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Abstract. This paper presents the implementation of a new 3D simulator
applied to the area of robotics. The simulator allows to analyze the performance
of different schemes of autonomous and/or tele-operated control in structured
environments, partially structured and unstructured. For robot-environment
interaction is considered virtual reality software Unity3D, this software
exchanges information with MATLAB to execute different control algorithms
proposed through the use of shared memory. The exchange of information in
real time between the two software is essential because the advanced control
algorithms require a feedback from the robot-environment interaction to close
the control loop, while the simulated robot updates its kinematic and dynamic
parameters depending on controllability variables calculated by MATLAB.
Finally, the 3D simulator is evaluated by implementing an autonomous control
scheme to solve the problem of path following of a 6DOF robot arm, also the
results obtained by implementing the tele-operation scheme for said robot are
presented.

Keywords: Simulator 3D � Virtual reality simulator � Path following �
Unity3d-MATLAB � Shared memory

1 Introduction

In recent years, robotics research has experienced a significant change. Research
interests are moving from the development of robots for structured industrial envi-
ronments to the development of autonomous mobile robots operating in unstructured
and natural environments [1–5]. The robotic generally is classified according to their
field of application, industrial robotics and service robotics [6–8]. In industrial and
service applications it is necessary to avoid mistakes, they can cause economic and
human losses; in this context it is necessary to have an environment in which to
experience the performance of robots before they pass to perform any task in a real
environment, for which it is considered a virtual simulation environment.
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A virtual environment is an environment in which simulations activities found in
everyday life are made, this is done with the purpose of bringing these activities to a
controlled environment and analyze more deeply the stability and robustness of the
systems designed, permitting in this virtual environment test, you may experience
various system disturbances, and thus obtain a complete study of the operation of the
system.

The advancement of technology has developed computers that let you simulations
increasingly real and complex in different areas. A virtual environment would be
divided into: (i) interactive environment it means that the user is “free” to navigate the
virtual environment without having programmed the trajectory that you want to move,
the system responds according to the user’s wishes, this represents that the user can
make decisions in “real time” in order to observe the scene from the selected viewpoint
[9, 10]; (ii) implicit interaction this refers to the user must not learn commands or a
procedure to perform some action in the virtual world, by contrast, the user performs
movements that are natural to those used in the real world to move. It then searches the
computer suits human nature and not the other, thereby ensuring that the experience in
the virtual environment is as near as possible to the experience in the real world [9, 10];
and (iii) sensory immersion refers to disconnect sense the real world and the connection
thereof to the virtual world [10].

The virtual environment was initially developed for application in computer games
and consoles, recently the virtual environments are used to simulate different appli-
cations in the area of robotics. There are several commercial programs for the design
and simulation of robots in virtual environments, between to simulate the behavior of
any robot model are: Robcad, Robotstudio, Igrip, Workcell, Gazebo [11], etc.; specific
for a robot in particular, e.g. V_CAT, V_TRAISIG y V_ISUAL of Staubli, not all
programs are compatible with other CAD systems, do not support libraries all robots or
other elements if any, and some are not sold under Windows, in this context, a software
that is compatible with most CAD systems is sought, Unity3D for which the platform is
analyzed.

Unity3D is a graphics engine developed by Unity Technologies in order to allow
everyone to create attractive 3D environments, its creation was aimed at creating
games. Unity3D possible to develop software for a wide range of platforms [12–14], so
it is extremely attractive for a wide range of developers. For the simulation of a system
is considered: (i) 3D design, this is done with special or general CAD programs; at this
stage in addition to the three-dimensional drawing of the installation (environment
modeling) the kinematic and dynamic characteristics of robots and other mobile ele-
ments of the system are defined; (ii) trajectories following, movements, velocities and
sequences are determined; and (iii) simulation of all movements, the possibilities at this
stage of the installation are checked, errors are corrected, the interference is detected
and design are optimized.

As mentioned above, this paper presents a new 3D virtual reality simulator for
robotic applications. The proposed simulator allows real-time communication between
Unity3D and MATLAB software. For bilateral communication it proposes to use
shared memory between these two software; the method of shared memory is a
technique easy to apply, with short delays and low use of computer resources by not
calling functions third. In addition, the simulator allows to evaluate real-time

Unity3D-MatLab Simulator in Real Time for Robotics Applications 247



performance of different schemes of autonomous control and/or tele-operated in
structured, partially structured environments, and unstructured; for tele-operation
scheme 3D simulator accepts as input haptics devices that stimulate the senses of the
human operator so that it can “transmit” their skill, experience and expertise to the
robot to perform a task. Finally, to evaluate the performance of autonomous control
simulator for monitoring roads proposed for a 6DOF robotic arm -system redundant-,
as secondary objective is considered the maximum arm manipulability; also, the
experimental test of a scheme bilateral tele-operation is performed.

This paper is divided into 6 Sections including the Introduction. In Sect. 2 the
control problem is formulated. Next in Sect. 3 the modeling of the mobile manipulator
robot and the controllers design for path following are presents. While the bilateral
communication between MATLAB-Unity3D is present in Sect. 4. In Sect. 5 the
experimental results for of autonomous control and tele-operated for a robotic arm are
presented and discussed. Finally, the conclusions are given in Sect. 6.

2 Problem Formulation

The application development in the area of robotics requires accurately define the task
to be performed to determine the needed characteristics of the robot. Determined these
parameters, the execution of a task can be subdivided into the following steps: (i)
Modeling stage, at this stage, it is essential to model the three-dimensional robot in a
Computer Aided Design (CAD) software. The modeling lets to analyze the physical
characteristics of the robot prior to the construction, in this context, there are tools such
as SolidWorks, Autodesk Inventor, AutoCAD, among others, that allow to design
mechanical elements and get results of mobility and strength of materials, among other
mechanical characteristics, view Fig. 1;

(ii) Construction stage, The main objective of this phase is to assemble each of the
mechanical parts designed and incorporate the necessary electronics to move each joint,
In addition to considering the signal conditioning for sensory perception of the external
environment in which the robot will move, and internal sensors that must issue the

(a) Gridding arm (b) Static analysis of the safety factor

Fig. 1. Ejemplo de un brazo robótico modelado en SolidWorks (Color figure online)
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position, velocity, torque and strength of each link forming the robot. The information
provided by the proprioceptive sensors and exteroceptive sensors will be used in the
different advanced control algorithms proposed; (iii) Controllers design stage, to the
design of advanced control algorithms it is essential to determine the mathematical
model representing the robot kinematics and dynamics. The different mathematical
models of robots are systems of multiple-input multiple-output, MIMO, so software
tools that solve mathematical matrix operations to facilitate implementation of the
proposed control scheme is required. MATLAB is a tool with its own programming
language and development environment that offers the advantage of matrix manipu-
lation and data processing. As a deployment scenario algorithms, MATLAB has
libraries that can be extended according to programming needs [15]; (iv) Simulation
stage, prior to the experimental implementation of the proposed control algorithms, it’s
necessary to check their performance in a three dimensional environment that emulates
the actual conditions in which the robot operates, therefore, virtual development tools
are required with the ability to support bilateral haptic devices, video output interfaces
and audio, among others. Unity 3D is a tool for creating games, as well as development
of virtual simulation and allows the incorporation of different haptic devices for
manipulating its environment. Unity engine uses a script in C# language to manipulate
the game objects with which you can modify the behavior of the simulated objects; and
finally the (v) Implementation stage, it is the final phase in which the robot interacts
with the environment where performs the task, this interaction is controlled via algo-
rithms proposed control. The successful implementation of the planned task is based on
compliance with each of the objectives of the above detailed steps; in this context, one
can say that the design and simulation of control algorithms are the most critical stages
for performing a task, so this work focuses on these two items.

In order to check the performance of control schemes in simulated/emulated
environments, it is necessary to implement a communication channel between a
bilateral graphics engine and mathematical software tool. The exchange of information
in real time between the two applications is essential because the advanced control
algorithms require the robot’s feedback to close the control loop, while the emulated
robot updates its kinematic and dynamic parameters depending on the
robot-environment interaction, view Fig. 2.

Fig. 2. Data interchange between Math software and 3D simulation software
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In this context, the following sections show an emulator of advanced control
algorithms implemented in MATLAB and displayed in real time in a virtual envi-
ronment developed in Unity3D. It should be noted that the emulator allows bilateral
interaction between MATLAB and Unity3D for any scheme or control technique
implemented in MATLAB. As an example, autonomous control for tracking paths of a
robotic arm 6 DOF is presented; and a tele-operated control from Unity’s robotic arm.

Remark 1. A simulator represents reality in a similar way, while an emulator
replica or improved conditions similar to the real ones.

3 Modeling and Control

The instantaneous kinematic model of a robotic arm sets the derivative of its location
as a function of the derivative of its configuration (or its operational velocities as
functions of its generalized velocities)

_h tð Þ¼J qð Þ _q tð Þ: ð1Þ

It uses the Jacobian matrix J qð Þ of the function f : J qð Þ ¼ @f
@q. The configurations

such that the rank of J qð Þ decreases are singular kinematic configurations and the
problem, robotic arm and task, is redundant when n[m.

The mathematic model that represents the dynamics of a robotic arm can be
obtained from Lagrange’s dynamic equations, which are based on the difference
between the kinetic and potential energy of each of the joints of the robot (energy
balance). Most of the commercially available robots have low level PID controllers in
order to follow the reference velocity inputs, thus not allowing controlling the voltages
of the motors directly. Therefore, it becomes useful to express the dynamic model of
the robotic arm in a more appropriate way, taking the rotational and longitudinal
reference velocities as the control signals. To do so, the velocity controllers are
included in the model. The dynamic model of the robotic arm, having as control signals
the reference velocities of the system, can be represented as follows,

M qð Þ �qþC q; _qð Þ_qþ g qð Þ¼ _qref ð2Þ

where, M qð Þ ¼ H�1 �MþDð Þ; C q; _qð Þ¼ H�1 �CþP
� �

; g qð Þ¼ H�1 �g qð Þ. Thus,
�MðqÞ 2 <dn x dn is a positive definite matrix, �Cðq; vÞv 2 <dn , �GðqÞ 2 <dn and _qref 2
<dn is the vector of velocity control signals, H 2 <dn x dn , D 2 <dn x dn and P 2 <dn x dn

are constant symmetrical diagonal matrices, positive definite, that contain the physical
parameters of the robotic arm, e.g., motors, velocity controllers.

In the other hand, a trajectory will be automatically generated and a trajectory
tracking control will guide the robotic arm to the desired target. As indicated, the
fundamental problems of motion control of robots can be roughly classified in three
groups: (1) point stabilization: the goal is to stabilize the robot at a given target point,
with a desired orientation; (2) trajectory tracking: the robot is required to track a time
parameterized reference; and (3) path following: the robot is required to converge to a
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path and follow it, without any time specifications. For more details about the modeling
and control see [16].

4 Bilateral Communication MATLAB-Unity3D

This section describes the methods of inter-process communication and exchange of
information between MATLAB and Unity3D for control of an emulated manipulator
with a haptic device.

4.1 Windows Inter-process Communication (IPC)

IPC is a feature enabled in the operating systems on which processes can exchange
information through memory segments or through own communication tools, allowing
resource sharing. Generally these processes are developed to low level – allowing to
interact with the operating system resources – and according to the protocols for such
communication.

The techniques to develop IPC vary depending on the application. This function
can be used for the transmission of messages, synchronization, shared memory and
remote procedures. The method used to communicate processes depends on the transfer
rate required and the type of data to be treated. There are several ways to implement
communication between processes, among which are: (i) Named Pipe is a method of
channeling data by creating a memory space in the operating system explicitly declared
before the execution of processes to communicate.; (ii) WinSock provides very high
level networking capabilities, it supports TCP/IP (the most widely used protocol) along
with many other protocols like AppleTalk, DECNet, IPX/SPX, etc.; (iii) Mailslots
processes messages between applications via datagrams and allows to communicate
unidirectionally, this method is useful for transmitting information to multiple clients;

Table 1. Windows Inter-process communication methods [17]

Method Advantages Disadvantages Resources

Named
Pipe

Easy to use and works across the
network

The source code is
platform dependent

Medium

WinSock Works on the same computer as
well as across networks.
Moreover, it can be used across
various platforms and protocols

Requires a knowledge of
relatively advanced
networking concepts

Low

Mailslots Works across a network and
supports broadcast

Provides one-way
communication only

Medium

Shared
Memory

Linking processes using memory
registers previously allocated,
without functions of third party

Works on the same
computer

Low
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and finally, (iv) Shared memory allows to create segments of memory to be accessed by
multiple processes, access restrictions may be defined, e.g., read only, read and write,
execute, access over inheritance, among others. Table 1 presents the differences
between the methods described for implementation of inter-processes communication.

Remark 2. Datagram is a data set of the communication protocol packet switched
used to route information between nodes in a network.

In reference to illustrated in Table 1 and the proposed implementation guidance in
this work, the method of shared memory is a technique easy to apply, with short delays
and low use of computer resources by not calling third party functions.

4.2 MATLAB – Unity Communication

The bidirectional data communication between MATLAB - Unity3D is performed by a
dynamic-link-library, dll, in which the Shared Memory method is implemented, SM, in
RAM. The Fig. 3 illustrates the implementation of shared memory, where the dll
manages the SM space, besides providing permits for the applications, label the
memory space, provide functions to modify/obtain the stored information and liberate
the space when the application is terminated.

Using the dll between MATLAB and Unity3D is divided into three parts: (i) Init
phase, the dll can be instantiated from an application through a handle, in which are set
the security attributes and inheritance, permissions to read/write to memory registers
reserved, RAM’s space management and labeling. In this way, the client applications

Fig. 3. Interprocess communication via shared memory

252 V.H. Andaluz et al.



can reference data wishing to modify or capture, provided it have access permissions,
aware of their existence and location where it is staying.

Remark 3. The characteristics of the dll allows that the generated memory can be
started from MATLAB or Unity3D. From this step, both applications must use func-
tions to identify dedicated spaces of memory, modify data or get them.

(ii) Execution phase, at this stage MATLAB and Unity3D must invoke the
function OpenSharedMemory() to find the handle through the label and create a
memory view, defining the read/write permissions, the point where the view begins and
the number of bytes to be mapped, view Fig. 4. The view points to handle, from which
a casting to LPINT type variables is made to locate the index of each of the stored data.
The handle is referenced by the view when the application desires to read or write in
memory.

Fig. 4. Views of the Shared Memory

Unity3D-MatLab Simulator in Real Time for Robotics Applications 253



The view allows update dedicated registers of each application. For writing data,
the application is based on indexes that the dll provides in static manner for each of the
variables.

Finally (iii) Close phase, SM is reserved while the process runs. When the appli-
cation Close, memory must be released. By invoking the function Destroy-
SharedMemoryArea(), ends with the reservation and labeling of RAM for that any
other system process can use it.
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4.3 Interaction MATLAB-Unity3D

The interaction between MATLAB and the graphics engine is divided into three stages,
described in the following paragraphs as: import of three-dimensional design, inter-
action human-robot and bilateral communication processes (Fig. 5).

SolidWorks is the CAD tool used for mechanical design, but has no export formats
supported by the virtual tool development. In the first phase, 3DS Max is used to
modify parameters SolidWorks 3D modeling and hierarchies are established in the
pieces that make up the assembly and supported file by Unity3D is exported. Once the
three-dimensional model imported to Unity 3D environment, texture for each piece that
makes up the prototype are established. In addition, the degrees of freedom of the 3D
model is specified by activating the points of rotation and/or translation for objects that
guides each.

In the second stage, the Unity3D environment performs the animation of virtual
objects using Game Objects, scripts and plugins. The behaviour of Objects Game is
controlled by scripts, which allow you to modify its properties and respond to user
input as scheduled. The plugins allow you to use native functionality (support Oculus
Rift) or include external code (support Novint Falcon). The human-robot interaction is
achieved by information from input devices (Falcon encoders, Tracking Oculus HMD),
the mathematical tool uses this data to return control actions and generate output
responses (Falcon motors, Oculus HMD and audio).

Finally, in the third stage, information virtual robot is linked to MATLAB through
the dll file and the invocation of the SM. When MATLAB requires send or retrieve
information from the SM sector, its programming should include the lines:
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While in each communication cycle, Unity receives velocities to control the
rotation points and thus the operative end. Additionally, is sent the position of each
actuator forming the modeled 3D robot and data human-robot, such as real interaction
forces given by contact, effects of gravity, fictitious forces to avoid virtual obstacles,
etc. Unity within the script, must contain the following lines of programming to invoke
the read/write data in the SM.

Fig. 5. Unity3D – MATLAB Interaction
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Remark 4: The libraries developed for information sharing allow interaction
between Unity Game Objects with any software package of MATLAB like Script,
Simulink, etc., once initialized the SM.

Remark 5: In the case of robotic applications, update time data is relatively low due
at time of sampling used. This work do not try to raise synchronization methods of
information in shared memory.

5 Simulation Experimental Results

In order to illustrate the performance of the proposed simulator 3D of an arm robotic
6DOF, several experiments were carried out for path following autonomous control
and bilateral tele-operation of a robotic arm; the most representative results are pre-
sented in this Section. The experiments were carried with the kinematic and dynamic
models of a robotic arm 6 DOF, view Fig. 6.

Fig. 6. Arm Robotic 6DOF developed in SolidWorks
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On the other hand, the proposed simulator 3D consist in a desktop computer Core
I7 3610QM running at 2.3 GHz, 8 GB RAM and a NVIDIA GeForce GT 630 M 1 GB
dedicated graphics; also the local site has a haptic device FalconMT Novint. The
evaluation of the latency in MATLAB takes into account the transmission, execution
Unity and receiving data delay, which is within the desired sampling period of 100
[ms].

5.1 Autonomous Control

The performance of the control structure for path following is tested. The desired
trajectory for the end-effector is described by P sð Þ ¼ xP sð Þ; yP sð Þ; zP sð Þð Þ, where
xP ¼ 0:35 sin 0:2sþ p

2ð Þ; yP ¼ 0:35 cos 0:2sþ p
2ð Þ and zP ¼ 0:2þ 0:8 sin 0:1sð Þ. Note that

for the path following problem, the desired velocity of the end-effector of the robotic
arm will depend on the task, the control error, the joint velocity of the arm, among other
design specifications. In this experiment, it is considered that the reference velocity
module depends on the desired velocity of the end-effector on path P and the control
errors. Then, reference velocity in this experiment is expressed as vhdj j ¼ tP

1þ k ~hk k, where
k is a positive constant that weigh the control error module. Also, the desired location is
defined as the closest point on the path to the end-effector of the experimental system.

Hence, Figs. 7, 8, 9 show the results of the experiment of autonomous control.
Figure 7 shows the stroboscopic movement on the X-Y-Z space of Unity3D. It can be
seen that the proposed controller works correctly; while the Fig. 8 shows the desired
path and the current path of the end-effector of the robotic arm. It can be seen that the
proposed controller presents a good performance;

Fig. 7. Stroboscopic movement of the robotic arm in Unity 3D.
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and finally Fig. 9 shows that the control errors of the robotic arm on the X-Y-
Z space converge to values close to zero asymptotically.

5.2 Tele-Operated Control

The feasibility of the proposed simulator 3D is tested through of bilateral tele-operation
scheme using a robotic arm 6 DOFs. The local site has an Oculus and a haptic device
FalconMT Novint. The human operator commands are generated with the use of a
FalconTM haptic device from Novint Technologies Incorporated [18] as indicated in
Fig. 10. Its positions are translated into desired velocities commands P sð Þ ¼
xP sð Þ; yP sð Þ; zP sð Þð Þ of the end-effector of the robotic arm [19].

The simulation of a bilateral tele-operation scheme is presented, which consists on a
grasping task. With this aim, the robot is guided near the object; then the user grasps
the object opening the gripper; and finally the robot is guided to drop the object into a
box. Obtained results are shown in Figs. 11, 12, 13. Figure 11 shows snapshots of the

Fig. 8. Desired path and the current path of the end-effector

Fig. 9. Distance between the end-effector position and the closest point on the path
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experiment on Unity 3D. Figure 12 shows a comparison between the reference gen-
erated by the human operator and the actual velocities of the end-effector. While
Fig. 13 depicts the time evolution of the control error of the robotic arm.

Fig. 10. Local site of the tele-operation scheme

Fig. 11. Bilateral tele-operation: Grasping task on Unity 3D
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6 Conclusions

In this paper a 3D simulator in real time for robotics applications is proposed. This
simulator considers the bilateral communication between MATLAB-Unity3D through
of a dynamic-link-library, dll, in which the method of Shared Memory in RAM is
implemented. The dll manages space SM, enable permissions to applications, puts the
label to memory space, provide functions to modify/obtain the stored information and
freeing the space when the application is terminated. Experimental results were also
presented showing the feasibility and the good performance of the proposed simulator
3D; the experiments were carried out for path following autonomous control and
bilateral tele-operation of a robotic arm 6DOF.

Fig. 12. Comparison between the reference generated by the human operator and the actual
velocities of the end effector

Fig. 13. Evolution of the control errors of the robotic arm. If lim
t!1

~x tð Þ ¼ 0, lim
t!1

~y tð Þ ¼ 0 and

lim
t!1~z tð Þ ¼ 0 then lim

t!1 q tð Þ ¼ 0.
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