Copy), and (ii) non-trivial relational predicates that require arithmetic such as
RelaxedEq (e.g., Swish++ in Fig. 3, LU). These predicates are mainly used for
proving domain-specific relative accuracy properties, and reusing the predicate
RelaxedEq often suffices for the proof. Our study shows that our Houdini-based
inference techniques successfully generated most of the required specifications
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automatically, indicating that relative specifications do not heavily depend on
complex program-specific invariants.

5.1 Experience

We describe next in more detail our experience verifying some of the listed
benchmarks.

Replace Character and Sorting. Recall the Replace Character example from
Fig. 2, where we wish to verify that the approximation maintains control flow
safety. The main challenge of this verification task is to capture the fact that
control flow depends on only a fragment of the array, which is identical in the two
programs. We capture this property by defining a quantified predicate template
ArrayEqAfter(str1 , str2 , i1 ) .= ∀j : int :: j ≥ i1 ⇒ str1 [j] = str2 [j]. The proof
of control flow safety for the selection sort example also leverages this predicate
(see our technical report [14]). The selection sort algorithm sorts an array by
pushing the maximum element of the [c . . . n−1] subarray to the position c after
every iteration. Once an element has been pushed to the front, it does not play a
part in determining future control flow behavior. Therefore, approximating such
end elements does not influence the control flow of the algorithm. In addition
to selection sort, we also verified control flow safety for a version of bubble sort
containing a similar approximation. Unlike selection sort where the leftmost
index is approximated, the approximation in bubble sort requires introducing
an additional instruction to havoc the rightmost array element of each iteration.
A similar predicate ArrayEqBefore, specifying that the two arrays are equal
before some index, captures that fact that the subarray before each iteration is
precise and thus facilitates the proof. Our experience shows that ArrayEqAfter
and ArrayEqBefore are needed for most examples with arrays, and hence we
automatically instantiate them using our inference engine.

JPEG Quantization. This is a JPEG encoder quantization stage taken from
the ACCEPT benchmark suite [33] (see our technical report [14]). In the bench-
mark, each element is computed by ultimately dividing it by 215. Hence, it is
suitable for an approximation that allocates data in approximate memory since
the error introduced to the stored value (denoted by the predicate RelaxedEq)
is masked or reduced after division by 215. The following expresses the desired
relative accuracy specification:

old(data1 = data2 ) ⇒ (∀ i : int :: (i ≥ 0 ∧ i ≤ 63 ) ⇒ RelaxedEq(Temp1 [i ],Temp2 [i ], 2 ))

The most involved manually provided predicate RelaxedAfter(Temp1 ,Temp2 , i)
is similar to ArrayEqAfter . It is based on the observation that after each iteration
of the loop, all corresponding elements of the arrays Temp1 and Temp2 after
index i should satisfy RelaxedEq with the error bound of 2.
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String Examples. To prove relative assertion safety for the example from
Fig. 1, we had to manually unroll the loop in Strcpy once and provide two atomic
predicates. Such loop unrolling helps SymDiff to infer the equality between i1
and i2 , which indicates that the src arrays are accessed in the same way and thus
implies relative assertion safety. The manual predicates needed for this example
relate indices of array dst , and have the form j2 ≤ i2 . With these predicates,
relative assertion safety is established for array dst since dst2 is accessed less
often than dst1 . In addition, we proved relative termination of StrcpyApprox

with respect to Strcpy. This required a simple relative termination condition
automatically inferred by SymDiff, src1 = src2 ∧ i1 = i2 , since we unrolled the
loop in Strcpy once. Such bounded loop unrolling often facilitates the verification
of relative termination since it allows for the proof to be discharged using a
simpler relative termination condition.

Simple Cube Root Calculation. We implemented a benchmark that calcu-
lates the integer approximation r of the cube root of x by performing a simple
iterative search guarded with the nonlinear condition r ∗ r ∗ r <= x (see our
technical report [14]). We further approximate this computation by performing
loop perforation, which speeds up the search at the expense of losing precision,
and potentially leads to non-termination. Automatically proving program ter-
mination is especially hard when loop conditions contain nonlinear arithmetic,
which complicates generation of adequate ranking functions. We easily proved
relative termination of this benchmark using the simple relative termination
condition r1 ≤ r2 that is automatically inferred.

6 Related Work

A number of complementary approaches have been recently proposed to reason
about approximations. These approaches can be roughly categorized (with over-
laps) into (i) language based, (ii) static analysis, and (iii) dynamic approaches.
Language based approaches propose language constructs and annotations to
make approximations explicit in a program. EnerJ [35] introduces approximate
types and ensures that such values do not impact precise computations, includ-
ing conditional statements. ACCEPT [33] automatically searches for code regions
that can be approximated based on type annotation and static compiler analysis
pass. FlexJava [25] allows users to annotate scoped variables (e.g., return values),
and then it automatically infers safe-to-approximate variables and operations
using a simple taint analysis. Our work can be used to improve the precision of
these analyses, as shown in Sect. 1.1.

Carbin et al. [5] develop a special-purpose language and constructs for intro-
ducing approximations and relaxed specifications (based on relational Hoare
logic [3]), and prove correctness of transformations using the general purpose
Coq theorem prover [7]. Each proof for their three benchmarks required roughly
330 lines of proof scripts according to the authors. We provide the same guar-
antees for these three benchmarks almost completely automatically (see Sect. 5),
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thereby showing that mutual summaries and SMT-based verification can signifi-
cantly improve the automation for most transformations covered by this approach.

Rely [6] is a programming language that allows users to verify probabilistic
quantitative reliability guarantees of programs running on unreliable hardware
using an associated static analysis. Chisel [21] is a synthesis framework that gen-
erates optimal programs for execution on approximate hardware that satisfy given
accuracy and reliability specifications. Unlike our approach, Chisel can only estab-
lish relative specifications for syntactically equivalent program versions and it
ensures control flow equivalence using a simple dependence analysis. On the other
hand, Chisel can reason about probabilities, which our approach currently does
not support. ExPAX [26] generates a set of safe-to-approximate operations based
on a dataflow taint analysis, and then computes allowed approximation for each
operation to minimize energy consumption while satisfying reliability constraints.
DECAF [4] combines static type inference, dynamic tracking, and runtime check
to give probabilistic guarantee on the quality of approximate programs.

Among dynamic approaches, fault injection at the source or intermediate
representation level has been used to profile the sensitivity of output quality
to approximations. Fault injectors such as KULFI [36] and LLFI [37] approxi-
mate instructions at runtime. Though such tools achieve high levels of accuracy,
they provide no formal coverage guarantees. Offline dynamic analysis techniques
compute information on dataflow and correlation difference (e.g., [29,30]). The
former may be imprecise as it is based on static dataflow analysis, while the
latter again offers no formal guarantees. Although there are optimizations for
selective instruction perturbation, such as statistical methods [31], the reasoning
is only for a subset of all the possible executions of the program.

Finally, our work is related to previous approaches to translation valida-
tion [23,27] and regression verification [9,11], which leverage SMT solvers to
discharge equivalence properties. In contrast, our mutual summaries and prod-
uct construction allow for richer relaxed specifications other than equivalence,
interprocedural reasoning [13,18], and leveraging off-the-shelf verifiers and infer-
ence engines.

7 Conclusions and Future Work

In this paper, we have described the application of automated SMT-based differ-
ential verification for providing formal guarantees of approximations. The struc-
tural similarity between original and approximate programs are leveraged to
automate most intermediate relative specifications. Our extensions to SymDiff
allowed us to verify a variety of criteria that ensure robustness of approximate
programs, including relative control flow safety, assertion safety, accuracy, and
termination. We are also first to propose relative termination as an important
robustness criterion. Our feasibility study shows that the techniques we devel-
oped can be effectively used to automatically prove program approximations. We
are currently working on automating predicate generation, using more expressive
inference engines such as interpolants [19] and indexed predicate abstraction [16]
to infer remaining specifications.
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Abstract. We investigate the use of bandwidth and wavefront reduc-
tion algorithms to determine a static BDD variable ordering. The aim
is to reduce the size of BDDs arising in symbolic reachability. Previous
work showed that minimizing the (weighted) event span of the variable
dependency graph yields small BDDs. The bandwidth and wavefront
of symmetric matrices are well studied metrics, used in sparse matrix
solvers, and many bandwidth and wavefront reduction algorithms are
readily available in libraries like Boost and ViennaCL.

In this paper, we transform the dependency matrix to a symmetric
matrix and apply various bandwidth and wavefront reduction algorithms,
measuring their influence on the (weighted) event span. We show that
Sloan’s algorithm, executed on the total graph of the dependency matrix,
yields a variable order with minimal event span. We demonstrate this on
a large benchmark of Petri nets, Dve, Promela, B, and mcrl2 mod-
els. As a result, good static variable orders can now be determined in
milliseconds by using standard sparse matrix solvers.

Keywords: Bandwidth · Profile · Wavefront · Event span · Symbolic
reachability · Sparse matrix · Event locality · Decision diagram · Petri net

1 Introduction

Reachability analysis is an approach for investigating properties of reachable
states of computer programs. Some type of computer programs allow efficient stor-
age of its set of reachable states by means of decision diagrams, this technique is
known as symbolic reachability analysis. Storing sets of states symbolically entails
storing sets of integer vectors as binary formulas in for example Binary Decision
Diagrams (BDDs) [4]. One major issue with this approach is the ordering of vari-
ables in Decision Diagrams (DDs) representing the formula. Improving variable
ordering is known to be NP-complete [3]. DD variable ordering has been exten-
sively studied [1,12,26,28]. Dynamic reordering modifies variable orders during
computations, while static variable ordering precomputes a total order based on
some structure of the input. In the latter case, several metrics have been proposed
that lead to small DDs [25]. However, to the best of our knowledge, there is no
c© Springer International Publishing Switzerland 2016
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systematic research on good algorithms to obtain orders with low values for such
metrics. An existing algorithm for static variable ordering is Noack’s algorithm
[22], but Noack’s algorithm is only applicable to Petri nets. The only existing
algorithm that can compete with our proposed ones is FORCE [1]. We will show
that four well known algorithms used in sparse matrix solvers can drastically and
very quickly improve variable orders for any modeling language, just like FORCE
can1. A novel contribution in this paper is a systematic benchmark for Noack,
FORCE and our proposed bandwidth and wavefront reduction algorithms exe-
cuted on many specifications written in different languages.

Static variable ordering exploits the notion of event locality. Events, such as
program statements or transitions in Petri nets are often local, i.e. they touch
only a few variables or places and ordering these local variables near each other
tends to significantly reduce the memory footprint of the DDs. An appropriate
metric for indicating the quality of the variable order is Event Span (ES), by
Siminiceanu et al. [28]. The event span metric is used to measure the total
distance between the minimum variable and maximum variable of all events.
Additionally Siminiceanu et al. introduce an extension of ES, called Weighted
Event Span (WES). The weight of every event signifies the location of a span,
i.e. whether the span changes the top or bottom of the DD. It is known that
operations changing the bottom of the DD are cheaper [6], which is beneficial
for the saturation strategy in particular.

The quality of the variable order can be visualized using matrices. Such an
approach is taken in [21], where a dependency matrix has rows as transitions and
columns as variables. A nonzero entry indicates that a transition depends on a
variable. These dependency matrices tend to be sparse, hinting that traditional
sparse matrix algorithms can be applied to these matrices.

A subcategory of sparse matrix algorithms are bandwidth reduction algo-
rithms. One key example of a bandwidth reduction algorithm is by Cuthill and
McKee developed in 1969 [10]. The goal of these algorithms is very similar to ES
reduction algorithms. The bandwidth measures the distance of nonzeros from
the diagonal of the matrix. Bandwidth is related to event span, because of the
triangle inequality, which states that event span is always smaller than twice the
bandwidth.

Another popular algorithm is Sloan’s [29] algorithm, which optimizes total
bandwidth (also called profile), and wavefront. The graph algorithm has a very
low time complexity O(log D̂ · |E|), where D̂ is the maximum degree, and E the
set of edges in the adjacency graph. This results in runtimes of mere seconds
when applied to matrices with a million rows and columns – or transitions and
variables. Conveniently, Sloan’s algorithm is freely available in Boost’s graph
library. Every model checker written in C/C++ or Python can be linked to
Boost without much effort.

While bandwidth and wavefront reduction algorithms have proven themselves
during the past decades, they only work on symmetric matrices. A dependency
matrix is asymmetric because clearly, transitions (rows) and variables (columns)

1 We restrict ourselves to languages that induce a disjunctive transition relation.
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are different objects and there exists no natural total order on the union of both.
Reid et al. [24] discuss several methods of symmetrizing asymmetric matrices.
With visualizations and experimental data we show that indeed, adding the
inverse set of edges, and simply assigning some total order, that preserves the
partial order on transitions and variables works well.

We extensively benchmark the Cuthill McKee, Gibbs Poole Stockmeyer, King
and Sloan nodal ordering algorithms implemented in Boost and ViennaCL [27].
The benchmark consists of 785 model specifications, written in PNML, Dve,
mcrl2, Promela and B. The model checker LTSmin [14] is already capable of
handling all five input languages. By linking Boost and ViennaCL to LTSmin
we can execute the nodal ordering algorithms and measure their influence on
bandwidth, wavefront and (weighted) event span.

The rest of the paper is structured as follows. In Sect. 2 we introduce symbolic
reachability analysis and explain what the role of the dependency matrix is.
Next, Sect. 3 explains the nodal ordering algorithms and why these can not be
directly applied to the dependency matrix. The solution is given in Sect. 4; it
involves symmetrizing the dependency matrix; permuting the matrix and de-
symmetrizing the matrix. An experimental evaluation is given in Sect. 5 and we
conclude our findings in Sect. 6.

2 Symbolic Reachability Analysis

p4

p2 p5

p3 p1

t1

t3t2 t4 t5

t6

Fig. 1. A Petri net

Reachability analysis involves analyzing whether or
not a system can enter a particular state. Consider
Fig. 1, which is an example of a Petri net. A Petri
net is a bipartite graph, where vertices represent
places (circles) or transitions (squares). Places con-
tain a non-negative number of tokens (dots). The
edges in the graph are called arcs. For each place,
an outgoing arc means that tokens will be consumed
and an incoming arc means that tokens will be pro-
duced. In Fig. 1, after transition t1 fires, p4 will have
no token, while both p2 and p5 get one token. A
reachability question is whether or not p1 will eventually have a token, which
it will, after firing t1 followed by t4. Petri nets model many kinds of systems,
like distributed protocols, control and data flow in concurrent software, business
processes, or even biological systems.

2.1 Transition Systems

A state of a Petri net is a marking, and firing a transition produces a new
marking of a Petri net. Other specification languages also describe transition
systems; we generalize the concept as follows.

Definition 1 (Transition System). A Transition System (TS) is a tuple
(S,→, ι), where S is a set of states, → ⊆ S × S is a transition relation and
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ι ∈ S is the initial state. Furthermore let →∗ be the reflexive an transitive clo-
sure of →, then the set of reachable states is R = {s ∈ S | ι →∗ s}.
Computing the set of reachable states R is very time- and memory-consuming.
Many techniques exist to alleviate this problem. In this paper, we focus on
symbolic reachability analysis. Storing the set of reachable states symbolically
involves using Boolean expressions to describe this set. Symbolic reachability
analysis works well when there is a high locality of events. To precisely describe
event locality, we introduce a more fine-grained view of a transition system.

Definition 2 (Partitioned Transition System). A Partitioned Transition
System (PTS) is a tuple P = ((S1, . . . , SN), (→1, . . . ,→M), (ι1, . . . , ιN)), where
the sets of values S1, . . . , SN define the set of states SP = S1 × · · · × SN. The
transition groups →i ⊆ SP × SP , ∀1 ≤ i ≤ M, define the transition relation
→P =

⋃M
i=1 →i. The initial state is ι = (ι1, . . . , ιN) ∈ SP . The defined TS of P

is (SP ,→P , ι). For convenience, we write s →i t when (s, t) ∈ →i, ∀1 ≤ i ≤ M.

Thus, a state (s1, . . . , sN) ∈ SP is a tuple of length N. An element sj in such a
tuple is a value for state slot j. The PTS induced by Fig. 1 has the set of natural
numbers as its values Sj = N, as it represents the number of tokens in a place.
The number of state slots is 5; every place gets a state slot. The number of
transition groups is 6; every transition gets its own transition group. The initial
state is the marking shown. Note that assigning all transitions of the Petri net
to a single group would hide event locality.

2.2 Dependencies and Event Locality

Event locality can be precisely described with a PTS. An event (or transition
group) is local if it only depends on a few state slots.

Definition 3 (Independence). Given a PTS P = ((S1, . . . , SN), (→1, . . . ,
→M), ι), transition group →i is independent on values Sj iff ∀(s1, . . . , sN),
(t1, . . . , tN) ∈ SP , whenever (s1, . . . , sj , . . . , sN) →i (t1, . . . , tj , . . . , tN), then:

1. sj = tj , and (not modified)
2. ∀rj ∈ Sj · (s1, . . . , rj , . . . , sN) →i (t1, . . . , rj , . . . , tN) (irrelevant).

Condition 1 says that a transition group must not modify a state slot to be
independent. Condition 2 says that a transition in group i should be enabled
regardless of the value at state slot j. In practice, we work with a syntactic
overapproximation of the dependency relation. We have recently shown [21]
that distinguishing read and write dependencies is beneficial for symbolic model
checking, but this distinction has not yet been exploited in the current paper.

In order to illustrate dependencies we introduce the notion of ordered graphs
and adjacency matrices. The dependency relation is described as edges between
vertices that represent transition groups and state slots.
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Definition 4 (Order). Given a set V , an order on V is a (reflexive, antisym-
metric and transitive) relation O ⊆ V × V . We write a ≤ b = (a, b) ∈ O. If
∀a, b ∈ V : (a, b) ∈ O ∨ (b, a) ∈ O then O is total, otherwise O is partial.

Definition 5 (Graph). A graph is a pair G = (V,E), where V is a set of
vertices and E ⊆ V ×V is a set of edges. If E is symmetric, then G is undirected,
else G is directed. An order on the vertices of G is denoted O ⊆ V × V . We
subscript a vertex (vi ∈ V ) to denote its position in an order: i = |{u | (u, vi) ∈
O}|.
Definition 6 (Dependency Graph). Given a PTS P = ((S1, . . . , SN), (→1

, . . . ,→M), ι), a dependency graph is a partially ordered, directed, bipartite graph
on rows and columns, D = ({r1, . . . , rM} ∪ {c1, . . . , cN}, E), such that the edges
form an over-approximation of the dependency relation in Definition 3:

E ⊇ {(ri, cj) | →i is not independent on Sj}. Furthermore, the vertices of
D are partially ordered, but both parts of its vertices are totally ordered. The
dependency matrix D ∈ {0, 1}M×N, such that Dij = 1 ⇐⇒ (ri, cj) ∈ E is the
bi-adjacency matrix of the dependency graph.

t1 t2 t3 t4 t5 t6

p1 p2 p3 p4 p5

(a) Dependency Graph

⎡
⎢⎢⎢⎢⎢⎢⎣

p1 p2 p3 p4 p5

t1 0 1 0 1 1
t2 0 1 1 0 0
t3 0 1 1 0 0
t4 1 0 0 0 1
t5 1 0 0 0 1
t6 1 0 1 1 0

⎤
⎥⎥⎥⎥⎥⎥⎦

(b) Dependency Matrix

Fig. 2. Representation of dependencies

The dependency graph of the Petri net in Fig. 1, with a partial alphanumeric
order (t1 < t2 < t3 < t4 < t5 < t6 ∪ p1 < p2 < p3 < p4 < p5) is shown in Fig. 2a.
The locality of events can be seen clearly in the matrix in Fig. 2b, for example
transition group t1 does not depend on state slots p1 and p3 in any way.

2.3 Symbolic Algorithms

The most basic algorithm to compute the set of reachable states in Definition 1
is a breadth first algorithm that repeatedly applies a symbolic representation
of a transition group to a set of states until a fixed point (=R) is reached,
beginning from the initial state. More advanced algorithms also exist, such as
chaining (which updates the set of states each time a subrelation is applied)
and saturation [6] (which saturates an increasing part at the bottom of the
decision diagram). Decision Diagrams (DDs) are used to represent both the set
of reachable states and the transition groups.

Figure 3 shows the set of reachable states of the Petri net in Fig. 1 in a
particular kind of DD, namely List Decision Diagrams (LDDs) [2], with different
variable orders.
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p1

p2

p3

p4

p5

0 1

0 1 0 1

0 1 0 1 0

1 0

01

True

0

(a) Alphanumeric

p2

p3

p4

p5

p1

0 1

0 1 0

1 0

0 0 1

0

True

1

(b) Cuthill McKee

Fig. 3. Reachable states as LDD with different orders

Every path from the
top left node to the True
node represents a reach-
able state. The value in
a node indicates the num-
ber of tokens. One can see
that Fig. 3a, whose vari-
able order is computed
using Cuthill McKee, has
fewer nodes than Fig. 3a
with the default alphanu-
meric variable order. Thus
storing the decision dia-
gram in Fig. 3b requires
less memory. Improving
the variable ordering of de-
cision diagrams is a classic
NP-Complete [3] problem.

2.4 Variable Ordering

Existing algorithms for variable ordering are Noack [22] and FORCE [1]. Both
algorithms optimize a heuristic called span, or event span. Noack’s algorithm
exploits the structure of a Petri net to order places close to each other. FORCE
repeatedly (until there is no improvement) computes the so called Center Of
Gravity (COG) of transition groups, to place state slots close to each other.
Span is an important metric for symbolic reachability, because it tells how close
related variables are ordered near each other. Ordering related variables near
each other results in smaller DDs. Span is defined on the dependency matrix
and measures the distance between the leftmost and rightmost nonzero column
(representing a state slot) of row i (representing a transition group).

Definition 7 (Span). Given an ordered graph G = (V,E), the vertex span is
a function sG : V → N, such that

sG(vi) :=

{
0, if �vj ∈ V . (vi, vj) ∈ E,

max
(vi,vj)∈E

j − min
(vi,vj)∈E

j + 1, otherwise.

The span or event span of a graph is ESG =
∑

v∈V sG(v).

For example, let D be the graph in Fig. 2, the vertex span for t1 is sD(t1) = 4,
sD(p1) = 0, the event span is ESD = 22.

We also introduce a version of span that assigns weights to rows of a matrix,
that signify the location of spans in rows, following [28]. Siminiceanu et al. have
shown that it is important that spans in rows appear as far right as possible so that
when a transition relation (of a row) is applied, the bottom of a decision diagram is
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changed rather than the top. Indeed, the leftmost column corresponds with the top
of the decision diagram, and the rightmost with the bottom of the DD. Changing
the bottom of the DD is apparently cheaper than changing the top.

Definition 8 (Weighted Span). Given an ordered graph G = (V,E), and
C = {v ∈ V | ∃u . (u, v) ∈ E}, the weighted span or weighted event span
of a graph is WESG =

∑
vi∈V sG(vi) · |C|−m(vi)

|C|/2 , where m(vi) = 0 if �vj ∈
V . (vi, vj) ∈ E and m(vi) = min(vi,vj)∈E j otherwise. Normalization yields
NWESG = WESG/(|C| · |V − C|).

If WES is measured on the dependency graph, then C is (w.l.o.g.) precisely the
set of vertices that represent state slots, and m(vi) gives the leftmost nonzero col-
umn number of row i in the dependency matrix. For example, let D be the graph in
Fig. 2, the weighted event span is WESD = 32, and NWESD = 1.1. Normalization
of WES allows us to compare matrices of different sizes with each other.

Optimizing (weighted) event span is well known [28] to work well for symbolic
reachability analysis, but like improving variable orders it is also NP-Complete.
We will show that algorithms that have been around for decades and are used
in sparse matrix solvers are actually very capable at reducing (weighted) span.

3 Nodal Ordering for Sparse Matrix Solvers

Sparse matrix solvers solve a system of linear equations, and this system can be put
in a symmetric matrix. As a preprocessing step it is necessary to order these equa-
tions in a particular way to limit memory and time usage during solving. Metrics
that indicate the memory and time usage are bandwidth and wavefront respec-
tively. Bandwidth measures the distance of nonzeros to the diagonal of a matrix.
The wavefront of a row i measures the number of nonzeros in all rows smaller
or equal to i. In this section we show how to apply nodal ordering algorithms on
symmetric matrices to reduce bandwidth and wavefront. This immediately raises
an issue, since the dependency matrix in the previous section is asymmetric. We
will address this in the next section. As an example algorithm we explain Cuthill
McKee [10], a simple but effective algorithm, developed in 1969.

3.1 Graph Metrics

The bandwidth of a row in a matrix measures the distance of nonzeros in that
row to the diagonal. Our conjecture is that bandwidth is important for symbolic
reachability, because it tells how close related variables are ordered near the
diagonal. We will substantiate this claim in the next sections. The difference
between bandwidth and span reduction is that instead of moving a cluster of
nonzeros towards an arbitrary column, nonzeros are always moved towards the
diagonal. Bandwidth is formalized as follows.
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Definition 9 (Bandwidth). Given an ordered graph G = (V,E), the vertex
bandwidth [29] is a function bG : V → N, such that

bG(vi) :=

{
0, if �vj ∈ V . (vi, vj) ∈ E,

max
(vi,vj)∈E

|i − j|, otherwise.

The bandwidth of a graph is the maximum bandwidth of all vertices BG =

maxv∈V bG(v). The profile of a graph is the sum of all bandwidths PG =
∑

v∈V bG(v).

For the dependency graph D of Fig. 2, we have bD(t1) = 4, BD = 5 and
PD = 18. The wavefront of a vertex v is the number of adjacent vertices of
all vertices smaller or equal to v. Our conjecture is that wavefront is important
for symbolic reachability analysis because the lower the wavefront is, the more
nonzeros are located near the bottom right of the matrix, similar to the WES-
metrics. The rightmost column corresponds to the bottom variable of the DD,
so repeatedly applying the transition relations at the bottom rows in the matrix
will correspond to saturating the bottom of the DD. This means that when
the wavefront is low, less transitions will be fired at the top of the DD during
saturation. Wavefront is formalized as follows.

Definition 10 (Wavefront). Given an ordered graph G = (V,E), function
adj : 2V → 2V , is defined such that adj (X) := {y | (x, y) ∈ E ∧ x ∈ X} \ X,
giving the adjacency set of a set X. The vertex frontwidth or vertex wavefront
[29] is a function fG : V → N, such that fG(vi) := | {vi}∪adj ({v1, . . . , vi})|. The
average wavefront of G is FG =

∑
v∈V fG(v)/|V |.

For the dependency graph D of Fig. 2, fD(t2) = 6, fD(p1) = 1 and FD = 5.5.

3.2 Nodal Ordering

Nodal ordering is a method of applying a permutation to the order of vertices
in a graph. We will illustrate this with an algorithm by Cuthill and McKee. The
way to apply permutations is however identical for all algorithms in this paper.

Definition 11 (Graph Permutation). Given an ordered graph G = (V,E)
with order O, a permutation is a bijective function πG : V → V . The permuted
order Oπ is:

a ≤π b = (a, b) ∈ Oπ ⇐⇒ π(a) ≤ π(b) = (π(a), π(b)) ∈ O .

Cuthill McKee is a nodal ordering algorithm for bandwidth reduction. The input
to the algorithm is a totally ordered undirected graph. Cuthill McKee is a simple
breadth first graph traversal that visits neighbors of vertices in increasing order
of degree. If there are vertices with the same degree, an arbitrary vertex may be
chosen. The order in which vertices are visited is equivalent to the permutation it
produces. The resulting permutation can be directly applied to the input graph.

The reason why Cuthill McKee does not work on asymmetric matrices can
be seen in Fig. 2a; the vertices p1, . . . , p5 do not have outgoing edges, meaning



Bandwidth and Wavefront Reduction for Static Variable Ordering 263

that not all vertices will be visited. The solution to this problem is presented in
Sect. 4. The solution involves adding extra edges.

In total we benchmark with six different implementations of nodal order-
ing algorithms, implemented in Boost and ViennaCL. The implementations are
summarized in Fig. 4. There are three categories of algorithms, those that reduce
only bandwidth, reduce both bandwidth and profile, and those that reduce pro-
file and wavefront. In both Boost and ViennaCL the Cuthill McKee algorithm
is implemented.

Algorithm Package Time complexity Reducing type

Cuthill McKee
Boost

O(D̂ · log D̂ · |V |) bandwidth

King [17] O(D̂2 · log D̂ · |E|) bandwidth, profile

Sloan [29] O(log D̂ · |E|) profile, wavefront

Cuthill McKee
ViennaCL

unknown bandwidth

adv. Cuthill McKee unknown bandwidth

GPS [11] unknown bandwidth, profile

Notation: D̂ is the maximum degree over all vertices

Fig. 4. List of nodal ordering algorithms

Our results confirm that
the Cuthill McKee imple-
mentations differ in both
tools. The Gibbs Poole
Stockmeyer (GPS) algori-
thm is only implemented
in ViennaCL and the time
complexity of algorithms in
ViennaCL is not precisely
known, but should be in the
order of similar BFS algo-
rithms.

4 Problem and Solution

The main problem with applying nodal ordering algorithms to the dependency
graph is that the dependency graph is a directed graph, while nodal ordering
algorithms only work on undirected graphs. In other words, the adjacency matrix
of such a graph is asymmetric and nodal ordering algorithms only work on
symmetric matrices. In this section we show how to symmetrize asymmetric
matrices, how bandwidth relates to span and how to de-symmetrize matrices.

4.1 Representations of Dependencies

Symmetrization [24] of a directed graph is defined as follows.

Definition 12 (Symmetrization). Given an asymmetrix matrix A ∈
{0, 1}M×N, its symmetrized matrix is Â =

[
0M×M A
AT 0N×N

]

, where 0X×X is a

square matrix of size X with only 0 entries and AT is the transpose of A.

On the graph level, this means that we add the inverse set of edges and assign
a total order, i.e. let A = (V,E) be the bi-adjacency graph of A with order O,
and Â the adjacency graph of Â with order Ô, then Â = (V,E ∪ E−1) and the
vertices of Â are totally ordered, but constrained to O ⊆ Ô.

Figure 5 shows the symmetrized graph D̂ of graph D in Fig. 2, the associated
metrics are BD̂ = 10, PD̂ = 87 and FD̂ = 4.3. Note that the total order we chose
is t1 < t2 < t3 < t4 < t5 < t6 < p1 < p2 < p3 < p4 < p5.
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t1 t2 t3 t4 t5 t6

p1 p2 p3 p4 p5

(a) Dependency graph

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

t1 t2 t3 t4 t5 t6 p1 p2 p3 p4 p5

t1 0 0 0 0 0 0 0 1 0 1 1
t2 0 0 0 0 0 0 0 1 1 0 0
t3 0 0 0 0 0 0 0 1 1 0 0
t4 0 0 0 0 0 0 1 0 0 0 1
t5 0 0 0 0 0 0 1 0 0 0 1
t6 0 0 0 0 0 0 1 0 1 1 0
p1 0 0 0 1 1 1 0 0 0 0 0
p2 1 1 1 0 0 0 0 0 0 0 0
p3 0 1 1 0 0 1 0 0 0 0 0
p4 1 0 0 0 0 1 0 0 0 0 0
p5 1 0 0 1 1 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(b) Dependency matrix

Fig. 5. Symmetrized versions of the dependencies

Nodal ordering algorithms can be run on any symmetric matrix. It is thus
also possible, but optional, to create a total graph of the symmetric dependency
matrix. Kaveh [16] hints that some nodal ordering algorithms produce even bet-
ter permutations on the total graph. Making a graph total involves transforming
edges to vertices and connecting incident edges.

Definition 13 (Total Graph). Given a graph G = (V,E), a total graph of
G is GT = (VT , ET ), where VT = V ∪ E is a set of vertices and ET =
E ∪ {(a, (a, b)), ((a, b), a) | (a, b) ∈ E} ∪ {((a, c), (c, b)) | {(a, c), (c, b)} ⊆ E} ⊆
VT ×VT is the set of edges, i.e. we add all possible vertex-edge edges, edge-vertex
edges and edge-edge edges.

For example, let D̂ be the directed graph in Fig. 5 and D̂T its total graph, if
we order the new vertices in D̂T in lexicographic order we have BD̂T

= 19,
PD̂T

= 395 and FD̂T
= 11. We now have two type of graphs to represent the

dependencies on which nodal ordering algorithms can be run.
We can apply Cuthill McKee to reduce bandwidth as follows. The dependency

graph D̂ in Fig. 5 has multiple vertices with equal degree. When vertices have
equal degree, we pick the smallest vertex. As a starting vertex we thus pick t2.
Then Cuthill McKee visits vertices in the order t2 < p2 < p3 < t3 < t1 < t6 <
p4 < p5 < p1 < t4 < t5.

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

t2 p2 p3 t3 t1 t6 p4 p5 p1 t4 t5
t2 0 1 1 0 0 0 0 0 0 0 0
p2 1 0 0 1 1 0 0 0 0 0 0
p3 1 0 0 1 0 1 0 0 0 0 0
t3 0 1 1 0 0 0 0 0 0 0 0
t1 0 1 0 0 0 0 1 1 0 0 0
t6 0 0 1 0 0 0 1 0 1 0 0
p4 0 0 0 0 1 1 0 0 0 0 0
p5 0 0 0 0 1 0 0 0 0 1 1
p1 0 0 0 0 0 1 0 0 0 1 1
t4 0 0 0 0 0 0 0 1 1 0 0
t5 0 0 0 0 0 0 0 1 1 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Fig. 6. Permuted matrix

Figure 6 shows the permuted symmetrized
dependency matrix. Its associated metrics are
BD̂π = 3, PD̂π = 40, FD̂π = 3.2. This is a
reduction in bandwidth of 7. If we permute the
total graph with Cuthill McKee in Boost we get
BD̂π

T
= 7, PD̂π

T
= 165 and FD̂π

T
= 5.0. With the

total graph we have a reduction in bandwidth
of 12.

Why reducing bandwidth may also reduce
span is because span is limited by twice the
bandwidth, plus the diagonal.
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Theorem 1 (Bandwidth Limits Span). Given an ordered graph G = (V,E),
we have ∀v ∈ V : sG(v) ≤ 2 · bG(v) + 1.2

Proposition 1 (Span and Symmetrization). Give a graph G = (V,E), and
its symmetrized graph Ĝ, we have ESĜ = ESG + ESH , where H = (V,E−1).

If G represents the dependency relation, these results tell that the profile PĜ

limits the event span ESG . Thus reducing the value PĜ should also reduce the
value ESG .

4.2 De-symmetrization of Permuted Matrices

The question that remains now is how to de-symmetrize the dependency
matrix in Fig. 6. This is essential, because if we would simply use the per-
muted total order we can incorrectly swap columns with rows and vice versa.
De-symmetrization works as follows. Consider a PTS P = ((S1, . . . , SN),
(→1, . . . ,→M), ι), with a symmetrized dependency graph D̂ = (R ∪ C,E)
and a permuted total order Ôπ, where R represents the transition groups
1, . . . ,M and C represents the state slots 1, . . . ,N. The de-symmetrized matrix,
or directed graph is D = (R ∪ C,E ∩ (R × C)). Its permuted partial order is
Oπ = (Ôπ ∩ (R × R)) ∪ (Ôπ ∩ (C × C)). If a nodal ordering algorithm is run on
the total graph of the dependency graph with order Oπ

T , the approach to obtain
the partial order is identical (i.e. Oπ = (Ôπ

T ∩ (R × R)) ∪ (Ôπ
T ∩ (C × C))).

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

p2 p3 p4 p5 p1

2 1 1 0 0 0
3 1 1 0 0 0
1 1 0 1 1 0
6 0 1 1 0 1
4

5

0 0 0 1 1
0 0 0 1 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

Fig. 7. Asymmetric matrix

Figure 7 shows the de-symmetrization of the
dependency matrix in Fig. 6. Let Dπ be the de-
symmetrized graph, the event span metrics are
ESDπ = 16 and WESDπ = 19. The partial order
for Dπ is t2 < t3 < t1 < t6 < t4 < t5 ∪ p2 < p3 <
p4 < p5 < p1. We thus have a reduction in event
span of 6 (compared to the value computed in The-
orem 7), and a reduction in weighted event span
from 32 to 19. If we permute the total graph with
Cuthill McKee in Boost we also get ESDπ = 16 and
WESDπ = 19.

Figure 8a and b visualize some dependency matrices from real world exam-
ples, after applying some nodal reordering algorithms from Fig. 4. Their NWES
metrics are shown as well. The first two matrices are of a model with 20 din-
ing philosophers, one of the best results achieved in our benchmarks. Even on
instances with 5000 philosophers (25.000 variables) we get very small weighted
event span, and the permutation is computed within milliseconds. The matrices
from the database10UNFOLD.pnml show the more typical structure of depen-
dency matrices, e.g. the band produced by the GPS algorithm is clearly visible.
In Fig. 8b one can see the difference between Sloan and GPS; Sloan does not try
to reduce bandwidth, only profile. In our experiments we also see that Sloan is
more capable at reducing WES than GPS.
2 Theorem 1 can be easily proven with the triangle inequality theorem.
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Fig. 8. Example de-symmetrized matrices

We have set up a large number of experiments, in order to answer several
relevant questions: First, which algorithm and which type of symmetric graph is
best for reducing WES? Second, how well does this result compare to Noack and
FORCE, which are currently considered state of the art? Third, does the choice
of best algorithm/graph depend on the chosen specification language? Fourth,
can we quantify the performance of the best algorithm/graph?

5 Experiments

To show the applicability of nodal ordering algorithms to variable ordering, we
benchmark with five different modeling formalisms3. There are 47 B specifica-
tions, collected through the B community [19]. We have 264 Dve specifications
from the BEEM [23] database. From the examples directory in the mcrl2 [9]
distribution we collected 142 specifications. There are 314 Petri nets from the
2015 model checking contest [18]. Also, we have a collection of 18 Promela
models. For two reasons, we could not always use complete sets of specifications,
such as for the pnml language, where the complete set consists of 361 Petri
nets. First, some total graph representations of the dependencies are too large
to compute an ordering for within our time limit of one hour. Second, the imple-
mentation of Sloan in Boost crashes when run on a graph that has disconnected
components. In our benchmarks we thus vary over a total of 785 specifications,
two graph representations, and 9 ordering algorithms. The 9 algorithms consists
of those in Fig. 4, 2 variations of Noack’s [22] algorithm, and FORCE [1].

Our benchmark generates a lot of data; to concisely present this data we use
graphics instead of tables. To show which combination of algorithm and graph
performs best we compute Mean Standard Scores (MSSs) and show scatter plots
that allow us to quantify the performance of the best algorithm/graph. Figure 9
shows the MSSs for all five languages, plus the MSS for all languages combined.

The MSS for a combination of algorithm and graph is defined as follows.
Let A be the set of combinations of algorithms and graph representations, i.e.
the values on the x-axes in Fig. 9. We use some abbreviations: CMB = Cuthill
McKee in Boost, aCM = advanced Cuthill McKee, K = King, GPS = Gibbs
Poole Stockmeyer, and CMV = Cuthill McKee in ViennaCL. Let S be the
3 Reproduction instructions at: https://github.com/utwente-fmt/BW-NFM2016

https://github.com/utwente-fmt/BW-NFM2016
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Fig. 9. Mean Standard Scores for WES, indicating the best algorithm (Color figure
online)

set of specifications, e.g. a Petri net with 20 dining philosophers. The used set
S appears in the titles of Fig. 9a to f: |S| = N . Given a combination of an
algorithm and graph a ∈ A, the MSS for a metric m, such as event span, is
MSSa =

∑
s∈S

m(s,a)−μa′∈Am(s,a′)
σa′∈Am(s,a′) / |S|, where m(s, a) denotes the value of the

metric for a combination of an algorithm and a graph of a specification s, and
μa′∈Am(s, a′) and σa′∈Am(s, a′) denote the mean and standard deviation for s
over all combinations of algorithms and graphs. The values of MSSa appear on
the y-axes.4

4 There are three side notes. First, μ and σ for bandwidth, profile and wavefront are
computed per graph type, because the bipartite and total graph have different sizes.
Second, Noack1 and Noack2 can only be computed directly on Petri nets (PNML,
Fig. 9e), so bandwidth, profile and wavefront are unknown. Third, when FORCE is
executed or without reordering, bandwidth, profile and wavefront are not reported.
The reason is that our symmetrization approach typically produces high values for
those metrics. Event span does not have this problem.
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An example MSS in Fig. 9a for WES is MSS (Sloan,total) = −0.57. This means
that Sloan, run on the total graph, is on average 0.57 standard deviations better
than the average of all graphs and algorithms, run on all specifications. All
graphs in Fig. 9a to f are sorted from smallest to largest WES, meaning that the
best algorithm (according to WES) appears on the left.

Note that Sloan is second best (after FORCE). Using the total graph is better
than using the bipartite graph, except for B and mcrl2. We explicitly note that
Sloan beats Noack in minimizing WES (see Fig. 9e). This is interesting because
Noack’s algorithms are specifically designed for Petri nets, while Sloan is not.

The results in Fig. 9 tell us in detail which algorithms and symmetric graphs
perform better than others, e.g.: (1) running any algorithm is better than none;
(2) running GPS on the total graph is worse than running it on the bipartite
graph; (3) King’s algorithm does not perform well; (4) running algorithms on
the total graph takes longer; (5) running nodal ordering algorithms is beneficial
for any specification language.

Fig. 10. NWES values

The question still remains, how good an MSS
of −0.57 (WES obtained with Sloan on the total
graph) actually is. Consider Fig. 10, which shows
the normalized weighted event span for all 785 spec-
ifications. A point below the line x = y means
that Sloan, run on the total graph, produces better
NWES than running no reordering. There are only
69 specifications where the initial ordering provided
by the model had a better WES than the order-
ing computed by Sloan. Some of the 716 improve-
ments are extreme, showing an NWES reduction
from ∼1.0 to nearly 0.

6 Conclusion

We have shown that bandwidth and wavefront reduction algorithms are clearly
applicable to symbolic reachability analysis for many specification formalisms.
We demonstrated how they perform relative to each other and to other state-of-
the-art algorithms. The best nodal ordering algorithm for variable reordering is
Sloan; for all five tested specification languages Sloan is the clear winner when it
comes to reduction of weighted event span. Furthermore Sloan’s algorithm beats
Noack’s algorithms that are specifically designed for Petri nets, but FORCE
performs even better on WES.

There are two branches of possibilities for future work. The first is to confirm
the applicability to other model checkers, such as SmArT [7], MARCIE [13] and
ITS-Tools [30]. These tools employ advanced saturation algorithms, which can be
used to confirm whether bandwidth and wavefront reduction is useful in other
model checkers as well. Our approach works for disjunctive partitioning schemes.
A remaining question is, whether our method also works for conjunctive [5] par-
titioning schemes, such as in NuSMV [8]. Furthermore bandwidth and wavefront
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reduction should be applicable to SAT/SMT solving, since also the FORCE algo-
rithm is used in both symbolic reachability and SAT/SMT solving. The hyper-
graph used by FORCE is equivalent to our dependency graph: a hyperedge is
equivalent to a vertex (including its edges) that represents a transition group.

The second branch of related work is to consider other graph representations
and other bandwidth and wavefront reduction algorithms. Kaveh [16] discusses
many different graph transformations of the dependency graph on which nodal
ordering algorithms can be run. We have only investigated the total graph. Reid
et al. [24] provide two more methods of symmetrizing an asymmetric matrix A,
namely A+AT and A ·AT . Additionally the authors provide a modified Cuthill
McKee algorithm that can be run on an asymmetric matrix directly, available
in the HSL library. A survey [20] covers the state of the art in bandwidth reduc-
tion, including metaheuristic algorithms, of which many have been developed in
the past decade. Recently, advances have been made in parallelizing [15] nodal
ordering algorithms. Running nodal ordering algorithms on the total graph is
considerably slower than on the default dependency graph, so running parallel
algorithms on the total graph would provide a welcome speedup.

Figure 9 showed that FORCE produces better WES than Sloan. Future work
includes performing extensive benchmarks to see how well saturation algorithms
actually perform with the variable orders computed by the presented nodal order-
ing algorithms. We have done some preliminary experiments with a saturation-
like algorithm in LTSmin, mainly to illustrate how Sloan affects WES, peak
nodes, and reachability time. The peak nodes indicate the highest number of
DD nodes to store the visited set during the whole computation, often much
higher than the DD-size at the end of reachability. So peak nodes indicate the
limiting factor in terms of memory usage. Keeping the number of peak nodes
low is the main motivation to perform static variable ordering.

Fig. 11. Saturation results (N = 106) (Color
figure online)

Figure 11 shows the Mean
Standard Score (MSS) for peak
nodes, WES and reachabil-
ity time. The MSS values
are sorted from smallest peak
nodes to largest, showing the
best algorithm on the left. We
ran a benchmark on all 106
PNML models for which the
saturation algorithm completed
within 30 min. For peak nodes
and time, the best algorithm is Sloan, not FORCE. The difference in MSS
between Sloan/total and FORCE for peak nodes is 0.13. Also, Noack appears
even further to the right than in Fig. 9e. This suggests that Sloan has interesting
properties, besides showing that bandwidth reduction is a good alternative to
span reduction. We conjecture that Sloan is a good algorithm for full saturation
since it also reduces wavefront. Moreover, nodal ordering algorithms also com-
pute an order on the transition groups, unlike FORCE and Noack. It would be
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interesting to see how chaining and saturation benefit from the computed order
on transition groups.
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Abstract. We study the following gray-box learning problem: Given the
serial composition of two Mealy machines A and B, where A is known
and B is unknown, the goal is to learn a model of B using only output
and equivalence queries on the composed machine.

We introduce an algorithm that solves this problem, using at most |B|
equivalence queries, independently of the size of A. We discuss its efficient
implementation and evaluate the algorithm on existing benchmark sets
as well as randomly-generated machines.

1 Introduction

Tools to analyze software or hardware systems, such as static analyzers or model
checkers, require accurate system models as input. Third-party components,
however, are rarely specified at the level of detail required by such tools.

One approach to automatically obtain formal models of systems is active
learning. Here, one commonly assumes an oracle, or teacher, that admits two
kinds of queries about the system: output queries return the result of the system
for a specific input; equivalence queries check whether a conjectured model is con-
sistent with the system to be learned and return a counterexample if not. Based
on this setup, Angluin introduced the L∗ algorithm [2] for learning deterministic
finite automata. L∗ has since been extended to other modeling formalisms, such
as Mealy machines [19], register automata [11], or symbolic automata [16]. It is
also at the heart of several model checking approaches, including [4,8,20].

As the system is treated as a black box, no information about the internal
structure of the system can be taken into account by most existing learning algo-
rithms. In practice, however, systems are often composed of sub-components, for
some of which models might be available, but it is not possible to access the known
and the unknown parts separately from the outside. Partial information about the
inner workings of a system may be inferred from manuals or conjectured from sim-
ilar, yet better documented systems. This scenario is depicted in Fig. 1.

While it is in theory possible to learn a model of the entire system using
existing black-box approaches, this is often not viable in practice because the
state space is too large. A problem, which has received little attention in the
literature so far, is how to use the available information about the system to
focus the learning algorithm on those parts that are unknown. This problem
could be termed gray-box learning.
c© Springer International Publishing Switzerland 2016
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DOI: 10.1007/978-3-319-40648-0 21



Gray-Box Learning of Serial Compositions of Mealy Machines 273

I O

Fig. 1. Mealy machine network

A BOA IBI O

C

Fig. 2. Serial composition

In this paper, as a first step toward solving this problem, we study one specific
instance: We assume that the system C is the serial composition of two Mealy
machines A and B, and that we have a model for the left machine (A) and want
to learn the right machine (B). We further assume that we can perform output
and equivalence queries only on C as a whole. This scenario is shown in Fig. 2.

While output queries can often be realized cheaply by measurements on the
actual system, equivalence queries can usually only be approximated by a large
number of such measurements. Our primary focus is thus to minimize the number
of equivalence queries. We introduce an algorithm to exactly learn B in the
context of A that performs at most |B| equivalence queries, where |B| denotes the
number of states of B. We also discuss a more practical variant of this algorithm
that requires a polynomial number of equivalence queries in the size of B.

We evaluate several variants of our approach on compositions of randomly-
generated machines against an implementation of the classic L∗ algorithm in
LearnLib [13]. Furthermore, we also compare the performance of our approach
with the tool BICA [17] on a set of standard benchmarks for minimizing incom-
pletely specified Mealy machines. We show that our approach requires signifi-
cantly fewer output and equivalence queries on most benchmarks.

2 Problem Statement

In this section, we first formally define several concepts used throughout this
paper. Then, we give a precise description of the problem that we address.

2.1 Basic Notions

Definition 1 (Mealy Machine). A Mealy machine M is a tuple (Q, I,O, δ, qr),
where Q �= ∅ is a finite set of states, I �= ∅ is a finite set of input symbols, O �= ∅
is a finite set of output symbols, δ : Q × I → Q × O is the transition function, and
qr ∈ Q is the initial (reset) state.
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We extend δ to sequences in the usual way. We use ε to denote the empty
sequence. Further, we use M(x) to denote the output sequence of M when
reading x, and ML(x) to denote last output of M when reading x.

Given two Mealy machines A and B, we can compose them to a serial Mealy
machine C by using the output of A as the input for B. Formally:

Definition 2 ((Synchronous) Serial Composition of Mealy Machines).
Let A = (QA, IA, OA, δA, qr,A) and B = (QB , IB , OB , δB , qr,B) be two Mealy
machines such that OA ⊆ IB. The serial composition of A and B is a Mealy
machine C = (Q, I,O, δ, qr), where Q := QA × QB, I := IA, O := OB,
δ((q

A
, q

B
), i) := ((q′

A
, q′

B
), o), where (q′

A
, o

A
) := δA(q

A
, i), and (q′

B
, o) := δB(q

B
, o

A
),

and qr = (qr,A , qr,B ).

Given a composition of two Mealy machines A and B, we define a machine B′

to be right-equivalent to B in the context of A if the composition of A and B
describes a machine that is equivalent to the composition of A and B′. Formally:

Definition 3 (Right-equivalence). LetA,B, andB′ beMealymachines. Then,
B′ is right-equivalent to B in the context of A iff ∀x ∈ I∗ : B(A(x)) = B′(A(x)).

2.2 The Gray-Box Learning Problem

In this paper, we address the following problem. We assume that we have a serial
composition C of two Mealy machines A and B. Further, we assume that we
have a model of A, but B is unknown. While we do not have a model of C, we
assume that we can determine the output of C on any input by an output query,
and we can test whether a machine is equivalent to C by an equivalence query.

Using existing techniques, like Angluin’s L∗ algorithm [2], one could con-
sider C to be a black box and learn a model of C. Such an approach would in
the worst case employ a polynomial number of output and equivalence queries
in the size of C, which can be up to |A| · |B|.

Instead, our goal is to exploit the knowledge we have about A, and to learn
a model of a minimum-size machine B′, such that B′ is right-equivalent to B in
the context of A. In particular, as we consider equivalence queries to be more
expensive than output queries, we want the number of equivalence queries to be
polynomial in the number of states of B′, independently of the size of A.

3 Preliminaries

Existing active learning approaches for Mealy machines (and related machine
types) are usually based on a Myhill-Nerode-like equivalence relation that par-
titions the set of input words into classes such that the words that are in the
same class cannot be distinguished with respect to different suffixes:

Definition 4 (Equivalence of input words). Given a function F : I∗ → O,
two words x, y ∈ I∗ are equivalent, x ∼ y, iff ∀z ∈ I∗ : F (x · z) = F (y · z).
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F can be modeled by a Mealy machine iff this relation has finitely many
equivalence classes. One can then construct a minimum-size Mealy machine
whose states are the equivalence classes of this relation. Existing approaches
compute the equivalence relation in a co-inductive fashion. In the beginning,
they consider all words to be equivalent. Then, in each round this hypothesis is
refined by identifying at least one new equivalence class, until the equivalence
relation is fully determined.

If we consider the machine B in the serial composition with A, then it is
possible that not all input sequences for B can be produced by A. Let tr(A) =
{A(x) | x ∈ I∗} be the set of output sequences that A can produce. For each
output sequence x ∈ tr(A) there might be multiple input sequences that produce
this output. Let A−1 : tr(A) → I∗ be a function such that A−1(x) returns one
of these input sequences. In the following, it will not be important which of the
possibly multiple sequences is actually returned.

We have that every right-equivalent Mealy machine B′ for B in the context
of A has to agree with the partial function FP : I∗

B ⇀ O such that ∀x ∈ tr(A) :
FP (x) = BL(x). Note that while we do not have immediate access to B, we can
use output queries on C to access B, as for all x ∈ tr(A), BL(x) = CL(A−1(x)).

Similarly to Definition 4, we define two words to be right-compatible in the
context of A iff they cannot be distinguished with respect to different suffixes.

Definition 5 (Right-compatibility). Two words x, y ∈ I∗
B are right-

compatible in the context of A, x ∼A y, iff ∀z ∈ I∗
B : (xz /∈ tr(A) ∨ yz /∈

tr(A) ∨ BL(xz) = BL(yz)). Otherwise, x and y are incompatible, x �A y.

However, right-compatibility is, unlike equivalence, not transitive. Thus it is
not an equivalence relation, which means we cannot directly use the construction
sketched above to build a minimum-size machine.

To see this, consider a Mealy machine A and two output symbols a, b ∈ OA

with ∀z ∈ I∗
B : az, bz ∈ tr(A) ∧ BL(az) = 0 ∧ BL(bz) = 1 and ∀z ∈ I∗

B : cz /∈
tr(A). So B always outputs 0 if the first output of A was a, it always outputs 1
if the first output of A was b, and A never outputs c as the first output.

This means that a ∼A c and b ∼A c, but a �A b. For this example, we can build
a machine with three states that is right-equivalent to B. From the start state, a
transition with c can go to any state. This also shows that there can be multiple
machines with the minimum number of states that are right-equivalent to B.

4 Approach

Equivalence queries are typically assumed to be more expensive than output
queries. Many existing active learning techniques therefore focus on keeping the
number of required equivalence queries low.

At a high level, Angluin’s L∗ algorithm for instance, can be described as
follows. In each round, the algorithm first performs a sequence of output queries
in a systematic way, until there is exactly one machine of minimum size that is
consistent with the results from all output queries performed so far. Only then,
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the algorithm performs an equivalence query. If this query returns a counterex-
ample, this implies that the correct machine must have at least one additional
state. Thus, Angluin’s algorithm performs at most n equivalence queries, where
n is the size of the minimal correct machine.

Unlike in Angluin’s setting, in general no unique machine of minimum size
that is consistent with a set of observations exists. The basic idea behind our
approach is to perform output queries until all machines of minimum size that
are consistent with these queries are right-equivalent in the context of A. We then
perform an equivalence query for one of these machines. If this query results in
a counterexample, this counterexample witnesses that all of these machines are
incorrect, and thus, the correct machine must have at least one additional state.

One challenge is to find a suitable sequence of output queries that is guaranteed
to reduce the number of machines that are consistent with all queries performed
so far. The basic idea is to iteratively construct all machines of minimum size that
agree with all of the previous queries. We can then check whether each pair of these
machines is right-equivalent. If they are not, we use a distinguishing sequence as
a counterexample, without performing an equivalence query.

However, applying this approach naively would not be viable in many cases
because there can be an exponential number of machines of the same size that are
consistent with a set of observations, in particular in the beginning, when only
a small number of queries have been performed. Thus, we identify a number of
necessary conditions for candidate machines to be right-equivalent which can be
efficiently determined on observation tables. Some of these conditions correspond
to notions from Angluin’s algorithm, such as consistency and closedness, while
others, like input-completeness, are special to our particular setting.

In the rest of this section, we describe our proposed algorithm in detail and
introduce the necessary theoretical concepts. In particular, we describe in detail
which output queries our algorithm performs to systematically reduce the num-
ber of machines that are consistent with the observations made so far. In the
following, we assume that the reader is familiar with Angluin’s L∗ algorithm [2].

4.1 Observation Tables

The main data structure used in our approach is an observation table. The rows
of the table are indexed by a set of prefixes, the columns by a set of suffixes, and
the entries of the table store the last output symbol of an output query for the
concatenation of the corresponding prefix and suffix. If this concatenation is not
a possible output sequence of the left machine A, we do not perform an output
query, but store ⊥ in this cell instead. In contrast to most previous definitions,
our observation tables do not consist of two explicitly distinguished parts.

Definition 6 (Observation Table). An observation table T = (S,E,Q) con-
sists of a finite non-empty prefix-closed set of prefixes S ⊆ tr(A), a finite suffix-
closed set of suffixes E ⊆ I∗

B (such that IB ⊆ E, and ε /∈ E), and a function
Q : (S,E) → OB such that Q(x, e) = CL(A−1(xe)) iff xe ∈ tr(A) and Q(x, e) = ⊥
otherwise.



Gray-Box Learning of Serial Compositions of Mealy Machines 277

For a set R ⊆ S and a ∈ IB, let SuccT (R, a) := {xa | x ∈ R ∧ xa ∈ S}, i.e.,
SuccT (R, a) is the set of successor rows for elements of R that are in the table.

In the following, we will use the term row both for the prefixes and for the
entries of a row, when it is clear what is meant from the context.

We call two rows compatible if all columns that are not ⊥ in both rows are
the same.

Definition 7 (Compatibility). The rows for two prefixes x, y ∈ S are com-
patible iff ∀e ∈ E : Q(x, e) = ⊥ ∨ Q(y, e) = ⊥ ∨ Q(x, e) = Q(y, e).

We call an observation table consistent if whenever two rows are compatible,
their successors are also compatible.

Definition 8 (Consistency). An observation table T is consistent iff for all
prefixes x, y ∈ S such that the rows for x and y are compatible, for all a ∈ IB
all rows in SuccT ({x, y}, a) are compatible.

If there is a suffix e ∈ E that shows that the successors of x and y under an input
a are not compatible, then ae is a suffix that shows that the rows for x and y
are also not compatible. Thus, we can add ae to E to resolve this inconsistency.

We define a partition of the set of rows as follows.

Definition 9 (Partition). A partition for observation table T = (S,E,Q) is a
partition P = {P1, ..., Pk} of S, such that

• for all x, y ∈ Pi: the rows for x and y are compatible,
• for each Pi, and for all a ∈ IB, there is a Pj, such that: SuccT (Pi, a) ⊆ Pj.

Note that if SuccT (Pi, a) �= ∅ then there is only one such Pj since all classes
of the partition are disjoint.

We will later show how we can use partitions to build candidate machines
that are consistent with the observations made so far. The words in the same
class of a partition will then lead to the same states in these candidate machines.

We call a partition closed if for each class of the partition and each input
symbol a, the observation table contains a successor row (under a) for at least
one word of this class, if we know from the observations made so far that such
a successor must exist. Our inference algorithm uses closedness as a way to
determine which additional rows should be added to the table.

Definition 10 (Closedness for Partitions). Let P = {P1, ..., Pk} be a parti-
tion for T = (S,E,Q). P is closed if for all Pi ∈ P : if there is some x ∈ Pi and
some sequence az ∈ E with a ∈ IB and z ∈ I∗

B such that Q(x, az) �= ⊥, then
there must be some y ∈ Pi for which Q(y, az) �= ⊥, and ya ∈ S.

Given an observation table T , let Π(T, n) be the set of all partitions of size n.
Let Πmin(T ) be the set of partitions of minimum size for an observation table
T , i.e., Πmin(T ) = Π(T,m) where m = min{n | Π(T, n) �= ∅}.

Definition 11 (Closedness). An observation table T = (S,E,Q) is closed if
all minimum-size partitions P ∈ Πmin(T ) are closed.
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Definition 12 (Partial Closedness). An observation table T is partially
closed (p-closed) iff for all prefixes x ∈ S and all sequences az ∈ E such that
Q(x, az) �= ⊥, there is a prefix y ∈ S such that the rows for x and y are compat-
ible, Q(y, az) �= ⊥ and ya ∈ S.

If a table is not p-closed, then no partition can be closed.

Definition 13 (Agreement). A Mealy machine M agrees with an observation
table T = (S,E,Q) if for all x ∈ S and e ∈ E, Q(x, e) = ⊥ ∨ Q(x, e) = ML(xe).

For any closed partition P = {P1, ..., Pk} in Πmin(T ), we can build the
following Mealy machine MP = (Q, I,O, δ, qr) with k + 1 states: Q := P ∪
{error}, I := IB, O := OB ∪ ⊥, δ(Pi, a) := (error,⊥) if SuccT (Pi, a) = ∅,
otherwise: δ(Pi, a) := (Pj , b) such that for some x ∈ Pi: Q(x, a) = b �= ⊥ and
SuccT (Pi, a) ⊆ Pj , and qr := Pi such that ε ∈ Pi.

This machine enters a special error state if there is a class of the partition,
for which the successor class is not defined.

In the following, we will use the notation πi(t) to denote the i-th component
of a tuple t, e.g., π2(qr, a) = a.

Lemma 1. Let P be a closed partition of an observation table T = (S,E,Q),
and MP = (Q, I,O, δ, qr) the Mealy machine constructed as described above.
Then for all words x ∈ S, x ∈ π1(δ∗(qr, x)).

Theorem 1. For a closed partition P of an observation table T , the machine
MP agrees with T .

Definition 14. Let γ(MP ) be the set of machines with k states that can be
obtained from MP by removing the error state and replacing the transitions to
the error state by transitions with arbitrary outputs and successor states.

Theorem 2. Let T be a closed observation table. Then every minimum-size
machine M that agrees with T is isomorphic to an element of γ(MP ) for some
P ∈ Πmin(T ).

Theorem 3. If for a closed partition P the error state is not reachable in a
composition of A with MP , then all machines in γ(MP ) are right-equivalent.1

If the error state is reachable, we can use an input sequence that leads to the
error state to extend the observation table.

Definition 15 (Input-Completeness). An observation table T = (S,E,Q) is
input-complete if for all minimum-size partitions P ∈ Πmin(T ), the error state
is not reachable in a composition of A with MP .

Definition 16 (Uniqueness). An observation table T = (S,E,Q) is unique if
for all pairs of minimum-size partitions P, P ′ ∈ Πmin(T ), the machines MP and
MP ′ are right-equivalent in the context of A.
1 The proofs for the theorems in this section are available at http://embedded.cs.

uni-saarland.de/GrayBoxLearning/details.pdf.

http://embedded.cs.uni-saarland.de/GrayBoxLearning/details.pdf
http://embedded.cs.uni-saarland.de/GrayBoxLearning/details.pdf
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It follows that all machines of minimum-size size that agree with a consistent,
closed, input-complete, and unique observation table are right-equivalent, and
they can be obtained from the partitions.

Algorithm 1. Main algorithm
Input: Machine A, OutputQuery OQ, EquivalenceQuery EQ
begin

ObservationTable OT ← empty table
addRow([ε])
curSize ← 1
while (true) do

while (¬consistent ∨ ¬p-closed) do
makeConsistent() // consistency
makePClosed() // p-closedness

set partitions ← ∅
prevMachine ← ⊥
while (true) do

partition ← findNextPartition(partitions, curSize)
if (partition = ⊥) then

if (prevMachine = ⊥) then
curSize ← curSize+1
continue

else
counterexample ← EQ(prevMachine)
if (counterexample = ⊥) then

removeErrorState(prevMachine)
return prevMachine

else
handleCounterexample(counterexample)
break

if (¬isClosed(partition)) then
closePartition() // closedness
break

machine ← getMachineForPartition(partition)
errorPath ← getPathToErrorStateInComposition(A,machine)
if (errorPath �= ⊥) then

handleCounterexample(errorPath) // input-completeness
break

if (prevMachine �= ⊥) then
distInput ← checkRightEquivalence(A, machine,
prevMachine)
if (distInput �= ⊥) then

handleCounterexample(distInput) // uniqueness
break

partitions ← partitions ∪ {partition}
prevMachine ← machine

4.2 Inference Algorithm

At a high level, our algorithm works as shown in Algorithm 1. In each iteration
of the main loop, we first make sure that the observation table is consistent
and p-closed (by adding additional rows and columns if necessary). Then, we
successively determine the partitions of minimum size for the observation table.
Whenever we find a partition that is not closed, we add new rows to the table
such that the partition becomes closed, and we continue with the next iteration
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of the main loop. If we find a closed partition, we check whether the error state
is reachable in a composition of the corresponding machine with A. If we find
a sequence that leads to the error state, this means that the table is not input-
complete. Thus, we add this sequence (and its prefixes) to the observation table
and continue with the next iteration of the main loop. If we find more than one
closed and input-complete partition in the same iteration of the main loop, we
check whether the machines for these two partitions are right-equivalent in the
context of A. If we find a distinguishing sequence, we extend the observation
table accordingly, and continue with the next iteration of the main loop. If
finally the table is consistent, closed, input-complete, and unique, we perform
an equivalence query for the last machine we found (which is right-equivalent
to all machines of minimum size that agree with the table). If the equivalence
query is successful, we are done, otherwise, we get a counterexample that we
add to the table.

5 Implementation

In this section, we describe how our algorithm can be implemented. We also
propose some improvements that make the algorithm more usable in practice.

5.1 Computing the Partitions

We reduce the problem of finding the partitions for a given size n, which is an NP-
complete problem, to a boolean satisfiability (SAT) problem. Related reductions
were used by [1] for minimizing incompletely-specified Mealy machines, and by [10]
for finding DFAs that agree with a set of positive and negative input samples.

For space reasons, we will omit the details of our reduction approach. They
are available at embedded.cs.uni-saarland.de/GrayBoxLearning/details.pdf.

5.2 Reachability of the Error State

If the error state is reachable with an input a from a state in the composition of
the hypothesis machine with the left machine A, this means for no prefix p in the
observation table that leads to this state, the input pa is a possible output of the
left machine, however, there is another possible output sequence that leads to
the same state that has a corresponding successor. We can thus use this sequence
as a counterexample.

A straightforward way to check the reachability would be to build the com-
position, and then to perform a breadth-first search on the composition. A nec-
essary condition for the reachability of the error state in the composition is that
the error state is reachable in the hypothesis machine. We have observed that
in practice, if the error state is reachable in the hypothesis machine, then in
many cases, it is also reachable in the composition. Thus, we use the following
approach to find a corresponding sequence quickly: We first determine for each
state of the hypothesis machine the distance of the shortest path to the error
state. We then use this distance to guide the search in a modified breadth-first
search in the composed machine.

http://embedded.cs.uni-saarland.de/GrayBoxLearning/details.pdf
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5.3 Checking if Two Machines Are Right-Equivalent

A straightforward way to check whether two hypothesis machines B and B′ are
equivalent in the context of A would be to compose both with A, and then
check the two compositions for equivalence, for example using Hopcroft-Karp’s
near-linear algorithm. However, this can be computationally expensive when A
is large compared to B and B′, as it requires building the composition twice.

Therefore, we take the following alternative approach. We build a new
machine D that outputs 1 iff the outputs of B and B′ differ on (a prefix of)
the corresponding input, and 0 otherwise. While the size of D can be quadratic
in the size of B, we have observed that, after minimization, in practice the sizes
are smaller or comparable to B. To check whether B and B′ are right-equivalent
we can then just check whether the composition of A with the minimized version
of D can output 1, using the search algorithm described in the previous section.

5.4 Performing Additional Equivalence Queries

While evaluating our approach on the benchmarks from Sect. 6.2, we came across
several benchmarks, for which the number of right-equivalent machines is very
large. We propose the following modification of our algorithm that uses some
additional equivalence queries to achieve better performance in practice. For
each value of curSize, we perform the n-th equivalence query after computing 2n

partitions, rather than first enumerating all right-equivalent machines.
The number of Mealy machines of size n with input alphabet I and output

alphabet O that compute different functions is bounded by (n · |O|)n·|I|. So
the number of equivalence queries performed for machines of size i is at most
log2(i · |O|)i·|I| = i · |I| · log2(i · |O|). For n = |B|, the modified algorithm performs
at most

∑n
i=1 i · |I| · log2(i · |O|) ∈ O(n3 · |I| · log2 |O|) many equivalence queries.

5.5 Handling Counterexamples

Like in the original version of Angluin’s L∗ algorithm, we handle counterexam-
ples by adding all prefixes of the counterexamples as rows to the table. Since,
in general, the length of a counterexample can depend on |C|, the number of
rows that are added (and hence the number of output queries that need to be
performed to determine their entries) is not independent of |A|.

Rivest and Schapire [18] described an improved approach to handle coun-
terexamples that needs to perform only a logarithmic number of membership
queries (in the length of the counterexample). However, it is not possible to
directly adapt this method to our setting, since it requires that there is always
a suffix of the counterexample that is a distinguishing suffix for two compat-
ible rows. It is future work to develop more advanced methods to deal with
counterexamples in our setting.
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Fig. 3. Evaluation on randomly-generated machines (Color figure online)

6 Evaluation

6.1 Randomly-Generated Machines

In this section, we compare several variants of our approach (that differ, in
particular, with respect to the number of equivalence queries they perform) with
the Mealy machine version of Angluin’s L∗ algorithm. We use a set of randomly
generated compositional Mealy machines with between 1, 000 and 1, 000, 000
states, and an input and output alphabet of size 4.

The results are shown in Fig. 3. GBLearning (“Gray-box Learning”) is an
implementation of the approach described in the previous sections. GBLearning-
No5.4 is a variant of our approach that does not perform the additional equiv-
alence queries described in Sect. 5.4. GBLearning-Simple is another variant of
our approach that does neither check whether the error state is reachable, nor
whether different machines that are consistent with the observation table are
right-equivalent. Instead, it immediately performs an equivalence query upon
finding a closed partition. Thus, the number of equivalence queries of this vari-
ant is not independent of the size of the right machine.

We compare these implementations with two variants of Angluin’s L∗ algo-
rithm, as implemented in LearnLib [13] (ExtensibleLStarMealy). LearnLib/Comp
treats the system as a black box, and learns the composition. Furthermore, we
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modified LearnLib (LearnLib/⊥) such that it uses L∗ on the right machine; impos-
sible inputs are assumed to result in a special output symbol (⊥). Equivalence
queries are performed by first composing the hypothesis for the right machine with
the left machine. Note that this variant does not learn a minimum-size machine;
in fact, the learned machine might even be larger than the composition.

The columns of Fig. 3 show the sizes of the randomly-generated machines
in the form (|QA|; |QB |). The rows show the number of output queries (#OQ),
equivalence queries (#EQ), and the execution time in seconds (averages, minima
and maxima for the successful runs of 10 different randomly-generated machines
of the same size). The row TO+E shows on how many of the 10 runs a timeout
(5 min), or an error occurred. For LearnLib/Comp we observed one error, and for
LearnLib/⊥ three errors due to an exception (“incompatible output symbols”).
All other entries in this row were timeouts. We used the jar-Release of LearnLib
in version 0.9.1-ase2013-tutorial-r1. Both our tool and LearnLib use a query
cache to avoid performing the same output query multiple times.

We observe that LearnLib/⊥ was only successful when A had 10 or fewer
states, or when B had just one state. It performed slightly better than Learn-
Lib/Comp in only a few cases where |QA| = 1 or |QB | = 1. LearnLib/Comp was
successful on almost all benchmarks with up to 100,000 states; however, it could
not solve any benchmark with more states.

The implementations of our tool could also handle composed machines of larger
sizes, in particular when B is relatively small. GBLearning and GBLearning-No5.4
were successful on all benchmarks where B had up to 1,000 states, on several where
B had 10,000 states, and on two where B had 100,000 states.

For those machines that our implementations and LearnLib/Comp could han-
dle, the number of required output queries was much smaller for our implementa-
tions if |QA| > 1. In this case, there was no significant difference in the number of
output queries between the different variants of our approach. Also, for |QA| > 1,
the number of output queries depends mainly on |QB | for all three variants.

For GBLearning and GBLearning-No5.4, the number of equivalence queries
was mostly 1 or 2 even for relatively large unknown machines; however,
randomly-generated machines might not be representative in this regard.
GBLearning-Simple needed significantly more equivalence queries than these two
variants for |QB | > 1, but significantly fewer than LearnLib/Comp for |QA| > 10.

6.2 Benchmarks for the Minimization of Incomplete Mealy
Machines

We now compare the same variants of our implementation with BICA [17]. BICA
is a tool that uses a modification of Angluin’s L∗ algorithm for minimizing
incompletely specified Mealy machines, a known NP-complete problem. If we
choose as the left machine A of the composition a machine such that tr(A)
corresponds exactly to the specified inputs of the right machine, the minimization
of incompletely specified Mealy machines can be considered to be a special case
of our approach.
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Fig. 4. Minimization benchmarks (Color figure online)

We use the same set of benchmarks that was used by the authors of BICA
to evaluate their approach, but we excluded those benchmarks for which some
output bits are not specified, as this is currently not supported by our imple-
mentation. We use BICA in version 5.0.3. We added code to count the number
of output and equivalence queries.

The results are shown in Fig. 4. All variants of our approach require signif-
icantly fewer output queries than BICA; this might in part be due to the use
of a query cache in our implementations. Both GBLearning and GBLearning-
No5.4 require significantly fewer equivalence queries than BICA; however,
GBLearning-No5.4 did not terminate on several of them within a timeout of
5 min. GBLearning-Simple could solve all benchmarks; the number of equivalence
queries was comparable to GBLearning for about one third of the benchmarks, on
the remaining benchmarks it was comparable to BICA. However, the objective of
the algorithm used by BICA was not mainly to minimize the number of queries,
since output and in particular equivalence queries are very cheap in the present
scenario, as the machines to be minimized are readily available, and equivalence
queries can be performed by automata constructions. Instead, the focus of their
approach was to minimize the execution time. In such a case, minimizing the
number of equivalence queries as we do, by checking right-compatibility of many
different candidates, is not beneficial in terms of runtime. In fact, BICA was
faster on many of the benchmarks.
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7 Related Work

The concept of actively learning DFAs using membership and equivalence queries
was introduced by Angluin in [2]. Angluin developed a polynomial-time learning
algorithm, called L∗, for fully-specified DFAs. Rivest and Schapire [18] later
improved this algorithm and proposed a modification that does not require the
system to have a reset state.

Multiple studies [6,7,12,15,17] considered scenarios in which the teacher is
unable to answer some output queries. In contrast to our setting, where the
input language is a known regular language, these approaches assume that no
information about the unspecified inputs is available a priori, so that whether
a particular input is specified can only be determined by performing an output
query. In this scenario, the best bound Leucker and Neider [15] could give for the
number of required equivalence queries is nO(n). Hsu and Lee [12] claimed that
their approach is able learn a minimum-size model for an incompletely specified
FSM in polynomial time. However, this approach is incorrect; it does in general
not find a minimum-size machine [14].

The term “gray-box” has been used in relation with Angluin’s algorithm
before, but in different contexts. Babic et al. [3] describe an approach to learn an
input-output relation for a program. They propose a symbolic version of L∗ that
is allowed to inspect the internal symbolic state of the program. Henkler et al. [9]
consider real-time statecharts that have an additional interface for retrieving the
current internal state. Elkind et al. introduce grey-box checking [5]. A grey-box
system consists of completely-specified (white boxes) and unknown components
(black boxes). The goal of grey-box checking is then to check whether the system
satisfies a property, given e.g. by an LTL formula. The main problem studied by
Elkind et al. is to learn a model of the entire system given the knowledge about
the white boxes, which can then be used to model check the property. In contrast
to our setting, they consider finite automata that synchronize on common let-
ters in their alphabet, whereas we consider Mealy machines with explicit inputs
and outputs. Furthermore, they only use output queries; equivalence queries are
realized via a large number of output queries.

8 Discussion and Future Work

We have introduced an algorithm for gray-box learning of serial compositions
of Mealy machines. Experimental results confirm that taking into account prior
knowledge about a system to be learned often yields significant performance gains.

There are plenty of open problems left for future work: In this paper, we
have considered the serial composition of two Mealy machines. In future work,
we would like to extend our approach to arbitrary composition topologies.

While we can precisely bound the number of equivalence queries, we lack
such knowledge about the number of output queries. More generally, we would
like to better understand the computational complexity of the problem at hand.

In our experimental evaluation, we realized equivalence queries by automata-
theoretic constructions, as we had precise knowledge of the system to be learned.
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In real application scenarios, such knowledge is not available. In those cases, it
would be interesting to systematically perform measurements in a way that
focuses on the unknown parts.
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Abstract. In a computer program, basic functionalities may be imple-
mented using bit-wise operations. To formally specify the expected
behavior of such a low-level program, it is desirable that the specification
should be at a more abstract level. Formally proving that low-level code
conforms to a higher-level specification is challenging, because of the gap
between the different levels of abstraction. We address this challenge by
designing a rich formal theory of fixed-sized bit vectors, which on the one
hand allows a user to write abstract specifications close to the human—
or mathematical—level of thinking, while on the other hand permits a
close connection to decision procedures and tools for bit vectors, as they
exist in the context of the Satisfiability Modulo Theory framework. This
approach is implemented in the Why3 environment for deductive pro-
gram verification, and also in its front-end environment SPARK for the
development of safety-critical Ada programs. We report on several case
studies used to validate our approach.

1 Introduction

It is quite common in computer programs that some basic functionality is imple-
mented, for efficiency reasons, using bit-wise operations. There is even a famous
book, Hacker’s delight [24], which is dedicated only to this kind of smart and
efficient code.

An extreme example is the following 2-line C program (a so-called “signature
program” designed by Marcel van Kervinc, http://www.iwriteiam.nl/SigProgC.
html).

t(a,b,c){int d=0,e=a&~b&~c,f=1;if(a)for(f=0;d=(e-=d)&-e;f+=t(a-d,(b+d)*2,(

c+d)/2));return f;}main(q){scanf("%d",&q);printf("%d\n",t(~(~0<<q),0,0));}

It reads an integer n and prints another integer f(n). Assuming n is smaller than
the machine word size in bits (say 32), then f(n) appears to be the number of
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solutions to the n-queens problem: the number of ways of placing n queens on a
n×n chessboard so that they do not threaten each other. Even more remarkable,
this program implements the most efficient algorithm known so far to solve this
problem.

Solving the n-queens problem was used in the past as a challenge for deduc-
tive program verification. The challenge is to attach to such code a formal spec-
ification, expressing its expected behavior at an abstract mathematical level
(i.e. expressing that it really computes the number of solutions to the n-queens
problem), and to prove formally that the code respects this specification. The
solutions presented by Filliâtre [15], and other authors for a simplified version
computing only the first solution [18], considered more abstract implementations,
that do not operate directly on bits.

Deductive program verification typically proceeds by generating, from both
the code and the formal specification, a set of logic formulas. These are called
verification conditions because if one proves they are all tautologies, then the
program is guaranteed to respect its specification. In program verification envi-
ronments like Dafny [19] and Why3 [7], verification conditions are discharged
using theorem provers, in particular those of the Satisfiability Modulo Theories
(SMT) family such as Alt-Ergo [6], CVC4 [3], and Z3 [22]. The SMT approach
is very promising for one who seeks to verify programs operating at the level of
bits, because, in this context, theories for fixed-size bit vectors have been investi-
gated for quite a long time and efficient decision procedures are known [4,10,12].
The SMT-LIB international initiative (http://smtlib.cs.uiowa.edu/) aims at pro-
viding standard languages and descriptions of theories for interacting with SMT
solvers. SMT-LIB provides a fairly rich standard theory for fixed-size bit vectors,
and decision procedures for this theory are implemented in several SMT solvers,
including CVC4 and Z3.

Our objective is to add support for bit-wise operations in Why3 and its front-
end SPARK2014 [21] that deals with safety-critical Ada programs. In particular,
we want to exploit the bit vector decision procedures provided by SMT solvers.
However, in such a context, bit-wise operations are mixed with other objects
occurring in programs and specifications, such as unbounded integers, arrays,
and records. We need to rely on other theories supported by SMT solvers, and
also on their support for quantified axioms. Exploiting an SMT solver when
several theories are mixed together with quantified axioms requires special care.
This paper reports on our design choices and on some experiments we made.
We start in Sect. 2 by illustrating our approach on a short (although non-trivial)
example. In Sect. 3 we describe the theories for bit vectors we designed for use
in Why3. In Sect. 4 we present how our Why3 theories are exploited in the
SPARK2014 front-end. In Sect. 5 we illustrate our approach on a case study orig-
inating from industrial code. Our developments are distributed in SPARK Pro
16.0 and will be in the release 0.87 of Why3. More details and more case studies
(including the 2-line n-queens program) are discussed in a technical report [14]
and the files for the case studies are available on Toccata’s Web gallery of verified
programs (http://toccata.lri.fr/gallery/bitwise.en.html).

http://smtlib.cs.uiowa.edu/
http://toccata.lri.fr/gallery/bitwise.en.html
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2 Illustrative Example

We want to specify, at an abstract level, programs that directly manipulate bits.
Our approach is to exploit in parallel the theory of bit vectors supported by
SMT-solvers, and their support for arithmetic and quantifiers. We provide a
theory that allows the use of both on the same program. In order to do so, the
intended methodology to use this theory is to specify programs at an abstract
level, closer to the human mind, e.g. with mathematical integers, while at the
same time exploiting the bit vector theories of SMT solvers, by providing explicit
hints for provers (typically under the form of extra assertions in the code) when
it is necessary to help them to make the appropriate bridge between the bit
vector level and the abstract level.

Let us consider an example from the Esterel compiler [5]. Each instruction
returns an integer code between 1 and a fixed N . Parallel execution returns
the maximum of the codes of its branches. A static analysis approximates
programs by considering the set P of all possible return codes of P . Hence
P ||Q = {max(p, q)|p ∈ P , q ∈ Q}. Sets of return codes are implemented as bit
vectors, a 1 at position i in P meaning that i ∈ P . It was suggested by Gonthier
that P ||Q can be computed as (P |Q)&(P | − P )&(Q| − Q).

We want to formally specify this behavior at an abstract level, not using any
low-level operation like a bit-wise ‘and’. Let us consider the case where N = 32.

Fig. 1. maxUnion: formal specification

Formal Specification. Fig. 1 presents
how this code is formally specified
in our setting (see [14] for details
on Why3’s syntax). The use decla-
rations import the theory of 32-bit
bit vectors we designed and the the-
ory of finite set of integers from the
Why3 library. From the former the-
ory we use the type t of bit vectors,
and the operator nth: nth x n is the
n-th bit of x as a Boolean.

We want to relate a bit vector to
its abstract view as a set of integers.
We introduce a record type s with
a field bv : t, and a ghost field mdl
: set int a set of integers. A type
invariant specifies that for each a :
s the elements of a.mdl are the indexes of the 1-bits in a.bv. The precondition
requires of maxUnion that the inputs are not zeros. The postcondition formal-
izes the former informal specification. The important point is that the formal
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Fig. 2. maxUnion: annotated code

specification is at an abstract mathematical level which is quite far from the code
in the body of the function. Proving that the code satisfies the specification is
thus a difficult task.

Proof. The code of maxUnion is split in three sub-functions shown in Fig. 2. It
makes use of additional operations:

– of int x: integer x converted to a bit vector
– eq sub bv x y i l: means that the bits of a and b between positions i and

i + l − 1 are equal
– bw or, bw and, neg, sub: bit-wise and arithmetic operators on bit vectors
– min elt a: the minimal element of a
– interval i j: the set {i . . . j − 1}

We emphasize that the code of aboveMin contains three assertions involving
only bit vectors and bit-wise operators. This form of intermediate assertion is
an example of a general strategy that we explain in Sect. 3.3.
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Fig. 3. maxUnion: proof results

The proof results are dis-
played in Fig. 3. A red back-
ground indicates an unsuc-
cessful proof, (10 m) meaning
that the timeout of 10 min
is reached, (6G) meaning
that the memory limit of
6 GB is reached. We stress
that we use CVC4 and Z3
in two different modes. The
default mode exploits their
native support for bit vec-
tors, whereas the other mode,
nicknamed ‘noBV’ for ‘no bit
vectors’, does not. The two
VCs, 2 and 3 for aboveMin,
are proved using the native
bit vector support. On the
contrary VCs 1 and 4 for
aboveMin and the VCs for
union and intersection are proved only in the mode not using native sup-
port. This need for two modes for one prover shows up in all the case studies
that we considered [14]. We detail the design of these two modes in Sect. 3.3.

3 The Why3 Bit Vector Theory

Our theory of bit vectors is generic with respect to the size of bit vectors. It is
then instantiated for size 8, 16, 32 and 64. In Why3, such an instance is possible
through the so-called cloning feature: when a theory has one or more components
that are declared abstract (a type, a function symbol) then one can clone that
theory while giving some instance to some or all of these abstract components.
This results in a new theory containing a copy of the original theory, with all
declarations appropriately instantiated.

In the following, we only describe a representative part of the theory. We
refer to the report [14] for its full description as well as a discussion of its consis-
tency and soundness, which is established through realizations in the Coq proof
assistant and in Isabelle/HOL as well.

3.1 Bit-Wise Operators

The first part of the theory is shown in Fig. 4. It starts with the declaration of
the (positive) parameter size, representing the number of bits of all bit vectors.
The type of bit vectors is introduced as an abstract type t equipped with one
uninterpreted function nth. The intended meaning is that (nth b n) gives the
n-th bit of b, as a Boolean. Note the convention that bit 0 is the least significant
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Fig. 4. Generic theory for bit vectors: core, bit-wise Boolean operators and shifts

bit, and (nth b n) returns False when n is out of the range 0 . . . size − 1. We
introduce two constants zeros and ones for the bit vectors that have all bits
not set or set, respectively. These are axiomatized using nth.

The bit-wise operators ‘and’, ‘or’, ‘xor’ and ‘not’ come next. Their behavior
is axiomatized with the help of the nth operator as seen in Fig. 4. Shift operators
are also axiomatized using the nth operator. Notice that the second argument
of shift operators is an integer and not a bit vector.

3.2 Conversion To and From Integers

The second part of our theory, presented in Fig. 5, deals with conversion between
bit vectors and integers. For lack of space, we only describe here the interpre-
tation of bit vectors as non-negative integers, that interprets bn−1 · · · b1b0 as∑n−1

i=0 bi × 2i. We start by defining the maximum representable integer, and
its successor: 2 to the power of size. Then we introduce two abstract func-
tions for the conversions. These are not fully specified from nth; it would be a
very involved axiomatization that is unlikely to be useful for automated provers.
Instead, we provide a few useful axioms on those functions, regarding constants
size, zeros and ones, and relation to equality.
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Fig. 5. Bit Vector theory: conversions and arithmetic

Arithmetic operations do not need to distinguish between signed and
unsigned variants, except for division and remainder. Their behavior is axiom-
atized via to uint to express that computation is done modulo 2size. Derived
lemmas like add bounded are added to help provers.

3.3 Strategy for Isolating Bit-Level Reasoning

The set of operators that we defined so far is expressive enough to formally spec-
ify programs. In order to discharge VCs a first idea would be to map each symbol
of our theory to the corresponding symbol in the SMT-LIB theory, provided such
a symbol exists, whilst keeping the other symbols uninterpreted and keeping all
the axioms. However, we observed that this is not sufficient in practice: provers
do not work well on VCs mixing bit-wise operators and conversions with integers
(provers with native support for bit vectors have a hard time mixing bit vectors
and integers, provers without it have a hard time to reason on bit-wise operators
with the axioms only). Our approach to overcome this issue is two-fold. First,
we provide a means for the user to isolate pure bit vector VCs from other VCs.
Second, we provide to provers two alternative translations of our bit vector the-
ory, to target specifically either provers with native support, or provers without
it. The proof strategy used for the Rightmost Bit trick example (Fig. 3) exploits
this approach.
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Fig. 6. Additional operators in the bit vector theory

Bit-Level Operator Variant. The theory is augmented with the additional oper-
ators presented in Fig. 6. We provide pure bit vector alternatives for nth and
shifts. We also introduce the eq sub operator and its bit-level variant eq sub bv.

The Two Drivers. Why3’s driver mechanism allows us to tell for each object
(type, function symbol) of the Why3 theory what is the syntax for the corre-
sponding object of the target prover. Figure 7 summarizes the two driver variants
for the instance of the theory with size=32. The second column is the mapping
for provers with native bit vector support, the third column is for the other
provers as well as for the noBV variants of CVC4 and Z3. The driver for provers
with native support maps the type t to the corresponding type in SMT-LIB.
Each operator is mapped to the corresponding symbol in the SMT-LIB theory,
if it exists, and is kept uninterpreted otherwise. The axioms that link the unin-
terpreted operators with the native ones are kept as-is. The remaining axioms
are removed. There are two exceptions: nth bv and eq sub bv are not in the
SMT-LIB theory. Therefore, we keep the axioms that define them in term of
pure bit-level operators. The driver for provers without native support keeps all
symbols uninterpreted. All the axioms are kept except the ones that define the
bit-wise operators, in order to prevent the provers from trying to prove bit-level
properties.
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prover with prover without
object native BV support native BV support
type t abstract

nth uninterpreted uninterpreted
zeros uninterpreted

ones uninterpreted
bw_and bvand uninterpreted

axioms {zeros,ones,bw _and} _spec removed kept
add bvadd uninterpreted

axiom add_spec removed removed
lemma add_bounded removed kept

lsr uninterpreted uninterpreted
axioms lsr _spec _{low,high} removed kept

to _uint bv2nat kept
axiom to _uint _extensionality removed kept

of _int nat2bv kept
nth _bv uninterpreted uninterpreted

axiom nth _bv _def kept removed
axiom nth _bv _is _nth kept kept

lsr _bv bvlshr uninterpreted
axiom lsr _bv _is _lsr kept kept

eq_sub uninterpreted uninterpreted
eq_sub _bv uninterpreted uninterpreted

axiom eq_sub _bv _def kept removed

Fig. 7. Mapping to SMT-LIB, for the case size=32

4 Adding Support for Bit Vectors in SPARK2014

Ada 2012 is the latest version of the Ada language [1], a programming lan-
guage targeting real-time embedded software that requires a high level of safety,
security, and reliability. This version adds new features for specifying the behav-
ior of programs, such as subprogram contracts and type invariants. SPARK is a
subset of Ada targeting formal verification [11,21]. Its restrictions ensure that the
behavior of a SPARK program is unambiguously defined. The SPARK language
and toolset for static verification has been applied for many years in on-board
aircraft systems, control systems, cryptographic systems, and rail systems. It
provides dedicated features that are not part of Ada 2012. Essential constructs
for formal verification (e.g. loop invariants) have also been introduced. To for-
mally prove a SPARK 2014 program, GNATprove uses the language WhyML
as an intermediate. The SPARK program is translated into a WhyML program
which can then be verified using the Why3 tool.

Modular Integer Types. Ada’s very rich type system allows us to define various
kinds of integer types. There are mostly of two kinds, namely signed and modular
integer types. Modular integer types are defined by specifying a modulus, and
are the types on which bit-wise operations apply. For example
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type BV8 is mod 2**8;

defines a type BV8 that contains unsigned integers between 0 and 28 − 1. Over-
flows never occur when computing with it: computations use modular arithmetic
semantics. The package Interfaces from Ada’s standard library introduces
predefined names Unsigned 8, Unsigned 16, Unsigned 32 and Unsigned 64,
respectively for the modular types modulo 28, 216, 232 and 264. Bit-wise
Boolean operations are written as infix operators and, or, xor, not. Ada
provides, in its standard library, functions Shift Left, Shift Right, and
Shift Right Arithmetic. These are defined only when the first argument is
a modular type for the standard bit sizes 8, 16, 32, and 64. The second argu-
ment of these operations is not of modular type but of type Natural, that is
the signed integer type of only non negative values defined in Ada’s standard
library.

Handling of Modular Types in SPARK 2014. GNATprove translates each Ada
variable, resp. each expression, into a Why3 variable, resp. expression, of some
adequate type [17]. Variables and expressions of some modular type are trans-
lated into variables and expressions of some bit vector type of the Why3 theory
described in the previous section. Their size is either 8, 16, 32, or 64, the small-
est of those that can represent all the values of the original Ada type. To sim-
plify the presentation below, we consider only the four predefined modular types
Unsigned 8, Unsigned 16, Unsigned 32 and Unsigned 64 corresponding to 8,
16, 32, and 64-bits integers. The translation of the Boolean bit-wise operations is
directly the equivalent introduced in our Why3 theory. The translation of shifts
is just slightly more complex because their second argument in Ada is a signed
type and not a modular type. For instance, we translate Shift Left(X,Y) as
(lsl_bv X (if Y < size then (of_int Y) else size_bv)).

5 The “Bitwalker” Case Study, Using SPARK2014

The original C version of the BitWalker was provided by Siemens in the context
of the ITEA 2 project OpenETCS. The version presented here was rewritten by
Fraunhofer FOKUS to simplify the formal verification with Frama-C/WP [16].
The formal specification relies on a theory of bit vectors designed in the Coq proof
assistant, and a significant part of the proofs were done interactively within Coq.

Byte sequence
↓ ↓ ↓ ↓
0 start start+ length 8∗ size−1

↓ ↓ ↓ ↓ ↓
000Result

Fig. 8. Schematic view of the Peek function (on 8-bit instead of 64-bit)
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Fig. 9. The BitWalker, C version, the Peek function

Bitwalker is about interacting with a stream of bytes. One of the two main
functions, Peek, copies a value from the byte stream to a 64-bit unsigned integer.
The expected behavior of Peek, illustrated in Fig. 8, can be expressed at a high-
level by saying that the integer value of the result is the value read in the byte
stream starting from the bit number start and reading length bits. The most
significant bits of the result, of index larger or equal to length, must be all
zero. Figure 9 presents the C source code of Peek as well as one of its main
auxiliary function, PokeBit64. The code of Peek does not make use of low-
level bit-wise operators, but calls instead auxiliary functions. On the contrary,
the code of low-level auxiliary functions PeekBit8 and PokeBit64 make use
of bit-wise operators, so there is a need at some point to relate those bit-wise
operations with more high-level arithmetic notions. In the following, we propose
a SPARK program equivalent to the C code of Fig. 9, with appropriate formal
specifications.

Specification and Verification of PokeBit64. The function PokeBit64 writes a
bit in an Unsigned 64 value at the given position Left. In order to specify this
we need to: first write that the mentioned bit is correctly set after the function is
called, and then not to forget that all other bits remain unchanged. Its SPARK
specification is given in Fig. 10. A first difference between the C and SPARK
version appears in the types: in C, the first two parameters are unsigned types
and the third parameter is an integer. In Ada, since the function manipulates
the first parameter’s bits, it has to be of modular type. However, the parameter
Left represents a position: it is not intended to be manipulated at the level of
its bits and we do not want a modular arithmetic semantics, hence we set its
type to Natural. This is consistent with the typing of shifts in Ada as described
in Sect. 4. The last parameter, as it represents the state of a bit, is naturally
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given the type Boolean. Note the use of function Nth which refers to the Why3
operator nth. While the SPARK language does not have this function built in,
we use the SPARK feature external axiomatization to lift it, as well as some
others, to the level of SPARK language [14].

Fig. 10. Specifications of auxiliary functions for Peek

The verification of PokeBit64 is not straightforward: we are in the case of
a mix of bit vectors and integers. Following the proof strategy of Sect. 3.3 we
introduce assertions to separate the part dischargeable by provers with native
bit vector support from the rest. The code, with the assertions used to prove
the specification, is given in Fig. 11. The third and last assertions reformulate
the postcondition for CVC4 and Z3 at the bit level. The three other assertions
deal with conversions between modulars and integers, and are proved by other
provers.

Proof obligations A
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Z
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.2
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V
)

1. assertion 0.05 (10m) 0.08 0.33 7.95
2. precondition 0.03 0.11 0.08 0.03 0.14
3. assertion 0.29 (10m) 0.07 0.14 (6G)
4. precondition 0.04 0.14 0.05 0.02 0.11
5. range check 0.03 0.05 0.04 0.01 0.01
6. range check 0.03 0.04 0.04 0.01 0.00
7. assertion (10m) 0.44 (10m) 0.21 (6G)
8. assertion 0.36 (10m) 0.10 0.23 (6G)
9. range check 0.06 0.03 0.04 0.01 0.00
10. assertion (10m) 0.15 (10m) 0.10 (6G)
11. precondition 0.08 0.04 0.02 0.01 0.01
12. range check 0.04 0.04 0.04 0.00 0.01
13. range check 0.05 0.03 0.04 0.01 0.00
14. range check 0.04 0.03 0.04 0.01 0.00
15. postcondition (10m) 0.23 0.11 (10m) (6G)

Fig. 11. PokeBit64: annotated code and proof results

Specification and Proof of Bitwalker Peek. The SPARK specification of the main
function Peek is given in Fig. 12. As for PokeBit64 there is a difference in the
types: in Ada, Start and Length are naturals, by extension to what was said on
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Fig. 12. Ada specification and body of Peek function

PokeBit64 type. Note also the absence of the parameter size: it corresponds to
Addr’Length in Ada. The precondition starts on line 13, by specifying that the
first index of our byte sequence is 0, as in the C code. We then bound Length, the
number of bits to copy, by 64. The last two preconditions are here to avoid any
arithmetic overflow with Start, Length, and the size of Addr. The postcondition
starts on line 17, and is made of two disjoint cases. First, if the last bit to copy is
out of the bounds of the byte sequence the default value 0 is returned. In the other
case, we specify two things: that the i-th bit of the result, for 0 ≤ i < Length is
equal to the bit of the sequence at position Start + Length − i − 1, as shown
in Fig. 8. The n-th bit of a ByteSequence is specified by the auxiliary function
Nth8 Stream given on line 3 of Fig. 12. Finally we specify that the other bits of
the result are set to zero.

The Ada code of Peek is very close to the original C code of Fig. 9. We only
add two loop invariants (lines 12–18) that are directly derived from the post-
conditions. These invariants are the expected ones in presence of such a loop.
Note that, following our reasoning on type assignment, Start and Length are
Naturals, whereas the contents of the array Addr are 8-bit modular types, and
the result of Peek is a 64-bit modular. As expected, since there is no bit-level
code in Peek, there is no need for bit-level assertions and the proof does not
need the provers with native bit vector support.



304 C. Fumex et al.

6 Conclusions

We designed a rich formal theory including arbitrary fixed-size bit vectors, a
large set of bit-wise operations, and a large set of operations involving both
bit vectors and unbounded integers. Thanks to the driver mechanism of Why3,
proof obligations that make use of this theory can be discharged either by SMT
solvers with bit vector support (CVC4, Z3) or by solvers that handle this theory
as an axiomatic first-order theory (Alt-Ergo, and CVC4 and Z3 in non native
support mode). We presented several case studies illustrating how one can specify
and prove bit-level code correct with respect to a high-level specification. We
emphasize that it is important for the user to understand well the respective
capabilities of the provers (do they support bit vector theories or not) and to
respect a refinement-like methodology when writing annotations: to prove that
bit-level code satisfies a high-level postcondition, one may need to provide a
hint in the form of an assertion rephrasing the postcondition at the bit-level,
and help the provers with assertions to enforce them to convert bit vectors to
integers when required. Fortunately, as shown by proof of Peek in BitWalker,
our approach allows a good modularity principle: as soon as low-level code is
given a high-level specification, the procedures calling such code do not need to
be aware that the low-level code operates at the bit level. The support of Ada’s
modular types via bit vectors is included since 2015 in SPARK releases. The first
feedback from AdaCore’s customers is very positive: many proof obligations that
were not checked automatically before are now proved by CVC4 or Z3.

About SPARK Interpretation of Signed Integers. We chose to map Ada’s signed
integer types to mathematical unbounded integers. Another choice would be
to map them to bit vectors and use the signed arithmetic operators provided
by SMT-LIB. We tried this alternative and noticed regressions in the rate of
automatically proved VCs: on the SPARK test suite the support for unbounded
integer arithmetic in SMT solvers is better than the support for arithmetic oper-
ators of BV theory.

Related Tools and Experiments. Stefan Berghofer (Secunet, Germany) is
using the support for bit vectors in SPARK, on the big number package
of libsparkcrypto (https://bitbucket.org/sberghofer/libsparkcrypto/). He uses
Isabelle/HOL to interactively discharge the VCs that cannot be proved auto-
matically. The BitWalker case study was initially written in C and specified
using the ACSL specification language of Frama-C. For that purpose a theory of
bit vectors of unbounded size was designed using the Coq proof assistant, and the
proofs were done with a significant amount of interaction within Coq. Thanks
to the mapping of our bit vector theory to SMT-LIB we were able to prove Bit-
Walker fully automatically. The source language, C or Ada, is not important,
although the choice between signed versus unsigned types in the source makes a
difference: in Ada their semantics are significantly different. The Boogie [2] ver-
ifier and its front-ends VCC [13] and Dafny [19] also use the built-in bit vector

https://bitbucket.org/sberghofer/libsparkcrypto/
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support of Z3, to model machine words. We are not aware of any work, in this
context, about the problem of mixing bit vectors with high-level specifications.

Future Work. The need to use two different drivers for the same prover is some-
how unsatisfactory. The decision of using the native support for bit vectors in
provers could be made by an automatic analysis of the goal. A possible alterna-
tive would be to provide appropriate constructs in the specification language so
that the user could indicate the intended level of abstraction in her code. For
instance, in our solution to the n-queens example [14], it would have been con-
venient to express with a source annotation that we want to interpret a machine
word into the set of positions of its bits set to 1.

There is some need to apply the same approach to floating-point numbers, in
order to exploit decision procedures for floating-point arithmetic that are now
available in SMT solvers [9] (http://www.cprover.org/SMT-LIB-Float/). In the
past, floating-point programs were specified in terms of real numbers [8] and
proved by specific solvers. As we did for bit vectors and integers, it is therefore
desirable to design a theory that would allow the combination of floating-point
numbers with real numbers and at the same time would make use of SMT-LIB
support for floating-point arithmetic. Last but not least, there are some programs
that operate on floating-point numbers at the bit-level [20]. Proving such code
would be a hard challenge [23].
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an Isabelle/HOL realization of Why3’s bit vector theory. Thanks to Jean-Christophe
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12. Cyrluk, D., Rueß, H., Möller, O.: An efficient decision procedure for the theory
of fixed-sized bit-vectors. In: Grumberg, O. (ed.) Computer Aided Verification.
LNCS, vol. 1254, pp. 60–71. Springer, Heidelberg (1997)

13. Dahlweid, M., Moskal, M., Santen, T., Tobies, S., Schulte, W.: VCC: contract-
based modular verification of concurrent C. In: ICSE. pp. 429–430. IEEE Computer
Society Press (2009)

14. Dross, C., Fumex, C., Gerlach, J., Marché, C.: High-level functional properties of
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Abstract. We present a formally verified and executable on-the-fly LTL
model checker that uses ample set partial order reduction. The verifica-
tion is done using the proof assistant Isabelle/HOL and covers everything
from the abstract correctness proof down to the generated SML code.
Building on Doron Peled’s paper “Combining Partial Order Reductions
with On-the-Fly Model-Checking”, we formally prove abstract correct-
ness of ample set partial order reduction. This theorem is independent
of the actual reduction algorithm. We then verify a reduction algorithm
for a simple but expressive fragment of Promela. We use static partial
order reduction, which allows separating the partial order reduction and
the model checking algorithms regarding both the correctness proof and
the implementation. Thus, the Cava model checker that we verified in
previous work can be used as a back end with only minimal changes.
Finally, we generate executable SML code using a stepwise refinement
approach. We test our model checker on some examples, observing the
effectiveness of the partial order reduction algorithm.

1 Introduction

Partial order reduction [25] is an important optimization for model checkers,
enabling them to deal better with models involving concurrency. It allows the
model checker to consider only a subset of all possible interleavings of concur-
rently executing operations by identifying equivalences between them. Unfor-
tunately, partial order reduction is notoriously complex and can easily affect
the correctness of the model checker. For instance, [25] describes a partial order
reduction algorithm and claims that it can simply be used with on-the-fly nested
depth-first search. It was found out later that this compromises correctness due
to the reduction possibly differing between the inner and the outer search [8].
Moreover, while formalizing the algorithm in [25], we discovered that its correct-
ness proof uses an invalid lemma (see Sect. 2.2).

There is also the issue of implementation correctness, which is usually
addressed via testing in the context of model checking algorithms. Since testing
is necessarily incomplete, it may lead to incorrect implementations due to missed
corner cases. Furthermore, when using models of realistic size, determining the
correct outcome for a given test input requires the use of a model checker.
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Thus, although in widespread use, neither the correctness of partial order
reduction algorithms, nor the correctness of their implementations can be taken
for granted. This is especially problematic since the trust in the correctness of
a single model checker is used to justify the confidence in the correctness of
the many models that it checks. In order to meet the very strict correctness
requirements of model checking algorithms, we implement and formally verify a
partial order reduction algorithm.

In previous work [5], we have presented the Cava model checker, a fully veri-
fied and executable LTL model checker à la Spin. The verification was done with
the proof assistant Isabelle/HOL [24] and covers everything from the correctness
of the algorithms down to the implementation. Due to its LCF-like architecture,
Isabelle/HOL is more trustworthy than a large unverified implementation like
Spin (see Sect. 3.1). This paper now adds the following contributions:

1. Formalization of a fragment of the modeling language Promela
2. Formalization of the static analysis required for partial order reduction
3. Formal abstract correctness proof for ample set partial order reduction
4. Verified implementation and integration into the Cava model checker
5. Development of reusable libraries for automata and trace theory

This results in what we believe to be the first formally verified and exe-
cutable implementation of a partial order reduction algorithm, addressing both
of the issues mentioned earlier. The verification is carried out completely in
Isabelle/HOL, such that the correctness of the model checker only depends on
the correctness of Isabelle/HOL. This integration avoids logical gaps that may
arise when manually composing the results of different verification tools. Most
importantly, we now have a formally verified reference implementation that can
deal with many formerly infeasible models, improving its usefulness for testing
other model checkers.

To the best of our knowledge, there has been only one other attempt at
formalizing partial order reduction [4]. However, it does not cover the reduction
algorithm and is restricted to a specific fairness assumption (see Sect. 2).

The rest of this paper is organized as follows. In Sect. 2, we cover theoretical
aspects of partial order reduction and elaborate on our choice of algorithm. In
Sect. 3, we report on our Isabelle/HOL formalization. In Sect. 4, we compare the
performance of our model checker to that of Spin. Finally, in Sect. 5, we give
conclusions and future research directions.

2 Theory

Figure 1 illustrates the basics of partial order reduction. In regular model checking,
the system automaton ‘S’ is derived from the system and used as input for the
model checker together with the formula ‘ϕ’. The model checker then determines
if the system automaton satisfies the property expressed by the formula (L S ⊆
L ϕ). When using partial order reduction, a reduction algorithm obtains a reduced
system automaton ‘R’ from the system instead, which fulfills certain reduction
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conditions. These conditions imply stuttering equivalence between the language
of the system automaton and that of the reduced system automaton (L S ≈ L R).
Since properties expressed by next-free LTL formulae are stuttering-invariant [26],
using the reduced system automaton instead of the system automaton when model
checking yields the same result (L S ⊆ L ϕ ⇐⇒ L R ⊆ L ϕ).

system

system
automaton S

L S ⊆ L ϕ

reduced system
automaton R

L R ⊆ L ϕ

formula ϕ
reduction
conditions

L S ≈ L R

model
checking

reduction

model
checking

abstract
correctness

Fig. 1. Partial Order Reduction Overview. A reduction algorithm obtains the reduced
system automaton ‘R’, which is then used as an input of the model checker instead of
the system automaton ‘S’. The reduction algorithm guarantees that the reduced system
automaton fulfills certain reduction conditions, from which one can prove stuttering
equivalence between the two languages. This implies that the result of the model checker
is not affected by the reduction.

Note that this is a very abstract description of partial order reduction. In
actual implementations, the reduced system automaton may be represented
implicitly, and the reduction algorithm may be merged with the model check-
ing algorithm. However, this view allows us to identify the three major tasks
involved in developing a verified implementation of partial order reduction:

1. Reduction algorithm correctness: The automaton produced by the reduction
algorithm fulfills the reduction conditions.

2. Abstract correctness: If an automaton fulfills the reduction conditions, its
language is stuttering equivalent to that of the system automaton.

3. Implementation and verification of the reduction algorithm.

Unlike our formalization, [4] only covers the second task. This means there is
no input language, no static analysis, no reduction algorithm, no implementation,
and no executable model checker. Furthermore, it only covers the case where
a certain fairness assumption is met, which simplifies the abstract correctness
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proof. In absence of other formalization attempts, we believe that our work is a
significant contribution over the existing body of research.

2.1 Reduction Conditions

Both the reduction algorithm and the abstract correctness are built around the
reduction conditions, making them the main object of interest when dealing with
partial order reduction. We chose to implement an algorithm based on the ample
set method and chose the reduction conditions accordingly. Let ‘en q’ be the set
of enabled actions at state ‘q’ of the system automaton (enabled set). Let ‘ren q’
be the set of enabled actions at state ‘q’ of the reduced system automaton (ample
set) Let ‘ex a q’ be the successor of state ‘q’ after executing action ‘a’ (‘ex’ is
called execution function). This way, ‘(en, ex)’ represents the system automaton,
while ‘(ren, ex)’ represents the reduced system automaton. The set of finite words
executable at state ‘q’ of the system automaton ‘words q’ is defined in terms
of ‘en’ and ‘ex’. For a more detailed description of the system definitions, see
Sect. 3.4. With these prerequisites, we define the following reduction conditions:

subset ∀ q. ren q ⊆ en q
nonempty ∀ q. ren q ⊂ en q =⇒ ren q �= {}
independent ∃ independence relation I. ∀ q w. ren q ⊂ en q =⇒

w ∈ words q =⇒ ren q ∩ set w = {} =⇒ I (ren q)(set w)
wellfounded ∃well-founded relation R. ∀ q a. ren q ⊂ en q =⇒

a ∈ ren q =⇒ R (ex a q) q
invisible ∀ q. ren q ⊂ en q =⇒ ren q ⊆ invisible

Condition subset states that the reduced system automaton is a subautomaton
of the system automaton and is usually not stated explicitly in the literature.
Condition nonempty states that the reduction algorithm must not omit all of
the actions at any state. Condition independent requires that all the actions
that are executed after reaching some state but before an action from the ample
set at this state are independent of all the actions in this ample set. Condition
wellfounded requires that every cycle in the system automaton contains at least
one state where no reduction is performed. Condition invisible states that when
a proper reduction takes place, the ample set cannot contain any actions that are
visible to the formula. Conditions nonempty, independent, and wellfounded
correspond to conditions C0, C1, and C2 in [4, pages 268, 269], while condition
invisible corresponds to condition C3′ in [25, page 50]. Note that even though
the reduction conditions are similar, our formalization is not based on [4].

2.2 Reduction Algorithm

These conditions are very abstract, so there are still many choices to be made
with respect to the actual reduction algorithm. We originally planned to verify
dynamic partial order reduction with on-the-fly model checking [25], but soon
encountered difficulties. Dynamic partial order reduction detects cycles during
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the emptiness check in order to ensure condition wellfounded. This tight inte-
gration with the emptiness check has led to bugs in the past [8]. When used with
on-the-fly model checking, this integration also extends to the product construc-
tion, effectively turning the whole system into one monolithic algorithm. It also
introduces a mismatch since an algorithm that conceptually works on a system
automaton is now used with a product automaton, requiring complicated rea-
soning. And indeed, during our effort of formalizing the proof given in [25], we
discovered a counterexample for one of the lemmata used in this proof. This coun-
terexample is based on the fact that, when exploring the product automaton,
different instances of the system automaton appearing in the product automa-
ton may be reduced differently. A more detailed description can be found in
[3, Sect. 8.4]. Note that this, while refuting the lemma, does not necessarily inval-
idate the correctness theorem, only the proof thereof. However, despite investing
a significant amount of time, we were unable to find an alternative proof as
it seems that the reasoning required is more complex than anticipated in the
original paper.

We chose to implement a static partial order reduction [9] algorithm instead,
which avoids these problems of the dynamic approach. It ensures condition
wellfounded by performing some static analysis initially, identifying a set of
sticky edges which breaks every cycle in the control flow graph. Static partial order
reduction is much more modular, making it possible to verify the reduction algo-
rithm independently of the product construction and the emptiness check. This
way, we were able to simply add the reduction algorithm as a preprocessing step
to the existing Cava model checker, enabling reuse of existing optimizations.

The reduction algorithm itself is similar to the one used in Spin [7]. The
basic idea is to take the set of enabled actions of each process in the state as
a candidate for an ample set. For each candidate, an over-approximation of the
reduction conditions is tested. If no candidate satisfies the conditions, the state
is fully expanded, that is, no reduction is performed.

For instance, our approximation checks that, in order to be used as an ample
set, the actions of a process must be independent of all actions of other processes.
Moreover, it is checked that no additional action of this process can be enabled as
a consequence of executing actions of other processes. Thus, only independent
actions of other processes can be executed before an action of the ample set,
which implies condition independent.

3 Formalization

Our formalization contains all three of the tasks outlined in Sect. 2. The imple-
mentation was integrated into the Cava model checker, which was published
previously [5,6]. Since then, various features have been added to this model
checker. For instance, it now supports using Promela as an input language
[22]. Furthermore, the library for automata has been updated [13] and a new
framework for depth-first search algorithms has been formalized [16]. Also, an
alternative algorithm for deciding language emptiness of Büchi automata based
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on Gabow’s strongly-connected components algorithm has been implemented
[10]. However, the focus of this paper is on the implementation and verification
of the partial order reduction algorithm.

In this section, we give some technical background regarding the tools that
were used as well as a high-level overview of the formalization. We also describe
certain noteworthy aspects of the formalization in isolated detail. The full for-
malization is available at https://cava.in.tum.de/CAVA POR.

3.1 Isabelle/HOL

Isabelle/HOL [23,24] is a proof assistant based on Higher-Order Logic (HOL),
which can be thought of as a combination of functional programming and logic.
Formalizations done in Isabelle/HOL are trustworthy for two reasons. Firstly,
Isabelle’s LCF architecture guarantees that all proofs are checked using a very
small logical core which is rarely modified but tested extensively over time. This
reduces the trusted code base to a minimum. Secondly, bugs in the core rarely
lead to accidentally proving false propositions. Bugs that have large effects are
easily caught, while the limited applicability of bugs with small effects is unlikely
to coincide with a logical mistake in the large-scale structure of the proof.

Isabelle/HOL notation resembles standard mathematical notation with just a
few differences. For instance, as in functional programming, functions are usually
curried in HOL. This means that instead of ‘f :: A × B → C’ with application
syntax ‘f(x, y)’, we have ‘f :: A → B → C’ with application syntax ‘f x y’.

3.2 Refinement Framework

When developing formally verified algorithms, there is a trade-off between the
efficiency of the algorithm and the efficiency of the proof: For complex algo-
rithms, a direct proof of an efficient implementation tends to get unmanageable,
as implementation details obfuscate the main ideas of the proof. A standard app-
roach to this problem is stepwise refinement [1], which modularizes the correct-
ness proof: One starts with an abstract version of the algorithm and then refines
it in correctness preserving steps to the concrete, efficient version. A refinement
step may reduce the nondeterminism of a program, replace abstract mathemati-
cal specifications by concrete algorithms, and replace abstract datatypes by their
implementations. For example, selection of an arbitrary element from a set may
be refined to getting the head of a list. This approach separates the correct-
ness proof of the algorithm, which focuses on the main algorithmic ideas, from
the correctness proof of the implementation, where the proof of each refinement
step focuses on a specific implementation detail, not caring about the overall
correctness property.

In Isabelle/HOL, stepwise refinement is supported by the Refinement Frame-
work [12,17] and the Isabelle Collection Framework [11,15]. The former framework
implements a refinement calculus [1] based on a nondeterminism monad [27], and
the latter provides a library of verified efficient data structures. Both frameworks

https://cava.in.tum.de/CAVA_POR
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come with tool support to simplify their usage for algorithm development and to
automate canonical tasks such as verification condition generation.

3.3 Basics

The most basic concept needed for nearly all parts of the formalization is that of
sequences. With HOL being very similar to functional programming languages
like SML or Haskell, the standard library already includes extensive support for
finite sequences via the type ‘α list = Nil | Cons α (α list)’. For infinite sequences,
the type ‘α word’ is used, which is simply a type synonym for ‘N → α’.

We also use the library Coinductive [18] which formalizes lazy lists using
codatatypes [2]. It provides the type ‘α llist’, which models both finite and
infinite sequences. This is useful for selecting subsequences of infinite lists that
can be either finite or infinite. Reasoning about selections and indices of lazy
lists required us to significantly extend the library Coinductive.

Another important component needed for partial order reduction is stuttering
equivalence and the proof that next-free LTL formulae can only express stuttering-
invariant properties. The library Stuttering Equivalence [20] is used for both.

3.4 Systems

Model checkers usually represent systems using the type ‘(state × state) set’.
Reasoning about partial order reduction requires transitions to be labeled with
actions, suggesting the type ‘(state × action × state) set’. However, this type
allows multiple successor states to be reached given a state and an action, mak-
ing the type a bad fit for the deterministic action model of partial order reduc-
tion. This leads to unnecessary wellformedness conditions, inaccessible successor
states, and overspecified path predicates. We thus chose the following repre-
sentation of the system automaton which was already referred to in Sect. 2.1:

en :: state → action set (1a)
ex :: action → state → state (1b)

init :: state set (1c)

Here, ‘en’ is the set of enabled actions at a state (enabled set), ‘ex’ is the function
that, given an action, maps each state to its successor state (execution function),
and ‘init’ is the set of initial states.

This representation allows paths to be introduced in a straightforward way
via the inductively defined set ‘words :: state → action list set’:

[] ∈ words p (2a)
a ∈ en p =⇒ w ∈ words (ex a p) =⇒ a# w ∈ words p (2b)

Inductive definitions in Isabelle/HOL specify the smallest sets that satisfy the
given rules. Equivalently, they specify the sets containing those elements whose
membership can be derived using the given rules. These rules can be declared as
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safe introduction rules, so that whenever Isabelle/HOL encounters proof oblig-
ations of the form ‘[] ∈ words p’ or ‘a# w ∈ words p’, it can automatically split
them into simpler goals or discharge them completely.

We prove an additional rule for the append operator on lists:

u ∈ words p =⇒ v ∈ words (fold ex u p) =⇒ u @ v ∈ words p (3)

Note how ‘fold’ lifts the execution function ‘ex :: action → state → state’ from
single actions to sequences of actions ‘fold ex :: action list → state → state’.
Also note how this rule generalizes rule 2b.

Together, rules 2a, 2b, and 3 form a set of introduction rules that break
down most goals automatically. For instance, the goal ‘u @ a# v ∈ words p’ gets
transformed into three subgoals:

u ∈ words p (4a)
a ∈ en (fold ex u p) (4b)
v ∈ words (ex a (fold ex u p)) (4c)

This automates proofs significantly, in some cases shortening proofs comprised of
50 to 100 lines to one-liners. We have proven many more rules about this system
formalization, making it a useful addition to the CAVA automata library.

3.5 Trace Theory

Partial order reduction introduces the concept of independent actions, which can
be executed in any order without changing the result or enabling or disabling
each other. Trace theory [19] lifts this notion of commutable items to that of
equivalent sequences, which is needed in the abstract correctness proof.

Finite sequences are equivalent if they differ by a finite number of commuta-
tions of independent actions. This concept is then extended to infinite sequences
[25, page 41]. This definition by case distinction makes lazy lists difficult to use,
so we decided to work with separate types and definitions for finite and infinite
sequences.

Formalizing the necessary parts of trace theory took significant effort due to
the large number of theorems. There are also some theorems that look simple
but are difficult to prove, for instance:

w1 ≡I w2 ⇐⇒ u @ w1 @ v ≡I u @ w2 @ v (5)

The left to right direction can be proven via rule induction on the transitive
structure of ‘≡I ’. Doing the same for the right to left direction results in an
unprovable induction step. It was necessary to prove the following lemmata:

w1 ≡I w2 =⇒ remove1 c w1 ≡I remove1 c w2 (6a)
u @w1 ≡I u @ w2 =⇒ w1 ≡I w2 (6b)

w1 ≡I w2 =⇒ rev w1 ≡I rev w2 (6c)
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Here, ‘remove1 c w’ removes the first occurrence of ‘c’ from the sequence ‘w’, and
‘rev w’ reverses the sequence ‘w’. Lemma 6a uses ‘remove1’ to avoid the fact that
rule induction does not work with modified assumptions. We use Lemma6a to
prove Lemma 6b via reverse induction on the sequence ‘u’. Lemma 6c is proven
via rule induction and with Lemma6b, it completes the proof of Theorem 5.

We also had to define some concepts specific to partial order reduction. For
instance, the predicate specifying that the first occurrence of a symbol in a
sequence is independent of all symbols before it. In the end, the formalization
of the relevant aspects of trace theory required about as much proof text as the
formalization of the abstract correctness proof itself.

3.6 Abstract Correctness

Assume that ‘S’ is a system automaton and ‘R’ is a reduced system automa-
ton such that the reduction conditions introduced in Sect. 2.1 hold. Then, the
abstract correctness theorem states that the languages of ‘S’ and ‘R’ are stut-
tering equivalent:

L S ≈ L R (7)

The proof of this theorem required about 1000 lines of formal proof text and
dozens of lemmata. Its structure is similar to that of the informal proof [25] and
we will thus not repeat it here.

However, we present the formalization of a Lemma [25, Theorem 3.11] in
detail and highlight the differences between the formal and the informal proof:

lemma reduction word:
assumes “q ∈ reachable” “v ∈ wordsS q”
obtains u w

where

“w ∈ wordsR q”
“v ≡I u” “u �I w”
“lproject visible (inf llist u)= lproject visible (inf llist w) ”

Note that we do not present the formal definitions of all the constants used in
this theorem. Informally, the theorem states that, given an infinite sequence ‘v’
in the system automaton, it is possible to find a corresponding sequence ‘w’ in
the reduced system automaton. The theorem also implies the existence of an
intermediate sequence ‘u’, which is needed since ‘w’ may contain actions that
are not in ‘v’.

The proof consists of two parts. In the first part, we construct an arbitrarily
long but finite sequence in the reduced system automaton by transcribing longer
and longer prefixes of the infinite sequence in the system automaton. In order to
do so, we inductively define a predicate that describes a valid state during this
construction process where a prefix of the sequence in the system automaton has
already been processed. This predicate specifies that the state of the construction
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where both the sequence in the system automaton and the one in the reduced sys-
tem automaton are empty is valid. It also specifies how one can extend a valid
construction state by adding a step in the system automaton and a sequence of
corresponding steps in the reduced system automaton. At each point of the con-
struction, we can then prove that some invariants hold and that the construction
can be extended. Proving these invariants and the extension property required a
lot of effort as the informal proof only provided a rough sketch of the argument.
The formal proof constitutes both a certificate of the theorem’s correctness as well
as a detailed documentation of the reasoning used to prove it.

The second part of the proof consists of using the first part to show that
there exists an infinite sequence with the required properties in the reduced sys-
tem automaton. While this step is almost completely skipped in the informal
proof, the formal one forces us to consider it rigorously. For instance, the first
part supplies a theorem which guarantees that for any number of steps that were
already taken, another step can be taken, extending the sequence in the process.
Intuitively, such a theorem can be applied “infinitely often” to obtain an infinite
sequence, but this is not logically sound. Performing a step like this in a formal
proof requires precise reasoning and in our case the use of Hilbert’s epsilon oper-
ator. We believe that this is not a flaw of formal logic or the particular instance
we are using. Instead, we think that situations like this point to areas where it
became customary to use sloppy reasoning in informal proofs, possibly leading
to mistakes or overlooked side conditions. For instance, it is often not made clear
in which way variables depend on each other or what guarantees that an infi-
nite sequence can actually be constructed from a set of finite sequences. Formal
proofs point out required side conditions like the fact that the infinite concate-
nation of these finite sequences needs to be infinite. It also brought attention
to the fact that many concepts need to be defined on both finite and infinite
sequences and that they need to correspond to each other in a specific way.

As mentioned in Sects. 3.3, 3.4, and 3.5, a large amount of foundational work
was required in order to formally prove the abstract correctness theorem.

3.7 The SM Language

In order to implement an executable reduction algorithm, we require a concrete
modeling language. We use a simple fragment of Promela that is expressive
enough to model interesting examples. We call this fragment the SM language.

A program in this language consists of a set of processes, each of which is
described using a guarded command language. Each process has a set of local
variables and communication between processes is modeled via global variables.
A configuration of the system consists of a valuation of the global variables
and a list of process configurations, where a process configuration consists of a
command and a valuation of the local variables. The main Promela feature not
supported by SM is channels, which can be emulated by global variables.

We specify a structural operational semantics that establishes a control flow
graph where the nodes are commands and the edges are labeled with local
actions. A local action can be a guarded assignment, a test, or the skip action.
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Each local action is assigned an enabledness check and an effect function on the
local and global variables.

The system semantics describes a step relation between configurations by
nondeterministically picking a process from a configuration, following an edge
in the control flow graph from the process’ command that is labeled with an
enabled local action, and applying the effect of the local action to the local
and global state. To ensure that all runs of the system are infinite, we apply a
stuttering extension, that is, if there is no process with an enabled action, the
system may take a step that does not change the configuration.

Since we want to use the SM language in an LTL model checker, we need to
define atomic propositions and their connection to the system states. In our case,
atomic propositions are simply expressions in the SM language that contain only
global variables. Then, we define the interpretation function to map each state
to the set of expressions that evaluate to true in this state.

We define the language of a program as the set of infinite sequences of sets
of atomic propositions that correspond to infinite runs of the program:

L :: program → exp set word set (8)

We define a global action to consist of a process id and a control flow graph
edge. The process id is the position of the associated process in the list of all
processes. A global action is enabled if the associated process exists, the con-
trol flow graph edge is consistent with the current command of the associated
process, and the corresponding local action is enabled. Execution of a global
action transforms the state of the associated process and the global variables
according to the corresponding local action.

3.8 Reduction Algorithm

Next, we define a function that selects an ample set for a configuration. Similar to
Spin, candidates for ample sets are the sets of enabled actions of each process.
We make a rather crude approximation and allow a nonempty set of enabled
actions of a process as an ample set, if (1) there is no statically enabled action
of the process that reads or writes global variables, and (2) none of the enabled
actions corresponds to a sticky edge in the control flow graph. Here, (1) is a
simple way of guaranteeing condition independent (see Sect. 2.1), and (2) is
the condition imposed by static partial order reduction (see Sect. 2.2).

We implemented and verified an algorithm based on depth-first search which
computes the set of sticky edges before the actual model checking phase. This
algorithm starts with the set of edges labeled with actions containing global
variables and extends it to a feedback arc set on the control flow graphs of the
processes. For this task, we used the Depth-First Search Framework [16], which
simplifies the implementation and verification of efficient DFS-based algorithms.

We define the reduced system automaton based on this ample function and
prove that all of the reduction conditions from Sect. 2.1 are fulfilled. This allows
us to invoke the abstract correctness theorem to obtain stuttering equivalence
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between the language of the system automaton and that of the reduced system
automaton. Together with the assumption that the formula is next-free, this
implies that using the reduced system automaton for model checking instead of
the system automaton does not change the result.

3.9 Integration

We refine the ample function, the execution function, and the interpretation func-
tion to efficiently executable implementations. Among other steps, this includes
compilation of the model to a more efficient representation. Finally, instantiat-
ing the generic infrastructure of the Cava model checker yields an executable
LTL model checker ‘cava’ which uses the reduced system automaton. Obtaining
the main theorem of our development is then merely a matter of combining the
correctness theorem of the Cava model checker with that of abstract partial
order reduction:

case cava S ϕ of SAT ⇒ L S ⊆ L ϕ | UNSAT ⇒ L S �⊆ L ϕ (9)

This theorem states that the function ‘cava’ decides whether or not the sequences
of atomic propositions admitted by runs of the program satisfy the LTL formula.
The meaning of this statement only depends on the abstract semantics of the
SM language (term ‘L S’) and the abstract semantics of LTL formulae (term
‘L ϕ’). All other parts of the formalization, including partial order reduction,
LTL model checking, and refinement towards efficiently executable definitions,
are covered by this machine-checked correctness theorem. Note that we also
formalized a version of the model checker that provides a counterexample in
case the program does not satisfy the formula.

Finally, Isabelle/HOL can generate Standard ML code from the definition of
the function ‘cava’. This code then constitutes a formally verified and executable
LTL model checker. A snapshot of this formalization can be found at https://
cava.in.tum.de/CAVA POR.

We conclude with some statistics about the formalization, which took about
15 man-months and resulted in about 13 k lines of theory text being added to the
model checker. This includes both definitions and proofs and splits up into 6 k
lines for abstract partial order reduction and 7k lines for the SM language and
the associated program analysis. The size of the whole codebase of the model
checker and its libraries is about 140 k lines of theory text.

4 Evaluation

We perform some basic sanity checks using two systems that admit no reduc-
tion and complete sequentialization, respectively. As a practical example, we
implement a distributed mutual exclusion algorithm called Mulog [21] using
the supported Promela fragment. The property used for testing states that at
most one process can be in the critical section at any point in time. We perform

https://cava.in.tum.de/CAVA_POR
https://cava.in.tum.de/CAVA_POR
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Fig. 2. Reduction effectiveness. Shown are the number of states that were explored
during model checking using both the Cava and the Spin model checkers. The starred
variants indicate where partial order reduction was used.

model checking using both the Cava and the Spin model checkers, both with
and without partial order reduction. Figure 2 shows the reduction effectiveness
for this algorithm.

Both the Cava and the Spin model checker show a significant reduction in
the number of states. The reduction factors are comparable (roughly 1.3 for two
processes and roughly 2 for three processes). The Spin model checker explores
fewer states in total (roughly factor 2) and has shorter execution times (roughly
factor 400) than the Cava model checker.

We would like to emphasize that in this paper, it is not our goal to compete
with Spin in absolute terms. Instead, our focus is on providing a verified and
executable reference implementation of partial order reduction. The Spin model
checker employs various other optimizations and compilation to C code, while the
Cava model checker interprets the semantics of the modeling language. Thus,
little insight can be gained by directly comparing execution time and memory
consumption. Incorporating these optimizations is orthogonal to partial order
reduction and we consider this subject of further research. Due to the modular
architecture of the Cava model checker, doing so will not make this contribution
obsolete. At this point, it will also be possible to perform a more comprehensive
evaluation with multiple example algorithms.

5 Conclusion

Formal verification is sometimes downplayed as “careful documentation of known
theorems” or “filling in obvious details in proofs”. In practice, formal verifica-
tion usually involves extensive modeling as well as abstraction, generalization,
and simplification of the theory. What may seem like trivial completion of the
informal proof often involves bridging large gaps and proving omitted corner
cases.

In this project, we discovered an issue with the correctness proof given in
[25] (see Sect. 2.2). This demonstrates both the need for and the usefulness of
formal verification. More importantly, we developed a formally verified and exe-
cutable LTL model checker with partial order reduction. As the verification is
machine-checked and covers everything from the abstract algorithm to the gen-
erated SML code, this is a very strong correctness guarantee. Our model checker
is fast enough to serve as a reference implementation for other model checkers
on models of realistic size. This constitutes a much-needed source of trust given
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the widespread use of partial order reduction together with its history of issues.
The formalization can further serve as a detailed description of the theory of
partial order reduction and its correctness proof, which is useful since nontriv-
ial gaps were bridged in the proof. We also developed a significant amount of
foundational theories that can be reused in other projects dealing with similar
concepts. Finally, our work demonstrates that large systems can now be verified
using proof assistants via modularization and reuse of existing theories.

Future work consists of extending the SM language to make it more practical,
with the ultimate goal of supporting most or all of the features of Promela. It
is also possible to find smaller sets of sticky actions by incorporating heuristics
about variable increments/decrements [9]. Another way to improve reduction
consists of using additional static analysis to find larger independence relations.
Finally, there is still room for improvement concerning the implementation, espe-
cially via the use of imperative data structures [14].

References

1. Back, R.J., von Wright, J.: Refinement Calculus: A Systematic Introduction. Grad-
uate Texts in Computer Science. Springer, Heidelberg (1998)

2. Blanchette, J.C., Hölzl, J., Lochbihler, A., Panny, L., Popescu, A., Traytel, D.:
Truly modular (co)datatypes for Isabelle/HOL. In: Klein, G., Gamboa, R. (eds.)
ITP 2014. LNCS, vol. 8558, pp. 93–110. Springer, Heidelberg (2014)

3. Brunner, J.: Implementation and Verification of Partial Order Reduction for On-
The-Fly Model Checking. MA thesis. Technische Universität München, 83 p., 15
July 2014. http://www21.in.tum.de/brunnerj/documents/ivporotfmc.pdf

4. Chou, C.T., Peled, D.: Formal verification of a partial-order reduction technique
for model checking. In: Margaria, T., Steffen, B. (eds.) TACAS 1996. LNCS, vol.
1055, pp. 241–257. Springer, Heidelberg (1996)

5. Esparza, J., Lammich, P., Neumann, R., Nipkow, T., Schimpf, A., Smaus, J.-G.:
A fully verified executable LTL model checker. In: Sharygina, N., Veith, H. (eds.)
CAV 2013. LNCS, vol. 8044, pp. 463–478. Springer, Heidelberg (2013)

6. Esparza, J., Lammich, P., Neumann, R., Nipkow, T., Schimpf, A., Smaus, J.G.: A
fully verified executable LTL model checker. Archive of Formal Proofs, May 2014.
http://afp.sf.net/entries/CAVA LTL Modelchecker.shtml, formal proof develop-
ment

7. Holzmann, G.J.: The SPIN Model Checker. Primer and Reference Manual.
Addison-Wesley Professional, Reading (2003)

8. Holzmann, G.J., Peled, D., Yannakakis, M.: On nested depth first search. In: SPIN
Workshop, vol. 32, pp. 81–89 (1996)

9. Kurshan, R.P., Levin, V., Minea, M., Peled, D.A., Yenigün, H.: Static partial
order reduction. In: Steffen, B. (ed.) TACAS 1998. LNCS, vol. 1384, pp. 345–357.
Springer, Heidelberg (1998)

10. Lammich, P.: Verified efficient implementation of Gabow’s strongly connected com-
ponent algorithm. In: Klein, G., Gamboa, R. (eds.) ITP 2014. LNCS, vol. 8558,
pp. 325–340. Springer, Heidelberg (2014)

11. Lammich, P.: Collections framework. Archive of Formal Proofs, November 2009.
http://afp.sf.net/entries/Collections.shtml, formal proof development

http://www21.in.tum.de/brunnerj/documents/ivporotfmc.pdf
http://afp.sf.net/entries/CAVA_LTL_Modelchecker.shtml
http://afp.sf.net/entries/Collections.shtml


Formal Verification of an Executable LTL Model Checker 321

12. Lammich, P.: Refinement for monadic programs. Archive of Formal Proofs, January
2012. http://afp.sf.net/entries/Refine Monadic.shtml, formal proof development

13. Lammich, P.: The CAVA automata library. Archive of Formal Proofs, May 2014.
http://afp.sf.net/entries/CAVA Automata.shtml, formal proof development

14. Lammich, P.: Refinement to Imperative/HOL. In: Urban, C., Zhang, X. (eds.) ITP
2015. LNCS, vol. 9236, pp. 253–269. Springer, Switzerland (2015)

15. Lammich, P., Lochbihler, A.: The Isabelle collections framework. In: Kaufmann,
M., Paulson, L.C. (eds.) ITP 2010. LNCS, vol. 6172, pp. 339–354. Springer,
Heidelberg (2010)

16. Lammich, P., Neumann, R.: A Framework for Verifying Depth-First Search Algo-
rithms. In: CPP, pp. 137–146. ACM, 13 January 2015

17. Lammich, P., Tuerk, T.: Applying data refinement for monadic programs to
Hopcroft’s algorithm. In: Beringer, L., Felty, A. (eds.) ITP 2012. LNCS, vol. 7406,
pp. 166–182. Springer, Heidelberg (2012)

18. Lochbihler, A.: Coinductive. Archive of Formal Proofs, February 2010. http://afp.
sf.net/entries/Coinductive.shtml, formal proof development

19. Mazurkiewicz, A.: Trace theory. In: Reisig, W., Brauer, W., Rozenberg, G. (eds.)
APN 1986. LNCS, vol. 255, pp. 278–324. Springer, Heidelberg (1987)

20. Merz, S.: Stuttering equivalence. Archive of Formal Proofs, May 2012. http://afp.
sf.net/entries/Stuttering Equivalence.shtml, formal proof development

21. Naimi, M., Trehel, M., Arnold, A.: A log (n) distributed mutual exclusion algorithm
based on path reversal. J. Parallel Distrib. Comput. 34(1), 1–13 (1996)

22. Neumann, R.: Using Promela in a fully verified executable LTL model checker.
In: Giannakopoulou, D., Kroening, D. (eds.) VSTTE 2014. LNCS, vol. 8471, pp.
105–114. Springer, Heidelberg (2014)

23. Nipkow, T., Paulson, L.C., Wenzel, M. (eds.): Isabelle/HOL. LNCS, vol. 2283.
Springer, Heidelberg (2002)

24. Paulson, L., Nipkow, T., Wenzel, M.: Isabelle (2014). http://isabelle.in.tum.de
25. Peled, D.: Combining partial order reductions with on-the-fly model-checking. For-

mal Meth. Syst. Des. 8(1), 39–64 (1996)
26. Peled, D., Wilke, T.: Stutter-invariant temporal properties are expressible without

the next-time operator. Inf. Process. Lett. 63(5), 243–246 (1997)
27. Wadler, P.: Comprehending monads. Math. Struct. Comput. Sci. 2, 461–493 (1992)

http://afp.sf.net/entries/Refine_Monadic.shtml
http://afp.sf.net/entries/CAVA_Automata.shtml
http://afp.sf.net/entries/Coinductive.shtml
http://afp.sf.net/entries/Coinductive.shtml
http://afp.sf.net/entries/Stuttering_Equivalence.shtml
http://afp.sf.net/entries/Stuttering_Equivalence.shtml
http://isabelle.in.tum.de


A Modular Way to Reason About Iteration
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Abstract. In this paper we present an approach to specify programs
performing iterations. The idea is to specify iteration in terms of the finite
sequence of the elements enumerated so far, and only those. In particular,
we are able to deal with non-deterministic and possibly infinite iteration.
We show how to cope with the issue of an iteration no longer being
consistent with mutable data.

We validate our proposal using the deductive verification tool Why3
and two iteration paradigms, namely cursors and higher-order iterators.
For each paradigm, we verify several implementations of iterators and
client code. This is done in a modular way, i.e., the client code only
relies on the specification of the iteration.

1 Introduction

Iteration is a central concept in programming. It can be as simple as a while loop
or a recursive function, but it can also appear as a more complex artifact, such
as a cursor, a higher-order iterator, a generator, or a lazy list. When it comes to
verifying the correctness of a program, we need tools to reason about iteration.
Typically, we provide a suitable loop invariant for a while loop and a contract for
a recursive function. In this paper, we consider the problem of verifying programs
where iteration is performed by other means, such as cursors or higher-order
iterators. In particular, we are interested in answering the following challenges:

– Iteration is not necessarily the traversal of a data structure. It can be, for
instance, the result of an algorithm, such as the enumeration of all prime
numbers.

– Iteration is not necessarily finite, as in the aforementioned case of prime num-
bers.

– Iteration is not necessarily deterministic. The simplest example is that of a
symbol generator. From the client point of view, the only required property is
that the next element is distinct from the previous ones. Another example is
the traversal of a set where elements are presented in some unspecified order.
When the iteration is deterministic, however, we want to be able to specify it.
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– When iteration depends on mutable data, client code may put iteration in
some inconsistent state. In Java, for instance, this problem is solved by main-
taining version numbers and by raising an exception in the case of a concurrent
modification. In our case, we wish instead to be able to prove, statically, that
there is no concurrent modification.

– When a data structure is abstract (for example, a set for which we do not
know the implementation) we still want to be able to specify an iteration over
its elements and to verify a program using such an iteration. Even when we
have access to the implementation of the iteration, we are still interested in
performing verification in a modular way with an abstraction barrier. It means
verifying the client code independently of a particular implementation for the
iteration.

In this paper we propose a way to specify iteration that fulfills all the above-
mentioned requirements. We validate our work using the deductive verification
tool Why3 [1], but the idea is broader and could be implemented in any other
deductive verification tool. Our contribution is twofold:

– An approach to specify an iteration process, independently of how it is imple-
mented (cursor, higher-order function, etc.);

– A methodology to verify implementations and use of cursors and higher-order
iteration functions.

This paper is organized as follows. Section 2 introduces our proposal to specify
an iteration. Section 3 gives a brief overview of Why3. Then we consider cursors
in Sect. 4 and higher-order iterators in Sect. 5. We discuss related work in Sect. 6
before concluding. The Why3 developments from this paper can be found at the
following address: http://www.lri.fr/∼mpereira/iteration/.

2 Specifying Iteration

We present in this section our proposal to formally specify an iteration. We use
several examples to illustrate this approach, including cases of non-deterministic
and infinite iteration.

The idea is to specify the iteration in terms of the finite sequence v of the
elements enumerated so far, and only those. More precisely, such a specification is
composed of two predicates: the first predicate, called enumerated, characterizes
the elements of v; the second predicate, called completed, indicates whether the
iteration is completed. In the following, ‖v‖ denotes the length of v, v[i] denotes
the i-th element of v (assuming a 0-based indexation), and x ∈ v means that x
occurs in v.

Consider for instance the iteration over an array a, from left to right. The
first predicate, enumerated, is as follows:

enumerated(v, a) � ∀i. 0 ≤ i < ‖v‖ =⇒ v[i] = a[i]

http://www.lri.fr/~mpereira/iteration/
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In other words, the sequence v is a prefix of the array a. The second predicate,
completed, simply compares the length of v with that of a:

completed(v, a) � ‖v‖ = length(a)

Let us now consider the iteration over the elements of a finite set s, in a
non-deterministic way. Such an iteration can be specified as follows:

enumerated(v, s) � distinct(v) ∧ ∀x. x ∈ v =⇒ x ∈ s

completed(v, s) � ‖v‖ = card(s)

The condition distinct(v) means that the sequence v contains no duplicate ele-
ments, to account for the fact that no element is visited twice (s is a set, not
a multiset). We also require the elements of v to be elements of s. Since we do
not require any additional property, we have a non-deterministic iteration. The
iteration is completed whenever the length of v is equal to the cardinal of s.

Let us now assume that we want to specify instead a deterministic iteration
over the elements of s. One way to do this is to introduce some oracle function
elements that returns a sequence containing the elements of s in the order they
will be visited. Then enumerated merely says that we have already visited a
prefix of this sequence, that is,

enumerated(v, s) � prefix(v, elements(s))

with a natural definition for prefix:

prefix(s1, s2) � ‖s1‖ ≤ ‖s2‖ ∧ ∀i. 0 ≤ i < ‖s1‖ =⇒ s1[i] = s2[i]

With this specification, the behavior of the enumeration is determined from the
beginning. For instance, if the elements of s are totally ordered, then elements(s)
could be the sorted sequence of the elements of s.

Let us switch now to examples of iteration that are not traversals of a data
structure. Consider for instance an iteration obtained by the repeated application
of a function f starting with some initial value x0, that is, the infinite sequence

x0, f(x0), f(f(x0)), f(f(f(x0))), . . .

On way to specify it is as follows:

enumerated(v, x0, f) � ∀i. 0 ≤ i < ‖v‖ =⇒ v[i] = f i(x0)

assuming f i is defined as the ith functional power of f . Besides, to account for
the fact that this iteration never halts, we simply define

completed(v, x0, f) � false

The next example is the specification of a scanner for a possibly infinite
channel c. The elements of v are characters and a special character EOF marks
the end of the channel. The specification looks like:

enumerated(v, c) � · · · ∧ ∀i. 0 ≤ i < ‖v‖ − 1 =⇒ v[i] �= EOF
completed(v, c) � ‖v‖ > 0 ∧ v[‖v‖ − 1] = EOF
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Fig. 1. Sequence theory (excerpt).

This specification covers both the case of a finite channel, with a terminal EOF,
and the case of an infinite channel, where EOF never shows up.

Our last example is that of a symbol generator, that is, a program that
generates fresh symbols on demand. Its output is an infinite iteration of distinct
symbols, that is

enumerated(v) � distinct(v)
completed(v) � false

In this case, enumerated does not depend on any information other than the
sequence v itself.

3 Why3 in a Nutshell

Our goal is to apply the idea of specifying an iteration using the predicates
enumerated and completed in the context of deductive program verification. To
this end, we used the Why3 tool to explore this approach. However, this proposal
is general and is not tied to Why3. Any other deductive verification tool could
be used. In this section, we briefly describe the Why3 platform, its organization
and principal features.

The Why3 platform proposes a set of tools allowing the user to implement,
formally specify, and prove programs. The use of Why3 is oriented towards auto-
matic proofs, as it supports many external automatic theorem provers. Why3
can also interact with interactive proof assistants, such as Coq, Isabelle, or PVS,
when a proof obligation cannot be automatically discharged.

Why3 comes with a programming language, WhyML [9], an ML dialect
with some restrictions in order to make automatic proof simpler. This lan-
guage offers some features commonly found in functional languages, like pattern-
matching, algebraic types and polymorphism, but also imperative constructions,
like records with mutable fields and exceptions. Programs written in WhyML can
be annotated with contracts, that is, pre- and postconditions. The code itself can
be annotated, for instance, to express loop invariants or to justify termination
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of loops and recursive functions. It is also possible to add intermediate asser-
tions in the code to ease automatic proofs. The WhyML language allows to write
ghost code [8], which is used only for specification and proof purposes and can
be removed with no observable modification in the program’s execution. The
system uses the annotations to generate proof obligations thanks to a weakest
precondition calculus.

The logic used to write formal specifications is an extension of first-order
logic with rank-1 polymorphic types, algebraic types, (co-)inductive predicates
and recursive definitions [7], as well as a limited form of higher-order logic [4].
This logic is used to write theories for the purpose of modeling the behavior
of programs. Such theories are most of the time axiomatic. Figure 1 represents
a fragment from the sequence theory provided by the Why3 standard library.
We can find there the polymorphic type of finite sequences (seq ’a), a con-
stant representing the empty sequence (empty), function symbols (length for
the sequence length, ·[ ·] to access the i-th element, and snoc to add an element
at the end of a sequence), together with axioms defining these symbols. Why3
standard library is formed of many logic theories of this kind, in particular for
integer and floating point arithmetic, sets, and dictionaries.

The entire standard library, numerous verified examples, as well as a more
detailed presentation of Why3 and WhyML are available on the project web site,
http://why3.lri.fr. However, the rest of this paper does not assume any further
knowledge of Why3.

4 Cursors

A cursor [5] is a data structure that implements iteration via a function, say
next, that is called each time we need to get the next element, if there is one. It
is thus an iteration paradigm where the control is given to the consumer, which
calls next whenever needed, contrary to other paradigms where control is given
to the producer of the iteration. Cursors are broadly used in C++ and Java, for
instance.

We adopt a model where we interact with the cursor via two functions:
has next returns a Boolean indicating the existence of a next element in the
iteration; and next advances to the next element and returns it. The latter
operation updates the cursor by a side effect1. A typical client code looks like
this:

c ← create_cursor(...)

while has_next(c) do

x ← next(c)

...

In Java, the “for each” loop construct for (E x: ...) is nothing more than
syntactic sugar for the above.

1 This is not mandatory. A cursor can be implemented as a persistent structure [6].

http://why3.lri.fr
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In this section we describe the use of predicates enumerated and completed
to formally specify what is a cursor (Sect. 4.1), to verify a cursor implementation
(Sect. 4.2), and to verify a client code that uses a cursor (Sect. 4.3).

4.1 Cursor Specification

We assume two data types to be given: a type elt for the elements enumerated
by the cursor, and a type collection for the collection whose elements are
enumerated.

type elt

type collection

The term “collection” is to be taken broadly here. It does not necessarily desig-
nate a data structure but rather any data needed for the iteration specification.
We model the cursor type as follows:

type cursor model {

collection: collection;

mutable visited: seq elt;

}

The field collection is used to stock the collection of elements that is to be
iterated by the cursor. The field visited contains the sequence of the elements
enumerated by the cursor so far. This field is marked as mutable, to account for
the imperative nature of the cursor. Finally, the cursor type is marked as being
a model type. It means this is an abstract data type from the programming point
of view. In particular, client code cannot access the visited field, preventing
any modification of its contents. The specification, however, is free to refer to
cursor’s field and typically will.

Next, we introduce the two predicates enumerated and completed to specify
the cursor’s behavior.

predicate enumerated (c: cursor) = ...

predicate completed (c: cursor) = ...

Now we can provide suitable contracts to functions has next and next. They
are introduced as unimplemented functions with the keyword val.

val has_next (c: cursor) : bool =

requires { enumerated c }

ensures { result ↔ not (completed c) }

In other words, function has next decides whether the predicate completed
holds. The second operation, next, is specified as follows:

val next (c: cursor) : elt

requires { enumerated c }

requires { not (completed c) }

writes { c }

ensures { enumerated c }

ensures { c.visited = snoc (old c.visited) result }
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A call to next is only allowed when the iteration is not yet completed (the second
requires). The postcondition guarantees that the returned element is appended
at the end of the visited sequence. This side effect is expressed with the writes
clause.

The postcondition of next also guarantees that the visited sequence satis-
fies the enumerated predicate. Functions has next and next also require pred-
icate enumerated as a precondition. This is a way to ensure that the cursor
remains in a consistent state. Suppose for instance that the cursor is enumerat-
ing the elements of an array. Nothing prevents us from mutating the array while
the cursor is being used. If we do so, however, the enumerated predicate will not
hold anymore and, consequently, we will not be able to call functions has next
and next anymore.

In practice, we also need to provide operations to create cursors. Such an
operation looks as follows:

val create_cursor (t: collection) : cursor

ensures { result.visited = empty }

ensures { enumerated result }

ensures { result.collection = t }

It returns a fresh cursor whose visited sequence is empty (first postcondition)
and which is in a consistent state (second postcondition).

Collection modification. Taking an example of a cursor to traverse the elements
of an array we can imagine the following code:

let c = create_cursor a in

a [0] ← 42;

let x = next c in

...

that modifies the array a after creating the cursor c. However, if we try to prove
this program we will no be able to prove the precondition of function next,
namely coherent c. The array has been modified and so has the cursor as it
contains the array in the collection field.

4.2 Cursor Implementations

To validate our approach, we have implemented and verified several cursors using
Why3. These examples include iterators for collections, such as arrays, and lists,
and sets, as well as a symbol generator, the in-order traversal of a binary tree,
the DFS traversal of a graph, and a cursor that merges the ordered sequences
generated by two other cursors. For each cursor, we have

– refined the cursor data type, to add data specific fields. If we consider the
cursor for an array, for instance, the refinement is as follows:

type cursor = { ghost mutable visited: seq elt;

mutable index: int;

collection: array elt; }
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Table 1. Experimental results.

– strengthen the enumerated predicate, so that it acts as a gluing invariant as
well. For the array example, the gluing invariant adds the property that the
index field is equal to the length of visited.

predicate enumerated (c: cursor) =

(forall i. 0 ≤ i < length c.visited → c.visited[i] = c.array[i]) ∧
c.index = length c.visited

– implemented and verified operations next, has next, and create cursor.

Table 1a shows the lines of code, the lines of specification (functions contracts,
invariants, and auxiliary lemmas), and the total verification time (in seconds)
for each cursor. All verification conditions are discharged automatically, using a
combination of the SMT solvers Alt-Ergo, Z3, and CVC4.

4.3 Cursor Clients

We have also implemented and verified a number of client programs that make
use of the cursors presented in the previous section. We do this in a modular
way, i.e., the client programs are only using the cursor interface (from Sect. 4.1)
and have no access to the underlying implementation.

Our programs include summing the elements of an array, computing the
length of a list, searching for a particular element in some abstract collection,
solving the “same fringe” problem (comparing two binary trees using two in-
order traversal cursors), checking for the existence of a path in a graph using a
DFS cursor, merging two ordered sequences, and implementing Boyer & Moore’s
“mjrty” algorithm [2] using array cursors.

Table 1b shows the lines of code, the lines of specification, and the total
verification time (in seconds) for each program. All verification conditions are
discharged automatically. Source files are available online.

5 Higher-Order Iterators

In programming languages featuring first-class functions, iteration is commonly
implemented as a higher-order function that takes as argument a function to be
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applied to each element of the enumerated sequence. In an imperative language,
such a function can be as simple as

iter : (elt → unit) → collection → unit

where elt is the type of the iteration elements, collection is the type of the
collection to be iterated over, and unit is a type with no meaningful values.
If the elements of a collection c are x1, . . . , xn, in that order, then a call to
iter f c simply amounts to evaluate f(x1), . . . , f(xn) sequentially. Assuming
the elements of c are integers, we can sum them using

s ← 0; iter (λx. s ← s + x) c

where λ introduces an anonymous function. The recent introduction of closures
in languages such as C++ and Java eases this style of programming.

Higher-order iterators coexist with cursors, allowing the user to choose the
paradigm that suits best. The main difference between the two is that control is
given to the producer in the case of a higher-order iterator, while it is given to
the consumer in the case of a cursor.

In this section we describe a methodology to specify and verify higher-order
iterators using enumerated and completed predicates. As we did for cursors, we
intend to verify both implementations of iter functions (Sect. 5.1), and client
code using iter functions (Sect. 5.2). One way to tackle the verification of higher-
order functions is to use a higher-order (program) logic, in such a way that we can
quantify over the specification of function arguments. There exist already several
systems in which we can do so; we will discuss those in Sect. 6. We consider here
a different approach, which only requires first-order logic. This is possible thanks
to the abstraction barrier provided by the enumerated/completed predicates. On
both sides of this interface, we are making distinct first-order program proofs,
one for the implementation of iter and one for each call to iter.

Currently, Why3 does not support the use of effectful higher-order code. To
circumvent this limitation, we have developed a prototype tool that reads both
implementations and uses of higher-order iterators, together with specification
and possible annotations, and turns them into regular Why3 programs to be
verified.

5.1 Verifying an Iterator

Given an implementation of some iter function, our approach consists in auto-
matically building a first-order function iter correct whose correctness implies
that of iter. Once function iter correct is verified, we do not need it anymore.

We obtain function iter correct by specializing the code of iter for a
particular function that appends the element it receives (the next element of the
iteration) to a sequence stored in a global variable visited. Then we can verify
the resulting code against the specification given by the predicates enumerated
and completed.
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Let us consider the case of the in-order traversal of a binary tree, the type
of which is:

type tree = E | N tree elt tree

In our prototype, we implement in-order traversal as follows:

let rec iter (f: elt → unit) (t: tree) : unit

with { enumerated (visited, t) = ...

completed (visited, t) = ... }

= match t with

| E → ()

| N l x r → iter f l; f x; iter f r

end

The iteration specification is introduced with the keyword with, as the pair of the
two predicates enumerated and completed (whose definition is omitted here).
In this case, iter is defined recursively, as it is the simplest way to do. Yet this
is not mandatory. Our technique applies as well to iterative implementations.
From this definition, we automatically generate the following Why3 function
iter correct, together with its specification.

val visited: ref (seq elt)

let iter_correct (t0: tree)

requires { !visited == empty ∧ enumerated (empty, t0) }

ensures { enumerated (!visited, t0) ∧ completed (!visited, t0) }

= let f x = visited := snoc !visited x in

let rec iter0 (t: tree) : unit =

match t with

| E → ()

| N l x r → iter0 l; f x; iter0 r

end in

iter0 t0

This function takes a tree t0 as argument. It stands for the original argument
of iter. The specification expresses that if we start with an empty visited
sequence, then we end up with a completed iteration for the tree t0. To verify
this code, we have to equip function iter0 with suitable annotations. This part
is not done automatically, as it depends on the implementation of iter and the
nature of enumerated and completed.

Using our prototype tool, we have verified several implementations of iter-
ators, including traversals of arrays, lists, trees, and abstract collections. The
resulting verification conditions are all discharged automatically by SMT solvers.

5.2 Using an Iterator

As we did for the implementation of the iter function, we propose a methodol-
ogy to verify a client code using iter by translating it to a first-order program.
Predicates enumerated and completed are used to specify the iteration, and the
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client code has no access to the implementation of iter. Our idea is to trans-
form the client code by replacing the use of iter with a while loop that uses a
cursor. This cursor is specified exactly as in Sect. 4.1. Once again abstraction is
the key: the client code only relies on the iteration specification, and not on the
way it is implemented.

Let us illustrate the idea on an example. We consider a program that takes
a list as an argument and returns a list containing the same elements without
repetitions. It uses an iter function to traverse the input list and a hash table to
store the elements we have seen so far. Considering the following type for lists

type list = Nil | Cons elt list

we can use our prototype to define the following client program (assuming hash
table operations provided by a module H):

let uniq (l: list) : list

ensures { distinct result }

ensures { forall x. mem x result ↔ mem x l }

= let h = H.create () in

let r = ref Nil in

iter (fun x →
if not (H.mem x h) then begin H.add x h; r := Cons x !r end)

l;

!r

The code first declares a new hash table h and a reference r to hold the output
list. The consumer function checks, each time it is called, whether the element x
is not yet in the hash table. If so, it adds x both to the table h and to the list r.
When the iteration completes, we return the contents of r.

To verify function uniq, we need to equip the iteration with a suitable “loop”
invariant. We use here the term “loop” in a loose way, to refer to the iteration
performed by the iter function. To allow this invariant to refer to the sequence of
already enumerated elements, we add an extra ghost argument v to the consumer
function. The code now looks as follows:

iter (fun (ghost v) x →
invariant { ...user loop invariant... }

if not (H.mem x h) then begin H.add x h; r := Cons x !r end)

For this program, a suitable invariant is the following:

distinct !r ∧ (forall x. mem x v ↔ mem x !r) ∧
(forall x. H.contains h x ↔ mem x !r)

It states that at each step of the iteration the accumulator r contains exactly
the elements enumerated so far, without repetition. The last clause states that
the elements in the hash table are exactly the elements of r.

We now turn the uniq program into a first-order implementation
uniq correct that uses a cursor to perform the same iteration as the iter
function. The following is the Why3 code resulting from this transformation (as
produced automatically by our prototype tool):
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let uniq_correct (l: list elt) : list elt

ensures { distinct result }

ensures { forall x. mem x result ↔ mem x l }

= let h = H.create () in

let r = ref Nil in

let _c = create_cursor l in

while has_next _c t do

invariant { enumerated _c }

invariant { let v = _c.visited in ...user loop invariant... }

let x = next _c l in

if not (H.mem x h) then begin H.add x h; r := Cons x !r end

done;

!r

The invariant enumerated c is automatically added to the loop2. The sec-
ond invariant is the one that was given by the user, where v is bound to the
sequence contained in the cursor. The cursor functions create cursor, next,
and has next are given the same contracts as in Sect. 4.1. The body of the con-
sumer function is turned into the loop body, and x is bound to the next iteration
element, as returned by next.

Then we can feed the program uniq correct to Why3 for verification. In this
case, all verification conditions are discharged automatically by SMT solvers.
This implies that the original higher-order uniq program is correct with respect
to its specification, provided function iter is implemented and proved correct
w.r.t. the same enumerated/completed specification. The latter can be done using
the technique presented in the previous section.

It is worth pointing out that the consumer function passed to iter is free
to have side effects. (In the example above, it does, as it fills the hash table.) In
particular, it could jeopardize the iteration by mutating data on which the iter-
ation relies. This is not an issue, though, since we have to prove the preservation
of the loop invariant enumerated. In this respect, the situation is not different
from the use of cursors, as described in Sect. 4.1.

6 Related Work

The idea of formally specifying and proving cursors is not new. Weide presents
a formal specification for the cursors’ behavior [16] using the RESOLVE lan-
guage [10]. A collection is modeled as a finite set (in the mathematical sense)
and a cursor is specified using a past sequence corresponding to our visited and
another future sequence corresponding to remaining elements. A third sequence,
original, contains the set of elements of the collection. Under such formaliza-
tion, a cursor can only be used with finite collections and the traversal is necessar-
ily deterministic. The author also presents a mechanism to ensure coherence, by

2 Here we use a definition of enumerated that takes as argument a cursor. This can
be easily derived from the definition of enumerated that was given to specify the
iterator.
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means of extra operations over cursors, Start Iterator and Finish Iterator,
that should limit all the cursor uses. In this way, and contrary to our approach,
the validity of a cursor can only be verified once the traversal is finished.

In the literature we can find many cursors formalization and proof exam-
ples under the more general context of data structures library verification. One
example is that of the EiffelBase2 library [12], a container library for the Eiffel
language. The verification task is performed using the AutoProof system. How-
ever, EiffelBase2 offers no generic presentation of cursors.

Many tools exist that tackle the verification of higher-order effectful pro-
grams, in particular of higher-order iterators. These are normally based on rich
specification logics and type systems. Liquid Types [13] is a type system with
refinement types extracted from a decidable logic. This type system is used to
infer simple “loop invariants” from a given code. In our case, the user sup-
plies the loop invariant and, contrary to the Liquid Types approach, we apply
and prove an iterator client without access to the iterator implementation, in a
modular way.

Vazou et al. [15] present a technique to verify a call to a foldr function
(another iterator, very close to iter) over lists. This technique consists in anno-
tating the program with a dependent type that expresses an invariant about the
list of already processed elements. We provide a similar invariant when calling
an iter function. The main difference is that our approach is not limited to
lists: using predicates enumerated and completed we can specify many kinds of
iteration.

Dependent types and monad structures are used in the F* tool [14] as the
theoretical basis to tackle the proof of higher-order programs with effects. F* can
be used both as a programming language and as a proof assistant, featuring a
higher-order specification and programming language. This tool has been used
to verify many complex effectful programs including cryptographic protocols
and the mechanization of lambda calculi metatheory. Even though F* is able
to use SMT solvers during the proving process, it seems that the verification
of nontrivial (effectful) higher-order programs is out of the realm of automatic
provers. In particular, the specification of a higher-order iterator is very similar
to what one would write in a general-purpose proof assistant like Coq.

The CFML tool [3] uses characteristic formulas to verify OCaml code within
the Coq proof assistant. Characteristic formula is a higher-order formula that
can be generated from a source code and its specification, and that describes
the semantics of a given program. Using a proof assistant based on higher-order
logic, the characteristic formula can be exploited to prove complex properties
about that program. Up to now, CFML has been used to verify several non-
trivial higher-order imperative programs, including higher-order iterators over
mutable data structures. However, the specification used to describe a higher-
order iterator is always tied to a specific collection data type.

Ynot [11] is a library for the Coq proof assistant that can be used to write
and verify imperative programs. It is based on Hoare Type Theory and the use
of monads and separation logic to reason about effects. An implementation of
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imperative finite maps has been verified with Ynot, including a fold -like (effect-
ful) iterator. The theoretical techniques employed by Ynot seem to make difficult
its use in an automatic proof process.

7 Conclusion and Perspectives

In this paper we presented an approach to specify programs performing itera-
tions. Our proposal consists in specifying two predicates enumerated and com-
pleted characterizing the sequence of already enumerated elements. Our specifi-
cation allows, notably, non-deterministic and infinite iterations. This approach
can be applied to different iteration paradigms.

To validate our idea, we applied it to the specification of two particular forms
of iteration, namely cursors and higher-order iterators. We wrote several exam-
ples of iterators and client codes for each paradigm. Using the Why3 deductive
verification tool we were able to formally prove that these implementations are
correct. It is worth noting that our approach to specify an iteration via pred-
icates enumerated and completed is not tied to Why3. Any other deductive
verification tool could be used instead.

To verify higher-order iterators, we proposed a mechanical translation of
a higher-order code (either an iterator implementation or a client code) into a
first-order program. The specification of this first-order program is automatically
derived from the predicates enumerated and completed, and the correctness of
the generated code implies that of the initial higher-order code.

Perspectives. On a short term perspective, we intend to extend Why3 with a for
loop á la Java based on cursors. This will be of particular interest for a longer-
term project of verifying a realistic graph library with Why3. Indeed, graph
algorithms heavily rely on the use of iterators, for example to traverse vertices
of a graph or neighbors of a vertex. It remains to show that our specification of
iteration is well suited for the verification of such algorithms, particularly in a
context where we seek proofs as most automatic as possible.

Besides, we think that our proposal could apply as well to other iteration par-
adigms, such as streams (implemented as lazy lists) or generators (implemented
as coroutines). We intend to explore this question in the future.

Acknowledgments. We thank Clément Fumex, Chantal Keller, Claude Marché,
Andrei Paskevich, Vitor Pereira, François Pottier, and Simão Melo de Sousa for their
comments on earlier versions of this paper.
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7. Filliâtre, J.-C.: One logic to use them all. In: Bonacina, M.P. (ed.) CADE 2013.
LNCS, vol. 7898, pp. 1–20. Springer, Heidelberg (2013)
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Abstract. Establishing properties of binary programs by proof is a
desirable goal when the properties of interest are crucial, such as those
that arise in safety- and security-critical applications. Practical develop-
ment of proofs for binary programs requires a substantial infrastructure
to disassemble the program, define the machine semantics, and actu-
ally undertake the required proofs. At the center of these infrastructure
requirements is the need to document semantics in a formal language. In
this paper we present a work-in-progress proof infrastructure for binary
programs based on AdaCore and Altran’s integrated development and
verification environment, SPARKPro. We illustrate the infrastructure
with proof of a security property.

1 Introduction

Establishing properties of binary programs by proof is a desirable goal receiving
significant attention recently [2,4–6]. Any approach to proving software prop-
erties requires a comprehensive infrastructure that: (a) defines the semantics of
the target machine architecture, (b) translates binary programs into a represen-
tation suitable for proof based on the defined machine architecture semantics,
and (c) operates on translated binary representations to generate proof.

Many languages could be used to define machine semantics, and many proof
tools exist. Our infrastructure is based on an application of AdaCore and Altran’s
integrated development and verification environment, SPARKPro [1] and our
custom binary-to-SPARK-Ada translator. SPARKPro was chosen for many rea-
sons:

– The SPARK Ada language [1] has been designed for proof and includes syn-
tactic structures to enable definition of the necessary verification conditions.

– SPARK Ada is familiar to many in the community and simple to use.
– SPARKPro proof tools provide the capability to establish necessary proofs.
– SPARKPro has industrial-strength support thereby allowing the technology

to be adopted by practitioners.
– SPARKPro provides an executable specification that can be tested.

c© Springer International Publishing Switzerland 2016
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In this paper, we present a work-in-progress binary proof infrastructure based
on SPARKPro. We illustrate the infrastructure with an example binary program
and prove the program possesses a desired security property.

Binary 
Program

Desired 
Properties

SPARKPro 
proof tools

SPARK Ada 
Translator 

SPARK Ada Machine 
Representation Library

Instruction 
Set

Machine 
Architecture

SPARK Ada 
Translation

Proof ReportBinary 
Analyzer

Fig. 1. Architecture of proof infrastructure for binary programs. The SPARK Ada
Machine Representation is the focus of this paper, and light gray elements indicate
other supporting aspects of our work.

2 Proof Infrastructure

Figure 1 shows the architecture of our proof infrastructure. A binary program
is first processed by a static analyzer to disassemble the program and recover
important program structures. Of particular importance in the analysis is the
recovery of function boundaries and control structures such as conditions and
loops. A translator then converts the binary program to a SPARK Ada repre-
sentation. The translator accesses semantics of the target machine architecture
and instruction set, both defined within our SPARK Ada library. It also accesses
a description of desired program properties to prove and merges them into the
representation of the subject program. Finally, the composite representation of
the subject program and desired properties is submitted to the SPARK prover.

The proof infrastructure could be applied to any instruction set architecture
(ISA); however, our current research focuses on X86–64. Figure 2 shows a high-
level organization of the two semantic definitions of the X86–64 ISA.

Central to the machine semantics are registers. The integer registers are
represented as Ada integers with modulus 264 (Unsigned64). As shown in Fig. 3,
a general-purpose X86–64 register (e.g., RAX) can be accessed multiple ways. RAX
is modeled as Unsigned64 and is directly accessed for reading and writing. EAX
is modeled by read/write functions as shown in Fig. 4. The read function (EAX)
returns the lower 32-bits of RAX and Write EAX sets those bits, while setting
the upper bits to zero. AL, and AH and AX are specified similarly, except with
appropriate bits preserved instead of set to zero. Each function includes a post-
condition in the SPARK Ada syntax describing the expected result. These post-
conditions are verified by the SPARKPro proof tools. Flag registers (OF, SF, ZF,
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SPARK Ada Machine Representation Library
Instruction SetMachine Architecture

Integer
Registers

Flags

Floating Point
Registers

Memory

Implementation

Fig. 2. X86–64 Semantic Definition
Library

RAX

ALAH

AX
EAX

Fig. 3. RAX register and alternate
access methods

Fig. 4. EAX specification

AF, CF, and PF) are modeled as Boolean. Floating-point registers (e.g., XMM and
YMM) are not currently modeled.

Memory is modeled as an array of 264 8-bit elements. The declaration of this
array is shown in Fig. 5, along with 16-bit reads and writes operating on the
memory array.

Fig. 5. Memory type specification

Many X86–64 instructions are modeled as SPARK Ada functions operating
on memory and registers. For example, the instruction setnbe is specified as
shown in Fig. 6. In some cases, instructions match an operator in Ada (e.g.,
addition), and for those instructions the Ada operator is used directly. Similarly,
jump instructions are modeled using Ada control statements (e.g., loops). Other
approaches to modeling jumps are possible, but difficult to prove. For example,
a binary program could be modeled as an array of instructions and a location
counter that is used as an array pointer. Jump instructions could then set the
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instruction counter accordingly. The lack of loop details, however, would make
synthesis of loop invariants and subsequent proof almost impossible.

Fig. 6. Specification of setnbe

3 Example

To illustrate the proof infrastructure and to highlight areas of current work, we
examine an example challenge function for security, zero array, the C represen-
tation of which is shown in Fig. 7. The zero array function is passed a pointer to
an array and a size parameter. The function proceeds to zero out size elements
of the array. This function presents a typical security challenge since zero array
might result in a buffer overflow that could corrupt, among other things, function
return addresses depending on the value of the size parameter.

Fig. 7. Implementation of zero array

In an example program (not illustrated) zero array is called from two dif-
ferent functions, each of which passes a pointer to an array of a different size. In
the program, the size parameter is always set to the size of the array, i.e., while
zero array is potentially dangerous, its use in this example does not introduce
a security vulnerability. The example program was compiled with gcc and the
raw disassembled binary as produced by objdump was examined.1

The SPARK Ada representation of the zero array function is shown in
Fig. 8, with the associated disassembled code included as comments. Line 19
of Fig. 8 represents the mov instruction as Write EAX; however, for lines 9–11,
instead of modeling the test instruction as a procedure, the result of test (i.e.,
assignment of flag registers) is represented explicitly in the translated code.
Additionally, the binary analysis detects write-after-write situations affecting
flags. For example, the flags that would be set by the add instruction (lines 23–
24) are not read prior to the following cmp instruction, so there is no need to
model the setting of these flags.

1 The binary analyzer uses a combination of objdump and IDA Pro.
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Fig. 8. SPARK Ada representation of zero array

The loop on line 20 and the if statement on line 13 are examples of control
structures recovered by the static analyzer from analysis of jump instructions.

To prove security properties about the SPARK Ada representation, con-
straints are added to the initial version of the representation (not illustrated).
So as to prove the integrity of other items on the stack, the constraint in this
example is that the loop index of zero array will not exceed the size parameter.
With this constraint in the example, using the SPARKPro prover (gnatprove)
with the cvc4 backend we are able to prove that the example program will not
overwrite any function’s return address.

This proof requires approximately 8 seconds to complete when using all 8
cores of a MacBook Pro (Retina, Mid 2012). We plan to publish further discus-
sion of automatic constraint development in the future.

4 Related Work

Zhao et al. [6] propose binary software fault isolation techniques (ARMor) based
on a model of the ARM ISA [3] and Hoare logic. Their approach modifies a binary
program by inserting guards at possibly dangerous instructions. Proofs are then
generated about security of the modified code. XFI is an approach similar to
Zhao et al. developed to support binary programs on Windows [2]. XFI’s verifi-
cation is based primarily on the defined properties of security guards. Software
modifications simplify the development of constraints and proofs; however, mod-
ifications add overhead and do not allow isolation of weaknesses in the original
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binary program. In our approach, binary modifications are not necessary, but
could be used as a last resort when proofs cannot be established.

AUSPICE is also an approach based on a model of the ARM ISA using Hoare
logic [5]. AUSPICE supports security property verification for binary programs
without the need for modifications. To avoid manual development of invariants
and function pre-/post-conditions, AUSPICE makes simplifying assumptions. In
particular, machine-code instructions are not allowed to alter memory addresses
greater than the current function’s frame pointer address. This restriction is not
practical for most real-world programs.

Prior versions of the Binary Analysis Platform (BAP) support some security
analysis through manual insertion of predicates into intermediate representations
of the binary program [4]. This approach is limited to intraprocedural analysis of
functions that do not call other functions. Further, the BAP approach does not
complete proofs unless loops are unrolled and the code is free of indirect jumps.
More recent versions of BAP no longer appear to support formal analysis.

5 Conclusion

Reverse engineering of binary programs into a formal language and including for-
mal specifications of desired properties admits the possibility of proving those
properties. We have presented our infrastructure based on SPARKPro for prov-
ing properties about binary programs. Binary programs are analyzed and trans-
lated into SPARK Ada. Properties are specified using SPARK Ada and proven
using the SPARKPro toolchain. We illustrated the application of our approach
with an example binary program, proving an important security property.

The SPARKPro toolchain has the advantage of being able to run multiple
proofs in parallel with most proofs discharged automatically. Additionally, the
SPARK Ada representation can be compiled into an executable program that
could allow for verification by testing for representational accuracy. A current
disadvantage of the toolchain is that, when proofs are not discharged automati-
cally, completing the proof manually can be difficult. We plan to discuss specific
details of translating binary programs and producing constraints for security
properties in future publications; however, the work presented here lays the
foundation for and focuses the direction of further research and development.
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Abstract. In this paper, we introduce the idea of hierarchical verifica-
tion for quantum circuits, where we use a powerful language, higher-order
logic, to reason about quantum circuits formally. We propose a formal
modeling and verification approach that captures quantum models built
hierarchically from primitive optical quantum gates. The analysis and
verification of composed circuits is done seamlessly based on dedicated
mathematical foundations formalized in the HOL Light theorem prover.
In order to demonstrate the effectiveness of the proposed infrastructure,
we present the formal analysis of the controlled-phase gate and Shor’s
factoring quantum circuits.

1 Introduction

Since it has been proved that classical machines cannot simulate quantum physics
in polynomial times [11], scientists were working to develop new computers
which employ quantum physics. Throughout their research, quantum technolo-
gies showed a good potential to provide solutions to several challenges such as
secure communication and faster computation. Quantum optics is considered as
one of the promising approaches for realizing “universal” quantum machines [6].

Despite the fact that quantum computers are not yet commercially avail-
able, their realisation requires the development of comprehensive tools for the
modeling and verification of quantum devices. Due to the inherent complexity of
quantum circuits, numerical simulations are incomplete: the computation space
increases exponentially with the size of the circuit. Nevertheless, a number of
tools have been proposed for simulation of quantum circuits. For instance, in [4]
quantum gates are described as matrices and applied to quantum states using
matrix-vector multiplication, however, a time-out is reached when simulating 15
qubits (quantum bits) circuits. Hence, we believe that there is a dire need of
comprehensive and expressive computer-aided design and verification tools for
quantum systems that cover both the mathematics and the principles of quan-
tum physics.

Higher-order-logic (HOL) theorem proving is an effective approach to ana-
lyze engineering systems, thanks to its solid mathematics. Therefore, we believe
that HOL can assist in the modeling and verification of quantum computers.
In this paper, we propose to use the HOL Light theorem prover [5] to handle
the hierarchical verification of quantum circuits thanks to its rich support for
c© Springer International Publishing Switzerland 2016
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multivariate calculus and Hilbert spaces theories [9] which are essential to reason
about quantum optics.

Our ultimate goal is to build the necessary tools to formally model and verify
quantum circuits composed of primitive quantum gates, that are built using only
optical components, in a hierarchical fashion. The first step towards this goal is
to formally define in HOL the required mathematics, including the notions of
projection, tensor product, and tensor product projection. We then apply these
definitions to formally model and verify quantum primitive gates and circuits.
We use this approach to formally model and verify the controlled-phase (CZ)
gate circuit [6] and the Shor’s factorization circuit of number 15 [1]. The source
code of our formalization is available for download at [2].

In [8], the authors formalized the controlled-not (CNOT) gate. However, they
did not provide the bi-linearity of tensor product and other important properties
which are required to model and verify composed quantum circuits. In [12], a
quantum process calculus is used to model linear optical quantum systems. It
was applied to model the CNOT gate. The main limitation of this work is that
the beam splitters parameters are considered as real numbers, however, they
often need to be complex numbers as in the case of quantum interferometer [10].

2 Formalization of Tensor Product and Projection

For quantum optics the state of a quantum system is a probability density func-
tion which provides the probability of the number of photons inside the optical
beam, typically written as |ψ〉. The set of quantum pure states (i.e., states which
form the basis for a quantum states space) are called fock states. An optical beam
in a fock state |n〉, where n = 0, 1, 2, . . ., means that the light stream exactly
contains n photons. Given an n-beam quantum state where each |ψ〉k, k ∈ [1;n],
describes the quantum state of single mode beam k, then the joint state of the
n optical beams is |ψ〉1 ⊗ |ψ〉2 ⊗ ... ⊗ |ψ〉n (sometimes we use |ψ1, ψ2, ..., ψn〉),
where ⊗ operation is the tensor product.

2.1 Formalization of Tensor Product

Given the quantum state |ψ〉1 . . . |ψ〉n of n optical beams, the function that
describes the joint probability of the n beams is then the point-wise multi-
plication of all the states, which refers to the optical states tensor product.
Hence, we define the tensor product for an n-beam quantum state as follows:
λ y1 . . . yn. (|ψ〉1 ⊗ . . . ⊗ |ψ〉n)(y1 . . . yn) = |ψ〉1y1 ∗ . . . ∗ |ψ〉nyn. We therefore
define the tensor product for n beams in HOL, recursively, as:

Definition 1 (Tensor Product)
� tensor 0 mode = (λy. 1) ∧
tensor n + 1 mode = (λy. ((tensor n mode) y) ∗ (mode$(n + 1) y$(n + 1)))
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where the symbol $ denotes the vector indexing operator (a$i ⇔ a(i)). mode is
a vector of size n that contains n modes. The basic case of zero mode n = 0 is a
trivial case; it is a constant function (i.e., y → 1) and it guarantees a terminating
definition. Next, we prove that this tensor satisfies the bi-linearity property:

Theorem 1 (Tensor: Bi-Linearity)
� 0 < k ≤ n + 1 ∧ mode$k = a1 % x1 + a2 % x2 ⇒
tensor n + 1 mode = a1 % tensor n + 1 (λi. if i = k then x1 else mode$i)

+ a2 % tensor n + 1 (λi. if i = k then x2 else mode$i)

where the symbol % denotes the scalar multiplication. Note that the number of
modes is n + 1 as this property does not hold for 0 where tensor is the constant
function. The two assumptions 0 < k ≤ n + 1 and mode$k = a1 % x1 + a2 % x2
ensure that the element k is part of the tensor and is a combination of two
vectors. The proof is based on using induction where the base case is trivial and
in the inductive step we use the lemma k ≤ n + 2 ⇔ (k ≤ n + 1 ∨ k = n + 2) then
using the induction hypothesis for the first and the definition of tensor for the
second.

An important property for the manipulation of the tensor product is when
we have a tensor constructed out of two elementary tensors. In this case, this
property states that a tensor v1 ⊗ ...⊗vm ⊗u1 ⊗ ...⊗un = (v1 ⊗ ...⊗vm)⊗ (u1 ⊗
... ⊗ un).

Theorem 2 (Tensor: Multiplication)
� tensor m + n mode =

(λy. ((tensor m mode) y) ∗ (tensor n (λi. mode$(i + m))) (λi. y$(i + m)))

A typical usage of this theorem is to separate elementary tensors for the sake
of conducting quantum transformations independently from each other. Then
using the same theorem, we can return back to the initial tensor.

2.2 Formalization of Linear Projection

In linear algebra, a projection is a linear transformation p from a vector space to
itself that maintains the idempotent property; p2 = p. In the quantum context,
for a pure state |ψ〉, the projection is defined as p = |ψ〉 〈ψ| which is a self-
adjoint and linear transformation. In particular, for a quantum circuit design,
the expected circuit output is the projection of all possible outputs over the
appropriate fock states. For example, let us consider the state |φ〉 = 1

3 |n〉 +
1
3 |n − 1〉 + 1

3 |n + 1〉 and the projection pn = |n〉 〈n|. The result of the projection
of |φ〉 is pn(|φ〉) = |n〉 〈n|( 13 |n〉 + 1

3 |n − 1〉 + 1
3 |n + 1〉) = 1

3 |n〉, because the fock
states form an orthonormal basis. Therefore, we define the projection on fock
states as follows:
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Definition 2 (Linear Projection)
� ∀ x. (proj |n〉sm) x = 〈nsm|x〉 % |n〉sm
where proj |n〉sm is the projection over the fock state and accepts as parameter x.
We have proven the three requirements for this projection which are linearity,
idempotent and self-adjoint properties. Next we show the first two properties:

Theorem 3 (Projection: Linearity)
� is sm sm ⇒ ∀ x y a.

(proj |n〉sm) (a1%x + a2%y) = a1%(proj |n〉sm) x + a2%(proj |n〉sm) y

where the assumption is sm sm is used to maintain the requirement that the
optical mode sm is indeed the single mode used.

Theorem 4 (Projection: Idempotent)
� is sm sm ⇒ ∀x. (proj |n〉sm) ((proj |n〉sm) x) = (proj |n〉sm) x

2.3 Formalization of Tensor Product Projection

In some realization of quantum optics, the gates are implemented using ancillas
which are extra qubits that are used for detecting the correct output [7]. During
the design process of a quantum circuit, the ancilla is measured after it leaves the
circuit. The correct output is known whenever the detector registers the expected
ancilla. In our formalization, we implement the process of detecting the expected
ancillas in the outputs of a quantum circuit as the tensor product projection
of the outputs. We combine the tensor product and linear projection together
to obtain the tensor product projection. By doing this, we will eliminate the
undesirable outputs and keep only the “correct” output. In addition, we will have
the projected state multiplied by a scalar value which is the success probability
of the circuit. We define the projection of multi-mode states as follows:

Definition 3 (Tensor Projection)
� is tensor proj m proj ⇔ ∀ mode1 mode2 n.

is linear cop (m proj (tensor n mode1)) ∧
m proj (tensor n mode1) (tensor n mode2) =

tensor n (λi. ((proj mode1$i) mode2$i))

where is linear cop op ensures that the operator op is indeed a linear operator.
Using this definition, we prove a crucial property in the analysis of quantum
circuits, which states that (p1 ⊗ ... ⊗ pn)(u1 ⊗ ... ⊗ un) = p1(u1) ⊗ ... ⊗ pn(un):

Theorem 5 (Tensor Projection: Multiplication)
� is tensor proj m proj ∧ 1 ≤ n ⇒
(m proj tensor m + n mode1) tensor m + n mode2 =
(λy. ((m proj tensor m mode1) tensor m mode2) y ∗
(m proj tensor n (λi. mode1$(i + m)) tensor n (λi. mode2$(i + m))) (λi. y$(i + m)))
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This property is very useful when projecting a multi-mode state which is applied
to parallel quantum gates as the case for the controlled-phase gate. Using the
tensor product lemma v1 ⊗ ...⊗0⊗ ...⊗ vn = 0, we prove the following property:

Theorem 6 (Tensor Projection: Fock States)
� is tensor proj m proj ∧ 0 < k ∧ mode1$k = |m1〉sm ∧ mode2$k = |m2〉sm ∧
m1 �= m2 ∧ is sm sm ∧ k ≤ n + 1 ⇒
(m proj tensor n + 1 mode1) tensor n + 1 mode2 = 0

This theorem is very important for the measurement of photons as it indicates
that for two multi-mode states, where in the first state, the single mode k con-
tains the fock state |m1〉 and in the second state, the single mode k contains
the fock state |m2〉. If m1 and m2 are different, then the projection of the first
multi-mode state over the other is zero. By this, we have covered the required
mathematics for dealing with the verification and analysis of quantum circuits.

3 Hierarchical Verification: Applications

In this section, we will demonstrate the idea of hierarchical verification of quan-
tum circuits based on the formalization of primitive gates, reported in [3], by
formally verifying the controlled-phase (CZ) gate and Shor’s factoring of number
15 circuits.

3.1 Verification of CZ Gate

A CZ gate is constructed using two non-linear sign (NS) gates [3] and two beam
splitters, as shown in Fig. 1. The CZ gate transforms the input |x, y〉 to the output
eiπx.y|x, y〉, x, y ∈ {0, 1}. The success probability of measuring the ancilla state
|1, 0〉 in both NS gates is 1

16 [3]. We define the CZ gate as follows:

Fig. 1. Controlled-phase gate circuit

Definition 4 (CZ Gate)
� is cz (a, j, ten) ⇔ (∀ b c d q k l m p.
ns gate(d, m, p, q, ten) ∧ ns gate(b, l, k, c, ten) ∧
beam splitter( 1√

2
, 1√

2
, 1√

2
,− 1√

2
, ten, a$1, 1, a$4, 4, b$1, 1, b$4, 4) ∧

beam splitter( 1√
2
, 1√

2
, 1√

2
,− 1√

2
, ten, c$1, 1, c$4, 4, j$1, 1, j$4, 4) ∧

(q$1 = c$4 ∧ q$2 = c$5 ∧ q$3 = c$6) ∧ (b$4 = d$1 ∧ b$5 = d$2 ∧ b$6 = d$3)
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Note that we rename the input and output ports for the second NS gate in order
to match the order of the modes in the definition of NS, instead of |b$4, b$5, b$6〉
and |c$4, c$5, c$6〉 we have |d$1, d$2, d$3〉 and |q$1, q$2, q$3〉, respectively. We
formally verified the CZ operations and its success probability for the four pos-
sible combinations of inputs, among which we provide here one of them.

Theorem 7 (CZ Gate: Input: |1, 1〉)
� let constraints = is tensor proj m proj ∧ is tensor ten ∧
is cz (a, j, ten) in

let |2, 1, 0, 0, 1, 0, 0, 0〉cq = tensor 8 (λi. if i = 1 then |2〉c$1 elseif i = 2 then

|1〉c$2 elseif i = 5 then |1〉q$2 else |0〉c$3) in

let |0, 1, 0, 2, 1, 0, 0, 0〉cq = tensor 8 (λi. if i = 2 then |1〉c$2 elseif i = 4 then

|2〉q$1 elseif i = 5 then |1〉q$2 else |0〉c$3) in

let |1, 1, 0, 1, 1, 0, 0, 0〉cq = tensor 8 (λi. if i = 1 then |1〉c$1 elseif i = 2 then

|1〉c$2 elseif i = 4 then |1〉q$1 elseif i = 5 then |1〉q$2 else |0〉c$3) in

let |1, 1, 0, 1, 1, 0, 0, 0〉ab = tensor 8 (λi. if i = 1 then |1〉a$1 elseif i = 2 then

|1〉b$2 elseif i = 4 then |1〉a$4 elseif i = 5 then |1〉b$5 else |0〉b$3) in

let |1, 1, 0, 1, 1, 0, 0, 0〉cj = tensor 8 (λi. if i = 1 then |1〉j$1 elseif i = 2 then

|1〉c$2 elseif i = 4 then |1〉j$4 elseif i = 5 then |1〉c$5 else |0〉c$3) in

constraints ⇒ (m proj |2, 1, 0, 1, 0, 0, 0, 0〉cq + m proj |0, 1, 0, 1, 2, 0, 0, 0〉cq +

m proj |1, 1, 0, 1, 1, 0, 0, 0〉cq) (|1, 1, 0, 1, 1, 0, 0, 0〉ab) = − 1
4

% |1, 1, 0, 1, 1, 0, 0, 0〉cj

Note that the output of the CZ gate has been projected over three different
states. This is because that we have two photons at the input (|1, 1〉) which
results in three possibilities at the input of the two parallel NS gates: (1) two
photons go through the first NS gate; (2) two photons go through the second
NS gate; and (3) one photon goes through the first NS gate and the other goes
through the second NS gate. The verification of the CZ gate has been done
using Theorem 6 in order to subdivide the main tensor product projection to
two tensor product projections, where each is fed to an NS gate. This completes
the analysis of the CZ for the input “11”. The analysis for the inputs “01”, “00”,
and “10” follows the same pattern. The actual physical implementations of the
CZ gate have 8 input modes. However, the CZ is a 2-qubits gate, where each
logical qubit is represented by two optical modes and the rest of the modes are
ancillas. Therefore in order to facilitate the use of this gate in complex quantum
circuits, we developed an input/output behavioral description:

Definition 5 (CZ Behavioral Description)
Input : |1, 1〉L ≡ (m proj |2, 1, 0, 1, 0, 0, 0, 0〉cq + m proj |0, 1, 0, 1, 2, 0, 0, 0〉cq +
m proj |1, 1, 0, 1, 1, 0, 0, 0〉cq) |1, 1, 0, 1, 1, 0, 0, 0〉ab
Output : |1, 1, 0, 1, 1, 0, 0, 0〉cj ≡ |1, 1〉L

3.2 Verification of Shor’s Factorization

Shor’s integer factorization is a quantum algorithm to compute the two primes
factor of a given integer much faster than classical algorithms. Our objective
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here is to show the formal modeling and verification of a compiled version of
Shor’s factoring of number 15 [1] using the previously presented formalization.
The task of the underlying circuit is to find the minimum integer r that satisfies
ar mode N = 1, where N = 15 and a is a randomly chosen co-prime integer to
N , in our case a = 2. r is called the order of a modulo N , from which we compute
the desired prime factors; (a

r
2 − 1) and (a

r
2 + 1). The circuit is composed of six

Hadamard [3] and two CZ gates, as shown in Fig. 2, and has 4 inputs/outputs.
Inputs are initialized to the state; |ψ〉in = |0, 0, 1, 0〉x1f1f2x2. From the computed
output, |ψ〉out = |., ., ., .〉ẋ1ḟ1ḟ2ẋ2, we extract the variable z = |., ., 0〉ẋ1ẋ2, then
we obtain r = az mod 15. Accordingly, we formally define the structure of the
circuit and verify its operation as follows:

Definition 6 (Shor Circuit)
� shor (x1, x2, f1, f2, f̈1, f̈2, j1, j2, ten) ⇔ (∀ b d. j2$2 = ẍ2 ∧
is hadamard(x1, b$2, ten) ∧ is hadamard(f1, b$1, ten) ∧ is cz(d, j2, ten) ∧
is hadamard(x2, d$2, ten) ∧ is hadamard(f2, d$2, ten) ∧ is cz(b, j1, ten) ∧
j1$2 = ẍ1 ∧ is hadamard(j1$1, f̈1, ten) ∧ is hadamard(j2$1, f̈2, ten))

Fig. 2. Shor’s factoring of 15 circuit

Theorem 8 (Shor’ Factoring of 15)
� let constraints = is tensor proj m proj ∧ is tensor ten ∧
shor (x1, x2, f1, f2, f̈1, f̈2, j1, j2, ten) in
let |0, 0, 1, 0〉f1x1f2x2 = tensor 4 (λi. if i = 1 then |0〉f1 elseif i = 2 then |0〉x1
elseif i = 3 then |1〉f2 else |0〉x2) in
let |0, 0, 0, 1〉f̈1ẍ1f̈2ẍ2 = tensor 4 (λi. if i = 1 then |0〉f̈1 elseif i = 2 then |0〉ẍ1
elseif i = 3 then |0〉f̈2 else |1〉ẍ2) in
let |0, 0, 1, 0〉f̈1ẍ1f̈2ẍ2 = tensor 4 (λi. if i = 1 then |0〉f̈1 elseif i = 2 then |0〉ẍ1
elseif i = 3 then |1〉f̈2 else |0〉ẍ2) in
let |1, 1, 0, 1〉f̈1ẍ1f̈2ẍ2 = tensor 4 (λi. if i = 1 then |1〉f̈1 elseif i = 2 then |1〉ẍ1
elseif i = 3 then|0〉f̈2 else |1〉ẍ2) in
let |1, 1, 1, 0〉f̈1ẍ1f̈2ẍ2 = tensor 4 (λi. if i = 1 then |1〉f̈1 elseif i = 2 then |1〉ẍ1
elseif i = 3 then |1〉f̈2 else |0〉ẍ2) in
constraints ⇒ |0, 0, 1, 0〉f1x1f2x2 = 1

32
% (|1, 1, 1, 0〉f̈1ẍ1f̈2ẍ2 + |1, 1, 0, 1〉f̈1ẍ1f̈2ẍ2

+ |0, 0, 1, 0〉f̈1ẍ1f̈2ẍ2 + |0, 0, 0, 1〉f̈1ẍ1f̈2ẍ2)
Here the circuit outputs two categories of solutions; (1) |000〉 or |100〉 which are
expected failures of the algorithm [1]; (2) |010〉 or |110〉 ≡ z = 2 or z = 6 which
give r = 4 from which we obtain the 5 and 3 prime numbers. The verification
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of the compiled Shor’s circuit has been done using Theorem 3 to subdivide the
tensor to four tensors, and apply Hadamard transformation on each elementary
tensor.

4 Conclusion and Discussion

In this paper, we reported a novel application of formal methods to enable
the hierarchical modeling and verification of quantum circuits. We presented
the higher-order logic formalization of mathematical foundations such as ten-
sor product, linear projection, and tensor product projection. Then we showed
how they can be applied for the hierarchical modeling and analysis of composed
quantum circuits using the CZ gate and Shor’s 15 factoring circuits.

One of the important outcomes of this work is the efficiency that the tensor
projection brought to our formalization: if we tackled the NS gate without the
projection (such as in [8,12]), we will have 10 possible outputs (with only one
correct output) which dramatically affects the CZ analysis that contains two
parallel NS gates which in turn produce 10∗10 = 100 possible outputs. Moreover,
it gets worse when it comes to the Shor’s circuit where we have two CZ gates and
at the level of inputs of each gate we have four possible inputs, which means at
the output of these gates we have (4 ∗ 100) ∗ (4 ∗ 100) = 16.104 possible outputs.
Thanks to the projection properties, such as projection linearity and projection
of two orthogonal tensor products, we were able to reduce the possible outputs
to consider only the correct ones. This is very important for scalability reasons,
especially for larger circuits which contain many quantum gates. We believe this
to be a significant feature of our formalization compared to before mentioned
related works, e.g., [8,12]. The reported mathematical foundation can be used
to reduce the complexity in the implementation of design verification tools for
quantum optics circuits analysis.

In future work, we plan to apply the formalization developed in this paper
to perform a formal synthesis of quantum circuits and to apply our methods on
other quantum systems, such as Grover’s algorithm.
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Abstract. Lock-based synchronization disciplines, like Java’s
@GuardedBy, are widely used to prevent concurrency errors. However,
their semantics is often expressed informally and is consequently ambigu-
ous. This article highlights such ambiguities and overcomes them by
formalizing two possible semantics of @GuardedBy, using a reference
operational semantics for a core calculus of a concurrent Java-like lan-
guage. It also identifies when such annotations are actual guarantees
against data races. Our work aids in understanding the annotations and
supports the development of sound tools that verify or infer them.

1 Introduction

Data races are common errors in concurrent programs which occur when a shared
data structure is manipulated by different threads, without synchronization, with
consequent unpredictable or erroneous software behavior. Such errors are difficult
to understand, diagnose, and reproduce. They are also difficult to prevent: testing
tends to be incomplete due to nondeterministic scheduling choices, and model-
checking scales poorly to real-world code.

The simplest approach to prevent data races is to follow a lock-based syn-
chronization discipline: always hold a given lock when accessing a shared data
structure. Since a lock can be held by at most one thread at any time, this
discipline ensures data-race freedom. However, it is easy to violate a locking dis-
cipline, so tools that verify adherence to the discipline are desirable. These tools
require a specification language to express the intended locking discipline.

The focus of this paper is on the formal definition of such a specification
language, its semantics, and the guarantees that it gives against data races.

In Java, the most popular specification language for expressing a locking dis-
cipline is the @GuardedBy [15]. Informally, if the programmer annotates a field f
as @GuardedBy(E) then a thread may access f only while holding the monitor
corresponding to the guard expression E. The @GuardedBy annotation was pro-
posed by Goetz [11] as a documentation convention only, without tool support.
It has been adopted by practitioners; GitHub contains about 35,000 uses of the
annotation in 7,000 files of distinct projects. Tool support now exists in Java
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DOI: 10.1007/978-3-319-40648-0 27



356 M.D. Ernst et al.

PathFinder [18], the Checker Framework [8], Houdini/rcc [1], IntelliJ [22], and
Julia [16].

All of these tools, except for [1], rely on the previous informal definition
of @GuardedBy(E) [15]. However, such an informal description is prone to many
ambiguities. Suppose a field f is annotated as @GuardedBy(E), for some guard
expression E. (1) The definition above does not clarify how an occurrence of the
self-reference variable this in E should be interpreted in client code; this actually
depends on the context in which f is accessed. (2) It does not define what an
access is. (3) It does not say whether a synchronization block must use the guard
expression E as written in the annotation or whether a different expression that
evaluates to the same value is permitted. (4) It does not indicate whether the
lock that must be taken is the value of E at the time of synchronization or that
at the time of field access: side effects on E might make a difference here. (5) It
does not clarify whether the lock on the guard E must be taken when accessing
the field named f or the value bound to f . The latter ambiguity is particularly
important. The interpretation of @GuardedBy based on names is adopted in most
tools appearing in the literature [1,16,18,22], whereas the interpretation based
on values seems to be less common [8,16]. As a consequence, it is interesting to
understand whether and how these two possible interpretations actually protect
against data races on the annotated field.

The main contribution of this article is the formalization of two different
semantics for annotations of the form @GuardedBy(E) Type f: a name-protection
semantics, in which accesses to the annotated field f need to be synchronized on
the guard expression E, and a value-protection semantics, in which accesses to a
value referenced by f need to be synchronized on E. The semantics clarify all the
above ambiguities, so that programmers and tools know what those annotations
mean and which guarantees they entail. We then show that both the name-
protection and the value-protection semantics can protect against data races
under proper restrictions on the variables occurring in the guard expression.
The name-protection semantics requires further constraints — the protected field
must not be aliased and the guard expression E must be final, i.e. immutable.

Finally, we have used our formalization to extend the Julia static analyzer [16]
to check and infer @GuardedBy annotations in arbitrary Java code. Our companion
paper [10] presents the implementation in Julia together with experiments that
show how the tool scales to large real software. Julia allows the user to select
either name-protection or value-protection. For instance, in the code of Google
Guava [12] (release 18), the programmer put 64 annotations on fields; 17 satisfy
the semantics of name protection; 9 satisfy the semantics of value protection; the
others do not satisfy any. Julia automatically infers all annotations for name-
protection and 5 of those that satisfy the value-protection semantics.

In this extended abstract proofs are omitted; full details can be found in [9].

Outline. Section 2 discusses the informal semantics of @GuardedBy by way of
examples. Section 3 introduces a calculus for a concurrent fragment of Java.
Section 4 gives formal definitions for both the name-protection and value-
protection semantics in our calculus. Section 5 shows which guarantees they
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provide against data races. Section 6 describes the implementation in Julia.
Section 7 discusses related work and concludes.

2 Informal Semantics of @GuardedBy

This section illustrates the use of @GuardedBy by example. Figure 1 defines an
observable object that allows clients to concurrently register listeners. Registra-
tion must be synchronized to avoid data races: simultaneous modifications of the
ArrayList might result in a corrupted list or lost registrations. Synchronization
is needed in the getListeners() method as well, or otherwise the Java memory
model does not guarantee the inter-thread visibility of the registrations.

The interpretation of the @GuardedBy(this) annotation on field listeners

requires resolving the ambiguities explained in Sect. 1. The intended locking dis-
cipline is that every use of listeners should be enclosed within a construct
synchronized (container) {...}, where container denotes the object whose
field listeners is accessed (ambiguities (1) and (2)). For instance, the access
original.listeners in the copy constructor is enclosed within synchronized

(original) {...}. This contextualization of the guard of synchronized blocks is
not clarified in any informal definitions of @GuardedBy (ambiguity (3)). Further-
more, it is not clear if a definite alias of original can be used as synchronization
guard at line 5. It is not clear if original would be allowed to be reassigned
between lines 5 and 6 (ambiguity (4)). Note that the copy constructor does not
synchronize on this even though it accesses this.listeners. This is safe so long
as the constructor does not leak this. This paper assumes that an escape analy-
sis [5] has established that constructors do not leak this. The @GuardedBy(this)

annotation on field listeners suffers also from ambiguity (5): it is not obvious
whether it intends to protect the name listeners (i.e., the name can be only
used when the lock is held) or the value currently bound to listeners (i.e., that
value can be only accessed when the lock is held). Another way of stating this
is that @GuardedBy can be interpreted as a declaration annotation (a restriction
on uses of a name) or as a type annotation (a restriction on values associated to
that name).

The code in Fig. 1 seems to satisfy the name-protection locking discipline
expressed by the annotation @GuardedBy(this) for field listeners: every use of
listeners occurs in a program point where the current thread locks its container,
and we conclude that @GuardedBy(this) name-protects listeners. Nevertheless,
a data race is possible, since two threads could call getListeners() and later
access the returned value concurrently. This cannot be avoided when critical
sections leak guarded data. More generally, name protection does not prevent
data races if there are aliases of the guarded name (such as a returned value in
our example) that can be used in an unprotected manner. The value-protection
semantics of @GuardedBy is not affected by aliasing as it tracks accesses to the
value referenced by the name, not the name itself.

Any formal definition of @GuardedBy must result in mutual exclusion in order
to ban data races. If f is @GuardedBy(E), then at any program point where a
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Fig. 1. This code has a potential data race due to aliasing of the listeners field.

thread accesses f (or its value) that thread must hold the lock on E. Let P be
the set of such program points where f is accessed. Mutual exclusion requires
two conditions: (i) E can be evaluated at all program points P ∈ P, and (ii) these
evaluations, at a given instant of time, always yield the same value at all P ∈ P.

Point (i) is syntactic and related to the fact that E cannot refer to variables
or fields that are not always in scope or visible at all program points in P.
This problem exists for both name protection and value protection, but is more
significant for the latter, that is meant to protect values that flow in the program
through arbitrary aliasing. For instance, the annotation @GuardedBy(listeners)

cannot be used for value protection in Fig. 1, since the name listeners is not
visible outside class Observable, but its value flows outside that class through
method getListeners() and must be protected also if it accessed there. For this,
we support a special variable itself that refers to the current value of f . For
instance, for value protection, the code in Fig. 1 should be rewritten as in Fig. 2.

Fig. 2. Value protection prevents data races; see itself in the guard expression.

Point (ii) is semantical and related to the intent of providing a guarantee
of mutual exclusion. This point bans the use of a variable in E that, although
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in scope and visible at every program point in P, might have different values
at distinct program points. We need this requirement for both semantics, but
it translates into two distinct constraints on the guard E for each semantics.
As we will see in Sect. 5, a simple restriction that allows us to satisfy (ii) is
to allow only variables itself, pointing to the value of the guarded field itself,
and variable this, pointing to the container of the guarded field, when that
container can be identified unambiguously. These two variables have the same
value at every program point and this is why we only allow them in E. Moreover,
in the semantics for name protection we will require that E only refers to final
fields, since the instant of time when the field name is locked and that when the
field value gets dereferenced might be arbitrarily away. This latter restriction is
not needed for the semantics for value protection, since it requires that a thread
holds the lock on the value of a field exactly when that value is accessed.

Thus, in Fig. 2 value protection bans data races on listeners since the guard
itself can be evaluated everywhere (point (i)) and always yields the value of
listeners itself (point (ii)). Here, the @GuardedBy(itself) annotation requires all
accesses to the value of listeners to occur only when the current thread locks
the same monitor — even outside class Observable, in a client that operates
on the value returned by getListeners(). In Fig. 3, instead, field listeners is
@GuardedBy(guard) according to both name protection and value protection, but
the value of guard is distinct at different program points: no mutual exclusion
guarantee exists and data races on listeners occur.

Fig. 3. Mutable guard expressions may lead to data races.

3 A Core Calculus for Multithreaded Java

Our calculus is a variant of RaceFreeJava [1]. We begin with some prelim-
inary notions. A partial function f from A to B is denoted by f : A ⇀ B,
and its domain is dom(f). The symbol φ denotes the empty function; {v1 �→
t1, . . . , vn �→ tn} denotes a function f such that f(vi) = ti for i ∈ 1..n;
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f [v1 �→ t1, . . . , vn �→ tn] denotes the update of f , where dom(f) is enlarged
for every i such that vi /∈ dom(f). A poset is a structure 〈A,≤〉 where A is a set
and ≤ is a partial order. For a ∈ A, we define ↑ a def= {a′ : a ≤ a′}. A chain is a
totally ordered poset.

3.1 Syntax

Letters f, g, x, y, . . . range over a set of variables Var that includes this. Variables
identify either local variables in methods or instance variables (fields) of objects.
Symbols m, p, . . . range over a set MethodName of method names. There is a set
Loc of memory locations, ranged over by l. Symbols κ, κ0, κ1, . . . range over a set
of classes (or types) Class, ordered by a subclass relation ≤; 〈Class, ≤〉 is a poset
such that for all κ ∈ Class the set ↑κ is a finite chain. If m ∈ MethodName,
then κ.m denotes the implementation of m inside class κ, if any. The partial
function lookup( ) : Class × MethodName ⇀ Class formalizes Java’s dynamic
method lookup, i.e. the runtime process of determining the class containing the
implementation of a method on the basis of the class of the receiver object:
lookup(κ,m) def= min(↑ κ.m) if ↑ κ.m 	= ∅ and is undefined otherwise, where
↑κ.m def= {κ′ ∈↑κ | m is implemented in κ′} is a finite chain since ↑κ.m ⊆↑κ.

Let us provide the syntax of our core language.

E :: = x
∣
∣ l

∣
∣ E.f

∣
∣ κ〈f1 = E1, . . . , fn = En〉

C :: = let x = E in C
∣
∣ E.f := E

∣
∣ C;C

∣
∣ skip

∣
∣ E.m( )

∣
∣

spawn E.m( )
∣
∣ sync(E){C}

∣
∣ monitor enter(l)

∣
∣ monitor exit(l)

Expressions Exp, ranged over by E, are given by variables, locations, field
accesses, and object allocation, κ〈f1 = E1, . . . , fn = En〉, to create an object of
class κ and initialize each field fi to the value of Ei. For simplicity, we only have
classes and no primitive types, so the only possible values are locations.

Commands Com are ranged over by C. Method bodies, ranged over by B,
are skip-terminated commands. Formally, B :: = skip | C; skip. The set of
classes is Class def= {κ : MethodNames ⇀ B | dom(κ) is finite}. The binding of
fields to their defining class is not relevant in our formalization. Given a class
κ and a method name m, if κ(m) = B then κ implements m with body B.
With “this” we denote the standard self-reference variable. In our syntax, self-
reference binding is implicit; methods have no formal parameters and/or return
value.

Terms containing locations (such as l.f or monitor enter(l)) cannot be used
by the programmer: they are introduced by the semantics.

We write U{E1/x1 , . . . ,
En/xn

} to denote the capture-free substitution of
expressions Ei, for all free occurrences of xi, within U ∈ Com ∪ Exp, for all
i ∈ 1..n.

A program is a finite set of classes including a special class Main that only
defines a method main where the program starts: Main def= {main �→ Bmain}.
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Fig. 4. Running example.

Example 1. Figure 4 gives our running example in Java. In our core language,
the body of method m is translated as follows: Bm = this.z := this.x; sync(z)

{this.h := this.z.f; this.z := this.y}; this.z.f := Object〈〉; skip, with
classes K def= {m �→ Bm}, C def= φ, and Object def= φ.

3.2 Semantic Domains

Threads, ranged over by T , are constituted by a sequence of commands C and a
set L ⊆ Loc of locations that it currently locks, formally T :: = 
C�L. We use
letters P and Q to denote a pool of threads. Formally, P,Q :: = T ∗.

A running program consists of a pool of threads that share a memory. Ini-
tially, a single thread runs the main method. The spawn E.m( ) command adds
a new thread to the existing ones. A memory μ maps a finite set of already
allocated memory locations into objects.

An object o is a triple containing the object’s class, the object’s state bind-
ing its fields to their corresponding values, and a lock, i.e., an integer counter
incremented whenever a thread locks the object (locks are re-entrant).

Definition 1. Let us define: Object def= Class × State × N and Memory def= {μ :
Loc ⇀ Object | dom(μ) is finite}, with selectors class(o) def= κ, state (o) def= σ
and lock#(o) def= n, for every o = 〈κ, σ, n〉 ∈ Object. We also define o[f �→ l] def=
〈κ, σ[f �→ l], n〉 and lock+(o) def= 〈κ, σ, n+1〉 and lock−(o) def= 〈κ, σ,max(0, n−1)〉.

The evaluation of an expression E in a memory μ, written �E�µ, yields a pair
〈l, μ′〉, where l is the runtime value of E, and μ′ is the memory resulting from the
evaluation of E. Given a pair 〈l, μ〉 we define loc (〈l, μ〉) = l and mem (〈l, μ〉) = μ.

Definition 2 (Evaluation of Expressions). The evaluation function has the
type � � : (Exp × Memory) ⇀ (Loc × Memory) and is defined as:
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�l�µ
def= 〈l, μ〉 �E.f�µ

def= 〈state(μ′(l))(f), μ′〉, where �E�µ=〈l, μ′〉
�κ〈f1=E1, .., fn=En〉�µ def= 〈l, μn[l �→ 〈κ, σ, 0〉]〉, where

(1) μ0 = μ and 〈li, μi〉 = �Ei�
µi−1 , for i ∈ [1..n]

(2) l is fresh in μn, that is l 	∈ dom(μn)
(3) σ ∈ State is such that σ(fi) = li for i ∈ [1..n], while y 	∈ dom(σ) elsewhere.

We assume that � � is undefined if any of the function applications is unde-
fined.

In the evaluation of the object creation expression, a fresh location l is allocated
and bound to an unlocked object whose environment σ binds its fields to the
values of the corresponding initialization expressions.

3.3 Structural Operational Semantics

We define a reduction semantics on configurations of the form 〈P, μ〉. We write
〈P, μ〉 → 〈P ′, μ′〉 for representing an execution step. We write →∗ to denote the
reflexive/transitive closure of → , and →i for i consecutive reduction steps.

Table 1. Structural operational semantics for sequential commands.

E µ = 〈l, μ′〉
〈�let x = E in C�L, μ〉 −→ 〈�C{l/x}�L, μ′〉 [let]

E µ = 〈l, μ′〉 E′ µ′
= 〈l′, μ′′〉 o = μ(l) o′ def

= o[f �→ l′] μ′′′ def
= μ′′[l �→ o′]

〈�E.f := E′�L, μ〉 −→ 〈�skip�L, μ′′′〉 [field-ass]

〈�C1�L, μ〉 −→ 〈�C′
1�L′, μ′〉 C1 �= spawn E.p()

〈�C1; C2�L, μ〉 −→ 〈�C′
1; C2�L′, μ′〉 [seq]

−
〈�skip; C�L, μ〉 −→ 〈�C�L, μ〉 [seq-skip]

E µ = 〈l, μ′〉 κ′ = lookup(class(μ′(l)), m) κ′(m) = B

〈�E.m( )�L, μ〉 −→ 〈�B{l/this}�L, μ′〉 [invoc]

Table 1 deals with sequential commands. Rule [seq] assumes that the first
command is not of the form spawn E.p( ); this case is treated separately. In rule
[invoc] the receiver E is evaluated and the method implementation is looked up
from the dynamic class of the receiver. The body of the method is then executed
after binding this to the receiver.

Table 2 focuses on concurrency and synchronization. The spawn of a new
method is similar to a method call, but the method body runs in its own new
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Table 2. Structural operational semantics for concurrency and synchronization.

E µ = 〈l, μ′〉 κ′ = lookup(class(μ′(l)), p) κ′(p) = B

〈�spawn E.p( ); C�L, μ〉 −→ 〈�B{l/this}�∅.�C�L, μ′〉 [spawn]

E µ = 〈l, μ′〉
〈�sync(E){C}�L, μ〉 −→ 〈�monitor enter(l); C; monitor exit(l)�L, μ′〉 [sync]

lock#(μ(l)) = 0 L′ def
= L ∪ {l} μ′ def

= μ[l �→ lock+(μ(l))]

〈�monitor enter(l)�L, μ〉 −→ 〈�skip�L′, μ′〉 [acquire-lock]

l ∈ L μ′ def
= μ[l �→ lock+(μ(l))]

〈�monitor enter(l)�L, μ〉 −→ 〈�skip�L, μ′〉 [reentrant-lock]

lock#(μ(l)) > 1 μ′ def
= μ[l �→ lock−(μ(l))]

〈�monitor exit(l)�L, μ〉 −→ 〈�skip�L, μ′〉 [decrease-lock]

lock#(μ(l)) = 1 L′ def
= L \ {l} μ′ def

= μ[l �→ lock−(μ(l))]

〈�monitor exit(l)�L, μ〉 −→ 〈�skip�L′, μ′〉 [release-lock]

〈T, μ〉 −→ 〈P, μ′〉
〈P1.T.P2, μ〉 −→ 〈P1.P.P2, μ′〉 [thread-pool]

thread with an initially empty set of locked locations. Note that if a sequence
of commands starts with a spawn then rule [spawn] is the only rule which can
be used. In rule [sync] the location l associated to the guard E is computed;
the computation can proceed only if a lock action is possible on l. The lock
will be released only at the end of the critical section C. Rule [acquire-lock]
models the entering of the monitor of an unlocked object. Rule [reentrant-lock]
models Java’s lock reentrancy. Rule [decrease-lock] decreases the lock counter of
an object that still remains locked, as it was locked more than once. When the
lock counter reaches 0, rule [release-lock] can release the lock of the object. Rule
[thread-pool] lifts the execution to a pool of threads.

Definition 3 (Operational Semantics of a Program). The initial configu-
ration of a program is 〈P0, μ0〉 where P0

def= 
Bmain{linit/this}�∅, μ0
def= {linit �→

〈Main, φ, 0〉} and Main = {main �→ Bmain} The operational semantics of a
program is the set of traces of the form 〈P0, μ0〉 →∗ 〈P, μ〉.
Example 2. The implementation in Example 1 becomes a program by defining
Bmain as: K〈 x = C〈f = Object〈〉〉, y = C〈f = Object〈〉〉, z = C〈f = Object〈〉〉,
h = Object〈〉〉.m(); skip.
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The operational semantics builds the following maximal trace from 〈P0, μ0〉:
1. −→∗ 〈�l.z := l.x; sync(z){l.h := l.z.f; l.z := l.y}; l.z.f := Object〈〉; skip; skip�∅, μ1〉

with μ1
def
= μ0[l �→ o, l1 �→ o1, l2 �→ o2, l3 �→ o3, l4 �→ o4, l

′
1 �→ o4, l

′
2 �→ o4, l

′
3 �→ o4];

o def
= 〈K, {x �→ l1, y �→ l2, z �→ l3, h �→ l4}, 0〉; oi

def
= 〈C, {f �→ l′i}, 0〉, for i ∈ 1..3;

o4
def
= 〈Object, φ, 0〉

2. −→∗ 〈�sync(z){l.h := l.z.f; l.z := l.y}; l.z.f := Object〈〉; skip; skip�∅, μ2〉
with μ2

def
= μ1[l �→ o[z �→ l1]]

3. −→∗ 〈�l.h := l.z.f; l.z := l.y; monitor exit(l1); l.z.f := Object〈〉; skip; skip�{l1}, μ3〉
with μ3

def
= μ2[l1 �→ lock+(o1)]

4. −→∗ 〈�l.z := l.y; monitor exit(l1); l.z.f := Object〈〉; skip; skip�{l1}, μ4〉
with μ4

def
= μ3[l �→ o[z �→ l1][h �→ l′1]]

5. −→∗ 〈�monitor exit(l1); l.z.f := Object〈〉; skip; skip�{l1}, μ5〉
with μ5

def
= μ4[l �→ o[z �→ l2, h �→ l′1]]

6. −→∗ 〈�l.z.f := Object〈〉; skip; skip�∅, μ6〉, with μ6
def
= μ5[l1 �→ o1]

7. −→∗ 〈�skip�∅, μ7〉, with μ7
def
= μ6[l2 �→ o2[f �→ l′′2 ], l′′2 �→ o4].

Our formal semantics allows us to prove the correctness of the locking mecha-
nism: two threads never lock the same location (i.e. object) at the same time.

Proposition 1 (Locking correctness). Let 〈P0, μ0〉→∗ 〈
C1�L1...
Cn�Ln , μ〉
be an arbitrary trace. For any i, j ∈ {1 . . . n}, i 	= j entails Li ∩ Lj = ∅.

4 Two Semantics for @GuardedBy Annotations

This section gives two distinct formalizations for locking specifications of the form
@GuardedBy(E) Type f, where E is a guard expression allowed by the language,
possibly using a special variable itself that stands for the protected field f.

In a name-protection interpretation, a thread must hold the lock on the value
of the guard expression E whenever it accesses (reads or writes) the name of the
guarded field f. Definition 4 formalizes the notion of accessing an expression when
a given command is executed. For our purposes, it is enough to consider a single
execution step; thus the accesses in C1;C2 are only those in C1. When an object
is created, only its creating thread can access it. Thus field initialization cannot
originate data races and is not considered as an access. The access refers to the
value of the expression, not to its lock counter, hence sync(E){C} does not access
E. For accesses to a field f , Definition 4 keeps the exact expression used for the
container of f , that will be used in Definition 5 for the contextualization of this.

Definition 4 (Expressions Accessed). The set of expressions accessed in a
single execution step is defined as follows:
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acc(l) def
= ∅ acc(κ〈f1=E1, . . . , fn=En〉) def

=
⋃n

i=1 acc(Ei)

acc(let x = E in C) def
= acc(E) acc(E.f) def

= acc(E) ∪ {E.f}
acc(C1;C2)

def
= acc(C1) acc(E.f := F ) def

= acc(E.f) ∪ acc(F )

acc(E.m( )) def
= acc(E) acc(spawn E.m( )) def

= acc(E)

acc(monitor enter(l)) def
= ∅ acc(monitor exit(l)) def

= ∅
acc(sync(E.f){C}) def

= acc(E) acc(sync(x){C}) def
= ∅

acc(skip) def
= ∅ acc(sync(l){C}) def

= ∅
acc(sync(κ〈f1 = E1, . . . , fn = En〉){C}) def

= acc(κ〈f1=E1, . . . , fn=En〉).

We say that C accesses a field f if and only if E.f ∈ acc(C), for some E.

Definition 5 formalizes when a field f is name-protected by @GuardedBy(E) in
a program. In Sect. 2 we have discussed the reasons for using the special variable
itself in the guard expressions when working with a value-protection semantics.
In the name-protection semantics, itself denotes just an alias of the accessed
name: @GuardedBy(itself) Type f is the same as @GuardedBy(f) Type f.

Definition 5 (Name-protection @GuardedBy). A field f in a program is name
protected by @GuardedBy(E) if and only if for any trace of that program

〈P0, μ0〉 → ∗ 〈P1.T.P2, μ〉 → 〈P1.T̂ .P2, μ̂〉

where T = 
C�L, whenever C accesses f , i.e. E′.f ∈ acc(C), for some E′, with
�E′�µ = 〈l′, μ′〉 and l′′ = state(μ′(l′))f , we have loc(�E{l′,l′′/this,itself}�µ

′
) ∈ L.

Definition 5 evaluates the guard expression E at those program points where
f is accessed, in order to verify that its lock is held by the current thread. Thus,
E is evaluated in a memory μ′ obtained by the evaluation of the container of f ,
that is E′. Actually, we evaluate E only after having replaced the occurrences of
the variable this with l′, i.e. the evaluation of E′, and the occurrences of itself

with l′′, i.e. the evaluation of f .

Example 3. In Example 2, field y is name protected by @GuardedBy(this.x). It
is accessed during the 5th macro-step, when �this.x{l/this}�µ4=�l.x�µ4=〈l1, μ4〉,
and l1 is locked. Fields x and z are name protected by @GuardedBy(E), for no E,
as they are accessed at macro-step 2, when no location is locked.

An alternative semantics for @GuardedBy protects the values held in a field
rather than the field name. In this value-protection semantics, a field f is
@GuardedBy(E) if wherever a thread dereferences a location l eventually bound
to f , it holds the lock on the object obtained by evaluating E at that point. In
object-oriented parlance, dereferencing a location l means accessing the object
stored at l in order to read or write a field. In Java, accesses to the lock counter
are synchronized at a low level and the class tag is immutable, hence their
accesses cannot give rise to data races and are not relevant here. Dereferences
(Definition 6) are very different from accesses (Definition 4). For instance, state-
ment v.f := w.g.h accesses expressions v, v.f, w, w.g and w.g.h but dereferences
only the locations held in v, w and w.g: locations bound to v.f and w.g.h are
left untouched. Definition 6 formalizes the set of locations dereferenced by an
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expression or command to access some field and keeps track of the fact that the
access is for reading (⇒) or writing (⇐) the field. Hence dereference tokens are
l.f⇐ or l.f⇒, where l is a location and f is the name of the field that is accessed
in the object held in l.

Definition 6 (Dereferenced Locations). Given a memory μ, the derefer-
ences in a single reduction are defined as follows:

deref(l)µ def
= ∅ deref(E.f)µ def

= {loc (�E�µ) .f⇒} ∪ deref(E)µ

deref(κ〈f1 = E1, . . . , fn = En〉)µ def
=
⋃n

i=1 deref(Ei)
µ

deref(let x = E in C)µ def
= deref(E)µ deref(skip)µ def

= ∅
deref(sync(E){C})µ def

= deref(E)µ deref(C1;C2)µ
def
= deref(C1)µ

deref(monitor enter(l))µ def
= ∅ deref(monitor exit(l))µ def

= ∅
deref(E.f := E′)µ def

= {loc (�E�µ) .f⇐}∪ deref(E′)µ

deref(E.m( ))µ def
= deref(E)µ deref(spawn E.m( ))µ def

= deref(E)µ

We define derefloc(C)µ def= {l | ∃f s.t. l.f⇐ ∈ deref(C)µ ∨ l.f⇒ ∈
deref(C)µ}.

Definition 7 formalizes when a field f is value-protected by @GuardedBy(E) in
a program. Intuitively, for any execution trace t we collect the set F of locations
that have ever been bound to a guarded field f in t. Then, we require that
whenever a thread dereferences one of those locations, that thread must hold
the lock on the object obtained by evaluating the guard E.

Definition 7 (Value-protection @GuardedBy). A field f in a program is value-
protected by @GuardedBy(E) if and only if for any trace of that program

〈P0, μ0〉 → i〈Pi, μi〉 = 〈P.T.Q, μi〉 → 〈P.T ′.Q, μi+1〉 → . . .

letting T=
C�L; letting F =
⋃

j>0{state(μj(l))f | l∈dom(μj) ∧ state(μj(l))f ↓}
be the set of locations eventually associated to field f ; letting Δf =
derefloc(C)µi ∩ F be those locations in F dereferenced at the i+1-th step of
the trace above. Then, for every l ∈ Δf it follows that loc

(
�E{l/itself}�µi

) ∈ L.
Note that F contains all locations eventually bound to f , at any time, in the
past or the future, not just those bound in the last configuration 〈Pi, μi〉. This
is because value-protection @GuardedBy(E) is a kind of type annotation that
predicates on the values held in the annotated field, and the properties of such
values must remain unchanged as they flow through the program.

Note also that the only variable allowed in the guard expression E is itself.
This is because there is no value that we can bind to the container this of the
guarded value (in Definition 5, instead, we had the value of E′). It is actually
possible that the value of the guarded field f might be held in more fields of
distinct containers, hence the unique identification of the value of the container
this becomes impossible here.

Example 4. In Example 2 field x is value protected by @GuardedBy(itself). This
because Δx = {l1} and l1 is dereferenced only at macro-step 4, when the corre-
sponding object o1 is accessed to obtain the value of its field f . At that program
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point, l1 is locked by the current thread. Fields y and z are value protected by
@GuardedBy(E), for no E, since Δy = {l2}, Δz = {l1, l2}, and l2 is dereferenced
at macro-step 7, when the thread holds no locks.

The two semantics for @GuardedBy are incomparable: neither entails the other.
In Example 2 field x is value protected by @GuardedBy(itself), but is not name
protected. Field y is name protected by @GuardedBy(this.x), but is not value
protected.

5 Protection Against Data Races

In this section we provide sufficient conditions that ban data races when
@GuardedBy annotations are satisfied, in either of the two versions. Intuitively,
a data race occurs when two threads dereference the same location l, at the
same time, to access a field of the object stored at l, and at least one modifies
the field.

Definition 8 (Data race). Let 〈P0, μ0〉 →∗ 〈P, μ〉 = 〈P1.T1.P2.T2.P3, μ〉,
with Ti = 
Ci�Li, for i ∈ 1..2. A data race occurs at a location l during the
access to some field f in 〈P, μ〉, only if

– 〈P, μ〉 → 〈P1.T
′
1.P2.T2.P3, μ′〉, for some T ′

1 	= T1

– 〈P, μ〉 → 〈P1.T1.P2.T
′
2.P3, μ′′〉, for some T ′

2 	= T2

where l.f⇐ ∈ deref(C1)µ and (l.f⇐ ∈ deref(C2)µ or l.f⇒ ∈ deref(C2)µ).

In Sect. 2 we said that accesses to fields (or their value) that are
@GuardedBy(E) occur in mutual exclusion if the guard E is such that it can
be evaluated at distinct program points and its evaluation always yields the
same value. This implies that E cannot contain local variables as they cannot
be evaluated at distinct program points. Thus, we restrict the variables that can
be used in E. However, itself can always be used since it refers to the location
being dereferenced. For the name-protection semantics, this can also be used,
since it refers to the container of the guarded field, as long as it can be uniquely
determined; for instance, if there is no aliasing. Indeed, Sect. 2 shows that name
protection without aliasing restrictions does not ban data races, since it protects
the name but not its value, that can be freely aliased and accessed through other
names, without synchronization. In a real programming language, aliasing arises
from assignments, returned values, and parameter passing. Our simple language
has no returned values and only the implicit parameter this.

Definition 9 (Non-aliased fields). A field f is non-aliased in a program if
and only if for any trace 〈P0, μ0〉 →∗ 〈P, μ〉 of that program, there are no l′, l′′,
and g such that state(μ(l′))f = state(μ(l′′))g, and l′ = l′′ entails f 	= g.

Field aliasing can be inferred through a may-alias analysis (that is, a must-
non-alias analysis) or prevented by syntactic restrictions, as currently done by



368 M.D. Ernst et al.

Julia. Although the precision of this aliasing analysis might in principle affect
the precision of the results, it must be said that programmers who use name
protection do not alias the protected fields. When they do it, the field is not
actually data race free, hence simple syntactic restrictions are enough in practice.

However, as discussed in Sect. 2, to ensure the soundness of the name-
protection semantics we need a further assumption: the value of the guard expres-
sion must not change during program execution.

Definition 10 (Final expressions). An expression E where the only allowed
variables are this and itself is said to be final in a program if for every trace
〈P0, μ0〉 → i〈Pi, μi〉 of that program, for all 0≤p≤q≤i and for all l, l′ ∈ dom(μp),
�E{l,l′/this,itself}�µp = 〈l1, μ1〉 and �E{l,l′/this,itself}�µq = 〈l2, μ2〉 entails l1=l2.

We can now prove that, for non-aliased fields and final guard expressions,
the name-protection semantics of @GuardedBy protects against data races.

Theorem 1 (Name-protection semantics vs. data race protection). Let
E be a final expression in a program, and f be a non-aliased field that is name
protected by @GuardedBy(E). Let E contain no variable distinct from itself and
this. Then, no data race can occur at those locations bound to f , at any execution
trace of that program.

As argued in Sect. 2, the assumptions on non-aliased fields and final guard
expressions are not necessary in the value-protection semantics as this locking
discipline protects directly the value of the guarded field f .

Theorem 2 (Value-protection semantics vs. data race protection). Let
E be an expression in a program, and f be a field that is value-protected by
@GuardedBy(E). Let E have no variable distinct from itself. Then no data race
can occur at those locations bound to f , during any execution of the program.

Both results are proved by contradiction, by supposing that a data race
occurs and showing that two threads would lock the same location, against
Proposition 1.

6 Implementation in Julia

The Julia analyzer infers @GuardedBy annotations. The implementation is based
on the theory of this article, while the theoretical results were inspired by actual
case studies. The user selects name-protection or value-protection semantics.

As formalized in Sect. 4, a field f is @GuardedBy(E) if, at all program points P
where f is accessed (for name protection) or one of its locations is dereferenced
(for value protection), the value of E is locked by the current thread. The infer-
ence algorithm of Julia builds on two phases: (i) compute the set P of program
points where f is accessed; (ii) find expressions E locked at all program points
P ∈ P.

Point (i) is obvious for name protection, since accesses to f are syntactically
apparent in the program. For value protection, the set P is instead undecid-
able, since there might be infinitely many objects potentially bound to f at



Semantics for Locking Specifications 369

runtime, that flow through aliasing. Hence Julia overapproximates the set P by
abstracting objects into their creation point in the program: if two objects have
distinct creation points, they must be distinct. The number of creation points is
finite, hence the approximation is finitely computable. Julia implements creation
points analysis as a concretization of the class analysis in [21], where objects are
abstracted in their creation points instead of just their class tag.

Point (ii) uses the definite aliasing analysis of Julia, described in [19]. At
each synchronized(G) statement, that analysis provides a set L of expressions
that are definitely an alias of G at that statement (i.e., their values coincide
there, always). Julia concludes that the expressions in L are locked by the cur-
rent thread after the synchronized(G) and until the end of its scope. Potential
side-effects might however invalidate that conclusion, possibly due to concurrent
threads. Hence, Julia only allows in L fields that are never modified after being
defined, which can be inferred syntactically for a field. For name protection,
viewpoint adaptation of this is performed on such expressions (Definition 5).
These sets L are propagated in the program until they reach the points in P .
The expressions E in point (ii) are hence those that belong to L at all program
points P.

Since @GuardedBy(E) annotations are expected to be used by client code, E
should be visible to the client. For instance, Julia discards expressions E that
refer to a private field or to a local variable that is not a parameter, since these
would not be visible nor useful to a client.

The supporting creation points and definite aliasing analyses are sound, hence
Julia soundly infers @GuardedBy(E) annotations that satisfy the formal definitions
in Sect. 4. Such inferred annotations protect against data races if the sufficient
conditions in Sect. 5 hold for them.

More detail and experiments with this implementation, in the value-
protection semantics, can be found in [10]. There, we have analyzed 15 large
open-source programs, including parts of Eclipse and Tomcat, for a total of
1,290,060 non-blank lines of code. Julia has often inferred the annotations already
present in code (if any), while the annotations not inferred by Julia have often
been proved to be programmers’ mistakes (either fields that are not actually
guarded as expected, or they are guarded in a way that do not prevent data
races).

7 Conclusions, Future and Related Work

Coming back to the ambiguities sketched in Sect. 1, we have clarified that:
(1) this in the guard expression must be interpreted as the container of the
guarded field and consistently contextualized (Definition 5). (2) An access is a
field use for name protection (Definitions 4 and 5). A value access is a dereference
(field get/set or method call) for value protection; copying a value is not an access
in this case (Definitions 6 and 7). (3) The value of the guard expression must
be locked when a name or value is accessed, regardless of how it is accessed in
the synchronized block (Definitions 5 and 7). (4) The lock must be held on the
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value of the guard expression as evaluated at the access to the guarded field
(name or value) (Definitions 5 and 7). (5) Either the name or the value of a field
can be guarded, but this choice leads to very different semantics. Namely, in the
name-protection semantics, the lock must be held whenever the field’s name is
accessed (Definitions 4 and 5). In the value-protection semantics, the lock must
be held whenever the field’s value is accessed (Definitions 6 and 7), regardless of
what expression is used to access the value. Both semantics yield a guarantee
against data races, though name protection requires an aliasing restriction on
the field and final guard expressions (Theorems 1 and 2).

This work could be extended by enlarging the set of guard expressions that
protect against data races. For instance, it could be extended with static fields.
We believe that the protection results in Sect. 5 still hold for them. Another
aspect to investigate is the scope of the protection against data races. In this
article, a single location is protected (Definition 8), not the whole tree of objects
reachable from it: our protection is shallow rather than deep. Deep protection is
possibly more interesting to the programmer, since it relates to a data structure
as a whole, but it requires to reason about boundaries and encapsulation of data
structures.

The work of Abadi et al. [1] is the closest to ours. It proposes a type system for
detecting data races in Java programs by means of @GuardedBy type annotations,
according to a name-preservation semantics. Theoretical results are stated on
a significant concurrent subset of Java, RaceFreeJava, which shares many
similarities with our calculus. The main result of the paper is that well-typed
programs do not have data races. This result relies on a few constraints: (i) like
us, in GuardedBy(E) annotations, E must be final, so this is the only admitted
variable in E; (ii) unlike us, in blocks sync(E){C}, E must be final; (iii) unlike
us, field updates are admissible (typable) only if they are guarded by some final
expression; (iv) unlike us, Java lock reentrancy is not admitted; (v) unlike us,
the limitation (i) is overcome by extending the type system to allow fields of a
class to be protected by locks external to that class. Note that non-aliasing is
not required in [1], although this seems to be a consequence of the (quite) strong
requirement (iii) that field updates can only occur on annotated fields.

We refer to [1] for a careful review of tools developed for detecting data races.
There are many other formalizations of concurrent fragments of Java, such

as [2,7]. Our goal here is the semantics of annotations such as @GuardedBy. Hence
we kept the semantics of the language to the minimum core needed for the
formalization of those program annotations. Another well-known formalization
is Featherweight Java [14], a functional language that provides a formal ker-
nel of sequential Java. It does not include threads, nor assignment. Thus, it is
not adequate to formalize data races, which need concurrency and assignments.
A similar argument applies to Middleweight Java [4] and Welterweight Java [20].
The need of a formal specification for reasoning about Java’s concurrency and
for building verification tools is recognized [6,17] but we are not aware of any
formalization of the semantics of Java’s concurrency annotations.
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Our formalization will support tools based on model-checking such as Java
PathFinder [18] and Bandera [3,13], on type-checking such as the Checker Frame-
work [8] and Houdini/rcc [1], or on abstract interpretation such as Julia [16].
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Abstract. During the development and verification of complex airborne
systems, a variety of languages and development environments are used
for different levels of the system hierarchy. As a result, there may be man-
ual steps to translate requirements between these different environments.
This paper presents a tool-supported export technique that translates
high-level requirements from the software architecture modeling envi-
ronment into observers of requirements that can be used for verification
in the software component environment. This allows efficient verification
that the component designs comply with their high-level requirements.
It also provides an automated tool chain supporting formal verification
from system requirements down to low-level software requirements that
is consistent with certification guidance for avionics systems. The effec-
tiveness of the technique has been evaluated and demonstrated on a
medical infusion pump and an aircraft wheel braking system.

Keywords: Design contracts · Specification model · Design model ·
AGREE · Simulink · Requirements-based verification · Certification

1 Introduction

As part of the software development process for complex avionics systems, sys-
tem requirements are iteratively decomposed, allocated, and refined to lower
level requirements for software and hardware components. Different verifica-
tion processes are used to provide evidence that these components satisfy their
requirements. The focus of all development and verification activities in the
avionics domain is to ensure that a system meets its requirements and contains
no unintended functionality.

Requirements at different levels of the system hierarchy may be specified
using different languages and development environments. Even when formal
methods tools are used to verify requirements, there may be manual steps to
translate requirements between these different environments. The work presented
in this paper attempts to close the gap between verification at the system level
and the component level.
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We present a tool-supported technique that translates requirements from a
system-level reasoning framework into observers of requirements for software
components. The observers that the tool produces can be verified using a model
checker specialized to the software component development language. Our work
closes the gap between high-level requirements captured with the software archi-
tecture and low-level requirements for component implementation. This ensures
consistency of the verification results and improves productivity and accuracy
through the use of automation to eliminate manual steps. Furthermore, mak-
ing these property observers available during the design process supports early
verification of the software components.

In previous work, we have developed a compositional analysis environ-
ment [1,2] based on the Architecture Analysis and Design Language (AADL) [3].
AADL can be used to model both the hardware and software aspects of the sys-
tem, but in this work we have limited our attention to the software architecture.
In our compositional analysis approach, the AADL model is augmented with
assume-guarantee contracts to capture both system-level requirements and the
requirements for the software components.

In the present work, we link the component contracts to their implementa-
tions in Simulink R© [4], a framework developed by MathWorks R© and integrated
with MATLAB R©. Simulink provides a graphical programming environment for
modeling, simulation, code generation, testing, and formal analysis. It is widely
used in the avionics industry. By automatically translating formal contracts
for software component behavior into specifications that can be checked in the
Simulink environment, we now support a complete top-to-bottom development
process with formal verification of all requirements. Furthermore, the design of
our approach is sufficiently general that it can be adapted to support other
software development environments and languages.

Since our objective is the production of high-assurance software for avionics,
we must be cognizant of how this approach will fit into a certification context.
As we will show, our approach has been designed to be consistent with new
certification guidance related to the use of formal methods and model-based
development processes.

The rest of the paper is organized as follows. Section 2 provides background
information related to the development and analysis environment, including cer-
tification considerations. Section 3 describes the contract translation process in
detail. Section 4 evaluates the techniques in an avionics system case study and
a medical device system case study. Section 5 describes related work and Sect. 6
presents concluding remarks.

2 Preliminaries

In this section, we describe the overall design flow and introduce some termi-
nology associated with the certification context. We also describe the system
architecture modeling environment and the software component modeling envi-
ronment that we are using.
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2.1 Design Flow from Architecture to Component

One of our goals is to transition the tools we have developed into use by the
system and software engineers who develop avionics products. Therefore, we
need to understand how the tools and the models they produce will fit into the
certification process.

Certification guidance for software in commercial aircraft is found in
DO-178C, Software Considerations in Airborne Systems and Equipment Cer-
tification [5]. The process described in DO-178C is essentially a waterfall model
in which system requirements are allocated to hardware and software, becoming
high-level requirements for each. High-level requirements are refined to become
a software design, consisting of software architecture and low-level requirements
from which individual software components can be developed.

DO-178C is accompanied by several supplement documents which provide
guidance for the use of specific technologies, including formal methods (DO-
333 [6]) and model-based development (DO-331 [7]). DO-333 describes how soft-
ware life-cycle artifacts such as high and low-level requirements can be expressed
as formal properties and how formal analysis tools can be used to satisfy many
certification objectives. DO-331 provides guidance on how software life-cycle
artifacts expressed as different types of models fit into the certification process.
A case study showing how different formal methods can be used to satisfy cer-
tification objectives is found in [8], including a model-based example that uses
Simulink [4] and Simulink Design VerifierTM [9].

DO-331 describes the relationships between models at the system and soft-
ware levels, and distinguishes between specification models and design models.
A specification model represents high-level requirements that provide an abstract
representation of functional, performance, interface, or safety characteristics of
software components. Specification models do not define software design details
or prescribe a specific software implementation or architecture. Design models
prescribe software component internal data structures, data flow, and/or control
flow. They may include low-level requirements or architecture, and may be used
to produce source code directly.

Figure 1 provides an overview of our proposed design flow, connecting it to
the terminology used in a DO-178C process. On the left side of Fig. 1, system
requirements allocated to software (generally in textual form) are refined to a
collection of high-level software requirements and used to construct an architec-
ture model in AADL. This process is described in more detail in the next section.
The AADL model is a design model (in DO-331 terminology) because it contains
information such as data flows, message types, and execution rates and priorities,
that will be used to produce source code and configure the operating system.
High-level requirements associated with each level of the architecture and soft-
ware components represented in the architecture are captured into formal design
contracts using the Assume Guarantee Reasoning Environment (AGREE) [1].
Compositional verification is used to show that contracts (requirements) at each
level satisfy the contract of the level above.
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Fig. 1. Architecture to component design flow

On the right side of the figure, software components are implemented and
verified. Simulink models describe the detailed behaviors and are used to gen-
erate source code for each component. They are therefore considered low-level
requirements and also design models (in DO-331 terms). High-level requirements
for each component are represented as specification models (in DO-331 terms).
These models are observers that produce a true output whenever their corre-
sponding property (specified over the component inputs and outputs) is true.
A model checker such as the one provided by Simulink Design Verifier can be
used to show that the design model satisfied the high-level requirements defined
by the specification model.

Clearly there is a gap between the methods, tools, and models of the soft-
ware architecture and those for the software components. In the past, high-
level requirements for the software components have been manually captured as
observers in Simulink before they can be used for verification [10]. The manual
process may be error-prone, and it can be difficult and costly to keep the mod-
els in sync. The work we describe in this paper bridges this gap by automating
the translation of high-level requirements associated with the architecture model
into Simulink observers that can be verified in the Simulink environment.

2.2 Architecture Description and Design Contracts

The Architectural Analysis and Design Language (AADL) [3] is a architecture
modeling language for embedded, real-time, distributed systems. It was approved
as an SAE Standard in 2004, and its standardization committee has active par-
ticipation from many academic and industrial partners in the aerospace indus-
try. It provides the constructs needed to model both hardware and software in
embedded systems such as threads, processes, processors, buses, and memory.
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It is sufficiently formal for our purposes, and is extensible through the use of
language annexes that can initiate calls to separately developed analysis tools.

The Assume Guarantee Reasoning Environment (AGREE) [1] is a language
and tool for compositional verification of AADL models. It is implemented as an
AADL annex that allows AADL models to be annotated with assume-guarantee
behavioral contracts. A contract contains a set of assumptions about the com-
ponent’s inputs and a set of guarantees about the component’s outputs. The
assumptions and guarantees may also contain predicates that reason about how
the state of a component evolves over time.

AGREE uses a syntax similar to Lustre [11] to express a contract’s assump-
tions and guarantees. AGREE translates an AADL model and its contract anno-
tations into Lustre and then queries a user-selected model checker to perform
verification. The goal of the analysis is to prove that each component’s contract
is satisfied by the interaction of its direct subcomponents as described by their
respective contracts. Verification is performed at each layer of the architecture
hierarchy and details of lower level components are abstracted away during veri-
fication of higher level component contracts. This compositional approach allows
large systems to be analyzed efficiently.

Component contracts at the lowest level of the architecture are assumed to be
true by AGREE. Verification of these component contracts must be performed
outside of the AADL/AGREE environment. In a traditional software develop-
ment process, components will be developed to meet the high-level requirements
corresponding to these contracts and verified by testing or code review. However,
there are two problems with this approach:

1. Verification methodologies like test and code review are not exhaustive. Errors
in these activities can cause the compositional verification that AGREE per-
forms to be incorrect.

2. Manual translation of an AGREE contract into a property for verification at
the component level can be time-consuming and error-prone.

Our solution to these problems is to automatically translate AGREE con-
tracts of software components into expressions in the development language of
the component software. A formal verification tool that reasons about artifacts
expressed in this language can then be used to verify that the contracts hold.
The remainder of the paper describes this solution in detail.

2.3 Component Requirements and Verification

The following tools and features are used to capture component level require-
ments and perform verification.

Simulink. Simulink [4], developed by MathWorks and integrated with MAT-
LAB, provides a graphical programming environment for modeling, simulation,
code generation, testing, and analysis. It is widely used in the Avionics industry.
It is used to capture low-level component design models and requirements.
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Simulink Design Verifier. The Simulink Design Verifier (SLDV) tool [9], pro-
vides a model checker for the Simulink environment. SLDV can verify properties
expressed with MATLAB functions, Simulink blocks, or Stateflow diagrams. The
first is a textual language while the last two are graphical.

Simulink Observer. A Simulink observer is a component in a Simulink model
which observes the behavior of another component and computes a Boolean value
indicating if the latter component is satisfying its requirements. A Simulink
observer along with the component it observes can be verified using SLDV
to show that the component under observation always satisfies its require-
ments. Using DO-331 terminology, the Simulink observer is a specification model
that captures high-level requirements, while the component it observes is a
design model that captures low-level requirements. Our tool generates Simulink
observers using a MATLAB function block which encapsulates a MATLAB func-
tion. A MATLAB function consists of statements written in the MATLAB script-
ing language, an imperative, dynamically typed language. In addition to a main
function, a MATLAB function block can contain other local functions defined
in the same block. Unlike the other graphical language alternatives, the textual
representation of a MATLAB function makes the export easier to control and
maintain.

3 Detailed Approach

This section details our approach for automatically constructing a specification
model from high level requirements.

3.1 Export Scheme Overview

The requirements used to generate each specification model come directly from a
component contract specified in AGREE. Each specification model is a Simulink
observer implemented as a MATLAB function. The observer’s interface is gen-
erated from the component’s features described in the AADL model.

Table 1 provides a summary of the constructs that appear in an AGREE con-
tract and their mapping in MATLAB. Our process can translate any AGREE
specification. The specification model generation process is divided into two
major steps, as depicted in Fig. 2:

1. The tool produces an intermediate specification in Lustre. The Lustre lan-
guage [11] is a synchronous dataflow language for modeling reactive systems,
with formalisms similar to temporal logics [12]. The AGREE grammar and
the Lustre grammar are very similar. This makes Lustre well suited as a com-
mon intermediate language to feed into different formal analysis or translation
engines. A number of common translation steps are performed to create this
intermediate format. For example, variable assignments are put into data-
flow order, all function calls are inlined, and nested temporal expressions are
decoupled.
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Table 1. Mapping between AGREE and MATLAB constructs

AGREE constructs MATLAB constructs

Component contracta Simulink observer

Component inputs and outputsa Inputs to the Simulink observerb

Assume statement Proof assumption

assume “B input range”: Input < 20 sldv.assume (Input < 20)

Guarantee statement Proof objective

guarantee “B output range”: sldv.prove(Output < (Input + 15))

Output < Input + 15

Equation statement Assignments

eq Active : bool = not Sync.Active Active = not(Sync.Active)

If-then-else expression Generated local function

if Error then false else Active ifFunction(Error , false,Active)

AGREE basic data types MATLAB built-in data typesb

int (u)int8, (u)int16, (u)int32

real single, double

bool boolean

Record types (on inputs and outputs) Simulink bus objects

AGREE operators MATLAB operators or function calls

−, not, <>, and, or −, ∼, ∼=, &&, ‖
+, −, ∗, /, >, <, >=, <= +, −, ∗, /, >, <, >=, <=

mod operator mod function

= (equal operator) isequal functionc

div (integer divide operator) / with operands typecast to integer types

⇒ generated local impliesFunction
→ generated local arrowFunctiond

pre persistent variable for the operandd

aThis information comes from the component type in AADL.
bData size selection based on user input (Sect. 3.3).
cUse isequal function rather than == to apply to structure types.
dThe translation for → and pre operators need persistent variables (Sect. 3.2).

2. From the intermediate Lustre a MATLAB function is produced. The MAT-
LAB function is specified by an abstract syntax tree (AST). This allows for
structured, easily extendable export. MATLAB specific features introduced
in this translation include constructing valid MATLAB identifiers with no
duplications and turning local structures in the intermediate output into local
variables to eliminate any dynamically allocated structures.



380 J. Liu et al.

Fig. 2. Implementation scheme

3.2 Translation for Temporal Operations

There are two types of temporal operations used in AGREE:

– The → operation evaluates to its left-hand side expression when the transition
system is in its initial state. Otherwise it evaluates to its right-hand side
expression. For example, the expression: true → false is true in the initial
state and false otherwise.

– The pre operation takes a single expression as an argument and returns the
value of this expression in the previous state of the transition system. For
example, the expression: x = (0 → pre(x) + 1) constrains the current value
of variable x to be 0 in the initial state; otherwise it is the value of x in the
previous state incremented by 1.

In the model’s initial state the value of the pre operation on any expression
is undefined. Every occurrence of a pre operator must be in a subexpression
of the right hand side of the → operator. The pre operation can be performed
on expressions containing other pre operators, but there must be → operations
between each occurrence of a pre operation. For example, the expression: true →
pre(pre(x)) is not well-formed, but the expression: true → pre(x → pre(x)) is
well-formed.

To represent temporal constructs, the Simulink observer needs to differentiate
the behavior at the initial state from the other states. It also needs to remember
variable values from the previous calls to the function.

We make use of persistent variables to record the previous state of the
function’s variables across multiple calls. A single persistent Boolean variable,
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first time, is used for all → expressions to indicate whether or not the function
is being called for the first time. Additionally, a persistent variable is created for
each unique pre expression1. We refer to these variables as the “pre variables”.
The Simulink unit delay block could also be used to remember previous variable
values by placing the graphical block outside of the MATLAB function for each
“pre variable”. However, the block needs to be placed outside of the MATLAB
function, requiring any “pre variable” to become an input to the function; the
graphical representation also makes it harder to automate.

The persistent variables used to model the → and pre operations appear in
the following contexts in the Simulink observer:

1. Declaration. Each of these persistent variables is declared at the beginning
of the function. MATLAB is dynamically typed, so the type of these variables
is determined during their initialization.

2. Initialization. The initialization of a persistent variable occurs immedi-
ately after its declaration. The built-in function “isempty”, e.g., isempty
(first time), is used to determine whether or not the variable has been ini-
tialized. The pre variables are initialized to the default value for their type
(e.g., true for booleans, 0 for integers, and 0 for floating points). Because all
occurrences of pre operators are guarded by → operators, this initial value is
never used. This initialization takes place for the sole purpose of allowing the
Simulink code generator to function properly.

3. Use. Each of these persistent variables is used in place of its corresponding
pre expression.

4. Update. Before the observer function returns, all of the pre variables are
updated to the current value of their expression. For example, the persistent
variable for the expression pre(x) is updated to the value of x. The first time
variable is always set to false before the observer function returns.

3.3 Translation for Data Types

Here we note differences between the data types of AGREE and MATLAB.

Constants. Any constant numbers (integers or floats) that appear in a MAT-
LAB function are assumed to be double precision floating point numbers. There-
fore, explicit typecasts are needed when translating constants from the AGREE
specifications.

Arbitrary Data Size vs. Fixed Data Size. AGREE assumes that integer
and real valued variables have arbitrary size. However, MATLAB’s primitive
data types for integers are of bounded size (integers are represented by 8-bit, 16-
bit, or 32-bit 2’s complement numbers). Integer valued variables in AGREE are
translated into fixed size integers in MATLAB. Similarly, MATLAB uses floating
point arithmetic to represent non-integers. Real valued variables in AGREE are

1 For example, if the term pre(x) appears multiple times in the AGREE contract, we
only create a single persistent variable for this expression.
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translated to floating point variables in MATLAB. The size/precision of the
translated variables can be changed easily by users.

This mismatch in types can cause differences in semantics for some contracts
described in AGREE and their corresponding Simulink observers. Moreover, we
note that SLDV interprets floating point variables as real variables as well. So it
suffers from the same mismatch in semantics for floating point vs. real numbers.
In the future we plan to allow users to specify bit-vector types in AGREE.

3.4 Workflow

We have implemented the export scheme as an extension to AGREE, available
at [13]. The export process has the following steps:

1. Select Data Types. Users may select one of the MATLAB/Simulink sup-
ported integer types (i.e., (u)int8, (u)int16, (u)int32) to represent integers
from the AGREE specification and one of the MATLAB supported floating
point types (i.e., single, double) to represent reals from the AGREE specifi-
cation.

2. Export Design Contracts. For any component with an AGREE contract,
the user can invoke the tool to translate the contract into a MATLAB func-
tion.

3. Update Simulink Model. A script file provided by the toolset automati-
cally packages the MATLAB function generated above as a MATLAB func-
tion block and connects the function block to the inputs and outputs of the
component’s Simulink model. The augmented Simulink model contains both
a design model and a specification model that observes the design model.

4. Invoke Simulink Design Verifier (SLDV). Users can invoke SLDV on
the verification model generated in the above step. SLDV checks to see if all
properties in the MATLAB function are true, and provides counterexamples
for the ones that are falsified.

4 Case Studies

In this section, we evaluate and demonstrate the effectiveness of the export
techniques in two case studies: (1) an avionics braking and steering control unit
and (2) a medical infusion pump. The workflow was tested with the latest version
of the AGREE toolset and MATLAB Release 2015b.

As our export tool has not yet been qualified [14], for each case study, the
specification model generated by the tool is manually reviewed against the orig-
inal contracts and design information in AGREE and AADL to assess if the
high-level requirements have been maintained.

4.1 Avionics Braking and Steering Control Unit

Overview. The avionics Braking and Steering Control Unit (BSCU) is a com-
puter located in an aircraft’s Wheel Braking System (WBS), controlling the
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“Normal braking, Autobrake, Nose Wheel Steering Aid and Antiskid func-
tions” [15]. The specification of the BSCU came from prior verification efforts [15]
based on the report of an Airbus A-320 accident which occurred on May 21,
1998 [16]. In that accident, both the normal and alternate braking systems
failed on landing. The loss of the normal braking system was caused by logic
disagreement in the BSCU.

The BSCU system consists of two functionally identical channels, with only
one channel being active at a time. When a fault is detected in the active chan-
nel, the standby channel becomes active if it is not faulty. Each channel contains
a command function unit (COM component) and a monitor function unit (MON
component). Both the COM and MON components compute the braking pres-
sure to be applied based on their braking mode. Their outputs are compared at
the MON function unit, and a fault will be logged when there is a disagreement
between the outputs.

The COM and MON units operate in four braking modes: MANUAL, LO,
MED, MAX. In MANUAL mode, the computed breaking pressure is mainly
determined by the pressure on the brake pedal applied by the pilot. Other modes
are Autobrake modes selected when pilot presses one of the LO, MED, or MAX
buttons on the AUTO BRK panel, providing low, medium, and maximum levels
of deceleration. Each unit starts in the MANUAL mode, and can transition to
another mode when the associated button is pressed once; pressing the same
button again transitions the unit back to MANUAL mode.

For this specific case study, the system architecture was previously modeled
in AADL, and the design contracts between the components were specified in
AGREE. Prior work [15] has found a disagreement in detecting a button push
between the COM and MON component. The problem was remedied by updating
the design contracts in the architecture model.

For this case study, we created Simulink models for the COM and MON com-
ponents. This was a manual design process to interpret the high-level require-
ments into a design model. The behaviors of the COM and MON models were
intended to satisfy all AGREE contracts for the COM and MON components in
AADL.

For each component, we exported the design contract to a Simulink observer
and connected it to the corresponding Simulink model. We ran Simulink Design
Verifier (SLDV) on the augmented model to discover which properties were val-
idated and which were not. For the falsified properties, SLDV produced a coun-
terexample.

Results and Findings. Two types of falsified properties were found during the
verification process. The first type was caused by a discrepancy on the behavior
of the initial step. The second type was due to a discrepancy on the value of
a global parameter used to indicate if the component is currently in an active
channel. In both cases, the Simulink design model failed to interpret the specific
design detail as presented in AGREE. Such discrepancies were missed from the
first round of manual review of the models. After updating the Simulink model
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to match the design contracts, all properties specified in the Simulink observer
were verified.

Investigation of the counterexamples was carried out by comparing the values
of the intermediate signals computed in the model and in the Simulink observer
during the simulation of the counterexamples. Having the specification model
and design model co-located in the same environment allowed the simulation to
compare their values during runtime.

The verification results demonstrate the benefit of using formal verification
over manual review or simulation/testing, as it reasons about all execution paths
and identifies design flaws that can be missed by other methods.

Automatically exporting AGREE contracts to Simulink observers allows fast
turn-around in verification. The verification of the Simulink design model can
be conducted as soon as the model is created. This supports early and frequent
verification starting from the design phase. It also reduces errors that are easily
introduced from manual interpretations, especially for large components with
complex contracts.

4.2 Generic Patient Controlled Analgesic Infusion Software

Overview. The Generic Patient Controlled Analgesic (GPCA) infusion pump
system [10] is a medical cyber-physical system “used for controlled delivery of
liquid drugs into a patient’s body according to a physician’s prescription (the
set of instructions that governs infusion rates for a medication).” [10]. It allows
patients to administer a controlled amount of drug (typically a pain medication)
themselves. It consists of four main components: Alarm, Infusion, Mode, and
Logging. They are used to monitor the exceptional conditions and notify the
clinician, determine the flow of drug, manage the mode, and log the status of
the system. Detailed information on GPCA requirements can be found in [17].

The workflow for this case study was similar to the BSCU case study, except
that the Simulink design models for the components, as well as the Simulink
observer for the properties of the design models, had been manually created in
prior work [17]. In this case study, we reused the design model created for each
component, and we replaced the existing (manually created) Simulink observers
with the ones generated by our tool from the corresponding AGREE contracts.
The updated models were then verified using Simulink Design Verifier and the
verification results from both models were compared.

Results and Findings. For both the manual and auto version of the Simulink
observer, the verification results identified falsified properties due to the design
model not behaving as expected. The verification time between the two versions
were comparable (within 10 s). Some properties were undecided after reaching
the maximum analysis time (set at 1200 s) for both versions.

Although the manually created versions of the Simulink observers are still a
work in progress, we can make the following observations:

1. The manual properties tended to address the simpler, more straightforward
contracts in AGREE, and they often missed modeling the temporal constructs
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from AGREE (i.e., pre and → operators). Automation now allows us to easily
translate even the complex contracts.

2. The manual properties tended to lag behind the AGREE contract updates,
resulting in different verification results between the manual and automated
versions for the same AGREE contract. Automation makes it easy to keep
all the models synchronized.

3. The manual properties used Simulink unit delays outside of the MATLAB
function to interpret the pre operator, a translation that preserves the mean-
ing but is not easy to automate.

4. The manual properties selected signals from bus elements outside of the MAT-
LAB function, while the auto translated properties did bus element selection
inside the MATLAB function. The latter is a design choice that is easier to
automate and maintain.

We found the benefits of automatically connecting the created Simulink
observer to the design model through a counterexample. In this counterexample,
one input port to the design model and the Simulink observer was a duplicate
(different port numbers and treated as different ports) instead of a replicate
(same port number and treated as the same port). This made the observer not a
synchronous one, and yielded different verification results from the version that
had the Simulink observer auto connected.

We also found design details introduced in the Simulink model that did not
conform to the interface design in AGREE. For example, for an input port of
record type in AGREE, its counterpart in Simulink (of Simulink bus type) had
additional elements and elements with different names. While it is understand-
able that the design model may introduce new details needed for the component,
any new design details that affect the interface should be synchronized with the
AGREE model.

5 Related Work

The idea of auto generating test cases from higher level requirements has been
the subject of intensive study in both the academia and industry [18–20]. Cre-
ating properties for formal verification from higher level requirements, has been
performed manually [10,21], through patterns [22], and automatically [23,24].
The unique contribution of our work is a method for automatically exporting
high-level requirements from a system-level reasoning framework as property
observers in a component-level modeling framework. This enables formal verifi-
cation of the component requirements as they are developed, bridging the gap
between system-level and component-level reasoning. The compositional reason-
ing framework OCRA [25] has similar goals as AGREE. Both frameworks reason
hierarchically about a system of components with connections and contracts.
However, as far as we know, there are no tools to translate OCRA contracts to
observers in specification languages commonly used in the avionics industry.
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6 Conclusions

In this paper we have described a method for translating design contracts for
components in an AADL software architecture model into specification mod-
els that can be verified at the component level. We have provided tool sup-
port for export as Simulink observers that can be verified using the Simulink
Design Verifier. Moreover, our approach is sufficiently general that other com-
ponent development environments could be easily targeted. This approach is
built upon the AGREE compositional analysis framework that allows verification
of requirements during architecture development, prior to software component
implementation. Applying the technique on an avionics system and a medical
device system has shown that the design contracts from the architecture model
were faithfully exported, and saved time and reduced errors compared to the
manual effort. Our approach also allowed verification to proceed in parallel with
software development.

Possible future work includes qualifying the export tool in accordance with
avionics certification guidelines [14] and enhancing the usability of the tool by
supporting automatic re-verification when design contracts are updated.
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Abstract. This paper describes Hy-CIRCA, an architecture for ver-
ified, correct-by-construction planning and execution for hybrid sys-
tems, including nonlinear continuous dynamics. Hy-CIRCA addresses
the high computational complexity of such systems by first planning
at an abstract level, and then progressively refining the original plan.
Hy-CIRCA integrates the dReal nonlinear SMT solver with enhanced
versions of the SHOP2 HTN planner and the CIRCA Controller Syn-
thesis Module (CSM). SHOP2 computes a high level nominal mission
plan, the CIRCA CSM develops reactive controllers for the mission steps,
accounting for disturbances, and dReal verifies that the plans are correct
with respect to continuous dynamics. In this way, Hy-CIRCA decomposes
reasoning about the plan and judiciously applies the different solvers to
the problems they are best at.

1 Introduction

In this paper we describe Hy-CIRCA, an architecture for verified, correct-by-
construction planning and execution for hybrid systems, including nonlinear
continuous dynamics (see Fig. 1). Hy-CIRCA addresses the high computational
complexity of nonlinear hybrid systems by first planning at an abstract level, and
then progressively refining the original plan. During this refinement process, Hy-
CIRCA incorporates formal verification at increasing levels of fidelity.

Hy-CIRCA is an extension of our Playbook1 approach for controlling multiple
autonomous agents to cover hybrid discrete/continuous planning and control,
with nonlinear continuous dynamics. The Playbook approach aims to make it
easy for users to exert supervisory control over multiple autonomous systems
by “calling a play” [9]. The Playbook approach is implemented by combining
(1) a human-machine interface for commanding and monitoring the autonomous
systems; (2) a hierarchical planner for translating commands into executable
plans; and (3) a smart executive to manage plan execution by coordinating the
1 Playbook R© is a registered trademark of SIFT, LLC.
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control systems of the individual autonomous agents, tracking plan execution,
and triggering replanning when necessary.

Hy-CIRCA integrates the dReal nonlinear SMT solver [4] with enhanced
versions of the SHOP2 [11] planner and the CIRCA Controller Synthesis Mod-
ule (CSM) [6,10]. The planning process in Hy-CIRCA proceeds in 5 steps:
(1) SHOP2 computes an approximate, nominal mission plan. While comput-
ing this plan, Hy-CIRCA also computes a hybrid automaton model of the plan,
featuring more expressive continuous dynamics. (2) dReal solves this hybrid
model, establishing the correctness of the plan, and refining it by computing
values for its continuous parameters. This mission plan uses projection to han-
dle resources and find paths to the goal state. However, it is still an open-loop
plan. (3) To build an executable plan, Hy-CIRCA extracts specifications for
closed-loop, hard real-time supervisory controllers that will achieve each step
of the plan and reject disturbances from outside sources of change (e.g., adver-
saries or nature). (4) Based upon these specifications, CIRCA CSM plans the
supervisory controllers. The CSM uses an over-approximating abstraction of the
continuous dynamics. (5) Finally, dReal ensures correctness of the controllers by
verifying they meet the specifications, using a higher-fidelity nonlinear hybrid
model.

Hy-CIRCA has superficial similarities with established three layer architec-
tures (TLAs) for robotics, but those typically feature deliberative planning, reac-
tive programming for a smart executive, and then a platform control interface [5].
The TLA provides a combination of open-loop projective planning to efficiently
reason about mission goals and manage resources, with closed-loop, event-driven
interaction with low-level platform control. In most TLAs, considerations of con-
tinuous and hybrid dynamics are confined to the executive layer, the executive
is usually manually programmed rather than automatically synthesized, and the
relationship between the planning and executive layers is ad hoc. TLAs contrast
with hierarchical schemes such as CHARON [1], that are homogeneous across
abstraction layers, permitting systematic reasoning about relations between com-
ponents in terms of traces and trace refinements. Hy-CIRCA shares the ability
to systematically reason about relations between layers, and permits higher-level
behaviors to constrain synthesis of lower-level behaviors.

As the first step in developing Hy-CIRCA, we have constructed a proof-of-
concept implementation of key parts of Hy-CIRCA, and tested it on a demonstra-
tion problem involving multi-agent firefighting using uninhabited aerial vehicles
(UAVs). In this paper, we describe this aerial firefighting scenario and how
Hy-CIRCA meets its challenges.

Our contributions include: a method of using the SHOP2 planner to perform
hybrid automaton model construction; a logical formalization of the SHOP2-
generated plan as a hybrid system, for use in the dReal SMT solver; techniques
for extracting controller specifications from an HTN plan; and techniques for
verifying the correctness of CIRCA closed-loop controllers on hybrid systems.
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Fig. 1. Hy-CIRCA synthesizes hybrid controllers to satisfy mission specifications
expressed in high-level temporal logic through two-way interactions between the Mis-
sion Planner, the Controller Synthesis Module, and the Hybrid Automaton Solver.
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Fig. 2. Multiple-UAV firefighting scenario.
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Fig. 3. Plan to extinguish a fire.

2 Scenario of Use

The following motivating use case illustrates how the Hy-CIRCA architecture
can be used for hybrid planning and control of multiple-platform packages of
autonomous systems. In this multi-UAV firefighting scenario (see Fig. 2), the fleet
of UAVs includes waterbombers that drop water or retardant on a fire, spotters
that localize the fires and transmit targeting coordinates to the waterbombers,
C2 aircraft that coordinate operations and have long-range sensors that detect
possible fires, and tankers that provide in-air refueling.

The mission’s objective is to extinguish a fire that has just been spotted by
the long-range, low-accuracy sensors on a C2 aircraft. An airborne fire manager
on the C2 aircraft uses his Playbook interface to call the extinguish play, tailor-
ing the play to the situation by incorporating information about the location of
the suspected fire, the assets available to the team, and their current state/lo-
cation. Given the plan library and any tailored parameters from the operator,
Hy-CIRCA first invokes the SHOP2 HTN planner to generate a complete set
of tasks for the mission. The first step in the mission plan (see Fig. 3) is for a
spotter to go to the vicinity of the suspected fire to confirm its existence. After
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confirmation, the fire can be extinguished by dropping a load of retardant from
a waterbomber. SHOP2 also plans a route for the waterbomber to reach the area
of the fire to extinguish the fire. In order for the waterbomber to correctly target
the fire, it must get a stream of location information from a spotter as it drops
the retardant.

SHOP2 chooses a take-off time for the waterbomber that attempts to get it
to the fire area shortly after the spotter has arrived. This will avoid fuel waste
that would occur in a plan where the waterbomber arrives first and must loiter,
waiting for the spotter. But we don’t want the waterbomber to arrive too late:
even though the spotter uses less fuel than the waterbomber, we still don’t want
to waste its fuel, or keep it from other uses. Note that this means that the
problem has required concurrency [3]. Required concurrency is a feature of more
difficult temporal planning/scheduling problems in which there are “too early,”
as well as “too late” constraints. Problems with required concurrency differ from
simpler temporal problems whose temporal aspect can be solved by choosing the
earliest feasible activity start times.

SHOP2’s plan is only approximate, because of limits in its computations
about real continuous quantities such as fuel (in particular, its inability to solve
systems of simultaneous equations). But SHOP2 can more efficiently solve the
discrete sequencing problems than dReal, and it can invoke special solvers to
synthesize waypoint sequences.

Once the initial plan has been computed, Hy-CIRCA uses the higher fidelity
reasoning offered by dReal to refine it. As a side-effect of computing its
plan, Hy-CIRCA’s version of SHOP2 builds a hybrid systems SMT problem.
Hy-CIRCA uses dReal to solve this problem, where a solution is a satisfying
trajectory through the high-dimensional hybrid space. By solving that problem,
dReal will synthesize continuous parameters for the mission plan. In our tests,
dReal solved a system of nonlinear constraints to choose the fuel and flame retar-
dant loads for the waterbomber, and refined the mission schedule based on more
accurate models of flight than those used by SHOP2.

The mission plan guides the operation of the autonomous systems, but is
not sufficient for their closed-loop control. Hy-CIRCA uses an enhanced version
of the CIRCA Controller Synthesis Module (CSM) to automatically synthesize
controllers for the platforms (waterbombers, spotters, etc.) in the mission. These
controllers will constitute the smart executives for those platforms.

The first step of the controller synthesis process is to generate controller
specifications from the mission plan. These specifications include both tempo-
ral logic invariants and goals. For our current Hy-CIRCA proof of concept, we
extracted the specifications for the waterbomber aircraft in the mission. These
specifications include control operations used in flight, representations of known
disturbances, temporal logic representations of the goals (“eventually the fire
should be extinguished”), temporal logic invariants (“the waterbomber must
release its load within k time units from receiving a target message from the
spotter”), and signal temporal logic (STL) [8] hybrid invariants (“the vehicle
must always maintain a fuel reserve of at least n gallons”).
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The CIRCA CSM uses these inputs to synthesize a closed-loop, real-time
discrete outer-loop controller for each platform. Note that these controllers will
perform coordinated actions, directed by the mission plan that has been trans-
lated into temporal logic specifications. For example, the spotter will repeatedly
transmit targeting information until the waterbomber has dropped its load. Sim-
ilarly, the waterbomber will wait in the vicinity of the fire until it has received
the targeting information, and is constrained to drop its load before the targeting
information becomes stale.

The CIRCA CSM reasons about continuous processes only as approximated
by upper and lower bounds on temporal durations. For example, its reasoning
about whether it can reach the target quickly enough is based on whether it can
initiate the motion soon enough, and is verified in terms of time bounds on its
flight processes.

For more accurate reasoning about the control of continuous processes,
Hy-CIRCA re-checks the controller using dReal. We developed a technique for
translating the CIRCA controllers and STL invariants into a hybrid automa-
ton representation that can be checked by dReach (a preprocessor translating
hybrid automata for dReal) and dReal. We tested this algorithm by translating
the waterbomber controller into a hybrid automaton, the STL invariants into a
separate automaton, forming the product, and then checking reachability. The
reachability computation was done using dReach’s translation from automaton
to dReal SMT formulas. E.g., in one of our tests, we checked the invariant that
the waterbomber would always have an adequate fuel reserve.

If Hy-CIRCA finds that an invariant cannot be verified, it will use a process
of culprit extraction to translate the counterexample into information that the
CIRCA CSM can use to guide backjumping and repair the synthesized con-
troller [7]. We have developed a method for performing this culprit extraction.
We tested the approach on an example where the waterbomber’s controller orig-
inally generated a plan that involved monitoring a fuel level warning, which is
signaled when a threshold fuel level is reached (like the fuel level warning in a
car). The original synthesized controller would go into a special fuel-conserving
flight mode and return to base if the low fuel warning was triggered. In some
missions, where the flight radius is lower, this controller will be verified to work
correctly.

However, if the flight radius is longer, then dReal will detect that a failing
state can be reached if the fuel warning goes off when the aircraft is beyond
some distance d from base. From this counterexample, Hy-CIRCA can extract a
culprit that indicates that the controller using the special return-to-base flight
mode is not safe. This will cause the CSM to backjump and choose the (more
expensive) recovery action of in-air refueling. The resulting revised controller
then will be verified by dReal.

3 Conclusions and Future Work

We have described our Hy-CIRCA framework for integrated planning, controller
synthesis, and verification for nonlinear hybrid domains. Hy-CIRCA decomposes
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complex mission planning into strategy planning with SHOP2, controller syn-
thesis with CIRCA, and verification with dReach. Some of the most challenging
and novel aspects of this framework are how the tools integrate to solve the
overall problem. For instance, SHOP2 and dReal interact to solve planning and
scheduling with numeric resources. SHOP2 and CIRCA collaborate to synthesize
low-level controllers for high-level actions that must satisfy temporal properties.
CIRCA and dReach cooperate to verify the controllers with respect to the under-
lying nonlinear continuous change.

As we continue to develop the Hy-CIRCA framework, the important remain-
ing issues concern how to automatically divide the overall problem among the
Hy-CIRCA components and how to effectively evaluate these decisions. We
recognize that the division of decision making between the tools is an important
area for future research, especially given that we have recently made advances
in scaling dReal’s discrete decision-making capabilities [2]. We have designed
algorithms for SHOP2/CSM and CSM/dReach integration, and tested them on
cases drawn from the firefighting scenario. We are about to begin a second phase
of the project to complete the integration and extend our set of experiments. We
are also working to extend the capabilities of the system in a number of areas.
In order to handle the full generality of the temporal specifications handled by
the Hy-CIRCA CSM, we are improving the native finite trace verification of
temporal logic specifications in the CSM. The current timed automaton verifier
in the CSM only checks safety conditions. We will extend it to handle liveness
conditions, as well. While the basics of liveness checking are well understood,
our algorithms for extracting nogoods – used for backjumping – need extension
in order to accommodate counterexamples to liveness goals.
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