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Abstract. Skyline queries have gained much attention in the last decade
and are proved to be valuable for multi-criteria ranking. They are based
on the concept of Pareto dominance. In many real-life applications, the
skyline returns only a small number of non-dominated objects which
could be insufficient for the user. In this paper, we discuss an approach
to enriching the small skyline with particular points that could serve the
decision makers’ needs. The idea consists in identifying the most interest-
ing non-skyline points belonging to the fuzzy neighborhood of a skyline
point and then adding them to the classical skyline. To do so, a partic-
ular fuzzy closeness relation is introduced. The relaxed skyline obtained
which include the classical skyline, is a discriminated set. Furthermore,
an efficient algorithm to compute the relaxed skyline is proposed. Exten-
sive experiments are conducted to demonstrate the effectiveness of our
approach and the performance of the proposed algorithm.

Keywords: Fuzzy sets · Databases · Skyline queries · Closeness
· Relaxation

1 Introduction

In recent years, preference queries have received a great attention by many data-
base researchers. Skyline queries [1] are specific example of SQL extensions that
allow users to express preference in queries. Based on Pareto dominance relation-
ship, skyline queries select all non-dominated objects based on a multi-criteria
comparison. This means that, given a set D of d-dimensional points, a skyline
query returns, the skyline S, set of points of D that are not dominated by any
other point of D. A point p dominates another point q iff p is better than or equal
to q in all dimensions and strictly better than q in at least one dimension. One
can see that skyline points are incomparable. Several research studies have been
conducted to develop efficient algorithms and introduce multiple variants of sky-
line queries [2–5]. However, querying a d-dimensional data sets using a skyline
operator may lead to two possible scenarios: (i) a large number of skyline points
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returned, which could be less informative for users, (ii) a small number of sky-
line points returned, which could be insufficient for users. To solve the two above
problems, various approaches have been proposed to refine the skyline, therefore
reducing its size [6–13], but only very few works exist to relax the skyline in order
to increase the number of skyline results [10,14–17]. Goncalves and Tineo [15]
propose a flexible dominance relationship using fuzzy comparison operators. This
increases the skyline with points that are only weakly dominated by any other
point. In [10], Hadjali et al. discuss some ideas of relaxing the skyline. In [14],
and taking as starting point the study in [10], we develop an approach, called
MP2R (Much Preferred Relation for Relaxation), for skyline relaxation. This
approach relies on a novel fuzzy dominance relationship Much Preferred (MP)
which makes more demanding the dominance between the points of D.

In this paper, we investigate another way of relaxing the skyline S. The
idea is to consider that a non-skyline point p still belongs to a fuzzily extended
skyline SFE if p is close to a skyline point q. We then develop an approach,
called C2R (Closeness Relation for Relaxation), to enlarging the small skyline
with points that are closest to skyline points (keep in mind that those points are
ruled out from the skyline when applying the classical Pareto dominance). The
approach makes use of a particular appropriate fuzzy “Closeness (C)” relation.
Each element in the relaxed skyline obtained SFE is then associated with a
degree (∈ [0, 1]) expressing the extent to which it belongs to SFE . In summary,
the main contributions made are as follows:

– We provide the definition and semantic basis for a relaxed variant of skyline
SFE .

– We develop and implement an algorithm to compute SFE efficiently.
– We conduct a set of experiments to study and analyze the relevance and

effectiveness of SFE .
– Finally, we present a comparative study between SFE and SRelax (i.e., the

relaxed skyline obtained by the MP2R approach of [14]).

The paper is structured as follows: Sect. 2 provides some necessary background
on skyline queries and on MP2R-based approach to skyline relaxation. In Sect. 3,
we introduce a new approach for skyline relaxation based on fuzzy closeness
relationship. An algorithm to efficiently compute SFE is presented and discussed.
Section 4 is devoted to the experimental study. Finally, Sect. 5 concludes the
paper and draws some lines for future works.

2 Background

In this section, we recall some notions on skyline queries. Then, we present our
MP2R-based approach for Skyline relaxation.

2.1 Skyline Queries

The notion of skyline queries was pioneered in [1]. Subsequently, the interest
in this area has exploded: [1] has garnered over 1800 citations (Google Scholar,
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January 2016). Skyline queries are a specific, yet relevant, example of preference
queries. They rely on Pareto dominance principle which can be defined as follows:

Definition 1. Let D be a set of d-dimensional data points and ui and uj two
points of D. ui is said to dominate in Pareto sense uj (denoted ui � uj) iff ui

is better than or equal to uj in all dimensions and better than uj in at least one
dimension. Formally, we write

ui � uj ⇔ (∀k ∈ {1, .., d}, ui[k] ≥ uj [k]) ∧ (∃l ∈ {1, .., d}, ui[l] > uj [l]) (1)

where each tuple ui = (ui[1], ui[2], ui[3], ..., ui[d]) with ui[k] stands for the value
of the tuple ui for the attribute Ak.

In (1), without loss of generality, we assume that the largest value, the better.

Definition 2. The skyline of D, denoted by S, is the set of points which are not
dominated by any other point.

u ∈ S ⇔ �u′ ∈ D,u′ � u (2)

Skyline queries compute the set of Pareto-optimal tuples in a relation, i.e., those
tuples that are not dominated by any other tuple in the same relation.

Example 1. To illustrate the concept of the skyline, let us consider a database
containing information on candidates as shown in Table 1. The list of candi-
dates includes the following informations: Code, Age, Management experience
(man exp in years), Technical experience (tec exp in years) and distance work
to Home (dist wh in Km). Ideally, personnel manager is looking for a candi-
date with the largest management and technical experience (Max man exp and
Max tec exp), ignoring other informations. Applying the traditional skyline will
returns the following candidates: M5, M8. As can be seen, such results are the
most interesting candidates (see Fig. 1).

2.2 MP2R-based Approach for Skyline Relaxation

In [14] we have proposed an approach to relax skyline called MP2R. Its relies
on a new dominance relationship that allows enlarging the skyline with the most
interesting points among those ruled out when computing the initial skyline S.
This new dominance relationship uses a fuzzy relation, named“Much Preferred
(MP)” to compare two tuples u and u′. So, u is an element of Srelax if there is
no tuple u′ ∈ U such that u′ is much preferred to u (denoted MP (u′, u)) in all
skyline attributes. Formally, we write:

u ∈ Srelax ⇔ �u′ ∈ U,∀i ∈ {1, ..., d},MPi(u′
i, ui) (3)

where, MPi is a fuzzy preference relation defined on the domain Di of the
attribute Ai and MPi(u′

i, ui) expresses the extent to which the value u′
i is much

preferred to the value ui. Each element u of Srelax is associated with a degree
(∈ [0, 1]). The semantics of this relation is represented by the trapezoidal function
(γi1, γi2,∞,∞), and denoted MP

(γi1,γi2)
i , see Fig. 2. Figure 3 shows the relaxed

version, Srelax, of the skyline S of the Example 1.
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Table 1. List of candidates

Code Age man exp tec exp dist wh

M1 32 5 10 35

M2 41 7 5 19

M3 37 5 12 45

M4 36 4 11 39

M5 40 8 10 18

M6 30 4 6 27

M7 31 3 4 56

M8 36 6 13 12

M9 33 6 6 95

M10 40 7 9 20
Fig. 1. Skyline of candidates

3 C2R: An Efficient Approach to Enlarging the Skyline

Let D = (D1, D2, ..., Dd) a d-dimensional space where Di is the domain attribute
of Ai and R(A1, A2, ..., Ad) a relation defined in D. We assume the existence of
a total order relationship on each domain Di. U = (u1, u2, ..., un) is a set of n
tuples belonging to a relation R. Let S be the skyline of U and SFE the relaxed
skyline of U computed by C2R approach.

3.1 Principe of the Approach

Our approach relies on the idea of identifying interesting points that are in the
neighborhood of skyline points and adding them to the skyline S. Let u be a
tuple of U − S, and u′ a tuple of S. Then, u ∈ SFE if u is close to u′. We write:

u ∈ SFE ⇔ ∃u′ ∈ S, such that ∀i ∈ {1, ..., d}, (ui, u
′
i) ∈ Ci (4)

where, Ci is a reflexive, symmetrical approximate indifference (or equality) rela-
tion defined on the domain Di of the attribute Ai and Ci(ui, u

′
i) expresses the

extent to which the value ui is close to the value u′
i. Since Ci is of a gradual

Fig. 2. μMPi function Fig. 3. Srelax
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nature, each element u of SFE is associated with a degree (∈ [0, 1]) expressing
the extent to which u belongs to SFE . In fuzzy set terms, we write:

μSF E
(u) = max

u′∈S
min

i
μCi

(ui, u
′
i) (5)

As for Ci relation on Di, its semantics can be provided by the formulas (6)
(see also Fig. 4). In terms of t.m.f., Ci writes (0, 0, γi1, γi2), and denoted C

(γi1,γi2)
i .

It is easy to check that C
(0,0)
i corresponds to the classical equality “=”.

μ
C

(γi1,γi2)
i

(ui, u
′
i) =

⎧
⎨

⎩

0 if |ui − u′
i| ≥ γi2

1 if |ui − u′
i| ≤ γi1

(γi2−|ui−u′
i|)

γi2−γi1
else

(6)

Fig. 4. The membership function μ
C

(γi1,γi2)
i

Let γ = ((γ11, γ12), · · · , (γd1, γd2)) be a vector of pairs of parameters where
C

(γi1,γi2)
i denotes the Ci relation defined on the attribute Ai and S

(γ)
FE denotes

the extended skyline computed on the basis of the vector γ. One can easily check
that the classical Skyline S is equal to S

(0)
FE , where 0 = ((0, 0), · · · , (0, 0)).

Definition 3. Let γ and γ′ be two vectors of parameters. We say that γ ≥ γ′ if
and only if ∀i ∈ {1, · · · , d}, (γi1, γi2) ≥ (γ′

i1, γ
′
i2) (i.e., γi1 ≥ γ′

i1 ∧ γi2 ≥ γ′
i2).

Proposition 1. Let γ and γ′ be two vectors of parameters. The following prop-
erty holds: γ ≤ γ′ ⇒ S

(γ)
FE ⊆ S

(γ′)
FE .

Proof. Let γ ≤ γ′, one can deduce that ∀i, Cγ
i ⊆ Cγ′

i . Let u ∈ S
(γ)
FE

⇒ ∃u′ ∈ S, ∀i ∈ {1, · · · , d}, (ui, u
′
i) ∈ C

(γi1,γi2)
i

⇒ ∃u′ ∈ S, ∀i ∈ {1, · · · , d}, μ
C

(γi1,γi2)
i

(ui, u
′
i) > 0

⇒ ∃u′ ∈ S, ∀i ∈ {1, · · · , d}, μ
C

(γ′
i1,γ′

i2)
i

(ui, u
′
i) > μ

C
(γi1,γi2)
i

(ui, u
′
i) > 0

⇒ ∃u′ ∈ S, ∀i ∈ {1, · · · , d}, (ui, u
′
i) ∈ C

(γ′
i1,γ′

i2)
i ⇒ u ∈ S

(γ′)
FE

So we have S
(γ)
FE ⊆ S

(γ′)
FE 
�

Lemma 1. Let γ = ((0, γ12), · · · , (0, γd2)) and γ′ = ((γ′
11, γ

′
12), · · · , (γ′

d1, γ
′
d2)),

the following holds: S
(0)
FE ⊆ S

(γ)
FE ⊆ S

(γ′)
FE
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Table 2. Degrees of the elements of SFE

Mat M5 M8 M3 M10 M1 M2 M4 M6 M7 M9

μSF E 1 1 0.66 0.66 0.28 0 0 0 0 0

Fig. 5. Points retrieved by SFE

Example 2. Let us come back to the skyline calculated in Example 1. Assume
that the fuzzy “Closeness” relations corresponding to the skyline attributes
(man exp and tec exp) are respectively given by:

μ
C

(1/2,2)
man exp

(u, u′) =

⎧
⎨

⎩

1 if |u − u′| ≤ 1/2
0 if |u − u′| ≥ 2
(−2|u − u′| + 4)/3 else

(7)

μ
C

(1/2,4)
tec exp

(u, u′) =

⎧
⎨

⎩

1 if |u − u′| ≤ 1/2
0 if |u − u′| ≥ 4
(−2|u − u′| + 8)/7 else

(8)

Now, applying our approach to relax the skyline S = {M5, M8} found in Exam-
ple 1, leads to the following SFE = {(M5, 1), (M8, 1), (M3, 0.66), (M10, 0.66),
(M1, 0.28)}, see Table 2. One can note that some candidates that were not in
S are now elements of SFE (such M3, M10 and M1) see Fig. 5. As can be seen,
SFE is larger than S and SFE ⊆ Srelax. Let us now take a glance at the content
of SFE , one can observe that (i) the skyline elements of S are still elements of
SFE with a degree equal to 1; (ii) Appearance of new elements recovered by
our approach whose degrees are less than 1 (such as M3). Interestingly, the user
can select from SFE : (i) the Top-k elements (k is a user-defined parameter), or
(ii) the subset of elements, denoted (SFE)σ, with a degrees higher than a thresh-
old σ provided by the user. In the context of Example 2, it is easy to check that
Top − 5 = {(M5, 1), (M8, 1), (M3, 0.66), (M10, 0.66), (M1, 0.28)} and (SFE)0.66

= {(M5, 1), (M8, 1), (M3, 0.66), (M10, 0.66)}.

3.2 SFE Computation

To compute SFE , we proceed in two steps (see Fig. 6). Firstly we compute the
skyline S using a slightly modified version of BNL algorithm [14], then we
execute our FES algorithm to relax the skyline S (see Algorithm 1).
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Fig. 6. Enlarging skyline process

Algorithm 1: FES
Input: Set of n tuples U − S; a Skyline of m tuples S; γ a vector of parameters;
Output: The relaxed skyline SFE ;

1 begin
2 SFE = S;
3 for i = 1 to n do
4 Vmax = 0;
5 for j = 1 to m do
6 Vmin = 1;
7 for k = 1 to d do
8 Vmin = MIN(Vmin, μCk(ui, uj));
9 if Vmin = 0 then

10 break;

11 Vmax = MAX(Vmax, Vmin);
12 μSF E (ui) = Vmax;
13 if Vmax = 1 then
14 break;

15 if μSF E (ui) > 0 then
16 SFE = SFE ∪ {ui};

17 rank SFE in decreasing order w.r.t. μSF E (ui);
18 - to return top-K;
19 - or to return ui satisfying μSF E (ui) ≥ σ, (σ is a user-defined threshold).

4 Experimental Study

The goal of this study is to demonstrate the effectiveness of the approach pro-
posed and its ability to relax small skylines with the most interesting tuples. We
also compare the results obtained with those computed by the MP2R approach.
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4.1 Experimental Environment

We use a Linux OS, on a machine with an i7 processor, a RAM of 8 GB and
a 250 GB of disk. Algorithms were implemented with Java. Dataset benchmark
is generated using method described in [1] following three distribution schema
(correlated, anti-correlated and independent). For each dataset, we consider dif-
ferent sizes (5 K to 750 K). Each tuple contains an integer identifier (4 bytes), 12
decimal fields (96 bytes) with values belonging to the interval [0,1], and a string
field with length of 10 characters. Therefore, the size of one tuple is 110 bytes.

4.2 Experimental Results

We vary a collection of parameters that could impact the results. This collec-
tion includes the dataset size [D] (5 K, 10 K, 50 K, 100 K, 250 K, 500 K, 750 K),
dataset distribution schema [DIS] (independent, correlated, anti-correlated),
the number of skyline dimensions [d] (2, 4, 6, 8, 10, 12) and the relaxation
thresholds [γ = (γi1, γi2), i∈ {1, . . . , d}] where (γi1, γi2 ∈[0,1] and γi1 ≤ γi2).
The default values of these parameters are D = 5 K; DIS= “Correlated”; d = 2;
γ=((0,0.25),(0,0.25)). In our experiment, we consider that the less the value,
the better. Also, we address the issue of comparison between SFE and Srelax in
terms of Data distribution scheme [DIS], Number of skyline dimension [d], Data
size [D] and Variation of the values of (γi1, γi2).

–SFE vs Srelax w.r.t [DIS]. Figure 7 shows that the particularity of cor-
related data minimize the seize of SFE and Srelax. We observe also that C2R
approach retrieves fewer tuples than MP2R because it is more demanding when
relaxation processes. We note that the execution time of C2R, for the three dis-
tributions, is largely low compared with the time of MP2R approach.

Fig. 7. SFE vs Srelax w.r.t [DIS]. (Color figure online)

–SFE vs Srelax w.r.t [d]. When dimensionality increases (from 2 to 12) the
size of SFE and Srelax increases proportionally (see Fig. 8). We also note that
SFE outperforms Srelax in terms on computing time.

–SFE vs Srelax w.r.t [D]. The analysis of Fig. 9 shows that the size of SFE

and Srelax are proportional to the size of the dataset. While in terms of execu-
tion time, the computation of SFE is extremely faster.



Making the Skyline Larger 349

Fig. 8. SFE vs Srelax w.r.t [d] (Color figure online)

Fig. 9. SFE vs Srelax w.r.t [D] (Color figure online)

As can be seen, this first part of the experimental study shows that C2R
approach is better and more optimal than MP2R approach.

Variation of (γi1 , γi2) values. Now, we show the influence of the variation of
(γi1 , γi2) values on the size and the computation time of SFE and Srelax.The
idea is to vary both thresholds. For the sake of simplicity, and since the data are
normalized, we will apply the same values of (γ1, γ2) for all skyline dimensions.
Note that the size of the skyline is equal to 1 and we will analyze the variation
of the number of tuples whose degree μSF E

(u) > 0. The following scenarios are
worth to be discussed:

Scenario 1: In this scenario, we fix γi1 and vary γi2 to increase the relaxation
zone. We observe the following cases:

– γi1 = 0 and γi2 ∈ {0; 0.25; 0.5; 0.75; 1} (see Fig. 10)

– γi1 = 0.25 and γi2 ∈ {0.25; 0.5; 0.75; 1} (see Fig. 11)

– γi1 = 0.5 and γi2 ∈ {0.5; 0.75; 1} (see Fig. 12)

– γi1 = 0.75 and γi2 ∈ {0.75; 1} (see Fig. 13)

The analysis of Fig. 10 shows that the size of SFE and Srelax increases when
the value of γi2 increases. We also note that there are no tuples whose degrees of
relaxation is equal to 1 (this is due to the value of γi1 = 0). In Figs. 11, 12 and 13
we note that the value of γi2 controls the size of relaxation (by SFE or Srelax).
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Fig. 10. Scenario 1: Fix γi1 and vary γi2 (case1) (Color figure online)

Fig. 11. Scenario 1: Fix γi1 and vary γi2 (case2) (Color figure online)

Fig. 12. Scenario 1: Fix γi1 and vary γi2 (case3) (Color figure online)

Fig. 13. Scenario 1: Fix γi1 and vary γi2 (case4) (Color figure online)
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Fig. 14. Varying γi1 and γi2 (Color figure online)

However, we observe the appearance of retrieved tuples with degrees equal 1.
It noted that, whatever the value of γi1 and γi2, the C2R is more efficient than
MP2R in terms of computation time.

Scenario 2: In this scenario, we vary both thresholds. The obtained results are
shown in Fig. 14. The analysis of these curves shows that the relaxation process
becomes more permissive when thresholds move away from the origin. Neverthe-
less, SFE is always more selective than Srelax on the number of tuples retrieved
(i.e., |SFE | < |Srelax|)1 and more efficient in terms of computation time. The
Fig. 15 illustrates the distribution of tuples recovered by SFE according to their
degrees of relaxation.

Scenario 3: In the previous scenarios, the vector γ = (γi1 , γi2) is similar when
computing Srelax and SFE . Here we will show the impact of using different
vectors γ and γ′ respectively for SFE and Srelax. Table 3 summarizes the results
obtained. One can observe that |SFE | < |Srelax| if γ � γ′, |SFE | > |Srelax|
otherwise (Fig. 16).

Table 3. Impact of the vector γ and γ′.

#Tuples

SFE Srelax Conclusion

Cas1: γ < γ′ 2043 4998 |SFE | < |Srelax|
Cas2: γ > γ′ 4985 4403 |SFE | > |Srelax|
Cas3: γ = γ′ 2042 2808 |SFE | < |Srelax|

1 Even the relation SFE ⊆ Srelax holds in this context.



352 D. Belkasmi et al.

Fig. 15. Distribution of tuples recovered by SFE (Color figure online)

Fig. 16. Distribution of tuples recovered by SFE and Srelax (Color figure online)
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5 Conclusion

In this paper, we addressed the problem of skyline relaxation, especially less
skylines. We propose a new approach for relaxing the skyline, called C2R. This
approach is based on a particular fuzzy Closeness relation whose semantics is a
user-defined. In addition, a new algorithm called FES to compute the relaxed
skyline is proposed. The experimental study we done has shown that, on the one
hand, and in some cases, the C2R approach is more restrictive than MP2R
approach when relaxing classic skyline and, on the other hand, the computation
cost of C2R is more acceptable. Furthermore, C2R like MP2R involves various
parameters, which can be used to control the size and the quality of the relaxed
skyline. As for future work, we will consider the C2R approach using a relative
fuzzy closeness relation. Then, we will investigate the issue of skyline relaxation
in the categorical attributes context.
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