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Abstract. Rough approximations, a pair of lower and upper approxima-
tions, and rule induction are described by directly using indiscernibility
relations in information tables containing incomplete information. A set
of values is used to express incomplete information. The indiscernibility
relations are constructed from viewpoints of both certainty and possibil-
ity. First, rough approximations and rule induction are described in infor-
mation tables with complete information. Second, they are addressed in
three cases under incomplete information. One is that a set of objects is
approximated by objects with incomplete information. Another is that
a set of objects with incomplete information is approximated by objects
with complete information. The other is the most general case where a
set of objects with incomplete information is approximated by objects
with incomplete information. Consequently, we obtain four approxima-
tions: certain lower, certain upper, possible lower, and possible upper
approximations. Using these approximations, rough approximations are
expressed by interval sets. The rough approximations have the comple-
mentarity property linked with lower and upper approximations, as is
valid under complete information. Last, rule induction are addressed in
information tables with incomplete information. Rough approximations
under incomplete information do not give sufficient information on rules
that an object supports. This is resolved by introducing formulae dealing
with pairs of an object and a rule that it supports. The pairs are clas-
sified into certain and consistent, possible and consistent, certain and
inconsistent, and possible and inconsistent pairs.

Keywords: Rough sets · Incomplete information · Indiscernibility rela-
tion · Lower and upper approximations · Rule induction

1 Introduction

Incomplete information systems consist of objects whose attribute values are
described by a set of values. When a set of values is obtained as an attribute
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value, one element of the set is the actual one, but we cannot know it without
additional information. Such a situation frequently appears in our daily life. For
example, when we obtain the incomplete information “John’s age is round 20,”
“round 20” is expressed by {19, 20, 21}. The actual age is in {19, 20, 21}, but it
is unknown which is actual.

The framework of rough sets, constructed by Pawlak [10], is used as an effec-
tive tool for data science including various fields such as data analysis, pattern
recognition, machine learning, data mining, and so on. The rough sets are based
on indiscernibility of objects whose characteristic values are indistinguishable.
The fundamental framework is given by rough approximations that consist of
lower and upper approximations. The original rough approximations are usually
derived from interrelationships, inclusion and intersection, between equivalence
classes. The equivalence classes are obtained from indiscernibility relations in an
information table containing only complete information.

Some extensions are imposed on the original rough approximations to deal
with incomplete information. Kryszkiewicz constructed a discernibility rela-
tion by giving indiscernibility of a missing value with any value under an
assumption [2]. Some authors propose indiscernibility relations under different
assumptions from Kryszkiewicz [1,3,11]. This approach creates poor results of
rough approximations [6,11], because it considers only the possibility that a
missing value may be equal to another value. In addition, the approach does not
give the same rough approximations as the method based on Lipski’s one under
possible world semantics [6].

A missing value has two possibilities. One possibility is that it may be equal
to another value. The other is that it may not be equal to the value. It is unknown
which possibility is true without additional information. From this standpoint,
Nakata and Sakai have developed an approach based on possible equivalence
classes [7]. The number of possible equivalence classes exponentially increases,
as the number of missing values does. They avoid the computational complexity
by using minimum and maximum possible equivalence classes. Their approach
gives the same rough approximations as the work based on Lipski. However, the
approach is limited in the case of obtaining possible equivalence classes.

To remove the limitation, we show an approach directly using indiscernibil-
ity relations, but not equivalence classes obtained from the indiscernibility rela-
tions. The approach is applicable to various types of information. Nakata and Sakai
develop the approach for possibilistic information and give successful results [8,9].
In this paper, we apply the approach to incomplete information expressed by a set
of values. We formulate rough approximations and rule induction from the view-
point of both certainty and possibility, as Lipski did in incomplete databases, to
deal with incomplete information that includes present but unknown type of miss-
ing values as special cases.

The paper is organized as follows. In Sect. 2, an approach based on indiscerni-
bility relations is briefly addressed in the case of information tables with com-
plete information, called complete information systems. In Sect. 3, we develop the
approach in the case of information tables with incomplete information, called
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incomplete information systems. The approach is described from the viewpoint
of both certainty and possibility. In Sect. 4, conclusions are addressed.

2 Rough Sets by Indiscernibility Relations in Complete
Information Systems

A data set is represented as a table, called an information table, where each row
and each column represent an object and an attribute, respectively. A mathemat-
ical model of an information table with complete information is called a complete
information system. The complete information system is a triplet expressed by
(U,AT, {D(ai) | ai ∈ AT}). U is a non-empty finite set of objects called the
universe, AT is a non-empty finite set of attributes such that ai : U → D(ai)
for every ai ∈ AT where D(ai) is the domain of attribute ai. Binary relation
Rai

for indiscernibility of objects on attribute ai ∈ AT , which is called the
indiscernibility relation for ai, is:

Rai
= {(o, o′) ∈ U × U | ai(o) = ai(o′)}, (1)

where ai(o) is the value for attribute ai of object o. From the indiscernibility
relation, indiscernible class [o]ai

for object o is obtained:

[o]ai
= {o′ | (o, o′) ∈ Rai

}. (2)

The condition ai(o) = ai(o′) in formula (1) makes [o]ai
an equivalence class. The

condition can be replaced by another condition. For example, ai(o) and ai(o′)
are similar. In this case, [o]ai

is not always an equivalence class. Family Eai
of

indiscernible classes on ai is:

Eai
= {[o]ai

| o ∈ U}. (3)

When [o]ai
is an equivalence class, U is uniquely partitioned by ai; namely, this

is the classification induced by ai.
Using indiscernibility relation Rai

, lower approximation apr
ai

(O) and upper
approximation aprai

(O) for ai of set O of objects are:

apr
ai

(O) = {o | ∀o′ ∈ U (o, o′) �∈ Rai
∨ o′ ∈ O}, (4)

aprai
(O) = {o | ∃o′ ∈ U (o, o′) ∈ Rai

∧ o′ ∈ O}. (5)

When we focus on object o, o is an element of the lower approximation of O, if all
objects that are indiscernible with o are included in O. On the other hand, the
object is an element of the upper approximation of O, if some objects that are
indiscernible with o are in O. Thus, if o ∈ apr

ai
(O), then o ∈ aprai

(O); namely,
apr

ai
(O) ⊆ aprai

(O). It is well known that the lower and upper approximations
are linked with each other, which is called complementarity property:

apr
ai

(O) = U − aprai
(U − O). (6)
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From this formula, o ∈ apr
ai

(O) if and only if o �∈ aprai
(U−O) and o ∈ aprai

(O)
if and only if o �∈ apr

ai
(U − O).

When objects are characterized by values of attributes, a set of objects being
approximated have some structures. In the case where ai(o) = ai(o′) is used
in formula (1), the set of objects is partitioned by equivalence classes obtained
from the values of attribute ai being equal. Under this consideration, lower
approximation apr

ai
(O/aj) and upper approximation aprai

(O/aj) for ai are:

apr
ai

(O/aj) = {o | ∃o′′ ∈ O ∀o′ ∈ U (o, o′) �∈ Rai
∨ (o′, o′′) ∈ Raj

∧ o′ ∈ O},(7)

aprai
(O/aj) = {o | ∃o′′ ∈ O ∃o′ ∈ U (o, o′) ∈ Rai

∧ (o′, o′′) ∈ Raj
∧ o′ ∈ O}.(8)

In the two approximations, if o ∈ apr
ai

(O/aj), then o ∈ aprai
(O/aj); namely

inclusion relation apr
ai

(O/aj) ⊆ aprai
(O/aj) holds. On the other hand, the

complementarity property does not hold. If o ∈ apr
ai

(O/aj), then o �∈ aprai
((U−

O)/aj) and if o ∈ aprai
(O/aj), then o �∈ apr

ai
((U − O)/aj).

We induce rules that hold between attributes from lower and upper approx-
imations. From the lower approximation, when o ∈ apr

ai
(O/aj), ∃Eaj=v ∈

Eaj
[o]ai=u ⊆ Eaj=v, where Eaj=v is the indiscernible class characterized by

value v of aj and [o]ai=u is the indiscernible class including o characterized by
value u for ai:

Eaj=v = {o | aj(o) = v ∧ v ∈ D(aj)},
[o]ai=u = {o′ | ai(o′) = ai(o) ∧ ai(o) = u ∧ u ∈ D(ai)}.

All objects in [o]ai=u supports the rule denoted by ai = u → aj = v where
o has u and v of ai and aj ; namely , ai(o) = u and aj(o) = v, respectively.
Thus, o consistently supports ai = u → aj = v. This is denoted by (o, ai =
u → aj = v). From the upper approximation, when o ∈ aprai

(O/aj), ∃Eaj=v ∈
Eaj

[o]ai=u ∩ Eaj=v �= ∅ if o has u of ai. From apr
ai

(O/aj) ⊆ aprai
(O/aj),

o ∈ (aprai
(O/aj)−apr

ai
(O/aj)) inconsistently supports a rule denoted by ai =

u → aj = v where o has u of ai, but o does not always have v of aj , although
this is also expressed by (o, ai = u → aj = v). All objects included in [o]ai=u

do not support ai = u → aj = v. The consistency degree, called accuracy,
is evaluated by |[o]ai=u ∩ Eaj=v|/|[o]ai=u|. Clearly, this degree is equal to 1, if
o ∈ apr

ai
(O/aj).

For formulae on sets A and B of attributes,

RA = ∩ai∈ARai
, (9)

[o]A = {o′ | (o, o′) ∈ RA} = ∩ai∈A[o]ai
, (10)

apr
A
(O) = {o | ∀o′ ∈ U (o, o′) �∈ RA ∨ o′ ∈ O}, (11)

aprA(O) = {o | ∃o′ ∈ U (o, o′) ∈ RA ∧ o′ ∈ O}, (12)
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apr
A
(O/B) =

{o | ∃o′′ ∈ O ∀o′ ∈ U (o, o′) �∈ RA ∨ (o′, o′′) ∈ RB ∧ o′ ∈ O}, (13)
aprA(O/B) =

{o | ∃o′′ ∈ O ∃o′ ∈ U (o, o′) ∈ RA ∧ (o′, o′′) ∈ RB ∧ o′ ∈ O}. (14)

3 Rough Sets by Indiscernibility Relations in Incomplete
Information Systems

In incomplete information systems, ai : U → sai
for every ai ∈ AT where sai

is
the set of all subsets over domain D(ai) of attribute ai. v ∈ ai(o) is a possible
value that may be the actual one as the value of attribute ai in object o. The
possible value is the actual one if |ai(o)| = 1.

The indiscernibility relation for ai in an incomplete information system is
expressed by using two relations CRai

and PRai
. CRai

is a certain indiscerni-
bility relation and PRai

is a possible one:

CRai
= {(o, o′) | o = o′ ∨ ai(o) = ai(o′) with |ai(o)| = |ai(o′)| = 1}, (15)

PRai
= {(o, o′) | o = o′ ∨ u = v ∧ u ∈ ai(o) ∧ v ∈ ai(o′)}. (16)

The certain indiscernibility relation is reflexive, symmetric, and transitive, but
the possible one is not transitive although it is reflexive and symmetric. We
have three patterns. One case is that a pair of objects are not in both certain
and possible indiscernibility relations, which means that they are discernible.
Another is that they are not in the certain indiscernibility relation, but in the
possible one, which means that they are discernible and indiscernible. The other
is that they are in both certain and possible indiscernibility relations, which
means that they are indiscernible.

Example 1. Let information table T be obtained as follows:

T
U a1 a2
1 {x} {a, c}
2 {x, y} {a, b}
3 {y} {b}
4 {y} {b}
5 {w} {c}
6 {w, z} {c}

In information table T , U = {o1, o2, o3, o4, o5, o6}, where domains D(a1) and
D(a2) of attributes a1 and a2 are {w, x, y, z} and {a, b, c}, respectively. Using
formulae (15) and (16), certain and possible indiscernibility relations for a1 in
T are:

CRai
= {(o1, o1), (o2, o2), (o3, o3), (o3, o4), (o4, o3), (o4, o4), (o5, o5), (o6, o6)},

PRai
= {(o1, o1), (o1, o2), (o2, o1), (o2, o2), (o2, o3), (o2, o4), (o3, o2), (o3, o3),

(o3, o4), (o4, o2), (o4, o3), (o4, o4), (o5, o5), (o5, o6), (o6, o5), (o6, o6)}.
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Lipski showed that certain and possible answers, not the actual answer, are
obtained in query processing under incomplete information [4,5]. This is true
for rough approximations. We cannot definitely obtain whether or not an object
belongs to rough approximations, but we can know whether or not the object
certainly or possibly belongs to rough approximations. Therefore, we show cer-
tain rough approximations (resp. possible rough approximations) whose object
certainly (resp. possibly) belongs to the actual rough approximations.

Let O be a set of objects. Certain lower approximation Capr
ai

(O) and pos-
sible one Papr

ai
(O) are:

Capr
ai

(O) = {o | ∀o′ ∈ U (o, o′) �∈ PRai
∨ o′ ∈ O}, (17)

Papr
ai

(O) = {o | ∀o′ ∈ U (o, o′) �∈ CRai
∨ o′ ∈ O}. (18)

Proposition 1. Capr
ai

(O) ⊆ Papr
ai

(O).

Similarly, Certain upper approximation Caprai
(O) and possible one

Paprai
(O) are:

Caprai
(O) = {o | ∃o′ ∈ U (o, o′) ∈ CRai

∧ o′ ∈ O}, (19)
Paprai

(O) = {o | ∃o′ ∈ U (o, o′) ∈ PRai
∧ o′ ∈ O}. (20)

Proposition 2. Caprai
(O) ⊆ Paprai

(O).

Proposition 3. Capr
ai

(O) ⊆ Caprai
(O) and Papr

ai
(O) ⊆ Paprai

(O).

Proposition 4. Capr
ai

(O) ⊆ Papr
ai

(O) ⊆ O ⊆ Caprai
(O) ⊆ Paprai

(O).

Four approximations are linked with each other.

Proposition 5. Papr
ai

(O) = U − Caprai
(U − O) and Capr

ai
(O) = U −

Paprai
(U − O).

Using four approximations denoted by formulae (17)–(20), lower and upper
approximations are expressed by interval sets as follows:

apr
ai

(O) = [Capr
ai

(O), Papr
ai

(O)], (21)

aprai
(O) = [Caprai

(O), Paprai
(O)]. (22)

Certain and possible approximations are the lower and upper bounds of the
actual approximation. The lower and upper approximations depend on each
other; namely, the complementarity property linked with them holds, as is so in
complete information systems.

Proposition 6.

apr
ai

(O) = U − aprai
(U − O).
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Example 2. Let us go back to Example 1. Let set O of objects be {o2, o3, o4}.
Using formulae (17)–(20),

Capr
a1

(O) = {o3, o4},
Papr

a1
(O) = {o2, o3, o4},

Capra1
(O) = {o2, o3, o4},

Papra1
(O) = {o1, o2, o3, o4}.

Thus, using formulae (21)–(22),

apr
a1

(O) = [{o3, o4}, {o2, o3, o4}],

apra1
(O) = [{o2, o3, o4}, {o1, o2, o3, o4}].

Subsequently, we describe the case where a set of objects characterized by
incomplete information is approximated by objects with complete information.
Let objects in U have complete information for ai and O be characterized by aj
with incomplete information. Four approximations are:

Capr
ai

(O/aj) = {o | ∃o′′ ∈ O ∀o′ ∈ [o]ai
(o′, o′′) ∈ CRaj

∧ o′ ∈ O}, (23)

Papr
ai

(O/aj) = {o | ∃o′′ ∈ O ∀o′ ∈ [o]ai
(o′, o′′) ∈ PRaj

∧ o′ ∈ O}, (24)

Capr
ai

(O/aj) = {o | ∃o′′ ∈ O ∃o′ ∈ [o]ai
(o′, o′′) ∈ CRaj

∧ o′ ∈ O}, (25)

Papr
ai

(O/aj) = {o | ∃o′′ ∈ O ∃o′ ∈ [o]ai
(o′, o′′) ∈ PRaj

∧ o′ ∈ O}. (26)

Combining the above two cases, we can obtain four approximations in the
case where both objects used to approximate and objects approximated are
characterized by attributes with incomplete information. Certain lower approx-
imation Capr

ai
(O/aj) and possible one Papr

ai
(O/aj) are:

Capr
ai

(O/aj)

= {o | ∃o′′ ∈ O ∀o′ ∈ U (o, o′) �∈ PRai
∨ (o′, o′′) ∈ CRaj

∧ o′ ∈ O}, (27)
Papr

ai
(O/aj)

= {o | ∃o′′ ∈ O ∀o′ ∈ U (o, o′) �∈ CRai
∨ (o′, o′′) ∈ PRaj

∧ o′ ∈ O}. (28)

Proposition 7. Capr
ai

(O/aj) ⊆ Papr
ai

(O/aj).

Similarly, certain upper approximation Caprai
(O/aj) and possible one

Paprai
(O/aj) are:

Caprai
(O/aj)

= {o | ∃o′′ ∈ O ∃o′ ∈ U (o, o′) ∈ CRai
∧ (o′, o′′) ∈ CRaj

∧ o′ ∈ O}, (29)
Paprai

(O/aj)
= {o | ∃o′′ ∈ O ∃o′ ∈ U (o, o′) ∈ PRai

∧ (o′, o′′) ∈ PRaj
∧ o′ ∈ O}. (30)
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Proposition 8. Caprai
(O/aj) ⊆ Paprai

(O/aj).

Proposition 9. Capr
ai

(O/aj) ⊆ Caprai
(O/aj) and Papr

ai
(O/aj) ⊆

Paprai
(O/aj).

Proposition 10. Capr
ai

(O/aj) ⊆ Papr
ai

(O/aj) ⊆ O ⊆ Caprai
(O/aj) ⊆

Paprai
(O/aj).

Lower and upper approximations are:

apr
ai

(O/aj) = [Capr
ai

(O/aj), Papr
ai

(O/aj)], (31)

aprai
(O/aj) = [Caprai

(O/aj), Paprai
(O/aj)]. (32)

Example 3. Let us go back to information table T in Example 1. Let O
be {o2, o3, o4} that is characterized by values of attribute a2. Using formulae
(27)–(32),

apr
a1

(O/a2) = [{∅}, {o2, o3, o4}],

apra1
(O/a2) = [{o2, o3, o4}, {o1, o2, o3, o4}].

An object that belongs to certain rough approximations does not certainly
support a rule. For example, Capr

a1
(U/a2) = {o5, o6} in T of Example 1. o5

certainly supports rule a1 = w → a2 = c, but o6 does not certainly supports rule
a1 = w → a2 = c, because a1 = {w, z}. To clarify how an object supports a rule,
we derive certain and possible indiscernibility relations CRai=u and PRai=u

where all pairs of objects are characterized by value u of attribute ai.

CRai=u = {(o, o′) | ai(o) = ai(o′) = u}, (33)
PRai=u = {(o, o′) | u ∈ ai(o) ∧ u ∈ ai(o′)}. (34)

Example 4. In T of Example 1, using formulae (33) and (34),

CRa1=x = {(o1, o1)},
PRa1=x = {(o1, o1), (o1, o2), (o2, o1), (o2, o2)},
CRa1=y = {(o3, o3), (o3, o4), (o4, o3), (o4, o4), },
PRa1=y = {(o2, o2), (o2, o3), (o2, o4), (o3, o2), (o3, o3), (o3, o4), (o4, o2), (o4, o3),

(o4, o4), },
CRa1=z = ∅,
PRa1=z = {(o6, o6)},
CRa1=w = {(o5, o5)},
PRa1=w = {(o5, o5), (o5, o6), (o6, o5), (o6, o6)}.
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Using indiscernibility relations CRai=u and PRai=u that are characterized
by a value of an attribute, we obtain four sets of pairs of an object and a rule
that it supports: certain lower, possible lower, certain upper, and possible upper
sets, which correspond to the above four approximations.

Certain lower set Crai
(O/aj), which corresponds to Capr

ai
(O/aj), is:

Crai
(O/aj) = {(o, ai = u → aj = v) | ∃o′ ∈ U (o, o′) ∈ CRai=u∧

(∃o′′ ∈ O ∀o′ ∈ U (o, o′) �∈ PRai=u ∨ (o′, o′′) ∈ CRaj=v ∧ o′ ∈ O)}.
(35)

Possible lower set Prai
(O/aj), which corresponds to Papr

ai
(O/aj), is:

Prai
(O/aj) = {(o, ai = u → aj = v) | ∃o′ ∈ U (o, o′) ∈ PRai=u∧

(∃o′′ ∈ O ∀o′ ∈ U (o, o′) �∈ CRai=u ∨ (o′, o′′) ∈ PRaj=v ∧ o′ ∈ O)}.
(36)

Proposition 11. Crai
(O/aj) ⊆ Prai

(O/aj).

This proposition shows that the possible lower set includes the certain lower
set.

Certain upper set Crai
(O/aj), which corresponds to Caprai

(O/aj), is:

Crai
(O/aj) = {(o, ai = u → aj = v) |

∃o′′ ∈ O ∃o′ ∈ U (o, o′) ∈ CRai=u ∧ (o′, o′′) ∈ CRaj=v ∧ o′ ∈ O}. (37)

Possible upper set Prai
(O/aj), which corresponds to Paprai

(O/aj), is:

Prai
(O/aj) = {(o, ai = u → aj = v) |

∃o′′ ∈ O ∃o′ ∈ U (o, o′) ∈ PRai=u ∧ (o′, o′′) ∈ PRaj=v ∧ o′ ∈ O}. (38)

Proposition 12. Crai
(O/aj) ⊆ Prai

(O/aj).

This proposition shows that the possible upper set includes the certain upper set.

Proposition 13. Crai
(O/aj) ⊆ Crai

(O/aj) and Prai
(O/aj) ⊆ Prai

(O/aj).

This proposition shows that the certain upper set includes the certain lower set
and the possible upper set includes the possible lower set.

Using the above four sets, sets rai
(O/aj) and rai

(O/aj), which correspond
to Capr

ai
(O/aj) and Caprai

(O/aj), are also expressed by interval sets:

rai
(O/aj) = [Crai

(O/aj), P rai
(O/aj)], (39)

rai
(O/aj) = [Crai

(O/aj), P rai
(O/aj)]. (40)

Pairs of an object and a rule are classified into four cases: certain and consis-
tent, certain and inconsistent, possible and consistent, and possible inconsistent
pairs. Objects that appear in certain set Crai

(O/aj) certainly support rules with
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consistency. From Proposition 13, Crai
(O/aj) ⊆ Crai

(O/aj). So, objects that
appear in (Crai

(O/aj)−Crai
(O/aj)) certainly support rules with inconsistency.

From Proposition 11, Crai
(O/aj) ⊆ Prai

(O/aj). So, objects that appear in
(Prai

(O/aj)−Crai
(O/aj)) possibly support rules with consistency. From Propo-

sitions 12 and 13, Crai
(O/aj) ⊆ Prai

(O/aj) and Prai
(O/aj) ⊆ Prai

(O/aj).
So, objects that appear in (Prai

(O/aj) − Prai
(O/aj) − Crai

(O/aj)) possibly
support rules with inconsistency.

Example 5. Let us go back to Example 1. Using formulae (35)–(38) and then
gathering objects supporting the same rule in a set,

Cra1
(U/a2) = {({o5}, a1 = w → a2 = c)},

Cra1(U/a2) = {({o3, o4}, a1 = y → a2 = b), ({o5}, a1 = w → a2 = c)},
P ra1

(U/a2) = {({o1}, a1 = x → a2 = c), ({o1, o2}, a1 = x → a2 = a),
({o2, o3, o4}, a1 = y → a2 = b), ({o5, o6}, a1 = w → a2 = c),
({o6}, a1 = z → a2 = c)},

P ra1(U/a2) = {({o1, o2}, a1 = x → a2 = a), ({o1, o2}, a1 = x → a2 = b),
({o1, o2}, a1 = x → a2 = c), ({o2, o3, o4}, a1 = y → a2 = a),
({o2, o3, o4}, a1 = y → a2 = b), ({o5, o6}, a1 = w → a2 = c),
({o6}, a1 = z → a2 = c)}.

Using these formulae, the certain set of pairs of objects and a rule with consis-
tency, which are in Cra1

(U/a2), is:

{({o5}, a1 = w → a2 = c)}.

The certain set of pairs with inconsistency, which are in (Cra1(U/a2) −
Cra1

(U/a2)), is:

{({o3, o4}, a1 = y → a2 = b)}.

The possible set of pairs with consistency, which are in (Pra1
(U/a2) −

Cra1
(U/a2)), is:

{({o1}, a1 = x → a2 = c), ({o1, o2}, a1 = x → a2 = a),
({o2, o3, o4}, a1 = y → a2 = b), ({o6}, a1 = w → a2 = c),
({o6}, a1 = z → a2 = c)}.

A possible set of pairs with inconsistency, which are in (Pra1(U/a2) −
Pra1

(U/a2) − Cra1(U/a2)), is:

{({o1, o2}, a1 = x → a2 = b), ({o2}, a1 = x → a2 = c),
({o2, o3, o4}, a1 = y → a2 = a)}.
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4 Conclusions

We have described an approach based on rough sets in an incomplete informa-
tion system. An attribute value is expressed by a set of values in the incomplete
information system. The approach is based on directly using indiscernibility rela-
tions from the viewpoint of both certainty and possibility. First, We have shown
rough approximations for the case where only objects used to approximate are
characterized by attributes with incomplete information. Second, we have shown
the case where only objects in a set approximated have incomplete information.
Finally, rough approximations have been shown in the case where both objects
used to approximate and objects approximated are characterized by attributes
with incomplete information.

We have four approximations: certain lower, possible lower, certain upper,
and possible upper ones. These are linked with each other. Lower and upper
approximations consists of a pair of certain and possible lower ones and a pair
of certain and possible upper ones, respectively. This is essential in incomplete
information systems. As a result, the complementarity property linked with lower
and upper approximations holds, as is valid under complete information.

Objects that belongs to certain rough approximations do not always support
certain rule. To clarify how rules an object supports, we have introduced expres-
sions where we deal with pairs of an object and a rule that it supports. By using
the expressions, we can obtain four sets of pairs of an object and a rule that it
supports: certain and consistent, possible and consistent, certain and inconsis-
tent, and possible and inconsistent sets. In other words, pairs of an object and
a rule are classified into four types.

Our approach is applicable to the case where equivalence classes are not
obtained, because we directly use indiscernibility relations.
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