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Abstract. This paper provides a natural interpretation of the EM algo-
rithm as a succession of revision steps that try to find a probability dis-
tribution in a parametric family of models in agreement with frequentist
observations over a partition of a domain. Each step of the algorithm cor-
responds to a revision operation that respects a form of minimal change.
In particular, the so-called expectation step actually applies Jeffrey’s
revision rule to the current best parametric model so as to respect the
frequencies in the available data. We also indicate that in the presence
of incomplete data, one must be careful in the definition of the likeli-
hood function in the maximization step, which may differ according to
whether one is interested by the precise modeling of the underlying ran-
dom phenomenon together with the imperfect observation process, or
by the modeling of the underlying random phenomenon alone, despite
imprecision.
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1 Introduction

The EM (Expectation-Maximization) algorithm is an iterative technique aim-
ing to find a parameterized model achieving a local maximum of the likelihood
function when there is no closed-form solution for the maximum likelihood esti-
mator. Another case where EM is repeatedly used is when there are missing data
(unsupervised or semi-supervised learning). In order to do so, a latent (unob-
served) variable (artificial, in the first case, meaningful in the second case) is
used, whose distribution depends on the same parameter as the observed one.
The procedure starts with the assessment of an initial value (or vector of val-
ues) for the parameter. Each iteration alternates two steps, the “expectation”
(E) step and the “maximization” (M) step. The expectation step postulates an
empirical distribution for the unobserved variable that agrees with the observed
data. During the maximization step, the maximum likelihood estimator based
on the joint empirical distribution of both the latent and the observed variable is
determined. The process iterates until some stability is reached. The procedure is
known to provide an increasing sequence of values for the likelihood function. It
converges to a local maximum when some additional conditions are satisfied [12].
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In the following we study the EM algorithm for likelihood-based estimation,
where an observed random variable Y goes along with a latent variable X with
range X , and where, based on a sequence of precise observations y1, . . . , yN , a
likelihood function of the form

∏N
i=1 PY (yi; θ), understood as a likelihood func-

tion on the joint space
∏N

i=1 P(X,Y )(X×{yi}; θ), is maximized. The EM algorithm
proceeds based on an alternating optimisation scheme, where at each step, a ficti-
tious precise data set pertaining to (X,Y ) and agreeing with the observed result
on Y is generated in agreement with the optimal probabilistic model obtained
at the previous step from the previous fictitious data set pertaining to (X,Y )
and agreeing with the observed result on Y .

The aim of the paper is to better understand the nature of the solution
provided by the EM algorithm on the range of (X,Y ). We provide an inter-
pretation of the EM algorithm in terms of a sequence of revision steps. More
specifically, the E step consists in determining the sample that minimises Kull-
back divergence with respect to the parametrical distribution postulated during
the M step of the last iteration, while respecting the constraints imposed by the
data. We show that it corresponds to a natural use of Jeffrey’s rule of revision,
that comes down to an imputation of sample values for the latent variable. This
result enables a better understanding of what the EM algorithm actually aims
to. To the best of our knowledge the relationship between the EM algorithm and
Jeffrey’s rule has not been previously pointed out.

Moreover, we provide an example-based preliminary discussion on cases of
incompletely informed data where the EM algorithm should not be used without
caution, either because the collection of postulated parametrized distributions
is large enough in order to contain all the joint distributions in agreement with
the empirical one, or because, in case of overlapping incomplete observations,
the definition of the proper likelihood function is a delicate issue.

The paper is organized as follows: Sect. 2 proposes an original introduction
to the EM algorithm where the basic steps are formally justified. In Sect. 3,
we recall Jeffrey’s rule of revision, the properties it satisfies and its connection
with the minimization of divergence. We then reinterpret the EM algorithm
as a succession of revision steps. Finally, in Sect. 4, we give some examples of
anomalies due to an inefficient or incautious usage of the EM algorithm.

2 Introduction to the EM Algorithm

Let X be a random variable, namely a mapping from a sample space (Ω,A, P ) to
the range of X. For simplicity, we assume that X is finite, and PX , the probability
function attached to X depends on a parameter θ, i.e. PX(·; θ) is a model of the
random process driving X. We suppose that instead of observing X, another
random quantity Y is observed, also driven by parameter θ. Y incompletely
informs about the realization of X, in the sense that if Y = b ∈ Y = {b1, . . . , bn},
we only know that X ∈ Γ (b) ⊆ X , for some multimapping Γ [3]. Dempster et al.
[4] give a version of the EM algorithm when the observations yi are viewed as
incomplete perceptions of a latent variable X, assuming that the observations
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bear on a partition of the whole state space. So, the range of Y is of the form
{{A1}, . . . , {Ar}}, where the Ai’s form a partition of X .

Let us consider a sequence of N iid copies of Z = (X,Y ). We will use the
nomenclature z = ((x1, y1), . . . , (xN , yN )) ∈ (X × Y)N to represent a specific
sample of the vector (X,Y ). Thus, y = (y1, . . . , yN ) will denote the observed
sample (an observation of the vector Y = (Y1, . . . , Yn)), and x = (x1, . . . , xN )
will denote an arbitrary artificial sample from X for the latent variable X, that
we shall vary in X N . Let us also use the nomenclature Ly(θ) = log p(y; θ) for the
log-likelihood function, where p(y; θ) =

∏N
i=1 p(yi; θ) denotes the probability of

observing y ∈ YN , assuming that the value of the parameter is θ. The final goal
of EM is to find a value of the parameter θ that is a (maybe local) maximum of
Ly(θ).

We are interested in modelling the likelihood function associated to the
result of the random process driving the random variable X despite imprecision.
Namely, behind the measurement report (y1, . . . , yN ) there exists a sequence of
precise outcomes for X, (x∗

1, . . . , x
∗
N ) that would have been observed, had the

measurement device been accurate (had Γ been a one-to-one function).

2.1 From the Likelihood Function to the EM Criterion

Let PX N

be the set of all probability measures P we can define on the measur-
able space (X N , ℘(X N )).When the optimisation of the log-likelihood Ly(θ) =
log

∑
x∈X N p(x,y; θ) is too difficult, a trick is to optimize a lower bound F (P, θ)

of it that is simpler to optimize. This is allowed by the introduction of arbitrary
latent or fake variables1 and the use of Jensen inequality. Haas [8] proposes the
simple following derivation of the functional F :

Ly(θ) = log
∑

x∈X N

p(x,y; θ) = log
∑

x∈X N

p(x)p(x,y; θ)
p(x)

≥
∑

x∈X N

p(x) log
[
p(x,y; θ)

p(x)

]

(Jensen’s inequality)

=
∑

x∈X N

p(x) log
[
p(x|y; θ)p(y; θ)

p(x)

]

=
∑

x∈X N

p(x) log p(y; θ) +
∑

x∈X N

p(x) log
[
p(x|y; θ)

p(x)

]

= Ly(θ) − D(P,P(·|y; θ)) = F (P, θ).

where D(P,P′) =
∑

x∈XN p(x) log[ p(x)
p′(x) ] is the Kullback-Leibler divergence of

P′ from P, and p is the mass function associated to P.2

1 In some cases, they are not artificial, and are naturally present in the problem.
2 In the expression in line 2 of the above derivation, F (P, θ) could be, with some abuse

of notation, written −D(P,P(·,y; θ)) as it is a kind of divergence from P(·,y; θ)).
However the sum on XN of the latter quantities is not 1 (it is p(y; θ)) and this
pseudo-divergence can be negative.
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Some authors use the nomenclature �(θ|θ(n−1)) = F (P(·|y; θ(n−1)); θ).
According to the definition of F , the properties of logarithms, we can alter-
natively express �(θ|θ(n−1)) as follows:

�(θ|θ(n−1)) = log(p(y; θ)) +
∑

x∈X N

p(x|y; θ(n−1)) log
p(x|y; θ)

p(x|y; θ(n−1))
.

Moreover, taking into account the fact that p(·|y; θ(n−1)) : X N → [0, 1] is a mass
function (the sum of the masses is equal to 1), �(θ|θ(n−1)) also reads

∑

x∈XN

p(x|y; θ(n−1)) log
p(x|y; θ)p(y; θ)
p(x|y; θ(n−1))

=
∑

x∈XN

p(x|y; θ(n−1)) log
p(x,y; θ)

p(x|y; θ(n−1))
. (1)

since p(x,y; θ) = p(x|y; θ)p(y; θ). We can therefore express �(θ; θ(n−1)) as the
sum of an entropy and a term that takes the form of an expectation:

�(θ|θ(n−1)) = H(P(·|y; θ(n−1)) + E·|y;θ(n−1) [log p(X,y; θ)]. (2)

The last term represents indeed the expectation of a function of the random
variable X taking the value log p(x,y; θ) with probability p(x|y; θ(n−1)) for every
x ∈ X N .

The main structure of the EM algorithm is then as follows. We first provide an
initial value for the parameter, θ(0) ∈ Θ. Each iteration of the algorithm, n ≥ 1
consists of two steps, respectively called “expectation” (E) and “maximization”
(M). According to [13], they can be described as follows:

– Expectation step: We compute the expectation E·|y;θ(n−1) [log p(X,y; θ)].
– Maximization step: We maximize �(θ|θ(n−1)) wrt θ. According to Eq. (1), this

is equivalent to minimizing the divergence D(P(·|y; θ(n−1));P(·|y; θ)).

2.2 The EM Algorithm as a Succession of Revision Steps

Computing E·|y;θ(n−1) [log p(X,y; θ)] requires the determination of the con-
ditional distribution P(·|y; θ(n−1)). The algorithm can then be alternatively
described as follows:

– “Expectation” step: We compute the first argument of F as the probability
measure determined by the mass function p(·|y; θ(n−1)) : X N → [0, 1]. In
other words, we find the value of the first argument of the function F in order
to fulfill the equality F (P, θ(n−1)) = Ly(θ(n−1)).

– Maximization step: We determine θ(n) = arg maxθ∈Θ F (P(·|y; θ(n−1)), θ).

Note that in this presentation, the E-step is no longer, strictly speaking, comput-
ing an expectation, as it yields a mass function on X N . In this case, the computa-
tion of the expectation proper takes place when determining F (P(·|y; θ(n−1)), θ).

With these two steps, it is easy to guarantee that the sequence
(Ly(θ(n)))n∈N is increasing. Namely as noticed above, we have that
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F (P(·|y; θ(n−1)), θ(n−1)) = Ly(θ(n−1)), for an arbitrary n. Now, since
θ(n) = arg maxθ∈Θ F (P(·|y; θ(n−1)), θ), we have that F (P(·|y; θ(n−1)), θ(n)) ≥
F (P(·|y; θ(n−1)), θ(n−1)) = Ly(θ(n−1)). Taking into account the non-negativity
of Kullback-Leibler’s divergence (due to Jensen’s inequality), we can deduce that
Ly(θ(n)) ≥ F (P(·|y; θ(n−1)), θ(n)), and therefore that Ly(θ(n)) ≥ Ly(θ(n−1)).

Some authors also describe the EM algorithm as a maximization-
maximization procedure, since both steps refer to the maximization of the func-
tion F :

– Expectation step: We maximize F (P, θ(n−1)) with respect to P; we get P =
P(·|y; θ(n−1)).

– Maximization step: maximize F (P(·|y; θ(n−1)), θ) with respect to θ; we get
θ = θ(n).

3 The EM Algorithm from a Belief Revision Perspective

In this section, we shall prove that the E-step is an example of application of
Jeffrey’s revision rule governed by the minimal change principle. As the M-
step also implements a form of minimal change, we thus show that the EM
algorithm tries to iteratively find a statistical model that is as close as possible to
a distribution of latent variables that is compatible with the observed incomplete
data, oscillating from one distribution to the other.

3.1 Jeffrey’s Revision Rule

In probability theory, there is a natural method for revising a prior probability P
on a set S of mutually exclusive alternatives, in the presence of new probabilistic
information I: a distribution ρ1, . . . , ρr on elements of a partition {A1, . . . , Ar} of
S. The coefficients ρi sum to 1 and act as constraints on the posterior probability
of elements Ai of the partition. Such an updating rule is proposed by Jeffrey [11].
Jeffrey’s rule provides an effective means to revise a prior probability distribution
P to a posterior P ′, given input I. Some axioms guide the revision process:

P ′(Ai) = ρi. (3)

This axiom clearly expresses that P ′ should respect the input information which
is of the same nature as the prior probability, with priority given to the input.

Jeffrey’s method also relies on the assumption that, while the probability
on a prescribed subalgebra of events is enforced by the input information, the
probability of any event B ⊆ S conditional to any uncertain event Ai in this
subalgebra is the same in the original and the revised distributions. Namely,

∀Ai,∀B,P (B|Ai) = P ′(B|Ai). (4)
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The underlying interpretation of minimal change implied by the constraint of
Eq. (4) is that the revised probability measure P ′ must preserve the conditional
probability degree of any event B knowing event Ai has occurred. Jeffrey’s rule
of conditioning yields the unique distribution that satisfies (3) and (4) and takes
the following form:

P ′(B) =
r∑

i=1

ρi · P (B ∩ Ai)
P (Ai)

. (5)

Jeffrey’s rule respects the probability kinematics principle, whose objec-
tive is to minimize change, usually in the sense of an informational distance
between probability distributions [1]: The posterior probability P ′ minimizes
the Kullback-Leibler divergence D(P, P ′) =

∑
s∈S p′(s) log[p′(s)

p(s) ] with respect to
the original distribution under the probabilistic constraints (3) defined by the
input I (as explained in [16]).

3.2 The EM Algorithm from the Standpoint of Joint Distributions:
E-step

Since we have assumed that z represents a sequence of N i.i.d. copies of (X,Y ),
we can decompose the probability mass p(·|y; θ) : X N → [0, 1] into a product of
N mass functions, each one determining a distribution on X . Let us now denote
by nkj the number of times that the pair (ak, bj) appears in the sample z. Now,
in order to denote the product mass function, we will use the nomenclature

p(x|y; θ) =
N∏

i=1

p(xi|yi; θ) =
m∏

k=1

r∏

j=1

p(ak|bj ; θ)nkj , (6)

where p(·|bj ; θ) denotes the mass function associated to the j-th marginal distri-
bution:

p(ak|bj ; θ) =
pθ

kj

pθ
.j

, ∀ j = 1, . . . , r.

At the expectation step of the nth iteration of the EM algorithm, we com-
pute the conditional probabilities p(·|bj ; θ(n−1)),∀ j = 1, . . . , r. If we consider the
joint probability that results from combining those conditional probabilities with
the marginal distribution on (Y, ℘(Y)) determined by the empirical distribution
associated to the observed sample y, (n.1

N , . . . , n.r

N ), where n.j =
∑m

k=1 nkj is the
number of times bj appears in the observed sample, we will get the following
joint mass distribution on (X × Y, ℘(X ) × ℘(Y)) :

p̂(n−1)(ak, bj) :=
n.j

N
· p(ak|bj ; θ(n−1)) =

n.j

N
· pθ(n−1)

kj

pθ(n−1)

.j

(7)

The E-step thus leads to a joint probability measure P̂ (n−1), on X × Y that,

if the terms n.j · pθ(n−1)
kj

pθ(n−1)
.j

are integers, corresponds to an artificial sample z(n−1) ∈
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(X ×Y)N involving the latent variable X, that is in agreement with the observed
sample y. Let us denote by Py, the set of such joint probability measures on
(X × Y, ℘(X ) × ℘(Y)) whose marginal distribution on Y coincides with the
empirical distribution (p.1, . . . , p.r) = (n.1

N , . . . , n.r

N ), associated to the sample y.

Proposition 1. The result p̂(n−1) of the E-step is the posterior probability dis-
tribution generated by Jeffrey’s rule of conditioning where the input information
is given by the observed sample probabilities.

Proof: Compare Eqs. (5) and (7). In the above Eq. (7), let S = X × Y, the
prior probability P is the parametric one with mass function p(ak, bj ; θ(n−1)),
the input comes from the observable sample y, in the sense that Aj = X ×{bj},
with probabilities ρj = n.j

N .
According to the result provided in [16] by P.M. Williams, if we consider

the collection, Py, of joint probability measures on (X ×Y, ℘(X )×℘(Y)) whose
marginal distribution on Y coincides with the empirical distribution associated to
the sample y, (p.1, . . . , p.r) = (n.1

N , . . . , n.r

N ), the above joint probability measure,
P̂ (n), is, among all of them, the one that minimizes Kullback-Leibler’s divergence
with respect to the joint distribution p(·, ·; θ(n−1)) : X × Y → R obtained in the
maximization step of the previous iteration.

3.3 The EM Algorithm from the Standpoint of Joint Distributions:
M-step

Next we will check that the M step aims at looking for the Maximum Likelihood
Estimate (MLE) of θ, given the joint empirical distribution proposed in Eq. (7).
The criterion to be optimised at the nth M- step is

F (P(·|y; θ(n−1)), θ) = Ly(θ) − D
(
P(·|y; θ(n−1)),P(·|y; θ)

)
.

Let us also notice that:

D(P(·|y; θ(n−1)),P(·|y; θ)) =
N∑

i=1

D
(
P (·|yi; θ(n−1)), P (·|yi; θ)

)

=
N∑

i=1

m∑

k=1

p(ak|yi; θ(n−1)) · log
p(ak|yi; θ(n−1))

p(ak|yi; θ)
.

On the other hand, due to the properties of the logarithmic function, we can
write Ly(θ) =

∑N
i=1 log p(yi; θ). Moreover, taking into account the fact that

p(·|yi; θ(n−1)) : X → [0, 1] is a mass function (
∑m

k=1 p(ak|yi; θ(n−1)) = 1), we can
equivalently write:

Ly(θ) =
N∑

i=1

log p(yi; θ) =
N∑

i=1

m∑

k=1

p(ak|yi; θ(n−1)) log p(yi; θ).
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Again, taking into account the properties of logarithm and also the commuta-
tivity of the sum, we can write:

F (P(·|y; θ(n−1)), θ) = −
N∑

i=1

m∑

k=1

p(ak|yi; θ(n−1)) · log
p(ak|yi; θ(n−1))

(p(ak|yi; θ) · p(yi; θ))

= −
N∑

i=1

m∑

k=1

p(ak|yi; θ(n−1)) · log
p(ak|yi; θ(n−1))

p(ak, yi; θ)

=
N∑

i=1

H(P (·|yi; θ(n−1))) +
N∑

i=1

m∑

k=1

p(ak|yi; θ(n−1)) · log p(ak, yi; θ),

where H stands for Shannon entropy. For each j = 1, . . . , r, recall that n.j is the
number of occurrences of bj ∈ Y in the observed sample y = (y1, . . . , yN ). Then
we can rewrite the above expression of F (P(·|y; θ(n−1)), θ) as follows:

−
r∑

j=1

n.jH(P (·|bj ; θ(n−1))) +
r∑

j=1

m∑

k=1

n.j · p(ak|bj ; θ(n−1)) · log p(ak, bj ; θ).

And due to the properties of logarithm, we can rewrite F (P(·|y; θ(n−1)), θ) as:

−
r∑

j=1

n.jH(P (·|bj ; θ(n−1))) + log

⎛

⎝
r∏

j=1

m∏

k=1

p(ak, bj ; θ)n.jp(ak|bj ;θ
(n−1))

⎞

⎠ . (8)

According to the nomenclature established in (Eq. (7)), the above exponent
n.jp(ak|bj ; θ(n−1)) coincides with N ·p̂(n)(ak, bj). Such an exponent can be seen as
the number of occurrences of (ak, bj) in an artificial sample inducing the empir-
ical distribution determined by p̂(n) (the joint distribution characterised by the
mass function displayed in Eq. (7)). Moreover the entropy term in (8) does not
depend on θ. Therefore, maximizing the above expression with respect to θ is
equivalent to finding the maximum likelihood estimator associated to such an
artificial sample on X × Y.

In a nutshell, the M step at iteration n actually finds the MLE associ-
ated to the fake sample (the joint distribution) determined by Eq. (7). If the
algorithm stops at iteration n∗, we have determined the collection of max-
imum likelihood estimators associated to all the joint artificial samples on
X × Y constructed for the first n∗ iterations (the n∗ samples inducing the
empirical distributions determined by the collection of joint mass functions
{p̂(n) : n = 1, . . . , n∗}). Let the reader notice that, for a specific iteration n,
the exponent n.j · p(ak|bj ; θ(n−1)) = N · p̂(n)(ak, bj) may not be an integer neces-
sarily, and therefore such an empirical joint distribution is not necessarily in total
correspondence with some feasible joint sample. In some papers, the fake sample
is interpreted as a probability distribution over possible imputations (see e.g.,
the short paper by Do and Batzoglou [5]), over which the expectation is then
taken. This makes the fact that the fake sample could be unobservable much less
problematic from an interpretation standpoint.
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4 Some Difficulties with the EM Algorithm for Handling
Incomplete Information

In this section we show that when the set Pθ of parameterized joint distributions
includes the set Py of joint distributions whose marginals on Y agree with the
empirical distribution induced by y, the EM algorithm cannot be properly used.
Moreover in the case of overlapping pieces of incomplete data, a non-careful
definition of the likelihood function leads to anomalous results.

Case of Imprecise Data Forming a Partition. As above, we consider the
situation where each observation y = bi on Y is interpreted as a report providing
an element Ai of a partition of X . The maximum likelihood estimator of θ based
on the observed sample y will be the value of the argument for which the likeli-
hood of y is maximal among all the maximum likelihood estimators associated
to all the joint empirical distributions compatible with y. If the probabilities of
elements of X and Y are not related to each other via enough constraints, there
will generally be several MLE distributions on X in agreement with the observed
sample on Y. Moreover, the collection of n∗ joint distributions determined by
the n∗ E-steps of the algorithm are, in general, just a fraction of this collection
of compatible joint distributions.

Example 1. Consider the random experiment that consists of rolling a dice. We
do not know whether the dice is fair or not. Suppose we only get reports on
whether the outcomes are even or odd. Let X be the random variable denoting
the actual outcome of the dice roll (from a1 = 1 to a6 = 6) and let Y be a
binary variable taking the values b1 (odd) and b2 (even). Let the 6-dimensional
vector θ = (p1, . . . , p6) represent the actual (unknown) probability distribution
of Z, with p6 = 1 − ∑5

i=1 pi. Let π = p2 + p4 + p6 and 1 − π = p1 + p3 + p5
respectively denote the probabilities of getting an even or an odd number. Based
on a sample of n.1 occurrences of b1 and n.2 occurrences of b2 in a sample of
N = n.1 + n.2 trials, the maximum likelihood estimator of π would be π̂ = n.2

N .
Also, we can easily check that any vector (p̂1, . . . , p̂6) satisfying the constraints
p̂2 + p̂4 + p̂6 = n.2

N is a maximum likelihood estimator of θ given the observed
sample. Now, let us suppose that we use the EM algorithm in order to find
such an MLE. We first initialize the vector θ, by means of selecting some θ(0) =
(p(0)1 , . . . , p

(0)
6 ). Then, we have to apply the E-step, that is, Jeffrey’s rule with

ρ1 = n.1
N , A1 = {1, 3, 5}, ρ2 = n.2

N , A2 = {2, 4, 6}. We get (p(1)1 , . . . , p
(1)
6 ), where:

p
(1)
i =

n.1

N

p
(0)
i

p
(0)
1 + p

(0)
3 + p

(0)
5

, i = 1, 3, 5; p
(1)
i =

n.2

N

p
(0)
i

p
(0)
4 + p

(0)
6 + p

(0)
6

, i = 2, 4, 6.

For instance, if we take the starting point
(
p
(0)
1 , . . . , p

(0)
6

)
= (16 , . . . , 1

6 ) then,

we will get p
(1)
i = n.1

3N , i = 1, 3, 5 and p
(1)
i = n.2

3N , i = 2, 4, 6. Such a vector is
also the maximum likelihood estimator of θ based on a fake sample with equal
numbers of 1, 3, 5’s and equal numbers of 2, 4, 6’s. This vector is thus the
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optimum of the first M step based on this fake sample. A different postulated
initial vector would be identified with a different imputation

(
p
(1)
1 , . . . , p

(1)
6

)
.

The previous example illustrates a case where the MLE based on the observed
sample y is not unique, and an MLE is reached after the first iteration of the
EM algorithm. Whatever the starting point θ(0), the estimate based on the
subsequent iteration of the algorithm, θ(1) is an MLE of θ based on y, which
completely depends on θ(0). Using EM in this situation sounds questionable.
In cases where the probabilities on X are tightly constrained, the MLE for y
can be unique and is asymptotically reached after several iterations of the EM
algorithm, independently of the initial choice of the parameter (see the first
example in the paper by Dempster et al. [4]).

Anomalies when Imprecise Observations Overlap. When the elements of
the range of the observed variable Y correspond to elements of a partition of X ,
the likelihood function of Y takes the form

∏r
j=1 P (X ∈ Aj)n.j , with

∑r
j=1 n.j =

N . Suppose now that the images {A1, . . . , Ar} of Γ do not form a partition of
X . In other words, if x ∈ X there may be several A′

is enclosing outcome xj .
Maximizing the product

∏r
j=1 P (X ∈ Aj)n.j instead of Ly(θ) =

∏r
j=1 P (Y =

{Aj})n.j leads to counter-intuitive results, as we show in the following example.

Example 2. Suppose that a dice is tossed, as in the previous example. Suppose
we are told either that the result has been less than or equal to 3 or that it has
been greater than or equal to 3. Then A1 = {1, 2, 3} and A2 = {3, 4, 5, 6}. Let
us denote both responses by y1 and y2, respectively. After each toss, when the
actual result (X) is 3, the reporter says y1 or y2 but we do not know how it is
chosen. Let us take a sample of N tosses of the dice and let us assume that we
have been told us n1 times “less than or equal to 3” and n2 = N − n1 times
“greater than or equal to 3”. Suppose we take as a likelihood function

h(θ) = P (Z ∈ A1)n1 · P (Z ∈ A2)n2 = (p1 + p2 + p3)n1 · (p3 + p4 + p5 + p6)n2 ,

where θ = (p1, . . . , p6) ∈ [0, 1]6 such that
∑6

i=1 pi = 1. We can easily observe
that it reaches its maximum (h(θ) = 1) for any vector θ satisfying the constraint
p3 = 1. But such a prediction of θ would not be a reasonable estimate for θ.
Worse, the EM algorithm applied to this case would also stop after the first
iteration and fail to reach this maximum, for the same reason as in the previous
example.

The difficulty comes from the fact that, with overlapping pieces of data, the
function h(θ) is arguably not a likelihood function. Edwards ([6], p. 9) defines a
likelihood function as follows:

Let P (R|θ) be the probability of obtaining results R given the hypothesis
θ, according to the probability model . . . The likelihood of the hypothesis θ
given data R, and a specific model, is proportional to P (R|θ), the constant
of proportionality being arbitrary.
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Edwards mentions that “this probability is defined for any member of the
set of possible results given any one hypothesis . . . As such its mathematical
properties are well-known. A fundamental axiom is that if R1 and R2 are two
of the possible results, mutually exclusive, then P (R1 or R2|θ) = P (R1|θ) +
P (R2|θ)”.

The key point in our problem with overlapping imprecise observations is what
we understand by “a result”. Actually, an imprecise result taking the form of
a subset Ai of X should be modelled by a singleton Ri = {Ai} of the power
set of X in order to satisfy the requirements of Edwards. In other words, if
the possible observable results are {{A1}, . . . , {Ar}} then

∑r
i=1 P ({Ai}|θ) =

1. In our case, a result is not an event Ai, it is an elementary event {Ai} (a
report carrying imprecise information about X). Only elementary events can
be observed. For instance, when tossing a die, you cannot observe the event
“odd”. What you see is 1, 3 or 5. But some source may report “{odd}”. So, a
likelihood function is proportional to P ({Ai}|θ) where R is an elementary event.
For instance, P (X|θ) = 1 cannot be viewed as the likelihood of θ given the sure
event.

In order to properly apply the EM algorithm to find the distribution of X,
in the case of overlapping observations Ai, we have to introduce a parametric
model describing which Ai is chosen by the reporter when the outcome of X is
xj , say a conditional probability Pθ({Ai} | xj) and let the likelihood function
Ly(θ) account for it, e.g. P ({Ai}|θ) =

∑
i=1,m Pθ({Ai} | xj)P (xj | θ). Generally,

Pθ({Ai} | xj) > 0 only if xj ∈ Ai. For instance, the superset assumption [10]
considers Pθ({Ai} | xj) to be constant over all supersets of xj .

In the above example, suppose we model the measurement device by assum-
ing P (Γ = {1, 2, 3}|Z = 3) = α. If m denotes the mass function associ-
ated to the imprecise observations, we have that m(A1) = P (Y = y1) =
p1 + p2 + α p3, m(A2) = (1 − α)p3 + p4 + p5 + p6.

Notice that in this case P (X ∈ A) does not coincide with m(A) = P (Y =
{A}). It would, only under the special situations where α = 1 or p3 = 0. More-
over, the difficulty due to the inclusion Pθ ⊇ Py, making the EM algorithm
inefficient, remains.

5 Conclusion

What our results show is that the EM algorithm oscillates between the set Pθ

of parameterized joint distributions and the set Py of joint distributions whose
marginals on Y agree with the empirical distribution induced by y: In the ini-
tial step a probability measure in Pθ is chosen, and then it is updated in the
E-step into a probability measure P̂ (0) in Py using Jeffrey’s rule of revision,
thus producing an artificial sample on X × Y; on this basis, an MLE estimate
θ(1), hence a probability measure P (·; θ(1)) ∈ Pθ is computed in the M-step,
based on the artificial sample underlying P̂ (0), and so on, until convergence of
the θ(n) sequence. At each stage n, the log-likelihood function Ly(θ) increases.
However, we have shown cases of incomplete information management where
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this method does not seem to work properly. In future works we shall propose a
more systematic analysis of situations when the EM algorithm stops at the first
iteration under the partition assumption, and explore alternative ways of posing
the problem of maximum likelihood estimation under incomplete overlapping
data [2,7,9,10]. Another issue is to investigate the cogency of the fake sample
found by the EM algorithm viewed as an imputation method [14,15].
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