
Elements of a Reversible
Object-Oriented Language

Work-in-Progress Report

Ulrik Pagh Schultz1(B) and Holger Bock Axelsen2

1 University of Southern Denmark, Odense, Denmark
ups@mmmi.sdu.dk

2 University of Copenhagen, Copenhagen, Denmark
funkstar@di.ku.dk

Abstract. This paper presents initial ideas for the design and imple-
mentation of a reversible object-oriented language based on extending
Janus with object-oriented concepts such as classes that encapsulate
behavior and state, inheritance, virtual dispatching, as well as construc-
tors. We show that virtual dispatching is a reversible decision mechanism
easily translatable to a standard reversible programming model such as
Janus, and we argue that reversible management of state can be accom-
plished using reversible constructors. The language is implemented in
terms of translation to standard Janus programs.

1 Introduction

Extant reversible programming languages such as Janus [7], Theseus [3] and
RFUN [8] have been developed with a focus on providing features (such as con-
trol flow operators) that enables the programmer to understand how execution
is performed reversibly. However, unlike most modern programming languages,
this is usually not paired with other programmer-friendly abstractions. This has
unfortunate consequences, in particular that reversible programmers have to
build implicit data types out of the given primitives when dealing with complex
data, leading to longer, less readable, and more error-prone reversible code.

From recent advances in compiler technology for reversible programming lan-
guages we know that it is possible to reversibly and efficiently represent and
manipulate complex data objects in the heap [2,6], opening the door for associ-
ated advances in reversible language design. Here, we consider reversible object-
orientation. Object-oriented programming uses classes as a means to providing
higher-level structures that encapsulate behavior and state. We show how a num-
ber of object-oriented concepts (encapsulation, inheritance, and virtual methods)
can be captured reversibly by extending the Janus language with support for

The authors acknowledge partial support from COST Action IC1405 Reversible
Computation. H.B. Axelsen was supported by the Danish Council for Independent
Research | Natural Sciences under the Foundations of Reversible Computing project.

c© Springer International Publishing Switzerland 2016
S. Devitt and I. Lanese (Eds.): RC 2016, LNCS 9720, pp. 153–159, 2016.
DOI: 10.1007/978-3-319-40578-0 10



154 U.P. Schultz and H.B. Axelsen

such features, and describe them by translation to ordinary Janus programs.
These concepts have been implemented in a prototype language named Joule
(a homonym of JOOL, Janus Object-Oriented Language), which will be used
throughout this paper to illustrate our ideas. This paper presents initial con-
cepts in the design of the Joule language, serving as a report on the work in
progress to provide a useful, reversible object-oriented programming language.

2 Reversible Object-Oriented Programming

Similarly to mainstream object-oriented languages such as C++ and Java, we
propose to extend Janus with a static inheritance mechanism encapsulating state
and behavior, and a corresponding virtual dispatching mechanism that dynami-
cally decides which method implementation to invoke based on the runtime type
of the receiver object. We hypothesize that such a language will allow programs
to be written at a higher level of abstraction without introducing complications
due to memory management.

Object-oriented polymorphism is implemented using inheritance, where oper-
ations are expressed in terms of an abstract interface implemented by sub-
classes. Polymorphism allows different implementations to be composed and then
selected at runtime depending on the specific class of each object. Since objects
do not change their class at runtime in our proposed language, the decision of
which method to invoke at runtime will be reversible: invoking and “uninvoking”
a specific method on a given object will always select the same method.

Regarding memory management, some object-oriented languages have been
conceived with limited-memory systems in mind, and today they are routinely
used to implement embedded systems. For example, the Beta language (an
early derivative of Simula-67, the first object-oriented language) included static
object allocation as a design criterion [4], to enable it to function on memory-
constrained systems with static and stack allocation. Today, the C++ language is
commonly used as a systems programming language: the combination of object-
oriented system decomposition and a disciplined approach to manual memory
management often offers significant advantages compared to, e.g., C.

3 Encapsulation and Construction

We now describe how classes are used as an encapsulation mechanism in Joule,
our proposed syntax for reversible method invocation, and how we propose to
deal with the issue of reversibly constructing objects.

3.1 Encapsulation

Object-oriented classes should not be considered as a module mechanism, but
classes have nonetheless been proven as a practical mechanism for providing the
encapsulation and abstraction required for, e.g., abstract datatypes [5]. Taking



Elements of a Reversible Object-Oriented Language 155

class Point {

int x; int y; // private fields, zero-initialized

Point(int x, int y) { // constructor, runs after allocation

this.x += x; this.y += y; // ’this.x’ is a field, ’x’ a parameter

}

procedure add_to_x(int x) { this.x += x; }

procedure add_to_y(int y) { this.y += y; }

}

Fig. 1. Joule implementation of a basic point class

inspiration from mainstream languages, we can allow classes to define fields and
methods that can operate on the data stored in these fields. The data is initialized
using a constructor and uninitialized by uncalling the constructor.

As a concrete example, we define a class Point that encapsulates two values,
x and y coordinates, and provides operations to manipulate these values (see
Fig. 1). The fields x and y can only be manipulated using the provided methods
(we consider all fields private). The fields are initialized upon object initialization
using the constructor. Note that the initial value of any field is assumed to be
zero (or null for a reference type). Joule objects can be considered as records
that contain a mix of runtime type information, integers, and object references
(the specific Janus-based implementation will be discussed later, in Sect. 5).

The class Point can be instantiated and methods can be invoked (called)
using the standard “.” operator for accessing an object. To support uncalling
method (uninvoking), we adopt “!” as an inverse operator.

local Point p = Point.new(5,8); // construct

p.add_to_x(2); // p.x==7

p!add_to_y(3); // p.y==5

Note the slightly nonstandard syntax C.new(...) for creating an object and
invoking the constructor, which in Java would have been written new C(...).
Calling and uncalling methods works similar to calling and uncalling procedures
in Janus. Nevertheless, the introduction of a class hierarchy will require a run-
time decision to select which implementation to use, as discussed in the next
section.

3.2 Construction and Unconstruction

To properly dispose of a locally allocated object we must restore the value of the
fields to their initial blank values from before the constructor was invoked.1 To

1 We here follow the memory model of Janus, where variables can be dynamically
allocated on the call stack using a local declaration that initializes the variable to
a given value, but must symmetrically by deallocated using a delocal declaration
that must provide the final value of the variable, resetting the memory and providing
an initializer for the variable when running the program in reverse.



156 U.P. Schultz and H.B. Axelsen

this end, we propose to uncall the constructor using arguments that return the
corresponding fields to zero (or null for references). The locally allocated variable
p of type Point now representing the point (7, 5) can for example be disposed
using delocal Point!new(7,5) p; The “!” operator is used here to denote running
the constructor in reverse with the given arguments, unconstructing the object.

class Counter {

int limit; // stop incrementing this.count when limit is reached

int value; // updated when calling ’count’

Counter(int limit) { this.limit += limit; }

procedure count(int flag) {

if(this.value<this.limit) { this.value += 1; }

else { flag += 1; } fi(flag==0);

}

procedure finalize(int uncount) { this.value -= uncount; }

}

Fig. 2. Joule implementation of counting up to a limit

In general objects may contain state that evolves over time and that is not ini-
tialized using constructor parameters. As an example, consider the class Counter

shown in Fig. 2. The field limit is initialized upon construction, but the field value

evolves over time: as long as its value is less than limit it is increased by one when
the method value is called (the parameter flag is used to signal when the limit
has been reached). Uncalling the constructor would not serve to return the field
value to a zero state. Here we could adopt the notion of a destructor to reset the
remaining state, but as an alternative we adopt a simple programming pattern
where a method (by convention named finalize) is used to bring the object back
to a state where it can be unconstructed by running the constructor in reverse:

local Counter c = Counter.new(3); // construct

local int flag = 0;

c.count(flag); c.count(flag);

c.finalize(2); // reset c.value to 0

delocal flag == 0;

delocal Counter!new(3) c; // unconstruct

The method finalize serves to “unfinalize” the object, bringing it into a state
where the constructor can be run backwards to reset the memory. In the concrete
example the finalization method takes an argument, but the finalization could
also have written with the assumption that the counter is in a specific state (e.g.,
limit reached), in which case no argument would have been needed.

We speculate that the question of how to unconstruct objects will be a
key challenge in reversible object-oriented programming, but that a notion of
reversible design patterns may provide useful programming abstractions. For
example, objects created by a factory design pattern could then be unconstructed
by a hypothetical unfactory pattern derived from the original factory pattern.
This issue is however left for future work.



Elements of a Reversible Object-Oriented Language 157

3.3 Object References

Most object-oriented programs rely on the ability for objects to refer to each
other, which raises the question of how to reversibly store references to other
objects in a field. We adopt the simple approach that references only can be
stored into null references, which is done using the := operator:

local Point p = Point.new(1,7); local Point q = null;

q := p; // essentially q += p;

q.add_to_x(2); // p.x==3

delocal q == p; // removes local variable

delocal Point!new(3,7) p; // unconstructs object

Reverse execution of the := operator is done by subtracting the provided refer-
ence from the reference being operated on, producing a null reference.

4 Inheritance and Virtual Calls

Inheritance often serves the dual purpose of creating a subtype hierarchy and
implementation reuse, and for simplicity we follow this approach here. Although
concepts of reverse inheritance have been proposed [1], we see inheritance and the
subtype hierarchy as a means to model the information on which the methods
operate. Thus, we believe that inheritance works the same in non-reversible
and reversible languages, although as noted earlier the immutability of type
information in an object is particularly advantageous for reversible computing
since it ensures that virtual calls are a reversible mechanism.

Our proposed syntax for calling and uncalling methods has already been
introduced, and straightforwardly generalizes to invocation of virtual methods.
As a concrete example, consider the Joule program shown in Fig. 3. The classes
Add, Sub and Twice all extend the common (abstract) superclass Op. The class
Twice takes a given operator as an argument, and applies it twice whenever the
app method is called (note the use of the reversible := null-reference assignment
operator). These classes can be used as follows:

abstract class Op { abstract procedure app(int var, int x); }

class Add extends Op { procedure app(int var, int x) { var += x; } }

class Sub extends Op { procedure app(int var, int x) { var -= x; } }

class Twice extends Op {

Op p;

Twice(Op p) { this.p := p; } // := only on null references

procedure app(int var, int x) {

local Op p = this.p; // copy of reference, fewer indirections

p.app(var,x); p.app(var,x); // Polymorphic call site

delocal p == this.p;

}

}

Fig. 3. Joule program implementing a hierarchy of reversible operators



158 U.P. Schultz and H.B. Axelsen

local Op a = Add.new(); local Op b = Sub.new();

local Op aa = Twice.new(a); local Op bb = Twice.new(b);

local int v = 0; aa.app(v,4); bb!app(v,1); delocal v == 10;

delocal Twice!new(b) bb; delocal Twice!new(a) aa;

delocal Sub!new() b; delocal Add!new() a;

Here, the calls p.app inside the method app in class Twice execute different meth-
ods, depending on the type of the Op object stored in the field p.

5 Implementation

Joule has been implemented by translation to Janus, and all the examples pro-
vided in this paper have been automatically compiled using our prototype Joule
compiler.2 Objects are currently represented as arrays of integers: the first ele-
ment is a compile-time constant determining the class of the object, the remain-
ing elements represent the fields of the object. Objects are allocated in a heap
represented as a two-dimensional array, thus object references are simply indices
into this array. The dimensions of the array are currently determined manually,
and memory management is currently manual and completely unsafe, meaning
objects could be deallocated in the wrong order leading to undefined behavior
(e.g., an object could be overwritten by user data).

Virtual calls are implemented using standard dispatcher functions, e.g., for
a given virtual method m a Janus procedure dispatch m is generated that uses
nested if-then-else-fi statements to select the specific method implementation to
call depending on the type of the receiver object (the value of the first element
of the array representing the receiver object). Uncalling a method is simply
done by uncalling the corresponding dispatcher procedure. This implementation
approach is simple and supports compile-time modularity (e.g., classes can be
written independently) but rules out runtime modularity (e.g., dynamic class
loading). Since reversible computing normally operates under a closed-world
hypothesis, this restriction is considered appropriate for the time being.

References

1. Chirila, C.B., Crescenzo, P., Lahire, P.: Reverse inheritance: improving class library
reuse in Eiffel. In: Langages et Modeles a Objets (2007)

2. Hansen, J.S.K.: Translation of a reversible functional programming language. Mas-
ter’s thesis, Department of Computer Science, University of Copenhagen (2014)

3. James, R.P., Sabry, A.: Theseus: a high level language for reversible computing,
work-in-progress report at RC (2014). http://www.cs.indiana.edu/∼sabry/papers/
theseus.pdf

4. Kristensen, B.B., Madsen, O.L., Møller-Pedersen, B.: The when, why and why not
of the beta programming language. In: Proceedings of the Third ACM SIGPLAN
Conference on History of Programming Languages, pp. 10-1–10-57. HOPL III, NY,
USA (2007). http://doi.acm.org/10.1145/1238844.1238854

2 Source code for compiler, examples, and generated Janus programs are available at
https://github.com/joule-lang/joule/tree/master/doc/papers/rc16.

http://www.cs.indiana.edu/~sabry/papers/theseus.pdf
http://www.cs.indiana.edu/~sabry/papers/theseus.pdf
http://doi.acm.org/10.1145/1238844.1238854
https://github.com/joule-lang/joule/tree/master/doc/papers/rc16


Elements of a Reversible Object-Oriented Language 159

5. Meyer, B.: Object-Oriented Software Construction, vol. 2. Prentice Hall, New York
(1988)

6. Mogensen, T.: Garbage collection for reversible functional languages. In: Krivine,
J., Stefani, J.B. (eds.) RC 2015. LNCS, vol. 9138, pp. 79–94. Springer, Heidelberg
(2015)

7. Yokoyama, T., Axelsen, H.B., Glück, R.: Principles of a reversible programming
language. In: Proceedings of Computing Frontiers, pp. 43–54. ACM (2008)

8. Yokoyama, T., Axelsen, H.B., Glück, R.: Towards a reversible functional language.
In: De Vos, A., Wille, R. (eds.) RC 2011. LNCS, vol. 7165, pp. 14–29. Springer,
Heidelberg (2012)


	Elements of a Reversible Object-Oriented Language
	1 Introduction
	2 Reversible Object-Oriented Programming
	3 Encapsulation and Construction
	3.1 Encapsulation
	3.2 Construction and Unconstruction
	3.3 Object References

	4 Inheritance and Virtual Calls
	5 Implementation
	References


