
Recognition of Confusing Objects
for NAO Robot

Thanh-Long Nguyen, Didier Coquin(B), and Reda Boukezzoula

LISTIC Laboratory, Polytech Annecy-Chambery,
University of Savoie Mont-Blanc, 74940 Annecy-le-vieux, France

{thanh-long.nguyen,didier.coquin,reda.boukezzoula}@univ-smb.fr

Abstract. Visual processing is one of the most essential tasks in robot-
ics systems. However, it may be affected by many unfavourable factors in
the operating environment which lead to imprecisions and uncertainties.
Under those circumstances, we propose a multi-camera fusing method
applied in a scenario of object recognition for a NAO robot. The cameras
capture the same scenes at the same time, then extract feature points
from the scene and give their belief about the classes of the detected
objects. Dempster’s rule of combination is then used to fuse information
from the cameras and provide a better decision. In order to take advan-
tages of heterogeneous sensors fusion, we combine information from 2D
and 3D cameras. The results of experiment prove the efficiency of the
proposed approach.

Keywords: Object recognition · NAO robot · Uncertainty · Evidence
theory · Camera fusion

1 Introduction

With the very fast development of high technologies, robotics is now more and
more important to human life. Specifically, vision processing is one of the most
focused areas, which helps a robot increase its ability to learn in explored envi-
ronments. This work considers a scenario in which a NAO robot can recog-
nize previously learned objects by fusing multi-camera to increase the quality of
recognition and reduce uncertainties and imprecisions. We first have a look at
how the other works have dealt with object recognition, then propose a solution
for the considered case.

In fact, the problem of recognizing an object has been addressed for sev-
eral decades. The number of methodologies is huge up to now; each of them
tried to prove their strengths and overcame the weaknesses of the preceding
solutions. For instances, Berg et al. [1] used Geometric Blur approach for fea-
ture descriptors and proposed an algorithm to calculate the correspondences
between images. The query image was then classified according to its lowest
cost of correspondence to the sample images. Besides that, Ling and Jacobs [2]
introduced the term “inner-distance”as the length of the shortest path between
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landmark points within the shape silhouette. The inner-distance was used to
build shape representations and they helped to obtain good matching results.
For some texture-based approaches, [3] proposed a texture descriptor based on
Random Sets and experimentally showed that it outperformed the co-occurrence
matrix descriptor. Decision tree induction was used in that work to learn the
classifier. Another example can be found in [4] where color and texture informa-
tion were both used in an agricultural scenario to recognize fruits. On the other
hand, some context-based methods like [5–7] considered contextual information
surrounding the target objects. These information come from the interaction
among objects in the scene and they help to disambiguate appearance inputs
in recognition tasks. Similarly successful, the methods based on local feature
description like SIFT [8] and SURF [9] have received many positive evaluations
and have been widely applied [10–13]. SIFT extracts keypoints from object to
build feature vectors. We then calculate the matching (using Euclidean distance)
between an input object and the ones in database to find the best candidate
class. After that, the agreement on the object and its location, scale, and orien-
tation are determined by using a hash table implementation of the Generalized
Hough Transform. In a different manner, SURF uses a blob detector based on
the Hessian matrix to find interest points, then it calculates the descriptor by
using the sum of Haar wavelet responses. Finally, by comparing the descriptors
obtained from different images, the matching pairs can be found.

For the purpose of collecting spatial information about the detected objects,
and avoiding imprecision of 2D images under non-ideal lighting conditions like
outdoor environment, some works concentrated on 3D object recognition. In
[14], an extended version of the Generalized Hough Transform was used in 3D
scenes. Each point in the input cloud votes for a spatial position of the object’s
reference point and the accumulating bin with the maximum votes indicates
an instance of the object in the scene. In [15,16], the 3D extensions of SIFT
and SURF descriptor also gave positive recognition results. In addition, Zhong
[17] introduced a new 3D shape descriptor called Intrinsic Shape Signature to
characterize a local/semi-local region of a point cloud. This descriptor uses a
view-independent representation of the 3D shape to match shape patches from
different views directly, and a view-dependent transform encoding the viewing
geometry to facilitate fast pose estimation. On the contrary, [18,19] considered
the use of point pairs for the description and the feature matching is then done by
implementing a hash table. Recently, the SHOT descriptor [20] has emerged as
an efficient tool for 3D object recognition [21,22]. Indeed, the descriptor encodes
histograms of basic first-order differential entities (i.e. the normals of the points
within the support), which are more representative than plain 3D coordinates
about the local structure of the surface. After defining an unique and robust 3D
local reference frame, it is possible to enhance the discriminative power of the
descriptor by concerning the location of the points within the support, from that
describing a signature.

It is clear that all of the above mentioned approaches have experimentally
shown good results in object recognition. Nevertheless, many of them did not
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Fig. 1. Multi-camera helps NAO robot recognize objects.

focus on the problem of uncertainty and imprecision which might come from
the quality of data and sensors, the lighting conditions, the viewing angles to
the objects and particularly, the similarity among confusing objects. Therefore,
in this work we propose to use multi-camera to recognize objects which have
many similarities. The proposed method is implemented in a NAO robot due
to our development in a robotics project, however it is not restricted to any
other kind of vision-based platform. In order to take advantage of both 2D
and 3D recognitions, we use not only a 2D camera of the NAO robot but also
another 2D IP Axis camera and another 3D Axus camera; Fig. 1 shows the
multi-camera environment where the robot is requested to recognize objects.
The fusion of these three heterogeneous sensors brings additional advantages for
each one because the NAO camera and the IP camera give characteristics about
the 2D features of the detected objects whereas the Axus camera provides depth
information. We propose an evidential classifier based on Dempster-Shafer theory
(or Evidence theory) [23] for each camera, then we combine them in decision level
in order to give more reasonable results of object recognition.

The outline of the paper is as follow. First, we describe our approach step-by-
step in Sect. 2, then we give an illustrative example in Sect. 3. Section 4 shows our
results of experiment to validate the approach, finally Sect. 5 gives the conclusion.

2 Our Recognition Approach

2.1 An Evidential Classifier for Each Camera

Processing Flow: Figure 2 shows the flow of classification by each camera.
First, an input image in 2D or 3D form is captured based on the type of camera
sensor. For the NAO camera and the IP camera (2D), the input data is 640×480
images; for the Axus camera (3D), the input images are in form of Point Cloud
since we implement 3D processing by using the PCL library [24]. To focus on
the classification, we use only one instance of object appearing in the captured
scene.
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Fig. 2. Evidential classifier for each camera

First, interest points (or key points) of the object in the scene are extracted.
In an image, an interest point can be described as a point that has rich informa-
tion about local image structure around it, and these points characterize well the
patterns in the image. After that, we use methods of descriptor to build a feature
vector for each interest point. We use the word “feature points” for the interest
points that have been described by the descriptor. The methods of descriptors
used in this work are SURF [9] for 2D data and SHOT [20] for 3D data accord-
ing to their strong properties as explained above. From the set of feature points
acquired, we build a mass function which describes the camera’s degree of belief
about the classes of detected object. Thereafter, a decision is made by choos-
ing the class with the maximum pignistic probability. The processing flow is
described with more detail later.

Evidence Theory in the Scenario: Suppose the robot has to recognize an
object that can be only in one of N classes, i.e. the space of discernment is:

Ω = {O1, O2, ..., ON} (1)

Then we have the power set which contains the subsets of the space of dis-
cernment:

2Ω = {{∅}, {O1}, {O2}, ..., {ON}, {O1 ∪ O2}, ..., {O1 ∪ ON}, ..., {Ω}} (2)

In Evidence Theory, we have to determine a mass function which describes
the degree of belief for all possible hypotheses in the power set. This function
satisfies:

m : 2Ω → [0, 1]
∑

H∈2Ω

m(H) = 1 (3)

To illustrate the proposed approach, we consider a simple case in Fig. 3 where
we suppose that there are three classes of object: A, B and C. For the sake of
explanation, we assume that we have only one training image for each class.
With an input image which contains a set X of feature points of object, our
mission is to decide the appropriate class for X. The basic idea is that each
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Fig. 3. Illustration of the idea. Each input feature point votes for a hypothesis.

feature point xi ∈ X will vote for a hypothesis H ∈ 2Ω based on its matching to
the training images. In Fig. 3, the feature point x1 matches both images of class
A and B, so we accumulate one vote for the hypothesis H = {A∪B}. Similarly,
the feature point x2 votes for H = {C}. By doing the same principle for all the
feature points of X, we can construct all elements of the mass function after
doing a normalization step. Due to the need of clear explanation in a scientific
work, the step of defining the matching and constructing mass function will be
mathematically described thereafter.

Construction of Mass and Decision: First, let us denote Δ(pi, pj) the nor-
malized distance between two feature points pi and pj ; the shorter the distance
is, the more similar the two feature points are.

Δ(pi, pj) ∈ [0, 1] (4)

In order to decide the matching between a feature point pX
i of an input image

X (X can also be understood as the set of feature points for the input image)
and a training image M whose class is Oj ∈ Ω, we use the idea in [25]. We
will find the two nearest neighbours of pX

i in M , called pM
i1

and pM
i2

(the feature
points in M are previously extracted in the training phase). We suppose that
pM

i1
is closer to pX

i than pM
i2

i.e. Δ(pX
i , pM

i1
) ≤ Δ(pX

i , pM
i2

). After that, we define
a matching function between the feature point pX

i of an input image X and the
model M :

δ(pX
i ,M) =

⎧
⎨

⎩
1, if Δ(pX

i , pM
i1

) ≤ α and
Δ(pX

i ,pM
i1

)

Δ(pX
i ,pM

i2
)

≤ β

0, otherwise
(5)

where α and β are two user-defined parameters such that 0 ≤ α, β ≤ 1. The for-
mer guarantees that the distance between pX

i and its most similar feature point
found in M is small enough whereas the latter helps to avoid false matching.
In this work, we choose β = 0.8 as suggested in [25], and we add α = 0.25 in
order to reduce noise. Indeed, these two parameters help us to find a strong and
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distinctive matching between the feature point pX
i and its closest feature point

in M . If δ(pX
i ,M) = 1, we then say that pX

i is matched to the training image M ,
i.e. matched to the class Oj ∈ Ω of M and vice versa. In the same way, we can
find all the matches of the feature points in the input image X to the training
image M .

For now, we define the matching between X and the class Oj by considering
all the matches between feature points pX

i in X and the class Oj . In the case
that the class Oj has several training images Mk, we choose the training image
Mmax that has the maximum number of matches to X according to Eq. (5).

δmax(pX
i , Oj) = δ(pX

i ,Mmax) (6)

Table 1 shows an example illustrating the matches between input feature
points and the output classes. A cell c(pX

i , Oj) implies the matching between
the feature point pX

i of X and the class Oj , i = 1, 2, ...RX - number of feature
points in X, j = 1, 2, ...N - number of classes. If the cell is red, it means that
the feature point pX

i matches the class Oj (i.e. δmax(pX
i , Oj) = 1), otherwise not

matched.
After we determine the matching between the input feature points and the

output classes, we can construct the mass function as follow. Each feature point
pX

i will vote for a hypothesis in the power set such that the hypothesis is com-
posed of the classes that match pX

i . Mathematically, let’s define a hypothesis-
voted function that calculates the accumulated votes for each hypothesis:

accV ote(X,H) =
∑

pX
i ∈X

φ(pX
i ,H), H ∈ 2Ω (7)

where φ(pX
i ,H) is a function indicating the matching between the feature point

pX
i and every element class in H:

φ(pX
i ,H) =

{
1, if

∑
Oj∈H δmax(pX

i , Oj) = |H|
0, otherwise

(8)

where |H| be the cardinality of H and δmax(pX
i , Oj) was already explained above.

Indeed, φ(pX
i ,H) indicates whether a feature point pX

i matches every element
class in the hypothesis H or not, and accV ote(X,H) calculates the number

Table 1. Matching between the feature points of input image X and the classes

pX1 pX2 pX3 ... pXRX

O1 ...
O2 ...
O3 ...
... ... ... ... ... ...
ON
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of feature points in X that matches every element class in H. After that, we
calculate the mass function based on the hypothesis-voted function:

mX(H) =
accV ote(X,H)

GX
(9)

where GX is the normalization factor that guaranties the condition in Eq. (3):

GX =
∑

H∈2Ω ,H �=∅
accV ote(X,H) (10)

It is worth noting that, in this work we assume that the class of object in
the input image X is only in Ω, so we put mX(∅) = 0.

Once we have constructed the mass function, we can give decision about
the class of the object. Since the maximum of belief is too pessimistic and the
maximum of plausibility is too optimistic, we choose the class which has the
maximum pignistic probability [26]:

BetPX(Oj) =
1

1 − mX(∅)

∑

Oj∈H

mX(H)
|H| (11)

2.2 Fusion of Cameras

Base on the Evidence theory, each camera gives a decision about the classification
of the detected object. In addition, by using Dempster’s rule of combination [23],
we can integrate information from multi-camera in order to give a better decision.
Usually, the rule is defined for two sources, however it is enough to ensure a trivial
extension to many sources due to its associativity and commutativity:

mcomb(∅) = 0

mcomb(H) =

∑
H1∩H2∩...∩HS=H m1(H1)m2(H2)...mS(HS)

1 − K
,H ∈ 2Ω ,H �= ∅

(12)
where S is the number of information source (i.e. number of cameras, 3 in this
experiment) and:

K =
∑

H1∩H2∩...∩HS=∅
m1(H1)m2(H2)...mS(HS) (13)

Finally, the decision about the class of the detected object can be made by
using pignistic probability as in Eq. (11).

3 Illustrative Example

In this section, we provide an example to illustrate the proposed approach. Sup-
pose that we want the robot to recognize an object in a captured scene with
three classes in the space of discernment, that means:
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Ω = {O1, O2, O3} (14)

so there are 8 possible hypotheses in the power set:

2Ω = {{∅}, {O3}, {O2}, {O2 ∪ O3}, {O1}, {O1 ∪ O3}, {O1 ∪ O2}, {Ω}} (15)

For simplicity, we suppose that for each class, we have only 1 training image.
Assuming that the NAO camera captures the scene X and it found 10 feature
points in the input image XNAO. For each of those input feature points, we find
two nearest neighbours feature points in each training image. After that, we use
Eqs. (4), (5), and (6) to construct the matching between the input image and
each class. Table 2 shows an example of the matching found. Each cell describes
the matching between a feature point and a class; if δmax(pXNAO

i , Oj) = 1, the
cell is red, otherwise white. The last row indicates the hypothesis voted by the
associating feature point.

Table 2. Matching between the input image XNAO and the classes

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

O1

O2

O3

Vote for: O1 O2 O1

O1

∪
O3

O2 O2

O1

∪
O3

O3

O1

∪
O2

O2

∪
O3

From Table 2, we have determined the strength of each hypothesis in
the power set. Table 3 then shows the accumulated vote for each hypothesis
which is calculated by Eqs. (7) and (8). Each cell in the table is the value of
φ(pXNAO

i ,H),H ∈ 2Ω . Remind that if φ(pXNAO
i ,H) = 1, it means that the fea-

ture point pXNAO
i votes for the hypothesis H. According to Eq. (10), we have

GXNAO =
∑

accV ote = 1 + 3 + 1 + 2 + 2 + 1 + 0 = 10. From these information,
we calculate the mass values as in the last column by using Eq. (9).

After that, we assume that we use not only the NAO camera but also another
IP camera (2D) and another Axus camera (3D). By doing the same steps, we can
obtain two mass vectors output from the two additional sensors. Table 4 shows
example values of these mases. Additionally, we also calculate the combination
of the masses using Dempster’s rule (mcomb) and transform it to the pignistic
probability (BetP ) for each of singleton hypothesis. The last column is the final
decision from the fusion of three cameras, which recognizes that the detected
object belongs to the class O1.
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Table 3. Accumulated vote for each hypothesis

H ∈ 2Ω p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 accVote Mass value

∅ 0 0 0 0 0 0 0 0 0 0 0 0.00

O3 0 0 0 0 0 0 0 1 0 0 1 1/10

O2 0 1 0 0 1 1 0 0 0 0 3 3/10

O2 ∪ O3 0 0 0 0 0 0 0 0 0 1 1 1/10

O1 1 0 1 0 0 0 0 0 0 0 2 2/10

O1 ∪ O3 0 0 0 1 0 0 1 0 0 0 2 2/10

O1 ∪ O2 0 0 0 0 0 0 0 0 1 0 1 1/10

Ω 0 0 0 0 0 0 0 0 0 0 0 0/10

Table 4. Mass values from there camera sensors

Hypothesis mNAO mIP mAxus mcomb BetP Decision

∅ 0.00 0.00 0.00 0.00

O3 0.10 0.23 0.21 0.22 0.23

O2 0.30 0.17 0.12 0.26 0.27

O2 ∪ O3 0.10 0.08 0.00 0.00

O1 0.20 0.32 0.09 0.49 0.50 O1

O1 ∪ O3 0.20 0.13 0.13 0.02

O1 ∪ O2 0.10 0.00 0.39 0.01

Ω 0.00 0.07 0.06 0.00

4 Experiments

As mentioned previously, the concentration of this work is how to resolve uncer-
tainties and imprecisions during the object recognition process of the NAO robot.
For that reason, we did three experiments, each of them contains a set of confus-
ing objects as shown in Fig. 4. In the first set, there are 4 cups which can cause
uncertainty in their spatial structures for the 3D camera to recognize. Conversely,
the second experiment contains 4 boxes that have similar brand information on
their surface, which may limit the recognition of the 2D cameras. Finally, we
tested with 4 Lego bricks which are considered to have difficulties for both 2D
and 3D cameras, in the third experiment.

For the training phase, we trained two images for each object with each
camera in different view points. We then manually removed the background in
these images in order to have only the model objects. For the test phase, NAO
robot is requested to recognize an object appearing in front of it and say the
result to human. The two cameras (IP and Axus) are on the two sides of the
robot to help it improve the recognition. These three cameras capture the scene
at the same time whenever the robot wants to recognize the object in the scene.
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To focus on the work of recognition, the image region containing the object is
restricted in order to avoid the noises in scene. For each of the three experiments,
we did 32 recognition tests with different objects of 4 classes (so 8 tests for each
object). The tested objects were turned around and put in different angles to
the cameras in each test for the reason of challenging uncertainty.

Table 5 shows the results of experiment which is the comparison between the
recognition rate of each camera (using the proposed classifier individually) and
the fusion of three cameras. Remind that the rate for each camera cannot be
high due to the confusing between similar objects and the objects are turned
around each time of test. The fifth column is the result when we fuse the three
cameras by using a simple voting based on majority: each camera gives its own
recognition result based on the proposed classifier, then we choose the output
class that is voted by the largest number of cameras. The last column shows
the result of using Dempster-Shafer combination for the three cameras, which
outperforms the majority voting to improve the recognition rate in average.

Fig. 4. Confusing objects used in the experiment

Table 5. Experiment result

Camera NAO (2D) IP (2D) Axus (3D) Majority Dempster-

voting Shafer

fusion fusion

Experiment 1 78 % 88 % 75 % 100 % 97%

Experiment 2 72 % 72 % 91 % 91 % 97%

Experiment 3 59 % 59 % 69 % 72 % 84%

Average 69.67 % 73 % 78 % 87.67 % 92.67%
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5 Conclusion

The work in this paper focuses on how to resolve uncertainties and imprecisions
in object recognition for a NAO robot. Since the robot may face difficulties
during its visual operation due to lighting conditions, viewing angles and the
quality of camera, we propose to add more cameras in order to improve the
recognition rate. Each camera extracts feature points from the captured scene,
then provides a mass function based on the matching between the input and
the training images. After that, Dempster’s rule of combination is used to fuse
information from these cameras. As can be seen, the approach is generalized
for both 2D and 3D cameras, and the experiment work gives positive results,
which prove the advantage of the fusion. Our future works will consider a more
complex scenario where the NAO robot can build a semantic map based on the
recognition approach used in this work.
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