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Abstract. In our previous papers, we formally analyzed the general-
ized Aristotle’s square of opposition using tools of fuzzy natural logic.
Namely, we introduced general definitions of selected intermediate quan-
tifiers, constructed a generalized square of opposition consisting of them
and syntactically analyzed the emerged properties. The main goal of
this paper is to extend the generalized square of opposition to graded
generalized hexagon.
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1 Introduction

Fuzzy natural logic (FNL) is a formal mathematical theory that consists of three
theories: (1) a formal theory of evaluative linguistic expressions (explained in
detail in [25]), (2) a formal theory of fuzzy IF-THEN rules and approximate
reasoning (presented in [24,27]), and (3) a formal theory of intermediate and
generalized fuzzy quantifiers (presented in [16,18,20,26]). This paper is a con-
tribution to (3), namely to extension of the generalized square of opposition to
graded generalized hexagon.

Recall that the classical Aristotle’s square of opposition [35] consists of the
following formulas:

∗A :All B are A (∀x)(Bx ⇒⇒⇒ Ax) ∧∧∧ (∃x)Bx, (1)
E :No B are A (∀x)(Bx ⇒⇒⇒ ¬¬¬Ax), (2)
I :Some B are A (∃x)(Bx ∧∧∧ Ax), (3)

∗O :Some B are not A (∃x)(Bx ∧∧∧ ¬¬¬Ax) ∨∨∨ ¬¬¬(∃x)Bx. (4)

The diagonals correspond to the relation of contradiction between the uni-
versal affirmative A (“All”) and the particular negative O (“Not all”), as
well as between the universal negative E (“No”) and the particular positive
I (“Some”). The property of contrary holds horizontally at the top between A
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(“All”) and E (“No”). The inverse relation of sub-contraries holds horizontally
at the bottom between I (“Some”) and O “Not all”. Finally, the vertical relation
between A and I as well as between E and O describes the relation of subaltern
(superaltern).

All the relations can be characterized using the definitions formulated in
[19, p. 17] (see also below). Note that the Aristotle’s square of opposition works
fully with presupposition only. In [30,34]), the authors draw a crucial distinc-
tion between the “classical” Aristotelian square of opposition and the “modern”
duality one based on the concepts of inner and outer negation.

Béziau in [2,3] suggested to extend a square of opposition into a hexagon.
This technically means to add two new formulas U and Y1 that are defined
as disjunction of the two top corners of the square and conjunction of the two
bottom corners:

U = A∨∨∨ E : All or No B are A. (5)
Y = I∧∧∧ O : Some but Not All B are A. (6)

Then we obtain the following Aristotelian hexagon.

U : All or No B are A

∗A : All B are A ∗E : No B are A

I : Some B are A O : Some B are Not A

Y : Some but Not All B are A

The diagonal lines represent contradictories (denoted by straight lines), the
formulas A and E are contraries (denoted by dashed lines), A and E entail U
(denoted by arrow), while Y entails both formulas I as well as O. The formulas
I and O are sub-contraries (denoted by dotted lines). It is interesting to see
that the logical hexagon obtains three Aristotle’s squares of opposition, namely,
AEIO,AYOU and EYUI.

In [32], we can find differences between the Aristotle hexagon and the Duality
hexagon. A logical hexagon with many examples and also the cube of opposition
was described in [15]. A more complex 3D generalization of the hexagon was
proposed by Moretti [17], Pellissier [29] and Smessaert [33]. Applications of the
square of opposition in philosophical and mathematical logic, linguistics and
psychology were studied in [4–6].

The graded Aristotle square of opposition and also a cube of opposition and
its graded version that associates the traditional square of opposition with the
dual one were introduced in [13,14]. The structures of opposition in rough set

1 Blanché in [7] introduced Y at first, before completing it with U in [8].



38 P. Murinová and V. Novák

theory were analyzed in [10,11]. The gradual hexagon with fuzzy relation and a
connection of hexagon and a cube of opposition was described in [12].

In [19], we demonstrated how the generalized2 Aristotle square of opposition
can be represented formally in fuzzy natural logic. In this paper, we first extend
this theory and analyze graded Aristotle hexagon as a generalization of the
Aristotle classical one. Then we propose a generalization of the Peterson’s square
of opposition (cf. [31]) to a graded hexagon with intermediate quantifiers (we will
call it graded generalized hexagon). Let us remark that these results contribute
also to development of FNL because the discovered relations among intermediate
quantifiers can be applied to formulation of general rules of human reasoning.

The paper is structured as follows: First of all we very briefly remember the
basic mathematical formal system. In Sect. 3, we remember the basic definitions
of contrary, contradictories, sub-contrary and sub-alterns. Then we prove the
main properties of interpretation of three squares of opposition (AEIO,AYOU
and EYUI). Finally, we introduce the graded generalized hexagon with five
basic intermediate quantifiers.

2 Preliminaries

2.1 The Basic Formal System

The fuzzy natural logic is formulated using tools of �Lukasiewicz fuzzy type theory
(�L-FTT) which is a higher-order fuzzy logic. All the details can be found in
the papers [19,23,25]. Recall that the basic syntactical objects of �L-FTT are
classical, namely the concepts of type and formula (cf. [1]).

The semantics is defined using the concept of general model in which the type
o of truth values is assigned a linearly ordered MVΔΔΔ-algebra which is an MV-
algebra extended by the delta operation (see [9,28]). In this paper we will con-
sider only models whose algebra of truth values forms the standard �Lukasiewicz
MVΔ-algebra

L = 〈[0, 1],∨,∧,⊗,→, 0, 1,Δ〉. (7)

The following special formulas are important in our theory:

Υoo ≡ λzo · ¬¬¬ΔΔΔ(¬¬¬zo), (nonzero truth value)

Υ̂oo ≡ λzo · ¬¬¬ΔΔΔ(zo ∨∨∨ ¬¬¬zo). (general truth value)

Thus, M(Υ (Ao)) = 1 iff M(Ao) > 0, and M(Υ̂ (Ao)) = 1 iff M(Ao) ∈ (0, 1)
holds in any model M.

The following completeness theorem will be often used below.

Theorem 1 ([23]).

(a) A theory T is consistent iff it has a general model M.
(b) For every theory T and a formula Ao, T 
 Ao iff T |= Ao.

2 In some papers, the term “generalized Aristotle square” is replaced by “graded on”.
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2.2 Theories of Evaluative Expressions and Intermediate Quantifiers

The main constituent of FNL is the theory of evaluative linguistic expressions.
These are special natural language expressions such as small, medium, big, very
short, more or less deep, quite roughly strong, extremely high, etc. A formal
theory of their semantics was introduced in [25].

Another constituent of FNL is the theory of intermediate quantifiers. These
are natural language expressions such as most, almost all, a few, etc. Their
semantics is formalized using a special theory of �L-FTT denoted by T IQ[S],
which extends the theory of evaluative expressions. The detailed structure of
T IQ[S] and precise definitions can be found in [18,19,26].

Definition 1. Let S ⊂ Types be a set of selected types. Let T IQ[S] be a theory
of intermediate quantifiers. Let z ∈ Formoα, x ∈ Formα and A,B ∈ Formoα.
Then the following special intermediate quantifiers can be introduced:

A: All B are A := (Q∀
BiΔΔΔx)(B, A) ≡ (∀x)(Bx ⇒⇒⇒ Ax),

E: No B are A := (Q∀
BiΔΔΔx)(B,¬¬¬A) ≡ (∀x)(Bx ⇒⇒⇒ ¬¬¬Ax),

P: Almost all B are A := (Q∀
Bi Exx)(B, A) ≡

(∃z)((ΔΔΔ(z ⊆ B)&&&(∀x)(zx ⇒⇒⇒ Ax))∧∧∧ (Bi Ex)((μB)z)),

B: Almost all B are not A := (Q∀
Bi Exx)(B,¬¬¬A) ≡

(∃z)((ΔΔΔ(z ⊆ B)&&&(∀x)(zx ⇒⇒⇒ ¬¬¬Ax))∧∧∧ (Bi Ex)((μB)z)),

T: Most B are A := (Q∀
Bi Vex)(B, A) ≡

(∃z)((ΔΔΔ(z ⊆ B)&&&(∀x)(zx ⇒⇒⇒ Ax))∧∧∧ (Bi Ve)((μB)z)),

D: Most B are not A := (Q∀
Bi Vex)(B,¬¬¬A) ≡

(∃z)((ΔΔΔ(z ⊆ B)&&&(∀x)(zx ⇒⇒⇒ ¬¬¬Ax))∧∧∧ (Bi Ve)((μB)z)),

K: Many B are A := (Q∀
¬¬¬(Sm ν̄νν)x)(B, A) ≡

(∃z)((ΔΔΔ(z ⊆ B)&&&(∀x)(zx ⇒⇒⇒ Ax))∧∧∧ ¬¬¬(Sm ν̄νν)((μB)z)),

G: Many B are not A := (Q∀
¬¬¬(Sm ν̄νν)x)(B,¬¬¬A) ≡

(∃z)((ΔΔΔ(z ⊆ B)&&&(∀x)(zx ⇒⇒⇒ ¬¬¬Ax))∧∧∧ ¬¬¬(Sm ν̄νν)((μB)z)),

I: Some B are A := (Q∃
BiΔΔΔx)(B, A) ≡ (∃x)(Bx ∧∧∧ Ax),

O: Some B are not A := (Q∃
BiΔΔΔx)(B,¬¬¬A) ≡ (∃x)(Bx ∧∧∧ ¬¬¬Ax).

3 Graded Aristotle Hexagon

3.1 From Aristotle Square to Graded Square

In this subsection, the main definitions and results that will be used later are
summarized.

Definition 2. Let T be a consistent theory of �L-FTT and P1, P2 ∈ Formo be
closed formulas of type o.
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(i) P1 and P2 are contraries if T 
 ¬¬¬(P1 &&&P2). By completeness, this is equiv-
alent to

M(P1) ⊗ M(P2) = 0

for every model M |= T 3.
(ii) P1 and P2 are weak contraries if T 
 Υ̂ (P1 &&& P2). By completeness, this is

equivalent to
0 < M(P1) ⊗ M(P2) < 1

for every model M |= T .
(iii) P1 and P2 are sub-contraries if T 
 (P1 ∇∇∇ P2). By completeness, this is

equivalent to
M(P1) ⊕ M(P2) = 1

for every model M |= T .
(iv) P1 and P2 are weak sub-contraries if T 
 Υ (P1∨∨∨P2). By completeness, this

is equivalent to
M(P1) ∨ M(P2) > 0

for every model M |= T .
(v) P1 and P2 are contradictories if both

T 
 ¬¬¬(ΔΔΔP1 &&&ΔΔΔP2) as well as T 
 ΔΔΔP1 ∇∇∇ΔΔΔP2.

By completeness, this means that both M(ΔΔΔP1) ⊗ M(ΔΔΔP2) = 0 as well as
M(ΔΔΔP1) ⊕ M(ΔΔΔP2) = 1 hold for every model M |= T .

(vi) The formula P2 is a subaltern of P1 in T if T 
 P1 ⇒⇒⇒ P2. By completeness,
this means that the inequality

M(P1) ≤ M(P2)

holds true in every model M |= T . We will call P1 a superaltern of P2.

Below we recall the main results which were formally proved in [19]. Recall
that we fix the set S and write T IQ instead of T IQ[S]. Recall that the graded
Aristotle’s square of opposition in �L-FTT works with the following four formulas
with presupposition:

∗A :All B are A (∀x)(Bx ⇒⇒⇒ Ax)&&&(∃x)Bx, (8)
E :No B are A (∀x)(Bx ⇒⇒⇒ ¬¬¬Ax), (9)
I :Some B are A (∃x)(Bx ∧∧∧ Ax), (10)

∗O :Some B are not A (∃x)(Bx ∧∧∧ ¬¬¬Ax)∇∇∇¬¬¬(∃x)Bx. (11)

3 Let M |= T IQ. Then we denote M(�) = 1 and M(⊥) = 0.
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3.2 From Graded Aristotle Square to Graded Aristotle Hexagon

Generalizing the graded Aristotle square to the graded Aristotle hexagon means
to define new formulas which will be put to the top and the bottom of the latter:

U := A∨∨∨ E All or No B are A. (12)
Y := I&&&O Some but Not All B are A. (13)

Lemma 1. There is no model such that

(a) M(Y) = 1 and M(A) = 1.
(b) M(Y) = 1 and M(E) = 1.

Proof. (a) Let there be a model M |= T IQ such that M(Y) = 1 and M(A) = 1.
Then M(ΔΔΔA) = 1 and so from the contradictory relation to O it follows that
M(ΔΔΔO) = 0. Because A is superaltern of I, M(I) = 1 and so, M(I&&&O) =
M(Y) = 0 which contradicts the assumption.

(b) Analogously as (a).

Lemma 2. The following holds in every model M |= T IQ:

(a) M(I∇∇∇U) = 1,
(b) M(O∇∇∇U) = 1.

Proof. (a) Let M |= T IQ. From the contradictory relation of E to I it follows
that M(ΔΔΔE∇∇∇ΔΔΔI) = 1. Then

1 = M(ΔΔΔE∇∇∇ΔΔΔI) ≤ M(E∇∇∇ I) ≤ M(I∇∇∇(E∨∨∨ A)) = M(I∇∇∇U).

(b) Analogously as (a).

Corollary 1. There is no model of T IQ such that

(a) M(U) = 0 and M(I) = 0.
(b) M(U) = 0 and M(O) = 0.

Hence, we conclude the following:

Theorem 2 (Sub-contraries). The couples of formulas I and U, as well as
O and U are sub-contraries in T IQ.

Lemma 3. Let M |= T IQ.

(a) If M(Υ̂ (A)) = 1 then M(O) = 1.
(b) If M(Υ̂ (E)) = 1 then M(I) = 1.

Proof. (a) Let the assumption hold and M(O) < 1. From the contradictory
relation of A to O it follows that M(ΔΔΔA) = 1 and hence M(A) = 1 which
contradicts the assumption.

(b) is proved analogously.
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We see from Lemma 3 that in every model of T IQ, if the truth degree of
the formulas A and E is smaller than 1 then the truth degree of the respective
formulas I and O must be equal to 1. We can also immediately see that if
M(Υ̂ (A)) = 1 and M(Υ̂ (E)) = 1 then also M(Υ̂ (U)) = 1.

Lemma 4. Let M |= T IQ. Let M(Υ̂ (A)) = 1 and M(Υ̂ (E)) = 1. Then the
following is true:

(a) M(I) ⊗ M(ΔΔΔU) = 0
(b) M(I) ⊕ M(ΔΔΔU) = 1,
(c) M(O) ⊗ M(ΔΔΔU) = 0,
(d) M(O) ⊕ M(ΔΔΔU) = 1,
(e) M(I) ⊗ M(U) = a ∈ (0, 1),
(f) M(O) ⊗ M(U) = b ∈ (0, 1),
(g) M(I) ⊕ M(U) = 1,
(h) M(O) ⊕ M(U) = 1.

(i) M(ΔΔΔA) ⊗ M(ΔΔΔY) = 0
(j) M(ΔΔΔA) ⊕ M(ΔΔΔY) = 1,
(k) M(ΔΔΔE) ⊗ M(ΔΔΔY) = 0,
(l) M(ΔΔΔE) ⊕ M(ΔΔΔY) = 1,

(m) M(A) ⊗ M(Y) = a ∈ (0, 1),
(n) M(E) ⊗ M(Y) = a ∈ (0, 1),
(o) M(A) ⊕ M(Y) = 1,
(p) M(E) ⊕ M(Y) = 1.

Theorem 3. Let M |= T IQ. Let M(Υ̂ (A)) = 1 and M(Υ̂ (E)) = 1. Then the
following is true:

(a) The formulas I and U can be contradictories, sub-contraries, as well as weak
contraries.

(b) The formulas O and U can be contradictories, sub-contraries, as well as
weak contraries.

(c) The formulas A and Y can be contradictories, sub-contraries, as well as
weak contraries.

(d) The formulas E and Y can be contradictories, sub-contraries, as well as weak
contraries.

(e) The formulas I and U as well as the formulas O and U cannot be contraries.
(f) The formulas A and Y as well as the formulas E and Y cannot be contraries.

Lemma 5. Let A, E and I,O be intermediate quantifiers introduced above.
Then the following holds in every model M |= T IQ:

(a) M(U) = 0 implies M(Y) = 1.
(b) M(U) = 1 implies M(Y) = 0.

Proof. (a) Let there be a model M |= T IQ such that M(U) = M(A∨∨∨ E) = 0.
Then M(A) = M((∀x)(Bx ⇒⇒⇒ Ax)) = 0 and also M(E) = M((∀x)(Bx ⇒⇒⇒
¬¬¬Ax)) = 0. Hence,

1 = M((∃x)(Bx&&&¬¬¬Ax)) ≤ M((∃x)(Bx ∧∧∧ ¬¬¬Ax)) = M(O)

and also

1 = M((∃x)(Bx&&& Ax)) ≤ M((∃x)(Bx ∧∧∧ Ax)) = M(I).

We conclude that M(I&&&O) = M(Y) = 1.
(b) immediately follows from (a).
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Lemma 6. Let M |= T IQ. Let M(Υ̂ (A)) = 1 and M(Υ̂ (E)) = 1. Then the
following is true:

(a) M(ΔΔΔU) ⊗ M(ΔΔΔY) = 0,
(b) M(ΔΔΔU) ⊕ M(ΔΔΔY) = 1.

Proof. (a) Let M |= T IQ. Let M(Υ̂ (A)) = 1 and M(Υ̂ (E)) = 1. Then from the
definition of Υ̂ it follows that M(ΔΔΔ(A ∨ E)) = 0. From Lemma 3 we conclude
that M(I&&&O) = 1 as well as M(ΔΔΔ(I&&&O)) = 1. Finally, M(ΔΔΔU)⊗M(ΔΔΔY) = 0
and M(ΔΔΔU) ⊕ M(ΔΔΔY) = 1 are fulfilled.

As a corollary we immediately obtain the following.

Theorem 4 (Contradictories). The quantifiers U and Y are contradictories
in T IQ.

Finally, we can demonstrate that in the graded Aristotle hexagon the two
extra formulas are perfectly united by means of the four arrows of subalterns.

Theorem 5 (Subalterns). The following holds true in the theory T IQ:

(a) The formula U is subaltern of A and E, i.e., T IQ 
 A ⇒⇒⇒ U and T IQ 

E ⇒⇒⇒ U.

(a) The formula Y is superaltern of I and O, i.e., T IQ 
 Y ⇒⇒⇒ I and T IQ 

Y ⇒⇒⇒ O.

Corollary 2. The graded Aristotle hexagon forms three graded squares of oppo-
sition, namely AEIO, AYOU and EYIU.

3.3 From Graded Generalized Peterson’s Square to Graded
Generalized Hexagon

In the papers [19,21], we syntactically analyzed and semantically verified the
generalized Peterson square (5-square) of opposition in FNL. In this section, we
will introduce basic concepts using which the graded generalized hexagon can be
formed. We start with the following definitions of new generalized intermediate
quantifiers:

UExBi := P∨∨∨ B Almost all B are A or Almost all B are not A (14)
UVeBi := T∨∨∨ D Most B are A or Most B are not A (15)
Y¬¬¬Sm := K&&&G Many B are A and Many B are not A. (16)

We will suppose that the basic fuzzy set used in the definition of the interme-
diate quantifier is a normal fuzzy set. This is specified by the following definition.

Definition 3. Let B ∈ Formoα. By T [B] we denote an extension of the theory
T IQ such that

T [B] 
 (∃xα)ΔΔΔBx.
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Theorem 6 (Contraries, [19]). The following couples of formulas are con-
traries in T [B]: B and P, and also D and T.

Other properties of five basic generalized intermediate quantifiers were proved
in [19]. In [22], we analyzed the intermediate quantifier “Many” and its position
inside of 5-square of opposition.

Recall that the formula A is a superaltern of all the formulas P,T,K, I. At
the same time, E is a superaltern of B,D,G,O.

Lemma 7. The following is provable:

(a) T [B] 
 I∇∇∇UExBi ,
(b) T [B] 
 I∇∇∇UVeBi .

Proof. (a) Because E is a superaltern of B then by the properties of the delta
operation we obtain T [B] 
 ΔΔΔE ⇒⇒⇒ ΔΔΔB. Then

T [B] 
 ΔΔΔE∇∇∇ΔΔΔI ⇒⇒⇒ ΔΔΔB∇∇∇ΔΔΔI. (17)

Furthermore, by the properties of delta we obtain T [B] 
 ΔΔΔB ⇒⇒⇒ B as well as,
T [B] 
 ΔΔΔI ⇒⇒⇒ I. Then by properties of �L-FTT we get

T [B] 
 ΔΔΔB∇∇∇ΔΔΔI ⇒⇒⇒ B∇∇∇ I. (18)

Joining (17) and (18) we obtain

T [B] 
 ΔΔΔE∇∇∇ΔΔΔI ⇒⇒⇒ B∇∇∇ I. (19)

But we know that The quantifiers E and I are contradictories and so T [B] 

ΔΔΔE∇∇∇ΔΔΔI, which gives T [B] 
 B∇∇∇ I and also T [B] 
 (B ∨ P)∇∇∇ I.

(b) Analogously as (a).

Theorem 7. The following couples of formulas are subcontraries in T[B]:
UExBi and I, and also UVeBi and I.

Theorem 8. The following is provable in T [B]:

(a) The quantifier U is a superaltern of UExBi .
(b) The quantifier UVeBi is a subaltern of UExBi .
(c) The quantifier Y¬¬¬Sm is a superaltern of Y.
(d) The quantifiers P and B are a superalterns of UExBi .
(e) The quantifiers T and D are a superalterns of UVeBi .

3.4 Example of the Graded Generalized Hexagon

Let us consider a model M |= T [B] such that T IQ 
 (∃x)Bx and let M(A) =
a > 0 (e.g., a = 0.2). The degrees inside of the generalized Peterson’s square
follow from the definitions of contraries, contradictories, sub-contraries and
subalterns.
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The following can be proved: The formulas I and O are sub-contraries with
each of U,UExBi ,UVeBi . The quantifier U is superaltern and the formula Y is
subaltern of all of the other quantifiers. Furthermore, the quantifiers A and E
are weak contraries with Y. The motivation and explanation that the quantifier
A is not a negation of the formula O is explained in [19]. Similarly the quantifiers
P,T and B,D are weak contraries with Y.

U : M(A∨∨∨ E) = 0.5

UExBi : M(P∨∨∨ B) = 0.52

UVeBi : M(T∨∨∨ D) = 0.55

∗A : M(A) = 0.2 ∗E : M(E) = 0.5

∗P : M(P) = 0.4 ∗B : M(B) = 0.52

∗T : M(T) = 0.45 ∗D : M(D) = 0.55

∗K : M(K) = 0.8 ∗G : M(G) = 0.7

I : M(I) = 1 O : M(O) = 1

Y¬¬¬Sm : M(K&&&G) = 0.5

Y : M(I&&&O) = 1

In every classical Aristotle hexagon, three squares AEIO, AYOU and
EYIU are formed on the basis of the properties of contraries, contradictories,
sub-contraries and sub-alterns. The graded Aristotle square (AEIO) contains
the same properties as its classical version. It can be seen that the new graded
squares (AYOU and EYIU) prove that the formulas A and Y as well as the
formulas E and Y are weak contraries.
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4 Conclusion

In this paper we extended the theory of graded classical Aristotle square of
opposition to the graded Aristotle hexagon. Then we suggested generalization
of the Peterson’s square of opposition to a graded generalized hexagon, i.e., the
hexagon whose vertices contain intermediate quantifiers.

The future work will focus on more detailed analysis of the properties of
the graded generalized hexagon, possibly extended by more intermediate quan-
tifiers. Furthermore, we will also study graded cube of opposition. This may open
interesting area of study of relations among important classes of properties. We
expect that these results will contribute to the development of fuzzy natural
logic, namely to formulation of various kinds of general rules used in human
reasoning.
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