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Preface

This volume contains the proceedings of the 6th International Provenance and Anno-
tation Workshop (IPAW), held June 7–8, 2016, at The MITRE Corporation in McLean,
Virginia, USA. Following the successful inception of ProvenanceWeek in 2014, this
year’s installment again co-located the biennial IPAW workshop and the annual
Workshop on the Theory and Practice of Provenance (TaPP). Together the two leading
provenance workshops anchored ProvenanceWeek 2016, a full week of provenance-
related activities that included a shared poster and demonstration session, and the
PROV: Three Years Later and Provenance-based Security and Transparent Computing
workshops.

This year’s installment of IPAW was able to honor the extraordinary achievements of
IPAW’s authors through a best paper award sponsored by Springer. We would like to use
this forum to again congratulate Wellington Moreira de Oliveira, Paolo Missier, Kary
Ocaña, Daniel de Oliveira and Vanessa Braganholo, the authors of the paper titled
“Analyzing Provenance Across Heterogeneous Provenance Graphs” for receiving this
award.

This collection constitutes the peer-reviewed papers of IPAW 2016. These include
12 long papers that report in depth on the results of research around provenance and
two short papers that discuss tools and services that were presented in the form of a
system demonstration. Finally, we have included 14 short papers that were also pre-
sented as part of the joint IPAW/TaPP poster session. The final papers, demos, and
short papers accompanied by poster presentations were selected from a total of 54
submissions. All full-length research papers received a minimum of three reviews.

The papers of IPAW 2016 provide a glimpse into state-of-the-art research and
practice around the automatic capture, representation, and use of provenance. The
papers discussing provenance capture exemplify the diversity of applications with
provenance needs including operating systems, scripting environments, and distributed
environments. While automated provenance capture is necessary for wide-spread
provenance collection, analysis and visualization of provenance enable users to
understand and make sense of the collected provenance. Several papers focus on this
aspect describing tools for visualizing large provenance graphs, for creating under-
standable natural language descriptions from provenance graphs, and for analyzing
provenance across multiple provenance graphs. Provenance itself is meaningless if not
used for a concrete purpose. The proceedings also cover papers reporting on real-world
use cases of provenance as well as how to model provenance for specific domains.

In closing, we would like to thank the members of the Program Committee for their
thoughtful reviews, Dr. Adriane Chapman (local chair) and her team for their excellent
organization of IPAW and ProvenanceWeek 2016 at MITRE, and—last not least—the
authors and participants for making IPAW the stimulating and successful event that it was.

June 2016 Boris Glavic
Marta Mattoso
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RecProv: Towards Provenance-Aware
User Space Record and Replay

Yang Ji(B), Sangho Lee, and Wenke Lee

Georgia Institute of Technology, Atlanta, USA
{yang.ji,sangho}@gatech.edu, wenke@cc.gatech.edu

Abstract. Deterministic record and replay systems have widely been
used in software debugging, failure diagnosis, and intrusion detection.
In order to detect the Advanced Persistent Threat (APT), online exe-
cution needs to be recorded with acceptable runtime overhead; then,
investigators can analyze the replayed execution with heavy dynamic
instrumentation. While most record and replay systems rely on kernel
module or OS virtualization, those running at user space are favoured
for being lighter weight and more portable without any of the changes
needed for OS/Kernel virtualization. On the other hand, higher level
provenance data at a higher level provides dynamic analysis with system
causalities and hugely increases its efficiency. Considering both bene-
fits, we propose a provenance-aware user space record and replay sys-
tem, called RecProv. RecProv is designed to provide high provenance
fidelity; specifically, with versioning files from the recorded trace logs and
integrity protection to provenance data through real-time trace isolation.
The collected provenance provides the high-level system dependency that
helps pinpoint suspicious activities where further analysis can be applied.
We show that RecProv is able to output accurate provenance in both
visualized graph and W3C standardized PROV-JSON formats.

Keywords: Provenance capturing · Record and replay · User space ·
PROV

1 Introduction

As exploits and intrusions evolve to behave more silently (e.g., Advanced Per-
sistent Threat (APT) [18]), they can rarely be detected by classic intrusion
detection and anti-virus solutions. As the best-effort countermeasure to defeat
APT, dynamic instrumentation and analysis is able to detect APT’s behav-
ior by monitoring execution of instructions and memory operations (e.g., [25]).
However, the high overhead induced by dynamic analysis disqualifies it from run-
ning on the online production system. The overhead is acceptable for its original
intended tasks: debugging, performance profiling, memory leak detection [16,24],
and malware analysis [30,36], but is too high for online execution.

To mitigate the high overhead for online execution, researchers propose to
record the execution and replay it deterministically with heavy instrumentation
c© Springer International Publishing Switzerland 2016
M. Mattoso and B. Glavic (Eds.): IPAW 2016, LNCS 9672, pp. 3–15, 2016.
DOI: 10.1007/978-3-319-40593-3 1



4 Y. Ji et al.

for detecting the APT [6,14,15]. Many record and replay systems rely on kernel
module or the OS virtualization to capture non-determinism during recording,
and feed back during replaying (e.g., [1,6,14,32]); however, these systems raise
concerns over system stability and portability. The user space record and replay
systems [10,20,29] do not require any of these changes. They are usually sup-
ported on multiple platforms without need for customization. But, they lack of
whole system provenance.

On the other hand, provenance is growing to be a key feature in security-
sensitive applications and systems. The provenance information inside the sys-
tem and application is a widely researched topic. Provenance-aware systems are
proposed for various application scenarios such as databases, distributed sys-
tems, E-science areas [5,9,12,19,31]. The provenance in the system reveals the
steps of intrusions and further identifies the source of the attack (e.g., a malicious
executable file downloaded from a remote host or a USB drive). Though prove-
nance data alone cannot defeat APT, it can help the dynamic analysis pinpoint
suspicious activities. Prior works [14,15,17] rely on the generated provenance
graph to pinpoint the exact execution trace in order to further perform finer-
grained analysis.

In this paper, we focus on enabling provenance for the user space record and
replay system. Specifically, we propose RecProv, a user space record and replay
system that captures the runtime provenance from the recorded trace file. The
collected provenance data offer high fidelity, particularly with fine grained ver-
sioning files. For security-sensitive scenarios, the untampered provenance data
plays a key role in the post-analysis of attacks. Hence, our design also protects
the provenance data itself. At a minimum, we guarantee the integrity of prove-
nance until an attacker gains the privilege to arbitrarily delete files. This means
the provenance before the compromise can be used to analyze the intrusion
procedure for forensic purpose.

RecProv relies on Mozilla rr [20] running in the user space with minimal
operating system changes, with the runtime overhead as low as 20 %. Currently,
RecProv supports the Linux operating system with Intel x86 or x64 archi-
tectures. The host can be a bare-metal machine, as long as the CPU supports
performance counter, or a virtual machine with a virtual performance counter
enabled. In terms of security, RecProv guarantees backward integrity of trace
logs up until the compromise of the system, providing an untampered source
for analyzing the exploit and the take-down of the system. The trace logs can
be used to replay the execution deterministically, opening doors to heavier and
more fine-grained offline analyses that do not burden the online performance.

Beyond the benefits from rr, we summarize the contribution of RecProv to
be the following:

1. RecProv generates operating-system-level provenance from the runtime
trace, considering causalities between processes, files, and socket connections.

2. RecProv considers the versions of file objects which yield higher fidelity and
lower false positives in generating the provenance data.

3. RecProv has a trace isolation design that largely protects the integrity of
the trace, particularly for security-sensitive target hosts.
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2 Related Work

In this section we explain previous studies on provenance analysis. We categorize
them in terms of how they collect the following provenance information: soft-
ware instrumentation, whole system monitoring, system emulator, and hardware
assistance.

Software Instrumentation. A software-instrumentation-based provenance
analysis technique modifies the target software itself in order to record all of
its important behavior during execution. Tarig et al. [35] modify an LLVM com-
piler to statically instrument a program according to the annotation in its source
code. This approach allows them to generate finer-grained intra-process prove-
nance, e.g., how frequently a specific function is called. However, one cannot
assume that every target software will provide its source code for provenance
analysis. DataTracker [33] obtains a program’s provenance information without
any modification by using libdft [13], a dynamic taint analysis tool based on
the Intel Pin [11]. Although the dynamic taint analysis provides highly precise
provenance information, its execution overhead (up to 104 %) is significant [13].

Whole System Monitoring. Provenance information mainly consists of inter-
actions between processes or between a process and resources (e.g., file, socket,
and peripheral). Such interactions are usually performed via system calls, e.g.,
open, socket, read, write, and ioctl. Therefore, by monitoring system calls, we
can collect almost every high-level provenance information. The easiest way to
record all the system calls of a process is using a well-known tool, strace, but
its coverage is restricted to an individual process. Thus, to efficiently obtain the
whole system provenance information, many studies modify the OS kernel or
use a kernel module [3,4,6,14,17,21,22,27]. These approaches ensure low over-
head and high coverage, but customizing an OS kernel can lead to stability and
portability problems.

System Emulation/Virtualization. Another approach to collect the whole
system provenance information while not modifying the OS kernel is using a
system emulator. This emulator-based provenance analysis allows us to inspect
instruction-level causality. Panorama [36] is a hardware-level system to cap-
ture system-wide information flow, implemented on the QEMU. Also, Stamato-
giannakis et al. [34] use PANDA [7], a QEMU-based system record and replay
platform, to capture low-level provenance information. However, the QEMU is
slow, which makes it difficult to collect real provenance information. Unlike
the QEMU-based approaches, a virtualization-based intrusion tracking system,
BackTracker [15], shows low overhead. But, we need to narrow down the semantic
gap between the QEMU/hypervisor and the emulated OS [8] for precise analysis.

Hardware Assistance. The last approach is using a hardware feature to record
execution trace. For example, the latest Intel CPU supports the Process Tracing
(PT) feature [28] to trace the execution path of a process for precise debugging.
Such a hardware feature allows us to record the whole system provenance infor-
mation without any system modification while incurring negligible overhead [2].
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However, currently the Intel PT only provides control-flow information, which is
insufficient to construct the complete provenance information without runtime
memory snapshot or data. Further, many hardware do not support such features
yet, so it cannot yet be widely adopted.

3 System

RecProv leverages the Mozilla-RR [20] (rr) to perform deterministic record and
replay by speculatively executing system calls and feeding back non-deterministic
inputs (e.g., RDTSC). RecProv records the execution of an application in
the runtime with low overhead, and simultaneously dumps the trace files off to
the host for provenance generating computations. RecProv interfaces to the
Neo4j graph database [23] for data storage and visualization, and also supports
data export in W3C standard PROV-JSON formats. Figure 1 illustrates the
architecture of RecProv.

Fig. 1. System architecture.

The recording operation of RecProv resides at the user space, without ker-
nel module and OS virtualization/emulation assistance. This design choice has
two benefits: (1) The recording is portable. RecProv does not require kernel
changes, which makes it directly available in many platforms. While a kernel
module has efficient provenance capturing capabilities, the changes to the ker-
nel raise stability and compatibility concerns. (2) Recording performance incurs
around 20 % overhead, while the syscall level capturing suffices for building of
file/process level provenance. RecProv also considers the finer-grained versions
of files by monitoring the sequence of system calls (i.e., write, mmap, munmap).
In addition, the off-host design enables deployment of RecProv suitable for
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security-sensitive environments. In the case that the host is compromised, the
integrity of the trace log up until the compromise is preserved, as the traces are
transferred off of the host in real time.

3.1 Deterministic Record and Replay

Mozilla developed rr to perform deterministic recording and replaying for the
purpose of testing and debugging firefox in Linux on both x86 and x64 architec-
tures. rr relies on ptrace to control the execution of programs, and to monitor
the CPU state of each user-kernel context switch (i.e., entering and exiting a
system call). Moreover, other non-determinism such as RDTSC and signal deliv-
ery/receiving are recorded accordingly in the trace. Based on the trace, the exe-
cution can be replayed deterministically. The system call arguments and return
values are fed back, while the non-determinisms are inserted into the execution
sequence at known time points. rr supports multi-threading by performing the
scheduling in the user space. It first honors the priority of each task, then does
the scheduling in the round-robin way.

During replay, rr can opt to attach the execution to gdb for step by step
debugging or complete the replayed execution in a independent “autopilot” way.

Changes to rr. The rr trace log includes the register values at every system call
entry and exit. In order to also access the data referenced by the address from
the register, we customize rr to dereference the relevant monitored addresses
either during record or replay of the execution. Since the replay is determinis-
tic and identical to the recorded execution, the captured data from online and
offline methods are equivalent. To access the address space of the traced process,
RecProv uses PTRACE PEEKDATA of ptrace to dereference the address from
the registers. For example, in order to track the causal relation between file
and process, RecProv monitors the file path argument in the open system call.
Specifically, at entering the open system call, we access register %RDI and deref-
erence its value to retrieve the file path string buffer. RecProv monitors the
arguments of open, openat, connect and accept.

Second, RecProv changes the trace I/O part of rr to divert the dump
of syscall events trace from local persistence (i.e., local log files) to a remote
security-assured host via socket in real time. The trace is compressed before
transmission. Instead of transferring the log after the complete recording,
RecProv enables the receiving agent at the remote host to generate provenance
from the received syscall sequence in real time. This design enables real-time
detection scenarios.

3.2 Provenance Generation

The provenance is retrieved from the trace files. Specifically, we monitor: file
operation syscalls open, read, write, close, dup, mmap, munmap; process related
syscalls execve, clone, fork; and socket related syscalls socket, connect, accept,
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sendto, sendmsg, sendmmsg, recvfrom, recvmsg, recvmmsg. RecProv scans the
trace file syscall by syscall to capture the provenance development.

In the event of open system call, RecProv first retrieves the process ID
from the syscall arguments and the file path (via dereferencing the address in
%RDI). Then, the stat syscall is made to retrieve the <inode,device id> to iden-
tify the exact file regardless of the different file paths or symlinks being used.
The inode may be recycled for use after the file is removed; thus, we also moni-
tor the unlink(at) syscall to invalidate the current inode. Next, the returned file
descriptor fd (from %RAX) at the exit of the system call is bookkept. RecProv
tracks the fd to link the presence of files in future file I/O operations like read
and write. Particularly, the write system call adds the version of the file object
accordingly. The tracking on a certain fd terminates at the relevant close system
call. In the event of read and write system calls, an activity is added from the
process to the file (via tracking fd).

Through execve syscall, a process starts to execute the file, i.e., the file affects
the process. The executable file path, arguments, and environment variables are
also retrieved as meta data for the process. The activity arrow points from the
file to the process. In the event of system calls clone and fork between processes,
the activity adds an edge from the parent process to the child.

The mmap system call maps the file to a memory region to speed up the file
I/O operation. Since the rr trace does not have instruction level transparency,
RecProv is unable to tell whether it is a read or a write. Having zero false
negatives as a higher priority, we translate mmap to be a special “read/write”
activity. Also, we increment the version of the file only at the first mmap, as the
exact operations are blind to us and the libc library sometimes calls mmap to
enlarge the allocated memory region for memory functions like malloc.

RecProv also tracks the provenance from networking events. The socket
file descriptor sock fd is first tracked from the socket syscall. Then, the remote
host address and port (i.e., sock addr) are mapped to the sock fd by tracking
the accept and connect syscalls. The recv related syscalls then add the “used”
activity from the process to the host. The send syscalls add “wasDerivedFrom”
activity from the host to the process.

3.3 Versioning Files

A versioned file offers fine-grained causalities between changed versions of the
file over time. This transparency improves the fidelity of causality relation. For
example, a binary file A is executed by a process P, and then modified by a
process P’. If the version of A is not counted, we have a causality from P’ to P.
But if different versions of A are considered (i.e., A(v1) at execve, and A(v2) at
P’ modification), two processes may not be causally related as P’ is modifying
the later version of A, A(v2), while P only depends on the previous version
A(v1).

RecProv tracks the version variance of files by monitoring write and mmap
system calls. Whenever such system calls occur, the file descriptor in register
%RDI is used to identify the related file path and inode (see Sect. 3.2). This
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increments the version of the file. In the case of bulk write operations, a process
performs a large number of write system calls with no interference from other
processes. We combine consecutive write system calls into a single incrementing
of file versions, as long as the combination causes no fidelity loss in the causality
representation. To enable access to all versions of files, RecProv runs on the
mainstream versioning file system, nilfs [26]. nilfs makes checkpoints at any file
change in the disk partition, and allows one to roll the file system back to any
checkpoint. RecProv maps the file version to the nilfs version by matching the
closest timestamps.

3.4 Storage and Visualization

RecProv interfaces to the Neo4j graph database [23] to store the provenance
graph. The boundary of each graph is within the start and end of the execution.
A process is represented by its process ID (pid), with the executable file path as
the metadata; A file is identified by a uuid with its inode, absolute file path, and
version as metadata; A remote host is represented by the IP address it uses to
have socket connections with the target host. The process, file, and remote host
are modeled as nodes in the database. The system calls that operate upon these
nodes are modeled as edges. Additionally, RecProv outputs the provenance
to W3C standardized PROV-JSON formats, ready to be stored and shared at
stores like prov-store.

4 Case Study

We perform case studies on baseline programs, a file operation experiment, and
the grep command. Also, we test RecProv on a real phishing attack that installs
an extension on a Firefox browser. Note that the metadata of the executable
names, arguments, and environments are omitted in the figures but available in
the database.

4.1 Use Case 1: File Versioning

We first run an experiment program to demonstrate the effect of differentiating
file versions in Fig. 2. The experiment creates two threads, each of which opens
a file test.txt, reads from and writes more text to it, and then outputs to stdout.
With the versioning data of the file, we can look into causality with processes at
every version. In the graph, the cloned thread, 5614, first reads (i.e., “used”) the
first version of test.txt file, then writes to it yielding its second version. Then,
thread 5615 reads the second version, modifies the file again, and generates its
third version. Without the versioning, the graph indicates both threads have
read and written to the file, but does not reveal the directional dependency that
thread 5615 is downstream from 5614 in terms of test.txt.
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Thread:5613

File:/home/yang/temp/mozilla-rr/4.1/obj/bin/../lib/librrpreload.so, ver:1

File:/lib/x86_64-linux-gnu/libpthread.so.0, ver:1

File:/lib/x86_64-linux-gnu/libc.so.6, ver:1

used

File:/lib/x86_64-linux-gnu/libdl.so.2, ver:1

used

Thread:5614

wasGeneratedBy

File:/home/yang/tests/threads/test.txt, ver:1

used

Thread:5615

wasGeneratedBy

File:/home/yang/tests/threads/test.txt, ver:2

used

wasDerivedFrom

File:/home/yang/tests/threads/test.txt, ver:3

wasDerivedFrom

File:stdout, ver:1wasDerivedFrom

used

used

Fig. 2. Use case 1: File versioning.

Thread:22404

File:/lib/x86_64-linux-gnu/libpcre.so.3, ver:1

File:/lib/x86_64-linux-gnu/libdl.so.2, ver:1

File:/lib/x86_64-linux-gnu/libc.so.6, ver:1

File:/lib/x86_64-linux-gnu/libpthread.so.0, ver:1

File:/usr/share/locale/locale.alias, ver:1

File:test1.text, ver:1

File:test2.text, ver:1

File:test3.text, ver:1

File:stderr, ver:1 File:stderr, ver:2 File:stderr, ver:3 File:stdout, ver:1

Fig. 3. Use case 2: grep.

4.2 Use Case 2: grep

As a basic utility command for Linux, grep searches the given text in the files
or directory to match certain pattern. We run grep to search a given directory
for a specific key word: grep “hello” test/ -rn. The test/ contains three files
test1.txt, test2.txt, and test3.txt. The result is displayed at stdout. In addition,
the debugging trace of running RecProv is dumped at stderr. Figure 3 shows
the output visualized graph of provenance. The process with a single thread
(pid:22404) reads the shared libraries, and the test/{test1.txt,test2.txt,test3.txt}
files with “used” activity. The process then writes the result and debugging data
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to stdout and stderr. In the provenance graph, these files are “wasDerivedFrom”.
Note that the file objects have the “ver” field indicating the version of the file at
the moment of the activity. For example, the debugging data are written to stderr
three times, separately yielding file objects with versions 1 to 3. The following
snippet gives a simplified version of the PROV-JSON format.

{"wasDerivedFrom": {

[{"prov:usedEntity": "Thread:22404",

"prov:generatedEntity": "File:stderr, ver:1"},

{"prov:usedEntity": "Thread:22404",

"prov:generatedEntity": "File:stderr, ver:2"},

{"prov:usedEntity": "Thread:22404",

"prov:generatedEntity": "File:stderr, ver:3"}],

{"prov:usedEntity": "Thread:22404",

"prov:generatedEntity": "File:stdout"}}

"used": {

{"prov:entity": "File:/lib/x86_64-linux-gnu/libc.so.6, ver:1",

"prov:activity": "Thread:22404"},

{"prov:entity": "File:test1.text, ver:1",

"prov:activity": "Thread:22404"},

{"prov:entity": "File:test2.text, ver:1",

"prov:activity": "Thread:22404"},

{"prov:entity": "File:test3.text, ver:1",

"prov:activity": "Thread:22404"}},

"agent": {

"Thread:22404": {}},

"entity": {

"File:test1.text, ver:1": {},

"File:test2.text, ver:1": {},

"File:test3.text, ver:1": {},

"File:/lib/x86_64-linux-gnu/libdl.so.2, ver:1": {},

"File:stderr, ver:1": {},

"File:stderr, ver:2": {},

"File:stderr, ver:3": {}}

}

4.3 Use Case 3: Firefox Phishing Attack

We run a phishing attack with RecProv and generate the provenance graph in
Fig. 4 to show the effective provenance extracted by RecProv. The test runs
with the Firefox browser 43.0 on Ubuntu 14.04 LTS on a bare-metal machine
with Intel Xeon CPU W3565. In the attack, the user clicks a link from a phishing
email and installs a malicious extension on the Firefox browser. We use Gmail
as the mailbox; the malicious extension is hosted locally at port 8005. We run
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Thread:5583

Thread:5584

Thread:5585

Thread:5586

Thread:5587

Thread:5588

Thread:5589

Thread:5590

Thread:5591

Thread:5592

Thread:5604

Remote:116.109.112.47:12032

Remote:74.125.21.139:0

Remote:74.125.21.101:0

Remote:74.125.21.113:0

Local:127.0.0.1:13568

Remote:104.16.40.2:0

Local:127.0.0.1:8005

Remote:74.125.21.147:0

Remote:23.4.43.27:0

Remote:74.125.21.106:0

...

Thread:5605Thread:5608

File:/firefox/dictionaries, ver:1

File:/lib/x86_64-linux-gnu/libpthread.so.0, ver:1

File:/firefox/dictionaries, ver:1

File:/.mozilla/firefox/81bjfkpf.default/extensions

File:/lib/x86_64-linux-gnu/libdl.so.2, ver:1

File:/lib/x86_64-linux-gnu/librt.so.1, ver:1

File:/usr/lib/x86_64-linux-gnu/libstdc++.so.6, ver:1

File:/lib/x86_64-linux-gnu/libm.so.6, ver:1

File:/lib/x86_64-linux-gnu/libgcc_s.so.1, ver:1

File:/lib/x86_64-linux-gnu/libc.so.6, ver:1

File:/mozilla-rr/4.1/obj/bin/../lib/librrpreload.so, ver:1

Fig. 4. Use case 3: Firefox phshing. (Color figure online)

RecProv for the entire procedure from the opening of the browser to the com-
plete installation and the closing of the browser. Figure 4 is a simplified prove-
nance graph drawn from RecProv. Firefox is a single process, multi-threaded
program. The first thread (tid:5583) loads shared libraries by “used” activity;
then clones a set of threads establishing “wasGeneratedBy” relations. Moreover,
the browser connects external hosts, including multiple Google and Gmail sites
and the local host 127.0.0.1:8005, for downloading the extension. The extension
is further linked with the .mozilla/firefox/*.default/extension directory.

From the provenance graph, we can trace the installed extension back to the
extension directory, to the thread that writes to it, and finally to the remote
host from which a recv syscall is made. The installation of the extension can be
tagged as a “suspicious” activity for which a further finer-grained analysis can
be performed.

5 Discussions

We list the limitations of RecProv in regards to the width and depth of prove-
nance. First, since RecProv runs at user space or application level, it does not
have whole-system wide transparency. Therefore, the provenance data are only
extracted from the traced processes. Also, the provenance can be lost when a
certain file is altered by another untraced process. For example, if a file is mod-
ified by another untraced process before being read by the traced process, both
the causality from the untraced process to the file and the causality extending
to the traced process are lost. Second, RecProv only traces the CPU states
at each syscall entry and exit, not the memory data, implying that causalities
related to memory operations (e.g., after a file is mmaped) are unknown. In
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order to obtain such higher fidelity, instruction level trace is desired to unveil
the full-depth provenance.

Future work can focus on relieving these limitations. First, we think
RecProv can be customized to trace broader applications while still keeping
the performance overhead low. This requires a sophisticated design of the user
space scheduling method. Second, in order to perform heavy instrumentation for
the higher fidelity of provenance, RecProv can further conduct the instrumen-
tation during the offline replayed execution. This requires a filtering scheme that
can discriminate between executions from the original recording and those from
the instrumentation tool (e.g., pin [24]) and track only the original execution.

6 Conclusion

We propose a provenance-aware user space record and replay system. The system
is shown to be portable without requiring kernel changes or system virtualiza-
tion. RecProv is shown to give accurate provenance data, particularly with
versioning files that provide higher fidelity. The generated provenance also com-
plies with the W3C PROV-JSON format, and has interface to the Neo4j graph
database. In addition, the integrity of provenance is protected in an off-host
environment guaranteeing “until-compromise” integrity. Currently, RecProv
supports step by step debugging during deterministic replay. In the future, we
will extend RecProv to enable various dynamic instrumentation.

Acknowledgment. We would like to thank the anonymous reviewers for their help
and feedback. This research was supported by the NSF award CNS-1017265, CNS-
0831300, CNS-1149051 and DGE-1500084, by the ONR under grant N000140911042
and N000141512162, by the DHS under contract N66001-12-C-0133, by the United
States Air Force under contract FA8650-10-C-7025, by the DARPA Transparent Com-
puting program under contract DARPA-15- 15-TC-FP-006. Any opinions, findings,
conclusions or recommendations expressed in this material are those of the authors
and do not necessarily reflect the views of the NSF, ONR, DHS, United States Air
Force or DARPA.

References

1. Attariyan, M., Chow, M., Flinn, J.: X-ray: automating root-cause diagnosis
of performance anomalies in production software. In: Proceedings of the 10th
USENIX Symposium on Operating Systems Design and Implementation (OSDI),
Hollywood, CA, October 2012

2. Balakrishnan, N., Bytheway, T., Carata, L., Chick, O.R.A., Snee, J., Akoush, S.,
Sohan, R., Seltzer, M., Hopper, A.: Recent advances in computer architecture: the
opportunities and challenges for provenance. In: Proceedings of the 7th USENIX
Workshop on the Theory and Practice of Provenance (TaPP) (2015)

3. Bates, A., Tian, D.J., Butler, K.R., Moyer, T.: Trustworthy whole-system prove-
nance for the Linux kernel. In: Proceedings of the 24th USENIX Security Sympo-
sium (Security), Washington, DC, August 2015



14 Y. Ji et al.

4. Cantrill, B., Shapiro, M., Leventhal, A.: Dynamic instrumentation of production
systems. In: Proceedings of the 2004 USENIX Annual Technical Conference (ATC),
Boston, MA, June–July 2004

5. Davidson, S., Freire, J.: Provenance and scientic workflows: challenges and opportu-
nities. In: Proceedings of the 2008 ACM SIGMOD/PODS Conference, Vancouver,
Canada, June 2008

6. Devecsery, D., Chow, M., Dou, X., Flinn, J., Chen, P.: Eidetic systems. In: Pro-
ceedings of the 11th USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI), Broomfield, Colorado, October 2014

7. Dolan-Gavitt, B., Leek, T., Hodosh, J., Lee, W.: Tappan zee (north) bridge: mining
memory accesses for introspection. In: Proceedings of the 20th ACM Conference on
Computer and Communications Security (CCS), Berlin, Germany, October 2013

8. Dolan-Gavitt, B., Leek, T., Zhivich, M., Giffin, J., Lee, W.: Virtuoso: narrowing
the semantic gap in virtual machine introspection. In: Proceedings of the 32nd
IEEE Symposium on Security and Privacy (Oakland), Oakland, CA, May 2011

9. Gehani, A., Tariq, D.: SPADE: support for provenance auditing in distributed
environments. In: Proceedings of the 13th USENIX Workshop on the Theory and
Practice of Provenance (TaPP) (2012)

10. Guo, Z., Wang, X., Tang, J., Liu, X., Xu, Z., Wu, M., Kaashoek, M.F., Zhang, Z.:
R2: an application-level kernel for record and replay. In: Proceedings of the 8th
USENIX Symposium on Operating Systems Design and Implementation (OSDI),
San Diego, CA, December 2008

11. Intel: Pin - a dynamic binary instrumentation tool. https://software.intel.com/
en-us/articles/pin-a-dynamic-binary-instrumentation-tool

12. James, C., Laura, C., Wang-Chiew, T.: Provenance in databases: why, how, and
where. Found. Trends Databases 1(4), 379–474 (2009)

13. Kemerlis, V.P., Portokalidis, G., Jee, K., Keromytis, A.D.: libdft: practical dynamic
data flow tracking for commodity systems. In: Proceedings of the 8th ACM
SIGPLAN/SIGOPS International Conference on Virtual Execution Environments
(VEE) (2012)

14. Kim, T., Wang, X., Zeldovich, N., Kaashoek, M.: Intrusion recovery using selec-
tive re-execution. In: Proceedings of the 9th USENIX Symposium on Operating
Systems Design and Implementation (OSDI), Vancouver, Canada, October 2010

15. King, S.T., Chen, P.M.: Backtracking intrusions. In: Proceedings of the 19th
ACM Symposium on Operating Systems Principles (SOSP). Bolton Landing, NY,
October 2003

16. Luk, C.K., Cohn, R., Muth, R., Patil, H., Klauser, A., Lowney, G., Wallace, S.,
Reddi, V.J., Hazelwood, K.: Pin: building customized program analysis tools with
dynamic instrumentation. In: Proceedings of the 2005 ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI), Chicago, IL, June
2005

17. Ma, S., Zhang, X., Xu, D.: ProTracer: towards practical provenance tracing by
alternating between logging and tainting. In: Proceedings of the 2016 Annual
Network and Distributed System Security Symposium (NDSS), San Diego, CA,
February 2016

18. McAfee: White paper: Combating advanced persistent threats, how to prevent,
detect and remediate apts. http://www.mcafee.com/us/resources/white-papers/
wp-combat-advanced-persist-threats.pdf

19. Moreau, L.: The foundations for provenance on the web. Found. Trends Web Sci.
2(2–3), 99–241 (2010)

https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool
https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool
http://www.mcafee.com/us/resources/white-papers/wp-combat-advanced-persist-threats.pdf
http://www.mcafee.com/us/resources/white-papers/wp-combat-advanced-persist-threats.pdf


RecProv: Towards Provenance-Aware User Space Record and Replay 15

20. Mozilla: rr: lightweight recording & deterministic debugging. http://rr-project.org
21. Muniswamy-Reddy, K.K., Braun, U., Holland, D.A., Macko, P., MacLean, D.L.,

Margo, D.W., Seltzer, M.I., Smogor, R.: Layering in provenance systems. In: Pro-
ceedings of the 2009 USENIX Annual Technical Conference (ATC), San Diego,
CA, June 2009

22. Muniswamy-Reddy, K.K., Holland, D.A., Braun, U., Seltzer, M.I.: Provenance-
aware storage systems. In: Proceedings of the 2006 USENIX Annual Technical
Conference (ATC), Boston, MA, May–June 2006

23. Neo Technology: Neo4j: The world’s leading graph database. http://www.neo4j.
com

24. Nethercote, N., Seward, J.: Valgrind: a framework for heavyweight dynamic binary
instrumentation. In: Proceedings of the 2007 ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation (PLDI), San Diego, CA, June
2007

25. Newsome, J., Song, D.: Dynamic taint analysis for automatic detection, analysis,
and signature generation of exploits on commodity software. In: Proceedings of
the 12th Annual Network and Distributed System Security Symposium (NDSS),
San Diego, CA, February 2005

26. NTT Laboratories: NILFS - continuous snapshotting filesystem for Linux. http://
www.nilfs.org

27. Pohly, D.J., McLaughlin, S., McDaniel, P., Butler, K.: Hi-Fi: collecting high-fidelity
whole-system provenance. In: Proceedings of the Annual Computer Security Appli-
cations Conference (ACSAC) (2012)

28. Reinders, J.: Processor Trace. https://software.intel.com/en-us/blogs/2013/09/
18/processor-tracing

29. Saito, Y.: Jockey: a user-space library for record-replay debugging. In: Proceedings
of the 6th International Symposium on Automated Analysis-driven Debugging
(2005)

30. Seward, J., Nethercote, N.: Using valgrind to detect undefined value errors with
bit-precision. In: Proceedings of the 2005 USENIX Annual Technical Conference
(ATC), Anaheim, CA, June–July 2005

31. Simmhan, Y.L., Plale, B., Gannon, D.: Karma2: provenance management for data-
driven workflows. In: Web Services Research for Emerging Applications: Discoveries
and Trends: Discoveries and Trends, p. 317 (2010)

32. Srinivasan, S.M., Kandula, S., Andrews, C.R., Zhou, Y.: Flashback: a lightweight
extension for rollback and deterministic replay for software debugging. In: Pro-
ceedings of the 2004 USENIX Annual Technical Conference (ATC), Boston, MA
June–July 2004

33. Stamatogiannakis, M., Groth, P., Bos, H.: Looking inside the black-box: captur-
ing data provenance using dynamic instrumentation. In: Ludaescher, B., Plale, B.
(eds.) IPAW 2014. LNCS, vol. 8628, pp. 155–167. Springer, Heidelberg (2015)

34. Stamatogiannakis, M., Groth, P., Bos, H.: Decoupling provenance capture and
analysis from execution. In: Proceedings of the 7th USENIX Workshop on the
Theory and Practice of Provenance (TaPP) (2015)

35. Tariq, D., Ali, M., Gehani, A.: Towards automated collection of application-level
data provenance. In: Proceedings of the 4th USENIX Workshop on the Theory
and Practice of Provenance (TaPP) (2015)

36. Yin, H., Song, D., Egele, M., Kruegel, C., Kirda, E.: Panorama: capturing system-
wide information flow for malware detection and analysis. In: Proceedings of
the 14th ACM Conference on Computer and Communications Security (CCS),
Alexandria, VA, October–November 2007

http://rr-project.org
http://www.neo4j.com
http://www.neo4j.com
http://www.nilfs.org
http://www.nilfs.org
https://software.intel.com/en-us/blogs/2013/09/18/processor-tracing
https://software.intel.com/en-us/blogs/2013/09/18/processor-tracing


Tracking and Analyzing the Evolution
of Provenance from Scripts

João Felipe Pimentel1(&), Juliana Freire2, Vanessa Braganholo1,
and Leonardo Murta1

1 Universidade Federal Fluminense, Niterói, Brazil
{jpimentel,vanessa,leomurta}@ic.uff.br

2 New York University, New York, USA
juliana.freire@nyu.edu

Abstract. Script languages are powerful tools for scientists. Scientists use them
to process data, invoke programs, and link program outputs/inputs. During the
life cycle of scientific experiments, scientists compose scripts, execute them, and
perform analysis on the results. Depending on the results, they modify their
script to get more data to confirm the original hypothesis or to test a new
hypothesis, evolving the experiment. While some tools capture provenance from
the execution of scripts, most approaches focus on a single execution, leaving
out the possibility to analyze the provenance evolution of the experiment as a
whole. This work enables tracking and analyzing the provenance evolution
gathered from scripts. Tracking the provenance evolution also helps to recon-
struct the environment of previous executions for reproduction. Provenance
evolution analysis allows comparison of executions to understand what has
changed and supports the decision of which execution provides better results.

1 Introduction

The life cycle of script-based experiments is usually composed of three main phases
[12]: establishing hypotheses and coding scripts that enact the programs involved in the
experiment; running the script over input data, which represent a specific context or
population for the experiment; and analyzing the produced results through visualiza-
tions or queries to confirm the research hypotheses. However, the results of the latter
phase may motivate the repetition of the cycle. For instance, when a trial (i.e., one
execution of the experiment) is inconclusive, scientists repeat the cycle after adapting
the script or changing the programs. When a hypothesis is confirmed for a restrict
population, scientists repeat the experiment for a broader population by changing the
input data. Similarly, when a hypothesis is refuted for a broad population, scientists
restrict the population and repeat the cycle also by changing the input data. Moreover,
some scientists design experiments considering multiple inputs or variable programs
and the experiment execution entails many trials at once via parameter sweeping. Thus,
script, programs, data, and the execution environment evolve over time as a natural
consequence of the experimental process.

In the last decade some approaches emerged for capturing provenance from
experiments encoded in scripts [2, 3, 11, 14, 19]. The captured provenance usually
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includes the script structure with its functions and variables, all input data, intermediate
data, output data, the required libraries, the environment characteristics (computer
architecture, operating system, etc.), and the execution flow of the trial (function
activations, variable assignments, etc.). However, these approaches either do not track
the evolution of the experiment between trials or rely on external tools for such
tracking. In both cases, the scientists are limited to intra-trial queries, not being able to
contrast the provenance of two trials or to visualize the difference among trials’
provenance.

Understanding and visualizing a single trial through intra-trial queries is not enough
for the analysis of the whole experiment. To support this claim, we refer to a set of
questions related to experiment evolution analysis, which were obtained and adapted
from the first Provenance Challenge1 and ProvBench workshops2: Q1 (see footnote 1):
if a scientist has executed an experiment twice, but has replaced some procedures in the
second trial, what are the trial differences? Q23: comparing multiple executions
according to their parameters, what are the differences on execution behavior? Q34:
how differences in the input data relate to differences in the output values? Q4 (see
footnote 4): using historical provenance, which parts of the execution fail frequently?
Q55: which trials are related to a given trial? Q6 (see footnote 5): a given trial was
derived from which trial? Q76: what are the available trials, and what are their dura-
tions? Q8 (see footnote 6): how many trials are associated to a given source code? Q9
(see footnote 6): how many trials present failures?

To be able to answer these questions, in this work we propose a version model that
supports tracking and analyzing the experiment provenance as a whole, considering its
multiple trials. This model also allows us to restore any past trial, thus enabling
reproducibility. Moreover, our version model supports comparison of different trials for
analysis. As a proof of concept, we implemented our version model on top of noW-
orkflow [14, 16, 17]. noWorkflow is an approach that automatically collects prove-
nance from Python scripts without requiring any modifications on the source code of
the experiment. For every trial, noWorkflow generates an identifier and all provenance
collected during the execution is stored in a database related to that identifier. Prove-
nance collected by noWorkflow contains function activations (calls) with parameters,
variable values, returned values, duration, and caller; imported modules with their
versions; environment variables; and all the files accessed during the trial, including
source files, module files, and input files, intermediate files, and output files.

This paper is organized in six sections, besides this introduction. Section 2 dis-
cusses related work. Section 3 presents our approach to track evolution, analyze
provenance, and compare trials. Section 4 presents the implementation details on top of
noWorkflow. Section 5 shows the evaluation of our work using the aforementioned

1 http://twiki.ipaw.info/bin/view/Challenge/FirstProvenanceChallenge.
2 https://sites.google.com/site/provbench/home/provbench-provenance-week-2014.
3 https://github.com/provbench/Swift-PROV.
4 https://github.com/provbench/CSIRO-PROV.
5 https://github.com/provbench/VisTrails-PROV.
6 https://github.com/provbench/Wf4Ever-PROV.
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questions. Finally, Sect. 6 concludes the paper summarizing the contributions and
discussing future work.

2 Related Work

Work related to our approach can be grouped into three main categories: (i) configu-
ration management tools, (ii) script-based provenance tools, and (iii) workflow-based
provenance tools. Many configuration management tools, such as Git, track the evo-
lution of software through versioning [6]. These tools allow developers to inform the
files they want to track and provide different mechanisms for querying the history, such
as bisect, blame, and even some simple lookups on previous versions. Developers can
also use external visualization tools to have a broader view of source code evolution
[5]. Although generic and fast, these tools capture only prospective provenance [8] at
coarse grain, when used to version experiment scripts. Thus, they do not track the inner
structures of files, the evolution of computations that indicate which input files and
parameters actually influence each output files, nor the multiple intermediate states of
files. In other words, they do not capture fine-grained prospective provenance [8] nor
retrospective provenance [8].

Some approaches can be used to capture provenance from scripts. YesWorkflow
[13] captures prospective provenance from scripts through annotations. StarFlow [2]
and RDataTracker [11] collect provenance from scripts through dynamic analysis and
annotations. Bochner et al. [3] collect provenance from scripts using a library to
connect to a remote server and send annotated provenance data. Tariq et al. [19] collect
provenance from code compiled with a LLVM compiler. Stamatogiannakis et al. [18]
perform dynamic taint analysis on binary files to capture provenance. noWorkflow [14]
collects provenance from scripts without requiring any modifications on the script.
Most of these approaches capture execution provenance (i.e., retrospective provenance)
[14] with intermediate data, and support querying and visualizing provenance during
analysis. However, they do not provide mechanisms to compare and contrast different
trials. An outstanding exception in this category is Sumatra [7]. It stores each trial in a
configuration management tool (either Git or Mercurial) and allows users to tag them
and to compare the collected information. However, it does not record the intermediate
states of files during execution and is subject to the problems of using configuration
management tools for tracking the evolution of experiments.

Finally, workflow-based provenance tools [1, 4] track provenance from scientific
experiments. Some tools, such as Vistrails [4] and Kepler [1], not only track the
provenance, but also track the workflow evolution and offers all the data for users to
analyze it. They also allow users to restore past versions of workflows and re-execute
them. Although attractive in terms of features, these tools require converting
script-based experiments into workflows, which is not an option for many scientists for
different reasons. This motivates the creation of a version model for script-based
experiments, detailed in the next section.

18 J.F. Pimentel et al.



3 Script-Based Provenance Evolution

Supporting evolution analysis of experiments requires the provenance-capturing tool to
be evolution-aware. This can be achieved through versioning. Versioning enables
tracking the evolution of the experiment and also navigating on the evolution history,
allowing the user to restore previous versions, if needed. Additionally, such an
evolution-aware provenance capture system should provide a way to compare different
trials on the history. In Sect. 3.1, we propose a version model for provenance collected
from scripts. In Sect. 3.2, we propose techniques to compare provenance from different
trials.

3.1 Version Model

Conradi and Westfechtel [6] state that a version model should define the organization
of the version space (i.e., how a product is versioned) and the interrelation of the
product space (i.e., how a product is structured) and the version space. We define our
product space as an experiment, containing its scripts, data, execution traces, etc. The
entry point of our product space is the main script of the experiment. From this script,
we recursively capture imported modules, accessed files during execution, and the
execution provenance. Thus, we have scripts (including imports), input files, inter-
mediate files, and output files as file objects.We identify file objects solely by their path
within the experiment directory.

File objects describe the structure of the experiment: that is, all files needed by the
experiment, which includes the script itself (definition provenance [14]), imported
modules (deployment provenance [14]), and accessed (read/write) files (execution
provenance [14]). On the other hand, we also have logical provenance information that
is not stored in files: functions called during execution, parameters values, variable
values, etc. In our product space, we have a special object called logical object that
contains all the aforementioned logical provenance information. This way, we can say
that our product space is composed of multiple file objects and one logical object.

Our version space [6] has two levels of versioning: trial version (i.e., the trial id)
and file object version. Trial versions represent the state of the experiment in terms of
file object versions read or written within each trial, together with the logical object
version produced by the trial. On the other hand, file object versions represent the state
of file objects at each file access during the whole experiment execution (throughout all
trials). File object versions may contain extra attributes (metadata) besides the state of
file objects: modules may have their semantic versions declared by developers (e.g.,
3.5.1), files may have their moment of opening and opening mode (read/write), etc.

We apply this distinction between trial versions and file object versions because
scripts can write to some file objects more than once, generating more than one version
of the file object within a single trial. Due to this distinction, our version space supports
restoring trial versions as a whole, with all input file objects, or specific file object
versions (e.g., an intermediate version of a file object). However, to restore a specific
file object version, users should inform which object they want to restore individually
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and in which moment (i.e., by indicating a timestamp, the file content hash code, or its
access position in a sequential list by timestamp).

While we associate file objects to both version concepts (trial version and file object
version), we associate logical objects only to trial versions, because they are unique for
each trial and already contain all execution steps (i.e., each function activations, each
variable state, etc.) within a trial. Nonetheless, restoring a trial version does not restore
the logical object of that trial, as it is not a tangible object, even though it is still useful
for auditing or reproducing a trial.

Figure 1 presents an example of this version model with two trial versions for an
experiment, where the user only edited “experiment.py” and added “converter.py”
before executing the second trial. Circles represent object versions and dotted squares
represent trial versions. Note that the file “warp.warp” has four file object versions in
Trial 1, and those versions were written four times, and read four times. Note also that
Trial 1 does not have file object versions for “converter.py”, “atlas-x.ppm”, and
“atlas-x.jpg” because file object versions refer to the state of files at their access and
Trial 1 did not access these files. Equivalently, there is no file object version for
“atlas-x.gif” at Trial 2, since Trial 2 did not access it. Moreover, we can observe that
both trials accessed the same file object version of “external.py” and “anatomy1.img”
and that the user edited “experiment.py” after Trial 1. The logical object, on the other
hand, has a single and unique version on each trial, since it contains runtime data such
as function activations, start and finish times, variable values, etc. This kind of data is
already time-sensitive, not demanding an extra layer of versioning.

As mentioned before, users can use trial versions to restore states of the experiment.
The main goal when restoring a trial is for reproducing it. For this reason, restoring Trial
1 would only restore the files “experiment.py”, “external.py”, and “anatomy1.img”

Fig. 1. Version model example

20 J.F. Pimentel et al.



(all at version 1). In addition, it would remove “warp.warp”, “reslice1.img”, “atlas-x.
pgm”, and “atlas-x.gif”, because these files did not exist prior to Trial 1. However,
restoring Trial 2 would restore “experiment.py” (at version 2), “external.py” (at version 1),
“converter.py” (at version 1), “anatomy1.img” (at version 1), “warp.warp” (at version 4),
“reslice1.img” (at version 1), and “atlas-x.pgm” (at version 1); and it would remove
“atlas-x.ppm” and “atlas-x.jpg”. Note that it would not touch “atlas-x.gif”, since Trial 2
has not accessed it. Note also that it would restore “warp.warp”, “reslice1.img”, “atlas-x.
pgm” because the state of these files before Trial 2 is equal to the state after Trial 1.

Trial versions not only identify the state of an experiment, but also track its evo-
lution. In the example of Fig. 1 we can see that Trial 2 is an evolution of Trial 1,
because it was an execution of “experiment.py” after Trial 1. If the user executes a new
script, “experiment2.py” (that is in the same directory as “experiment.py”), she would
have a new trial, with version 3, but it would not be an evolution of Trial 2. However, if
she executes again “experiment.py”, she would have Trial 4 based on Trial 2.

We also provide a special type of trial version to avoid losses on the restore
operation. If a user changes the content of “experiment.py” but instead of running a
new trial using the modified script, she restores Trial 2, she would lose all changes. To
avoid these losses, we create a special “backup” trial with the current content of all file
objects in the last version (i.e., file objects edited after Trial 4). In this case, we would
have Trial 5 as a backup trial, with contents of “experiment.py”, “external.py”,
“converter.py”, “anatomy1.img”, “warp.warp”, “reslice1.img”, “atlas-x.pgm”, “atras-x.
ppm”, and “atlas-x.jpg”. At least one of these files should be different from the ones of
Trial 4 for the backup trial to be created.

After restoring Trial 2, if a user runs Trial 6, it would be based on Trial 2. We keep
track of this information by storing the base version of each trial. Before Trial 6, we had
the base version restored to 2. After running Trial 6, we update the base version to 6.
This allows our version model to track the evolution in a non-linear way. In fact, by
considering the evolution of “experiment.py”, as presented in Fig. 2, it is possible to
see two branches of Trial 2: one that goes from Trial 2 to Trial 4, and another that goes
from Trial 2 to Trial 6. A branch is a sequence of trials that were executed in parallel to
other sequences of trials. Branches can have either a common ancestor to other branch
or no ancestor at all. In this case, Trial 2 is the common ancestor of both branches, and
Trial 4 and 5 belong to the same branch.

Figure 2 presents an evolution history bigger than what we described so far. In the
figure, Trials 1, 2, 4, 5, 6, and 7 are related to “experiment.py” and Trials 3, 8, 9, and 10

Fig. 2. Evolution history. Nodes represent trial versions (Color figure online)
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are related to “experiment2.py”. We represent trials that did not finish (i.e., halted due
to an error) as red nodes and backup trials as yellow nodes. According to the Figure,
Trial 7 did not finish and Trial 5 is a backup trial. In addition, after getting an error on
“experiment.py” execution (i.e., Trial 7), the user executed “experiment2.py” (Trial 8).
Then she restored Trial 3 and executed “experiment2.py” again, creating a new branch.
Finally, she restored Trial 8 and executed “experiment2.py”, generating Trial 10.

Note that we have two branches of “experiment.py” and two branches of “exper-
iment2.py” in the end. Users can use branches to try different processes for their
experiments and to execute their experiment on the same code base, but with different
input files or parameters.

Figure 3 presents an UML representation of our version model. The gray classes,
FileObject and LogicalObject, belong to the product space. The white classes,
FileObjectVersion, LogicalObjectVersion, TrialVersion, RestoreVersion, SourceCode
Version, and FileAccessVersion, belong to the version space. Note that a TrialVersion
has one or more FileObjectVersion. This composition represents all file object versions
accessed (read or written) in a trial. However, when restoring a trial version, only a
subset of them is actually overwritten. We identify these by the RestoreVersion
association class. Note also that a trial version always has at least one file object version
(and corresponding file object): its main script.

3.2 Comparing Trials

After tracking the evolution history of an experiment through its provenance, we can
compare trials in the history. We compare provenance of file objects in two trials by
comparing all their file object versions, with their extra attributes. For example, when
comparing source codes, we check not only if their content has changed, but also if the
declared version has changed. This way, we can identify that a module content has
changed because the user upgraded it from version “1.0.1” to “1.0.2”. During the

Fig. 3. UML representation of the version model
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comparison of changes, we ignore attributes that are always different, such as the
moment of opening input and output files.

In addition to reporting changes on file object versions that exist in both trials, we
also report file objects that exist in the first trial but do not exist in the second one as
removals and file objects that exist in the second trial but do not exist in the first one as
additions. Hence, when we compare Trial 1 and Trial 2 of Fig. 1, we have “atlas-x.gif”
as a removal, because Trial 2 did not access it. We also have “converter.py”, “atlas-x.
jpg”, and “atlas-x.ppm” as additions because only Trial 2 accessed these files. Finally,
we have “experiment.py” as a change, because it has changed to import “converter.py”.

In the previous example, we also have the former versions of “warp.warp”,
“reslice1.img”, and “atlas-x.pgm” (the ones on Trial 1) as removals; and the later
versions of the same files (the ones on Trial 2) as additions. This occurs because input
and output files can have more than one state (file object version) during a trial and it is
not possible to identify them only by their path. Thus, we identify them considering
also their content before and after the access. Since these files did not exist before Trial
1, we identify them as different file objects versions than before Trial 2, as at that
moment their content is the last version written on Trial 1 (e.g., content just before
version 5 of “warp.warp” is its content at version 4).

As our version model groups the entire logical provenance in a special object (the
logical object), comparing it is specific for each implementation. Thus, we describe our
logical provenance comparison in Sect. 4.

4 Implementation in noWorkflow

We implemented the proposed approach on top of noWorkflow [14]. noWorkflow
transparently captures provenance from Python scripts by running now run
<script>. After running the script, it creates a unique trial id to identify the collected
provenance and stores the provenance in two databases: a content database for storing
file objects and a relational database for storing logical objects and metadata of file
objects. noWorkflow uses hash codes to associate metadata of file objects in the
relational database to their actual content in the content database.

noWorkflow captures the main script, imported modules, and file accesses as file
object provenance. As logical provenance, noWorkflow captures trial start time, finish
time, command line, success status (i.e., indication if the trial finished successfully),
environment variables, function activations (calls) with parameters, returned values,
duration, caller, variables, and variable dependencies.

We support restoring previous trial versions through the command now restore
<trial_id>. This command restores the trial version as described in Sect. 3.1. Even
though noWorkflow captures source code of external modules, this command only
restores local modules to avoid breaking the Python installation. It is possible to filter
the restore command to restore only the main experiment script, input files, or local
modules.

For visualizing the evolution history, we offer the command now history. It
supports filtering by experiment script or trial status (e.g., finished, unfinished, or
backup).
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Trials can be compared by the command now diff <trial_id1>
<trial_id2>. This command has options to specify what should be compared. For
instance, -f compares file access to input and output files. We use the techniques
described in Sect. 3.2 to compare file objects. For comparing equality of contents, we
use only hash codes, instead of looking for all differences within files. To understand
differences between file object versions, users can run external diff tools over the file
versions. The diff command also compares logical provenance. Since most trials have
at least start time, finish time, command line, and success status as logical provenance,
we always compare these attributes when running this command. With the option -e,
we support comparison of environment attributes (i.e., part of logical provenance)
through a similar process that identifies changes, additions, and removals. Figure 4
presents an excerpt of a brief diff between file accesses from Trial 1 and 2. Note that
before presenting file access diff, it presents the diff of these attributes.

The process of comparing function activations is a bit more complex. First,
noWorkflow exports function activations of both trials to a graph format. Next, it
transforms both graphs into lists of nodes. Then, it applies the longest common sub-
sequence (LCS) algorithm [9] over the lists. Finally, it recombines nodes into a graph
that displays common nodes, additions, and removals. The idea behind using LCS is
that activations are in sequence and the generated graph keeps the activation order at
some degree. Thus, it is possible to use the LCS and match common nodes.

Currently, we do not compare function activations with the diff command. For
comparing them, we provide a visualization tool that can be accessed by running the
command now vis. The visualization tool also presents the history graphically (shown
in Fig. 2). It is also possible to use Jupyter Notebook to visualize the diff and history [17].

Figure 5 presents activation graphs of Trial 1 and Trial 2 and their comparison.
Nodes represent function activations and their colors represent their duration in a traffic
light scale, where red fills represent the slowest activations and green fills represent the

Fig. 4. Brief diff between file access from Trial 1 and 2
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fastest ones. The trial script is an activation itself and it is pointed out by a straight
arrow. In this case, “experiment.py” is the trial script. In the graph, black arrows
represent the start of activations; blue arrows represent sequence of calls within acti-
vations; and dashed arrows represent returns. In the graph comparison, nodes and
arrows with black borders exist in both trials; nodes and arrows with red borders exist
only on Trial 1; and nodes and arrows with green borders exist only on Trial 2. Note
that “convert” activations exist only on Trial 1, while “pgmtoppm” and “pnmtojpeg”
activations exist only on Trial 2. Trial 2 has also an activation representing the import
“convert.py”. Moreover, nodes that exist in both trials show colors side-by-side to easy
comparison. For instance, one can easily notice that slice_convert was slightly faster in
Trial 1 than in Trial 2.

5 Evaluation

We evaluate our approach by presenting how noWorkflow answers the questions
related to provenance evolution listed in Sect. 1. We answered those questions using
the example described in Sect. 3.1. This example is in fact the workflow of the first
Provenance Challenge implemented in Python with procedures implemented as
“dummies”. The full history of this experiment can be obtained on noWorkflow by
running now demo 3.

Q1: if a scientist has executed an experiment twice, but has replaced some procedures
in the second trial, what are the trial differences? Q2: comparing multiple executions
according to their parameters, what are the differences on execution behavior? Fig-
ure 5 presents the comparison of Trial 1 and Trial 2 activation graphs. It is possible to
see that “convert” was replaced by “pgmtoppm” and “pnmtojpeg”. To compare exe-
cution behaviors according to parameters, we can compare trials that share the same
code base, but have different parameters.

Q3: how differences in the input data relate to differences in the values?We can use the
now diff -f command to compare file accesses of trials (as shown in Fig. 4). This

Fig. 5. Activation graphs of Trial 1 and 2, and their comparison (Color figure online)
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command compares input data, output data, and arguments. Thus, it is possible to get
the differences on inputs, and compare them to output values by restoring them.
Q4: using historical provenance, which parts of the execution fail frequently? A SQL
query can look for failures on all trials. If we specify that the return value “−1” of a
function activation represents a failure, the following query would return the most
frequent failures on all trials combined:

SELECT name, count(name) AS c FROM function_activation
WHERE return_value = ”-1” GROUP BY name ORDER BY c DESC;

Q5: which trials are related to a given trial? Q6. a given trial was derived from which
trial? Q7. what are the available trials, and what are their durations? Q8. how many
trials are associated to a given source code? Q9. how many trials present failures?
Looking at the Evolution History (as shown in Fig. 2), it is possible to see both the
ancestor of a given trial and all trials that derive from it. The evolution history also
presents all available graphs. To get their duration, a user can activate tooltips on now
vis or Jupyter Notebook and access trial information, including its duration. To get all
trials associated to a given source code, we can filter the history to a specific script.
Finally, the history graph presents trials with failures as red nodes.

6 Conclusion

In this paper, we presented a novel approach for tracking and analyzing the evolution
of provenance collected from scripts. With our approach, a scientist can precisely
record all provenance information related to each trial, switch between trials and
adapt/reproduce specific trials, and compare trials. We implemented our approach as an
extension to noWorkflow, which is available as open source software at https://github.
com/gems-uff/noworkflow.

While the proposed version model is suitable for any tool that collect multiple
versions of files during the execution of a trial, it may impact the execution time of
experiments. This occurs because our version model requires the collection to be
performed at runtime, reading file contents multiple times during a trial. Additionally,
our current implementation captures and stores provenance versions at fine-grain. On
the one hand, this provides a powerful support for further analysis. On the other hand,
this is known to compromise scalability in terms of execution time and storage space
[15]. In particular, storing many different versions of fine-grained data can be wasteful
in some cases. This motivates the need for optimization techniques that attempt to
balance storage and re-computation costs. We plan to address this issue in the future.
Another limitation of the implementation is that we restore only local modules during
the restore operation. If the user updates an external module, the experiment repro-
duction may produce different results. We intend to use virtual environments to avoid
this issue.

We also intend to explore alternatives on detecting file object changes, and to work
on better algorithms to compare activation graphs. We already started looking for
existing graph matching techniques [10]. Additionally, we plan to work on a semantic
versioning for trials that encodes the intention of evolution, and to improve logical
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provenance comparison on noWorkflow to compare not only activation graphs and
environment variables, but also variables, variable dependencies, parameters, and
return values on activations. Finally, we foresee the elaboration of different formats for
provenance visualization that would help on comparing trials.
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Abstract. Automatic provenance capture from arbitrary applications is
a challenging problem. Different approaches to tackle this problem have
evolved, most notably a. system-event trace analysis, b. compile-time
static instrumentation, and c. taint flow analysis using dynamic binary
instrumentation. Each of these approaches offers different trade-offs in
terms of the granularity of captured provenance, integration require-
ments, and runtime overhead. While these aspects have been discussed
separately, a systematic and detailed study, quantifying and elucidating
them, is still lacking. To fill this gap, we begin to explore these trade-offs
for representative examples of these approaches for automatic prove-
nance capture by means of evaluation and measurement. We base our
evaluation on UnixBench—a widely used benchmark suite within sys-
tems research. We believe this approach will make our results easier to
compare with future studies.

Keywords: Provenance · SPADE · Taint tracking · LLVM · Strace

1 Introduction

Automated provenance capture systems1 which collect provenance information
with minimal or no modification to a given application are important solutions
for tracking and exposing provenance [4]. Mainly, they reduce the need for soft-
ware to be re-engineered specifically for provenance. Additionally, they can cap-
ture more complete provenance as instrumentation can be done both broadly
(e.g., across every application) and deeply (e.g., within the application itself).
Automated provenance capture is complementary to disclosed provenance sys-
tems such as workflow management systems, version control systems, or data-
bases, which require active engineering of the software to enable them to capture
provenance [4].

The original version of this chapter was revised.
An erratum to this chapter can be found at 10.1007/978-3-319-40593-3 29

1 These are sometimes termed OS level provenance systems.
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There are number of different methods for automated provenance collection
with varying trade-offs in requirements (e.g., the availability of source code),
impact on application performance, granularity of provenance collected, and
level of instrumentation required. The aim of this paper is to investigate these
trade-offs. In particular, we compare three representative methods—system-
event trace analysis, compile-time static instrumentation, and dynamic binary
instrumentation—using their implementations for SRI’s open source SPADEv2

[9] provenance middleware.
Our analysis is based on UnixBench [20], a widely used benchmark suite.

We are aware that UnixBench emphasizes on performance of system calls and
is not meant as a comprehensive performance benchmark. However, we believe
that the results produced by it are still relevant for the evaluation of automatic
provenance collection: Most such systems [3,8,12,18] tap (one way or another)
into information derived from system calls. This is also true for the three systems
we study (see Sect. 3). For this, supplemented with knowledge of specific features
and requirements of a workload, the results produced by UnixBench can be used
as input to decide on the suitability of a particular provenance collection method
or system.

To the best of our knowledge, this is the first paper to comparatively bench-
mark provenance systems using a common systems benchmark. The need for
exactly such benchmarks in provenance systems has been highlighted by the
ProvBench series of workshops2. We discuss further steps towards the stan-
dardization of provenance benchmarks in Sect. 6. Standardized benchmarks are
essential to provide a baseline for comparing iterations of the The contributions
of this paper are as follows:

– A systematic comparison of three automated provenance capture systems
using the UnixBench benchmark suite.

– An examination of the trade-offs when using these three methods.

The rest of this paper is organized as follows, we begin with a description
of the evaluation platform and the three systems used. Experimental results
are then presented. This is followed with a discussion of those results and their
implications. Finally, we present future work and conclude.

2 Evaluation Platform

In this section, we discuss the framework we use for the evaluation, as well as
some implementation details for the three fundamentally different methods of
automated provenance capture we study.

2.1 SPADE

The SPADEv2 [9] provenance middleware aims to track the provenance of data
that arises from multiple sources, possibly distributed over the wide area, and at
2 https://sites.google.com/site/provbench/.

https://sites.google.com/site/provbench/
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varied levels of abstraction. Our choice of the SPADEv2 middleware was motivated
by a number of factors. First, SPADEv2 has a modular design, allowing most of
its provenance filtering, storage, and query infrastructure to be used regardless
of the instrumentation approach. Second, the distribution includes a number
of reporter modules, each of which can be used to collect provenance using a
different methodology. As a result, we can easily plug the different methods of
instrumentation for our comparison while benefiting from SPADEv2’s infrastruc-
tures. Third, the system supports storage of provenance in a number of data
formats, including queryable ones such as the Neo4j graph database and the H2
(or any JDBC-compliant) SQL database. Fourth, the SPADEv2 platform can be
configured and managed with a control utility. This allows an analysis to be
repeatably executed (in order to measure behavior over multiple runs).

It is worth noting that the results of collecting provenance from the same
program on different operating systems may differ substantially in runtime and
storage overhead. Our comparisons have all been performed on Linux (see also
Sect. 2.3).

2.2 Provenance Collection Methods and Reporters

In our experiments, we used implementations of three representative methods
for automatic (i.e., non-disclosed) provenance capture: a. system-event trace
analysis, b. compile-time static instrumentation, and c. instruction-level dynamic
instrumentation An overview of the properties of these methods is presented in
Table 1. We now present the details of the specific SPADEv2 reporters we used
that implement these methods. It is important to emphasize that the implemen-
tations of the three methods used in this evaluation are not necessarily the best
or the fastest, but they serve as representative examples. For instance, it may
be that a highly optimized taint analysis solution improves the performance of
instruction-level dynamic instrumentation significantly, but the performance gap
with compile-time solutions would most likely remain.

Table 1. Overview of provenance collection methods properties.

System call analysis Static, compile-time Dynamic, instruction-level

instrumentation instrumentation

Integration effort Easy Medium Easy

Prov. granularitya File-level Function-level Byte-level

Analysis scope Process and children Process, no dyn. lib Process and children

False positives Many Depends on configured

scope

Negligible, tracks use of

individual bytes

Execution overhead Depends on the size

of program I/O

Depends on the number of

function calls

High, depends on the

taint tag type used

Reporter strace reporter LLVMTrace DataTracker
aWe use concrete rather than relative terms to describe the granularity of provenance. This is because

in different application domains, a relative term (e.g. “fine-grained”) may refer to different granular-

ities.
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System-Event Trace: Strace Reporter. This first method for collecting
data provenance treats the monitored program as a black box. By watching its
interaction with the operating system, the method infers the set of artifacts that
the program uses and generates.

The implementation we use monitors such interaction with the strace tool,
which is available for Linux and Android. strace uses the ptrace facility available
in Unix-like operating systems to learn which system calls (along with their
arguments) are made by the program being monitored for provenance collection.

While tapping on strace simplifies the implementation of the reporter, it
comes at a high cost because strace pauses the process twice for each system
call. In order to avoid unnecessary overhead, strace reporter configures strace
so that only the subset of system calls related to data flow are traced. Even after
that performance may still be degraded for system-call heavy workloads.

The output of strace is parsed to generate the appropriate Open Provenance
Model (OPM) [17] provenance elements.3 Doing so imposes an additional over-
head, compared to an implementation building directly upon the ptrace facility.
The particular OPM elements generated are: a. Process elements for the oper-
ating system analog, b. Artifact elements for the files read or written, c. Used
or WasGeneratedBy edges (depending on the use of the files), and d. WasTrig-
geredBy edges when one process creates another.

Compile-Time Solutions: LLVMTrace. The second approach for prove-
nance capture is to instrument programs at compile time. Since a compilation
of the application is required to enable provenance collection, compile-time solu-
tions come closest to disclosed provenance capture techniques. However, no man-
ual adaptation of the software is required.

Here, we use LLVMTrace as our representative implementation. It tracks
intra-program data flows, providing a more precise dependency analysis. LLVM-
Trace utilizes the LLVM framework [14] to automatically add provenance instru-
mentation to applications at compile-time, using a custom compiler optimization
pass [22]. The instrumentation is added at the entry and exit of each function call
and logs its name, arguments, return value, and the thread that invoked it. Thus,
LLVMTrace enables us to record the trace of function calls that occur during
program execution. While this analysis obviously does not extend to dynamic
libraries (see analysis scope in Table 1), compile-time library interposition is used
to intercept and log calls to libc functions.

The produced logs are parsed in order to produce OPM provenance elements:
a. Process elements are generated for each function call, b. Artifact elements are
used to represent the function call arguments and return value, c. Used edges are
used to associate a function with its argument, and d. WasGeneratedBy edges
are used for return values.

Thread-specific attributes are added to each provenance element, in order to
to separate recorded activity from different threads into individual paths in the
resulting provenance graph. The transformation from the function call trace to
3 OPM can then be easily converted to the W3C PROV recommendation [11].
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the provenance representation only captures direct data flows. Other types of
information flow (e.g. use of shared buffers) are not captured.

Dynamic Instruction-Level Solution: DataTracker. DataTracker [21] is a
tool that captures provenance using Dynamic Taint Analysis (DTA). The analy-
sis is applied as Dynamic Binary Instrumentation (DBI) using the Intel Pin [15]
and libdft [13] frameworks. DataTracker adds instrumentation which determines
how the application uses the data as it executes. This allows the tool to strongly
reduce the number of false positives in the captured provenance compared to
methods based on heuristics—albeit at a high cost. Like system-events based
solutions, DBI has the benefit that provenance can be collected directly from
unmodified binaries, without requiring development effort to make applications
provenance-aware.

The type of taint metadata used by DataTracker is configurable. In [21], sets
of <file descriptor, offset> pairs are used for tracking the provenance of each
memory location. In this work, we instead opted to use bitsets—where each bit
represents a file descriptor. We made this change because the implementation of
std::set in libstdc++ proved very inefficient in practice. The research of data
structures that will enable DTA to track each input byte individually, while
offering reasonable performance, is an open problem.

We used SPADEv2’s Domain-Specific Language Reporter [9] (DSL reporter)
to integrate DataTracker with SPADEv2. DSL reporter is middleware to allow
the quick integration of new provenance sources with the SPADEv2 kernel. A
converter transforms DataTracker’s intermediate provenance representation to
the OPM-based [17] language of DSL-reporter. The following OPM provenance
elements are produced: a. Process elements are generated for each tracked OS
process, b. Artifact are used to represent files and byte ranges4, c. Used edges
are used to associate input artifacts with processes, and d. WasGeneratedBy,
WasDerivedFrom edges are used to associate output byte ranges with processes
and input artifacts.

Program
Source LLVMTrace

Instrumented
Binary

Program

LLVM
Reporter

Binary
Program

Strace
Strace

Reporter

Data
Tracker

DSL
Reporter

SPADE
Kernel

Graphviz
Storage

Fig. 1. Provenance collection workflow for the three SPADEv2 reporters.

The integration of the three reporters results in the provenance collection
workflow illustrated in Fig. 1. As we are not interested in querying the capture
4 Byte ranges have a memberof: field pointing back to the file they come from.
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provenance, we used the Graphviz storage backend of SPADEv2. An advantage
of this choice is that it makes it easy to extend this work by adding results for
the volume of collected provenance. Such information is readily available directly
from Graphviz.

2.3 Hardware and OS

We ran our experiments on a machine featuring Intel Xeon E5-2630 CPU, with 6
cores clocked at 2.30 GHz. The machine was configured with 1 GB DDR3 memory
module and a SSD storage module with 40 GB capacity. We used 32 bit Ubuntu
Linux 14.04.3 LTS to run our experiments. We used GCC 4.8.4 and LLVM 3.6.0
to compile UnixBench. GCC was used for strace reporter and DataTracker.
LLVM was used for LLVMTrace.

3 Experimental Results

For our experiments, we use the UnixBench [20] benchmark suite. UnixBench
was originally developed in 1983 at Monash University. It was adopted and
popularized by Byte magazine in the 1990’s and updated and revised by many
people over the years. It still remains a popular general-purpose benchmark suite
for the evaluation of the overall performance of Unix-like systems.

UnixBench is comprised of multiple parts that measure different aspects of a
system’s performance. Its main focus is to test how a system performs in basic
operations such as file I/O, IPC, process creation, and system call invocation.
Such operations are often tapped to extract provenance information [3,8,12,18],
and thus are relevant to capturing provenance. This is also the case for the three
SPADEv2 provenance reporters we study: a. strace reporter produces provenance
solely by analyzing system calls, b. LLVMTrace traces the wrapper functions of
the system calls, and finally c. DataTracker introduces taint when data are read,
and logs provenance on writes.

We ran UnixBench first without any provenance reporter running (base-
line) and then once for each of the three provenance collectors we study. The
performance results can be seen in Table 2. Moreover, Fig. 2 shows the slow-
down imposed by each reporter, compared to the baseline performance. In
our study, we had to skip the Dhrystone (string handling performance) and
Whetstone (floating point performance) tests of UnixBench. The former was
skipped because of problems running it with LLVMTrace. The latter test would
be of little interest, as all three of the studied reporters do not focus on floating
point computation. The list of the performed UnixBench tests and a description
of what they measure are as follows:

1. execl-xput: How fast the current process image can be replaced with a new
one, as a result of an execve system call.

2. fcopy-256, fcopy-1024, fcopy-4096: Speed of a file-to-file copy using dif-
ferent buffer sizes.
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3. pipe-xput, pipe-cs: Speed of communication over pipes. In the first test, the
read and writes on the pipe happen from a single process. In the second test
a second process is spawned, so the communication also includes a context
switch between the two.

4. spawn-xput: A simple fork-wait loop to measure how much time is needed
to create and then destroy a process.

5. shell-1, shell-8: Execution speed for the processing of a data file. The
processing is implemented using common unix utilities, wrapped in a shell
script. The two tests differ in the number of concurrently executing scripts.

6. syscall: System call overhead. The test uses getpid to measure this. The
specific system call is chosen because it requires minimal in-kernel processing,
so its main overhead comes from the switch between kernel and user mode.

Table 2. Performance and index scores for UnixBench tests. Units for ops are as
following: a. KBps for the fcopy-∗ tests b. loops per minute for the shell-∗ tests c. loops
per second for the rest of the tests.

Test Baseline Strace LLVMTrace DataTracker

ops index ops index ops index ops index

execl-xput 2285.5 531.5 668 155.4 1816.8 422.5 0.8 0.2

fcopy-256 120115.1 725.8 3303.5 20 91354.1 552 3624.7 21.9

fcopy-1024 352158.3 889.3 13133.3 33.2 397054.4 1002.7 7737.1 19.5

fcopy-4096 885101 1526 50492 87.1 954774 1646.2 11025.7 19

pipe-xput 813880.7 654.2 13745.5 11 711530.6 572 27658.9 22.2

pipe-cs 132217.1 330.5 6537.8 16.3 105752.7 264.4 11083.3 27.7

spawn-xput 7525.9 597.3 3229.9 256.3 1.4 0.1 12.2 1

shell-1 3816.4 900.1 1219.8 287.7 2291.3 540.4 2.6 0.6

shell-8 491.1 818.5 166.2 277.1 480.6 801 0.3 0.6

syscall 1140408.8 760.3 8388.9 5.6 695653 463.8 17921.7 11.6

Index Score 720.8 53.3 257.8 4.6

4 Discussion of Experimental Results

In Table 1, we presented the overall features of three representative provenance
collection methods. After evaluating their performance with UnixBench, we can
draw conclusions with regard to the performance trade-offs involved when choos-
ing which provenance method to use.
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Fig. 2. Slowdown for the individual UnixBench tests.

Integration Effort. The integration effort for using each reporter is associ-
ated with the changes required: a. for the tracked programs themselves b. the
platform where the programs run on. There seems to be a correlation between
the integration effort required and the runtime overhead of provenance collec-
tion. From the studied reports, LLVMTrace requires the most integration effort
because each tracked program has to be recompiled from its source. However, it
also presents the lowest runtime overhead during provenance collection. On the
other hand, strace reporter and DataTracker are the easiest to deploy, requiring
no modification to the underlying platform (Linux) and working on unmodified
binaries. However, their runtime overhead would be ranked from high to pro-
hibitive. Specifically for system-event tracing, the overhead can easily be reduced
if some integration effort is invested to modify the underlying platform. This is
the approach taken in [3,18] which impose a very low runtime overhead (<4%).
It should be noted however that these works either exclude the store runtime
overhead from performance measurements [18], or use in-memory databases [3]
to reduce it.

Provenance Granularity. The UnixBench results appear to be counter-
intuitive when correlated with the granularity at which each method works.
One would expect that system call tracing, which only tracks file-level prove-
nance, would be the method with the lowest overhead. However, this doesn’t
appear to be the case for the implementations we study. The reason for this are
two-fold: a. UnixBench focuses on system-call stress-testing, so a method relying
on system-call analysis will suffer. b. The strace tool was not designed with effi-
ciency in mind. It has to stop the program execution two times for each system
call, in order to inspect its arguments and return value. In x86 this translates
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to trapping the SYSENTER, SYSEXIT instructions, a particularly expensive
operation.

Another important observation related to provenance granularity, is that
tracking such fine-grained provenance may nullify benefits from batching I/O.
This is attested by the fcopy-* tests for DataTracker, where we can see that there
is no benefit from using a larger buffer size. This can be explained by the fact
that irrespective of the buffer size, DataTracker has to individually update/log
the metadata from all the memory locations.

False Positives. False positives are highly undesirable when collecting any type
of data. Their presence degrades the value of a dataset. Provenance is no excep-
tion to this. However, as our measurements showed, in the case of provenance
reducing false positives to very low levels comes at a significant runtime cost.
Thus, in cases where false positives can be tolerated or easily filtered-out later,
faster methods should be preferred.

In principle, provenance-based false positives originate from the fact that we
treat software components as black-boxes and try to “guess” the provenance
relations they produce. When a bad guess is made, a false positive is gener-
ated. DTA (as implemented by DataTracker), on the other hand, is a “track
everything” attempt to see how those software black-boxes use the data, thus
eliminating the need for guessing. In cases where the functionality of a soft-
ware module is well known, this approach is clearly overkill. Recent efforts [16]
attempt to eliminate this trade-off by switching between DTA and lightweight
logging.

Analysis Scope. Not extending the scope of analysis to dynamic libraries, as
LLVMTrace does, may appear as a limitation at first blush. However, it turns out
that usually, this is a reasonable trade-off. This is because dynamic libraries usu-
ally have well-known behavior, which makes it possible to keep runtime overhead
low by not tracking the internals of the library while still producing accurate
provenance. This could be problematic however in programs that have pushed
functionality into dynamic libraries. This is a quite common design strategy
for many web-browsers. In that case, specific dynamic libraries have to also
be recompiled to include provenance instrumentation. This choice represents a
potential trade-off between the analysis scope and the ease of integration.

Overall, we see that when selecting a provenance system, there are key trade-
offs between the extent of instrumentation both from a breadth and depth per-
spective and the resulting performance. We suggest that, when quick deployment
is of importance, system event tracing is a good choice. Depending on whether
the deployment will be permanent or not, one may choose to invest on deploying
tools like Hi-Fi [18] or LPM [3] instead of using the tool used in our study. On
the other hand, compile-time instrumentation can combine good performance
with potentially less false positives for applications where the source code is
available. The reduced false positives is a result of tracking provenance at a finer
granularity than system events analysis. However, the effort required to properly
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apply compile-time instrumentation may become substantial for programs that
use multiple dynamic libraries. Finally, the overhead added by DataTracker is
prohibitive for time-critical applications. For this, it is best reserved for special
cases. E.g. if one is interested in understanding the provenance produced by
legacy applications (no source code, little/no documentation), tools like Data-
Tracker may help identify properties that are masked by tools operating on a
higher level.

5 Related Work

Performance and overhead of provenance capture systems has been identified
as an important topic for the adoption of provenance systems. In their prove-
nance primer [5], Carata et al. identify two dimensions of overhead: a. temporal
overhead, which is the focus of this work, and b. spatial overhead, which is associ-
ated with the cost of storing the captured provenance. An important observation
they make, is that the available data about performance of provenance capture
systems are not directly comparable. This calls for the standardization of some
benchmarks which can be used to have comparable results for future systems.

In general, it seems there is more interest in the spatial aspect of provenance
overhead. Simmhan et al. [19] include only spatial overhead as a dimension in
their provenance taxonomy. The ProvBench [1] effort focuses on collecting refer-
ence traces to help assess provenance storage and query processing time. Firth
and Missier [7] have proposed to synthetically create provenance graphs. Simi-
lar efforts would help to also get better understanding of provenance collection
runtime overheads.

This focus on spatial overhead could be partially explained by the fact that
for many disclosed provenance systems, the runtime overhead is already low [5].
Glavic [10] observes that provenance can be intensive both in terms of compu-
tation and required storage. Moreover, he notes that by using DTA to capture
fine-grained provenance (similar to DataTracker), one can generate a very large
volume of provenance data from a small set of input files. So, provenance collec-
tion can be used as a benchmark workload for Big Data.

Finally, we note that we use only three implementations of automatic
provenance capture methods. There are many other implementations such as
PASS [12], ES3 [8], OPUS [2], Hi-Fi [18], Linux Provenance Modules [3] and
PLUS [6]. Each of these systems has there own optimizations and capabilities
for provenance. However, we believe the methods described here are broadly
representative of these approaches.

6 Future Work and Conclusion

6.1 Future Work

In this work, we focus on exploring trade-offs related to the performance of
provenance capture. There are many opportunities for future work. Here, we
focus on those opportunities to do with further benchmarking.
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Non-performance Trade-Offs. The community has shown interest in issues
related to the storage and querying of captured provenance (see Sect. 5). So we
believe that it would be interesting to include measurements about the storage
required by each provenance capture method. Another systems-related aspect
that would be of interest is the memory requirements of each approach. Hav-
ing low-memory requirements becomes important in shared environments (e.g.
virtualized servers or multi-purpose server boxes).

Comprehensive Benchmarking. As we have already mentioned, UnixBench
puts emphasis on the system call performance. However, in many real-life work-
loads system calls account only for a fraction of the execution time. To achieve a
more comprehensive evaluation, more types of benchmarks should be used. We
initially had planned to use selected Coreutils5 as micro-benchmarks to com-
plement the results of UnixBench in this work. Coreutils include small data
manipulation programs with well-understood behavior, which may also include
substantial computation in the user-space. However, due to time constraints, we
had to defer their publication. Another option would be to use a set of more com-
plex programs as the basis for comparing provenance tools and methods. E.g. [18]
uses the compilation of the Linux kernel as a benchmark and the Postmark mail
server benchmark. In addition to that, [3] uses the BLAST benchmark which
is based on biological sequencing. Using larger benchmark suites should also be
investigated. However, it is not necessary that all tests in a benchmark suite will
be suitable for benchmarking provenance capture. E.g. the SPEC benchmark
makes heavy use of interpreted programs.

Qualitative Benchmarks. Another aspect of provenance capture is the quality
of the produced provenance. In order to assess a method or tool with regard to
its quality, we need an established ground truth against which we compare. If
we know the ground truth for a given set of tasks, then we can calculate the
precision/recall of each compared method and rank them accordingly. Disclosed
provenance systems could be used to establish a ground truth for qualitative
benchmarks of non-disclosed tools and methods. Another option would be to
use tools like DataTracker which are not prone to false positives and can produce
fine-grained provenance.

6.2 Conclusion

In this paper, we studied the performance of three methods for automated prove-
nance capture, as implemented for the SPADEv2 provenance middleware. We used
UnixBench, a widely used benchmark, focusing mostly on performance of sys-
tem calls. As UnixBench does not include adequate variety of workloads, our
presented results are clearly not enough to fully evaluate the performance of the

5 GNU Coreutils: http://www.gnu.org/software/coreutils/.

http://www.gnu.org/software/coreutils/
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studied methods. However, we believe that the trade-offs we present can still pro-
vide some insights on the suitability of the methods for capturing provenance
of specific workloads. More importantly, we consider this work as a first step
for the systematic and multi-faceted performance evaluation of provenance cap-
ture systems. Having such information will provide a baseline for the concrete
assessment of improvements in future provenance capture methods and systems.
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Abstract. We conjecture that meaningful analysis of large-scale prove-
nance can be preserved by analyzing provenance data in limited memory
while the data is still in motion; that the provenance needs not be fully
resident before analysis can occur. As a proof of concept, this paper
defines a stream model for reasoning about provenance data in motion
for Big Data provenance. We propose a novel streaming algorithm for the
backward provenance query, and apply it to the live provenance captured
from agent-based simulations. The performance test demonstrates high
throughput, low latency and good scalability, in a distributed stream
processing framework built on Apache Kafka and Spark Streaming.

Keywords: Live data provenance · Stream processing · Agent-Based
model

1 Introduction

The traditional persistent approach that operates on static provenance is not
suitable for continuously generating provenance data. Our earlier work [6] showed
that data provenance enables deeper analysis of the internal dynamics of agent
based models (ABMs), by exposing dynamics that were previously hidden inside
what is effectively a black box. However, [6] further shows that vast and unwieldy
amounts of provenance can be captured continuously from running simulations
with even a modest tens of thousands of interacting components (agents). In this
case it quickly becomes infeasible to store all of the provenance data, requiring
reassessment and reinterpretation of analysis techniques to operate over live
provenance data, that is, before it gets written to disk.

Tasks such as debugging and model calibration are refinement processes,
requiring repeated runs. When a refinement process requires an experiment to
either fail or finish, it can be very time consuming. Our earlier work demonstrated
that provenance data is useful for both debugging [7] and model analysis [6],
and since provenance captures the dependencies between input parameters and
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simulated results that do not match real data, it is suitable for model calibration
as well. The challenge, however, is to overcome storing and wading through vast
volumes of information to quickly isolate behavior of interest.

An approach to faster and more targeted intervention is to process prove-
nance continuously as a stream of data. Algorithms under this model are con-
strained to processing a potentially unbounded stream in the order it arrives
while using limited memory [3]. Earlier work on data streams [1,3,21] often
modeled the stream as a sequence of timestamped events and generally assumed
homogeneous streams that could be centrally processed. Provenance data lends
itself to being modeled as a graph, and a general graph stream consists of undi-
rected edges arriving in random-order [17]. Recent work on graph-based streams
focuses on the semi-streaming model [12], in which the data stream algorithm
is permitted O(npolylogn) space, where n is the number of nodes in the graph.
This space use is not well suited to voluminous provenance, nor does it meet the
constraints of continuous processing for exclusive in-memory use.

In this paper, we distinguish a provenance stream from a general graph
stream by emphasizing the temporal order in a provenance graph. From that
we develop an algorithm for the backward provenance query on streaming data
that has a space complexity limited by the maximum number of data values
that the program can access at any given time during its execution. In an agent-
based model this number is proportional to the number of declared variables. We
extend our earlier tool [6] to automatically capture provenance streams from run-
ning NetLogo [28] simulations and store them into Apache Kafka [15]. We then
implement our proposed algorithm on Apache Spark Streaming [30] to support
the parameter readjustment and online debugging for agent-based model. The
performance evaluation shows high throughput, low latency and good scalability.

The remainder of the paper is organized as follows: Sect. 2 discusses related
work. Section 3 defines the stream model of dependency provenance. Section 4
introduces our framework that supports the capture and query of provenance
streams. Section 5 presents the evaluation on a real-world environmental agent-
based model. Section 6 concludes the paper and discusses future work.

2 Related Work

Research on stream provenance focuses on the provenance about data streams. It
can be categorized with coarse-grained provenance methods that identify depen-
dencies between streams or sets of streams [26,27], and fine-grained methods
that identify dependencies among individual stream elements [10,18,22,23]. San-
srimahachai et al. [23] propose the Stream Ancestor Function – a reverse map-
ping function to express precise dependencies between input and output stream
elements (fine-grained). Our study focuses on the continuous processing of large
provenance data streams, a problem that has received less attention. The most
closely related work is Sansrimahachai et al. [22] who track fine-grained prove-
nance in stream processing systems through an on-the-fly provenance tracking
service that performs provenance queries dynamically over streams of provenance
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assertions without requiring the assertions to be stored persistently. However,
their focus is on provenance tracking by essentially pre-computing the query
results at each stream operation and storing results into provenance assertions
as the provenance-related property.

There is research on provenance collection that treats provenance data as
continuously generating events. For example, Komadu [24] receives provenance
events and attributes as XML messages in a separate standalone system and
can infer relationships between events after their arrival; SPADEv2 [13] has
reporters that transparently transform computational activity into provenance
events. However, neither system models provenance events as a stream. In con-
trast, we present our early work on a stream model for provenance events. Our
preliminary model only covers the dependencies between data products (analo-
gous to the “Derivation and Revision” in W3C PROV [20]) and their temporal
ordering. We demonstrate that this model is sufficient for the continuous back-
ward provenance query.

Provenance can be represented as a DAG, and there is work on querying
provenance graph databases [19,25]. Our study focuses on the continuous query-
ing of massive provenance data streams. McGregor [17] surveys algorithms for
processing massive graphs as streams, which focus on the semi-streaming model
of O(npolylogn) space. There has been little research on the stream processing
of graph queries, and the most closely related work is the stream processing of
XPath queries [14] and SPARQL queries [2,4]. XPath queries need to consider
the relationships between XML messages (similar to graph edges), and SPARQL
queries are performed on RDF graphs. However, these extended SPARQL lan-
guages are developed for specific goals such as to support semantic-based event
processing and reasoning on abstractions, not to support typical graph analysis
based on the node/path patterns. The same holds true for XPath queries.

3 Stream Model of Provenance Graph

An agent-based model (ABM) is a simulation of distributed decision-makers
(agents) who interact through prescribed rules. We demonstrate in [6] that the
dependency provenance in an ABM can explain certain results tracked to input
data, and can yield insight into cause-effect relations among system behaviors.
The concept of dependency provenance [8,9] is based on the dependency analysis
techniques used in program slicing, which is different from “where-provenance”
and “data lineage”, but similar to “how-provenance” or “why-provenance” [5]
in that it identifies a data slice showing the input data relevant to the output
data. In this paper, we focus on the dependency provenance that consists of the
data products and their dependencies, which can be considered as analogous to
the “Derivation and Revision” in W3C PROV [20].

We use the same mapping to W3C PROV as in [6] to express the dependency
provenance in ABM. PROV models provenance as a static graph, but the prove-
nance capture can be viewed as a process of appending node/edge to the graph
in their generation order. While a general graph can be streamed into a sequence
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Fig. 1. Illustration of the provenance stream model.

of undirected edges in random-order, a provenance graph could be represented
as a sequence of directed edges following the order of node/edge generation (see
Fig. 1 for an example).

We propose a limited stream model of provenance that captures just a subset
of provenance relationships and their ordering. We denote a dependency prove-
nance graph as G = (V,E,A), where V = {v1, v2, ..., vn} is the set of data prod-
ucts (nodes); E = {e1, e2, ..., em} is the set of dependency relationships (edges),
in which an edge e = 〈vi, vj〉 specifies that vi depends on vj ; A(v) = {a1, a2, ...}
represents an arbitrary number of attributes of v.

Definition 1. A stream of dependency provenance consists of a sequence of time
ordered pairs e = 〈vi, vj〉:

S = {e1, e2, ..., en, en+1} (1)

where e = 〈vi, vj〉 is a dependency relationship from vi to vj in V , and
timestamp(en) < timestamp(en+1).

If the temporal order of node/edge generation is properly preserved during
capture, the provenance stream will follow a partial order specified below:

Property 1. For any two edges el = 〈vi, vj〉 and em = 〈vk, vi〉 that share a
common node vi, timestamp(el) < timestamp(em)

The provenance stream is append only and is potentially unbounded in size.
Once an element of the stream has been processed it is discarded, and a query
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can only be evaluated over a limited internal state and/or the sliding window
(with length w) of recently processed elements (at time t):

W = {et−w+1, ..., et} (2)

There are two processing models in current distributed processing systems: the
record-at-a-time processing model that receives and processes each individual
record; and the batched processing model that treats streaming workloads as
a series of batch jobs on small batches of streaming data. We implement our
streaming algorithm in Spark Streaming [30] that is based on a batched process-
ing model called D-Streams, and thus the provenance edges in S are received
and processed during each batch interval (denoted by bInterval).

4 Provenance Stream Capture and Processing

We develop a scalable framework to support the capture and processing of live
provenance streams generated from simulations running in NetLogo. Figure 2
gives an overview of its two major components. The provenance stream capture
component captures live provenance streams from agent-based simulations and
stores them into a Kafka messaging cluster. The provenance stream processing
component is built on a Spark Streaming cluster to support query and other
analytical operations. The details are illustrated in the rest of the section.

4.1 Provenance Stream Capture

In [6] we capture the provenance traces of a NetLogo simulation through probes
added to the model’s source code, and develop a NetLogo extension that collects
and saves the provenance traces to be processed offline. In this paper, we modify
the NetLogo extension to send the provenance traces directly to a converter
that converts provenance traces into a live stream of provenance edges (in JSON
format), which are then forwarded to the Kafka messaging system and processed
in real-time. This provenance capture mechanism is illustrated in Fig. 3.

Fig. 2. Architecture of the provenance stream capture and processing framework.



Analysis of Memory Constrained Live Provenance 47

Fig. 3. Provenance capture from multiple running NetLogo simulations.

Note that each provenance hub uses multi-threading to receive probe traces
from multiple simulations and send them to Apache Kafka [15], which is a distrib-
uted publish-subscribe messaging system that is designed to be fast, scalable,
and durable. The provenance streams from different simulations can be sepa-
rated by keys (uniquely formed by combining the hub ID with the stream ID).
Each provenance hub can be configured either to send its streams into different
partitions within one Kafka topic or into separate Kafka topics. This flexibil-
ity in organizing streams by topics and partitions can be used to improve the
throughput and the level of parallelism of stream processing in Spark Streaming
(see Sect. 5). For agent-based simulations distributed across multiple machines,
we can deploy one or more provenance hubs on each machine.

4.2 Stream Processing Algorithm

Now we present our Backward Dependency Matrix (BDM) algorithm, which
uses a dependency matrix to answer the backward provenance query for the
most recent provenance nodes (i.e., data products) in the stream. Given the
temporal order defined in Sect. 3, we use a dynamic matrix to store and calculate
the dependencies between all provenance nodes and the input/global parame-
ters. For a newly arriving provenance node, the matrix is consulted to find the
input/global parameters on which it depends. Figure 4 illustrates the dynamic
matrix, with rows and columns added and removed on demand. The rows in
the matrix correspond to provenance nodes (data products), and the columns
correspond to input/global parameters. A cell of value 1in the matrix means a
backward dependency from its row to its column. Each time a new provenance
edge e = 〈vi, vj〉 arrives, we extract the backward dependencies of vj (value 1 s
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in its row), and add them into the backward dependencies of vi. The temporal
order guarantees that all the backward dependencies of vj arrive before e. In this
way, we can calculate the backward dependencies for all provenance nodes, with
the matrix size being potentially unbounded. However, under the constraints of
our stream model, we can only use an internal state of limited size.

Fig. 4. Dynamic dependency matrix (0: dependent; 1: independent).

One observation on the agent based model in NetLogo, and in many other
applications too, is that there exists only one instance (or value) of any variable at
any moment – a universal value of a global variable, one copy of an agent variable
within each agent, and one value of a local variable inside a function invocation
– and we only need to query the backward dependencies for the current value of
a variable. Thus the matrix only needs to keep the dependencies of the current
variable instances, and those that could be used in future calculations.

In our stream model of provenance graph, each node is assigned with a node
ID (unique within the stream) and a variable ID during the provenance capture
(see Fig. 1(d)). The variable ID is formed by concatenating the context infor-
mation and the declared name of that variable. For example, “global:variable
1”, “agent 1:variable 2”, and “procedure 1, level 1:variable 3” (“level” specifies
the depth of recursion). Two provenance nodes with different node ID but same
variable ID represent different values of the same variable. We keep dependencies
of the most recent provenance node for each variable ID, except in the case that
the most recent value of a variable depends on its earlier value – we use a cache
matrix to temporarily store the dependencies of its earlier value. The algorithm
is shown in Fig. 5. It has a space complexity of O(N), where N is the number
of variables declared in the model that is independent of the unbounded stream
length. The matrix state.current stores the dependencies of current nodes to
input data that can be queried using the function getBackwardProvenance.

4.3 Stream Processing Implementation

We implement the proposed algorithm inside a stream processing platform called
Apache Spark Streaming [30]. Apache Spark [29] is a batch processing framework
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1: function updateState(element, state) � element: a newly
arrived element (dependency edge) in the stream; state: the internal state with two
dynamic matrices current and purge, and one HashMap varIdToNodeId

2: sourceNode ← element.source
3: destNode ← element.dest
4: if state.varIdToNodeId.containsKey(sourceNode.varId) and

state.varIdToNodeId.get(sourceNode.varId) != sourceNode.nodeId then
5: remove all dependencies from state.current whose sources match

sourceNode.varId
6: cache removed dependencies in state.purge � older dependencies in

state.purge whose sources match sourceNode.varId are also purged
7: end if
8: state.varIdToNodeId.put(sourceNode.varId, sourceNode.nodeId)
9: if destNode.varId is an input/global variable then

10: add new dependency sourceNode.varId ⇒ destNode.varId into
state.current

11: end if
12: if destNode.varId == sourceNode.varId then
13: inputV ars ← getBackwardProvenance(destNode.varId, state.purge)
14: else
15: inputV ars ← getBackwardProvenance(destNode.varId, state.current)
16: end if
17: for var in inputV ars do
18: add new dependency sourceNode.varId ⇒ var into state.current
19: end for
20: end function

21: function getBackwardProvenance(varId, matrix) � varId: ID
of the variable that we want to find its related input/global parameters; matrix: a
dependency matrix.

22: dependencies ← all dependencies in matrix whose sources match varId
23: return destinations of dependencies
24: end function

Fig. 5. The BDM algorithm that maintains a dependency matrix to support the back-
ward query on provenance stream.

with the Spark Streaming extension to support continuous stream processing.
We choose Spark Streaming because the provenance stream usually has a very
high speed (thousands of events per second) and Spark Streaming achieves higher
throughput compared with other streaming platforms like Storm [16].

Spark Streaming uses a resilient distributed dataset (RDD) as the basic
processing unit, which is a distributed collection of elements that can be oper-
ated on in parallel. There are two approaches to fetching messages from Kafka:
the first is the traditional approach using Receivers and Kafka’s high-level API
to communicate with ZooKeeper; the second is a direct mode, introduced with
Spark 1.3, which directly links and fetches data from Kafka brokers. We integrate
Spark Streaming with Kafka using the latter approach for its better efficiency
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and simplified parallelism – it creates one RDD partition for each Kafka parti-
tion (i.e., each provenance stream). Since Kafka implements the per-partition
ordering and each RDD partition is processed by one task (thread) in Spark
Streaming, the temporal order of node/edge generation we defined in Sect. 3 is
preserved in both provenance capture and processing. Finally, the Kryo serial-
ization is enabled for the BDM algorithm to reduce both the CPU and mem-
ory overhead caused by its internal state (i.e., two dynamic matrices and one
HashMap).

5 Experimental Evaluation

In evaluating the performance of our framework, we use a food security agent-
based model we built for Monze District in Zambia, Africa [11]. In that model,
53,000 household agents make labor sharing and planting decisions biweekly
based on a utility maximization approach within the context of local institu-
tional regimes (i.e., ward). The goal of the model is to understand the impact
of climate change on adaptive change capacity among households. We use the
source code analyzer [6] to add probes into the NetLogo code and the extended
provenance extension to capture the live provenance stream while the simula-
tion is running. The amount of raw provenance traces generated by running the
model on one ward in the Monze District for one year is around 66 MB, which is
357 MB of provenance nodes/edges in JSON format. In our experiments, we run
the model continuously for five growing seasons that generates about 1.7 GB of
provenance stream data to be processed in real-time. Throughput of our stream-
ing framework is measured as below:

throughput = pSize ∗ nSim/(nBatch ∗ bInterval) (3)

where pSize is total amount of provenance data generated by one simulation
(1.7 GB in our evaluation), nSim is number of simulations, nBatch is number
of batches taken to finish processing all data, and bInterval is batch interval.
Latency is measured as average total time to handle a batch (i.e., sum of schedul-
ing delay and processing time).

We run the experiments using the “Big Red II” supercomputer at Indi-
ana University where each CPU-only compute node contains two 2.5 GHz AMD
Opteron 16-core CPUs and 64 GB of RAM, and is connected to a 40-Gb Infini-
band network. In each experiment run, we use one node to run NetLogo (v5.2.0)
simulations and our provenance hub, one to run the Kafka server and broker
(v0.8.2), and up to nine nodes of Spark Streaming (v1.5.1) standalone clusters –
one master and eight slaves. The Kafka log directory and the Spark Streaming
checkpoint directory are both placed in Big Red II’s shared Data Capacitor II
(DC2) Lustre file system, which is connected via a 56-Gb FDR InfiniBand net-
work. By default, the Spark standalone cluster (v1.5.1) supports only a simple
FIFO scheduler across applications. To allow multiple concurrent applications,
we divide the resources by setting the maximum number of resources each appli-
cation can use (i.e., parameter “spark.cores.max”). Since the actual number of
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non-idle tasks is determined by the number of RDD partitions (a.k.a. the num-
ber of provenance streams), we also set “spark.default.parallelism” (the number
of parallel tasks) equal to the number of provenance streams.

For a Spark Streaming application to be stable, the batch interval must be set
so that the system can process data at the arrival rate. If the provenance arrival
rate is consistently higher than the maximum processing speed, we can throttle
it by slowing down the ABM simulation speed. However, in our evaluation, we do
not throttle the arrival rate, instead we measure the maximum processing speed
at different batch intervals, by enabling the “backpressure” feature in Spark
Streaming – it automatically figures out the receiving rate so that the batch
processing time is lower than the batch interval (see Fig. 6(a)).

Fig. 6. (a) a BDM algorithm run with batch interval 5 s and data receiving rate auto-
matically controlled by Spark Streaming “backpressure” feature. Note that the trial
and error at the beginning to find the right receiving rate; (b) throughput of run-
ning BDM algorithm at different batch intervals compared with maximum throughput
when receiving provenance in Spark Streaming; (c) latency of running BDM algorithm
at different batch intervals; (d) scalability test of BDM algorithm at 5 s batch interval.

We first measure the throughput and latency of the BDM algorithm run-
ning on a single-node Spark Streaming cluster, and the size of its internal state
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serialized in memory. To determine the maximum throughput under the condi-
tion of simply receiving stream elements, we also measure the Spark “collect”
operation running alone. As can be seen from Fig. 6(b) and (c), our proposed
BDM algorithm can achieve throughput as high as 10.8 MB/s per stream (77 %
of the maximum throughput of 14M B/s), and latency as low as 1.5 s; when
increasing the batch interval, the BDM algorithm will have higher throughput
but also longer latency. In all scenarios, the maximum size of the internal state
(an RDD cached in memory) is the same – 10.2 MB.

Since our algorithm does not parallelize the processing within a provenance
stream, we evaluate its scalability by measuring Scaleup – the ability to keep
the same performance levels (response time) when both workload and compute
resources increase proportionally. That is, we increase the number of provenance
streams the same as the number of nodes in the Spark Streaming cluster.

There are two different approaches to sending provenance streams into
processing: either creating a separate streaming application to process each
provenance stream, or processing all provenance streams within one streaming
application. The provenance hub organizes the provenance streams accordingly:
one provenance stream per Kafka topic (the first approach), or one provenance
stream per Kafka partition (the second approach). Figure 6(d) shows the results.
The second approach shows restricted scalability for the BDM algorithm for two
reasons: the stateful operation “updateStateByKey()” maintains global states
for all provenance streams; and the direct mode in Spark-Kafka integration has
each Kafka partition occupying one CPU core per node for data receiving, thus
limiting the number of streams one node can handle. While the first approach
has better scalability, it complicates the joint-processing of multiple provenance
streams, which can be supported naturally in one streaming application using
the second approach.

6 Conclusion

This paper proposes a model of provenance streams and a framework that
can automatically capture the live provenance stream from agent-based models.
We propose a streaming (BDM) algorithm that supports backward provenance
querying with limited space utilization. This can be used to calibrate the agent-
based model – when observing a mismatch between real and simulated data
during the simulation run, the BDM algorithm can return the relevant input
parameters to be readjusted on-the-fly. The framework and the BDM algorithm
have been tested with a real-world environmental agent-based model that has
thousands of household agents. The performance results show good throughput,
latency and scalability.

Future work is to refine our definition of the stream model to include other
types of provenance entities and relationships. In addition, how to handle out-
of-order arrivals and how to parallelize the processing of one provenance stream
remain open questions.
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Abstract. Provenance generated by different workflow systems is generally
expressed using different formats. This is not an issue when scientists analyze
provenance graphs in isolation, or when they use the same workflow system.
However, when analyzing heterogeneous provenance graphs from multiple
systems poses a challenge. To address this problem we adopt ProvONE as an
integration model, and show how different provenance databases can be con-
verted to a global ProvONE schema. Scientists can then query this integrated
database, exploring and linking provenance across several different workflows
that may represent different implementations of the same experiment. To
illustrate the feasibility of our approach, we developed conceptual mappings
between the provenance databases of two workflow systems (e-Science Central
and SciCumulus). We provide cartridges that implement these mappings and
generate an integrated provenance database expressed as Prolog facts. To
demonstrate its usage, we have developed Prolog rules that enable scientists to
query the integrated database.

1 Introduction

Workflow Management Systems (WfMS) facilitate the design and implementation of
data-driven computational science experiments, through a high-level programming
model and a middleware-based runtime environment. A number of WfMS also capture
and store retrospective provenance [1], and provide query languages and other ana-
lytical tools to help scientists use the resulting provenance traces [2–4].

Consider a scenario where two or more collaborative research teams work inde-
pendently on common scientific goals, adopting slightly different approaches and
producing workflows that differ in design, implementation, and execution middleware,
but are otherwise similar in terms of intent, using comparable tools and algorithms.
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The concrete example we use throughout the paper is that of two research groups, both
interested in generating phylogenetic trees. The two groups independently design and
implement two workflows, SciPhy [5] and ML1, using different WfMS, namely
SciCumulus [6] and e-Science Central [7]. Each of these has their specificities, but both
are capable of collecting retrospective provenance traces from their workflow runs.
Since both workflows use either the same or similar input data and produce similar
outputs, it seems natural to try and use the provenance of their runs to compare and
discuss the results. However, the two WfMS use different proprietary schemas and
logical data models to represent their respective provenance (relational and graph-
based, respectively) as well as to store it. Furthermore, the different nature of the WfMS
middleware leads to different levels of details in the provenance traces.

Thus, while in theory it should be possible for researchers to ask questions on both
provenance graphs seamlessly and transparently, the heterogeneity in the design,
implementation, and execution of their workflows translates into provenance traces that
are themselves heterogeneous, making it difficult to analyze them jointly. Ultimately,
this lessens the role of provenance in facilitating scientific discourse.

Promoting provenance interoperability has been the goal of several recent com-
munity efforts in provenance modeling, starting with the Open Provenance Model
(OPM) [8] and culminating with PROV [9], a W3C recommendation. Further, Pro-
vONE [3] and PROV-Wf [10] independently extended PROV, adding explicit repre-
sentation of prospective provenance [1] to the model.

Contributions. In this paper we build upon these efforts to show how provenance
interoperability that includes integration of the traces and their seamless querying, can
be achieved in a practical setting where we can assume a degree of similarity amongst
the traces, as in the science scenario just outlined.

The paper offers the following specific contributions: (i) Firstly, we argue that, to be
useful, an integration model should include both retrospective and prospective
provenance (which we henceforth concisely refer to as r-prov and p-prov). We use a
number of example queries to show the benefits of an integrated provenance database
that accommodates both r-prov and p-prov traces from two or more heterogeneous
workflow runs. In our proposed approach, we use ProvONE as the integration model,
as it is fairly comprehensive including both p-prov and r-prov and allows for easy
integration of terms from external vocabularies, including Dublin Core or WfMS.
ProvONE is also fairly stable, and supported by a large data conservation project,
DataONE (dataone.org); (ii) We then map the proprietary provenance models of
SciCumulus and e-Science Central to ProvONE, showing that ProvONE is indeed a
viable target integration model; (iii) Thirdly, we present an actual mapping of prove-
nance traces, obtained from running the example workflow on the two WfMS, to the
ProvONE model. This exercise also shows the limitations of each of the provenance
capture systems, as both proprietary traces miss some of the provenance elements
(entities, activities, actors, and relationships) that are available in ProvONE; (iv) As an
illustration of system-level integration we have implemented provenance components,
or cartridges, for SciCumulus and e-Science Central, which translate the traces to

1 http://eubrazilcloudconnect.eu/content/leishmaniasis-virtual-laboratory.
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ProvONE and write them to an integrated provenance database, and (v) Finally, we
implement the example queries mentioned in (i) to show provenance querying on our
integrated model.

In our proof-of-concept implementation we have used Prolog as it allows great
flexibility both in producing the integrated database, because provenance relationships
translate to Prolog facts, and in formulating powerful queries with inference capability,
using Prolog rules. We should note that Prolog has been also used to query and analyze
provenance generated from scripts in the noWorkflow approach [11], and that it is also
a natural choice owing to its syntactic similarity to PROV-N [12].

Running Example: Phylogenetic Analysis Workflows. As anticipated, our running
example is a phylogenetic analysis experiment designed by two research groups and
executed in two different WfMS. This analysis aims at generating phylogenetic trees
along with other statistics, which can then be used to infer the evolutionary ancestry of
a set of genes, species, or other taxa. Each of the workflows presents different designs
and specifications (e.g. number and name of activities), but they have similar goals,
which makes useful to compare the achieved results. To clarify the use of specific
parameter values in both workflows, domain experts from the two groups defined
semantic mappings between pairs of workflow activities in the SciPhy and ML
workflows, as shown in Table 1. We use this mapping to compare the provenance of
similar activities from distinct and heterogeneous provenance graphs, and later to drive
the design of cross-traces queries.

Specifically, the SciPhy workflow consists of five activities: (i) DataSelection;
(ii) Mafft; (iii) ReadSeq; (iv) ModelGenerator; and (v) RAxML. The ML workflow is
composed of six activities: (i) ImportFile; (ii) FilterDuplicates; (iii) ClustalW;
(iv) MEGA-Maximum Likelihood; (v) CSVExport; and (vi) ExportFiles. The two
workflows were set up with similar input data and parameters. Although the number of
their activities differs, two key activities appear in both, namely sequence alignment
and tree generation. Their mappings: Mafft → ClustalW and RAxML → MEGA help
us compare the critical elements of the workflows (the other activities are responsible
for format conversions and some optional optimizations in the process).

Table 1. Semantic relationships between activities of two scientific workflows

SciPhy ML Description

DataSelection ImportFile and
FilterDuplicates

Importing, filtering, and selection of data

Mafft ClustalW Sequence alignment
ReadSeq – Conversion of alignment format
ModelGenerator – Choice of the evolutionary model
RAxML MEGA-Maximum

Likelihood
Generation of the phylogenetic tree

– CSVExport Exporting filtered sequences on CSV
format

RAxML ExportFiles Exporting of the phylogenetic tree
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2 Provenance Analysis Across Heterogeneous Provenance
Graphs

2.1 A Reference Classification of the Provenance Space and of Its Queries

We argue that, in the collaborative scenario just outlined, scientists will benefit from
provenance graphs that (a) include both p-prov and r-prov, and (b) include traces from
both experiments. The case for combining p-prov and r-prov has been made before [10,
13, 14], namely that p-prov enables new types of queries to be made on r-prov, such as
find all data produced by any activity that occurs downstream from block X in the
workflow. Other interesting queries that span r-prov and p-prov are presented later in
this section. The case for point (b) is that the ability to perform analysis on combined
provenance graphs will help collaborative teams obtaining deeper understanding from
related workflows with different levels of details. As we have seen, this is possible
because these workflows typically share similarities on their activities, data flows, or
input parameters. When detailed provenance graphs from similar workflows are
available, scientists can use those sources to clarify their understanding and get more
insights about the experiment.

Given two traces PG1 and PG2, each from a different workflow run (from the same
or different workflows), and each providing both r-prov and p-prov, we can categorize
the set of all possible provenance queries as illustrated in Fig. 1. In this Venn diagram,
queries are classified according to the provenance data needed to answer them. For
instance, queries in class C1 operate on p-prov only and on one graph at a time, while
C3 queries require both p-prov and r-prov, on one graph. Class C6 is perhaps the most
challenging, as it operates simultaneously on p-prov and r-prov, and on both graphs.
Note that our classification is conceptual, and the actual fragment returned by a query is
sensitive to the values of query parameters.

Example queries for each of the classes are listed in Table 2. Note that queries from
classes C1, C2 and C3 are easily answered using provenance captured by most WfMS.
However, queries of classes C4, C5 and C6 require additional mapping information
that is not automatically provided by those systems. This mapping encompasses two

Fig. 1. Classification of provenance fragments and corresponding queries
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aspects: (a) a syntactic mapping between heterogeneous schemas of provenance data
and (b) a semantic mapping that informs the similarity or equivalence between p-prov
elements. The syntactic mapping of local and global provenance schemas using Pro-
vONE is described next, while a sample of a semantic mapping of two workflows
specifications appears in Table 1. Note that the semantic mapping comes from the
researchers/domain experts’ mind and is used just as auxiliary information to perform
queries by filtering results. Later, we will come back with the queries and classes
presented here and we will demonstrate how an integrating architecture enables their
implementation.

2.2 Mapping Provenance Models to ProvONE

Executing queries in each of these classes requires converting PG1 and PG2 to a
common provenance model. We now illustrate the integration process using two

Table 2. Provenance queries on intersection classes

# Queries Class

Q1 Retrieve all programs with their input and output ports for the workflow w′
and provenance graph g′

C1

Q2 Retrieve all activity executions with their generated data for the workflow
execution w′ and provenance graph g′

C2

Q3 Retrieve the time consumed by each activity execution for the workflow
execution w′ and provenance graph g′

C2

Q4 Retrieve the complete activity execution trace that influenced the generation
of the data d′

C2

Q5 Retrieve the complete dataflow trace of the output data d′ for the workflow
execution w′ and provenance graph g′

C2

Q6 Retrieve all programs (plans) of each execution and their input parameters
for the workflow execution w′ and provenance graph g′

C3

Q7 Retrieve the workflow version, and the time consumed by each workflow
execution for the workflow wf′ and provenance graph g′

C3

Q8 Retrieve all programs with their input and output ports for each workflow
specification

C4

Q9 Retrieve all activity executions with their generated data for each workflow
execution

C5

Q10 Retrieve the time consumed by each activity execution for each workflow
execution

C5

Q11 Retrieve the ports, workflow executions, provenance graphs, and the
complete activity execution trace that influenced the generation of all data

C6

Q12 Retrieve the complete dataflow trace and workflow for each workflow
execution

C6

Q13 Retrieve the time consumed by each workflow execution for each workflow
and provenance graph

C6

Q14 Retrieve all programs (plans) of each activity execution and their input
parameters for each workflow wf′

C6
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WfMS, SciCumulus and e-Science Central. As mentioned before, SciPhy [5] and ML,
which run on each of these WfMS respectively, share the common goal of generating
phylogenetic trees. The two WfMS collect provenance data at different levels of detail
and heterogeneity is present both in format as well as in content.

SciCumulus captures p-prov and r-prov and stores them in relational tables in a
PostgreSQL database, while e-Science Central stores just r-prov as a graph in a Neo4J
database. However, it maintains information about the workflow structure in a rela-
tional database (PostgreSQL) blended with several additional data related to the
workflow viewing (i.e., coordinates of each graph object) and exports it to JSON files.

We use ProvONE (Fig. 2) as the target global schema for integration of the
provenance traces produced by the two systems. ProvONE extends the PROV model
with an explicit representation of p-prov, thus capturing the most relevant information
on scientific workflow processes, and is designed to accommodate extensions for
specific scientific workflow systems [3].

Table 3 describes the logical mapping between elements of the two source
provenance traces, and the corresponding ProvONE elements. Each relational table
from SciCumulus and JSON element from e-Science Central, which hold p-prov, were
mapped to the corresponding ProvONE entities and relationships. Furthermore, the
nodes and edges of e-Science Central database (Neo4J) and also relational tables of

Fig. 2. ProvONE conceptual model, from the DataONE documentation
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SciCumulus that hold r-prov were mapped to ProvONE entities and relationships. The
gaps in the SciCumulus and e-Science Central column indicate missing information.

As there is no previous relation between p-prov and r-prov in the e-Science Central
database and the exported JSON files, we use some information such as invocations
and blocks identifiers to unify them. The relation between p-prov and r-prov is

Table 3. Mapping between ProvOne, SciCumulus, and e-Science Central provenance models

# ProvONE SciCumulus e-Science Central

1 provone:workflow cworkflow invocation
2 provone:program cactivity blocks
3 provone:port crelation connections
4 provone:execution eworkflow, eactivity, eactivation Service Run, Workfow Run
5 provone:execution

(Workflow Execution)
eworkflow, eactivity, eactivation Service Run, Workfow Run

6 provone:user emachine –

7 provone:document efile DataVersion
8 provone:data idataselection, odataselection,

omafft, oreadseq,
omodelgenerator, oraxml

properties

9 provone:hadPlan eactivation, eactivity, cactivity,
eworkflow, cworkflow

Service Run, blocks

10 prov:wasDerivedFrom
(Data)

efile, cmapping Used, DataVersion

11 prov:wasDerivedFrom
(Program)

– Run_Of, Instance_Of,
Service Run, Service Version,
Workflow Version

12 prov:used efile, cmapping Used, DataVersion, Service
Run

13 prov:wasGeneratedBy eafile Was_Generated_By,
DataVersion, Service Run

14 prov:wasAssociatedWith eactivation, emachine –

15 prov:wasInformedBy cmapping Used, Was_Generated_By,
Service Run

16 provone:hasInPort crelation, cmapping, cactivity blocks, connections
17 provone:hasOutPort crelation, cmapping, cactivity blocks, connections
18 provone:hasSubProgram cworkflow, cactivity invocation, blocks
19 provone:hasDefaultParam cfield connections, properties
20 provone:wasPartOf eworkflow, eactivity, eactivation Contained, Service Run
21 provone:hadInPort crelation, cmapping, cactivity,

eactivity, eactivation
Service Run,
connections

22 provone:hadOutPort crelation, cmapping, cactivity,
eactivity, eactivation

Service Run,
connections
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straightforward in SciCumulus, since it first stores p-prov and then collects and stores
r-prov during the workflow execution (i.e. at runtime).

2.3 ProvONE Assertions as Prolog Facts

We now show examples of how provenance traces from specific workflow executions
are represented as Prolog facts. We have chosen Prolog as it allows great flexibility
both in producing the integrated database (provenance relationships are translated to
facts) and in formulating powerful queries with inference capability (rules).

Two fragments of provenance graphs for e-Science Central and SciCumulus,
respectively, are depicted in Figs. 3 and 4, after mapping to ProvONE. Gray boxes
represent p-prov, orange boxes correspond to r-prov, and light blue boxes are entities
(p-prov and r-prov). Since both provenance graphs are represented using the samemodel,
queries can easily traverse both provenance graphs. Table 4 presents examples of Prolog
facts for these workflow fragments (the complete set of facts is available at GitHub at
https://github.com/dew-uff/integrated-provenance-analysis). As Prolog facts syntax is
similar to the PROV-N notation, each entity and activity was named and labeled in a
similar style, using an identifier followed by a set of properties delimitated by brackets.
Relationships use the identifiers for each ProvONE element. Furthermore, entity iden-
tifiers were modified to make them unique in the global schema and facts were created to
identify the provenance graphs and relate them to their workflows.

Regarding relative incompleteness, note that the e-Science Central provenance
graph (rows 3 and 10 of Table 4) does not hold information about the agent, while the
SciCumulus provenance graph does not store the program versions (row 7).

3 Implementation: Adapters and Global Queries

Integration Architecture. Converting from SciCumulus and e-Science Central pro-
prietary provenance to ProvONE requires the implementation of specialized adapters,

Fig. 3. Part of e-Science Central provenance Fig. 4. Part of SciCumulus provenance
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or cartridges, one for each system. Provenance obtained from these cartridges is stored
in a unified knowledge base as Prolog facts, as described earlier. The cartridges were
implemented in Java using the mapping of ProvONE, SciCumulus, and e-Science
Central provenance models presented in Table 3. The implementation is simple and is
not time consuming. All code and some data are also available on GitHub.

Using the knowledge base, various teams may access provenance and work col-
laboratively on provenance analysis. They can use pre-defined logical rules to query
provenance, and thus get more information about similar experiments. Figure 5 gives
an overview of the provenance gathering, conversion, integration and query processes.
The example cartridges are specific to our case study.

Consistent with the mappings presented in Table 3, SciCumulus cartridge gets
p-prov and r-prov from the relational database and converts them to Prolog. In turn,
e-Science Central cartridge fetches r-prov from the graph database and extracts p-prov
from JSON files. Clearly, extending the approach to integrating other provenance
sources requires new cartridges to be developed. This effort is similar to database
integration efforts that are well known in the literature [15].

Querying the Integrated Traces. Using our integration architecture, we are now able
to express queries that span different types of provenance and different types of graphs.
Queries over the integrated schema are expressed in Prolog as rules. To illustrate, we
have implemented the queries listed in Table 2, which exemplify the intersection
classes of Fig. 1. (Due to space restrictions we only present a subset of the queries).
Specifically, the dataTrace and dataFlow rules implement queries Q5 and Q12. Query
Q5 covers class C2 and retrieves r-prov from either provenance graph PG1 or

Table 4. Prolog instances for each ProvOne construct

# Prolog Instances for e-Science Central Prolog Instances for SciCumulus
1 entity(w6480,[prop(prov:type,['prov:plan',

'provone:workflow']),prop(prov:label,'ML 
Pipeline')]).

entity(w1s,[prop(prov:type,['prov:plan',
'provone:workflow']),prop(prov:label,'sciphy
')]).

2 entity(pg9,[prop(prov:type,['prov:plan','provone:
program']),prop(prov:label,'CSVExport')]).

entity(pg2s,[prop(prov:type,['prov:plan',
'provone:program']),prop(prov:label,'mafft')]
).

3 - agent(u1s,[prop(prov:type,['provone:user']),p
rop(prov:label,'wellington-VirtualBox')]).

4 entity(dc51559,[prop(prov:type,['provone:docu
ment']),prop(prov:label,'sequence-map.csv'),
prop(prov:type,'null'),prop(prov:value,'null')]).

entity(dc13s,[prop(prov:type,['provone:
document']),prop(prov:label,'FILE13'),
prop(prov:value,'ORTHOMCL256.mafft')]).

5 hadPlan(ex51556,pg9). hadPlan(ex2s,pg2s).
6 wasDerivedFrom(dc51559,dc2012). wasDerivedFrom(dc13s,dc1s).
7 wasDerivedFrom(pg9, pgV50025). -
8 used(ex51556,d97). used(ex2s,dc1s).
9 wasGeneratedBy(dc51559,ex51556). wasGeneratedBy(dc13s,ex2s).
10 - wasAssociatedWith(ex2s,u1s).
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provenance graph PG2, while Q12 covers class C6 and retrieves p-prov and r-prov
from both PG1 and PG2. Although these queries are quite similar, Q12 retrieves the
trace of data for all executions, while Q5 considers only one of the workflow systems.
The following rules were designed for retrieving all data that influenced the generation
of a particular data product. The query result is a historical data trace that shows which
input files influenced the generation of a given output.

Table 5 shows the query calls (and their results) with the parameters used to query
the data trace for a specific result generated by SciCumulus and e-Science Central
respectively. Query Q5 retrieves the input files that influenced the generation of the
dc19 s output file on the scyphy-1 execution of the sciphy workflow that was executed
in SciCumulus, while Q12 does the same for the dc51559 output of the ML Pipeline
workflow run on e-Science Central. These query instances hide the complexity of the
Prolog rules and become suitable for non-experts in the Prolog language. Note that the
user may bind none, one, or multiple parameter values. For example, if one specifies no
parameter values, the query will return the graph name, workflow name, execution
name, along with the input and output data for both datasets. This makes Prolog queries
a flexible resource to retrieve provenance according to specific requirements.

Fig. 5. Provenance integration architecture
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4 Related Work

Working on the integration of provenance models, Ellqvist et al. [16] propose an
architecture based on a generic mediator that blends different provenance data sources.
In this approach, a global schema is presented to the user who specifies a generic query
that is converted into specific queries for each database. Wrappers access the data from
the data source and convert them to the mediator model. Apart from this, it uses a
proprietary mediation schema that is not compatible with the OPM or PROV models.
Also based on interoperability issues that were exposed by the Third Provenance
Challenge (PC3), Ding et al. [17] approach provenance reuse using OPM, OWL and
Linked Data. They argue that provenance trace reuse requires generic provenance and
domain-specific data (e.g., a classification of artifact types). Their OPM ontology
(PC3OPM) was extended and modularized to cover interoperability gaps found in the
PC3. Such approach allows one to import provenance from OPM/XML, export it to
RDF, query, and improve provenance by creating new relations with SPARQL-based
rule inferences. Similarly, Braun and Seltzer [18] propose a Common Provenance
Framework to provide provenance interoperability. To develop the framework, they
analyzed the problems and challenges encountered in importing PASS [19] data into
the PLUS system [20]. Their framework includes concepts, constraints, and tools to
provide semantics and structure to query provenance across different systems using the
OPM model and XML Schema. Both [17, 18] use OPM as mediator model, which does
not consider p-prov as ProvONE does.

Missier et al. [21] present an approach to solve problems found in the implicit
collaboration between different provenance systems that use the result from another
workflow execution as part of their input. The local provenance is mapped to a
common model and stored in a database with new global identifiers. This allows the
tracking of provenance for workflows, systems and user group executions. Differently
from our approach, their aim is to provide a data model to track the provenance across
different workflows. Similarly, Altintas et al. [22] propose a data model based on
collaborative views and develop QLP, a query language for provenance. QLP was
designed to facilitate querying implicit collaboration in interoperable provenance
datasets. In the same direction of the previous authors, they propose the union of
several data sources into one single repository to be handled by one single query. On
the other hand, they use OPM as the provenance model and cannot represent p-prov.

Table 5. Prolog queries and results on SciCumulus and e-Science Central provenance graphs
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Aiming to facilitate publication, sharing, exchanging, and reuse of self-contained
units of knowledge, Bechhofer et al. [23] introduce Research Objects (RO). These are
semantic aggregations of resources (eg data, methods, metadata) that are produced and
consumed by common services. Similarly, SHIWA [24], a EU project to support
workflow sharing, was designed to integrate the execution of different workflows that
use different workflow systems, different workflow languages, and different distributed
infrastructures. Although these approaches allow storing and sharing provenance from
different sources, they do not enable provenance querying across different data sources.

5 Final Remarks

The integration of heterogeneous data sources can be a powerful tool for provenance
analytics. In particular, it can provide considerable advantages for research teams that
work collaboratively on similar experiments. In this paper, we have presented an
approach that enables integrating and querying provenance data from similar work-
flows designed and implemented in different systems with different specifications. To
achieve this, we use an integration model (ProvONE) that includes both p-prov and
r-prov and create cartridges that convert different provenance databases to a global
ProvONE schema of Prolog facts.

Our approach introduces classes that explore intersection between p-prov, r-prov,
and heterogeneous provenance graphs and presents related queries that run across both
provenance graphs and retrieve information with different contents and levels of detail.
Prolog rules were developed for each pre-defined query, taking advantage of inference
and unification facilities catered by Prolog. As a proof-of-concept, Prolog queries were
executed and they could retrieve the data traces from both provenance graphs. New
Prolog rules can easily be designed to accommodate new requirements., and new
cartridges can be developed for other workflow systems using the proposed
architecture.

As future work, we plan to develop a benchmark of completeness to evaluate
provenance from different WfMSs. We also intend to investigate how to cover gaps in
similar provenance graphs by using our intersection classes.
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Abstract. The analysis of provenance data for an experiment is often crucial to
understand the achieved results. For long-running experiments or when prove-
nance is captured at a low granularity, this analysis process can be over-
whelming to the user due to the large volume of provenance data. In this paper
we introduce, Prov Viewer, a provenance visualization tool that enables users to
interactively explore provenance data. Among the visualization and exploratory
features, we can cite zooming, filtering, and coloring. Moreover, we use of other
properties such as shape and size to distinguish visual elements. These
exploratory features are linked to the provenance semantics to ease the com-
prehension process. We also introduce collapsing and filtering strategies,
allowing different levels of granularity exploration and analysis. We describe
case studies that show how Prov Viewer has been successfully used to explore
provenance in different domains, including games and urban data.

Keywords: Provenance � Visualization � Graph � Analysis � Tool

1 Introduction

Displaying provenance is an issue in present times. While there are many tools that
capture data provenance, most of them offers basic visualizations or requires exporting
the data to a format compatible with existing visualization tools. Ideally, provenance
data are captured and stored for each task of the scientific workflow in terms of basic
relationships among individual tasks. More complex relationships are inferred during
an analysis process [5] by using visualization techniques to facilitate the understanding
of the captured data, especially when dealing with complex workflows.

However, a provenance graph might contain data that did not cause any significant
change or provides information that might not be related to the desired analysis.
Another problem occurs when analyzing provenance data that is segregated into dif-
ferent trials (workflow executions), which results in analyzing multiple individual
graphs to extract meaningful knowledge since each trial is normally represented by a
separate graph. Moreover, a common representation of the provenance graph is based
on traditional node-link diagrams. These diagrams may impair the analysis process
depending on the size and domain peculiarities of the graph. Using simple node-link
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diagrams to represent provenance data can also harden the graph understanding when
dealing with the wealth of information that can be contained in a single provenance
node, even when using the different shapes to distinguish the information.

Although there are some tools in the literature for provenance analysis [2, 8, 18,
19], they are based on these simple node-link diagrams with only basic visualization
features, such as labels and colors to distinguish edges and vertices, neighbor detection,
and size for different intensities. Moreover, they are not directly compatible with the
PROV model [17], requiring additional steps to convert the data.

In this paper, we introduce Prov Viewer, a novel graph-based visualization tool for
interactive exploration of provenance data that is compatible with the PROV, and
consequently, with any other application that exports provenance using the PROV
model. Prov Viewer processes the collected provenance data to generate an interactive
provenance graph to provide advanced visualization features for identifying steps and
contributors to a given result.

The PROV model has proved to be useful for other domains besides scientific
workflows, such as electronic games or urban data. Thus, in a previous work [13], we
introduced the usage of digital provenance in games and proposed a conceptual
framework (PinG) for collecting information during a game session, mapping them to
provenance terms, and providing the means for a post-game analysis. We experimented
with rudimentary ways to visualize provenance in the context of games [12]. We
developed an initial prototype for provenance visualization and used it on the SDM
[15] game to assess whether provenance data visualization can be helpful in the
understanding of game events [14]. This prototype was also used in another application
that extracts game provenance through image processing mechanisms [11]. More
recently, it is being used to visualize provenance from urban data.

The tool we present in this paper is the result of several extensions and new
techniques we developed to address issues encountered in different scenarios. We have
designed new visual representations and interaction mechanisms that address many of
the aforementioned challenges: (1) collapsing, highlighting the relevant information in
the graph; (2) filtering, removing information that is not relevant for a given analysis;
(3) graph merge, integrating the analysis of multiple trials; (4) specialized layouts,
organizing the graph in a more understandable way; (5) domain configuration, cus-
tomizing the visualization for specific needs; (6) shapes, sizes, and colors, supporting a
clear distinction of information types, and (7) interoperability, supporting PROV-N for
importing provenance data.

This paper is organized as follows: Sect. 2 presents some of the related work in the
area of provenance visualization. Section 3 details our provenance visualization tool,
Prov Viewer. Section 4 presents two different case studies using our tool. Section 5
concludes this work by listing some future work.

2 Related Work

Our related work can be grouped into two categories: workflow management systems
that have built-in provenance visualizations and standalone provenance visualization
tools. The workflow management systems that have build-in provenance visualizations
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[1, 4, 10] allow easy integration between provenance collection and analysis. However,
they have a shortcoming of not supporting provenance data generated by other workflow
management systems or standalone provenance gathering tools, even when they are
compatible with well known provenance models. Furthermore, workflow management
systems normally lack graph manipulation features for viewing provenance graphs.

On the other hand, there are some standalone provenance visualization tools that
resemble our work. Provenance Explorer [5] takes RDF-based provenance outputs
from capture systems and dynamically generates customized views of provenance trail.
However, it focuses on provenance data and inference rules associated with processing
events in a laboratory or manufacturing plant, lacking the support for data processing
activities in the digital domain. Furthermore, their provenance model is based on the
ABC ontology model. Lastly, their collapse feature only supports one expansion level,
instead of multiple levels of detail.

The ZOOM [3] prototype provide users with an interface to query provenance
information generated by a workflow system through SQL queries. An interesting
aspect is that it allows the user to dynamically modify the graph by hiding irrelevant
information, updating the provenance graph for the new view. Another existing tool is
the PROV Toolbox, which converts W3C PROV data model representations. However
it lacks a built-in visualization and requires the use of a generic graph tool (Graphviz)
to visualize the provenance data. Another similar tool is PROV Translator, which
validates PROV representations and translates them to other representations. It also
provides graph visualizations based on their previous work [7], which displays a
provenance graph using PROV’s vertex shape and color to identity the vertex type. The
PROV-O-Viz [9] tool is a web-based visualization tool for provenance based on PROV
that uses Sankey Diagrams for visualization. Sankey Diagrams are used to visualize
flow magnitude between nodes in a network and in PROV-O-Viz the activity or entity
width is based on the information flow.

Some related work is limited to specific domains (i.e., Provenance Explorer),
require additional knowledge (i.e., ZOOM, PROV-O-VIZ), or they are not compatible
with provenance data from other tools (i.e., Kepler, VisTrails, Taverna). Furthermore,
they individually provide some interesting features, such as interactive graphs, level of
detail, summary nodes, merges, and filters. However, these approaches do not provide
these features in an integrated way, hindering the analysis due to visualization and
manipulation restrictions, which sometimes require additional external procedures to
analyze the data. Moreover, they lack any means of overlaying provenance information
onto a spatial structure for analysis.

3 Prov Viewer

In this paper we present a provenance visualization tool named Prov Viewer (Prove-
nance Viewer1). Our tool is compatible with the PROV-N notation, allowing its
adoption in different domains and applications. The provenance data, which contains

1 Prov Viewer is available at https://github.com/gems-uff/prov-viewer.
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the provenance information among entities and their relationships, is processed to
generate a provenance graph. This graph is a visual representation of the provenance
data and supports user interaction, which is a key feature for understanding how each
action influenced in the outcome and how they influenced each other. It is also possible
to manipulate the graph by omitting facts and collapsing chains of actions for a better
understanding and visualization experience. No information is lost in this process, so
that the user can undo any changes made during analysis.

Prov Viewer uses the PROV notation, where square vertices represent activities,
circles represent entities, and pentagons represent agents. Furthermore, each vertex is
composed of multiple attributes that describe the vertex. Each attribute contains a name
and a value that is associated with it (e.g., startTime: 2012-05-25T11:15:00, endTime:
2012-05-25T12:00:00). The edges in the provenance graph represent the relationships
between vertices. As such, activity vertex can be positively or negatively influenced by
other vertex and have relationships with entities and agents.

Before using Prov Viewer, it is necessary to configure it to understand the domain
peculiarities and customize the visualization features. This is accomplished by creating
a config.xml file based on the configuration schema of Prov Viewer. This configuration
file allows the user customize the graph visualization. Prov Viewer also has a feature
for automatic detection and configuration for each edge type and color scheme, which
represents most of the configuration effort of the tool, according to the graph being
used. Note that the user will need to manually input specific parameters in the con-
figuration xml in order to use some of our tool layouts. However, this task is done only
once for a new domain.

Figure 1 shows the high-level architecture of our tool, illustrating some of its
features available that allow users to interact with the provenance data to identify
relevant actions that impacted in the results. The following sub-sections describe the
most relevant features, including shapes and colors to distinguish information, manual
collapses, graph merges, layouts, and an automatic collapse feature.

3.1 Shapes and Colors

Prov Viewer builds its visualization strategy based on shapes and colors, for both
vertices and edges. Shapes are used to map semantic concepts from the provenance and
colors are used to map scalar values, such as intensity or orientation. The vertex shape

Fig. 1. Prov Viewer’s high-level architecture (Color figure online)
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is directly related to provenance semantics (i.e., agent, activity, entity), while the vertex
color is used for mapping scalar values through the usage of a color scheme. When
selecting the desired attribute, all vertices with the specified status have their colors
changed according to their respective values. We adopt the traffic light scale [6], which
indicates the status of the variable using gradients from three colors: red, yellow, and
green. The resulting color is automatically inferred from minimum and maximum
values for that attribute or using boundaries manually specified by the user in the
configuration xml. Enabling this type of feature allows the user to easily identify
situations where the desired attribute value fluctuates throughout the data.

Both the edge shape (i.e., thickness) and its color are used to show the intensity of
the relationship. The intensity is the value associated with the edge, if any, and is more
common on influences (i.e., wasInfluencedBy). A thin edge with a darker color rep-
resents a low influence relationship (i.e., the assigned value to the edge is low). On the
other hand, thicker and brighter edges represent a strong or intense relationship.
Figure 2a shows an example of edges with different colors and thickness and Fig. 2b
shows the vertex color based on their time values (also represented by columns). This
feature can be used to quickly identify strong influences in the graph just by looking at
the edge’s thickness and brightness. The edge’s color is also used to represent any
additional numeric information contained in the relationship (e.g., influences that has
numeric data), which can be any of these three types: positive, which is represented as
green and indicates an increase in the numeric value (i.e., when the edge has an
associated positive value); negative, which is represented as red and indicates a
decrease; and neutral, which is represented as blue and indicates no numeric chances.

3.2 Collapses and Filters

Our tool provides a vertex collapse feature to aid in the analysis of the graph and allows
a manual collapse of selected vertices in order to compact the graph size, grouping the
selected vertices together in a single summarized vertex. No information is lost in this
process and it can be reverted by the user. Figure 2c shows an example of collapsing
activity vertices. The grey markings represent vertices before the collapse and the grey

Fig. 2. (a) Original graph; (b) graph with a color schema; (c) collapse of two activities;
(d) collapsing of the agent’s activities; (e) graph c after another collapse; and (f) temporal filter
(Color figure online)
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arrow represents where they were collapsed to. Another usage of the collapse feature is
to group activities related to the same agent, allowing the user to see all the influences
and changes that the agent did throughout his tasks. Figure 2d shows such an example.
The size of the collapsed vertex is bigger than the rest due to the number of vertices in
the collapse group (and is proportional to the number of vertices). Furthermore, the
shape is the same as that of an agent vertex because there is an agent vertex in the
collapse group.

The summarized information is displayed as follows: For String values, it shows
all different values separated by a comma (e.g., String_Value1, String_Value2,
String_Value3). For attributes with numeric values in a collapse group composed of
two vertices, the tool shows the average value for that attribute followed by the min-
imum and maximum values. Otherwise (collapse group containing more than two
vertices), the tool displays the average value followed by the five-number summary
(minimum value, 1st quartile, median, 3rd quartile, maximum value).

Similar edges (i.e., same type) that have the same target and type are also grouped
together when collapsing vertices. The collapsed edge’s information (i.e., color,
thickness, and value) is computed by summing or averaging the values of the partic-
ipating edges, depending on their type. For example, Prov Viewer can use the sum
function for edges representing expenses and the average function for edges repre-
senting percentage. However, the user needs to parameterize each edge. Otherwise the
tool will always use the default sum function. Figure 2e shows an example of col-
lapsing edges that occurred when collapsing another group of vertices after collapsing
the vertices in Fig. 2c. Note that the colors for each edge changed after the collapse due
to the new maximum value (from the sum of the collapsed edges).

The tool also offers another simple vertex filter based on temporal information. The
user defines the desired temporal range (e.g., start time and end time) for visualization
and the tool hides all vertices that are outside the selected range. Figure 2f shows an
example of the temporal filter, hiding vertices from Fig. 2a with time (which can be
seen by the rows) greater than four and less than two. Prov Viewer also has an edge
filter, which filters edges by context (i.e., label) or by the type of relationship.

3.3 Graph Merge

Our provenance visualization tool also proposes a feature based on [16] to merge two
provenance graphs in order to generate a single unified provenance graph. The merge
process combines the current displayed graph with another graph (chosen by the user)
to generate a single unified graph for visualization. The merge process is composed of
four steps: (1) vertex matching, which selects pairs of vertices from the graphs;
(2) similarity verification between vertices, which receives two vertices from the first
step and informs if they are similar. Vertices are considered similar if they belong to the
same vertex type and have the same properties with similar numeric values within a
configurable margin of error; (3) merge vertices that were considered similar in the
previous step; and (4) creation of the unified graph for visualization, which only occurs
after the matching process is over. The resulting graph can be exported using the
PROV-N notation for future usage.
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Figure 3 illustrates the graph merge of two distinct graphs from the same domain.
Red vertices in the merged graph (Fig. 3c) belong exclusively to the first graph
(Fig. 3a), while grey vertices represent common vertices (i.e., merged vertices) from
both graphs, and green vertices belong exclusively to the second graph (Fig. 3b). This
graph merge feature is useful when analyzing multiple sessions or trials by detecting
common sections. Merged vertices from this feature also provide similar summarized
information using the five-number summary.

3.4 Graph Layouts

Our visualization tool allows the user to interactively change the graph layout to better
visualize the result. We created two provenance graph visualization layouts: temporal
and spatial.

The temporal layout organizes the graph in a chronological order similar to a
timeline (or spreadsheet) for each agent. Thus, each timeline (or line) of the graph
groups activities of the same agent and each column in the graph represents the passage
of time. This makes easier to know the entity or agent responsible for executing each
activity by just looking at the agent responsible for that line. Invalid temporal values
are considered as zero for the purpose of positioning them in the graph. Thus, the graph
positions the vertices in the x axis according to the chosen scale. Figure 3d illustrates
an example of our temporal layout, displaying the graph similarly to a spreadsheet and
organizing the vertices by their chronological order. Note that now it is much easier to
identify the agent responsible for each activity as the leftmost nodes and their
chronological order by looking at the activity’s placement in the graph. The horizontal
position represents the time axis (passage of time) and the vertical position represents
the agent axis (the responsible for the activity).

The spatial layout organizes the vertices in the graph by their spatial coordinates
and can be used for spatial or georeferencing the data. The layout also supports the
usage of an orthographic image or maps taken from Google Maps and OpenStreetMaps
as background for the graph. This is particularly useful for corresponding elements
with other graphical representations, such as a map of a city or a game scene. When
dealing with real world maps, Prov Viewer automatically transform the latitude and
longitude to pixel coordinates. This automatic process requires only three input values
to correctly align the image with the graph and is described in the tool’s documentation.
When using the spatial layout in conjunction with a background image, the user sees
where each event occurred just by looking at the graph’s placement in the image.

Fig. 3. Two graphs (a and b) merged into a single graph (c) and with a temporal layout
(d) (Color figure online)
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3.5 Automatic Collapse

Prov Viewer offers an automatic collapse feature to highlight the relevant information
in the provenance graph by summarizing the tracked data. This automatic collapse
groups sequential information that has similar values or represents the same state,
allowing the user to quickly identify relevant information or state transitions. This
process is similar to data deduplication, which hides duplicate copies of repeating data.
Currently, this form of collapse uses only one vertex attribute to define similarity.
However, unlike normal deduplication, the process in Prov Viewer is reversible without
any kind of information loss since it occurs only in the visualization process.

The collapse process compares each vertex with its neighbor to omit similar states.
If the vertices’ values are similar for the specific attribute being analyzed, then they can
be collapsed into a single vertex. Vertices are considered similar if they are neighbors
and their values for the specified attribute are within one standard deviation difference.
Since the goal is to combine all similar states, it is necessary to go beyond the vertex
direct neighbor. If any of the vertices in the collapse group have an edge to a vertex
outside of the collapse group and that vertex has a similar attribute value to those in the
group, then it is added to the collapse group. Thus, the collapse group will keep
growing until a significant change of state is detected. Figure 4 illustrates an example
of our similarity collapse for the gathered provenance data from a racing car doing
multiple laps in a racing-track. Sequential vertices that had similar speeds were col-
lapsed into a single vertex. Note that the collapse preserves the notion of different laps
(differently from the merge feature) and that the collapsed vertices (with varying sizes
according to the number of collapsed vertices) have similar speeds. This allows the
analyst to detect behavior patterns and locations where the driver had more difficulties.

Fig. 4. Similarity collapse (right) according to the speed of the car from the original graph (left)
(Color figure online)
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4 Case Studies

As discussed in the introduction section, we adopted Prov Viewer in two different
provenance domains: digital games and urban data. In the game domain, our visual-
ization tool was used for the analysis of game sessions of five different games (SDM,
Super Mario World, Unity’s Tower Defense, Unity’s Angry Bots, and Unity’s Car
Tutorial) and for the urban data domain our tool was used to analyze bus traffic data
from the city of Rio de Janeiro. More than thirty people, including researchers and
students, used Prov Viewer to analyze provenance data, where 29 were students ana-
lyzing data gathered from a serious game [14]. In the following sub-sections we present
two case studies of our visualization tool.

4.1 Game Session Provenance

The first case study is the Angry Bots game, an open-source demo from Unity asset
store. The provenance graph used in this example contains 1275 vertices and 2976
edges. Figure 5 illustrates one of the possible visualizations of the provenance graph
from the game using our visualization tool, which was captured using the PinG
approach. The tool was configured to include the background rendering from the scene.

The displayed graph is using the vertex visualization schema for the player’s health
attribute values (vertex color using traffic light schema: green, yellow, and red). The
green and red edges respectively represent the influences that changed the player’s
experience points (awarded when defeating an enemy) and moments when the player
died (red vertex from the edge) and was moved to the restoration unit to be revived
(green vertex from the edge). Blue vertices represent activities executed by other
characters in the game (i.e., enemies) and blue edges represent chronological order of
events or state change in scene objects (e.g., terminals, doors). By analyzing the

Fig. 5. Provenance graph (left) rendered with Prov Viewer from the Angry Bots game using
spatial layout. The second graph (right) is a zoomed section rotated by 90º. (Color figure online)
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visualization from Fig. 5, we can see the chronology of events, regions visited by the
player, sections where more action happened, where the player engaged in battle, when
he/she suffered heavy health loss (vertex color change), and the player’s health during
each section. For instance, we can infer that the cause of the player death in the middle
of the map (near the circle-shaped object that represent a storage cylinder) was because
he rushed through the level without waiting to recover health from his small health
regeneration trait (sequence of orange followed by red vertices) after most engage-
ments. Other three deaths (three “respawn” red edges in the bottom, leaving the second
graph of Fig. 5) were caused by three different engagements (red circles) with the same
enemy (blue vertices) in close quarters, leaving the player without enough room to
maneuver to dodge the explosive attacks. In this game, we used a screenshot of the
scenario with the dimensions of 4,280 × 3,208 for the background, which precisely
matches the locations where the events (i.e., activities). This high resolution allows for
a higher detail of the game scene when zooming the graph during analysis.

4.2 Bus Traffic Provenance

The second case study is based on bus traffic data analysis in the city of Rio de Janeiro.
The data used in this research, which includes geographic location tracked from the
buses’ GPS, is obtained from DataRio2. Prov Viewer is being used in this context to
render the data for analysis, allowing the research team to understand the wealth of
tracked information. Our tool allows for filtering the data to focus on specific buses or
relate the bus delays with ongoing events in the city through their geographic location,
speed in the region, and timestamp.

Figure 6 illustrates one of the possible visualizations of the provenance data using
Prov Viewer. The graph contains 601 vertices and 600 edges. The displayed graph is
using a color schema based on the bus speed. Therefore the vertices, which represent
on-line GPS information tracked from buses at every minute interval, are colored from
red to green according to their (instantaneous) speed at that specific moment, while the
blue edges link these vertices in a chronological order. Note that the displayed graph is
showing bus data from nine different busses from the same route within a period of two
hours.

In the graph from Fig. 6, we can see the buses routes through the city and their
respective speeds along the way. Furthermore, we can see that the traffic is better in the
region near “Botafogo” due to the high concentration of green vertices than “Urca” and
“Copacabana”. This type of graph visualization allows the user to quickly indentify the
streets where the buses moved slower due to traffic by finding regions in the graph with
reddish vertices by looking at the vertex location in the map. Moreover, it is also
possible to better understand the extension of the traffic jam and the affected areas by
crossing the displayed graph with a graph from another route (e.g., merge the graphs)
that also use segments of the same street.

2 DataRio: http://data.rio/dataset.
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5 Conclusions

Graph visualization strategies bring problems related to scalability when dealing with
provenance datasets beyond a few hundred nodes. Traditional node-link diagrams can
easily become too visually cluttered when dealing with huge provenance data, limiting
the user’s ability to thoroughly analyze and explore the data. To deal with this problem,
Prov Viewer offers collapse options that can generate different levels of detail and
graph layouts to sort the data and reduce node clustering. Prov Viewer also has some
basic automatic collapses based on vertex similarity and graph merges, allowing users
to omit data and combine different graphs for analysis. Other contributions include the
merging of PROV-N data from different files and georeferencing capabilities for
provenance information.

Our tool can be configured and used by different provenance applications as a
general-purpose provenance visualization tool as it supports graphs that use the
PROV-N notation. Prov Viewer also supports pre-processing steps, which can be done
outside the tool, as long as the final data format is compatible with the PROV-N
notation. We showed two case studies from different domains: analysis of digital game
sessions and bus traffic data. In both cases, the graph had more than one thousand
artifacts (vertices and edges combined). However, the performance starts to degrade
after rendering graphs with more than two thousand visible artifacts (i.e., long loading
times). Future work includes more complex algorithms to analyze the provenance data
and suggest which information can be omitted to reduce the graph to acceptable sizes;
more types of graph visualization techniques; summarization techniques; and more
graph layouts, including a support for dynamically loading new layouts, or handcrafted
ones, in the tool at run-time. We are also working on optimizing the tool to be able to
handle rendering huge graphs more smoothly and reducing loading time.

Acknowledgment. The authors thank CAPES, CNPq, and FAPERJ for the financial support.

Fig. 6. Provenance Graph rendered on Prov Viewer from collected bus traffic data (Color figure
online)
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Abstract. We present a technique to capture retrospective provenance
across a number of tools in a statistical software suite. Our goal is to
facilitate portability of processes between the tools to enhance usability
and to support reproducibility. We describe an intermediate notation to
aid runtime capture of provenance and demonstrate conversion to an exe-
cutable and editable workflow. The notation is amenable to conversion to
PROV via a template expansion mechanism. We discuss the impact on
our system of recording this intermediate notation in terms of runtime
performance and also the benefits it brings.

1 Introduction

Reproducibility of scientific results is a key challenge to the modern scientist
[1]. Systems built to tackle this often focus on recording provenance, especially
scientific workflow systems.

The focus of the EBook project1 is on a suite of tools called StatJR2 designed
to aid in the use and teaching of statistical analysis techniques with an emphasis
on their use in social science. The suite consists of a Web front-end to statistical
processes, a command line interface and a dynamic document system, whereby
interactive computations can be embedded in a document [2]. They are designed
to support the user as their experience and understanding of statistical methods
improves by surfacing different levels of detail of the underlying computations.
More recently, the suite was enriched by a workflow system that enables the com-
position of processes from low-level operations to broad methodological steps.
The overall aim is to allow users to move seamlessly between the StatJR tools in
order to refine the activity they are engaged in, whilst maintaining their context
and the choices they have made so far in their interactive computational investi-
gations. Concretely, it is a requirement to be able to capture both the interactive
investigations and the batch processing that took place, convert them to editable

1 http://www.bristol.ac.uk/cmm/research/ebooks/.
2 http://www.bristol.ac.uk/cmm/software/statjr/.
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workflows that may be further refined, before being packaged up downloadable
web-enabled documents, which support full reproducibility of the computations.

Many scientific workflow tools, such as Taverna [3], Kepler [4] and VisTrails
[5], are monolithic “integrated development environments”. Instead of locking a
user into a single tool, we seek to facilitate their mobility between tools, to allow
them to use the best tools for the job. This motivates the need for recording
provenance in a manner that allows multiple tools to be used. Our approach is
more akin to YesWorkflow [6] allowing multiple tools to be used in the scientific
processes.

Furthermore, reproducibility is a key direction of development for many work-
flow tools. For example, ReproZip [7] enables reproducible experiments by moni-
toring command-line executions and packaging required resources into a distrib-
utable package. Its integration with VisTrails aids reproducibility by creating a
suitable workflow of the original experiment for running within VisTrails. Prove-
nance traces can be viewed as a “program” [8,9], which when interpreted, can
reproduce results. Our take on this is the ability to translate the trace of a
process execution back into an executable specification that is also editable.

The aim of this paper is to present a PROV-based technique to capture prove-
nance at runtime from multiple tools, and provide the capability to automati-
cally convert it into reproducible and editable workflows. Specifically, our contri-
butions are: (i) INPWR (Intermediate Notation for Provenance and Workflow
Reproducibility), a serialised format for capturing key values logged at runtime,
from the various tools; (ii) A conversion of INPWR to PROV by means of a tem-
plate expansion mechanism; (iii) A conversion of INPWR into an editable and
executable workflow, which when executed would result in the same provenance;
(iv) A quantitative evaluation demonstrating that the approach is tractable in
terms of size of representations and computational costs.

In this paper, we discuss some application requirements in Sect. 2 and our
computation model in Sect. 3. In Sect. 4, we introduce INPWR and demonstrate
how we capture logs in Sect. 5. We demonstrate how INPWR enables the gen-
eration of PROV graph data as well as generation of new workflows in Sect. 6.
In Sect. 7 we evaluate the costs of INPWR and go on to look at related work.
Finally, we present our conclusions and further work.

2 Application Requirements

In this section we discuss some of the requirements of application to provide
some context and motivation for this work.

Guide a reader through steps of an analysis. The system should enable
a user to step through a complex analysis. The steps in the analysis could
vary in size from broad methodological steps down to low-level operations.
They should match the user’s cognitive understanding of what is going on.

Adaptable. The user should be able to influence the path taken through an
analysis. Analyses should support user input, branching and repetition.
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Allow the results to be reproduced. The system should support the repro-
ducibility of the analysis in light of choices made by the user. Specifi-
cally: (1) published material - provide supporting evidence for publication
(2) automation - rerun the analysis e.g. to verify results or run with a dif-
ferent dataset (3) logbook - be a record of what actions were performed in
the analysis for the user to refer/return to.

Ease of authoring. Authoring of an analysis should be available to all types
of users. It should be easy to adapt/extend/repurpose an analysis. There
should be a tight link between edit and running to facilitate explorative
analysis and pedagogy.

From these application requirements, we derive the following technical
requirements:

1. Capture information about the steps taken in the analysis into a log in suffi-
cient detail for re-use whilst remaining concise.

2. Be able to transform that log into outputs for different purposes.
3. Transformation of log back into analysis should include user input and unwind

branching and repetition. This revised analysis is different to storing the
original analysis and any inputs made, as it reflects the exact steps taken to
complete the analysis.

3 Computational Model

StatJR uses the Blockly visual programming system [10]. Blockly is designed
to aid non-programmers in writing short scripts and as a toolkit for building
visual programming language, it focusses on extensibility. Blockly opts to take an
imperative programming approach in contrast to the dataflow approach of many
scientific workflows. Blocks can be statement blocks or expression blocks and
they have the notion of containment of other blocks for scoping and traditional
flow control. Statement blocks are composed into a sequence of blocks.

In StatJR, we extend the selection of blocks available to include blocks that
perform common statistical processes and blocks operate in the context of a
dataset that flows down the chain of blocks. In addition, as blocks can encapsu-
late large computations, statement blocks can produce named outputs that can
be viewed by the user.

Fig. 1. Simple StatJR workflow.
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Variable name Type Description
block instance uri identifier for this execution
parent uri the parent of this execution
starttime date when the block started executing
endtime date when the block finished executing
block uri uri refers to the block
block title string the name of the block
block type uri the type of the block
consumed list of URIs entities consumed
consumed at list of dates when they were consumed
consumed name list of strings their names
produced list of URIs entities produced
produced at list of dates when they were produced
produced name list of strings their names
literal list of URIs identifiers of literal values
literal value list of strings their value
literal type list of strings their type

Fig. 2. Binding variables for an execution of a block.

A simple workflow is shown in Fig. 1 which consists of a sequence of two
blocks: (1) add a new column (normexam2) to current dataset by squaring values
in another column (normexam) and (2) calculate some summary statistics about
the revised dataset. In this example normexam is the name of a column in the
dataset. The Calculate block generates a new dataset with the additional column
and sets it as the dataset for following blocks.

We model the computation in our system in terms of tasks with named inputs
and outputs. All tasks and values are uniquely identified. Tasks are invoked by
a parent task.

4 INPWR Notation

INPWR captures the salient detail of the execution of a task defined in the pre-
vious section and consists of a set of variables and their values as shown in Fig. 2.
They fall into two categories; (1) pertaining to information about the task and
(2) linking to resources consumed and produced. Tasks have a type, are uniquely
identified by the instance URI3 and link to the block in the original workflow
document. The parent task is stored to indicate the task hierarchy. Resources are
linked to a task via a named port as with many dataflow workflow systems [11].
Values of literals are also stored in variables. All inputs and outputs (including
literals) are given a generated URI with the exception of static resources that
are supplied with StatJR (such as datasets). The consumed, consumed at and
consumed name variables are lists used to store details about the consumption
of resources i.e. the nth resource consumedn was used at consumed atn on the
named port consumed namen. A similar pattern is used for produced resources
and any literals.

INPWR generated from executing the workflow in Fig. 1 is shown in Fig. 3.
For clarity uuid references have been renamed. Block 1 represents the sequence

3 We generate UUIDs and use the urn:uuid: scheme.
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Variable name Block 1 Block 2 Block 3
block instance urn:uuid:1 urn:uuid:2 urn:uuid:8
parent - urn:uuid:1 urn:uuid:1
block uri rqvik2xqakayemazt813 pgno3ns6cur7ej7yxhju 6fdqrmkq5n8fuq57qfti
block title Sequence Calculate DatasetSummary
block type estatwf:Sequence estatwf:Calculate estatwf:DatasetSummary
starttime 2016-02-12T15:12:28.543093 2016-02-12T15:12:28.546712 2016-02-12T15:12:28.679199
endtime 2016-02-12T15:12:29.527988 2016-02-12T15:12:28.677037 2016-02-12T15:12:29.527225

consumed urn:uuid:3 1 urn:uuid:5

urn:uuid:4 2

estat:datasets/tutorial
consumed at 2016-02-12T15:12:28.546846 2016-02-12T15:12:28.679253

2016-02-12T15:12:28.546846
2016-02-12T15:12:28.546846

consumed name expression dataset
column
dataset

produced urn:uuid:5 urn:uuid:9
urn:uuid:6 urn:uuid:10
urn:uuid:7 urn:uuid:11

produced at 2016-02-12T15:12:28.676943 2016-02-12T15:12:29.527171
2016-02-12T15:12:28.676943 2016-02-12T15:12:29.527171
2016-02-12T15:12:28.676943 2016-02-12T15:12:29.527171

produced name inputs script.py
output inputs
script.py table

literal urn:uuid:3 1

urn:uuid:4 2

literal value normexam*normexam 1

normexam2 2

literal type xsd:string 1

xsd:string 2

Fig. 3. Example INPWR log for an execution of workflow in Fig. 1 consisting of a
sequence (Block 1) of two blocks which adds a new column normexam2 to a dataset
using the expression normexam*normexam (Block 2) and generates a summary table
(Block 3).

of executing Blocks 2 and 3 (they have Block 1 (urn:uuid:1) as parent). Block
2 consumes two literal values “normexam2” (the name of the new dataset vari-
able) and “normexam*normexam” (an expression the Calculate block passes to an
underlying statistics library) as named inputs column and expression respec-
tively. In this case, the URIs in the consumed variable (marked 1 and 2 in circles)
refer to values defined in the 3 variables for literals. Both blocks output inter-
mediate resources such as marshalled inputs and underlying Python code that is
generated and executed by our statistical subsystem, in line with project goals
of exposing pedagogical material to the user.

5 Capture

The StatJR workflow interpreter was augmented to capture execution informa-
tion using INPWR. The key points for capture during interpreting a workflow
are at the beginning of a block evaluation, at the point its input arguments have
been evaluated, at the point when outputs are generated and finally at the end
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of block evaluation. At each capture point, a subset of variables are captured;
we call this a binding fragment. The binding fragment is appended to a log along
with the type of recording: begin, input, output and end.

To generate the complete INPWR log after execution, we iterate over the
binding fragment log and use a stack to aid in combining the fragments. A
begin fragment pushes a new INPWR record onto the stack, filling in val-
ues of variables known at block start (i.e. the top 6 variables in Fig. 2). This
includes the parent variable which is the value of the block instance variable
in the next INPWR record on the stack. Record input/output appends values
to the consumed, produced and literal variables as appropriate, including the
at, name, value and type linked variables. End finalises a binding setting the
endtime variable, pops the INPWR record from the stack, and commits it to
the log.

6 Transformations

In this section, we look at how the INPWR log that we captured in Sect. 5 can
be transformed into outputs useful in the StatJR system.

6.1 PROV Output via Templates

The PROV-Template system [12] allows the generation of PROV [13] documents
by combining a template with a binding. The template is a PROV document
which contains variables acting as placeholders for values and a binding doc-
ument contains values for those variables. A provenance document is created
by expanding a template against a binding; templates include special attributes
that control this expansion process.

The process log recorded using INPWR is an ordered list of sets of variables,
one for each step in the execution. Each set of variables in INPWR are the
equivalent of a binding in PROV-Template. Hence, creating a complete PROV
graph for an execution of a workflow involves expanding each binding in the
INPWR log against a template and merging the resulting documents.

Figures 4 and 5 show an example template in graphical form and PROV-N
representation. This PROV document is modelled on the computation model
from Sect. 3 and articulates the process hierarchy, entities consumed and pro-
duced, and their derivations as well as supplementary information about time
and types. In PROV-Template, attributes in the tmpl namespace map to spe-
cific elements in PROV-DM [13] where the typing does not allow a Qualified
Name, for example the attribute tmpl:startTime on an Activity corresponds to
the activity’s start time. Note that in this template, we choose to model literal
values as entities and whilst in the template the var:literal entity is discon-
nected, references to it will appear in the consumed or produced variables and
the graph will be connected after expansion. This can be seen in Fig. 6 showing
the provenance graph derived from the INPWR log from an execution of the
workflow from Sect. 5. In this paper we use a single template for all INPWR log
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b

block_instance

consumed

use

type: var:block_type
startTime: var:starttime
endTime: var:endtime
label: var:block_title
block: var:block_uri

parent

produced
gen

der

literal

value: var:literal_value
type: var:literal_type

Fig. 4. Graphical representation of a template.

document
prefix tmpl <http://openprovenance.org/tmpl#>
prefix var <http://openprovenance.org/var#>
prefix vargen <http://openprovenance.org/vargen#>
prefix estat <http://purl.org/net/statjr/ns#>
prefix estatwf <http://purl.org/net/statjr/wf#>

bundle vargen:b
activity(var:block_instance, -, -,

[ tmpl:startTime=’var:starttime’, tmpl:endTime=’var:endtime’,
prov:type=’var:block_type’, tmpl:label=’var:block_title’,
estatwf:block=’var:block_uri’ ] )

activity(var:parent,-,-)
wasStartedBy(var:block_instance, -, var:parent, -, [tmpl:time=’var:starttime’])
entity(var:consumed)
used(var:block_instance, var:consumed, -,

[ tmpl:time=’var:consumed_at’,
estat:bindingname=’var:consumed_name’] )

entity(var:produced)
wasGeneratedBy(var:produced, var:block_instance, -,

[ tmpl:time=’var:produced_at’,
estat:bindingname=’var:produced_name’] )

entity(var:literal, [estatwf:value=’var:literal_value’, estatwf:type=’var:literal_type’])
wasDerivedFrom(var:produced, var:consumed, -, -, -)

endBundle
endDocument

Fig. 5. PROV-N representation of the template in Fig. 4.
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8

5

use

type: estatwf:DatasetSummary
label: DatasetSummary
block: 6fdqrmkq5n8fuq57qfti

1

type: estatwf:Sequence
label: Sequence
block: rqvik2xqakayemazt813

2

datasets/tutorial

use

4

use

3

use

type: estatwf:Calculate
label: Calculate
block: pgno3ns6cur7ej7yxhju

10 gen
der

9

gen der

type: xsd:string
value: normexam*normexam

gen derder

der
6 gender

der

der 7

gen
derder

der

11

gen der

value: normexam2
type: xsd:string

Fig. 6. Provenance graph derived from expansions of the template in Fig. 5 and the
INPWR log in Fig. 3. Numbered entities (ovals) and activities (rectangles) correspond
to the urn:uuid: URIs in the INPWR log.

entries, however templates could be applied selectively, perhaps based on the
value of a variable (block type for instance).

6.2 Workflow Output

The INPWR log captured is sufficiently descriptive to allow conversion to a
workflow. Whilst conversion from INPWR back into the original workflow is not
possible (due to conditionals), reconstructing the exact execution steps taken
has some utility, particularly for publishing reproducible results. In addition,
the INPWR log may not have been generated directly by the workflow system,
and may instead come from one of the other StatJR tools and so being able to
generate a workflow facilitates moving activity between tools in our system.

Blockly uses an XML format to serialise the abstract syntax tree of a Blockly
program. Converting an INPWR record to Blockly XML involves creating the
appropriate XML node and recursively generating nodes for the consumed
resources. A consumed resource is found by searching the outputs of the imme-
diate children of the current block. Special cases occur for sequences, control
structures and user input. Reconstruction of sequences is performed by looking
for blocks which have the same the parent and then ordering by time. For con-
trol structures, special care has to be taken to evaluate any conditions in case
they created a side-effect; their results are discarded in the generated workflow.
We unwind all loop structures. User input blocks are replaced with literal values
that represent the input made.

Figure 7 shows an example workflow (left) and a reconstructed workflow from
the INPWR log or a run (right). The workflow (left) consists of a loop asking
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Fig. 7. Workflow (left) enabling the user to iteratively add new variables to a dataset,
and resulting workflow reconstruction (right) after two variables were added.

the user whether they want to add a new variable, and a calculate block to
construct a new variable based on asking the user the name of the new variable
and an expression for it. A variable in this context is a statistical variable i.e. a
column in a dataset. This calculate block modifies the currently active dataset
by adding the column. This workflow was executed in which the user adds 2
variables (normexam2 and normexam3), answering the “Add another variable?”
question Yes, Yes and No. The reconstruction of this run is shown on the right of
the figure, with the evaluation. The unwinding of the repeat/while loop can be
seen with the repetition of the Calculate block and the condition translated to 3
instances of setting the variable condition. The values of the loop conditional
were inputs made by the user, and were translated to boolean literals true, true
and false.

7 Evaluation

To establish that the cost of recording an INPWR log is not too onerous we look
at memory and CPU usage when running a selection of workflows. Workflows
were based on real-world examples and vary in size from small workflows which,
for example, perform linear regression with 3 variables (reg3) or generate X-Y
plots of multiple variables (plotloop) to larger workflows which perform more
lengthy analysis (lemma3 and big).

Figure 8 shows some memory usage metrics for the workflows. Python sizes
are calculated by traversing the Python structures and applying sys.getsize().
The Python fragment sizes equate to the runtime memory overhead. Python
records are the post-computation in memory cost and PROV-N records is the
cost of serialising to disk. On average, we see a per record overhead of approxi-
mately 6 kB during runtime, 3.4 kB post-computation and on disk cost of 1.8 kB
per record.

Runtime was measured as the wall-clock time for running each workflow 100
times with and without provenance capture. Figure 9 shows the results and the
runtime overhead calculated as percentage.



92 D.T. Michaelides et al.

blocks records fragments INPWR log expansion variables
name # # # python python prov-n prov-n #

reg3 18 40 308 283,714 177,309 81,126 81,439 1,364
lemma3 74 69 441 414,514 267,197 122,939 97,324 2,082
plotloop 25 75 393 371,821 245,102 120,898 74,557 2,004

big 259 235 1,501 1,360,741 859,482 415,609 305,844 7,088

Average
per record – – 6 5,962 3,395 1,798 1,436 30

Fig. 8. Memory overhead for a number of workflows (Python memory usage and
PROV-N in bytes), including per record averages.

no provenance provenance overhead
name seconds seconds %

reg3 1333.16 1334.97 0.14
lemma3 1196.58 1202.45 0.49
plotloop 198.78 200.15 0.86

big 783.61 790.37 0.86

Fig. 9. Runtime overhead of tracking provenance across a selection of workflows - total
runtime for 100 runs.

8 Related Work

Many scientific workflow systems capture provenance [14] with a distinction
made between prospective and retrospective provenance. VisTrails [5] uses an
SQL database for storage of retrospective provenance and an XML serialization
for storing prospective provenance. It also records provenance about the evo-
lution of workflows as they are edited. Taverna [3] collects retrospective prove-
nance for use internally with in its workbench and provides export in the form
of PROV-O. The noWorkflow system [15] captures provenance information from
scripts without the need to instrument them. They use language dependent
(primarily Python) methods to capture runtime provenance from of function
activations and I/O events. They store their structured data in an SQL data-
base. YesWorkflow [6] provides script authors with an annotation mechanism
to describe prospective provenance. Their annotations are placed in language
comments to be extracted by YesWorkflow tools; many scientific languages are
supported.

Converting workflow traces back into valid workflows was the subject of the
third Provenance Challenge [16]. To guarantee losslessness in the conversion from
OPM back into a valid Taverna workflows additional annotations are needed [17].

9 Conclusion and Future Work

This paper has introduced an intermediate notation for recording provenance
(INPWR) for use across multiple tools in StatJR. INPWR is compatible with
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existing PROV tools allowing easy generation of PROV graphs. We also demon-
strated that INPWR expressive enough to support conversion to executable
workflow and we have discussed benefits to our system of being able to do so.
We measured the overhead of recording INPWR at runtime and found that it is
tractable. The advantages of using INPWR are that it decouples logging from
PROV generation and that it is more concise. In addition, whilst it would be
possible to convert INPWR to PROV and then to workflow, this would involve
complex queries over the PROV graph. We find that with INPWR, the informa-
tion required is in a more readily accessible structure.

It is clear that in-memory and on-disk management of INPWR lends itself
to optimisation, in particular in the presence of large workflows. Whilst we have
made no attempt to optimise storing of INPWR logs, one possible avenue is to
look at storing them in SQL databases as many workflow systems do.

INPWR logs are amenable to other transforms. For example, D-PROV [11]
introduces extensions to PROV to express structural features in typical dataflow
models. Generating D-PROV from INPWR would simply involve introducing the
new relations to the PROV-Template system. Whilst our generated workflows
reproduce the entire execution trace, applying program slicing [18] techniques
could lead to more concise workflows for a given output.
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doi.org/10.5258/SOTON/393118.

References

1. Stodden, V., Leisch, F., Peng, R.D.: Implementing Reproducible Research. CRC
Press, Boca Raton (2014)

2. Yang, H., Michaelides, D.T., Charlton, C., Browne, W.J., Moreau, L.: DEEP: a
provenance-aware executable document system. In: Groth, P., Frew, J. (eds.) IPAW
2012. LNCS, vol. 7525, pp. 24–38. Springer, Heidelberg (2012)

3. Wolstencroft, K., Haines, R., Fellows, D., Williams, A., Withers, D., Owen, S.,
Soiland-Reyes, S., Dunlop, I., Nenadic, A., Fisher, P., Bhagat, J., Belhajjame, K.,
Bacall, F., Hardisty, A., Nieva de la Hidalga, A., Balcazar Vargas, M.P., Sufi, S.,
Goble, C.: The Taverna workflow suite: designing and executing workflows of web
services on the desktop, web or in the cloud. Nucleic Acids Res. 41(W1), W557–
W561 (2013)
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Abstract. As more systems become PROV-enabled, there will be a
corresponding increase in the need to communicate provenance data
directly to users. Whilst there are a number of existing methods for doing
this — formally, diagrammatically, and textually — there are currently
no application-generic techniques for generating linguistic explanations of
provenance. The principal reason for this is that a certain amount of lin-
guistic information is required to transform a provenance graph — such
as in PROV — into a textual explanation, and if this information is not
available as an annotation, this transformation is presently not possible.

In this paper, we describe how we have adapted the common ‘consen-
sus’ architecture from the field of natural language generation to achieve
this graph transformation, resulting in the novel PROVglish architec-
ture. We then present an approach to garnering the necessary linguistic
information from a PROV dataset, which involves exploiting the lin-
guistic information informally encoded in the URIs denoting provenance
resources. We finish by detailing an evaluation undertaken to assess the
effectiveness of this approach to lexicalisation, demonstrating a signifi-
cant improvement in terms of fluency, comprehensibility, and grammat-
ical correctness.

1 Introduction

As organisations begin to understand the value of storing and utilising PROV
data [13], they will increasingly find scenarios where it is useful to show that data
to their users. Where resources allow, the best interfaces to this data will likely be
bespoke creations, tailored to the specific needs of the application. However, we
speculate that in many cases the resources will not be made available to take this
approach, motivating the search for an application-generic way of communicating
provenance to casual users.

In this vein, there are already a number of different ways for communicating
PROV data to human users in formal [14], diagrammatic [5,17], and linguistic
forms [16]. The utility of these various approaches depends on a number of
factors but, perhaps, most importantly the user and their familiarity with the
intricacies of both PROV and the application context. For example, whilst it is
c© Springer International Publishing Switzerland 2016
M. Mattoso and B. Glavic (Eds.): IPAW 2016, LNCS 9672, pp. 95–106, 2016.
DOI: 10.1007/978-3-319-40593-3 8
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a very useful tool in a suitable context, it would not be appropriate to use the
PROV-N notation to communicate with the vast majority of users. Likewise,
the diagrammatic forms of representing PROV are also potentially inaccessible
to many users who would perhaps have difficulty understanding mathematical
graphs.

A competent speaker of a particular language, on the other hand, is presum-
ably far more likely to understand a well-worded provenance explanation, than
understand a diagrammatic representation in a format that they have not pre-
viously encountered. Linguistic interfaces are of further use in contexts where a
visual interface might be inappropriate, unsafe, or illegal — such as when driving
a vehicle.

The main contribution of this work is to extend the state-of-the-art with
respect to natural language interfaces for provenance, showing significant
improvements in terms of grammatical correctness, fluency, and comprehensi-
bility. This is achieved by introducing techniques from the field of Natural Lan-
guage Generation (NLG), and using URIs as a source of lexical information. We
present an approach to transforming PROV graphs into natural language in an
application-generic fashion, resulting in explanations which our evaluation shows
are more accessible to a casual user.

After a brief review of related work in Sect. 2, we introduce the PROVglish
architecture we have developed to accomplish this in Sect. 3, followed by a deeper
explanation of how we extract the necessary linguistic information from the
PROV graph in Sect. 4. We then continue by demonstrating the effectiveness of
this approach in a formal evaluation in Sect. 5. Finally, in Sect. 6, we conclude
with a brief summary of this work’s contributions followed by a consideration of
possible avenues of future research.

2 Related Work

PROV was standardised as a recommendation of the World Wide Web Consortium
in 2013 [13]. The Provenance Working Group, which developed this recommenda-
tion, created a human-readable representation for PROV, PROV-N [14], and sug-
gested a diagrammatic representation [17]. These representations — in particular
PROV-N — were only intended for developers and implementors already familiar
with the PROV data model, rather than for casual users of provenance. Since then,
there has been little research published as to how to present provenance to users
in a domain-generic way.

At present, interfaces are either being tailor-made for a particular application,
such as on the website of The Gazette1, or by integrating the diagrammatic
representations into the interface, such as in [23]. One notable exception is [5],
in which Sankey diagrams are used to represent provenance in a process-centric
way; this approach is probably far more accessible to a casual user than the
1 The Gazette is the official public record of the United Kingdom. For an exam-

ple of their provenance trail, see https://www.thegazette.co.uk/notice/2184651/
provenance.

https://www.thegazette.co.uk/notice/2184651/provenance
https://www.thegazette.co.uk/notice/2184651/provenance
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PROV Working Group’s diagrammatic approach, but is as yet unable to show
provenance in an entity- or agent-oriented manner. Finally, in order to help users
understand large-scale provenance datasets, an approach has been developed
to generate summaries of a PROV graph [15], which can be displayed using a
minimally adapted version of the PROV Working Group diagrams.

As for natural language interfaces, there exists a string-substitution tem-
plated approach to generating natural language explanations from provenance
data [16], but this is application-specific due to the simple nature of the tem-
plates. The NLG research community, on the other hand, has developed more
sophisticated approaches to generating texts from data. There are a number of
NLG architectures described in the literature, with the two most well-known
being the ‘consensus’ architecture [19], in particular the refined version [20], and
the RAGS architecture [12]. The advantage of such architectures is that they
allow for the sharing and reuse of architectural components, such as a realisa-
tion engine [4]. Within the field, there are also a number of common ways of
evaluating NLG systems [11], often involving the use of humans comparing two
example sentences across a number of different metrics [6].

There have been a number of attempts to apply NLG techniques to RDF
datasets. Some use an ontology to annotate the linguistic information that is
needed to perform the transformation of data to text [10], whilst others use
a statistical, corpus-based approach [3]. Finally, there has been an attempt to
exploit the linguistic information informally encoded in URIs [22], though this
was only able to generate very short texts from up to six triples, due to the
fact that there are very few constraints on what sorts of information an RDF
document can include. PROV, on the other hand, contains a limited set of rela-
tionships, as well as information relating to the temporal ordering of events. Our
earlier work [21], presented a technique that was able to choose a near-minimal
set of templated sentences in a controlled natural language required to fully
transform a provenance graph.

3 Generating Explanations from Provenance

We are aware of only one existing technique capable of transforming provenance
graphs into text [16]. However, in that case, the approach taken is template-
based, using simple string-substitution, and consequently is only as application-
generic as the templates it is based on. Here there are two options: either, create
templates that would work for all valid provenance graphs, based on the primi-
tives of PROV; or, alternatively, use templates created for a specific application
that can take advantage of the additional knowledge one has about the form and
structure of the data to be transformed.

The latter, whilst able to produce the most natural-looking sentences,
requires more development and maintenance than a general solution. On the
other hand, the former, more general, solution has historically been limited to
using sentences like: “X was derived from Y , which was a revision of Z.” Whilst
this sort of language might be appropriate when talking about documents, in
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PROV an entity can be almost anything, and it may not be appropriate to refer
to all things using those terms. To illustrate, a person can be a prov:Entity
(as well as a prov:Agent), and it is altogether less usual to refer to people as
derivatives of their earlier selves in English, even if this is how they could be
represented in a provenance graph.

The existing template-based PROV explainer [16] used a relatively simple
string-replacement approach, where the template contained variables that were
substituted by values each time the template was expanded. This has the advan-
tage of being simple to implement, and efficient to execute, but makes generating
orthographically correct sentences difficult for a number of reasons, such as num-
ber agreement or verb conjugation. In order to be able to generate explanations
of more complex situations, we decided to explore the use of a more sophisti-
cated template-based architecture drawing on the work of the natural language
generation (NLG) research community.

Figure 1 shows the components of our PROVglish architecture, which is based
on the ‘consensus architecture’ [19,20]. The consensus architecture, whilst having
its detractors [12], is so-called because it presents an attempt to describe how

Fig. 1. Provenance explanation generation architecture, PROVglish. Modules are
shown in the centre, with the component processes of those modules on the right.
The template functions, and their mappings onto modules are shown on the left. Mod-
ules in dark grey occur outside of our system; those in light grey occur within our
system; and those in white are the focus of the evaluation presented in this paper.
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NLG systems are typically constructed, rather than prescribing a model that
new systems should adhere to. Our design retains the core pipeline model of this
architecture, starting with a communicative goal and resulting in a surface text,
but splits and rearranges a number of the intermediate steps to better suit a
template-based approach to generation.

One particular advantage of following a common architectural design such as
this is that the task can be easily modularised, allowing for the use of off-the-
shelf tools. In this case, specifically, it allows us to focus on the areas of NLG
that are of particular interest from a provenance perspective, shaded in white in
Fig. 1. Those blocks shaded in dark grey, on the other hand, represent parts of
the process that are not directly contributing to this research. For example, we
were able to use a pre-existing off-the-shelf realisation engine (R) [4], capable of
taking text specifications (TS) and producing orthographically-correct surface
texts (ST). The first stage in the pipeline, content determination (CD), is where
the application decides what provenance to communicate to the user. Because
this will vary from application to application, we leave that to individual imple-
menters, with our system providing all the stages from template matching (TM)
to template expansion (TE).

3.1 Templates

In the PROVglish architecture templates are comprised of three functions:

Bindings Function (BF). A function that takes the graph and returns a set
of sets of bindings. Each set of bindings corresponds to a possible expression
of a part of the graph in textual form — a possible sentence. The bindings
themselves are values mapped to variable names that will later be used by the
coverage function (CF) and text specification function (TSF). Because of the
many possible combinations of sentences that could be used to express a graph,
many more sets of bindings are generated than are actually necessary to do this.

Coverage Function (CF). A function that returns the subgraph that can be
inferred from, or is expressed by the template and a set of bindings — that is,
what subgraph would be transformed into text by this template with this set of
bindings. Using these coverage sets, we are able to ensure that every explanation
generated by our system expresses the entire provenance graph that was passed
to it.

Text Specification Function (TSF). A function that takes a set of bindings and
returns the sentence as a text specification (TS). This is done by simple template
string substitution, but unlike the existing technique allows the realisation engine
to handle the much harder task of ensuring that the sentence is orthographically
correct.
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3.2 The Process of Explanation Generation

Template Matching (TM). In this stage, the bindings function of each template
registered in the system is executed over the content provenance graph (C),
returning a set of bindings for each pattern in the graph matched by the template.
We call the combination of a template and a set of bindings a sentence plan (SP),
because together they represent a possible sentence that can be expressed from
the content graph (C).

Document Planning (D). This stage is separated into two parts, sentence selec-
tion (SS) and document structuring (DS). Sentence selection is the process by
which the list of sentence plans (SP) is whittled down to a smaller list; ideally
one that is capable of completely expressing the graph with a minimal number
of sentences. This is an example of the set-cover problem, and is solved using the
greedy algorithm described in [21]. Document structuring (DS) is the process by
which the chosen sentences are ordered into a coherent structure, either using a
mathematical metrics-based approach, or by using a narrative-based approach
such as Rhetorical Structure Theory [8] to guide the structuring.

Template Expansion (TE). comprises three aspects of NLG, though in this work
we only focus on the first two, leaving Aggregation (Agg) for further work. Lex-
icalisation (Lex) and referring expression generation (RE), on the other hand,
form one of the most important contributions of this work. Lexicalisation, which
will be discussed in more detail in Sect. 4 is the process by which the system
decides how each concept in the provenance graph should be mapped onto Eng-
lish words in a general sense, while RE determines how a concept should be
referred to in a particular context. For example, a person will commonly be
lexicalised by their name, whereas in many sentences it is more appropriate to
refer to them by a description, by their contextual situation, or by using some
form of anaphoric reference. By choosing these terms, and substituting them
into the template, we are able to generate text specifications to be passed into
the realiser(R).

4 Extracting Linguistic Information from URIs

One of the major obstacles that is necessary to overcome when generating expla-
nations from data is the matter of obtaining the linguistic information necessary
to perform lexicalisation. More simply put: how does one know what to call
anything? In RDF, there are ways to formally annotate this linguistic informa-
tion [10], or one can even encode it less formally in features such as rdfs:label.
However, making use of these features for explanation generation would not be
application-generic, because these features are not guaranteed to be present in
all PROV data. The only features that might contain linguistic information that
are guaranteed to be present in a PROV dataset are the URIs that denote each
resource.
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It is worth noting that URIs, per the RFCs that define them, formally con-
tain no linguistic information that would facilitate natural language generation,
as they are intended to be treated opaquely [1]. However, many system develop-
ers have created systems that mint meaningful URIs, for a number of possible
reasons, such as increasing code maintainability. This means that if one were
able to understand how this linguistic information is often informally encoded in
URIs, then it would be possible to exploit this information for the purposes of
natural language generation. We are not the first to attempt to use URIs in this
way [22], but previous attempts were met with limited success due to the fact
that there are far fewer constraints on what an RDF document can say, and how
it can say it. PROV, on the other hand, is a much smaller domain, limited by a
number of constraints, leading us to hypothesise that we might have a greater
degree of success. Our investigation has shown this to be the case.

We tested this hypothesis, using the University of Southampton Provenance
Store, a PROV repository, as our source of provenance data. From these doc-
uments we extracted the URIs denoting all the PROV resources to use as our
corpus of PROV URIs. Using this corpus, we were able to develop a regular
expression that allowed us to split each URI into its linguistic tokens — this is
not as trivial a task as might be expected, as there are a number of approaches
people use to compose tokens, with CamelCase and snake case as just two exam-
ples. The expression we settled upon was able to correctly tokenise 96 % of the
URIs (2525 out of 2637 distinct URIs). The remaining 4 % would have required
a more complex system with an understanding of the English language. The
regular expression we used was:

[0-9a-fA-F]{10,} | (?:Mc|Mac)?[A-Z][a-z]+ | [A-Z]+s?(?![a-z]) |
[a-z]+ | [0-9]+

This expression is able to distinguish tokens that fall into the following cat-
egories:

– Hexadecimal numbers of at least 10 characters (this limit was introduced to
prevent splitting English words like ‘feedback’, which is comprised mainly of
the characters ‘a’ to ‘f’);

– Words beginning with a capital letter, including those with common Scottish
name prefixes;

– Acronyms and their plurals;
– Lower case words; and
– Decimal numbers.

Having developed a technique to tokenise the URIs, it became necessary to
understand the linguistic role played by each of the tokens. We used an off-the-
shelf part-of-speech (POS) tagger to tag the URI tokens according to which role
they would play in a sentence — for example, whether the token was a 2nd
person present tense verb, or a superlative adjective, etc. Specifically, we used
the maximum entropy POS tagger [18] trained on the Penn Treebank corpus
[9], which came as the default tagger of the NLTK python library [2]. It was
important to verify that the tagger would perform well with tokenised URIs
because it was originally trained on standard English texts, and there was no
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guarantee that it would work with the much shorter, less grammatically correct
URI tokens.

However, the performance of the POS tagger was surprisingly good, with it
being able to identify the correct specific tag (singular proper noun, present-
tense 3rd person verb, superlative adjective, etc.) 62.7 % of the time, and the
correct class of tag (whether the token was a noun, verb, adjective, modifier, or
a number) 92.3 % of the time. This level of performance indicated that it would
be possible to build generation rules using at least the classes of tags, if not the
specific tags themselves.

5 Evaluation

Having used the knowledge gained in the investigations described in Sect. 4 to
build templates that were able to exploit the linguistic information in URIs,
we devised a human experiment, based on common examples in the literature
[6,11] to evaluate the effectiveness of this approach relative to a system where
this information was not exploited. Consequently, this experiment is centred
around a number of sentence pairs generated automatically, where each sentence
pair consists of one sentence generated using the URI lexicalisation technique,
and an equivalent sentence that was generated without that additional linguistic
information. For each sentence pair, the participant was asked to rank them
across a number of dimensions: grammatical correctness, fluency of the language,
and ease of comprehension. It should perhaps be noted that the KNIGHT study
[6] had additional dimensions, but these were excluded because they relate to
the structure of an explanation, whereas in this evaluation we were focussing on
the performance of individual sentences within a document.

It was our hypothesis that the system exploiting the linguistic information
in URIs should have performed better in terms of fluency and comprehensibility.
However, it was our expectation that there would be no significant difference
in terms of grammatical correctness, because the sentences that were generated
without exploiting the linguistic information in URIs were guaranteed to gen-
erate grammatically correct sentences. (This is a consequence of the way the
templates were constructed.)

We had 15 participants, each comparing 15 sentence pairs, resulting in the
collection of 225 individual data-points for each condition (URIs exploited/URIs
unexploited), and for each dimension (Grammatical correctness, Fluency, and
Comprehension). Participants were not given definitions for each of the dimen-
sions, but rather were asked to answer the questions with respect to their own
perceptions of what those terms meant. The participants were drawn from our
Electronics and Computer Science department, and the majority were unfamiliar
with PROV or provenance annotation.

Table 1 shows the results of these experiments, and Fig. 2a, b, and c clarify
the distribution of responses. In addition to those results, when asked simply
which sentence they thought was the better explanation, participants indicated
the sentence with the URIs exploited 56.5 % of the time, URIs unexploited 29.3 %
of the time, and neither the remaining 14.2 % of the time.
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Table 1. The results of the study across all sentence pairs and participants, broken
down by dimension (Grammar, Fluency, and Comprehensibility), and further broken
down by whether the linguistic information in the URIs was exploited or unexploited.

Metric Grammar Fluency Comp. Combined

Exp. Unexp. Exp. Unexp. Exp. Unexp. Exp. Unexp.

Mean 4.72 4.36 4.65 3.59 4.74 4.13 4.70 4.03

Standard Deviation 1.49 1.28 1.49 1.35 1.48 1.42 1.49 1.39

Difference +0.36 +1.06 +0.61 +0.67

p Value 4.8 × 10−5 2.5 × 10−15 7.1 × 10−7 —

N 225 675

(a) Grammatical correctness (b) Fluency

(c) Comprehensibility

Fig. 2. Participant responses for each dimension, aggregated across all sentence pairs
and participants. Legend shows U-value and p-value obtained from Mann-Whitney U
Test. N = 225

We used a Mann-Whitney U-test [7] to determine the statistical difference
between the condition where the linguistic information in URIs was exploited and
the condition where it was not. Across all sentence pairs, and all participants, the
system that exploited the linguistic information in URIs performed significantly
better in all three dimensions than the system that did not. See Fig. 2a, b, and c.
In each case, one can clearly see the difference in distributions from the graphs.
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There are a couple of interesting points to be drawn from these results, that
cannot be seen from the figures alone. Firstly, not a single participant gave
significantly worse ratings for the sentences generated exploiting URIs, across
any dimension, when averaged across all sentence pairs.

Additionally, the only sentence pair to perform significantly worse across all
three dimensions was pair 8, where the system was confused by the fact that the
word ‘step’ can be both a verb and a noun, resulting in a text specification that
was further misinterpreted by the realiser, and where the following two sentences
were generated:

URIs exploited: Vote 1043 0 was executioned step at
2011-12-18T01:00:17+00:00.

URIs unexploited: ‘/data/UpVote1043.0’ was generated by
‘/data/ExecutionStep652’ at 2011-12-18T01:00:17+00:00.

By contrast, one of the sentence pairs that performed best was pair 12, with
the following two sentences:

URIs exploited: Derek illustrated chart 1.
URIs unexploited: ‘/derek’ generated ‘/chart1’ by ‘/illustrate’.
This example clearly demonstrates the impact of being able to extract lin-

guistic information — and in particular, verbs — from URIs on the richness of
the explanation generated.

With respect to our hypotheses, the data proves our expectations correct with
only a single exception: we had anticipated that there would be no significant
difference between the grammatical correctness of the sentences produced. In this
regard, it would appear that our participants had a different expectation to us
as to what makes a sentence grammatically correct. However, even in this case,
the system that exploited the linguistic information in URIs still outperformed
the system that did not, further validating the main thesis of this paper — that
exploiting the linguistic information in URIs allows for the production of better
explanations of provenance. With respect to that, the data is supportive on all
counts.

6 Conclusions and Future Work

In this paper, we have shown how the use of more sophisticated architectures for
natural language generation can be applied to the task of explaining provenance
graphs to casual users. In addition to facilitating richer explanations at a lower
development cost by using off-the-shelf components for surface realisation, when
combined with the exploitation of linguistic information informally encoded in
URIs, we were able to generate explanations that performed significantly better
in a user evaluation. Our approach is application-generic, and can work with all
valid provenance graphs.

At present, our system is only capable of generating single sentence explana-
tions. However, many of the provenance graphs we might wish to communicate
with a user are considerably larger than can be reasonably transformed into a sin-
gle sentence. Consequently, we are now investigating the possibility of generating
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longer, multi-sentential explanations from larger PROV graphs, as well as from
PROV graph summaries [15]. We are exploring the potential role of various nar-
rative theories to the application of structuring these longer texts, with a goal
of generating more engaging texts than can be achieved with more conventional,
graph-metric-based approaches.
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Abstract. Change-based provenance captures how an entity is con-
structed; it can be used not only as a record of the steps taken but also as
a guide during the development of derivative or new analyses. This prove-
nance is captured as a version tree which stores a set of related entities
and the exact changes made in deriving one from another. Version trees
are generally viewed as monotonic–new nodes may be added but none
are modified or deleted. However, there are a number of operations (e.g.,
upgrades) where this constraint leads to inefficient and unintuitive new
versions. To address this, we propose a version tree without monotonicity
where nodes may be modified and new actions inserted. We also propose
to track the provenance of these tree changes to ensure that past version
trees are not lost. This provenance is change-based; it links versions of
version trees by the actions which transform the trees. Thus, we continue
to track every change that impacts the evolution of an entity, but the
actions are split between direct edits and changes to the version tree that
affect multiple entity definitions. We show how this provenance leads to
more intuitive and efficient operations on workflows and how this hybrid
provenance may be understood.

Keywords: Provenance · Version tree · Workflows

1 Introduction

As the number of documents, source trees, and images continues to grow, it
is important to understand when and how individual items are related to each
other. If a digital entity has changed over time, there are different versions of it,
and the relationships between these versions help organize the information they
contain. Version graphs encode derivation histories of the entities and may also
relate different objects that were derived from a similar source. Usually, these
graphs are used to archive past versions, often encoded for efficient storage.
However, past versions may also be re-examined and integrated with current
and future versions. In most cases, one new version is generated when an entity
is modified or merged with another version. For example, in versioned source
code, a commit defines a single new version with the updates to the files.

A version graph most basically defines when one version is derived from
another, but this information need not contain how the versions are related.
c© Springer International Publishing Switzerland 2016
M. Mattoso and B. Glavic (Eds.): IPAW 2016, LNCS 9672, pp. 109–121, 2016.
DOI: 10.1007/978-3-319-40593-3 9
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Upgrade

Upgrade

Upgrade

Upgrade

Upgrade

Fig. 1. It is often necessary to update or upgrade collections of related documents
or workflows. Even though these changes can be automated, each version must be
modified often with the same changes (left, new nodes and edges outlined in red). If
we can instead edit the version tree, we can update past changes to reflect the updates
(right, modified edges highlighted in red). (Color figure online)

Change-based schemes, however, store the changes that transform one version
to another. With this richer history, we can not only understand the difference
but also directly edit the change to update the derivative version. When that edit
impacts a version that itself has many derivative versions, all of those versions
are also affected. Such edits can correct past errors, update an old approach, or
introduce additional functionality to multiple versions. For example, in a source
code version tree, we might replace an algorithm added early in development
with a more efficient version. Instead of applying these changes to each branch,
we modify the tree itself so branches inherit the update.

While this rewriting of history brings the potential for efficient and intuitive
edits over a collection of versions, it also presents the problem of how to preserve
the old collection. This is particularly problematic when the past versions are
tied to other provenance information. For example, a collection of workflows may
need to be upgraded, but if the provenance of past runs is associated with the
old versions, we do not want to lose the definitions of them. To address this prob-
lem, we suggest versioning version trees by storing the evolution provenance of
the version tree. Figure 1 shows how this can declutter workflow upgrades. Any
version can be obtained by first materializing the version tree and then materi-
alizing the version in that tree. To simplify navigation, we propose links between
a version in one version tree and its “derivative” version in another version tree.
Because simple additions to a current version tree can be interleaved with trans-
formations of version trees, the provenance of any single version becomes more
involved.
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We introduce meta version trees (MVTs), define intuitive operations enabled
by the new trees, test their efficiency using synthetic version trees, and discuss
the implications in understanding the provenance of entities created and modified
in this framework.

2 Preliminaries

2.1 Versioning Background

Keeping track of different versions of documents, code, and workflows is com-
monplace, but the strategies for doing so have evolved over time. With a central
authority for changes, it is possible to fully order the versions according to the
time they were submitted. However, distributed version control systems allow
changes to be evolve independently from a central repository. Branching allows
users to develop new features in a branch, and then merge these changes back
into a “master” branch. Version graphs track versions of evolving objects and
any merges [5]; merging operations require the history to be represented as a
directed acyclic graph. Because we will be leveraging change-based versioning
where explicit user changes specify the derivation of a version, we focus on ver-
sion trees which do not contain merges.

A version tree is a tree where each node represents a version of a particular
entity (S) and an edge from one version to another indicates that the child
version was derived from the parent version. Recall that a tree T = (V,E) is a
directed acyclic graph where each node v ∈ V has at most one edge ending at
v. In a version tree, each node v has an associated version Sv. If, for a given v,
there exists u such that (u, v) ∈ E, then Su is the parent version of Sv and Sv is
a child version of Su. Note that in general, there is no specific restriction on how
two versions must relate to each other. A version tree may represent a human-
curated understanding of derivations or enforce specific derivation requirements
that permits automated construction.

2.2 Change-Based Version Trees

A version tree indicates relationships between versions, but these relationships
can be further defined as transformations from one version to another. These
functions define the changes and may be inferred or prescribed. For example,
version control software like svn [17] computes differences between the current
and previous version of a file, inferring the lines added and deleted. Thus, a
search-and-replace of a single word would be recorded by most version control
software as a sequence of line modifications. VisTrails, on the other hand, stores
the exact actions it makes when a user changes a workflow [8]. For example,
when a module is added to a workflow, the exact detail is recorded. Such pre-
scriptive changes allow greater understanding of the process involved in creating
a workflow.

Formally, a change-based version tree T = (V,E, S0) is a version tree where
S0 is a default version, and for each edge (u, v) ∈ E, there exists an associated
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function f such that f(Su) = Sv. In other words, f tells us how Sv can be
derived from Su. Associating the function with the edge instead of the node will
provide more intuitive operations in manipulating change-based version trees.
The root of the change-based tree often corresponds to an empty state, e.g., an
empty repository or an empty workflow. In a general version tree, we might need
to store the associated version for each node, but a change-based version tree
requires storing only the edge functions and the default state S0. Let P (0, v)
denote the edges e1, . . . , en along the path from the root to version v. Then,
given a change-based version tree T = (V,E, S0) and a node v,

Sv = fn ◦ · · · ◦ f1(S0)

where each fi is the function associated with the edge ei ∈ P (v). Although we
do not need to store any versions Sv except the default version, we will need to
be able to materialize any version via the above construction.

In many cases, we may also have inverse functions that allow us to transform
from a version to its parent version. Specifically, the inverse action f−1 associ-
ated with an edge (u, v) satisfies f−1(Sv) = Su. This allows greater flexibility in
materializing versions as we can move between states in both directions. Note
that we may have some actions where inverses exist and others where they do
not in the same change-based version tree. If there exists an inverse for every
edge, we say the change-based version tree is invertible. Given an invertible
change-based version tree T = (V,E, S0) and two nodes u and v with common
parent p,

Sv = fn ◦ · · · ◦ f1 ◦ g−1
1 ◦ · · · ◦ g−1

m (Su)

where each fi is the function associated with the edge ei ∈ P (p, v) and g−1
j is

the inverse associated with the edge ej ∈ P (p, u). The construction corresponds
to applying inverses up to a common parent p and then applying forward actions
down to v.

We can also compress edges in a change-based version tree by composing
their functions. Specifically, suppose v has a single parent u and a single child
w. We can compress edges (u, v) and (v, w) with associated actions f and g,
respectively, into a single edge (u,w) with the associated function g ◦ f . The
node v can then be eliminated from the change-based version T .

This allows us, given a set of nodes {vi}, to construct a skeleton of a change-
based version tree T , skel(T, {vi}). The skeleton consists of all nodes {vi}, the
root, and the compressed edges between them. Often selected nodes include those
that have been annotated or are at a branch point (have more than one child
node).

2.3 Identifiers and Labeling

Unique identifiers make it possible to refer to a particular version, and labels
provide users with the ability to annotate versions with memorable titles. For
histories with centralized control, integers can be used to identify versions, but



Versioning Version Trees: The Provenance of Actions 113

when versions may be distributed, we need to assign identifiers that are univer-
sally unique. Git uses hashes of content and commits to identify versions [9],
but universally unique identifiers (UUIDs) can also be generated randomly with
minimal probability of overlap.

In addition to an identifier, each node of a version tree may also be labeled.
We will assume that a single label may be associated with each node, but clearly,
associating a set of attributes is also possible. Note that labels may change over
time; for example, a user who creates an updated version of a workflow may wish
to move the label to the new version in the same way as one would overwrite a
file with updated information. Formally, all version trees may have an associated
labeling function L : V → Σ∗.

2.4 Provenance

Provenance captures how a particular result was achieved—the steps involved in
the derivation of that result. Version trees naturally integrate with this goal as
they capture dependencies between the different versions. Change-based version
trees go further, presenting descriptions of the actions that transform one version
to another. Change-based provenance further limits this to a monotonic change-
based version tree. In change-based provenance, a user may add new actions to
the tree but not edit or reorganize existing actions.

The distinction between change-based provenance [8] and change-based ver-
sion trees is intentional because the latter offers more latitude in reorganizing or
editing. Specifically, change-based provenance seeks to capture the exact changes
that occurred and maintain the monotonicity of the tree. Each change is recorded
and cannot be relocated or mutated. A change-based version tree requires a
function to exist for each edge but does not enforce any restraints how this was
derived or inferred. However, in many cases, one can obtain provenance about
how an entity was constructed directly from the change-based version tree.

3 Manipulating Change-Based Version Trees

Instead of viewing version trees as a historical, immutable record, we propose
operations that allow users to manipulate and update the trees. In the same way
that a user might keep versions of code files or workflows, we argue that versions
of version trees provide powerful new ways to manipulate collections of entities.
Our goal is to allow users to modify the version tree itself. Some operations, like
labeling and pruning are agnostic to the versioned entities, but others, like those
where changes are being modified, require some understanding of the domain.
In either case, an operation takes one version tree and produces another.

At the lowest level, we propose three pairs of primitive operations:

1. AddNode, DelNode: Add/delete a node
2. AddEdge, DelEdge: Add/delete an edge
3. AddLabel, DelLabel: Add/delete a label to/from a specific node
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These operations provide the ability to construct any tree T ′ from any other tree
T as in the worst case, we can delete everything from T and add everything from
T ′. In addition, each primitive operation has a clear inverse which means any
change to the tree is invertible. While each action produces another tree, some
may produce a degenerate tree where a subtree is not connected to the root.

Using these primitive operations, we can generate higher-level operations that
transform the version tree. Two operations that act without any understanding
of the versioned entities are relabeling and pruning. Relabeling involves moving
a label � from a version u to a version v. This can be accomplished by the pair of
actions DelLabel(u) and AddLabel(v, �). Pruning v is a deletion of all nodes
and edges in the subtree rooted at v. Again, we can rewrite this in terms of
DelNode and DelEdge operations.

Other operations that act on the changes in a change-based version tree
require some information about the underlying entities being manipulated. These
include operations that rewrite past changes or reorganize versions. The remap
operation takes pairs of changes (f, g) and replaces any instance of f on an edge
in the version tree with g. For example, in a version tree of sets, we may wish to
replace any occurrences of an element n with n′. Once a matching edge is identi-
fied, remap requires a DelEdge(u, v) operation followed by a AddEdge(u, v, g).
Since version trees reflect the chronological order of user-initiated changes, reor-
ganizing versions by similarity can aid in producing more compact and more
intuitive trees [10]. This reorganization involves moving nodes and rewriting
edges.

4 Framework

4.1 Versioning Version Trees

While allowing users to modify version trees grants some intuitive and efficient
operations, we lose the original state of the version tree upon modification. Since
a new version of the version tree has been created, the same versioning procedures
can also be used to manage versions of version trees. Furthermore, since we have
identified a set of primitive, invertible operations that change version trees, we
can create an invertible change-based version tree to store versions of version
trees. While one may question whether a tree is necessary here, the overhead in
keeping a tree versus a list is minimal, and thus it seems reasonable to keep all
versions of the version trees.

Formally, a meta version tree (MVT) T = (V,E, S0) is an invertible change-
based version tree where each edge defines a change to a version tree and S0 is an
empty version tree with only a root node. While the definition is straightforward
and parallel to a standard version tree, working with the entities stored by the
MVT of version trees comes with more overhead. Specifically, the creation of
a new version of an entity triggers a new version in the current version tree,
T , which in turn triggers updates to the MVT about the new node and edge
added to T . This is represented by two new nodes and two new edges in the
MVT, one pair for the new node and one pair for the new edge in T . With
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T1 T2 T3

Fig. 2. Three versions of a version tree. Layered nodes indicate the presence of links
to older versions (layered left) or newer ones (layered right). Green nodes are linked
nodes that change from T1 to T2 or T2 to T3. Note that filtered has links to both
older and newer versions. (Color figure online)

edge compression, we can package all of these changes together, but there is
some extra overhead. Operations on the version trees are encoded as changes as
described in the previous section.

Finally, note that with an MVT, identifying a specific version of an entity
requires two identifiers—one to identify the version of the version tree and the
other to identify the version of the entity in that tree. To materialize this entity,
we must first materialize the version tree and then use that version tree to
materialize the version of the entity.

4.2 Linking Versions Across Trees

Systems like git and VisTrails have demonstrated that users can understand and
interact with trees, but using similar interfaces for a meta version tree would
likely be confusing. In a parallel interface, when a user wishes to select a specific
object, that user would both choose a version tree and then select a specific
version in that tree. As it is cumbersome to keep track of both of these levels—
especially as both are trees, we propose an interface where users are encouraged
to navigate between trees by identifying a particular version for which they wish
to see a previous version in an older version tree.

To track relationships between versions that appear in different versions of
the version tree, we propose a link that directionally links a version v in one
version tree T1 with a version v′ in another version tree T2. Suppose we have
a meta version tree T , a specific tree T ∈ T , and a specific version v ∈ T .
Then if T ′ is a child version of T and v′ ∈ T ′, we can define a link between
v and v′ to denote that v′ was indirectly derived from v via the set of actions
that transformed T to T ′. In other words, v′ is not the result of changes made
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directly in T ′, but it is the result of the changes made to the version tree T in
deriving T ′.

Links allow a user to navigate between versions of version trees by following
them from a node in one version tree to a node in another. In effect, this is a
different dimension of a derivation; instead of parent-child relationships, links
show tree relationships. Figure 2 shows how a user interface may indicate the
presence of linked versions with layered nodes. Upon clicking the lower layers to
indicate a desire to see a version in a past or future version tree, we can show all
transitively linked versions. Selecting one of those versions can then materialize
not only that entity but also its associated version tree.

5 Workflow Applications

To demonstrate the potential of versioned version trees, we present intuitive
operations they enable in the context of scientific workflows. In this section, we
define scientific workflows as composed of computational modules and connec-
tions that link an output of one module with an input of another; each module
may also have configurable parameters. Thus, changes to the workflow include
the addition or deletion of modules, connections, or parameters.

5.1 Bulk Edits and Upgrades

Suppose a user made a number of workflows using a particular module, but
decided later that a different module would have worked better. Instead of chang-
ing every version that contained the module, a user may instead wish to edit
the action where that module was originally introduced, replacing it with the
alternate module. Without meta version trees, replacing each version would at
least require actions that remove the original module and add the new module,
and could also require elements that depend on that module to be deleted and
re-added after the change actions.

As software and libraries are updated, it may be necessary for workflows to
also be updated to match them [11]. For example, if a library changes the inter-
face for a particular call, we may also need to update the corresponding module.
Furthermore, even if the module’s interface does not change, it is important
that the execution provenance capture exactly the version used. It is common,
then, for an older workflow to need an upgrade to reflect the current inter-
faces. Without MVTs, upgrading an entire version tree can lead to a number
of new branches that can drastically alter the appearance of the tree as shown
in Fig. 1 (left). When collaborators are working with different package versions
(perhaps because they have different operating systems), this can be especially
distracting. With MVTs, the upgrades can be encoded as updates to the changes,
effectively replacing any action that added an old version of a module with a
new action that adds the new version of the module as shown in Fig. 1 (right).
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5.2 Parameter Exploration

Parameter exploration is often viewed as a transient state whereby a number
of versions are explored but only a select few are preserved, added to the ver-
sion tree, and examined further. Otherwise, the many versions would clutter the
version tree. We can store the parameter ranges explored as annotation on the
version being explored, but the version tree is only updated when a selected
workflow of interest is persisted. Not only is the provenance of unselected work-
flows lost, but storing information about the exploration in an annotation does
not match how a user might manually carry out the same operations.

We propose representing parameter exploration in an MVT by creating an
intermediate version tree to uniformly encode all parameter combinations tested
and then pruning that version tree to eliminate all non-selected versions. In other
words, from a node v of version tree T , we create a version tree T ′ with nodes
v0, . . . , vn as children of v but also each with links to v in T . If a user decides
to use vi for future work, it is persisted as a new version in the resulting version
tree T ∗ but unselected versions are pruned.

5.3 Reorganization

Reorganizing a version tree by moving nodes and rewriting edges may allow a
clearer understanding of relationships between workflows and/or a more efficient
encoding. The minimization of version trees allows operations that cancel each
other out to be removed, leading to a smaller version tree. Refactoring is an
operation where nodes are relocated in order to represent the versions with
fewer actions [10]. In the original implementation, the reorganized tree was not
linked with the starting tree, and this made it difficult to determine which nodes
had been moved or edges minimized. Using the actions in MVTs, we can not
only link corresponding versions but we can highlight those that changed.

6 Provenance

As how an entity is created or derived is a question about the provenance of
that entity, it is important to understand how meta version trees impact an
understanding of that entity’s evolution. We may either make a very literal
interpretation of the origin of an entity or look to project this literal provenance
into a form that may be more understandable.

The literal provenance of an entity derived from a version tree of version trees
is exactly the steps in materializing that entity. Specifically, this is a sequence
of actions describing the construction and transformation of the version tree
the entity lives in, following the sequence of actions from the path through
the version tree that actually construct the entity. While this provenance is
correct, and following the steps will create the entity, its use is limited. Literal
provenance is a chronological log of all activity in the version tree followed by
the materialization of a specific version.



118 D. Koop

If we wish to dispense with a provenance view that involves multi-layered
construction, we must project the operations down to the entity-level. Workflow
evolution provenance is the sequence of operations involved in constructing a
workflow [8]. While those operations live in a version tree, the provenance for
any specific workflow involves only the changes related to that workflow. This
is in contrast to literal provenance which keeps track of operations that may be
unrelated to the entity in question. If we ignore the other versions of the version
tree, we can generate updated provenance that is exactly the changes from the
path through that tree. However, such a derivation is not accurate when the
version tree has been transformed. Suppose a remap operation that mapped
change A to Z occurred between T and T ′. If the version v in T was created via
a sequence BCAE, v′ is created via BCZED. However, the change from A to Z
was made after E and D. Thus, we want the sequences to look like BCAEA−1Z.

We define projected provenance as the entity-level provenance that seeks to
translate the effects of any tree operations into the entity-level while maintain-
ing the correct order. For tree operations like remap, this equates to a inverse-
forward sequence as shown in the previous example. In general, we can examine
the version before the version tree operation and after and infer the necessary
entity-level operations. Note that such provenance introduces actions that did
not actually occur. However, it may still be faithful in communicating the evo-
lution of that entity.

7 Evaluation

In addition to providing intuitive operations over collections of versioned entities,
meta version trees enable more efficient storage because they do not duplicate the
same work in many branches. To evaluate this, we used synthetically-generated
version trees and applied remap operations, comparing the resulting trees with
those where the remap was applied to individual versions independently.

Fig. 3. Results for running remap operations over synthetically generated version trees
capturing set manipulation. Generally, remap operations do better on trees with larger
alphabets and higher branching probabilities. (Color figure online)
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We used sets of integers from a bounded range as the domain with two change
actions: add value and delete value. The version trees were randomly generated;
each edge was an add or delete value of a randomly selected integer from the
range (if the integer was in the set, delete value was inserted, otherwise add
value was inserted). Based on a branching probability, the new edge was either
appended to the current branch or the start of a new branch from an existing
node. Then, a remap which changed a few of the values used in the actions was
applied to the tree T . The same remap was also accomplished individually on
nodes appearing in the skeleton of T . Tags were generated at a probability of
0.02; the skeleton includes tagged nodes.

We ran tests that combined different branching probabilities (0.01, 0.025,
0.05, 0.1, 0.2, 0.4), alphabet sizes (10, 25, 50, 100, 250, 500), tree sizes (100,
250, 500, 1000), and number of remapped values (1, 2, 4, 8). For each test, the
number of new MVT nodes created by the remap operation was compared with
the number of MVT nodes created individually. Each of the 576 tests was run 200
times, and the average ratio between the new MVT nodes in the two approaches
was computed.

In most cases, remap operations use fewer actions than conventional version
updates (see Fig. 3). Interestingly, there are scenarios where the remap fares
worse. Specifically, when the alphabet for the set is small, the same integers
are being added and deleted over and over so many need to be changed in the
remap operation but the replacement at the end of a long branch needs only
happen once. For larger alphabets (when items aren’t being constantly added
and removed), the remap operations needs fewer actions since the operations
update multiple branches at once.

8 Related Work

Version graphs have been used in a number of contexts, including source code
management (e.g., git [9] and darcs [6]), web content versioning [15], and web
services [12]. Conradi and Westfechtel’s survey on versioning for software con-
figuration management provides both background and an overview of differ-
ent approaches for versioning including the distinction between state-based and
change-based [5]. Version control system provenance from git can also be repre-
sented in the PROV standard [7].

In the context of data management, versioning has focused on data lin-
eage [3,4] and changes over time [14]. Recently, the DataHub project has been
working to support collaborative data analysis with a view to versioning evolv-
ing datasets [2]. Because of the cost of storing both versions and changes, the
project seeks to examine the tradeoff between storing versions and materializing
them using change information. Ba et al. describe methods for incorporating
uncertainty into version control [1].

The problem of determining impacts and conflicts of operations on versions
that are themselves graphs, like workflows, is complicated by the subgraph iso-
morphism problem. Previous work focused on reorganizing versions by using the
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given changes [10]. Metrics based on maximal common subgraphs may also be
used to compare workflow graphs [13]. Taentzner et al. have investigated ver-
sioning graphs and resolving conflicts in software modeling [18]. darcs uses patch
theory to reorder and merge different changes [6].

9 Conclusion

We present meta version trees to allow more intuitive and efficient operations
on collections of versions. Instead of editing multiple versions individually, users
may edit the change and create a new version of the version tree. Future work
includes examining applications beyond workflows and considering the process of
applying analogies to multiple versions. Specifically, we envision allowing a user
to edit a single entity and then propagate those changes to multiple versions.
While this could be done using workflow analogies [16], it should be possible to
encode the analogy as an edit to the version tree instead.

Another important consideration is potential conflicts introduced by an
edited operation. For example, when an action adding a specific value is removed
from the version tree, descendant actions that delete that value are invalid. One
could check for such conflicts before allowing the operation to proceed, or it
might be possible to separate those versions that are affected and put them in a
subtree unaffected by the tree modification.
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Abstract. Geoscience Australia (GA) is a government agency that
delivers much scientific data via web services for government and research
use. As a science agency, the expectation is that GA will allow users of
its data to be able to cite it as one would cite academic papers allowing
authors of derived works to accurately represent their sources.

We present a methodology for assisting with the citation of web service
requests via provenance information recording and delivery. We decom-
pose the representation of a web service request into endurant and occur-
rent components, attempting to source as much information as possible
about the endurant parts as organisations find these easiest to manage.
We then collect references to those parts in an endurant ‘bundle’, which
we make available for citation.

Our methodology is demonstrated in action within the context of
an operational government science agency, GA, that publishes many
thousands of datasets with persistent identifiers and many hundreds of
web services but has not, until now, provided citable identifiers for web
service-generated dynamic data.

Keywords: Provenance · Web services · Dynamic data citation ·
PROV-O

1 Introduction and Background

Web service requests are one form of data subsetting, the citation of which has
been considered by groups such as the Research Data Alliance’s Data Citation
Working Group1 which aimed to “bring together a group of experts to discuss
the issues, requirements, advantages and shortcomings of existing approaches for
efficiently citing subsets of data”. Their approach to solving problems with data
subset citation in general is to “adapt a data source for providing identifiable
subsets for the long term” [9]. Some of these recommendations are well-known
data management practices like the provision of data versioning and timestamp-
ing. Others are further from common data management or related practice, such

1 https://www.rd-alliance.org/groups/data-citation-wg.html.
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as query normalisation, storage and the assignment of persistent identifiers to
checksummed queries to provide long-term immutable query retrieval.

Some of these recommendations require much time and effort to implement
which may be appropriate for one-off data subsetting process citation, such as
for data quoted in journal articles, but are not appropriate where citations are
needed for many subsetting processes that may be run in quick succession, for
example, defining the data presented in a web portal’s interface where multiple
requests to web services for individual data layers have been made.

In this paper we present a provenance-based methodology for web service
request citation that is analogous to the citation of a recipe in order to bake a
cake: ingredients and methods are recorded and stored and may be used again to
recreate the same outputs. The aim is to store as much information as possible
about the inputs to the web service request as static datasets in their own right
as this will enhance the likelihood of future users to be able to determine how
to recreate the request. This methodology will work when it is not possible to
store static copies of the request outputs for various reasons, such as data size.
It is hoped that this methodology can be retro-fitted into existing web service
request scenarios.

This method does require that some well-known data management practices
be carried out, such as Recommendations 1–3 in [9]. It also requires other things,
such as a provenance data model, a Linked Data platform for data and web
services and the registration of certain data items, as outlined in Sect. 2. Variants
of this approach are currently being contemplated by large data holders, such as
Australia’s National Computing Infrastructure [12].

2 Methods

The methodology consists of the following steps for each web service request:

1. create a standardised representation of the request’s process and actors,
decomposed into endurant and occurrent (perdurant) components;

2. store as much metadata about registered actors (systems) related
to the process as possible in order to place knowledge retention effort into
endurant components of the request representation, not occurrent compo-
nents;

3. store the representation as a document with a persistent identifier and
refer to it as the citation;

4. use Linked Data for access to other objects such as input datasets thus
allowing for their retrieval, not just their representation;

5. provide pre-packaged queries to assemble request citation informa-
tion in accordance with data citation conventions.

2.1 Standardised Representation

In order to maximise long-term understanding of process representation, and we
use the PROV Data Model [7], an open provenance representation standard by
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Fig. 1. The basic PROV-O classes and relationships, adapted from https://www.w3.
org/TR/prov-primer/.

an open standards organisation, the W3C2, in its web ontology language (OWL)
[10] expression, PROV-O [6]. The basic PROV-O classes and their relations are
given in Fig. 1. These classes refer to endurant things (Entity & Agent) and
occurrent (perdurant) things (Activity).

We use the basic PROV-O classes to construct a very generic ontology design
pattern for data processing, such as web service subsetting, which relates an
action (Activity) to the data it takes in (Entity) and that it produces (Entity)
in accordance with a procedure (Plan, a subclass of Entity) and which is
attributed to a system (Agent). Some small extensions of this model are that the
data taken in may be multiple Entity objects which may be represented indepen-
dently or as a single Collection class object which is a subclass of Entity. All of
the pattern’s information is grouped together in a document which is represented
as a PROV-O Bundle, another subclass of Entity depicted as a chamfered box.
This modelling is shown in Fig. 2. For a web service request process, the proce-
dure could be a set of key/ value pairs within a query string, as often supplied
with a Uniform Resource Identifier (URI)3 or a SPARQL query4 presented to a
SPARQL endpoint or an XML document sent via an HTTP POST request to
an Open Geospatial Consortium (OGC)’s Web Feature Service (WFS)5); it is
the set of instructions to the web service Agent.

2.2 Actor Information

In instantiating the design pattern given in Fig. 2 for web service requests, we
focus on recording as much information as possible about the endurant parts of

2 World Wide Wed Consortium: https://www.w3.org/.
3 https://en.wikipedia.org/wiki/Uniform Resource Identifier.
4 https://en.wikipedia.org/wiki/SPARQL.
5 https://en.wikipedia.org/wiki/Web Feature Service.

https://www.w3.org/TR/prov-primer/
https://www.w3.org/TR/prov-primer/
https://www.w3.org/
https://en.wikipedia.org/wiki/Uniform_Resource_Identifier
https://en.wikipedia.org/wiki/SPARQL
https://en.wikipedia.org/wiki/Web_Feature_Service
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Fig. 2. A template for a web service request using classes from Fig. 1 with the addi-
tion of a PROV-O Plan class for the procedure , a PROV-O Bundle containing the
provenance information and a PROV-AQ [5] has provenance property.

the request. This is due to previous analysis [3] of our organisation (see p. 30)
that showed we already possessed registers of endurant Entity objects, such as
datasets and Agent objects such as web services, but not of occurrent Activity
objects. From discussions we have had with four other Australian science agen-
cies that use web services (CSIRO, Bureau of Meteorology, Department of the
Environment) this situation is typical. Such a focus then on endurants means
agencies wishing to adopt this methodology are likely able to do so by extending
existing systems, rather than creating new ones.

While dataset registers, sometimes known as catalogues, are familiar to many
data delivery agencies, Agent registers are not. Before this work, our organisation
provided a list of all the web services it delivers publicly on a web page (http://
www.ga.gov.au/data-pubs/web-services/ga-web-services) and in this way, the
web services are considered Entity objects, however, as previously indicated,
our modelling considers them Agent objects, given that their actions use and
generate data. We recognise that Agent objects are properly defined by roles and
are not essences thus our register of Agent objects is really a register of Entity
objects. We model endurant Agent objects as prov:Agent rdfs:subClassOf
prov:Entity, as allowed by PROV-O.

In order to enable our web services to be referred to as Agent objects via
Linked Data methods, we have created a register for them; the information
about the datasets they access is stored as links to items in the dataset register.
For interoperability reasons, the information model used for our organisation’s
dataset and web service agent registers is ISO19115-1 [4] compliant. While this
is not an RDF-based information model, class instances (Entity and Agent
objects) are individually identified via URIs and human (HTML) and machine
(XML)-readable metadata for each object is given, thus it is somewhat compat-
ible with Linked Data methods.

http://www.ga.gov.au/data-pubs/web-services/ga-web-services
http://www.ga.gov.au/data-pubs/web-services/ga-web-services
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Having registers of Entity and Agent objects that provide standardised
metadata for them means provenance records need not store any information
about them other than their URI and that, in order to assemble information
for web service data use citation, the URIs can be followed to find it. In the
case of ISO19115-1 metadata, XPath queries are used on XML serialisations of
it (ISO19115-3) for this collection, see Sect. 3.2.

2.3 Simple PROV-O Use

We have chosen to use only PROV-O classes and properties in order to represent
our data processing events rather than any extension or specialisation of it. This
decision is driven by the desire to keep provenance information representation
as simple as possible and not embark on an endless speciation of classes and
properties for every conceivable scenario to be represented.

2.4 Provenance Information Storage

The PROV-O Bundle containing information representing a data processing
event is stored by a provenance store product, known as PROMS Server [2],
within an RDF database using a named graph6 based on the Bundle’s URI which
is assigned (minted) by the provenance store. This ensure the Bundle information
is identifiable and remains associated as it would be in a document, despite
being merged into the RDF database which provides cross Bundle querying
capabilities. Since the provenance store mints the Bundle’s URI, access to that
Bundle is available RESTfully (via the Bundle URI) as well as via SPARQL
queries against the RDF database.

A Bundle can be linked to by the entity that it describes the provenance
for using the PROV-AQ [5] methodology’s has provenance property.

2.5 Citation Queries

Information within these Bundle objects can be used with human-readable cita-
tions similar to those for referencing academic publications in order to supply
useful information about web service outputs. We have adapted a simple citation
template from the Bioregional Assessment Programme [1], a project our agency
has participated in, which is structured as follows:

{DATASET REF}: {DATASET OWNER} ({YEAR}) {DATASET TITLE}.
{DATASET TYPE} Viewed {DD MMM YYYY}, {DATASET URI}

A specific example from [8], p. 62, is:

Dataset 3: Australian Government Department of the Environment
(2013) Australia World Heritage Areas. Bioregional Assessment Source
Dataset. Viewed 19 April 2015, http://data.bioregionalassessments.gov.au/
dataset/4927789b-7ba7-4a77-b6fc-be1b29b6590c.
6 https://en.wikipedia.org/wiki/Named graph.

http://data.bioregionalassessments.gov.au/dataset/4927789b-7ba7-4a77-b6fc-be1b29b6590c
http://data.bioregionalassessments.gov.au/dataset/4927789b-7ba7-4a77-b6fc-be1b29b6590c
https://en.wikipedia.org/wiki/Named_graph
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3 Results

Our methodology is demonstrated in action within the context of our operational
government science agency, Geoscience Australia (GA), that has published many
thousands of datasets with persistent identifiers and many hundreds of web ser-
vices but has not, until now, provided citable identifiers for web service-generated
dynamic data.

In the following two subsections, we show how the information required to
satisfy our requirements for a web service request citation can be collected at
either the client or server side of the request. In both scenarios, we consider a
request made to a geospatial web service by a Virtual Laboratory (VL). VLs are
online scenario processing tools that marshal data from various sources, such
as web services or user input, and then makes processing routines on that data
available with managed processing (cloud) resources. In these scenarios, the VL
can represent any sophisticated, automated, web service client. Figure 3 shows
a VL client using data generated by a web service request ‘WS output data’
alongside other data to generate VL outputs. This figure will be referred to in
the following subsections.

Fig. 3. A Virtual Laboratory using web service request and other data

3.1 Demonstration, Client-Side Recording

In previous work some of these authors were involved with, a particular Virtual
Laboratory known as VHIRL7 had functions added to its code allowing it to
log its operations using PROV-O according to the general pattern of Fig. 2 [11].
Once logged (recorded in an RDF document) VHIRL is then able to send the
information to any PROV-O-compliant provenance store; the store need not be
associated with the data supplier. As per any client external to a web service
provider ad without access to its internal information, VHIRL was able to know
about the following objects from Fig. 3:

– the procedure – this is the web service request query it is making;
– the WS output data – the data the client receives;
7 Virtual Hazard Impact & Risk Laboratory: http://www.vhirl.net.

http://www.vhirl.net
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– some information about the WS process – at least approximate Activity class
prov:wasStartedAt & prov:wasEndedAt values;

– all values directly associated with the client such as other data, the client
outputs (VL outputs) and client Agent details.

VHIRL and other web service clients may not necessarily know details about
the web service system Agent directly – some may be inferred by the web service
endpoint – and they are unlikely to know the identity of, or any details for, the
input data to the web service request. Given the establishment of an Agent
register (see Subsect. 2.2), we have added code to VHIRL and other similar VLs
that records the identity (URI) of the web service Agent and we now derive its
endpoint from that via an XPath query of its metadata, rather than recording
it directly. Likewise, the client may look up URIs for the input datasets to the
web service by querying the Agent metadata since our organisation’s policy is to
explicitly associate every published web service with the datasets it draws from.
This layer of indirection has the added bonus for system operations of allowing
us to alter web service endpoint locations without breaking VL or other client
functionality.

Since all datasets associated with registered web services are themselves reg-
istered and stored with metadata too, clients can satisfy the Fig. 2 data model
by recording just the URIs for web service system and additional input datasets
they use with it in their actions as any further information needed can be queried
for.

Portions of an example RDF report, serialised in the turtle format, repre-
senting the scenario in Fig. 3 with a request to the “CWTH OPGGSA 2006
Petroleum Blocks AMB2001a” web service from a VHIRL VL client is given in
Listing 1. This report is available from GA’s PROMS Server via the report
URI which a central persistent ID service ensures is addressable as per the
listing (http://pid-test.geoscience.gov.au/dataset/provenance/e1b2eb), regard-
less of server location within the organisation.

Listing 1. Example RDF document generated by a web service client

@pref ix : <http :// pid−t e s t . g e o s c i en c e . gov . au/ datase t /provenance/> .
@pre f ix r d f s : <http ://www.w3 . org /2000/01/ rdf−schema#> .
@pre f ix xsd : <http ://www.w3 . org /2001/XMLSchema#> .
@pre f ix prov : <http ://www.w3 . org /ns/prov#> .
@pre f ix proms : <http :// promsns . org / de f /proms#> .
@pre f ix gadata : <http :// pid−t e s t . g e o s c i en c e . gov . au/ datase t/> .
@pre f ix gasrv : <http :// pid−t e s t . g e o s c i en c e . gov . au/ s e r v i c e /> .

: e1b2eb a prov : Bundle ;
r d f s : l a b e l ”VL Report ”ˆˆ xsd : s t r i n g ;
prov : wasAssociatedWith gasrv :VHIRL;
prov : generatedAtTime ”2016−02−17T14 :27 : 04”ˆˆ xsd : dateTime .

: 7 d7ae2 a prov : Ac t i v i ty ;
prov : wasAssociatedWith gasrv : CWTH OPGGSA 2006 Petroleum

Blocks AMB2001a ;
prov : used

http://pid-test.geoscience.gov.au/dataset/provenance/e1b2eb
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gadata :132 cbd8e−b004−0670−e053−12a3070add7e ,
gadata :184 c15be−3f59−da6e−e053−10a3070a6b6b ,
gadata :184 c15be−3f5b−da6e−e053−10a3070a6b6b ,
: b f683c ;

prov : generated : 1 e f37b ;
prov : startedAtTime ”2016−02−17T14 :10 : 17”ˆˆ xsd : dateTime ;
prov : endedAtTime ”2016−02−17T14 :27 : 02”ˆˆ xsd : dateTime .

: b f683c a prov : Plan ;
r d f s : l a b e l ”WS reques t query s t r i n g ”ˆˆ xsd : s t r i n g ;
prov : wasAttributedTo gasrv :VGL;
prov : va lue ”SERVICE=WFS&VERSION=1.1.0&REQUEST=GetFeature

&MAXFEATURES=3&SRSNAME=urn : ogc : de f : c r s :EPSG:6 .9 :4283&
BBOX=−38.7204/104.4244/−39.2583/105.4896”ˆˆ xsd : s t r i n g .

: 1 e f37b a prov : Ent ity ;
r d f s : l a b e l ”Pet . Blks WS Output”ˆˆ xsd : s t r i n g ;
prov : generatedAtTime ”2016−02−17T14 :13 : 06”ˆˆ xsd : dateTime ;
prov : has provenance : e1b2eb .

The definition of the web service request output dataset shown in Listing 1
(1ef37b) does not contain a URI to an external register as that dataset’s data,
the results of the request, has not been stored anywhere, therefore we only have a
representation of it as a Entity in the PROMS Server provenance store with no
PROV-O value component. The procedure/query Plan object in this example
also has no representation in an external register but does have its value recorded
using the PROV-O value property. If the query was too large to be stored as a
text string, it could have been stored in an external repository, perhaps a simple
text repository that uses URIs/URLs for file identification, such as the GitHub
version control repository8.

In order to generate a web service request citation from the code in Listing 1,
as per the format given in Subsect. 2.5, the following mapping logic is used:

– {DATASET REF} – Supplied by the document containing the citation;
– {DATASET OWNER} – an Agent which the web service Agent acted for,

determined by inferencing;
– {YEAR} – the year the request was made, i.e. the year of prov:generated
AtTime;

– {DATASET TITLE} – “Output of the” + WS Agent label + “Web Service”,
or other static text preferred by the generator;

– {DATASET TYPE} – “Web Service request outputs”, or other static text
preferred by the generator;

– {DD MMM YYYY} – prov:generatedAtTime of request output data;
– {DATASET URI} – the URI of the Entity.

The mapping logic results in the following human-readable request citation:

VHIRL Virtual Laboratory (2016). Outputs of the CWTH OPGGSA 2006
Petroleum Blocks AMB2006a Web Service. Web Service request outputs.

8 http://github.com.

http://github.com
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Viewed 17 Feb 2016, http://pid-test.geoscience.gov.au/dataset/provenance/
1ef37b

The logic as to when to generate a web service request citation is an issue
for the configuration of the client. In the case of VHIRL, a decision was made
to allow its users [11] to opt in for provenance reporting allowing them to run
scenarios without it and to turn it on as required. It is conceivable that other
VLs participating in sensitive operations would report provenance by default.

3.2 Demonstration, Server-Side Recording

Where a client application may not have the sophistication required to allow
provenance recording as per VHIRL in the above Subsection, it is possible for
the web service owner to enable clients to complete the data model as per Fig. 3
by storing some request log information entirely at the server side of the request
and making it available via another web service. Recording information in this
way obviates the need for the client-side activity provenance recording but, of
course, imposes additional work on the web service owners.

On the server side (the web service request infrastructure), we know about:

– the procedure – captured in web log files;
– the WS process – prov:wasStartedAt & prov:wasEndedAt and other values

also captured in web log files;
– the WS system – whether registered or not, this is known to the WS provider;
– input data – known to the WS provider

We do not know about the WS output data directly (we could reproduce it
but we don’t capture it) and we don’t know any details of external clients such
as the VL in the example in Fig. 3.

As per client-side capture, it behoves us to record information about Agent
objects thus the establishment of a register (Subsect. 2.2) is still a requirement.
Its establishment provides the links between WS requests and the input datasets
they use. We then mine web logs for information about the procedure.

In order to capture web server log information for GA procedures and WS
process information, we:

– capture all the web requests made of GA web services at a single point
via web server logs;

– filter the logs to retain only ‘interesting’ requests, i.e. those likely to be
from data using applications, not system maintenance requests which are in
the majority. This is accomplished by techniques such as discarding requests
from specific IP address ranges and certain User Agents;

– associate the filtered log entries with WS Agent objects via an endpoint
look-up;

– store the associated log entries in a provenance store as per Fig. 4.

http://pid-test.geoscience.gov.au/dataset/provenance/1ef37b
http://pid-test.geoscience.gov.au/dataset/provenance/1ef37b
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Fig. 4. The web requests repository objects (using PROV-O & XSD classes)

Having completed these actions, we have a combined repository for Activity
objects (WS processes) and one type of Entity object (procedures). The prove-
nance store acts as a register for both of these types of objects which can then
be accessed via URI and via SPARQL queries.

To generate citations, users whose clients have performed web service requests
need to discover the particular web service request entry in the provenance store
relevant to them and then assemble data as per Fig. 2’s data model by extraction
from the provenance store and from the Agent register’s metadata. They will
likely be able to find request entries based on combinations of date range and
web service metadata matching.

4 Discussion and Conclusions

Here we have shown that loosely-coupled client and server systems without
knowledge of each other’s internals can record the information needed to meet
a particular data model and that the information collected can produce both
machine and human readable citation forms. While client recording produces
the most direct result, it is not always possible and, where it is not, web log
records linked to an Agent register can be used.

The decomposition of web service requests into parts with the endurant ones
stored as per common dataset and system metadata methods allows the occur-
rent parts of the request to be represented with minimal metadata only. Storage
volumes for the information needed for web service request citations as recorded
by clients are not onerous as Listing 1 shows indicating the client method is scal-
able. The server method is scalable insofar as an organisation has the appetite
for filtered log storage volumes.

How web service request citations are used is a matter outside of scope for this
work. We can imagine VHIRL metadata outputs containing input data citations
provided alongside its “VL outputs”, as per Fig. 3 that could be made available
to its users in order for them to properly reference their experiments. For the
server scenario, citation use could occur when users of the web services request
dataset transparency information in retrospect.

PROV-O Specialisation. Regarding the specialisation of PROV-O: we have
found it unnecessary to subclass the general-purpose ontology for this work.
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Initially we created our own ontology with specific classes such as Report for
the provenance documents but have been able to replace these with the general
purpose Bundle with no loss of expressiveness. We believe this has been possible
due to the fact that much of our contextual metadata is stored in dataset and
service registers which lightens the information requirements of the provenance
data.

5 Future Work

These methodologies comfortably accommodate data-delivering web services but
do not deal with web processing service or similar which require sophisticated
procedures to operate. It can be imagined that such services could be accommo-
dated with an extension of the Plan-as-input-data pattern shown here.

We have started using the Data Provider Node Ontology (DPN-O) [13] to
capture information about web service Agent objects rather than ISO19115-1
Service records. ISO19115-1 use is not tightly bound to reference metadata such
as vocabularies nor does it prescribe explicit range values for many fields. We are
implementing DPN-O with service classification vocabularies that we believe will
preserve knowledge of service types and roles over time, even when the specific
versions and brands have been forgotten.

We hope to soon link our public dataset (Entity), Agent and provenance
metadata registers together into a single federated register for our agency using
specialisations of the Linked Data Platforms Vocabulary9 and Registry vocabu-
lary10. This will aid typed object discovery in general as it will allow human or
machine users to discover the endpoints to registers containing classes of object
by “following their nose” from the top-level register. Thus they will not need to
be directly informed of register endpoints for requests that require information
from multiple registers, only their required objects’ classes.
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Abstract. The Internet of Things (IoT) is resulting in ever greater vol-
umes of low level sensor data. However, such data is meaningless without
higher level context that describes why such data is needed and what use-
ful information can be derived from it. Provenance records should play
a pivotal role in supporting a range of automated processes acting on
the data streams emerging from an IoT-enabled infrastructure. In this
paper we discuss how such provenance can be modelled by extending
an existing suite of provenance ontologies. Furthermore, we demonstrate
how provenance abstractions can be inferred from sensor data annotated
using the SSN ontology. A real-world application from food-safety com-
pliance monitoring will be used throughout to illustrate our achievements
to date, and the challenges that remain.

1 Introduction

The Internet of Things (IoT) concept refers to the seamless integration of phys-
ical objects, sensors and mobile devices into the information network. The IoT
encompasses numerous technologies, services and standards and is seen by many
as the cornerstone of the emerging ICT market. Such devices are becoming ever
cheaper and easier to deploy; for example, CAO Gadgets1 market a range of low
power plastic tags able to measure temperature, humidity and motion. Due to
their low cost, there is now significant potential for technologies such as these to
be used in a range of applications that require routine data capture, condition
monitoring and behavioural tracking. One such application is monitoring of food
safety compliance.

In its 2015–2020 strategic plan, the UK’s Food Standards Agency observes
that: “It is the responsibility of people producing and supplying food to ensure

The research described here was funded by an award made by the RCUK IT as a
Utility Network+ (EP/K003569/1) and the UK Food Standards Agency. We thank
the owner and staff of Rye & Soda restaurant, Aberdeen for their support throughout
the project.

1 http://www.wirelesstag.net/.
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it is safe and what it says it is”. Non-compliance with food storage and handling
guidelines presents a significant risk to individuals and society as a whole. As an
illustration, campylobacter is the most common cause of bacterial food poisoning
in the UK, and each year is estimated to be responsible for 280,000 cases of food
poisoning - at a cost of around £900M to the economy. As a result there is now
considerable interest in the use of technologies such as low-cost wireless meat
probes as a means to monitor cooking processes. It is now perfectly possible to
imagine a future restaurant kitchen in which a suite of sensors monitor food
from the moment it arrives until it is served to a customer, with automated
systems alerting staff to take appropriate action when necessary, and providing
management information to aid staff training and reduce wastage.

Provenance has an important role to play in documenting entities repre-
senting real physical objects, and their relationship to activities as part of a
food preparation workflow. Given descriptions of workflow plans (i.e. prospec-
tive provenance documenting expected behaviour) and records of actual events
(i.e. retrospective provenance documenting what really happened), provenance
can help support compliance analysis - by determining whether expected food
safety protocols have been followed. For example, whether chilled food has been
stored within the correct temperature limits (typically 1–5 ◦C).

While the W3C recommendation for provenance capture PROV2 is suitable
for modelling the retrospective part of a provenance record (i.e. workflow exe-
cution) it does not support descriptions of workflow plans [MM12]. Approaches
such as D-PROV [MDB+13], ProvOne [CVLM+14], and P-PLAN [GG12] have
all proposed extensions to the PROV model, to enable more detailed descriptions
of such plans. These extensions typically introduced new concepts to describe
workflow structures in terms of expected workflow steps and corresponding
inputs and outputs. As part of our work on the SC-PROV model [Mar16,MEC13]
we expanded on these earlier efforts, by providing a means to document con-
straints (e.g. preconditions) that might be associated with individual steps of
a workflow plan. The ability to represent such constraints is especially rele-
vant within the food safety domain, where frameworks such as HACCP (Hazard
Analysis and Critical Control Point) define process workflows in terms of criti-
cal limits associated with the various workflow steps. Currently, monitoring of
HACCP based workflows in commercial kitchens is predominantly a manual
exercise and relevant records (e.g. temperature readings) are stored off-line.

In this paper, we argue that by enhancing IoT technology we can auto-
mate HACCP compliance monitoring, and facilitate other activities such as data
exchange with appropriate government agencies. To support this, we describe an
ontological model for recording prospective and retrospective provenance in the
food safety domain. Furthermore, we demonstrate the utility of this model in the
context of automated provenance generation for food safety compliance checking
using a set of real sensor observations and sample inference rules.

The remainder of this paper is structured as follows: Sect. 2 discusses rele-
vant related work in the provenance, semantic sensing and food safety arenas;

2 https://www.w3.org/TR/prov-dm/.

https://www.w3.org/TR/prov-dm/
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Sect. 3 describes the HACCP model in terms of its key elements, before Sect. 4
discusses a provenance model (FS-PROV) tailored to the food safety domain;
Sect. 5 outlines an experimental deployment into a commercial kitchen. Using
examples drawn from this real-world setting, we then discuss how provenance
assertions are inferred from sensor data (Sect. 6), and how a range of queries
can be used to check HACCP compliance (Sect. 7). The paper concludes with a
discussion highlighting issues and future directions (Sect. 8).

2 Related Work

Work in the provenance literature includes generic models for recording prove-
nance (e.g. PROV [MM12]) and mechanisms for publishing plans and execu-
tion traces of scientific and social computation workflows (e.g. P-PLAN [GG12],
D-PROV [MDB+13], ProvONE [CVLM+14], and SC-PROV [Mar16]). While
the PROV specification could be used to record execution traces of food prepa-
ration workflows, the resulting provenance records would be limited in terms of
their utility - due to the lack of information about the structure of the work-
flow plans, and configuration details of individual workflow tasks (e.g. HACCP
constraints). Missier et al. [MDB+13] previously highlighted these limitations
of PROV and proposed the D-PROV extension (which in turn later served as
a starting point for the ProvONE extension). D-PROV and ProvONE provide
a vocabulary for annotating execution traces of data-driven scientific workflows
with descriptions of data-dependencies based on the planned data flow, but do
not provide generic concepts for modeling constraints associated with workflow
elements. Garijo and Gil [GG12] proposed a PROV extension called P-PLAN
that focuses on describing abstract workflows in the form of p-plan:Step(s) and
p-plan:Variable(s) to support modelling of diverse workflow structures. Steps
represent the various planned activities that need to be executed, while variables
represent the expected inputs and outputs of these activities. A step can refer to
one or more activities recorded by PROV in the retrospective provenance record.
This enables a provenance record to capture variant execution traces of the same
plan. SC-PROV further extended P-PLAN with a vocabulary for describing var-
ious sc-prov:Condition(s) that might be associated with a step. In addition, it
provides a means for capturing the parameters associated with such conditions,
and the outcome of evaluation of these conditions during the workflow execution
(i.e. a record of whether the condition was satisfied or not). This is modelled in a
retrospective provenance record using sc-prov:EvaluationContext. This concept
binds an sc-prov: Condition to a single instantiation of a p-plan:Step, and to
the evaluation result represented as a prov:Entity. While the SC-PROV model
supports modeling of constraints associated with individual steps, it is not able
to associate constraints with variables. This is required to accommodate the
HACCP view of constraints (e.g. cooked meat should have a core temperature
of greater than 75 ◦C).

The Semantic Sensor Network ontology (SSN) [CBB+12] represents the
state-of-the-art in sensor metadata models and includes support for characteri-
sation of sensor hardware devices, sensor observations, and links between sensor
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capabilities and features of interest in the real world. In our view, SSN has
been under-utilised in the IoT arena, where it could provide a useful platform
for further standards development. Previous work [CCT14] defined alignments
between the SSN and PROV-O ontologies, along with mechanisms for inferring
provenance of sensor data. However, the richness of SSN descriptions for indi-
vidual sensor readings can be seen as an obstacle to scalability and it is therefore
necessary to consider how much of the ontology to use in any given setting. The
volume of sensor observations likely in any application setting (e.g. food safety
monitoring) also means that it is essential to find a way to identify and record
abstractions, such as key events.

3 Food Safety and The HACCP Model

The HACCP model focuses attention on a set of critical food preparation fac-
tors. Hazards are anything that may introduce harm to customers, which can be
microbiological, chemical or physical. Control Measures are ways to prevent or
control hazards. For example, the survival of harmful bacteria in food, which may
cause food poisoning, can be controlled by thorough cooking. Control Measures
can be associated with a “Critical Limit”. For example, food is considered to be
cooked properly if the core temperature reaches at least 75 ◦C. Other aspects of
the HACCP system encompass record keeping and verification to ensure that
measures are being consistently applied. Businesses are expected to create and
document their own house rules to reflect food safety working practices and
articulate hazards, control measures, critical limits, etc. An example food prepa-
ration workflow is depicted in Fig. 1. The example illustrates part of a typical
food preparation workflow where steps (e.g. storage and cooking) are associated
with relevant HACCP constraints.

To support compliance checking of HACCP-based food safety workflows, it
is necessary to answer queries such as the following: Q1: How long has this meat
item been stored in compliance with HACCP guidelines for chilled storage? Q2:
How long did this food item spend outside chilled storage before being cooked? and
Q3: When was this food item first cooked in accordance with HACCP guidelines?

Storage Preparation Cooking

HACCP 
Threshold 

HACCP 
Threshold  

Minced Beef # 1 
(Chilled)

Minced Beef # 1
(Prepared)

Minced Beef # 1
(Cooked)

cooked from: 15:18:00 

Burger Preparation Workflow Plan

A single burger prepared according to the plan

from: 14:05:00 to: 15:05:00 from: 15:05:00 to: 15:08:00

Fig. 1. A sample food preparation plan and corresponding instantiations of the plan
concepts.
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Step

HACCPStep

Resource
isRequiredResourceFor

isOptionalResourceFor

Physical 
Object

Constraint

isResultOf

Plan

hasGoal

Parameter
hasParameter

Workflow 
Activity

instantiated
ByActivity

Workflow 
EntityinstantiatedByEntity

restricts
inContextOfHACCP 

Constraint

Fig. 2. An illustration of the core FS-PROV concepts for modelling provenance of
HACCP-based food preparation workflows and their execution.

In the next section, we describe how a suite of existing provenance vocabularies
can be extended to support such queries.

4 Modelling Provenance of a HACCP Workflow

To enable modelling of HACCP-based food preparation workflows, we have
extended three existing ontologies, namely PROV-O3, SC-PROV-O4 and
P-PLAN5. PROV-O was selected for its suitability as a means to model the ret-
rospective workflow provenance. P-PLAN was used to model prospective prove-
nance of a workflow, and these capabilities were further extended with concepts
from SC-PROV-O in order to represent plan constraints and their evaluation
results during a workflow execution. Figure 2 illustrates the core concepts of
the FS-PROV ontology6 (we will use the fs prefix when referring to these con-
cepts in the text). FS-PROV extends the various ontologies through definition
of subclasses of existing concepts with the alignments specified in Fig. 3. The
core concepts include definitions of planned food handling activities (fs:Step)
and expected physical and virtual items (fs:Resource) that are required and
produced by individual steps. In order to capture compliance requirements, we
use the concept fs:HACCPConstraint together with the description of a physi-
cal property (fs:Parameter) of an item used and/or produced by the step of a
workflow plan. In contrast with the SC-PROV model, fs:Constraint can also be
associated with fs:Resource (e.g. the product of a cooking step) via a binding
property fs:restricts. This property can link constraints directly to the represen-
tation of food entities. As mentioned in Sect. 2, we argue that this is a more
suitable approach to model HACCP constraints which are typically specified in
the form of condition-parameter values to test some observable properties (e.g. a
core meat temperature) against some threshold values. To capture the results of a
condition evaluation in the retrospective provenance record, fs:entity (not shown
in Fig. 2) then binds sc-prov:EvaluationContext to the corresponding instantia-
tion of an fs:Resource. In contrast to P-PLAN, we do not link the instantiations

3 https://www.w3.org/TR/prov-o/.
4 https://w3id.org/abdn/socialcomp/sc-prov.
5 http://vocab.linkeddata.es/p-plan/.
6 https://w3id.org/abdn/foodsafety/fs-prov.

https://www.w3.org/TR/prov-o/
https://w3id.org/abdn/socialcomp/sc-prov
http://vocab.linkeddata.es/p-plan/
https://w3id.org/abdn/foodsafety/fs-prov
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fs:Resourcefs:Step fs:Workflow 
Entity

fs:Workflow 
Activity fs:Constraint fs:Plan

p-plan:Step p-plan: 
Variable prov: Entity prov: 

Activity p-plan:Plansc-prov: 
Condition

Fig. 3. Alignment between the concepts of FS-PROV and concepts originating from
PROV-O, SC-PROV-O, and P-PLAN.

of planned concepts via a functional relationship to only one template descrip-
tion (i.e. p-plan:Step or p-plan:Variable). Instead, we define relationships in the
opposite direction (see fs:instantiatedByActivity and fs:instantiatedByEntity in
Fig. 2). This enables independent modelling of various abstractions of workflow
plans (e.g. a more detailed plan for the purposes of kitchen monitoring and less
detailed for the food safety authority - without the inclusion of sensitive data)
that can then be linked to the same execution trace. Furthermore, we defined
the fs:inContextOf property to capture the relation between constraint para-
meters (e.g. surface temperature) and a particular resource. The fs:hasGoal was
introduced to annotate the final output of a workflow plan (e.g. a cooked burger).

5 Experimental Deployment

As part of our experimental setup, we deployed 10 wireless tags from CAO
Gadgets7 and a wireless meat probe from Corintech8 into a commercial kitchen
in Aberdeen, UK. We focused on gathering temperature sensor data that related
to three specific steps within a food preparation workflow: storage of raw burgers
in their chilled state, preparation of the raw burgers, and cooking. Using the
deployed sensors we collected data from two distinct experimental scenarios:
Scenario1 - kitchen staff complied with the HACCP temperature constraints for
storage and cooking of minced beef; and Scenario2 - staff deliberately violated
these constraints.

Limitations on our experiments were caused by both hygiene and technolog-
ical restrictions. The wireless tags could not be attached directly to the meat
product or be used during cooking. As a result, continuous monitoring of the
transition of the raw meat product into its fully cooked state with one type of
sensor was not possible. While in its raw state, burgers were contained within
a plastic bag with a wireless tag attached on the outside (Fig. 4 - left). A meat
probe was then used to record the core meat temperature during cooking (Fig. 4
- right). A common precondition for all scenarios explored in our experiment
was that the tracked burgers had been placed into the fridge at least two hours
before the commencement of each experiment. The first part of the experiment
focused on the collection of the “good” data. Chefs were asked to cook six burg-
ers9. All burgers were kept at the correct temperature while in storage and they
7 http://wirelesstag.net/.
8 http://www.corintech.com/.
9 Four burgers were cooked separately and two burgers were cooked at the same time.

http://wirelesstag.net/
http://www.corintech.com/
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Fig. 4. Wireless tag attached to a pack containing a single raw burger (left). Wireless
meat probe used to measure the core temperature of a burger during cooking (right).

Step_1
fs-ext:Cooling, 
fs:HACCPStep

burger_chilled
fs-ext:FoodItem, 

Ingredient,MincedBeef;
fs:PhysicalObject

fs:isResultOf

Step_2
fs-ext:Preparation, 

fs:HACCPStep

burger_prepared
fs-ext:FoodItem, 

Ingredient,MincedBeef;
fs:PhysicalObject

fs:isResultOf

fs:isOptionalResourceFor

Step_3
fs-ext:Cooking, 
fs:HACCPStep

burger_cooked
fs-ext:FoodItem, 

Ingredient,MincedBeef;
fs:PhysicalObject

fs:isResultOf

fs:isRequiredResourceFor

constraint_cooked
fs-ext:TemperatureConstraint, 

CookedMeatCoreTemp; 
fs:HACCPConstraint

fs:restricts

constraint_chilled
fs-ext:TemperatureConstraint, 

CookedMeatCoreTemp; 
fs:HACCPConstraint

fs:restricts

surface_meat_temp
fs-ext:Temperature, 

SurfaceTemp; 
fs:Parameter

core_meat_temp
fs-ext:Temperature, 

SurfaceTemp; 
fs:Parameter

fs:hasParameter
fs:hasParameter

core_temp_threshold
fs-ext:FSA_Threshold, 

FSA_TemperatureThreshold; 
fs:Parameter

fs:hasParameter

surface_temp_threshold
fs-ext:FSA_Threshold, 

FSA_TemperatureThreshold; 
fs:Parameter

fs:hasParameter

fs:inContextOf fs:inContextOf

Fig. 5. An illustration of the plan concepts used in our burger tracking experiments.

were also cooked according to the HACCP constraint requiring that the core
meat temperature should exceed 75 ◦C. In the second part of the experiment, we
simulated non-compliance by asking the chef to under-cook four burgers. This
provided us with sample sensor data from which HACCP compliance should not
be inferred. In the next section we describe how the provenance records reporting
compliance with HACCP constraints were generated.

6 Inferring Retrospective Provenance

The execution trace of our food preparation workflow was inferred using low-level
sensor data and static descriptions of the workflow plan (e.g. HACCP constraint
thresholds). Raw sensor data collected during the deployment were annotated
using the SSN ontology. Each sensor reading (ssn:Observation) was associated
with a specific ssn:Sensor (e.g. a temperature sensor) represented as an instance
of an ssn:SensingDevice. We assumed that each food item (i.e. a burger) that
was tracked within our IoT system was described by a unique URI. This was
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Fig. 6. An illustration of observed temperature variations in relation to a HACCP
limit (left) and their relationship to inferred provenance annotations (dashed lines in
the graph on the right).
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Fig. 7. An illustration of observed temperature variations in relation to HACCP limits
(left) and their relationship to inferred provenance annotations (dashed lines in the
graph on the right).

used to represent an ssn: FeatureOfInterest10 of an ssn:Observation produced
by ssn:Sensor(s) (e.g. observations produced by wireless tag1 had a feature of
interest http://example.org/meatItem1).

An extended FS-PROV ontology11 (namespace fs-ext) was used to describe a
domain-specific food preparation plan required for the experimental deployment.
Figure 5 illustrates the manually populated ontology with instances for a three-
step burger preparation plan and includes: three instances of fs: HACCPStep
(i.e. storage, preparation and cooking), two instances of fs: HACCPConstraint
(i.e. constraint on chilled meat, and constraint on cooked meat), four fs: Para-
meters (i.e. observed surface and core temperatures, and thresholds) and three
instances of fs-ext:MincedBeef (i.e. fs:Resources representing the changing states
of burgers within the workflow from chilled to cooked).

The FS-PROV-based provenance abstractions were created using SPARQL
INSERT queries that implemented rules to recognise events from low-level sen-
sor data (see Figs. 6 and 7). To infer provenance entities indicating that a burger

10 The meat probe sensor data had to be manually annotated with the feature of
interest (i.e. the meat item for which the core temperature was measured) as the
current design of the probe does not support automatic recognition of probed items.

11 https://raw.githubusercontent.com/m-markovic/FoodSafety-Data/master/fso
extended.ttl.

http://example.org/meatItem1
https://raw.githubusercontent.com/m-markovic/FoodSafety-Data/master/fso_extended.ttl
https://raw.githubusercontent.com/m-markovic/FoodSafety-Data/master/fso_extended.ttl
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burger_cooked
fs-ext:MinceBeef
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Fig. 8. An example documenting that a fs:WorkflowEntity satisfies a planned con-
straint.

SELECT ?item ?start ?finish

WHERE {

?storageStep a fs-ex:Storage.
?resultResource fs:isResultOf ?storageStep;fs:instantiatedByEntity ?result.
fs-ex:HACCPTempConstraintChilledFood fs:restricts ?resultResource.
?result a fs:WorkflowEntity;prov:specializationOf ?item; prov:generatedAtTime ?start.
?result prov:invalidatedAtTime ?finish.
?evaluationContext fs:entity ?result.
?evaluationContext sc-prov:hadCondition fs-ex:HACCPTempConstraintChilledFood.
?evaluationContext sc-prov:hadResult ?evaluationResult.
?evaluationResult a fs:WorkflowEntity; prov:hasValue "true".

VALUES (?item) {(<http://example.org/meatItem1>)} }

Fig. 9. An example SPARQL query to retrieve start and end time for the entity rep-
resenting a food item in a chilled state.

was in a chilled state (i.e. instantiations of the burger chilled resource in Fig. 5),
we used the first observation which reported meat surface temperature falling
below the corresponding HACCP threshold. Similarly, an observation reporting
meat surface temperature rising above the HACCP was used to infer a new
provenance entity representing a burger in a preparation stage and at the same
time the “chilled entity” was invalidated using the prov:InvalidatedAtTime asser-
tion. Entities representing cooked burgers were generated at the point when an
observation from a meat probe reported core temperature above the correspond-
ing HACCP threshold. At the same time the entities describing a burger in a
preparation stage were updated with the prov:InvalidatedAtTime assertion.

As a result of our approach, entities representing burgers in their chilled
and cooked state were only inferred if the corresponding HACCP constraints
were satisfied. To record this, we generated additional annotations noting that
a corresponding HACCP constraint had been satisfied (Fig. 8).

7 Querying Food Provenance

The query presented in Fig. 9 can be used to retrieve the times when a meat item
(identified by a specific URI) was observed to comply with the HACCP temper-
ature constraint for chilled storage. By using this approach, we were able to
construct additional queries and successfully retrieve evidence which recorded
whether a food item was in compliance with relevant HACCP constraints
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throughout the storage, preparation and cooking stage. When no evidence of
compliance was recorded (e.g. a burger was under-cooked) the corresponding
query returned no results. To evaluate our provenance queries we generated a
gold standard data set based upon a researcher’s observations of the kitchen
activities; this was then used to cross-check the results provided by the sample
provenance queries.

It is important to recognise that from the HACCP-based provenance perspec-
tive, the activities recorded in the provenance record do not necessarily mirror
the events observed in the physical kitchen environment. To illustrate this point,
consider a situation when a food item is removed from chilled storage. Staff would
immediately consider this item as no longer being stored in a chilled state. How-
ever, the item might still maintain a temperature below the HACCP threshold
for some time after leaving the fridge. In the provenance record the item would
therefore remain in the chilled storage state for some time (until its temperature
rose beyond the HACCP limit).

To illustrate the utility of the FS-PROV model, we have compared the num-
ber of triples required to describe the provenance abstractions to the number
of triples required to describe the raw sensor data using SSN (see Fig. 10). We
used JENA’s12 OntModel to store annotated sensor data using the SSN concepts
described earlier in this paper (see Sect. 6).

Fig. 10. A comparison of the number of SSN triples required to characterise the sensor
data vs. the corresponding FS-PROV provenance assertions.

The provenance model (with model specification set to OWL MEM RDFS
INF ) was firstly loaded with an extended FS-PROV ontology (i.e. the workflow
plan) and this was followed by addition of inferred retrospective provenance for
each of the observed meat items. From our results, it is clear that FS-PROV
based provenance abstractions can significantly reduce the number of triples
required to capture compliance of HACCP-based workflows. However, this app-
roach also forces us to consider the trade-off between storing abstractions vs. the
original sensor data, which would enable re-evaluation of compliance. In addi-
tion, it raises additional questions regarding the reliability of tools that generate
such abstractions. FS-PROV could potentially re-use other SC-PROV concepts
(e.g. sc-prov:ParameterCollection) to record instantiations of parameter values
(e.g. temperature readings). However, it may be necessary to introduce new

12 https://jena.apache.org.

https://jena.apache.org
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mechanisms to decide what parameter values should be recorded. For example,
we might have recorded three sensor readings (i.e. HACCPConstraint parame-
ter instantiations) that prove that a food item was cooked (e.g. readings from a
meat probe over a period of 30 s). However, we might have recorded thousands
of observations that prove the compliance of a food item being in its chilled
state (e.g. readings from a wireless tag over a period of 2 days). If we recorded
all the parameter instantiations that correspond to the compliance of an entity
with the HACCPConstraint for chilled storage, we would be negating the bene-
fits in terms of storage requirements. Alternatively, if only a subset of readings
(e.g. the readings just before and after an entity entered the chilled state) were
recorded, new classes or properties would be required to record that these were
only a sample of the observed sensor data. During our experiments we encoun-
tered various issues with sensor accuracy and sampling rates. While information
about sensor calibration and measurement errors can be recorded as part of the
SSN descriptions of raw data, we did not consider these in our work, and they
remain challenges for the future.

8 Conclusions and Future Work

In this paper we have outlined a promising approach that can be used to gener-
ate provenance abstractions of food safety sensor data. We have demonstrated
that provenance records could play a significant role in facilitating scalable IoT
infrastructures in the food safety domain. Our initial experiments were per-
formed on static (archival) datasets. In our continuing work we aim to evaluate
the use of stream-based infrastructures for managing food safety sensor data. We
will investigate the feasibility of on-the fly inference of provenance abstractions
to support real-time food safety monitoring systems. In addition, we will explore
other potential provenance queries such as Q4: Who performed the activity that
influenced this food item? Q5: Why was the activity that influenced this food
item performed? and Q6: Where were the food preparation activities performed?
To answer Q4, the sensors would have to be able to identify the agent (e.g.
chef) who performed a particular activity involving the tracked food item. Such
information could then be captured within a provenance record by associating
an agent with a relevant activity such as an instantiation of the cooking step. To
answer Q5 and Q6, a provenance record would have to include descriptions of
activities that triggered the creation of entities which represent changing states
of a food item. For example, an activity representing a customer order would
trigger the activity representing the instantiations of the individual planned
steps such as preparation and cooking. The activities could then be linked using
prov:atLocation to a location where they were executed, for example, to a specific
restaurant.
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[CVLM+14] Cuevas-Vicentt́ın, V., Ludäscher, B., Missier, P., Belhajjame, K.,
Chirigati, F., Wei, Y., Dey, S., Kianmajd, P., Koop, D., Bowers, S.,
Altintas, I.: Provone: a PROV extension data model for scientific work-
flow provenance (2014). http://vcvcomputing.com/provone/provone.
html

[GG12] Garijo, D., Gil, Y.: Augmenting PROV with plans in P-PLAN: scientific
processes as linked data. In: Proceedings of the Second International
Workshop on Linked Science 2012 - Tackling Big Data. CEUR (2012)

[Mar16] Markovic, M.: Utilising provenance to enhance social computation. Ph.D.
thesis, University of Aberdeen (2016)

[MDB+13] Missier, P., Dey, S., Belhajjame, K., Cuevas-Vicenttin, V., Ludaescher,
B.: D-PROV: extending the prov provenance model with workflow struc-
ture. Technical report, School of Computing Science, Newcastle Univer-
sity (2013)

[MEC13] Markovic, M., Edwards, P., Corsar, D.: Utilising provenance to enhance
social computation. In: Alani, H., Kagal, L., Fokoue, A., Groth, P.,
Biemann, C., Parreira, J.X., Aroyo, L., Noy, N., Welty, C., Janowicz, K.
(eds.) ISWC 2013, Part II. LNCS, vol. 8219, pp. 440–447. Springer,
Heidelberg (2013)

[MM12] Moreau, L., Missier, P.: PROV-DM: The PROV data model. W3C Rec-
ommendation (2012). http://www.w3.org/TR/prov-dm/

http://vcvcomputing.com/provone/provone.html
http://vcvcomputing.com/provone/provone.html
http://www.w3.org/TR/prov-dm/


Modelling Provenance Collection Points
and Their Impact on Provenance Graphs

David Gammack1, Steve Scott2, and Adriane P. Chapman2(&)

1 Marymount University, Arlington, VA, USA
dgammack@marymount.edu

2 The MITRE Corporation, McLean, VA, USA
{slscott,achapman}@mitre.org

Abstract. As many domains employ ever more complex systems-of-systems,
capturing provenance among component systems is increasingly important.
Applications such as intrusion detection, load balancing, traffic routing, and
insider threat detection all involve monitoring and analyzing the data prove-
nance. Implicit in these applications is the assumption that “good” provenance is
captured (e.g. complete provenance graphs, or one full path). When attempting
to provide “good” provenance for a complex system of systems, it is necessary
to know “how hard” the provenance-enabling will be and the likely quality of
the provenance to be produced. In this work, we provide analytical results and
simulation tools to assist in the scoping of the provenance enabling process. We
provide use cases of complex systems-of-systems within which users wish to
capture provenance. We describe the parameters that must be taken into account
when undertaking the provenance-enabling of a system of systems. We provide
a tool that models the interactions and types of capture agents involved in a
complex systems-of-systems, including the set of known and unknown systems
in the environment. The tool provides an estimation of quantity and type of
capture agents that will need to be deployed for provenance-enablement in a
complex system that is not completely known.

Keywords: Provenance � Lineage � Agent Based Modelling � Modelling and
simulation � Complex systems

1 Introduction

Provenance, the record of creation, update and activities that influence a piece of data,
is used to: understand if data was produced correctly (according to published
methodology, or according to policy); detect suspicious behavior within complex
systems; and, enable trust during cross-organizational collaboration [3]. The utility of
the provenance stream for these purposes is tied to what information is actually col-
lected, and how far through the system the provenance can “see”.
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In our experience, when approached by government organizations seeking to
become provenance aware, the first question becomes: How much of the system must
be provenance aware in order to utilize the provenance data stream in the desired
manner? One of the first considerations is how many capture agents are needed to have
good coverage of the system of systems. The next question is, which system(s), if
provenance-capture enabled, will give the most “bang for the buck”?

In other words, an analysis of the system of systems with the utility of the final
provenance data stream is required to put capture points at appropriate places.
Unfortunately, in many cases, the “full workflow” isn’t known because of system
complexity and human cognitive load. In the case of system complexity, large numbers
of systems exist to form a complex system of systems and no one person knows all
systems and their interactions. The people required to administer a system know about
their system, but not who is using it or why. The running joke in one IT center:
Q: “How do you know who is using your system?” A: “Turn it off and listen in the
hallway to who starts screaming.” Meanwhile, the users of the system, see it merely as
a tool and have no knowledge where the underlying data resides and what other
systems may be called by the backend. Additionally, human cognitive load also plays a
part in creating an inaccurate picture of the system-of-systems. When asked, users can
faithfully recite their top-used tools, but become increasingly vague and forgetful of
lesser used systems.

In this work, we extend a modelling tool designed to simulate the provenance data
stream within a complex system of systems, with varying types and distributions of
capture agents. The original work [12] was limited in that it allowed a user to specify
the number of systems in a system-of-systems, but merely arranged that number upon a
grid and randomly assigned how provenance was captured at each point. This work is a
marked divergence from [12]; it is designed to take in the major systems used in a
workflow that can be described with fidelity by users. It also models the “grey areas”,
those parts of the system that are not well-remembered or documented. The modelling
tool allows a user to specify the known systems, and how they are expected to connect.
Using this as a base, the tool will run simulations over that base with augmentations of
“grey systems”. The contributions of this paper are as follows:

1. A simulation tool that analyzes how much provenance is captured in a system of
systems, including expansion of those systems to unknown and unspecified “grey
systems”.

2. A real-world use case from the US healthcare system that motivates the need for
anticipating “grey areas” in provenance capture.

3. An application of the tool that shows how the system performs over likely
scenarios.

Section 2 discusses related work, in particular capturing provenance, and Agent
Based Modelling. In Sect. 3, we present foundations that describe the complex system
of systems and motivate this work. Section 4 contains a real world US healthcare use
case. The architecture of our system and details on its implementation are in Sect. 5,
while in Sect. 6, the model is executed over various sample systems. Finally, in Sect. 7
we conclude and highlight future work.
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2 Related Work

Provenance has been touted as a tool to assist with scientific collaboration [19, 20, 25].
Unlike the system-of-systems we describe above, most of these systems [4, 20, 25, 29]
constrain the user to a single management system. Many “execution platforms” can be
used, but with a central management system and user-defined system-of-systems,
provenance tracking can occur with a single capture point within these workflow
managers. [3, 9] describe provenance-based techniques for assessing data trustwor-
thiness. However, in order to use the provenance, as described above, it must be
captured.

2.1 Provenance Capture

As described in [10], we note that there are classes of provenance capture agents.
Coordination-points: In some systems-of-systems, there are “coordination

points”. Coordination points are systems or software that provide natural bottlenecks.
Typically, these are systems that help order, transmit and manage data and jobs.
Examples of current coordinate point capture points include MapReduce [24], UNIX
kernel [22], GIT [23], and Enterprise Service Bus (ESB) [2]. Workflow (and yes/no
workflow) management systems such as [4, 20, 25, 29] are also good coordination-
points. Dynamic instrumentation has the same effect as a coordination point on a given
system [26].

Application-based: In some cases, an application is so heavily used that it is
beneficial to expend the resources to capture provenance information from just that
application. Examples include [5, 11, 21].

Manual: Many standards, such as [1], include provenance as components of the
required metadata; in many instances, much of that information is populated by hand
by a data curator. Unless the user is particularly motivated to capture provenance,
manual capture points have very low capture rates. Of particular interest are hybrid
approaches in which the application itself is somewhat provenance-enabled, but the
user makes the final decision as to what is important and needs to be stored [19].

Provenance reconstruction work, such as [16] is not considered in this work since
the accuracy of this provenance is not always equal to that obtained via making
applications and systems provenance aware.

2.2 Provenance Simulation

There have been several efforts to simulate provenance information. Typically, these
revolve around creating samples of provenance artifacts. [8] creates sample provenance
graphs based on workflows and user rules. The PLUS system [3] has DAGAholic, a
tool that creates provenance graphs of specified size, connectivity, sub-graph patterns
(tree, star, etc.). Sample provenance graphs such as [7, 10] are available on GitHub
ProvBench. To our knowledge, there is no simulator that simulates capture points for a
system of systems.
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2.3 ABMs

Agent-Based Models (ABMs) are a type of distributed computational simulation in
which a set of autonomous, goal-seeking, perceptive agents interact with each other and
with their environment in order to achieve some outcome. ABMs originated in the field
of computer science, in particular with multi-agent system (MAS) and distributed
artificial intelligence (DAI). In DAI applications, a problem is defined such that it can
be addressed in parallel by the efforts of multiple independent agents. In MAS appli-
cations, a number of agents address a problem in parallel by passing messages among
one another in a shared environment. ABMs combine the parallel and distributed
inter-agent communications of MAS applications with two-dimensional Cellular
Automata (CA) models that are used to form an artificial landscape with which the
agents may interact as well [13].

ABMs have been used in a variety of domains, including computational economics
[27], auction markets [14], social network analysis [17, 18], and public policy mod-
eling [6], to name a few.

In this study, an ABM is used as a computational platform to study the capture of
provenance information in a complex system of systems. The model consists of an
abstract landscape containing a network of arbitrarily connected agents, where the
agents are used to represent systems in an interconnected set of systems that share data.
The network also includes provenance monitoring agents as well, which represent
systems that are capable of detecting and logging provenance relevant transactions. As
time progresses in the simulation, information artifacts flow through the network, and
are subject to simulated update events which may or may not be observed by a
provenance monitoring agent, depending on the configuration of the original network
and the placement of provenance monitoring capabilities in the network. The ABM is
used as a modeling platform to study the interactions among systems in order to
provide quantitative metrics on the level of provenance obtained with a particular
distribution of provenance capture agents. Based on analysis of the simulated infor-
mation flow, a predefined agent connection topology, and a particular placement of
provenance monitoring systems in the simulation, various provenance management
topologies can be quantitatively compared and evaluated.

3 Foundations

To reiterate the problem, when looking to understand a system of systems, interviews
and code reviews are performed to understand systems touched and their interactions.
The techniques uncover a set of found, known systems, NF , and their interactions, EF .
We assume that the actual graph of interconnected systems, S, is:

S � ðNF ;EFÞ

S may also contain grey systems (i.e., those that are not well-remembered or
documented), NG, and as yet unfound connections EG. Thus, the number of systems in
the system of systems, S, is bounded by:
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NFj j  Nj j  NFj j þ NGj j

Meanwhile, the number of interactions, I, possible is bounded by:

EFj j  Ij j  ð NFj j þ NGj jÞ2

Each I is an interaction between systems over which data may flow during the
execution of a user’s tasks; each I represents a possible edge in a provenance graph.
Even with low numbers of grey systems, there can be large numbers of interactions that
are missing from the provenance record. [10] contains provenance datasets that high-
light how a poor choice in capture agents create holes in the provenance record and
re-enforce the grey system’s absence from the record. Unfortunately, as we discuss in
subsequent sections, the systems-of-systems we are concerned about have a large
number of NF and a possibly large number of NG. In addition, each system, either
known or grey, has the potential to be provenance-enabled through a capture agent. We
utilize the general categories described in Sect. 2: coordination point, application, and
manual.

The goal is to determine where the best systems are to place capture agents, and
type of capture agent. We assume that capture agents are expensive to build, deploy
and maintain, and thus wish to minimize the number of capture agents while still
capturing “good” provenance. There are several choices for “good provenance”,
depending on the desired usage of the provenance. An example set of “good” evalu-
ations could be:

• 100 % of all provenance is captured
• 80 % of all possible provenance is captured
• At least 1 complete path between a source and sink exists

In the degenerate case, if we assume that every system in S can only support an
application-based capture point, then it is easy to determine the minimum number of
capture agents by inspection. If “good” is complete provenance, then every system
must be provenance enabled; if “good” is 1 path from source to sink, then the shortest
path can be provenance-enabled, etc. However, the problem quickly becomes trickier.
Assuming that any system can be made a coordination point, that is, it can record the
provenance for itself and all systems connected to it, then asking if there is a way to
capture complete provenance in fewer than k capture points becomes the NP-complete
Vertex Cover problem. For this reason, we utilize a modelling and simulation
approach.

4 Use Case: Provenance in the US Healthcare System
of Systems

In the US Healthcare system, key stakeholders include Patients, Providers, Payers, and
Public Health. Each stakeholder has different incentives, and each maintains infor-
mation about medical events, but at different levels of detail and for various reasons.
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The medical records and associated healthcare information illustrate the problems
found in data provenance in a complex system of systems.

Consider the situation in which a patient is seeking medical care for a non-acute
condition, for which an episode of care typically spans 6-8 months and involves
coordination with generalists and specialists. Assume that the patient has medical
insurance coverage under a private plan or a state sponsored health care exchange
managed under the Affordable Care Act (ACA). Assume too, that the patient’s main
provider is part of a hospital-based physician’s group. The patient first seeks care from
his primary care physician. An initial set of medical records is generated based on this
encounter. Based on a preliminary diagnosis, the patient is referred to two specialists
and to a lab. The lab and one of the specialists is also a part of the hospital-based
group. Because the traffic between these entities is high, the IT and physicians
understand how the patient’s record gets passed between them. If provenance capture
was desired, it would be trivial to analyze these interactions and find the appropriate
provenance capture points. Unfortunately, the second specialist and the special lab she
sent our patient to are not in the hospital’s network; it is unlikely that either of these
systems would be remembered for inclusion in a large-reaching provenance system.
Assume the patient is advised to seek physical therapy, and choses to do so close to
work, not at the hospital. Again, the patient’s medical record is passed to the physical
therapist, but the therapist in effect runs a grey system – one essential to tracking the
movement of the patient’s record, but outside the well-worn and understood tracks of
the hospital’s in-network system. Figure 1 shows the movement of the patient’s health
record, and both the known and grey systems in the complex system of systems.

5 The Model and Tool

The provenance capture simulator is built using NetLogo [28]. It has two operating
modes: default, as described in [12] and user-assisted as we describe here. The model
incorporates:

Fig. 1. Depiction of the medical record as it moves through providers. Some providers modify
the record and send it back to the generalist’s system. Others become an off-shoot. Systems in
grey are part of the complex system of systems, but are not easily identified.
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• Types of capture agents:
– Coordination points capture provenance for themselves and any systems that

interact with them.
– Application-based capture provenance for themselves only.
– Manual provenance capture based on a human recording the provenance. We

assume that humans are lazy provenance agents, and only capture 10 % of the
time.

– None: no capture agent exists in this system.
• Known systems, NF , as specified by the user.
• The interactions between the known system, EF .
• The capture agent type for each known system, chosen from: coordination point,

application, manual, or none.
• A set number of unknown, grey, systems, NGj j.
• A maximum number of possible connections between grey systems.
• The average number of connections a grey system may have, as specified by the

user.
• A user defined number of coordination-point application-based, manual and

do-nothing capture agents to be distributed among the grey systems.
• The probability a piece of data will be directed along a new path. Data will always

go through the set paths, and probability of P that it will also move down a second
or third path at any node that has a degree >1.

Our goal is to produce provenance streams that are useful. Obviously, usefulness is
defined by the ultimate usage of the provenance data stream. For instance, for intrusion
detection, seeing as close to 100 % of the provenance as possible would detect the
greatest number of possible anomalies. Determining trustworthiness based on data path
similarity as in [9] we are looking for a complete path from source to sink for every
data item.

The user of the simulation system specifies the known systems, and the types of
capture agents they can support. Remember, only certain types of systems can be a
coordination point (e.g. service bus, web proxy, message router, etc.), and otherwise
can only be an application-based capture agent. Additionally, the user can specify how
the systems are actually connected. Using this as a backbone, the system then randomly
generates grey systems and their connections across that backbone. Figure 2 shows a
sample execution.

Using this execution, and defining the allowed number and type of application
agents, the output provenance can be analyzed to see if it meets the user’s specification
of “good” provenance. The simulation itself runs through permutations of grey system
configurations, allowing the best, worst and average amount of provenance a given
system of systems can capture to be highlighted.
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6 Results and Discussion

The point of this section is to show that the tool can be run over any user-specified
system-of-systems with different configurations, connections, grey-systems and capture
agents. To this end, the tool is run on a standard laptop, and realistic system config-
urations were used, although chosen with little attention to the systems themselves. The
system was run on a Mac with OSX 10.9.5 4. The system has a core processor speed of
2.7 GB with 16 GB RAM. Despite being run on a modest laptop, the simulations took
on average less than a minute to run.

In an attempt to find descriptions of real, complex systems-of-systems, we turn to
pre-defined workflows in myExperiment [15]. While all of the workflow technologies
have strong provenance capture as discussed in Sect. 2, and have no need to analyze
what systems involved may need capture agents, the workflows themselves provide a
nice, bounded set of realistic system configurations. To showcase this tool, we chose
first 5 workflows from myExperiment that satisfied the “runnable” facet, and chose 1
path from source to sink to represent known systems. All others are considered grey
systems. Within the known systems, any system with >3 edges in the workflow, is
considered a coordination-point. For all other known systems, we rotate through
application-based, manual and none, assigning them at random to the known systems.
Figure 2 shows an example workflow from myExperiment that was translated into
known and unknown systems. We chose a path from source to sink as the known
systems. The remaining systems we circled in grey. When actually executing the tool
over this description, the edges between grey systems will be lost and substituted in
randomly, since by definition we do not know any of the grey systems or their inter-
actions. Table 1 describes the workflows chosen for the tool showcase.

Fig. 2. (a) Sample of a myExperiment workflow, BiomartAndEMBOSSAnalysis. The grey
systems in this case are demarked by grey circles; (b) A sample execution of the tool using the
systems in 2a. Colored boxes and circles are known systems and grey systems respectively.
Along the left, the user can specify the number of coordination-points, application-based and
manual capture points to be used amongst the grey systems during the permutations, or the
system can run through permutations randomly choosing capture types. (Color figure online)
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Using this sampling of complex system of systems, we can explore the function-
ality of the tool. First we take #3 and #5 from Table 1 and show how user knowledge
and graph connectivity can impact how easy or hard it is to get “good” provenance.

Figure 3 shows snapshots of runs for #3 and #5 in which we vary the ratios of
capture agent types. We do not show all combinations of coordination-point,
application-based, manual and no capture, just a small selection. For graph #3, almost
half of the systems are known, and those known systems form a direct path from source
to sink (see Fig. 2). Given the assignment of coordination points, the set of known
provenance systems is guaranteed to meet the criteria of two of our “good” provenance
metrics (at least 1 path through the graph, and 80 % provenance captured). Figure 3a
shows this in detail. No matter the provenance capture points deployed in the unknown
systems, “good” provenance capture given what is known about the system is very
likely. In other words, the tool provides a checkpoint for whether the user must invest
more time and effort hunting down and provenance enabling the last few grey systems
that may exist. In this case, the answer is a resounding “no” and the user may feel
confident that the provenance from her system of systems is “good”. On the other hand,
the execution over graph #5 tells a different story. In the case of #5, only a very small
subset of systems is known (e.g. because a user has just started exploring what to
provenance-enable). Figure 3b shows a spread of possible distributions of
coordination-points, application-based, manual and no capture through the grey sys-
tems. While the ratios chosen represent the same spread as in Fig. 3a, the resulting
provenance is not necessarily as good. The tool helps the user recognize that better
consideration of grey systems is in order.

Although it is expected that this tool will be used by an individual trying to
provenance enable a very specific complex system, and hence will be used as we
described above, varying numbers and types of capture points, we wish to highlight
that the tool can function over any setup of size and number of provenance graphs.
Figure 4 shows the amount of provenance captured when running each complex sys-
tem from Table 1, using the following arrangement. The known systems and their
capture types is fixed. Of the grey systems, 10 % are coordination points, 30 % are
application-based, 30 % are manual and 30 % are no capture agent defined. As is
expected, our very simple graph #1 that has only a few grey systems does very well. It
is supported by the larger number of systems that are known and provenance enabled.
At the other end of the spectrum is graph #5 that has a greater set of grey systems than

Table 1. The MyExperiments wokflows used to create reasonable system of system connections
for showcasing the tool

Name Total
systems

NFj j Known
Coord/App/Manual/None

NGj j Grey coord-
point

1 Trivial US Healthcare Example 6 3 1/1/1/1 3 0
2 Unnested_qtl_pathway_3 by Antoon Goderis 12 4 1/1/1/1 8 1
3 BiomartAndEMBOSSAnalysis by Alan

Williams
13 5 1/2/1/1 8 1

4 EBI_ClustalW2 by Hamish McWilliam 21 4 2/1 /1/1 17 1
5 PathwaysandGeneannotationsforQTLregion

by Paul Fisher
61 8 2/2/2/2 53 8
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known systems. In other words, the tool can help a user estimate how much provenance
will be captured in a complex system, and allow the user to determine if that is good
enough.

7 Future Work and Conclusion

Until now, we have made the assumption that all provenance capture agents cost the
same amount to implement and maintain, and we are merely attempting to maximize the
provenance captured while reducing the overall number of required provenance capture
agents. Unfortunately, this assumption is incorrect. In our experience, creating a
provenance capture agent for a commercial off the shelf (COT) tool, such as Palantir1 or
SpectorSoft [10], is harder and more costly than open source (OS), such as
MuleSoft ESB [2] because the code is proprietary and not always easily accessible.

Fig. 3. (a) Workflow 3 from Table 1 run with varying ratios of capture types; (b) Workflow 5
from Table 1 run with varying ratios of capture types. The x-axis indicates the quantity of each
type of capture agent: no capture – manual capture – application-based – coordination point.

Fig. 4. Each graph from Table 1 has been run with grey system capture agents in the following
ratio: 10 % coordination point, 30 % application-based, 30 % manual, 30 % no capture.

1 www.palantir.com.
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Worse, there is no community of developers willing and able to provide insight into how
the code is organized. Given that the cost of capture agents can vary widely, a natural
extension to this model would focus on minimizing the cost of capture agent creation
instead of minimizing the number of capture agents. In other words, a utility function
needs to be created that minimizes cost and maximizes “good” provenance capture.

In this work, we describe complex systems-of-systems that users wish to capture
provenance within. Because understanding these systems is difficult, and only a subset
of systems is typically identified by users, we introduce the notion of a grey system. We
provide a tool that models the set of known and grey systems, altering the interactions
among all component systems and types of capture agents involved. Using this tool, an
estimation of quantity and type of capture agents that will need to be deployed can be
found.
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jpimentel@ic.uff.br

2 University of California, Davis, Davis, USA
3 University of Illinois, Urbana-Champaign, Champaign, USA
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Abstract. The noWorkflow and YesWorkflow toolkits both enable
researchers to capture, store, query, and visualize the provenance of
results produced by scripts that process scientific data. noWorkflow
captures prospective provenance representing the program structure of
Python scripts, and retrospective provenance representing key events
observed during script execution. YesWorkflow captures prospective
provenance declared through annotations in the comments of scripts,
and supports key retrospective provenance queries by observing what
files were used or produced by the script. We demonstrate how combining
complementary information gathered by noWorkflow and YesWorkflow
enables provenance queries and data lineage visualizations neither tool
can provide on its own.

1 Introduction

Methods for harvesting provenance information from scripts and runs of scripts
have been of great recent interest to the provenance research community, and
the resulting tools have received increasing attention from users of scripting
languages in the natural sciences. Some of these approaches are language-specific,
e.g., noWorkflow1 [4,5] (Python) and RDataTracker [2] (R scripts), while others
are language-independent, e.g., YesWorkflow2 [3] and LLVM/SPADE [7]. Using
such tools often entails annotating the scripts [2,3], monitoring executing scripts
as they run [4,7], or both.

Approaches that do not require annotation, such as noWorkflow (NW),
rely on the structure of the code itself to build prospective and retrospective
provenance graphs. NW includes the actual function and variable names in the
prospective provenance records, and it depends on records of run-time function

1 For “not only Workflow”, emphasizing that scripts need provenance tracking, too.
2 Which can be read as “Yes, scripts can be workflows, too!”.
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calls to capture the retrospective provenance of script outputs. Consequently,
the less meaningful variable and function names are in a script, the less clear
the provenance query results and visualizations will be to scientists using the
script. noWorkflow thus excels where Python programs are engineered for main-
tainablity, testability, code reuse, and long-term user support.

YesWorkflow (YW) is an example of a tool that largely ignores the code por-
tions of a script, and instead depends on script authors (or users) adding anno-
tations via comments in scripts. YW annotations declare the scientifically sig-
nificant steps implemented by code blocks in a script, and the routes of dataflow
between these steps. Annotations optionally assign meaningful names to actual
(often obscurely named) code-level entities. Consequently, YesWorkflow users
need not rename variables, move code into functions, or otherwise refactor scripts
that already have been used to produce results (research transparency requires
disclosure of the scripts actually used). YW users can capture provenance from
a working script without incurring the regression testing costs that refactor-
ing entails. YW thus provides benefits even when scripts are written rapidly in
the course of competitive, time-critical research, and when researchers employ
scripts that they do not intend to maintain further or to distribute and support.

Given the contrasting aims of noWorkflow and YesWorkflow and the differ-
ences in the approaches they take, it is not surprising that each supports queries
and visualizations that the other cannot support on its own [1]. Here we show
that there are provenance artifacts of great interest to researchers that only a
combination of YW and NW provenance can produce. Achieving this combi-
nation requires mapping between common entities in both provenance models,
and jointly querying the provenance information represented by each system.
We refer to the joint provenance model, the system-spanning queries, and the
resulting visualizations collectively as YW*NW.

2 Example Queries: noWorkflow, YesWorkflow,
and YW*NW

We use the Python script described by McPhillips et al. [3] to demonstrate the
kinds of provenance queries NW, YW, and the combination of both support.
This script simulates acquisition of diffraction images during macromolecular
X-ray crystallography experiments involving multiple samples. The script reads
previously measured data quality statistics for each sample from an input spread-
sheet; rejects samples that do not meet a minimum quality criterion; and for each
accepted sample produces raw and corrected diffraction images according to a
data collection strategy that depends on properties of the samples. Although the
script only simulates data collection, the order of task execution, the sequence
of data production events, and the resulting pattern of dependencies between
input, intermediate, and final data items closely mimic those of a real exper-
iment [8]. Queries that probe these dependencies are therefore illustrative of
meaningful uses for provenance information. The complete script, marked up
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with YW annotations, is available on GitHub [6]; a more complete explanation
is provided in [3].

noWorkflow. Examples of prospective provenance queries of this script that
NW supports include: What functions does the top-level function call? Are any
functions defined in the script not called by the top-level function?

NW can answer retrospective provenance queries about runs of this script,
such as: What values did the variable rejected sample take during writes to files
referred to by the rejection log variable? What files were written during calls to the
transform image function? How many files were written while the accepted sample

variable had the value DRT240? What variables carry values returned by the
calculate strategy function to calls to the collect next image function? What para-
meters to the top-level function can effect the results returned by calls to calcu-

late strategy?
NW also can answer queries about the execution context: Which user exe-

cuted the script? What version of Python was used?

YesWorkflow. YW provenance queries refer to annotated code blocks (work-
flow steps) rather than to Python functions, and to data names declared via
YW annotations instead of to Python variables. Queries of prospective prove-
nance supported by YW include: What are the names of steps that comprise
the top-level workflow implemented by the script? What data is output by the
collect data set step? What code blocks provide input directly to that step? What
data is corrected image (in)directly derived from?

YW can also answer some retrospective provenance queries [3], includ-
ing: What samples did the run of the script collect images from? What energies
were used during collection of images from sample DRT240? Where is the raw
image from which corrected image run/data/DRT322/DRT322 10000eV 001.img is
derived? Are there any raw images for which there are no corresponding cor-
rected images?

Querying the Combined YW*NW Provenance. Queries that must be
answered by combining NW and YW provenance generally involve references
both to Python functions or variables and to code blocks or data declared
via YesWorkflow annotations. Examples include: Can the sample id output of
the collect data set step ever produce values other than those provided via the
accepted sample input to this step? What Python functions may be called as part
of the calculate strategy step? What was the set of energies produced by the com-

pute strategy step for sample DRT322?

As these queries demonstrate, the combination of NW and YW provenance
enables code-level entities such as Python functions and variables to be queried
in terms of data and workflow steps meaningful to the user (and vice versa).
Such queries are useful for understanding runs of the script in ways that neither
NW nor YW enable on their own. Generalizing these queries yield meaningful
visualizations of the full lineage of any product of the script. Consider the hybrid
YW*NW provenance graph in Fig. 1, showing the lineage of a specific output
image. This lineage graph can be constructed as a subgraph of the original YW
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load_screening_results

sample_name = DRT240sample_quality = 45

calculate_strategy

num_images = 2accepted_sample = DRT240 energies = [10000,11000,12000]

collect_data_set

raw_image
frame_number = 2 sample_id = DRT240 energy = 11000

transform_images

corrected_image

sample_spreadsheet

calibration_image

cassette_id = q55

sample_score_cutoff = 12 data_redundancy = 0

Fig. 1. Hybrid of YW prospective provenance and NW retrospective provenance: nodes
and edges comprise the subgraph of the YW model of the script upstream of a sin-
gle corrected image; values in nodes are extracted from the NW runtime records of
corresponding variable values leading to a particular image.

model [3] (restricted to predecessors nodes upstream of the corrected image result
node), which is then augmented with NW retrospective provenance; see [6] for
details and the YW*NW integration queries.

Because the questions scientists have about runs of scripts often can be
answered in terms of lineages of data products, YW*NW queries and visualiza-
tions promise to be of great value to researchers. Moreover, using noWorkflow
and YesWorkflow jointly does not entail the major adaptations to code often
needed to run existing software in scientific workflow management systems.
Indeed, YW*NW provides many benefits of provenance management without
requiring working code to be refactored at all.

3 Demonstration

In our demonstration we will highlight the benefits of harvesting, querying, and
visualizing provenance with noWorkflow in conjunction with YesWorkflow. Start-
ing with a directory containing just the example script and input files, we will
(1) highlight how YW annotations can be visualized as prospective provenance
using YesWorkflow; (2) run the script using noWorkflow and relate the resulting
data file names and locations to the YW prospective provenance; (3) query the
script and its outputs using noWorkflow and YesWorkflow separately to illus-
trate what each tool can do on its own; and (4) execute joint YW*NW queries
that determine the lineage of a single data product and produce visualizations
analogous to the one in Fig. 1.

A companion GitHub repository for this demonstration is available, along
with an expanded version of this short demo description [6]. The repository



Yin & Yang: Demonstrating Complementary Provenance 165

includes the data collection script discussed above; the files produced by a run of
this script; the provenance information produced by noWorkflow and YesWork-
flow; and helper scripts for running the queries mentioned above and for pro-
ducing Fig. 1. noWorkflow and YesWorkflow themselves are both available on
GitHub and can easily be installed.
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Abstract. Large scientific experiments and simulations produce vast quantities
of data. Though smaller in volume, the corresponding metadata describing the
production, pedigree, and ontology, is just as important as the raw data to the
scientific discovery process. Driven by the application needs of a number of
large-scale distributed workflows, we develop a metadata capturing and analysis
system called MPO (short for Metadata, Provenance, Ontology). It seamlessly
integrates with most data analysis environments and requires a minimal amount
of changes to users’ existing analysis programs. Users have the full control of
how to instrument their programs to capture as much or as little information as
they desire. Once captured in a database system, the workflows can be visual-
ized and studied through a set of web-based tools. In large scientific collabo-
rations where the workflows have been built up over decades, this ability to
instrument the complex existing workflows and visualize the key interactions
among the software components is tremendously useful.

1 Introduction

Datasets collected from scientific experiments and generated from computations typi-
cally go through numerous analysis steps on their paths to become scientific knowl-
edge. These processes of data generation, conversion, manipulation and transformation
are often formalized and codified into sequences of steps known as workflows. In this
analysis process, we distinguish the raw data from its metadata. Though the metadata is
typically much smaller in volume than the raw data, it contains critical information
such as how the raw data is organized, and how the numbers and strings in the data are
to be interpreted. In this work, we pay particular attention to two specific type of
metadata known as provenance and ontology [1, 2].
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When all steps of a data analysis process is performed within a single workflow
management system, the workflow management system often has a way of capturing
the provenance information [3, 4]. However, there are many active research collabo-
rations with decades of history and large collections of workflows that are not on any of
the modern workflow management systems. In addition, a large workflow might
involve an extended collaboration and span a number of different computer systems,
where no single workflow management system could reach all of the disparate parts. In
such a case, scientists have to manually enter the critical pieces of metadata crossing
system boundaries. Manually entering metadata requires scientists to break their
attention on the data analysis process and potentially decreases their productivity,
which diminishes the chance that metadata will be entered in a timely manner if at all.
Furthermore, there is no easy way to enforce a consistent ontology in such a distributed
environment. Inconsistencies in terminology used in describing the workflows and data
products could cause confusion in their later uses, and reduce the value of the data
products, which further reduce the motivation for users to enter metadata about their
work. Clearly, automating the metadata capturing and ensuring a consistent ontology
are essential to address these difficulties. The key challenge is to do these on an
arbitrarily complex workflow in a distributed environment.

Our answer to the distributed metadata capture problem is a system that works with
any computing platform; captures information from workflows executed anywhere; and
requires a minimal amount of modifications to the existing workflow components. The
system is known as MPO, a shorthand for Metadata, Provenance, and Ontology1 [5].
The MPO software consists of a data model, an API for capturing information, a
database for storing the captured information, and a web service for analyzing the
captured information [6]. Workflows are represented as directed acyclic graphs, pro-
viding explicit information about the relationships between workflow data and actions.
This graphical representation is accessible anywhere through a web front-end [5–8].
This brief introduction to the demonstration explains the current status of the design,
development and testing of the system.

2 MPO System Architecture

In this section we review the basic architecture and key components of MPO software.
We will describe the key new features in the next section.

MPO is designed to allow scientists to capture information about their divergent
workflows from anywhere. We design the MPO software system as multi-tier web
services. It defines a RESTful [9, 10] API that can be easily accessed from a variety of
programming languages used by MPO clients. The building blocks of the MPO system
includes: (1) Database; (2) API Server and Event Server; (3) Interactive UI server; and
(4) Clients. The heart of the system is a set of web servers: API Server, Event Server,
and the Interactive UI Server. The API server communicates with a Database system to
store the persistent data. A client may communicate with the API server or the UI

1 MPO project documentation and software are available at <https://mpo.psfc.mit.edu/>.
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server. Those that directly communicate with API server are “Native Application”
clients, while those that communicate with the UI server are web clients.

The MPO database stores all persistent information as MPO entities such as Data
Objects, Activities, and Connections. Currently, PostgreSQL is chosen for the database
server. However, the MPO database schema is general enough that the database server
could be replaced. The generality is helpful in separating the database implementation
from design of user functionality. The team is fortifying this separation by imple-
menting Object Relational Mapping (ORM) with the SQLAlchemy toolkit2.

The MPO API server exposes its services via RESTful API. The basic entities in
the MPO data model are represented with corresponding RESTful resources [10].
The API server utilizes the Model View Controller (MVC) design pattern, and it has
been constructed using Flask which is a lightweight micro web application framework
written in Python. The MPO event server is an additional service that runs side-by-side
with the API server. It is implemented by utilizing the MDSplus [11] system’s event
features and provides asynchronous events for real-time updates by clients.

3 Advanced Features in MPO

Now that we have described the basic components, we next describe the new features
that support analysis and exploration of workflows and ontology.

The MPO interactive UI server
provides visualization and interac-
tive browsing of the MPO data via
the web browser interface. This
interface presents MPO data
objects and their relationships,
while focusing on the main entities:
Workflow, Data Object, and
Activities. The searchable fields are
based on general workflow meta-
data descriptors including creation
time range, workflow name,
description, the author’s username,
and so on; an example is shown in
Fig. 1. The searchable ontology
fields are based on the user-defined
ontology terms. To reduce the size
of the querying interface, only the
terms used in the displayed work-
flows will be available for the ontology filter selection. The UI presents these fields in
an intuitive and organized manner, grouped by their ontology hierarchy with additional
information such as the count of associated workflows using each term. Users can click

Fig. 1. An example of MPO filter, with part of the
workflow screen.

2 SQLAlchemy is available at http://www.sqlalchemy.org/.
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to toggle the checkboxes next to the desired ontology term(s) to modify the selection.
For example, one could find a list of all available workflows with a given list of
ontology terms or keywords in their descriptions.

Large collaborations such as those in high-energy physics and fusion could last for
a number of decades. Workflows developed in the early years of these projects are
gradually evolved to adapt to the new science objectives, new computing hardware and
new software infrastructure. In this process, not only the steps of workflows change,
but also the terminology and ontology. It is important to support the evolution of
terminology and ontology. Our support for ontology evolution takes a practical route,
where changes that are more likely to appear in the real applications are supported first.
Based on our interactions with application scientists, we observe that the most likely
change to ontology in physical sciences is the addition of some terms. This is typically
created by the introduction of a new experimental device, a new technique for data
collection and analysis, or a new approach to study some physical phenomenon. Our
initial attempt at supporting ontology evolution is therefore to add ontology instances
without modifying the structure of the ontology tree. Work is planned to support
additional functions as the need arises.

4 Summary

The MPO system automates the documentation of scientific workflows and associated
information; its functionality is independent of the workflow orchestration and exe-
cution mechanisms. It organizes and visualizes documented workflows and related
metadata. The recent versions of MPO have a number of advanced workflow search
and manipulation functions as well as some rudimentary ontology operations. In
addition, we have implemented advanced capability to support efficient searches over
thousands of workflows and developed the Container concept to allow users to operate
on subtrees and supernodes. The source code of MPO is available to the public5. The
team is setting up web resources for more users to try out the system and is reaching out
to more users.
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Abstract. In this paper, we propose a representation for PROV in
JSON-LD, the JSON format for Linked Data, called PROV-JSONLD.
As a JSON-based format, this provenance representation can be readily
consumed by Web applications currently supporting JSON. As a Linked
Data format, at the same time, it also represents provenance data in
RDF using the PROV ontology. Hence, it is suitable for usages in both
the Web and the Semantic Web.

1 Introduction

PROV provenance currently can be serialised in a number of representations:
PROV-N, PROV-XML, PROV-JSON, or in a RDF serialisation using the PROV
Ontology (PROV-O).1 The latter, arguably, is most suitable for Linked Data,
given that they can be readily consumed by existing Semantic Web tools and
comes with the semantic grounding provided by PROV-O. There are, however,
two main challenges for web-based applications when consuming PROV prove-
nance represented in RDFs: (1) Many web applications are built to be light-
weight, working mainly with simple data formats like JSON,2 not the seman-
tically rich RDF data model; (2) there are different, valid ways of representing
PROV in RDF and such applications typically do not have the capability to
infer canonical provenance information from such flexible representations. The
JSON-LD format3 partly addresses the first challenge by encoding RDF data
in JSON. However, serialising RDF data into JSON-LD does not always pro-
duce JSON data in an expected structure, thus, necessitating the capability to
understand the RDF data model to correctly interpret the data.

Against this background, we propose a new representation for PROV based
on JSON-LD, called PROV-JSONLD, to address the above challenges. Specifi-
cally, PROV-JSONLD specifies a number of rules for representing PROV prove-
nance in JSON-LD to provide a predefined data structure for PROV in JSON. As
a JSON-based format, PROV-JSONLD can be easily consumed and processed
1 See https://www.w3.org/Submission/prov-json/ for PROV-JSON and https://
www.w3.org/TR/prov-overview/ for the other PROV representations.

2 The JavaScript Object Notation (JSON): https://tools.ietf.org/html/rfc7159.
3 JSON-LD: https://www.w3.org/TR/json-ld/.
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by web applications and clients that are already supporting JSON without the
need for the to understand the RDF data model. Moreover, with the emerg-
ing popularity of JSON databases, PROV-JSONLD allows provenance informa-
tion to be stored along with application data as-is. As a Linked Data format,
PROV-JSONLD is fully compatible with the RDF data model and PROV-O.
As such, it can be readily processed by existing tools built for Linked Data and
the Semantic Web. Last but not least, PROV-JSONLD was designed to serialise
individual PROV records, as units of information in PROV, wholly into separate
JSON objects. By so doing, the format enables the processing of large amount
of provenance data in a stream-like fashion, which is not currently possible with
PROV-JSON or other RDF serialisations.

2 JSON-LD Representation for PROV

PROV-JSONLD is a variant of JSON-LD designed with the following key prin-
ciples: (1) for every type of PROV record, there is only one way to represent
it in PROV-JSONLD; (2) each PROV record is wholly contained in one JSON
object; and (3) except from the active JSON-LD context, no other information
outside the JSON object is required to interpret the record.

2.1 Encoding a PROV-JSONLD Document

A PROV-JSONLD document is a self-contained package of PROV records in the
form of a JSON-LD document. We provide the PROV-JSONLD context at
https://provenance.ecs.soton.ac.uk/prov.jsonld to disambiguate terms used by
PROV-JSONLD and map them to IRIs. It defines:

– prov: and xsd: prefixes (similarly predefined in PROV-N).
– The expected data types of PROV properties used in PROV-JSONLD.
– Simplified terms for all PROV-O properties used by PROV-JSONLD, e.g.
entity for prov:entity, activity for prov:activity, and so on.

– Special terms introduced by PROV-JSONLD (listed in Table 1).

A PROV-JSONLD document optionally starts with the @context object,
providing a reference to the PROV-JSONLD context above and the definition
for any extra prefix. A default namespace can also be provided in the context’s
@base property. The PROV records packaged by the document go into its @graph
array, each in a separate JSON object.

1 { "@context": [

2 "https://provenance.ecs.soton.ac.uk/prov.jsonld",

3 { "@base": "http://example.org/",

4 "foaf": "http://xmlns.com/foaf/0.1/" }

5 ],

6 "@graph": [ ] }

Listing 1: The basic structure of a PROV-JSONLD document.

https://provenance.ecs.soton.ac.uk/prov.jsonld
http://www.w3.org/ns/prov#prov:
http://www.w3.org/2001/XMLSchema
http://www.w3.org/ns/prov#entity
http://www.w3.org/ns/prov#activity
https://www.w3.org/TR/2013/REC-prov-dm-20130430/#dfn-defaultNamespaceDeclaration
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2.2 Encoding a PROV Record

Each PROV record is serialised into a single JSON object in a @graph array. All
the constituents of the PROV record become properties of the node as follows:

– The identifier (if present) becomes the identifier of the node (@id property).
– The type of the record, e.g. Activity, Derivation, becomes the first type of the

node. Additional types are added to the @type array if they are valid IRIs;
the remaining types become prov:type property of the node.

– PROV attributes are mapped into the corresponding PROV-O properties.
– Additional attributes become properties of the node.

1 { "@graph": [

2 { "@id": "exg:correct1", "@type": "prov:Activity",

3 "startedAtTime": "2012-03-31T09:21:00.000+01:00",

4 "endedAtTime": "2012-04-01T15:21:00.000+01:00"

5 } ] }

Listing 2: An Activity record in PROV-JSONLD.

For PROV elements, applying the above PROV-JSONLD encoding rules is
straightforward. With PROV relations, however, there are some exceptions due
to the multiple ways of representing them in RDF. In order to ensure a unique
JSON structure for each type of PROV relation and that each relation record be
encoded wholly in a single node, PROV-JSONLD only uses the qualified form
of a PROV relation. Doing so, however, creates two encoding challenges.

First, although PROV-O defines classes for the qualified relations, the ontol-
ogy does not specify a property to relate those qualified relations to the “subject”
of the relations. Instead, for each qualified relation, it defines a qualification prop-
erty to link the subject to the qualified relation in that order. In order to encode
the subject in the same node as the relation, we introduce reverse properties
using the @reverse mechanism provided by JSON-LD. Specifically, the sub-
ject of a PROV relation becomes a property of the node encoding the relation
according to Table 1.

In addition, for Revision, Quotation, and PrimarySource records, which
are sub-types of Derivation, PROV-JSONLD represents them as Derivation
records with an additional types (prov:Revision, prov:Quotation, and
prov:PrimarySource, respectively). This is to enable web applications, which
typically do not have inference capabilities, to interpret such records as Derivation
records when consuming PROV-JSONLD. Listing 3 below illustrates the encod-
ing rules above for a Revision record. Note that this record does not have an @id
property as it does not have an identifier; and the entity derived property is
a reverse property.

https://www.w3.org/TR/2013/REC-prov-dm-20130430/#term-Activity
https://www.w3.org/TR/2013/REC-prov-dm-20130430/#term-Derivation
https://www.w3.org/TR/2013/REC-prov-dm-20130430/#term-revision
https://www.w3.org/TR/2013/REC-prov-dm-20130430/#term-quotation
https://www.w3.org/TR/2013/REC-prov-dm-20130430/#term-primary-source
https://www.w3.org/TR/2013/REC-prov-dm-20130430/#term-Derivation
https://www.w3.org/TR/2013/REC-prov-dm-20130430/#term-Derivation
https://www.w3.org/ns/prov#Revision
https://www.w3.org/ns/prov#Quotation
https://www.w3.org/ns/prov#PrimarySource
https://www.w3.org/TR/2013/REC-prov-dm-20130430/#term-Derivation
https://www.w3.org/TR/2013/REC-prov-dm-20130430/#term-revision
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Table 1. PROV-JSONLD terms and their (reverse) PROV-O predicates

PROV-JSONLD terms PROV-O qualification properties PROV record

entity generated prov:qualifiedGeneration Generation

entity derived prov:qualifiedDerivation Derivation

entity invalidated prov:qualifiedInvalidation Invalidation

entity attributed prov:qualifiedAttribution Attribution

activity using prov:qualifiedUsage Usage

activity started prov:qualifiedStart Start

activity ended prov:qualifiedEnd End

activity associated prov:qualifiedAssociation Association

informed prov:qualifiedCommunication Communication

delegate prov:qualifiedDelegation Delegation

influencee prov:qualifiedInfluence Influence

1 { "@graph": [

2 { "@type": ["prov:Derivation", "prov:Revision"],

3 "entity_derived": "exg:dataset2",

4 "entity": "exg:dataset1",

5 "hadActivity": "exg:correct1"

6 } ] }

Listing 3: A Revision record in PROV-JSONLD.

The second encoding challenge is that PROV-O does not define a quali-
fied relation for Specialization, Alternate, and Membership; as a result, those
records require special encoding rules. The only way to represent them in RDF
is with the prov:specializationOf, prov:alternateOf, and prov:hadMember
properties, respectively. For those records, PROV-JSONLD encodes them
in single nodes by using the “subject” of such a relation as the node’s
identifier and the “object” as the value of the appropriate property from
the three above. There is no @type or any additional property for those
nodes as they are not allowed by PROV. For example, the PROV-N state-
ment alternateOf(exg:dataset2, exg:dataset1) is represented in PROV-
JSONLD as:

{ "@graph": [ { "@id":"exg:dataset2", "alternateOf": "exg:dataset1" } ] }.

2.3 Encoding a PROV Bundle

Provenance records can be bundled into a named set called a bundle. Following
examples in the PROV-O specification, PROV-JSONLD uses named graphs to
represent a named set of PROV records. In particular, PROV-JSONLD repre-
sents a PROV bundle similarly to the way a PROV document is encoded in

https://www.w3.org/ns/prov#qualifiedGeneration
https://www.w3.org/ns/prov#term-Generation
https://www.w3.org/ns/prov#qualifiedDerivation
https://www.w3.org/ns/prov#term-Derivation
https://www.w3.org/ns/prov#qualifiedInvalidation
https://www.w3.org/ns/prov#term-Invalidation
https://www.w3.org/ns/prov#qualifiedAttribution
https://www.w3.org/ns/prov#term-attribution
https://www.w3.org/ns/prov#qualifiedUsage
https://www.w3.org/ns/prov#term-Usage
https://www.w3.org/ns/prov#qualifiedStart
https://www.w3.org/ns/prov#term-Start
https://www.w3.org/ns/prov#qualifiedEnd
https://www.w3.org/ns/prov#term-End
https://www.w3.org/ns/prov#qualifiedAssociation
https://www.w3.org/ns/prov#term-Association
https://www.w3.org/ns/prov#qualifiedCommunication
https://www.w3.org/ns/prov#term-Communication
https://www.w3.org/ns/prov#qualifiedDelegation
https://www.w3.org/ns/prov#term-delegation
https://www.w3.org/ns/prov#qualifiedInfluence
https://www.w3.org/ns/prov#term-influence
https://www.w3.org/TR/2013/REC-prov-dm-20130430/#term-specialization
https://www.w3.org/TR/2013/REC-prov-dm-20130430/#term-alternate
https://www.w3.org/TR/2013/REC-prov-dm-20130430/#term-membership
https://www.w3.org/ns/prov#specializationOf
https://www.w3.org/ns/prov#alternateOf
https://www.w3.org/ns/prov#hadMember
https://www.w3.org/TR/2013/REC-prov-dm-20130430/#term-bundle
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Sect. 2.1. In this case, however, the @graph array is paired with an @id property,
which encodes the bundle’s identifier.

3 Conclusions

In this paper, we propose a new representation for PROV based on JSON-LD.
Given its compatibility with both JSON and the RDF data model, in addition
to being amenable to stream processing, PROV-JSONLD has a vast range of
useful applications. We believe that its introduction will contribute positively to
the adoption of PROV as the provenance standard of choice in Linked Data and
Web applications alike.
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Abstract. The Data Lake is emerging as a Big Data storage and man-
agement solution which can store any type of data at scale and execute
data transformations for analysis. Higher flexibility in storage increases
the risk of Data Lakes becoming data swamps. In this paper we show
how provenance contributes to data management within a Data Lake
infrastructure. We study provenance integration challenges and propose
a reference architecture for provenance usage in a Data Lake. Finally we
discuss the applicability of our tools in the proposed architecture.

1 Introduction

Big Data has brought about recognition in industry and research alike that data
can be profitably mined for insight and forecasts. Data from numerous sources
(e.g., clickstream, sensor data, social media, server logs) are being brought
together. The Data Lake [5] has been introduced as an infrastructure which
supports broader analysis on various types of data from different sources. It
can store unstructured, semi-structured, and structured data at scale and sup-
port data transformations by integrating Big Data processing frameworks such
as Apache Hadoop1 and Apache Spark2. As the Data Lake does not enforce
a schema at the time of ingest, scientists can easily dump data from various
sources and process them only when necessary. This “dump everything” nature
in a Data Lake increases the flexibility of data storage. However without some
level of organization, the popular literature goes, the Data Lake will turn into
a data swamp [2]. Transformations performed on data products in a Data Lake
write their results back into the lake. A data product can go through number
of transformations during its lifecycle within a Data Lake. Critical focus of our
attention is on using provenance and lineage information in Data Lakes to avoid
data swamps.

We propose two use cases to motivate the study of provenance in a Data
Lake. Use Case 1 : Suppose sensitive data are ingested by a scientist into a
Data Lake. By definition of the data lake, the sensitive data will likely undergo
schema translation before being used by someone else. Can provenance be used
to determine whether the schema and schema translation process change the
1 http://hadoop.apache.org/.
2 http://spark.apache.org/.
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sensitivity level of the data? Can this be determined quickly enough to take
appropriate action, and if so, what actions should be taken? Use Case 2 : Using
provenance to assess-respond in real time: Repeating a Big Data transformation
in a Data Lake is expensive due to high resource and time consumption. Can we
use live streaming provenance from experiments to monitor them real time and
identify the faults early in the execution?

2 Provenance Capture in a Data Lake

If a Data Lake could somehow ensure that every data product in the lake is
connected with its provenance starting from the origin, critical traceability can
be achieved. This is challenging because a data product may go through different
distributed processing systems during its lifecycle. Processing frameworks used
around a Data Lake can include batch processing systems, stream processing
systems, traditional workflow engines or even legacy scripts. These frameworks
may or may not produce provenance by default. Even if there are provenance
collection techniques [1] for certain systems, they may use their own ways of
storing provenance or use different standards. Therefore generating integrated
provenance traces is tough. Stitching techniques [3] exist which bring all prove-
nance traces into a common model and then integrate them together. However
there are certain limitations in such techniques like loss of information during
conversions and higher computation overheads for large provenance graphs which
are common in Data Lakes. In addition to that, real time provenance integra-
tion (use case 2) can not be achieved by such post processing techniques. As
a solution for this provenance integration problem, we propose a central prove-
nance collection system to which all distributed components within the Data
Lake stream provenance events. For each transformation, the data scientist who
writes the data processing code can instrument her code to generate provenance
at all needed steps.

(a) Data Flow Across Transformations (b) Data Lineage

Fig. 1. Provenance for series of transformations

Provenance is commonly represented as a directed acyclic graph (G = (V,E)).
A node (v ∈ V ) can be an activity, entity or agent while an edge (e = 〈vi, vj〉
where e ∈ E and vi, vj ∈ V ) represents a relationship between two nodes. In
our provenance collection model, a provenance event always represents an edge in
the provenance graph. For example, if process p generates the data product d, the
provenance event adds a new edge (e = 〈p, d〉 where p, d ∈ V ) into the provenance
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graph to represent the ‘generation’ relationship between activity p and entity d.
When all systems connected to the Data Lake continue to send provenance events,
the central provenance collection system keeps adding new edges into the prove-
nance graph. Provenance integration across distributed components is guaranteed
by using unique identifiers for all data products within the Data Lake. As a simple
example, consider the data flow diagram in Fig. 1a. The data product d1 is sub-
jected to transformation T1 and it generates data products d2 and d3 as results. T2

uses d3 together with a new data product d4 and generates d5, d6 and d7. Finally
T3 uses d6 and d7 and generates d8 as the final output. When all three transforma-
tions T1, T2 and T3 have sent provenance events, complete provenance graph is cre-
ated in the central provenance collection system. Figure 1b shows the provenance
graph which represents the data flow when queried for final output d8. Details like
scientists involved, configuration parameters and environment information (CPU
speed, memory capacity, network bandwidth etc.) can also be captured as prove-
nance.

Fig. 2. Provenance for Data Lakes: reference architecture

Figure 2 shows the reference architecture that we propose for Data Lakes
based on the provenance integration technique discussed above. Provenance
Stream Processing and Storage component is the heart of this architecture which
accepts the stream of provenance notifications through its Ingest API and sup-
ports queries through its Query API. Live stream processing sub-system sup-
ports live queries while storage sub-system persists provenance for long term
usage. The Messaging System guarantees reliable provenance event delivery into
the central provenance storage. Various distributed transformation tools around
the Data Lake stream provenance events into the central Provenance Subsys-
tem. Transformation logics have to be instrumented to capture provenance at
required granularity. In order to capture information about the origins of the
data products, provenance must be captured at the Ingest. Some data products
may carry their previous provenance information which should be integrated as
well. Scientists may export data products from the Data Lake in some situations.
Such data products should be coupled with their provenance for better usage.
Usage subsystem shows how provenance collected around the Data Lake can be
used for different purposes. Both live and post-execution queries over collected
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provenance with Monitoring and Visualization helps in scenarios like the two
use cases that we discussed above. There are other advantages as well such as
Debugging and Reproducing experiments in the Data Lake.

Komadu [4] is a W3C PROV based provenance collection framework whose
design and API are not coupled to any specific system and can be used as a
general provenance collection framework. Capturing provenance from distrib-
uted applications is made easy with Komadu as it does not depend on any
global knowledge about the system. This makes it applicable in the above archi-
tecture to capture provenance in a Data Lake. Komadu provides connectors
to plug its Ingest API with the RabbitMQ3 messaging system. The Komadu
toolkit includes efficient client libraries for java and javascript applications which
minimize instrumentation overhead. Provenance storage system in Komadu is
designed based on a relational data model and implemented using MySQL.
Ingested provenance events are asynchronously processed and stored in rela-
tional tables. Graph generation is delayed till query time to reduce computation
at ingest time. Komadu toolkit comes with a Cytoscape4 plugin as well which
can visualize generated provenance graphs.

3 Final Remarks and Future Work

Although Komadu seems to fit well in our reference architecture for provenance
capture in a Data Lake, it supports only queries over stored provenance and lacks
live provenance stream processing. Fine-grained provenance captured from mas-
sively parallel systems can produce large amounts of provenance data that leads
to the “Big Provenance” problem [6]. As future work, we plan to combine a series
of Big Data transformations to replicate a Data Lake environment and apply our
reference architecture into the system using Komadu to see how it performs. We
focus on solving the Big Provenance problem using real time provenance stream
processing algorithms which reduce the amount of stored provenance.

Acknowledgement. This work is funded in part by a grant from the NSF, ACI-
0940824.
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Abstract. When computational researchers from several domains coop-
erate, one recurrent problem is finding tools, methods and approaches
that can be used across disciplines, to enhance collaboration through
reuse. The paper presents our ongoing work to meet the challenges posed
by provenance-based retrieval, proposed as a solution for transdiscipli-
nary scientific collaboration via reuse of scientific workflows. Our work
is based upon a case study in molecular dynamics experiments, as part
of a larger multi-scale experimental scenario.

1 Introduction

Scientific workflows play an important role in data-centric scientific experiments
[1] to speed up the construction of new experiments, and foster collaboration
through reuse of workflow fragments. This is specially complicated when scien-
tists work in distinct domains, due to heterogeneity in vocabularies, methodolo-
gies, perspectives of solving a problem and granularity of objects of interest.

Our work is concerned with meeting the needs of such a heterogeneous
research environment, and is based on our ongoing experience with the CCES1

(Center for Computational Engineering and Science). CCES congregates experts
from 6 different domains – Computer Science, Chemistry, Physics, Biology,
Applied Mathematics and Mechanical Engineering.

We are helping these scientists to work together via construction and shar-
ing of workflow fragments. However, this is complicated because of the intense
heterogeneity of the domains involved.

To meet reusability and transdisciplinary challenges we designed a
provenance-centric software architecture to support workflow reuse. We will
implement a prototype of the architecture to validate our proposal, running
a case study from Molecular Dynamics Simulation [2] (involving both chemists
and physicists working each at distinct aspects of the problem).

In our approach, provenance, provided by a scientific workflow system, is
semantically enhanced with domain ontologies. This enriched information is then
1 http://www.escience.org.br.

c© Springer International Publishing Switzerland 2016
M. Mattoso and B. Glavic (Eds.): IPAW 2016, LNCS 9672, pp. 183–186, 2016.
DOI: 10.1007/978-3-319-40593-3 17

http://www.escience.org.br


184 L.A.M.C. Carvalho et al.

used to support flexibility in workflow retrieval and adaptation across collabo-
rating teams. As discussed further in the paper, provenance information serves
as a basis for a wide (new) range of workflow retrieval parameters; furthermore,
it allows scientists to assess quality of a workflow fragment.

2 Related Work

Most of the work related to workflow repositories relies on keyword-based
retrieval where a user-provided keyword is matched against terms in a work-
flow’s title, workflow’s tags or textual description, e.g., myExperiment2.

Alternatively, semantics-based retrieval mechanisms rely upon semantic
annotations which is the process of annotating resources with semantic meta-
data, using ontologies. The main problem is that annotations require high user
effort to describe a workflow, e.g., [3] by augmenting workflow specification, this
approach supports workflow retrieval.

Provenance-based retrieval is found in [4] which adopts the ProvONE3 model.
The work of [5] adopts OPM (Open Provenance Model)4 and takes advantage
of keeping the trace of how abstract workflows are instantiated into workflow
instances, to assist users in designing new workflows. In Janus [6], domain-specific
ontologies are used to annotate the more traditional “domain agnostic” prove-
nance representation of Taverna workflows.

Fig. 1. Architecture of W2SHARE

3 W2SHARE: Architecture and Prototype

The architecture of our framework is shown in Fig. 1. It is composed of
three main layers - interface, provenance-based management, and persistence.
Through the interface, scientists can design, semantically annotate and search
for (sub)workflows using multiple modes. The persistence layer is responsible for
ensuring independence between the middle layer and several repositories. The
2 http://myexperiment.org.
3 http://vcvcomputing.com/provone/provone.html.
4 http://openprovenance.org/model/opmo.

http://myexperiment.org
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core of the architecture is the middle layer (Provenance-based Management) and
its semantics retrieval capabilities. This is supported by semantic annotations
of: (1) the workflows and their components; and (2) the provenance traces gen-
erated by the WFMS. The cross disciplinary search of workflows of interest is
based on combining these annotations, emphasizing provenance aspects.

While ontologies have been proposed to enrich provenance data (see [6]),
this has not yet been exploited to support the selection/retrieval of appropriate
workflow fragments. The use of provenance information to help workflow retrieval
appears in [4,5], but these solutions do not fully meet our needs.

The Provenance Manager module is based on extending the work of [7]. It
extracts information from provenance traces provided by the WFMS, storing
their metadata in the Provenance Repository. It interacts with the Annotation
Manager to support annotation of these traces. Annotated provenance is subse-
quently used by Retrieval mechanisms.

The Annotation Manager is responsible for generating semantic annotations
of workflow components (interacting with the WFMS and the Persistence layer)
and of provenance information (interacting with the Provenance Manager and
the Persistence layer). It also manages the Ontology Repository and feeds the
Reasoner. This module is also responsible for connections to other Linked Open
Data repositories. This makes it possible to retrieve properties of data which are
not explicitly represented in annotated data.

Workflow retrieval combines several kinds of semantics-based mechanisms,
taking advantage of annotations managed by the Annotation Manager. The
approach to be used to rank the results is still under investigation. However
our idea is to use data quality assessment to provide information to the ranking
algorithm.

The Inference Reasoner expands knowledge of workflow and provenance
annotations through Linked Open Data principles. Moreover, it allows addi-
tional relationships among annotated items, this offers possibility to search for
concepts which are not explicit in annotation.

4 Case Study - Molecular Dynamics

Our case study concerns molecular dynamics (MD), where simulations are used
in material sciences, computational engineering, physics and chemistry.

A typical MD simulation experiment receives as input the structure, topol-
ogy and force fields of the molecular system and produces molecular trajectories
as output. Simulations are subject to a suite of parameters, including thermo-
dynamic variables.

Simulations involve both the atomistic modeling, employed by computational
physicists and chemists, and the modeling techniques mostly adopted by engi-
neers to treat problems at the macroscopic scales.

To implement a MD [2] simulation, first, we manually analyzed a suite of
scripts designed by physiochemists to translate them into Taverna workflows.
Its inputs are the protein structure (PDB: 8CEL), the simulation parameters



186 L.A.M.C. Carvalho et al.

and force field files. Next, we executed the workflow in Taverna. Then, we will
use the annotation facilities provided by our future prototype to annotate work-
flow components used and provenance data generated by Taverna. To perform
annotations, we also have to create an ontology with help of experts, since no
such ontology exists.

Once all these (annotated) items are stored, we could then proceed with
workflow retrieval. Examples of future search requests include: workflows that
uses a protein or a liquid solution; or that are derived from a specific and more
abstract workflow; or that involve a specific module; or that were designed by
groups based in a certain region or workflow authors.

5 Conclusions and Ongoing Work

This paper presented a provenance-based software infrastructure to enable sci-
entists to reuse and repurpose experiments, modeled as workflows, across dif-
ferent disciplines. We show how we are meeting the challenges faced by CCES
to convert script-based experiments into scientific workflows, and subsequently
navigate through the workflow repository to find the “most appropriate” work-
flow fragment. There are many challenges in taking advantage of workflows to
support transdisciplinary collaboration. We have chosen semantically enriched
provenance information as a basis for workflow retrieval in this context, given
the many benefits that can be gained from exploring such information. Our
prototype implementation and ontology modeling are ongoing work.

Acknowledgments. Work partially financed by FAPESP (2014/23861-4) and
FAPESP/CEPID CCES (2013/08293-7).
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Abstract. New NIH grants require establishing scientific rigor, i.e.
applicants must provide evidence of strict application of the scientific
method to ensure robust and unbiased experimental design, methodol-
ogy, analysis, interpretation and reporting of results. Researchers must
transparently report experimental details so others may reproduce and
extend findings. Provenance can help accomplish these objectives; ana-
lytical workflows can be annotated with sufficient information for peers to
understand methods and reproduce the intended results. We aim to pro-
duce enhancements to the ontology space including links between exist-
ing ontologies, terminology gap analysis and ontology terms to address
gaps, and potentially a new ontology aimed at integrating the higher
level data analysis planning concepts. We are developing a collection
of techniques and tools to enable workflow recipes or plans to be more
clearly and consistently shared, improve understanding of all analysis
aspects and enable greater reuse and reproduction. We aim to show that
semantic workflows can improve scientific rigor in data analysis and to
demonstrate their impact in specific research domains.

Keywords: Provenance · Ontologies · Scientific rigor · Reproducibility

1 Introduction

The NIH now requires most research grant applications to address four areas
related to scientific rigor and transparency. [1] One way to accomplish these
objectives is to annotate analytical workflows with enough information to enable
others to accurately reproduce the published results. Our team is evaluating and
extending ontologies, processes and infrastructure that will enable data scientists
to meet these rising standards of scientific rigor and transparency without stifling
scientific creativity, innovation and productivity. Our aim is to demonstrate that
semantic workflows provide an essential framework for addressing these pressing
needs. [2,3]

A data analytics workflow typically draws from multiple data sources, selects
subsets, applies preparatory transformations, and applies a series of existing and
novel data analysis algorithms and/or statistical tests that produce results in
c© Springer International Publishing Switzerland 2016
M. Mattoso and B. Glavic (Eds.): IPAW 2016, LNCS 9672, pp. 187–190, 2016.
DOI: 10.1007/978-3-319-40593-3 18
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the form of data, tables, visualizations and statistics; each workflow step likely
also depends upon setting certain hyperparameters. Given the many steps and
interdependencies in data analytics workflows, the high standards for reporting
results will not be met by sharing data and code accompanied by only ad hoc
descriptions of their use. To understand and reproduce another team’s analyt-
ical results, a complete analysis “recipe” or plan1 must be captured, including
the underlying choices and assumptions embedded in the analysis. The entire
analytical workflow including comments, data transformations, descriptions of
computational blocks, and specific parameter settings for algorithms are neces-
sary for scientific reproducibility and rigor.

2 Background and Technical Motivation

A number of scientific workflow management systems2 exist to implement and
execute analytical processes and to capture provenance, including low-level
descriptions of processes executed and the details of computed results [7]. Ded-
icated platforms require data analysts to implement their analytical processes
within the tool rather than through familiar environments, e.g. R, MATLAB or
Python. noWorkflow [8] simplified the capture and analysis of scripted work-
flow provenance by capturing the details and low-level descriptions of exe-
cuted scripts, making provenance easier to produce and more accessible to other
researchers. YesWorkflow [9,10] introduced a markup-based approach enabling
metadata about workflow structure and intent, including explanations of code
blocks and parameter settings, to be captured using embedded annotation within
the workflow script.

The use of domain-appropriate comments within scripts as the basis for
provenance metadata simplifies documenting workflows and enhances repro-
ducibility, while integrating the production of provenance with the data ana-
lytics process. In situ workflow analysis systems do not yet enable data analysts
to include rich contextual and linking information. Augmenting these tools with
semantic technologies including RDF3, PROV-O4, and ProvONE [11] will enable
richer context and linking to be captured, improving workflow understandability
and reuse potential. The focus should be on fine-tuning the captured “prospec-
tive provenance”5 from practical data analysis scripts such as in R, MATLAB
and Python; developing utilities to produce metadata descriptions compliant
with best-practice Web provenance standards (esp. PROV-O compliant RDF);
and developing applications based on the resulting enhanced workflow metadata
to further the reproducibility objective. We are developing approaches rooted
in semantic technology for extending domain knowledge graphs with workflow
provenance metadata that will facilitate referencing workflows from reported
results, as well as the discovery of relevant workflows.
1 W3C PROV-O refers to these as “plans.” http://www.w3.org/TR/prov-o/#Plan.
2 For example: Kepler [4], Taverna [5], WINGS [6], etc.
3 https://www.w3.org/RDF/.
4 https://www.w3.org/TR/prov-o/.
5 “Prospective provenance” refers to a workflow’s “plan” or “recipe.” See [12].
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3 Transparent Data Analytics for Scientific Rigor

Workflow analysis tools (e.g., noWorkflow, YesWorkflow) have advantages over
dedicated workflow management systems by providing transparency “inside” the
boundaries of data analysis scripts. These tools enable richer, more meaningful
workflow descriptions and support the capture of critical workflow metadata
without burdening the coder; the data analyst can typically convert comments
to provenance within an hour.

Most state-of-the-art workflow tools that capture provenance emphasize sci-
entific rigor as an inherent part of the workflow. Future workflow management
systems must link to authoritative domain science ontologies as well as ontologies
that appropriately express analytical concepts, thereby enhancing interoperabil-
ity across research projects. We aim to produce workflow ontology enhancements
to include links between existing ontologies, terminology gap analysis and ontol-
ogy terms to address gaps, and potentially a new ontology aimed at integrating
higher level data analysis concepts.6

We are pursuing opportunities for supporting scientific research through the
creation of infrastructure and systems that understand not just what analysis
was planned and what was executed, but also how the records of those analysis
plans and executions may connect to, and be leveraged by, other scientific work.
Our motivating hypothesis is this: if a knowledge graph of analytics workflows can
be built with more declarative representations and with support for comparisons,
not only will transparency and reproducibility be improved, but fundamentally
new capabilities based on the workflow metadata will be realized.

4 Ontologies for Scientifically Rigorous Workflows

Semantic representation, reasoning, and query tools, along with provenance stan-
dards, can connect workflows to specific scientific domains and enable robust
query and inference. We are exploring options for the practical semantic rep-
resentation of scientific workflows based on established standards. We seek to
improve the validation and extension of ontologies that capture workflow prove-
nance, especially ProvONE. We are connecting to data analysis ontologies (e.g.,
STAT-O7) to leverage community standard vocabularies. Our aim is to demon-
strate the value to domain scientists of representing scripted scientific workflows
as semantic workflows. Our motivating use cases involve collaborative projects.
Our goal is to represent enough content to capture similarities and differences in
analytic approaches to determine where efforts might be combined and/or where
they are incompatible, and ultimately to capture a shared, scientifically rigorous
description of the intended process.

6 We know of no ontology that enables scripted workflow processes accomplishing
semantically similar tasks to be annotated in the same way using the same vocabu-
lary.

7 http://stato-ontology.org/.

http://stato-ontology.org/
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We are developing tools that will enable workflow plans to be more clearly and
consistently shared so we can improve understanding of all analysis aspects –
including the data, algorithms, and code – to enable reuse and reproduction.
Through the import of semantic workflow metadata into the scientific knowledge
graphs, we aim to show how domain scientists will be able to more easily discover
and retrieve relevant, meaningful workflows based on similarity due to workflow
semantics “in the graph.” We believe this work will show that semantic workflows
are a core technology for improving scientific reproducibility and rigor in science
data analysis. Our poster will include examples from our work analyzing and
representing brain development and exposure science.

Acknowledgements. Thanks to T. McPhillips of UIUC and B. Ludäscher of
UC-Davis for help with YesWorkflow, D. Garijo and V. Ratnakar of USC ISI for help
with WINGS, and NSF Grant No. 1331023.
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Abstract. In this paper, we revisit our method for reconstructing the
primary sources of documents, which make up an important part of their
provenance. Our method is based on the assumption that if two docu-
ments are semantically similar, there is a high chance that they also
share a common source. We previously evaluated this assumption on an
excerpt from a news archive, achieving 68.2% precision and 73% recall
when reconstructing the primary sources of all articles. However, since
we could not release this dataset to the public, it made our results hard to
compare to others. In this work, we extend the flexibility of our method
by adding a new parameter, and re-evaluate it on the human-generated
dataset created for the 2014 Provenance Reconstruction Challenge. The
extended method achieves up to 86% precision and 59% recall, and is
now directly comparable to any approach that uses the same dataset.

1 Introduction

Even with the recommendation of the PROV model by W3C in 2013, there is
still a plethora of data on the Web that lacks associated provenance. Research
that works towards reconstructing this provenance is still very new in the com-
munity, and datasets suitable for evaluation are rare. Thus, together with VU
Amsterdam, we initiated the 2014 Provenance Reconstruction Challenge1. The
aim of this challenge was to help spur research into the reconstruction of prove-
nance by providing a common task and datasets for experimentation. In this
paper, we present our own evaluation results on this dataset.

2 The Dataset

Challenge participants received an open data set and the corresponding prove-
nance graphs (in W3C PROV format). They could then work with the data
trying to reconstruct the provenance graphs from the open data set. The data
consists of two distinct sets: one machine-collected, and one human-generated.
This way, we are able to evaluate the reconstruction accuracy for provenance
that was automatically collected based on observations, and provenance that

1 http://www.data2semantics.org/prov-reconstruction-challenge/.
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was generated based on information provided by humans, which could not be
captured automatically.

The machine-collected dataset can be downloaded at: http://git2prov.org/
reconstruction/machine-generated-dev.zip, and the human-generated set at:
http://git2prov.org/reconstruction/human-generated-dev.zip.

The ground truth (groundtruth.ttl) for the machine-generated dataset was
generated from a number of Github repositories using the Git2PROV tool [3].
As raw data, it includes every version of each file that was ever present in the
repository (including deleted files). However, the filenames are randomized, to
simulate a scenario where all provenance was lost. Due to these randomized file-
names, the timing metadata associated with the files may differ from the origi-
nal. The correct timings can be found in the ground truth provenance. The main
goal here is to reconstruct the derivation graph of the original files, serialized as
PROV-O. Evaluations should report at a minimum the precision/recall of the
detected PROV relations (prov:wasDerivedFrom, prov:wasGeneratedBy, etc.).

The ground truth for the human-generated dataset was created using the
sources mentioned in news articles from WikiNews. The link between news arti-
cles and their sources is modeled using the prov:hadPrimarySource relation.
The raw data consists of the entire HTML of the WikiNews articles, without
the sources, and a list of URIs (human sources.txt). In other words, the goal of
this task is to match the source URIs from this list to the correct WikiNews
article. Approaches may use any information embedded in the files or exter-
nal information, save from the ground truth or WikiNews, for obvious reasons.
Evaluations should report at a minimum the results of precision/recall of the
prov:hadPrimarySource relations.

3 Our Approach

We applied our method as described in [2], applying the assumption “if a set
of documents is highly similar, there is a high chance they also share a common
source”. This method clusters all documents in the dataset using a lower bound
on similarity, expressed as the threshold Ts. Then, for each cluster, the oldest
document is selected, and asserted as the (indirect) primary source of all oth-
ers in that cluster. Note that clusters can overlap, so multiple primary sources
can be asserted for one document. The level of uncertainty is annotated using
the similarity measured between the two documents to help end-users make a
decision on which assertion to trust, if there is a conflict. As parameters, we
used the cosine similarity with TF-IDF weighting, 10 different the sim-
ilarity thresholds Ts, and no cluster-size threshold (so no re-clustering).
Additionally, the following considerations were made during the implementation:

– For a number of articles which do not include a date, the original WikiNews
articles were consulted, and the date reported there was used. In certain cases,
this is the date of access by the writers of the article. Because a number of
sources provide a datetime, while others only provide the day of publishing,
only the day of publishing was used for all articles.

http://git2prov.org/reconstruction/machine-generated-dev.zip
http://git2prov.org/reconstruction/machine-generated-dev.zip
http://git2prov.org/reconstruction/human-generated-dev.zip
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– We re-formatted the dataset to be usable with our software. To do this, the
text and date had to be extracted from each HTML document, without adver-
tisements, images, videos, etc. To obtain results that reflect the performance
of our approach, not influenced by automatic text extraction methods, we per-
formed this extraction manually, thereby assuming an ‘ideal’ text extractor.

4 Evaluation

We evaluated our approach only on the human-generated dataset, for which it
was primarily designed, and which is harder to capture in an automatic way.
The results are shown in Table 1. At first glance, our method only achieved a
rather disappointing maximum precision of 27 % and recall of 16 %. However,
these results can be explained by looking deeper into how the human-generated
dataset was constructed, and how our method tries to reconstruct it.

Table 1. Results of our method as described in [2] on the human-generated dataset

Ts 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Precision 0.30 0.14 0.20 0.21 0.27 0.25 0 0 0 0

Recall 0.12 0.13 0.16 0.15 0.12 0.066 0 0 0 0

In our method as described in [2], we assume the oldest document in a cluster
to be the (indirect) source of multiple documents – i.e., all others in the cluster.
However, the ground truth dataset was constructed in exactly the opposite way:
the newest document is derived from multiple sources. This means that with a
very minor adjustment to our method, we might be able to achieve much better
results. Therefore, we extended our method for this benchmark, by including
a new parameter that allows the algorithm to select the newest document in
every cluster instead of the oldest, and making all other documents in the cluster
primary sources of the former. When we ran our reconstruction algorithm with
this parameter enabled, it confirmed our suspicions, and we achieved much better
results, as shown in Table 2. Now, our method achieves 86 % precision and 59 %
recall with Ts = 0.4.

Table 2. Results of our slightly adjusted method on the human-generated dataset

Ts 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Precision 0.52 0.54 0.70 0.86 0.77 0.69 0.2 0 0 0

Recall 0.26 0.51 0.57 0.59 0.33 0.18 0.016 0 0 0
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5 Comparison to Related Work and Conclusion

While a number of domain-specific techniques used to reconstruct provenance
exist, these techniques all predate the PROV standard and do not offer a compa-
rable evaluation. For example, Zhao et al. [7] predict missing provenance based
on semantic associations in the domain of reservoir engineering. Zhang et al. [6]
exploit the logging capabilities of existing relational database management sys-
tems to retrieve lost source provenance traces. The work of [4,5] focuses on
tracing news and quotes (referred to as memes) on the Web over time.

More recently, Aierken et al. [1] presented their multi-funneling approach to
provenance reconstruction. They apply three techniques: one based on IR tech-
niques and the Vector Space Model (VSM) similar to our approach, one based on
the machine learning and topic modeling, and one based on dynamic program-
ming and matching the longest common subsequence. They report a precision and
recall of 77 % and 47 % for human-generated provenance, and 78 % and 68 % for
machine-generated provenance, respectively. However, since their method relies
heavily on training data, they used the human-generated challenge dataset as
a training set for their method, and created a new WikiNews dataset using the
same procedure for their evaluation. This means that while at first glance, our
reported results seem to outperform theirs, they are not entirely comparable.
However, their results together with ours – and the results we measured on our
news dataset in [2] (68.2 % precision and 73 % recall) – can at least be interpreted
as an indication of the level of accuracy that is achievable with the current state
of the art in this field. While not perfect, these methods can certainly help a
human-user reconstruct lost provenance, as opposed to doing it all manually.
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Abstract. In this paper we argue that understanding the provenance
of social media datasets and their analysis is critical to addressing chal-
lenges faced by the social science research community in terms of the
reliability and reproducibility of research utilising such data. Based on
analysis of existing projects that use social media data, we present a
number of research questions for the provenance community, which if
addressed would help increase the transparency of the research process,
aid reproducibility, and facilitate data reuse in the social sciences.

Keywords: Provenance · Social media · Research process

1 Introduction

The social science research community faces challenges associated with the relia-
bility, statistical validity, and generalizability of data obtained from social media
[Tuf13], which may raise questions about the validity of research based on
such data and hinder data reuse [fECoD13]. Provenance has previously been
used to support audit, verification, and reproducibility in a number of domains
[Mor11,CFLV12]; as such, we argue that documenting the provenance of social
media data and its subsequent analysis could help address the challenges faced
by the social sciences - by increasing the transparency of the research process,
and supporting assessment of the analytical methods used.

2 Case Study - Tweeting Transport

To investigate this application of provenance we have analysed a number of
projects that utilised social media data; one of these will now be described in
order to provide context for the research questions in Sect. 3. The Tweeting
Transport project [CYG+15] explored how Twitter1 is used to provide transport
information during major events, focusing on the 2014 Commonwealth Games2.

The work described here was funded by a grant from the United Kingdom’s Economic
and Social Research Council Social Media - Developing Understanding, Infrastruc-
ture & Engagement (ES/M001628/1).

1 http://www.twitter.com.
2 http://www.glasgow2014.com.
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Figure 1 provides a PROV [MGC+15] representation of the Tweeting Trans-
port project. A dataset of tweets relating to transport disruption during the
2014 Games was created using TMI3, a tool developed to monitor Twitter, and
to store and export Tweets to CSV files for analysis. TMI was configured to
capture tweets containing at least one of 331 keywords or hashtags, as well as
tweets authored by eight different user accounts. These criteria were based on
a review of travel information published via the official Games website4 and a
review of the wider transport disruption literature. Data were collected one week
before the event, during the Games, and for one week afterwards (July/August
2014).

Fig. 1. PROV representation of the Tweeting Transport project.

Three types of analysis were subsequently performed to understand the kinds
of travel information provided, and the Twitter users who disseminated this con-
tent. Here we summarise the first of these, which focused on Retweets and replies
in response to Tweets sent by the official travel information Twitter account,
@GamesTravel2014. The analysis involved thematic coding of each tweet by one
researcher (R1 in Fig. 1), which categorised each tweet based on its content.
These categories were used by two additional researchers (R2 and R3 in Fig. 1)
to code the same data, which resulted in moderate agreement between the coders
(as computed by the Fleiss Kappa implementation of the R tool5). Following dis-
cussions between the researchers, the categories were redefined, and the dataset
recoded, resulting in substantial agreement. Seven types of travel information
that were shared via Twitter were identified.
3 https://github.com/SocialJourneys/TMI.
4 http://www.glasgow2014.com/your-games/travel-and-transport.
5 https://www.r-project.org/.
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3 Research Questions

The approach to data collection and analysis described above is typical of such
projects; [BT14] presents a taxonomy of social media providers, data types, and
access mechanisms; data cleaning, tagging, and storing activities; and techniques
and tools commonly used with such data. Documenting these various aspects of
social media analytics forms the basis of our research questions.

RQ1 - What characteristics of social media data should be captured to facil-
itate transparency, and reproducibility of such research?

We argue that it is necessary to capture aspects of why, how, where and when
[CCT09] data provenance. Why characteristics capture both why the dataset was
created, and why each datum was included; how characteristics define how the
data were acquired, for example, via the Twitter Stream API6 and/or tools such
as TMI; where characteristics define the source of the data, for example Face-
book7 or a third party service such as the Gnip8 enterprise platform; and when
defines both the temporal coverage of the data, and when collection took place.
These are necessary to allow others to understand the data (including restric-
tions on reuse due to license conditions), and to understand how to reproduce
the dataset if necessary.

RQ2 - How can existing provenance models be employed to record analysis of
social media data?

The analysis (and associated stages, such as data preparation) can be viewed
as a set of activities that use, generate, and exchange information. The Tweet-
ing Transport project also illustrates why it will be necessary to capture the
different agents that were involved in these activities (as three researchers con-
ducted the Tweet coding activity independently). This is consistent with the
process flow view of provenance [MGC+15], which PROV is capable of cap-
turing. While models, such as PROV-SAID9 extend PROV with the ability to
capture information diffusion within social media platforms, further extensions
are required to capture different types of analysis, such as thematic coding and
recursive abstraction.

RQ3 - What information should the provenance record contain to facilitate
transparency and reproducibility of research that utilises social media data?

This question considers the appropriate level(s) of granularity required. For
example, is it necessary for the provenance record of the Tweeting Transport
project to contain all of the information regarding the revision of the initial
Tweet categories (as in Fig. 1), or does a description of the revised categories and
coded Tweets provide sufficient detail to allow others to reproduce the research?

RQ4 - How can the provenance of social media analysis be captured?
One obvious approach here would be construction of a software tool, able to

guide a researcher through creation of a description of their data and analytical

6 https://dev.twitter.com/streaming/overview.
7 https://www.facebook.com.
8 https://gnip.com/.
9 http://semweb.mmlab.be/ns/prov-said/.
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processes. However, previous experience in the ourSpaces Virtual Research Envi-
ronment [EPE+12] indicates that the descriptions obtained in this way are likely
to be limited, as few users will provide details beyond the minimum required
when describing, for example, a dataset. As such, we argue that it will be neces-
sary to develop automated solutions that attempt to infer or reconstruct (parts
of) the provenance record by, for example, examining data files generated by
popular qualitative data analysis tools such as NVivo10.

4 Future Work

As part of our investigation of these research questions, we are currently devel-
oping the model extensions necessary to enable capture of the provenance of
research that uses social media data. Following this, we plan to develop a soft-
ware tool that supports creation of provenance expressed using the new model;
the tool will be evaluated by application to our case study projects. We are
also developing a set of guidelines that will support research data archives to
obtain the appropriate information from those conducting research using social
media data, to provide others with greater understanding of the research under-
taken, knowledge of how to verify, repeat and/or reproduce the research, and to
facilitate greater data reuse.
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Abstract. Collecting provenance from scripts is often useful for scientists to
explain and reproduce their scientific experiments. However, most existing
automatic approaches capture provenance at coarse-grain, for example, the trace
of user-defined functions. These approaches lack information of variable
dependencies. Without this information, users may struggle to identify which
functions really influenced the results, leading to the creation of false-positive
provenance links. To address this problem, we propose an approach that uses
dynamic program slicing for gathering provenance of Python scripts. By cap-
turing dependencies among variables, it is possible to expose execution paths
inside functions and, consequently, to create a provenance graph that accurately
represents the function activations and the results they affect.

1 Introduction

Scientists may use scripts to perform intensive computational tasks such as data
analyses and explorations [2]. The results achieved by these tasks need to be explained
and/or reproduced, and provenance is a key concept in this direction. However, col-
lecting provenance of scripts is challenging [5].

Some automatic approaches capture provenance at the function level [2, 5, 9].
Approaches that consider functions as black-box constructs are able to gather the
function activation (i.e., call) order, arguments, returned values, and information
regarding file access, e.g., functions that opened files for read or write together with the
file content before and after the function execution. These approaches adopt the
function activation order to infer the dependence among data, potentially leading to
false-positive links. For instance, Fig. 1 shows an intentionally simple implementation
of the happy numbers problem [8], where the code calls two functions, process and
show, in sequence (lines 17 and 20), leading to the inference that the show result
depends on the process result. In fact, this inference happens to be true in the case
shown in Fig. 1, when DRY_RUN is False. However, the same inference would lead to
a false-positive result should the global variable DRY_RUN be True. This occurs
because final would be assigned to 7, which does not depend on the result of process.
However, as the script calls process before show, function-based approaches [5, 9]
would say that show depends on process.
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In contrast, RDataTracker [4] captures the occurrence of variable bindings along
with function level provenance. However, it requires the user to provide annotations.
This can be both time consuming and lead to inconsistencies as the code evolves.

The goal of this work is to provide a more precise identification of function acti-
vation sequences that actually affect the results, without requiring modifications on the
script. To do so, we use program slicing [10]. We capture and analyze dependencies
among variables during the script execution (a trial), and apply dynamic program
slicing [1] to identify which dependencies actually exist among functions and files.
This empowers scientists to explore factors that influenced the result with confidence.

Although doing dynamic program slicing over Python is not new [3], we differ-
entiate ourselves by capturing variable values and other provenance data in addition to
slices. For instance, when we have n = 10; final = process(n), Chen et al. [3] capture
only that final depends on n and the position in memory of these variables to link them.
However, since we aim to support scientists during analysis and allow them to debug
and reason about different trials, we also capture the values of final as 1; process(n) as
1; and n as 10; as well as when they were accessed. Moreover, we integrate our analysis
with a system that collects other types of provenance, such as file accesses, activations,
and environment attributes, allowing scientists to perform SQL and Prolog queries
integrating variable dependencies and other provenance data.

As a preliminary proof of concept, we implemented this approach in noWorkflow
[5–7], an open-source system that transparently captures provenance from Python
scripts at the function activation level.

2 Fine-Grained Provenance Collection

Ideally, capturing variable values and dependencies should be done at expressions and
statements level. However, some programming languages, such as Python and Lua, do
not support following the execution of all expressions efficiently. The most fine-grained
level execution following offered by these languages is to define tracing and profiling
functions to follow the execution line by line and call by call, respectively.

We define a Tracker as a function hook that combines tracing and profiling func-
tions in order to follow the execution line by line and call by call. When we follow

Fig. 1. Function show depends on process if DRY_RUN is False
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calls, the Tracker receives events during both the start and return of function calls. We
use these events to identify variable scopes and to avoid mixing up variables with the
same name on different scopes. We follow the execution line by line to capture
dependencies and provenance. Most dependencies occur between existing variables in
the code. However, to ease the collection and identify dependencies between calls, we
also create virtual variables. For instance, in line 17 of Fig. 1, we create a variable
process representing the call to process. This way, we can say that final depends on
process. In addition, in line 19, we create an extra variable final that has no depen-
dencies to the previous one. With this new variable final, we can isolate dependencies,
and indicate that show does not depend on process, and capture both values for
variables final: 1 and 7. Finally, we create virtual variables return in lines 9 and 14,
representing the return of these functions. For the return in line 9, we capture the value
1, and for the return in line 14, we capture the value happy number.

In some situations, we do not capture the complete execution provenance. In order
to tackle the challenge of capturing provenance in an overwhelming fine-grained level,
we allow users to specify a depth for provenance collection. When the execution
reaches a call beyond the specified depth, we make the function return to depend on all
of its parameters, correctly representing a well-designed function but potentially
leading to false positives when developers add unnecessary arguments to the function
calls. Similarly, we perform the same approximation if we find an external function that
the user did not define, such as print in line 20 of Fig. 1.

We capture four different types of dependencies: return, direct, conditional, and
loop. A return dependency occurs on function returns. A direct dependency occurs on
assignments and for loop iterations. A loop dependency occurs on augmented
assignments within loops. Finally, a conditional dependency occurs when the script
creates variables within if and while scopes. All these dependencies together represent
the data derivation throughout the script, allowing us to precisely identify which data
contributed to the production of which other data.

To exemplify these types of dependencies, we present Fig. 2 as the result of run-
ning now dataflow –m simulation –-rank-line | dot –Tpng fif.png after
running a trial with noWorkflow. In this figure, brightest nodes represent variables
while darkest nodes represent function calls for which we do not have definitions. The
labels on these nodes show line number and variable name. We represent function calls
for which we have definitions (process and show) as clusters. With this figure, it is easy
to observe that show does not depend on process.

Fig. 2. Dependency graph
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By comparing Figs. 1 and 2, we can observe that (i) “process” call (presented as a
white rectangle) has a return dependency to “9 return”, which is an artificial variable;
(ii) “8 number” has a direct dependency to “7 new_number”, because new_number
appears on the left side of number assignment.; (iii) “7 new_number” has a loop
dependency to “6 char”, since the number of augmented assignments in the loop
influences the final result of new_number; and (iv) “5 new_number” has a conditional
dependency to “3 number”, because the while condition uses number.

3 Conclusion and Future Work

In this work, we present an approach to enhance the provenance capture from scripts
using dynamic program slicing in a transparent and automatic way. We implemented
the approach on top of noWorkflow, which supports performing SQL queries, Prolog
queries, and exporting dependency graphs for visualizations. noWorkflow is available
as an open source software in https://github.com/gems-uff/noworkflow.

Our approach has some limitations. First, it currently does not support tracking
dependencies on complex data structures and syntactic constructions such as lists,
objects, exceptions, and generators. Second, because of the first limitation, it does not
handle dependencies for file access, which are managed by file handle objects in
Python. Third, it currently supports only Python scripts that do not combine multiple
statements into a single line and do not split statements into multiple lines. Finally, its
visualization may not be well suited for huge dependency graphs.

As future work, we plan on using Python AST transform to deal with the afore-
mentioned limitations. In addition, we plan to explore visualization summarizations
and other types of analyses and comparison techniques for the collected provenance.
Finally, the collected provenance opens many future work opportunities, such as the
visualization of the script evolution over time, debugging, identifying failures on
scripts, mining recurrent execution patterns, and analysis of slow functions.
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Abstract. Provenance traces history within workflows and enables
researchers to validate and compare their results. Currently, modelling
provenance in ProvONE is an arduous task and lacks an automated app-
roach. This paper introduces a novel algorithm, called Prov2ONE that
automatically generates the ProvONE prospective provenance for scien-
tific workflows defined in BPEL4WS. The same prospective ProvONE
graph is updated with the relevant retrospective provenance, preventing
provenance to be captured in various non-standard provenance models
and thus enabling research communities to share, compare and analyze
workflows and its associated provenance. Finally, using the Prov2ONE
algorithm, a ProvONE provenance graph for the nanoscopy workflow is
generated.

1 Introduction

In the last decade, research communities have adopted workflow management
systems (WfMS) for orchestrating their complex scientific workflows. Nanoscopy
is a novel imaging technique in biological and medical research that aims to
reduce the resolution gap between conventional light microscopy and electron
microscopy [1]. In a nanoscopy workflow, the raw image datasets acquired by
high-resolution microscopes are processed in multiple stages to produce final
results. Nanoscopy Open Reference Data Repository (NORDR) [2] is provisioned
to the researchers to store, process and access their data. For executing the
nanoscopy workflows a WfMS1 is integrated with NORDR. A critical aspect
associated with the NORDR is the management of provenance information.

The paper addresses three main requirements of managing provenance in
NORDR: (i) enable automated modelling of both prospective as well as retro-
spective provenance in a single provenance model; (ii) design an extensible prove-
nance management component for NORDR; (iii) provision a dedicated provenance
1 We use the Apache ODE workflow engine, site: http://ode.apache.org/.

c© Springer International Publishing Switzerland 2016
M. Mattoso and B. Glavic (Eds.): IPAW 2016, LNCS 9672, pp. 204–208, 2016.
DOI: 10.1007/978-3-319-40593-3 22

http://ode.apache.org/


Prov2ONE: An Algorithm for Automatically Constructing ProvONE 205

storage system with efficient query processing. To fulfill the first requirement, the
paper presents the Prov2ONE algorithm that generates a ProvONE [3] provenance
graph for BPEL4WS2 workflows. The algorithm is based on ProvONE due to the
limitations of the Open Provenance Model (OPM) [5] and PROV [6] to model only
the retrospective provenance [4]. The second requirement is met by presenting the
provenance management architecture for NORDR and finally, for efficient storage
and retrieval of provenance information, the ProvONE graphs are stored in a graph
database (ArangoDB3).

Fig. 1. Provenance management in
NORDR

Fig. 2. Nanoscopy workflow defined in
BPEL4WS

2 Provenance Management Architecture

The Fig. 1 briefly describes the various components of NORDR system that are
essential for either modelling, collecting or storing the provenance information
for a scientific workflow.
Workflow (WF) Engine: The WF engine is responsible for interpreting the
workflow definition and invoking the necessary data processing services.
NORDR: The NORDR is a multi-layered architecture with many modules that
primarily offers the various data processing and data storage service.
Provenance Manager: The provenance manager is responsible for handling
all the provenance information generated before, during and after the execu-
tion of each scientific workflow. The Provenance Manager comprises four mod-
ules: (i) The Prov2ONE module holds the implementation of the Prov2ONE
algorithm. (ii) NORDR Provenance Collector module collects the retrospective

2 http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html.
3 https://www.arangodb.com/.

http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
https://www.arangodb.com/
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provenance information from the NORDR. (iii) WF Engine Provenance Col-
lector module collects the retrospective provenance information from the WF
engine. (iv) OPM/PROV Provenance Exporter module enables interoperability
between the ProvONE and OPM/PROV standard.

3 Prov2ONE Algorithm

The Prov2ONE algorithm comprises two components. In the first component,
BPEL4WS activities are distinguished according to their status as structure
activities or operation activities. Structure activities are added to the stack, with
their head and tail sets determined according to the previous structure activities.
The algorithm then recurses on the children of the ingested structure, which are
popped upon completion. In the second component, labeled nodes defined by
the set Σ = (Workflow,Process,InputPort,OutputPort, DataLink,SeqCtrlLink)
are created and the relevant associations, with labels defined by set
Ω = (sourcePToCL,CLtoDestP, hasInPort, hasOutPort, DLToInPort, outPort-
ToDL) are drawn. This step is completed in the GenerateProvOne method of
Algorithm 2. The ProvONE is defined as a graph G = (V, E, λ, ψ), with: a set of
vertices V = {v1, v2, v3, ..., vn}, a set of edges E ⊆ V × V, a vertex labeling func-
tion λ: V → Σ, an edge labeling function ψ: E → Ω. The ProvONE algorithm
is tested for a nanoscopy workflow shown in Fig. 2.

Fig. 3. ProvONE graph of nanoscopy workflow (Color figure online)
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Algorithm 1.Prov2ONE Algorithm
1: List A := {sequence, process, while, scope}
2: List B := {flow, pick, switch}
3: List P := {invoke, receive, assign, reply, ∅}
4: List D := ∅, Stack S := {[process, {R}, {R}]}
5: C = {c1, c2, c3, ..., cn} is vector of BPEL children
6: function Prov2ONE(C)
7: for ci in C do
8: if ci.operation ∈ P then
9: GenerateProvOne(ci)

10: end if
11: if ci.operation ∈ A ∪ B then
12: top = POP(S)
13: if top[0] ∈ A then
14: head = top[2]
15: if top[1] == top[2] then
16: top[1] = ∅
17: end if
18: top[2] = ∅
19: else
20: head = top[1], top[1] = ∅
21: end if
22: if ci.operation ∈ A then
23: tail = COPY (head)
24: else
25: tail = ∅
26: end if
27: PUSH(S, top)
28: PUSH(S, [ci.operation, head, tail])
29: Prov2ONE(ci.children)
30: end = POP(S), top = POP(S)
31: if top[1] = ∅ then
32: top[1] = end[1]
33: end if
34: if top[0] ∈ A then
35: top[2] = end[2]
36: else
37: top[2] = top[2] ∪ end[2]
38: end if
39: PUSH(S, top)
40: end if
41: end for
42: end function

Algorithm 2.GenerateProvOne Method
1: function GenerateProvOne(ci)
2: in = ci.input, out = ci.output
3: λ(ci) = Process
4: ADD(V, ci)
5: top = POP(S)
6: if top[0] ∈ A then
7: ADD(V, s)
8: λ(s) = SeqCtrlLink
9: ψ(E) = sourcePToCL

10: CONNECT(top[2], s, E)
11: ψ(E) = CLtoDestP
12: CONNECT(s, ci, E)
13: top[2] = {ci}
14: else
15: ADD(V, s)
16: λ(s) = SeqCtrlLink
17: ψ(E) = sourcePToCL
18: CONNECT(top[1], s, E)
19: ψ(E) = CLtoDestP
20: CONNECT(s, ci, E)
21: top[2] = top[2] ∪ {ci}
22: end if
23: PUSH(S, top)
24: if in �= ∅ then
25: λ(in) = InputPort
26: ψ(E) = hasInPort
27: ADD(E, ci, in)
28: if in ∈ D then
29: dl = GET(D, out)
30: ψ(E) = DLToInPort
31: ADD(E, dl, in)
32: end if
33: end if
34: if out �= ∅ then
35: ψ(E) = hasOutPort
36: λ(out) = OutputPort
37: ADD(E, ci, out)
38: λ(dl) = DataLink
39: ψ(E) = outPortToDL
40: ADD(E, out, dl), ADD(D, dl)
41: end if
42: end function
43: function CONNECT(N , ci, E)
44: for n ∈ N do
45: ADD(E, n, ci)
46: end for
47: end function

4 Conclusion and Future Work

This paper presented a novel algorithm, called Prov2ONE, that generates the
ProvONE prospective provenance graph for an arbitrary BPEL4WS workflow.
Figure 3 shows the ProvONE graph generated by the Prov2ONE algorithm for
the nanoscopy workflow. During the execution of the workflow, the retrospective
ProvONE, i.e. ProcessExec, Data and User is linked to the ProvONE prospec-
tive graph with associations wasAssociatedWith, wasGeneratedBy, used, was-
DerivedFrom and dataOnLink. The services for collecting and appending the
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retrospective provenance to the prospective ProvONE graph are implemented
in the Provenance Manager component. By modelling both the prospective and
retrospective provenance for a scientific workflow in the ProvONE, the redun-
dant task of collecting, storing and maintaining provenance in various systems is
entirely avoided. The architecture of the NORDR system is shown in Fig. 1, and
for enabling efficient storage and querying of the provenance information, a graph
database is used. Currently, we are implementing the OPM/PROV exporter
module based on formal semantic mapping between ProvONE and OPM/PROV.
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Abstract. Using provenance to explain why a query returns a result or
why a result is missing has been studied extensively. However, the two
types of questions have been approached independently of each other.
We present an efficient technique for answering both types of questions
for Datalog queries based on a game-theoretic model of provenance called
provenance games. Our approach compiles provenance requests into Dat-
alog and translates the resulting query into SQL to execute it on a rela-
tional database backend. We apply several novel optimizations to limit
the computation to provenance relevant to a given user question.

1 Introduction

Explaining the existence and absence of query results through provenance respec-
tive missing answer techniques can help users to, e.g., debug and understand
their data and queries. Recently, the two techniques have been unified [3] in
a single framework based on a game-theoretic notion of provenance for queries
with negation, particularly, for non-recursive Datalog¬.1 The provenance game
for a query Q and database instance I explains for each existing and missing
query result how the rules of the query succeeded (respective failed) to derive it
and why the derivation succeeded (respective failed), i.e., which tuples present
or absent in the database instance caused rule derivations to succeed (respective
fail). Typically, a user would not be interested in explanations for all answers
and non-answers, but rather would like to understand why a particular tuple is
(not) in the result. Given such a user question Q(t), our approach computes a
subgraph of the full game that answers precisely the user question. While prove-
nance games provide a solid underlying theoretical foundation, these games are
not necessarily the most user-friendly representation of provenance, i.e., they
require some background in game theory to be interpreted correctly. Our system

1 Intuitively, asking why a tuple t is absent from Q is equivalent to explaining why
t is present in ¬Q. Thus, a provenance model with support for negation in queries
enables why and why-not questions to be treated uniformly.
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Relation L
S T

jane jane x1
jane peter x2
jane alice x3
jane maya x4
alice jane x5

peter jane maya

alice

x1

x2

x3

x4

x5

Result of
Query Q

S
jane
alice

Fig. 1. Example database

Q(jane)

r0(jane, peter) r0(jane, alice) r0(jane, jane) r0(jane,maya)

g0 g0 g0 g0

L(jane, peter) L(jane, alice) L(jane, jane) L(jane,maya)

Q(maya)

r0(maya, peter) r0(maya,maya) r0(maya, jane) r0(maya, alice)

g0 g0 g0 g0

L(maya, peter) L(maya,maya) L(maya, jane) L(maya, alice)

Fig. 2. Provenance explaining why Q(jane) and why-not Q(maya).

also supports several simpler forms of provenance that can be derived from a
provenance game by graph transformations, e.g., we support graphs that encode
provenance polynomials [2] for positive queries. Importantly, the core of our
technique is independent of how provenance is represented eventually and, thus,
new types of provenance representations can be added easily. The conventional
method [3] for computing provenance games is not suited well for computing
the part of the provenance game explaining a single answer or non-answer Q(t),
because it has to instantiate the full game which is prohibitively expensive, even
for small instances. For example, for a database with 1000 values and a query
with a single rule using 5 variables, the full game will contain more than 1015

nodes. Our approach computes the provenance bottom-up and only instantiates
parts of the game if they may be relevant to answer the user question.

Example 1. Consider relation L in Fig. 1, which stores links between personal
webpages. For example, the tuple (jane,peter) denotes that Jane’s webpage con-
tains a link to Peter’s webpage. A webpage may contain links to other parts of
the page (a self-loop). Consider a query Q expressed in Datalog that returns web-
pages that have outgoing links: r0 : Q(X) :− L(X,Y ). Given such a query, a user
may be interested in understanding why or why-not a webpage occurs in the
result of query Q. Figure 2 shows the simplified provenance graphs produced by
our approach for several why- and why-not questions. For instance, tuple (jane)
is in the result (denoted by the green background), because there is a link from
her webpage to Alice’s (tuple x3) which causes rule derivation r0(jane, alice) to
succeed. Tuple (maya) is not in the result, because none of the four possible links
connecting her webpage to any of the other webpages in the database exists. Thus
all possible derivations of Q(maya) using rule r0 have failed.
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2 Efficiently Generating Provenance Games

The input to our approach for computing provenance games is a Datalog program
and either a why or why-not question, i.e., why is tuple t in the result respective
missing from the result. Furthermore, the user can select whether one of the
simplified provenance representations should be returned. Based on these inputs,
we construct a new Datalog program that computes the edge relation of the
provenance game graph for t as detailed in the following.

(1) Unify program with provenance request. We first unify the program
with the question Q(t) by propagating the constants in t to replace variables
throughout the program in order to limit the computation to relevant parts of
the game. For example, to explain why Q(jane) (on the left in Fig. 2), we only
have to consider rule bindings where X = jane.

(2) Annotated rules. We then determine for which nodes in the graph we can
infer their success/failure state based on the user question. For instance, we only
need to consider successful instantiations of rule r0 to explain why Q(jane). We
store this information as annotations on rules and goals in the Datalog program.

(3) Capture rule derivations. Based on the annotated and unified game
created in the previous steps, we generate rules capturing variable bindings for
successful and failed rule instantiations (the annotations enable us to determine
whether we can focus on successful or failed instantiations only) in order to
construct the subgraph of a provenance game corresponding to a rule derivation.
We call these rules firing rules.
Successful derivations. Reconsider question why Q(jane) from Example 1.
The firing rule capturing successful bindings of r0, the only rule of query Q, is
derived from r0 by adding Y (the only existential variable in r0) to the head,
renaming the head predicate as Fr0,T, and replacing each goal with its firing
version. Firing rules are created after the unification with the user question.
Thus, for the example question, we would start from r0 : Q(jane, Y ) :− L(jane, Y ).
Positive firing rules for edb predicates simply copy the predicate.

Fr0,T(jane, Y ) :− FL,T(jane, Y ) FL,T(jane, Y ) :− L(jane, Y )

Failed derivations. To construct a provenance graph fragment corresponding
to a missing tuple, we find failed derivations with this tuple in the head and
ensure that no successful derivations of the tuple exist (otherwise we may capture
the irrelevant failed derivations of existing tuples). Furthermore, we need to
determine which goals failed for each failed rule instantiation because only failed
goals will be connected to the failed rule instantiations in the provenance game.
For the why-not question Q(maya) shown in Fig. 2 (on the right side), we are only
interested in failed instantiations of rule r0 with X = maya. The generated firing
rules are shown in Fig. 3. A negative firing rule (capturing failed derivations) is
constructed by replacing every goal in the body with its F/T firing version. An
F/T firing rule captures both existing and missing tuples and uses an additional
boolean variable (V1 in Fig. 3) in the head to record whether a tuple is existing
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Fig. 3. Firing rules for failed deriva-
tions

Fig. 4. GProM Implementation

or missing. We also add a firing rule for the negated head atom to the body
to only capture bindings for missing tuples. Since query Q (in the Example 1)
has only one goal, we simply capture whether this goal is won or lost for each
rule instantiation using boolean variable V1. As mentioned above, we use a F/T
firing rule for relation L to determine whether a tuple exists in L.

(4) Filter out false positives. To be in the result of one of the firing rules
obtained in the previous step is a necessary, but not sufficient condition for the
provenance graph fragment corresponding to this rule binding to be connected
to the user question. To guarantee that only relevant fragments are returned, we
need to check for each fragment whether it is actually connected. We introduce
additional rules that check connectivity one hop at a time.

(5) Compute edge relation. We compute the edge relation of the provenance
game based on the rule binding information that the firing rules have captured.
In addition to full game provenance, we support simplified provenance represen-
tations including the ones shown in Fig. 2.

Implementation. The generated Datalog program constructs and solves the
provenance game simultaneously in a bottom-up manner. We have implemented
this algorithm in our provenance middleware called GProM [1] that executes
provenance requests using a database backend. The process of computing a
provenance game for a user request is shown in Fig. 4. Our system also visu-
alizes the resulting graph using Graphviz (http://www.graphviz.org/).

3 Conclusions

We present an efficient approach for explaining answers and non-answers to
Datalog queries using provenance games. Our approach limits the computation
to parts of the provenance relevant to a user question by constructing the game
bottom-up and pruning unrelated parts from the computation.

http://www.graphviz.org/
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Abstract. Reproducibility is a major feature of Science. Even agronomic
research of exemplary quality may have irreproducible empirical findings
because of random or systematic error. This work presents SisGExp, a
provenance-based approach that aid researchers to manage, share, and enact the
computational scientific workflows that encapsulate legacy R scripts. SisGExp
transparently captures provenance of R scripts and endows experiments repro-
ducibility. SisGExp is non-intrusive, does not require users to change their
working way, it wrap agronomic experiments as a scientific workflow system.

Keywords: Provenance � R scripts � Workflows � Precision agriculture

1 Introduction

In today’s world, the demand for more food and green energy is skyrocketing. The
current method for developing innovations in agronomy is based almost entirely on
conventional, time- and labor-intensive experimental methods in which new varieties
and management practices are evaluated using on-the-ground and field-scale experi-
ments that may last for years. Despite ongoing agricultural model improvements, many
are direct descendants of research investments made three–four decades ago, and many
of the major advances in data management of the past decade have not been fully
exploited [1].

The association of Agronomy with eScience through the use of sensors, satellites
imagery, drones, modern experimental apparatuses, data streaming and in silico sim-
ulations are demanding new approaches to ensure reproducibility of agronomic
experiments regarding the management of experiments’ data.

Even agronomic research of exemplary quality, the complete reproduction of several
on-the-ground experiments may be not always feasible. Thus, to make researches
transparent and rigorous, with a minimum standard attainable for that to assess the real
value of their scientific claims, the use of provenance metadata must be considered since
the early stages of its experimental design until its statistical calculations, final execu-
tions, and publications. Our approach aims to allow researchers to manage, share, and
enact the statistical workflows that encapsulate legacy R scripts [1, 2].

The key motivation for our research is to bring an approach to assist scientists to
expand the reproducibility of their experiments. We are intentionally seeking to low
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technological barriers while providing the capability of using of consolidated tools to
encapsulate R scripts as statistical workflows and making the inputs and outputs and its
provenance metadata useful and publicly accessible not only to the researcher team but
also to third-party. In this paper, we present the SisGExp e-Science platform that
enriches the management of agronomic experiments supported by RFlow [2] archi-
tecture that wraps R scripts. It mitigates limitations of statistical systems about the
transparent and non-intrusive collection of prospective and retrospective provenance.

2 SisGExp Overview

Nowadays, agronomic experiments are based on on-the-ground experiments and also
statistical scripts. Usually, these scripts are hard-coded by Statistics researchers to less
skilled ones. These scripts act as statistical workflows using a textual language
described by languages like R, Perl, Python. The scripts are not easier to used, shared
and maintained by the inexperienced user. There are few mechanisms to collect
provenance of statistical scripts without changing its source code [3, 4].

The rationale behind SisGExp is depicted as follows. As a first phase (data
acquisition and planning), the researcher connects his account into SisGExp. Thus, he
defines the computational steps of the experimental design of the agronomic experi-
ment (parcels/variables/cultivars/randomizations/replications); picking legacy R scripts
from libraries; inserting raw experimental data; registering structured annotations.
During this phase, all prospective provenance related to the registered user/experiment,
inputs, annotations and other settings are caught by SisGExp and then stored in the
provenance repository. The accurate track of prospective provenance of the agronomic
experiment is important because enables downstream analysis errors to be traced back
to the original data sources.

As a second phase (which is indeed an iteration cycle of executions, analytics, and
reflections). The researcher configures the computational parameters; select input files
and R scripts (to prepare and analyze the inputs); select and run meta-workflow (hosted
on a remote server) that encapsulate the R script (such configuration is achieved by a
concrete workflow which takes advantage of the existing provenance engines of the
SWfMS). During this phase, retrospective provenance related to the (re)execution of
the computational trials are caught by either the SisGExp or the provenance engine and
then stored in the provenance repository represented by the PostgreSQL RDBMS. At
this phase, the researcher may repeat the cycle of selecting pairs of R
script/meta-workflows, executing and monitoring to produce novel output files,
checking them to gain insights and discover faults, debugging and annotating. The
execution of the meta-workflows allows the collection of retrospective provenance
metadata related to encapsulated R scripts. Nowadays, R system does not offer
provenance gathering facilities, and the ongoing efforts to enrich the collection of
provenance for R system require modifications in the R script to receive semantic
commentaries or function calls. As far we are concerned such approach present some
drawbacks. For instance, scientists must deal with multiple versions of R scripts, they
should have a deep understanding of R language to insert the commands in the proper
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position in the script. These approaches introduce technological barriers that many
scientists are not interested in confronting.

As a third phase (validation and dissemination). The computational trials were
finished, thus, the scientists (PI, reviewers, visitors) may visualize, browse, query and
evaluate both the scientific results and the provenance metadata of all three phases of
the agronomic experiments. The scientist has an integrated repository of data and
provenance metadata that can be analyzed or shared through the SisGExp interface
services. The four main components are: Experiments Management System (SisGExp),
the statistical system (R System), the SWfMS (Kepler SWfMS), the provenance col-
lector engine and a relational database management system (Fig. 1).

2.1 Meta-workflows

In this work, a statistical meta-workflow is a generic and reusable solution to encap-
sulate legacy R scripts. It acts as a wrapper that captures the script and all its statistical
functions as a sequence of activities of a workflow, allowing its implementation in an
SWfMS with all the benefits of built-in provenance.

The ExecScript is the concrete workflow developed in Kepler SWfMS (invoked
remotely by SisGExp) that represents the concept of statistical meta-workflow. The
workflow consists of several actors and file connectors, R specific actors and a com-
posite sub-workflow actor and the SDF director that orchestrates the execution of the
actors. Among the actors, we highlight the “Provenance Recorder” (PR) used to
configure and collect the retrospective provenance during the execution of the work-
flow and stored it directly in the PostgreSQL database.

2.2 Data and Metadata Repository

The repository is the warehouse of experiments’ data and provenance metadata. It
provides accounts to registered users allowing them to store and upload experiments,
audit and share results and provenance either privately or publicly in relational
representation.

By default, files submitted to the repository are private and can only be accessed by
owners. However, researchers can choose to share files and results with others in two

Fig. 1. Conceptual overview of SisGExp.
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ways: making a resource publicly available to any SisGExp guest visitor or sharing it
with specific SisGExp’s registered users. Except reader, all other roles, and the owner
can append new annotations (prospective provenance) to a resource or dataset after it
has been created. It is suitable for sharing provenance between a collaborating team of
humans and/or applications.

The repository stores prospective and retrospective provenance metadata and also
experiments’ data. Prospective provenance is generated through the interaction of the
researcher with SisGExp during the three phases of the experiment. The retrospective
provenance is collected during the generation of the experiment’s results; they are
automatically captured by the SWfMS.

The provenance repository uses two schemas public and expdata. The public
schema is linked with retrospective provenance collected by the Kepler System. The
expdata schema is related with prospective provenance; it was planned and imple-
mented to meet the demands of agronomic experiments. The schemes aim to register
the life cycle of the agronomic experiments.

3 Conclusion

Good science requires documentation and reproducibility. We foresee an increasing use
of computational models leading to virtual agronomic studies that can complement and
substitute (to some degree) on-the-ground methods.

Our approach empowers researchers to reuse and encapsulate legacy R scripts.
Compared to related works, the main advantages of SisGExp are: (i) it systematically
captures two types of provenance (prospective and retrospective) of the statistical
experiments. (ii) it does not require researchers to change their manner of working:
scripts do not need to be modified. (iii) it enhances reproducibility of agronomic
experiments, because the proposed schemes can register either experiments data and
provenance of results that can be reused, shared or queried by peers. As part of future
work, we intend to extend SisGExp to support other provenance systems generating
prospective and retrospective for other scripting languages such as Python and Perl.
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Abstract. Quantified Self or self-tracking is a growing movement where
people are tracking data about themselves. Tracking the provenance of
Quantified Self data is hard because usually many different devices, apps,
and services are involved. Nevertheless receiving insights how the data
has been acquired, how it has been processed, and who has stored and
accessed it is crucial for people. We present concepts for tracking prove-
nance in typical Quantified Self workflows. We use a provenance model
based on PROV and show its feasibility with an example.

Keywords: Provenance · Quantified self · Wearables · PROV

1 Introduction

Self-tracking with wearable devices, smartphone apps, or desktop applications
became popular in recent years. Such a self-surveillance is called Quantified Self
(QS) [3,8]. It is a movement that describes a community of people who record
and analyse data about themselves for medical reasons, self-improvement, tech-
nological interests, or other reasons. People collect various types of data related
to them, to get a better understanding of themselves.

We show how to practically capture provenance for QS workflows consist-
ing of wearable devices, (mobile) applications, and services (Sect. 2). To capture
provenance based on a QS provenance model [5,9], we give an overview about
some practical methods for provenance capturing (Sect. 3) and show the feasi-
bility with an example, where we capture provenance by an Android application
and a Python script (Sect. 4).

2 A Typical Quantified Self Workflow

To better understand a typical QS workflow, we present a workflow for weight
tracking (Fig. 1). The workflow starts with the user, who steps on a Withings
online weight scale. The scale connects through WLAN to the Withings Cloud
storage to update the weight data set. Withings notification server is executed
c© Springer International Publishing Switzerland 2016
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Fig. 1. Example QS workflow for weight tracking.

after the update to notify subscribed applications. The Android application
WeightCompanion1 gets updates for new weight data. Users can visualize and
edit data or export data sets to CSV files. For example, the user can copy the
CSV file to a laptop and import and process it with self-written Python scripts.
The user could also use a third-party service to collect and analyze the data.

3 Capture Methods for Provenance

For “real-world” QS workflows, the following techniques are available for cap-
turing provenance:

Wearable Devices and Other Sensors. Sensors, as wearables or traditional med-
ical sensors are usually very closed embedded systems. Adding functionality is
not designated by their manufacturers; it would require changing their firmware.
Adding functionality for capturing provenance would only be possible for devices
with programming interfaces (e.g., Microsoft Band or various smart watches).

Applications and Scripts. Smartphone, desktop, or web-based applications usu-
ally need very different, specific, techniques for capturing provenance. Depend-
ing on their architecture and availability, changing the applications code itself
or adding functionality via an API are the most desirable techniques. If both are
not possible or wanted, some other techniques are:

– Wrapping the application and capture information from files, or databases
that the application creates or uses.

– Grabbing information from the communication infrastructure (e.g., via
messaging infrastructures such as MQTT, ZeroMQ, or Enterprise Service
Buses [1]).

1 http://play.google.com/store/apps/details?id=de.medando.weightcompanion.

http://play.google.com/store/apps/details?id=de.medando.weightcompanion
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– Dynamic instrumentation of code or byte code [10]. For scripts, one could
instrument the script manually, add annotations [2], or use more sophisticated
frameworks such as noWorkflow [7] or YesWorkflow [6].

Services. Web Services or Cloud Storage are often provided by manufacturers of
tracking devices. Capturing provenance on Cloud resources is often not possible.
Nevertheless, one could capture some provenance information via their APIs. For
example, with capturing requests to the Web Service on client side or registering
a callback listener for change notifications and capture all changes locally.

4 Example Provenance

We show the feasibility of some approaches with a practical “slice of life” example
from the weight tracking workflow: First the weight data is exported from an
Android application to a CSV file, then this CSV file is imported and visualized
by a Python script.

We added provenance capturing to the WeightCompanion. The application
generates provenance documents using the Java library ProvToolbox2, which we
ported to Android. The Python script imports a CSV file and visualizes the
weights data. The CSV file is imported into a pandas DataFrame object. Then
the data is visualized using matplotlib. Provenance is captured using a Python
library3 for PROV-DM. Both examples send the PROV document to the ProvS-

Fig. 2. Merged provenance of a graph of weight measurements (https://provenance.
ecs.soton.ac.uk/store/documents/113794/)

2 http://lucmoreau.github.io/ProvToolbox/.
3 https://github.com/trungdong/prov.

https://provenance.ecs.soton.ac.uk/store/documents/113794/
https://provenance.ecs.soton.ac.uk/store/documents/113794/
http://lucmoreau.github.io/ProvToolbox/
https://github.com/trungdong/prov
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tore [4] directly. We merged the individual PROV documents using ProvToolbox
(Fig. 2).

5 Conclusions and Future Work

We presented techniques for capturing provenance of QS workflows. Future work
will focus on refining the QS provenance model and on providing documentation
for developers of QS applications and services. Technically, we plan to provide
provenance templates to help more flexible and maintainable recording of prove-
nance.
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Abstract. To manage raw data from Neuroscience experiments we have
to cope with the heterogeneity of data formats and the complexity of
additional metadata, such as its provenance information, that need to
be collected and stored. Although some progress has already been made
toward the elaboration of a common description for Neuroscience experi-
mental data, to the best of our knowledge, there is still no widely adopted
standard model to describe this kind of data. In order to foster neuro-
cientists to find and to use a structured and comprehensive model with
a robust tracking of data provenance, we present a brief evaluation of
guidelines and models for representation of raw data from Neuroscience
experiments, focusing on how they support provenance tracking.

Keywords: Neuroscience · Experimental data · Electrophysiology ·
Neuroimaging · Provenance information

1 Introduction

There are different kinds of experiments in Neuroscience, such as behavioral,
cognitive, electrophysiological (Ephy) and neuroimaging (NI). The last two
always involve the collection of data in digital format, e.g. electroencephalogram
(EEG), event related potential (ERP) and functional magnetic resonance imag-
ing (fMRI). Each experiment involves the generation and manipulation of large
quantities of both raw and processed data. To enhancing reproducibility of Neu-
roscience studies, researchers need to know the precise acquisition parameters

This work was produced at FAPESP Research, Innovation and Dissemination Center
for Neuromathematics (grant 2013/07699-0, S. Paulo Research Foundation).
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and the experimental conditions on how the raw data was acquired. These kind
of information, generally called provenance information, are metadata which is
used to record the experimental protocol (a specific preparation for realization
of the experiment by scientists), the purpose of the experiment and details about
its data results, as well as formal annotations and notes made by scientists.

In Neuroscience, the provenance information of raw data are too often lost
or when digitized end up becoming text files or spread-sheets without a stan-
dardized structure. A unified data model for handling metadata is still an open
research problem. The problem is compounded when the volume of collected
data begins to grow. Unlike the progress in workflow-based systems, which pro-
vide consistent mechanisms to manage the provenance of derived data generated
through workflows, the availability of open data models and free software tools to
support raw data routine collection is limited. Thus, the creation of standardized
models and formats for representing and storing raw data and its provenance
information is not a trivial task and depends on collaborative efforts from the
Neuroscience community.

Against this background, the presented work should be understood as a con-
tribution to the necessary discussion about the importance of storing provenance
information of experimental raw data in a structured and comprehensible way.
With this motivation, we present a brief bibliographical review and comparison
of the guidelines and models most widely used by neuroscientists in the represen-
tation and storage of experimental data. From our analysis, we have identified
the types of provenance information supported by these directives. The formal
specification of many of them is still a work in progress.

2 List of Guidelines and Data Models

In this research we considered fundamental provenance information based on the
seven W’s (Who, What, Where, Why, When, Which, (W) how) [1]. In Neuro-
science domain, examples of provenance information of experimental raw data
are: the scientists responsible for the experiment and collection of data, the
description of the subject study groups (who); the details about the recording
protocol or behavioral data collection, (e.g. the material used to record behav-
ioral data, the types of data collection performed) (what); the details of the task
or experimental protocol used in the collection of raw data (how); the start/end
date-time for data collection (when); the purpose of the experiment (why); the
information about the experimental conditions to which the groups of subjects
are submitted, such as behavioral and stimulus conditions (which); the informa-
tion about the laboratory where data was collected (where) and even publications
or other results that have arisen from the study of the collected data.

Due to the great variability in experimental protocols and heterogeneity of
collected data formats, Neuroscience experimental raw data and its provenance
information require specific and innovative ways of representation and storage.
Several recent works have already addressed the problem, proposing Minimum
Information (MI) guidelines and new data models. MI guidelines are checklists
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Table 1. Minimum information guidelines for Neuroscience experiments.

Guidelines Data focus Provenance information

MINI [2] Ephy Study subject (who); recording protocol (what); experiment context*

(when/why/where) task/protocol (how); behavioral and stimulus

conditions (which)

MINEMO [3] ERP/EEG Study subjects (who); Research Lab and publication information

(where); experiment context* (why/when); experiment condition

(which); experiment task (how); behavioral data collection (what)

fMRI [4] NI Human subject (who); experimental design (how); image properties

and data acquisition (what)
∗Experiment context includes general information about of the experiment (e.g. name, local,

purpose, start and end date-time and other descriptions).

which define the minimum information a researcher needs to report when pub-
lishing the results of an experiment. Table 1 lists the three MI guidelines created
for Ephy and NI experiments and details the provenance information they cover.

The guidelines generally include information that is considered important for
data analysis and for understanding the performed experiment. However, they
are neither complete data representation models nor data storage models.

Table 2 shows data models for representing and storing Neuroscience exper-
imental data. The most adopted schema to organize and to share data and
metadata is HDF5 (Hierarchical Data Format). HDF5 is a compact and binary
schema to store numerical data, such as EEG, to which it is possible to associate
metadata in a flexible way. However, its hierarchical structure, similar to files

Table 2. Data Format of provenance information supported by data models

Data Model Data focus Provenance data format

aNDF Ephy Based on MINI; the metadata is registered in a structured format,

using an entry form. XML files or files with (unstructured) text

data can also be added. Provenance information is not mandatory
bNWB Ephy Metadata is described in a flexible way using XML or unstructured

text files. Data and metadata files are grouped and organized in a

HDF5 structure
codML Ephy Metadata format is defined by user and is stored using an extended

key-value pairs structure
dNIX Ephy Based on odML, it allows storing additional information in textual

content files grouped under a specific schema based on HDF5
eNIDM NI It uses OWL and PROV-DM structure. (under development)
fXCEDE NI Data and metadata are stored using hierarchical XML based format
gDICOM NI Data and metadata are embedded in a image file header and can

never be separated. It is a closed standard
ahttp://www.carmen.org.uk/
bhttps://crcns.org/NWB/
chttp://www.g-node.org/projects/odml
dhttps://github.com/G-Node/nix/wiki
ehttp://nidm.nidash.org/
fhttps://github.com/incf-nidash/XCEDE
ghttp://medical.nema.org/dicom/

http://www.carmen.org.uk/
https://crcns.org/NWB/
http://www.g-node.org/projects/odml
https://github.com/G-Node/nix/wiki
http://nidm.nidash.org/
https://github.com/incf-nidash/XCEDE
http://medical.nema.org/dicom/
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and directories from traditional file systems, hampers the representation of more
complex relationships among data (as is the case of data from experiments with
several groups of participants).

The provenance information in models showed in Table 2 are not mandatory.
The models allow storing metadata in a free format defined by user. XML and
files with (unstructured) textual content are the most used file formats. The NI
domain, with NIDM, is already achieving a consensus on data representation.
NIDM, still under development, is based on standard ontologies and models,
such as PROV-DM, to register provenance information. PROV-DM provides a
set of classes, properties, and restrictions that can be used to represent and
interchange provenance information generated in different systems and under
different contexts. It can also be specialized to create new classes and properties
to better model provenance information for different applications and domains.

3 Concluding Remarks

As shown in this review, there is a distinct lack of standardized models to store
metadata for Neuroscience experimental raw data. Therefore, the reproducibil-
ity – a core scientific principle – of experiments and the reuse of data in other
contexts may be seriously compromised. We believe that overcoming these issues
require a coordinated effort from the neuroinformatics community. While there
is not yet any standard data model, computational tools are the main support
resource for neuroscientists interested to track provenance information of their
experimental raw data. To contribute in this scenario, we are involved in the
development of a free, open-source software tool – the Neuroscience Experiments
Systems (NES). One of the purposes of NES is to assist in the management of
Ephy and NI raw data while providing provenance recording and interoperability
by using several proposals from the scientific community for data and metadata
representation. NES is an initiative of the Research, Innovation and Dissemi-
nation Center for Neuromathematics (NeuroMat), hosted at University of São
Paulo. NES source code and documentation is available at https://github.com/
neuromat/nes.
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Abstract. Information quality is of paramount importance to science. Accurate,
scientifically vetted and statistically meaningful and, ideally, reproducible
information engenders scientific trust and research opportunities. Therefore,
so-called Highly Influential Scientific Assessments (HISA) such as the U.S.
Third National Climate Assessment (NCA3) undergo a very rigorous process to
ensure transparency and credibility. As an activity to support the transparency of
such reports, the U.S. Global Change Research Program has developed the
Global Change Information System (GCIS). Specifically related to the trans-
parency of NCA3, a recent activity was carried out to trace the provenance as
completely as possible for all figures in the NCA3 report that predominantly
used NASA data. This paper discusses lessons learned from this activity that
traces the provenance of NASA figures in a major HISA-class pdf report.

Keywords: Information systems � Data provenance � Information quality �
HISA reports � Climate Assessment � Lessons learned

1 Introduction

Accurate, scientifically vetted and statistically meaningful and, ideally, reproducible
scientific information engenders scientific trust and research opportunities. To support
the transparency of reports such as the Highly Influential Scientific Assessment (HISA)
that is the U.S. Third National Climate Assessment [1], the U.S. Global Change
Research Program (USGCRP) has developed the Global Change Information System
(GCIS). The GCIS is a web-based resource that facilitates tracing of connections
among various entities of which a report is comprised, such as key messages and
findings, figures, images used in the figures, data used to generate the images, etc. to
foster comprehension of the mechanisms that led to the various conclusions in a report.
It is available online at: http://data.globalchange.gov.
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This paper presents the lessons learned from a NASA-funded activity to ensure that
the NCA3 figure inputs derived from NASA data and their connections to findings and
key messages were as complete as possible.

2 GCIS

The GCIS is an open-source, web-based resource for traceable, sound global change
data, information, and products. GCIS contains sufficient metadata and links to the
sources of data, information and products, guiding users to global change products
selected by the 13 USGCRP member agencies. It serves as a key access point to
assessments, reports and tools produced by USGCRP [2–5]. The World Wide Web
Consortium (W3C) definition of provenance underlies that of GCIS.

The GCIS data model used to structure global change information represents
entities such as reports, chapters, figures, bibliographic entries, organizations and
people, and uses widely-adopted relationships, including provenance, among such
entities. Each item referenced in the GCIS has a unique, persistent identifier takes the
form of a Uniform Resource Identifier (URI), but may include other common identifiers
such as Universally Unique Identifiers (UUIDs), and Digital Object Identifiers (DOIs).

The W3C Provenance Working Group has defined an interoperable specification
(PROV) for the representation of provenance information. The standard is very general,
intended to support the breadth of any domain through built in points of extensibility.
Generally this provenance can be expressed as {entities (inputs and outputs), agents
and activities}. To codify the provenance of GCIS information we are leveraging
Provenance for Earth Science (PROV-ES) extension of WC3 PROV that is being
developed by the NASA Earth Science Data Systems Working Group (ESDSWG).

We have leveraged the GCIS Application Program Interfaces (API) to extract GCIS
content to ingest into a PROV-ES search service for faceted search and provenance
exploration. NCA3 content such as figures, persons, and activities are extracted from
GCIS as JSON documents. Using scripts, key GCIS concepts and their attributes are
mapped onto W3C PROV types. Extensions to baseline PROV concepts are added as
additional qualified named attributes. The mapping enables us to map GCIS-specific
information into standard and interoperable W3C PROV. For example, a gcis:Figure is
mapped onto a W3C PROV prov:Entity, but with additional attributes.

The GCIS discovery service includes a provenance faceted search capability
enabling users to facet navigate GCIS resources in the context of provenance. More
specifically, it enables users to “drill-down” by applying a sequential set of selection
criteria across different facets (values) of the GCIS content.

3 NCA3 Figures Using NASA Data

NASA data from satellites, instruments and/or models have been used in 20 of the
NCA3 figures. One such figure: Fig. 16.3 “Flooding and Hurricane Irene”, supports the
NCA3 Key Message: “Infrastructure will be increasingly compromised by climate-
related hazards, including sea level rise, coastal flooding, and intense precipitation
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events.” It shows an image of Hurricane Irene over the northeastern U.S. acquired from
NASA’s MODIS instrument on-board the Aqua satellite. The caption was a starting
point for gathering more detailed metadata. The figure can be found at http://nca2014.
globalchange.gov/report/regions/northeast/graphics/flooding-and-hurricane-irene.

4 Provenance Tracing and Lessons Learned

4.1 Provenance Tracing

The provenance of each of the 20 figures was manually analysed to trace back to the
contributing sources (images, data, and analysis methods) to the best extent possible.
The results were documented in the form of “activities” used for generating the figures.
An activity is defined by a clearly identified set of inputs and outputs, and a method of
generating the outputs from the inputs. A majority of the figures require performance of
more than one activity. One or more inputs and/or activities may be needed to generate
the figure. The method may be as simple as adapting a figure from an article or it could
be more complicated and include a detail description of the activity. Where more than
one activity is involved in the trace back, activity n is used for generating inputs needed
for activity n − 1. Specification of a complete set of activities for a given figure
constitutes its provenance trace.

4.2 Lessons Learned

The key lessons learned from this effort are summarized below. These lessons are
similar to the ones reported in [6] regarding experience with collecting metadata for the
NCA3 report. They also report that some of the lessons learned have been applied to
improve the metadata collection process in the more recent health assessment report
planned for release in 2016.

• It is difficult to trace back to derive provenance after reports are completed and
delivered. This is because generally, the authors contributing to influential reports
are very busy individuals who have spent a considerable amount of time in their
research and who have applied significant effort into gathering materials and writing
their sections or chapters. If in this process they have not maintained complete
documentation to assist in tracing back to derive provenance, then it will involve
either more work for the authors or an independent effort to investigate provenance.

• Attempts to follow up with authors on provenance could be misinterpreted as
questioning their research.

• To avoid these issues, it is useful to provide the authors with detailed instructions
and templates before they start writing their sections or chapters in influential
reports. Generally, it is useful to provide readers with information in the form of
inputs, outputs and methods (descriptive and/or mathematical) for each dataset
used, images or figures generated, and key messages.

• Even with instructions and templates provided to the authors, during the generation
of a report it is beneficial for an independent team to check for completeness of
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traceability from a non-expert reader’s point of view. If the independent team is
involved starting with the early drafts of the report, the traceability check can be
accomplished with minimal impact on the report publication schedule.

• Due to the very nature of a HISA, all underlying information should be held in a
long-lived repository and be easily accessible to users for at least as long as the
reports are deemed to be of interest to the community.
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Paolo Missier4, Christopher Schwalm5, Peter Slaughter2,
Dave Vieglais6, Lauren Walker2, and Yaxing Wei7

1 University of Illinois, Urbana-Champaign, Illinois, USA
sycao5@gmail.com

2 National Center for Ecological Analysis and Synthesis, UCSB, Santa Barbara, USA
3 Universidad Popular Autónoma del Estado de Puebla, Puebla, Mexico

4 School of Computing Science, Newcastle University, Newcastle upon Tyne, UK
5 Woods Hole Research Center, Falmouth, MA, USA

6 University of Kansas, Lawrence, USA
7 Environmental Sciences Division, ORNL, Oak Ridge, TN, USA

Abstract. DataONE is a federated data network focusing on earth and
environmental science data. We present the provenance and search
features of DataONE by means of an example involving three earth
scientists who interact through a DataONE Member Node. DataONE
provenance systems enable reproducible research and facilitate proper
attribution of scientific results transitively across generations of derived
data products.

1 Introduction

Scientific workflow provenance is valuable in computational science. Provenance
can help scientists better understand and share their work with others while
maintaining attribution. We refer to two types of provenance: prospective and
retrospective provenance, where the former refers to a specification of a data
transformation process or workflow [5], and the latter refers to the derivations
that account for the actual outcomes of an execution of the process.

DataONE (Data Observation Network for Earth) is a federated data network
for open, persistent, robust, and secure access to well-described and easily dis-
covered Earth observational data [3]. DataONE’s primary goals include support
for: data discovery, access, integration, and synthesis; education, training, and
building community; and data sharing. The DataONE infrastructure consists of
three principal components:

Member Nodes (MN) represent existing or new data repositories that support
the DataONE Member Node API; Coordinating Nodes (CN) serve the coordi-
nation and discovery needs of the network; and the Investigator Toolkit which
contains tools that enable programmatic interaction with DataONE infrastruc-
ture through a REST service API exposed by the CNs and MNs.
c© Springer International Publishing Switzerland 2016
M. Mattoso and B. Glavic (Eds.): IPAW 2016, LNCS 9672, pp. 230–234, 2016.
DOI: 10.1007/978-3-319-40593-3 28



DataONE: A Data Federation with Provenance Support 231

DataONE Search is a web-based application that lets users seamlessly and
efficiently discover publicly accessible data packages within the DataONE fed-
erated network of Member Node repositories. It allows users to search across
space (geographical region), time, and using a set of keywords. Users sign in to
DataONE Search using ORCID credentials, Google accounts, or institutional
accounts. DataONE enables new user features like provenance-based browsing
as part of its search facility. In the next section, we will present new DataONE
provenance tools and the visualization of provenance with DataONE Search [3].

2 Provenance Feature Description

We present two features related to provenance: Run Manager, an API for cap-
turing retrospective provenance from R [14] and MATLAB [7] script runs; and
YesWorkflow [9], a script annotation and provenance querying tool, designed to
help users better understand the structure and intent of a script, and to expose
and query its provenance.

We introduce the provenance and search features of DataONE by means
of an example involving three Earth scientist personas who interact through a
DataONE Member Node: In Fig. 1, Alice has developed a script for producing
C3/C4 carbon soil maps [15]. She uses the YesWorkflow (YW) tool to mark-up
the script and expose the underlying workflow view (i.e., prospective provenance)
that is inherent in her soil mapping code as shown in Fig. 2.

By using the Run Manager to run her script, Alice not only obtains
the expected results, but she also captures their provenance, compliant with
DataONE’s ProvONE data model. ProvONE [2] is an extension of the W3C
PROV-O [12] standard for representing provenance, and includes specializations
for representing both retrospective provenance about the runtime execution and

Fig. 1. Provenance Use Case: (1) Alice runs script.m with the DataONE Run Manager
to create data package PA, which she publishes to the DataONE network; (2) Bob
later finds and downloads Alice’s data, uses it in his analysis.m, creating and then
publishing package PB ; (3) Charlie searches DataONE, finds Bob’s PB , and recognizes
its dependence on Alice’s PA.
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YesWorkflow model of 

results 

Fig. 2. Charlie’s view on the DataONE demo site: (1) A YesWorkflow model for Alice’s
soil processing script; (2) Data lineage from Bob’s results back through his script inputs
to Alice’s data package; (3) Two visualizations produced by Bob’s water use efficiency
analysis script.

prospective provenance about the structure and flow of the analytical script or
workflow. At the end of the experimentation phase, Alice is ready to publish her
results to a DataONE Member Node. To do so, she uses the DataONE MATLAB
tool to automatically generate a DataONE-compliant data package in OAI-ORE
format, including the ProvONE provenance document, the script itself, and its
YW-generated workflow view.

Bob’s interaction with DataONE begins with a user interface search, i.e.,
using the keyword “grass”, he discovers Alice’s data package, amongst others. He
decides to use three NetCDF output data files which are part of her package, as
input to his Grassland Water Use Efficiency Analysis script [6]. Having identified
the data of interest in the Member Node, Bob uses its public identifier id to
retrieve it and use it in his own code. Specifically, the MemberNode.get(session,
id) call, available from the MATLAB toolbox, not only retrieves Alice’s data
package, but it also ensures that the download event is recorded as part of
a new provenance document, associated with Bob’s analysis. If Bob manually
downloaded Alice’s data (i.e., without using the DataONE tool), then the link
between the data packages would likely be broken, leading to a disconnect in
provenance and requiring additional “stitching” operations [11].

Instead, by retaining the same identifier throughout, the tool implicitly estab-
lishes a connection between Alice’s work and Bob’s, namely by adding a prove-
nance statement of the form (Bob’s execution, prov:used, Alice’s data id). Bob
then proceeds to operate on the data using the DataONE MATLAB toolbox
just as Alice did, eventually publishing a new data package with his own results
and their provenance. At this point, the two provenance documents are phys-
ically disjoint, as they reside in different data packages, but they are logically
connected, namely through the prov:used statement mentioned above. As they
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are both indexed by the CN upon publication of the data package, this logical
connection emerges automatically when a third party, say Charlie, explores one
of the two data packages:

Charlie discovers Bob’s data packages on DataONE and is able to navigate
back to the data that Bob used, i.e., Alice’s data package depicted in Fig. 2 [8,10].
When he searches the DataONE network using the same keyword “grass” from
the web search interface, two data packages are displayed as shown in Fig. 2.
One data package was created by Alice [16], the other was created by Bob [13].

Crucially, the provenance of the two datasets is now manifested visually along
with their logical connection, as shown in the DataONE Search web UI [4] (Fig. 2)
and is available to Charlie. Specifically, Charlie can not only visualize the two
data packages (Alice’s is at the top and Bob’s at the bottom), but he is also
aware of the derivation of Alice’s data through Bob’s script.

Provenance details for any input or output in the provenance graph can
be viewed by clicking on the icons shown in the figure. DataONE Search also
provides human language descriptions of how data are used or generated via the
script and models, and provides navigation to ancestors and descendants in the
data derivation chain. In this example, Charlie quickly learns that Alice’s script
takes twenty-five input files [15] and produces six outputs, shown on the left
and right side of Alice’s data package, respectively. The bottom three outputs
in Alice’s data package are the NetCDF data files that represent three different
world map grids of percentage of grass types (C3 grass fraction, C4 grass fraction,
and total grass fraction) [15]. In addition, a model graph is displayed at the
intermediate layer that was generated by the YesWorkflow tool declaring step
by step how data are used and derived in the script [9]. Similarly, the provenance
information is associated with Bob’s data package in Fig. 2 [1,6,13].

3 Conclusions

As outlined above, we have described new and unique provenance capabilities in
the large, scientific data federation network DataONE. The search feature was
released to the public in late 2015; the R and MATLAB provenance tools in
early 2016.
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Ludäscher, B.: YesWorkflow: a user-oriented, language-independent tool for recov-
ering workflow information from scripts. Int. J. Digit. Curation 10, 298–313 (2015).
http://www.ijdc.net/index.php/ijdc/article/view/10.1.298

10. Missier, P.: Data trajectories: tracking reuse of published data for transitive credit
attribution. In: Proceedings of the 11th International Data Curation Conference,
DCC (2016). http://homepages.cs.ncl.ac.uk/paolo.missier/doc/DT.pdf
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