
Computing Theoretically-Sound Upper Bounds
to Expected Support for Frequent Pattern
Mining Problems over Uncertain Big Data

Alfredo Cuzzocrea1 and Carson K. Leung2(B)

1 DIA Department, University of Trieste and ICAR-CNR, Trieste, TS, Italy
alfredo.cuzzocrea@dia.units.it

2 Department of Computer Science, University of Manitoba, Winnipeg, MB, Canada
kleung@cs.umanitoba.ca

Abstract. Frequent pattern mining aims to discover implicit, previously
unknown, and potentially useful knowledge in the form of sets of fre-
quently co-occurring items, events, or objects. To mine frequent patterns
from probabilistic datasets of uncertain data, where each item in a trans-
action is usually associated with an existential probability expressing
the likelihood of its presence in that transaction, the UF-growth algo-
rithm captures important information about uncertain data in a UF-tree
structure so that expected support can be computed for each pattern. A
pattern is considered frequent if its expected support meets or exceeds
the user-specified threshold. However, a challenge is that the UF-tree
can be large. To handle this challenge, several algorithms use smaller
trees such that upper bounds to expected support can be computed. In
this paper, we examine these upper bounds, and determine which ones
provide tighter upper bounds to expected support for frequent pattern
mining of uncertain big data.

Keywords: Uncertainty · Data analysis · Big data · Data science · Data
mining

1 Introduction

Uncertain big data (e.g., [21,33,34,38]) are becoming more and more popular
in modern applications [23] (e.g., social computing [20,22], data warehousing
and OLAP [10]) because (big) data in real-life scenarios are typically impre-
cise and uncertain (e.g., [14,17,19]). Mining uncertain big data (e.g., [6,40]) is
problematic due to the fact that models, techniques, and algorithms running
on such data must consider uncertainty as a fundamental characteristic of big
data while this challenging property is not foreseen by classical large-scale data
mining approaches. As a consequence, mining uncertain big data is a first-class
problem to deal with, and several interesting initiatives that focus the attention
on this problem are appearing recently in active literature [12,35,45].

Among the wide class of data mining tasks [4,16,42,43], frequent pattern
mining [2] is a very popular problem that has attracted the attention of a large
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community of data miners. Frequent pattern mining aims to discover implicit,
previously unknown, and potentially useful knowledge in the form of sets of
frequently co-occurring items, events, or objects (i.e., frequent patterns). It also
serves as building blocks for various other data mining tasks such as stream
mining [8,9,25,26] (which mines data that come at a high velocity), constrained
mining [13], and social network mining [27,41]. Many existing algorithms mine
frequent patterns from high volumes of precise data, in which users definitely
know whether an item is present in, or absent from, a transaction in databases
of precise data. However, there are situations in which users are uncertain about
the presence or absence of items (e.g., a physician may suspect, but may not
guarantee, that a fevered patient got a flu or Zika virus) in a probabilistic dataset
of uncertain data. In such dataset, each item xi in a transaction tj is associated
with an existential probability P (xi, tj) expressing the likelihood of the presence
of xi in tj .

To mine frequent patterns from high varieties of (high-value) uncertain data,
various algorithms [1,3,44] have been proposed, including UF-growth [30]. The
UF-growth algorithm first constructs a UF-tree structure with the goal of cap-
turing important contents on uncertain data, from which frequent patterns can
then be mined recursively. A pattern X is considered frequent if its expected
support expSup(X) in the entire uncertain dataset meets or exceeds the user-
specified minimum support threshold minsup [24]. Here, expSup(X) over all
n transactions in the uncertain dataset can be computed in terms of the sum of
expSup(X, tj) over every transaction tj containing X, as follows:

expSup(X) =
n∑

j=1

expSup(X, tj) (1)

while expSup(X, tj) can be computed in terms of the product of the exis-
tential probability P (xi, tj) of every independent item xi within the pattern
X = {x1, . . . , xk}, as follows:

expSup(X, tj) =
k∏

i=1

P (xi, tj) (2)

In order to accurately compute the expected support of each pattern, paths
in the corresponding UF-tree are shared only if tree nodes on the paths have
the same item and the same existential probability. Due to this restrictive path
sharing requirement, the UF-tree may be quite large.

A way to solve this large tree-size issue is to explore alternative mining
approaches (e.g., UH-Mine algorithm [1] that uses hyper-structures, as well as
sampling-based or vertical mining approaches [5]). Another way is to make the
tree compact by capturing less information about uncertain data but sufficient
for computing upper bounds to the expected support of patterns. Over the past
few years, different computations on the upper bounds to expected support have
been proposed. Many of them are reported to lead to more compact tree struc-
tures for capturing uncertain data than the UF-tree. These, in turn, shorten the
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tree traversal time during the mining process, and thus help reduce the overall
runtime. In addition, another benefit of using these upper bounds is that they
are guaranteed not to generate any false negatives. Indeed, if an upper bound to
expected support of a pattern X is less than minsup, then X is guaranteed to be
infrequent. Moreover, these upper bounds are reported to be so tight that not
too many false positives are generated-and-tested. Then, interesting questions
to ask include the following: Among these upper bounds, which one is tighter?
Which one leads to shorter runtime or mining time? In this paper, we exam-
ine these upper bounds, and re-formulate them so that we can compare them
and determine which ones provide tighter upper bounds to expected support
of patterns when mining frequent patterns from a high variety of high volumes
of high-value uncertain data that may come at a high velocity (i.e., uncertain
“streaming” big data). Our key contributions of this paper include our com-
putation of theoretically-sound upper bounds to expected support for frequent
pattern mining problems over uncertain big data.

The remainder of this paper is organized as follows. In Sect. 2, we provide a
formal unifying model for computing upper bounds to expected support, as to
obtain a (formal) model to be used thought the paper. The section also contains
relevant related work for our research. Section 3 reports a theoretical analysis on
the bounds. In Sect. 4, we provide an experimental assessment and evaluation of
our methods for computing these upper bounds, according to several experimen-
tal parameters. Finally, Sect. 5 presents conclusions and proposes future work of
our research.

2 Computing Upper Bounds: A Unifying Model from the
State-of-the-Art Analysis

In this section, we re-formulate upper bounds to expected support (as provided
by the state-of-the-art analysis) via using a common expression or notion so
that we can introduce a unifying model for easily comparing among the various
proposals available in literature. This section also serves as analysis of related
work that is relevant to our research.

To approximate an upper bound to expected support of a pattern X, CUF-
growth [31] introduces the concept of transaction cap (TC), which is defined as
the product of the two highest existential probabilities in the entire transaction
tj={y1, . . . , yr−1, yr, . . . , yh} ⊇ {x1, . . . , xk}=X (where xk = yr), as follows:

TC (X, tj) =
{
P (y1, tj) if h = 1
TM1(tj) × TM2(tj) if h ≥ 2 (3)

where (i) TM 1(tj) = maxi∈[1,h] P (yi, tj) is the transaction maximum, which
is defined as the highest existential probability in tj ; and (ii) TM 2(tj) =
maxi∈[1,h]∧(i�=g) P (yi, tj) is the second highest existential probability in tj for
yg = argmaxi∈[1,h]P (yi, tj) (i.e., TM 1(tj) = P (yg, tj)).

While this transaction cap serves as a good upper bound to 2-itemsets, it
may not be too tight for k-itemsets (where k ≥ 3). To tighten the upper bound
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to expected support for 3+-itemsets, CUF*-growth [31] extends the concept of
transaction cap as to use the product of the three highest existential probabilities
in tj , as follows:

CUF ∗(X, tj) =
{
TC(X, tj) if k ≤ 2
TM1(tj) × TM2(tj) × [TM3(tj)]

k−2 if k ≥ 3
(4)

where TM 3(tj) = maxi∈[1,h]∧(i�=g)∧(i�=s) P (yi, tj) is the third highest existential
probability in tj for ys=argmaxi∈[1,h]∧(i�=g) P (yi, tj) (i.e., TM 2(tj) = P (ys, tj)).

On the one hand, the transaction cap can be easily pre-computed. On the
other hand, it may not involve any items in X. To tighten the upper bound, item
cap (IC) [37] involves at least one item in X. Specifically, the item cap is defined
as the product of P (xk, tj) and the highest existential probability TM 1(tj) in
tj , as follows:

IC(X, tj) =
{
P (y1, tj) if h = 1
P (xk, tj) × TM1(tj) if h ≥ 2 (5)

For the special case where TM 1(tj) = P (xk, tj), DISC-growth [37] avoids
multiplying TM 1(tj) twice. Instead, it multiplies P (xk, tj) by the second highest
existential probability TM 2(tj) in tj , as follows:

DISC (X, tj) =

⎧
⎨

⎩

P (y1, tj) if h = 1
P (xk, tj) × TM1(tj) if h ≥ 2 ∧ xk �= yg
P (xk, tj) × TM2(tj) if h ≥ 2 ∧ xk = yg

(6)

To deal with 3+-itemsets, DISC*-growth [37] uses the self-product of
TM 2(tj). For special cases where (i) TM 1(tj) = P (xk, tj) or (ii) TM 2(tj)
= P (xk, tj), DISC*-growth uses the self-product of the third highest existen-
tial probability TM 3(tj) in tj , as follows:

DISC∗(X, tj) =
⎧
⎪⎪⎨

⎪⎪⎩

DISC(X, tj) if k ≤ 2
P (xk, tj) × TM1(tj) × [TM 2(tj)]

k−2 if k ≥ 3 ∧ xk �= yg ∧ xk �= ys
P (xk, tj) × TM 1(tj) × [TM 3(tj)]

k−2 if k ≥ 3 ∧ xk = ys
P (xk, tj) × TM 2(tj) × [TM 3(tj)]

k−2 if k ≥ 3 ∧ xk = yg

(7)

Recall from Eq. (2) that the expected support of X can be computed as the
product of P (xk, tj) and existential probabilities of proper prefix of xk. Hence,
it is more logical to approximate an upper bound to expected support of X by
involving P (xk, tj) and existential probabilities of proper prefix of xk. This leads
to the concept of prefixed item cap (PIC) [29], which is defined as the product
of P (xk, tj) and the highest existential probability PM 1(yr, tj) among items in
the proper prefix of xk=yr, as follows:

PIC(X, tj) =
{
P (y1, tj) if h = 1
P (xk, tj) × PM1(yr, tj) if h ≥ 2 (8)
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where (i) PM 1(yr, tj) = maxi∈[1,r−1] P (yi, tj) is the prefixed maximum, which is
defined as the highest existential probability in {y1, . . . , yr−1} ⊂ tj .

PUF-growth [32] makes use of the above prefixed item cap to approximate
a tight upper bound to expected support of 2-itemsets. To handle 3+-itemsets,
PUF*-growth [36] multiplies PIC (X, tj) with self-product of the second highest
existential probability PM 2(yr, tj) in {y1, ..., yr−1} ⊂ tj , as follows:

PUF ∗(X, tj) =
{
PIC(X, tj) if k ≤ 2
P (xk, tj) × PM 1(yr, tj) × [PM 2(yr, tj)]

k−2 if k ≥ 3
(9)

where PM 2(yr, tj) = maxi∈[1,r−1]∧(i�=g) P (yi, tj) is the second highest existential
probability in {y1, . . . , yr−1} ⊂ tj for yg=argmaxi∈[1,h] P (yi, tj) (i.e., PM 1(yr, tj)
= P (yg, tj)).

Alternatively, the BLIMP-growth algorithm [28] multiplies PIC (X, tj) with
existential probabilities of the first (k−2) items in the proper prefix {y1, ..., yr−1}
⊂ tj , as follows:

BLIMP (X, tj) =
{
PIC(X, tj) if k ≤ 2
P (xk, tj) × PM1(yr, tj) × ∏k−2

i=1 P (yi, tj) if k ≥ 3
(10)

3 Theoretical Analysis and Results

After re-formulating upper bounds to expected support of patterns in Sect. 2, let
us analyze and evaluate these bounds by taking advantages from the unifying
model introduced above. When dealing with singletons (1-itemsets), we do not
need to use upper bounds because we could scan the entire uncertain dataset of n
transactions and accurately obtain the expected support of each pattern {x} by
summing existential probabilities of {x} in every transaction tj containing {x}:

expSup({x}) =
n∑

j=1

P (x, tj) (11)

For any 2-itemset X, the upper bound computing models of Sect. 2 specialize
as follows:

CUF ∗(X, tj) = TC(X, tj) (12)
DISC∗(X, tj) = DISC(X, tj) (13)

PUF ∗(X, tj) = BLIMP (X, tj) = PIC(X, tj) (14)

Among these groups of upper bounds of Eqs. (12)–(14), PIC involves the item
having the maximum existential probability PM 1(yr, tj) in the proper prefix of
yr, whereas IC (used by DISC-growth) involves the item having the maximum
existential probability TM1 (tj) in the proper prefix of yr as well as its suffix. So,
as PM 1(yr, tj) ≤ TM 1(tj), we derive the following theoretical result:

PIC(X, tj) ≤ IC(X, tj) (15)
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Moreover, IC also uses P (xk, tj), whereas TC uses TM 2(tj)—which may not
even involve any items in X—when xk �=yg. So, as P (xk, tj) ≤ TM 2(tj), we get
the following result:

IC(X, tj) ≤ TC(X, tj) (16)

Hence, it is generally that

PIC(X, tj) ≤ IC(X, tj) ≤ TC(X, tj) (17)

i.e., PIC generally provides the tightest upper bounds to expected support when
mining frequent 2-itemsets from high volumes of high-value uncertain data.

When mining 3+-itemsets, the following property holds:

CUF ∗(X, tj) ≤ TC(X, tj) (18)

This is due to the extra multiplication term [TM 3(tj)]k−2 in CUF* such that
0 < [TM 3(tj)]k−2 ≤ 1. Hence, CUF* provides tighter upper bounds to expected
support than TC when mining frequent 3+-itemsets from high volumes of high-
value uncertain data. Similar comments, due to the same reason, apply to DISC*
(when compared with DISC), as well as PUF* and BLIMP (when both compared
with PIC):

DISC∗(X, tj) ≤ DISC(X, tj) (19)
PUF ∗(X, tj) ≤ PIC(X, tj) (20)

BLIMP (X, tj) ≤ PIC(X, tj) (21)

After analyzing the intra-group relationships among the aforementioned algo-
rithms, let us analyze the inter-group relationships among CUF*, DISC*, PUF*,
and BLIMP when they mine 3+-itemsets. If xk = yg, then the following property
holds:

DISC∗(X, tj) = CUF ∗(X, tj) (22)

because P (xk, tj) = P (yg, tj) = TM 1(tj). The same property also holds when
xk = ys because P (xk, tj) = P (ys, tj) = TM 2(tj). Hence, when xk is associated
with the highest or the second highest existential probability in tj , both DISC*
and CUF* provide the same upper bounds to expected support when mining
frequent 3+-itemsets. Moreover, if xk �=yg and xk �=ys, then the following property
holds:

PUF ∗(X, tj) ≤ DISC∗(X, tj) (23)

because both PM 1(yr, tj)≤TM 1(tj) and PM 2(yr, tj)≤TM 2(tj). Hence, when xk

does not associated with the highest or the second highest existential probability
in tj , PUF* provides tighter upper bounds to expected support than DISC*.

Furthermore, if P (xk−1, tj)=PM 1(yr, tj) and P (xi, tj)=P (yi, tj) for i ∈
[1, k − 2], then we obtain:

BLIMP (X, tj) = expSup(X, tj) (24)
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Hence, when X is the first k items in tj such that P (xk−1, tj) happens to be the
highest existential probability in the proper prefix {y1, ..., yr−1} ⊂ tj , BLIMP
provides upper bounds that are so tight that they are indeed the expected support.

Note that all the aforementioned algorithms do not generate any false nega-
tives. With tighter upper bounds to expected support, fewer false positives are
produced. Hence, shorter runtime is needed to verify whether or not a pattern
is true positive (i.e., frequent) or false positive (i.e., potentially frequent w.r.t.
upper bounds but truly infrequent w.r.t. minsup).

In terms of memory consumption, the aforementioned frequent pattern min-
ing algorithms are all tree-based. The number of nodes in the corresponding tree
is small. With appropriate item ordering, the number of tree nodes for uncer-
tain big data mining is identical to that of the FP-tree [18] for mining precise
data. Note that each node in the FP-tree captures an item x and its actual
support, respectively. Conversely, when mining 2-itemsets, each tree node cap-
tures x and its TC for CUF-growth. Similarly, each tree node captures x and
DISC for DISC-growth; and each tree node captures x and PIC for PUF-growth.
When mining 3+-itemsets, each tree node captures an additional information
such as TM 3(tj) for the CUF*-growth algorithm, TM 2(tj) or TM 3(tj) for the
DISC*-growth algorithm, PM 2(yr, tj) for PUF*-growth, as well as P (yi, tj) for
BLIMP-growth, respectively.

It should be noted, as these theoretical results allow us to find tight upper
bounds to expected support for frequent pattern mining problems over uncer-
tain big data, they also introduce the nice amenity of effectively lowering the
overall algorithm runtime efficiently. This will be completely demonstrated in
our experimental assessment and analysis in Sect. 4.

4 Experimental Assessment and Evaluation

In this section, we evaluate several performance aspects on the optimization
opportunities offered by the six different upper bounds to expected support
described in Sect. 3. As regards the data layer of our experimental campaign,
we considered the following well-known datasets: (i) IBM synthetic dataset, and
(ii) mushroom dataset from the UC Irvine Machine Learning Depository. In
particular, these datasets have been artificially made uncertain via a simple
sampling-based routine that injects the existential probabilities as associated
to the values of a pre-determined sub-set of attributes of the input dataset. As
regards metrics, we focused on the following experimental benchmarks: (i) mem-
ory consumption, (ii) accuracy, and (iii) runtime. The final goal of our experi-
mental campaign is to provide a comparative analysis and confirm our analytical
findings provided in Sect. 3.

4.1 Memory Consumption Analysis

First, we analytically evaluate the memory consumption of the different approxi-
mations. Among them, we observe the following main behaviors that are relevant
to our research:
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– CUF-growth (which uses TC) requires the least amount of memory space
because they are solely dependent on transaction tj . In other words, only a
single value (TC) is needed for each transaction tj .

– CUF*-growth (which uses CUF*) requires slightly more memory space because
two values—both TC and TM 3(tj)—are needed for each transaction tj in
order to compute the CUF* value for patterns of different cardinality k. Both
CUF-growth and CUF*-growth do not need to store existential probabilities
of any items in transaction tj .

– DISC-growth and PUF-growth each requires a total of h values for each trans-
action tj . Specifically, for each transaction tj = {y1, y2, . . . , yr . . . , yh} with
h items, a single value (IC or PIC) is needed for each item yi in tj .

– DISC*-growth, as an extension to DISC-growth, needs to store an additional
value—namely, TM 2(tj) or TM 3(tj) depending on whether xk = yg or ys—for
each item xk (= yr) in transaction tj .

– PUF*-growth, as an extension to PUF-growth, needs to store an additional
value—namely, PM 2(yr, tj)—for each item yr in transaction tj . Both DISC*-
growth and PUF*-growth require the most amount of memory space because
each of them requires a total of 2h values for each transaction tj .

4.2 Accuracy Analysis

We measure the accuracy of the different frequent pattern mining algorithms
when the derived theoretical upper bounds are applied. In this experiment series,
we compare the tightness of the upper bounds as approximated expected sup-
port. From Sect. 3, Eqs. (12)–(14) are confirmed by results shown in Fig. 1. Note
the following:

– CUF*-growth and CUF-growth lead to the same number of false positives for
2-itemsets (i.e., cardinality = 2).

– DISC*-growth and DISC-growth, as well as PUF*-growth and PUF-growth,
also lead to the same number of false positives for 2-itemsets.

Fig. 1. Experimental results on accuracy analysis
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Among these three groups of upper bounds, we also observe the following:

– PUF-growth involves the item having the maximum existential probability
PM 1(yr, tj) in the proper prefix of yr.

– DISC-grwoth involves the item having the maximum existential probability
TM 1(tj) in the proper prefix of yr as well as its suffix.

As a consequence, since PM 1(yr, tj) ≤ TM 1(tj), we can also experimen-
tally illustrate Eq. (15). Moreover, IC also uses P (xk, tj), whereas TC uses
TM 2(tj)—which may not even involve any items in X—when xk �= yg. So,
as P (xk, tj) ≤ TM 2(tj), we can also experimentally illustrate Eq. (16). These
two experimental evidences support the observation that PUF-growth generally
provides the tightest upper bounds to expected support when mining frequent
2-itemsets from high volumes of high-value uncertain data.

When mining 3+-itemsets, following the analysis provided in Sect. 3, we fur-
ther observe the following results, which are also confirmed by our experimental
evaluation (see Fig. 1):

– DISC∗(X, tj)≤TC (X, tj) due to the extra multiplication term [TM 3(tj)]k−2

in CUF*-growth such that 0 < [TM 3(tj)]k−2 ≤ 1. Hence, CUF*-growth pro-
vides tighter upper bounds to expected support than CUF-growth when min-
ing frequent 3+-itemsets from high volumes of high-value uncertain data.

– DISC∗(X, tj) ≤ IC (X, tj) and PUF ∗(X, tj) ≤ PIC (X, tj) due to the same
reason, i.e., the extra multiplication terms—which are in the range (0,1]—in
DISC*-growth and PUF*-growth.

After analyzing the intra-group relationships between the aforementioned upper
bounds, let us analyze the inter-group relationships among the four extensions
when they mine k-itemsets, and simultaneously checking it on the experimental
results shown Fig. 1 (which further confirm our theoretical analysis provided in
Sect. 3):

– If xk=yg, then DISC∗(X, tj) = CUF ∗(X, tj) because P (xk, tj) = P (yg, tj) =
TM 1(tj).

– If xk=ys, then DISC∗(X, tj) = CUF ∗(X, tj) because P (xk, tj) = P (ys, tj) =
TM 2(tj).

– If xk �=yg and xk �=ys, then PUF ∗(X, tj) ≤ DISC∗(X, tj) because both
PM 1(yr, tj)≤TM 1(tj) and PM 2(yr, tj)≤TM 2(tj).

Hence, it follows that, when xk is associated with the highest or the second high-
est existential probability in tj , both DISC*-growth and CUF*-growth provide
the same upper bounds to expected support when mining frequent 3+-itemsets.
Moreover, when xk is not associated with the highest or the second highest exis-
tential probability in tj , PUF*-growth provides tighter upper bounds to expected
support than DISC*-growth.

The evaluation above shows the tightness of our upper bounds to expected
support. Note that all these bounds do not lead to any false negatives but only
false positives. The tighter the bound, the lower is the number of false positives.
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Fig. 2. Experimental results on runtime analysis

Our experimental results shown in Fig. 1 clearly support our analytical results.
Specifically, CUF-growth leads to the highest numbers of false positives, whereas
PUF*-growth leads to the lowest numbers (with DISC*-growth led to a close
second lowest numbers) of false positives in IBM synthetic dataset and mushroom
real-life dataset. Also, it is interesting to note that the tightness of the upper
bound to expected support provided by the following extensions: CUF*-growth,
DISC*-growth, PUF*-growth and BLIMP-growth. In fact, they do not generate
any false positives beyond cardinality 6 for the mushroom dataset, as shown in
Fig. 1.

4.3 Runtime Analysis

Recall that knowledge discovery and data mining algorithms use the aforemen-
tioned caps TC, IC and PIC to approximate expected support (see Sect. 2). The
related algorithms find patterns with upper bounds to expected support meeting
or exceeding the user-specified threshold minsup. This results in a collection of
all potentially frequent 2+-itemsets that include both true positive (i.e., truly
frequent patterns) and false positive (i.e., potentially frequent with respect to
upper bounds but truly infrequent with respect to minsup). With tighter upper
bounds to expected support, fewer false positives are produced. Hence, shorter
runtimes result. Figure 2 shows overall runtime of the various alternatives using
the proposed upper bounds. From the analysis Fig. 2, the following observations
can be derived:

– Due to its highest number of false positives generated, CUF-growth introduces
the longest runtime.

– As all three extensions (CUF*-growth, PUF*-growth and DISC*-growth) pro-
duce fewer false positives than the counterparts (CUF-growth, PUF-growth
and DISC-growth), runtimes for the former are also shorter.

– As usual, when minsup increases, runtime decreases.
– Recall that PUF ∗(X, tj) ≤ DISC∗(X, tj) if xk=yg and xk=ys. For the cases

where xk=yg or xk=ys, it is possible (but not guaranteed) that PUF ∗(X, tj)
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≤ DISC∗(X, tj). However, for some other cases (e.g., for short transactions in
the IBM synthetic dataset or short frequent patterns mined from the real-life
mushroom dataset), DISC*-growth beats PUF*-growth.

4.4 Comparative Analysis

After evaluating the seven approximations as upper bounds to expected support,
we observe the following:

– CUF-growth requires the least amount of memory space (with a single value
per transaction), and CUF*-growth requires the second least amount of mem-
ory space (with two values per transaction);

– DISC*-growth and PUF*-growth both produce fewest false positives due to
the tightness of their bounds;

– DISC*-growth takes the shortest runtime, where PUF*-growth and CUF*-
growth take just slightly longer than DISC*-growth.

Hence, our recommendation is as follows: If memory is an issue, it is better to
use CUF*-growth due to its small memory requirements, few false positives and
short runtimes. Otherwise, it is better to use DISC*-growth or PUF*-growth
because their relatively low memory requirements (2h values for h items in a
transaction) while they produce fewer false positives and run faster than others.

5 Conclusions and Future Work

In this paper, we have examined the concepts of transaction cap TC, item cap IC
and prefixed item cap PIC by viewing them as tight upper bounds to expected
support of frequent k-itemsets when mining uncertain big data. Among these
upper bounds, PIC provides the tightest upper bounds when mining frequent
2-itemsets, and thus produces the fewest false positives and the fastest running.
When mining frequent 3+-itemsets, the concepts of TC, IC, and PIC have been
extended to become CUF*, DISC*, PUF*, and BLIMP. Our experimental results
confirm our analytical findings that any of these four extensions could provide
tighter upper bounds to expected support of frequent 3+-itemsets than the other
three extensions on different mining parameters and/or distributions of uncertain
data.

Future work is mainly oriented towards (i) studying optimization alternatives
particularly targeted to distributed environments (e.g., fragmentation techniques
[11,15], which could allow us to improve the efficiency of our framework, and
(ii) extending the proposed framework according to modern big data analytics
predicates [7,21,39].
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University of Manitoba.
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43. Samet, A., Lefèvre, E., Ben Yahia, S.: Classification with evidential associative
rules. In: Laurent, A., Strauss, O., Bouchon-Meunier, B., Yager, R.R. (eds.) IPMU
2014, Part I. CCIS, vol. 442, pp. 25–35. Springer, Heidelberg (2014)

44. Tong, Y., Chen, L., Cheng, Y., Yu, P.S.: Mining frequent itemsets over uncertain
databases. PVLDB 5(11), 1650–1661 (2012)

45. Xu, J., Li, N., Mao, X.-J., Yang, Y.-B.: Efficient probabilistic frequent itemset
mining in big sparse uncertain data. In: Pham, D.-N., Park, S.-B. (eds.) PRICAI
2014. LNCS (LNAI), vol. 8862, pp. 235–247. Springer, Heidelberg (2014)


	Computing Theoretically-Sound Upper Bounds to Expected Support for Frequent Pattern Mining Problems over Uncertain Big Data
	1 Introduction
	2 Computing Upper Bounds: A Unifying Model from the State-of-the-Art Analysis
	3 Theoretical Analysis and Results
	4 Experimental Assessment and Evaluation
	4.1 Memory Consumption Analysis
	4.2 Accuracy Analysis
	4.3 Runtime Analysis
	4.4 Comparative Analysis

	5 Conclusions and Future Work
	References


