
Yin & Yang: Demonstrating Complementary
Provenance from noWorkflow & YesWorkflow

João Felipe Pimentel1(B), Saumen Dey2, Timothy McPhillips3,
Khalid Belhajjame4, David Koop5, Leonardo Murta1, Vanessa Braganholo1,

and Bertram Ludäscher3

1 Universidade Federal Fluminense, Niterói, Brazil
jpimentel@ic.uff.br

2 University of California, Davis, Davis, USA
3 University of Illinois, Urbana-Champaign, Champaign, USA

4 Université Paris-Dauphine, Paris, France
5 University of Massachusetts, Dartmouth, USA

Abstract. The noWorkflow and YesWorkflow toolkits both enable
researchers to capture, store, query, and visualize the provenance of
results produced by scripts that process scientific data. noWorkflow
captures prospective provenance representing the program structure of
Python scripts, and retrospective provenance representing key events
observed during script execution. YesWorkflow captures prospective
provenance declared through annotations in the comments of scripts,
and supports key retrospective provenance queries by observing what
files were used or produced by the script. We demonstrate how combining
complementary information gathered by noWorkflow and YesWorkflow
enables provenance queries and data lineage visualizations neither tool
can provide on its own.

1 Introduction

Methods for harvesting provenance information from scripts and runs of scripts
have been of great recent interest to the provenance research community, and
the resulting tools have received increasing attention from users of scripting
languages in the natural sciences. Some of these approaches are language-specific,
e.g., noWorkflow1 [4,5] (Python) and RDataTracker [2] (R scripts), while others
are language-independent, e.g., YesWorkflow2 [3] and LLVM/SPADE [7]. Using
such tools often entails annotating the scripts [2,3], monitoring executing scripts
as they run [4,7], or both.

Approaches that do not require annotation, such as noWorkflow (NW),
rely on the structure of the code itself to build prospective and retrospective
provenance graphs. NW includes the actual function and variable names in the
prospective provenance records, and it depends on records of run-time function

1 For “not only Workflow”, emphasizing that scripts need provenance tracking, too.
2 Which can be read as “Yes, scripts can be workflows, too!”.

c© Springer International Publishing Switzerland 2016
M. Mattoso and B. Glavic (Eds.): IPAW 2016, LNCS 9672, pp. 161–165, 2016.
DOI: 10.1007/978-3-319-40593-3 13



162 J.F. Pimentel et al.

calls to capture the retrospective provenance of script outputs. Consequently,
the less meaningful variable and function names are in a script, the less clear
the provenance query results and visualizations will be to scientists using the
script. noWorkflow thus excels where Python programs are engineered for main-
tainablity, testability, code reuse, and long-term user support.

YesWorkflow (YW) is an example of a tool that largely ignores the code por-
tions of a script, and instead depends on script authors (or users) adding anno-
tations via comments in scripts. YW annotations declare the scientifically sig-
nificant steps implemented by code blocks in a script, and the routes of dataflow
between these steps. Annotations optionally assign meaningful names to actual
(often obscurely named) code-level entities. Consequently, YesWorkflow users
need not rename variables, move code into functions, or otherwise refactor scripts
that already have been used to produce results (research transparency requires
disclosure of the scripts actually used). YW users can capture provenance from
a working script without incurring the regression testing costs that refactor-
ing entails. YW thus provides benefits even when scripts are written rapidly in
the course of competitive, time-critical research, and when researchers employ
scripts that they do not intend to maintain further or to distribute and support.

Given the contrasting aims of noWorkflow and YesWorkflow and the differ-
ences in the approaches they take, it is not surprising that each supports queries
and visualizations that the other cannot support on its own [1]. Here we show
that there are provenance artifacts of great interest to researchers that only a
combination of YW and NW provenance can produce. Achieving this combi-
nation requires mapping between common entities in both provenance models,
and jointly querying the provenance information represented by each system.
We refer to the joint provenance model, the system-spanning queries, and the
resulting visualizations collectively as YW*NW.

2 Example Queries: noWorkflow, YesWorkflow,
and YW*NW

We use the Python script described by McPhillips et al. [3] to demonstrate the
kinds of provenance queries NW, YW, and the combination of both support.
This script simulates acquisition of diffraction images during macromolecular
X-ray crystallography experiments involving multiple samples. The script reads
previously measured data quality statistics for each sample from an input spread-
sheet; rejects samples that do not meet a minimum quality criterion; and for each
accepted sample produces raw and corrected diffraction images according to a
data collection strategy that depends on properties of the samples. Although the
script only simulates data collection, the order of task execution, the sequence
of data production events, and the resulting pattern of dependencies between
input, intermediate, and final data items closely mimic those of a real exper-
iment [8]. Queries that probe these dependencies are therefore illustrative of
meaningful uses for provenance information. The complete script, marked up



Yin & Yang: Demonstrating Complementary Provenance 163

with YW annotations, is available on GitHub [6]; a more complete explanation
is provided in [3].

noWorkflow. Examples of prospective provenance queries of this script that
NW supports include: What functions does the top-level function call? Are any
functions defined in the script not called by the top-level function?

NW can answer retrospective provenance queries about runs of this script,
such as: What values did the variable rejected sample take during writes to files
referred to by the rejection log variable? What files were written during calls to the
transform image function? How many files were written while the accepted sample

variable had the value DRT240? What variables carry values returned by the
calculate strategy function to calls to the collect next image function? What para-
meters to the top-level function can effect the results returned by calls to calcu-

late strategy?
NW also can answer queries about the execution context: Which user exe-

cuted the script? What version of Python was used?

YesWorkflow. YW provenance queries refer to annotated code blocks (work-
flow steps) rather than to Python functions, and to data names declared via
YW annotations instead of to Python variables. Queries of prospective prove-
nance supported by YW include: What are the names of steps that comprise
the top-level workflow implemented by the script? What data is output by the
collect data set step? What code blocks provide input directly to that step? What
data is corrected image (in)directly derived from?

YW can also answer some retrospective provenance queries [3], includ-
ing: What samples did the run of the script collect images from? What energies
were used during collection of images from sample DRT240? Where is the raw
image from which corrected image run/data/DRT322/DRT322 10000eV 001.img is
derived? Are there any raw images for which there are no corresponding cor-
rected images?

Querying the Combined YW*NW Provenance. Queries that must be
answered by combining NW and YW provenance generally involve references
both to Python functions or variables and to code blocks or data declared
via YesWorkflow annotations. Examples include: Can the sample id output of
the collect data set step ever produce values other than those provided via the
accepted sample input to this step? What Python functions may be called as part
of the calculate strategy step? What was the set of energies produced by the com-

pute strategy step for sample DRT322?

As these queries demonstrate, the combination of NW and YW provenance
enables code-level entities such as Python functions and variables to be queried
in terms of data and workflow steps meaningful to the user (and vice versa).
Such queries are useful for understanding runs of the script in ways that neither
NW nor YW enable on their own. Generalizing these queries yield meaningful
visualizations of the full lineage of any product of the script. Consider the hybrid
YW*NW provenance graph in Fig. 1, showing the lineage of a specific output
image. This lineage graph can be constructed as a subgraph of the original YW



164 J.F. Pimentel et al.

load_screening_results

sample_name = DRT240sample_quality = 45

calculate_strategy

num_images = 2accepted_sample = DRT240 energies = [10000,11000,12000]

collect_data_set

raw_image
frame_number = 2 sample_id = DRT240 energy = 11000

transform_images

corrected_image

sample_spreadsheet

calibration_image

cassette_id = q55

sample_score_cutoff = 12 data_redundancy = 0

Fig. 1. Hybrid of YW prospective provenance and NW retrospective provenance: nodes
and edges comprise the subgraph of the YW model of the script upstream of a sin-
gle corrected image; values in nodes are extracted from the NW runtime records of
corresponding variable values leading to a particular image.

model [3] (restricted to predecessors nodes upstream of the corrected image result
node), which is then augmented with NW retrospective provenance; see [6] for
details and the YW*NW integration queries.

Because the questions scientists have about runs of scripts often can be
answered in terms of lineages of data products, YW*NW queries and visualiza-
tions promise to be of great value to researchers. Moreover, using noWorkflow
and YesWorkflow jointly does not entail the major adaptations to code often
needed to run existing software in scientific workflow management systems.
Indeed, YW*NW provides many benefits of provenance management without
requiring working code to be refactored at all.

3 Demonstration

In our demonstration we will highlight the benefits of harvesting, querying, and
visualizing provenance with noWorkflow in conjunction with YesWorkflow. Start-
ing with a directory containing just the example script and input files, we will
(1) highlight how YW annotations can be visualized as prospective provenance
using YesWorkflow; (2) run the script using noWorkflow and relate the resulting
data file names and locations to the YW prospective provenance; (3) query the
script and its outputs using noWorkflow and YesWorkflow separately to illus-
trate what each tool can do on its own; and (4) execute joint YW*NW queries
that determine the lineage of a single data product and produce visualizations
analogous to the one in Fig. 1.

A companion GitHub repository for this demonstration is available, along
with an expanded version of this short demo description [6]. The repository



Yin & Yang: Demonstrating Complementary Provenance 165

includes the data collection script discussed above; the files produced by a run of
this script; the provenance information produced by noWorkflow and YesWork-
flow; and helper scripts for running the queries mentioned above and for pro-
ducing Fig. 1. noWorkflow and YesWorkflow themselves are both available on
GitHub and can easily be installed.

References

1. Dey, S., Belhajjame, K., Koop, D., Raul, M., Ludäscher, B.: Linking prospective and
retrospective provenance in scripts. In: Theory and Practice of Provenance (TaPP)
(2015)

2. Lerner, B., Boose, E.: RDataTracker: collecting provenance in an interactive script-
ing environment. In: Theory and Practice of Provenance (TaPP). Cologne, Germany
(2014)

3. McPhillips, T., Bowers, S., Belhajjame, K., Ludäscher, B.: Retrospective provenance
without a runtime provenance recorder. In: Theory and Practice of Provenance
(TaPP) (2015)

4. Murta, L., Braganholo, V., Chirigati, F., Koop, D., Freire, J.: noWorkflow: capturing
and analyzing provenance of scripts. In: Ludaescher, B., Plale, B. (eds.) IPAW 2014.
LNCS, vol. 8628, pp. 71–83. Springer, Heidelberg (2015)

5. Pimentel, J., Freire, J., Murta, L., Braganholo, V.: Fine-grained provenance collec-
tion over scripts through program slicing. In: International Provenance and Anno-
tation Workshop (IPAW), Washington D.C. (2016)

6. Pimentel, J.F., Dey, S., McPhillips, T., Belhajjame, K., Koop, D., Murta, L., Bra-
ganholo, V., Ludäscher, B.: Yin & Yang: demonstrating complementary provenance
from noWorkflow & YesWorkflow. In: Mattoso, M., Glavic, B. (eds.): IPAW 2016.
LNCS, vol. 9672, pp. 161–165 (2016). Technical Report & Demo. https://github.
com/gems-uff/yin-yang-demo

7. Tariq, D., Ali, M., Gehani, A.: Towards automated collection of application-level
data provenance. In: Theory and Practice of Provenance (TaPP) (2012)

8. Tsai, Y., McPhillips, S.E., González, A., McPhillips, T.M., Zinn, D., Cohen, A.E.,
Feese, M.D., Bushnell, D., Tiefenbrunn, T., Stout, C., Ludäscher, B., Hedman, B.,
Hodgson, K.O., Soltis, S.M.: AutoDrug: fully automated macromolecular crystal-
lography workflows for fragment-based drug discovery. Acta Crystallogr. Sect. D:
Biol. Crystallogr. 69(5), 796–803 (2013)

https://github.com/gems-uff/yin-yang-demo
https://github.com/gems-uff/yin-yang-demo

	Yin & Yang: Demonstrating Complementary Provenance from noWorkflow & YesWorkflow
	1 Introduction
	2 Example Queries: noWorkflow, YesWorkflow, and YW*NW
	3 Demonstration
	References


