
Static VS Dynamic Reversibility in CCS

Doriana Medić and Claudio Antares Mezzina(B)

IMT School for Advanced Studies Lucca, Lucca, Italy
{doriana.medic,claudio.mezzina}@imtlucca.it

Abstract. The notion of reversible computing is attracting interest
because of its applications in diverse fields, in particular the study of
programming abstractions for fault tolerant systems. Reversible CCS
(RCCS), proposed by Danos and Krivine, enacts reversibility by means
of memory stacks. Ulidowski and Phillips proposed a general method to
reverse a process calculus given in a particular SOS format, by exploiting
the idea of making all the operators of a calculus static. CCSK is then
derived from CCS with this method. In this paper we show that RCCS
is at least as expressive as CCSK.

1 Introduction

The interest in reversibility dates back to the 60’s, with Landauer [6] observing
that only irreversible computations need to consume energy, fostering application
of reversible computing in scenarios of low-energy computing. Landauer’s princi-
ple has only been shown empirically in 2012 [1]. Nowadays reversible computing
is attracting interests because of its applications in diverse fields: biological mod-
elling [10], since many biochemical reactions are by nature reversible; program
debugging and testing [4], allowing during debugging time to bring the program
state back to a certain execution point in which certain conditions are met [8];
and parallel discrete event simulations [9]. Of particular interest is the applica-
tion of reversible computation notions to the study of programming abstractions
for dependable systems. Several techniques used to build dependable systems
such as transactions, system-recovery schemes and checkpoint-rollback proto-
cols, rely in one way or another on some forms of undo. The ability to undo any
single action provides us with an ideal setting to study, revisit, or imagine alter-
natives to standard techniques for building dependable systems and to debug
them. Indeed distributed reversible actions can be seen as defeasible partial
agreements: the building blocks for different transactional models and recovery
techniques. Good examples on how reversibility in CCS and Higher-Order π can
be used to model transactional models are respectively [3,7].

The first reversible variant of CCS, called RCCS, was introduced by Danos
and Krivine [2]. In RCCS each process is monitored by a memory, that serves as
stack of past actions. Memories are considered as unique process identifiers, and
in order to preserve this uniqueness along a parallel composition, a structural

Research partly supported by the EU COST Action IC1405.

c© Springer International Publishing Switzerland 2016
S. Devitt and I. Lanese (Eds.): RC 2016, LNCS 9720, pp. 36–51, 2016.
DOI: 10.1007/978-3-319-40578-0 3

Static VS Dynamic Reversibility in CCS 37

P, Q ::= 0 | a.P | a.P | τ.P | (P ‖ Q) | αi.P | P\A

Fig. 1. CCS syntax

law permits to obtain unique memories though a parallel composition. A general
method for reversing process calculi, given in a particular SOS format, has been
proposed by Phillips and Ulidowski in [11]. The main idea of this approach is the
use of communication keys to uniquely identify communications, and to make
static each operator of the calculus. By applying this method to CCS, CCSK is
obtained. Since in CCSK the history is directly annotated in the process itself,
there is no need of splitting history through a parallel composition. We call this
kind of recording histories as static reversibility; while we call the one used by
RCCS as dynamic, since each thread is endowed with its own history. Hence
a natural question arises: are these two reversible calculi equivalent? In this
paper we start answering to this question by showing that RCCS is at least as
expressive as CCSK. We do it by means of an encoding and show its correctness
by means of strong back and forth bisimulaiton.

The rest of the paper is organized as follows: Sect. 2 starts with a brief recall to
the syntax of CCS. In Sect. 2.1 will present RCCS with its syntax and semantics.
Section 2.2 will be about CCSK and its semantics. In Sect. 3 we will present our
encoding function from CCSK to RCCS and prove our main result. In Sect. 4 we
will sketch an encoding of RCCS into CCKS and discuss about the difficulties
it takes to prove its correctness. Section 5 concludes the paper with a discussion
of the future work.

2 CCS and Its Reversible Variants

In this section we briefly present the syntax of CCS [8], and then we show the
two reversible extensions of it, namely RCCS [2] and CCSK [11].

Let A the set of actions such that a ∈ A, and A the set of co-actions such
that A = {a | a ∈ A}. We let μ, λ and their decorated versions to range over
the set Act = A∪A, while we let α, β and their decorated versions to range over
the set Actτ = Act ∪ {τ}, where τ is the silent action.

The syntax of CCS is given in Fig. 1. 0 represents the idle process. A prefix
(or action) can be an input a, an output a and the silent action τ . P ‖ Q rep-
resents the parallel composition of processes P and Q, while

∑
αi.P represents

the guarded choice. Some actions in a process P can be restricted, and this is
represented by the process P\A, where A is the set of restricted actions. The set
P denotes the set of all possible CCS processes.

2.1 Reversible CCS

One of approaches to make CCS reversible is to add a memory to each process.
A memory then will be recording every action and communication that the

38 D. Medić and C.A. Mezzina

(CCS Processes) P, Q ::= 0 | a.P | a.P | τ.P | (P ‖ Q) | αi.Pi | P\A

(RCCS Processes) R, S ::= m � P | (R ‖ S) | R\A

(Memories) m ::= 〈〉 | 〈i, α, P 〉 · m | 〈↑〉 · m

Fig. 2. RCCS syntax

process will undergo. Syntax of RCCS is given in Fig. 2. As we can see, RCCS
processes are built on top of CCS processes. A term of the form m � P , is called
monitored process, where m represents a memory carrying the information that
this process will need in case it wants to backtrack, and P is a standard CCS
process. Two monitored process R and S can be composed in parallel S ‖ R, and
some actions of a monitored process R can be restricted via R\A. Memories are
organised as stacks of events, with the top of the memory representing the very
last action of the monitored process. 〈〉 represent the empty memory; 〈i, α,Q〉
represent an action event meaning that the monitored process did the action α
identified by i and its “context” was Q; while 〈↑〉 represents a splitting event.
When there is no ambiguity, we will omit the trailing event 〈〉 in memories.

We assume the existence of a infinite denumerable set of action identifiers
(sometimes called keys) K such that K ∩ Act = ∅. Let ActK = Act × K the
set of pairs formed by an action μ and an identifier i. In the same way we
define ActKτ = Actτ × K. The operational semantics of RCCS is defined as a
labelled transition system (LTS), (PR,→ ∪ �, ActKτ) where PR is the set of
RCCS (monitored) processes, →⊆ PR ×ActKτ ×PR and �⊆ PR ×ActKτ ×PR.
Relations → and � are the smallest reduction relations induced by respectively
rules in Figs. 4 and 5. Both reduction relations exploit the structural congru-
ence ≡ relation, which is the smallest congruence, on processes and monitored
processes, containing the abelian monoid laws for choice (that is commutativity,
associativity and 0 as the identity element) and the rules of Fig. 3.

Remark 1. In its first incarnation [2] RCCS used events of this form 〈n∗, α,Q〉,
〈1〉 and 〈2〉, where: n∗ is n in case the process synchonized with a process moni-
tored by memory n or ∗ is case of partial synchronization. Events 〈1〉 and 〈2〉 were
used to split a process along a parallel composition according to the following
rule:

m � (P ‖ Q) ≡ (〈1〉 · m � P ‖ 〈2〉 · m � Q)

The version we are using, appeared in [5], simplifies the handling of memories
and makes the splitting through the parallel composition commutative. However
they are conceptually the same, and we have chosen this version since it simplifies
some technicalities when dealing with the proof of our main Theorem.

Identifiers of RCCS are similar to communication keys of CCSK. They are
defined as follows:

Static VS Dynamic Reversibility in CCS 39

(Split) m � (P ‖ Q) ≡ (〈↑〉 · m � P ‖ 〈↑〉 · m � Q)

(Res) m � P\A ≡ (m � P)\A

Fig. 3. RCCS structural laws

Definition 1 (Memory Identifiers). The set of identifiers of a memory m,
written id(m), is inductively defined as follows:

id(〈↑〉 · m) = id(m) id(〈i, α,Q〉 · m) = {i} ∪ id(m)

Definition 2. A identifier i belongs to a memory m, written i ∈ m, if i ∈
id(m).

Definition 3 (Process Identifiers). The set of identifiers of a process R, writ-
ten id(R), is inductively defined as follows:

id(α.P) = id(0) = ∅ id(m � P) = id(m)
id(R\A) = id(R) id(R ‖ S) = id(R) ∪ id(S)

Definition 4. A identifier i belongs to a process R, written i ∈ R, if i ∈ id(R).

(R-ACT)
i /∈ m

m � α.P + Q →i
α 〈i, α, Q〉 · m � P

(R-PAR)
R →i

α R′ i /∈ S

R ‖ S →i
α R′ ‖ S

(R-SYN)
R →i

α R′ S →i
ᾱ S′

R ‖ S →i
τ R′ ‖ S′ (R-RES)

R →i
α R′ α /∈ A ∪ Ā

R\A →i
α R′\A

(R-EQUIV)
R ≡ R R′ →i

α S′ S′ ≡ S

R →i
α S

Fig. 4. RCCS forward semantics

Let us now comment on the forward rules of Fig. 4. Rule R-ACT allows
a monitored process to perform a forward action. As we can see, this action
is bound with a particular fresh identifier i. Moreover, the part of the process
which has not contributed to the action, that is Q, is stored on top of the memory
along with the action and the identifier. Rule R-PAR propagates an action along
a parallel composition, with the condition that the identifier of the action is not
used by other processes. This check guarantees that all the identifiers are unique.
Rule R-SYN allows two processes in parallel to syncrhonize. To do so, they have
to match both the action and the identifier. Rule R-RES deals with restriction

40 D. Medić and C.A. Mezzina

(R-ACT•)
i /∈ m

〈i, a, Q〉 · m � P �i
α m � α.P + Q

(R-PAR•)
R �i

α R′ i /∈ S

R ‖ S �i
α R′ ‖ S

(R-SYN•)
R �i

α R′ S �i
ᾱ S′

R ‖ S �i
τ R′ ‖ S′ (R-RES•)

R �i
α R′ α /∈ A ∪ Ā

R\A �i
α R′\A

R-EQUIV• R ≡ R′ R′ �i
α S′ S′ ≡ S

R �i
α S

Fig. 5. RCCS backward semantics

in the normal way, while rule R-EQUIV brings structural equivalence into the
reduction relation.

Backward rules are reported in Fig. 5. For each of forward rule there exists an
opposite backward one. Rule R-ACT• allows a monitored process to revert its
last action. To do so, the event on top of the memory is taken and the information
contained in it is used to build back the previous form of the process, that is the
prefix and the process that was composed with the + operator. Rule R-PAR•

allows a reversible action to be propagated through a parallel composition, only
when the identifier of the action does not belong to monitored processes in
parallel. This check is crucial to avoid partial undo of some synchronizations.
The remaining rules are similar to the forward ones.

Definition 5 (Reachable Process). A RCCS process R is reachable if it can
be derived from an initial process 〈〉 � P , by using rules of Figs. 4 and 5.

Lemma 1. For any transition m � α.P + Q →i
α 〈i, α,Q〉 · m � P we can derive

the following transitions:

– 〈j, β,Q1〉 · m � α.P + Q →i
α 〈i, α,Q〉 · 〈j, β,Q1〉 · m � P , for i �= j

– 〈↑〉 · m � α.P + Q →i
α 〈i, α,Q〉 · 〈↑〉 · m � P

and its opposite:

Lemma 2. For any transition 〈i, α,Q〉 · m � P �i
α 〈〉 � α.P + Q, we can derive

the following transitions:

– 〈i, α,Q〉 · 〈j, β,Q1〉 · m � P �i
α 〈j, β,Q1〉 · m � α.P + Q, for i �= j

– 〈i, α,Q〉 · 〈↑〉 · m � P �i
α 〈↑〉 · m � α.P + Q

An easy induction on the structure of terms provides us with a kind of normal
form for RCCS processes (by convention

∏
i∈I Ri = 0 if I = ∅):

Lemma 3. (Normal Form). For any RCCS reachable process R we have that

R ≡ (
∏

i∈I

(mi � αi.Pi + Qi)\Ai)\B

Static VS Dynamic Reversibility in CCS 41

2.2 CCS with Communication Keys

The main idea behind this approach is to directly record the actions inside a
process and to make all the operator of CCS static. In this way there is no need
of using an external memory, since all the information are syntactically presents
inside a term. Syntax of CCSK is given in Fig. 6. The only difference with respect
to CCS processes is that prefixes now can be annotated with an identifiers.

(CCS Processes) P, Q ::= 0 | a.P | a.P | τ.P | (P ‖ Q) | αi.Pi | P\A

(CCSK Processes) X, Y ::= P | α[i].X | X + Y | (X ‖ Y) | X\A

Fig. 6. CCSK syntax

Definition 6 (Process Keys). The set of keys of a process X, written key(X),
is inductively defined as follows:

key(α.P) = key(0) = ∅ key(α[i].X) = {i} ∪ key(X)
key(X ‖ Y) = key(X) ∪ key(Y) key(X + Y) = key(X) ∪ key(Y)
key(X\A) = key(X)

Definition 7. A key i is fresh in a process X, written fresh(i,X) if i �∈ key(X).

Definition of keys in CCSK correspond to the definition of identifiers in RCCS.
The operational semantics of CCSK is defined as a labelled transition system
(LTS), (PK ,→ ∪ �, ActKτ) where PK is the set of CCSK processes, →⊆ PR ×
ActKτ × PR and �⊆ PR × ActKτ × PR. Relations → and � are the smallest
reduction relations induced by respectively rules in Figs. 7 and 8. Differently
from RCCS, CCSK does not exploit any structural congruence.

Remark 2. In the following when in proofs, rules and so on we use P instead of
X we just indicate that the process P has no labelled actions, as P being a CCS
process. An alternative is to use predicate std(X) as in [11].

Rules for forward transitions are given in Fig. 7. Rule K-ACT1 deals with
prefixed processes α.P . It just transforms a prefix into a label but differently
from the normal CCS rule for prefix, it generates a fresh new key i which is
bound to the action α becoming α[i]. As we can note the prefix is not discarded
after the reduction. Rule K-ACT2 inductively allows a prefixed process α[i].X
to execute if X can execute. The actions that X can do are forced to use keys
different from i. Rules K-PLUS-L and K-PLUS-R deal with the + operator.
Let us note that these rule do not discard the context, that is part of the process
which has not contributed to the action. In more detail, if the process P +Q does
an action, say α[i], and becomes X then the process becomes X +Q. In this way
the information about +Q is preserved. Moreover since Q is a standard process

42 D. Medić and C.A. Mezzina

(K-ACT1)
α.P

α[i]−−→ α[i].P
(K-ACT2)

X
β[j]−−→ X ′ i
= j

α[i].X
β[j]−−→ α[i].X ′

(K-PLUS-L)
X

α[i]−−→ X ′

X + P
α[i]−−→ X ′ + P

(K-PLUS-R)
Y

α[i]−−→ Y ′

P + Y
α[i]−−→ P + Y ′

(K-PAR-L)
X

α[i]−−→ X ′
fresh(i, Y)

X ‖ Y
α[i]−−→ X ′ ‖ Y

(K-PAR-R)
Y

α[i]−−→ Y ′
fresh(i, X)

X ‖ Y
α[i]−−→ X ‖ Y ′

(K-SYN)
X

α[i]−−→ X ′ Y
ᾱ[i]−−→ Y ′ a
= τ

X ‖ Y
τ [i]−−→ X ′ ‖ Y ′

(K-RES)
X

α[i]−−→ X ′ α /∈ A ∪ Ā

X\A
α[i]−−→ X ′\A

Fig. 7. CCSK forward semantics

then it will never executes even if it is present in the process X+Q. So we can say
that +Q is just a decoration of X. Let us note that in order to apply one of the
plus rule one of the two processes has to be a CCS process P (e.g. not containing
labelled prefixes), meaning that it is impossible for two non standard process to
both execute if composed by the choice operator. Rules K-PAR-L and K-PAR-
R propagate an action α[i] through a parallel composition, provided that the
key i is not used by the other processes in parallel (use of fresh(·) predicate
in the premises). Rule K-SYN allows two processes in parallel to syncrhonize.
To do so, they have to match both the action and the identifier. Rule K-RES
deals with restriction in the canonical (CCS) way. Backward rules are the exact
opposite of the forward ones.

Definition 8 (Reachable Process). A CCSK process X is reachable if it can
be derived from an CCS process P , by using rules of Figs. 7 and 8.

Property 1 (Plus Form). If X is a reachable process, and X = Y + Q, then

Y = P1 + . . . + (Y1 ‖ . . . ‖ Ym) + Pj + . . . + Pn

for some α, m, n and with Pi not having top level +.

Proof. By induction on the length of the derivation that led an initial process
to X and by case analysis on the last applied rule.

3 Encoding CCSK in RCCS

We now adapt the concept of bisimulation [12] to work in a reversible setting
and with two different semantics. To this aim, we indicate with −→si

the forward
relation of the si semantics, and with si the backward one. Moreover, we
indicate with Psi

the set of processes of semantics si and with Lsi
the set of

labels produced by semantics si.

Static VS Dynamic Reversibility in CCS 43

(K-ACT1•)
α[i].P

α[i]
α.P

(K-ACT2•)
X

β[j]
X ′ i
= j

α[i].X
β[j]

α[i].X ′

(K-PLUS-L•)
X

α[i]
X ′

X + P
α[i]

X ′ + P

(K-PLUS-R•)
Y

α[i]
Y ′

P + Y
α[i]

P + Y ′

(K-PAR-L•)
X

α[i]
X ′

fresh(i, Y)

X ‖ Y
α[i]

X ′ ‖ Y

(K-PAR-R•)
Y

α[i]
Y ′

fresh(i, X)

X ‖ Y
α[i]

X ‖ Y ′

(K-SYN•)
X

α[i]
X ′ Y

ᾱ[i]−−→ Y ′ α
= τ

X ‖ Y
τ [i]

X ′ ‖ Y ′
(K-RES•)

X
α[i]

X ′ α /∈ A ∪ Ā

X\A
α[i]

X ′\A

Fig. 8. CCSK backward semantics

Definition 9 (Back and Forth Bisimulation). Given a bijective function
γ : Ls1 → Ls2 , a relation s1Rs2 ⊆ Ps1 ×Ps2 is a strong back and forth simulation
if whenever Ps1Rs2R:

– P
α[i]−−→s1 Q implies R

γ(α[i])−−−−→s2 S with Qs1Rs2S

–
P

α[i]

s1 Q implies R
γ(α[i])

s2 S with Qs1Rs2S

A relation s1Rs2 ⊆ Ps1 ×Ps2 is called strong back and forth bisimulation if s1Rs2

and (s1Rs2)
−1 are strong back and forth simulations. We call strong bisimilarity

and note s1 ∼s2 the largest bisimulation with respect to semantics s1 and s2.

This definition when instantiated with a single semantics, that is s1 = s2 and
γ being the identity, is similar to the definition of forward-reverse bisimulation
used in [11], with the only difference is that our definition does not take into
account predicates. Moreover, when instantiated with CCSK semantics, the two
notions coincide.

In this section we will show how CCSK can be encoded in RCCS. We will
use the same notation like before. P stands for processes from CCS and X for
CCSK processes. Let PK and PR the set of processes from CCSK and RCCS,
respectively, and M is the set of all the memories derivable by productions in
Fig. 2. The encoding function [[·]] : PK × M × P → PR, is inductively defined as
follows:

[[P,m,0]] = m � P

[[X + P,m,Q]] = [[X,m,P + Q]]
[[P + X,m,Q]] = [[X,m,Q + P]]

44 D. Medić and C.A. Mezzina

[[α[i].X,m, P]] = [[X, 〈i, α, P 〉 · m,0]]
[[X\A,m,P]] = [[X,m,P]]\A

[[X ‖ Y,m,P]] = [[X, 〈↑〉 · m,P]] ‖ [[Y, 〈↑〉 · m,P]]

Let us comment it. The main difference between RCCS and CCSK is on the
way they keep track of the history. In RCCS all the information is local to each
monitored process, while in CCSK the information is spread along the structure
of a process. Moreover, a CCSK process may correspond to several monitored
processes, since in CCSK there is no need of splitting memories through a parallel
composition. So the encoding has to inductively drill the structure of a CCSK
process X, in order to build the final memory of the process and to find the plus
context of each labelled action α[i] present inside X. To this aim, the encoding
takes two additional parameters: a memory m and a CCS process P . The parallel
and the restriction of CCSK operator are mapped to the corresponding operators
of RCCS. Let us note that in the parallel case, the memory m is split into two
〈↑〉 · m. The encoding of a process α[i].X with memory m and context Q is
the encoding of process X where the memory stack is augmented of the event
〈i, α,Q〉. In this case the action α[i] disappears from the process as it goes inside
the memory m. The encoding of a process P + X is the encoding of X where
its context is the sum composition of its previous context and P . Finally, the
encoding of a normal CCS process P is just its monitored version, with memory
m representing its history. Since the context parameter is used for past actions,
in the case of normal process P , we impose this parameter to be 0. In order to
understand how the encoding works let us consider the following example. Let
X = (a + b) + c[i].(d[h] ‖ P) then

[[X, 〈〉,0]] = [[c[i].(d[h] ‖ P), 〈〉, a + b]] = [[d[h] ‖ P, 〈i, c, a + b〉 · 〈〉,0]] =
[[d[h], 〈↑〉 · 〈i, c, a + b〉 · 〈〉,0]] ‖ [[P, 〈↑〉 · 〈i, c, a + b〉 · 〈〉,0]] =
[[0, 〈h, d,0〉 · 〈↑〉 · 〈i, c, a + b〉 · 〈〉,0]] ‖ 〈↑〉 · 〈i, c, a + b〉 · 〈〉 � P =
〈h, d,0〉 · 〈↑〉 · 〈i, c, a + b〉 · 〈〉 � 0 ‖ 〈↑〉 · 〈i, c, a + b〉 · 〈〉 � P

Before stating our main Theorem, we need some lemmata about operational
correspondence.

Lemma 4 (Forward Correspondence). For all transitions X
α[i]−−→ X ′ in

CCSK, with R = [[X, 〈〉,0]], there exists a corresponding RCCS transition such
that R →i

α R′ with [[X ′, 〈〉,0]] = R′.

Proof. By induction on the derivation X
α[i]−−→ X ′ and by case analysis on the

last applied rule. We show the relevant cases:

K-ACT2: We have α[i].X
β[j]−−→ α[i].X ′ with X

β[j]−−→ X ′. Be R = [[X, 〈〉,0]],
by Lemma 3 we know that: R ≡ (

∏
i∈I(mi � αi.Pi + Qi)\Ai)\B.

By applying inductive hypothesis we have that [[X, 〈〉,0]] →j
β [[X ′, 〈〉,0]], that

is R →j
β R′ with R′ = [[X ′, 〈〉,0]]. Now we to distinguish two cases: either β

Static VS Dynamic Reversibility in CCS 45

is a single action or it has been produced by a synchonization. In the first
case we have then that there exists an index h ∈ I such that αh = β, and
then

[[X, 〈〉,0]] ≡ (
∏

i∈I

(mi � αi.Pi + Qi)\Ai)\B →j
β

(
∏

i∈I\h

(mi � αi.Pi + Qi)\Ai ‖ (〈j, β,Qh〉 · mh � Ph)\Ah)\B ≡ [[X ′, 〈〉,0]]

Moreover, by definition of encoding we have that

[[α[i].X, 〈〉,0]] = [[X, 〈i, α,0〉 · 〈〉,0]]

and by using Lemma1 we can mimic the same transition with an augmented
memory: [[X, 〈i, α,0〉 · 〈〉,0]] →j

β [[X ′, 〈i, α,0〉 · 〈〉,0]] as desired. The synchro-
nisation case is similar.

K-PLUS-L: We have X = Y + P
α[i]−−→ Y ′ + P . By Property 1, we have that:

Y = P1 + . . . + (Y1 ‖ . . . ‖ Ym) + Pj + . . . + Pn

Let T =
∑

i∈n\l Pi, by applying the encoding we have that

[[Y + P, 〈〉,0]] = [[(Y1 ‖ . . . ‖ Ym), 〈〉, P + T]]

[[Y, 〈〉,0]] = [[(Y1 ‖ . . . ‖ Ym), 〈〉, T]]

By Lemma 3 we know that: [[Y + P, 〈〉]] ≡ (
∏

l∈I(ml � αl.Pl + Ql)\Al)\B

This implies that there exists a subset J ⊆ I on indexes such that memories
in J share the action 〈k, β, T 〉, with T =

∑
i∈n\l Pi, such that:

[[Y, 〈〉,0]] ≡(
∏

l∈I\J

(ml � αl.Pl + Ql)\Al ‖
∏

h∈J

(mh · 〈k, β, T 〉 � αh.Ph + Qh)\Ah)\B

[[Y + P, 〈〉,0]] ≡(
∏

l∈I\J

(ml � αl.Pl + Ql)\Al ‖
∏

h∈J

(mh · 〈k, β, T + P 〉 � αh.Ph + Qh)\Ah)\B

By hypothesis we have that Y
α[i]−−→ Y ′ and by inductive hypothesis we have

that [[Y, 〈〉,0]] →i
α [[Y ′, 〈〉,0]], but then also [[Y + P, 〈〉,0]] →i

α [[Y ′, 〈〉, P]] =
[[Y ′ + P, 〈〉,0]], as desired. �

Lemma 5 (Backward Correspondance). For all transitions X
α[i]

X ′ in
CCSK, with R = [[X, 〈〉,0]], there exists a corresponding transition R �i

α R′ in
RCCS with [[X ′, 〈〉,0]] = R′.

46 D. Medić and C.A. Mezzina

Proof. By induction on the derivation X
α[i]

X ′ and by case analysis on the
last applied rule. The proof follows the lines of the one of Lemma4.

With the previous two lemmata we have proved that if we have a couple of
processes (X,R) = (X, [[X, 〈〉,0]]) where X is reachable, and if process X does
an action α in CCSK, then process R does the same action in RCCS. Obtained
process R′ = [[X ′, 〈〉,0]] is still encoding of process X ′. Now we have to show the
opposite direction.

Lemma 6 (Forward Completeness). For any CCSK process X and RCCS
process R, such that R = [[X, 〈〉,0]], if R →i

α R′ in RCCS, then there exists a

corresponding transition X
α[i]−−→ X ′ in CCSK, with R′ = [[X ′, 〈〉,0]].

Proof. By structural induction on X. We have two main cases, whether X = P
or not. We will show just the most significant cases.

In first case we observe form of the processes X = P , where P is (standard)
CCS process. We then do an induction of the form of P . If P = α.P1: we have
that R = [[α.P1, 〈〉,0]] and by applying encoding

[[α.P1, 〈〉,0]] = 〈〉 � α.P1

Then, by using R-ACT we get 〈〉 �α.P1 →i
α 〈i, α,0〉 · 〈〉 �P1, where 〈i, α,0〉 · 〈〉 �

P1 = [[α[i].P1, 〈〉,0]] = R′.
In CCSK process α.P1, can do the same action α by applying the rule K-ACT1
and we get

α.P1
α[i]−−→ α[i].P1 where X ′ = α[i].P1 as we desired.

In the second case we observe form of the processes X, when he have a struc-
ture of CCSK process and it is not standard process. We consider the significant
cases:

X = α[i].Y : we have that R = [[α[i].Y, 〈〉,0]]. By Lemma 3 we know that:

[[Y, 〈〉,0]] ≡ (
∏

l∈I

(ml � αl.Pl + Ql)\Al)\B

Now we know that there exists some subset H ⊆ I such that all processes
from that subset share the very first action α . For some t ∈ H such that
αt = β we have:

[[Y, 〈〉,0]] ≡(
∏

l∈I\H

(ml � αl.Pl + Ql)\Al ‖
∏

h∈H\t

(m′
h · 〈i, α,0〉 � αh.Ph + Qh)\Ah ‖

(m′
t · 〈i, α,0〉 � β.Pt + Qt)\At)\B →j

β

(
∏

l∈I\H

(ml � αl.Pl + Ql)\Al ‖
∏

h∈H\t

(m′
h · 〈i, α,0〉 � αh.Ph + Qh)\Ah ‖

〈j, β, Qt〉 · m′
t · 〈i, α,0〉 � Pt\At)\B ≡ [[Y ′, 〈〉,0]]

Static VS Dynamic Reversibility in CCS 47

By definition of encoding we have that [[α[i].Y, 〈〉,0]] = [[Y, 〈i, α,0〉 · 〈〉,0]] and
using Lemma 1 we can mimic the same transition:

[[Y, 〈i, α,0〉 · 〈〉,0]] →j
β [[Y ′, 〈i, α,0〉 · 〈〉,0]]

By inductive hypothesis we have that Y
β[j]−−→ Y ′ and using rule K-ACT2

we get:

α[i].Y
β[j]−−→ α[i].Y ′ as desired.

X = Y1 ‖ Y2 We have that R = [[Y1 ‖ Y2, 〈〉,0]] and by applying encoding

[[Y1 ‖ Y2, 〈〉,0]] = [[Y1, 〈↑〉 · 〈〉,0]] ‖ [[Y2, 〈↑〉 · 〈〉,0]]

Now, we distinguish three cases: if first branch of parallel composition do
action α, or the second one, or α is syncrhonization action. If R1 = [[Y1, 〈〉,0]]
in first case we have that in R1 exists an index h ∈ I such that αh = α and
then by Lemma 3, we get

R1 ≡ (
∏

l∈I

(ml � αl.Pl + Ql)\Al)\B →i
α

(
∏

l∈I\h

(ml � αl.Pl + Ql)\Al ‖ (〈i, α,Qh〉 · mh � Ph)\Ah)\B ≡ R′
1

By Lemma 1 we have: [[Y1, 〈↑〉 · 〈〉,0]] →i
α [[Y ′

1 , 〈↑〉 · 〈〉,0]]
Using rule R-PAR we get

[[Y1, 〈↑〉 · 〈〉,0]] ‖ [[Y2, 〈↑〉 · 〈〉,0]] →i
α [[Y ′

1 , 〈↑〉 · 〈〉,0]] ‖ [[Y2, 〈↑〉 · 〈〉,0]]

where [[Y ′
1 , 〈↑〉 · 〈〉,0]] ‖ [[Y2, 〈↑〉 · 〈〉,0]] = [[Y ′

1 ‖ Y2, 〈〉,0]] = R′. By inductive

hypothesis we have that also Y1
α[i]−−→ Y ′

1 and by using rule K-PAR-L, we

get: Y1 ‖ Y2
α[i]−−→ Y ′

1 ‖ Y2 as desired. The remaining cases are similar.

X = Y + P : By Property 1 we have that:

Y = P1 + . . . + (Y1 ‖ . . . ‖ Ym) + Pj + . . . + Pn

In the same way, like in Lemma 4 we define processes congruent to processes
[[Y + P, 〈〉,0]] and [[Y, 〈〉,0]].

Now we know that there exists some t ∈ J such that αt = α and we have

(
∏

l∈I\J

(ml � αl.Pl + Ql)\Al ‖
∏

h∈J

(mh · 〈k, β, T 〉 � αh.Ph + Qh)\Ah ‖

(mt · 〈h, β, T 〉 � α.Pt + Qt)\At)\B →i
α

(
∏

l∈I\J

(ml � αl.Pl + Ql)\Al ‖
∏

h∈J

(mh · 〈k, β, T 〉 � αh.Ph + Qh)\Ah ‖

(〈i, α,Qt〉 · mt · 〈k, β, T 〉 � Pt)\At)\B

48 D. Medić and C.A. Mezzina

Then we also have [[Y + P, 〈〉,0]] →i
α [[Y ′, 〈〉, P]] = [[Y ′ + P, 〈〉,0]]. By apply-

ing the inductive hypothesis we also have X
α[i]−−→ X ′ and by rule K-PLUS-L,

we get X + P
α[i]−−→ X ′ + P as desired. �

Lemma 7 (Backward Completeness). For any CCSK process X and RCCS
process R, such that R = [[X, 〈〉,0]], if R �i

α R′ in RCCS, then there exists a
corresponding transition X

α[i]−−→ X ′ in CCSK, with R′ = [[X ′, 〈〉,0]].

Proof. By structural induction on X.

We now can state our main result:

Theorem 1 (Operational Correspondance). For any CCS process P , P ∼
[[P, 〈〉,0]].

Proof. We just need to show that the relation

R = {(X, [[X, 〈〉,0]]) with X CCSK reachable }
is a strong back and forth bisimulation.

If X does a forward transition, X
α[i]−−→ Y by Lemma 4 we have also that

[[X, 〈〉,0]] →α
i [[Y, 〈〉,0]], with (Y, [[Y, 〈〉,0]]) ∈ R. If the transition is a backward

one we apply the Lemma 5.
If R = [[X, 〈〉,0]] does a forward transition, R →i

α S then by Lemma 6 we also

have that X
α[i]−−→ Y with S = [[Y, 〈〉,0]], and we have that (Y, [[Y, 〈〉,0]]) ∈ R. If

the transition is a backward one we apply the Lemma7. �

4 Encoding RCCS in CCSK

In this section we just give the encoding of RCCS into CCSK and discuss how
it works, without showing its correctness.

The main difference between RCCS and CCSK is that in RCCS via struc-
tural congruence is possible to split a parallel composition of processes sharing
the same memory into a parallel composition of different monitored processes.
This allows the single monitored processes to continue independently their com-
putation. In CCSK there is no need of splitting rule, as its reversibility is static.
Then it is the case that different RCCS processes may correspond to a single
CCSK process. In order to better understand this main issues, let us consider
the following RCCS process:

R = 〈j, β, P1〉 · 〈↑〉 · 〈i, α,Q〉 · 〈〉 � P1 ‖ 〈↑〉 · 〈i, α,Q〉 · 〈〉 � γ.P2

derived from the initial process 〈〉 � α.(β.P1 ‖ γ.P2) + Q. Now the corresponding
CCSK process is the following one:

α[i].(β[j].P1 ‖ γ.P2) + Q

Static VS Dynamic Reversibility in CCS 49

So the encoding has to be able, while encoding monitored processes, to collect
partially encoded processes sharing the same memory. In the example before,
the encoding has to join together processes β[j].P1 and γ.P2 and put them in
the context α[i].[•] + Q. It is clear that such encoding cannot be compositional
as it has to reason on the whole process while reconstructing back the history
of monitored processes up to a split 〈↑〉, then somehow apply the structural law
Split in order to marge partially encoded processes and then to continue the
encoding of the obtained parallel composition under the common memory. This
is why the encoding of a RCCS reachable process R is defined as δ(�R�),

where function �·� is inductively defined as follows

�R ‖ S� = �R� ‖ �S� �〈〉,X� = X

�R\A� = �R�\A �〈i, α,Q〉 · m,X� = �m,α[i].X + Q�

�m � P � = �m,P � �〈↑〉 · m,X� = �〈↑〉 · m,X�

As we can see, the encoding of a monitored process �m,P � proceed as long as
in m there are events of the form 〈i, α,Q〉 and freezes when it encounters a
memory m on top of which there is a split event 〈↑〉 · m, and the act of this
freezing produces a partially encoded process of the form �〈↑〉 · m,X�.

Function δ(·), which is in charge of fusing two partially encoded CCSK
processes sharing the same memory, is defined as follows:

δ
(∏

�〈↑〉 · ml,Xl� ‖
∏

�〈↑〉 · mt,Xt� ‖
∏

�〈↑〉 · mz,Xz�
)

=

δ
(∏

�ml,Xl ‖ Xt� ‖
∏

�〈↑〉 · mz,Xz�
)

if ∀l ∈ L∃t ∈ T s.t ml = mt

δ(X) = X

Let us note that when the δ only stops when an entire CCSK process has been
derived, otherwise it applies again the encoding �·� on the fused processes.

The following example shows how the entire mechanism work:

R =〈i, α, T 〉 · 〈↑〉 · 〈↑〉 · 〈j, β,0〉 � P1 ‖ 〈↑〉 · 〈↑〉 · 〈j, β,0〉 � P2 ‖ 〈↑〉 · 〈j, β,0〉 � P3

�R� =δ (�〈i, α, T 〉 · 〈↑〉 · 〈↑〉 · 〈j, β,0〉, P1� ‖ �〈↑〉 · 〈↑〉 · 〈j, β,0〉, P2� ‖ �〈↑〉 · 〈j, β,0〉, P3�)

=δ (�〈↑〉 · 〈↑〉 · 〈j, β,0〉, α[i].P1 + T � ‖ �〈↑〉 · 〈↑〉 · 〈j, β,0〉, P2� ‖ �〈↑〉 · 〈j, β,0〉, P3�)

=δ (�〈↑〉 · 〈↑〉 · 〈j, β,0〉, α[i].P1 + T � ‖ �〈↑〉 · 〈↑〉 · 〈j, β,0〉, P2� ‖ �〈↑〉 · 〈j, β,0〉, P3�)

=δ (�〈↑〉 · 〈j, β,0〉, (α[i].P1 + T ‖ P2)� ‖ �〈↑〉 · 〈j, β,0〉, P3�)

=δ (�〈↑〉 · 〈j, β,0〉, (α[i].P1 + T ‖ P2)� ‖ �〈↑〉 · 〈j, β,0〉, P3�)

=δ (�〈j, β,0〉, (α[i].P1 + T ‖ P2) ‖ P3�)

=δ (�〈〉, β[j].((α[i].P1 + T ‖ P2) ‖ P3�))

=β[j].((α[i].P1 + T ‖ P2) ‖ P3)

5 Conclusions and Future Work

The first reversible variant of CCS, called RCCS, was introduced by Danos and
Krivine [2]. In RCCS each process is monitored by a memory, that serves as

50 D. Medić and C.A. Mezzina

stack of past actions. Memories are considered as unique process identifiers, and
in order to preserve this uniqueness along a parallel composition, a structural
law permits to obtain unique memories though a parallel composition. A general
method for reversing process calculi, given in a particular SOS format, has been
proposed by Phillips and Ulidowski in [11]. The main idea of this approach is the
use of communication keys to uniquely identify communications, and to make
static each operator of the calculus. By applying this method to CCS, CCSK
is obtained. Since in CCKS the history is directly annotated in the process
itself, there is no need of splitting history through a parallel composition. We
call this kind of recording histories as static reversibility; while we call the one
used by RCCS as dynamic, since each thread is endowed with its own history.
In order to show that these two methods are similar, e.g. two reversible CCS
derived by them are strongly bisimilar, we have provided and encoding from
a CCSK process to possibly several RCCS monitored processes. Then we have
showed that a CCSK term and its encoding in RCCS are strongly back and
forth bisimilar. We then sketched a possible encoding from RCCS to CCSK and
discussed the difficulties behind it, mostly due to the fact that multiple split
monitored process may correspond to a single CCSK process. We leave as future
work showing the correctness of this encoding. Once this will be proven, then we
can state that the two calculi (and their underling semantics) are equivalent, and
will allow us to bring to CCSK some results about causally consistency already
proven for RCCS.

We leave as future work showing that back and forth bisimulation is a con-
gruence. Moreover, another interesting result would be to show that the two
calculi are fully abstract, e.g. that two bisimilar CCSK terms are translated into
two bisimimilar RCCS terms.

References

1. Berut, A., Arakelyan, A., Petrosyan, A., Ciliberto, S., Dillenschneider, R., Lutz, E.:
Experimental verification of Landauer’ s principle linking information, thermody-
namics. Nature 483(7388), 187–189 (2012)

2. Danos, V., Krivine, J.: Reversible communicating systems. In: Gardner, P.,
Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp. 292–307. Springer,
Heidelberg (2004)

3. Danos, V., Krivine, J.: Transactions in RCCS. In: Abadi, M., de Alfaro, L. (eds.)
CONCUR 2005. LNCS, vol. 3653, pp. 398–412. Springer, Heidelberg (2005)

4. Giachino, E., Lanese, I., Mezzina, C.A.: Causal-consistent reversible debugging. In:
Gnesi, S., Rensink, A. (eds.) FASE 2014 (ETAPS). LNCS, vol. 8411, pp. 370–384.
Springer, Heidelberg (2014)

5. Krivine, J.: A verification technique for reversible process algebra. In: Glück, R.,
Yokoyama, T. (eds.) RC 2012. LNCS, vol. 7581, pp. 204–217. Springer, Heidelberg
(2013)

6. Landauer, R.: Irreversibility and heat generation in the computing process. IBM
J. Res. Dev. 5, 183–191 (1961)

7. Lanese, I., Lienhardt, M., Mezzina, C.A., Schmitt, A., Stefani, J.-B.: Concurrent
flexible reversibility. In: Felleisen, M., Gardner, P. (eds.) ESOP 2013. LNCS, vol.
7792, pp. 370–390. Springer, Heidelberg (2013)

Static VS Dynamic Reversibility in CCS 51

8. Milner, R.: A Calculus of Communicating Systems. LNCS, vol. 92. Springer,
Heidelberg (1980)

9. Perumalla, K.S., Park, A.J.: Reverse computation for rollback-based fault tolerance
in large parallel systems - evaluating the potential gains and systems effects. Cluster
Comput. 17(2), 303–313 (2014)

10. Phillips, I., Ulidowski, I., Yuen, S.: A reversible process calculus and the modelling
of the ERK signalling pathway. In: Glück, R., Yokoyama, T. (eds.) RC 2012. LNCS,
vol. 7581, pp. 218–232. Springer, Heidelberg (2013)

11. Phillips, I.C.C., Ulidowski, I.: Reversing algebraic process calculi. J. Log. Algebr.
Program. 73(1–2), 70–96 (2007)

12. Sangiorgi, D., Walker, D.: The Pi-Calculus - A Theory of Mobile Processes. Cam-
bridge University Press, Cambridge (2001)

	Static VS Dynamic Reversibility in CCS
	1 Introduction
	2 CCS and Its Reversible Variants
	2.1 Reversible CCS
	2.2 CCS with Communication Keys

	3 Encoding CCSK in RCCS
	4 Encoding RCCS in CCSK
	5 Conclusions and Future Work
	References

