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Abstract. We consider an optimization problem in ecology where our
objective is to maximize biodiversity with respect to different land-use
allocations. As it turns out, the main problem can be framed as learning
the weights of a weighted arithmetic mean where the objective is the
geometric mean of its outputs. We propose methods for approximating
solutions to this and similar problems, which are non-linear by nature,
using linear and bilevel techniques.
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1 Introduction

We consider the problem of distributing a human population across a finite land
area in such a way that negative impact to local flora and fauna is minimized.
A simple version of the problem, optimization of abundance for a single species, is
one that is easily solved with a linear programming approach, however ecologists
are usually more interested in how the land-use allocations affect biodiversity.
A number of quantitative indices exist for biodiversity, which incorporate both
the number of species present (the richness) along with how evenly distributed
the species are. As has been observed in [1], many of these can be expressed
in terms of common aggregation functions. For instance, the geometric mean
of species abundances is being increasingly used as a proxy for biodiversity
[2], providing an average abundance that is more sensitive to smaller values
(rare species). Whilst the optimization of these more complicated indices is
non-linear in nature, we will show that close approximations can be achieved
using mostly linear techniques and capitalizing on the ability to express quasi-
arithmetic means in terms of generating functions. We illustrate the techniques
using bird occupancy data from surveys conducted in Melbourne, Australia, and
include details of our implementations as an appendix.

The article will be set out as follows: In Sect. 2, we outline our notation along
with the necessary underlying concepts from the field of aggregation functions.
In Sect. 3, we introduce the ecological context and go through the associated
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problems with our proposed optimization solutions. We then provide an example
in Sect. 4, before concluding in Sect. 5.

2 Preliminaries

We will give an overview of the preliminary concepts of aggregation functions as
relevant to the problem of land-use allocation. We consider an input dataset con-
sisting of an m×n matrix where the entries xij denote the predicted abundances
of the i-th species for the j-th land-use type. In practice, such abundances are
measured by reporting rates calculated after conducting surveys. In our case,
the n land-use types correspond with increasing densities of human population
but these need not be numeric or even ordered. With respect to a total human
population P and available land area A, the values wj denote the percentage
allocation to each land-type, so that

∑n
j=1 wj = 1. These values will correspond

with the weights of our aggregation functions.
Aggregation functions are employed in various contexts for summarizing

data. Overviews of the important families, properties and definitions can be
found in [3–6].

Definition 1. An aggregation function f : [a, b]n → [a, b] is a function
monotone in each argument and satisfying the boundary conditions f(a, . . . , a) =
a and f(b, . . . , b) = b (with a < b).

Of particular interest to us is the weighted arithmetic mean, perhaps the
most commonly employed aggregator across various contexts. It is expressed,

WAM(x1, . . . , xn) =
n∑

j=1

wjxj . (1)

In our case, for a given species i, the aggregated value WAM(xi1, . . . , xin)
denotes its abundance per unit of area.

Another aggregation function important in ecology is the geometric mean.
For an input vector x, the geometric mean is given by,

G(x1, . . . , xn) =

⎛

⎝
n∏

j=1

xj

⎞

⎠

1
n

. (2)

In ecology, the geometric mean of species abundance is often used to give
a measure of abundance that is more sensitive to rare species. So if we have
s = (s1, s2, . . . , sm) denoting the set of species abundances for each of the m
species, G(s) is a proxy measure for biodiversity. We note that G(s) ≤ AM(s)
where AM is the weighted arithmetic mean with equal weights, and that the
values will be closer the more even the species abundances are.
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The geometric mean can also be obtained as a special case of the quasi-
arithmetic mean, which generalizes1 the WAM. Specifically, we have

G(x1, . . . , xn) = g−1

⎛

⎝
n∑

j=1

wjg(xj)

⎞

⎠ , (3)

where g(t) = ln t is the generating function, its inverse is g−1(t) = exp(t) and in
our context we have wj = 1/n for all j.

3 Finding Optimum Land-Use Allocations with Respect
to Species Diversity

The process of urbanization is a major contributor to biodiversity loss [7],
with the expansion of cities leading to habitat loss, climatic changes in tem-
perature as well as other disruptions to local species dynamics. However while
some species respond negatively to increases in human population density, other
species (pigeons for example) can actually benefit. In planning for the develop-
ment of cities and towns, two theories of conservation have arisen in ecology
literature [8]: land-sharing, whereby the human population is spread as evenly
as possible over a given area; and land-sparing, which fits the human population
to small areas of high density so that the remaining area can be reserved to
preserve flora and fauna.

The way individual species respond to changes in human population density
can be considered in terms of response curves (see Fig. 1).

Fig. 1. Examples of response curves for species that benefit most from either a land-
sparing or land-sharing approach to urban development. Species that respond to urban
density according to curves like A and B are best suited to land-sparing, since it aims
to segment a city into either very high or very low density living (where the abundances
for these species are highest). On the other hand, response curves like C and D relate
to species who would be better off with a land-sharing approach, since they have high
abundance for mid-range urban intensity.

1 More information about such generalizations can be found in any of [3–6], however
we will restrict ourselves to the relevant cases to our problem.
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We consider different ranges of population density to constitute a ‘land-type’,
with each species having a predicted abundance. For example, if we considered
5 levels of density, for each species we would have data of the following form.

Land type (j) 1 2 3 4 5

Human population density (per 25ha) 0 50 100 250 500

Species abundance (per 25ha) 20 14 12 10 7

In the following subsections, we will present methods for finding the best allo-
cation of each land-type subject to area and human population constraints where
we are interested in optimizing either (1) the total abundance of all species, (2)
the geometric mean of species abundances, and (3) the biodiversity as calcu-
lated using Shannon’s diversity index. We focus on linear methods over more
general approaches for two reasons. Firstly, although the dataset we use here is
relatively small, both the number of species and the number of land-types can
potentially be very large in practice and we want the method to be scalable.
Secondly, we have a number of constraints that are more difficult to incorporate
in more general optimisation models2, such as the land area and population.

3.1 Optimization of Total Abundance

In previous works we have used linear optimization to learn the weights of various
aggregation functions from data [9–14]. In those cases, we considered a set of
input and output pairs with the aim of minimizing differences between observed
and predicted outputs. Our aim here is to find the best allocation of land types.
The percentage allocations which correspond with our aggregation weights wj

are our decision variables. We denote by dj the population density for the j-th
land-type. For any given species i, we have

Maximize
w

n∑

j=1

wjxij ,

s.t. A
n∑

j=1

wjdj ≥ P,

n∑

j=1

wj = 1, wj ≥ 0, j = 1, . . . , n. (4)

In order to maximize the total abundance, we note that we can simply sum
the total abundances across all species for each land-type, so that the objective
equation becomes,
2 However since the constraints are linear, quadratic programming formulations would

also be fine.



Linear Optimization for Ecological Indices Based on Aggregation Functions 415

Maximize
w

n∑

j=1

wj

(
m∑

i=1

xij

)

. (5)

3.2 Maximizing the Geometric Mean of Species Abundances

As discussed previously, we are often more interested in maximizing the geomet-
ric mean of abundances, which is more sensitive to rare species. This is so that
the impression of abundance is not inflated by having a very common species.
Our objective becomes,

Maximize
w

m∏

j=1

⎛

⎝
n∑

j=1

wjxij

⎞

⎠

1
n

. (6)

We can ignore the 1/n power since the product and geometric mean will have the
same maximum. This is still a non-linear objective, however we can use Eq. (3)
and consider maximizing the sum of the logarithms of each species. In terms of
the decision variables we have,

Maximize
w

m∑

i=1

ln

⎛

⎝
n∑

j=1

wjxij

⎞

⎠ , (7)

and whilst this representation remains non-linear, we can find an approximate
solution to any desired precision by taking advantage of the fact that the log
function is concave and hence can be expressed as the maximum value with
respect to a set of bounding linear equations.

We transform the log function and write it as,

ln t = lim
K→∞

min (f1(t), f2(t), f3(t), . . . , fK(t)) ,

where fk(t) denote the tangent lines of ln t across its domain, with fk(t) =
αkt + βk, αk = d

dt (ln tk) = 1/tk, βk = ln tk − αktk where tk are the points at
which log is evaluated. In other words, the logarithm is expressed in terms of
the minimum of its K affine functions. Figure 2 helps demonstrate this visually.

Equation (7) hence becomes piecewise linear and the objective can be reduced
to a linear program if the constraints are also linear. For each species i and each
of our tangent functions given by fk(t) = αkt + βk, we introduce constraints of
the form, −αksi + yi ≤ βk, where si is the abundance of the i-th species, i.e.

−αk(w1xi1 + w2xi2 + . . . + wnxin) + yi ≤ βk.

The variables yi now become decision variables in the optimization formulation.
We optimize for the maximum sum of these values, however each yi is bounded
from above by the tangent lines described by the K constraints.
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Fig. 2. Example of the natural log function being bound from above by 10 approxi-
mating affine functions, equispaced over the interval [0, 1].

Summarizing, we have the following linear programming formulation for this
problem.

Maximize
w,y

m∑

i=1

yi

s.t. A
n∑

j

wjdj ≥ P.

−αkA(w1xi1 + w2xi2 + . . . + wnxin) + yi ≤ βk, k = 1, . . . ,K, i = 1, . . . , m
n∑

j=1

wj = 1, wj ≥ 0, j = 1, . . . , n. (8)

3.3 Maximization of Shannon’s Diversity

Whilst the approach of the previous section could be adapted to the optimization
of any convex function of abundance values that can be expressed as the sum of
generating functions, there are a number of ecological indices that are not based
on species abundances but rather on proportional abundance, i.e. the values pi
such that,

pi =

n∑

j=1

wjxij

m∑

i=1

n∑

j=1

wjxij

.

Shannon’s diversity index is one such example, expressed in terms of the pi,

m∑

i=1

−pi ln pi. (9)
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For a given number of species (m) present in a given community, it reaches
a maximum ln m when all species have equal abundance, and approaches zero if
a single species dominates, i.e. if pi = 1 for any i.

The use of pi values makes it impossible to express this in terms of linear
multiples of the constraints as we did previously, however we can take a differ-
ent approach that results in a bi-level optimization problem. As we will see, it
remains feasible for finding practical solutions with real datasets.

We introduce a variable M which indicates the total abundance, i.e.

M =
m∑

i=1

wj

⎛

⎝
n∑

j=1

xij

⎞

⎠ .

With M known, we can therefore use this to scale our variables so that they
are equivalent to proportions. We then have the capacity to solve the optimiza-
tion, provided we know M . As before, we create affine functions from the curve,
−t ln t and maximize such that the yi values are bounded by these lines. In this
case, accuracy bounds pose less of a problem since we know that all pi are less
than 1. The constraints will now be of the form,

−αk(w1
xi1

M
+ w2

xi2

M
+ . . . + wn

xin

M
) + yi ≤ βk.

We then can find the M that gives the best result for Shannon’s diversity,
which we implement as a bilevel problem. We have,

Maximize
M

Z

Z = max
w,y

m∑

i=1

yi

s.t. A
n∑

j

wjdj ≥ P

−αkA

M
(w1xi1 + w2xi2 + . . . + wnxin) + yi ≤ βk, k = 1, . . . ,K, i = 1, . . . ,m

n∑

j=1

wj = 1, wj ≥ 0, j = 1, . . . , n. (10)

4 Example: Bird Surveys Data

Survey data reporting presence or absence of bird species across 28 land-
scapes in the wider Melbourne area was collected over a period of four months
(May to August) in 2015. All landscapes were one hectare in area and the human
population densities were determined from census data. The report rates for each
species were the result of four separate observation rounds. An example of the
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fitted response curves (showing the probability of a species occurring in a land-
type with that human density) across the 28 sites for three bird species are shown
in Fig. 3.

Fig. 3. Data collected for three bird species at sites with increasing human population
density. While the grey fantail virtually only lives in reserves (i.e. all vegetation and
no housing), the spotted turtle dove benefits from high urban population density and
the brown thornbill was present across the range.

The dataset we will use to illustrate the methods proposed here includes that
relating to 21 native species, with response rates calculated at densities from 0 to
1600 at intervals of 100 (n = 17 land types). We consider allocating the optimum
allocation of a human population of 2.744 million, i.e. the current population of
the Melbourne residential area (outside the central business district). The area
under consideration is 964 km2.

Table 1. Summary results from applying the methods for optimizing total abundance,
the geometric mean, and Shannon’s diversity index respectively.

Objective Densities

w1 w2 w3 Total Geometric Shannon’s

0 1000 1600 Abundance Mean Diversity

Abundance 0.5551 0 0.4449 17445 549.4 2.7425

Geometric mean 0.5210 0.0911 0.3879 17068 564.3 2.7443

Shannon’s diversity 0.5247 0.0813 0.3941 17108 564.0 2.7443
∗ weights and Shannon’s diversity rounded to 4 dp, geometric mean rounded to
1 dp

The results are shown in Table 1. These do not vary greatly based on the
objective used, however we do note slight changes. Obviously all three measures
will be somewhat correlated, with each essentially capturing some overall mea-
sure of how many individuals are present. We have only displayed three weights
because in all models the remaining densities were all given zero allocation,
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regardless of the method. In terms of the ecological interpretation, we see that
the land-sparing approach to biodiversity conservation is preferred overall for
this particular set of species, allocating areas of high population density as well
as reserves for wildlife, with only small amounts of land at medium population
density (Table 2).

Table 2. Summary results from applying the methods for optimizing total abundance,
the geometric mean, and Shannon’s diversity index respectively with a smaller subset
of the data (only 4 species).

Objective Densities

w1 w2 w3 w4 w5 Total Geom. Shan.

0 600 800 1000 1600 Abund. Mean Div.

Abundance 0.1102 0 0.8898 0 0 5736 990.0 1.1106

Geometric mean 0.3582 0 0 0.5251 0.1167 5534 1079.6 1.2156

Shannon’s diversity 0.3499 0.3284 0 0 0.3217 5244 1054.3 1.2289
∗ weights and Shannon’s diversity rounded to 4 dp, geometric mean rounded to 1 dp

To help give some insight into the difference between these approaches, we
have also optimized for a smaller set of species. We used the four species with
response curves shown in Fig. 4. We note that in this case, we have four very
different response curves including quite common species, e.g. the Australian
magpie, and rare species such as the eastern rosella.

Fig. 4. Four species and their response curves. The Australian magpie is present at high
levels across all population densities while the brown thornbill and the eastern rosella
both generally decrease as the human population becomes more and more dense.

In Fig. 5 we can observe how each of the species change individually with
respect to the different optimization objectives. When the overall abundance
is maximized, low abundance in the brown thornbill’s population is compen-
sated for by high abundance with the Australian magpie and common starling3.
3 As a side note the common starling is an introduced species and was not included

in the previous example of 21 native bird species.
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Fig. 5. Comparison of individual species’ abundances obtained with each of the opti-
mization objectives.

Both the geometric mean and Shannon’s diversity approaches obtain a more
evenly spaced distribution for these three species, however we note that in all
cases we are not able to raise the abundance of the eastern rosella.

5 Conclusion

We have focused on an optimization problem that arises in ecology where land
management decisions can have an impact on the local biodiversity. In this con-
text, the optimization problems take on a similar form to what we have in
learning parameters for aggregation functions, however with objective functions
whose arguments are expressible in terms of weighted arithmetic means of our
data. We have shown that these non-linear objectives can be approximated with
linear techniques, the advantages of which are that they are quickly solvable,
are guaranteed to reach a global optimum and are scalable in terms of time and
computation complexity. In our main problem involving the geometric mean of
species abundances, we represented its additive generating function as the max-
imum of bounding affine functions. We have made all R algorithms available at
our website.

Appendix: Implementations

We have implemented all three approaches to optimization as functions in an R
library available at our website4.

Optimizing total abundance: eco.opti().

Description of inputs

species.data - matrix of species abundances per unit of land area, i.e. with xij

denoting the i-th species and its abundance for land type j;

4 http://aggregationfunctions.wordpress.com.

http://aggregationfunctions.wordpress.com
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densities - vector of densities per unit of land area, i.e. with dj denoting the
human population density for a given land-type j;

tot.pop - the total population required to be fit into the given land area;
tot.land - the total area over which we need to distribute the population.

Additional optional constraints

w.min / w.max - vectors denoting minimum or maximum bounds on the land-
types, e.g. if we want to ensure that at least 20 % of the land is populated
at minimum density we incorporate the constraint w1 ≥ 0.2 (assuming w1 is
the land-type with minimum density), or alternatively we may wish to limit
high density housing to at most 40 % of the land area etc.;

spec.min / spec.max - vector placing minimum or maximum bounds for a
particular species, for example, if we want to make sure that a rare species

is above a given threshold γi, the linear constraint
n∑

j=1

wjxij ≥ γi is added

for that species.

The function also gives as output a number of ecological indices such as the
individual species abundances, and the Simpson and Shannon diversity indices.

Maximizing the geometric mean of species abundances: eco.opti.gm()

Description of inputs

In addition to all inputs and constraints used with eco.opti(), this function
has two additional optional parameters to control the precision.

fprec - a positive integer giving the number of tangent functions to be defined.
The default setting is 100 linear segments, and so gains in accuracy can be
achieved with settings of 500, 1000 etc., however obviously at the cost of
computation time;

max.x - a real number giving the maximum value for the domain over which
the tangent functions are calculated, the default setting is 10000, and so
depending on the scale given it could be necessary to increase this value (or
decrease it for finer accuracy) or the optimization will be the same as it would
be for maximizing abundance.

For the number of tangent lines K, optimizing over 5 species with 100 linear
segments will require 5 × 100 = 500 additional constraints, use of 1000 linear
segments will require 5000 additional constraints and so on. We need to be
careful when reducing the precision, since the log function’s gradient changes
more drastically for values closer to zero than it does for large values. Rather
than taking equal step sizes in calculating our tangent lines, they were distributed
using tk = exp(−k · max(s)/K) where max(s) is the max.x parameter above.

We note also that by default the setting for spec.min will be 1 for all species.
It could be adjusted to a fractional value if desired.
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Maximizing Shannon’s diversity index: eco.opti.sh()

This function uses the same inputs as with the previous two. The program first
solves a maximum and minimum problem using eco.opti() in order to find the
feasible bounds to search for M . Note that −t ln t is concave for t ∈ (0, 1].

Another biodiversity index used as an objective and included in the code made
available online is Simpson’s diversity index 1/(

∑m
i=1 p2i ). This is performed in

a similar manner, however now we are minimizing for a convex function y = t2

rather than maximizing for a concave function and so we need to make the
appropriate changes when using the linear framework above.
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