
Simon Devitt
Ivan Lanese (Eds.)

 123

LN
CS

 9
72

0

8th International Conference, RC 2016
Bologna, Italy, July 7–8, 2016
Proceedings

Reversible
Computation

Lecture Notes in Computer Science 9720

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7408

http://www.springer.com/series/7408

Simon Devitt • Ivan Lanese (Eds.)

Reversible
Computation
8th International Conference, RC 2016
Bologna, Italy, July 7–8, 2016
Proceedings

123

Editors
Simon Devitt
National Institute of Informatics
Tokyo
Japan

Ivan Lanese
University of Bologna/Inria
Bologna
Italy

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-40577-3 ISBN 978-3-319-40578-0 (eBook)
DOI 10.1007/978-3-319-40578-0

Library of Congress Control Number: 2016941301

LNCS Sublibrary: SL2 – Programming and Software Engineering

© Springer International Publishing Switzerland 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG Switzerland

Preface

This volume contains the papers presented at RC 2016, the 8th Conference on Rev-
ersible Computation, held during July 7–8, 2016, in Bologna (Italy), hosted by the
Computer Science Department of the University of Bologna.

The Conference on Reversible Computation brings together researchers from
computer science, mathematics, engineering, and physics to discuss new developments
and directions for future research in the emerging area of reversible computation. This
includes, e.g., reversible formal models, reversible programming languages, reversible
circuits, and quantum computing.

The conference received 38 submissions by authors from 22 countries. All papers
were reviewed by at least three members of the Program Committee. After careful
deliberations, the Program Committee selected 23 papers for presentation. In addition
to these papers, this volume contains the abstracts of the two invited talks: “DEMONIC
Programming: A Computational Language for Single-Particle Equilibrium Thermo-
dynamics, and Its Formal Semantics” by Samson Abramsky (University of Oxford,
UK) and “Classical Problems to Make Quantum Computing a Reality” by Adam
Whiteside (University of Melbourne, Australia and Google).

The conference would not have been possible without the enthusiasm of the
members of the Program Committee; their professionalism and their helpfulness were
exemplary. For the work of the Program Committee and the compilation of the pro-
ceedings, the EasyChair system was employed, which was extermely useful. Finally,
we would like to thank all the authors for their submissions, their willingness to
continue improving their papers, and their presentations!

April 2016 Ivan Lanese
Simon Devitt

Organization

Program Committee

Michael Bremner University of Technology, Sydney, Australia
Andrew Cross IBM T.J. Watson Research Center, USA
Simon Devitt NII, Japan
Gerhard Dueck University of New Brunswick, Canada
Simon Gay University of Glasgow, UK
Robert Glück University of Copenhagen, Denmark
Jarkko Kari University of Turku, Finland
Ivan Lanese University of Bologna, Italy and Inria, France
Michael Miller University of Victoria, Canada
Alexandru Paler University of Passau, Germany
Markus Schordan Lawrence Livermore National Laboratory, USA
Ulrik Schultz University of Southern Denmark, Denmark
Peter Selinger Dalhousie University, Canada
Indranil Sengupta Indian Institute of Technology, Kharagpur, India
Mathias Soeken University of Bremen, Germany
Jean-Bernard Stefani Inria, France
Irek Ulidowski University of Leicester, UK
Benoît Valiron CentraleSupélec, France
Rodney Van Meter Keio University, Japan
Robert Wille University of Bremen, Germany
Tetsuo Yokoyama Nanzan University, Japan

Additional Reviewers

Axelsen, Holger Bock
Cristescu, Ioana
De Vos, Alexis
Giachino, Elena
Kaarsgaard, Robin
Klimov, Andrei

Mezzina, Claudio Antares
Mogensen, Torben Ægidius
Oppelstrup, Tomas
Phillips, Iain
Quaglia, Francesco
Thomsen, Michael Kirkedal

Abstracts of Invited Talks

Classical Problems to Make Quantum
Computing a Reality

Adam C. Whiteside1,2, Austin G. Fowler2,1

1Centre for Quantum Computation and Communication Technology,
School of Physics, The University of Melbourne,Victoria, 3010, Australia

2Google Inc., Santa Barbara, CA 93117, USA
(Dated: April 15, 2016)

Recent experiments have shown exciting progress toward creating reliable quantum
bits (qubits) that will make up tomorrow’s quantum computers. While experiments and
engineers continue to make the physical side a reality, computer scientists and software
engineers will be essential to getting the most out of such expensive hardware. An
entire stack of classical software must be developed, requiring creative solutions to a
broad range of problems. We provide an introduction to quantum computing and an
overview of the problems left to face in an effort to inspire more research in these
important areas.

DEMONIC Programming: A Computational
Language for Single-particle Equilibrium

Thermodynamics, and its Formal Semantics

Samson Abramsky1 and Dominic Horsman2

1Department of Computer Science, University of Oxford, Wolfson Building,
Parks Road, Oxford, OX1 3QD, UK

samson.abramsky@cs.ox.ac.uk
2Joint Quantum Centre Durham-Newcastle, Durham University,

Department of Physics, Rochester Building, Science Laboratories,
South Road, Durham DH1 3LE, UK

dominic.horsman@durham.ac.uk

Abstract. Maxwell’s Demon, ‘a being whose faculties are so sharpened that he
can follow every molecule in its course’, has been the centre of much debate
about his abilities to violate the second law of thermodynamics. Landauer’s
hypothesis, that the Demon must erase its memory and incur a thermodynamic
cost, has become the standard response to Maxwell’s dilemma, and its impli-
cations for the thermodynamics of computation reach into many areas of
quantum and classical computing. It remains, however, still a hypothesis.

Debate over the existence of an erasure cost for information has often centred
around simple toy models of a single particle in a box. Despite their simplicity,
the ability of these systems to accurately represent thermodynamics (specifically
to satisfy the second law) and whether or not they display Landauer Erasure, has
been a matter of ongoing argument. The recent Norton-Ladyman controversy is
one such example.

In this paper we give a computational language for formal reasoning about
thermodynamic systems. We formalise the basic single-particle operations as
statements in the language, and then show that the second law must be satisfied
by any composition of these basic operations. This is done by finding a com-
putational invariant of the system. We show, furthermore, that this invariant
requires an erasure cost to exist within the system, equal to kT ln 2 for a bit of
information: Landauer Erasure becomes a theorem of the formal system. The
Norton-Ladyman controversy can therefore be resolved in a rigorous fashion,
and moreover the formalism we introduce gives a set of reasoning tools for
further analysis of Landauer erasure, which are provably consistent with the
second law of thermodynamics.

Contents

Process Calculi

Rigid Families for the Reversible p-Calculus . 3
Ioana Cristescu, Jean Krivine, and Daniele Varacca

A Calculus for Local Reversibility . 20
Stefan Kuhn and Irek Ulidowski

Static VS Dynamic Reversibility in CCS . 36
Doriana Medić and Claudio Antares Mezzina

Reversing Single Sessions . 52
Francesco Tiezzi and Nobuko Yoshida

Reversible Models

Reversible Causal Graph Dynamics . 73
Pablo Arrighi, Simon Martiel, and Simon Perdrix

Boosting Reversible Pushdown Machines by Preprocessing 89
Holger Bock Axelsen, Martin Kutrib, Andreas Malcher,
and Matthias Wendlandt

Reversible Computation vs. Reversibility in Petri Nets. 105
Kamila Barylska, Maciej Koutny, Łukasz Mikulski,
and Marcin Piątkowski

Programming Languages

Toward an Energy Efficient Language and Compiler for (Partially)
Reversible Algorithms . 121

Nirvan Tyagi, Jayson Lynch, and Erik D. Demaine

Mixing Hardware and Software Reversibility for Speculative Parallel
Discrete Event Simulation . 137

Davide Cingolani, Mauro Ianni, Alessandro Pellegrini,
and Francesco Quaglia

Elements of a Reversible Object-Oriented Language: Work-in-Progress
Report . 153

Ulrik Pagh Schultz and Holger Bock Axelsen

http://dx.doi.org/10.1007/978-3-319-40578-0_1
http://dx.doi.org/10.1007/978-3-319-40578-0_1
http://dx.doi.org/10.1007/978-3-319-40578-0_2
http://dx.doi.org/10.1007/978-3-319-40578-0_3
http://dx.doi.org/10.1007/978-3-319-40578-0_4
http://dx.doi.org/10.1007/978-3-319-40578-0_5
http://dx.doi.org/10.1007/978-3-319-40578-0_6
http://dx.doi.org/10.1007/978-3-319-40578-0_7
http://dx.doi.org/10.1007/978-3-319-40578-0_8
http://dx.doi.org/10.1007/978-3-319-40578-0_8
http://dx.doi.org/10.1007/978-3-319-40578-0_9
http://dx.doi.org/10.1007/978-3-319-40578-0_9
http://dx.doi.org/10.1007/978-3-319-40578-0_10
http://dx.doi.org/10.1007/978-3-319-40578-0_10

Initial Ideas for Automatic Design and Verification of Control Logic
in Reversible HDLs: Work in Progress Report . 160

Robert Wille, Oliver Keszocze, Lars Othmer, Michael Kirkedal Thomsen,
and Rolf Drechsler

Quantum Computing

Design and Fabrication of CSWAP Gate Based on Nano-Electromechanical
Systems . 169

Mert Yüksel, Selçuk Oğuz Erbil, Atakan B. Arı, and M. Selim Hanay

Design of p-Valued Deutsch Quantum Gates with Multiple Control Signals
and Mixed Polarity . 175

Claudio Moraga

Using pDDs for Nearest Neighbor Optimization of Quantum Circuits 181
Robert Wille, Nils Quetschlich, Yuma Inoue, Norihito Yasuda,
and Shin-ichi Minato

Quantum Programming

Circular CNOT Circuits: Definition, Analysis and Application
to Fault-Tolerant Quantum Circuits . 199

Alexandru Paler

Towards Quantum Programs Verification: From Quipper Circuits to QPMC . . . 213
Linda Anticoli, Carla Piazza, Leonardo Taglialegne, and Paolo Zuliani

Circuit Theory

Application of Permutation Group Theory in Reversible Logic Synthesis 223
Dmitry V. Zakablukov

Strongly Universal Reversible Gate Sets . 239
Tim Boykett, Jarkko Kari, and Ville Salo

Enumeration of Reversible Functions and Its Application
to Circuit Complexity . 255

Mathias Soeken, Nabila Abdessaied, and Giovanni De Micheli

A Finite Alternation Result for Reversible Boolean Circuits 271
Peter Selinger

XII Contents

http://dx.doi.org/10.1007/978-3-319-40578-0_11
http://dx.doi.org/10.1007/978-3-319-40578-0_11
http://dx.doi.org/10.1007/978-3-319-40578-0_12
http://dx.doi.org/10.1007/978-3-319-40578-0_12
http://dx.doi.org/10.1007/978-3-319-40578-0_13
http://dx.doi.org/10.1007/978-3-319-40578-0_13
http://dx.doi.org/10.1007/978-3-319-40578-0_14
http://dx.doi.org/10.1007/978-3-319-40578-0_14
http://dx.doi.org/10.1007/978-3-319-40578-0_15
http://dx.doi.org/10.1007/978-3-319-40578-0_15
http://dx.doi.org/10.1007/978-3-319-40578-0_16
http://dx.doi.org/10.1007/978-3-319-40578-0_17
http://dx.doi.org/10.1007/978-3-319-40578-0_18
http://dx.doi.org/10.1007/978-3-319-40578-0_19
http://dx.doi.org/10.1007/978-3-319-40578-0_19
http://dx.doi.org/10.1007/978-3-319-40578-0_20

Syntheses

Generating Reversible Circuits from Higher-Order Functional Programs. 289
Benoît Valiron

A Fast Symbolic Transformation Based Algorithm for Reversible
Logic Synthesis . 307

Mathias Soeken, Gerhard W. Dueck, and D. Michael Miller

Checking Reversibility of Boolean Functions . 322
Robert Wille, Aaron Lye, and Philipp Niemann

Author Index . 339

Contents XIII

http://dx.doi.org/10.1007/978-3-319-40578-0_21
http://dx.doi.org/10.1007/978-3-319-40578-0_22
http://dx.doi.org/10.1007/978-3-319-40578-0_22
http://dx.doi.org/10.1007/978-3-319-40578-0_23

Process Calculi

Rigid Families for the Reversible π-Calculus

Ioana Cristescu1(B), Jean Krivine2, and Daniele Varacca3

1 Harvard Medical School, Boston, USA
ioana cristescu@hms.harvard.edu

2 IRIF - Équipe PPS - Université Paris Diderot, Paris, France
jean.krivine@pps.univ-paris-diderot.fr

3 LACL - Université Paris Est - Créteil, Créteil, France
daniele.varacca@u-pec.fr

Abstract. Rigid families, a causal model for concurrency based on con-
figuration structures, can interpret CCS and the π-calculus. However,
it is also a causal model suited for reversible calculi. In this paper we
use rigid families to give a denotational representation to the reversible
π-calculus. The reversible π-calculus defines a causal semantics for the
π-calculus as well. We discuss the difference in the two causal represen-
tations, in rigid families and in the reversible π-calculus.

Reversible calculi allow one to backtrack computation events as long as the
causal order between events is respected: one cannot undo the cause before the
effect. Moreover, in reversible operational semantics [1–3] backtracking is also
maximally concurrent : any forward execution is a valid backward path.

In this paper we are interested in an extensional or non-interleaving repre-
sentation of reversible calculi and in particular the reversible π-calculus [4]. In
configuration structures [5], one uses sets of events, called configurations, to rep-
resent reachable states of computations. The extensional behaviour of a process
is represented as a domain the elements of which are configurations ordered by
set inclusion. It is noteworthy that such non-interleaving models are implicitly
reversible as the inclusion between configurations dictates the allowed forward
and backward transitions.

Rigid families [6,7] is a non interleaving model that is close to configuration
structures. In this model, configurations are additionally equipped with a partial
order on events, called precedence, that is a temporal relation between computa-
tion events that is made during the run of a process. When two events are not
ordered by precedence one can see them as having occurred either simultane-
ously or in such a way that no common clock can be used to compare them. More
traditional causality and concurrency relations are derivable from precedence.

Though there have been several non interleaving models proposed for process
algebra, one may argue that rigid families is the most suited formalism to study
causal semantics of the π-calculus [7] where two notions of causality coexist.
A first type of causality, induced by the prefix operator, is called structural.

This work was partly supported by the ANR-11-INSE-0007 REVER and by the ICT
COST Action IC1405.

c© Springer International Publishing Switzerland 2016
S. Devitt and I. Lanese (Eds.): RC 2016, LNCS 9720, pp. 3–19, 2016.
DOI: 10.1007/978-3-319-40578-0 1

http://www.pps.univ-paris-diderot.fr/~jkrivine/ANR/REVER/ANR_REVER/Welcome.html
http://www.revcomp.eu

4 I. Cristescu et al.

The second type of causality is contextual and induced by the mechanism of
scope extrusion. We illustrate these two notions with some examples.

The process b〈a〉.a(d) is an example for structural causality: the communica-
tion on channel b occurs always before the one on channel a. The same situation,
this time due to contextual causality, occurs in νa(b〈a〉 | a(d)), where one cannot
use channel a to communicate with the environment as a is private. However,
a can be sent on channel b. The output of a private name a to the context is
traditionally called scope extrusion, and we say that the event that sends a on
channel b is an extruder of a. Once the context receives a it can use it for future
communications. However, contextual causality can also be disjunctive. In the
following process νa(b〈a〉 | c〈a〉 | a(d)) the name is a is private but there are two
possible extruders of a: one on channel b and the other on channel c. Only one of
the two is responsible for the sending of a to the context, but there are executions
in which we cannot tell which of the two is the cause. In the trace

νa(b〈a〉 | c〈a〉 | a(d))
b〈a〉−−→ c〈a〉−−→ a−→ 0

either the output on channel b or the one on channel c is the cause. If the execu-
tion backtracks the communication on b, while b is the cause, we are reaching an
inconsistent state, where the cause is undone before the effect. Thus, detecting
which extruder is the cause of the communication on channel a is important for
a correct backtracking mechanism.

Rigid families can express both structural and contextual causality and dis-
ambiguate examples as the one above. It was therefore postulated (see Ref. [4])
that in addition of being a suitable causal model for the classical π-calculus, rigid
families should naturally represent reversible computations of the π-calculus [4].
This is what this paper investigates.
Outline. This paper is as self contained as space permits although familiarity
with the π-calculus [8] is assumed. In Sect. 1 we briefly introduce the reversible π-
calculus. In Sect. 2 we recall how rigid families are defined and, following Ref. [4],
show how one can interpret the π-calculus. In Sect. 3 we present the first con-
tribution of this paper, which is the interpretation of reversible π-processes in
terms of rigid families. Both the reversible π-calculus and the rigid families pro-
vide a causal semantics for the π-calculus. In Sect. 4 we compare the two. The
second contribution of the paper is presented Sect. 5, where we show an opera-
tional correspondence between reversible π processes and their encoding in rigid
families. We conclude with Sect. 6.

1 The Reversible π-calculus

In this section we give a brief summary of the syntax and the semantics of the
reversible π-calculus. We let the reader refer to Ref. [4] for more details.

Rπ processes use memories, added on top of simple π processes to record
past computations. Every entry in a memory, called an event, can be used to
backtrack. We use the same notations as in Ref. [4]. Denote I the set of event

Rigid Families for the Reversible π-Calculus 5

identifiers, with a distinguished symbol ∗ ∈ I. Let i, j, k range over elements of
I and Δ,Γ range over subsets of I. Terms are built according to the following
grammar:

P,Q:: = 0 ‖ π.P ‖ (P | Q) ‖ νa(P) (π processes)
R,S:: = 0 ‖ m � P ‖ (R | S) ‖ νaΓ (R) (Rπ processes)

m:: = ∅ ‖ � .m ‖ e.m (memory stacks)
e:: = 〈i, k, α〉 (memory events)

α:: = b〈a〉 ‖ b[�/c] ‖ b[a/c] (event labels)

where π:: = b(c) | b〈a〉 | τ denotes π prefixes.
We store two types of information in the memory. The first is a fork symbol

�, which distributes memory stacks whenever processes are forking. Secondly,
events are stored in the memory as triplets of the form 〈i, k, α〉. For any event
e = 〈i, k, α〉, we say that i ∈ I−{∗} is the identifier of e, k ∈ I is the identifier of
its contextual cause and α its label. The label of an event is similar to π prefixes,
except that we also store the substitution in case of a synchronisation.

For all events e = 〈i, k, α〉, we define id(e) = i, c(e) = k and 	(e) = α.
Some syntactically correct processes are not correct semantically. Henceforth

we only consider semantically correct, reachable processes.

Definition 1 (Relations on events [4, Definition 2.2]). Let R be a process,
we define the following relations on events of R.

– Structural causal relation: e′ �R e if there exists m ∈ R such that m =
m2.e.m1.e

′.m0 for some (possibly empty) m2,m1,m0. Structural causality is
propagated by synchronisations, thus we use ��

R to denote the transitive clo-
sure of �R.

– Contextual causal relation: e′ 	R e if c(e) = id(e′).
– Instantiation relation: e′ �R e if e′ �R e and 	(e′) = b[a/c], for some name

a, b, c and c is in subject position in 	(e). Furthermore for all memories m,
we write instm(c) = i if there is an event of the form 〈i, k, b[a/c]〉 in m that
instantiates c. Note that there is at most one such event in m. If no such
event exists in m we write instm(c) = ∗.

For any events e ∈ R and e′ ∈ R such that id(e) = i and id(e′) = j, we use
the overloaded notations i �R j or i 	R j, if e and e′ are in the corresponding
relation. Define in a similar manner i �R j iff e �R e′ for id(e) = i, id(e′) = j
and � �R j, for any j ∈ I.

Definition 2 (Structural congruence [4, Section 2-A]). Structural congru-
ence on monitored processes is the smallest equivalence relation generated by the
following rules:

6 I. Cristescu et al.

P ≡ Q

m � P ≡ m � Q
(π congruence)

m � (P |Q) ≡ (�.m � P | � .m � Q) (distribution memory)
m � νa(P) ≡m νa∅(m � P) with a /∈ m (scope of restriction)

The third rule in the definition above rewrites π-calculus restrictions into
Rπ restrictions. An Rπ restriction is indexed by a set Γ ⊂ I (initially empty)
and behaves as a classical restriction only when Γ = ∅. It will be used to keep
track of past variable scope whenever Γ �= ∅.

Definition 3 (Bound, free and liberated names [4, Section 2-A]). Free
and liberated names are defined inductively on the structure of processes (f(a)
denotes either fn(a) or lib(a) whenever the distinction is irrelevant):

f(νa∅R) = f(R) − {a} (Γ �= ∅) f(νaΓ R) = f(R) ∪ {a}
f(R | S) = f(R) ∪ f(S) fn(b〈a〉.P) = fn(P) ∪ {a, b}
fn(m � P) = nm(m) ∪ fn(P) lib(m � P) = ∅
fn(b(a).P) = {b} ∪ (fn(P) − {a})

with nm(m) being all the names occurring in the memory m. All liberated names
are free. As usual, names which are not free in R are called bound.

1.1 Name Substitution

In the late LTS of the π-calculus substitutions are applied only upon synchronisa-
tion. However, in the case of reversible processes, we do not apply a substitution
directly on the process as it can lead to cases where the backtracking is ambigu-
ous. Instead we use explicit substitutions: the substitutions are recorded in the
memory and are applied only when needed. Therefore, after a synchronisation
we update the memory in order to store the new substitution. A process commu-
nicating on a liberated channel, has to make an assumption on the identity of
the event that made the channel public (via an extrusion), called its contextual
cause. The initial assumption can be made more precise while more structure of
the process is revealed by the LTS, thus we also need to update the contextual
cause.

Definition 4 (Memory updates [4, Definition 2.1]). The synchronisation
update, denoted by R[a/c]@i, replaces the partial substitution [�/c] with the com-
plete substitution [a/c] at the event identified by i ∈ I − {∗}, it is defined as:

(R | S)[a/c]@i = R[a/c]@i | S[a/c]@i

(νa′
Γ R)[a/c]@i = νa′

Γ (R[a/c]@i)
(〈i, , b[�/c]〉.m � P)[a/c]@i = 〈i, , b[a/c]〉.m � P
(m � P)[a/c]@i = m � P otherwise

The contextual cause update, denoted by R[k/k′]@i proceeds similarly but substi-
tutes the old cause k′ for a new one:

Rigid Families for the Reversible π-Calculus 7

(R | S)[k/k′]@i = R[k/k′]@i | S[k/k′]@i

(νaΓ R)[k/k′]@i = νaΓ (R[k/k′]@i)
(〈i, k′, 〉.m � P)[k/k′]@i = 〈i, k, 〉.m � P
(m � P)[k/k′]@i = m � P otherwise

The substitutions on a variable are applied only when a process uses it for a
communication. The public name is thus a name on which all the substitutions
were applied.

Definition 5 (Public label [4, Definition 2.3]). For all process of the form
m � π.P let m[π] be the public label of π. It is defined by lexicographical induc-
tion on the pair (π,m):

∅[a] = a m[b(c)] = m[b](c)
m[b〈a〉] = m[b]〈m[a]〉 (〈i, k, b[c/a]〉.m)[a] = c
(〈i, k, b[�/a]〉.m)[a] = a (�.m)[a] = m[a]
(e.m)[a] = m[a] otherwise

We recall the following notations from Ref. [4]: we write m ∈ R if there exists
a context C[•] such that R = C[m � P]. Similarly we write e ∈ R when there is
m ∈ R such that m = m1.e.m0 for some (possibly empty) m1 and m0. Finally
for all i ∈ I we write i ∈ R if there exists e ∈ R such that id(e) = i or c(e) = i.

1.2 The LTS

The label ζ of a transition t : R
ζ−→ S is a quadruple of the form (i, j, k) : α where

i ∈ I − {∗} is the identifier of t, j ∈ I is the instantiator of i and k ∈ I is the
contextual cause of i. The labels α are built on the following grammar:

α:: = b(c)‖b〈a〉‖b(νaΓ)

where b(νaΓ) corresponds to the bound output of the π-calculus, whenever
Γ = ∅, and otherwise corresponds to a free output, decorated with a set of
event identifiers. We extend the subj and obj functions from the π-calculus in a
straightforward manner in order to include labels b(νaΓ).

The labelled transition system of Rπ can be divided into positive rules, pre-
sented in Fig. 1, and negative rules, derived from the positive ones by simply
inverting the rules and keeping the side conditions invariant. We denote

ζ−→ the

positive transitions and
ζ−
−−→ the backward ones. The notation i =∗ j, for i, j ∈ I,

stands for ∗ ∈ {i, j} or i = j.
Note that the complete positive LTS contains also the symmetrical rules for

the Com+, Close+ and Par+ rules with respect to the | operator.

2 Rigid Families for the π-Calculus

In this section we introduce the rigid families [9] and recall how they can be used
as a model for the π-calculus [7]. We first introduce unlabelled rigid families, and
then, using the set of labels of the π-calculus, we define the labelled rigid families.

8 I. Cristescu et al.

In+
i /∈ m j = instm(b)

m � b(c).P
(i,j,∗):m[b(c)]−−−−−−−−−→ 〈i, ∗, b[�/c]〉.m � P

Out+
i /∈ m j = instm(b)

m � b〈a〉.P (i,j,∗):m[b〈a〉]−−−−−−−−−→ 〈i, ∗, b〈a〉〉.m � P

Open+
R

(i,j,k):α−−−−−→ R′ α = b〈a〉 ∨ α = b〈νaΓ ′〉
νaΓ R

(i,j,k):b〈νaΓ 〉−−−−−−−−−→ νaΓ+iR′
New+

R
ζ−→ R′

νaΓ R
ζ−→ νaΓ R′

a /∈ ζ

Cause ref+
R

(i,j,k):α−−−−−→ R′ a ∈ subj(α)

νaΓ R
(i,j,k′):α−−−−−−→ νaΓ R′

[k′/k]@i

eitherk = k′

or∃k′ ∈ Γ, k �R k′

Com+
R

(i,j,k):b〈a〉−−−−−−−→ R′ S
(i,j′,k′):b(c)−−−−−−−−→ S′

R | S
(i,∗,∗):τ−−−−−→ R′ | S′

[a/c]@i

k =∗ j′

k′ =∗ j

Close+
R

(i,j,k):b〈νaΓ 〉−−−−−−−−−→ R′ S
(i,j′,k′):b(c)−−−−−−−−→ S′

R | S
(i,∗,∗):τ−−−−−→ νaΓ (R′ | S′

[a/c]@i)

k =∗ j′

k′ =∗ j
with a 	∈ fn(S) whenever Γ = ∅

Par+
R

(i,j,k):α−−−−−→ R′

R | S
(i,j,k):α−−−−−→ R′ | S

bn(α) ∩ fn(S) = ∅, i /∈ S Mem+
R ≡m S

ζ−→ S′ ≡m R′

R
ζ−→ R′

Fig. 1. The positive rules of the LTS

2.1 The Unlabelled Rigid Families

A set equipped with a partial order is denoted x, with |x| the underlying set and
e ≤x e′ whenever (e, e′) ∈ x. The partial orders are called precedences, and they
represent temporal ordering between the events.

Definition 6 (Rigid families [7, Definitions 1 and 2]).

– Rigid inclusion of partial orders x � y is defined iff the following hold:

|x| ⊆ |y| and

{
∀e, e′ ∈ x : e ≤x e′ ⇐⇒ e ≤y e′

∀e ∈ y,∀e′ ∈ x, e ≤y e′ =⇒ e ∈ x

– A rigid family F = (E,C) is a set of events E and a non-empty family C of
partial orders, called configurations, such that ∀x ∈ C, |x| ∈ P(E) and C is
downward closed w.r.t. rigid inclusion: ∀y � x, y ∈ C.

– A rigid morphism on rigid families f : (E,C) → (E′, C ′) is a partial function
on events f : E ⇀ E′ that is local injective:

for all x ∈ C, e, e′ ∈ x, f(e) = f(e′) =⇒ e = e′

and that extends to a (total) function on configurations:

f(x) = x′ iff

{
|x′| = {f(e) | e ∈ x}
e ≤x e′ ⇐⇒ f(e) ≤x′ f(e′)

Rigid Families for the Reversible π-Calculus 9

Rigid families and their morphisms form a category. Next, let us define some
operations on rigid families. In the following E� = E ∪ {�}.

Definition 7 (Operations on rigid families [7, Definition 6]).

1. Product. Let � denote undefined for a partial function. Define (E,C) =
(E1, C1)× (E2, C2) where E = E1 ×� E2 is the product in the category of sets
and partial functions with the projections σ1 : E → E�

1 , σ2 : E → E�
2 . Define

the projections π1 : (E,C) → (E1, C1), π2 : (E,C) → (E2, C2) such that
π1(e) = σ1(e) and π2(e) = σ2(e) and the collection of configurations x ∈ C
such that the following hold:
(a) x is a partial order with |x| ∈ P(E);
(b) π1(x) ∈ C1 and π2(x) ∈ C2;
(c) ∀e, e′ ∈ x, if π1(e) = π1(e′) �= � or π2(e) = π2(e′) �= � then e = e′.
(d) ∀e, e′ ∈ |x|, e <x e′ ⇐⇒ π1(e) <π1(x) π1(e′) and π2(e) <π2(x) π2(e′),

where πi(e) defined.
(e) ∀y � x we have that π1(y) ∈ C1 and π2(y) ∈ C2.

2. Restriction. Define the restriction of an upward closed set of configurations
X ⊆ C as (E,C) � X = (∪C ′, C ′) with C ′ = C \ X. We equip the operation
with a projection π : (E,C) � X → (E,C) such that π is the identity on
events.

3. Prefix. Define e.(E,C) = (e ∪ E,C ′ ∪ ∅), for e /∈ E where

x′ ∈ C ′ ⇐⇒ x′ =
({e <x′ e′ | ∀e′ ∈ x} ∪ x

)
for some x ∈ C.

Let π : e.(E,C) → (E,C) the projection such that π(e) is undefined and π is
the identity on the rest of the events.

Causality and concurrency. Precedence is a partial order that is local to a con-
figuration, but one may also define a global (partial) order as follows.

Definition 8 (Causality [7, Definition 3]). Let e, e′ ∈ E for (E,C) a rigid
family. Define e′ < e if there exists x ∈ C such that e, e′ ∈ x and for every
y ∈ C, if e, e′ ∈ y then e′ <y e.

We can generalise Definition 8 to define disjoint causality: i.e. an event e1 is
caused by either e2 or e3.

Definition 9 (Disjoint causality [7, Definition 4]). Let (E,C) a rigid fam-
ily and e ∈ E, X ⊂ E such that e /∈ X. Then X is a disjoint causal set for e,
denoted X < e iff the following hold:

1. disjointness ∀e′ ∈ X, ∃x ∈ C such that e′ <x e and ∀e′′ ∈ X \ e′, e′′ �<x e.
2. completeness ∀x ∈ C, e ∈ x =⇒ ∃e′ ∈ X such that e′ <x e;

In particular e′ < e whenever {e′} < e.

Definition 10 (Concurrency [7, Definition 5]). Let (E,C) a rigid family
and e, e′ ∈ E. Define e�e′ ⇐⇒ ∃x ∈ C, e, e′ ∈ x such that e′ �≤x e and e �≤x e′.

Example 1. Consider as an example the rigid family in the left of Fig. 2 corre-
sponding to the product of (∅ ≺ {e1}) and (∅ ≺ {e2}). We have that e1�e2
thanks to the configuration {e1, e2}.

10 I. Cristescu et al.

∅

e1

e1 < e2

e2

e2 < e1e1, e2

(e1, e2)

∅

b〈a〉

b〈a〉 < a

Fig. 2. Examples of rigid families

2.2 The Labelled Rigid Families for the π-Calculus

Definition 11 (Labelled rigid families [7, Definition 7]). A labelled rigid
family F = (E,C, 	,P) is a rigid family equipped with a distinguished set of
names P (the private names of F) and a labelling function 	 : E → L, where L
is the set of labels.

As in Rπ we apply the substitutions only when needed. Let Σ be the set of
all name substitutions. Consider the function σx : x → Σ that returns a set of
substitutions in x. We can then apply the substitutions to the label of e.

Definition 12 (Substitution [7, Definition 13]). We define σx by induction
on the partial order in x:

σ∅ =∅
σx =σx\e if 	(e) �= (d(a), b〈a′〉)

σx\e ∪ {a′/a} if 	(e) = (d(a), b〈a′〉) and {a′′/a′} /∈ σx\e

σx\e ∪ {a′′/a} if 	(e) = (d(a), b〈a′〉) and {a′′/a′} ∈ σx\e

Define 	x(e) = 	(e)σx, where(
d(a)

)
σx = d′(a) if {d′/d} ∈ σx

(
b〈a〉)σx = b′〈a′〉 if {b′/b}, {a′/a} ∈ σx

d(a) otherwise b〈a′〉 if {a′/a} ∈ σx(
(α, β)

)
σx =

(
(α)σx, (β)σx

)
b′〈a〉 if {b′/b} ∈ σx

b〈a〉 otherwise

The label 	x(e) is the public label of an event, similar to the public label in Rπ.
The product of rigid families, as in other models for concurrency [10,11], cre-

ates all pairs of events that respects the constraints imposed by the morphisms.
Labels are then used to detect and remove the events that do not correspond to
events in the parallel composition of processes. We do not give here the formal
definition of an allowed label1. Intuitively, disallowed labels cannot occur during
a run of the encoded process. We then extend the operations of Definition 7 in
order to take labels into account.

1 The reader can refer to the appendix or to [7] for the formal definition.

Rigid Families for the Reversible π-Calculus 11

Definition 13 (Dynamic label [7, Definition 17]). Define the dynamic label
of an event as 	̂x(e) = 	x(e) if 	x(e) is allowed and ⊥ otherwise.

Definition 14 (Operations on labelled rigid families [7, Definition 10]).

1. Restriction of a name. Let a be a free name. Then (E,C, 	,P) � a =
(E,C, 	,P ∪ {a}) � X, where x ∈ X iff ∃e ∈ x such that 	̂x(e) = ⊥.

2. Prefix. Define α.(E,C, 	,P) = (E′, C ′, 	′,P) where, for some e /∈ E,
e.(E,C) = (E′, C ′) and 	′(e) = α and 	′(e′) = 	(e′) for e′ �= e.

3. Product. Let (E,C) = (E1, C1) × (E2, C2) be the product and π1, π2 the
projections πi : (E,C) → (Ei, Ci). Then

(E1, C1, 	1,P1) × (E2, C2, 	2,P2) = (E,C, 	,P1 ∪ P2)

where 	(e) =
{

	i(πi(e)) if π3−i(e) = �(
	1(π1(e)), 	2(π2(e2))

)
otherwise

4. Parallel composition. Define

(E1, C1, 	1,P1) | (E2, C2, 	2,P2) =
(
(E1, C1, 	1,P1) × (E2, C2, 	2,P2)

)
� X

where x ∈ X iff ∃e ∈ x such that 	̂x(e) = ⊥.

A rigid family F is sound iff ∀x ∈ F , ∀e ∈ x, 	̂x(e) �= ⊥. All operations
defined above preserve the class of sound rigid families. The interpretation of a
π process as a rigid family is defined by induction on the structure of a term:

[[α.P]] = α.[[P]] [[P |Q]] = [[P]]|[[Q]] [[νa(P)]] = [[P]] � a [[0]] = 0

One can then show that the encoding is correct by showing that there is
an operational correspondence between π-processes and their encoding in rigid
families. This consists in introducing an LTS defined on rigid families and then
establishing a bisimulation between P and [[P]].

∅

b〈a〉 c〈a〉

b〈a〉
c〈a〉b〈a〉 < a c〈a〉 < ab〈a〉 < c〈a〉 c〈a〉 < b〈a〉

b〈a〉 < c〈a〉 < a c〈a〉 < b〈a〉 < a

b〈a〉 < a < c〈a〉 c〈a〉 < a < b〈a〉c〈a〉 < a,
b〈a〉 < a

b〈a〉 < c〈a〉,
b〈a〉 < a

c〈a〉 < b〈a〉,
c〈a〉 < a

b〈a〉 < a,
c〈a〉

c〈a〉 < a,
b〈a〉

Fig. 3. νa(b〈a〉 | c〈a〉 | a) in rigid families

12 I. Cristescu et al.

Example 2. Consider first the encoding of the process b〈a〉.a depicted in the right
of Fig. 2, where events are replaced by their labels. We have that {b〈a〉} is the
(only) causal set for a, that is b〈a〉 < a. Moreover, the process νa(b〈a〉 | a) has
the same interpretation as b〈a〉.a.

Let us now consider the process νa(b〈a〉 | c〈a〉 | a) with its encoding in
rigid families presented in Fig. 3. The disjoint causal set for the event labelled a
consists of the events labelled b〈a〉 and c〈a〉, that is {b〈a〉, c〈a〉} < a.

3 Encoding the Reversible π-Calculus

In this section we present our first contribution, which consists in interpreting
reversible π-processes in rigid families. We use a similar encoding to the one
proposed in Ref. [12] for the encoding of reversible CCS in configuration struc-
tures. However, there are notable differences due to name substitution and the
extrusion of private names, mechanisms specific to the π-calculus.

The interpretation of a reversible process R consists in a tuple (F , x), where
x ∈ F is a configuration, called the address of R in F . The tuple (F , x) can

mimick the computations of R: for every forward transition R
(i,j,k):α−−−−−→ S there

exists a configuration y ∈ F such that y = x ∪ {e} and 	y(e) = α. Similarly, for

a backward transition R
(i,j,k):α−
−−−−−−→ S, there exists y ∈ F such that x = y ∪ {e}

and 	y(e) = α. The new configuration y is then the address of S inside the same
rigid family F .

The configuration x = ∅ of a rigid family F corresponds to the initial state of
a computation, that is a process with an empty memory. A reversible process R
can backtrack all events in its memory until the process with an empty memory
is reached. We call this process the origin of R and denote it OR. We apply an
erase function on OR, denoted ε, which consists in simply removing the empty
memory from the structure of the process. Thus one obtains a π process, which
is then encoded in a rigid family using the operations in Definition 14.

In order to interpret a reversible process R one has first to backtrack R to its
origin and encode ε(OR) in a rigid family F . The encoding of R is then defined
by induction on a (forward) trace σ : OR −→� R. The address of the origin
is the empty set in F and every transition in σ is mimicked by a transition
inside the same rigid family F . We denote the interpretation of R as [[R]]σ =
(F , x). The configuration x is thus the address of R, which corresponds to the
computational state of R, in the sense that they agree on all possible future and
past computations.

In the memory of a reversible process we also encode causal relation between
events (see Definition 1). We want to ensure that we have the same causal infor-
mation in the address of the process. For example, consider the origin process

P = a〈d〉.b〈c〉.Q | b〈c〉.Q and the trace ∅ � P
(i′,∗,∗):a〈d〉−−−−−−−→ R′ (i,∗,∗):b〈c〉−−−−−−−→ R, where

we know, by inspecting the memory of R whether i <R i′ or not. We keep track
of causality in the rigid family by defining a label and order-preserving bijection

Rigid Families for the Reversible π-Calculus 13

between events in R and events in the address of R. The bijection is augmented
whenever R does a forward computation and reduced when R backtracks.

Definition 15 (Encoding an Rπ process in rigid families).

[[R]]σ = (F , adF (∅, ∅, OR −→� R)) where F = [[ε(OR)]], σ : OR −→� R and

adF (x1, f, R1
(i,j,k):α−−−−−→ R2 −→� R3) = adF (x2, f ∪ {e ↔ i}, R2 −→� R3)

where

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(a) ∃x2 ∈ F , x1 ≺ x2and |x2| = |x1| ∪ {e}
(b) 	x2(e) = α

(c) [[ε(R2)]] =
(F \ x2

)
(d) ∀l ∈ I(R2), l <R2 i and l �= k ⇐⇒ f(l) <x2 e

(e) f(k) <x2 e

adF (x, f,R2 −→� R3) = x if R2 = R3

In the definition above we denote adF (x, f,R −→� S) a function that com-
putes the address of S, given F a rigid family, with x ∈ F and f a label and
order-preserving bijection between events in R and events in x. It also takes as
input a trace from R to S. We initially call the function on the empty set of
F and with an empty bijection, that is adF (∅, ∅, OR −→� R), and proceed by
induction on the trace σ : OR −→� R.

In computing the next address there are several constraints that have to be

met, described informally above. Consider the transition R1
(i,j,k):α−−−−−→ R2 and let

x1 be the address of R1 in F . Then x2 is the address of R2 if x1 can be extended
to x2 (condition a) with an event e that has the corresponding label (condition
b) and causal relations in x2 (conditions d and e). Condition c ensures that R2

and x2 agree on future computations.

Remark 1 (Auto-concurrency). The encoding looks for a configuration that has
the same past and the same future as the process. It might not always be the
case that such a configuration is unique. For instance in the process a | a one
cannot choose between the two identical singleton configurations. Such processes
exhibit auto-concurrency [13] and for simplicity we do not consider them in this
paper.

Lemma 1 (Soundness of the encoding). Let R be an Rπ process, OR its
origin and σ : OR −→� R a trace. Denote F = [[ε(OR)]] the encoding of OR.
There exists x ∈ F such that [[R]]σ = (F , x).

Proof (Sketch). We use the correspondence between the π-calculus and Rπ from
Ref. [4]. Also we have to define an LTS on rigid families and use the corre-
spondence between the π-calculus and rigid families from Ref. [7]. We can then
proceed by induction on the trace.

Lemma 1 shows that the encoding is correct: a configuration corresponding
to the computational state of a reversible process always exists. The encoding is

14 I. Cristescu et al.

parametric on the trace. Given a trace from the origin of a process R that leads
to R there exists a unique2 configuration that corresponds to R. However the
configuration corresponding to R should be the same for any trace OR −→� R.
This is required by the notion of backtracking used in reversible operational
semantics: any forward execution is a valid backward path.

Lemma 2. Let R a process. There exists x ∈ [[ε(OR)]] a configuration such that
for all σ : OR −→� R one has [[R]]σ = x.

Proof. It follows from configurations being uniquely identified by the order on
the events, by their labels and by their “future”.

4 Causality

In Sect. 3 we presented the encoding of an Rπ term in rigid families. Then in
Sect. 5 we will see that we can establish a (weak form) of operational correspon-
dence between Rπ processes and their interpretation in rigid families. Usually,
the operational correspondence consists in establishing a bisimulation relation
between a process and its encoding. However we cannot show this (strong form
of) correspondence as a reversible π process and its interpretation in rigid fam-
ilies are not bisimilar. This is due, intuitively, to the fact that in rigid families
all temporal orderings are explicit, not just the causal ones. In this section we
make this intuition more concrete, by discussing the difference in the causality
relations induced in Rπ and in rigid families.

We say that a configuration x in F is a temporal order if for two events
e, e′ ∈ x such that e <x e′, ∃y ∈ F with e�ye′. On the other hand, it is a causal
order if whenever e, e′ ∈ x such that e <x e′, �y ∈ F with e�ye′.

Example 3. Consider the process P = a〈d〉 | b〈c〉 with its encoding [[P]] depicted
in Fig. 4, where events are replaced by labels. The configurations {a〈d〉 < b〈c〉}
and {b〈c〉 < a〈d〉} are temporal, while {a〈d〉, b〈c〉} is causal. There is no back-
and-forth bisimulation between P and [[P]]. In a temporal configuration (for
instance {a〈d〉 < b〈c〉}) backtracking can only follow the exact order of the
forward execution.

∅

{a〈d〉}

{a〈d〉 < b〈c〉}

{b〈c〉}

{b〈c〉 < a〈d〉}{a〈d〉, b〈c〉}

∅

{a〈d〉} {b〈c〉}

{a〈d〉, b〈c〉}

Fig. 4. a〈d〉 | b〈c〉 in rigid families vs. the LTS of a〈d〉 | b〈c〉 in RCCS

2 From Remark 1.

Rigid Families for the Reversible π-Calculus 15

The causal configurations capture the structural causality induced by a term.
Thus one should consider only the orders that are causal and ignore the ones
that are temporal. We can define an operator, applied on a rigid familiy that
removes the temporal configurations. This step is not compositional, however.

Lemma 3 (Maximal concurrency). Let F a rigid family. {F} is obtained
by removing all temporal configurations in F :

{F} = F � X where
x ∈ X ⇐⇒ ∀e, e′ ∈ x if e <x e′ then ∀Y ⊆ E with Y < e, e′ /∈ Y.

Proof. We show that the set X defined above is upward closed. The rest follows
from the restriction operator in Definition 7. X is upward closed follows from
the rigid inclusion between sets.

Remark 2 (Maximal and minimal concurrent versions of a rigid family). {[[P]]}
preserves all causal configurations and removes all temporal ones. Let us define
an opposite operation that removes causal configurations. Denote {{[[P]]}} the
rigid family [[P]] � X, where

x ∈ X ⇐⇒ ∃e, e′ ∈ x, e�xe′.

The rigid family {{[[P]]}} contains all temporal configurations in [[P]]. It follows
from a property on rigid families [7] which states that whenever two events are
concurrent in a configuration, there exist two temporal configurations that orders
the two events.

Considering only forward transitions, one can establish bisimulations between
{{[[P]]}} and either {[[P]]} or [[P]]. Intuitively, the only difference between the
three encodings consists in the backtracking mechanism, and thus the three are
bisimilar for the forward computations.

However, rigid families cannot capture the contextual causality as it is defined
in Rπ.

Example 4. Consider P = νa(b〈a〉.a | c〈a〉) a process with a private name a. The
event labelled b〈a〉 is both a contextual and a structural cause for the input on
a. The encoding of P is shown in Fig. 5. Denote with e, e′, e′′ three events such
that 	(e) = b〈a〉, 	(e′) = c〈a〉 and 	(e′′) = a. The only causal set for event e′′ is
the singleton X = {e} < e′′. The set Y = {e, e′} is not disjoint and it is not a
causal set for e′′. Lemma 3 applied on this structure yields the rigid family at
the right in Fig. 6.

In Rπ however, there exists a trace where e′′ chooses e′ as contextual cause.
In such a trace it is not possible then to reverse neither e or e′′ before e. The
LTS of P is depicted in the left of Fig. 6 and indeed, it contains an additional
configuration corresponding to the case where e′ is a contextual cause.

Note that the encoding of νa(b〈a〉.a | c〈a〉) is isomorphic to the encoding of
b〈a〉.a | c〈a〉. It suggest that in order to capture the causality in Rπ, one needs
an ad-hoc condition on rigid families that takes into account labels and private
names.

16 I. Cristescu et al.

∅

b〈a〉 c〈a〉

b〈a〉, c〈a〉b〈a〉 < ab〈a〉 < c〈a〉 c〈a〉 < b〈a〉

b〈a〉 < a
c〈a〉b〈a〉 < a < c〈a〉 c〈a〉 < a,

b〈a〉 < a
b〈a〉 < c〈a〉 < a c〈a〉 < b〈a〉 < a

Fig. 5. [[νa(b〈a〉.a | c〈a〉)]] ∼= [[(b〈a〉.a | c〈a〉)]]

Rπ and rigid families both induce causal semantics for the π-calculus. Both
integrate reversibility and account for a contextual cause in the case of scope
extrusion. Which one is better?

The causal relation in rigid families is coarser than the one in Rπ but it
is sufficient for the correctness criteria for reversibility mentioned in the intro-
duction, which consists in causal consistency and maximal concurrency. These
correctness criteria do not require to explicitly choose a contextual cause when
a structural one is available. In rigid families, as all temporal orders are explicit,
there are configurations where an event is preceded by several contextual causes.
It is however not a global relation and it is up to the context to materialise it
(i.e. to transform precedence into structural causality).

The contextual causality induced in Rπ satisfies the correctness criteria of
reversibility as well. Moreover it also captures the information flow. The con-
textual cause of an event always precedes the event due to a structural link in
the context. It is the scope extrusion mechanism that guarantees that such a

∅

b〈a〉 c〈a〉

b〈a〉, c〈a〉b〈a〉 < a

b〈a〉 < a
c〈a〉

c〈a〉 < a,
b〈a〉 < a

∅

b〈a〉 c〈a〉

b〈a〉, c〈a〉b〈a〉 < a

b〈a〉 < a
c〈a〉

Fig. 6. The LTS in Rπ of νa(b〈a〉.a | c〈a〉) and {[[νa(b〈a〉.a | c〈a〉)]]}

Rigid Families for the Reversible π-Calculus 17

structural causality exists in the context. In the process P = νa(b〈a〉.a | c〈a〉)
of Example 4 if the contextual cause of a is c〈a〉, then a possible reduction con-
text is C[·] = c(d).d. Thus the synchronisation on channel c structurally precedes
the one on channel a. This type of causality requires one to inspect the labels and
track the information flow of a name, which is possible in the syntactic setting
of Rπ but it is a contrived relation in rigid families.

5 Operational Correspondence Between Rπ and Rigid
Families

We have seen in the example above that we do not have a bisimulation between
R and [[R]]. Instead we show Theorem 1 where we only consider transitions on
rigid families where both the source and the target of the transitions are inter-
pretations of processes. Let us first define a reversible LTS on rigid families.

Definition 16 (Reversible LTS in rigid families). Define (F , x1)
�(e)−−→

(F , x2) for x1 ≺ x2 and |x2| = |x1| ∪ {e}. Similarly, (F , x2)
�(e)−
−−−→ (F , x1). For

x1, x2 above, one can write x1
e−→ x2 and x2

e−
−−→ x1.

Theorem 1 (Operational correspondence between an Rπ process R
and its image in rigid families). Let R a process and [[R]] = (F , x) its
interpretation.

1. ∀α, S and i, j, k ∈ I such that R
(i,j,k):α−−−−−→ S then [[R]] α−→ [[S]];

2. ∀α, S and i, j, k ∈ I such that R
(i,j,k):α−
−−−−−−→ S then [[R]] α−

−−→ [[S]];

3. ∀e ∈ E, (F , x)
�(e)−−→ (F , y) such that ∃S with (F , y) = [[S]] then for some

i, j, k ∈ I, R
(i,j,k):α−−−−−→ S;

4. ∀e ∈ E, (F , x)
�(e)−
−−−→ (F , y) such that ∃S with (F , y) = [[S]] then for some

i, j, k ∈ I, R
(i,j,k):α−
−−−−−−→ S and [[S]] = (F , y).

Proof (Sketch).

1. As R
(i,j,k):α−−−−−→ S, OR = OS and there exists a trace OR −→� R

(i,j,k):α−−−−−→
S. We have that [[S]] = (F , xs), where xs = adF (∅, f∅, OR −→� S) =
adF (∅, f∅, OR −→� R

i:α−−→ S) and xR ≺ xS , xR \ xS = {e}, 	(e) = α by
Lemma 1. As [[R]] = (F , xR) it follows that (F , xR) α−→ (F , xS).

2. Consider the transition (F , x) e−→ (F , y) with y ∈ F , |y| = |x| ∪ {e} and
x ≺ y. We have that [[ε(R)]] = F \ x and {e} is a configuration in [[ε(R)]].

Then [[ε(R)]] e−→ [[ε(R)]] \ {e} =⇒ ε(R)
�(e)−−→ P and [[P]] ∼= [[ε(R)]] \ {e} which

follows from the correspondence between the π-calculus and the rigid families.

It implies that ∃i, j, k.R
(i,j,k):�(e)−−−−−−−→ S and ε(S) = P using the correspondence

between the π-calculus and Rπ. From Definition 15, the encoding of R in

18 I. Cristescu et al.

rigid families uses a bijection fR : I(R) ↔ x. We extend the bijection to
f = fR ∪ {e ↔ i}. We have that there exists S and i, j, k ∈ I(S) such that

R
(i,j,k):�(e)−−−−−−−→ S. First we show that for all i′ ∈ I(R) if f(i′) ≤ e then either

i′ <s i or i′ = k. Secondly we show that we can derive R
(i,j,k):�(e)−−−−−−−→ S for k

such that if ∃e′ ∈ y, e′ <y e and e′ �< e then f(k) = e′. Lastly we show that
for such an S we have that [[S]] = (F , y).

6 Conclusion

In this paper we propose a denotational model for the reversible π-calculus,
consisting of (i) interpretating the reversible π-calculus in rigid families and (ii)
establishing an operational correspondance. Rigid families can be viewed as a
causal model for process calculi. Similarly, the reversible π-calculus defines a
causal semantics for the π-calculus. We compare the two causal models and
show that there are subtle differences between the two, due to intuitively, the
syntactic nature of causality in the reversible π-calculus.

Configuration structures and rigid families are causal models of process alge-
bra and are thus natural fit for causal consistent reversibility. Out-of-order
reversibility [14] on the other hand, cannot be interpreted in such denotational
models.

References

1. Danos, V., Krivine, J.: Reversible communicating systems. In: Gardner, P.,
Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp. 292–307. Springer,
Heidelberg (2004)

2. Phillips, I., Ulidowski, I.: Reversibility and models for concurrency. Electron. Notes
Theor. Comput. Sci. 192, 93–108 (2007)

3. Lanese, I., Mezzina, C.A., Stefani, J.-B.: Reversing higher-order Pi. In: Gastin,
P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 478–493. Springer,
Heidelberg (2010)

4. Cristescu, I., Krivine, J., Varacca, D.: A compositional semantics for the reversible
π-calculus. Proc. LICS 2013, 388–397 (2013)

5. van Glabbeek, R.J., Plotkin, G.D.: Configuration structures. Proc. LICS 1995,
199–209 (1995)

6. Castellan, S., Hayman, J., Lasson, M., Winskel, G.: Strategies as concurrent
processes. In: Proceedings of the MFPS XXX, ENTCS, vol. 308, pp. 87–107 (2014)

7. Cristescu, I.D., Krivine, J., Varacca, D.: Rigid families for CCS and the π-calculus.
In: Leucker, M., Rueda, C., Valencia, F.D. (eds.) ICTAC 2015. LNCS, vol. 9399,
pp. 223–240. Springer, Heidelberg (2015)

8. Milner, R.: Communicating and Mobile Systems: The π-Calculus. Cambridge Uni-
versity Press, New York (1999)

9. Hayman, J., Winskel, G.: Event structure semantics for security protocols. Sub-
mitted for Publication (2013)

10. Crafa, S., Varacca, D., Yoshida, N.: Event structure semantics of parallel extrusion
in the Pi-calculus. In: Birkedal, L. (ed.) FOSSACS 2012 and ETAPS 2012. LNCS,
vol. 7213, pp. 225–239. Springer, Heidelberg (2012)

Rigid Families for the Reversible π-Calculus 19

11. Winskel, G.: Event structure semantics for CCS and related languages. In: Nielsen,
M., Schmidt, E.M. (eds.) Automata, Languages and Programming. LNCS, vol. 140,
pp. 561–576. Springer, Heidelberg (1982)

12. Aubert, C., Cristescu, I.: Reversible barbed congruence on configuration structures.
In: Proceedings of the ICE 2015, EPTCS, vol. 189, pp. 68–85 (2015)

13. van Glabbeek, R.J., Goltz, U.: Refinement of actions and equivalence notions for
concurrent systems. Acta Inf. 37(4/5), 229–327 (2001)

14. Phillips, I., Ulidowski, I., Yuen, S.: A reversible process calculus and the modelling
of the ERK signalling pathway. In: Glück, R., Yokoyama, T. (eds.) RC 2012. LNCS,
vol. 7581, pp. 218–232. Springer, Heidelberg (2013)

A Calculus for Local Reversibility

Stefan Kuhn(B) and Irek Ulidowski

Department of Computer Science, University of Leicester, Leicester LE1 7RH, UK
{shk12,iu3}@le.ac.uk

Abstract. We introduce a process calculus with a new prefixing oper-
ator that allows us to model locally controlled reversibility. Actions can
be undone spontaneously, as in other reversible process calculi, or as
pairs of concerted actions, where performing a weak action forces undo-
ing of another action. The new operator in its full generality allows us to
model out-of-causal order computation, where effects are undone before
their causes are undone, which goes beyond what typical reversible cal-
culi can express. However, the core calculus, with a restricted form of
the new operator, is well behaved as it satisfied causal consistency. We
demonstrate the usefulness of the calculus by modelling the hydration
of formaldehyde in water into methanediol, an industrially important
reaction, where the creation and breaking of some bonds are examples
of locally controlled out-of-causal order computation.

Keywords: Reversible process calculi · Local reversibility · Modelling
of chemical reactions

1 Introduction

There are many different computation tasks which involve undoing of previously
performed steps or actions. Consider a computation where the action a causes
the action b, written a < b, and where the action c occurs independently of a
and b. There are three executions of this computation that preserve causality,
namely abc, acb and cab. We note that a always comes before b. There are
several conceptually different ways of undoing these actions [18]. Backtracking
is undoing in precisely the reverse order in which they happened. So, undo b
undo c undo a is a backtrack of the execution acb. Reversing is a more general
form of undoing: here actions can be undone in any order provided causality is
preserved (meaning that causes cannot be undone before effects). For example,
undo c undo b undo a is a reversal of acb for the events a, b and c above.

In biochemistry, however, there are networks of reactions where actions are
undone seemingly out of causal order. The creation and breaking of molecular
bonds between the proteins involved in the ERK signalling pathway is a good
example of this phenomenon [16]. Let us assume for simplicity that the creation
of molecular bonds is represented by actions a, b, c where, as above, a < b and
c is independent of a and b. In the ERK pathway, the molecular bonds are
broken in the following order: undo a, undo b, undo c, which seems to undo
c© Springer International Publishing Switzerland 2016
S. Devitt and I. Lanese (Eds.): RC 2016, LNCS 9720, pp. 20–35, 2016.
DOI: 10.1007/978-3-319-40578-0 2

A Calculus for Local Reversibility 21

the cause a before the effect b. The first process calculus for the out-of-causal
order reversible computation was proposed in [16], where the calculus CCSK
[13] which is extended with an execution control mechanism for managing the
pattern and the direction of computation. The control mechanism is external
to the processes it controls, and it can have a global scope. Out-of-causal order
computation was also studied in [14,15]. Other reversible process calculi were
proposed in [3–5,8–10,12,13].

We introduced informally a novel and purely local in character mechanism
for undoing of computation in a short paper [7]. Here, we build a process calcu-
lus around this mechanism and give it operational semantics. We then discuss
various properties that hold in the calculus. Most importantly, we show that out-
of-causal order computation can be modelled in the calculus. Hence, in general,
the causal consistency property [4] does not hold. There are reachable states
that can only be arrived at by a mixture of forward and reverse steps. However,
we argue that causal consistency holds in a restricted version of our calculus,
thus the full calculus is in effect a “conceptual” extension of a causally consistent
reversible process calculus. The benefits of the calculus are shown by modelling
hydration of formaldehyde in water. The molecules of formaldehyde and water
are modelled as compositions of carbon, oxygen and hydrogen atoms. When
composed in parallel, the molecules react and the reactions are represented by
sequences of transitions of concerted actions. We are able to represent different
forms of reversibility, including out-of-causal-order reversibility, and computa-
tion can proceed in any directions without external control.

The novel features of our calculus are introduced via an example of catalytic
reaction. Consider two molecules A and B that are only able to bond if assisted
by the catalyst C. We assume A

def
= (a; p).A′, B

def
= (b, p).B′ and C

def
= (a, b).C ′.

We use a new prefix operator (s; p).P where s is a sequence of actions or executed
actions and p is a weak action. Initially the actions in s, p take place, and then
we compute with P . The three molecules can bond by performing synchronously
the matching actions according to the function γ(a, a) = c, γ(b, b) = d and
γ(p, p) = q, producing thus new actions c, d and q. A weak action p can be left
out resulting in the prefix (s; p).P (as in B and C above). Actions in s can take
place in any order, and p can happen if all actions in s have already taken place.
Once p takes place, one of the executed actions in s must be undone immediately:
this is our new mechanism for triggering reverse computation. We shall model
these two almost simultaneous events as a transition of concerted actions. This
is a simple but realistic representation of the mechanism of covalent bonding,
the most common type of chemical bonds between atoms, hence our calculus is
called a Calculus of Covalent Bonding.

Returning to our example, we represent the system of molecules A,B and C
as ((a; p).A′ | (b, p).B′ | (a, b).C ′)\{a, b, p}, where ‘ | ’ is the parallel composition
and ‘\’ the restriction as in CCS and ACP [1,11]. We note that A and B cannot
interact initially since γ(a, b) is not defined. But they can both interact with C:

(a; p).A′ | (b, p).B′ | (a, b).C ′ c[1]−−→ (a[1]; p).A′ | (b, p).B′ | (a[1], b).C ′ d[2]−−→
(a[1]; p).A′ | (b[2], p).B′ | (a[1], b[2]).C ′

22 S. Kuhn and I. Ulidowski

where 1 and 2 are communication keys [13] indicating which pairs of actions
created bonds. Molecules A and B can now do p synchronously, producing action
q. This causes immediately the breaking of the bond c, which means undoing of
actions a in A and C, leaving A and B bonded. We model such pairs of events
by pairs of concerted actions:

(a[1]; p).A′ | (b[2], p).B′ | (a[1], b[2]).C ′

{q[3],c[1]}−−−−−−→ (a; p[3]).A′ | (b[2], p[3]).B′ | (a, b[2]).C ′

The bond 3 on weak actions p is unstable and thus gets promoted to a stable
stronger bond on a and p. Finally, the catalyst dissolves the bond with B:

(a; p[3]).A′ | (b[2], p[3]).B′ | (a, b[2]).C ′ ⇒ (a[3]; p).A′ | (b[2], p[3]).B′ | (a, b[2]).C ′

d[2]−−→ (a[3]; p).A′ | (b, p[3]).B′ | (a, b).C ′

We note that A and B are now bonded although the synchronisation function
did not allow it to happen initially. The main consequence of this is that the
bond between a[3] and p[3] is irreversible, namely it cannot be undone. Looking
at the pattern of doing and undoing of bonds we obtain c[1]d[2]q[3]c[1]d[2]. Since
creation of bonds c and d causes the bond q, we have here an example of out-of-
causal order computation.

Biochemical reactions can also be modelled, for example, with the kappa cal-
culus [6]. Various calculi have also been employed to model biochemical processes
(e.g. [2,5]), where the focus was on the modelling the reaction rates in complex
networks and their interdependence. On the other hand, the question of how
the behaviour of a network emerges out of the behaviour of its components
has not been often addressed. An attempt at a structural modelling was [13],
where global controllers were used to drive reactions forwards and in reverse.
In contrast the calculus introduced in this paper has no global control and the
behaviour of a biochemical network emerges from its components.

2 A Calculus of Covalent Bonding

We define the set of (forward) action labels A which is ranged over by a, b, c, d, e.
We partition A into the set of strong actions, written as SA, and the set of weak
actions WA. Reverse action labels belong to A, with typical members a, b, c, d, e,
and represent undoing of actions. The set P(A ∪ A) is ranged over by L.

Let K be an infinite set of communication keys (or keys for short), ranged
over by k, l,m, n. The Cartesian product A×K, denoted by AK, represents past
actions, which are written as a[k] for a ∈ A and k ∈ K. Correspondingly, we
have the set AK that represents undoing of past actions. We use α, β to identify
actions which are either from A or AK. It will be useful to consider sequences
of actions or past actions, namely the elements of (A ∪ AK)∗, which are ranged
over by s, s′ and sequences of purely past actions, namely the elements of AK∗,

A Calculus for Local Reversibility 23

which are ranged over by t, t′. The empty sequence is denoted by ε and α : s is
the sequence with the head α and the tail s.

We shall also use two sets of auxiliary action labels, namely the set (A) =
{(a) | a ∈ A}, and its product with the set of keys, namely (A)K.

We now define a Calculus of Covalent Bonding, or CCB for short. The syntax
is given below, where f : A → A. We have a set of process identifiers (constants)
PI, with typical elements S, T , which contains the deadlocked process 0. The
set of CCB closed terms is denoted by Proc. We shall refer to closed terms as
processes, and let P,Q,R to range over processes. Each process identifier S has
a defining equation S

def
= P .

P ::= S | (s; b).P | P | Q | P \L | P [f]

We have a prefixing operator (s; b).P , where s is a non-empty sequence of actions
or past actions. The actions in s, which have not happened yet, can happen in
any order. The action b is a weak action in WA and it can only happen after all
actions in s have taken place. Performing b then forces undoing one of the past
actions in s (using the concert rule in Fig. 4). The action after the ; in (s; b).P
can be omitted, in which case the prefixing is simply (s).P , and is the prefixing
in [16]. In this form, one of the actions in s may be a weak action from WA. If
s is a single element sequence, then the action is a strong action in SA and the
prefixing operator is the prefixing of CCS [11]. We often omit trailing 0s so, for
example, (s).0 is written as (s). All actions in s in (s; b).P are strong actions
(in SA).

P | Q represents processes P and Q which can perform actions or reverse
actions on their own, or which can interact with each other according to a com-
munication function γ (much like in ACP [1]). Or, they can perform a pair of
the so-called concerted actions, which is the new feature of our calculus. We also
have the usual restriction (encapsulation) operator \L, where L is a set of labels,
and the relabelling operator [f].

The forward and reverse SOS rules for CCB are in Figs. 2, 3, 4 and 5, where
the rules in Figs. 2 and 3 are influenced by [13]. Since we do not use the relabelling
operator in the systems modelled in this paper, we omit all SOS rules for [f].
Note that the reverse rules in Fig. 3 are simply the symmetric versions of the
corresponding forward rules.

We use two predicates, std(P) : P(Proc) and fsh[m](P) : P(K × Proc) in our
SOS rules. They are defined in Fig. 1. Two further auxiliary functions, k(i) : (A∪
AK)∗ → P(K) and keys(P) :Proc → P(K), are also used. The function k() is
defined as follows: k(ε) = ∅; k(α : s) = {l} ∪ k(s) if α = a[l], a ∈ A, l ∈ K;
and k(α : s) = k(s) if α ∈ A. The function keys() is defined as keys(0) = ∅;

keys(S) = keys(P) if S
def
= P ; keys((s; b).P) = k(s)∪k(b)∪keys(P); keys(P | Q) =

keys(P)∪ keys(Q); and keys(P\L) = keys(P). Informally keys(P) associates with
each P the set of its keys. A process P is standard, written std(P), if it contains
no past actions. A key n is fresh in Q, written fsh[n](Q), if n is not used in Q.
We extend the notion of fresh keys to the sequences of actions and past actions
s and t via the function k().

24 S. Kuhn and I. Ulidowski

std(0)

std(P)

std(S)
S

def
= P

k(s) = ∅ std(P)

std((s; b).P)

std(P) std(Q)

std(P | Q)

std(P)

std(P \ L)

fsh[m](0)

fsh[m](P)

fsh[m](S)
S

def
= P

m /∈ k(s) m �= n fsh[m](P)

fsh[m]((s; b[n]).P)

m /∈ k(s) fsh[m](P)

fsh[m]((s; b).P)

fsh[m](P) fsh[m](Q)

fsh[m](P | Q)

fsh[m](P)

fsh[m](P \ L)

Fig. 1. Predicates std and fsh

act1
std(X) fsh[k](s)

(s, a; b).X
a[k]−−→ (s, a[k]; b).X

act2
X

a[k]−−→ X ′ fsh[k](t)

(t; b).X
a[k]−−→ (t; b).X ′

par
X

a[k]−−→ X ′ fsh[k](Y)

X | Y
a[k]−−→ X ′ | Y

com
X

a[k]−−→ X ′ Y
b[k]−−→ Y ′

X | Y
c[k]−−→ X ′ | Y ′

γ(a, b) = c

res
X

a[k]−−→ X ′

X\L
a[k]−−→ X ′\L

a /∈ L con
X

a[k]−−→ X ′

S
a[k]−−→ X ′

S
def
= X

Fig. 2. Forward SOS rules

The semantics of CCB is given by the labelled transition system (lts),

(Proc, L,→ :⊆ Proc × L × Proc)

where the set of action labels L is AK∪AK∪(AK×AK): it contains the pairs of
concerted actions AK × AK (see Fig. 4) as well as actions and past actions. The
transition relation → is the least relation defined by our SOS rules and reduction
rules in Definition 2.

Figure 4 contains the rule concert that defines when a pair of concerted
actions takes place. We also have two auxiliary rules aux1 and aux2 which define
the auxiliary transition relations needed in the concert rule. Note that aux1 and
aux2 define transitions with the auxiliary labels (b)[k] for all (b) ∈ A and k ∈ K.
Overall, transitions are labelled with a[k] ∈ AK, or with b[l] ∈ AK, or with
concerted pairs {a[k], b[l]}. Note that the concert rule uses lookahead [17].

We also need a reduction relation to define promotion of actions. First we
define free names of processes.

Definition 1. Function fn, with fn :Proc → P(K), is defined as follows: fn(0) =

∅, fn(S) = fn(P) if S
def
= P , fn((α : s; b).P) = {α} ∪ fn(s; b).P), fn((a; b).P) =

{a, b} ∪ fn(P), fn(P | Q) = fn(P) ∪ fn(Q) and fn(P \L) = fn(P)\L.

Definition 2. The reduction relation ⇒ is the smallest reflexive and transi-
tive binary relation that satisfies the following rules: (red1) P | Q ⇒ Q | P ,

A Calculus for Local Reversibility 25

rev act1
std(X) fsh[k](s)

(s, a[k]; b).X
a[k]−−→ (s, a; b).X

rev act2
X

a[k]−−→ X ′ fsh[k](t)

(t; b).X
a[k]−−→ (t; b).X ′

rev par
X

a[k]−−→ X ′ fsh[k](Y)

X | Y
a[k]−−→ X ′ | Y

rev com
X

a[k]−−→ X ′ Y
b[k]−−→ Y ′

X | Y
c[k]−−→ X ′ | Y ′

γ(a, b) = c

rev res
X

a[k]−−→ X ′

X\L
a[k]−−→ X ′\L

a /∈ L rev con
X

a[k]−−→ X ′

X
a[k]−−→ S

S
def
= X ′

Fig. 3. Reverse SOS rules

aux1
std(X) fsh[k](t)

(t; b).X
(b)[k]−−−→ (t; b[k]).X

aux2
X

(b)[k]−−−→ X ′ fsh[k](t)

(t; a).X
(b)[k]−−−→ (t; a).X ′

concert
X

(a)[k]−−−→ X ′ X ′ b[l]−−→ X ′′ Y
α[k]−−→ Y ′ Y ′ d[l]−−→ Y ′′

X | Y
{e[k],f [l]}−−−−−−→ X ′′ | Y ′′

concert act
X

{a[k],b[l]}−−−−−−→ X ′ fsh[k](t)

(t; a).X
{a[k],b[l]}−−−−−−→ (t; a).X ′

concert par
X

{a[k],b[l]}−−−−−−→ X ′ fsh[k](Y)

X | Y
{a[k],b[l]}−−−−−−→ X ′ | Y

concert res
X

{a[k],b[l]}−−−−−−→ X ′

X\L
{a[k],b[l]}−−−−−−→ X ′\L

Fig. 4. SOS rules for concerted transitions. Rule concert applies if 1. α is c or (c) and
γ(a, c) = e for some c ∈ A, and 2. γ(b, d) = f . Rule concert res applies if a, b /∈ L∪ (L).

(red2) P | (Q | R) ⇒ (P | Q) | R, (red3) (P | Q) | R ⇒ P | (Q | R),
(red4) P | 0 ⇒ P , (red5) (P | Q)\L ⇒ P\L | Q if fn(Q) ∩ L = ∅, (red6)
P\L | Q ⇒ (P | Q)\L if fn(Q) ∩ L = ∅, (red7) (s; b).P\(s′; b).P if s′ is a
permutation of s, (prom) (a : t; b[k]) ⇒ (a[k] : t; b) if a ∈ SA, b ∈ WA, (move)
(a : b[k] : s) ⇒ (a[k] : b : s) if a ∈ SA, b ∈ WA, where t ∈ AK∗ and s ∈ (A∪AK)∗.

We have two promotion rules in Definition 2. The rule prom promotes a weak
bond to a strong bond. Since weak bonds are only temporary they get replaced
by bonds on strong actions as soon as these become available. In more detail,
after a bond is created on the weak action b another bond is broken at the
same location involving a strong action, here a. This pair of concerted actions
{b[k], a[l]}, for some l, results in (a : t; b[k]), which is subjected immediately to
bond promotion from a weak b to a strong a, giving us (a[k] : t; b). Now weak b
can bond again. We have another rule move which promotes correspondingly a
weak bond b to a strong a. In order to model what happens in chemical reactions
more faithfully, we assume that prom and move are used as soon as they becomes
applicable. We also have the usual structural congruence rules (sc and rev sc)

26 S. Kuhn and I. Ulidowski

sc
X ⇒∗ Y Y

μ→ Y ′ Y ′ ⇒∗ X ′

X
μ→ X ′

rev sc
X ⇒∗ Y Y

μ→ Y ′ Y ′ ⇒∗ X ′

X
μ→ X ′

Fig. 5. Structural congruence rules

in Fig. 5, where μ ∈ AK ∪ AK ∪ (AK × AK), which combine potentially several
reductions (including prom reductions) with transitions.

Definition 3. A process P is consistent if std(P) or Q →∗ P for some process
Q such that std(Q).

Example 1. Consider the process (a; b) | a | b with γ(a, a) = c and γ(b, b) = d.
After the initial synchronisation of actions a, which produces the transition c[1],
we have a transition with a pair of concerted actions by rule concert in Fig. 4

(a[1]; b) | a[1] | b
{d[2],c[1]}−−−−−−→ (a; b[2]) | a | b[2]

since (a[1]; b)
(b[2])−−−→ (a[1]; b[2])

a[1]−−→ (a; b[2]) and a[1] | b
b[2]−−→ a[1] | b[2]

a[1]−−→
a | b[2].

Example 2. Consider (a[1]; b) | (a[1]; b) | e with γ(a, a) = c and γ(b, b) = d. We
clearly have the following pair of concerted actions

(a[1]; b) | (a[1]; b) | e
{d[2],c[1]}−−−−−−→ (a; b[2]) | (a; b[2]) | e.

There are processes with weak actions that can potentially communicate but
there are no concerted actions due to our SOS rules:

Example 3. Consider (a[1]; b) | (e[2]; b) | (a[1], e[2])with γ(a, a)=c and γ(b, b)=d.

It cannot perform any concerted actions: Although (a[1]; b)
(b)[l]−−−→ a[1]−−→ (a; b[l]), for

any l different from 1 and 2, but (e[2]; b) | (a[1], e[2]) cannot perform the (b[l]) tran-
sition since there are no SOS rules for parallel composition and auxiliary actions
(b). This forces us to treat (a[1]; b) and (e[2]; b) as X and Y in the concert rule,
respectively, and we notice that we cannot undo a communication on a or e.

Example 4. The transition (a[1]; b) | a[1] | b
{d[2],c[1]}−−−−−−→ (a; b[2]) | a | b[2] from

Example 1 is followed by the application of the reduction rule prom that moves
the bond 2 from the weak b to the strong a:

(a; b[2]) | a | b[2] ⇒ (a[2]; b) | a | b[2]

As a result, we can bond on the weak b again and, importantly, the a[2] to
b[2] bond is irreversible as γ(a, b) is undefined. Note that reaching this bond by
computing forwards alone is not possible.

A Calculus for Local Reversibility 27

3 Properties of CCB

In this section we establish some properties of the lts for CCB. We start by
showing the expected properties of keys, namely that when an action takes place
it uses a fresh key, and when a past action is undone its key is removed from the
resulting process. We also show that the reverse part of the transition relation
inverts the forward part.

Proposition 1. Let P be consistent. Then

1. If P
a[k]−−→ Q then k /∈ keys(P) and keys(Q) = keys(P) ∪ {k} for all Q.

2. If P
a[k]−−→ Q then k ∈ keys(P) and keys(Q) = keys(P) \ {k} for all Q.

3. P
a[k]−−→ P ′ if and only if P ′ a[k]−−→ P for all P ′.

Next, we introduce some notation. We define a new transition relation 	−→
by P

a[k]	−→ Q if P
a[k]−−→ Q or P

a[k]−−→ Q. Process P is called the source and Q

the target of P
a[k]	−→ Q. We will use t, t′, t1, . . . to denote transitions, for example

t : P
a[k]	−→ Q. Two 	−→ transitions are coinitial if they have the same source, and

they are cofinal if their targets are identical.
We define when two transitions are concurrent.

Definition 4. Two coinitial transitions P
a[k]	−→ P ′ and P

b[l]	−→ P ′′ are concurrent
if and only if there exists M
= P such that P ′ b[l]	−→ M and P ′′ a[k]	−→ M .

Note that two concurrent transitions are coinitial and, together with the two
transitions (with the target M) required by Definition 4, they form a “dia-
mond”structure with the nodes P, P ′, P ′′ and M .

When transitions in Definition 4 are forward, we may not be able to complete
the diamond as the following example shows. In such case, we say that the
transitions are in conflict. Consider P

def
= (a).0 | (b).0 | (b).0 with γ(a, b) = c.

The two coinitial transitions below are in conflict:

(a).0 | (b).0 | (b).0
c[1]−−→ (a[1]).0 | (b[1]).0 | (b).0

(a).0 | (b).0 | (b).0
c[2]−−→ (a[2]).0 | (b).0 | (b[2]).0

However, coinitial reverse transitions are concurrent:

Proposition 2 (Reverse Diamond). Let P be a consistent process and let

t′ : P
a[k]−−→ P ′ and t′′ : P

b[l]−−→ P ′′ with l
= k. Then t′ and t′′ are concurrent.

Coinitial forward transitions are concurrent if they result in cofinal compu-
tations:

Proposition 3 (Forward Diamond). If P is a consistent process and t1 ≡
P

a[k]−−→ P ′, t2 ≡ P
b[l]−−→ P ′′, with l
= k, and P ′ →∗ T and P ′′ →∗ T , for some

T , then there is M such that P ′ b[l]−−→ M , P ′′ a[k]−−→ M and M →∗ T .

28 S. Kuhn and I. Ulidowski

actf
(a : s).X

a−→f (s).X
parf

X
a−→f X ′

X | Y
a−→f X ′ | Y

comf
X

a−→f X ′ Y
b−→f Y ′

X | Y
c−→f X ′ | Y ′

γ(a, b) = c esf
X

a−→f X ′

X\L
a−→f X ′\L

a /∈ L

conf
X

a−→f X ′

S
a−→f X ′

S
def
= X sc

X ⇒∗ Y Y
a→f Y ′ Y ′ ⇒∗ X ′

X
a→f X ′

Fig. 6. Syntax and SOS rules for CCBf .

3.1 CCB Without Weak Actions

We now discuss the main properties of the sub-calculus of CCB that uses the
simplified form of prefixing (s).P : namely without a weak action b following ;
in (s; b).P . We call this calculus CCBs. Its SOS rules are as for CCB except
that the rules in Fig. 4 do not apply as there are no weak actions. We shall
also consider the forward-only version of CCBs called CCBf . The syntax of
CCBf is P ::= S | (s).P | P | Q | P \L and the SOS rules are given
in Fig. 6 (relabelling is not included); we also have the reduction rules from
Definition 2 which, together with rules in Fig. 6, generate the transition relation
−→f for CCBf . Note that we do not record past actions (actf rule); hence CCBf

is similar to the core of ACP. We note that CCBs is different from CCSK [12,13]
as it uses multiset prefixing and ACP-like communication.

We show firstly that → for CCBs is essentially conservative over −→f .
A process of CCBs is converted to a CCBf process by “pruning” past actions:

Definition 5. The pruning map π :ProcCCBs → ProcCCBf
is defined as follows,

where t ∈ AK∗ and s ∈ A∗:
π(0) = 0 π((s, t).P) = (s).π(P) π((t).P) = π(P)

π(P | Q) = π(P) | π(Q) π(P \ L) = π(P) \ L π(S) = π(P) if S
def
= P

Theorem 1 (Conservation). Let P ∈ ProcCCBs
.

1. If P
μ[k]−−→ Q then π(P)

μ−→f π(Q).

2. If π(P)
μ−→f Q, then for any k ∈ K\keys(P) there is Q′ such that P

μ[k]−−→ Q′

and π(Q′) = Q.

We now consider the causal consistency property [4] in CCBs. We define when
a set of keys is a cause for another key:

Definition 6. The set of causes of a key k in P is defined as follows:

cau(0, k) = ∅ cau(P | Q, k) = cau(P, k) ∪ cau(Q, k)
cau((s).P, k) = k(s) ∪ cau(P, k) if k ∈ keys(P) cau((μ[k]:s).P, k) = ∅
cau((s).P, k) = ∅ if k /∈ keys(P) cau(S) = cau(P) if S

def
= P

cau(P \L, k) = cau(P, k)

A Calculus for Local Reversibility 29

If one of two coinitial transitions is forward and the other reverse, either they
are concurrent or the forward transition depends causally on the reverse one.
The following result holds in the full calculus CCB:

Proposition 4. If t1 ≡ P
μ[k]−−→ P ′ and t2 ≡ P

ν[l]−−→ P ′′, then either t1 and t2
are concurrent or k ∈ cau(P ′′, l).

We introduce a trace: a sequence of pairwise composable forward and reverse
transitions over CCBs. Traces are ranged over by σ, σ′, σ1, Two transitions
are composable if the target of the first transition is the source of the second
transition. The composition of transitions is denoted by ‘;’. We denote the reverse
transition corresponding to a forward transition t (and the forward transition
corresponding to a reverse transition t) as t•. Similarly to denoting reverse tran-
sitions by •, we denote the reverse trace of σ as σ•. The empty trace with the
source P is written as εP . We can now define causal equivalence between traces.

Definition 7. Causally equivalent traces are defined by the least equivalence
relation � which is closed under composition and obeys the following rules,

where t1 is P
a[k]	−→ Q, t2 is P

b[l]	−→ R, d1 is Q
b[l]	−→ S and d2 is R

a[k]	−→ S:
t1; d1 � t2; d2 t; t• � εsource(t) t•; t � εtarget(t)

The first rule in Definition 7 states that the concurrent transitions t1 and t2
are causally independent, hence they can happen in any order. The trace t1; d1
forms a diamond with t2; d2, so the traces are causally equivalent. The remaining
rules state that doing a transition and its reverse version is the same as doing
nothing.

The next two results are needed to prove causal consistency for CCBs; they
follow closely [4]. The first states that any computation has a causally equivalent
version in which we first compute in reverse for a while and then we only compute
forwards. The second result says that a trace which has a forward-only coinitial
and cofinal and causally equivalent trace can always be shortened to a forward-
only trace. Then, we have the second important result for CCBs.

Proposition 5 (Rearrangement). If σ is a trace then there exist forward
traces σ1 and σ2 such that σ � σ•

1 ;σ2.

Proposition 6 (Shortening). If σ1 and σ2 are coinitial and cofinal traces,
with σ2 forward, then there exists a forward trace σ′

1 of length at most that of σ1

such that σ′
1 � σ2.

Theorem 2 (Causal consistency). Let σ1 and σ2 be traces. Then σ1 � σ2 if
and only if σ1 and σ2 are coinitial and cofinal.

One of the consequences of causal consistency for sub-calculus CCBs concerns
reachability: any state that can be reached from a standard process during an
arbitrary computation can be reached by computing forwards alone. This prop-
erty is not valid in the full calculus CCB as can be seen in the Introduction and in
Example 4. The next section explores some properties of concerted transitions.

30 S. Kuhn and I. Ulidowski

3.2 Concerted Transitions

The properties of keys corresponding to those in parts 1 and 2 of Proposition 1
hold also for the concerted transitions in CCB.

Proposition 7. Let P be consistent. If P
{μ[k],ν[l]}−−−−−−→ Q then k /∈ keys(P), l ∈

keys(P) and keys(Q) = keys(P) ∪ {k} \ {l} for all Q.

The property corresponding to part 3 of Proposition 1, namely P
{μ[k],ν[l]}−−−−−−→

P ′ if and only if P ′ {ν[l],μ[k]}−−−−−−→ P does not hold in general but only in certain
circumstances. Consider (a[k]; b).Q | R and c, d such that γ(a, c) = d = γ(b, c)

with R
c[l]−−→ R′ and R′ c[k]−−→ R′′. We obtain, by concert and prom rules,

(a[k]; b).Q | R
{d[l],d[k]}−−−−−−→ (a; b[l]).Q | R′′ ⇒ (a[l]; b).Q | R′′

Since R′′ c[k]−−→ R′ c[l]−−→ R, we get, again by concert and prom rules

(a[l]; b).Q | R′′ {d[k],d[l]}−−−−−−→ (a; b[l]).Q | R ⇒ (a[k]; b).Q | R

This gives us the following result:

Proposition 8. Consider (a[k]; b).Q for any Q and c, d such that γ(a, c) = d =

γ(b, c). There exist R,S and l such that (a[k]; b).Q | R
{d[l],d[k]}−−−−−−→ S if and only

if S
{d[k],d[l]}−−−−−−→ (a[k]; b).Q | R.

4 The Hydration of Formaldehyde in Water

In this section we model the hydration of formaldehyde in an aqueous solution.
Formaldehyde is a good preservative and is well known for its use in preserv-
ing specimen samples. It also serves as an important building block in many
industrial processes and is therefore produced in large quantities. The reaction
is shown in Fig. 7: two water molecules and formaldehyde are on the left and
the resulting compound, methanediol, and one molecule of water is on the right.
Note that the carbon atom is not shown in line with a common convention. It
resides at the point where the lines from the oxygen and the hydrogens meet.

Fig. 7. The most common path through hydration of formaldehyde

A Calculus for Local Reversibility 31

The carbon in the formaldehyde has a positive partial charge and the oxygen
in the water is attracted by the carbon and forms a bond to the carbon. This
bond is formed out of the electrons of one of the lone pairs of the oxygen. Since
the carbon cannot have more than four bonds this reaction is compensated by the
double bond in the formaldehyde becoming a single bond and the electrons from
the double bond forming a lone pair on the oxygen (which now has three lone
pairs). These movements are concerted, namely they happen together without
a stable intermediate state and cannot be separated. The resulting intermediate
(denoted by 2 in Fig. 7) has one oxygen which is negatively charged, whereas
the other oxygen is positively charged. The intermediate 2 abstracts one of the
hydrogens to the positively charged oxygen. This leads to the intermediate 3 and
a H3O molecule, a water with and additional hydrogen and a positively charged
oxygen. One of these hydrogens can be re-donated to the negatively charged
oxygen. We then get the final products: methanediol and a molecule of water.

4.1 The Most Common Path Through the Reaction

We shall represent the formaldehyde molecule and the two water molecules as
appropriate compositions of hydrogen, oxygen and carbon. We use our general
prefixing operator, noting that O has no weak action:

H
def
= (h; p).H ′ O

def
= (o, o, n).O′ C

def
= (c, c, c, c; p).C ′

Carbon has four strong actions c, representing the potential for four covalent
bonds, and a weak action p, standing for a positive partial charge. The oxygen is
modelled as a flexible element with up to 3 bonds. The action n represents the
potential for a negative partial charge. The hydrogen has one strong bond h and
one weak bond p. We employ subscripts to denote individual copies of actions
and atoms. The synchronisation function is defined as follows: γ(ci, hj) = cihj for
i ∈ {1, . . . , 4} and j ∈ {1, . . . , 6}; γ(ci, n) = cin for i ∈ {1, . . . , 4}; γ(hi, n) = hin
and γ(hi, oj) = hioj for i, j ∈ {1, . . . , 6}; and γ(n, p) = np.

The three molecules of the reaction are placed in parallel: CH2O | H2O | H2O.
Each molecule is a parallel composition of its atoms, and we use restriction to
force the atoms to bond together (and in some cases to stay bonded). We also
restrict actions n, p so that they can only happen together. The reaction starts
from the following initial configuration, where keys 1, . . . , 8 specify the bonds
existing initially among the atoms of formaldehyde and the two waters.(

(c1[1], c2[2], c3[3], c4[4]; p).C ′ | (h1[1]; p).H ′
1 | (h2[2]; p).H ′

2 | (o1[3], o2[4], n).O′
1

| (h3[5]; p).H ′
3 | (h4[6]; p).H ′

4 | (o3[5], o4[6], n).O′
2

| (h5[7]; p).H ′
5 | (h6[8]; p).H ′

6 | (o5[7], o6[8], n).O′
3

) \ L

We have grouped all restricted actions at the outer-most level and L is {c1, c2,
c3, c4, h1, h2, h3, h4, h5, h6, o1, o2, o3, o4, o5, o6, n, p, c1h1, c2h2}. Apart from the
restrictions of the appropriate versions of the ci, oj and hk actions, we also restrict
cihi for i ∈ {1, 2}. It prevents breaking any of the bonds between C1 and its hydro-
gens H1,H2. This serves two purposes. Firstly, it makes sure that once we have

32 S. Kuhn and I. Ulidowski

done the p action of the carbon, we will break one of the bonds between the carbon
and the oxygen. This is justified since in reality it is one of the oxygen bonds which
is broken. Secondly, it also prevents O2 or O3 from abstracting H1 or H2 from the
carbon.

We now model the reactions in Fig. 7. The first step is the n, p reaction
between C1 and O2 or O3. There are other n, p reactions that are allowed by our
model: we describe them in Sect. 4.2. We assume that O2 bonds with C1 with
key 9, followed immediately by breaking of the bond 3 or 4. Note that breaking
of 1 or 2 is not possible because of the restriction on breaking c1h1 and c2h2.
Without a loss of generality we break bond 4. These two partial reactions give
us a concerted transition: we create the bond np[9] and break the bond c4o2[4]:

{np[9],c4o2[4]}−−−−−−−−−→ (
(c1[1], c2[2], c3[3], c4; p[9]).C ′ | (h1[1]; p).H ′

1 | (h2[2]; p).H ′
2 |

(o1[3], o2, n).O′
1 | (h3[5]; p).H ′

3 | (h4[6]; p).H ′
4 | (o3[5], o4[6], n[9]).O′

2

| (h5[7]; p).H ′
5 | (h6[8]; p).H ′

6 | (o5[7], o6[8], n).O′
3

) \ L

Next, we promote the bond 9 of the carbon on a weak p to a stronger bond on
c4, which has become available. Using prom in Definition 2 we obtain

⇒ (
(c1[1], c2[2], c3[3], c4[9]; p).C ′ | (h1[1]; p).H ′

1 | (h2[2]; p).H ′
2 | (o1[3], o2, n).O′

1

| (h3[5]; p).H ′
3 | (h4[6]; p).H ′

4 | (o3[5], o4[6], n[9]).O′
2

| (h5[7]; p).H ′
5 | (h6[8]; p).H ′

6 | (o5[7], o6[8], n).O′
3

) \ L

We note that O1 is now negatively charged (it has only one bond), but we do
not need to consider it to get our desired result. The next step is to form a bond
between O3 and either H3 or H4. We bond with H3 with key 10 and break the
bond 5, producing a pair of concerted actions. We then promote a weak bond 9
on n in O2 using rule move from Definition 2 to a strong bond on o3 which has
become available. Also, we promote a weak bond 10 in H3 to a strong bond on
h3, and, by the structural congruence rule in Fig. 5, we derive the transition

{np[10],h3o3[5]}−−−−−−−−−−→ (
(c1[1], c2[2], c3[3], c4[9]; p).C ′ | (h1[1]; p).H ′

1 | (h2[2]; p).H ′
2 |

(o1[3], o2, n).O′
1 | (h3[10]; p).H ′

3 | (h4[6]; p).H ′
4 | (o3[9], o4[6], n).O′

2

| (h5[7]; p).H ′
5 | (h6[8]; p).H ′

6 | (o5[7], o6[8], n[10]).O′
3

) \ L.

The next step is a proton transfer from O3 to O1. We transfer H5, but we could
have used H6 or H3 since they all have the p action ready. Performing the transfer
of H5 from O3 to O1 (and breaking the bond 7), we obtain

{np[11],h5o5[7]}−−−−−−−−−−→ (
(c1[1], c2[2], c3[3], c4[9]; p).C ′ | (h1[1]; p).H ′

1 | (h2[2]; p).H ′
2 |

(o1[3], o2, n[11]).O′
1 | (h3[10]; p).H ′

3 | (h4[6]; p).H ′
4 | (o3[9], o4[6], n).O′

2

| (h5; p[11]).H ′
5 | (h6[8]; p).H ′

6 | (o5, o6[8], n[10]).O′
3

) \ L

A Calculus for Local Reversibility 33

and promoting the bond 10 in O3 by the rule move and the bond 11 in H5 by
rule prom we obtain the final products of the reaction:(

(c1[1], c2[2], c3[3], c4[9]; p).C ′ | (h1[1]; p).H ′
1 | (h2[2]; p).H ′

2 | (o1[3], o2[11], n).O′
1

| (h3[10]; p).H ′
3 | (h4[6]; p).H ′

4 | (o3[9], o4[6], n).O′
2

| (h5[11]; p).H ′
5 | (h6[8]; p).H ′

6 | (o5[10], o6[8], n).O′
3

) \ L

We have methanediol CH2(OH)2 and a molecule of water (oxygen O3 plus hydro-
gens H6 and H3). Note that the n, p actions are ready again and all the existing
bonds are on strong actions. So we can now reverse the reaction by getting O3

to abstract a hydrogen from H4 or H5.
Finally, let us inspect the bonds with keys 4, 5 and 7 which are broken

during this sequence of reactions. These bonds were formed prior to the reaction
starting. They are broken as a result of application of our new general prefixing
operator. This operator, in conjunction with the driving forces of the partial
charges, guides the reaction without relying on any sort of global memory or
global control. This is one the main advantages of our approach.

4.2 Other Paths Through the Reaction

There are two other less common ways in which the hydration of formaldehyde
in water can happen. They require an additional molecule of water. The three
paths through the reaction are shown in Fig. 8, now with three waters. The
path in Fig. 7 is from FA | W | W | W via i2 | W | W and i3 | H3O | W where FA
stands for formaldehyde, W is water, i2 and i3 are the intermediates 2 and 3
in Fig. 7 and MD is methanediol. The other two paths start with an interaction
of two water molecules which involves a hydrogen transfer and which leads to
FA | W | HO | H3O. The reaction now branches: either the HO interacts with the

{np,c4o2}

{np,h3o3} {np,h5o5}

{np,h3o3}

{np,c4o2}

{np,h5o5}

np,c4o2

{np,h7o7}

{np,h8o8}

FA | W | W | W FA | W | HO | H3O i6 | W | HO | W

i8 | HO | W

MD | HO | H3O

i2 | W | W i3 | H3O | W MD | W | W

Fig. 8. Three paths through hydration of formaldehyde. Communication keys in con-
certed transitions are omitted for clarity. The intermediates i6 and i8 are CH2O

+H and
COH3O

+H2 respectively.

34 S. Kuhn and I. Ulidowski

formaldehyde, which takes us to i3 | H3O | W and then we follow the remainder
of the main path, or we can go via a more complicated sequence of reactions.
The H3O interacts with the formaldehyde, then a water molecule attaches and
finally an interaction with HO brings us to the final state. As we can see all the
reactions but one are driven by concerted actions.

We note that in this example the rates of the individual reactions, and the
overall rates achieved through the various paths, vary because of the change
of energy in the products compared to the reactants. We have decided not to
model rates at this stage but rather to concentrate on obtaining all possible valid
reactions. We also do not consider spatial arrangement of molecules.

5 Conclusion

We have introduced a reversible process calculus CCB with a novel prefixing
operator which is inspired by the mechanism of covalent bonding that allows us
to model locally controlled reversibility. We have given the calculus operational
semantics. The new operator permits us to perform pairs of concerted actions,
where the first element of the pair is a creation of a (weak) bond and the second
element is breaking one of the existing bonds. Moreover, our prefixing provides a
purely local control of computation; there is no need for an extensive memory or
global control. We have shown that the sub-calculus CCBs satisfies conservation
and causal consistency, and the full calculus satisfies several diamond properties.
CCB is more expressive than other reversible calculi as it can also model out-
of-causal order computation. We have shown that biochemical reactions with
covalent bonding can be represented naturally and faithfully thanks to our new
prefixing operator and concerted actions transitions.

Acknowledgements. The authors acknowledge partial support of COST Action
IC1405 on Reversible Computation - extending horizons of computing.

References

1. Baeten, J.C.M., Weijland, W.P.: Process Algebra. Cambridge Tracts in Theoretical
Computer Science, vol. 18. Cambridge University Press, Cambridge (1990)

2. Cardelli, L., Laneve, C.: Reversible structures. In: 9th International Conference on
Computational Methods in Systems Biology, pp. 131–140. ACM (2011)

3. Cristescu, I., Krivine, J., Varacca, D.: A compositional semantics for the reversible
pi-calculus. In: Proceedings of LICS 2013, pp. 388–397. IEEE, Computer Society
(2013)

4. Danos, V., Krivine, J.: Reversible communicating systems. In: Gardner, P.,
Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp. 292–307. Springer,
Heidelberg (2004)

5. Danos, V., Krivine, J.: Formal molecular biology done in CCS-R. In: Proceedings
of the 1st Workshop on Concurrent Models in Molecular Biology BioConcur 2003,
ENTCS, vol. 180, pp. 31–49 (2007)

A Calculus for Local Reversibility 35

6. Danos, V., Laneve, C.: Formal molecular biology. Theoret. Comput. Sci. 325(1),
69–110 (2004)

7. Kuhn, S., Ulidowski, I.: Towards modelling of local reversibility. In: Krivine, J.,
Stefani, J.-B. (eds.) Reversible Computation. LNCS, vol. 9138, pp. 279–284.
Springer, Heidelberg (2015)

8. Lanese, I., Mezzina, C.A., Schmitt, A., Stefani, J.-B.: Controlling reversibility in
higher-order pi. In: Katoen, J.-P., König, B. (eds.) CONCUR 2011. LNCS, vol.
6901, pp. 297–311. Springer, Heidelberg (2011)

9. Lanese, I., Mezzina, C.A., Stefani, J.-B.: Reversing higher-order pi. In: Gastin, P.,
Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 478–493. Springer,
Heidelberg (2010)

10. Lanese, I., Mezzina, C.A., Stefani, J.-B.: Controlled reversibility and compensa-
tions. In: Glück, R., Yokoyama, T. (eds.) RC 2012. LNCS, vol. 7581, pp. 233–240.
Springer, Heidelberg (2013)

11. Milner, R.: A Calculus for Communicating Systems. LNCS, vol. 92. Springer,
Heidelberg (1980)

12. Phillips, I., Ulidowski, I.: Reversing algebraic process calculi. In: Aceto, L.,
Ingólfsdóttir, A. (eds.) FOSSACS 2006. LNCS, vol. 3921, pp. 246–260. Springer,
Heidelberg (2006)

13. Phillips, I.C.C., Ulidowski, I.: Reversing algebraic process calculi. J. Log. Algebraic
Program. 73, 70–96 (2007)

14. Phillips, I., Ulidowski, I.: Reversibility and asymmetric conflict in event structures.
In: D’Argenio, P.R., Melgratti, H. (eds.) CONCUR 2013 – Concurrency Theory.
LNCS, vol. 8052, pp. 303–318. Springer, Heidelberg (2013)

15. Phillips, I., Ulidowski, I., Yuen, S.: Modelling of bonding with processes and events.
In: Dueck, G.W., Miller, D.M. (eds.) RC 2013. LNCS, vol. 7948, pp. 141–154.
Springer, Heidelberg (2013)

16. Phillips, I., Ulidowski, I., Yuen, S.: A reversible process calculus and the modelling
of the ERK signalling pathway. In: Glück, R., Yokoyama, T. (eds.) RC 2012. LNCS,
vol. 7581, pp. 218–232. Springer, Heidelberg (2013)

17. Ulidowski, I.: Equivalences on observable processes. In: Proceedings of LICS 1992,
pp. 148–159. IEEE, Computer Science Press (1992)

18. Ulidowski, I., Phillips, I., Yuen, S.: Concurrency and reversibility. In: Yamashita,
S., Minato, S. (eds.) RC 2014. LNCS, vol. 8507, pp. 1–14. Springer, Heidelberg
(2014)

Static VS Dynamic Reversibility in CCS

Doriana Medić and Claudio Antares Mezzina(B)

IMT School for Advanced Studies Lucca, Lucca, Italy
{doriana.medic,claudio.mezzina}@imtlucca.it

Abstract. The notion of reversible computing is attracting interest
because of its applications in diverse fields, in particular the study of
programming abstractions for fault tolerant systems. Reversible CCS
(RCCS), proposed by Danos and Krivine, enacts reversibility by means
of memory stacks. Ulidowski and Phillips proposed a general method to
reverse a process calculus given in a particular SOS format, by exploiting
the idea of making all the operators of a calculus static. CCSK is then
derived from CCS with this method. In this paper we show that RCCS
is at least as expressive as CCSK.

1 Introduction

The interest in reversibility dates back to the 60’s, with Landauer [6] observing
that only irreversible computations need to consume energy, fostering application
of reversible computing in scenarios of low-energy computing. Landauer’s princi-
ple has only been shown empirically in 2012 [1]. Nowadays reversible computing
is attracting interests because of its applications in diverse fields: biological mod-
elling [10], since many biochemical reactions are by nature reversible; program
debugging and testing [4], allowing during debugging time to bring the program
state back to a certain execution point in which certain conditions are met [8];
and parallel discrete event simulations [9]. Of particular interest is the applica-
tion of reversible computation notions to the study of programming abstractions
for dependable systems. Several techniques used to build dependable systems
such as transactions, system-recovery schemes and checkpoint-rollback proto-
cols, rely in one way or another on some forms of undo. The ability to undo any
single action provides us with an ideal setting to study, revisit, or imagine alter-
natives to standard techniques for building dependable systems and to debug
them. Indeed distributed reversible actions can be seen as defeasible partial
agreements: the building blocks for different transactional models and recovery
techniques. Good examples on how reversibility in CCS and Higher-Order π can
be used to model transactional models are respectively [3,7].

The first reversible variant of CCS, called RCCS, was introduced by Danos
and Krivine [2]. In RCCS each process is monitored by a memory, that serves as
stack of past actions. Memories are considered as unique process identifiers, and
in order to preserve this uniqueness along a parallel composition, a structural

Research partly supported by the EU COST Action IC1405.

c© Springer International Publishing Switzerland 2016
S. Devitt and I. Lanese (Eds.): RC 2016, LNCS 9720, pp. 36–51, 2016.
DOI: 10.1007/978-3-319-40578-0 3

Static VS Dynamic Reversibility in CCS 37

P, Q ::= 0 | a.P | a.P | τ.P | (P ‖ Q) | αi.P | P\A

Fig. 1. CCS syntax

law permits to obtain unique memories though a parallel composition. A general
method for reversing process calculi, given in a particular SOS format, has been
proposed by Phillips and Ulidowski in [11]. The main idea of this approach is the
use of communication keys to uniquely identify communications, and to make
static each operator of the calculus. By applying this method to CCS, CCSK is
obtained. Since in CCSK the history is directly annotated in the process itself,
there is no need of splitting history through a parallel composition. We call this
kind of recording histories as static reversibility; while we call the one used by
RCCS as dynamic, since each thread is endowed with its own history. Hence
a natural question arises: are these two reversible calculi equivalent? In this
paper we start answering to this question by showing that RCCS is at least as
expressive as CCSK. We do it by means of an encoding and show its correctness
by means of strong back and forth bisimulaiton.

The rest of the paper is organized as follows: Sect. 2 starts with a brief recall to
the syntax of CCS. In Sect. 2.1 will present RCCS with its syntax and semantics.
Section 2.2 will be about CCSK and its semantics. In Sect. 3 we will present our
encoding function from CCSK to RCCS and prove our main result. In Sect. 4 we
will sketch an encoding of RCCS into CCKS and discuss about the difficulties
it takes to prove its correctness. Section 5 concludes the paper with a discussion
of the future work.

2 CCS and Its Reversible Variants

In this section we briefly present the syntax of CCS [8], and then we show the
two reversible extensions of it, namely RCCS [2] and CCSK [11].

Let A the set of actions such that a ∈ A, and A the set of co-actions such
that A = {a | a ∈ A}. We let μ, λ and their decorated versions to range over
the set Act = A∪A, while we let α, β and their decorated versions to range over
the set Actτ = Act ∪ {τ}, where τ is the silent action.

The syntax of CCS is given in Fig. 1. 0 represents the idle process. A prefix
(or action) can be an input a, an output a and the silent action τ . P ‖ Q rep-
resents the parallel composition of processes P and Q, while

∑
αi.P represents

the guarded choice. Some actions in a process P can be restricted, and this is
represented by the process P\A, where A is the set of restricted actions. The set
P denotes the set of all possible CCS processes.

2.1 Reversible CCS

One of approaches to make CCS reversible is to add a memory to each process.
A memory then will be recording every action and communication that the

38 D. Medić and C.A. Mezzina

(CCS Processes) P, Q ::= 0 | a.P | a.P | τ.P | (P ‖ Q) | αi.Pi | P\A

(RCCS Processes) R, S ::= m � P | (R ‖ S) | R\A

(Memories) m ::= 〈〉 | 〈i, α, P 〉 · m | 〈↑〉 · m

Fig. 2. RCCS syntax

process will undergo. Syntax of RCCS is given in Fig. 2. As we can see, RCCS
processes are built on top of CCS processes. A term of the form m � P , is called
monitored process, where m represents a memory carrying the information that
this process will need in case it wants to backtrack, and P is a standard CCS
process. Two monitored process R and S can be composed in parallel S ‖ R, and
some actions of a monitored process R can be restricted via R\A. Memories are
organised as stacks of events, with the top of the memory representing the very
last action of the monitored process. 〈〉 represent the empty memory; 〈i, α,Q〉
represent an action event meaning that the monitored process did the action α
identified by i and its “context” was Q; while 〈↑〉 represents a splitting event.
When there is no ambiguity, we will omit the trailing event 〈〉 in memories.

We assume the existence of a infinite denumerable set of action identifiers
(sometimes called keys) K such that K ∩ Act = ∅. Let ActK = Act × K the
set of pairs formed by an action μ and an identifier i. In the same way we
define ActKτ = Actτ × K. The operational semantics of RCCS is defined as a
labelled transition system (LTS), (PR,→ ∪ �, ActKτ) where PR is the set of
RCCS (monitored) processes, →⊆ PR ×ActKτ ×PR and �⊆ PR ×ActKτ ×PR.
Relations → and � are the smallest reduction relations induced by respectively
rules in Figs. 4 and 5. Both reduction relations exploit the structural congru-
ence ≡ relation, which is the smallest congruence, on processes and monitored
processes, containing the abelian monoid laws for choice (that is commutativity,
associativity and 0 as the identity element) and the rules of Fig. 3.

Remark 1. In its first incarnation [2] RCCS used events of this form 〈n∗, α,Q〉,
〈1〉 and 〈2〉, where: n∗ is n in case the process synchonized with a process moni-
tored by memory n or ∗ is case of partial synchronization. Events 〈1〉 and 〈2〉 were
used to split a process along a parallel composition according to the following
rule:

m � (P ‖ Q) ≡ (〈1〉 · m � P ‖ 〈2〉 · m � Q)

The version we are using, appeared in [5], simplifies the handling of memories
and makes the splitting through the parallel composition commutative. However
they are conceptually the same, and we have chosen this version since it simplifies
some technicalities when dealing with the proof of our main Theorem.

Identifiers of RCCS are similar to communication keys of CCSK. They are
defined as follows:

Static VS Dynamic Reversibility in CCS 39

(Split) m � (P ‖ Q) ≡ (〈↑〉 · m � P ‖ 〈↑〉 · m � Q)

(Res) m � P\A ≡ (m � P)\A

Fig. 3. RCCS structural laws

Definition 1 (Memory Identifiers). The set of identifiers of a memory m,
written id(m), is inductively defined as follows:

id(〈↑〉 · m) = id(m) id(〈i, α,Q〉 · m) = {i} ∪ id(m)

Definition 2. A identifier i belongs to a memory m, written i ∈ m, if i ∈
id(m).

Definition 3 (Process Identifiers). The set of identifiers of a process R, writ-
ten id(R), is inductively defined as follows:

id(α.P) = id(0) = ∅ id(m � P) = id(m)
id(R\A) = id(R) id(R ‖ S) = id(R) ∪ id(S)

Definition 4. A identifier i belongs to a process R, written i ∈ R, if i ∈ id(R).

(R-ACT)
i /∈ m

m � α.P + Q →i
α 〈i, α, Q〉 · m � P

(R-PAR)
R →i

α R′ i /∈ S

R ‖ S →i
α R′ ‖ S

(R-SYN)
R →i

α R′ S →i
ᾱ S′

R ‖ S →i
τ R′ ‖ S′ (R-RES)

R →i
α R′ α /∈ A ∪ Ā

R\A →i
α R′\A

(R-EQUIV)
R ≡ R R′ →i

α S′ S′ ≡ S

R →i
α S

Fig. 4. RCCS forward semantics

Let us now comment on the forward rules of Fig. 4. Rule R-ACT allows
a monitored process to perform a forward action. As we can see, this action
is bound with a particular fresh identifier i. Moreover, the part of the process
which has not contributed to the action, that is Q, is stored on top of the memory
along with the action and the identifier. Rule R-PAR propagates an action along
a parallel composition, with the condition that the identifier of the action is not
used by other processes. This check guarantees that all the identifiers are unique.
Rule R-SYN allows two processes in parallel to syncrhonize. To do so, they have
to match both the action and the identifier. Rule R-RES deals with restriction

40 D. Medić and C.A. Mezzina

(R-ACT•)
i /∈ m

〈i, a, Q〉 · m � P �i
α m � α.P + Q

(R-PAR•)
R �i

α R′ i /∈ S

R ‖ S �i
α R′ ‖ S

(R-SYN•)
R �i

α R′ S �i
ᾱ S′

R ‖ S �i
τ R′ ‖ S′ (R-RES•)

R �i
α R′ α /∈ A ∪ Ā

R\A �i
α R′\A

R-EQUIV• R ≡ R′ R′ �i
α S′ S′ ≡ S

R �i
α S

Fig. 5. RCCS backward semantics

in the normal way, while rule R-EQUIV brings structural equivalence into the
reduction relation.

Backward rules are reported in Fig. 5. For each of forward rule there exists an
opposite backward one. Rule R-ACT• allows a monitored process to revert its
last action. To do so, the event on top of the memory is taken and the information
contained in it is used to build back the previous form of the process, that is the
prefix and the process that was composed with the + operator. Rule R-PAR•

allows a reversible action to be propagated through a parallel composition, only
when the identifier of the action does not belong to monitored processes in
parallel. This check is crucial to avoid partial undo of some synchronizations.
The remaining rules are similar to the forward ones.

Definition 5 (Reachable Process). A RCCS process R is reachable if it can
be derived from an initial process 〈〉 � P , by using rules of Figs. 4 and 5.

Lemma 1. For any transition m � α.P + Q →i
α 〈i, α,Q〉 · m � P we can derive

the following transitions:

– 〈j, β,Q1〉 · m � α.P + Q →i
α 〈i, α,Q〉 · 〈j, β,Q1〉 · m � P , for i �= j

– 〈↑〉 · m � α.P + Q →i
α 〈i, α,Q〉 · 〈↑〉 · m � P

and its opposite:

Lemma 2. For any transition 〈i, α,Q〉 · m � P �i
α 〈〉 � α.P + Q, we can derive

the following transitions:

– 〈i, α,Q〉 · 〈j, β,Q1〉 · m � P �i
α 〈j, β,Q1〉 · m � α.P + Q, for i �= j

– 〈i, α,Q〉 · 〈↑〉 · m � P �i
α 〈↑〉 · m � α.P + Q

An easy induction on the structure of terms provides us with a kind of normal
form for RCCS processes (by convention

∏
i∈I Ri = 0 if I = ∅):

Lemma 3. (Normal Form). For any RCCS reachable process R we have that

R ≡ (
∏
i∈I

(mi � αi.Pi + Qi)\Ai)\B

Static VS Dynamic Reversibility in CCS 41

2.2 CCS with Communication Keys

The main idea behind this approach is to directly record the actions inside a
process and to make all the operator of CCS static. In this way there is no need
of using an external memory, since all the information are syntactically presents
inside a term. Syntax of CCSK is given in Fig. 6. The only difference with respect
to CCS processes is that prefixes now can be annotated with an identifiers.

(CCS Processes) P, Q ::= 0 | a.P | a.P | τ.P | (P ‖ Q) | αi.Pi | P\A

(CCSK Processes) X, Y ::= P | α[i].X | X + Y | (X ‖ Y) | X\A

Fig. 6. CCSK syntax

Definition 6 (Process Keys). The set of keys of a process X, written key(X),
is inductively defined as follows:

key(α.P) = key(0) = ∅ key(α[i].X) = {i} ∪ key(X)
key(X ‖ Y) = key(X) ∪ key(Y) key(X + Y) = key(X) ∪ key(Y)
key(X\A) = key(X)

Definition 7. A key i is fresh in a process X, written fresh(i,X) if i �∈ key(X).

Definition of keys in CCSK correspond to the definition of identifiers in RCCS.
The operational semantics of CCSK is defined as a labelled transition system
(LTS), (PK ,→ ∪ �, ActKτ) where PK is the set of CCSK processes, →⊆ PR ×
ActKτ × PR and �⊆ PR × ActKτ × PR. Relations → and � are the smallest
reduction relations induced by respectively rules in Figs. 7 and 8. Differently
from RCCS, CCSK does not exploit any structural congruence.

Remark 2. In the following when in proofs, rules and so on we use P instead of
X we just indicate that the process P has no labelled actions, as P being a CCS
process. An alternative is to use predicate std(X) as in [11].

Rules for forward transitions are given in Fig. 7. Rule K-ACT1 deals with
prefixed processes α.P . It just transforms a prefix into a label but differently
from the normal CCS rule for prefix, it generates a fresh new key i which is
bound to the action α becoming α[i]. As we can note the prefix is not discarded
after the reduction. Rule K-ACT2 inductively allows a prefixed process α[i].X
to execute if X can execute. The actions that X can do are forced to use keys
different from i. Rules K-PLUS-L and K-PLUS-R deal with the + operator.
Let us note that these rule do not discard the context, that is part of the process
which has not contributed to the action. In more detail, if the process P +Q does
an action, say α[i], and becomes X then the process becomes X +Q. In this way
the information about +Q is preserved. Moreover since Q is a standard process

42 D. Medić and C.A. Mezzina

(K-ACT1)
α.P

α[i]−−→ α[i].P
(K-ACT2)

X
β[j]−−→ X ′ i
= j

α[i].X
β[j]−−→ α[i].X ′

(K-PLUS-L)
X

α[i]−−→ X ′

X + P
α[i]−−→ X ′ + P

(K-PLUS-R)
Y

α[i]−−→ Y ′

P + Y
α[i]−−→ P + Y ′

(K-PAR-L)
X

α[i]−−→ X ′
fresh(i, Y)

X ‖ Y
α[i]−−→ X ′ ‖ Y

(K-PAR-R)
Y

α[i]−−→ Y ′
fresh(i, X)

X ‖ Y
α[i]−−→ X ‖ Y ′

(K-SYN)
X

α[i]−−→ X ′ Y
ᾱ[i]−−→ Y ′ a
= τ

X ‖ Y
τ [i]−−→ X ′ ‖ Y ′

(K-RES)
X

α[i]−−→ X ′ α /∈ A ∪ Ā

X\A
α[i]−−→ X ′\A

Fig. 7. CCSK forward semantics

then it will never executes even if it is present in the process X+Q. So we can say
that +Q is just a decoration of X. Let us note that in order to apply one of the
plus rule one of the two processes has to be a CCS process P (e.g. not containing
labelled prefixes), meaning that it is impossible for two non standard process to
both execute if composed by the choice operator. Rules K-PAR-L and K-PAR-
R propagate an action α[i] through a parallel composition, provided that the
key i is not used by the other processes in parallel (use of fresh(·) predicate
in the premises). Rule K-SYN allows two processes in parallel to syncrhonize.
To do so, they have to match both the action and the identifier. Rule K-RES
deals with restriction in the canonical (CCS) way. Backward rules are the exact
opposite of the forward ones.

Definition 8 (Reachable Process). A CCSK process X is reachable if it can
be derived from an CCS process P , by using rules of Figs. 7 and 8.

Property 1 (Plus Form). If X is a reachable process, and X = Y + Q, then

Y = P1 + . . . + (Y1 ‖ . . . ‖ Ym) + Pj + . . . + Pn

for some α, m, n and with Pi not having top level +.

Proof. By induction on the length of the derivation that led an initial process
to X and by case analysis on the last applied rule.

3 Encoding CCSK in RCCS

We now adapt the concept of bisimulation [12] to work in a reversible setting
and with two different semantics. To this aim, we indicate with −→si

the forward
relation of the si semantics, and with si the backward one. Moreover, we
indicate with Psi

the set of processes of semantics si and with Lsi
the set of

labels produced by semantics si.

Static VS Dynamic Reversibility in CCS 43

(K-ACT1•)
α[i].P

α[i]
α.P

(K-ACT2•)
X

β[j]
X ′ i
= j

α[i].X
β[j]

α[i].X ′

(K-PLUS-L•)
X

α[i]
X ′

X + P
α[i]

X ′ + P

(K-PLUS-R•)
Y

α[i]
Y ′

P + Y
α[i]

P + Y ′

(K-PAR-L•)
X

α[i]
X ′

fresh(i, Y)

X ‖ Y
α[i]

X ′ ‖ Y

(K-PAR-R•)
Y

α[i]
Y ′

fresh(i, X)

X ‖ Y
α[i]

X ‖ Y ′

(K-SYN•)
X

α[i]
X ′ Y

ᾱ[i]−−→ Y ′ α
= τ

X ‖ Y
τ [i]

X ′ ‖ Y ′
(K-RES•)

X
α[i]

X ′ α /∈ A ∪ Ā

X\A
α[i]

X ′\A

Fig. 8. CCSK backward semantics

Definition 9 (Back and Forth Bisimulation). Given a bijective function
γ : Ls1 → Ls2 , a relation s1Rs2 ⊆ Ps1 ×Ps2 is a strong back and forth simulation
if whenever Ps1Rs2R:

– P
α[i]−−→s1 Q implies R

γ(α[i])−−−−→s2 S with Qs1Rs2S

–
P

α[i]

s1 Q implies R
γ(α[i])

s2 S with Qs1Rs2S

A relation s1Rs2 ⊆ Ps1 ×Ps2 is called strong back and forth bisimulation if s1Rs2

and (s1Rs2)
−1 are strong back and forth simulations. We call strong bisimilarity

and note s1 ∼s2 the largest bisimulation with respect to semantics s1 and s2.

This definition when instantiated with a single semantics, that is s1 = s2 and
γ being the identity, is similar to the definition of forward-reverse bisimulation
used in [11], with the only difference is that our definition does not take into
account predicates. Moreover, when instantiated with CCSK semantics, the two
notions coincide.

In this section we will show how CCSK can be encoded in RCCS. We will
use the same notation like before. P stands for processes from CCS and X for
CCSK processes. Let PK and PR the set of processes from CCSK and RCCS,
respectively, and M is the set of all the memories derivable by productions in
Fig. 2. The encoding function [[·]] : PK × M × P → PR, is inductively defined as
follows:

[[P,m,0]] = m � P

[[X + P,m,Q]] = [[X,m,P + Q]]
[[P + X,m,Q]] = [[X,m,Q + P]]

44 D. Medić and C.A. Mezzina

[[α[i].X,m, P]] = [[X, 〈i, α, P 〉 · m,0]]
[[X\A,m,P]] = [[X,m,P]]\A

[[X ‖ Y,m,P]] = [[X, 〈↑〉 · m,P]] ‖ [[Y, 〈↑〉 · m,P]]

Let us comment it. The main difference between RCCS and CCSK is on the
way they keep track of the history. In RCCS all the information is local to each
monitored process, while in CCSK the information is spread along the structure
of a process. Moreover, a CCSK process may correspond to several monitored
processes, since in CCSK there is no need of splitting memories through a parallel
composition. So the encoding has to inductively drill the structure of a CCSK
process X, in order to build the final memory of the process and to find the plus
context of each labelled action α[i] present inside X. To this aim, the encoding
takes two additional parameters: a memory m and a CCS process P . The parallel
and the restriction of CCSK operator are mapped to the corresponding operators
of RCCS. Let us note that in the parallel case, the memory m is split into two
〈↑〉 · m. The encoding of a process α[i].X with memory m and context Q is
the encoding of process X where the memory stack is augmented of the event
〈i, α,Q〉. In this case the action α[i] disappears from the process as it goes inside
the memory m. The encoding of a process P + X is the encoding of X where
its context is the sum composition of its previous context and P . Finally, the
encoding of a normal CCS process P is just its monitored version, with memory
m representing its history. Since the context parameter is used for past actions,
in the case of normal process P , we impose this parameter to be 0. In order to
understand how the encoding works let us consider the following example. Let
X = (a + b) + c[i].(d[h] ‖ P) then

[[X, 〈〉,0]] = [[c[i].(d[h] ‖ P), 〈〉, a + b]] = [[d[h] ‖ P, 〈i, c, a + b〉 · 〈〉,0]] =
[[d[h], 〈↑〉 · 〈i, c, a + b〉 · 〈〉,0]] ‖ [[P, 〈↑〉 · 〈i, c, a + b〉 · 〈〉,0]] =
[[0, 〈h, d,0〉 · 〈↑〉 · 〈i, c, a + b〉 · 〈〉,0]] ‖ 〈↑〉 · 〈i, c, a + b〉 · 〈〉 � P =
〈h, d,0〉 · 〈↑〉 · 〈i, c, a + b〉 · 〈〉 � 0 ‖ 〈↑〉 · 〈i, c, a + b〉 · 〈〉 � P

Before stating our main Theorem, we need some lemmata about operational
correspondence.

Lemma 4 (Forward Correspondence). For all transitions X
α[i]−−→ X ′ in

CCSK, with R = [[X, 〈〉,0]], there exists a corresponding RCCS transition such
that R →i

α R′ with [[X ′, 〈〉,0]] = R′.

Proof. By induction on the derivation X
α[i]−−→ X ′ and by case analysis on the

last applied rule. We show the relevant cases:

K-ACT2: We have α[i].X
β[j]−−→ α[i].X ′ with X

β[j]−−→ X ′. Be R = [[X, 〈〉,0]],
by Lemma 3 we know that: R ≡ (

∏
i∈I(mi � αi.Pi + Qi)\Ai)\B.

By applying inductive hypothesis we have that [[X, 〈〉,0]] →j
β [[X ′, 〈〉,0]], that

is R →j
β R′ with R′ = [[X ′, 〈〉,0]]. Now we to distinguish two cases: either β

Static VS Dynamic Reversibility in CCS 45

is a single action or it has been produced by a synchonization. In the first
case we have then that there exists an index h ∈ I such that αh = β, and
then

[[X, 〈〉,0]] ≡ (
∏
i∈I

(mi � αi.Pi + Qi)\Ai)\B →j
β

(
∏

i∈I\h

(mi � αi.Pi + Qi)\Ai ‖ (〈j, β,Qh〉 · mh � Ph)\Ah)\B ≡ [[X ′, 〈〉,0]]

Moreover, by definition of encoding we have that

[[α[i].X, 〈〉,0]] = [[X, 〈i, α,0〉 · 〈〉,0]]

and by using Lemma1 we can mimic the same transition with an augmented
memory: [[X, 〈i, α,0〉 · 〈〉,0]] →j

β [[X ′, 〈i, α,0〉 · 〈〉,0]] as desired. The synchro-
nisation case is similar.

K-PLUS-L: We have X = Y + P
α[i]−−→ Y ′ + P . By Property 1, we have that:

Y = P1 + . . . + (Y1 ‖ . . . ‖ Ym) + Pj + . . . + Pn

Let T =
∑

i∈n\l Pi, by applying the encoding we have that

[[Y + P, 〈〉,0]] = [[(Y1 ‖ . . . ‖ Ym), 〈〉, P + T]]

[[Y, 〈〉,0]] = [[(Y1 ‖ . . . ‖ Ym), 〈〉, T]]

By Lemma 3 we know that: [[Y + P, 〈〉]] ≡ (
∏

l∈I(ml � αl.Pl + Ql)\Al)\B

This implies that there exists a subset J ⊆ I on indexes such that memories
in J share the action 〈k, β, T 〉, with T =

∑
i∈n\l Pi, such that:

[[Y, 〈〉,0]] ≡(
∏

l∈I\J

(ml � αl.Pl + Ql)\Al ‖
∏
h∈J

(mh · 〈k, β, T 〉 � αh.Ph + Qh)\Ah)\B

[[Y + P, 〈〉,0]] ≡(
∏

l∈I\J

(ml � αl.Pl + Ql)\Al ‖
∏
h∈J

(mh · 〈k, β, T + P 〉 � αh.Ph + Qh)\Ah)\B

By hypothesis we have that Y
α[i]−−→ Y ′ and by inductive hypothesis we have

that [[Y, 〈〉,0]] →i
α [[Y ′, 〈〉,0]], but then also [[Y + P, 〈〉,0]] →i

α [[Y ′, 〈〉, P]] =
[[Y ′ + P, 〈〉,0]], as desired. �

Lemma 5 (Backward Correspondance). For all transitions X
α[i]

X ′ in
CCSK, with R = [[X, 〈〉,0]], there exists a corresponding transition R �i

α R′ in
RCCS with [[X ′, 〈〉,0]] = R′.

46 D. Medić and C.A. Mezzina

Proof. By induction on the derivation X
α[i]

X ′ and by case analysis on the
last applied rule. The proof follows the lines of the one of Lemma4.

With the previous two lemmata we have proved that if we have a couple of
processes (X,R) = (X, [[X, 〈〉,0]]) where X is reachable, and if process X does
an action α in CCSK, then process R does the same action in RCCS. Obtained
process R′ = [[X ′, 〈〉,0]] is still encoding of process X ′. Now we have to show the
opposite direction.

Lemma 6 (Forward Completeness). For any CCSK process X and RCCS
process R, such that R = [[X, 〈〉,0]], if R →i

α R′ in RCCS, then there exists a

corresponding transition X
α[i]−−→ X ′ in CCSK, with R′ = [[X ′, 〈〉,0]].

Proof. By structural induction on X. We have two main cases, whether X = P
or not. We will show just the most significant cases.

In first case we observe form of the processes X = P , where P is (standard)
CCS process. We then do an induction of the form of P . If P = α.P1: we have
that R = [[α.P1, 〈〉,0]] and by applying encoding

[[α.P1, 〈〉,0]] = 〈〉 � α.P1

Then, by using R-ACT we get 〈〉 �α.P1 →i
α 〈i, α,0〉 · 〈〉 �P1, where 〈i, α,0〉 · 〈〉 �

P1 = [[α[i].P1, 〈〉,0]] = R′.
In CCSK process α.P1, can do the same action α by applying the rule K-ACT1
and we get

α.P1
α[i]−−→ α[i].P1 where X ′ = α[i].P1 as we desired.

In the second case we observe form of the processes X, when he have a struc-
ture of CCSK process and it is not standard process. We consider the significant
cases:

X = α[i].Y : we have that R = [[α[i].Y, 〈〉,0]]. By Lemma 3 we know that:

[[Y, 〈〉,0]] ≡ (
∏
l∈I

(ml � αl.Pl + Ql)\Al)\B

Now we know that there exists some subset H ⊆ I such that all processes
from that subset share the very first action α . For some t ∈ H such that
αt = β we have:

[[Y, 〈〉,0]] ≡(
∏

l∈I\H

(ml � αl.Pl + Ql)\Al ‖
∏

h∈H\t

(m′
h · 〈i, α,0〉 � αh.Ph + Qh)\Ah ‖

(m′
t · 〈i, α,0〉 � β.Pt + Qt)\At)\B →j

β

(
∏

l∈I\H

(ml � αl.Pl + Ql)\Al ‖
∏

h∈H\t

(m′
h · 〈i, α,0〉 � αh.Ph + Qh)\Ah ‖

〈j, β, Qt〉 · m′
t · 〈i, α,0〉 � Pt\At)\B ≡ [[Y ′, 〈〉,0]]

Static VS Dynamic Reversibility in CCS 47

By definition of encoding we have that [[α[i].Y, 〈〉,0]] = [[Y, 〈i, α,0〉 · 〈〉,0]] and
using Lemma 1 we can mimic the same transition:

[[Y, 〈i, α,0〉 · 〈〉,0]] →j
β [[Y ′, 〈i, α,0〉 · 〈〉,0]]

By inductive hypothesis we have that Y
β[j]−−→ Y ′ and using rule K-ACT2

we get:

α[i].Y
β[j]−−→ α[i].Y ′ as desired.

X = Y1 ‖ Y2 We have that R = [[Y1 ‖ Y2, 〈〉,0]] and by applying encoding

[[Y1 ‖ Y2, 〈〉,0]] = [[Y1, 〈↑〉 · 〈〉,0]] ‖ [[Y2, 〈↑〉 · 〈〉,0]]

Now, we distinguish three cases: if first branch of parallel composition do
action α, or the second one, or α is syncrhonization action. If R1 = [[Y1, 〈〉,0]]
in first case we have that in R1 exists an index h ∈ I such that αh = α and
then by Lemma 3, we get

R1 ≡ (
∏
l∈I

(ml � αl.Pl + Ql)\Al)\B →i
α

(
∏

l∈I\h

(ml � αl.Pl + Ql)\Al ‖ (〈i, α,Qh〉 · mh � Ph)\Ah)\B ≡ R′
1

By Lemma 1 we have: [[Y1, 〈↑〉 · 〈〉,0]] →i
α [[Y ′

1 , 〈↑〉 · 〈〉,0]]
Using rule R-PAR we get

[[Y1, 〈↑〉 · 〈〉,0]] ‖ [[Y2, 〈↑〉 · 〈〉,0]] →i
α [[Y ′

1 , 〈↑〉 · 〈〉,0]] ‖ [[Y2, 〈↑〉 · 〈〉,0]]

where [[Y ′
1 , 〈↑〉 · 〈〉,0]] ‖ [[Y2, 〈↑〉 · 〈〉,0]] = [[Y ′

1 ‖ Y2, 〈〉,0]] = R′. By inductive

hypothesis we have that also Y1
α[i]−−→ Y ′

1 and by using rule K-PAR-L, we

get: Y1 ‖ Y2
α[i]−−→ Y ′

1 ‖ Y2 as desired. The remaining cases are similar.

X = Y + P : By Property 1 we have that:

Y = P1 + . . . + (Y1 ‖ . . . ‖ Ym) + Pj + . . . + Pn

In the same way, like in Lemma 4 we define processes congruent to processes
[[Y + P, 〈〉,0]] and [[Y, 〈〉,0]].

Now we know that there exists some t ∈ J such that αt = α and we have

(
∏

l∈I\J

(ml � αl.Pl + Ql)\Al ‖
∏
h∈J

(mh · 〈k, β, T 〉 � αh.Ph + Qh)\Ah ‖

(mt · 〈h, β, T 〉 � α.Pt + Qt)\At)\B →i
α

(
∏

l∈I\J

(ml � αl.Pl + Ql)\Al ‖
∏
h∈J

(mh · 〈k, β, T 〉 � αh.Ph + Qh)\Ah ‖

(〈i, α,Qt〉 · mt · 〈k, β, T 〉 � Pt)\At)\B

48 D. Medić and C.A. Mezzina

Then we also have [[Y + P, 〈〉,0]] →i
α [[Y ′, 〈〉, P]] = [[Y ′ + P, 〈〉,0]]. By apply-

ing the inductive hypothesis we also have X
α[i]−−→ X ′ and by rule K-PLUS-L,

we get X + P
α[i]−−→ X ′ + P as desired. �

Lemma 7 (Backward Completeness). For any CCSK process X and RCCS
process R, such that R = [[X, 〈〉,0]], if R �i

α R′ in RCCS, then there exists a
corresponding transition X

α[i]−−→ X ′ in CCSK, with R′ = [[X ′, 〈〉,0]].

Proof. By structural induction on X.

We now can state our main result:

Theorem 1 (Operational Correspondance). For any CCS process P , P ∼
[[P, 〈〉,0]].

Proof. We just need to show that the relation

R = {(X, [[X, 〈〉,0]]) with X CCSK reachable }
is a strong back and forth bisimulation.

If X does a forward transition, X
α[i]−−→ Y by Lemma 4 we have also that

[[X, 〈〉,0]] →α
i [[Y, 〈〉,0]], with (Y, [[Y, 〈〉,0]]) ∈ R. If the transition is a backward

one we apply the Lemma 5.
If R = [[X, 〈〉,0]] does a forward transition, R →i

α S then by Lemma 6 we also

have that X
α[i]−−→ Y with S = [[Y, 〈〉,0]], and we have that (Y, [[Y, 〈〉,0]]) ∈ R. If

the transition is a backward one we apply the Lemma7. �

4 Encoding RCCS in CCSK

In this section we just give the encoding of RCCS into CCSK and discuss how
it works, without showing its correctness.

The main difference between RCCS and CCSK is that in RCCS via struc-
tural congruence is possible to split a parallel composition of processes sharing
the same memory into a parallel composition of different monitored processes.
This allows the single monitored processes to continue independently their com-
putation. In CCSK there is no need of splitting rule, as its reversibility is static.
Then it is the case that different RCCS processes may correspond to a single
CCSK process. In order to better understand this main issues, let us consider
the following RCCS process:

R = 〈j, β, P1〉 · 〈↑〉 · 〈i, α,Q〉 · 〈〉 � P1 ‖ 〈↑〉 · 〈i, α,Q〉 · 〈〉 � γ.P2

derived from the initial process 〈〉 � α.(β.P1 ‖ γ.P2) + Q. Now the corresponding
CCSK process is the following one:

α[i].(β[j].P1 ‖ γ.P2) + Q

Static VS Dynamic Reversibility in CCS 49

So the encoding has to be able, while encoding monitored processes, to collect
partially encoded processes sharing the same memory. In the example before,
the encoding has to join together processes β[j].P1 and γ.P2 and put them in
the context α[i].[•] + Q. It is clear that such encoding cannot be compositional
as it has to reason on the whole process while reconstructing back the history
of monitored processes up to a split 〈↑〉, then somehow apply the structural law
Split in order to marge partially encoded processes and then to continue the
encoding of the obtained parallel composition under the common memory. This
is why the encoding of a RCCS reachable process R is defined as δ(�R�),

where function �·� is inductively defined as follows

�R ‖ S� = �R� ‖ �S� �〈〉,X� = X

�R\A� = �R�\A �〈i, α,Q〉 · m,X� = �m,α[i].X + Q�

�m � P � = �m,P � �〈↑〉 · m,X� = �〈↑〉 · m,X�

As we can see, the encoding of a monitored process �m,P � proceed as long as
in m there are events of the form 〈i, α,Q〉 and freezes when it encounters a
memory m on top of which there is a split event 〈↑〉 · m, and the act of this
freezing produces a partially encoded process of the form �〈↑〉 · m,X�.

Function δ(·), which is in charge of fusing two partially encoded CCSK
processes sharing the same memory, is defined as follows:

δ
(∏

�〈↑〉 · ml,Xl� ‖
∏

�〈↑〉 · mt,Xt� ‖
∏

�〈↑〉 · mz,Xz�
)

=

δ
(∏

�ml,Xl ‖ Xt� ‖
∏

�〈↑〉 · mz,Xz�
)

if ∀l ∈ L∃t ∈ T s.t ml = mt

δ(X) = X

Let us note that when the δ only stops when an entire CCSK process has been
derived, otherwise it applies again the encoding �·� on the fused processes.

The following example shows how the entire mechanism work:

R =〈i, α, T 〉 · 〈↑〉 · 〈↑〉 · 〈j, β,0〉 � P1 ‖ 〈↑〉 · 〈↑〉 · 〈j, β,0〉 � P2 ‖ 〈↑〉 · 〈j, β,0〉 � P3

�R� =δ (�〈i, α, T 〉 · 〈↑〉 · 〈↑〉 · 〈j, β,0〉, P1� ‖ �〈↑〉 · 〈↑〉 · 〈j, β,0〉, P2� ‖ �〈↑〉 · 〈j, β,0〉, P3�)

=δ (�〈↑〉 · 〈↑〉 · 〈j, β,0〉, α[i].P1 + T � ‖ �〈↑〉 · 〈↑〉 · 〈j, β,0〉, P2� ‖ �〈↑〉 · 〈j, β,0〉, P3�)

=δ (�〈↑〉 · 〈↑〉 · 〈j, β,0〉, α[i].P1 + T � ‖ �〈↑〉 · 〈↑〉 · 〈j, β,0〉, P2� ‖ �〈↑〉 · 〈j, β,0〉, P3�)

=δ (�〈↑〉 · 〈j, β,0〉, (α[i].P1 + T ‖ P2)� ‖ �〈↑〉 · 〈j, β,0〉, P3�)

=δ (�〈↑〉 · 〈j, β,0〉, (α[i].P1 + T ‖ P2)� ‖ �〈↑〉 · 〈j, β,0〉, P3�)

=δ (�〈j, β,0〉, (α[i].P1 + T ‖ P2) ‖ P3�)

=δ (�〈〉, β[j].((α[i].P1 + T ‖ P2) ‖ P3�))

=β[j].((α[i].P1 + T ‖ P2) ‖ P3)

5 Conclusions and Future Work

The first reversible variant of CCS, called RCCS, was introduced by Danos and
Krivine [2]. In RCCS each process is monitored by a memory, that serves as

50 D. Medić and C.A. Mezzina

stack of past actions. Memories are considered as unique process identifiers, and
in order to preserve this uniqueness along a parallel composition, a structural
law permits to obtain unique memories though a parallel composition. A general
method for reversing process calculi, given in a particular SOS format, has been
proposed by Phillips and Ulidowski in [11]. The main idea of this approach is the
use of communication keys to uniquely identify communications, and to make
static each operator of the calculus. By applying this method to CCS, CCSK
is obtained. Since in CCKS the history is directly annotated in the process
itself, there is no need of splitting history through a parallel composition. We
call this kind of recording histories as static reversibility; while we call the one
used by RCCS as dynamic, since each thread is endowed with its own history.
In order to show that these two methods are similar, e.g. two reversible CCS
derived by them are strongly bisimilar, we have provided and encoding from
a CCSK process to possibly several RCCS monitored processes. Then we have
showed that a CCSK term and its encoding in RCCS are strongly back and
forth bisimilar. We then sketched a possible encoding from RCCS to CCSK and
discussed the difficulties behind it, mostly due to the fact that multiple split
monitored process may correspond to a single CCSK process. We leave as future
work showing the correctness of this encoding. Once this will be proven, then we
can state that the two calculi (and their underling semantics) are equivalent, and
will allow us to bring to CCSK some results about causally consistency already
proven for RCCS.

We leave as future work showing that back and forth bisimulation is a con-
gruence. Moreover, another interesting result would be to show that the two
calculi are fully abstract, e.g. that two bisimilar CCSK terms are translated into
two bisimimilar RCCS terms.

References

1. Berut, A., Arakelyan, A., Petrosyan, A., Ciliberto, S., Dillenschneider, R., Lutz, E.:
Experimental verification of Landauer’ s principle linking information, thermody-
namics. Nature 483(7388), 187–189 (2012)

2. Danos, V., Krivine, J.: Reversible communicating systems. In: Gardner, P.,
Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp. 292–307. Springer,
Heidelberg (2004)

3. Danos, V., Krivine, J.: Transactions in RCCS. In: Abadi, M., de Alfaro, L. (eds.)
CONCUR 2005. LNCS, vol. 3653, pp. 398–412. Springer, Heidelberg (2005)

4. Giachino, E., Lanese, I., Mezzina, C.A.: Causal-consistent reversible debugging. In:
Gnesi, S., Rensink, A. (eds.) FASE 2014 (ETAPS). LNCS, vol. 8411, pp. 370–384.
Springer, Heidelberg (2014)

5. Krivine, J.: A verification technique for reversible process algebra. In: Glück, R.,
Yokoyama, T. (eds.) RC 2012. LNCS, vol. 7581, pp. 204–217. Springer, Heidelberg
(2013)

6. Landauer, R.: Irreversibility and heat generation in the computing process. IBM
J. Res. Dev. 5, 183–191 (1961)

7. Lanese, I., Lienhardt, M., Mezzina, C.A., Schmitt, A., Stefani, J.-B.: Concurrent
flexible reversibility. In: Felleisen, M., Gardner, P. (eds.) ESOP 2013. LNCS, vol.
7792, pp. 370–390. Springer, Heidelberg (2013)

Static VS Dynamic Reversibility in CCS 51

8. Milner, R.: A Calculus of Communicating Systems. LNCS, vol. 92. Springer,
Heidelberg (1980)

9. Perumalla, K.S., Park, A.J.: Reverse computation for rollback-based fault tolerance
in large parallel systems - evaluating the potential gains and systems effects. Cluster
Comput. 17(2), 303–313 (2014)

10. Phillips, I., Ulidowski, I., Yuen, S.: A reversible process calculus and the modelling
of the ERK signalling pathway. In: Glück, R., Yokoyama, T. (eds.) RC 2012. LNCS,
vol. 7581, pp. 218–232. Springer, Heidelberg (2013)

11. Phillips, I.C.C., Ulidowski, I.: Reversing algebraic process calculi. J. Log. Algebr.
Program. 73(1–2), 70–96 (2007)

12. Sangiorgi, D., Walker, D.: The Pi-Calculus - A Theory of Mobile Processes. Cam-
bridge University Press, Cambridge (2001)

Reversing Single Sessions

Francesco Tiezzi1(B) and Nobuko Yoshida2

1 University of Camerino, Camerino, Italy
francesco.tiezzi@unicam.it

2 Imperial College London, London, UK
n.yoshida@imperial.ac.uk

Abstract. Session-based communication has gained a widespread
acceptance in practice as a means for developing safe communicating
systems via structured interactions. In this paper, we investigate how
these structured interactions are affected by reversibility, which provides
a computational model allowing executed interactions to be undone. In
particular, we provide a systematic study of the integration of different
notions of reversibility in both binary and multiparty single sessions.
The considered forms of reversibility are: one for completely reversing
a given session with one backward step, and another for also restoring
any intermediate state of the session with either one backward step or
multiple ones. We analyse the costs of reversing a session in all these dif-
ferent settings. Our results show that extending binary single sessions to
multiparty ones does not affect the reversibility machinery and its costs.

1 Introduction

In modern ICT systems, the role of communication is more and more cru-
cial. This calls for a communication-centric programming style supporting safe
and consistent composition of protocols. In this regard, in the last decade,
primitives and related type theories supporting structured interactions, namely
sessions, among system participants have been extensively studied (see, e.g.,
[5,10,11,18,22]).

Another key aspect of ICT systems concerns their reliability. Recently,
reversibility has been put forward as a convenient support for programming
reliable systems. In fact, it allows a system that has reached an undesired state
to undo, in automatic fashion, previously performed actions. Again, foundational
studies of mechanisms for reversing action executions have been carried out (see,
e.g., [4,6–9,13,14,19]).

In this paper, we investigate how the benefits of reversibility can be brought
to structured communication and, hence, how reversibility and sessions affect

This research has been partially founded by EPSRC EP/K011715/1, EP/K034413/1
and EP/L00058X/1, EU FP7 FETOpenX Upscale, MIUR PRIN Project CINA
(2010LHT4KM), and the COST Actions BETTY (IC1201) and Reversible com-
putation (IC1405).

c© Springer International Publishing Switzerland 2016
S. Devitt and I. Lanese (Eds.): RC 2016, LNCS 9720, pp. 52–69, 2016.
DOI: 10.1007/978-3-319-40578-0 4

Reversing Single Sessions 53

Binary Single Sessions
(1) Whole session reversibility
Session interactions reversibility

(2) Multi-step
(3) Single-step

Multiparty Single Sessions
(4) Whole session reversibility
Session interactions reversibility

(5) Multi-step
(6) Single-step

Fig. 1. Sessions and reversibility: considered combinations

each other. We concentrate on the primitives and mechanisms required to incor-
porate different notions of reversibility into two forms of session, and we analyse
the costs of reversing a session in these different settings. To study the interplay
between reversibility and sessions we rely on a uniform foundational framework,
based on π-calculus [17].

Specifically, we focus on a simplified form of session, called single, in which
the parties that have created a session can only continue to interact along that
single session. This setting permits to consider a simpler theoretical framework
than the one with the usual notion of session, called here multiple, where parties
can interleave interactions performed along different sessions. This allows us to
focus on the basic, key aspects of our investigation. Although single sessions
are simpler, they are still largely used in practice, and differently from multiple
sessions (see, e.g., [2,20]) their effect to reversibility is not studied yet in the
literature.

Concerning the parties involved in the sessions, we take into account both
binary and multiparty sessions, which involve two or multiple parties, respec-
tively. For each kind of session, we investigate the use of two forms of reversibility:
(i) whole session reversibility, where a single backward step reverses completely
the given session, thus directly restoring its initialisation state; and (ii) ses-
sion interactions reversibility, where any intermediate state of the session can
be restored, either in a (ii.a) multi-step or a (ii.b) single-step fashion. Figure 1
sums up the different combinations of sessions and reversibility we consider.

We exemplify the reversible approaches throughout the paper by resorting to
a typical business protocol example, drawn from [11]. In case of binary session
(Fig. 2(a)), the protocol involves a Buyer willing to buy a book from a Seller.

Buyer Seller

init

date

title

quote

ok

address

quit

branch

Buyer1 Seller Buyer2

initinit

date

title

quote quote

contrib

ok

address

quit

branch

(a) (b)

Fig. 2. Single session protocols: Buyer-Seller (a) and Two-Buyers-Seller (b)

54 F. Tiezzi and N. Yoshida

Buyer sends the book title to Seller, which replies with a quote. If Buyer is
satisfied by the quote, then he sends his address and Seller sends back the delivery
date; otherwise Buyer quits the conversation. In the multiparty case (Fig. 2(b)),
the above protocol is refined by considering two buyers, Buyer1 and Buyer2, that
wish to buy an expensive book from Seller by combining their money. Buyer1
sends the title of the book to Seller, which sends the quote to both Buyer1 and
Buyer2. Then, Buyer1 tells Buyer2 how much he is willing to contribute. Buyer2
evaluates how much he has to pay and either accepts, and exchanges the shipping
information, or terminates the session. In these scenarios, reversibility can be
entered into the game to deal with errors that may occur during the interactions,
or to make the protocols more flexible by enabling negotiation via re-iteration of
some interactions. For example, a buyer, rather than only accepting or rejecting
a quote, can ask the seller for a new quote by simply reverting the interaction
where the current quote has been communicated. Similarly, Buyer2 can negotiate
the division of the quote with Buyer1. Other possibilities allow the buyers to
partially undo the current session, in order to take a different branch along the
same session, or even start a new session with (possibly) another seller.

Binary Multiparty
(1) (2) (3) (4) (5) (6)

backward steps 1 n 1 1 n 1

#memory items 1 n n 1 n n

n: number of interactions along the session to be reversed

Fig. 3. Costs of reversing single sessions

The contribution of this paper is
twofold. Firstly, we show for each kind
of session discussed above a suitable
machinery that permits extending the
corresponding non-reversible calculus
in order to become reversible. Sec-
ondly, we compare the different cases,
i.e. (1)–(6) in Fig. 1, by means of their
costs for reverting a session, given in
terms of number of backward steps and occupancy of the data structures used
to store the computation history (which is a necessary information to reverse
the effects of session interactions). Our results about reversibility costs are sum-
marised in Fig. 3. It is worth noticing that linearity of sessions permits to achieve
costs that are at most linear. Moreover, despite in case of complex interactions
the multiparty approach provides a programming style more natural than the
binary one, binary and multiparty sessions have the same reversibility costs. We
discuss at the end of the paper how our work can extend to multiple sessions,
which require a much heavier machinery for reversibility with respect to sin-
gle ones, and have higher costs. This means that it is not convenient to use in
the single session setting the same reversible machineries already developed for
calculi with multiple sessions, which further motivates our investigation.

The practical benefit of our systematic study is that it supplies a support to
system designers for a conscious selection of the combination of session notion
and reversibility mechanism that is best suited to their specific needs.

Summary of the rest of the paper. Section 2 provides background notions
on binary and multiparty session-based variants of π-calculus. Section 3 shows
how reversibility can be incorporated in single binary sessions and what is its
cost, while Sect. 4 focusses on multiparty ones. Section 5 concludes by reviewing

Reversing Single Sessions 55

strictly related work and by touching upon directions for future work. We refer to
the companion technical report [21] for further background material and proofs
of results.

2 Background on Session-Based π-calculi

In this section, we give the basic definitions concerning two variants of the π-
calculus, enriched with primitives for managing binary and multiparty sessions,
respectively.

Binary session calculus. The syntax definition of the binary session π-calculus
[22] relies on the following base sets: variables (ranged over by x), storing val-
ues; shared channels (ranged over by a), used to initiate sessions; session chan-
nels (ranged over by s), consisting on pairs of endpoints (ranged over by s, s̄)
used by the two parties to exchange values within an established session; labels
(ranged over by l), used to select and offer branching choices; and process vari-
ables (ranged over by X), used for recursion. Letter u denotes shared identifiers,
i.e. shared channels and variables together; letter k denotes session identifiers,
i.e. session endpoints and variables together; letter c denotes channels, i.e. ses-
sion channels and shared channels together. Values, including booleans, integers,
shared channels and session endpoints, are ranged over by v.

Processes (ranged over by P) and expressions (ranged over by e and defined
by means of a generic expression operator op representing standard operators
on Boolean and integer values) are given by the grammar in Fig. 4.

P ::= Processes
ū(x).P | u(x).P | k!〈e〉.P | k?(x).P request, accept ,output, input

| k � l.P | k � {l1 : P1, . . . , ln : Pn} | 0 | P1 |P2 selection, branching, inact, parallel
| (νc) P | if e then P1 else P2 | X | μX.P choice, restriction, recursion

e ::= v | op(e1, . . . , en) Expressions

Fig. 4. Binary session calculus: syntax

ā(x1).P1 | a(x2).P2 → (νs)(P1[s̄/x1] | P2[s/x2]) s, s̄ /∈ fse(P1, P2) [CON]

k̄!〈e〉.P1 | k?(x).P2 → P1 | P2[v/x] (k = s or k = s̄), e ↓ v [COM]

k̄ � li.P | k � {l1 : P1, . . . , ln : Pn} → P | Pi (k = s or k = s̄), 1 ≤ i ≤ n [LAB]

if e then P1 else P2 → P1 e ↓ true [IF1]

if e then P1 else P2 → P2 e ↓ false [IF2]

P1 → P ′
1

P1 |P2 → P ′
1 |P2

[PAR] P → P ′

(νc)P → (νc)P ′ [RES]
P1 ≡ P ′

1 → P ′
2 ≡ P2

P1 → P2
[STR]

Fig. 5. Binary session calculus: reduction relation

56 F. Tiezzi and N. Yoshida

The operational semantics of the calculus is given in terms of a structural
congruence and of a reduction relation, and is only defined for closed terms, i.e.
terms without free variables. The structural congruence, written ≡, is standard
(see [21]). The reduction relation, written →, is the smallest relation on closed
processes generated by the rules in Fig. 5. We resort to the auxiliary function
· ↓ for evaluating closed expressions: e ↓ v says that expression e evaluates to
value v. Notationally, for P a process, fv(P) denotes the set of free variables in
P , and fse(P) the set of free session endpoints. We comment on salient points.
A new session is established when two parallel processes synchronise via a shared
channel a; this results on the generation of a fresh (private) session channel whose
endpoints are assigned to the two session parties (rule [Con]). Along a session,
the two parties can exchange values (for data- and channel-passing, rule [Com])
and labels (for branching selection, rule [Lab]). The other rules are standard
and state that: conditional choice evolves according to the evaluation of the
expression argument (rules [If1] and [If2]); if a part of a larger process evolves,
the whole process evolves accordingly (rules [Par] and [Res]); and structural
congruent processes have the same reductions (rule [Str]).

The syntax of sorts (ranged over by S) and types (ranged over by α, β) used
in the binary session type discipline is defined in Fig. 6. The type ![S].α represents
the behaviour of first outputting a value of sort S, then performing the actions
prescribed by type α; type ![β].α represents a similar behaviour, which starts with
session output (delegation) instead; types ?[S].α and ?[β].α are the dual ones,
receiving values instead of sending. Type ⊕[l1 : α1, . . . , ln : αn] represents the
behaviour which would select one of li and then behaves as αi, according to the
selected li (internal choice). Type &[l1 : α1, . . . , ln : αn] describes a branching
behaviour: it waits with n options, and behave as type αi if the i-th action is
selected (external choice). Type end represents inaction, acting as the unit of
sequential composition. Type μt.α denotes a recursive behaviour, representing

S ::= Sorts
bool | int | 〈α〉 boolean, integer, shared channel

α ::= Types
![S].α | ![β].α | ?[S].α | ?[β].α output, input

| ⊕[l1 : α1, . . . , ln : αn] | &[l1 : α1, . . . , ln : αn] selection, branching
| end | t | μt.α end, recursion

Fig. 6. Binary session calculus: sorts and types

P ::= Processes
ū[p](x).P | u[p](x).P | k[p]!〈e〉.P | k[p]?(x).P request, accept, output, input

| k[p] � l.P | k[p] � {l1 :P1, . . . , ln :Pn} | 0 | P1 |P2 selection, branching, inact, par.
| if e then P else Q | (νc) P | X | μX.P choice, restriction, recursion

Fig. 7. Multiparty session calculus: syntax

Reversing Single Sessions 57

the behaviour that starts by doing α and, when variable t is encountered, recurs
to α again.

Typing judgements are of the form Θ;Γ � P � Δ, where Θ, Γ and Δ,
called basis, sorting and typing respectively, are finite partial maps from shared
identifiers to sorts, from session identifiers to types, and from process variables
to typings, respectively Intuitively, the judgement Θ;Γ � P � Δ stands for
“under the environment Θ;Γ , process P has typing Δ”. The axioms and rules
defining the typing system are standard (see [21]).

Example 1 (Buyer-Seller protocol). We show how the protocol in Fig. 2(a) is
rendered in the variant of π-calculus with binary sessions. The behaviour of
Buyer is described by the following process:

Buyer � ā(x). x!〈“The Divine Comedy”〉. x?(xquote).
if xquote ≤ 20 then x � lok. x!〈addr()〉. x?(xdate). P else x � lquit.0

This Buyer is interested in buying the Divine Comedy and is willing to pay not
more than 20 euros. The Seller participant instead is rendered as follows:

Seller � a(z). z?(ztitle). z!〈quote(ztitle)〉. z � {lok :z?(zaddr). z!〈date()〉.Q , lquit :0}

Note that addr(), quote() and date() are used to get a buyer address, a quote
for a given book, and the delivery date, respectively. The overall specification is
Buyer | Seller.

Multiparty session calculus. The base sets for the synchronous multiparty
session calculus [12] are the same of the binary case, except for session endpoints,
which now are denoted by s[p], with p,q ranging over roles (represented as nat-
ural numbers). Thus, session identifiers k now range over session endpoints s[p]
or variables x.

The syntax of the calculus is defined by the grammar in Fig. 7, where expres-
sions e are defined as in the binary case (with values that extends to multiparty
session endpoints). Primitive ū[p](x).P initiates a new session through identi-
fier u on the other multiple participants, each one of the form u[q](x).Pq where
1 ≤ q ≤ p− 1. Variable x will be substituted with the session endpoint used for
the interactions inside the established session. Primitive k[p]!〈e〉.P denotes the
intention of sending a value to role p; similarly, process k[p]?(x).P denotes the
intention of receiving a value from role p. Selection and branching behave in a
similar way.

As usual the operational semantics is given in terms of a structural congru-
ence and of a reduction relation. The rules defining the structural congruence are
the same ones used for the binary calculus where the rule for the scope extension
of session channels takes into account the new form of session endpoints. The
reduction relation →, instead, is the smallest relation on closed processes gener-
ated by the rules [If1], [If2], [Par], [res] and [Str] in Fig. 5, and the additional
rules in Fig. 8. We comment on salient points. Rule [M-Con] synchronously ini-
tiates a session by requiring all session endpoints be present for a synchronous
reduction, where each role p creates a session endpoint s[p] on a fresh session

58 F. Tiezzi and N. Yoshida

ā[n](x).Pn | i={1,..,n−1} a[i](x).Pi → s /∈ fse(Pi) with i = {1, .., n} [M-CON]
(νs)(Pn[s[n]/x] | i={1,..,n−1} Pi[s[i]/x])

s[p][q]!〈e〉.P | s[q][p]?(x).Q → P | Q[v/x] e ↓ v [M-COM]

s[p][q] � li.P | s[q][p] � {l1 : P1, . . . , ln : Pn} → P | Pi 1 ≤ i ≤ n [M-LAB]

Fig. 8. Multiparty session calculus: reduction relation (excerpt of rules)

channel s. The participant with the maximum role (ā[n](x).Pn) is responsible
for requesting a session initiation. Rule [M-Com] defines how a party with role
p sends a value to the receiving party with role q. Selection and branching are
defined in a similar way (rule [M-Lab]).

The type discipline of this synchronous multiparty session calculus is simpler
than the asynchronous one in [11], but it is much more elaborate than the binary
case, as it considers global and local types. Therefore, due to lack of space, we
relegate the definitions of types, as well as the rules of the corresponding type
system, to the companion technical report [21] and refer the interested reader to
[12] for a detailed account.

Example 2 (Two-Buyers-Seller protocol). We show how the protocol in Fig. 2(b)
is rendered in the variant of π-calculus with the multiparty sessions. The behav-
iour of Buyer1 and Buyer2 are described by the following processes:

Buyer1 � ā[3](x). x[1]!〈“The Divine Comedy”〉. x[1]?(xquote). x[2]!〈split(xquote)〉. P1

Buyer2 � a[2](y). y[1]?(yquote). y[3]?(ycontrib). if yquote − ycontrib ≤ 10
then y[1] � lok. y[1]!〈addr()〉. y[1]?(ydate). P2 else y[1] � lquit.0

Now, Buyer1 divides the quote by means of the split() function. The Seller
process is similar to the binary case, but for the form of session endpoints:

Seller � a[1](z). z[3]?(ztitle). z[2]!〈quote(ztitle)〉. z[3]!〈lastQuote(ztitle)〉.
z[2] � {lok : z[2]?(zaddr). z[2]!〈date()〉.P3 , lquit : 0}

where lastQuote() simply returns the last quote computed for a given book.

3 Reversibility of Single Binary Sessions

This section formally introduces the notion of single session, and illustrates con-
structs, mechanisms and costs to support the reversibility in the binary cases.

3.1 Single Sessions

In the single sessions setting, when two processes start a session their contin-
uations only interact along this single session. Thus, neither delegation (i.e.,
passing of session endpoints) nor initialisation of new sessions (also after the
session closure) is allowed. As clarified below, the exclusive use of single sessions

Reversing Single Sessions 59

P ::= Reversible processes
. . . | 〈s : m〉 � P π-calculus processes, single session

m ::= Memory stacks
P | P · m bottom element, push

Fig. 9. Reversible extension

is imposed to processes by means of a specific type system, thus avoiding the
use of syntactical constraints.

Reversibility is incorporated in a process calculus typically by adding memory
devices to store information about the computation history, which otherwise
would be lost during computations. In all single session cases, i.e. (1)-(6) in
Fig. 1, we will extend the syntax of (binary/multiparty) session-based π-calculus
as shown in Fig. 9. The term 〈s : m〉 � P represents a single session along
the channel s with associated memory m and code P . A memory m is a (non-
empty) stack of processes, each one corresponding to a state of the session (the
bottom element corresponds to the term that initialised the session). The term
〈s : m〉 � P is a binder, i.e. it binds session channel s in P . In this respect, it acts
similarly to operator (νs)P , but the scope of 〈s : m〉 � P cannot be extended.

In the obtained reversible calculi, terms can perform, besides standard for-
ward computations, also backward computations that undo the effect of the for-
mer ones.

We compare approaches (1)-(6) with respect to the cost of reverting a session
in the worst case, i.e. the cost of completely reverting a session. The cost is given
in terms of (i) the number of backward reductions (Cbr), necessary to complete
the rollback, and (ii) memory occupancy (Cmo), i.e. the number of element in
the memory stack of the session when the rollback starts. The two kinds of cost
depend on the length of the considered session, given by the number of (forward)
steps performed along the session.

3.2 Binary Session Reversibility

Not all processes allowed by the syntax presented above corresponds to meaning-
ful processes in the reversible single sessions setting. Indeed, on the one hand,
the syntax allows terms violating the single sessions limitation. On the other
hand, in a general term of the calculus the history stored in its memories may
not be consistent with the computation that has taken place.

We address the above issues by only considering a class of well-formed
processes, called reachable processes. In the definition of this class of processes,
to ensure the use of single sessions only, as in [11] we resort to the notion of
simple process.

Definition 1 (Simple process). A process is simple if (i) it is generated by
the grammar in Fig. 4 and (ii) it is typable with a type derivation using prefix

60 F. Tiezzi and N. Yoshida

rules where the session typings in the premise and the conclusion are restricted
to at most a singleton1.

The point (i) of the above definition states that a simple process has no memory,
while point (ii) states that each prefixed subterm in a simple process uses only
a single session.

The following properties clarify the notion of simple process.

Property 1. In a simple process, delegation is disallowed.

Proof. The proof proceeds by contradiction and straightforwardly follows from
Definition 1 (see [21]).

Property 2. In a simple process, subordinate sessions (i.e., new sessions ini-
tialised within the single session) are disallowed.

Proof. The proof proceeds by contradiction (see [21]).

We explain the meaning of subordinate session used in Property 2 by means of
an example. Let us consider the process a(x).b(y).x!〈1〉.P with y ∈ fv(P), which
initialises a (subordinate) session using channel b within a session previously
initialised using channel a. This process is not simple, because typing it requires
to type the (sub)process b(y).x!〈1〉.P under typing x :![int].α, which is not empty
as required by Definition 1.

Now, to ensure history consistency, as in [6] we only consider reachable
processes, i.e. processes obtained by means of forward reductions from simple
processes.

Definition 2. (Reachable processes). The set of reachable processes, for the
case (i) in Fig. 1 with i ∈ {1, 2, 3}, is the closure under relation �(i) (see below)
of the set of simple processes.

We clarify this notion by means of an example. The process stored in the memory
of term 〈s : (ā(x).x!〈1〉 | a(y).y?(z))〉 � (s̄!〈2〉 | s?(z)) is not consistent with the
related session process, because there is no way to generate the term (s̄!〈2〉 |
s?(z)) from the stored process (in fact, in the session process, the value sent
along the endpoint s̄ should be 1 instead of 2).

We now present the semantics of the reversibility machinery in the three
binary cases. As usual, the operational semantics is given in terms of a structural
congruence and a reduction relation2. For all three cases, the laws defining the
1 Using the standard typing system for the binary session π-calculus (see [21,

Figure 13]), point (ii) boils down to: Δ of rules [Req], [Acc], [Send], [Rcv], [Sel]
and [Br] are empty; neither [Thr] nor [Cat] is used; Δ · Δ′ in [Conc] contains at
most a singleton; and Δ of the remaining rules contain at most a singleton.

2 We use a reduction semantics with respect to a labelled one because the former
is simpler (e.g., it does not require to deal with scope extension of names) and,
hence, is preferable when the labelled semantics is not needed (e.g., here we are not
interested in labelled bisimulations). Moreover, works about session-based π-calculus
use a reduction semantics, as well as many reversible calculi (e.g., [4,14,16]).

Reversing Single Sessions 61

if e then P1 else P2 �(i) P1 e ↓ true [FW-IF1]

if e then P1 else P2 �(i) P2 e ↓ false [FW-IF2]

P1 �(i) P ′
1

P1 | P2 �(i) P ′
1 | P2

[FW-PAR]
P �(i) P ′

(νc)P �(i) (νc)P ′ [FW-RES]

P ≡ P ′ �(i) Q′ ≡ Q

P �(i) Q
[FW-STR]

Fig. 10. Single sessions: shared forward and backward rules (for i ∈ {1..6}); rules
[Bw-Par], [Bw-Res], [Bw-Str] are omitted (they are like the forward rules where
�(i) replaces �(i))

structural congruence are the same of the binary session calculus. Instead, the
reduction relations for the cases (1)–(3), written �(i) with i ∈ {1, 2, 3}, are given
as the union of the corresponding forward reduction relations �(i) and backward
reduction relations �(i), which are defined by different sets of rules in the three
cases. Notably, the rules in Fig. 10, whose meaning is straightforward, are shared
between the three cases.

The semantics is only defined for closed, reachable terms, where now the def-
inition of closed term extends to session endpoints, in the sense that all occur-
rences of session endpoints s and s̄ have to be bound by a single session term
〈s : m〉 � ·. This latter requirement is needed for ensuring that every running
session in the considered process can be reverted; for example, in the reachable
process (s̄!〈1〉 | s?(x) | Q) there is a running session s that cannot be reverted
because no computation history information (i.e., no memory stack) is available
for it. We discuss below the additional definitions for the operational semantics
of the three binary cases.
(1) Whole session reversibility . In this case the reversibility machinery of
the calculus permits to undo only whole sessions. The forward rules additional
to those in Fig. 10 are as follows:

P �(1) 〈s : P 〉 � (P1[s̄/x] | P2[s/y]) P = (ā(x).P1 | a(y).P2) [Fw(1)-Con]

P → P ′

〈s : m〉 � P �(1) 〈s : m〉 � P ′ [Fw(1)-Mem]

Rule [Fw(1)-Con] initiates a single session s with the initialisation term P
stored in the memory stack. As usual the two session endpoints s̄ and s replace
the corresponding variables x and y in the two continuations P1 and P2 (within
the scope of the single session construct). Notably, there is no need of using
the restriction operator, because in the single session setting the session end-
points cannot be communicated outside the session, i.e., delegation is disallowed
(Property 1). Moreover, differently from the non-reversible case (see rule [Con]
in Fig. 5), there is also no need of requiring the session endpoints s and s̄ to
be fresh in the session code (i.e., in P1 and P2), because of the notion of closed
process given in this section. Rule [Fw(1)-Mem] simply states that a process

62 F. Tiezzi and N. Yoshida

within the scope of a single session evolves with a forward reduction according
to its evolution with a standard reduction (defined in Fig. 5).

The only additional backward rule is the following one:

〈s : P 〉 � Q �(1) P [Bw(1)]

This rule permits to rollback the whole session conversation in every moment
during its execution. In particular, the term that initialised the session is restored
with a single backward reduction step. Notably, the fact that scope extension is
not allowed for the operator 〈· : ·〉 � · ensures that the process Q in [Bw(1)]
does not contain processes not belonging to session s, i.e. unwanted deletions are
prevented. It is also worth noticing that the rollback of session s does not involve
other sessions, as no subordinate sessions can be active in Q (Property 2).

(2) Multi-step. In this case a session can be reversed either partially or totally.
When the rollback starts, it proceeds step-by-step and can terminate in any inter-
mediate state of the session, as well as in the initialisation state. The additional
forward rules are:

P �(2) 〈s : P 〉 � (P1[s̄/x] | P2[s/y]) P = (ā(x).P1 | a(y).P2) [Fw(2)-Con]

P → P ′

〈s : m〉 � P �(2) 〈s : P · m〉 � P ′ [Fw(2)-Mem]

Differently from the case (1), here it is necessary to keep track in the memory
stack of each (forward) interaction that has taken place in the session. Therefore,
the forward rule [Fw(2)-Mem] pushes the process P , representing the state
before the transition, into the stack.

The backward reduction relation is defined by the following additional rules:

〈s : P 〉 � Q �(2) P [Bw(2)-1] 〈s : P · m〉 � Q �(2) 〈s : m〉 � P [Bw(2)-2]

Rule [Bw(2)-1] is like to [Bw(1)], but here it can be used only when the mem-
ory stack contains just one element. The single session is removed because its
initialisation state is restored. Rule [Bw(2)-2], instead, permits undoing an inter-
mediate state Q, by simply replacing it with the previous intermediate state P .
In this case, since after the reduction the stack is not empty, the single session
construct is not removed.

(3) Single-step. This is similar to the previous case, but the rollback (also of
intermediate states) is always performed in a single step. The forward reduction
relation is defined by the same rules of case (2), where �(3) replaces �(2), while
the backward one is defined by the following additional rules:

〈s : P 〉 � Q �(3) P [Bw(3)-1] 〈s : P · m〉 � Q �(3) 〈s : m〉 � P [Bw(3)-2]

〈s : m · P 〉 � Q �(3) P [Bw(3)-3] 〈s : m′ · P · m〉 � Q �(3) 〈s : m〉 � P [Bw(3)-4]

Rules [Bw(3)-1] and [Bw(3)-2] are like [Bw(2)-1] and [Bw(2)-2], respectively.
In particular, rule [Bw(3)-2] is still used to replace the current state by the
previous one. In addition to this, now rule [Bw(3)-4] permits to replace the
current state Q also by an intermediate state P of the session computation; this

Reversing Single Sessions 63

is done in a single step. Notice that all interactions that took place after the
one produced by P (i.e., the states stored in m′) are erased when P is restored,
while the previous interactions (i.e., the states stored in m) are kept. Notice also
that the selection of the past state to restore is non-deterministic. A real-world
reversible language instead should provide specific primitives and mechanisms to
control reversibility (see discussion on Sect. 5); anyway the controlled selection
of the past states does not affect the reversibility costs, hence this aspect is out-
of-scope for this paper and left for future investigations. Rule [Bw(3)-3] permits
to directly undo the whole session from an intermediate state.

Results. The cost of reverting a session in setting (1), in terms of both backward
reductions (Cbr) and memory occupancy (Cmo), is constant w.r.t. the session
length. In case (2), instead, the costs are linear in the length of the session
(recall that we consider the worst case, where the session is completely reversed).
Finally, in setting (3) the cost is constant in terms of backward reductions, and
linear in terms of memory occupancy.

Theorem 1. Let n be the length of a session, the costs of reverting it are:
case (1) Cbr = Cmo = 1; case (2) Cbr = Cmo = n; case (3) Cbr = 1 and
Cmo = n.

Proof. The proof of case (1) is straightforward, while proofs of cases (2) and (3)
proceed by induction on n (see [21]).

The following result shows that single binary sessions of cases (2) and (3)
enjoy a standard property of reversible calculi (Loop lemma, see [7]): backward
reductions are the inverse of the forward ones and vice versa.

Lemma 1 (Loop lemma). Let P = 〈s : m〉 � Q and P ′ = 〈s : m′〉 � Q′ be
two reachable processes in setting (i), with i ∈ {2, 3}. P �(i) P ′ if and only if
P ′ �(i) P .

Proof. The proof for the if (resp. only if) part is by induction on the derivation
of the forward (resp. backward) reduction (see [21]).

Notably, case (1) does not enjoy this lemma because backward reductions do not
allow to restore intermediate states of sessions.

We conclude the section with an example showing the three approaches at
work on the Buyer-Seller protocol.

Example 3. (Reversible Buyer-Seller protocol). Let us consider a reversible sce-
nario concerning the Buyer-Seller protocol specified in Example 1, where there
are two sellers and a buyer.

In case (1), the system evolves as follows:

Seller1 | Seller2 | Buyer
�(1) Seller1 | 〈s : Seller2 | Buyer〉 � (s?(ztitle).Ps | s̄!〈vtitle〉.Pb)
�∗

(1) Seller1 | 〈s : Seller2 | Buyer〉 � (Q[. . .] | P [. . . , vdate/xdate]) = R

64 F. Tiezzi and N. Yoshida

where vtitle stands for “The Divine Comedy”. After these interactions between
Buyer and Seller2, the buyer has received a delivery date from the seller. In the
unfortunate case that this date is not suitable for the buyer, the session can be
reversed as follows:

R �(1) Seller1 | Seller2 | Buyer

Now, Buyer can start a new session with Seller2 as well as with Seller1.
In case (2), the parties can reach the same state as follows:

Seller1 | Seller2 | Buyer �∗
(2)

Seller1 | 〈s : m〉 � (Q[. . .] | P [. . . , vdate/xdate]) = R′

where m is Rdate · Raddr · Rok · Rif · Rquote · Rtitle, with Ri denoting the process
generating the interaction i. In this case, the buyer can undo only the last two
session interactions as follows:

R′ �(2) Seller1 | 〈s : m′〉 � Rdate �(2) Seller1 | 〈s : m′′〉 � Raddr

with m′ = Raddr · m′′ and m′′ = Rok · Rif · Rquote · Rtitle. Now, the buyer can
possibly send a different address to the seller in order to get a more suitable date
(as we assume addr() and date() be two non-deterministic functions abstracting
the interaction with buyer and seller backends).

Finally, in case (3), the system can reach again the state R′, but this time
the session can be also partially reversed by means of a single backward step:

R′ �(3) Seller1 | 〈s : m′′〉 � Raddr

4 Reversibility of Single Multiparty Sessions

For the same motivations of the binary case, we do not consider all processes
allowed by the syntax of the reversible multiparty single-session calculus,
obtained by extending the grammar in Fig. 7 with the single sessions construct
in Fig. 9. Again, we consider only reachable processes, whose definition relies on
the notion of simple process.

Definition 3. (Multiparty simple process). A multiparty process is simple
if (i) it is generated by the grammar in Fig. 7 and (ii) it is typable with a type
derivation using the prefix rules where the session typings in the premise and the
conclusion are restricted to at most a singleton3.

Definition 4. (Multiparty reachable processes). The set of reachable
processes, for the case (i) in Fig. 1 with i ∈ {4, 5, 6}, is the closure under relation
�(i) (see below) of the set of multiparty simple processes.

3 Using the typing system for the synchronous multiparty session π-calculus (see [21,
Figure 15]), point (ii) boils down to: Δ of rules [MReq], [MAcc], [Send], [Recv],
[Sel] and [Bra] are empty; neither [Deleg] nor [Srecv] is used; Δ · Δ′ in [Conc]
contains at most a singleton; and Δ of the remaining rules contain at most a single-
ton.

Reversing Single Sessions 65

We now present the semantics of the three multiparty cases. For the definition
of the reduction relations we still rely on the shared rules in Fig. 10.

(4) Whole session reversibility. In case the reversibility machinery only
permits to undo a whole session, the forward reduction relation is defined by
these additional rules:

P �(4) 〈s : P 〉 � (Pn[s[n]/x] |∏i={1,..,n−1} Pi[s[i]/x]) [Fw(4)-M-Con]

P = (ā[n](x).Pn | ∏i={1,..,n−1} a[i](x).Pi)

P → P ′

〈s : m〉 � P �(4) 〈s : m〉 � P ′ [Fw(4)-Mem]

The meaning of these rules is similar to that of [Fw(1)-Con] and [Fw(1)-Mem],
with the only difference that the initialised single session is multiparty.

The backward reduction relation is given by the same rules of case (1), of
course defined for relation �(4) instead of �(1).

(5) Multi-step. When sessions can be reversed also partially, in a step-by-step
fashion, the additional forward rules are as follows:

P �(5) 〈s : P 〉 � (Pn[s[n]/x] |∏i={1,..,n−1} Pi[s[i]/x]) [Fw(5)-M-Con]

P = (ā[n](x).Pn | ∏i={1,..,n−1} a[i](x).Pi)

P → P ′

〈s : m〉 � P �(5) 〈s : P · m〉 � P ′ [Fw(5)-Mem]

These rules are the natural extension of the corresponding rules of the binary
version, i.e. case (2). Their meaning, indeed, is the same.

The backward reduction relation in setting (5) is given by the same rules of
case (2) where relation �(2) is replaced by �(5).

It is worth noticing that, by Definitions 3 and 4, concurrent interactions
along the same session are prevented (by the type discipline in [12], which forces
a linear use of session channels). Therefore, there is no need here to use a more
complex reversible machinery (as in [20]) for enabling a causal-consistent form
of session reversibility.

(6) Single-step. As in the corresponding binary session setting, here the for-
ward reduction relation is defined by the same rules of the multi-step case, i.e.
case (5), where �(6) replaces �(5). Instead, the backward reduction relation is
defined by the same rules of case (3), where �(6) replaces �(3).

Results.The cost of reverting a session in setting (4) is constant, while it is
linear in the length of the session in case (5). In setting (6), instead, the cost
is constant in terms of backward reductions, and linear in terms of memory
occupancy.

Theorem 2. Let n be the length of a session, the costs of reverting it are:
case (4) Cbr = Cmo = 1; case (5) Cbr = Cmo = n; case (6) Cbr = 1 and Cmo = n.

66 F. Tiezzi and N. Yoshida

Proof. The proof of case (4) is a trivial adaptation of the proof of case (1)
in Theorem 1, while proofs of cases (5) and (6) proceed by induction on n
(see [21]).

In all multiparty approaches, cases (4)-(6), the backward computations have
the same semantics of the corresponding binary approaches, cases (1)-(3), respec-
tively. An important consequence of this fact is that the cost of reverting a ses-
sion in a multiparty case is the same of the corresponding binary case. In other
words, we can claim that extending binary sessions to multiparty ones, in the
single session setting, does not affect the machinery for the reversibility and its
costs.

As in the binary case, also the multiparty sessions of cases (5) and (6) enjoy
the Loop lemma.

Lemma 2. (Loop lemma). Let P = 〈s : m〉 � Q and P ′ = 〈s : m′〉 � Q′ be
two reachable processes in setting (i), with i ∈ {5, 6}. P �(i) P ′ if and only if
P ′ �(i) P .

Proof. The proof for the if (resp. only if) part is by induction on the derivation
of the forward (resp. backward) reduction (see [21]).

We conclude by showing the three multiparty approaches at work on the
Two-Buyers-Seller protocol.

Example 4. (Reversible Two-Buyers-Seller protocol). We consider a reversible
scenario of the Two-Buyers-Seller session protocol specified in Example 2.

In case (4), the system can evolve as follows:

Buyer1 | Buyer2 | Seller
�(4) 〈s : Buyer1 | Buyer2 | Seller〉 �

(s[3][1]!〈vtitle〉. s[3][1]?(xquote). Pb1 | s[2][1]?(yquote). Pb2

| s[1][3]?(ztitle). s[1][2]!〈quote(ztitle)〉. s[1][3]!〈lastQuote(ztitle)〉. Ps)
�∗

(4) 〈s : Buyer1 | Buyer2 | Seller〉 �
(Pb1[vquote/xquote] | Pb2[vquote/yquote] | Pb1[vtitle/xtitle]) = R

These interactions lead to a state where both buyers have received the seller’s
quote for the requested book. Now, if one of the two buyers is not satisfied with
the proposed quote, he can immediately stop the session execution and reverse
it with a single step:

R �(4) Buyer1 | Buyer2 | Seller

In case (5), instead, the protocol execution can lead to a similar state, say
R′, with the difference that the session memory m keeps track of the traversed
states, i.e. m is Rquote2 · Rquote1 · Rtitle. In this case, the unsatisfied buyer can
enact a sort of negotiation by undoing the last two session interactions:

R′ �(5) 〈s : Rquote1 · Rtitle〉 � Rquote2 �(5) 〈s : Rtitle〉 � Rquote1

From the state Rquote1 the seller can compute again the quote for the requested
book.

Reversing Single Sessions 67

Finally, in case (6), the system can reach again the state R′ and, likewise case
(3), the session can be partially reversed by means of a single backward step:

R′ �(6) 〈s : Rtitle〉 � Rquote1

5 Concluding Remarks

This work falls within a large body of research that aims at studying at founda-
tional level the integration of reversibility in concurrent and distributed systems.
In particular, reversible variants of well-established process calculi, such as CCS
and π-calculus, have been proposed as untyped formalisms for studying reversibil-
ity mechanisms in these systems. Relevant works along this line of research have
been surveyed in [15]. Among them, we would like to mention the works that
are closely related to ours, as they have been source of inspiration: RCCS [7],
from which we borrow the use of memory stacks for keeping track of computa-
tion history; Rπ [6], from which we borrow the notion of reachable process (see
Definition 2); RμOz [16], which analyses reversibility costs in terms of space
overhead; and ρπ [14], from which we borrow the use of a reversible reduction
semantics (which is motivated by the fact that a labelled semantics would com-
plicate our theoretical framework). However, all works mentioned above only
focus on causal-consistent reversibility mechanisms for untyped concurrent sys-
tems, without taking into account how they may impact on linearity-based struc-
tured interactions, which is indeed our aim. Moreover, none of the above work
provides a systematic study of the different forms of reversibility we consider,
namely whole session, multi-step and single-step, and of their costs.

The works with the aim closest to ours are [2] and [20]. The former paper
studies session reversibility on a formalism based on session behaviours [1], which
is a sort of sub-language of CCS with a checkpoint-based backtracking mecha-
nism. The commonality with our work is the use of a one-size memory for each
behaviour, which records indeed only the behaviour prefixed by the lastly tra-
versed checkpoint. This resembles the one-size memories that we use in cases (1)
and (4), with the difference that our checkpoints correspond to the initialisation
states of sessions. On the other hand, session behaviours provide a formalism
much simpler than session-based π-calculus, as e.g. message passing is not even
considered. Differently from our work, [2] does not consider different solutions
for enabling alternative forms of reversibility and does not provide a study of
session reversibility complexity. The latter paper introduces ReSπ, a reversible
variant of the π-calculus with binary multiple sessions. ReSπ embeds a multi-step
form of reversibility and, rather than using a single stack memory per session, it
uses a graph-like data structure and unique thread identifiers. Each element of
this structure is devoted to record data concerning a single event, corresponding
to the taking place of a communication action, a choice or a thread forking.
Thread identifiers are used as links among memory elements, in order to form
a structure for conveniently keeping track of the causal dependences among the
session interactions. These dependences are crucial in the multiple session set-
ting, where computations have to be undone in a causal-consistent fashion [3,7],

68 F. Tiezzi and N. Yoshida

that is independent concurrent interactions can be undone in an order different
from that of the forward computation. Differently from the present work, which
considers both binary and multiparty session types, [20] only focusses on the
binary version. In addition, it does not address any cost issues about reversible
sessions.

We plan to study the cost of reversing multiple sessions, where interactions
along different sessions can be interleaved. By looking at ReSπ, we can see that
passing from single sessions to multiple ones has significant impacts: firstly, in
terms of complexity of the memory structure, and secondly in terms of costs. In
the multiple case, reverting a session corresponds to revert a concurrent com-
putation in a causal-consistent way, which requires to revert all interactions
performed along other sessions that have a casual dependence with the interac-
tions of the session to be reverted. This means that, in general, the cost is not
defined only in terms of the length of the considered session, but it must include
also the cost of reverting the depending interactions of other sessions.

Another future direction that we plan to consider for our study concerns
how the use of primitives and mechanisms to control reversibility (see, e.g., [13])
affect our results. In a controlled approach for session reversibility, backward
steps would not be always enabled, but they would be triggered by specific
rollback actions.

Moreover, we intend to extend our analysis on memory cost. In fact, the
approach used in this work is coarse-grained, as it is based on the number of
elements of the stacks rather than on the amount of memory necessary for storing
such elements. A fine-grained view is indeed not necessary for the purpose of
this work, as we just want to compare the different combinations of session
and reversibility approaches and, in particular, to distinguish the whole session
reversibility with respect to the other cases, and we want to show that single-
step interaction reversibility and multi-step ones require memory with the same
number of elements. Nevertheless, a fine-grained analysis on memory cost and
an investigation of more compact representations of computation history would
be interesting extensions of this work.

Finally, the enactment of reversibility is currently based on the information
stored in the syntactical terms representing the involved processes. We plan to
investigate the use of type information to enact and manage reversibility.

References

1. Barbanera, F., de’Liguoro, U.: Sub-behaviour relations for session-based
client/server systems. Math. Struct. Comput. Sci. 25(6), 1339–1381 (2015)

2. Barbanera, F., Dezani-Ciancaglini, M., de’Liguoro, U.: Compliance for reversible
client/server interactions. In: BEAT, vol. 162, EPTCS, pp. 35–42 (2014)

3. Berry, G., Lévy, J.-J.: Minimal and optimal computations of recursive programs.
J. ACM 26(1), 148–175 (1979)

4. Cardelli, L., Laneve, C.: Reversible structures. In: CMSB, pp. 131–140. ACM
(2011)

Reversing Single Sessions 69

5. Coppo, M., Dezani-Ciancaglini, M., Yoshida, N.: Asynchronous session types and
progress for object oriented languages. In: Bonsangue, M.M., Johnsen, E.B. (eds.)
FMOODS 2007. LNCS, vol. 4468, pp. 1–31. Springer, Heidelberg (2007)

6. Cristescu, I., Krivine, J., Varacca, D.: A compositional semantics for the reversible
p-calculus. In: LICS, pp. 388–397. IEEE (2013)

7. Danos, V., Krivine, J.: Reversible communicating systems. In: Gardner, P.,
Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp. 292–307. Springer,
Heidelberg (2004)

8. Danos, V., Krivine, J.: Transactions in RCCS. In: Abadi, M., de Alfaro, L. (eds.)
CONCUR 2005. LNCS, vol. 3653, pp. 398–412. Springer, Heidelberg (2005)

9. Danos, V., Krivine, J.: formal molecular biology done in CCS-R. Electr. Notes.
Theor. Comput. Sci. 180(3), 31–49 (2007)

10. Honda, K., Vasconcelos, V.T., Kubo, M.: Language primitives and type discipline
for structured communication-based programming. In: Hankin, C. (ed.) ESOP
1998. LNCS, vol. 1381, pp. 122–138. Springer, Heidelberg (1998)

11. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. J.
ACM (2015, to appear). http://mrg.doc.ic.ac.uk. An extended abstract appeared
in the Proc. of POPL 2008

12. Kouzapas, D., Yoshida, N.: Globally governed session semantics. Log. Methods
Comput. Sci. 10(4), 1–45 (2014)

13. Lanese, I., Mezzina, C.A., Schmitt, A., Stefani, J.-B.: Controlling reversibility in
higher-order pi. In: Katoen, J.-P., König, B. (eds.) CONCUR 2011. LNCS, vol.
6901, pp. 297–311. Springer, Heidelberg (2011)

14. Lanese, I., Mezzina, C.A., Stefani, J.-B.: Reversing higher-order pi. In: Gastin, P.,
Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 478–493. Springer,
Heidelberg (2010)

15. Lanese, I., Mezzina, C.A., Tiezzi, F.: Causal-consistent reversibility. Bull. EATCS
114, 121–139 (2014)

16. Lienhardt, M., Lanese, I., Mezzina, C.A., Stefani, J.-B.: A reversible abstract
machine and its space overhead. In: Giese, H., Rosu, G. (eds.) FORTE 2012 and
FMOODS 2012. LNCS, vol. 7273, pp. 1–17. Springer, Heidelberg (2012)

17. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes I and II. Inf.
Comput. 100(1), 1–40 (1992). pp. 41–77

18. Mostrous, D., Yoshida, N.: Session typing and asynchronous subtyping for the
higher-order π-calculus. Inf. Comput. 241, 227–263 (2015)

19. Phillips, I., Ulidowski, I.: Reversing algebraic process calculi. J. Log. Algebr. Pro-
gram. 73(1–2), 70–96 (2007)

20. Tiezzi, F., Yoshida, N.: Reversible session-based pi-calculus. J. Log. Algebr. Meth-
ods Program. 84(5), 684–707 (2015)

21. Tiezzi, F., Yoshida, N.: Reversing single sessions. CoRR (2015). abs/1510.07253
22. Yoshida, N., Vasconcelos, V.T.: Language primitives and type discipline for struc-

tured communication-based programming revisited: two systems for higher-order
session communication. Electr. Notes Theor. Comp. Sci. 171(4), 73–93 (2007)

http://mrg.doc.ic.ac.uk

Reversible Models

Reversible Causal Graph Dynamics

Pablo Arrighi1, Simon Martiel2(B), and Simon Perdrix3

1 Aix-Marseille University, LIF, F-13288 Marseille Cedex 9, France
pablo.arrighi@univ-amu.fr

2 University Nice Sophia Antipolis, I3S, 06900 Sophia Antipolis, France
martiel@i3s.unice.fr

3 CNRS, LORIA, Inria Project Team CARTE, University de Lorraine, Nancy, France
simon.perdrix@loria.fr

Abstract. Causal Graph Dynamics extend Cellular Automata to arbi-
trary, bounded-degree, time-varying graphs. The whole graph evolves
in discrete time steps, and this global evolution is required to have a
number of physics-like symmetries: shift-invariance (it acts everywhere
the same) and causality (information has a bounded speed of propaga-
tion). We study a further physics-like symmetry, namely reversibility. We
extend a fundamental result on reversible cellular automata by proving
that the inverse of a causal graph dynamics is a causal graph dynam-
ics. We also address the question of the evolution of the structure of
the graphs under reversible causal graph dynamics, showing that any
reversible causal graph dynamics preserves the size of all but a finite
number of graphs.

Keywords: Bijective · Invertible · Cayley graphs · Hedlund · Reversible
cellular automata

1 Introduction

Cellular Automata (CA) consist in a Z
n grid of identical cells, each of which

may take a state among a finite set Σ. Thus the configurations are in ΣZ
n

.
The state of each cell at time t + 1 is given by applying a fixed local rule f to
the cell and its neighbours, synchronously and homogeneously across space. CA
constitute the most established model of computation that accounts for euclidean
space. They are widely used to model spatially distributed computation (self-
replicating machines, synchronization problems. . .), as well as a great variety of
multi-agents phenomena (traffic jams, demographics. . .). But their origin lies in
Physics, where they are commonly used to model waves or particles. Since small
scale physics is understood to be reversible, it was natural to endow them with
this further, physics-like symmetry: reversibility. The study of Reversible CA
(RCA) was further motivated by the promise of lower energy consumption in
reversible computation. RCA have turned out to have a beautiful mathematical
theory, which relies on topological and algebraic characterizations in order to
prove that the inverse of a CA is a CA [12].
c© Springer International Publishing Switzerland 2016
S. Devitt and I. Lanese (Eds.): RC 2016, LNCS 9720, pp. 73–88, 2016.
DOI: 10.1007/978-3-319-40578-0 5

74 P. Arrighi et al.

fF f

Fig. 1. Informal illustration of causal graph dynamics. The entire graph evolves into
another according to a global function F . But this evolution is causal (information
propagates at a bounded speed) and homogeneous (same causes lead to same effects).
This has been shown to be equivalent to applying a local function f to every subdisk
of the input graphs, leading to small output graphs whose union makes up the output
graph. In this paper, we take the global approach as the starting point, in order to
prove that the inverse has the same properties.

Causal Graph Dynamics (CGD) [1,2], on the other hand, deal with a twofold
extension of CA. First, the underlying grid is extended to being an arbitrary – pos-
sibly infinite – bounded-degree graph G. Informally, this means that each vertex of
the graph may take a state among a finite set Σ, so a configuration is an element of
ΣV (G), and the edges of the graph stand for the locality of the evolution: the next
state of a vertex depends only on the states of the vertices which are at distance at
most k, i.e. in a disk of radius k, for some fixed integer k. Second, the graph itself
is allowed to evolve over time. Informally, this means having configurations in a
set composed of the union of ΣV (G) for all possible bounded-degree G:

⋃
G ΣV (G).

This has led to a model where the local rule f is applied synchronously and homo-
geneously on every possible subdisk of the input graph, thereby producing small
patches of the output graphs, whose union constitutes the output graph. Figure 1
illustrates the concept of these CA over graphs.

CGD are motivated by the countless situations in which some agents interact
with their neighbours, leading to a global dynamics in which the notion of who
is next to whom also varies in time (e.g. agents become physically connected, get
to exchange contact details, move around. . .). Indeed, several existing models
(of physical systems, computer processes, biochemical agents, economical agents,
social networks. . .) feature such neighbour-to-neighbour interactions with time-
varying neighbourhood, thereby generalizing CA for their specific sake (e.g. self-
reproduction as [22], discrete general relativity à la Regge calculus [19], etc.).

Reversible Causal Graph Dynamics 75

CGD provide a theoretical framework for these models. Some graph rewriting
models, such as Amalgamated Graph Transformations [5], Parallel Graph Trans-
formations [8,20,21], and Synchronized Hyperedge Replacement systems [9] also
work out rigorous ways to apply a local rewriting rule synchronously throughout
a graph, albeit with a different, category-theory-based perspective. In particular
the topological approach we follow and the reversibility question that we address
have not been considered in these works.

Indeed, this paper studies CGD in the reversible regime. From a theoretical
Computer Science perspective, the point is therefore to generalize RCA theory to
arbitrary, bounded-degree, time-varying graphs. Apart from particular examples
given by [11,16], we are not aware of other extensions of RCA in full generality.
From this perspective, our main result is the proof that the inverse of a CGD
is also a CGD. This is a non-trivial problem, for instance [13] implies that the
radius of the inverse is unbounded: there is no computable function h such that
for any reversible CDG of radius r, its inverse has a radius smaller than h(r).
Moreover the fact that the graph is time-varying brings up new challenges.

From a mathematical perspective, questions related to the bijectivity of CA
over certain classes of graphs (more specifically, whether pre-injectivity implies
surjectivity for Cayley graphs generated by certain groups [10]) have received
quite some attention. This paper on the other hand provides a context in which
to study “bijectivity upon time-varying graphs”. In particular, is it the case
that bijectivity will necessarily rigidify space (i.e. force the conservation of each
vertex)? We prove that any reversible evolution preserves the number of vertices
of all but a finite number of graphs.

From a theoretical physics perspective, the question whether the reversibility
of small scale physics (quantum mechanics, micro-mechanical), can be reconciled
with the time-varying topology of large scale physics (relativity), is a topic of
debate and constant investigation. This paper provides a toy, discrete, classical
model where reversibility and time-varying topology coexist and interact. But
ultimately, this deep question would need to be addressed in a quantum mechan-
ical setting. Indeed, just like RCA were precursors of Quantum CA, this work
seeks to pave the way for Quantum CGD.

2 Pointed Graph Modulo, Paths, and Operations

Pointed graph modulo. There are two main approaches to CA. The one with a
local rule, usually denoted f , is the constructive one, but CA can also be defined
in a more topological way as being exactly the shift-invariant continuous func-
tions from ΣZ

n

to itself, with respect to a certain metric. Through a compactness
argument, the two approaches are equivalent. This topological approach carries
through to CA over graphs. But for this purpose, one has to make the set of
graphs into an appropriate compact metric space, which can only be done for
certain pointed graphs modulo isomorphism – referred to as generalized Cayley
graphs in [2]. This is worth the trouble, as the topological characterization is
one of the crucial ingredients to prove that the inverse of a CGD is a CGD.

76 P. Arrighi et al.

Basically, the pointed graphs modulo isomorphism (or pointed graphs mod-
ulo, for short) are the usual, connected, undirected, possibly infinite, bounded-
degree graphs, but with a few added twists:

• Each vertex has ports in a finite set π. A vertex and its port are written u :a.
• An edge is an unordered pair {u : a, v : b}. i.e. edges are between ports of

vertices, rather than vertices themselves, à la [6]. Because the port of a vertex
can only appear in one edge, the degree of the graphs is bounded by |π|, which
is crucial for compactness. We shall consider connected graphs only.

• The graphs are rooted i.e., there is a privileged pointed vertex playing the role
of an origin, so that any vertex can be referred to relative to the origin, via a
sequence of ports that lead to it.

• The graphs are considered modulo isomorphism, so that only the relative
position of the vertices can matter.

• The vertices and edges are given labels taken in finite sets Σ and Δ, so that
they may carry an internal state just like the cells of a cellular automaton.

• The labelling functions are partial, so that we may express our partial knowl-
edge about part of a graph. For instance it is common that a local function
may yield a vertex, its internal state, its neighbours, and yet have no opinion
about the internal state of those neighbours.

The set of all pointed graphs modulo (see Fig. 2(c)) of ports π, vertex labels
Σ and edge labels Δ is denoted XΣ,Δ,π. A thorough formalization of pointed
graphs modulo can be found in [2]. For the sake of this paper, Fig. 2 summarizes
the construction of pointed graphs modulo from pointed graphs whose vertex
names are dropped.

1

2

3

4

:a
:b

:b
:c

:c

:b

:a

:b

(a)

1

2

3

4

:a
:b

:b
:c

:c

:b

:a

:b

(b)

:a
:b

:b
:c

:c

:b

:a

:b

(c)

Fig. 2. The different types of graphs. (a) A graph G. (b) A pointed graph (G, 1). (c)
A pointed graph modulo isomorphism. These are anonymous: vertices have no names
and can only be distinguished using the graph structure.

Paths and vertices. Since we are considering pointed graphs modulo isomor-
phism, vertices no longer have a unique identifier, which may seem impractical
when it comes to designating a vertex. Two elements come to our rescue. First,
these graphs are pointed, thereby providing an origin. Second, the vertices are

Reversible Causal Graph Dynamics 77

connected through ports, so that each vertex can tell between its different neigh-
bours. It follows that any vertex of the graph can be designated by a sequence of
ports in (π2)∗ that lead from the origin to this vertex. The origin is designated
by ε. For instance, say two vertices designated by a path u and a path v, respec-
tively. Suppose there is an edge e = {u : a, v : b}. Then, v can be designated by
the path u.ab, where “.” stands for the word concatenation. A thorough formal-
ization of pointed graphs modulo paths and naming conventions can be found
in [2]. Given a pointed graph modulo X ∈ XΣ,Δ,π, we write v ∈ X instead of
v ∈ V (X).
Operations. Given a pointed graph modulo X, Xr denotes the subdisk of radius
r around the pointer. The pointer of X can be moved along a path u, leading to
Y = Xu. The pointer can be moved back where it was before, leading to X = Yu,
where u denotes the reverse of path u. We use the notation Xr

u for (Xu)r i.e., first
the pointer is moved along u, then the subdisk of radius r is taken. A thorough
formalization of pointed graph modulo operations can be found in [2]. For the
sake of this paper, Fig. 3 illustrates the operations.

(1a) :a

:a :c

:a

:b

:b

:d

:a

:b

:a

:b

:c

:c

:b

:a

:c

(1b):a

:a :c

:a

:b

:b

:d

:a

(2a)

:a
:b

:c

:b

:b

:c

:a
:c

(2b)

:a
:b

:c

:b

:b

:c

:a
:c

(2c)

:a
:b

:c

:b

:b

:c

:a
:c

Fig. 3. Operations over pointed graphs modulo. (1a) shows a pointed graph modulo X.
(1b) shows X0, the result of taking the subdisk of radius 0. In general the neighbours of
radius r are just those vertices which can be reached in r steps starting from the origin,
whereas the disk of radius r, written Xr, is the subgraph induced by the neighbours
of radius r+ 1, but with the labellings restricted to the neighbours of radius r and the
edges between them. This restriction of the labelling partial function is the reason why
some vertices have gone blank in (1b). (2a) shows pointed graph modulo X. (2b) Xab

shows the pointed graph modulo X shifted by ab. (2c) shows Xbc.ac the pointed graph
modulo X shifted by bc.ac, which also corresponds to the graph Xab shifted by cb.ac.
Shifting this last graph by cb.ac = ca.bc produces the graph (2b) again.

78 P. Arrighi et al.

3 Causal Graph Dynamics and Invertibility

We will now recall the definition of CGD. We provide a topological definition
in terms of shift-invariant continuous functions, rather than a constructive def-
inition based on a local rule f applied synchronously across space (Fig. 1). The
two were proved equivalent in [2].

A crucial point in the topological characterization of CGD is the correspon-
dence between the vertices of a pointed graph modulo X, and those of its image
F (X). Indeed, on the one hand it is important to know that a given vertex u ∈ X
has become u′ ∈ F (X), e.g. in order to express shift-invariance F (Xu) = F (X)u′ ,
or to express continuity. But on the other hand since u′ is named relative to the
vertex ε of F (X), its determination requires some knowledge of F (X). Hence
the need of establishing a relation between vertices of X and vertices of F (X).

The following analogy provides a useful way of tackling this issue. Say that
we were able to place a white stone on the vertex u ∈ X that we wish to
follow across evolution F . Later, by observing that the white stone is found at
u′ ∈ F (X), we would be able to conclude that u has become u′. This way of
grasping the correspondence between an image vertex and its antecedent vertex
is a local, operational notion of an observer moving across the dynamics.

Definition 1 (Dynamics). A dynamics (F,R•) is given by

• a function F : XΣ,Δ,π → XΣ,Δ,π;
• a map R•, with R• : X �→ RX and RX : V (X) → V (F (X)).

For all X, the function RX can be pointwise extended to sets of vertices i.e.,
RX : P(V (X)) → P(V (F (X))) maps S to RX(S) = {RX(u) | u ∈ S}.
The intuition is that RX indicates which vertices {u′, v′, . . .} = RX({u, v, . . .}) ⊆
V (F (X)) will end up being marked as a consequence of {u, v, ...} ⊆ V (X) being
marked. Now, clearly, the set {(X,S) | X ∈ XΣ,Δ,π, S ⊆ V (X)} is isomorphic to
XΣ′,Δ,π with Σ′ = Σ × {0, 1}. Hence, we can define the function F ′ that maps
(X,S) ∼= X ′ ∈ XΣ′,Δ,π to (F (X), RX(S)) ∼= F ′(X ′) ∈ XΣ′,Δ,π, and think of a
dynamics as just this function F ′ : XΣ′,Δ,π → XΣ′,Δ,π.

Definition 2 (Continuity). A dynamics (F,R•) is said to be continuous if for
any X and any m ≥ 0, there exists n ≥ 0 such that for every Y , Xn = Y n

implies both

• F (X)m = F (Y)m.
• domRm

X ⊆ V (Xn), domRm
Y ⊆ V (Y n), and Rm

X = Rm
Y .

where Rm
X denotes the partial map obtained as the restriction of RX to the

codomain F (X)m, using the natural inclusion of F (X)m into F (X).

In the F ′ : XΣ′,Δ,π → XΣ′,Δ,π formalism, the two above conditions are equivalent
to just one: F ′ continuous.

Definition 3 (Shift-invariance). A dynamics (F,R•) is said to be shift-inva-
riant if for every X, u ∈ X, and v ∈ Xu,

Reversible Causal Graph Dynamics 79

• F (Xu) = F (X)RX(u)

• RX(u.v) = RX(u).RXu
(v).

The second condition expresses the shift-invariance of R• itself. Notice that
RX(ε) = RX(ε).RX(ε); hence RX(ε) = ε.

Definition 4 (Boundedness). A dynamics (F,R•) is said to be bounded if
there exists a bound b such that for any X and any w′ ∈ F (X), there exist
u′ ∈ im RX and v′ ∈ F (X)b

u′ such that w′ = u′.v′.

The following is the topological definition of CGD:

Definition 5 (Causal graph dynamics). A CGD is a shift-invariant, con-
tinuous, bounded dynamics.

Inflating grid. An example of causal graph dynamics is the inflating grid dynam-
ics illustrated in Fig. 4. In the inflating grid dynamics each vertex gives birth to
four distinct vertices, such that the structure of the initial graph is preserved, but
inflated. The graph has maximal degree 4, and the set of ports is π = {a, b, c, d},
vertices are labelled black or white.

For this dynamics, the R• operator is defined as follows:

RX(u0.u1.un) = R(u0).R(u1).R(un)

where R is the function acting on letters in π2 described in the following tables.
Figure 5 gives a visual example of the same operator for a precise graph.

u ∈ π2 R(u)
aa aa.db
ab ab.db.ac
ac ac.ac
ad ad.bd
ba bd.ba.db
bb bd.bb.db.ac
bc bd.bc.ac
bd bd.bd

u ∈ π2 R(u)
ca ca.ca
cb ca.cb.db
cc ca.cc.db.ac
cd ca.cd.ac
da da
db db.db
dc dc.db.ac
dd dd.ac

Invertibility is imposed in the most general and natural fashion.

Definition 6 (Invertible dynamics). A dynamics (F,R•) is said to be invert-
ible if F is a bijection from XΣ,Δ,π to itself.

Moving head. Figure 6 is an example of invertible CGD. In this example, a vertex,
representing the head of an automaton, is moving along a line graph, representing
a tape. The line graph is built using ab−edges, while the head is attached using
either a cc−edge if it is traveling forward along the ab−edges, or dd−edges if it is
traveling backwards. The transformation can be completed into a bijection over
the entire set of graphs with π = {a, b, c, d}. It then accounts for several heads,
etc. The resulting transformation is continuous, as the moving heads travel at
speed one along the tape, and shift-invariant as it is possible to build a R•
operator verifying the right commutation properties.

80 P. Arrighi et al.

:a

:d
:c

:b

:a

:c

:c

:a

:d:b :b :d

Fig. 4. The inflating grid dynamics. The inflating grid dynamics. Each vertex splits
into 4 vertices. The structure of the grid is preserved. For this precise graph, all edges
are connected to ports as stipulated on the pointed vertex (port :a on top, : b on the
right, :c on the bottom and :d on the left).

:c :d

:b

:c

:a

:b

:c

:a

X

F (X)

RX

Fig. 5. R• operator for the inflating grid dynamics. To each original vertex of a graph
X, RX associates a vertex of F (X) within the square of four it creates. More precisely,
it is mapped to that of the four vertices whose ports a and d get out of the square.

Reversible Causal Graph Dynamics 81

:a :b :a :b :a :b
:c
:c

:a :b :a :b :a :b
:c
:c

:a :b :a :b :a :b
:c
:c

)3()2()1(

:a :b :a :b :a :b
:c
:c

:a :b :a :b :a :b

:d
:d

:a :b :a :b :a :b

:d
:d)6()5()4(

Fig. 6. Moving head dynamics. In this example, a moving head is running along a
“tape” formed by a linear graph of ab edges. When reaching the end of the line, the
head starts moving backwards and changes the ports on its attaching edge to dd. (1)
to (6) represent 6 consecutive configurations.

4 Invertibility and Almost-Vertex-Preservingness

Recall that, in general, CGD are allowed to transform the graph, not only by
changing internal states and edges, but also by creating or deleting vertices.
Since invertibility imposes information-conservation, one may wonder whether
invertible CGD are still allowed to create or delete vertices. They are, as shown
by Fig. 7. One notices, however, that the RHS of this example features shift-
equivalent vertices:

:a :a

Fig. 7. The turtle dynamics has the two above pointed graphs modulo to oscillate
between one another. The two vertices of the RHS are shift-equivalent, i.e. pointing
the graph upon one or the other does not change the graph.

Definition 7 (Shift-equivalent vertices). Let X ∈ XΣ,Δ,π and let u, v ∈ X.
We say that u and v are shift-equivalent, denoted u ≈ v, if Xu = Xv. A graph is
called asymmetric if it has only trivial (i.e. of size one) shift-equivalence classes.

One can show that all the shift-equivalence classes of a pointed graph modulo
have the same size. Intuitively, given two shift-equivalent vertices u, v and a third
vertex w, since there is a path from u to w, moving from v along the same path
leads to a vertex equivalent to w.

82 P. Arrighi et al.

Lemma 1 (Shift-equivalence classes isometry). Let X ∈ XΣ,Δ,π be a
graph. If C1 ⊆ V (X) and C2 ⊆ V (X) are two shift-equivalence classes of X,
then |C1| = |C2|.

Moreover, we can show that creation or deletion of vertices by invertible CGD
must respect the shift-symmetries of the graph.

Lemma 2 (Invertible CGD preserves shift-equivalence classes). Let
(F,R•) be a shift-invariant dynamics over XΣ,Δ,π, such that F is a bijection.
Then for any X and any u, v ∈ X, u ≈ v if and only if RX(u) ≈ RX(v).

Shift-symmetry is fragile however, and can be destroyed by adding a few
vertices to a graph:

Definition 8 (Primal extension). Given a finite graph X ∈ XΣ,Δ,π where
|π| > 1 such that X has k shift-equivalence classes of size n with k, n 	= 1, we
obtain a primal extension �X by either:

– Choosing a vertex v having a free port (i.e. v has a port i ∈ π such that v : i
does not appear in any edge): connect p−kn new vertices in a line to this free
port, where p is the smallest prime number greater than kn + 2,

– Or choosing a vertex v such that v is part of a cycle. Remove an edge from
this cycle, and do the same construction as above.

Lemma 3 (Properties of primal extensions). Any primal extension �X is
asymmetric.

Using this fact, one can show that the cases of node creation and deletion
in invertible CGD are all of finitary nature, i.e. they can no longer happen for
large enough graphs. Indeed, by supposing a big enough graph X whose size
is changed through the application of an invertible CGD, and then looking at
what would happen to its primal extension �X, we can show that this would
contradict continuity. We obtain:

Theorem 1 (Invertible implies almost-vertex-preserving). Let (F,R•) be
a CGD over XΣ,Δ,π, such that F is a bijection. Then there exists a bound p, such
that for any graph X, if |X| > p then RX is bijective.

Proof outline. Let us consider a graph X, as big as we need, such that RX is
not a bijection. If RX is non injective, there exist two vertices u, v identified by
RX . We can show that we can apply the primal extension to any of the furthers
points of X, to obtain an asymmetric graph Y , such that by continuity of R•
the vertices u, v are still identified, and yet they are not shift-equivalent, which
contradicts Lemma 2. If RX is not surjective, some u of F (X) is not reached.
Using the continuity of R•, We again apply the primal extension to any of the
furthest points of F (X) can construct an asymmetric graph Y such that u of Y
is not reached, which contradicts the bijectivity of F .

Reversible Causal Graph Dynamics 83

5 Reversible Causal Graph Dynamics

A CGD (F,R•) is said reversible if it is invertible and its inverse is a CGD itself:

Definition 9 (Reversible). A CGD (F,R•) is reversible if there exists S• such
that (F−1, S•) is a CGD.

Theorem 1 shows that CGD are almost vertex-preserving. Notice that vertex-
preservingness guarantees that the inverse of a shift-invariant dynamics is a
shift-invariant dynamics.

Lemma 4. If (F,R•) is an invertible, shift-invariant dynamics such that for
all X, RX is a bijection, then (F−1, S•) is a shift-invariant dynamics, with
SY = (RF −1(Y))−1.

We are now ready to prove our main result which is that the inverse of a
causal graph dynamics is a causal graph dynamics:

Theorem 2 (Invertible implies reversible). If (F,R•) is an invertible CGD,
then (F,R•) is reversible.

Proof Outline. Continuity of F−1 is directly given by the continuity of F together
with the compactness of XΣ,Δ,π. Its boundedness derives either from the bijec-
tivity of RX for |X| > p or from the finiteness of X when |X| ≤ p. Regarding
the construction of S• such that (F−1, S•) is a CDG: (i) for |F (X)| = |X| > p,
we know that RX is bijective and we let SF (X) = R−1

X ; (ii) for |X| ≤ p, we can
construct an ad hoc SF (X) and prove its shift-invariance.

Notice that, ultimately, this result crucially relies on the compactness of
XΣ,Δ,π which in turn relies on the boundedness of the degree |π| and the finite-
ness of the internal states Σ and Δ.

6 Conclusion

Summary of Results. We have studied Reversible Causal Graph Dynamics,
thereby extending Reversible Cellular Automata (RCA) results to time-varying,
pointed graphs modulo. Pointed graphs modulo are arbitrary bounded-degree
networks, with a pointed vertex serving as the origin, and modulo renaming
of vertices. Some of these graphs have shift-equivalent vertices. We have shown
that if a Causal Graph Dynamics (CGD) is invertible, then it preserves shift-
equivalence classes. This in turn entails almost-vertex-preservingness, i.e. the
conservation of each vertex for big enough graphs. Finally, we have shown that
the inverse of a CGD is a CGD. In a companion paper, we build upon this result
in order to port another classical result [7,14,15] from RCA theory to Reversible
CGD, namely the fact that their evolution admits a block decomposition, i.e. F
can be described as a circuit of finite depth of local reversible gates [4].

Future Work. Related to this block decomposition result, let us mention yet
another classical result from RCA theory, namely that of the intrinsic univer-
sality of Partioned Cellular Automata [18]. An analogous result would greatly

84 P. Arrighi et al.

simplify the study of Reversible CGD—we leave this as an open problem. Here
we have shown that invertible causal graph dynamics implies almost vertex-
preservingness or, in other words, that beyond some finitary cases, information
conservation implies conservation of the systems that support this information.
Still, this cannot forbid that some ‘dark matter’ which was there at all times,
could now be made ‘visible’. We plan to follow this idea in a subsequent work.
Finally, we also wish to explore the quantum regime of these models, as similar
results where given for Quantum Cellular Automata over fixed graphs [3]. Such
results would be of interest to theoretical physics, in the sense of discrete time
versions of [17].

Acknowledgements. This work has been funded by the ANR-12-BS02-007-01 TAR-
MAC grant, the ANR-10-JCJC-0208 CausaQ grant, and the John Templeton Foun-
dation, grant ID 15619. The authors acknowledge enlightening discussions with Bruno
Martin and Emmanuel Jeandel. This work has been partially done when PA was dele-
gated at Inria Nancy Grand Est, in the project team Carte.

A Proofs of Sections 4 and 5

A.1 Proofs of Section 4

Lemma 1 (Shift-equivalence classes isometry). Let X ∈ XΣ,Δ,π be a
graph. If C1 ⊆ V (X) and C2 ⊆ V (X) are two shift-equivalence classes of X,
then |C1| = |C2|.
Proof. Consider two shift-equivalent and distinct vertices u and v in X. Consider
a path w. The vertices u.w and v.w are shift-equivalent and distinct. More
generally, if we have n shift-equivalent and distinct vertices v1, ..., vn, any vertex
u = v1.w will be shift-equivalent to v2.w, ..., vn.w and distinct from all of them,
hence the equivalence classes are all of the same size. �

Lemma 2 (Invertible CGD preserves shift-equivalence classes). Let
(F,R•) be a shift-invariant dynamics over XΣ,Δ,π, such that F is a bijection.
Then for any X and any u, v ∈ X, u ≈ v if and only if RX(u) ≈ RX(v).

Proof. u ≈ v expresses Xu = Xv, which by bijectivity of F is equivalent to
F (Xu) = F (Xv) and hence F (X)RX(u) = F (X)RX(v). This in turn is expressed
by RX(u) ≈ RX(v). �

Lemma 3 (Properties of primal extensions). Any primal extension �X is
asymmetric.

Proof. As �X has a prime number of vertices, by Lemma 1, its has either one
single equivalence class of maximal size or only trivial equivalence classes. As the
primal extension adds at least two vertices and that these vertices have different
degree (1 for the last vertex on the line, and 2 for its only neighbor), �X contains
at least two non equivalent vertices, hence the first result. �

Reversible Causal Graph Dynamics 85

Theorem 1 (Invertible implies almost-vertex-preserving). Let (F,R•) be
a CGD over XΣ,Δ,π, such that F is a bijection. Then there exists a bound p, such
that for any graph X, if |X| > p then RX is bijective.

Proof. When |π| ≤ 1, XΣ,Δ,π is finite so the theorem is trivial. So we assume in
the rest of the proof that |π| > 1.

[Finite graphs] First we prove the result for any finite graph. By contradiction,
assume that there exists a sequence of finite graphs (X(n))n∈N such that |X(n)|
diverges and such that for all n, RX(n) is not bijective. As this sequence is infinite,
we have that one of the two following cases is verified an infinite number of n:

• RX(n) is not surjective,
• RX(n) is not injective.

• [RX(n) not surjective]. There exists a vertex v′ /∈ im RX(n). Without loss of
generality, we can assume that |v′| < b where b is the bound from the bound-
edness property of F . We will now consider a particular primal extension of
F (X(n)), �F (X(n)), where the chosen vertex in F (X(n)) is the furthest away
from the pointed vertex ε. Indeed, if F (X(n)) is large enough, a vertex lying at
maximal distance of ε in F (X(n)) either has a free port or is part of a cycle, and
thus is a valid vertex to perform the primal extension. Indeed, if this vertex has
no free port, then any of its edge can be removed without splitting the graph, as
it would contradict its maximality – therefore it is in a cycle. Now, consider the
graph Y (n) = F−1(�F (X(n))). Using uniform continuity of F−1 and R•, and
the fact that |X(n)| is as big as we want, we have that there exists an index n
and a radius r such that Y (n)r = X(n)r and Rb

Y (n)r = Rb
X(n)r . As F (Y (n)) is

asymmetric by construction, v′ ∈ im Rb
Y (n)r which contradicts v′ /∈ im RX(n).

• [RX(n) not injective]. There exist two vertices u, v ∈ X(n) such that
RX(n)(u) = RX(n)(v) and u 	= v. Without loss of generality, we can assume
that u = ε as F is shift-invariant. According to Lemma 2, we have that ε ≈ v.
Moreover, using the uniform continuity of R•, we have that, as RX(n)(v) =
RX(n)(ε) = ε, there exists a radius l, which does not depend on n, such that
|v| < l . Let us consider a primal extension of X(n), �X(n), where the pri-
mal extension has been performed at maximal distance from ε, by the same
argument as in the previous •. In this graph, ε and v are not shift-equivalent
and thus, R�X(n)(ε) 	= R�X(n)(v) . By continuity of R•, we have that there
exists a radius r > l such that R0

�X(n)r = R0
X(n)r for a large enough n, hence

R0
�X(n)r (v) = R0

X(n)r (v) = ε, which contradicts R�X(n)(ε) 	= R�X(n)(v).
[Infinite graphs] Now we show that the result on finite graphs can be extended

to infinite graphs, proving that for any infinite graph RX is bijective:

• [RX injective]. By contradiction. Take X infinite such that there is u 	= v
and RX(u) = RX(v). Without loss of generality we can take u = ε, i.e. v 	= ε
and RX(v) = ε. By continuity of R•, there exists a radius r, which we can take
larger than |v| and p, such that RX = RXr . Then RXr (v) = RX(v) = ε, thus
RXr is not injective in spite of Xr being finite and larger than p, leading to a
contradiction.

86 P. Arrighi et al.

• [RX surjective]. By contradiction. Take X infinite such that there is v′ in
F (X) and v′ /∈ im RX . By boundedness, there exists u′ ∈ F (X) such that u′

lies at distance less than b of v′. Using shift-invariance, we can assume without
loss of generality that u′ = ε, hence, |v′| < b. By continuity of R•, there exists a
radius r, which we can take larger than p, such that the images of RX and RXr

coincide over the disk of radius b. Then, v′ /∈ im RX implies v′ /∈ im RXr , thus
RXr is not surjective in spite of Xr being finite and larger than p, leading to a
contradiction.

A.2 Proofs of Section 5

Lemma 4. If (F,R•) is an invertible, shift-invariant dynamics such that for
all X, RX is a bijection, then (F−1, S•) is a shift-invariant dynamics, with
SY = (RF −1(Y))−1.

Proof. Consider Y and u′.v′ ∈ Y . Take X and u.v ∈ X such that F (X) = Y ,
RX(u) = u′ and RX(u.v) = u′.v′. We have: F−1(Yu′) = F−1(F (X)RX(u)) =
F−1(F (Xu)) = X(RX)−1(u′) = F−1(Y)SY (u′). Moreover, take v ∈ Xu such that
RX(u.v) = RX(u).RXu

(v) = u′.v′. We have: SY (u′.v′) = (RX)−1(RX(u.v)) =
u.v = (RX)−1(u′).(RXu

)−1(v′) = SY (u′).SYu′ (v′). ��
Theorem 2 (Invertible implies reversible). If (F,R•) is an invertible CGD,
then (F,R•) is reversible.

Proof. Continuity of F−1 is directly given by the continuity of F together with
the compactness of XΣ,Δ,π. Its boundedness derives either from the bijectivity
of RX for |X| > p or from the finiteness of X when |X| > p.

We must construct S•. For |F (X)| = |X| > p, we know that RX is bijective
and we let SF (X) = R−1

X . For |X| ≤ p, we will proceed in two steps. First, we will
construct an appropriate SF (X) for X. Second, we will make consistent choices
for SF (X)u′ so that S• is shift invariant.

We write ũ for the shift-equivalence class of u in X. For all v′ ∈ F (X),
we make the arbitrary choice SF (X)(ṽ′) = v, where v is such that its image
RX(v) is shift equivalent to v′ in F (X), i.e. RX(v) ≈ v′. For this X, we have
enforced ≈-compatibility. Then we make consistent choices for SF (X)u′ . This

is obtained by demanding that SF (X)u′ (ũ′.v′) = u.v. Indeed, this accomplishes
shift-invariance because SF (X)u′ (v′) = SF (X)u′ (u′.u′.v′) = ε.v′ = v′ implying
the equality: SF (X)(u′.v′) = u.v = SF (X)(u′).SF (X)u′ (v′). Moreover, SF (X)u′

is itself shift-invariant because: SF (X)u′.v′ (w′) = SF (X)u′.v′ (u′.v′.u′.v′.w′) =
u.v.u.v.w = w, and SF (X)u′ (v′) = v implying that SF (X)u′ (v′.w′) =
v.w = SF (X)u′ (v′).SF (X)u′.v′ (w′) , and ≈-compatible because v′ ≈ w′ implies
SF (X)u′ (v′) = SF (X)u′ (w′), and thus SF (X)u′ (v′) ≈ SF (X)u′ (w′).

Continuity of the constructed S• is due to the continuity of R• and the
finiteness of p.

Shift-invariance of (F−1, S•) follows from ≈-compatibility of S• and shift-
invariance of (F,R•), because F−1(F (X)′

u) = Xv where v is such that RX(v) ≈
u′, hence F−1(F (X)′

u) = XSF (X)(u′). ��

Reversible Causal Graph Dynamics 87

References

1. Arrighi, P., Dowek, G.: Causal graph dynamics. In: Czumaj, A., Mehlhorn, K.,
Pitts, A., Wattenhofer, R. (eds.) ICALP 2012, Part II. LNCS, vol. 7392, pp. 54–
66. Springer, Heidelberg (2012)

2. Arrighi, P., Martiel, S., Nesme, V., Cayley, G.: Graphs, cellular automata over
them submitted (long version) (2013). Pre-print arXiv:1212.0027

3. Arrighi, P., Nesme, V., Werner, R.: Unitarity plus causality implies localizability.
J. Comput. Syst. Sci. 77, 372–378 (2010). QIP 2010 (long talk)

4. Arrighi, P., Martiel, S., Perdrix, S.: Block representation of reversible causal graph
dynamics. In: Kosowski, A., Walukiewicz, I. (eds.) FCT 2015. LNCS, vol. 9210,
pp. 351–363. Springer, Heidelberg (2015)

5. Boehm, P., Fonio, H.R., Habel, A.: Amalgamation of graph transformations: a
synchronization mechanism. J. Comput. Syst. Sci. 34(2–3), 377–408 (1987)

6. Danos, V., Laneve, C.: Formal molecular biology. Theoret. Comput. Sci. 325(1),
69–110 (2004). Computational Systems Biology

7. Durand-Lose, J.O.: Representing reversible cellular automata with reversible block
cellular automata. Discret. Math. Theoret. Comput. Sci. 145, 154 (2001)

8. Ehrig, H., Lowe, M.: Parallel and distributed derivations in the single-pushout
approach. Theoret. Comput. Sci. 109(1–2), 123–143 (1993)

9. Ferrari, G.-L., Hirsch, D., Lanese, I., Montanari, U., Tuosto, E.: Synchronised
hyperedge replacement as a model for service oriented computing. In: Boer, F.S.,
Bonsangue, M.M., Graf, S., Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111,
pp. 22–43. Springer, Heidelberg (2006)

10. Gromov, M.: Endomorphisms of symbolic algebraic varieties. J. Eur. Math. Soc.
1(2), 109–197 (1999)

11. Hasslacher, B., Meyer, D.A.: Modelling dynamical geometry with lattice gas
automata. In: Expanded Version of a Talk Presented at the Seventh International
Conference on the Discrete Simulation of Fluids Held at the University of Oxford,
June 1998

12. Hedlund, G.A.: Endomorphisms and automorphisms of the shift dynamical system.
Math. Syst. Theor. 3, 320–375 (1969)

13. Kari, J.: Reversibility of 2D cellular automata is undecidable. In: Cellular
Automata: Theory and Experiment, vol. 45, pp. 379–385. MIT Press (1991)

14. Kari, J.: Representation of reversible cellular automata with block permutations.
Theor. Comput. Syst. 29(1), 47–61 (1996)

15. Kari, J.: On the circuit depth of structurally reversible cellular automata. Funda-
menta Informaticae 38(1–2), 93–107 (1999)

16. Klales, A., Cianci, D., Needell, Z., Meyer, D.A., Love, P.J.: Lattice gas simulations
of dynamical geometry in two dimensions. Phys. Rev. E. 82(4), 046705 (2010)

17. Konopka, T., Markopoulou, F., Smolin, L.: Quantum graphity. Arxiv preprint
arXiv:hep-th/0611197 (2006)

18. Morita, K.: Reversible simulation of one-dimensional irreversible cellular automata.
Theoret. Comput. Sci. 148(1), 157–163 (1995)

19. Sorkin, R.: Time-evolution problem in Regge calculus. Phys. Rev. D. 12(2), 385–
396 (1975)

20. Taentzer, G.: Parallel and distributed graph transformation: formal description and
application to communication-based systems. Ph.D. thesis, Technische Universitat
Berlin (1996)

http://arxiv.org/abs/1212.0027
http://arxiv.org/abs/hep-th/0611197

88 P. Arrighi et al.

21. Taentzer, G.: Parallel high-level replacement systems. Theoret. Comput. Sci.
186(1–2), 43–81 (1997)

22. Tomita, K., Kurokawa, H., Murata, S.: Graph automata: natural expression of
self-reproduction. Physica D: Nonlinear Phenom. 171(4), 197–210 (2002)

Boosting Reversible Pushdown Machines
by Preprocessing

Holger Bock Axelsen1, Martin Kutrib2, Andreas Malcher2(B),
and Matthias Wendlandt2

1 Department of Computer Science, University of Copenhagen,
Universitetsparken 5, 2100 Copenhagen E, Denmark

funkstar@di.ku.dk
2 Institut für Informatik, Universität Giessen, Arndtstr. 2, 35392 Giessen, Germany

{kutrib,malcher,matthias.wendlandt}@informatik.uni-giessen.de

Abstract. It is well known that reversible finite automata do not accept
all regular languages and that reversible pushdown automata do not
accept all deterministic context-free languages. It is of significant inter-
est both from a practical and theoretical point of view to close these
gaps. We here extend these reversible models by a preprocessing unit
which is basically a reversible injective and length-preserving sequen-
tial transducer. It turns out that preprocessing the input using such
weak devices increases the computational power of reversible determin-
istic finite automata to the acceptance of all regular languages, whereas
for reversible pushdown automata the accepted family of languages lies
strictly in between the reversible deterministic context-free languages
and the real-time deterministic context-free languages. Moreover, it is
shown that the computational power of both types of machines is not
changed by allowing the preprocessing sequential transducer to work
irreversibly. Finally, we examine the closure properties of the family of
languages accepted by such machines.

1 Introduction

Recent years have seen a number of results exploring reversible computations
from the viewpoint of automata theory. Of particular interest here is the sep-
aration (or coalescing) of various reversible and deterministic models of com-
putation. This can be a subtle issue: even when a model of computation has a
very clean separation of the reversible and deterministic variants (as is the case
with e.g. finite automata [5,7]), a simple modification of the model may some-
times close this gap, even at no change in power to the deterministic variant.
For example, allowing two-way head movement is sufficient to unify reversible
and deterministic finite automata [4], but these still recognize only the regular
languages. Conversely, even when the reversible and deterministic variants are
of identical power (e.g. Turing machines under language recognition), we can
sometimes still separate the model variants along more fine-grained measures.
For example, between real-time and linear time, the reversible Turing machines
c© Springer International Publishing Switzerland 2016
S. Devitt and I. Lanese (Eds.): RC 2016, LNCS 9720, pp. 89–104, 2016.
DOI: 10.1007/978-3-319-40578-0 6

90 H.B. Axelsen et al.

are strictly weaker than the deterministic Turing machines [1]. Thus, studying
such gaps and how to bridge them provides insight into the fundamental nature
of computational reversibility, and our aim with the present paper is to con-
tribute to this, specifically for finite and pushdown automata.

One approach to this type of problem is to show the existence of a hierar-
chy with respect to a particular complexity measure, and consider which kind
of internal resource can be used to bridge the gap, usually resulting in trade-
off results. We here take a somewhat orthogonal approach, and consider the
use of an external resource, a computational preprocessing device: the input
to be processed by the base reversible machine is allowed to first be processed
by another (usually weaker, and reversible) machine. This kind of staged com-
putation is quite common in computer science, e.g. compilers preprocess code
by parsing, and subsequently perform code analysis and generation by stronger
methods; input in web forms may be sanitized and subsequently processed, etc.

Here, for the base machines we consider reversible finite state machines,
REV-FA, and reversible pushdown automata, REV-PDA, and boost these
by preprocessing their inputs with reversible sequential transducers, yielding
the T-REV-FAs and T-REV-PDAs models (Sect. 2). We show that these
accept, respectively, the regular languages, and a class of languages strictly
between reversible deterministic context-free languages and real-time determin-
istic context-free languages, and that this holds even when the preprocessing unit
is allowed to be irreversible (Sect. 3). Finally, we consider the closure properties
of these machines under a number of usual language operations (Sect. 4).

2 Preliminaries

We write Σ∗ for the set of all finite words over the finite alphabet Σ. The empty
word is denoted by λ, and we let Σ+ = Σ∗ \ {λ}. The set of words of length at
most m ≥ 0 is denoted by Σ≤m. The reversal of a word w is denoted by wR,
and for the length of w we write |w|. We use ⊆ for inclusions and ⊂ for strict
inclusions.

A deterministic finite automaton (DFA) is a system M = 〈Q,Σ, q0, δ, F 〉,
where Q is the finite set of internal states, Σ is the finite set of input symbols, q0
is the initial state, F ⊆ Q is the set of final states and δ : Q × Σ → Q is the
partial transition function. The language accepted by M is defined as L(M) =
{w ∈ Σ∗ | δ(q0, w) ∈ F }, where, as usual, δ is recursively extended to δ :
Q × Σ∗ → Q. The reverse transition function of δ is δ← : Q × Σ → 2Q, where
δ←(q, a) = { p ∈ Q | δ(p, a) = q }.

A state r ∈ Q is said to be irreversible if there are two distinct states p
and q in Q and a letter a ∈ Σ such that δ(p, a) = r = δ(q, a). A DFA is
called reversible (a REV-FA), if it does not have any irreversible state. Then,
the reverse transition function δ← of a REV-FA can be seen as a partial function
δ← : Q × Σ → Q.

We turn to the definition of reversible pushdown automata. General deter-
ministic pushdown automata that are not allowed to perform λ-steps are weaker

Boosting Reversible Pushdown Machines by Preprocessing 91

than deterministic pushdown automata that may move on λ input [3]. However,
in [6] it has been shown that every reversible pushdown automaton can be sim-
ulated by a real-time reversible pushdown automaton, that is, without λ-steps.
This real-time reversible machine can effectively be constructed from the given
one. Moreover, the sequential transducers defined below are real-time devices
as well. For this reason, and to simplify matters, we disallow λ-steps from the
outset. A real-time deterministic pushdown automaton (DPDAλ) is a system
M = 〈Q,Σ, Γ, F, q0,⊥, δ〉, where Q is the finite set of internal states, Σ is the
finite set of input symbols, Γ is the finite set of pushdown symbols, F ⊆ Q is
the set of accepting states, q0 ∈ Q is the initial state, ⊥ ∈ Γ is a distinguished
pushdown symbol called the bottom-of-stack symbol, which initially appears on
the stack, and the partial transition function δ : Q × Σ × Γ → Q × Γ ∗.

A configuration of a pushdown automaton is a quadruple (u, q, v, γ), where q
is the current state, u ∈ Σ∗ is the part of the input to the left of the input head,
v ∈ Σ∗ the part of the input to the right of the input head, and γ ∈ Γ ∗ is the
current content of the pushdown store, with the leftmost symbol of γ being the
top symbol. On input w the initial configuration is defined to be (λ, q0, w,⊥). For
p ∈ Q, a ∈ Σ, u, v ∈ Σ∗, γ ∈ Γ ∗, and Z ∈ Γ , let (u, p, av, Zγ) be a configuration.
Then its successor configuration is (ua, q, v, βγ), where δ(p, a, Z) = (q, β). We
write (u, p, av, Zγ)
 (ua, q, v, βγ) in this case. The reflexive transitive closure
of
 is denoted by
∗.

To simplify matters, we require that in any configuration the bottom-of-
pushdown symbol appears exactly once at the bottom of the pushdown store,
that is, it can never appear at some other position in the pushdown store nor can
it be popped. Formally, we require that if δ(p, a, Z) = (q, β) then either Z �= ⊥
and β does not contain ⊥, or Z = ⊥ and β is β′⊥, where β′ does not contain ⊥.
The language accepted by M with accepting states is

L(M) = {w ∈ Σ∗ | (λ, q0, w,⊥)
∗ (w, q, λ, γ), for some q ∈ F and γ ∈ Γ ∗ }.

Reversible pushdown automata have been introduced and studied in [6],
where reversibility requires that any configuration must have at most one pre-
decessor which, in addition, is computable by a DPDAλ. For reverse computa-
tion steps the head of the input tape is always moved to the left. Therefore,
the automaton rereads the input symbol which has been read in the preced-
ing forward step. For reversible pushdown automata there must exist a reverse
transition function δ← : Q × Σ × Γ → Q × Γ ∗ that maps a configuration
to its predecessor configuration. For q ∈ Q, a ∈ Σ, u, v ∈ Σ∗, Z ∈ Γ , and
β, γ ∈ Γ ∗, let (ua, q, v, Zγ) be a configuration. Then its predecessor configuration
is (u, p, av, βγ) if δ←(q, a, Z) = (p, β). We write (ua, q, v, Zγ)
← (u, p, av, βγ) in
this case.

A DPDAλ M = 〈Q,Σ, Γ, F, q0,⊥, δ〉 is said to be reversible (a REV-PDA), if
there exists a reverse transition function δ← inducing a relation
← from one
configuration to the next, so that (u, p, v, γ)
← (u′, p′, v′, γ′) if and only if
(u′, p′, v′, γ′)
 (u, p, v, γ). So, for all configurations the unique predecessor can
be reached by
←, if the predecessor exists at all.

92 H.B. Axelsen et al.

The following properties of reversible pushdown automata have been derived
in [6]. In one reverse step the height of the pushdown store can be decreased by
at most one. Therefore, in a forward step the height of the pushdown store may
be increased by at most one, as well. Furthermore, when a forward step pops a
symbol, this operation simply reveals the next-to-top symbol. Therefore, one has
to take care that the original top-of-stack symbol remains unaltered in a forward
step in which the height of the pushdown is increased: If δ(p, a, Z) = (q, β) and
|β| > 1, then β = Y Z for some symbol Y ∈ Γ . So, for a REV-PDA there are
only the following possibilities:

push: δ(p, a, Z) = (q, Z ′Z) =⇒ δ←(q, a, Z ′) = (p, λ)
change top: δ(p, a, Z) = (q, Z ′) =⇒ δ←(q, a, Z ′) = (p, Z)
pop (Z �= ⊥) : δ(p, a, Z) = (q, λ) =⇒ for all X ∈ Γ : δ←(q, a,X) = (p, ZX)

As mentioned before, we shall allow the input of reversible devices to be
weakly preprocessed by deterministic one-way sequential transducers (DST)
which are basically DFAs with the ability to output symbols. In general, the
output of a DST is written on an initially empty output tape. Here, with an
eye towards reversible computations we define a DST as a machine with a single
tape from which the input is read and to which the output is written, such that
the head moves from left to right over the tape and in every computation step
rewrites the current tape square. To enable the latter feature the transducer has
to be length-preserving.

Formally, a DST is a system T = 〈Q,Σ,Δ, q0, δ〉, where Q is the set of
internal states, Σ is the set of input symbols, Δ is the set of output symbols, q0 is
the initial state, and δ : Q×Σ → Q×Δ is the transition function. By T (w) ∈ Δ∗

we denote the output computed by T on input w ∈ Σ∗. In the following, we will
consider in particular injective DSTs (also known as injective Mealy machines).

For p ∈ Q, a ∈ Σ, v ∈ Σ∗, w ∈ Δ∗ let (w, p, av) be a configuration, where p
is the current state, w ∈ Δ∗ is the already processed part of the input to the left
of the input head, and av ∈ Σ∗ the still unread part of the input to the right of
the input head. The successor configuration is (wz, q, v), if δ(p, a) = (q, z). As
before, we write (w, p, av)
 (wz, q, v) in this case.

A DST T = 〈Q,Σ,Δ, q0, δ〉 is said to be reversible (a REV-DST), if there
exists a reverse transition function δ← inducing a relation
← from one config-
uration to the next, so that (w, p, v)
← (w′, p′, v′) if and only if (w′, p′, v′)

(w, p, v). In that case, the reverse transition function δ← : Q × Δ → Q × Σ of a
DST maps a configuration to its predecessor configuration.

In backward computation steps a REV-DST moves its head from right to
left. Thus, the automaton reads the output symbol which was written in the
preceding forward step and restores both the input symbol and the prior state
of the automaton before the step.

Let M be a REV-FA and T be an injective REV-DST so that the output
alphabet of T is the input alphabet of M . The pair (M,T) is called a trans-
ducer reversible finite automaton (a T-REV-FA) and the language accepted
by (M,T) is defined as L(M,T) = {w ∈ Σ∗ | T (w) ∈ L(M) }. If M is a

Boosting Reversible Pushdown Machines by Preprocessing 93

o0 o1 o2 o3 o4 y5 y6 y7 . . .

TM

z
⊥

Fig. 1. A transducer reversible pushdown automata (M,T) consisting of a pushdown
automaton M with input preprocessed by a sequential transducer T . Here, T has
already read the input symbols y0, y1, y2, y3, and y4 and has written corresponding
output symbols o0, o1, o2, o3, and o4, which in turn are input symbols for M , of which
M has read o0 and o1.

REV-PDA the pair (M,T) is called a transducer reversible pushdown automa-
ton (a T-REV-PDA). Such a pair is depicted in Fig. 1.

In the following, the family of all languages accepted by some device of type X
is denoted by L (X). In order to clarify our notations we present some examples.

Example 1. The regular language L = { ambn | m,n ≥ 0 }, which is not
accepted by any REV-FA, is accepted by a T-REV-FA (M,T). The transducer
T = 〈Q,Σ,Δ, q0, δ〉 has two states Q = {q0, q1}. The output alphabet consists
of four symbols Δ = {a, b, $,�}. For every a, transducer T emits an a. When
the first b appears, it emits a $, and all subsequent b’s are translated to b’s.
When the input is incorrectly formatted, that is, an a follows a b, transducer T
emits the error symbol �, stays in its state, and continues its computation. The
transition function is formally defined as follows.

REV-DST forward
δ(q0, a) = (q0, a)
δ(q0, b) = (q1, $)
δ(q1, b) = (q1, b)
δ(q1, a) = (q1,�)

REV-DST backward
δ←(q0, a) = (q0, a)
δ←(q1, $) = (q0, b)
δ←(q1, b) = (q1, b)
δ←(q1,�) = (q1, a)

The reversibility of T is immediately verified by inspecting the transition func-
tion. The output language T (L) is { am | m ≥ 0 } ∪ { am$bn−1 | m ≥ 0, n ≥ 1 }
which is accepted by some reversible DFA M . Whenever the input does not
belong to L, it is incorrectly formatted and T emits the error symbol � on
which M halts and rejects. So, M is reversible in these cases as well. �

Example 2. The language L = { anbn | n ≥ 0 }, that is not accepted by any
reversible pushdown automaton [6], is accepted by a T-REV-PDA. The trans-
ducer works in the same way as in the previous example. Therefore, we have

94 H.B. Axelsen et al.

T (L) = {λ} ∪ { an$bn−1 | n ≥ 1 } which is accepted by some reversible deter-
ministic pushdown automaton M . If the input does not belong to L but is
otherwise correctly formatted, its translation is rejected by M without further
modification. Finally, as in the previous example, if the input is incorrectly for-
matted then T emits the the error symbol � on which M halts and rejects. So,
M is reversible in these cases as well. �

Example 3. Reversible pushdown automata can accept any regular language,
even if the language is not accepted by any reversible DFA. The simple idea is
to simulate a DFA whereby the history of the simulation is pushed. However,
modifying the language { anbn | n ≥ 0 } so that there is always an arbitrary
word from a given (irreversible) regular language, say { cmdl | m, l ≥ 1 }, in
between the a’s and b’s yields a language that cannot be treated in this way. If
the history has to be pushed while processing the infix, the number of a’s cannot
be compared with the number of b’s.

Nevertheless, language L = { ancmdlbn | l,m ≥ 1, n ≥ 0 } is accepted by
a T-REV-PDA (M,T). The task of the transducer T is twofold. On the one
hand, it checks the correct format of the input. When it detects a format error
it emits an error symbol � whose index is the rewritten symbol, stays in its
state, and continues its computation. The other task of T is to rewrite the first
occurrences of the symbols c, d, and b by their primed version (it does not change
any subsequent occurrences of the symbols). In this way, T can work reversibly,
and M can work reversibly by combining the techniques of Examples 1 and 2. �

3 Computational Capacity

In this section, we consider the computational capacity of T-REV-FAs and
T-REV-PDAs. In the definition of both models it is required that the sequen-
tial transducers involved have to be reversible. A first result of this section is
that this condition is not necessary since the computational capacity of both
models does not change even if the transducers are irreversible. First, we show
a technical lemma.

Lemma 4. Let T be a DST with input alphabet Σ. A length-preserving homo-
morphism h and an injective REV-DST T ′ can effectively be constructed such
that T (w) = h(T ′(w)), for all w ∈ Σ∗.

Proof. The idea of the proof is that T ′ basically simulates T = 〈Q,Σ,Δ, q0, δ〉,
but in every step it additionally outputs the information of which transition of T
is currently simulated. Using this information will enable T ′ to work reversibly,
that is, to recover its states and the original input symbols in the backward
computation. Formally, we define T ′ = 〈Q,Σ,Δ′, q0, δ′〉 with Δ′ = Δ × Q × Σ.
For q ∈ Q and a ∈ Σ, we define δ′(q, a) = (p, (o, q, a)), if δ(q, a) = (p, o) for some
p ∈ Q and o ∈ Δ.

The reverse transition function δ′← of T ′ is defined for p, q ∈ Q, a ∈ Σ, and
o ∈ Δ as δ′←(p, (o, q, a)) = (q, a), if δ′(q, a) = (p, (o, q, a)). Thus, δ′←(δ′(q, a)) =

Boosting Reversible Pushdown Machines by Preprocessing 95

(q, a) for all q ∈ Q and a ∈ Σ. Hence, T ′ is a reversible DST. Moreover, T ′

computes an injective transduction since the input appears as third component
in the output and T ′ is deterministic.

Finally, the homomorphism h : Δ × Q × Σ → Δ is defined as a projection to
the first component, that is, h(o, q, a) = o for all o ∈ Δ, q ∈ Q, and a ∈ Σ. This
definition implies that h is length-preserving. Moreover, we have h(T ′(w)) =
T (w), for all w ∈ Σ∗. ��

The previous lemma can immediately be used to show that pairs of reversible
DSTs and reversible DFAs accept the same family of languages as pairs of not
necessarily reversible DSTs and reversible DFAs.

Theorem 5. The family of languages accepted by T-REV-FAs is equal to the
family of languages accepted by pairs of DSTs and REV-FAs.

Proof. Let T = 〈Q,Σ,Δ, q0, δ〉 be a DST and M = 〈QM ,Δ, q0,M , δM , FM 〉
be a REV-FA. First, Lemma 4 is applied to T which results in an injective
REV-DST T ′ = 〈Q,Σ,Δ′, q0, δ′〉 and a length-preserving homomorphism h so
that T (w) = h(T ′(w)), for all w ∈ Σ∗. Now, we construct a DFA M ′ which
basically simulates M . Formally, M ′ = 〈QM ,Δ′, q0,M , δ′

M , FM 〉, where δ′
M is

defined as δ′
M (p, a) = q if δM (p, h(a)) = q, for p, q ∈ QM and a ∈ Δ′. Since M

is reversible, M ′ is reversible as well. Moreover, a word w ∈ Σ∗ is accepted by
(M,T) if and only if w is accepted by (M ′, T ′). ��

The same idea can be applied to pairs of DSTs and reversible DPDAs.

Theorem 6. The family of languages accepted by T-REV-PDAs is equal to the
family of languages accepted by pairs of DSTs and REV-PDAs.

Proof. The construction is similar to the construction in the proof of Theorem 5.
First, for a given DST T an injective REV-DST T ′ with output alphabet Δ′ and
a length-preserving homomorphism h so that T (w) = h(T ′(w)), for all w ∈ Σ∗, is
constructed according to Lemma 4. Let M = 〈QM ,Δ, ΓM , FM , q0,M ,⊥, δM 〉 be
a REV-PDA. Then, M ′ = 〈QM ,Δ′, ΓM , FM , q0,M ,⊥, δ′

M 〉, is constructed, where
δ′
M (p, a, Z) = (q, γ) if δM (p, h(a), Z) = (q, γ), for p, q ∈ QM , a ∈ Δ′, Z ∈ ΓM ,

and γ ∈ Γ ∗
M . Again, M ′ is reversible and (M ′, T ′) is equivalent to (M,T). ��

By the last two theorems, for easier reasoning we can safely forgo the
reversibility of the transducers, knowing that we can always recover it effec-
tively.

It is known that the family of languages accepted by REV-FAs is a proper
subset of the set of regular languages. For example, it is known that the reg-
ular language { anbm | n,m ≥ 0 } from Example 1 is not accepted by any
REV-FA [5,7]. The next theorem shows that this gap can be closed by con-
sidering T-REV-FAs instead of REV-FAs.

Theorem 7. The family of languages accepted by T-REV-FAs coincides with
the family of regular languages.

96 H.B. Axelsen et al.

Proof. We have to show that every regular language R is accepted by some
T-REV-FA. Let R be accepted by some DFA MR = 〈Q,Σ, q0, δ, F 〉. Then we
construct a T-REV-FA (M,T) accepting R setting T = 〈Q,Σ,Q×Q×Σ, q0, δT 〉,
M = 〈Q,Q × Q × Σ, q0, δM , F 〉, and δT (p, a) = (q, (q, p, a)), if δ(p, a) = q for
some p, q ∈ Q and a ∈ Σ.

Next, automaton M simply moves from left to right, reading the current sym-
bol, say (q, p, a), and entering the state q which is the state that M would be in
at this tape square. Thus, we set δM (p, (q, p, a)) = q. In this way, M and MR

are in the same state after reading their inputs. Since M has the same accept-
ing states as MR, we obtain that L(M,T) = R. Furthermore, M is reversible
since M cannot have irreversible states due to the above definition of δM on
input alphabet Q × Q × Σ. ��

So, the following corollary settles the comparison between T-REV-FAs and
REV-FAs (see also Fig. 2).

Corollary 8. The family of languages accepted by T-REV-FAs strictly includes
the family of languages accepted by REV-FAs.

Next, we turn to explore the situation for pushdown automata. It is known
from [6] that reversible pushdown automata are strictly stronger than (irre-
versible) finite automata and are strictly weaker than deterministic pushdown
automata, even if the latter are restricted to work in real time. Here we refine the
hierarchy by showing that the computational capacity of T-REV-PDAs lies prop-
erly in between the computational capacities of real-time deterministic pushdown
automata and REV-PDAs. To this end, we consider the language

Lmic = {w$wR | w ∈ {a, b}∗ } ∪ {w$cn | w ∈ {a, b}∗and |w| = n }.

Lemma 9. The language Lmic is not accepted by any T-REV-PDA.

Proof. In contrast to the assertion, we assume that Lmic is accepted by the
T-REV-PDA (M,T) with transducer T = 〈QT , Σ,Δ, q0,T , δT 〉 and REV-PDA
M = 〈QM ,Δ, Γ, F, q0,M ,⊥, δM 〉. First, we consider the computation of (M,T)
on input words of the form w$c|w| in more detail. So, let T (w$c|w|) = w̃$̃z̃, where
|w̃| = |w|, |$̃| = 1, and |z̃| = |w|.

The accepting computation of M has the form

(λ, q0,M , w̃$̃z̃,⊥)
∗ (w̃, q1, $̃z̃, γ1)
 (w̃$̃, q2, z̃, γ2)

∗ (w̃$̃x, q3, y, γ3)
∗ (w̃$̃z̃, qf , λ, γ4)

where xy = z̃, qf ∈ F , and γ3 is the shortest pushdown content occurring in
the computation after processing the input symbol $̃. If the length |γ3| of the
shortest pushdown content appears more than once after processing the input
symbol $̃, the first appearance is chosen. Since M is reversible and can push at
most one symbol in every step, we have 0 ≤ |γ3| ≤ |w| + 1.

Moreover, all pushdown contents appearing in the sub-computation from
configuration (w̃$̃, q2, z̃, γ2) up to but not including configuration (w̃$̃x, q3, y, γ3)

Boosting Reversible Pushdown Machines by Preprocessing 97

are longer than γ3 and, thus, γ3 at the bottom of the pushdown is untouched
in the sub-computation. This observation is used to split the input prefix w̃$̃
uniquely into two parts, say, uv = w̃$̃. The first part u is defined to be the
longest prefix so that M has stored γ3 in the pushdown after processing it. That
is, (λ, q0,M , w̃$̃z̃,⊥)
∗ (u, q, vz̃, γ3) and in all subsequent configurations up to
(w̃$̃, q2, z̃, γ2) the pushdown contents are of the form γγ3 with γ ∈ Γ+.

Let Z ∈ Γ be the topmost symbol of γ3. Furthermore, let the transducer T be
in state s after processing the input T−1(u) and, thus, after emitting u. Then u
is said to be a (s, q, Z)-prefix, since it drives M into a configuration used to split
the input and having state q and topmost pushdown symbol Z.

Similarly, v is said to be a (s, t, q, Z, p, i)-suffix, if the transducer T starts in
state s and ends in state t when it emits v, and if vx drives M from a configura-
tion with state q and topmost pushdown symbol Z into a configuration having
the shortest pushdown content occurring in the computation after processing v,
and having state p and topmost pushdown symbol Z. Here, x denotes the prefix
of z̃ whose length is i.

In this way, every word w ∈ {a, b}∗ uniquely determines the splitting of w̃$̃
into uwvw as well as the number of symbols iw = |x| from the suffix z̃ that are
processed by M until it reaches the configuration (w̃$̃x, q3, y, γ3).

Let P be the set of all prefixes uw and S be the set of all suffixes
obtained in this way by splitting w̃$̃ for every word w ∈ {a, b}∗. For any triple
(s, q, Z) ∈ QT ×QM ×Γ , the subset of P containing exactly all (s, q, Z)-prefixes
is denoted by P (s, q, Z). Similarly, we denote the subset of S containing exactly
all (s, t, q, Z, p, i)-suffixes by S(s, t, q, Z, p, i).

After these considerations, we continue to derive a contradiction to the
assumption that Lmic is accepted by the T-REV-PDA (M,T).

First assume that there is some (s, q, Z) ∈ QT × QM × Γ so that the set
P (s, q, Z) contains at least two prefixes, say uw1 and uw2 of different lengths.
We consider the inputs uw1vw1 z̃ and uw2vw1 z̃, where uw1vw1 z̃ = T (w1$c|w1|)
and, thus, |z̃| = |w1|.

The accepting computation of M on uw1vw1 z̃ is

(λ, q0,M , uw1vw1 z̃,⊥)
∗ (uw1 , q, vw1 z̃, Zγ)

∗ (uw1vw1x, p, y, Zγ)
∗ (uw1vw1 z̃, qf , λ, γ′Zγ)

where vw1 is a (s, t, q, Z, p, i)-suffix, xy = z̃, |x| = i, and γ, γ′ ∈ Γ ∗. However,
the computation of M on uw2vw1 z̃ is

(λ, q0,M , uw2vw1 z̃,⊥)
∗ (uw2 , q, vw1 z̃, Zγ′′)

∗ (uw2vw1x, p, y, Zγ′′)
∗ (uw2vw1 z̃, qf , λ, γ′Zγ′′)

where γ′′ ∈ Γ ∗. So, both words uw1vw1 z̃ and uw2vw1 z̃ are accepted by M . There-
fore, T−1(uw1vw1 z̃) ∈ Lmic is accepted by (M,T).

However, since uw1 and uw2 are both P (s, q, Z)-prefixes, the transducer T is
in the same state s after emitting uw1 and uw2 . Let w1$ = û1v̂1 and w2$ = û2v̂2
with |û1| = |uw1 |, |v̂1| = |vw1 |, |û2| = |uw2 |, and |v̂2| = |vw2 |. Then on input

98 H.B. Axelsen et al.

û2v̂1c
|w1|, transducer T emits uw2vw1 z̃ which is accepted by M as well. This is

a contradiction, since |uw2vw1 | �= |uw1vw1 |, T is injective and length-preserving,
and |T−1(uw2vw1)| − 1 does not match |z̃|, that is, the number of c’s after the $
in the original input.

We conclude that for all (s, q, Z) ∈ QT × QM × Γ the set P (s, q, Z) does
not include two words of different lengths, thus, P (s, q, Z) is finite. This implies
that P is finite as well.

Next, we consider a prefix uw, say from the set P (s, q, Z), the matching
suffix vw, say from the set S(s, t, q, Z, p, i), and a different suffix v′ from the set
S(s, t, q, Z, p, i) as well, where uwvwz̃ = T (w$c|w|) and, thus, |z̃| = |w|.

Since vw and v′ are both S(s, t, q, Z, p, i)-suffixes that match the P (s, q, Z)-
prefix uw, there is an input w′$c|w| so that T (w′$c|w|) = uwv′z̃.

The first part of the computation of M on uwvwz̃ is

(λ, q0,M , uwvwz̃,⊥)
∗ (uw, q, vw z̃, Zγ)
∗ (uwvwx, p, y, Zγ)

where xy = z̃, |x| = i, and γ ∈ Γ ∗. The first part of the computation of M on
uwv′z̃ is

(λ, q0,M , uwv′z̃,⊥)
∗ (uw, q, v′z̃, Zγ)
∗ (uwv′x, p, y, Zγ).

Since M is reversible, the reverse computations

(uwvwx, p, y, Zγ)
←∗ (uwvw, p′, z̃, γ′Zγ)

and
(uwv′x, p, y, Zγ)
←∗ (uwv′, p′, z̃, γ′Zγ)

with some p′ ∈ QM and γ′ ∈ Γ ∗ reveal that the pushdown content after process-
ing the sole $ is the same in both forward computations. Since w$wR belongs
to Lmic and, thus, is accepted by (M,T), we conclude that w′$wR is accepted as
well, a contradiction. So, we obtain a contradiction to the assumption that Lmic

is accepted by (M,T), provided that there is some set S(s, t, q, Z, p, i) with at
least two members.

Let k be the length of a longest word in the finite set P and choose some n
large enough. There are 2n+k many different words w ∈ {a, b}n+k and therefore
at least 2n+k many different words in the set {T (w) | w ∈ {a, b}n+k }. After
splitting all these words there are at least 2n different suffixes. On the other
hand, there are at most |QT |2 · |QM |2 · |Γ | · n ∈ O(n) many different suffix
sets S(s, t, q, Z, p, i). So, there is at least one of these sets with at least two
members. ��
Theorem 10. The family of languages accepted by real-time deterministic
pushdown automata strictly includes the family of languages accepted by
T-REV-PDAs.

Proof. First, we have to argue that there is an inclusion between the language
families at all. To this end, let (M,T) be a T-REV-PDA consisting of a DST
T = 〈QT , Σ,Δ, q0,T , δT 〉 and a REV-PDA M = 〈QM ,Δ, Γ, FM , q0,M ,⊥, δM 〉.

Boosting Reversible Pushdown Machines by Preprocessing 99

The idea of the construction of an equivalent real-time DPDA M ′ is to sim-
ulate the two computations of T and M in parallel. Automaton M ′ stores in its
state set the current state of M as well as the current state of T . Furthermore,
in each computation step M ′ first simulates T and then uses the output of T as
input for the simulation of M . Formally, we define

M ′ = 〈QT × QM , Σ, Γ,QT × FM , (q0,T , q0,M),⊥, δ′〉
where δ′((p′, p), a, Z) = ((q′, q), γ), if δT (p′, a) = (q′, o) and δM (p, o, Z) = (q, γ),
for some p, q ∈ QM , p′, q′ ∈ QT , a ∈ Σ, o ∈ Δ, Z ∈ Γ , and γ ∈ Γ ∗.

Second, the properness of the inclusion follows by the witness language Lmic

discussed in Lemma 9, which is accepted by some real-time deterministic push-
down automaton, but not by any T-REV-PDA. ��

In order to complete the placement of the family L (T-REV-PDA) in the
hierarchy of language families, the computational capacity of T-REV-PDA is
shown to be strictly stronger than that of REV-PDA.

Theorem 11. The family of languages accepted by T-REV-PDAs strictly
includes the family of languages accepted by REV-PDAs.

Proof. Every REV-PDA M can be considered as T-REV-PDA (M,T) where T is
a one-state DST that realizes the identity map. Thus, L (REV-PDA) is a subset
of L (T-REV-PDA). Example 2 shows that the language L = { anbn | n ≥ 1 } is
accepted by some T-REV-PDA. On the other hand, it is shown in [6] that L is
not accepted by any REV-PDA. ��

In particular, we conclude that providing even weak preprocessing for
reversible DFAs and REV-PDAs strictly increases their computational power.
The inclusion structure of the language families accepted by devices in question
is summarized in Fig. 2.

Finally, we turn to another aspect of the sequential transducers considered.
Above we have shown that, in connection with our setting, we do not have to care
about their reversibility since we always can get it by an effective construction. In
the literature sequential transducers are often more generally defined than here.
First, they normally possess two tapes where one tape is used to read the input
and another, initially empty tape to write the output. Furthermore, a transducer
is not necessarily length-preserving, that is, in each computation step it may
append some word w ∈ Δ∗ to the output tape. Formally, we define a general
deterministic one-way sequential transducer as a system T = 〈Q,Σ,Δ, q0, δ〉
where Q are the internal states, Σ are the input symbols, Δ are the output
symbols, q0 is the initial state, and δ : Q×Σ → Q×Δ∗ is the transition function.

The next theorem shows that even a pair of a general sequential trans-
ducer and reversible deterministic pushdown automaton can be simulated by
a T-REV-PDA. So, in principle, we do not have to care about the length-
preservation either, since we always can get it by an effective construction.

Theorem 12. The family of languages accepted by T-REV-PDAs is equal to
the family of languages accepted by pairs of general DSTs and REV-PDAs.

100 H.B. Axelsen et al.

PDA

DPDA

DPDAλ

T-REV-PDA

1TURN-PDA REV-PDA DPDAλ ∩ DPDAR
λ

DFA = T-REV-FA

REV-FA

Fig. 2. Inclusion structure of language families accepted by devices in question. The
arrows indicate strict inclusions. Classes not linked by a path are pairwise incompara-
ble. 1TURN-PDA is the class of one-turn pushdown automata, which accept the linear
context-free languages [2].

4 Closure Properties

By Theorem 7, the family of languages accepted by T-REV-FAs coincides with
the family of regular languages. So, its closure properties are known. In this
section, we complement these results by studying the closure properties of the
family of languages accepted by T-REV-PDAs. We start with the Boolean oper-
ations.

Theorem 13. The family of languages accepted by T-REV-PDAs is closed
under complementation.

Proof. Let (M,T) be a T-REV-PDA. We construct a T-REV-PDA accepting
the complement L(M,T) of L(M,T). The main idea of the construction is to
leave the transducer T as it is and to interchange the accepting and the non-
accepting states of the reversible pushdown automaton M . In the corresponding
construction for deterministic pushdown automata (see, for example, [3]) one has
to take care of λ-moves as well as of the problem that the pushdown automaton
may reject its input by getting stuck without reading the input entirely.

Boosting Reversible Pushdown Machines by Preprocessing 101

The first problem does not occur for T-REV-PDA which by definition work
in real time. To overcome the second problem we have to make sure that in
every configuration a next move is defined. This can be realized with the usual
construction of adding a non-accepting sink state which cannot be exited once
entered. So, transitions undefined thus far are added, and all lead to the new
sink state. To maintain reversibility, the pushdown automaton pushes the pre-
decessor state of the sink state (using some marking) onto the pushdown store.
Subsequently, in the sink state all symbols read are simply pushed.

In this way, in the backward computation the exact moment at which the sink
state was entered can be identified and, thus, the sink state can be exited and
the predecessor state restored. With M modified in this way, the final step is to
construct another REV-PDA M ′ by interchanging accepting and non-accepting
states. Then (M ′, T) is a T-REV-PDA so that L(M ′, T) = L(M,T). ��

In the following, we exploit the fact that both languages

L1 = { ambmcn | m,n ≥ 1 } and L2 = { ambncn | m,n ≥ 1 }

are accepted by T-REV-PDAs. To this end, transducer T translates the input as
T (L1) = {am$bm−1$cn−1 | m,n ≥ 1 } and T (L2) = {am$bn−1$cn−1 | m,n ≥ 1 }.
Both languages are straightforwardly accepted by REV-PDAs.

Theorem 14. The family of languages accepted by T-REV-PDAs is neither
closed under intersection nor under union.

Proof. Assume that the family of languages accepted by T-REV-PDAs is closed
under intersection. Then L1 ∩ L2 = { ambmcm | m ≥ 1 } is accepted by some
T-REV-PDA. However, language L1∩L2 is not even context free, a contradiction
to Theorem 10.

Since the family of languages accepted by T-REV-PDAs is closed under com-
plementation by Theorem 13, the closure under union would imply the closure
under intersection which is again a contradiction. ��

Despite the non-closure under union and intersection, L (T-REV-PDA) is
closed under union and intersection with regular languages, which is shown not
to be true for REV-PDAs in [6].

Theorem 15. The family of languages accepted by T-REV-PDAs is closed
under union and intersection with regular languages.

Proof. Let R be a regular language accepted by a deterministic finite automaton
MR = 〈QR, Σ, q0,R, δR, FR〉, and (M,T) be a T-REV-PDA consisting of a DST
T = 〈QT , Σ,Δ, q0,T , δT 〉 and a REV-PDA M = 〈QM ,Δ, Γ, FM , q0,M ,⊥, δM 〉.
According to the construction given in the proof of Theorem 13 we may assume
that M is a REV-PDA that always reads its input entirely.

The basic idea for T-REV-PDAs (M ′, T ′) that accept L(M,T) ∪ R and
L(M,T)∩R is that T ′ simulates T and MR in parallel, and emits the simulated

102 H.B. Axelsen et al.

states as well as their predecessors, while M ′ simulates M and additionally stores
the simulated state of MR emitted by T ′ in its state. Formally, we define

T ′ = 〈QT × QR, Σ,Δ × QR × QR, (q0,T , q0,R), δT ′〉 and
M ′ = 〈QM × QR,Δ × QR × QR, Γ, FM ′ , (q0,M , q0,R),⊥, δM ′〉.

The transition function δT ′ is defined as δT ′((p, p′), a) = ((q, q′), (o, p′, q′)), if
δT (p, a) = (q, o) and δR(p′, a) = q′, for p, q ∈ QT , p′, q′ ∈ QR, a ∈ Σ, and
o ∈ Δ. The transition function δM ′ is defined for all p′, q′ ∈ QR as follows:
δM ′((p, p′), (a, p′, q′), Z) = ((q, q′), γ), if δM (p, a, Z) = (q, γ) for p, q ∈ QM , a ∈
Δ, Z ∈ Γ , and γ ∈ Γ ∗. Then the reverse transition function δ←

M ′ is defined for
all p′, q′ ∈ QR as follows: δ←

M ′((q, q′), (a, p′, q′), Z) = ((p, p′), γ), if δ←
M (q, a, Z) =

(p, γ) for p, q ∈ QM , a ∈ Δ, Z ∈ Γ , and γ ∈ Γ ∗. With this definition it
is ensured that a predecessor configuration can be computed since the correct
state and stack contents of M are computed by δ←

M , whereas the correct state
of MR is restored using the input symbol. Thus, M ′ is a REV-PDA.

To accept L(M,T) ∪ R we define FM ′ = (FM × QR) ∪ (QM × FR) and to
accept L(M,T) ∩ R we define FM ′ = FM × FR. Thus, we obtain that L(M ′, T ′)
is L(M,T) ∪ R respectively L(M,T) ∩ R. ��
Theorem 16. The family of languages accepted by T-REV-PDAs is closed
under inverse homomorphism.

Proof. Let (M,T) be a T-REV-PDA consisting of a DST over some alphabet Σ
and a REV-PDA over some alphabet Δ. Furthermore, let h : Λ∗ → Σ∗ be
a homomorphism. Our goal is to construct a T-REV-PDA (M,T ′) accepting
language h−1(L(M,T)) = {w ∈ Λ∗ | h(w) ∈ L(M,T) }.

The idea to construct DST T ′ from T and h is to simulate h on the cur-
rent input symbol x and then T on input h(x) in one step. On input x ∈ Λ,
transducer T ′ emits T (h(x)).

So, we have a general transducer T ′ and the REV-PDA M such that (M,T ′)
accepts the inverse homomorphic image of L(M,T), since

L(M,T ′) = {w ∈ Λ∗ | T ′(w) ∈ L(M) } = {w ∈ Λ∗ | T (h(w)) ∈ L(M) }
= {w ∈ Λ∗ | h(w) ∈ L(M,T) } = h−1(L(M,T)).

Finally, Theorem 12 shows that L(M,T ′) = h−1(L(M,T)) is accepted by some
T-REV-PDA. ��

Finally, we turn to further non-closure results for which we exploit language
L3 = { ambncm | m,n ≥ 1 } which can be accepted by some T-REV-PDA in a
similar way as the language L1 = { ambmcn | m,n ≥ 1 } from above. Here we
consider L4 = $L1 ∪ L3 which is a real-time deterministic context-free language
that is accepted by a T-REV-PDA in a straightforward way.

Boosting Reversible Pushdown Machines by Preprocessing 103

Table 1. Closure properties of the language classes discussed.

∪ ∩ ∪REG ∩REG · ∗ hl.p. h−1 R

REG Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

L (REV-PDA) Yes No No No No No No No Yes No

L (T-REV-PDA) Yes No No Yes Yes No No No Yes No

DPDAλ Yes No No Yes Yes No No No Yes No

Theorem 17. The family of languages accepted by T-REV-PDAs is not closed
under concatenation, iteration, length-preserving homomorphism, and reversal.

Proof. The family of languages accepted by T-REV-PDA is closed under inter-
section with regular languages by Theorem 15. We consider the concatenation
of the finite and, thus, regular language {λ, $} with L4, which both belong to
L (T-REV-PDA), and intersect the result with the regular language $a∗b∗c∗. In
this way, we obtain $L1 ∪ $L3 = { $a�bmcn |
,m, n ≥ 1 and
 = m or
 = n }
which is not a deterministic context-free language, since its complement is not
even context free. This shows the non-closure under concatenation.

Similarly, the non-closure under iteration follows by ({λ, $} ∪ L4)∗ ∩ $a∗b∗c∗

which is again $L1 ∪ $L3.
For the non-closure under length-preserving homomorphism we consider the

length-preserving homomorphism h, where h($) = h(a) = a, h(b) = b, and
h(c) = c. Then h(L4) = { a�bmcn |
,m, n ≥ 1 and
 + 1 = m or
 = n } which is
again not a deterministic context-free language.

Finally, L (T-REV-PDA) is not closed under reversal, since L4 is accepted
by some T-REV-PDA, but LR

4 is not even deterministic context free. ��
The closure properties derived in this section are summarized in Table 1

where also the closure properties of related language families are listed.

Acknowledgments. The authors acknowledge partial support from COST Action
IC1405 Reversible Computation. H.B. Axelsen was supported by the Danish Coun-
cil for Independent Research | Natural Sciences under the Foundations of Reversible
Computing project, and by an IC1405 STSM (short-term scientific mission) grant.

References

1. Axelsen, H.B., Jakobi, S., Kutrib, M., Malcher, A.: A hierarchy of fast reversible
turing machines. In: Krivine, J., Stefani, J.-B. (eds.) RC 2015. LNCS, vol. 9138, pp.
29–44. Springer, Switzerland (2015)

2. Ginsburg, S., Spanier, E.H.: Finite-turn pushdown automata. SIAM J. Control 4,
423–434 (1966)

3. Harrison, M.A.: Introduction to Formal Language Theory. Addison-Wesley, Reading
(1978)

104 H.B. Axelsen et al.

4. Kondacs, A., Watrous, J.: On the power of quantum finite state automata. In:
Proceeding of Foundations of Computer Science, pp. 66–75. IEEE (1997)

5. Kutrib, M.: Aspects of reversibility for classical automata. In: Calude, C.S.,
Freivalds, R., Kazuo, I. (eds.) Computing with New Resources. LNCS, vol. 8808,
pp. 83–98. Springer, Heidelberg (2014)

6. Kutrib, M., Malcher, A.: Reversible pushdown automata. J. Comput. Syst. Sci. 78,
1814–1827 (2012)

7. Pin, J.E.: On reversible automata. In: Simon, I. (ed.) Latin 1992. LNCS, vol. 583,
pp. 401–416. Springer, Heidelberg (1992)

Reversible Computation vs. Reversibility
in Petri Nets

Kamila Barylska1, Maciej Koutny2, Łukasz Mikulski1(B),
and Marcin Piątkowski1

1 Faculty of Mathematics and Computer Science,
Nicolaus Copernicus University, Chopina 12/18, Toruń, Poland

{kamila.barylska,lukasz.mikulski,marcin.piatkowski}@mat.umk.pl
2 School of Computing Science, Newcastle University,

Newcastle upon Tyne NE1 7RU, UK
maciej.koutny@newcastle.ac.uk

Abstract. Petri nets are a general formal model of concurrent systems
which supports both action-based and state-based modelling and rea-
soning. One of important behavioural properties investigated in the con-
text of Petri nets has been reversibility, understood as the possibility of
returning to the initial marking from any reachable net marking. Thus
reversibility in Petri nets is a global property. Reversible computation,
on the other hand, is typically a local mechanism using which a system
can undo some of the executed actions. This paper is concerned with
the modelling of reversible computation within Petri nets. A key idea
behind the proposed construction is to add ‘reverse’ versions of selected
transitions. Since such a modification can severely impact on the behav-
ior of the system, it is crucial, in particular, to be able to determine
whether the modified system has a similar set of states as the original
one. We first prove that the problem of establishing whether the two nets
have the same reachable markings is undecidable even in the restricted
case discussed in this paper. We then show that the problem of checking
whether the reachability sets of the two nets cover the same markings is
decidable.

Keywords: Petri net · Reversibility · Reversible computation · Decid-
ability

1 Introduction

Petri nets are a general formal model of concurrent systems which supports both
action-based and state-based modelling and reasoning. One of important behav-
ioural properties investigated in the context of Petri nets has been reversibility,
understood as the possibility of returning to the initial marking (a global state)
from any reachable marking. But it is not required that any specific transitions
(global states) are used to bring the net back to the initial marking.

c© Springer International Publishing Switzerland 2016
S. Devitt and I. Lanese (Eds.): RC 2016, LNCS 9720, pp. 105–118, 2016.
DOI: 10.1007/978-3-319-40578-0_7

106 K. Barylska et al.

Reversibility in Petri nets has been investigated for years, for example, in
the context of enforcing controllability in discrete event systems [18,20,29].
Intuitively, it is a global property which is related to the existence of home
states [5,16], i.e., those markings which can be reached from all forward reach-
able markings.

Unlike Petri net reversibility, reversible computation typically refers to a
local mechanism using which a system can undo (the effect of) some of the
already executed actions. Such an approach has been applied, in particular, to
various kinds of process calculi and event structures (see, e.g., [2,7–9,19,21–23]).
A category theory based rendering of reversible computation with an application
to Petri nets has been proposed in [10].

1.1 Previous Work

A good deal of decision problems related to reversibility as well as home states
and home spaces has been investigated over the past decades. These prob-
lems were usually considered within the domain of potentially infinite-state
Place/Transition-net (PT-nets) and their subclasses, as most problems become
trivial for finite-state net models. Typically, these problems are of one of two
kinds.

In the case of the first kind of problems, one wants to establish whether a
given marking (or a set of markings) satisfies a desirable property. For instance,
the fundamental home state problem is concerned with establishing whether a
given marking of a given PT-net is a home state. The problem was shown in [1]
to be decidable, as well as its restricted version consisting in deciding whether
the initial marking of a PT-net is a home state. Another example problem is
that of establishing whether a linear set of markings is a home space of a given
PT-net, and [11] demonstrated that such a problem is decidable. Problems of
the second kind put the emphasis on the existence of a marking (or set of mark-
ings) satisfying a desirable property. For example, the fundamental home state
existence problem, shown to be decidable in [4], is to establish whether there
exists a home state for a given PT-net.

Although there are several positive decidability results related to reversibility,
in general, the complexity of potential solutions appears to be high or difficult to
establish. For example, the problem of the reversibility property is decidable but
its complexity is still unknown [4,16] demonstrated that the problem of home
state existence is at least as hard as the reachability problem [15]. This, rather
pessimistic results, meant that the quest for effective algorithms, and indeed
decidable problems, has for many years been carried out within special subclasses
of PT-nets. Such subclasses are often defined by imposing restrictions on the
structure of a net, or by assuming boundedness, with the resulting submodels of
PT-nets being still relevant for a wide range of practical applications.

For example, it was shown in [6] that all live and bounded free-choice
nets have home states, and the free-choice assumption cannot be changed
to asymmetric choice. The home space problem is polynomial for live and

Reversible Computation vs. Reversibility in Petri Nets 107

bounded free-choice Petri nets [3,12], and they also were shown to have home
states [28]. Other, often progressively less restricted, net classes were considered
in [3,16,24,26,27].

1.2 Our Contribution

This paper is concerned with the modelling of reversible computation in Petri
nets. A key idea is to add reversed versions of selected net transitions, each such
reversed transition being obtained by simply changing the directions of adjacent
arcs. The resulting reversible computations implement in a direct way what can
be seen as the undoing of an executed action, and the simple form of such an
undoing is possible thanks to the local nature of marking changes effected by
net transitions.

Adding reversed transitions can greatly impact on the behavior of the system.
It is therefore crucial to be able to determine whether the modified net has similar
set of states as the original one. In this paper we present two key results. First,
we prove that the problem of establishing whether the original net and that
resulting from adding reverse transitions have the same reachable markings is
undecidable even in the case of adding a single reverse. This is a strong result
indicating that unless reversing of transitions is applied to restricted classes of
Petri nets, such as bounded nets, controlling reversibility (so that the state space
of a system does not grow) is too hard a task. We then turn to more relaxed
requirement on the state space of the ‘reversed’ net by stipulating that what
one requires is that the two nets ‘cover’ the same sets of markings. We then
demonstrate that the problem of checking whether the reachability sets of the
two nets are equivalent w.r.t. coverability is decidable.

It should be noted that focussing on coverability still has a significant appli-
cation potential. For example, if all the markings covered by the original Petri
net are safe on a given subset of places, then all the reachable markings of the
‘reversed’ net are guaranteed to be safe on this subset of places as well, provided
that the nets cover the same sets of markings.

1.3 Organisation of This Paper

The paper is organised as follows. In Sect. 2, we recall some basic definitions
concerning Petri nets and their behavioural properties. Section 3 contains exam-
ples motivating our work and facilitating the understanding of the proposed
approach. In Sect. 4, we provide the proof of undecidability of the problem of
establishing whether two given nets have the same sets of reachable markings.
In the Sect. 5, we prove that the problem of checking whether the reachability
sets of two nets cover the same markings is decidable. Section 6 concludes the
paper.

2 Preliminaries

The set of non-negative integers is denoted by N. The cardinality of a set X is
denoted by |X|, and multisets over X are members of NX , i.e., mappings from

108 K. Barylska et al.

X to N. If X is finite, then the multisets in N
X can be represented by vectors

N
|X|, assuming a fixed ordering of the elements of X.

The set of all multisets with componentwise addition and comparison ≤ is
denoted by N

X (where |X| ≥ 1). The componentwise subtraction is also defined
if the result belongs to N

X . One can extend the notion of N
X to ω-multisets

N
X
ω = (N∪ {ω})X , where ω = |N|, with the standard extensions of the addition,

comparison and subtraction, assuming ω + n = ω, ω − n = ω, and n < ω, for
all n ∈ N. The left closures of y ∈ N

X
ω and Y ⊆ N

X
ω are respectively defined by

↓y = {z ∈ N
X
ω | z ≤ y} and ↓Y =

⋃{↓y | y ∈ Y }. In a similar way we can define
ω-vectors N

k
ω as vector representations of ω-multisets.

Petri Nets

A place/transition net (p/t-net) is a tuple N = (P, T,W−,W+,M0), where:

– P and T are finite disjoint sets, of places and transitions, respectively;
– W−,W+ : T → N

|P | are arc weight functions; and
– M0 ∈ N

|P | is the initial marking.

Any multiset in N
P is a marking (global state) of N , and it will be represented

by a vector in N
|P |, after assuming some fixed ordering of the places in P . The

following terminology applies to the case of ω-markings N
P
ω as well.

Petri nets admit a natural graphical representation, with nodes representing
places and transitions, and annotated arcs representing the weight function.
Places are indicated by circles, and transitions by boxes. For each transition
t ∈ T and place p ∈ P , W−(t)(p) is the weight of the arc from p to t, and
W+(t)(p) is the weight of the arc from t to p. Arcs with zero weights are not
drawn at all, and arcs with unit weights are not annotated with 1. Markings are
depicted by placing tokens inside the circles.

A transition t ∈ T is enabled at a marking M of N whenever W−(t) ≤ M .
We denote this by M [t〉N , or simply M [t〉 if N is clear from the context. If t
is enabled in M , then it can be executed. The execution changes the current
marking M to the new marking M ′ = M − W−(t) + W+(t). We denote this by
M [t〉NM ′, or simply M [t〉M ′ if N is clear from the context.

The notions of transition enabledness and execution extend, in the usual way,
to strings of transitions (computations). The empty string ε is enabled at any
marking and M [ε〉M , and a string w = tw′ is enabled at a marking M whenever
M [t〉M ′ and w′ is enabled at M ′; moreover, M [w〉M ′′, where M ′[w′〉M ′′.

If M [w〉M ′, for some w ∈ T ∗, then M ′ is reachable from M , and the set of all
markings reachable from M is denoted by [M〉N , or simply [M〉 if N is clear from
the context. The reachability set of N is the set [M0〉 of all markings reachable
from the initial marking, and the markings in [M0〉 are called reachable in N .

A marking M of N is a home state if M ∈ [M ′〉, for every marking M ′ ∈ [M0〉,
and N is reversible if M0 is a home state.

A marking M ∈ N
P coverable in N if there exist a reachable marking M ′ ∈

[M0〉 such that M ≤ M ′, and ↓[M0〉 is the coverable set of N .

Reversible Computation vs. Reversibility in Petri Nets 109

•p1

p2

p3

a

b

cd

Fig. 1. A Petri net (see [25]) consisting of three places (p1, p2 and p3) and four tran-
sitions (a, b, c, d).

A reverse of a transition t ∈ T is a new transition t such that W−(t) = W+(t)
and W+(t) = W−(t). To improve readability, we depict transitions of the original
nets using solid lines, and the newly created reverses by dashed ones (see Fig. 2).

Reachability and Coverability Graphs

Reachability graphs represent precisely the reachability sets of nets, but can be
infinite, while coverability graphs are always finite, but represent precisely the
coverable sets rather than reachability sets (see, e.g., [15]).

The reachability graph of a p/t-net N = (P, T,W−,W+,M0) is a directed
graph RG = ([M0〉, G,M0), where [M0〉 is the set of vertices, M0 is the initial
vertex and G = {(M, t,M ′) | M ∈ [M0〉 ∧ M [t〉M ′} is the set of labelled arcs.
Thus, the vertices of the reachability graph are the reachable markings of N .

In the case of a coverability graph, it is convenient to present a constructive
definition based on [17].

Algorithm Constructing a Coverability Graph

Let N = (P, T,W−,W+,M0) be a p/t-net. The vertices of the coverability graph
constructed below are ω-vectors in N

|P |
ω .

Step 0. Initial vertex
We take M0 to be the initial vertex, and set it to blue (i.e., marked). GOTO
Step 1.

•
p1

•
p2

p3

a a

2 2

Fig. 2. A transition a and its reverse a.

110 K. Barylska et al.

Step 1. Generating new working vertices
If there is no blue vertex then STOP. Otherwise, we take an arbitrary blue
vertex M and draw from it all the arcs of the form (M, t,M ′), for all t ∈ T
enabled at M (i.e., W−(t) ≤ M) and M ′ = M − W−(t) + W+(t). If M ′ is
not yet a vertex we add it and set to yellow (i.e., working). After drawing all
such arcs we set M to grey (i.e., processed). GOTO Step 2.

Step 2. Coverability adjustment
If there is no yellow vertex GOTO Step 1. Otherwise, we take an arbitrary
yellow vertex M and check, for all the paths from M0 to M , whether a vertex
M ′ such that M ′ ≤ M lies on the path and store all such vertices in V (M).
If V (M) �= ∅ then every coordinate of the marking M greater than the
corresponding coordinate of any marking M ′ ∈ V (M) changes to ω. Finally,
we set M to blue. GOTO Step 2.

The above construction always terminates, and the resulting labelled directed
graph CG = (M, Gcov,M0) is a coverability graph of N .

Coverability graphs are related to coverability sets (see, e.g., [13]), where a
coverability set of N is CS ⊆ N

P
ω such that the following hold:

CS1. CS covers the reachability set of N , i.e., [M0〉 ⊆↓CS; and
CS2. [M0〉 tightly approximates all non-reachable vectors in CS, i.e., for

every M ∈ CS \ [M0〉, there is an infinite sequence of distinct markings
M1,M2, · · · ∈ [M0〉 such that, for all i ≥ 1:

Mi < Mi+1 and Mω/i ≤ Mi ≤ M ,

where Mω/i ∈ N
P is obtained from M by replacing each ω by i.

Moreover, CS is minimal if no proper subset of CS is a coverability set of N
(Fig. 3).

[1, 0, 0]

[0, ω, ω]

[1, 1, 0]

[0, 1, 0] [0, 0, 1]

[0, 1, ω]

[0, ω, ω]

a b

d

c

d

c

c

d

[1, 1, 0]

[0, 1, 0] [0, 0, 1]

[0, ω, ω]

a b

d

c

c

d

Fig. 3. The minimal coverability set (a) and two possible coverability graphs (b) and (c)
of the net of Fig. 1. During the generation of the graph of (b), the vertex [0, 1, 0] was
chosen before [0, 0, 1] in the algorithm described in Sect. 1, while in the case of (c), the
vertex [0, 0, 1] was chosen before [0, 1, 0].

Reversible Computation vs. Reversibility in Petri Nets 111

Proposition 1. The set of vertices of the coverability graph CG constructed
above is a finite coverability set of N .

Remark 1. Referring to [13], there exists a unique finite minimal coverability set
which can be used to represent the coverable set of N , usually smaller than the
set of all vertices of the coverability graph. Note that although the reachability
set of N is a coverability set included in N

P , it contains the minimal coverability
set if and only if it is finite. Whenever the set of reachable markings is infinite,
a finite coverability set has to use true ω-markings.

3 Motivating Examples

A rather natural way of implementing the undoing of executed transitions is to
introduce reverses of them, as shown in Fig. 2. In this section, we will discuss
the impact of adding reverse transitions on net behaviour.

In Fig. 4, the solid lines depict a p/t-net together with its reachablility graph.
Moreover, using the dashed lines, the diagram shows the reverse transition added
to the original net, and the resulting enlargement of the original reachability
graph. We observe that the original p/t-net was not reversible (it did not even
have a home state), but the modified one is reversible and its set of reachable
markings is the same as for the original net. Hence, in this case, reversing tran-
sitions ‘improved’ the overall net behaviour.

Figure 5 shows a p/t-net which has a home state [0, 0, 1, 1]. In this case, one
only needs to add a reverse b of transition b to obtain a reversible net. Also, the
set of reachable marking stays unchanged.

The first two examples demonstrated that adding reverse transitions can
sometimes ‘improve’ the behaviour of the original net. In general, however,

b b

a

a

c

c

e

e

d

d

p1

•p2

p3

• p5

p4

[1, 0, 0, 0, 1]

[0, 1, 0, 0, 1]M0 :

[0, 0, 1, 0, 1]

[0, 1, 0, 1, 0]

[0, 0, 1, 1, 0] [1, 0, 0, 1, 0]

bb

aa

ee

d c

d c

a b

a b

Fig. 4. A p/t-net with reverses for all transitions and its reachability graph. Reverse
transitions yield reversibility.

112 K. Barylska et al.

p1

c

•
p3

p4

a b b

•
p2

[0, 1, 1, 0]

[0, 0, 1, 1]

[1, 1, 0, 0] [1, 0, 0, 1]

bb

a c

b

b

Fig. 5. A p/t-net with a single reverse transition and its reachability graph. Reverse
transition yields reversibility.

adding reverse transition changes the reachability set and also allows compu-
tations based on the original transitions which were not enabled in the original
net. This may happen even if we limit ourselves to reversing only one transition.

Figure 6 shows a p/t-net with a finite set of reachable markings for which
adding only one reverse c changes the reachability set to an infinite one. Note
that the execution of the reverse transition c is enabled before the first execution
of c at [0, 1, 1]. As a consequence, this p/t-net would model a system in which
some action can be undone before it has been done, which is contrary to our
intuition behind reversing a computation.

Starting with a net possessing a home state does not help either, as Fig. 7
shows. The net has a home state [0, 1, 0, 1, 1, 0], but, again, it is enough to add
a to obtain a net with a bigger set of reachable markings.

The above examples suggest that it is not obvious when one can add reverses
to a p/t-net without radically changing its behavior. We could also see that
adding even one such transition may cause great changes in net behaviour. Thus,
it is crucial to be able to decide whether a particular reverse can be added to
a p/t-net without changing ‘too much’ its reachability set. To this end, we will

•p1 a
p2

b p3

c

c

[1, 0, 0]

[0, 1, 0] [0, 1, 1]

[0, 0, 1] [0, 0, 2]

[1, 0, 1]

[0, 1, 2]

[0, 0, 3]

[1, 0, 2]

c

c

a

b b

c

c

a

b

c

c

Fig. 6. A p/t-net with a single reverse transition and its reachability graph, where: the
solid arcs denote arcs present in the reachability graph of the original net; the dashed
arcs denote the introduced reverse of c enabled at markings reachable in the original
net; and the dotted arcs represent transitions (or reverses) enabled only at markings
(with gray background) which were not reachable in the original net.

Reversible Computation vs. Reversibility in Petri Nets 113

d

c

b

aa

•p2

• p6

p4

p5

•p1

p3

2

[0, 1, 1, 0, 0, 1]

[1, 1, 0, 0, 0, 1] [0, 1, 0, 1, 1, 0]

[0, 0, 1, 2, 0, 0]

[1, 0, 0, 2, 0, 0]

ba

cd

aa

a

Fig. 7. A reversible p/t-net with a single reverse transition and its reachability graph.
The marking with gray background is not reachable in the original net.

discuss the decidability of the following problems involving comparisons of the
state spaces of two p/t-nets.

Marking equality with single transition: MEST
Are the reachability sets of two given p/t-nets, where the second one is
obtained from the first by adding a single transition, equal?

Marking equality with single transition reverse: MESTR
Are the reachability sets of two given p/t-nets, where the second one is
obtained from the first by adding a single transition reverse, equal?

Coverable set equality: CSE
Are the coverable sets of two given p/t-nets equal?

By Theorem7.5 of [14] MEST is undecidable. In the following section, we will
prove that MESTR is undecidable. Next, we will argue that CSE is decidable.

4 Undecidability of MESTR

In this section, we will show that MESTR is undecidable. The key observation
is formulated as the following result.

Proposition 2. MEST is reducible to MESTR.

Proof. Let A = (P, TA,W−
A ,W+

A ,M0) and B = (P, TB ,W−
B ,W+

B ,M0) be two
p/t-nets, with the same sets of places and initial marking, and such that TB =
{t′ | t ∈ TA}
 {a}, W−

A (t) = W−
B (t′) and W+

A (t) = W+
B (t′) for every t ∈ TA.

Note that B can be seen as a copy or mirror1 of A with an additional transition a
(however, the transition sets of A and B are disjoint).

We will now describe how to construct two nets, C and D, with the construc-
tion being illustrated in Fig. 8.

1 The mirror of t1t2 . . . tk ∈ T ∗
A is t′1t

′
2 . . . t

′
k ∈ T ∗

B , and vice versa.

114 K. Barylska et al.

The net C = (PC , TC ,W−
C ,W+

C ,MC
0) is such that PC = P
 {AR, BR} and

TC = TA
 TB
 {c, e}. Moreover,

MC
0 (p) =

⎧⎨
⎩

M0(p) if p ∈ P
1 if p = AR

0 if p = BR

and the weight functions are as follows:

W−
C (t)(p) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

W−
A (t)(p) if p ∈ P & t ∈ TA

W−
B (t)(p) if p ∈ P & t ∈ TB

1 if p = AR & t ∈ TA

0 if p = BR & t ∈ TA

1 if p = BR & t ∈ TB

0 if p = AR & t ∈ TB

1 if p = AR & t = c
0 if p �= AR & t = c
1 if p = AR & t = e
0 if p �= AR & t = e

p1

p2

pk

a

b′
1b1

b′
kbk

•
AR

BRe

c

d

Fig. 8. The construction used in the proof of Proposition 2.

Reversible Computation vs. Reversibility in Petri Nets 115

and

W+
C (t)(p) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

W+
A (t)(p) if p ∈ P & t ∈ TA

W+
B (t)(p) if p ∈ P & t ∈ TB

1 if p = AR & t ∈ TA

0 if p = BR & t ∈ TA

1 if p = BR & t ∈ TB

0 if p = AR & t ∈ TB

1 if p = BR & t = c
0 if p �= BR & t = c
0 if p ∈ PC & t = e

The net D = (PC , TD,W−
D ,W+

D ,MC
0) is such that TD = TC
{d} and the weight

functions are given by:

W−
D (t)(p) =

⎧⎨
⎩

W−
C (t)(p) if p ∈ P & t ∈ TC

1 if p = BR & t = d
0 if p �= BR & t = d

and

W+
D (t)(p) =

⎧⎨
⎩

W+
C (t)(p) if p ∈ P & t ∈ TC

1 if p = AR & t = d
0 if p �= AR & t = d

Note that in D, transition d is the reverse of c.
In what follows, we denote a marking MC ∈ N

PC as M〈x,y〉, where M ∈ N
P ,

x, y ∈ N and

MC(p) =

⎧⎨
⎩

M(p) if p ∈ P
x if p = AR

y if p = BR

The net C works as follows. Before the first (and only) execution of c or e we can
simulate the behaviour of A obtaining, as a result, a marking MC = M〈1,0〉 such
that M is any marking reachable in A. Then there are two ways of continuing:

– After executing c we obtain M〈0,1〉 and may proceed with the simulation of
B. Note that we can reach the same marking by executing c followed by the
mirror computation in the net B. Hence every marking reachable by some
computation containing c leads to a marking M〈0,1〉, where M is a marking
reachable in B.

– After firing e we obtain the dead marking M〈0,0〉.

As a result, the set of reachable markings of C is:

[MC
0 〉C = {M〈0,1〉 | M ∈ [M0〉B} ∪ {M〈1,0〉 | M ∈ [M0〉A}

∪ {M〈0,0〉 | M ∈ [M0〉A} .

The net D works similarly as C. The only difference is a possible transfer of
the control token from BR to AR using the transition d. This means that every
execution in the net D is an alternation of executions in A and B (possibly followed

116 K. Barylska et al.

by a single execution of e). As a result, from the point of view of reachablemarkings,
we may focus only on the net B (starting every computation with c and ending it
with d or de, if necessary). Hence, the set of reachable markings of D is:

[MC
0 〉D = {M〈0,1〉 | M ∈ [M0〉B} ∪ {M〈1,0〉 | M ∈ [M0〉B}

∪ {M〈0,0〉 | M ∈ [M0〉B} .

We therefore conclude that [M0〉A = [M0〉B if and only if [MC
0 〉C = [MC

0 〉D,
which means that MEST has been reduced to MESTR. ��

As a direct consequence of the above result and Theorem 7.5 of [14] we obtain

Theorem 1. MESTR is undecidable.

Thus verifying whether reversing a transition in a p/t-net does not change its
reachability set is not a feasible problem. Clearly, for restricted classes of nets
one may still look for decision procedures but, in the general case, one needs
to relax the required correspondence between the state space of the original net
and that resulting from reversing of some of its transitions.

5 Decidability of CSE

The construction of coverability graphs in [13] differs a bit from our approach,
which is a deterministic version of Karp-Miller procedure [17]. Nevertheless, the
set of labels of the coverability graph’s nodes is the coverability set and so the
unique minimal coverability set (see [13]) might be obtained from the set of
labels of coverability graph’s nodes by taking its maximal subset.

Theorem 2. CSE is decidable.

Proof. Let A and B be two p/t-nets with the initial markings MA
0 and MB

0 ,
respectively. We need to show that it is possible to effectively establish whether
↓[MA

0 〉 =↓[MB
0 〉. By Proposition 1, we can effectively compute finite coverability

sets, CSA and CSB , of A and B, respectively. It then suffices to show that the
following statements are equivalent:

(i) For every M ∈ CSA, there is M ′ ∈ CSB such that M ≤ M ′.
(ii) ↓[MA

0 〉 ⊆↓[MB
0 〉.

(i) =⇒ (ii) :
Suppose that M ≤ M ′ and M ′ ∈ [MA

0 〉. Then, by (CS1), there exists M ′′ ∈ CSA

such that M ′ ≤ M ′′. Thus, by (i), there exists M ′′′ ∈ CSB such that M ′′ ≤ M ′′′.
If M ′′′ ∈ [MB

0 〉, we get M ∈↓[MB
0 〉. Otherwise, by (CS2), there exists Mi ∈ [MB

0 〉
such that M ′′ ≤ Mi. Hence, again, M ∈↓[MB

0 〉.
(ii) =⇒ (i) :
Suppose that M ∈ CSA. If M ∈ [MA

0 〉 then, by (ii), there exists M ′ ∈ [MB
0 〉 such

that M ≤ M ′. Hence, by (CS1), there exists M ′′ ∈ CSB such that M ′ ≤ M ′′.
Hence M ≤ M ′′.

Reversible Computation vs. Reversibility in Petri Nets 117

If M /∈ [MA
0 〉 then, by (CS2), there exist distinct M1,M2, · · · ∈ [MA

0 〉 such
that, for all i ≥ 1, Mω/i ≤ Mi ≤ Mi+1 ≤ M . Hence, by (ii), there exist
(not necessarily distinct) M ′

1,M
′
2, · · · ∈ [MB

0 〉 such that Mω/i ≤ Mi ≤ M ′
i ,

for all i ≥ 1. Moreover, by (CS1), there exist M ′′
1 ,M ′′

2 , · · · ∈ CSB such that
Mω/i ≤ M ′

i ≤ M ′′
i , for all i ≥ 1. Since CSB is finite, there exists M ′ ∈ CSB

which occurs in the sequence M ′′
1 ,M ′′

2 , . . . infinitely many times. This means
that Mω/i ≤ M ′, for infinitely many i’s, and so M ≤ M ′. ��

Thus, in practice, we can effectively check whether the introduction of reverse
transitions changes the coverable set of a p/t-net.

6 Concluding Remarks

In this paper, we considered a very liberal way of reversing computation in
Petri nets as it allows one to ‘undo’ a transition which has not yet been exe-
cuted. Preventing such a behaviour would be straightforward by introducing
a fresh empty ‘buffer’ place pt between t and t (i.e., W+(t)(pt) = W−(t)(pt) = 1
W−(t)(pt) = W+(t)(pt) = 0). The two results we established in this paper carry
over to the modified setting as in the net D used in the proof of Proposition 2,
the executions of transitions c and d strictly alternate, starting with c.

Acknowledgements. We would like to thank the anonymous reviewers for their
remarks which allowed us to improve the presentation of the paper. This work was
supported by the EU COST Action IC1405, and by the Polish National Science Center
(grant No. 2013/09/D/ST6/03928).

References

1. Araki, T., Kasami, T.: Decidable problems on the strong connectivity of Petri net
reachability sets. Theoret. Comput. Sci. 4(1), 99–119 (1977)

2. Berry, G., Boudol, G.: The chemical abstract machine. Theoret. Comput. Sci.
96(1), 217–248 (1992)

3. Best, E., Desel, J., Esparza, J.: Traps characterize home states in free choice sys-
tems. Theoret. Comput. Sci. 101, 161–176 (1992)

4. Best, E., Esparza, J.: Existence of home states in Petri nets is decidable. Inf.
Process. Lett. 116(6), 423–427 (2016)

5. Best, E., Schlachter, U.: Analysis of Petri nets and transition systems. In: Proceed-
ings of 8th Interaction and Concurrency Experience (ICE 2015), EPTCS, vol. 189,
pp. 53–67 (2015)

6. Best, E., Klaus, V.: Free choice systems have home states. Acta Informatica 21,
89–100 (1984)

7. Cardelli, L., Laneve, C.: Reversible structures. In: Fages, F. (ed.) Proceedings
of 9th International Computational Methods in Systems Biology (CMSB 2011),
pp. 131–140. ACM (2011)

8. Danos, V., Krivine, J.: Reversible communicating systems. In: Gardner, P.,
Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp. 292–307. Springer,
Heidelberg (2004)

118 K. Barylska et al.

9. Danos, V., Krivine, J.: Transactions in RCCS. In: Abadi, M., de Alfaro, L. (eds.)
CONCUR 2005. LNCS, vol. 3653, pp. 398–412. Springer, Heidelberg (2005)

10. Danos, V., Krivine, J., Sobocinski, P.: General reversibility. Electron. Notes The-
oret. Comput. Sci. 175(3), 75–86 (2007)

11. de Frutos Escrig, D., Johnen, C.: Decidability of home space property. Technical
report 503, Laboratoire de Recherche en Informatique, Université de Paris-Sud
(1989)

12. Desel, J., Esparza, J.: Reachability in cyclic extended free-choice systems. Theoret.
Comput. Sci. 114, 93–118 (1993)

13. Finkel, A.: The minimal coverability graph for Petri nets. In: Rozenberg, G. (ed.)
Petri Nets 1993. LNCS, vol. 674, pp. 210–243. Springer, Heidelberg (1993)

14. Michael, H.: Decidability questions for Petri nets. Technical report TR-161, MIT
Laboratory for Computer Science (1976)

15. Michael, H.: Petri net languages. Technical report TR 159, MIT Laboratory for
Computer Science (1976)

16. Hujsa, T., Delosme, J.-M., Munier-Kordon, A.: On the reversibility of live equal-
conflict Petri nets. In: Devillers, R., Valmari, A. (eds.) PETRI NETS 2015. LNCS,
vol. 9115, pp. 234–253. Springer, Heidelberg (2015)

17. Karp, R., Miller, R.: Parallel program schemata. J. Comput. Syst. Sci. 3, 147–195
(1969)

18. Kezić, D., Perić, N., Petrović, I.: An algorithm for deadlock prevention based on
iterative siphon control of Petri net. Automatika 47, 19–30 (2006)

19. Lanese, I., Mezzina, C.A., Stefani, J.-B.: Reversing higher-order Pi. In: Gastin,
P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 478–493. Springer,
Heidelberg (2010)

20. Özkan, H.A., Aybar, A.: A reversibility enforcement approach for Petri nets using
invariants. WSEAS Trans. Syst. 7, 672–681 (2008)

21. Phillips, I., Ulidowski, I.: Reversing algebraic process calculi. J. Log. Algebr. Pro-
gram. 73(1–2), 70–96 (2007)

22. Phillips, I., Ulidowski, I.: Reversibility and asymmetric conflict in event structures.
J. Log. Algebr. Methods Program. 84(6), 781–805 (2015)

23. Phillips, I., Ulidowski, I., Yuen, S.: A reversible process calculus and the modelling
of the ERK signalling pathway. In: Glück, R., Yokoyama, T. (eds.) RC 2012. LNCS,
vol. 7581, pp. 218–232. Springer, Heidelberg (2013)

24. Recalde, L., Teruel, E., Silva, M.: Modeling and analysis of sequential processes
that cooperate through buffers. IEEE Trans. Robot. Autom. 14(2), 267–277 (1998)

25. Reisig, W.: Petri Nets: An Introduction. EATCS Monographs on Theoretical Com-
puter Science, vol. 4. Springer, Berlin (1985)

26. Teruel, E., Silva, M., Colom, J.M.: Choice-free Petri nets: a model for deterministic
concurrent systems with bulk services and arrivals. IEEE Trans. Syst. Man Cybern.
Part A 27, 73–83 (1997)

27. Teruel, E., Silva, M.: Liveness and home states in equal conflict systems. PETRI
NETS 1993. LNCS, vol. 691, pp. 415–432. Springer, Heidelberg (1993)

28. Vogler, W.: Live and bounded free choice nets have home states. Petri Net Newslett.
32, 18–21 (1989)

29. Wang, P., Ding, Z., Chai, H.: An algorithm for generating home states of Petri
nets. J. Comput. Inf. Syst. 12(7), 4225–4232 (2011)

Programming Languages

Toward an Energy Efficient Language and
Compiler for (Partially) Reversible Algorithms

Nirvan Tyagi(B), Jayson Lynch(B), and Erik D. Demaine(B)

MIT CSAIL, Cambridge, USA
{ntyagi,jaysonl,edemaine}@mit.edu

Abstract. We introduce a new programming language for expressing
reversibility, Energy-Efficient Language (Eel), geared toward algorithm
design and implementation. Eel is the first language to take advantage of
a partially reversible computation model, where programs can be com-
posed of both reversible and irreversible operations. In this model, irre-
versible operations cost energy for every bit of information created or
destroyed. To handle programs of varying degrees of reversibility, Eel
supports a log stack to automatically trade energy costs for space costs,
and introduces many powerful control logic operators including protected
conditional, general conditional, protected loops, and general loops. In
this paper, we present the design and compiler for the three language
levels of Eel along with an interpreter to simulate and annotate incurred
energy costs of a program.

1 Introduction

Continued progress in technology has created a world where we are increas-
ingly dependent on computers and computing power. Computer use is greatly
increasing and thus becoming a significant energy expenditure for the world. It is
estimated that computing consumes more than 3 % of the global electricity con-
sumption [16], growing at a steady rate. Improved energy efficiency of computers
translates to savings in money and environmental toll. Additionally, improved
energy efficiency would lead to increased longevity of batteries or use of a smaller
battery for the same lifespan. This applies most directly to portable devices
such as laptops, mobile phones, and watches where battery size and life are of
the utmost importance. Finally, improved energy efficiency would lead to faster
CPUs. The main bottleneck in increasing clock speeds are cooling restraints.
With decreased energy consumption, we can expect to be able to increase CPU
speed by roughly the same factor with the same cooling. Given these many
motivations, continued improvement of the energy efficiency of computation is
an important research field.

Fundamental Limits to Efficiency.If computer energy efficiency continues to
progress at a similar rate, we will expect to hit a fundamental limit based in physics
and information theory known as Landauer’s limit [8] within the next 15–60 years.
Landauer gives a lower limit for the energy cost of losing one bit of information
c© Springer International Publishing Switzerland 2016
S. Devitt and I. Lanese (Eds.): RC 2016, LNCS 9720, pp. 121–136, 2016.
DOI: 10.1007/978-3-319-40578-0 8

122 N. Tyagi et al.

of kT ln 2 units of energy where k is Boltzmann’s constant and T is temperature.
Our current computation systems depend on computing models that require the
erasure of information; however, reversible computation, where the inputs can
always be recovered from the outputs, gets around this limitation. In this paper,
we consider a variant of the traditional reversible computation model we call par-
tially reversible computation [6], allowing for both reversible and irreversible oper-
ations. Traditional models of computation include two main constraints in the
asymptotic analysis of algorithms, time and space. However, with the introduc-
tion of partially reversible computation, a new natural metric emerges, which we
call energy. In this model, from Landauer’s principle, reversible computation is
free, but creating or destroying bits of information costs energy. The energy cost
of an operation is equal to each bit of information created or destroyed and comes
from the change in information entropy from inputs to outputs.

Energy-efficient Language (Eel). We break down the results into two main
parts. First, we present a new reversible programming language, Eel. Eel is
composed of three language levels with the high-level based on Python and
the low-level based on PISA [19,20]. Eel is the first programming language to
take advantage of partially reversible computation. Past research on reversible
programming languages has focused on computation which is performed fully
reversibly. Eel allows operations to erase bits and incur energy cost. Eel also
allows users to indicate operations for reversal and will automatically store the
proper information in a log stack (separate from the stack). In addition, we
introduce a number of high level control logic operators of varying degrees of
reversibility. With the partial reversibility model, Eel brings the time, space,
and energy tradeoffs to the forefront.

Second, we present a compiler and interpreter in Java for Eel. We describe
the compilation techniques used between the Eel language levels to handle the
high level control logic. We also describe the interpreter technique to simulate
and annotate the energy costs of program execution. Since general purpose fully-
reversible computers are still years away from development, an interpreter that
simulates energy costs is valuable for algorithm development and implementation.

2 Previous Work

The study of reversible computation to circumvent Landauer’s limit has been
a broad area of research for a number of years, ranging from development of
reversible hardware, analysis of reversible algorithmic theory, to development of
reversible programming languages and computer architecture. The origins of the
field can be traced back to Lecerf [10] and to Bennett [3]. Early theory results
show that any algorithm can be made reversible with either quadratic space
overhead [4] or with exponential time overhead [5,9]. However, it is unknown
whether or not any given algorithm can be converted to a reversible version
maintaining the same time and space constraints. Some models introduce an
algorithmic complexity based on information erased during a computation [6,11]
laying a foundation for partially reversible computing.

Energy Efficient Language and Compiler 123

Past research on reversible programming languages has focused on fully
reversible programming languages and architectures. The first high-level
reversible programming languages developed were Janus and R [7,12,21]. We
understand that there are a set of properties that must be held by all
reversible languages [22], and that these properties are satisfied in Janus. Fully
reversible computer architectures have been built. Pendulum [19,20], the first
reversible architecture built, was introduced along with a reversible low-level
instruction set, PISA, which is used as a basic reversible instruction set in many
future works. An improved reversible architecture [2] compatible with PISA
introduces a novel technique for handling branches, previously handled with
traces, using space to keep track of program counter jumps. Most recently, this
architecture has been further improved with the development of Bob [18] using
a slightly modified version of PISA known as BobISA, providing more efficient
branch handling and address calculation. The Eel low level language uses an
instruction set based on PISA expanded to support irreversible operations.

There exist both a reversible self-interpreter for Janus [23] and a partial eval-
uator for Janus [13,14]. The main high level control logic operators in Janus for
fully reversible logic, If-Then-Else-Fi and From-Do-Loop-Until, can be imple-
mented in Eel, shown in Appendix. There also exist general techniques for com-
pilation between reversible languages [1] and compilation of regular programs to
reversible programs [15].

Although Eel is still in its early stages of development, it is designed to
provide a unique perspective to reversible programming and, specifically, algo-
rithm development. Where Janus is a powerful and mature language for fully
reversible programming, the partial reversibility of Eel opens up a whole new
set of options for developers. Eel brings forward the tradeoff for irreversible logic
between energy cost and space cost in the log stack. Eel introduces new high
level control logic operators that represent different options on the energy-space
tradeoff spectrum. Additionally, Eel allows for partial reversals of the program
for each code block, a useful feature to have for algorithm development. While
this is also possible in Janus, it requires a nesting of function calls and uncalls.
Overall, the aim of Eel is to provide a reversible language geared toward algo-
rithm design and implementation in a partially reversible model.

3 Language Design

In this section we discuss some of the design decisions that went into the lan-
guage. There is an overview of what operations are exposed in each of the three
languages written. We also discuss how reversing computation is notated.

3.1 Logging and Unrolling

Eel supports partially reversible programs consisting both of logic blocks that will
be reversed and logic blocks that will only be executed in the forward direction.
In the high level, to denote a section of code to be reversed, it is placed inside of

124 N. Tyagi et al.

a Log statement to form a log block. The high level is organized into code blocks
of varying levels of nesting. An Unroll statement indicates the reverse execution
of pending log blocks within the block. All log blocks within a code block must
be unrolled before exiting to the previous nesting level. This unroll method can
be generalized to allow for a more complex unrolling order. See future works
section for further discussion.

Some operations in a log block, such as assignments and branching, are not
easily reversible. Eel handles these operations by automatically logging informa-
tion (storing trace information) about the operation using auxilary space when
executed in the forward direction. Upon reversal, the logged information is used
to reverse the operation and is then zeroed out. The notion of using auxiliary
space, or a “history” stack (we call log stack), to make irreversible computation
reversible has been used in the past for irreversible operations such as memory
overwrites and switch branching [17,24]. We extend this idea to support higher
level control logic operators and see how different assumptions on control logic
conditions change what information needs to be logged. A basic example of how
the log stack is used for an irreversible assignment operation is in Fig. 1. The
assignment operation is irreversible since the information previously stored at the
memory location is overwritten. To make the assignment operation reversible,
the previous value is stored in and retrieved from the log stack using LPUSH and
LPOP operations. These operations increment and decrement the log pointer and
maintain the memory location at the top of the log stack to be zero.

Eel automatically handles logging information for supported control logic
operators and irreversible operations, but for more advanced functions additional
information may need to be stored. Eel high level provides the LogPush command
to push an item onto the log stack. LogPush can be used to make user-defined
functions supported reversibly.

3.2 Language Levels

Eel is designed with three different levels exposing different levels of complexity.
The high level language provides a Python-like syntax and common control oper-
ators for algorithm development. This is meant to seem familiar and to hide some

‘High Level’

Log:

x += 1

Unroll

‘Low Level’

ADD(x,1)

SUB(x,1) // Unroll starts

‘High Level’

Log:

x = 1

Unroll

‘Low Level’

LPUSH(x)

ADD(x,1)

SUB(x,1) // Unroll starts

LPOP(x)

Fig. 1. Basic example of using log stack and not using log stack for reversal. LPUSH

and LPOP perform the appropriate operation to the log stack and zero out the previous
location.

Energy Efficient Language and Compiler 125

of the difficulties of working in a partially reversible environment. The intermedi-
ate level is stripped down to a simpler set of commands and attempts to resemble
working in transdichotomious RAM models of computation. By necessity it also
exposes some fairly mechanical parts of execution such as the program and log
stacks. It reduces the control logic to a series of jumps. This tries to compromise
between readability, clear resource calculations, and expressive power. The low
level gives a basic instruction set one might imagine for a semi-reversible com-
puter based off of PISA. Here we have a small number of basic operations where
the time, space, and energy costs of each line are clear.

High Level. The high level handles the partial reversibility of Eel with the
Log and Unroll keywords. Placing operations inside of a Log block indicates to
the compiler that these operations will be reversed. If there is an irreversible
operation or control logic operator in a Log block, specific information is stored
(logged) in the log stack. During an unroll, this information is used to properly
reverse the operation and zeroed out.

Variables are not strongly typed and do not have explicit declaration. Instead
variables are created the first time they are used. There are interesting questions
concerning performance and ease-of-use with respect to typing in reversible pro-
gramming languages; however, we have not yet been able to explore this sub-
stantially.

Basic control logic operators, such as conditionals and loops, are supported at
the high level. However, different keywords are used to describe operators of dif-
ferent reversibility. For example, a protected conditional is completely reversible
and does not require any space in the log, but requires assumptions on the
usage of the condition variables. A general conditional, with no such assump-
tions, is not inherently reversible and requires a single bit of information to be
stored in the log for reversibility. Table 1 summarizes the operators available at
the high level and the space required in the log stack to be made reversible.
The reversibility of these high level control logic operators is studied in more
detail in a companion paper [6]. In an attempt to simplify the control logic,
we note that the current protected operators in the high level provide less

Table 1. Summary of high level control keywords and the amount of space in the log
stack required to make reversible if appearing in a log block.

Control Operator Keyword Log (bits) Sec.

Protected Conditional PIf(cond) 0 5.2

General Conditional If(cond) 1 5.2

Protected For loop PFor(init,cond,incr) 0 5.3

General For loop For(init,cond,incr) �lg l� 5.3

General While loop While(cond) �lg l� 5.3

Function call Def fxnName(args) 0 5.4

Log Block Log 3.1

Unroll Unroll 3.1

126 N. Tyagi et al.

expressiveness than other languages such as Janus. However, the intermediate
language is fully expressive, and future iterations of the high level can include
more complex operators built from the intermediate level. Figure 2 shows the
grammar of the high level.

〈program〉 ::= 〈b〉 block

〈b〉 ::= 〈s〉* statement sequence

〈s〉 ::= x ⊗= 〈e〉 | x = 〈e〉 assignment
| ‘PIf’(〈e〉): 〈b〉 (‘Else’: 〈b〉)? protected conditional
| ‘If’(〈e〉): 〈b〉 (‘Else’: 〈b〉)? general conditional
| ‘PFor’(〈s〉, 〈e〉, 〈s〉): 〈b〉 protected for loop
| ‘For’(〈s〉, 〈e〉, 〈s〉): 〈b〉 general for loop
| ‘While’(〈e〉): 〈b〉 general while loop
| ‘Def’ q(x, . . . , x): 〈b〉 function definition
| q(x, . . . , x) function call
| ‘Log’: 〈b〉 log block
| ‘Unroll’ unroll

〈e〉 ::= c | x | 〈e〉 � 〈e〉 expression

〈⊗〉 ::= + | − | ∗ operators

〈�〉 ::= ⊗ | / | ≤ | ≥ | �= | ==

Fig. 2. Eel high level grammar, where x ∈ Vars, q ∈ FxnIds, c ∈ IntConsts

Intermediate Level. The Eel intermediate language breaks down the high
level control logic into jumps and labels. Jumps and labels are separated into
two categories: protected jumps and general jumps. Protected jumps (PGoto,
PGotoIf, PGotoIfN) are fully reversible and require no additional space in log
stack. A protected conditional jump takes in a forward condition and a back-
ward condition. It uses the assumption that the forward condition will always
evaluate the same in the forward direction as the backwards condition in the
reverse direction. General jumps (Goto, GotoIf, GotoIfN) do not require this
assumption and log a bit in order to reverse. Both protected jumps and gen-
eral jumps must be paired with a corresponding destination protected label or
general label. Jumps and labels have a 1 : 1 correspondence.

One strength of the intermediate language lies in the flexibility and variety
of the jump operations. Common control logic operators of the high level can be
broken down to a simple combination of protected and general jumps. This also
allows new operators for the high level to be easily defined in the intermediate
language without needing to touch the low level assembly-like code. Figure 3
shows the grammar of the intermediate language.

Low Level. The low level language consists of basic assembly-level instructions
that are assumed to be built into a reversible machine. Since Eel is designed
for a partial reversibility model, a number of irreversible operations are also

Energy Efficient Language and Compiler 127

〈program〉 ::= 〈b〉 block

〈b〉 ::= 〈s〉* statement sequence

〈s〉 ::= x ⊗= 〈e〉 | x = 〈e〉 assignment
| ‘PGoto’(l) protected jump
| ‘PGotoIf’(〈e〉, 〈e〉, l)
| ‘PGotoIfN’(〈e〉, 〈e〉, l)
| ‘PLabel’(l)
| ‘Goto’(l) general jump
| ‘PGotoIf’(〈e〉, l)
| ‘PGotoIfN’(〈e〉, l)
| ‘Label’(l)
| ‘Def’ q(x, . . . , x) function definition
| ‘Call’ q(x, . . . , x) function call
| ‘Log’: 〈b〉 log block
| ‘Unroll’ unroll
| ‘LogPush’(x) log stack modification

〈e〉 ::= c | x | 〈e〉 � 〈e〉 expression

〈⊗〉 ::= + | − | ∗ operators

〈�〉 ::= ⊗ | / | ≤ | ≥ | �= | ==

Fig. 3. Eel intermediate level grammar, where x ∈ Vars, l ∈ LabelIds, q ∈ FxnIds, c ∈
IntConsts

supported. Table 2 lists the operations available at the low level. Jump operations
are completely reversible and require every Goto instruction to be paired with the
corresponding Comefrom instruction (GOTOIFN with CMFRMIFN). The comefrom
statement is necessary in instructing the machine on bookkeeping of the program
counter during jumps.

The low level also introduces various “special” memory locations that are
reserved for specific uses. These are the program counter (pc), log pointer (lp),
and stack pointer (sp).

Table 2. Summary of low level operations.

Operation Description

Reversible Operations

ADD(a, b) a+ = b

SUB(a, b) a− = b

MULT(a, b) a∗ = b

NEG(a) a∗ = −1

SWAP(a, b) values a and b swap

LPUSH(x) push x to log stack

LPOP(x) pop x from log stack

PUSH(x) push x to stack

POP(x) pop x from stack

Irreversible Operations

MOVE(a, b) a = b

AND(a, b) a = a ∧ b

OR(a, b) a = a ∨ b

Jump Operations

GOTO(l) jump to l

GOTOIF(b, l) jump to l if b

GOTOIFN(b, l) jump to l if not b

CMFRM(l) comefrom l

CMFRMIF(b, l) comefrom l if b

CMFRMIFN(b, l) comefrom l if not b

128 N. Tyagi et al.

4 Correct Program Conventions

An Eel program is a code block of a sequence of statements. Statements consist
of various operations and control logic which themselves can contain code blocks
nested within. We model the statement execution flow of a code block as a
series of forward blocks, log blocks, and unroll statements. Unroll statements
trigger the reverse execution of all “un-reversed” log blocks in the code block
executed prior to the statement. If there are no pending log blocks, the Unroll
statement is skipped. Every log block must be unrolled before the end of the
block (synonymous to putting an unroll statement at the end of every block).

Call the set of all forward blocks, log blocks, and unrolls in a code block, B.
Let B = R ∪ F ∪ U be the union of three distinct sets r ∈ R of log blocks,
f ∈ F of forward blocks, and u ∈ U of unrolls. Every element r has an element
in U corresponding to the unroll that triggers the reverse execution of r, notated
by ur. Note that a single u can satisfy the reverse execution of many r. The set
B has a strict universal ordering where for all bi, bj ∈ B, bi ≺ bj if bi occurs first
in the Eel program.

Every block b can be modeled as taking an input set of variables V (b), execut-
ing block code, and returning the same set of variables with potentially modified
values. The input and output values of the variables are denoted Vin(b) and
Vout(b). We also care about the subset of these variables that were modified,
denoted by Vmod(b). For guaranteed correct reversal of log block r, we desire
that Vout(r) = Vin(ur). To receive this property, all forward blocks between r
and ur must not irreversibly modify any of the variables V (r) = V (ur).

∀r ∀f (r ≺ f ≺ ur) → (
V (r) ∪ Vmod(f) = ∅)

In addition to the variable modification among blocks, for a log block to be
correctly reversed, control logic within the block must be correct. This means
that the requirements for all protected conditionals and for loops are satisfied. In
protected conditionals, the variables in the condition cannot be modified within
the conditional. In protected for loops, the variable controlling the loop cannot
be modified within the loop.

It is possible for users to purposefully break these rules and still create a pro-
gram that compiles and executes as they wanted. However, this requires careful
variable bookkeeping and falls outside the intended use cases of the language.

5 Control Logic Operators

Eel supports conditionals, loops, and function calls in the high level. These con-
trol logic operators are handled reversibly using the log stack. Since these opera-
tors are largely broken down in the intermediate level, we start by examining the
reversibility of the jump operations. High level control operators are then built
directly from intermediate jump operations, avoiding the low level. Examples are
given using a log block followed by an unroll, but in general, the unroll statement
need not directly follow the log block. The compilation of control logic outside of

Energy Efficient Language and Compiler 129

a log block is not shown here since it does not use the log stack and is compiled
standardly. We note that the incorrect use of control logic and log blocks can
result in an incorrect reversal and we examine this issue in the Correct Program
Conventions section.

5.1 Jumps

The jump operations of the intermediate level are the building blocks for all
of the high level control logic operators. The jump operations are divided into
two main classes, protected jumps (fully reversible) and general jumps (require
1 logged bit). Because of their reversibility assumptions, these two classes are
semantically different and are compiled differently.

Jumps are paired with labels of the same class (protected or general). In
our design, we require a one-to-one pairing of jumps to labels. It is possible to
support a many-to-one matching of jumps to labels, but additional information
is required to be logged for reversal. Both classes support conditional jumps
which use the suffixes If and IfN corresponding to jumping if the condition is
non-zero or zero respectively.

In the low level, jumps can be performed by a reversible update to the pro-
gram counter (pc). However, by allowing changes to the program counter, we can
no longer assume every line was reached from the previous line by an increment
to the pc. This creates an irreversible situation. To deal with this, every jump
instruction is paired with a comefrom instruction. The Comefrom statement is
used to properly handle the manipulation of the pc. Since the jump requires the
manipulation of the pc, one might imagine this value being swapped or copied
and manipulated. The comefrom statement performs the necessary cleaning of
that value. This is necessary within the computer but not exposed at the assem-
bly level, which is why the Comefrom simply appears to be a label or no-op.

Protected Jumps. Protected jumps are fully reversible and do not use any
space in the log stack. A protected jump contains a “backward” condition which
can be evaluated in the reverse direction to indicate whether the jump was
executed in the forward direction.

Consider the protected conditional jump (PGotoIf). It takes the form:
PGotoIf(fwdcond, bwdcond, label). In the forward direction, if the for-

ward condition is true, jump to label. Upon reaching the label location when
reversing, if the backward condition is true, jump to original jump start location.
This gives the requirement that the backward condition evaluates to true if and
only if the forward condition evaluated to true for the proper code to be reversed.
With this assumption, we can evaluate the backward condition to determine if
the jump was executed in the forward direction without additional information
stored in the log stack.

General Jumps. General jumps are used when the condition evaluated to
decide the execution of the jump in the forward direction is not preserved and

130 N. Tyagi et al.

thus cannot be re-evaluated in the backward direction. In this case, we log a bit of
information to the log stack to represent whether or not the jump was executed.
A general jump takes the form: GotoIf(cond, label) where the jump to label
is executed if cond is true.

In the forward direction, every time a label is reached, it was the result of
either (1) increment from the line above or (2) the execution of a jump. In case
(1), a 0-bit is logged, and in case (2), a 1-bit is logged. Therefore in the reverse
direction, whenever a label is reached, the top bit of the log stack indicates
whether to reverse the jump.

5.2 Conditional Statements

Eel high level distinguishes between two types of conditional statements, pro-
tected conditionals and general conditionals. In a protected conditional, the con-
dition variables are not modified within the conditional statement.

Protected conditionals are implemented reversibly using protected jumps. If
the condition variables are not modified within the conditional statement, the
condition can be reevaluated after the execution of the conditional to see if the
statement was executed. Thus, the condition can be used as both the forward
condition and backward condition of the intermediate level protected jump. Note
that this is a stronger assumption than the protected jump in the intermediate
language which separates the forward and backward conditions. Figure 4 shows
an example of an unsatisfied protected conditional.

The implementation of general conditionals is analogous to protected condi-
tionals. Because the condition is subject to change in the conditional statement,
the value of the condition is logged upon forward execution. This logged value
is used in the backward direction to determine if the conditional statement was
executed.

‘High Level - Unsatisfied Protected Conditional ’

Log:

x = 1

PIf(x):

x -= 1

[logic block]

Unroll

Fig. 4. Example of an unsatisfied protected conditional. When reversing the condition
will be x = 0 regardless of whether the conditional statement was executed.

5.3 For and While Loops

Eel high level distinguishes between two types of for loops, protected for loops
and general for loops. Protected for loops use no space in log stack. General for
loops require the number of loop iterations l to be logged using lg l bits in the
log stack.

Energy Efficient Language and Compiler 131

A protected for loop takes the form: PFor(init(x), cond(x), incr(x)).
An initial value init(x), a terminating expression cond(x), and a reversible
incrementation function incr(x). A protected for loop requires (1) the incre-
mentation function incr(x) is the only modifier to x in the loop, and (2) the
termination condition cond(x) is determined only by x and no other modified
variables in the loop. With these assumptions, a protected for loop can be imple-
mented fully reversibly. The protected for loop can be undone by reversing the
incrementation function and unrolling each loop until x matches the initializa-
tion value. Protected jumps are used to implement the protected for loop with
no space in log stack. Figure 5 shows the compilation of a protected for loop.

‘Protected For Loop’

‘High Level’

Log:

PFor(init(x), cond(x), incr(x)):

[loop logic block]

[end logic block]

Unroll

‘Intermediate Level ’

Log:

init(x)

PLabel(start -label) // checks if x == init

PGotoIfEq(cond(x), cond(x), end -label) //ends if cond(x)

[loop logic block]

incr(x) // increments x

PGotoIfNeq(x != init , x != init , start -label) //loops

PLabel(end -label)

[end logic block]

Unroll

Fig. 5. The high to intermediate level compilation of a protected for loop.

A general for loop is of the form: For(init(), cond(), incr()). The gen-
eral for loop keeps track of the number of loop iterations l in the forward direc-
tion. It does not rely on the initialization variable being protected, only that
the loop terminates. However, if we use general jumps, a bit of information is
stored per loop and l space in the log stack is required. Instead, we maintain and
store a separate loop counter in the log stack using lg l bits. Protected jumps
are then used with the general for loop condition in the forward direction and
decrementation of the loop counter in the backward direction. Figure 6 shows
the compilation of a general for loop. General while loops are handled in the
same way as general for loops. The initialization variable and incrementation
function are disregarded.

132 N. Tyagi et al.

‘General For Loop’

‘High Level’

Log:

For(init(), cond(), incr()):

[loop logic block]

[end logic block]

Unroll

‘Intermediate Level ’

Log:

init()

l = 0

PLabel(start -label)

PGotoIfEq(cond(), cond(), end -label) //ends loop if cond()

[loop logic block]

incr() // incrementation function

l += 1 // increment loop counter

PGotoIfEq(l > 0, l > 0, start -label) // restarts loop

PLabel(end -label)

LPush(l) //push loop counter to log

[end logic block]

Unroll

Fig. 6. The high to intermediate level compilation of a general for loop. The total
number of loop iterations are counted and logged. Medium minus importance.

5.4 Function Calls

Reversible function calls are handled in a similar manner to normal ones. The
function arguments and return pointer are pushed to the regular stack. The
arguments are passed by reference, so changes to a variable effect it outside the
scope of the function unless a local copy is made. Different from normal functions,
for every reversible function in the high level, two versions of the function are
created in the low level. One is the regular function used in the forward direction,
while the other is the unrolled version used in the backward direction to reverse.
Since the locations of these functions are known, protected jumps can be used to
enter and exit. Thus, functions require no additional space in the log stack than
what is needed for the function logic itself. Eel functions use a pointer passing
parameter model taking in and modifying parameter memory locations. Figure 7
shows the compilation of a function call.

6 Energy Simulation

Since we can’t actually run our code on a semi-reversible computer, we add addi-
tional annotation to estimate the energy cost of our programs. We find this useful
in two directions. First, comparing our results against theoretical predictions of
the energy cost and scaling of algorithms allows us to check for inefficiencies
in the compiler. Second, if our code only uses well examined transformation we

Energy Efficient Language and Compiler 133

‘Function Call’

‘High Level’

Def FXN(x):

[fxn logic block]

Log:

[logic block 1]

FXN(x)

[logic block 2]

Unroll

‘Intermediate Level ’

Def FXN(x):

[fxn logic block]

Log:

[logic block 1]

Call FXN(x)

[logic block 2]

Unroll

‘Low Level’

//Def FXN(x): //FXN -start

CMFRM(mem[sp -1]) //where fxn was called from

ADD(x, mem[sp -2]) //pulls input from stack

[fxn logic block]

GOTO(mem[sp -1]) // returns to program

//FXN -end

//Def RFXN(x): //RFXN -start

CMFRM(mem[sp -1]) //where fxn was called from

ADD(x, mem[sp -2]) //pulls input from stack

[reverse fxn logic block]

GOTO(mem[sp -1]) // returns to program

//RFXN -end

[logic block 1]

PUSH(x)

PUSH(A)

GOTO(FXN -start) //jump to fxn

CMFRM(FXN -end) //A

POP(A)

POP(x)

[logic block 2]

[reverse of logic block 2] // Unroll starts

PUSH(x)

PUSH(B)

GOTO(RFXN -start) //jump to reverse fxn

CMFRM(RFXN -end) //B

POP(B)

POP(x)

[reverse of logic block 1]

Fig. 7. The full compilation of a function call. The low level shows two versions of the
function for the forward direction and the backward direction.

can use an implementation of an algorithm as a check against the analysis of its
time, space, and energy complexity.

The energy costs for an operation are defined by the change in entropy or
information across the inputs to the outputs. In particular, we follow the model
used in [6] where one calculates log

(
I
O

)
Where I is the size of the input space

134 N. Tyagi et al.

of the function and O is the size of the output space of the function. This means
the energy cost only depends on the instructions being called, not on the values
being passed into that function. For example, this would mean an irreversible
AND of two bits would always be charged 1 unit of energy, even though an
output of 0 would tell us that both inputs had to be 0. The appropriateness of
this model either in an exact, or average case setting will depend on details of
the computer architecture.

In high level programming languages, energy costs are hard to calculate since
they are masked by high level control logic and complex expressions. One of the
reasons Eel is designed to have multiple levels of compilation is to reveal these
energy costs in the lower levels. The simplest way to calculate energy costs is
in the low level language. Here the input and output spaces are small and the
energy cost can be calculated on a line by line basis. Each instruction modifies
only one input and since we have a restricted instruction set, each instruction’s
energy cost is individually evaluated. At the low level, instructions are batched
into two different energy costs, 0 and w, where w is the word size.

After calculating energy cost per line at the level, the compiler can backtrack
to the intermediate and high level language and annotate each line with the costs
incurred by the corresponding generated low/intermediate lines. The simulation
takes the same time and space requirements of running the actual program. The
annotation takes the form, (E, L), representing the energy cost and space in log
stack cost respectively. Logic in log blocks will incur no energy cost and instead
may incur log stack cost. Conversely, logic not in log blocks will not incur any
log stack cost, but may incur energy cost.

7 Conclusion and Future Work

Eel is a new reversible programming language that supports a partially reversible
model. The key contributions of this project are as follows:

1. Development of Eel (language + compiler) and description of three language
levels.

2. Introduction of the log stack as a way to make design decisions between energy
cost and space cost.

3. Introduction of new high-level control logic and compilation techniques for
protected conditional, general conditional, protected loops, and general loops.

4. Development of an interpreter for energy simulation and annotation.

Eel is intended to be a prototype for what partially-reversible languages
may look like in the future, and to serve as a platform for the development of
partially-reversible algorithms. A programming language allows us to be precise
about the computations being done and serves as a platform to help verify
theoretical results about partial reversibility. Because many usual programming
assumptions do not hold in this model, working with Eel can help build new
intuition. With the goal of algorithm development in mind, Eel has included
annotation of estimated time, space, and energy costs of programs. Through the

Energy Efficient Language and Compiler 135

development of the Eel language and compiler, we have built a strong foundation
upon which future research and development of reversible algorithms can be
conducted. Once a few more important features are added, the ability to actually
run algorithms and count the resource usage of a program will give a powerful
tool for checking algorithmic results.

Several further features are necessary to achieve these goals of being a tool
for algorithmic design and a prototype language for a future computing envi-
ronment. First, the implementation of standard data structures are necessary
for many algorithms. Many of the results for efficient data structures [6] in the
partially reversible model are themselves not obvious and their implementation
would also be a good confirmation of those results. Second, we would like to
implement some of the memory management and garbage collection algorithms
which have been developed. Third, only a simple version of log and unroll was
implemented, which does not contain as much expressive power as we might
want. Currently, the language only allows unrolling log blocks in order, but
especially in data structures, we would like to be able to unroll code in dynamic
orders. This extension could be implemented with multiple log stacks, or a more
complicated data structure underlying the log and unroll system. Fourth, some of
the transformations performed by the compiler lack optimization, and thus may
make an algorithm seem less efficient than anticipated. A final practical direction
is to consider hybrid programming models which mix standard irreversible com-
putation with reversible core subroutines, for use in a future hybrid architecture
combining traditional CPUs with a reversible accelerator or co-processor.

Acknowledgements. We thank Geronimo Mirano for useful discussion in differenti-
ating and developing our language levels. We also thank Maria L. Messick and Licheng
Rao for help in early programming of the Eel compiler.

References

1. Axelsen, H.B.: Clean translation of an imperative reversible programming lan-
guage. In: Knoop, J. (ed.) CC 2011 and ETAPS 2011. LNCS, vol. 6601, pp.
144–163. Springer, Heidelberg (2011)

2. Axelsen, H.B., Glück, R., Yokoyama, T.: Reversible machine code and its abstract
processor architecture. In: Diekert, V., Volkov, M.V., Voronkov, A. (eds.) CSR
2007. LNCS, vol. 4649, pp. 56–69. Springer, Heidelberg (2007)

3. Bennett, C.H.: Logical reversibility of computation. Maxwell Demon. Entropy
Inf. Comput. 197–204 (1973). http://liinwww.ira.uka.de/cgi-bin/bibshow?
e=Njtd0jcnkse/fyqboefe%7d2789553&r=bibtex&mode=intra

4. Charles, H.: Bennett. time/space trade-offs for reversible computation. SIAM J.
Comput. 18(4), 766–776 (1989)

5. Buhrman, H., Tromp, J., Vitányi, P.M.B.: Time and space bounds for reversible
simulation. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001.
LNCS, vol. 2076, p. 1017. Springer, Heidelberg (2001)

6. Demaine, E.D., Lynch, J., Mirano, G.J., Tyagi, N.: Energy-efficient algorithms.
In: Proceedings of 2016 ACM Conference on Innovations in Theoretical Computer
Science, pp. 321–332. ACM (2016)

http://liinwww.ira.uka.de/cgi-bin/bibshow?e=Njtd0jcnkse/fyqboefe%7d2789553&r=bibtex&mode=intra
http://liinwww.ira.uka.de/cgi-bin/bibshow?e=Njtd0jcnkse/fyqboefe%7d2789553&r=bibtex&mode=intra

136 N. Tyagi et al.

7. Frank, M.P., Knight, Jr. T.F.: Reversibility for efficient computing. Ph.D. the-
sis, Department of Electrical Engineering and Computer Science, Massachusetts
Institute of Technology (1999)

8. Landauer, R.: Irreversibility and heat generation in the computing process. IBM
J. Res. Dev. 5(3), 183–191 (1961)

9. Lange, K.-J., McKenzie, P., Tapp, A.: Reversible space equals deterministic space.
J. Comput. Syst. Sci. 60(2), 354–367 (2000)

10. Lecerf, Y.: Logique mathematique-machines de turing reversibles-recursive insolu-
bilite en nsigman de lequation u= thetanu, ou theta est un isomorphisme de codes.
Comptes rendus hebdomadaires des séances de l’Académie des sciences 257(18),
2597 (1963)

11. Li, M., Vitanyi, P.: Reversible simulation of irreversible computation. In: Proceed-
ings of 11th Annual IEEE Conference on Computational Complexity, pp. 301–306.
IEEE (1996)

12. Lutz, C., Derby, H.: Janus: a time-reversible language. Caltech Class Project (1982)
13. Mogensen, T.Æ.: Partial evaluation of Janus Part 2: assertions and procedures. In:

Clarke, E., Virbitskaite, I., Voronkov, A. (eds.) PSI 2011. LNCS, vol. 7162, pp.
289–301. Springer, Heidelberg (2012)

14. Mogensen, T.Æ., Partial evaluation of the reversible language Janus. In: Proceed-
ings of 20th ACM SIGPLAN Workshop on Partial Evaluation and Program Manip-
ulation, pp. 23–32. ACM (2011)

15. Perumalla, K., Fujimoto, R.: Source code transformations for efficient reversibility.
Coll. Comput. Georgia Inst. Technol. (1999). https://smartech.gatech.edu/handle/
1853/6621

16. Somavat, P., Namboodiri, V., et al.: Energy consumption of personal computing
including portable communication devices. J. Green Eng. 1(4), 447–475 (2011)

17. Stoddart, B., Lynas, R., Zeyda, F.: A virtual machine for supporting reversible
probabilistic guarded command languages. Electron. Notes Theoret. Comput. Sci.
253(6), 33–56 (2010)

18. Thomsen, M.K., Axelsen, H.B., Glück, R.: A reversible processor architecture and
its reversible logic design. In: Vos, A., Wille, R. (eds.) RC 2011. LNCS, vol. 7165,
pp. 30–42. Springer, Heidelberg (2012)

19. Vieri, C., Ammer, M.J., Frank, M., Margolus, N., Knight, T.: A fully reversible
asymptotically zero energy microprocessor. In: Power Driven Microarchitecture
Workshop, pp. 138–142. Citeseer (1998)

20. Vieri, C.J.: Reversible computer engineering and architecture. Ph.D. thesis, Massa-
chusetts Institute of Technology (1999)

21. Yokoyama, T.: Reversible computation and reversible programming languages.
Electron. Notes Theoret. Comput. Sci. 253(6), 71–81 (2010)

22. Yokoyama, T., Axelsen, H.B., Glück, R.: Principles of a reversible programming
language. In: Proceedings of 5th Conference on Computing Frontiers, pp. 43–54.
ACM (2008)

23. Yokoyama, T., Glück, R.: A reversible programming language and its invertible
self-interpreter. In: Proceedings of 2007 ACM SIGPLAN Symposium on Partial
Evaluation and Semantics-based Program Manipulation, pp. 144–153. ACM (2007)

24. Zuliani, P.: Logical reversibility. IBM J. Res. Dev. 45(6), 807–818 (2001)

https://smartech.gatech.edu/handle/1853/6621
https://smartech.gatech.edu/handle/1853/6621

Mixing Hardware and Software Reversibility for
Speculative Parallel Discrete Event Simulation

Davide Cingolani(B), Mauro Ianni, Alessandro Pellegrini,
and Francesco Quaglia

DIAG - Sapienza, University of Rome, Rome, Italy
{cingolani,mianni,pellegrini,quaglia}@dis.uniroma1.it

Abstract. Speculative parallel discrete event simulation requires a sup-
port for reversing processed events, also called state recovery, when causal
inconsistencies are revealed. In this article we present an approach where
state recovery relies on a mix of hardware- and software-based tech-
niques. We exploit the Hardware Transactional Memory (HTM) support,
as offered by Intel Haswell CPUs, to process events as in-memory transac-
tions, which are possibly committed only after their causal consistency
is verified. At the same time, we exploit an innovative software-based
reversibility technique, fully relying on transparent software instrumen-
tation targeting x86/ELF objects, which enables undoing side effects by
events with no actual backward re-computation. Each thread within our
speculative processing engine dynamically (on a per-event basis) selects
which recovery mode to rely on (hardware vs software) depending on
varying runtime dynamics. The latter are captured by a lightweight ana-
lytic model indicating to what extent the HTM support (not paying any
instrumentation cost) is efficient, and after what level of events’ paral-
lelism it starts degrading its performance, e.g., due to excessive data con-
flicts while manipulating causality meta-data within HTM-based trans-
actions. We released our implementation as open source software and
provide experimental results for an assessment of its effectiveness.

1 Introduction

The move of Discrete Event Simulation (DES) onto parallel architectures has been
historically based on the Parallel DES (PDES) paradigm [7]. In this kind of sim-
ulation, as well as in the traditional DES paradigm, the evolution of the system is
described in terms of timestamped discrete events, which are impulsive—they hap-
pen at a specific simulation time instant, the timestamp of the event, and have no
duration. Parallelism is achieved in PDES by partitioning the simulation model
into several distinct entities, called simulation objects or logical processes (LPs).
Each LP is associated with a private simulation state—the whole simulation state
is the union of these private states—and the execution of an impulsive simulation
event at any LP produces a state transition on the state of the LP itself. The pri-
vateness of the LPs’ simulation states implies that information exchange across
different LPs is only supported via the exchange of events, which can be gener-
ated (in any number) during the execution of other events.
c© Springer International Publishing Switzerland 2016
S. Devitt and I. Lanese (Eds.): RC 2016, LNCS 9720, pp. 137–152, 2016.
DOI: 10.1007/978-3-319-40578-0 9

138 D. Cingolani et al.

PDES speculative execution [10] allows processing events with no previous
assurance of their causal consistency. This means that an event destined to
some LP can be dispatched for execution with no guarantee at all regarding the
fact that no other event with a higher priority, say lower timestamp, will be
ever received by that same LP in the future. Such events, referred to as strag-
gler events, are the a-posteriori materialization of a timestamp-order violation,
also referred to as causal violation. Such violations require some state recovery
(reversibility) support for undoing the side effects on the LPs’ states which are
associated with inconsistent processing of events.

In literature, the reversibility support has been traditionally based on pure
software implementations exploiting either checkpointing techniques (see, e.g.,
[15,16]) or reverse computing ones (see, e.g., [2]). A few other approaches have
been based on off-loading the checkpoint task to off-the-shelf or unconventional
hardware [9,18]. More recently, the Hardware Transactional Memory (HTM)
support offered by modern processors, such as the Intel Haswell, has been taken
into consideration in order to enable the speculative execution of events as in-
memory transactions [19], making them automatically recoverable with low over-
head thanks to the reliance on the hardware transactional cache.

In this article we present a speculative PDES engine, oriented to multi-core
machines, which exploits hardware-based and software-based reversibility in a
synergistic manner. In particular, we enable each concurrent worker thread oper-
ating within the engine to dynamically select the best-suited reversibility support
among two: (1) one relying on HTM facilities inspired to [19] and (2) another
relying on software-based reversibility, in the form of undo code blocks [3]. The
dynamic selection is based on the consideration that not every speculatively-
executed event is valuable in the same manner when run as an HTM-based
transaction due to several reasons. A first one deals with the fact that the final
commit of the transaction needs to check/update causality meta-data, hence the
higher the degree of concurrency while accessing these meta-data, the higher the
likelihood of yielding to data conflicts that lead to the abort of the HTM-based
transactions. Also, causality meta-data are updated according to the progress of
the commit horizon of the PDES run, as determined along time by the commit
of the event with the lowest timestamp. Hence speculatively-processed events
with HTM support that are further ahead of the commit horizon will need to
find causality meta-data reflecting more updates upon trying to commit, which
again leads to an abort if these updates were not yet issued by the commitment
of events with higher priority, say lower timestamps. Finally, the HTM support
is limited to transactions whose read/write set fits (with no capacity conflict by
other cores of the same CPU) the transactional hardware cache. Hence for mod-
els with events that (or execution phases where the events) have large data sets
the likelihood of successfully committing the corresponding HTM-based trans-
actions may be (significantly) reduced.

We overcome these drawbacks in our speculative PDES engine by dynam-
ically enabling any worker thread to process an event not as an HTM-based
transaction (just to reduce the likelihood of running non-valuable transactions),
but rather via a modified version of the original event-handler code. This

Mixing Hardware and Software Reversibility 139

version is transparently instrumented in order to generate (at runtime) the
minimal set of machine instructions (the so called undo code block) which
allows reversing any memory side effect. In the instrumentation process we
target x86/ELF objects. The possibility to commit events run with software
reversibility is no longer bound to the possibility to commit an HTM-based trans-
action. This leads to the scenario where the engine is able to improve fruitful
usage of computing resources due to the possibility to exploit the HTM support
in the most valuable manner, while jointly relying on a bit more costly software-
based reversibility when the valence of hardware-based reversibility would be
impaired.

The coexistence of HTM and software-based reversibility (with concurrent
threads relying on one or the other at a given time instant) needs solutions in order
to avoid that the two techniques interfere with each other. Specifically, valuable
HTM-based work should not be interfered by the one relying on software-based
reversibility. For the case of concurrent speculatively processed events bound to
the same LP (hence operating within the same local state) this is achieved by intro-
ducing a prioritization mechanism that leads an HTM-processed event to gain
higher priority with respect to the events processed with the software reversibil-
ity support. So the latter will never concurrently access (any portion of) the over-
all data set—say the LP state as a whole—possibly targeted by the HTM-based
transaction, hence not leading to its abort. On the other hand, we still enable inter-
LP concurrency, thus enabling the so called weak-causality model [17], by not pre-
venting multiple HTM-based transactions to successfully operate on disjoint data
sets within the LP state. Also, given that in our software reversibility scheme we
avoid the usage of checkpoints (in fact the undo code block is not a log of data),
we avoid at all the typically large usage of memory by checkpointing (only par-
tially resolved by incremental checkpointing schemes) hence further reducing the
(potential) problems related to limited cache capacity issues of the HTM support
and conflicting cache accesses by the threads.

Our engine has been released as open source software1, and we also provide
some experimental data for an assessment of its effectiveness when running the
Phold PDES benchmark [8] on an Intel Haswell processor, with HTM support,
equipped with 4 physical cores.

The remainder of this article is structured as follows. In Sect. 2 we discuss
related work. In Sect. 3 we present the methodology standing behind hardware-
and software-reversibility based execution of PDES models, and we describe
the design principles characterizing our mixed simulation engine architecture.
Section 4 presents an experimental assessment of our proposal.

2 Related Work

The state restore operation is of fundamental importance in speculative PDES,
and has therefore been extensively studied in the literature. Two main incar-
nations of state restore schemes have been proposed, one based on state
1 https://github.com/HPDCS/htmPDES/tree/reverse.

https://github.com/HPDCS/htmPDES/tree/reverse

140 D. Cingolani et al.

checkpoint and reload, and one based on reverse computing. The former flavour is
based on the possibility for the simulation engine to know what are the memory
buffers that keep each LP’s simulation state, which are copied into a separate
buffer—called the simulation snapshot—at a given point of the execution. In
this way, undoing a chain of wrongly-computed events (namely, state updates)
boils down to selecting a simulation snapshot which is still consistent (i.e., it
was taken at a simulation time smaller than the straggler’s one). This snap-
shot is then copied onto the LP live state image, thus undoing the effects of
causal-inconsistent events. This approach is both memory- and computationally-
intensive, and might lead to poor simulation performance, since if no causal
inconsistency is detected at all, resources are spent for taking unnecessary snap-
shots. To this end, several proposals have addressed the possibility to take state
snapshots less frequently (see, e.g., [16]) or in an incremental way (see, e.g., [21])
or combining the two schemes (see, e.g., [15,20]). Other solutions rely on hard-
ware support to offload from the CPU the memory copy for taking the check-
point. Specifically, the work in [18] proposed to exploit programmable DMA
engines to perform the copy, while [9] presents the design of a so called rollback-
chip, a hardware facility that automatically saves old versions of state variables
upon their updates. Both these approaches reduce the CPU-time for checkpoint-
ing tasks but do not directly cope with memory usage.

Reverse computing is based on the notion of reverse events. A reverse event
ē associated with a forward event e is such that if the execution of e produces
the state transition e(S) → S′, the execution of ē on S′ produces the inverse
transition ē(S′) → S. Such reverse events could be implemented manually [2]
or via compiler-assisted approaches [12]. Although reverse computation is much
less memory-greedy than checkpointing, the main issue with this approach lies
in the rollback length, namely the number of events which must be undone upon
a state restore operation. In particular, the total cost of a rollback operation
is directly proportional to the number of undone events and their granularity,
as reverse events re-process (although in a reversed fashion) all the steps of a
forward event, even if some of them are not directly related to state updates.

The more recent proposal in [3] has tackled the state restore operation via
software reversibility through the adoption of undo code blocks. The goal of this
approach is to reduce the time-complexity of the rollback operation, making the
reversibility of events independent of the forward execution’s granularity. This
is done by relying on static binary instrumentation, targeting x86/ELF objects,
where the simulation model’s code is scanned searching for all machine-level
instructions which entail a memory update. These instructions are transparently
augmented with an ad-hoc routine which computes the target address of the
memory write just before it takes place, so that the original value is directly
packed into an on-the-fly assembled machine instruction whose execution restores
it. All these runtime generated assembly instructions are stored into an undo
code block which, when executed, undoes all the effects of the execution of
a forward event on the simulation state. This solution finds a good balance
between incremental checkpointing—no actual meta-data are required to restore
a previous state—and reverse computing—the execution cost to undo events is

Mixing Hardware and Software Reversibility 141

no longer dependent on the complexity of forward events. Nevertheless, if an
event is unlikely to be undone due to a rollback operation, the cost of tracing
memory updates and generating the undo code block is paid unnecessarily.

Another recent proposal [19] exploits HTM facilities offered by modern Intel
Haswell CPUs to allow running simulation events within transactions. An ad-hoc
routine determines whether the execution of an event is safe or not, by checking
compact shared meta-data keeping track of the simulation time associated with
the events that are being run by the concurrent threads. The event associated
with the smallest timestamp is considered safe, and it is therefore the only event
which is executed outside of a transaction. By using this scheme, all the events
which are transactionally executed are automatically aborted if a conflict on the
same data structures is detected. At the end of a transaction, the safety of the
just-executed event is evaluated again, and in case the event has become safe, it
is then committed. In the negative case, the transaction is immediately aborted
and (possibly) restarted, because the access to the shared meta-data makes it
doomed if the event is not safe yet—in fact, another thread will eventually update
the content of the meta-data, to indicate that the execution of a safe event has
been completed. A dynamic throttling strategy is used to increase the likelihood
of committing a transaction, by delaying the time instant at which the shared
meta-data are accessed.

Our work differs from previously published ones since none of the aforemen-
tioned proposals makes use of a combination of hardware and software reversibil-
ity for state restore operations. Particularly, we use the results in [3,19] as base-
lines for building a mixed hardware/software recoverability support that takes
the advantages of the two different techniques As pointed out in the introduc-
tion, we dynamically resort to undo code blocks (thus paying the cost of running
an instrumented code version) only in case valuable speculative work cannot
be carried out (by a thread at some point in time) via the reliance on HTM.
Thus we pay the overhead of software-based reversibility only when HTM-based
reversibility does not pay off (or is inviable due to, e.g., transactional cache
capacity limitations).

3 The Simulation Engine

3.1 Basics

We target a baseline speculative PDES engine structure that is independent of
the actual reversibility support, whose schematization is provided in Fig. 1. In
compliance with traditional PDES, the engine supports the partitioning of the
simulation model into n distinct LPs, each one associated with a unique ID
in the range [0, n − 1]. Each LP is associated with a private simulation state
(although possibly scattered on dynamic memory) and with one or more event
handlers representing the code blocks in charge of processing the simulation
events and generating state updates, as well as of (possibly) producing new
events to be injected in the system. The delivery of a simulation event to the
correct handler is demanded from the underlying simulation kernel, which is also

142 D. Cingolani et al.

Fig. 1. Basic engine organization

in charge of guaranteing consistency of a shared event pool that keeps all the
already scheduled events, as well as causal consistency of the updates occurring
on the LPs’ states. Concerning the event pool, we rely on a shared lock-protected
calendar queue [1]. Multiple concurrent worker threads can extract events from
the event pool and can concurrently dispatch the execution of the corresponding
LPs by activating some event handler as a callback function.

3.2 Simulation Horizons and Value of Speculative Work

In speculative PDES, we can always identify a point on the simulation time axis
which is the commit horizon—commonly referred to as Global Virtual Time
(GVT). This is the simulation time instant that distinguishes between events
which might be undone (e.g., due to some causality violation) and events which
will never be undone. This time instant can be logically identified by considering
that any simulation event e executed at simulation time T can only generate
some new event e′ associated with timestamp T ′ ≥ T . In fact, violating this
assumption would imply that an event in the future might affect the past, which
is clearly a non-meaningful condition for any real-world process/phenomenon.
Therefore, to identify the commit horizon, it is sufficient to identify the event
with the smallest timestamp among all the events which are currently scheduled
at (or have just been processed by) any LP in the system. Such timestamp
corresponds to the commit horizon. In fact, no event still to be executed might
produce a causal inconsistency involving the LP in charge of the execution of
the commit-horizon event2.

With our target engine organization, the commit horizon is associated with
the oldest event that is currently being executed (or has just been executed) at
any worker thread. Therefore, keeping track of the commit horizon boils down
to registering, for each worker thread, the timestamp of the event e currently
being executed, by replacing the value only after a new event is fetched for
processing from the event pool, so that any new event possibly produced by e
has its timestamp already reflected into the event pool. The commit horizon can
be computed as the minimum among the registered values.

At any time, the commit-horizon event can be considered as a safe (namely,
causally consistent) one, and therefore does not require any reversibility

2 Simultaneous events do not violate this assumption. Nevertheless, if not properly
handled by some tie-breaking function [11,13], they could give rise to livelocks in
the speculative execution.

Mixing Hardware and Software Reversibility 143

Fig. 2. Three logical regions on the simulation time (ST) axis, with varying density of
pending events—those still to be processed, which will possibly generate new ones

mechanism for its execution. Let us now discuss about the likelihood of safety of
other events to be processed, which stand ahead of the commit horizon. Empir-
ical evidence and statistical considerations based on common distributions for
the timestamp increment driving the generation of events in simulation models
(see, e.g., [5,6]) have shown that event patterns are, at any time, characterized
by greater density of events, say locality of activities, in the near future of the
actual GVT. This situation is depicted in Fig. 2. Also, such locality tends to
move along the time axis just based on the advancement of the commit horizon.
The implication is that the risk of materialization of causal inconsistencies when
speculatively processing one event that is ahead of the commit horizon is some-
how linked to its distance from such horizon. This is also linked to the notion of
lookahead of DES models, a quantity expressing the minimal timestamp incre-
ment we can experience for a given model when processing whichever event that
originates new events to be injected in the system. Larger lookahead leads to
produce new events in the far future, hence those getting closer to the current
commit horizon become automatically safe.

By this consideration, the speculative processing of events that are closer
to the commit horizon looks more valuable in terms of avoidance of causal-
ity inconsistencies. Hence in our approach we enable the processing of these
events as HTM-based transactions, say via the more efficient (lower overhead)
recoverability support. We also note that running events that are close to the
commit horizon as HTM-based transactions will also lead to a faster advance-
ment of this horizon, as compared to what we would expect if running them via
software-based reversibility, since this would lead to longer processing times due
to the overhead for producing the undo code blocks. However, an HTM-based
transaction can commit only after events standing in the past have already been
committed and the corresponding worker threads have already updated their
entries in the meta-data array keeping their current timestamp. So, in order to
increase the likelihood of committing the HTM-based transactional execution of
some event, this transaction typically needs to include a busy-loop delay enabling
a waiting phase just before checking whether the meta-data were updated3.

3 Other kind of delays, such as operating system sleeps, are unfeasible since any
user/kernel transition will lead an HTM-based transaction to abort deterministi-
cally on current HTM-equipped processors.

144 D. Cingolani et al.

Checking the meta-data at some wrong point in time will in its turn lead to
the impossibility to recheck these data fruitfully in the future, since the updates
occurring between the two checks will lead to a data conflict and to the abort of
the checking transaction. In Fig. 2 we show how such a delay should be selected
somehow proportionally to the distance (in terms of event count) of the event
processed via HTM support from the commit horizon. Overall, for events that
are further ahead from the commit horizon, the delay could not pay off, hence a
more profitable approach to speculatively processing them is to run them out-
side of HTM-based transactions, still with reversibility guarantees achieved via
software.

The problem of determining what is the threshold distance from the commit
horizon beyond which the HTM support does not pay off is clearly also related
to the interference between concurrent HTM-based transactions when using the
underlying hardware resources. In fact, if we experience a scenario where two
concurrent transactions both require large transactional cache storage for exe-
cuting the corresponding dispatched events, and the cache is shared across the
cores, then even if an event would ideally reveal as causally consistent upon
attempting to finalize the transactions, it would anyhow be doomed to abort
due to cache capacity conflicts. A similar cache capacity-due abort may even be
experienced in case of single HTM-based transaction instance, just depending
on the transaction data set, which might exceed the cache capacity.

To cope with the runtime adaptive selection of the threshold value, we rely
on a hill climbing scheme based on the following parameters, easily measurable
at runtime across successive wall-clock-time windows:

– THTM , the total processing time spent across all the worker threads while
processing events (either committed or aborted) via HTM support;

– COMMITHTM , the total number of committed events whose speculative exe-
cution has been based on the HTM support;

– Tsoft, the total processing time spent across all the worker threads while
processing events (either committed or aborted) that are made recoverable
via the software-based support (here we include the time spent for instrumen-
tation code used to generate undo code blocks, plus the time for running the
undo code blocks in case the events are eventually undone);

– COMMITsoft, the total number of committed events whose execution has
been based on the software support for recoverability.

By the above quantities, we compute the so called work-value ratio (WVR)
for both HTM-based and software-based recoverability just like:

WVRHTM =
THTM

COMMITHTM
WVRsoft =

Tsoft

COMMITsoft
(1)

which expresses the average amount of CPU time required for performing useful
work (namely, for processing an event that is not undone) with the two differ-
ent recoverability supports. Then, the threshold value THR determining the
commit horizon distance (evaluated as event count) beyond which we consider

Mixing Hardware and Software Reversibility 145

it more convenient to process the event via software-based reversibility, rather
than HTM-based one, is increased or decreased depending on whether the rela-
tion WVRHTM ≤ WVRsoft is verified (as computed on the basis of statistics,
on the baseline parameters listed above, collected in the last observation win-
dow). In order to avoid stalling in local minima (e.g. due to the avoidance of
runtime samples for any of the above listed parameters), we intentionally per-
turb THR by ±1 within the hill climbing scheme if its value reaches either zero
or the number of threads currently running in the PDES platform.

3.3 Engine Architecture

As mentioned, our engine allows the coexistence of hardware-based and software-
based reversibility facilities. While introducing hardware-based reversibility facil-
ities is somehow easy—it can be done using the primitives TRANSACTION START,
TRANSACTION END, and TRANSACTION ABORT to drive event processing—software-
based reversibility requires a bit more care, especially when targeting full trans-
parency to the application-level developer. To cope with this issue, we rely on
static binary instrumentation. In particular, we exploit the Hijacker [14] open-
source customizable static binary instrumentation tool. Using this tool, we are
able (before the final linking stage of the application-level simulation model) to
identify any memory writing instruction (either a simple mov or more complex
ones, like cmove or movs instructions) and to place just before each memory-
update instruction a call to a reverse generator module which reads the cur-
rent value of the target memory location so as to generate the reverse instruction
able to undo the corresponding side effect according to the proposal in [3]. The
sequence of reversing instructions for a same event forms the undo code block
of the event. Clearly, the instrumented and the non-instrumented versions of
the application modules also need to coexist (since the non-instrumented ver-
sion is the one to be run in case of HTM-based reversibility). Such coexistence
has been achieved by using a multi-coding scheme when rewriting the ELF of
the program at instrumentation time, and by identifying the entry points to the
two versions of code (instrumented and not) within the same executable using
function pointers exposed to the PDES engine.

In our implementation the reversing instructions associated with an event
(those forming the undo code block of the event) are organized into a reverse
window, which is used as a stack of negative instructions that can be invoked via
a call. Correct execution of an undo code block is ensured by the presence of a
ret instruction at the end of the reverse window. Also, if the forward execution
of an event updates multiple times the same memory location, only the first
instruction updating that location should be associated with the generation of
an inverse instruction, since the following updates would be anyhow undone by
the first inverse instruction. We therefore employ a fast hashmap to keep track of
destination addresses within a forward event. Whenever reverse generator is
activated, this hashmap is queried to determine whether the destination address
was already involved in a negative instruction generation.

146 D. Cingolani et al.

Algorithm 1. Shared Lock Acquisition/Release
1: int lock vector[n]
2: double timestamp[n] � To avoid priority inversion
3: int thread id[n] � To avoid priority inversion
4: procedure Lock LP(e, LP, mode, locking)
5: acquired ← false
6: do
7: if mode = EXCLUSIVE then
8: if CAS(-1, 0, lock vector[LP]) then
9: acquired ← true

10: else
11: old lock ← lock vector[LP]
12: if old lock ≥ 0 then
13: if CAS(old lock + 1, old lock, lock vector[LP]) then
14: acquired ← true
15: if ¬acquired then
16: atomically {
17: if timestamp[LP] ¿ T (e) ∨ (timestamp[LP] = T (e)∧ thread id[LP] > tid) then
18: timestamp[LP] ← T (e)
19: thread id[LP] ← thread id
20: }
21: while ¬acquired ∧ locking
22: return acquired

23: procedure Unlock LP(LP)
24: if lock vector[LP] = −1 then
25: lock vector[LP] ← 0
26: else
27: do
28: old lock ← lock vector[LP]
29: while ¬ CAS(old lock − 1, old lock, lock vector[LP])

As mentioned before, to ensure consistency and minimize the effects of data
contention on HTM-based execution of events, we must ensure that at no time
two different worker threads can execute both software-reversible and hardware-
reversible events at once, which target the same LP state. In fact, if this would
happen, we might incur the risk of having less valuable work to invalidate more
valuable one (since the HTM-based transaction would be aborted if its data set
would overlap the write set of the event executed via software-based reversibil-
ity). Also, we cannot allow two (or more) events run via software-based reversibil-
ity to simultaneously target the same LP state. In fact, these events would not
be regulated by any transactional execution scheme4. To this end, we rely on
a synchronization mechanism similar in spirit to an atomic shared read/write
lock [4]. Whenever a worker thread extracts an event from the shared event pool,
it first determines whether the event should be executed using hardware-based
or software-based reversibility according to the policy introduced in Sect. 3.2. If
the selected execution mode is HTM-based, the worker thread tries to acquire
the lock on the target LP in a non-exclusive way, which fails (i.e., requires spin-
ning) in case any other worker thread already took it in an exclusive way. On
the other hand, if the selected execution mode is based on software reversibility,
the worker thread tries to acquire the lock in an exclusive way, yet this opera-
tion requires spinning if at least one worker thread has non-exclusively taken the

4 The undo code blocks guarantee reversibility of memory updates limited to events
executing the updates on the LP state in isolation, which complies with classical
PDES where each LP is an intrinsically sequential entity.

Mixing Hardware and Software Reversibility 147

lock. Nevertheless, this approach might lead to some priority inversion, among
the threads which are running more valuable events via the HTM support and
threads which are running less valuable events via software-based reversibility.
To avoid this, we use a locking flag to instruct the algorithm to avoid spinning if
it was not possible, for any reason, to acquire the lock—namely, setting locking
to false transforms the lock into a trylock. If the lock is not taken, two addi-
tional values in two arrays are updated atomically: timestamp and thread id,
which are exploited on a per-LP basis. In particular, the worker thread registers
the timestamp it has an event to process at, and its thread id. The latter value
is only used to create a total order among threads in case simultaneous events
are present, to avoid possible deadlock conditions. These values are periodically
inspected by other worker threads (upon a safety check for the current processed
event, which fails), so as to determine whether some higher priority event is wait-
ing. In that case, if the work carried out is not likely to be committed shortly,
thanks to the reversibility supports it gets squashed, so that higher priority is
given immediately to events with a smaller timestamp. Algorithm 1 shows the
lock management pseudo-code, which relies on the Compare and Swap (CAS)
read-modify-write primitive to increase/decrease the value of a shared per-LP
counter. The value −1 for the counter means that the lock is exclusively taken,
while the value 0 indicates that no thread is running an event bound to the LP.
A positive value is a reference counter indicating how many worker threads are
concurrently executing events bound to the LP via hardware-based reversibility.

We can now discuss the organization of the main loop of threads within our
speculative PDES engine, whose pseudo-code is shown in Algorithm 2. Essen-
tially, it is made up by three different execution paths, each one associated
with one of the different execution modes. Initially, a call to a Fetch() proce-
dure allows to extract from the shared event pool the event with the smallest
timestamp. Then, a statistical approximation of the number of events which are
expected to fall before the currently fetched event (since others may still be
processed or might be produced as a result of the processing) is computed as:

T (e) − commit horizon

average timestamp increment
(2)

where average timestamp increment is computed5 as commit horizon
total committed events .

This value, together with the threshold THR (see Sect. 3.2), is used to deter-
mine whether a certain event might be more valuable or not, thus requiring
either HTM-support or software-based reversibility (line 12). Additionally, if an
event is executed exploiting HTM, this value drives as well the selection of a
delay before checking again the safety of the corresponding transaction (namely,

5 For non-stationary models, where the distribution of the timestamp increment
between successive events can change over time in non-negligible way, this same
statistic could be simply rejuvenated periodically, by discarding non-recent events
commitments and subtracting from commit horizon the upper limit of the discarded
simulation time portion.

148 D. Cingolani et al.

Algorithm 2. Main Loop
1: procedure MainLoop
2: new events = ∅ � Set of events generated during the execution of an event
3: while ¬endSimulation do
4: e ← Fetch()
5: if e = NULL then
6: goto 3

7: events before ← T (e) − commit horizon

average timestamp increment
8: if Safe() then � Safe execution: on the commit horizon
9: Lock LP((e, LP (e), NON EXCLUSIVE, true))

10: new events ← ProcessEvent(e)
11: Unlock LP(LP (e))
12: else if events before ≤ THR then � HTM-based execution: high likelihood region
13: if ¬ Lock LP((e, LP (e), NON EXCLUSIVE, false)) then
14: goto 7

15: BeginTransaction()
16: new events ← ProcessEvent(e)
17: Throttle(events before)
18: if Safe() then
19: CommitTransaction()
20: Unlock LP(LP (e))
21: else
22: AbortTransaction()
23: Unlock LP(LP (e))
24: goto 7

25: else � Software-reversible execution: low likelihood region
26: if ¬ Lock LP((e, LP (e), EXCLUSIVE, false)) then
27: goto 7

28: SetupUndoCodeBlock()
29: new events ← ProcessEvent Reversible(e)
30: while ¬ Safe() do
31: if timestamp[LP] ¡ T (e) ∨ (timestamp[LP] = T (e)∧ thread id[LP] < tid) then
32: Unlock LP(LP (e))
33: UndoEvent(e)
34: new events = ∅
35: goto 7

36: Flush(e, new events)
37: atomically {
38: if thread id[LP] = tid then
39: timestamp[LP] ← ∞
40: thread id[LP] ← ∞
41: }

whether the timestamp of the event has in the meanwhile become the commit
horizon), so as to avoid making it doomed with a high likelihood (line 17).

In case of a safe execution, i.e. the execution of the event on the commit hori-
zon (lines 8–11), we take a non-exclusive lock, which is used to inform any other
thread that the destination LP is currently processing an event. This avoids that
any other worker thread starts processing an event via software-based reversibil-
ity at the same LP while we are processing in safe mode. Moreover, we configure
the lock to spin because the worker thread in charge of executing this event has
the highest priority and any other competing thread will try to give it permission
to continue execution as fast as possible.

For a transactional execution (lines 12–24), we use the trylock version of the
per-LP lock. If we fail to acquire the lock, the execution resumes from line 7,
meaning that we check again whether the extracted event has become safe or not,
in the meanwhile. Otherwise, as already explained before, we start executing the

Mixing Hardware and Software Reversibility 149

event within an HTM-based transaction, introducing an artificial delay—via the
Throttle(events before) call—which is proportional to the estimated number
of events in between the commit horizon and the currently executed event. If
the transaction becomes doomed (lines 21–24) the execution restarts from line
7, so as to check whether the just-aborted event has become safe.

The case of execution via software reversibility (lines 25–35) is a bit different.
In fact, first we have to take an exclusive lock—in a trylock fashion, for the
same consideration related to the HTM-based execution—and we have to setup
the undo code block, by allocating a reverse window buffer. At the end of the
execution of the event, similarly to the HTM-based case, we have to wait for
the event to become safe. Nevertheless, since this execution entails taking an
exclusive lock, we continuously check whether some other thread is registered
at the same LP with a higher priority (line 31). This situation might arise due
to another event, executed at any other worker thread, generating a new event
to the same LP with a timestamp smaller than the one of the event currently
processed via software-based reversibility. Failing to make this specific check
could either hamper liveness (a thread waits its event to be the commit horizon,
which cannot happen) or correctness (events are committed out of order). Line
31, paired with lines 15–20 of Algorithm 1, is able to ensure both correctness
and liveness.

Whenever an event is executed, and then committed thanks to safety assur-
ance, in whichever execution mode, we first place into the calendar queue any
possible new event generated (line 36), and we then unregister the thread from
the timestamp and thread id vectors which are used to avoid priority inversion
(lines 37–41). For the implementations of Fetch(), Flush(), and Safe(), we
refer the reader to [19].

4 Experimental Results

We tested our proposal with the Phold benchmark [8]. We included 1024 LPs
in the simulation model, each one scheduling events for itself or for the others.
Specifically, upon processing an event, the probability to schedule a new event
destined to another LP has been set to 0.2, which is representative of scenar-
ios with non-minimal interactions across the simulated parts. Also, the initial
population of events has been set to 1 event per LP, while the timestamp incre-
ment determining the actual timestamp of newly scheduled events has been set
to follow the exponential distribution with mean value equal to one simulation
time unit. The model lookahead has been set to a minimal value computed as
the 0.5 % of the average timestamp increment. Further, the overall simulation
is partitioned into 4 phases where the LPs exhibit alternate behaviors in terms
of updates of their states. Phases 1 and 3 are write-mild since each event only
updates the classical counter of processed events and a few other statistical
values within the LP state. Contrariwise, phases 2 and 4 are write-intensive,
since event processing also updates an array of counters’ values, still embedded
with the LP state, by performing 500 updates on the array entries. Overall, the

150 D. Cingolani et al.

different phases mimic varying locality and memory access profiles. A classical
busy-loop characterizing Phold event processing steps is also added which is
set to generate an average event granularity of about 25 microseconds. In this
experiment, we compared the performance of our hardware- and software-based
mixed approach to both pure hardware-based reversibility (as proposed in [19])
and pure software-based one exclusively relying on undo code blocks (this is
achieved by preventing any thread to exploit the HTM support in our engine).
We did not compare with the performance achievable by some last generation
traditional speculative PDES platform just because the data reported in [19]
have shown that event granularity values of a few (tens of) microseconds do
not allow this type of platforms to provide significative speedup values (due to
the fact that they are based on explicit partitioning of the workload across the
threads, and on explicit message passing for event cross-scheduling, thus result-
ing more adequate for larger grain simulation models). Overall, we assessed our
proposal with a workload configuration just requiring alternative forms of specu-
lative parallelization (like the one we propose), as compared to the classical ones.

We have run this benchmark by varying the number of employed threads
from 1 to the maximum number of physical CPU-cores in the underlying machine
with HTM support, which is equipped with two Intel Haswell 3.5 GHz processors,
24 GB of RAM and runs Linux—kernel 3.26. For the case of single-thread runs,
the execution time values are those achieved by simply running the application
code on top of a calendar queue scheduler.

In Fig. 3 we report the observed execution time values while varying the
number of threads (each reported value resulting as the average over 5 different
samples). The data show how our mixed HW/SW approach outperforms both
the others, with a maximum gain of up to 10 % vs the pure HW approach and
of 30 % vs the pure SW approach (achieved when running with 4 threads). Such
a gain by the mixed approach is clearly related to the fact that write-intensive
phases lead the pure SW approach to become more intrusive, because of costly
generation of larger undo code blocks, which does not pay-off compared to the
reliance on pure HTM-based reversibility. On the other hand, the pure HW
approach does not allow the maximization of the usefulness of the carried out
speculative work for larger thread counts. In fact, the slope of the execution
time curve for the pure HW approach becomes slightly worse than the one of
the pure SW approach when moving from 3 to 4 threads. Our mixed approach is
able to get the best of the two by just avoiding excessive aborts of HTM-based
transactions when relying on larger thread counts, also reducing the cost of
undo code blocks’ generation thanks to a fraction of events executed with HTM
support. The data reported in Fig. 4 show how the pure HW approach suffers
from thrashing when increasing the thread count, while the pure SW approach
has minimal incidence of events undo. The mixed approach avoids the thrashing

6 The hyper-threading support offered by the processors has been excluded just to
avoid cross-thread interferences—due to conflicting hyper-threads’ accesses to hard-
ware resources—which might alter the reliability of our analysis.

Mixing Hardware and Software Reversibility 151

 100

 200

 300

 400

 500

 1 2 3 4

Ex
ec

ut
io

n
tim

e
(s

ec
on

ds
)

Number of threads

Mixed HW/SW
Pure HW
Pure SW

Fig. 3. Execution time - log scale on
the y-axis

0.000010

0.000100

0.001000

0.010000

0.100000

1.000000

 2 3 4

U
nd

o
pr

ob
ab

ilit
y

Number of threads

SW undo (mixed)
HW undo (mixed)

HW undo (pure)
SW undo (pure)

Fig. 4. Undo probability for HW and
SW speculatively processed events

phenomenon just like the pure SW approach does, but has less overhead since
executes a portion of the events via the HTM support.

5 Conclusions

We have presented a speculative PDES engine where reversibility of causal incon-
sistent events is based on a mix of hardware and software facilities. The hardware
part relies on the HTM support offered by modern processors, particularly the
Intel Haswell, while software reversibility is based on transparent instrumenta-
tion and on the dynamic generation of blocks of code able to undo memory side
effects. We have shown via an experimental study with a classical benchmark
how the proposed mixed approach can overcome the drawbacks of both the two
baseline ones, in terms of delivered performance by the simulation engine.

References

1. Brown, R.: Calendar queues: a fast O(1) priority queue implementation for the
simulation event set problem. Commun. ACM 31(10), 1220–1227 (1988)

2. Carothers, C.D., Perumalla, K.S., Fujimoto, R.M.: Efficient optimistic parallel sim-
ulations using reverse computation. ACM Trans. Model. Comput. Simul. 9(3),
224–253 (1999)

3. Cingolani, D., Pellegrini, A., Quaglia, F.: Transparently mixing undo logs and
software reversibility for state recovery in optimistic PDES. In: Proceedings of
the ACM SIGSIM Conference on Principles of Advanced Discrete Simulation,
pp. 211–222 (2015)

4. Dice, D., Shavit, N.: TLRW: return of the read-write lock. In: Proceedings of
the 22nd Annual ACM Symposium on Parallel Algorithms and Architectures,
pp. 284–293 (2010)

5. Ferscha, A.: Probabilistic adaptive direct optimism control in time warp. In: Pro-
ceedings of the 9th Workshop on Parallel and Distributed Simulation, pp. 120–129
(1995)

6. Ferscha, A., Luthi, J.: Estimating rollback overhead for optimism control in time
warp. In: Proceedings of the 28th Annual Simulation Symposium, pp. 2–12 (1995)

152 D. Cingolani et al.

7. Fujimoto, R.M.: Parallel discrete event simulation. Commun. ACM 33, 19–28
(1989)

8. Fujimoto, R.M.: Performance of time warp under synthetic workloads. In: Proceed-
ings of the Multiconference on Distributed Simulation, pp. 23–28 (1990)

9. Fujimoto, R.M., Tsai, J.J., Gopalakrishnan, G.: Design and evaluation of the roll-
back chip: special purpose hardware for time warp. IEEE Trans. Comput. 41(1),
68–82 (1992)

10. Jefferson, D.R.: Virtual time. ACM Trans. Program. Lang. Syst. 7(3), 404–425
(1985)

11. Jha, V., Bagrodia, R.: Simultaneous events and lookahead in simulation protocols.
ACM Trans. Model. Comput. Simul. 10(3), 241–267 (2000)

12. LaPre, J.M., Gonsiorowski, E.J., Carothers, C.D.: LORAIN: a step closer to the
PDES ’Holy Grail’. In: Proceedings of the ACM SIGSIM Conference on Principles
of Advanced Discrete Simulation, pp. 3–14 (2014)

13. Mehl, H.: A deterministic tie-breaking scheme for sequential and distributed sim-
ulation. In: Proceedings of the Workshop on Parallel and Distributed Simulation
(1992)

14. Pellegrini, A.: Hijacker: efficient static software instrumentation with applications
in high performance computing. In: Proceedings of the International Conference
on High Performance Computing and Simulation, pp. 650–655 (2013)

15. Pellegrini, A., Vitali, R., Quaglia, F., Pellegrini, A., Quaglia, F.: Autonomic state
management for optimistic simulation platforms. IEEE Trans. Parallel Distrib.
Syst. 26(6), 1560–1569 (2015)

16. Preiss, B.R., Loucks, W.M., MacIntyre, D.: Effects of the checkpoint interval on
time and space in time warp. ACM Trans. Model. Comput. Simul. 4(3), 223–253
(1994)

17. Quaglia, F., Baldoni, R.: Exploiting intra-object dependencies in parallel simula-
tion. Inf. Process. Lett. 70(3), 119–125 (1999)

18. Quaglia, F., Santoro, A.: Non-blocking checkpointing for optimistic parallel sim-
ulation: description and an implementation. IEEE Trans. Parallel Distrib. Syst.
14(6), 593–610 (2003)

19. Santini, E., Ianni, M., Pellegrini, A., Quaglia, F.: HTM based speculative parallel
discrete event simulation of very fine grain models. In: Proceedings of the 22nd
International Conference on High Performance Computing, pp. 145–154 (2015)

20. Soliman, H.M., Elmaghraby, A.S.: An analytical model for hybrid checkpointing
in time warp distributed simulation. IEEE Trans. Parallel Distrib. Syst. 9(10),
947–951 (1998)

21. West, D., Panesar, K.: Automatic incremental state saving. In: Proceedings of the
10th Workshop on Parallel and Distributed Simulation, pp. 78–85 (1996)

Elements of a Reversible
Object-Oriented Language

Work-in-Progress Report

Ulrik Pagh Schultz1(B) and Holger Bock Axelsen2

1 University of Southern Denmark, Odense, Denmark
ups@mmmi.sdu.dk

2 University of Copenhagen, Copenhagen, Denmark
funkstar@di.ku.dk

Abstract. This paper presents initial ideas for the design and imple-
mentation of a reversible object-oriented language based on extending
Janus with object-oriented concepts such as classes that encapsulate
behavior and state, inheritance, virtual dispatching, as well as construc-
tors. We show that virtual dispatching is a reversible decision mechanism
easily translatable to a standard reversible programming model such as
Janus, and we argue that reversible management of state can be accom-
plished using reversible constructors. The language is implemented in
terms of translation to standard Janus programs.

1 Introduction

Extant reversible programming languages such as Janus [7], Theseus [3] and
RFUN [8] have been developed with a focus on providing features (such as con-
trol flow operators) that enables the programmer to understand how execution
is performed reversibly. However, unlike most modern programming languages,
this is usually not paired with other programmer-friendly abstractions. This has
unfortunate consequences, in particular that reversible programmers have to
build implicit data types out of the given primitives when dealing with complex
data, leading to longer, less readable, and more error-prone reversible code.

From recent advances in compiler technology for reversible programming lan-
guages we know that it is possible to reversibly and efficiently represent and
manipulate complex data objects in the heap [2,6], opening the door for associ-
ated advances in reversible language design. Here, we consider reversible object-
orientation. Object-oriented programming uses classes as a means to providing
higher-level structures that encapsulate behavior and state. We show how a num-
ber of object-oriented concepts (encapsulation, inheritance, and virtual methods)
can be captured reversibly by extending the Janus language with support for

The authors acknowledge partial support from COST Action IC1405 Reversible
Computation. H.B. Axelsen was supported by the Danish Council for Independent
Research | Natural Sciences under the Foundations of Reversible Computing project.

c© Springer International Publishing Switzerland 2016
S. Devitt and I. Lanese (Eds.): RC 2016, LNCS 9720, pp. 153–159, 2016.
DOI: 10.1007/978-3-319-40578-0 10

154 U.P. Schultz and H.B. Axelsen

such features, and describe them by translation to ordinary Janus programs.
These concepts have been implemented in a prototype language named Joule
(a homonym of JOOL, Janus Object-Oriented Language), which will be used
throughout this paper to illustrate our ideas. This paper presents initial con-
cepts in the design of the Joule language, serving as a report on the work in
progress to provide a useful, reversible object-oriented programming language.

2 Reversible Object-Oriented Programming

Similarly to mainstream object-oriented languages such as C++ and Java, we
propose to extend Janus with a static inheritance mechanism encapsulating state
and behavior, and a corresponding virtual dispatching mechanism that dynami-
cally decides which method implementation to invoke based on the runtime type
of the receiver object. We hypothesize that such a language will allow programs
to be written at a higher level of abstraction without introducing complications
due to memory management.

Object-oriented polymorphism is implemented using inheritance, where oper-
ations are expressed in terms of an abstract interface implemented by sub-
classes. Polymorphism allows different implementations to be composed and then
selected at runtime depending on the specific class of each object. Since objects
do not change their class at runtime in our proposed language, the decision of
which method to invoke at runtime will be reversible: invoking and “uninvoking”
a specific method on a given object will always select the same method.

Regarding memory management, some object-oriented languages have been
conceived with limited-memory systems in mind, and today they are routinely
used to implement embedded systems. For example, the Beta language (an
early derivative of Simula-67, the first object-oriented language) included static
object allocation as a design criterion [4], to enable it to function on memory-
constrained systems with static and stack allocation. Today, the C++ language is
commonly used as a systems programming language: the combination of object-
oriented system decomposition and a disciplined approach to manual memory
management often offers significant advantages compared to, e.g., C.

3 Encapsulation and Construction

We now describe how classes are used as an encapsulation mechanism in Joule,
our proposed syntax for reversible method invocation, and how we propose to
deal with the issue of reversibly constructing objects.

3.1 Encapsulation

Object-oriented classes should not be considered as a module mechanism, but
classes have nonetheless been proven as a practical mechanism for providing the
encapsulation and abstraction required for, e.g., abstract datatypes [5]. Taking

Elements of a Reversible Object-Oriented Language 155

class Point {

int x; int y; // private fields, zero-initialized

Point(int x, int y) { // constructor, runs after allocation

this.x += x; this.y += y; // ’this.x’ is a field, ’x’ a parameter

}

procedure add_to_x(int x) { this.x += x; }

procedure add_to_y(int y) { this.y += y; }

}

Fig. 1. Joule implementation of a basic point class

inspiration from mainstream languages, we can allow classes to define fields and
methods that can operate on the data stored in these fields. The data is initialized
using a constructor and uninitialized by uncalling the constructor.

As a concrete example, we define a class Point that encapsulates two values,
x and y coordinates, and provides operations to manipulate these values (see
Fig. 1). The fields x and y can only be manipulated using the provided methods
(we consider all fields private). The fields are initialized upon object initialization
using the constructor. Note that the initial value of any field is assumed to be
zero (or null for a reference type). Joule objects can be considered as records
that contain a mix of runtime type information, integers, and object references
(the specific Janus-based implementation will be discussed later, in Sect. 5).

The class Point can be instantiated and methods can be invoked (called)
using the standard “.” operator for accessing an object. To support uncalling
method (uninvoking), we adopt “!” as an inverse operator.

local Point p = Point.new(5,8); // construct

p.add_to_x(2); // p.x==7

p!add_to_y(3); // p.y==5

Note the slightly nonstandard syntax C.new(...) for creating an object and
invoking the constructor, which in Java would have been written new C(...).
Calling and uncalling methods works similar to calling and uncalling procedures
in Janus. Nevertheless, the introduction of a class hierarchy will require a run-
time decision to select which implementation to use, as discussed in the next
section.

3.2 Construction and Unconstruction

To properly dispose of a locally allocated object we must restore the value of the
fields to their initial blank values from before the constructor was invoked.1 To

1 We here follow the memory model of Janus, where variables can be dynamically
allocated on the call stack using a local declaration that initializes the variable to
a given value, but must symmetrically by deallocated using a delocal declaration
that must provide the final value of the variable, resetting the memory and providing
an initializer for the variable when running the program in reverse.

156 U.P. Schultz and H.B. Axelsen

this end, we propose to uncall the constructor using arguments that return the
corresponding fields to zero (or null for references). The locally allocated variable
p of type Point now representing the point (7, 5) can for example be disposed
using delocal Point!new(7,5) p; The “!” operator is used here to denote running
the constructor in reverse with the given arguments, unconstructing the object.

class Counter {

int limit; // stop incrementing this.count when limit is reached

int value; // updated when calling ’count’

Counter(int limit) { this.limit += limit; }

procedure count(int flag) {

if(this.value<this.limit) { this.value += 1; }

else { flag += 1; } fi(flag==0);

}

procedure finalize(int uncount) { this.value -= uncount; }

}

Fig. 2. Joule implementation of counting up to a limit

In general objects may contain state that evolves over time and that is not ini-
tialized using constructor parameters. As an example, consider the class Counter

shown in Fig. 2. The field limit is initialized upon construction, but the field value

evolves over time: as long as its value is less than limit it is increased by one when
the method value is called (the parameter flag is used to signal when the limit
has been reached). Uncalling the constructor would not serve to return the field
value to a zero state. Here we could adopt the notion of a destructor to reset the
remaining state, but as an alternative we adopt a simple programming pattern
where a method (by convention named finalize) is used to bring the object back
to a state where it can be unconstructed by running the constructor in reverse:

local Counter c = Counter.new(3); // construct

local int flag = 0;

c.count(flag); c.count(flag);

c.finalize(2); // reset c.value to 0

delocal flag == 0;

delocal Counter!new(3) c; // unconstruct

The method finalize serves to “unfinalize” the object, bringing it into a state
where the constructor can be run backwards to reset the memory. In the concrete
example the finalization method takes an argument, but the finalization could
also have written with the assumption that the counter is in a specific state (e.g.,
limit reached), in which case no argument would have been needed.

We speculate that the question of how to unconstruct objects will be a
key challenge in reversible object-oriented programming, but that a notion of
reversible design patterns may provide useful programming abstractions. For
example, objects created by a factory design pattern could then be unconstructed
by a hypothetical unfactory pattern derived from the original factory pattern.
This issue is however left for future work.

Elements of a Reversible Object-Oriented Language 157

3.3 Object References

Most object-oriented programs rely on the ability for objects to refer to each
other, which raises the question of how to reversibly store references to other
objects in a field. We adopt the simple approach that references only can be
stored into null references, which is done using the := operator:

local Point p = Point.new(1,7); local Point q = null;

q := p; // essentially q += p;

q.add_to_x(2); // p.x==3

delocal q == p; // removes local variable

delocal Point!new(3,7) p; // unconstructs object

Reverse execution of the := operator is done by subtracting the provided refer-
ence from the reference being operated on, producing a null reference.

4 Inheritance and Virtual Calls

Inheritance often serves the dual purpose of creating a subtype hierarchy and
implementation reuse, and for simplicity we follow this approach here. Although
concepts of reverse inheritance have been proposed [1], we see inheritance and the
subtype hierarchy as a means to model the information on which the methods
operate. Thus, we believe that inheritance works the same in non-reversible
and reversible languages, although as noted earlier the immutability of type
information in an object is particularly advantageous for reversible computing
since it ensures that virtual calls are a reversible mechanism.

Our proposed syntax for calling and uncalling methods has already been
introduced, and straightforwardly generalizes to invocation of virtual methods.
As a concrete example, consider the Joule program shown in Fig. 3. The classes
Add, Sub and Twice all extend the common (abstract) superclass Op. The class
Twice takes a given operator as an argument, and applies it twice whenever the
app method is called (note the use of the reversible := null-reference assignment
operator). These classes can be used as follows:

abstract class Op { abstract procedure app(int var, int x); }

class Add extends Op { procedure app(int var, int x) { var += x; } }

class Sub extends Op { procedure app(int var, int x) { var -= x; } }

class Twice extends Op {

Op p;

Twice(Op p) { this.p := p; } // := only on null references

procedure app(int var, int x) {

local Op p = this.p; // copy of reference, fewer indirections

p.app(var,x); p.app(var,x); // Polymorphic call site

delocal p == this.p;

}

}

Fig. 3. Joule program implementing a hierarchy of reversible operators

158 U.P. Schultz and H.B. Axelsen

local Op a = Add.new(); local Op b = Sub.new();

local Op aa = Twice.new(a); local Op bb = Twice.new(b);

local int v = 0; aa.app(v,4); bb!app(v,1); delocal v == 10;

delocal Twice!new(b) bb; delocal Twice!new(a) aa;

delocal Sub!new() b; delocal Add!new() a;

Here, the calls p.app inside the method app in class Twice execute different meth-
ods, depending on the type of the Op object stored in the field p.

5 Implementation

Joule has been implemented by translation to Janus, and all the examples pro-
vided in this paper have been automatically compiled using our prototype Joule
compiler.2 Objects are currently represented as arrays of integers: the first ele-
ment is a compile-time constant determining the class of the object, the remain-
ing elements represent the fields of the object. Objects are allocated in a heap
represented as a two-dimensional array, thus object references are simply indices
into this array. The dimensions of the array are currently determined manually,
and memory management is currently manual and completely unsafe, meaning
objects could be deallocated in the wrong order leading to undefined behavior
(e.g., an object could be overwritten by user data).

Virtual calls are implemented using standard dispatcher functions, e.g., for
a given virtual method m a Janus procedure dispatch m is generated that uses
nested if-then-else-fi statements to select the specific method implementation to
call depending on the type of the receiver object (the value of the first element
of the array representing the receiver object). Uncalling a method is simply
done by uncalling the corresponding dispatcher procedure. This implementation
approach is simple and supports compile-time modularity (e.g., classes can be
written independently) but rules out runtime modularity (e.g., dynamic class
loading). Since reversible computing normally operates under a closed-world
hypothesis, this restriction is considered appropriate for the time being.

References

1. Chirila, C.B., Crescenzo, P., Lahire, P.: Reverse inheritance: improving class library
reuse in Eiffel. In: Langages et Modeles a Objets (2007)

2. Hansen, J.S.K.: Translation of a reversible functional programming language. Mas-
ter’s thesis, Department of Computer Science, University of Copenhagen (2014)

3. James, R.P., Sabry, A.: Theseus: a high level language for reversible computing,
work-in-progress report at RC (2014). http://www.cs.indiana.edu/∼sabry/papers/
theseus.pdf

4. Kristensen, B.B., Madsen, O.L., Møller-Pedersen, B.: The when, why and why not
of the beta programming language. In: Proceedings of the Third ACM SIGPLAN
Conference on History of Programming Languages, pp. 10-1–10-57. HOPL III, NY,
USA (2007). http://doi.acm.org/10.1145/1238844.1238854

2 Source code for compiler, examples, and generated Janus programs are available at
https://github.com/joule-lang/joule/tree/master/doc/papers/rc16.

http://www.cs.indiana.edu/~sabry/papers/theseus.pdf
http://www.cs.indiana.edu/~sabry/papers/theseus.pdf
http://doi.acm.org/10.1145/1238844.1238854
https://github.com/joule-lang/joule/tree/master/doc/papers/rc16

Elements of a Reversible Object-Oriented Language 159

5. Meyer, B.: Object-Oriented Software Construction, vol. 2. Prentice Hall, New York
(1988)

6. Mogensen, T.: Garbage collection for reversible functional languages. In: Krivine,
J., Stefani, J.B. (eds.) RC 2015. LNCS, vol. 9138, pp. 79–94. Springer, Heidelberg
(2015)

7. Yokoyama, T., Axelsen, H.B., Glück, R.: Principles of a reversible programming
language. In: Proceedings of Computing Frontiers, pp. 43–54. ACM (2008)

8. Yokoyama, T., Axelsen, H.B., Glück, R.: Towards a reversible functional language.
In: De Vos, A., Wille, R. (eds.) RC 2011. LNCS, vol. 7165, pp. 14–29. Springer,
Heidelberg (2012)

Initial Ideas for Automatic Design
and Verification of Control Logic

in Reversible HDLs

Work in Progress Report

Robert Wille1,2(B), Oliver Keszocze2,3, Lars Othmer3,
Michael Kirkedal Thomsen4, and Rolf Drechsler2,3

1 Institute for Integrated Circuits, Johannes Kepler University, Linz, Austria
robert.wille@jku.at

2 Cyber-Physical Systems, DFKI GmbH, Bremen, Germany
{keszocze,lothmer,drechsler}@informatik.uni-bremen.de

3 Institute of Computer Science, University of Bremen, Bremen, Germany
4 Department of Computer Science, University of Copenhagen,

Copenhagen, Denmark
shapper@diku.dk

Abstract. In imperative reversible languages the commonly used con-
ditional statements must, in addition to the established if -condition for
forward computation, be extended with an additional fi-condition for
backward computation. Unfortunately, deriving correct and consistent
fi-conditions is often not obvious. Moreover, implementations exist which
may not be realized with a reversible control flow at all. In this work,
we propose automatic methods for descriptions in the reversible HDL
SyReC that can generate the required fi-conditions and check whether
a reversible control flow indeed can be realized. The envisioned solution
utilizes predicate transformer semantics based on Hoare logic. The pre-
sented ideas constitute the first steps towards automatic methods for
these important designs steps in the domain of reversible circuit design.

1 Introduction

In order to guarantee reversibility of the descriptions of reversible HDLs (such
as SyReC [1]), a reversible control flow has to be implemented. For example,
conditional statements do not only require an if -condition (in order to decide
which of the then- or the else-block is to be executed next), but also a so-called
fi -condition (for the same reason, if the computation is conducted in reverse
direction). This was first introduced in Janus where it is called an assertion [2].

Moreover, HDL descriptions do occur from which it is not possible to real-
ize a reversible control flow at all. Hence, designers of reversible circuits and
systems are not only faced with the problem of properly describing a reversible
control flow, but also the uncertainty whether such a control flow even is possible.
Section 2 describes and illustrates these issues in more detail.

c© Springer International Publishing Switzerland 2016
S. Devitt and I. Lanese (Eds.): RC 2016, LNCS 9720, pp. 160–166, 2016.
DOI: 10.1007/978-3-319-40578-0 11

Initial Ideas for Automatic Design and Verification of Control Logic 161

In this work, we propose the ideas to tackle these two problems. A method-
ology is envisioned that applies symbolic simulation in order to automatically
generate a representation of all system states that originated from the execu-
tion of a conditional statement. From that, the respectively desired fi -condition
can be derived. Moreover, the symbolic simulation (together with some solving
engines) can also be utilized to check whether a given HDL description allows
for a fully reversible control flow at all; in other words, whether the control flow
of the description is total. As a result, some manual and time-consuming tasks
for the design of reversible circuits and systems could be automated.

2 Control Logic in Reversible HDLs

Relying on reversible assignments, a reversible data flow is ensured. However, in
a similar fashion the control flow has to be made reversible. This is clearly man-
ifested in conditional statements. Here, in contrast to non-reversible languages,
it has to be guaranteed that the correct block (either, the then-block or the else-
block) is executed when performing the computations in reverse direction. To
this end, an additional fi -condition has to be provided for each conditional state-
ment. If computations are performed in forward direction, the fi -condition can
be applied as an assertion. If computations are performed in reverse direction,
the fi -condition decides whether the then-block or the else-block is supposed to
be executed next and the if -condition can be used as the end-assertion. The
following example illustrates the idea.

Example 1. Consider the following two conditional statements:

if (b = 5) then

x += y // executed if b = 5

else

x -= y // executed if b != 5

fi (b = 5);

if ((x % 2) = 1) then

x += 3;

else

x += 1;

y += c;

fi (((x - 3) % 2) = 1)

The first one does not modify any of the signals of the conditional expres-
sion (signal b in this case). Hence, the if - and the fi -condition are identical. In
contrast, the then-block of the second conditional statement modifies the value
of signal x which is used in the conditional expression. Hence, a suitable fi -
condition different from the if -condition has to be provided in order to ensure
correct execution semantics in both directions.

The examples above are very simple, but in general it is not obvious to
derive a correct fi -condition. In particular when more complex or even nested
conditional statements have to be considered, the generation of a correct control
logic for a reversible circuit becomes a hard and error-prone task, which has been
conducted manually thus far.

Besides that, another problem poses an obstacle to the correct generation
of control logic for reversible circuits. Statements in the then/else-blocks could
prevent the generation of a fully reversible control logic; in other words, the

162 R. Wille et al.

if -conditions together with two statements might not implement a total and
injective (bijective) function. Then, only fi -conditions that satisfy parts of the
range can be derived. The following example illustrates the problem.

Example 2. Consider the following conditional statement:

if (x = y) then

x += 1

else

y += 2

fi ((x - 1) = y);

This statement works for most of the possible assignments of x, y in both direc-
tions. However, a problem occurs if e.g. x = 4 and y = 1 are considered. In
forward direction, this would not satisfy the if -condition and, hence, would trig-
ger the execution of the else-block (leading to x = 4 and y = 3). This assignment
however would satisfy the fi -condition, i.e., if executed in reverse direction, the
then-block would reversibly be executed (leading to x = 3 and y = 3). In other
words, the two input states (x, y) = (4, 1) and (x, y) = (3, 3) both map to the
output state (4, 3) – a clear violation of the reversible computing paradigm.

Cases like this are called partially reversible control statements in the follow-
ing, as they now implement a partial reversible function. Often the conditional
statements become partial reversible only because of a very small set of possi-
ble signal assignments (with k ∈ N) which both lead to the fi -condition being
satisfied. , so detecting such signals becomes even harder than generating the
fi -condition. Again, no automatic support is available to the designers thus far.

Overall, this leads to two major challenges to be addressed when designing
control logic in HDL-based synthesis of reversible circuits, namely (1) how to effi-
ciently generate a correct fi -condition for a given control statement and (2) how
to efficiently check whether a control statement is partially or fully reversible.

3 Envisioned Solution

In this section, we envision a methodology that relies on the symbolic simulation
of a given HDL description to automatically address the challenges discussed
above. Specifically, we utilize predicate transformer semantics that is based on
Hoare logic [3]. In the following, we first describe how these semantics can be
applied for fi -generation. Afterwards, we describe the utilization in order to
automatically check for partial reversibility.

3.1 Generation of fi-Conditions

The if -condition of a conditional statement is a symbolic description of all system
states which are supposed to enter the then-block. In a similar fashion, the fi -
condition is a symbolic description of the system states which originated from
executing the then-block. Hence, in order to automatically derive a fi -condition,

Initial Ideas for Automatic Design and Verification of Control Logic 163

it is sufficient to perform a symbolic simulation. To this end, Hoare logic can be
utilized. More formally, for a given if -condition B and a then-block composed
of statements Sthen, the desired fi -condition is equivalent to the strongest post-
condition sp(Sthen, B).

However, in order to become applicable for the purposes considered here,
some additional adjustments and assumptions have to be employed. In order to
describe those properly, we first assume the notation of a reversible conditional
statement to be

Sif := if (B) then Sthen else Selse fi (), (1)

where Sif , B, Sthen, and Selse denote the entire conditional statement, the if -
condition, the statements of the then-block, and the statements of the else-block,
respectively. Note that the fi -condition is intentionally left empty as it is about
to be generated. Furthermore, we assume that Sthen and Selse are fully reversible
(sequences of) statements which, however, may be empty (i.e. Sthen = skip or
Selse = skip is possible). Finally, we firstly assume that there are no nested
if-statements.

The overall procedure for fi -generation is given in Algorithm 1. Initially, it is
assumed that all system states are allowed to execute the statements; hence the
pre-condition P is set to true (line 1). Afterwards, all statements of the HDL
description are traversed (line 2). If the currently considered statement S is not
a conditional statement, P is updated accordingly using Hoare rules for skip or
assignment (line 4). The rule for statement sequencing is implicitly employed
by iteratively updating the condition P . Otherwise, the Hoare rule for a condi-
tional is applied which splits the determination of the post-condition into two
steps (lines 6/7), leading to a post-condition Pthen obtained for the then-block
and a post-condition Pelse obtained for the else-block. The disjunction of both
yields the updated description for P (line 8). Moreover, the post-condition Pthen

additionally yields the fi -condition for the currently considered if-statement and
can accordingly be updated (line 9).

Using Algorithm 1, fi -conditions can automatically be generated for many
HDL descriptions. However, problems remain when nested if-statements occur.
Then, two further issues have to be dealt with:

1. Inner if-statements would be skipped
This is because an entire conditional statement Sif is always considered to
be a single statement S ∈ HDL as defined in Eq. 1. Hence, strictly following
Algorithm 1 would indeed generate a fi -condition for Sif but, afterwards, move
on with the next statement S′ ∈ HDL – leaving possible further if-statements
within Sthen and Selse unconsidered.

2. Inner if-statements are subject to restricted system states
In order to correctly determine the strongest post-condition and, hence, the fi -
condition, P is constantly updated in Algorithm 1. However, if a fi -condition
for an inner if-statement is to be generated, the if -conditions of the respec-
tive outer if-statements have to be additionally employed. This is not yet
incorporated in Algorithm 1.

164 R. Wille et al.

Algorithm 1: Generation of fi -conditions
Data: Reversible HDL description HDL given as a list of statements S
Result: Reversible HDL description with fi-conditions

1 P ← true
2 foreach S ∈ HDL do
3 if S is not an if-statement then
4 P ← sp(S, P)
5 else
6 Pthen ← sp(Sthen, P ∧ B)
7 Pelse ← sp(Selse, P ∧ ¬B)
8 P ← Pthen ∨ Pelse

9 add Pthen as fi-condition to S

Obviously, the first issue can easily be handled by modifying Algorithm 1 such
that not only top level statements are traversed, but also all statements within
the respective then- and else-blocks. Dealing with the second issue, however,
requires a more elaborated adjustment and is left for future work.

Algorithm 2: fi -generation for nested if-statements
Data: If-statement Sif , pre-condition P valid before Sif

Result: Returns post-condition of provided if-statement; recursively adds valid
fi-conditions to all if-statements visited in the process (including itself)

/* Initialize block conditions */

1 Pthen ← P ∧ B
2 Pelse ← P ∧ ¬B

/* Iterate over statements */

3 foreach S ∈ Sthen do
4 if S is if-statement then
5 Pthen ← result of Algorithm 2 with S and Pthen

6 attach Pthen as fi-condition to S

7 else
8 Pthen ← sp(S, Pthen)

9 foreach S ∈ Selse do
10 if S is if-statement then
11 Pelse ← result of Algorithm 2 with S and Pelse

12 attach Pelse as fi-condition to S

13 else
14 Pelse ← sp(S, Pelse)

15 return Pthen ∨ Pelse

Initial Ideas for Automatic Design and Verification of Control Logic 165

3.2 Check for Partial Reversibility

As discussed in Sect. 2, checking whether a given reversible HDL description
indeed is fully reversible remains the second challenge designers have to address
when creating control logic for reversible circuits and systems. A (sequence of)
statements S is partially reversible, if there exist two different input states whose
execution of S yields the same output state. Since assignment statements are by
definition fully reversible, they can never be the reason for a partial reversible
HDL description. In contrast, conditional statements allow for the execution of
two different sequences of statements (the then-block and the else-block) and,
hence, may indeed transform two different input states to the same output states
(as illustrated in Example 2).

In order to check that, the method for fi -generation as introduced above can
be re-used and accordingly extended. More precisely, recall that a (generated)
post-condition sp(Sthen, P ∧B) is a symbolic representation of all system states
that originate from the execution of all statements in the then-block. Accord-
ingly, a (generated) post-condition sp(Selse, P ∧¬B) is a symbolic representation
of all system states that originate from the execution of all statements in the else-
block. Hence, if there exists an output state which originated from two different
input states, the conjunction

sp(Sthen, P ∧ B) ∧ sp(Selse, P ∧ ¬B) (2)

must evaluate to true.
This constitutes a typical satisfiability problem (SAT, cf. [4]): If an assignment

to all variables of an HDL description exists which satisfies Eq. 2, a system state
showing the partial reversibility can be derived. If it has been shown that no such
assignment exists, the HDL description has been proven to be fully reversible. In
order to conduct those checks, various powerful solving engines (so called SAT
solvers) have been proposed in the past and can be utilized for this purpose. To
this end, Eq. 2 has to be converted into a proper format and, afterwards, simply
passed to a SAT solver. Note that checking for partial reversibility has also been
addressed in [5] for Boolean functions where a similar scheme is applied.

4 Conclusions

In this work, we considered the generation of control logic in HDL descriptions
following the reversible computing paradigm. Here, obstacles occur since (1) cor-
responding descriptions may not necessarily be reversible and (2) conditional
statements in reversible logic require a fi -condition in addition to the estab-
lished if -condition. Both issues resulted in new design tasks which have been
addressed manually thus far. We envisioned a solution which applies symbolic
simulation as well as solvers for satisfiability problems in order to automatically
tackle these tasks. In future work, we aim for addressing the open issues stated
above and implementing the proposed ideas. Afterwards, an evaluation of the
applicability of the resulting solutions will be conducted. If successful, important

166 R. Wille et al.

tasks for the design of reversible circuits and systems eventually got automated
– the resulting methods will be an important part of future design tools.

Acknowledgments. This work has partially been supported by the EU COST Action
IC1405.

References

1. Wille, R., Schönborn, E., Soeken, M., Drechsler, R.: SyReC: a hardware description
language for the specification and synthesis of reversible circuits. Integr. VLSI J.
53, 39–53 (2016)

2. Yokoyama, T., Axelsen, H.B., Glück, R.: Principles of a reversible programming
language. In: Proceedings of 5th Conference on Computing Frontiers (CF 2008),
pp. 43–54. ACM (2008)

3. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM
12(10), 576–580 (1969)

4. Biere, A., Biere, A., Heule, M., van Maaren, H., Walsh, T.: Handbook of Satisfia-
bility. IOS Press, Amsterdam (2009)

5. Wille, R., Lye, A., Niemann, P.: Checking reversibility of Boolean functions. In:
Conference on Reversible Computation (2016)

Quantum Computing

Design and Fabrication of CSWAP Gate Based
on Nano-Electromechanical Systems

Mert Yüksel1, Selçuk Oğuz Erbil1, Atakan B. Arı1,
and M. Selim Hanay1,2(&)

1 Department of Mechanical Engineering,
Bilkent University, Bilkent, Ankara 06800, Turkey

selimhanay@bilkent.edu.tr
2 National Nanotechnology Research Center (UNAM),

Bilkent University, Bilkent, Ankara 06800, Turkey

Abstract. In order to reduce undesired heat dissipation, reversible logic offers a
promising solution where the erasure of information can be avoided to overcome
the Landauer limit. Among the reversible logic gates, Fredkin (CSWAP) gate
can be used to compute any Boolean function in a reversible manner. To realize
reversible computation gates, Nano-electromechanical Systems (NEMS) offer a
viable platform, since NEMS can be produced en masse using microfabrication
technology and controlled electronically at high-speeds. In this work-in-progress
paper, design and fabrication of a NEMS-based implementation of a CSWAP
gate is presented. In the design, the binary information is stored by the buckling
direction of nanomechanical beams and CSWAP operation is accomplished
through a mechanism which can selectively allow/block the forces from input
stages to the output stages. The gate design is realized by fabricating NEMS
devices on a Silicon-on-Insulator substrate.

Keywords: Reversible logic � CSWAP gate � NEMS � Buckling �
Nanomechanical computation

1 Introduction

Transistor-based irreversible computation is the most commonly used paradigm for
information processing which has shown a significant improvement in last few dec-
ades, especially with the adoption of complementary metal-oxide semiconductor
(CMOS) transistor technology. However, further development of irreversible com-
puting is limited by the inability to reduce heat dissipation. Landauer demonstrated that
one-bit erasure of information can only be achieved with at least kBTln2, where kB is the
Boltzmann’s constant and T is the operating temperature, amount of heat dissipation to
the environment during the irreversible logic operation [1], which was experimentally
demonstrated in 2012 [2]. Since then, reversible computation has been receiving great
attention with its ability to lower heat dissipation. It was shown that reversible logic can
also be used for information processing [3].

Development of reversible logic gates is considered as a basis of the reversible
computation as proposed by CSWAP (Fredkin), Toffoli, Feynman, and others. CSWAP

© Springer International Publishing Switzerland 2016
S. Devitt and I. Lanese (Eds.): RC 2016, LNCS 9720, pp. 169–174, 2016.
DOI: 10.1007/978-3-319-40578-0_12

gate is one of the universal reversible logic gates, meaning that all Boolean operations
can be performed with a system that consists of only CSWAP gates. Mechanical
implementations of logic gates were proposed before [4–6]; however, the design
proposed here has higher integration density and does not require external signal
generators to drive resonance motion; as a result, the cost and complexity of the
proposed system is expected to be lower. Developments in NEMS technology, which
allows the fabrication of mechanical systems working at high speeds [7] and at high
temperatures [8], enable the realization of reversible logic gates, such as the CSWAP
gate architecture presented here.

In this work-in progress paper, NEMS based implementation of CSWAP gate
design is introduced and working principle of the proposed system is discussed. Pro-
posed design is computation-wise reversible. A basic fabrication process of the
architecture is also demonstrated.

2 Information Storage via Buckling

In this work, we propose to store information in NEMS devices by using the buckling
of beam structures [9]. Here, each beam represents one-bit information where the
buckling direction (left or right) corresponds to logic 0 or logic 1. Figure 1 demon-
strates how one-bit information can be registered on NEMS structures via buckling.
The beams are designed as pinned and anchored at one end. The other end, where a
compressive force is applied, is free to move axially and restrained from any transverse
movement in order to observe longitudinal buckling. The beam is sandwiched by two
electrodes (A1/B1) which apply a preloading force to the beam in order to determine
buckling direction when the voltage is applied. For instance, if 5 V is applied to the
electrode on the right, an electrostatic attraction force develops which preloads the
beam to the right-hand side. After the beam is directed by the electrodes, a compressive
force is applied via electrostatic actuation. Upon the exertion of the compressive force,
the beam buckles to the direction determined by the preloading force. In order to buckle
the beam, the compressive force must exceed the critical value which is determined by:

Fcritical ¼ p2EI
L2

ð1Þ

where E is Young’s Modulus, L is the length of the beam and I is the moment of inertia
[10].

Threshold for the compressive force to induce buckling is calculated to be 22.5 lN
for a typical device with 2lm length, 150 nm width and 250 nm thickness. This force
can be produced by an electrostatic comb drive composed of capacitive gates with
350 nm gaps as demonstrated in Fig. 1. The critical voltage applied to comb drive is
calculated by:

Vcritical ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2dFcritical

�Nt

r

ð2Þ

170 M. Yüksel et al.

where � is electric permittivity, N is number of fingers, t is thickness of a finger and d is
gap spacing between fingers of the comb drive [11].

Different dimensions for the beam can be considered to optimize N and Vcritical. It is
more convenient to have fewer fingers for comb drive for simplicity of the design.
Also, having a low critical voltage is desired to decrease the power consumption. For
different lengths (L) of the beam, N � Vcritical relation is shown in Fig. 2. It can be
observed that for the longer lengths of the beams, it is easier to reach Fcritical with lower
Vcritical. Although Vcritical levels are relatively higher than voltage values commonly
used in digital circuits, these voltage levels can be achieved with low power using
DC-to-DC voltage converters. More importantly, triggering voltage will only be used
to initiate buckling process – the actual data to be written can still be applied at the
standard logic voltages such as 5.0 V or 3.3 V. In this regard, triggering voltage is
similar to the clock signals of conventional digital circuits: each stage of the logic gates
computes the output when a triggering voltage compresses the set of beams in turn.

Fig. 1. Demonstration of one-bit information storage: (a) Off-state. Nano-mechanical beam is
shown in gray, electrodes used to preload the data are shown in blue and the comb-drive to
induce buckling is shown in green. (b) On-State Logic 1: A voltage is applied to B1 gate to first
preload the beam (exerting Fp), then the beam is buckled to the right by the application of
buckling force Fb. (c) On-State Logic 0: A1 gate first preloads the beam, which is then buckled to
the left. (Color figure online)

Fig. 2. Number of fingers ðNÞ vs. critical voltage (Vcritical) for beams with different lengths. Top
green curve is for 2 µm, blue curve is for 5 µm and bored curve is for 10 µm long beams. (Color
figure online)

Design and Fabrication of CSWAP Gate 171

3 NEMS Based CSWAP Gate

3.1 Design

Principle of the CSWAP gate is to swap the inputs when the controller bit is set (logic
high), and to rehash the inputs when the controller bit is reset (logic low). In this
design, inputs are applied to the gate by preloading the beams to the logic 1 or 0 states.
The displacement of the input beams, after they buckle, leads to compression or tension
of the spring-like structures linking inputs to outputs (Fig. 3). Through these links, the
input beams exert either a push or pull force, depending on their logic state, to preload
the output beams. Each output beam is connected to both input beams and the
equivalent preloading force determines the eventual state of the output beam.

The symmetry of the force transmission between input beams to output beams is
broken by the controller beam, C. Controller beam (C) disrupts a direct transmission of
one of the input forces (A or B), by locating one of its arm to the gap found on the
connecting beam. When C is logic 0, the connection between A and BO, and B and AO
are disrupted, therefore the preloading will favor A for A0, and B for BO respectively,
which will map the outputs in the way of A to A0 and B to B0. On the other hand,
when C is logic 1, the connection between A and AO, and B and BO are disrupted by
controller, consequently outputs AO and BO will swap the inputs and read B and A
respectively. Thus, CSWAP gate architecture is mechanically achieved as demon-
strated in Fig. 3. The required processing area for one CSWAP gate is approximately
150 lm2 which includes the part of the comb drive transmitting buckling force. This
area translates into an integration density of 200,000 gates per cm2.

Fig. 3. NEMS based CSWAP gate (a) CSWAP architecture (b) example demonstration of
CSWAP operation. Inputs are taken as A = 0, B = 1, C = 1. Outputs; AO = B = 1, BO = A = 1,
C’ = 1. Forces transmitted by the input stages through the springs are either blocked or
uninterrupted depending on the controller bit.

172 M. Yüksel et al.

3.2 Nano-Fabrication

A proof-of-principle fabrication process has been implemented using dices of a com-
mercially available Silicon on Insulator (SOI) wafer which has a composition of:
250 nm thick p-doped Silicon on top of 3 µm buried oxide (BOX) with a 650 µm
silicon base substrate. After the standard cleaning procedure, Electron-beam lithogra-
phy was performed using PMMA bilayer as resist. Following the patterning, a 60 nm
thick layer of SiO2 dry etch mask was deposited via E-Beam evaporation. The sample
was left in an acetone bath for lift-off overnight. For the next step, the top Silicon layer
is anisotropically etched with an Inductively Coupled Plasma device, using Cl2 plasma,
until the BOX layer. Then the patterned Silicon structures were suspended by wet
etching the BOX layer using a 1:7 Buffered Oxide Etch solution. Since the SiO2 dry
etch mask was also removed during the wet etching step, there was no need for an extra
mask removal step (Fig. 4).

For future progress, Au electrodes and comb drive will be fabricated on the sample
respectively. Electrodes will be patterned by EBL. Following that step, a layer Au will
be deposited by a Physical Thermal Deposition device and the sample will be left for
lift-off. After the fabrication of the electrodes, comb drives will be fabricated using
similar steps (Fig. 5).

(a) (b) (c)

(d) (e)

Fig. 4. Fabrication Process Flow: (a) SOI Chip, (b) after EBL and SiO2 deposition, (c) after
lift-off process, (d) after ICP etching of Si layer, (e) topside view of the system

Fig. 5. SEM images of the fabricated proof-of-principle device from different perspectives. The
scale bars are 3 µm in each image.

Design and Fabrication of CSWAP Gate 173

4 Conclusion

In this work-in-progress paper, logically-reversible CSWAP gates are designed using
NEMS technology. One-bit data can be stored on a nano-mechanical beam depending
on its direction of buckling. Basic calculations are presented for forces and voltages
necessary to induce buckling in nanoscale beams. A basic nano-fabrication process is
demonstrated to implement the CSWAP gate. By further integrating structures to
trigger buckling process, information processing will be demonstrated in the future.
With its large integration density and high speeds, NEMS technology is a promising
platform to implement reversible logic operations.

Acknowledgements. This work was funded by The Scientific and Technological Research
Council of Turkey (TÜBİTAK) with project number 115E833. We acknowledge support from
European Cooperation in Science and Technology (COST) under Action IC1405.

References

1. Landauer, R.: Irreversibility and heat generation in the computing process. IBM J. Res. Dev.
5, 183–191 (1961)

2. Berut, A., Arakelyan, A., Petrosyan, A., Ciliberto, S., Dillenschneider, R., Lutz, E.:
Experimental verification of Landauer’s principle linking information and thermodynamics.
Nature 483, 187–189 (2012)

3. Bennet, C.H.: Logical reversibility of computation. IBM J. Res. Dev. 17(6), 525–532 (1973)
4. Sharma, A., Ram, W.S., Amarnath, C.: Mechanical logic devices and circuits. NaCoMM 9,

235–239 (2009)
5. Wenzler, J.S., Dunn, T., Toffoli, T., Mohanty, P.: A nanomechanical Fredkin gate. Nano

Lett. 14(1), 89–93 (2013)
6. Mahboob, I., Mounaix, M., Nishiguchi, K., Fujiwara, A., Yamaguchi, H.: A multimode

electromechanical parametric resonator array. Sci. Rep. 4 (2014). Article no. 4448
7. Huang, X.M.H., Zorman, C.A., Mehregany, M., Roukes, M.L.: Nanodevice motion at

microwave frequencies. Nature 421, 496–496 (2003)
8. Lee, T.H.: Electromechanical computing at 500 °C using silicon carbide. Science 329

(5997), 1316–1318 (2010)
9. Merkle, R.C.: Two types of mechanical reversible logic. Nanotechnology 4(2), 114 (1993)
10. Hopcroft, M.A.: What is the Young’s modulus of silicon. IEEE J. Microelectromech. Syst.

19, 229–238 (2010)
11. Legtenberg, R., Groeneveld, A.W., Elwenspoek, M.: Comb-drive actuators for large

displacements. J. Micromech. Microeng. 6, 320–329 (1996). IOPscience

174 M. Yüksel et al.

Design of p-Valued Deutsch Quantum Gates
with Multiple Control Signals

and Mixed Polarity

Claudio Moraga(&)

Chair Informatics 1, TU Dortmund University, 44227 Dortmund, Germany
claudio.moraga@tu-dortmund.de

Abstract. This paper presents a detailed study of the realization of p–valued
Deutsch quantum gates with n > 2 controlling signals, both under conjunctive
and disjunctive control, and including zero or mixed polarity of the controlling
signals. It is shown that the realization complexity is in O(pn − 1). The realiza-
tion comprises only Muthukrishnan-Stroud elementary quantum gates.

Keywords: p-valued Deutsch gate � Multi-control � Mixed polarity � Quantum
computing

1 Introduction

Deutsch introduced in 1989 [3] a universal (binary) quantum gate that may be seen as a
generalization of the earlier reversible Toffoli gate [8]. In the quantum world, the work
on systems with p “levels” is possible and can in principle offer a trade-off between
complexity of realization and computing capability of elementary circuits. (See e.g. the
introduction of [6]).

The development of p-valued quantum gates and circuits was strongly influenced
by the work of Muthukrishnan and Stroud [6], who introduced a model for a
multi-level quantum system and proved that any unitary operations on any number of
p-level systems can be decomposed into elementary controlled gates working on just
two “qupits” [1] at a time. The elementary gates being active iff the control qupit is in
the state |p − 1〉, otherwise being inhibited and behaving as an identity. Furthermore,
the authors reported experimental realization of controlled gates based on the linear ion
trap model. In what follows, p will be a prime, with p > 2, taking advantage of
additions modulo p and the fact that both p and pk are odd.

A design of a p-levels Deutsch gate with two control qupits was briefly presented in
[1]; revisited and given an extended functionality in [4, 5]. It was shown that the
Deutsch gate may be realized with 2p + 1 MS auxiliary gates. Notice that if p = 2,
2p + 1 = 5, and this value equals that of [2].

Work leading to this paper was partially supported by the EU COST-Action IC-1405 on Reversible
Computation – Extending Horizons of Computing.

© Springer International Publishing Switzerland 2016
S. Devitt and I. Lanese (Eds.): RC 2016, LNCS 9720, pp. 175–180, 2016.
DOI: 10.1007/978-3-319-40578-0_13

2 Realization of a p-Valued Deutsch Quantum Gate
with Three Controlling Qupits

In analogy to [2], a Deutsch quantum gate with three controlling qupits will be decom-
posed in a cascade of simple Muthukrishnan-Stroud (MS) gates, each controlled by a
different qupit, followed by a cascade of Deutsch gates controlled by two qupits –(which,
as shown in [5] may also be realized using only MS gates)– closing with a gate with
“pseudo-three” control qupits. It is fairly clear that a closing gate taking directly all three
control qupits would make the gate scheme “recursive”. This is why a controlled-
controlled-X1 was used to drive the last gate on the target line, this sub-structure, however,
repeated p − 1 times. The proposed realization is shown in Fig. 1.

For the analysis of behaviour of the Deutsch gate, the following notational sim-
plifications will be adopted:

• The gate A will be merged with the MS gates controlled by |a〉 inside the explicit
realizations of D and E, respectively, to build a gate A.

• The gate B will be merged with the MS gates controlled by |b〉 inside the explicit
realizations of D and F, respectively, to build a gate B.

• The gate C will be merged with the MS gates controlled by |v〉 inside the explicit
realizations of E and F, respectively, to build a gate C.

• The controlled gates inside the blocks of the realization of D, E, and F, will be
called D, E, and F, respectively.

Table 1 summarizes the behaviour specification of theMS-gates building the Deutsch
gate. In the table q = p − 1, and |x〉 represents any state different from |p–1〉. The column

Fig. 1. Realization of a Deutsch quantum gate with three control qupits. Top: High level
scheme. Bottom: Detailed realization of the double-controlled auxiliary gates.

1 X represents a Muthukrishnan-Stroud (MS) gate realizing a p-valued Pauli matrix shifting by 1
(modulo p) the state of its input qupit when its controlling qupits are in the state |p − 1〉.

176 C. Moraga

labeled and specifies the behavior of the Deutsch gate with conjunctive control (all
controlling qupits must be in state |p–1〉 to activate the Deutsch gate), meanwhile the
column labeled or, shows the specification with disjunctive control (at least one con-
trolling qupit must be in state |p–1〉). The solution of the corresponding seven variables
systems of equations is given in details in [5]. The results are presented in Table 2.

As shown in Table 2, it is fairly obvious that in the case of conjunctive control, the
identity blocks E and F may be deleted. As shown in [5], the Deutsch gate with
conjunctive control requires 2p2 + 4p + 1 MS gates, meanwhile the Deutsch gate with
disjunctive control needs 2p2 + 8p − 1 MS gates. In summary the realization com-
plexity of the gate is in O(p2).

With respect to the required roots of Q it should be recalled that any non-singular
matrix has a p–th root [9]. A p–th root of Q may easily be calculated in Matlab or
Scilab with the statement expm[(1/p)*logm(Q)]. Since Q by definition is unitary,
and unitary matrices form a multiplicative group, then all integer powers of Q are also
unitary. Moreover in [4] it was shown that the p–th root of Q is also unitary. Therefore
the quantum realizability of all required MS gates is secured.

3 Introducing Mixed Polarity

The concept of “mixed polarity” applied to Toffoli gates was possibly introduced in [7]
for the binary case, to indicate which controlling qupits are effective in state |1〉, and
which are effective in state |0〉. In the circuit representation, “white dots” were used to

Table 1. Abstract level behavior of the Deutsch gate of Fig. 1

|a〉 |b〉 |v〉 A B C D E F G and or

0 |x〉 |x〉 |x〉 I I I Iq Iq Iq Iq I I
1 |x〉 |x〉 |p–1〉 I I C Iq Eq Fq Gq I Q
2 |x〉 |p–1〉 |x〉 I B I Dq Iq F Iq I Q
3 |p–1〉 |x〉 |x〉 A I I D E Iq Iq I Q
4 |x〉 |p–1〉 |p–1〉 I B C Dq Eq Iq Gq I Q
5 |p–1〉 |x〉 |p–1〉 A I C D Iq Fq Gq I Q
6 |p–1〉 |p–1〉 |x〉 A B I Iq E F G I Q
7 |p–1〉 |p–1〉 |p–1〉 A B C Iq Iq Iq Iq Q Q

Table 2. Specification of the auxiliary target gates for the realization of a Deutsch gate with
three controlling qupits

A B C D E F G

Conjunctive control
ffiffiffiffi

Qp2
p ffiffiffiffiffiffiffiffiffiffi

Qp�1p2
p ffiffiffiffiffiffiffiffiffiffi

Qp�1p
p ffiffiffiffiffiffiffiffi

Q�1p2
p

I I
ffiffiffiffiffiffiffiffi

Q�1p
p

Disjunctive control
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Qðp�1Þ2p2
q ffiffiffiffiffiffiffiffiffiffi

Qp�1p2
p ffiffiffiffi

Qp
p ffiffiffiffiffiffiffiffiffiffi

Qp�1p2
p ffiffiffiffi

Qp
p ffiffiffiffi

Qp
p ffiffiffiffiffiffiffiffi

Q�1p
p

Design of p-Valued Deutsch Quantum Gates 177

indicate that a |0〉 qupit would (contribute to) activate the gate. For the p–valued
domain, in the context of Muthukrishnan-Stroud gates, the controlling state |p − 1〉 is
the activating one and all others –(|x〉 states)– are inhibiting states. A polarity will
make of an |x〉 state, an activating state. In the circuit representation not a white dot,
but a “white diamond” will be used to indicate that any non-|p − 1〉 state will (con-
tribute to) activate the corresponding gate. This is illustrated in Fig. 2.

The behaviour of the Deutsch gate for the 6 cases presented in Fig. 2, under con-
junctive control, and the specification of the component MS-gates may be found in [5].

With respect to disjunctive control with mixed polarity, the following two cases
have been considered:

Case 7: A gate is active iff any two control qupits are in state |p − 1〉 and the state of the
remaining control qupit is |x〉. Otherwise the gate is inhibited and behaves as the
identity. (This represents the disjunctive union of Case 1 or Case 2 or Case 3).

Case 8: A gate is active iff any control qupit is in state |p − 1〉 and the states of the
remaining two control qupits are |x〉. Otherwise the gate is inhibited and behaves as the
identity. (This represents the disjunctive union of Case 4 or Case 5 or Case 6).

The behaviour of the Deutsch gate for the above two cases and the specification of
the component MS-gates may be found in [5].

4 On the Complexity of Realization for Any Number
of Control Qupits

In [2], for the realization of (binary) Toffoli gates with n control signals, the gates on
the target line were controlled by signals following a Grey code (without the word 00…
0), leading to a realization with minimal cost. Notice that one selector word is (11…1)
producing a linear combination of all control signals.

In the case of p–valued Deutsch quantum gates with three control qupits, for the
realization of the gate, as mentioned in Sect. 2, an increasing “pseudo Hamming
weight” was considered, where the pseudo Hamming weight corresponds to the number
of qupits that directly control a given sub-circuit or gate on the target line. It is clear that
it would not be possible to take all three control qupits to directly –(conjunctively)–
drive one of the MS auxiliary gates on the target line, because that would make the

Fig. 2. Deutsch gates with three controlling qupits and mixed polarity

178 C. Moraga

realization proposal recursive. Instead, two control qupits were used to control a Pauli X-
gate which would shift by 1 mod p the state of the third control qupit, which would then
drive a G-gate on the target line. This scheme is repeated p − 1 times, as in the real-
ization of the Deutsch gate with two control qupits [5]. Since the controlled-controlled-
X has a realization complexity of 2p + 1MS gates, but will be repeated p − 1 times, this
leads to a realization complexity in O(p2). Inductively reasoning allows to see that for
any n controlling qupits, a realization with a block containing (p − 1) X gates controlled
by (n − 1) qupits will be needed; where each one of them may be realized by a
sub-block containing (p − 1) X gates controlled by (n − 2) qupits. This will continue
until reaching sub-blocks with (p − 1) X gates controlled by (n − (n − 1)) qupits, i.e.
MS gates. This leads to a final realization complexity in O(pn − 1), where this represents
the number of single controlled elementary gates needed for the realization. This, at the
same time, illustrates the Muthukrishnan-Stroud realizability of the p-valued Deutsch
quantum gates.

5 Conclusions

The proposed scheme for the realization of p-valued Deutsch quantum gates with two
control qupits may be extended to the realization of gates with n control qupits using
only Muthukrishnan-Stroud elementary quantum gates on two qupits. Both conjunctive
and disjunctive control under different polarities were shown to be possible. Let a
“Toffoli-set” comprise all p–valued Deutsch quantum gates such that Q is self-inverse
(i.e., besides being unitary, Q is Hermitian). In the case of gates from this Toffoli-set,
strong simplifications are possible, since Qeben = I and Qodd = Q. Notice that from the
last follows that an odd root of Q also equals Q. Moreover, since p is a prime and

p > 2, both p and pk, k 2 ℕ, are odd. Therefore, e.g.,
ffiffiffiffiffiffiffiffiffiffiffiffiffi

Q3pþ 2p2
p

¼ Q.
Finally, the proposed realization scales with n with a complexity in O(pn − 1).

References

1. Aharonov, D., Ben-Or, M.: Fault-tolerant quantum computation with constant error rate.
SIAM J. Comput. 38(4), 1207–1282 (2008)

2. Barenco, A., Bennett, C.H., Cleve, R., Di Vincenzo, D.P., Margolus, N., Shor, P., Sleator, T.,
Smolin, J.A., Weinfurter, H.: Elementary gates for quantum computation. Phys. Rev. A 52,
3457–3467 (1995)

3. Deutsch, D.: Quantum computational networks. Proc. Roy. Soc. Lond. A 425, 73–90 (1989)
4. Moraga, C.: Aspects of reversible and quantum computing in a p-valued domain.

IEEE JETCAS 6(1) (2016, in press). doi:10.1109/JETCAS.2016.2528658
5. Moraga, C.: Realization of p-valued Deutsch quantum gates under multi-control and mixed

polarity. Research report 851, Faculty of Computer Science, TU Dortmund University. ISSN
0933-6192 (2016)

6. Muthukrishnan, A., Stroud, C.R.: Multiplevalued logic gates for quantum computation. Phys.
Rev. A 62, 052309 (2000)

Design of p-Valued Deutsch Quantum Gates 179

http://dx.doi.org/10.1109/JETCAS.2016.2528658

7. Szyprowski, M., Kerntopf, P.: Optimal 4-bit reversible mixed-polarity Toffoli circuits. In:
Glück, R., Yokoyama, T. (eds.) RC 2012. LNCS, vol. 7581, pp. 138–151. Springer,
Heidelberg (2013)

8. Toffoli, T.: Reversible computing, Tech. Memo MIT/ /LCS/TM-151, MIT Lab. for
Comp. Sci. (1980)

9. Yuttanan, B., Nirat, C.: Roots of matrices. Songklanakarin J. Sci. Technol. 27(3), 659–665
(2005)

180 C. Moraga

Using πDDs for Nearest Neighbor Optimization
of Quantum Circuits

Robert Wille1,2(B), Nils Quetschlich3, Yuma Inoue4, Norihito Yasuda4,
and Shin-ichi Minato4

1 Institute for Integrated Circuits, Johannes Kepler University Linz, Linz, Austria
robert.wille@jku.at

2 Cyber-Physical Systems, DFKI GmbH, Bremen, Germany
3 University of Bremen, 28359 Bremen, Germany

nquet@informatik.uni-bremen.de
4 Hokkaido University, Sapporo, Japan

{yuma,yasuda,minato}@ist.hokudai.ac.jp

Abstract. Recent accomplishments in the development of quantum cir-
cuits motivated research in Computer-Aided Design for quantum cir-
cuits. Here, how to consider physical constraints in general and so-called
nearest neighbor constraints in particular is an objective of recent devel-
opments. Re-ordering the given qubits in a circuit provides thereby a
common strategy in order to reduce the corresponding costs. But since
this leads to a significant complexity, existing solutions either worked
towards a single order only (and, hence, exclude better options) or suffer
from high runtimes when considering all possible options. In this work,
we provide an alternative which utilizes so-called πDDs for this purpose.
They allow for the efficient representation and manipulation of sets of
permutations and, hence, provide the ideal data-structure for the consid-
ered problem. Experimental evaluations confirm that, by utilizing πDDs,
optimal or almost optimal results can be generated in a fraction of the
time needed by exact solutions.

1 Introduction

Quantum computation [1] exploits quantum mechanical phenomena such as
superposition, entanglement, etc. and utilizes qubits rather than conventional
bits for computation. This allows for solving many practically relevant problems
much faster than with conventional circuits. Prominent examples include prob-
lems such as factorization (for which Shor’s algorithm [2] has been proposed)
or database search (for which Groover’s iteration [3] has been proposed). While
first corresponding quantum circuits have been developed by hand, the design of
more complex quantum functionality will require automatic methods – motivat-
ing the research in Computer-Aided Design (CAD) for quantum circuits. Since
each quantum computation is inherently reversible, methods for the design of
reversible circuits are frequently utilized for this purpose.

This led to the development of first CAD methods e.g. for the synthesis of
reversible circuits [4–12], the corresponding mapping to quantum circuits [13–
16], or design schemes which directly address quantum circuit synthesis [17–21].
Besides that, physical constraints and how to already consider them during the
c© Springer International Publishing Switzerland 2016
S. Devitt and I. Lanese (Eds.): RC 2016, LNCS 9720, pp. 181–196, 2016.
DOI: 10.1007/978-3-319-40578-0 14

182 R. Wille et al.

design phase has received increasing attention. In particular, the satisfaction of
so-called nearest neighbor constraints was an objective of recent developments.
Here, the interaction distance between the involved qubits is limited and it is
required that computations are performed between adjacent, i.e. nearest neigh-
bor, qubits only. Corresponding CAD-methods addressing this restriction have
been proposed e.g. in [22–27].

In this work, we consider the global reordering scheme as employed in [22,26,
27] whose main idea is to determine a qubit order which – applied through the
entire circuit – yields the smallest nearest neighbor costs. This often provides the
basis for further optimization steps and, hence, constitutes an important part
of nearest neighbor optimization. However, since determining the best possible
qubit order requires the consideration of n! possible permutations (where n is
the number of qubits), existing solutions either

– apply a heuristic which aims for generating a single, dedicated permutation
only which, in many cases, is far from optimal or

– apply an exact approach which guarantees an optimal solution but suffers
from the underlying complexity.

Motivated by this, we are considering the research question how to optimize
heuristic global reordering in order to generate nearly-optimal results while, at
the same time, remaining efficient. To this end, we propose the utilization of Per-
mutation Decision Diagrams (πDDs, [28]) – a data-structure for the efficient rep-
resentation and manipulation of sets of permutations. Using πDDs it is possible
to consider all permutations at once in an efficient fashion and to subsequently
reduce them with respect to the nearest neighbor constraints. This provides an
ideal compromise between the existing solutions which directly worked towards
a single permutation only and, hence, likely excluded better options or had to
deal with an inefficient handling of the complexity. Experimental evaluations
confirm the benefits of the proposed approach: In all cases, optimal or almost
optimal results are generated in a fraction of the runtime needed for the exact
approach.

The remainder of this work is structured as follows: Sect. 2 reviews the back-
ground on quantum circuits and nearest neighbor optimization, while Sect. 3
reviews the corresponding optimization methods. These sections build the moti-
vation of the proposed approach whose general idea is afterwards presented in
Sect. 4. Then, details on the solution are presented in Sect. 5. Finally, experi-
mental results are reported and discussed in Sect. 6 and the paper is concluded
in Sect. 7.

2 Background

In order to keep the paper self-contained, this section briefly reviews the quantum
circuit model usually applied in electronic design automation and provides the
background on nearest neighbor optimization.

2.1 Quantum Circuits

In contrast to conventional computation, quantum computation [1] works on
qubits instead of bits. A qubit is a two level quantum system, described by a

Using πDDs for Nearest Neighbor Optimization of Quantum Circuits 183

two dimensional complex Hilbert space. The two orthogonal quantum states |0〉
≡ (

1
0

)
and |1〉 ≡ (

0
1

)
are used to represent the Boolean values 0 and 1. Any state

of a qubit may be written as |x〉 = α |0〉 + β |1〉 , where the amplitudes α and β
are complex numbers with |α|2 + |β|2 = 1.

Operations on n-qubits states are performed through multiplication of appro-
priate 2n × 2n unitary matrices. Thus, each quantum computation is inherently
reversible but manipulates qubits rather than pure logic values. At the end of
the computation, a qubit can be measured. Then, depending on the current state
of the qubit, either a 0 (with probability of |α|2) or a 1 (with probability of |β|2)
returns. After the measurement, the state of the qubit is destroyed.

Quantum computations are usually represented by quantum circuits. Here,
the respective qubits are denoted by solid circuit lines. Operations are repre-
sented by quantum gates. Table 1 lists common quantum gates together with the
corresponding unitary matrices describing their operation. In order to perform
operations on more than one qubit, controlled quantum gates are applied. These
gates are composed of a target line |t〉 and a control line |c〉 and realize the
unitary operation represented by the matrix

M =

(
1 0 0 0
0 1 0 0
0 0 U0 0

)

where U denotes the operation applied to the target line. In the remainder of
this work, we use the following formal notation:

Definition 1. A quantum circuit is denoted by the cascade G = g1g2 . . . g|G| (in
figures drawn from left to right), where |G| denotes the total number of gates.
The number of qubits and, thus, the number of circuit lines is denoted by n. The
costs of a quantum circuit (also denoted as quantum cost) are defined by the
number |G| of gates.

Table 1. Quantum gates

184 R. Wille et al.

Fig. 1. Quantum circuit

Example 1. Figure 1 shows a quantum circuit composed of n = 2 circuit lines
and |G| = 3 gates. This circuit gets |11〉 as input and transforms the qubits as
indicated at the circuit signals.

In the following, we do not focus on the dedicated functionality of a quantum
circuit, but on the structure and whether it satisfies nearest neighbor constraints
(as reviewed next). To this end, we omit unary quantum gates (as they are
irrelevant for nearest neighbor optimization) and generically denote quantum

gates using the notation .

2.2 Nearest Neighbor Optimization

In the recent years, researchers proposed several physical realizations for quan-
tum circuits. This led to a better understanding of their physical limitations
and constraints, e.g. with respect to the interaction distance, decoherence time,
or scaling (see e.g. [29–31]). Besides that, so-called nearest neighbor constraints
have to be satisfied for many quantum circuit architectures. This particularly
holds for technologies based on proposals for ion traps [32–34], nitrogen-vacancy
centers in diamonds [35,36], quantum dots emitting linear cluster states linked
by linear optics [37], laser manipulated quantum dots in a cavity [38], and super-
conducting qubits [39,40]. Here, nearest neighbor constraints limit the interac-
tion distance between gate qubits and require that computations are performed
between adjacent, i.e. nearest neighbor, qubits only.

In order to formalize this restriction for electronic design automation, a cor-
responding metric representing the costs of a quantum circuit to become nearest
neighbor compliant has been introduced in [22]. There, the authors defined the
Nearest Neighbor Cost as follows.

Definition 2. Assume a 2-qubit quantum gate g(c, t) with a control at the line
c and a target at line t where c and t are numerical indices holding 0 ≤ c, t < n.
Then, the Nearest Neighbor Cost (NNC) for g is calculated using the distance
between the target and the control line. More precisely,

NNC(g) = |c − t| − 1.

As a result, a single control gate g is termed nearest neighbor compliant if
NNC(g) = 0. 1-qubit gates are assumed to have NNC of 0. The resulting NNC
for a complete quantum circuit is defined by the sum of the NNC of its gates:

NNC(G) =
∑
g∈G

NNC(g).

Using πDDs for Nearest Neighbor Optimization of Quantum Circuits 185

Fig. 2. Establishing nearest neighbor compliance

A quantum circuit G is termed nearest neighbor compliant if NNC(G) = 0, i.e.
if all quantum gates are 1-qubit gates or adjacent 2-qubit gates.

Example 2. Consider the circuit G depicted in Fig. 2(a). Gates are denoted by
G = g1. . .g7 from the left to the right. As can be seen, gates g2, g6, as well as g7
are non-adjacent and have nearest neighbor costs of NNC(g2) = 1, NNC(g6) =
2, as well as NNC(g7) = 2, respectively. Hence, the entire circuit has nearest
neighbor costs of NNC(G) = 5.

A naive way to make an arbitrarily given quantum circuit nearest neighbor
compliant is to modify it by additional SWAP gates.

Definition 3. A SWAP gate is a quantum gate g(qi, qj) including two qubits
qi, qj and maps (q0, . . . , qi, qj , . . . , qn−1) to (q0, . . . , qj , qi, . . . , qn−1). That is, a
SWAP gate realizes the exchange of two quantum values (in figures drawn using
two connected × symbols).

These SWAP gates allow for making all control lines and target lines adjacent
and, by this, help to satisfy the nearest neighbor constraint. More precisely, a
cascade of adjacent SWAP gates can be inserted in front of each gate g with non-
adjacent circuit lines in order to shift the control line of g towards the target
line, or vice versa, until they are adjacent. Afterwards, SWAP gates are inserted
to restore the original ordering of circuit lines.

Example 3. Consider again the circuit depicted in Fig. 2(a). In order to make
this circuit nearest neighbor compliant, SWAP gates in front and after all these
gates are inserted as shown in Fig. 2(b).

3 Motivation

Adding SWAP gates in a naive fashion as reviewed in the previous section is a
simple way of transforming any given quantum circuit into a nearest neighbor
compliant version (in fact, this can be conducted in linear time with respect

186 R. Wille et al.

to the number of gates). But the insertion of SWAP gates obviously increases
the quantum cost: For each non-adjacent gate, 2 · (|t − c| − 1) SWAP gates are
additionally inserted to the circuit. In order to minimize these additional costs,
researchers investigated how to reduce the number of SWAP gate insertions in
order to make a given quantum circuit nearest neighbor compliant.

A broad variety of different approaches has been presented for this pur-
pose – including solutions relying on templates [22], local and global reordering
strategies [22], dedicated data-structures [23–25], etc. Also exact approaches, i.e.
solutions guaranteeing the minimal number of SWAP gate insertions, have been
proposed [26,27]. The work published in [27] provides a good overview. All these
approaches particularly focus on how to properly reorder the qubits in the circuit
so that the respective interaction distance (and, hence, the number of required
SWAP gates) is reduced.

In this work, we consider global reordering schemes, where the main objective
is to determine a qubit order which – applied through the entire circuit – yields
the smallest nearest neighbor costs. Results obtained from global reordering
often provide the basis for further optimization steps and, hence, constitute an
important part of nearest neighbor optimization. Unfortunately, determining the
best qubit order requires the explicit checking of all possible qubit permutations.
For a circuit with n qubits, this yields n! possible combinations – a significant
complexity. Two complementary solutions to deal with this complexity represent
the current state-of-the-art:

The first one is a heuristic solution proposed in [22]. Here, a good permuta-
tion is determined by calculating the contribution of each circuit line of a given
quantum circuit G. Therefore, for each 2-qubit gate g of G with control line
at position c and target line at position t, the NNC value (see Definition 2) is
calculated. Afterwards, this value is added to variables impc and impt which
are used to store the “impacts” of the circuit lines c and t on the total NNC,
respectively. More precisely, the impact impi of the ith circuit line (0 ≤ i < n)
is calculated by

impi =
∑

g(c,t)∈G | c=i ∨ t=i

NNC(g).

Using these impacts, the algorithm selects the circuit line with the greatest
value and permutes it with the middle circuit line. If the selected line already
is the middle line, the one with the next greatest impact is selected. This whole
procedure is repeated until no further improvements are achieved.

The second one is an exact solution proposed in [26,27], which determines
the best possible permutation. To this end, the underlying design problem is for-
mulated as an optimal linear arrangement problem which, in turn, is formulated
as an instance of pseudo-Boolean Optimization (PBO, see e.g. [41]). By utilizing
corresponding solving engines, the resulting PBO problem is solved.

Example 4. Consider again the circuit depicted in Fig. 2(a). Applying the heuris-
tic of [22], the resulting impacts of the circuits lines are impx1 = 5, impx2 = 0,
impx3 = 1, and impx4 = 4, respectively. Permuting the line order such that the
lines with high impact are located in the middle (descending towards the outer
lines) results in the circuit depicted in Fig. 3(a). Compared to the naive method
(see result depicted in Fig. 2(b)), this reduces the number of required SWAP
gates from 10 to 4. However, significantly further reductions can be achieved

Using πDDs for Nearest Neighbor Optimization of Quantum Circuits 187

x4 x4

x1 x1

x3 x3

x2 x2

x4 x4

x1 x1

x2 x2

x3 x3

Fig. 3. Global reordering (applied to the circuit from Fig. 2(a))

if the best permutation is determined (using the exact solution from [26,27]).
Then, a circuit as shown in Fig. 3(b) results which reduces the required number
of SWAP gates by another 50 % to 2.

Overall, it can be concluded that the heuristic solution provides a very effi-
cient way of further reducing the number of SWAP gates compared to the
naive method. But the obtained results are still far from optimal. In contrast,
exact methods guarantee minimality with respect to the number of additionally
required SWAP gates, but suffer from the significant complexity (and, hence,
the resulting run-time and scalability issues). Motivated by this, we are consid-
ering the research question how to optimize heuristic global reordering in order
to generate nearly-optimal results while, at the same time, remaining scalable
to larger quantum circuits.

4 General Idea

Obviously, considering more permutations – ideally all n! possible ones – will
allow for the determination of a qubit order that is better than the one deter-
mined by the heuristic solution reviewed above. But then, the question remains
how to deal with the corresponding complexity? In this work, we are propos-
ing a scheme which utilizes the compact representation of Permutation Decision
Diagrams (πDDs) for this purpose. In this section, we first review the basics of
πDDs. Afterwards, we describe the general idea of utilizing this data-structure
and illustrate its potential by means of an example.

4.1 Permutation Decision Diagrams (πDDs)

A πDD is a graph which represents a set of permutations and is based on trans-
position decomposition [28]. Compared to other representation relying on arrays,
πDDs can represent sets of permutations more compactly. Besides that, πDDs
are also capable of efficiently conducting operations on the represented sets of
permutations. Before introducing the structure of πDDs in detail, we describe
the decomposition of a permutation called transposition decomposition.

Let π = π1 . . . πn be a permutation of length n. Then, π can be considered
as a numerical sequence satisfying πi ∈ {1 . . . , n} for 1 ≤ i ≤ n and πi �= πj for
1 ≤ i < j ≤ n. A transposition τi,j is a swap between two elements πi and πj .
Any permutation of length n can be uniquely decomposed into a sequence of at
most n − 1 transpositions by conducting the following two steps:

188 R. Wille et al.

Fig. 4. Two reduction rules of πDDs Fig. 5. A πDD repr. {2431, 4231, 1423}

1. Prepare the initial permutation 1 . . . n.
2. For each k running from n to 1, move πk to the k-th position by applying a

transposition.

Example 5. Consider a permutation π = 2431 to be decomposed. First, we start
with the initial permutation 1234 and set k = n = 4. Since πk = 1, we swap the
first element and the fourth element (τ1,4) and obtain 4231. The third element
3 is at the same position as given by π, i.e. no transposition is needed for k = 3.
Finally, since π2 = 4 is at the first position of 4231, we swap the first element and
the second element (τ1,2) and obtain 2431 = π. By this, the given permutation
π = 2431 is uniquely decomposed into a transposition sequence τ1,4τ1,2.

Following this transposition decomposition, a πDD is defined as follows:

Definition 4. A πDD is a rooted and directed graph consisting of five types of
components: internal nodes, 0-edges, 1-edges, the 0-sink, and the 1-sink. Figure 5
shows an example of a πDD. Each internal node is labeled with a transposition,
and has exactly two out-going edges: a 0-edge and a 1-edge. Each path from a root
to the 1-sink corresponds to a permutation held by the πDD as follows: if a 1-edge
originates from a node with label τx,y, the decomposition of the permutation
contains τx,y, while a 0-edge means that the decomposition does not contain
τx,y.

In order to make a πDD compact and canonical, we apply the following two
rules called reduction rules (as illustrated in Fig. 4):

– sharing rule: share all nodes which have the same labels and child nodes.
– deleting rule: delete all nodes whose 1-edge points to the 0-sink.

Example 6. Consider the three permutations {2431, 4231, 1423}. The transpo-
sition decomposition easily shows that all these permutations can be realized
by the transpositions τ1,4τ1,2, τ1,4, and τ3,4τ2,3. Hence, all of them can be repre-
sented by the πDD as shown in Fig. 5.

Although the number of πDD nodes is exponential in the length of per-
mutations in the worst case, in many practical cases, it demonstrates a high
compression ratio. For example, Fig. 6 shows an example of an exponentially
compact πDD; it represents a set of 25 permutations with only 5 internal nodes.

A notable feature of the πDD is that it supports efficient restriction opera-
tions that make a πDD representing a restricted subset from the original πDD.

Using πDDs for Nearest Neighbor Optimization of Quantum Circuits 189

Fig. 6. A πDD with 5 nodes representing 25 permutations

An instance of restriction used in the following section is an adjacent restriction;
it makes a πDD that only contains permutations such that two elements a and
b must be adjacent in the permutation.

Since πDD operations are implemented as recursive procedures on a graph,
the computation time of πDD operations depends on the number of πDD nodes,
not on the cardinality of the set represented by a πDD. Hence, if a πDD is
highly compressed and has a small number of nodes, manipulation on a set of
permutations can be efficient.

4.2 Proposed Exploitation of πDDs

The concept of πDDs allows one to efficiently represent all n! possible qubit
permutations at once. Based on that, the general idea of the proposed nearest
neighbor optimization is to iteratively reduce this set of permutations to a sub-
set including efficient permutations only. “Efficiency” is thereby defined by the
number of SWAP gates that would be required in order to make a given quan-
tum circuit – whose qubits are aligned according to these permutations – nearest
neighbor compliant. Hence, permutations are removed which would clearly yield
a quantum circuit with high NNC. In the following, the general idea is sketched
by means of an example.

Example 7. For the quantum circuit from Fig. 2(a), a qubit order is to be deter-
mined. To this end, all 4! = 24 possible qubit permutations are considered
at the beginning. Those are efficiently represented by the πDD depicted in
Fig. 7(a). Now, permutations shall be excluded which are clearly not efficient.
Obviously, the interactions between qubits x1 and x4 dominates in the circuit
from Fig. 2(a). Accordingly, we are removing all permutations in which these two
qubits are not adjacent. This can easily be employed using πDDs and, eventu-
ally, yields to a total of 12 remaining permutations represented by the structure
shown in Fig. 7(b).

In a similar fashion, further permutations can be removed. This can be con-
tinued until either

– all permutations are excluded, i.e. an empty set results, or
– no further restrictions are left to be considered.

190 R. Wille et al.

Fig. 7. Reducing the considered permutations using a πDD representation

In the first case, restrictions have to be loosened again – even if this would
yield a quantum circuit which is not nearest neighbor compliant. After all, the
representations is satisfying as many of the restrictions as possible. In the second
case, no further actions are needed. From the resulting subset, the permutation
leading to the lowest NNC is chosen and used in order to realize the circuit.
Again, the example illustrates the issue.

Example 8. Using the subset represented by the πDD shown in Fig. 7(b), another
restriction is employed, namely that qubits x1 and x2 shall be adjacent (this is
motivated by the fact that there are 2 gates in which these two qubits interact).
Applying this restriction yields the πDD shown in Fig. 7(c). Because of the same
reason, x2 and x3 are enforced to be adjacent in the next step (yielding the
πDD shown in Fig. 7(d)). Finally, x1 and x3 is enforced to be adjacent. How-
ever, the last restriction yields a πDD representing the empty set (see Fig. 7(e)).
Because of that, this restriction is waived (i.e. we backtrack to the πDD shown in
Fig. 7(d)). As no further restrictions are left (all qubit interactions of the original
circuit from Fig. 2(a) have been considered), the best permutation regarding its

Using πDDs for Nearest Neighbor Optimization of Quantum Circuits 191

NNC can be calculated and taken from the resulting πDD (shown in Fig. 7(d)).
This eventually yields the circuit already shown in Fig. 3(b), i.e. the proposed
approach determined a permutation requiring a minimal number of SWAP
gates.

Following this scheme aims for keeping permutations that satisfy certain
restrictions, while excluding those which are identified as non-efficient (moti-
vated by the interactions of qubits in the circuit). This is a clear improvement
compared to the previously proposed heuristic which directly worked towards a
single permutation only and, hence, likely excluded better options. The increased
complexity caused by considering and manipulating (sub)sets of permutations is
tackled through the efficient representation provided by the πDDs. However, the
order in which restrictions are applied (and, hence, permutations are excluded)
still has an effect on the determined result. The next section deals with how the
proposed solution handles this ordering problem.

5 Applying Restrictions to the πDDs

As illustrated in the example from above, the interactions between the qubits
provide crucial information on the nearest neighbor compliance of a given per-
mutation. Accordingly, this information builds the basis for deciding what per-
mutations are removed from further consideration. This section describes how
this information is obtained, represented and, eventually, applied to the πDD.

5.1 Obtaining and Weighting Restrictions

In order to store information on the interaction of the qubits (and, eventu-
ally, derive restrictions from it), a pre-process is conducted which traverses the
entire circuit G. For each gate g ∈ G, the corresponding interaction between the
involved qubits is determined and stored. This way, an adjacency matrix is built
representing what and how many interactions between qubits are conducted.
More formally:

Definition 5. For a given quantum circuit G with n qubits, an adjacency matrix
A of size n × n represents the number of interactions between all qubits. Each
entry ai,j ∈ A contains the number of interactions between the qubits xi and xj

and between the qubits xj and xi. Since no qubit interacts with itself, all entries
aii are left empty. Furthermore, since A is symmetric, only half of the entries
has to be considered.

Example 9. Consider the quantum circuit from Fig. 8(a). The corresponding
adjacency matrix is shown in Fig. 8(b).

From this representation, the restrictions to be applied to the πDDs can
easily be derived. Each interaction between the qubits xi and xj motivate to
restrict the set of considered permutation to only those in which xi and xj are
adjacent. Moreover, the adjacency matrix can be used to assign a weight to each
restriction. For example, if the qubits xi and xj interact more frequently than
the qubits xk and xl, then the restriction of having (xi,xj) adjacent should be
prioritized to the restriction of having (xk,xl) adjacent.

192 R. Wille et al.

Fig. 8. Obtaining and weighting restrictions from a given circuit

Example 10. From the adjacency matrix shown in Fig. 8(b), restrictions and
their weights as shown in Fig. 8(c) are derived.

5.2 Applying Resulting Restrictions to the πDD

In an ideal scenario, all restrictions derived above should be applied to the πDD.
Then, a subset of permutations would remain in which all qubits that have inter-
actions with each other are adjacent (eventually leading to a nearest neighbor
compliant quantum circuit). However, in most of the cases this would yield an
empty subset of permutations. Hence, a procedure is required deciding which
restrictions are applied and which are not.

The weight which is assigned to each restriction provides an obvious metric
for this purpose. But still, options exists how this metric is utilized. The following
two possible schemes could be applied:

– In a greedy scheme, all restrictions are applied in the order of their weight.
That is, the restriction with the highest weight is considered first; afterwards,
the restriction with the second highest weight; and so on. This way, stronger
restrictions are clearly preferred over weaker restrictions. However, there might
be cases in which the application of several restrictions with a relatively small
weight outperforms the application of a single restriction with a higher weight.

– This motivates the consideration of an advanced scheme which works as fol-
lows: First, a threshold e is defined stating the maximum number of restrictions
which shall be considered together. Then, all possible combinations of the e
restrictions with the highest weight are considered (including all e restric-
tions solely as well as all possible supersets of them). The combination of
restrictions which can be applied to the πDD without causing an empty set
of permutations and, additionally, satisfies the highest weight is eventually
chosen. Afterwards, all remaining restrictions are applied following the greedy
scheme.

Using πDDs for Nearest Neighbor Optimization of Quantum Circuits 193

The two schemes are illustrated by the following example:

Example 11. Consider again the quantum circuit from Fig. 8(a) and the obtained
restrictions as shown in Fig. 8(c). Following the greedy scheme would suggest an
application of R1, followed by R2, R3, R4, and R5. This eventually results in a
set of permutations whose best one would lead to a circuit requiring 10 SWAP
gates.

In contrast, the advance scheme would consider all combinations of the e = 4
restrictions with the highest weight, i.e. {R1}, {R2}, {R3}, {R4}, {R1,R2},
{R1,R3}, {R1,R4}, {R2,R3}, {R2,R4}, {R3,R4}, {R1,R2,R3}, etc. This way it
can be observed that {R1,R2} can be applied together but not {R1,R2,R3}.
Since the combination {R1,R3,R4} (i.e. without R2) yields a higher weight than
all other non-empty combinations, this set of restrictions is applied to the πDD.
Eventually, this results in a quantum circuit requiring 6 SWAP gates.

6 Experimental Evaluation

The solution proposed in the previous sections has been implemented on top
of the πDD-package introduced in [28]. Based on this implementation, the per-
formance of the proposed solution has been evaluated using benchmark quan-
tum circuits taken from RevLib [42]. Afterwards, the obtained results have been
compared to results obtained by the previously proposed solutions reviewed in
Sect. 3. This section summarizes and discusses the obtained results. All evalua-
tions have been conducted on an Intel i3-4030U machine with 1.9 GHz and 4 GB
of memory.

Table 2 summarizes the obtained results. The first columns provide the name
of the considered benchmarks as well as its respective number of lines (n) and
gates (|G|). Afterwards, the number of required SWAP gates are reported if the
naive method (reviewed in Sect. 2.2), the heuristic and exact method (reviewed
in Sect. 3), as well as the proposed method (introduced in Sects. 4 and 5 and fol-
lowing the advanced scheme) are applied. In the case of the exact method as well
as the proposed method, the required runtime (in CPU seconds) is additionally
provided (both, the naive and heuristic approach where able to determine all
results in negligible time, i.e. in less than a second). Finally, the last columns
provide a comparison of the results obtained by the proposed approach to the
respective numbers from the naive, heuristic, and exact approaches.

The results clearly confirm that the proposed approach fulfills the promises
discussed in Sect. 3. By considering sets of permutations (rather than construct-
ing a single one only), significantly better results compared to the previously
proposed heuristic can be obtained. Improvements of more than 66 % in the
best case are reported. Moreover, the proposed solution is capable of generat-
ing optimal or almost optimal results (see comparison of the proposed approach
to the exact solution). This quality is achieved by requiring only a fraction of
the runtime needed for the exact approach thus far. That is, πDDs as utilized
in this work allow for determining results of optimal or almost optimal quality
while, at the same time, they handle the underlying complexity in an efficient
fashion.

194 R. Wille et al.

Table 2. Experimental evaluation

7 Conclusions

In this work, we considered nearest neighbor optimization of quantum circuits
using πDDs. Since πDDs allow for an efficient representation and manipulation
of sets of permutations, they allow for considering all possible permutations at
once and an subsequent reduction of them with respect to the nearest neigh-
bor constraints. This way, an ideal compromise between existing solutions is
provided. Experimental evaluations confirmed the efficiency and quality of the
obtained results.

Acknowledgments. This work has partially been supported by the EU COST Action
IC1405, the JST ERATO Minato Project, as well as JSPS KAKENHI 15H05711 and
15J01665.

Using πDDs for Nearest Neighbor Optimization of Quantum Circuits 195

References

1. Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cam-
bridge Univ. Press, Cambridge (2000)

2. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factor-
ing. In: Foundations of Computer Science, pp. 124–134 (1994)

3. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Theory
of Computing, pp. 212–219 (1996)

4. Gupta, P., Agrawal, A., Jha, N.K.: An algorithm for synthesis of reversible logic
circuits. IEEE Trans. CAD 25(11), 2317–2330 (2006)

5. Maslov, D., Dueck, G.W., Miller, D.M.: Techniques for the synthesis of reversible
Toffoli networks. ACM Trans. Des. Autom. Electron. Syst. 12(4), 1–20 (2007)

6. Saeedi, M., Sedighi, M., Zamani, M.S.: A novel synthesis algorithm for reversible
circuits. In: International Conference on CAD, pp. 65–68 (2007)

7. Wille, R., Große, D., Dueck, G., Drechsler, R.: Reversible logic synthesis with
output permutation. In: VLSI Design, pp. 189–194 (2009)

8. Große, D., Wille, R., Dueck, G.W., Drechsler, R.: Exact multiple control Toffoli
network synthesis with SAT techniques. IEEE Trans. CAD 28(5), 703–715 (2009)

9. Wille, R., Drechsler, R.: BDD-based synthesis of reversible logic for large functions.
In: Design Automation Conference, pp. 270–275 (2009)

10. Saeedi, M., Sedighi, M., Zamani, M.S.: A library-based synthesis methodology for
reversible logic. Microelectron. J. 41(4), 185–194 (2010)

11. Saeedi, M., Zamani, M.S., Sedighi, M., Sasanian, Z.: Reversible circuit synthesis
using a cycle-based approach. J. Emerg. Technol. Comput. Syst. 6(4), 1–26 (2010)

12. Soeken, M., Wille, R., Hilken, C., Przigoda, N., Drechsler, R.: Synthesis of
reversible circuits with minimal lines for large functions. In: ASP Design Automa-
tion Conference, pp. 85–92 (2012)

13. Barenco, A., Bennett, C.H., Cleve, R., DiVinchenzo, D., Margolus, N., Shor, P.,
Sleator, T., Smolin, J., Weinfurter, H.: Elementary gates for quantum computation.
Am. Phys. Soc. 52, 3457–3467 (1995)

14. Miller, D.M., Wille, R., Sasanian, Z.: Elementary quantum gate realizations for
multiple-control Toffolli gates. In: International Symposium on Multi-valued Logic,
pp. 288–293 (2011)

15. Sasanian, Z., Wille, R., Miller, D.M.: Realizing reversible circuits using a new class
of quantum gates. In: Design Automation Conference, pp. 36–41 (2012)

16. Wille, R., Soeken, M., Otterstedt, C., Drechsler, R.: Improving the mapping of
reversible circuits to quantum circuits using multiple target lines. In: ASP Design
Automation Conference, pp. 85–92 (2013)

17. Shende, V.V., Bullock, S.S., Markov, I.L.: Synthesis of quantum-logic circuits.
IEEE Trans. CAD 25(6), 1000–1010 (2006)

18. Hung, W., Song, X., Yang, G., Yang, J., Perkowski, M.: Optimal synthesis of multi-
ple output Boolean functions using a set of quantum gates by symbolic reachability
analysis. IEEE Trans. CAD 25(9), 1652–1663 (2006)

19. Große, D., Wille, R., Dueck, G.W., Drechsler, R.: Exact synthesis of elementary
quantum gate circuits. Multiple-Valued Logic Soft Comput. 15(4), 270–275 (2009)

20. Saeedi, M., Arabzadeh, M., Zamani, M.S., Sedighi, M.: Block-based quantum-logic
synthesis. Quant. Inf. Comput. 11(3&4), 262–277 (2011)

21. Niemann, P., Wille, R., Drechsler, R.: Efficient synthesis of quantum circuits imple-
menting Clifford group operations. In: ASP Design Automation Conference, pp.
483–488 (2014)

22. Saeedi, M., Wille, R., Drechsler, R.: Synthesis of quantum circuits for linear nearest
neighbor architectures. Quant. Inf. Proc. 10(3), 355–377 (2011)

23. Khan, M.H.: Cost reduction in nearest neighbour based synthesis of quantum
Boolean circuits. Eng. Lett. 16(1), 1–5 (2008)

196 R. Wille et al.

24. Hirata, Y., Nakanishi, M., Yamashita, S., Nakashima, Y.: An efficient method to
convert arbitrary quantum circuits to ones on a linear nearest neighbor architec-
ture. In: Conference on Quantum, Nano and Micro Technologies, pp. 26–33 (2009)

25. Shafaei, A., Saeedi, M., Pedram, M.: Optimization of quantum circuits for inter-
action distance in linear nearest neighbor architectures. In: Design Automation
Conference, pp. 41–46 (2013)

26. Wille, R., Lye, A., Drechsler, R.: Optimal SWAP gate insertion for nearest neighbor
quantum circuits. In: ASP Design Automation Conference, pp. 489–494 (2014)

27. Wille, R., Lye, A., Drechsler, R.: Exact reordering of circuit lines for nearest neigh-
bor quantum architectures. IEEE Trans. CAD 33(12), 1818–1831 (2014)

28. Minato, S.: πDD: a new decision diagram for efficient problem solving in permu-
tation space. In: Conference on Theory and Applications of Satisfiability Testing,
pp. 90–104 (2011)

29. Fowler, A.G., Devitt, S.J., Hollenberg, L.C.L.: Implementation of Shor’s algorithm
on a linear nearest neighbour qubit array. Quant. Inf. Comput. 4, 237–245 (2004)

30. Meter, R.V., Oskin, M.: Architectural implications of quantum computing tech-
nologies. J. Emerg. Technol. Comput. Syst. 2(1), 31–63 (2006)

31. Ross, M., Oskin, M.: Quantum computing. Comm. ACM 51(7), 12–13 (2008)
32. Amini, J.M., Uys, H., Wesenberg, J.H., Seidelin, S., Britton, J., Bollinger, J.J.,

Leibfried, D., Ospelkaus, C., VanDevender, A.P., Wineland, D.J.: Toward scalable
ion traps for quantum information processing. New J. Phys. 12(3), 033031 (2010)

33. Kumph, M., Brownnutt, M., Blatt, R.: Two-dimensional arrays of radio-frequency
ion traps with addressable interactions. New J. Phys. 13(7), 073043 (2011)

34. Nickerson, N.H., Li, Y., Benjamin, S.C.: Topological quantum computing with a
very noisy network and local error rates approaching one percent. Nat. Commun.
4, 1756 (2013)

35. Devitt, S.J., Fowler, A.G., Stephens, A.M., Greentree, A.D., Hollenberg, L.C.L.,
Munro, W.J., Nemoto, K.: Architectural design for a topological cluster state quan-
tum computer. New J. Phys. 11(8), 083032 (2009)

36. Yao, N.Y., Gong, Z.X., Laumann, C.R., Bennett, S.D., Duan, L.M., Lukin, M.D.,
Jiang, L., Gorshkov, A.V.: Quantum logic between remote quantum registers. Phys.
Rev. A 87, 022306 (2013)

37. Herrera-Mart́ı, D.A., Fowler, A.G., Jennings, D., Rudolph, T.: Photonic imple-
mentation for the topological cluster-state quantum computer. Phys. Rev. A 82,
032332 (2010)

38. Jones, N.C., Van Meter, R., Fowler, A.G., McMahon, P.L., Kim, J., Ladd, T.D.,
Yamamoto, Y.: Layered architecture for quantum computing. Phys. Rev. X 2,
031007 (2012)

39. Ohliger, M., Eisert, J.: Efficient measurement-based quantum computing with
continuous-variable systems. Phys. Rev. A 85, 062318 (2012)

40. DiVincenzo, D.P., Solgun, F.: Multi-qubit parity measurement in circuit quantum
electrodynamics. New J. Phys. 15(7), 075001 (2013)

41. Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: Conflict-driven answer set
solving. In: International Joint Conference on Artificial Intelligence, pp. 386–392
(2007)

42. Wille, R., Große, D., Teuber, L., Dueck, G.W., Drechsler, R.: RevLib: an online
resource for reversible functions and reversible circuits. In: International Sympo-
sium Multi-valued Logic, pp. 220–225 (2008). RevLib is available at http://www.
revlib.org

http://www.revlib.org
http://www.revlib.org

Quantum Programming

Circular CNOT Circuits: Definition, Analysis
and Application to Fault-Tolerant Quantum

Circuits

Alexandru Paler(B)

Facultatea de Matematică şi Informatică, Universitatea Transilvania,
Braşov, Romania

alexandrupaler@gmail.com

Abstract. The work proposes an extension of the quantum circuit for-
malism where qubits (wires) are circular instead of linear. The left-to-
right interpretation of a quantum circuit is replaced by a circular rep-
resentation which allows to select the starting point and the direction
in which gates are executed. The representation supports all the circuits
obtained after computing cyclic permutations of an initial quantum gate
list. Two circuits, where one has a gate list which is a cyclic permuta-
tion of the other, will implement different functions. The main question
appears in the context of scalable quantum computing, where multiple
subcircuits are used for the construction of a larger fault-tolerant one:
can the same circular representation be used by multiple subcircuits? The
circular circuits defined and analysed in this work consist only of CNOT
gates. These are sufficient for constructing computationally universal,
fault-tolerant circuits formed entirely of qubit initialisation, CNOT gates
and qubit measurements. The main result of modelling circular CNOT
circuits is that a derived Boolean representation allows to define a set of
equations for X and Z stabiliser transformations. Through a well defined
set of steps it is possible to reduce the initial equations to a set of sta-
biliser transformations given a series of cuts through the circular circuit.

Keywords: Quantum circuits · Fault-tolerant quantum circuits · ICM

1 Motivation

The quantum circuit formalism is a generally accepted representation of quantum
information processing. It is mainly inspired by the classical circuit representa-
tion, where input information is transformed through the application of gate
sequences into output information. The main differences between classical and
quantum circuits are that the latter have an equal number of inputs and outputs,
do not accept FANIN or FANOUT and the quantum gates represent reversible
transformations required by the unitarity of quantum mechanics, unlike classical
gates (e.g. the classical AND gate) which are not reversible.

A quantum circuit is specified as a gate sequence containing gates from an
universal gate set, and in the context of practical quantum computing this set
c© Springer International Publishing Switzerland 2016
S. Devitt and I. Lanese (Eds.): RC 2016, LNCS 9720, pp. 199–212, 2016.
DOI: 10.1007/978-3-319-40578-0 15

200 A. Paler

Fig. 1. CNOT circuits: (a–d) CNOT commutativity rules; (e) the SWAP circuit; (f) a
cyclic permutation of the SWAP circuit.

Fig. 2. Cutting a circular CNOT circuit results in ICM circuits: (a) the initial circular
SWAP circuit; (b) radial cut for the linear SWAP circuit; (c) radial cut for the linear
CNOT circuit; (d) cuts for the teleported CNOT circuit; (Fig. 3a) (e) cuts for the
selective destination teleportation circuit (Fig. 3b).

is {CNOT, T, P, V }. T and P are π/4 and π/2 rotations around the Z-axis and
V is the π/2 rotation around the X-axis of the Bloch sphere [6]. These gates are
sufficient for approximating any quantum computation with arbitrary precision,
and are preferred because they have known fault-tolerant implementations used
within error corrected quantum computing architectures [2]. The gate sequence
introduces a temporal ordering of information processing, although this ordering
is not entirely strict because some gates can commute (Fig. 1).

Universal fault-tolerant quantum circuits can be represented as ICM cir-
cuits which are formed entirely of qubit (I)nitialisations, (C)NOT gates and
qubit (M)easurements [7]. The circuits include only CNOT gates, because rota-
tional gates are implemented by teleportation mechanisms [6,7] and rotations are
achieved by initialising certain qubits in specific ancillary states. The computa-
tional universality of ICM circuits is based on the choice of the qubit initialisation
and measurement basis: the Y and the A basis can be chosen in addition to the
X and Z basis [2]. Therefore, ICM circuit qubits can be initialised into |0〉, |+〉,
|Y 〉 = |0〉 + i|1〉 and |A〉 = |0〉 + eπ/4|1〉, and can be measured in the X,Y,Z,A
basis [3]. The |Y 〉 and |A〉 states are required for implementing the T (Fig. 5b),
P (Fig. 5c) and V (Fig. 5d) gate.

Multiple circuits share the same CNOT gates circuit structure resulting after
not considering the initialisations and measurements of an arbitrary ICM circuit.
This is illustrated by the example of the SWAP circuit (Fig. 1e). The circuit has
two qubit lines and three CNOT gates. Consider that, without being offered any
definition, the circular representation from Fig. 2a results after joining the inputs
and the outputs. The initial SWAP circuit can be reconstructed after making a
cut on each of the circular qubits, so that there is no case where two CNOTs
have the same control or target. However, if the cuts are made as indicated in

Circular CNOT Circuits 201

Fig. 3. Circuits after cutting the circular SWAP circuit: (a) as in Fig. 2d; (b) as in
Fig. 2e. The ICM versions of the previous two CNOT structures is obtained after choos-
ing appropriate qubit initialisation and measurements basis: (c) remote CNOT circuit;
(d) selective destination teleportation, where the measurement of the two upper qubits
dictates on which qubit (third or fourth) the first qubit is to be teleported. In general,
the |0〉 state can be replaced with an arbitrary state.

Fig. 2c, the result will be a circuit that implements a single CNOT, because the
other two cancel out (Fig. 1f).

The circular representation of the SWAP can be cut in different ways, and
the resulting circuits will have different functionality. The circuit from Fig. 3a is
obtained by executing the cuts from Fig. 2d. Furthermore, if the cyclic permu-
tation of SWAP is cut according to Fig. 2e, the resulting circuit will be the one
from Fig. 3b. By augmenting both resulting circuits with specific qubit initial-
isation and measurement bases, these have practical functional interpretations:
Fig. 3a depicts a remote CNOT (Fig. 3c), and Fig. 3b implements the selective
destination teleportation circuit [4] (Fig. 3d).

2 Circular CNOT Circuits

A circular CNOT circuit was presented in the previous section without any
definition or discussing its properties. In the following paragraphs definitions
will be introduced and explained. It should be noted that the notion of treating
a circuit in a circular fashion is the basis for the approach to template matching
[5], where templates are considered cyclic gate sequences. In contrast, the circuits
presented in this paper have circular wires that can be cut. This leads to a set
of implementable fault-tolerant quantum circuits requiring different amount of
qubits.

Definition 1. A circular CNOT circuit has circular qubit wires and consists
entirely of CNOT gates, thus it has no inputs or outputs.

The circular CNOT circuits proposed herein are not able to process informa-
tion because of to their lack of inputs and outputs, but can be transformed into
linear quantum circuits by cutting the circular wires. Quantum circuit reversibil-
ity is captured by the circular wire representation, and the temporal ordering of
the gates is dictated by the direction in which the wires are traversed. Therefore,
after cutting the wires, depending on the direction chosen, some wire end points
are the inputs and others represent outputs.

202 A. Paler

Definition 2. A cut is an interruption of a circular qubit wire that generates
two end points associated to an input or an output.

A set of cuts is correct if it does not lead to CNOTs intersecting themselves
in the resulting circuit. It can be shown that at least one radial cut across all
the wires is necessary for generating a valid quantum circuit: each cut introduces
two end points; if two cuts generate end points which are not co-linear on the
same radius then, after choosing any traversal direction, at least one CNOT will
have one of its control/target after an input and right before an output.

Definition 3. A linear quantum circuit is the result of performing two oper-
ations: (1) cut correctly at least once each circular wire of a circular CNOT
circuit; (2) chose a direction in which to traverse the CNOTs (clockwise, counter-
clockwise).

3 Boolean Model of Circular CNOT Circuits

Classical circuits can be modelled using Boolean formula, and this section shows
that circular CNOT circuits have a Boolean representation, too. This is not
surprising as the CNOT gate is a reversible gate. However, the Boolean model
uses the fact that the CNOT gate is a stabiliser gate [1,6] whose transformations
have a Boolean representation. An exact definition of the introduced Boolean
variables is offered only after discussing the effect of the cuts on the circular
representation.

3.1 Stabiliser Transformations

The Pauli matrices I,X, Y, Z play a central role in the definition of quantum
circuits. In the following the discussion will focus on X and Z, because Y = iXZ
and I is the 2 × 2 identity matrix. The matrices can be decomposed into ±1
eigenvalues with corresponding eigenvectors. The eigenvectors of Z are |0〉 and
|1〉, and the ones of X are |+〉 = 1√

2
(|0〉+ |1〉) and |−〉 = 1√

2
(|0〉−|1〉). The states

|0〉 and |+〉 are +1 eigenvectors, and |1〉, |−〉 are −1 eigenvectors respectively.

I =

(
1 0
0 1

)

Y =

(
0 −i
i 0

)

X =

(
0 1
1 0

)

Z =

(
1 0
0 −1

)

An operator M , consisting of N tensor products of Pauli operators, stabilises
the N -qubit state |q〉, if |q〉 is a +1 eigenvector of M . Therefore, for example,
X stabilises |+〉 and −Z stabilises |1〉. The matrix I stabilises any state. The
action of certain quantum gates (Clifford gates), which includes CNOT, can be
formulated entirely in terms of stabiliser transformations. The following equa-
tions illustrate how the input states of a CNOT (c denotes the control and t the
target) are transformed. For example, Eq. 1, shows that if the control qubit is
stabilised by X (is in the |+〉 state), after the CNOT both the control and the

Circular CNOT Circuits 203

Fig. 4. Boolean variables assigned to wire segments for: (a) CNOT X transforma-
tions; (b) CNOT Z transformations; (c) CNOT combined X and Z transformations
(Sect. 3.5); (d) SWAP X transformations; (e) SWAP Z transformations.

target are stabilised by X. The set of four stabiliser transformations below are
a complete description of the function of a CNOT.

XcIt → XcXt (1)
IcXt → IcXt (2)
ZcIt → ZcIt (3)
IcZt → ZcZt (4)

3.2 A Single CNOT

The functionality of a CNOT gate can be modelled by two Boolean expressions
of the form Eq. 5, because the transformations are of two types: X and Z. In
general, a wire segment is delimited by cut points or CNOT symbols (• or ⊕).
In particular, Boolean variables denoted with small letters stand for variables
representing wire segments ending at one of the symbols ⊕ or •, and capitalised
variables represent a wire segment running over one the CNOT symbols. To be
more precise, in Fig. 4a a and b represent the wire segments having the target
symbol ⊕ as an end point, and C is the variable for the entire control wire. In
Fig. 4b a and b represent the segments having • as an end point, and C the entire
target wire (contains ⊕).

C(a, b, C) = a ⊕ b ⊕ ¬C (5)

The following example shows how Eq. 5 works and how to interpret the truth
values of the variables. A definition of variables is offered in Sect. 3.3. If the con-
trol input of the CNOT is stabilised by Z, then a ← true is replaced in Eq. 5 so
that Eq. 6 results. The expression will be true only if one of the variables is true;
either C = true or b = true. The first case corresponds to the result of multiply-
ing Eqs. 3 and 4 (ZcZt → IcZt), and the latter to Eq. 3. Thus, a true variable
signals that a corresponding wire segment is stabilised, and a false variable
indicates the stabiliser I (not stabilised). The possible stabiliser transformations
of a CNOT are represented by each of the four clauses of the disjunctive normal
form of Eq. 5.

C(true, b, C) = true ⊕ b ⊕ ¬C = C ⊕ b (6)

204 A. Paler

Expression 6 is a valid example of X stabiliser transformations, too: if the
target input (variable a) is stabilised by X, then C = true corresponds to
XcXt → XcIt, and b = true to Eq. 2.

3.3 Modelling Cuts

The CNOT gate discussion did not consider a circular representation because
stabiliser transformations are functioning only in proper linear quantum circuits.
This section introduces the Boolean modelling of cuts by the example of a circular
single CNOT circuit (Fig. 1f). The only possible radial cut will result into two
end points per wire: c1,2 for the control wire, and t1,2 for the target. Considering
Fig. 4a, the variable C is the segment spanned between c1 and c2, a the segment
between t1 and ⊕, and b the segment between ⊕ and t2.

A linear quantum circuit is the result of a radial cut. In a circular represen-
tation with multiple CNOTs, this will generate two segment types: (1) segments
delimited by a cut end point and a CNOT; (2) segments delimited by two dis-
tinct CNOTs. The first segment type represents wires reaching inputs or outputs,
and the second type are circuit internal wires. However, the radial cut can be
followed by additional cuts which affect only second type segments. Considering
that a variable s represented any of these segments and that, after a cut, the
resulting subsegments are called r and t, Eq. 7 captures the Boolean behaviour
before the cut: the Boolean variables are equivalent (the segments are joined),
both can be either true or false.

J (r, t) = ¬r ⊕ t (7)

Cuts are modelled by not enforcing the subsegments to be equivalent, thus
by not using expressions like Eq. 7. As a result, in the absence of cuts, segments
delimited by two CNOTs are not considered independently, but as the result of
joining the two subsegments generated after a potential cut. This observation
leads to the Boolean variables interpretation (in the light of Sect. 3.2).

Definition 4. A Boolean variable represents a wire segment delimited by at least
one cut end point.

Definition 5. The truth value of a Boolean variable indicates if the qubit rep-
resented by the segment is stabilised or not.

3.4 Modelling an Entire Circular Circuit

The Boolean model of an entire circular circuit includes, as mentioned in
Sect. 3.2, two Boolean expressions (Bx and Bz): one capturing X and the other Z
stabiliser transformations. The expressions are built as conjunctions of clauses
(Eqs. 5 and 7) formed after all the possible cut points were determined and
the corresponding Boolean variables defined. The SWAP circular circuit is used

Circular CNOT Circuits 205

once more as an example. Figure 4d, e depict all the possible cuts, the resulting
segments and the necessary variables for forming Bx and Bz.

Bx = C(A, e, f)C(G, b, c)C(D,h, i)
J (A,D)J (A, b)J (c,D)J (e, i)J (f,G)J (G,h) (8)

Bz = C(P, k, l)C(M, q, r)C(S, n, o)
J (k, o)J (l,M)J (M,n)J (P, S)J (P, q)J (r, S) (9)

Equations 8 and 9 model the circular SWAP, where no cuts were made. In
order to generate a functioning SWAP circuit, the necessary radial cut will
remove the clauses J (A,D) and J (e, i) from Bx, and the clauses J (k, o) and
J (P, S) from Bz. The Boolean expressions resulting after the removals will rep-
resent the circuit in Fig. 1e.

In order to generate the circular permutation of the SWAP and to obtain
the circuit that implements a single CNOT (Fig. 1f) the radial cut could remove
J (c,D) and J (G,h) from Bx, and J (M,n) and J (r, S) from Bz. The teleported
CNOT circuit (Fig. 3a) is the result of performing the cuts J (A,D); J (e, i);
J (A, b); J (c,D) in Bx, and the cuts J (k, o); J (P, S); J (l,M); J (M,n) in
Bz. Finally, the selective destination teleportation circuit (Fig. 3b) is obtained
by cutting J (c,D); J (G,h); J (A,D); J (f,G) in Bx and J (M,n); J (r, S);
J (k, o); J (P, q) in Bz.

3.5 Discussion

Boolean models of circular CNOT circuits include two expressions, and this
structure was chosen because each expression is equivalent to a linear equations
system: each clause is a linear equation (XOR is a linear function). The equiva-
lence between the Boolean model and a stabiliser table obtained after simulating
a stabiliser circuit can be observed, too. Stabiliser table operations are performed
as if the table were a linear equations system (e.g. Gaussian elimination is used
for determining individual qubit measurement results) [1]. A second argument
for the chosen structure was that in a CNOT circuit the X and the Z stabilisers
transformations do not interact one with another. This would have not been the
case if, for example, Hadamard (H = PV P) gates were included in the circuit.
The Hadamard transforms the input X stabiliser into Z, and vice versa. Simi-
larly, if the circular circuits had included CPHASE gates, X and Z would have
been referenced in the same stabiliser transformations.

The manner in which cuts and Boolean variables were defined could have been
simplified if a single Boolean expression per CNOT had modelled both the X
and Z stabiliser transformations. In this situation, a wire segment is determined
by exactly one cut point and a CNOT element (• or ⊕). Each wire segment
has a Boolean variable attached, and for a single CNOT circuit the segments
and the variables are similar to Fig. 4c, and Eq. 10 models all the stabiliser
transformations.

F (a, b, c, d) = xC(a, c, d)(a ⊕ ¬b) ⊕ (¬x)C(c, a, b)(c ⊕ ¬d) (10)

206 A. Paler

The previous expression references the function defined in Eq. 5 and intro-
duces two additional variables x and z. If one would like to compute the X
transformation of a CNOT the x variable needs to be set to true, and for the
Z transformation the variable has to be false. The complete Boolean model of
a circular CNOT circuit results after conjugating for all the CNOTs the corre-
sponding expressions of form Eq. 10. The Boolean model of the cuts will remain
the same.

Irrespective of the used model (with a single or two Boolean expressions), the
temporal ordering of the gates is not relevant. The traversal direction of the gates
is not important when trying to determine a stabiliser transformation computed
by the modelled circuit. The CNOT gate is reversible, its Boolean model captures
its reversibility. If a variable is set to true and the truth value of another variable
has to be computed, the direction of the stabiliser transformations (equivalent
to gate traversal order) is dictated by the modelled Boolean constraints.

It can be also noted that the Boolean expressions capture the CNOT commu-
tativity inside the circuit (Fig. 1). This is due to how the segments were defined:
in Bx the capitalised variables represent segments containing the •, and in Bz the
capitalised variables stand for segments containing ⊕. For neighbouring CNOTs
having the control (Bx) or the target (Bz) on the same qubit, the capitalised
variables need to be interchanged in order to commute the gates. Variables of
joined (uncut) segments can be interchanged due to Eq. 7, which is the Boolean
equivalence relation between two variables.

4 ICM Circuits Are Instances of Circular CNOT Circuits

There are two strategies for constructing a quantum circuit from a circular rep-
resentation. The first is to make a single radial cut, and the second is to make
additional single cuts following a radial cut. A radial cut generates an ICM cir-
cuit having an equal number of wires to the circular representation, while each
additional single cut introduces an additional qubit (wire) in the circuit. This is
observed after comparing Fig. 2a, b. Consequently, circuits obtained after radial
cuts have indeed cyclic permuted gate lists. The second construction strategy,
however, does not preserve the number of wires from the circular representa-
tion, and the resulting gate lists are cyclic permutations only in the sense of the
CNOT ordering and direction (the affected qubits are not identical).

The position of the cuts dictates the chosen gate list permutation of the
resulting ICM circuit, but the circuit will not implement any function until
its qubits are configured. Configuration is the process of selecting qubit ini-
tialisation and measurement basis. In general, a quantum circuit includes both
input/output and ancillae qubits (have predetermined initialisation and mea-
surement basis). In particular, for ICM circuits the basis determine either the
rotational gate being implemented or supplemental decisions required during
information processing. An example for the latter situation offers the selective
destination teleportation circuit which acts like a multiplexer: the third or the
fourth qubit outputs the state of one the first qubit depending on the measure-
ment basis of these first two qubits (Fig. 3d). Non-ancillae qubits take the states

Circular CNOT Circuits 207

Fig. 5. The ICM circuits have the same CNOT gate structure, but different qubit
initialisation and measurements: (a) information teleportation circuit; (b) teleported
implementation of the T gate; (c) teleported implementation of the P gate; (d) tele-
ported implementation of the V gate; (e) construction of a Bell pair; (f) measurement
of the Z operator. The qubits marked with |ϕ〉 are input/output, and all the others
are ancillae. All the circuits will have the same circular CNOT circuit representation,
thus the same Boolean model.

supplied to the circuit (inputs) or are used for reading out states after circuit
execution (outputs). Each end point introduced after a cut will represent either
an ancilla or an input/output qubit. Thus, the construction of ICM circuits
from circular CNOT circuits requires three steps: (1) correctly cut and choose
traversal direction of the circular circuit; (2) select which end points belong to
ancillae and which not; (3) choose the initialisation and measurement basis of
the ancillae. The example of the circular SWAP circuit in the previous Section
illustrates these steps.

There are two abstraction levels, conforming to the previously listed steps,
necessary for highlighting circular CNOT circuit capabilities. The first level is
represented by circuits having the same CNOT structure but different initiali-
sation/measurement basis (e.g. Fig. 5). At this level all the circuits implement
the same underlying stabiliser transformations, because the CNOTs are arranged
identically. The second level is the circular CNOT representation and its Boolean
model, which abstracts all the circuits that have the same set of gates, but
arranged as cyclic permutations. In contrast to the first level, at the second level
the abstracted circuits do not implement the same stabiliser transformations,
because their gates are arranged differently (once more compare Fig. 1e, f). As
a result, constructing an ICM circuit from a circular representation is equiva-
lent to selecting an ICM circuit instance from the set of abstracted circuits. It
is straightforward to compute the circuit’s stabiliser transformations using the
Boolean expressions resulting after the cuts.

The main advantage of circular CNOT circuits is that they abstract a large
set of ICM circuits, and by this their Boolean model is the abstraction of mul-
tiple related possible stabiliser transformations. Each different cut choice in the
circular representation has the potential to result in a different ICM circuit struc-
ture with correspondingly different stabiliser transformations. It is beneficial to
have the possibility to generate/select a specific set of stabiliser transformations
which are required for a particular quantum computation, because scalable error
corrected quantum circuits are equivalent to ICM circuits. Although including
only CNOTs, their computational universality is given by the appropriate initial-
isation and measurement basis, and it is advantageous to derive sets of related
quantum circuits and understand their structure.

208 A. Paler

As a conclusion, a circular CNOT circuit can be formed as a generalisation
for any fault-tolerant error corrected circuit.

5 Example: The ICM Toffoli Gate

Reversible circuits make extensive use of the Toffoli gate because it is classically
universal (can simulate the classical AND, OR and NOT gates). Quantum com-
puting architectures, especially large-scale error corrected ones, do not support
the direct application of this gate. Therefore, the Toffoli gate needs to be firstly
decomposed into a sequence of architecture specific gates. The decomposition
into T and Hadamard gates, and the ICM implementation of the Toffoli gate are
presented in Figs. 6 and 7.

Fig. 6. Toffoli gate using CNOT, T (T †), P and Hadamard gates [6].

The previous sections discussed the construction of ICM circuits from the
circular representation, but this section will backtrack the steps from ICM to
circular CNOT circuit (Fig. 8). Firstly, for the ICM Toffoli gate implementation,
the (I)nitialisations and the (M)easurement components are removed (backtrack
second and third steps from Sect. 4). Secondly, all qubits operated by a single
CNOT are uncut (joined). At this stage circuits like Fig. 3a are backtracked to
a structure like Fig. 1e. Thirdly, all the remaining wire end points are looped,
such that a circular structure finally emerges. The circular CNOT circuit of the
ICM Toffoli is depicted in Fig. 8. Algorithm 1 summarises the circular CNOT
construction using pseudo code. The algorithm assumes that circuit inputs are
on the right and outputs on the left and that each CNOT is applied at a specific
time t. The construction starts with the bottom most qubit. For the current
qubit to be processed, the algorithm searches for the first CNOT gate that is
applied on it (e.g. at time min), and selects the closest upper qubit which is not
affected by a CNOT applied at time ≥ min. The current and the closest upper
wire are joined.

Comparing Figs. 6 and 8 against Fig. 7 shows that the circular representation
uses less wires than the ICM equivalent (9 vs. 45), and increases the number of
wires of the non-ICM decomposition by a factor of three (9 vs. 3). The cause of
this is that single CNOT operated qubits are uncut. The circular representation
shows that potential future ICM circuit optimisation techniques should consider
qubit reuse techniques.

Circular CNOT Circuits 209

Fig. 7. The ICM Toffoli gate implementation. Additional qubits are introduced because
each of the T and Hadamard gates from Fig. 6 is implemented using the teleported rota-
tional gates from Fig. 5b–d and with the use of measurement-controlled teleportation
subcircuits (e.g. Fig. 3d). The configurable measurement basis (Z/X and X/Z) are an
ICM mechanism for controlling the information flow in the circuit.

Fig. 8. The circular circuit of the ICM Toffoli decomposition. The circular representa-
tion is obtained after joining the left and right wire end points. The linear representa-
tion simplifies the visualisation. The cuts necessary to reconstruct the ICM equivalent
circuit (Fig. 7) are depicted with black horizontal bars.

210 A. Paler

Algorithm 1. Construction of Circular CNOT Circuit
Require: icm an ICM circuit
1: nrq ← icm.qubits
2: for all qub ∈ [nrq, 1] do
3: min time of left-most (first) • or ⊕ on wire qub
4: pqub first wire so that: 1) pqub < nrq, and 2) pqub is not used by any CNOT

with time ≥ min
5: Join left end point of qub (input) with right end point of pqub (output)
6: end for

6 Applications of Circular CNOT Circuits

The stabiliser transformations supported by a circular CNOT circuit are repre-
sentative for an entire set of ICM circuits. The number of generated ICM circuits
is a function of the number of cuts allowed on the circular wires. However, the
number of equivalent generated circuits is not known for the moment. Future
work on circular CNOT circuits will evaluate the number of equivalent circuits,
but also on using these for the test and verification of ICM circuits.

The circular CNOT circuit representation can be used to model single missing
gate faults (SMGF) when testing ICM quantum circuits. An SMGF is defined
as a missing gate from the ideal gate list of the circuit under test. Such faults
are detected by applying appropriate tests (initialising qubits according to a
pattern) at circuit inputs and reading out the computed states at circuit output
[9]. Methods for determining appropriate tests were investigated for example in
[8,9]. Because ICM circuit gate lists include only CNOTs, a CNOT SMGF is
equivalent to having a control stuck at |0〉; thus, the target is never affected.
Considering a set of cuts that generate the tested circuit, the fault is modelled
by introducing at most two additional cuts around the control of the CNOT, so
that an ancilla qubit results (similar to Fig. 3a). The ancilla will have its state
stuck at |0〉.

The verification of ICM circuits is a problem encountered in the context
of fault-tolerant quantum computations. Large scale circuits need to be error
corrected in order to achieve a certain fault-tolerance threshold, and one of the
most promising error correction techniques is based on topological properties of
the encoded information [3]. In that particular computational model information
is encoded as strands and braids are the implementation of CNOT gates, thus
the resulting circuits have an ICM interpretation. The information strands can
be arbitrarily deformed as long as the braiding structure is left unchanged and,
furthermore, circuit inputs and outputs can be placed anywhere on a strand.
The placement is not guaranteed to make any computational sense, but it does
not invalidate the strands (encoded qubit states) or the braids (CNOTs). The
main issue with such error corrected circuits is that their ICM interpretation
is a function of input/output location: the same circuit description in terms of
strands and braids can be interpreted as different ICM circuit. It can be seen (e.g.
Fig. 9) that input/output placement on strands is similar to cutting a circular

Circular CNOT Circuits 211

Fig. 9. Four qubits are encoded as strands and braided. The figures contain three
braids (CNOTs), as the grey strand is braided with the three white strands. The black
points denote potential input/output locations. The grey points represent additionally
included input/outputs. The strands can be arbitrarily deformed, so that (b) and (c)
have a CNOT structure equivalent to (a). The figures (b) and (c) assume that there is
a horizontal temporal axis, and that inputs are on the left while outputs on the right
side. The functionality of the ICM equivalent circuits depends on the initialisation and
measurement basis chosen for the qubits.

representation. For this reason, the proposed circular representation is a valuable
tool for verifying topologically error corrected ICM circuits: which cuts need to
be made, and which traversal direction is required for the resulting ICM circuit
to support a given set of stabiliser transformations? The support guarantees that
the structure of the circuit (number of qubits and CNOT gate list) is correct,
and that if the circuit were configured with corresponding qubit initialisations
and measurements, a correct sequence of teleported rotational gates (T,P,V) and
CNOTs would be implemented.

7 Conclusion

This work introduced circular CNOT circuits and their Boolean model. Two
Boolean expressions are capturing all the possible stabiliser transformations sup-
ported by the circular circuits, one for X stabiliser transformations and another
for Z transformations. Circular circuits can be transformed into fault-tolerant
error corrected quantum circuits after performing a well defined set of cuts. The
resulting circuits are the basis of ICM circuits, which are required for universal
scalable fault-tolerant quantum computing. ICM circuits consist entirely of qubit
initialisations, CNOTs (because all the single qubit quantum gates are imple-
mented by teleportation) and qubit measurements. ICM circuits originating from
the same circular CNOT circuit will have gate lists which are cyclic permuta-
tions of one another. Having modelled all the stabiliser mappings supported by
a circular circuit, it is straightforward to infer the stabiliser transformations of
a particular ICM instance.

Applications of circular CNOT circuits were enumerated in conjunction with
their ICM transformation and showcase new possibilities for the design of quan-
tum circuits. Future work will detail circular CNOT circuit based methods for
optimisation, SMGF testing and verification of ICM circuits.

212 A. Paler

References

1. Aaronson, S., Gottesman, D.: Improved simulation of stabilizer circuits. Phys. Rev.
A 70(5), 052328 (2004)

2. Bravyi, S., Kitaev, A.: Universal quantum computation with ideal Clifford gates
and noisy ancillas. Phys. Rev. A 71(2), 022316 (2005)

3. Fowler, A.G., Mariantoni, M., Martinis, J.M., Cleland, A.N.: Surface codes, towards
practical large-scale quantum computation. Phys. Rev. A 86, 032324 (2012)

4. Fowler, A.G.: Time-optimal quantum computation (2012). arXiv arXiv:1210.4626
5. Maslov, D., Dueck, G.W., Michael Miller, D.: Simplification of Toffoli networks via

templates. In: Proceedings 16th Symposium on Integrated Circuits and Systems
Design, SBCCI 2003, pp. 53–58. IEEE (2003)

6. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information.
Cambridge University Press, Cambridge (2010)

7. Paler, A., Polian, I., Nemoto, K., Devitt, S.J.: A fully fault-tolerant representation
of quantum circuits. In: Krivine, J., Stefani, J.-B. (eds.) RC 2015. LNCS, vol. 9138,
pp. 139–154. Springer, Heidelberg (2015)

8. Patel, K.N., Hayes, J.P., Markov, I.L.: Fault testing for reversible circuits. IEEE
Trans. Comput. Aided Des. Integr. Circuits Syst. 23(8), 1220–1230 (2004)

9. Polian, I., Fiehn, T., Becker, B., Hayes, J.P.: A family of logical fault models for
reversible circuits. In: Proceedings of the 14th Asian Test Symposium 2005, pp.
422–427. IEEE (2005)

http://arxiv.org/abs/1210.4626

Towards Quantum Programs Verification:
From Quipper Circuits to QPMC

Linda Anticoli1(B), Carla Piazza1, Leonardo Taglialegne1, and Paolo Zuliani2

1 Department of Mathematics, Computer Science and Physics, University of Udine,
Udine, Italy

anticoli.linda@spes.uniud.it, carla.piazza@uniud.it
2 School of Computing Science, Newcastle University, Newcastle upon Tyne, UK

paolo.zuliani@ncl.ac.uk

Abstract. We present a translation from the quantum programming
language Quipper to the QPMC model checker, with the main aim of
verifying Quipper programs. We implemented and tested our translation
on several quantum algorithms, including Grover’s quantum search.

Keywords: Quantum languages · Quantum circuits · Model checking

1 Introduction

The specification of algorithms in human readable form and their translation
into machine executable code is one of the main goals of high-level programming
languages. Quantum algorithms and protocols are usually described by quantum
circuits (i.e., circuits involving quantum states and quantum logic gates). Even
if such circuits have a simple mathematical description they can be very difficult
to realise in practice without a deep knowledge of the essential features of the
physical phenomena under consideration. The above reasons justify the need for
tools that permit to abstract from a low-level description of quantum algorithms
and protocols, thereby allowing people who know very little of quantum physics
to program a quantum device.

The introduction of high-level formalisms allows to define and automatically
verify formal properties of algorithms abstracting away from low-level physi-
cal details. Formal verification techniques such as model checking allow to test
temporal properties of a system evaluating all possible cases. In the context of
quantum computation, the possibility of verifying quantum protocols is very
important. In particular, protocols for quantum cryptography, that are deeply
investigated at the moment hoping for future applications in the secure trans-
mission of information, require certification of correctness.

Although both the quantum computation and verification fields are quite
new, we found two interesting tools: the functional language Quipper [8] and the
model checking system QPMC [1], which we decided to use as a starting point

This work has been partially supported by the GNCS group of INdAM.

c© Springer International Publishing Switzerland 2016
S. Devitt and I. Lanese (Eds.): RC 2016, LNCS 9720, pp. 213–219, 2016.
DOI: 10.1007/978-3-319-40578-0 16

214 L. Anticoli et al.

for the development of a framework providing both a high-level programming
style and formal verification tools.

The paper is organized as follows. In Sect. 2 we recall some basic quantum
notations and briefly introduce Quipper and QPMC. In Sect. 3 we define an
abstract algorithm for translating Quipper circuits into QPMC models. In Sect. 4
we describe our implementation of the translation algorithm together with some
experimental results. Section 5 ends the paper.

2 Preliminaries

Quantum systems are represented through complex Hilbert spaces. There are
two possible formalisms based on Hilbert spaces for quantum systems: the state
vector formalism and the density matrix one. In the state vector formalism,
used by Quipper, the state of a system is completely described by a normalized
vector while evolutions are unitary operators. In the density matrix formalism,
used by QPMC, the state of a system is a density matrix, while evolutions are
superoperators. See [7] for more details.

Quipper is an embedded functional programming language within Haskell
for quantum computation [4] based on the Knill’s QRAM model [5] of quantum
computation. Quipper is above all a circuit description language, for this reason
it uses the state vector formalism and its main purpose is to make circuit imple-
mentation easier providing high level operations for circuit manipulation. This
is encapsulated in a Haskell monad called Circ, where a sequence of unitary and
measurement gates can be applied to qubits and bits. Quipper allows to generate
a graphical representation and to simulate through three different simulators a
circuit written in the monad.

QPMC is a model checker for quantum programs and protocols based on
the density matrix formalism available in both web-based and off-line version
at http://iscasmc.ios.ac.cn/too/qmc. It takes in input programs written in an
extension of the guarded command language PRISM [6] that permits the speci-
fication of types vector, matrix, and superoperator.

The semantics of a QPMC program is given in terms of superoperator
weighted Markov chain, which is a Markov chain in which the state space is taken
classical, while all quantum effects are encoded in the superoperators labelling
the transitions (see, e.g., [1,2]). Let SI(H) be the set of trace-nonincreasing
superoperators over a complex Hilbert space H. Given a density matrix ρ repre-
senting the state of a system, E ∈ SI(H) implies that tr(E(ρ)) ∈ [0, 1]. Hence, it
is natural to regard the set SI(H) as the quantum correspondent of the domain of
traditional probabilities [1]. A quantum Markov chain is a discrete time Markov
chain, where classical probabilities are replaced with quantum probabilities.

Definition 1 (Quantum Markov Chain [1,2]). A superoperator weighted
Markov chain, also referred to as quantum Markov chain (herein QMC) over
a Hilbert space H is a tuple (S ,Q ,AP ,L), where:

– S is a countable (finite) set of classical states;

http://iscasmc.ios.ac.cn/too/qmc

Towards Quantum Programs Verification: From Quipper Circuits to QPMC 215

– Q : S × S → SI(H) is called the transition matrix where for each s ∈ S, the
superoperator

∑
t∈S Q(s, t) is trace-preserving;

– AP is a finite set of atomic propositions and L : S → 2AP is a labelling
function.

The properties to be verified over QMC are expressed using the quantum
computation tree logic (QCTL), a temporal logic for reasoning about evolution
of quantum systems introduced in [2] that is a natural extension of PCTL.
For instance, the quantum operator formula Q∼ε[F] is a more general case of
the PCTL probabilistic operator P∼�[F] and it expresses a constraint on the
probability that the paths from a certain state satisfy the formula F . QPMC
also provides a function qeval((Q =?)[F], ρ) to compute the density operator
obtained applying the resultant superoperator on a given density operator ρ.

3 From Circuits to Quantum Markov Chains

We define a mapping from Quipper to QPMC programs at the semantic level,
i.e., we consider a quantum circuit generated by Quipper and we define a corre-
spondent QMC having an equivalent behavior.

We assume the reader to be familiar with the classical notions of graphs and
boolean circuits. Given a node v of a directed graph we use the notation In(v)
(Out(v)) to denote the number of edges incoming (outcoming, respectively) in
v. A quantum circuit is an extension of a boolean circuit in which operation
gates are labeled with unitary operators. When a unitary operator is applied
to k qubits it is necessary to know in which order the qubits are used for this
reason each edge of a quantum circuit has two integer labels.

Definition 2 (Quantum Circuit). A Quantum Circuit is a directed acyclic
graph (herein DAG) C = (V,E) whose nodes are of types Qubit (Q), Unitary
(U), Measurement (M) and Termination (T) and are such that:

1. Q gates: each node v of type Qubit is an input node;
2. U gates: each node v of type Unitary is labelled with an integer dim(v) and a

square unitary matrix U(v) of complex numbers of dimension 2dim(v). More-
over, it holds that In(v) = Out(v) = dim(v);

3. M gates: each node v of type Measurement is an output node;
4. T gates: each node v of type Termination is an output node;
5. Edges: each edge e ∈ E is labelled with two integers S(e) and T (e) such that:

Fig. 1. Deutsch circuit in Quipper.

216 L. Anticoli et al.

– for all u ∈ V the set T (·) of its ingoing edges is {1, . . . , In(u)};
– for all u ∈ V the set S(·) of its outgoing edges is {1, . . . , Out(u)}.

A Quantum Circuit with k nodes of type Qubit is said to have size k.

Example 1. Let us consider the following Quipper implementation of Deutsch’s
algorithm.

Quipper graphically represents the circuit as shown in Fig. 1.
Our definition enriches the above representation with labels denoting the

order in which the qubits are used, as depicted in Fig. 2.

Fig. 2. Deutsch circuit with labels.

A Quantum Circuit of size k is said to be in Normal Form if each Unitary
node v in the circuit has dim(v) = k.

Definition 3 (Strong Normal Form). A Quantum Circuit C of size k is said
to be in Strong Normal Form (herein SNF) if C is in Normal Form, for each
edge e ∈ E between two Unitary nodes S(e) = T (e) holds and the first h ≤ k
edges outgoing the last Unitary node enter into Measurement nodes.

Fig. 3. Example of a circuit in strong normal form

A circuit C in SNF is completely specified by the tuple (k, [Ui, . . . , Un], h)
where k is the size of C, U1, . . . , Un are the Unitary operators in the order they
occur in C, and h is the number of Measurement nodes.

In circuits the order of the labels on the edges is not preserved. On the
contrary, SNF circuits require a precise ordering of the input and output edges.
In order to match this requirement, SWAP operators have to be added.

Two quantum circuits are equivalent if, for any k-tuple of initial values of the
qubits, the values of the qubits before measurements/terminations are the same.
Moreover, to be equivalent two circuits need to give the same outputs with the
same probabilities. Formally, let C be a Quantum Circuit of size k we denote by
Sem(C) the pair of functions (F (C),M(C)) where:

Towards Quantum Programs Verification: From Quipper Circuits to QPMC 217

– F (C) : Hk −→ Hk is the function which maps k qubits to the value they
have just before the Measurement and Termination nodes;

– M(C) : Hk × {0, 1}h −→ [0, 1] is such that M(C)(|ψ〉, (b1, . . . , bh)) is the
probability of getting output (b1, . . . , bh) ∈ {0, 1}h on input |ψ〉.

Given two Quantum Circuits C1 and C2 of size k, C1 and C2 are equivalent,
denoted by C1 ≈ C2 if and only if Sem(C1) = Sem(C2).

Lemma 1. Every Quantum Circuit is equivalent to a SNF one.

We are ready to define the QMC associated to a circuit in SNF. Intuitively,
the states of the QMC correspond to the edges of the circuit, while the edges of
the QMC connect subsequent states. Moreover, states without outgoing edges
are added in the QMC to represent all the possible outputs of the circuit.

Definition 4 (QMC Associated to a Circuit). Let C be a Quantum Circuit
in SNF of size k with n Unitary nodes {U1, . . . , Un} and h Measurement nodes,
the QMC QC associated to C is defined as follows:

– the k-tuple of edges of C entering Ui is associated to the state si in QC ;
– the k-tuple of edges outgoing from Un is associated to the state sn+1;
– in QC there are 2h states t0, t1, . . . , t2h−1;
– for each i ∈ {1, . . . , n} there is an edge from si to si+1 is labelled with the

superoperator EUi
associated to Ui;

– for each i ∈ {0, . . . , 2h − 1} there is an edge from sn+1 to ti labelled with the
superoperator M̃i = Mh

i ⊗ Ik−h, where Ik−h is the identity matrix of size
2k−h and Mh

i is a matrix of size 2h having 1 in the i + 1-th position and all
0’s in the remaining.

In Fig. 4 we can see the QMC associated to the circuit of Fig. 3.

Fig. 4. QMC associated to the circuit of Fig. 3.

Lemma 2. Given C in SNF we can always build the QMC QC associated to C
and it holds that:

1. ∀|τ〉 ∈ H, ∀i ∈ {1, . . . , n}, Ui|τ〉 = |ψ〉 iff EUi
|τ〉〈τ |E†

Ui
= |ψ〉〈ψ|

2. ∀|τ〉 ∈ H if F (C)(|τ〉) = |ψ〉 and M(C)(|τ〉, {b1, . . . , bh}) = p, with
m = bin(b1 . . . bh) (i.e., the natural with binary expansion b1 . . . bh) then:
p = tr(M̃m|ψ〉〈ψ|M̃†

m), and M̃m|ψ〉〈ψ|M̃†
m = |b1, . . . , bh . . . 〉〈b1, . . . , bh . . . |

As a consequence of the above lemma any Temporal Logic coherently defined on
both formalisms can be equivalently model checked either on the circuit or on
its associated QMC.

218 L. Anticoli et al.

4 Implementation and Experiments

The results described in the previous sections allow us to define an algorithm
that maps a quantum circuit into an equivalent QMC. In particular, Algorithm
Translate performs the following steps: it transforms a normal form circuit into a
SNF circuit (see Lemma 1) and a SNF circuit into its corresponding QMC (see
Lemma 2). Hence, given a quantum circuit C the output of Translate(C) is a
QMC equivalent to C in the sense of Lemma 2.

The computational complexity of Translate(C) depends on the number n of
Unitary nodes occurring in C and on its size k: Translate(C) generates a QMC
having O(n ∗ k2) internal nodes.

Our implementation of Translate(C) is available at https://github.com/
miniBill/entangle. It exploits the Transformer module of Quipper –a library
providing functions for defining general purpose transformations on low-level
circuits– and works at data structure level.

We tested our translation tool with our Quipper implementation of Grover’s
search algorithm [7]. We implemented it on a search space of dimension 4.

Exploiting our implementation we automatically generate the code for
QPMC. We tested the formulas to evaluate the density matrix associated to
each terminal state and the results are coherent with expectations.

5 Conclusions

We proposed a framework that performs a translation from Quipper to QPMC.
The main idea is to use this framework to create a tool that allows, on the one
hand, the description of quantum algorithms and protocols in an high-level pro-
gramming language, and on the other hand their formal verification. We imple-
mented and tested our translator on some common quantum algorithms and the
final results validated our expectations. We are working on enrichment and opti-
mization of our framework in order to match the requirement of validating com-
plex algorithms and protocols, e.g., the ones involving also a classical control out-
side the Circ monad. Another direction of research we are interested in concerns
model checking techniques that efficiently deal with special circuits [3].

References

1. Feng, Y., Hahn, E.M., Turrini, A., Zhang, L.: QPMC: a model checker for quantum
programs and protocols. In: Bjørner, N., Boer, F. (eds.) FM 2015. LNCS, vol. 9109,
pp. 265–272. Springer, Heidelberg (2015)

2. Feng, Y., Yu, N., Ying, M.: Model checking quantum Markov chains. J. Comput.
Syst. Sci. 79, 1181–1198 (2013)

3. Gay, S., Nagarajan, R., Papanikolaou, N.: Probabilistic model-checking of quantum
protocols. In: Proceedings of the 2nd International Workshop on Developments in
Computational Models (2006)

4. Green, A.S., Lumsdaine, P.L., Ross, N.J., Selinger, P., Valiron, B.: Quipper: a scal-
able quantum programming language. SIGPLAN Not. 48(6), 333–342 (2013)

https://github.com/miniBill/entangle
https://github.com/miniBill/entangle

Towards Quantum Programs Verification: From Quipper Circuits to QPMC 219

5. Knill, E.: Conventions for Quantum Pseudocode. Technical report, Los Alamos
National Laboratory (1996)

6. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Qadeer, S., Gopalakrishnan, G. (eds.) CAV 2011. LNCS, vol.
6806, pp. 585–591. Springer, Heidelberg (2011)

7. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information.
Cambridge University Press, Cambridge (2011)

8. Smith, J.M., Ross, N.J., Selinger, P., Valiron, B.: Quipper: concrete resource estima-
tion in quantum algorithms. In: Workshop on Quantitative Aspects of Programming
Languages and Systems, QApPL, Grenoble (2014). arxiv:1412.0625

http://arxiv.org/abs/1412.0625

Circuit Theory

Application of Permutation Group Theory
in Reversible Logic Synthesis

Dmitry V. Zakablukov(B)

Department of Information Security, Bauman Moscow State Technical University,
Moscow, Russian Federation

dmitriy.zakablukov@gmail.com

Abstract. The paper discusses various applications of permutation
group theory in the synthesis of reversible logic circuits consisting of
Toffoli gates with negative control lines. An asymptotically optimal syn-
thesis algorithm for circuits consisting of gates from the NCT library is
described. An algorithm for gate complexity reduction, based on equiv-
alent replacements of gates compositions, is introduced. A new app-
roach for combining a group-theory-based synthesis algorithm with a
Reed–Muller-spectra-based synthesis algorithm is described. Experimen-
tal results are presented to show that the proposed synthesis techniques
allow a reduction in input lines count, gate complexity or quantum cost
of reversible circuits for various benchmark functions.

Keywords: Reversible logic · Synthesis · Permutation group theory

1 Introduction

Reversible logic circuits have been studied in many recent papers [1,10,12,14,
18]. On the one hand, the interest in these circuits is caused by the theoretically
possible reduction of energy consumption in digital devices due to the reversibil-
ity of all computations [4]. On the other hand, all quantum computations are
necessarily reversible. Hence, with the help of a reversible circuit, one can model
a quantum circuit.

One important research area is the development of new efficient and fast
synthesis algorithms, which can produce a reversible circuit with low gate com-
plexity and depth. However, for the purpose of a comparison between different
synthesis algorithms, we should first choose a library of gates, from which a
synthesized circuit will consist. One such gate library is one that includes NOT
(inversion gate), CNOT (Feynman gate) and C2NOT (Toffoli gate). We will refer
to it as the NCT library. Another popular gate library is the GT library, which
includes generalized Toffoli gates with positive and negative control input lines.
Both libraries are functionally complete in terms of the ability to construct a
reversible circuit that implements a desired even permutation from the alternat-
ing group A(Bn) without using additional inputs. An odd permutation from the
symmetric group S(Bn

2) can always be realized in a reversible circuit without
additional inputs in the GT, but not in the NCT library.
c© Springer International Publishing Switzerland 2016
S. Devitt and I. Lanese (Eds.): RC 2016, LNCS 9720, pp. 223–238, 2016.
DOI: 10.1007/978-3-319-40578-0 17

224 D.V. Zakablukov

For many proposed synthesis algorithms, an upper bound for the gate com-
plexity of a reversible circuit in the worst case is proved. Though it was proved
that the worst case requires Ω(n2n / log n) gates from the NCT library [15],
almost all these bounds are of the form O(n2n) in the NCT library [9].

Recently, the first asymptotically optimal in NCT library synthesis algorithm
was introduced with the gate complexity L(S) � 3n2n+4 / log2 n of a reversible
circuit in the worst case [18]. In Sect. 2, we briefly describe this cycle-based
algorithm. Section 3 contains descriptions of the replacement rules from [17]
and of a “moving and replacing” algorithm for reducing the gate complexity
of a reversible circuit in NCT and GT libraries with the help of these rules. In
Sect. 4, we discuss various approaches of reducing the gate complexity during
the synthesis process. In Sect. 5, we introduce a novel technique for combining a
cycle-based synthesis algorithm with a Reed–Muller-spectra-based one. Experi-
mental results of benchmark functions synthesis are presented in Sect. 6; all new
circuits were obtained with the help of our open source software ReversibleLogic-
Generator [19] that implements all synthesis techniques described in this paper.
All results we present here (except Sect. 2 and the first part of Sect. 3) are new.

We use the following notation for a generalized Toffoli gate with negative
control input lines.

Definition 1. A generalized Toffoli gate TOF (I;J ; t) = TOF (i1, · · · , ir; j1, · · ·
· · · , js; t) is a reversible gate, which defines a transformation fI;J;t : Bn → B

n as
follows:

fI;J;t(〈x1, · · · , xn〉) = 〈x1, · · · , xt ⊕ xi1 ∧ · · · ∧ xir ∧ x̄j1 ∧ · · · ∧ x̄js , · · · , xn〉 ,

where I = { i1, · · · , ir } is a set of indices of positive control input lines, J =
{ j1, · · · , js } is a set of indices of negative control input lines, and t is an index
of a controlled output line, I ∩ J = ∅, t /∈ I ∪ J .

In the case of the absence of negative control input lines, a generalized Toffoli
gate will be referenced as TOF (I; t), and in the case when a generalized Toffoli
gate has no control input lines at all, it will be referenced as TOF (t). In other
words, TOF (t) = TOF (∅; ∅; t) and TOF (I; t) = TOF (I; ∅; t). Using this nota-
tion, we can refer to a NOT gate as TOF (a), to a CNOT gate as TOF (b; a) and
to a C2NOT gate as TOF (b, c; a).

2 Asymptotically Optimal Synthesis Algorithm

In [18] a cycle-based synthesis algorithm that can produce a reversible circuit
with the asymptotically optimal in NCT library gate complexity for any even
permutation on the set B

n, was described. It is the first and currently (as far
as we know) the only asymptotically optimal non-search synthesis algorithm for
the NCT library. Our software [19] is based on it, so we are going to briefly
describe the essence of the algorithm.

Application of Permutation Group Theory in Reversible Logic Synthesis 225

Let’s consider an even permutation h ∈ A(Bn). The main idea is a decom-
position of h into a product of transpositions in such a way that all of them can
be grouped by K independent transpositions1:

h = G1 ◦ G2 ◦ · · · ◦ Gt ◦ h′ ,

where Gi = (xi,1,yi,1) ◦ · · · ◦ (xi,K ,yi,K) is an i-th group of K independent
transpositions, xi,j ,yi,j ∈ B

n and h′ is a residual permutation.
Using vectors of a group Gi, we construct a matrix Ai as follows:

Ai =
[
xi,1 yi,1 · · · xi,K yi,K

]T
.

The matrix Ai is a 2K × n binary matrix. If 22K < n, then some columns in
it are equal to one another. These duplicated columns can be zeroed-out in the
matrix, using CNOT gates, with the help of conjugation; this results in a new
matrix A

(1)
i .

Note that the matrix Ai defines a permutation πi ∈ S(Bn) and every gate e
from the NCT library defines a permutation he ∈ S(Bn), for which h−1

e = he.
Therefore, a conjugation of a permutation π by a permutation he, denoted as
πhe = h−1

e ◦ π ◦ he, corresponds to attaching the gate e to the front and back of
a current sub-circuit. For example, if the first two columns in the matrix Ai are
equal, we can zero-out the second column with the help of two TOF (1; 2) gates.

Next, we fix all pairwise distinct nonzero columns { cj1 , · · · , cjd } in the
matrix A

(1)
i and choose an index of a controlled output t from the set

{ j1, · · · , jd }. After that we transform the matrix A
(1)
i to the canonical form

A
(2)
i with the help of conjugation, where an l-th row, l is odd, differs from the

(l + 1)-th row only in t-th element.
And finally, we transform the matrix A

(2)
i to the final form A

(3)
i with the help

of TOF (j) gates, where j /∈ { j1, · · · , jd }. In [18] it was proved that the matrix
A

(3)
i can be realized by the single gate TOF ({ 1, · · · , n } \ { j1, · · · , jd }; t). The

gate can be represented as a composition of C2NOT gates if K > 1 (the number
of independent transpositions in a group Gi).

A synthesized reversible circuit S, produced by the algorithm, has the gate
complexity L(S) � 3n2n+4 / log2 n, if K = O(log2 n − log2 log2 n − log2 φ(n)),
where φ(n) < n/ log2 n is an arbitrarily slowly growing function, and the gate
complexity L(S) � 6n2n, if K = 2. These results were proved in [18].

In our software [19], we can change the parameter K to achieve the best
synthesis result in a particular case. But in practice, when the number of input
lines in a circuit is large, it is almost always the best option to use K = [log2 n]
during the synthesis process.

The time complexity of the synthesis algorithm is T (A) = O(n2n / log2 n) in
the worst case.

1 Hereinafter a multiplication of permutations is left-associative: (f ◦ g)(x) = g(f(x)).

226 D.V. Zakablukov

3 Generalized Replacement Rules for Gate Compositions

One of the most widely used gate complexity reduction techniques is an applying
gate compositions templates to a reversible circuit. For example, such templates
were considered in [9]. This approach involves storing templates and finding
them in a circuit. But we can interchange some adjacent gates of NCT and GT
libraries in a reversible circuit without changing the resulting transformation,
defined by the circuit. We call such gates independent.

In [5] the necessary and sufficient conditions for the independence of two
TOF (Ij ; tj) gates were proved. However, for the gates from the GT library we
can supplement these conditions.

Lemma 1. Gates TOF (I1;J1; t1) and TOF (I2;J2; t2) are independent iff at
least one of the following condition holds (see Fig. 1):

1. t1 /∈ I2 ∪ J2 and t2 /∈ I1 ∪ J1 (in particular, t1 = t2);
2. I1 ∩ J2 �= ∅ or I2 ∩ J1 �= ∅.
Proof of the Lemma 1 was partly given in [17]. Even though the first condition of
gate independence was already known before [5] (see Fig. 1a and b), the second
one cannot be derived from it (see Fig. 1c).

Fig. 1. Examples of independent gates: (a)–(b) NCT library specific; (c) GT library
specific.

In [2] rule-based optimization techniques based on Karnaugh maps for the
optimization of sub-circuits with common targets were described. The main dis-
advantage of this approach is the restricted scalability for circuits with the large
number of input lines. On the other hand, the advantage of using negative con-
trol Toffoli gates for the simplification of reversible circuits and reducing their
quantum cost was shown by the authors.

In [17] we proposed generalized replacement rules for the case of an arbi-
trary number of input lines. Moreover, we were able to obtain a new rule for
interchanging two gates with changing the polarity of a control line for one of
these gates (see the last rule in Table 4). Our replacement rules are essentially

Application of Permutation Group Theory in Reversible Logic Synthesis 227

templates of small length. But the advantage of using them is in changing the
set of negative control input lines in a gate. This makes it possible to obtain
independent gates instead of dependent ones in some cases, interchange or move
them in a reversible circuit to new places and apply other replacement rules.
“Moving and replacing” algorithm will be described later.

A similar approach was used in [11], though replacement rules in that paper
differ from ours.

Let’s consider a composition of two dependent gates e1 ∗ e2. Let he1 and he2

be permutations defined by them respectively. If we want to obtain an equal
composition S1 ∗ e1 = e1 ∗ e2, then the circuit S1 must implement the permuta-
tion h1 = h

he1
e2 . And if we want to obtain an equal composition e2 ∗S2 = e1 ∗ e2,

then the circuit S2 must implement the permutation h2 = h
he2
e1 .

All our replacement rules can be classified as follow:

1. Representing a gate from the GT library as a composition of gates from the
NCT library.

2. Merging two gates into one.
3. Reducing the negative control lines number.
4. Interchanging two dependent gates.

For the sake of clarity, we will organize the detailed description of our rules
in the form of Tables 1, 2, 3 and 4, one for each rule “class”. The left column
of the tables contains a gate composition before applying replacement rule, and
the right column contains the result of the replacement. For every rule a picture
goes first (for understanding the concept of a rule), then, a text description of
the rule, and finally, a condition for applying the rule.

Now we can describe the “moving and replacing” algorithm implemented in
our software [19], which may reduce the gate complexity of a circuit.

Let a reversible circuit S be a composition of l gates from the GT library:

S =
l∗

i=1
ei. If a gate composition ei ∗ ej satisfies the condition of a replacement,

where i < j, and there is such an index s, i ≤ s < j, that gates ei and ek are
independent for every i < k ≤ s, and gates ej and ek are independent for every
s < k < j, then the gates ei and ej can be removed from the circuit and a result
of the replacement for ei ∗ ej can be inserted between gates es and es+1.

So, the “moving and replacing” algorithm first searches a pair of gates, the
composition of which satisfies the condition of a replacement. After that the
algorithm checks if they can be moved to each other, using Lemma 1. If yes,
it implements a replacement as described above. In the case, when the gate
complexity is not reduced after replacement, but there are new gates in a circuit,
the algorithm continues to work, until the gate complexity is reduced or there
are no new gates.

The time complexity of the proposed “moving and replacing” algorithm
T (A) ≥ R · l2, where R is the number of replacement rules, l is the gate com-
plexity of an original circuit. It is almost the same as the time complexity of
any template based optimization algorithm. At the same time, our “moving and
replacing” algorithm seems to be more flexible than a template-based approach,

228 D.V. Zakablukov

Table 1. Representing a gate from the GT library as a composition of gates from the
NCT library.

•
•
•
•

TOF (I ;J ; t) ∗
t : t∈J

TOF (t) ∗ TOF (I ∪ J ; t) ∗ ∗
t : t∈J

TOF (t)

• • •
• • • •

• •

TOF (I ;J ; t) ∗
J : J ⊆J

TOF (I ∪ J ; t)

because proposed replacement rules do not depend on the number of inputs in a
reversible circuit, therefore there is no need to store a large number of templates
and search them in a library.

4 Boolean Hypercube Search

Let’s consider the following permutation:

h =(〈1, 0, 0, 0, 0〉, 〈1, 0, 1, 0, 1〉)◦
◦(〈1, 0, 0, 0, 1〉, 〈1, 0, 1, 0, 0〉)◦
◦(〈1, 0, 0, 1, 0〉, 〈1, 0, 1, 1, 1〉)◦
◦(〈1, 0, 0, 1, 1〉, 〈1, 0, 1, 1, 0〉) .

As we can see, vectors in every transposition of permutation h presented above
differ only in the 3rd and 5th coordinates. There are four transpositions total.
Hence, a set of all vectors in these transpositions represents a Boolean 3-cube
B
5,1,2
1,0 contained in a Boolean 5-cube B

5. This 3-cube can also be denoted as
〈1, 0, ∗, ∗, ∗〉. Therefore, the permutation h can be implemented by a composition
of gates TOF (1; 2; 3) ∗ TOF (1; 2; 5).

Let’s assume we can represent a permutation h ∈ A(Bn) as a product of
transpositions in such a way that a set of all vectors of first k transpositions in
this product represents a Boolean (1 + log2 k)-cube. In the case, when we use
only our cycle-based approach for the synthesis, we have to divide these k trans-
positions into groups and synthesize them separately. This approach can lead to
significant gate complexity of a produced reversible circuit. On the other hand,
any Boolean hypercube contained in B

n can be implemented by a composition
of no more than n generalized Toffoli gates TOF (I;J ; t).

Application of Permutation Group Theory in Reversible Logic Synthesis 229

Table 2. Merging two gates into one.

• •
• •
•

•
•

TOF (I1; J1; t) ∗ TOF (I2; J2; t) TOF (I2; J1; t)

Condition: I1 = I2 ∪ { k } and J2 = J1 ∪ { k }, where k /∈ I2 ∪ J1.

• •
• •
•

•
•

TOF (I1; J ; t) ∗ TOF (I2; J ; t) TOF (I2; J ∪ { k }; t)

Condition: I1 = I2 ∪ { k }.

• •
• •

•
•
•

TOF (I ;J1; t) ∗ TOF (I ;J2; t) TOF (I ∪ { k }; J2; t)

Condition: J1 = J2 ∪ { k }.

For example, a transformation f (〈x1, x2, · · · , xn〉) = 〈x1, x2 ⊕x1, x3, . . . , xn〉
can be implemented by a reversible circuit, produced by our main synthesis
algorithm, with the gate complexity O(n2n), and it can be implemented by a
single gate TOF (1; 2), because there is a Boolean 1-cube 〈1, ∗, · · · , ∗〉.

It is obvious that searching a Boolean hypercube can take a significant
amount of time and can be inefficient for large functions. But this approach
makes it possible to obtain better synthesis results in some cases.

4.1 Effective Disjoints of Cycles

To find a larger Boolean hypercube, we should somehow effectively represent
a permutation h as a product of specific transpositions. Let’s consider a per-
mutation h = (a, b, c, e, f, g), where the Hamming distances d(a, e) = d(b, g) =
d(c, f) = Δ and the Hamming distance for any other two elements of h is not
equal to Δ. We have the two possible representations of h as a product of cycles:

230 D.V. Zakablukov

Table 3. Reducing the negative control lines number.

• •
•

•
• •

•
•

TOF (I1; J1; t) ∗ TOF (I2; J2; t)
TOF (I1; J3; t) ∗ TOF (I2; J3; t)

J3 = J1 \ { q } = J2 \ { p }

Condition: there are such p and q that p ∈ I1 ∩ J2, q ∈ J1 ∩ I2,
I2 = I1 \ { p } ∪ { q }, J2 = J1 \ { q } ∪ { p }.

• • • •
•

•

TOF (I1; J1; t) ∗ TOF (I2; J2; t)
TOF (I1 ∪ { p }; J1 \ { p }; t)∗
∗TOF (I2 ∪ { q }; J2 \ { q }; t)

Condition: there are such p and q that J1 = J ∪ { p }, J2 = J ∪ { q },
J1 ∩ J2 = J , I1 = I2.

1. h = (a, e) ◦ (a, f, g) ◦ (e, b, c).
2. h = (b, g) ◦ (c, f) ◦ (a, b) ◦ (c, g) ◦ (e, f).

We can see that in the first case only the cycle (a, e) has the two elements with
the Hamming distance equal to Δ. But in the second case there are two cycles
(b, g) and (c, f) that have the two elements with the Hamming distance equal
to Δ. Therefore, we can assume that the set { b, g, c, f } may contain a larger
Boolean hypercube, compared to the set { a, e }, and we will call the second
representation of h an effective disjoint of cycles.

There is a simple linear algorithm for an effective disjoint of cycles of a
permutation for a given Hamming distance Δ. In the first pass, the algorithm
searches all pairs of elements in a cycle with the Hamming distance equal to Δ.
In the second pass, the algorithm calculates for a found pair p how many other
pairs would be broken, if we disjoint the cycle by the pair p. In the third pass,
the algorithm chooses a pair p, for which the number of broken pairs is minimal.
And finally, the algorithm disjoints the cycle by the chosen pair. After that we
don’t have to repeat all steps for obtained cycles, because we can simply remove
broken pairs and use previous results for further disjoints.

For our example above, we have the three pairs with the Hamming distance
equal to Δ: (a, e), (b, g) and (c, f). If we choose the pair (a, e), it would break two
pairs (b, g) and (c, f). And if we choose either (b, g) or (c, f), they would break

Application of Permutation Group Theory in Reversible Logic Synthesis 231

Table 4. Interchanging two dependent gates.

•

• •

• • •

• • •

TOF (I1; J1; t1) ∗ TOF (I2; J2; t2)
TOF (I3; J3; t2) ∗ TOF (I2; J2; t2)∗

∗TOF (I1; J1; t1)
I3 = I1 ∪ I2 \ { t1 }, J3 = J1 ∪ J2 \ { t1 }

Condition: gates are dependent, t1 ∈ I2 ∪ J2 and t2 /∈ I1 ∪ J1.

•

• •

•
•

• •

TOF (I1; J1; t1) ∗ TOF (I2; J2; t2)
TOF (I3; J3; t2) ∗ TOF (I1; J1; t1)
I3 = (I2 \ { t1 }) ∪ (J2 ∩ { t1 })
J3 = (J2 \ { t1 }) ∪ (I2 ∩ { t1 })

Condition: gates are dependent, I1 ⊆ I2 and J1 ⊆ J2.

only the pair (a, e). Hence, an effective disjoint will be for the pair (b, g) or (c, f).
It is not difficult to show that the proposed algorithm for an effective disjoint
of cycles doesn’t depend on the order of elements in a cycle. The disjoint result
will be the same for the permutation h = (a, b, c, e, f, g) and for the permutation
h′ = (c, e, f, g, a, b).

The time complexity of a single disjoint operation for a cycle of length l is
no more than O(l log2 l).

4.2 Left and Right Multiplication

Until now we used a left multiplication for a cycle disjoint. But we can also use
a right multiplication. E. g., a cycle (a, b, c) can be represented in two ways for
the transposition (a, b):

1. Left multiplication: (a, b, c) = (a, b) ◦ (a, c).
2. Right multiplication: (a, b, c) = (b, c) ◦ (a, b).

We can see that the results of the multiplications are different. This difference
can lead to significantly different synthesis results.

232 D.V. Zakablukov

There is no way to find out on an i-th step of our basic synthesis algorithm,
whether the left or right multiplication would be the best in the end. The only
thing we can do is to make both left and right multiplications on an i-th step
and choose the one which leads to the greater permutation reduction and to the
lower gate complexity of a current reversible circuit. This approach doubles the
synthesis time, but it also leads to better reversible circuits in some cases.

And finally, another area for optimizations is the constructing of a bijec-
tive transformation for a given non-bijective one. We believe that in terms of
reversible logic synthesis the best result can be achieved, when this bijective
transformation has minimal Hamming distances between inputs and outputs.

5 Combining Cycle-Based and RM-spectra Based
Algorithms

In [13] a hybrid framework was proposed, which combines a cycle-based and a
RM-spectra based algorithms. Unfortunately, this combination is only the choice
of a better reversible circuit synthesized by one or another algorithm.

We propose a new approach for combining a cycle-based and a RM-spectra
based algorithms. In [9] a RM-spectra based synthesis algorithm was described.
For a reversible specification f : Bn → B

n the algorithm successively transforms
the truth table Tn to the truth table that corresponds to the identity transfor-
mation. This is done by changing an i-th row in Tn, for which Tn[i] �= i, to the
form Tn[i] = i for every i = 0, · · · , (2n − 1). Every row j < i is not changed after
a transformation of an i-th row: Tn[j] = j.

Our combining approach allows us to modify the truth table Tn in such a
way that for the first row i, for which Tn[i] �= i, Tn[j] = j, j < i, each row k ≤ i
in a modified truth table T ′

n will be equal to itself: T ′
n[k] = k.

On an i-th step of the RM-spectra based synthesis algorithm from [9] a
reversible circuit S which we synthesize is of the form:

S = Sl ∗ STn
∗ Sr ,

where sub-circuits Sl and Sr were constructed on the previous steps and a
circuit STn

is unknown, it implements a transformation described by the truth
table Tn, for which Tn[j] = j, j < i, Tn[i] �= i. The original RM-spectra based
synthesis algorithm appends gates to the Sl or Sr after modifying the i-th row
in Tn.

Let h, hl, ht, hr be the permutations, defined by the circuits S, Sl, STn
and

Sr respectively. This implies that

h = hl ◦ ht ◦ hr .

Let’s assume Tn[i] = k and Tn[l] = i, where k, l > i. We can state that

h =hl ◦ h′
t ◦ (i, k) ◦ hr = hl ◦ h′

t ◦ hr ◦ (i, k)hr ,

h =hl ◦ (i, l) ◦ h′
t ◦ hr = (i, l)h

−1
l ◦ hl ◦ h′

t ◦ hr ,

Application of Permutation Group Theory in Reversible Logic Synthesis 233

where a permutation h′
t is defined by the truth table T ′

n, T ′
n[j] = j for every

j ≤ i.
From this it follows that we can “push” one transposition (i, k) or (i, l) from

the permutation ht to the right or to the left, conjugate it by the permutation
hr or h−1

l respectively and “skip” the transformation of the i-th row in the truth
table Tn by the original RM-spectra based synthesis algorithm. After that we
can move to the next row and repeat this process.

After a RM-spectra based synthesis algorithm finishes its work, we can use a
cycle-based synthesis algorithm to synthesize pushed transpositions. There are
several approaches to decide, whether an i-th row is pushed or not and where
it will be pushed (left or right). For example, we can push an i-th row only
when the Hamming weight of i is greater or equal to a predefined threshold w.
It is equivalent to processing all monomials of degree d < w in a Reed–Muller
polynomial with a RM-spectra based synthesis algorithm. All other monomials
will be processed by a cycle-based synthesis algorithm.

We realized the proposed combining approach in our software [19] with the
ability to choose a “push policy” and a weight threshold. This allowed us to find
a reversible circuit implementing rd53 function with 7 inputs and with the gate
complexity equal to 11 in the GT library (see Fig. 2). The weight threshold was
equal to one during the synthesis process.

Fig. 2. Realization of rd53 function in a reversible circuit with 7 inputs and 11 gates
in the GT library.

6 Experimental Results

We developed an open source software ReversibleLogicGenerator [19], which
implements the basic cycle-based synthesis algorithm from [18] and all the gate
complexity reduction techniques, described in this paper. Using our software, we
conducted a series of experiments on reversible benchmark functions synthesis.
The results are presented in Tables 5, 6 and 7. The synthesis time in the worst
case was a matter of seconds.

We were able to obtain more than 40 new reversible circuits, which have
less input count, less gate complexity or less quantum cost compared to existing
circuits. All specifications for benchmark functions and their names were taken
from the Reversible Logic Synthesis Benchmarks Page [7] and from the RevLib

234 D.V. Zakablukov

Table 5. Benchmark functions synthesis (new circuits with less input count).

Function
New circuits Existing circuits

linesmin GC QC T -count linesmin GC QC T -count

gf2^3mult 7 73 740 632

9 11 47 63gf2^3mult 7 79 712 632

gf2^3mult 7 145 704 654

gf2^4mult 9 415 47649 10838*
12 19 83 112

gf2^4mult 9 1834 5914 5156

nth prime9 inc 9 3942 19313 15234 10 7522 17975 14193

rd73 9 296 43421 8765*
10 20 64 98

rd73 9 835 4069 3521

rd84 11 679 359384 25364*
15 28 98 147

rd84 11 2560 12397 8772*

*An ancillary line is required

site [16]. We use the following conventions in the tables: lines is the number of
inputs in a reversible circuit S, GC is the gate complexity L(S) of this circuit
and QC is its quantum cost W (S); T -count is the number of T gates in a
decomposition of the circuit into Clifford+T gates.

The quantum cost of obtained circuits was calculated with the help of the
software RCViewer+ [3]. Its calculation is based on the paper [6], according to
which a generalized Toffoli gate with negative control lines may have the same
quantum cost as the corresponding generalized Toffoli gate without negative
control lines. Also we included the T -count cost measure for all circuits in the
tables (cost calculation was based on the paper [8]). Despite the fact that this
cost measure is very popular for fault-tolerant circuits in the literature, it is
not universal in the case of limited ancillary lines availability. According to [8],
there is a circuit of Toffoli gates that cannot be implemented, using Clifford+T
gates, without an ancillary line. We marked such T -count metrics by the asterisk
symbol in the tables.

Tables 5, 6 and 7 contain results for obtained reversible circuits with less
input count (column linesmin), less gate complexity (column GCmin) and less
quantum cost (column QCmin) compared to existing circuits respectively. Since
we compare our circuits only with circuits consisting of gates from NCT and GT
libraries and since the NCT library is a part of the GT library, such comparison
made by us is correct.

We have not included circuits with more than 12 inputs in the tables just
because of the limited format of the paper. One can easily synthesize such circuits
with the help of our software.

With the help of developed software we were able to find a reversible circuit
with 7 input lines and with 11 gates from the GT library for one of the most

Application of Permutation Group Theory in Reversible Logic Synthesis 235

Table 6. Benchmark functions synthesis (new circuits with less gate complexity).

Function
New circuits Existing circuits

lines GCmin QC T -count lines GCmin QC T -count

2of5 6 9 268 191*

6 15 107 119
2of5 6 10 118 135

2of5 7 11 32 42 7 12 32 49

3 17 3 4 14 14
3 6 12 14

3 17 3 5 13 14

4b15g 2 4 12 57 55* 4 15 31 35

4b15g 4 4 12 49 45*

4 15 35 31*

4b15g 4 4 14 47 45*

4b15g 5 4 14 72 54* 4 15 29 42

4mod5 5 4 13 14 5 5 7 7

5mod5 6 7 429 294* 6 8 84 70*

6sym 7 14 1308 628*

7 36 777 741
6sym 7 15 825 624*

9sym 10 73 61928 7004*
10 129 6941 5484*

9sym 10 74 31819 6788*

ham7 7 19 77 85 7 25 49 42

hwb12 12 42095 134316 98482 12 55998 198928 134131

nth prime7 inc 7 427 10970 5403*

7 1427 3172 2837nth prime7 inc 7 474 10879 5403*

nth prime7 inc 7 824 2269 1906

nth prime8 inc 8 977 10218 7359*
8 3346 7618 5985

nth prime8 inc 8 1683 6330 5213

nth prime9 inc 10 2234 22181 17292 10 7522 17975 14193

nth prime10 inc 11 5207 50152 38261 11 16626 40299 30315

nth prime11 inc 12 11765 124408 92937 12 35335 95431 68255

rd53 7 11 96 100 7 12 120 124

*An ancillary line is required

popular benchmark functions rd53 (see Fig. 2). This circuit and all other circuits
described in the tables above can be freely downloaded in TFC and REAL
formats from the cite [19] as well as ReversibleLogicGenerator software itself.

236 D.V. Zakablukov

Table 7. Benchmark functions synthesis (new circuits with less quantum cost).

Function
New circuits Existing circuits

lines GC QCmin T -count lines GC QCmin T -count

2of5 7 12 31 42 7 12 32 49

6sym 7 41 206 184 7 36 777 741

9sym 10 347 1975 1680 10 210 4368 4368

hwb7 7 603 1728 1400 7 331 2611 2245*

hwb8 8 1594 4852 3748 8 2710 6940 5201

hwb9 9 3999 12278 10220 9 6563 16173 12150

hwb10 10 8247 26084 20368 10 12288 35618 25939

hwb11 11 21432 69138 52922 11 32261 90745 63430

hwb12 12 42095 134316 98482 12 55998 198928 134131

nth prime7 inc 7 824 2269 1906 7 1427 3172 2837

nth prime8 inc 8 1683 6330 5213 8 3346 7618 5985

rd53 7 12 82 92

7 12 120 124rd53 7 12 95 100

rd53 7 11 96 100

*An ancillary line is required

7 Conclusion

A reversible circuit with n inputs necessarily defines a permutation from the
symmetric group S(Bn). Permutations that correspond to all the gates NOT,
CNOT and C2NOT generate the alternating group A(Bn) if n > 3, and per-
mutations that correspond to all the gates CkNOT, 1 ≤ k ≤ n generate the
symmetric group. This implies that we can use the permutation group theory to
successfully synthesize a reversible circuit for a given reversible specification.

In the paper, we briefly described the first asymptotically optimal in NCT
library synthesis algorithm, based on the permutation group theory, which makes
it possible to obtain a reversible circuit without additional inputs. We also sug-
gested the “moving and replacing” algorithm for gate complexity reduction for
circuits consisting of the gates from the GT library; the algorithm is based on
equivalent replacements of gate compositions and on conditions of independence
for the gates with negative control lines.

We described some gate complexity reduction techniques that use the permu-
tation group theory. Among them are the search of a Boolean hypercube and an
effective cycle disjoint. We presented experimental results for benchmark func-
tions synthesis, which include more than 40 reversible circuits consisting of gates
from the GT library, obtained with the help of developed open source software
that implements all described techniques.

Application of Permutation Group Theory in Reversible Logic Synthesis 237

We believe that the permutation group theory may allow us to obtain better
reversible circuits for all benchmark functions, and we hope that this paper will
motivate other researchers to improve our results.

Acknowledgments. The reported study was partially supported by RFBR, research
project No. 16-01-00196 A.

References

1. Abdessaied, N., Wille, R., Soeken, M., Drechsler, R.: Reducing the depth of
quantum circuits using additional circuit lines. In: Dueck, G.W., Miller, D.M.
(eds.) RC 2013. LNCS, vol. 7948, pp. 221–233. Springer, Heidelberg (2013).
http://dx.doi.org/10.1007/978-3-642-38986-3 18

2. Arabzadeh, M., Saeedi, M., Zamani, M.S.: Rule-based optimization of reversible
circuits. In: 2010 15th Asia and South Pacific Design Automation Conference (ASP-
DAC), pp. 849–854 (2010). http://dx.org/10.1109/ASPDAC.2010.5419684

3. Arabzadeh, M., Saeedi, M.: RCViewer+ — a viewer/analyzer for reversible and
quantum circuits (2013). http://ceit.aut.ac.ir/QDA/RCV.htm

4. Bennett, C.H.: Logical reversibility of computation. IBM J. Res. Dev. 17(6),
525–532 (1973). http://dx.org/10.1147/rd.176.0525

5. Iwama, K., Kambayashi, Y., Yamashita, S.: Transformation rules for
designing CNOT-based quantum circuits. In: Proceedings of 39th Annual
Design Automation Conference (DAC 2002), NY, USA, pp. 419–424 (2002).
http://dx.org/10.1145/513918.514026

6. Maslov, D., Dueck, G.W., Miller, D.M., Negrevergne, C.: Quantum circuit simpli-
fication and level compaction. IEEE Trans. Comput.-Aided Des. 27(3), 436–444
(2008). http://dx.org/10.1109/TCAD.2007.911334

7. Maslov, D.A.: Reversible logic synthesis benchmarks page (2011). http://webhome.
cs.uvic.ca/∼dmaslov/

8. Maslov, D.A.: On the advantages of using relative phase Toffolis with an applica-
tion to multiple control Toffoli optimization. CoRR abs/1508.03273 (2016). http://
arxiv.org/abs/1508.03273

9. Maslov, D.A., Dueck, G.W., Miller, D.M.: Techniques for the synthesis of reversible
Toffoli networks. ACM Trans. Des. Autom. Electron. Syst. 12(4), 42 (2007).
http://dx.org/10.1145/1278349.1278355

10. Miller, D.M., Wille, R., Drechsler, R.: Reducing reversible circuit cost by adding
lines. In: Proceedings of 40th IEEE International Symposium on Multiple-Valued
Logic (ISMVL 2010), pp. 217–222 (2010). http://dx.org/10.1109/ISMVL.2010.48

11. Rahman, M.Z., Rice, J.E.: Templates for positive and negative control Toffoli net-
works. In: Yamashita, S., Minato, S. (eds.) RC 2014. LNCS, vol. 8507, pp. 125–136.
Springer, Heidelberg (2014). http://dx.doi.org/10.1007/978-3-319-08494-7 10

12. Saeedi, M., Markov, I.L.: Synthesis and optimization of reversible cir-
cuits — a survey. ACM Comput. Surv. 45(2), 21:1–21:34 (2013).
http://dx.org/10.1145/2431211.2431220

13. Saeedi, M., Zamani, M.S., Sedighi, M., Sasanian, Z.: Reversible circuit synthesis
using a cycle-based approach. ACM J. Emerg. Technol. Comput. Syst. 6(4), 13:1–
13:26 (2010). http://dx.org/10.1145/1877745.1877747

14. Schaeffer, B., Perkowski, M.A.: A cost minimization approach to synthesis of linear
reversible circuits. CoRR abs/1407.0070 (2014). http://arxiv.org/abs/1407.0070

http://dx.doi.org/10.1007/978-3-642-38986-3_18
http://dx.org/10.1109/ASPDAC.2010.5419684
http://ceit.aut.ac.ir/QDA/RCV.htm
http://dx.org/10.1147/rd.176.0525
http://dx.org/10.1145/513918.514026
http://dx.org/10.1109/TCAD.2007.911334
http://webhome.cs.uvic.ca/~dmaslov/
http://webhome.cs.uvic.ca/~dmaslov/
http://arxiv.org/abs/1508.03273
http://arxiv.org/abs/1508.03273
http://dx.org/10.1145/1278349.1278355
http://dx.org/10.1109/ISMVL.2010.48
http://dx.doi.org/10.1007/978-3-319-08494-7_10
http://dx.org/10.1145/2431211.2431220
http://dx.org/10.1145/1877745.1877747
http://arxiv.org/abs/1407.0070

238 D.V. Zakablukov

15. Shende, V.V., Prasad, A.K., Markov, I.L., Hayes, J.P.: Synthesis of reversible
logic circuits. IEEE Trans. Comput.-Aided Des. 22(6), 710–722 (2003).
http://dx.org/10.1109/TCAD.2003.811448

16. Wille, R., Große, D., Teuber, L., Dueck, G.W., Drechsler, R.: RevLib: an
online resource for reversible functions and reversible circuits. In: Proceedings of
38th IEEE International Symposium on Multiple-Valued Logic (ISMVL 2008),
pp. 220–225 (2008). http://www.revlib.org

17. Zakablukov, D.V.: Reduction of the reversible circuits gate complexity without
using the equivalent replacement tables for the gate compositions. BMSTU J. Sci.
Educ. 3, 275–289 (2014). (in Russian), http://dx.org/10.7463/0314.0699195

18. Zakablukov, D.V.: On asymptotic gate complexity and depth of reversible circuits
without additional memory. CoRR abs/1504.06876 (2015). http://arxiv.org/abs/
1504.06876

19. Zakablukov, D.V.: ReversibleLogicGenerator Software (2015). https://github.com/
dmitry-zakablukov/ReversibleLogicGenerator

http://dx.org/10.1109/TCAD.2003.811448
http://www.revlib.org
http://dx.org/10.7463/0314.0699195
http://arxiv.org/abs/1504.06876
http://arxiv.org/abs/1504.06876
https://github.com/dmitry-zakablukov/ReversibleLogicGenerator
https://github.com/dmitry-zakablukov/ReversibleLogicGenerator

Strongly Universal Reversible Gate Sets

Tim Boykett1,2, Jarkko Kari3(B), and Ville Salo3,4

1 Institute for Algebra, Johannes Kepler University, Linz, Austria
2 Time’s Up Research, Linz, Austria

3 Department of Mathematics and Statistics, University of Turku, Turku, Finland
jkari@utu.fi

4 Center for Mathematical Modeling, University of Chile, Santiago, Chile

Abstract. It is well-known that the Toffoli gate and the negation gate
together yield a universal gate set, in the sense that every permutation
of {0, 1}n can be implemented as a composition of these gates. Since
every bit operation that does not use all of the bits performs an even
permutation, we need to use at least one auxiliary bit to perform every
permutation, and it is known that one bit is indeed enough. Without
auxiliary bits, all even permutations can be implemented. We generalize
these results to non-binary logic: For any finite set A, a finite gate set
can generate all even permutations of An for all n, without any auxiliary
symbols. This directly implies the previously published result that a finite
gate set can generate all permutations of An when the cardinality of A is
odd, and that one auxiliary symbol is necessary and sufficient to obtain
all permutations when the cardinality of A is even. We also consider
the conservative case, that is, those permutations of An that preserve
the weight of the input word. The weight is the vector that records
how many times each symbol occurs in the word. It turns out that no
finite conservative gate set can, for all n, implement all conservative even
permutations of An without auxiliary bits. But we provide a finite gate
set that can implement all those conservative permutations that are even
within each weight class of An.

1 Introduction

The study of reversible and conservative binary gates was pioneered in the 1970s
and 1980s by Toffoli and Fredkin [3,8]. Recently, Aaronson et al. [1] described
all binary gate sets closed under the use of auxiliary bits, as a prelude to their
eventual goal of classifying these gate sets in the quantum case. It has been noted
that ternary gates have similar, yet distinct properties [10].

In this article, we consider the problem of finitely-generatedness of various
families of reversible logic gates without using auxiliary bits. In the case of a
binary alphabet, it is known that the whole set of gates is not finitely generated,

The authors would like to acknowledge the contribution of the COST Action IC1405.
This work was partially funded by Austrian national research agency FWF research
grants P24077 and P24285, and by FONDECYT research grant 3150552.

c© Springer International Publishing Switzerland 2016
S. Devitt and I. Lanese (Eds.): RC 2016, LNCS 9720, pp. 239–254, 2016.
DOI: 10.1007/978-3-319-40578-0 18

240 T. Boykett et al.

but the family of gates that perform an even permutation of {0, 1}n is [1,5,9]. In
[10], it is shown that for the ternary alphabet, the whole set of reversible gates
is finitely generated. In [4] the result is announced for all odd alphabets, with a
proof attributed to personal communication, which has recently been published
as [6]. Another proof of this fact can be found in [2]. In this paper, we look at
gate sets with arbitrary finite alphabets, and prove the natural generalization:
the whole set of gates is finitely generated if and only if the alphabet is odd, and
in the case of an even alphabet, the even permutations are finitely generated.

In [9], it is proved that in the binary case the conservative gates, gates that
preserve the numbers of symbols in the input (that is, its weight), are not finitely
generated, even with the use of ‘borrowed bits’, bits that may have any initial
value but must return to their original value in the end. On the other hand, it
is shown that with bits whose initial value is known (and suitably chosen), all
permutations can be performed. We prove for all alphabets that the gates that
perform an even permutation in every weight class are finitely generated, but the
whole class of permutations is far from being finitely generated (which implies
in particular the result of [9]).

Our methods are rather general, and the proofs both in the conservative case
and the general case follow the same structure. The negative aspect of these
methods is that our universal gates are not the usual ones, and for example in
the conservative case, one needs a bit of work (or computer time) to construct
our universal gate family from the Fredkin gate.

We start by introducing our terminology, taking advantage of the concepts of
clone theory [7] applied to bijections as developed in [2], leading to what we call
reversible clones or revclones, and reversible iterative algebras or revitals. We
note in passing that one can also use category-theoretic terminology to discuss
the same concepts, and this is the approach taken in [4,5]. In this terminology,
what we call revitals are strict symmetric monoidal groupoids in the category
where objects are sets of the form An and the horizontal composition rule is given
by Cartesian product. A formal difference is that unlike morphism composition
in a category, our composition operation is total.

We generalize the idea of the Toffoli gate and Fredkin gate to what we call
‘controlled permutations’ and prove a general induction lemma showing that if
we can add a single new control wire to a controlled permutation, we can add
any number of control wires. We then show two combinatorial results about
permutation groups that allow us to simplify arguments about revitals. This
allows us to describe generating sets for various revclones and revitals of interest,
with the indication that these results will be useful for more general revital
analysis, as undertaken for instance in [1]. While theoretical considerations show
that finite generating sets do not exist in some cases, in other cases explicit
computational searches are able to provide small generating sets.

2 Background

Let A be a finite set. We write SA or Sym(A) for the group of permutations
or bijections of A, Sn for Sym({1, . . . , n}) and Alt(A) for the group of even

Strongly Universal Reversible Gate Sets 241

permutations of A, An = Alt({1, . . . , n}). We will compose functions from left
to right. Let Bn(A) = {f : An → An | f a bijection} = Sym(An) be the group
of n-ary bijections on An, and let B(A) = ∪n∈NBn(A) be the collection of all
bijections on powers of A. We will call them gates. We denote by 〈X〉 the group
generated by X ⊆ Bn(A), a subgroup of Bn(A).

Each α ∈ Sn defines a wire permutation πα ∈ Bn(A) that permutes the
coordinates of its input according to α:

πα(x1, . . . , xn) = (xα−1(1), . . . , xα−1(n)).

The wire permutation idn = π() corresponding to the identity permutation () ∈
Sn is the n-ary identity map. Conjugating f ∈ Bn(A) with a wire permutation
πα ∈ Bn(A) gives πα ◦ f ◦ π−1

α , which we call a rewiring of f . Rewirings of f
correspond to applying f on arbitrarily ordered input wires.

Any f ∈ B�(A) can be applied on An for n > � by applying it on selected
� coordinates while leaving the other n − � coordinates unchanged. Using the
clone theory derived terminology in [2] we first define, for any f ∈ Bn(A) and
g ∈ Bm(A), the parallel application f ⊕ g ∈ Bn+m(A) by

(f ⊕ g)(x1, . . . xn+m) =(f1(x1, . . . , xn), . . . , fn(x1, . . . , xn),
g1(xn+1, . . . , xn+m), . . . , gm(xn+1, . . . , xn+m)).

Then the extensions of f ∈ B�(A) on An are the rewirings of f ⊕ idn−�.
Let P ⊆ B(A). We denote by
P � ⊆ B(A) the set of gates that can be

obtained from the identity id1 and the elements of P by compositions of gates
of equal arity and by extensions of gates of arities � on An, for n ≥ �. Clearly
P
→
P � is a closure operator. Sets P ⊆ B(A) such that P =
P � are called
revitals. We say that P generates revital C if C =
P �. We say that revital C is
finitely generated if there exists a finite set P that generates it.

To relate the concepts to clone theory, one defines the generalized com-
positions of permutations of arbitrary arities as follows: Let f ∈ Bn(A) and
g ∈ Bm(A). For k ≤ min(m,n), let f ◦k g ∈ Bn+m−k(A) be defined by

f ◦k g =(g1(f1(x1, . . . , xn), . . . , fk(x1, . . . , xn), xn+1, . . . , xn+m−k), . . . ,
gm(f1(x1, . . . , xn), . . . , fk(x1, . . . , xn), xn+1, . . . , xn+m−k),
fk+1(x1, . . . , xn), . . . , fn(x1, . . . , xn))

If n = m = k this is the usual composition f ◦ g. We call (B(A); {⊕, ◦, πα | ∃n ∈
N : α ∈ Sn}) the full reversible clone on A and any subalgebra a reversible clone
on A, or simply a revclone.1 Every revclone is a revital and, in fact, revclones
are precisely the revitals that contain all wire permutations πα or, equivalently,
the revitals that contain the wire permutation π(1 2) ∈ B2(A) that swaps two

1 In this paper, we are more concerned with the set of functions in a revital or revclone,
rather than the particular signatures chosen, and thus have chosen this revclone
signature due to its (apparent) simplicity – in clone theory, finite signatures are
preferred, see [2] for such a revclone signature.

242 T. Boykett et al.

wires. Note that
⌈
π(1 2)

⌉
is exactly the set of wire permutations. It follows that

if P generates C as a revclone, then P ′ = P ∪{π(1 2)} generates it as a revital, so
there is no difference in the finitely-generatedness of a revclone when we consider
it as a revital instead of a revclone.

We sometimes refer to general elements of Bn(A) as word permutations to
distinguish them from the wire permutations. In particular, by a wire swap we
mean a function f : A2 → A2 with f(a, b) = (b, a) for all a, b ∈ A (or an extension
of such a function), while a word swap refers to a permutation (u v) ∈ Bn(A)
that swaps two individual words of the same length. Of course, a wire swap is
a composition of word swaps, but the converse is not true. Similarly, and more
generally, we talk about wire and word rotations. A symbol permutation is a
permutation of A.

We are interested in finding out if some naturally arising revitals are finitely
generated. First of all, we have the full revital B(A) and the alternating revital
Even(A) =

⋃
n Alt(An) that contains all even permutations.

We also consider permutations that conserve the letters in their inputs. For
any n ∈ N, define wn : An → N

A, such that for all x ∈ An, a ∈ A, wn(x)(a)
the number of occurences of a in x. We say wn(u) is the weight of the word
u. A mapping f ∈ Bn(A) is conservative if for all x ∈ An, wn(f(x)) = wn(x),
we let Consn(A) ⊆ Bn(A) be the set of conservative maps of arity n. Then
Cons(A) = ∪n∈NConsn(A) is the conservative revital. We also consider the set
of conservative permutations that perform an even permutation on each weight
class, denoted by ECons(A), called the alternating conservative revital.

A wire swap α, on An, has parity |A|(|A|−1)
2 |A|n−2. When n = 2, this is even

only when |A| ≡ 0 or |A| ≡ 1 (mod 4). It follows that Even(A) is a revclone
only when |A| ≡ 0 or |A| ≡ 1 (mod 4). The revital ECons(A) is never a revclone
because swaps are odd permutations on the words with a single symbol different
from the others.

Furthermore, for any k ∈ N, we can define the mappings that are conservative
modulo k by replacing N with Zk in the above definition. We will write Modk(A)
for these maps.

Using the terminology in [9], we say that gate f ⊕ idk ∈ Bn+k(A) computes
f ∈ Bn(A) using k borrowed bits. The borrowed bits are auxiliary symbols in
the computation of f that can have arbitrary initial values, and at the end these
values must be restored unaltered. Regardless of the initial values of the borrowed
bits, the permutation f is computed on the other n inputs. We have cases where
borrowed bits help (Corollary 7) and cases where they don’t (Theorem 4).

A hypergraph is a set V of vertices and a set E of edges, E ⊆ P(V). A
k-hypergraph is a hypergraph where every edge has the same size, k. A 2-
hypergraph is a standard (undirected) graph. A path is a series of vertives
(v1, . . . , vn) such that for each pair (vi, vi+1) there is an edge ei ∈ E such that
{vi, vi+1} ⊆ ei. Two vertices a, b ∈ V are connected if there is a path (v1, . . . , vn)
with v1 = a and vn = b. The relation of being connected is an equivalence rela-
tion and induces a partition of the vertices into connected components.

Strongly Universal Reversible Gate Sets 243

If H is a 3-hypergraph, write Graph(H) for the underlying graph of H:
V (Graph(H)) = V (H) and (a, b) ∈ E(Graph(H)) ⇐⇒ ∃c : (a, b, c) ∈ E(H).
Note that by our definition, the connected components of a 3-hypergraph H are
precisely the connected components of Graph(H).

3 Induction Lemma

In this section, we introduce the concept of controlled gate, a generalisation of
the Toffoli and Fredkin gates. With this definition, we are able to formulate a
useful induction lemma. This lemma formalizes the following idea. If we can
build an (n+1)-ary controlled gate in a certain class from gates of arity n, then
by replacing each n-ary gate with its (n + 1)-ary extension, we have a “spare”
control line from each n+1 gate, which can then be attached to an extra control
input to get an (n + 2)-ary gate.

Definition 1. Let k ∈ N and P ⊆ B�(A). For w ∈ Ak and p ∈ P , define the
function fw,p : Ak+� → Ak+� by

fw,p(uv) =
{

uv if u �= w
up(v) if u = w

where u ∈ Ak, v ∈ A�. The functions fw,p, and more generally their rewirings
πα ◦ fw,p ◦ π−1

α for α ∈ Sk+�, are called k-controlled P -permutations, and we
denote this set of functions by CP (k, P) ⊆ Bk+�(A). We refer to CP (P) =⋃

k CP (k, P) as controlled P -permutations.

When P is a named family of permutations, such as the family of all swaps
in SA, we usually talk about ‘k-controlled swaps’ instead of ‘controlled swap
permutations’. These will be word swaps rather than wire swaps. The Toffoli
gate is a (particular) 2-controlled symbol permutation, while the Fredkin gate
is a (particular) 1-controlled wire swap. Note that the ‘k’ in ‘k-controlled’ refers
to the fact that the number of controlling wires is k. Of course, sometimes we
want to talk about also the particular word w in fw,p(uv). To avoid ambiguity,
we say such fw,p(uv) is w-word controlled permutation. In particular, the Toffoli
gate is the 11-word controlled symbol permutation, while the Fredkin gate is a
1-word controlled wire swap.

The following lemma formalizes the idea of adding new common control wires
to all gates in a circuit.

Lemma 1. Let k, h, � ∈ N, P ⊆ B�(A) and Q ⊆ Bn(A). If CP (h,Q) ⊆

CP (k, P)�, then CP (h + m,Q) ⊆
CP (k + m,P)� for all m ∈ N.

Proof. Consider an arbitrary f ∈ CP (h + m,Q). Let uv ∈ Ah+m be its control
word where u ∈ Am and v ∈ Ah, and let p ∈ Q be its permutation. By the
hypothesis, fv,p can be implemented by maps in CP (k, P). In all their control
words, add the additional input u. This implements f as a composition of maps
in CP (k + m,P), as required. ��

244 T. Boykett et al.

The main importance of the lemma comes from the following corollary:

Lemma 2 (Induction Lemma). Let P ⊆ B�(A) be such that CP (k + 1, P) ⊆

CP (k, P)� for some k ∈ N. Then
CP (m,P)� ⊆
CP (n, P)� for all m ≥ n ≥ k.

Proof. We apply Lemma 1, setting Q = P and h = k + 1. We obtain that
CP (k + m + 1, P) ⊆
CP (k + m,P)� for all m ∈ N. As
·� is a closure operator
we have that
CP (k + m + 1, P)� ⊆
CP (k + m,P)� for all m ∈ N. Hence

CP (k, P)� ⊇
CP (k + 1, P)� ⊇
CP (k + 2, P)� ⊇ . . .

which clearly implies the claimed result. ��
By the previous lemma, in order to show that a revital C is finitely generated,

it is sufficient to find some P ⊆ B�(A) such that

(i) 〈CP (m,P)〉 = C ∩ Bm+�(A) for all large enough m, and
(ii) CP (k + 1, P) ⊆
CP (k, P)� for some k.

Indeed, if n ≥ k is such that (i) holds for all m ≥ n then,

C ∩ Bm+�(A) = 〈CP (m,P)〉 ⊆
CP (m,P)� ⊆
CP (n, P)� ,

where the last inclusion follows from (ii) and the Induction lemma. Note that
by (i) we also have CP (n, P) ⊆ C. So the finite subset CP (n, P) of C generates
all but finitely many elements of C.

Condition (i) motivates the following definition.

Definition 2. Let C be a revital. We say that a set of permutations P ⊆ B�(A)
is n-control-universal for C if 〈CP (n − �, P)〉 = C ∩ Bn(A). More generally, a
set P ⊆ B(A) that may contain gates of different arities, is n-control-universal
for C if 〈⋃

�

⋃
f∈B�(A)∩P

CP (n − �, P)

〉
= C ∩ Bn(A).

If P is n-control-universal for all large enough n, we say it is control-universal
for C.

In the next two sections we find gate sets that are control-universal for revitals
of interest.

4 Some Combinatorial Group Theory

In this section, we prove some basic results that the symmetric group is generated
by any ‘connected’ family of swaps, and the alternating group by any ‘connected’
family of 3-cycles. Similar results are folklore in combinatorial group theory, but
we include full proofs for completeness’ sake.

Let H be a graph with nodes V (H) and edges E(H). The swap group SG(H)
is the group G ≤ Sym(V (H)) generated by swaps (a b) with (a, b) ∈ E(H).

Strongly Universal Reversible Gate Sets 245

Lemma 3. Let H be a graph with connected components H1, . . . , Hk. Then

SG(H) = Sym(V (H1)) × · · · × Sym(V (Hk))

Proof. All of the swaps act in one of the components and there are no relations
between them. Thus, the swap group will be the direct product of some permu-
tation groups of the connected components. We only need to show that in each
connected component Hi, we can realize any permutation. Since swaps generate
the symmetric group, it is enough to show that if a, b ∈ V (Hi) then the swap
(a b) is in SG(H). For this, let a = a0, a1, a2, . . . , a� = b be a path from a to b.
Then

(a, b) = (a1 a2) · · · (a�−3 a�−2)(a�−2 a�−1)(a� a�−1) · · · (a3 a2)(a2 a1).

��
Let H be a 3-hypergraph with nodes V (H) and undirected edges E(H). The

cycling group CG(H) of H is the group G ≤ Sym(V (H)) generated by cycles
(a b c) where (a, b, c) ∈ E(H).

The following observation allows us to take any element of the alternating
group given two 3-hyperedges that intersect in one or two places.

Lemma 4.
A4 = 〈(1 2 3), (2 3 4)〉 ,
A5 = 〈(1 2 3), (3 4 5)〉 .

Lemma 5. Let H be a hypergraph, and let the connected components of H be
H1, . . . ,Hk. Then

CG(H) = Alt(V (H1)) × Alt(V (H2)) × · · · × Alt(V (Hk)).

Proof. We prove the claim by induction on the number of hyperedges. If there
are no hyperedges, then CG(H) = {id(V (H))}, as required. Now, suppose that
the claim holds for a hypergraph H ′ and H is obtained from H ′ by adding
a new hyperedge (a, b, c). If none of a, b, c are part of a hyperedge of H ′ or
are fully contained in a connected component of Graph(H ′), then the claim is
trivial, as either we add a new connected component and by definition add its
alternating group Alt3 ∼= 〈(a, b, c)〉 to CG(H), or we do not modify the connected
components at all.

Every permutation on the right side of the equality we want to prove
decomposes into even permutations in the components. In components that
do not intersect {a, b, c}, we can implement this permutation by assumption.
We thus only have to show that a pair of swaps (x y)(u v) can be imple-
mented. If x, y, u, v ∈ {a, b, c}, the permutation is in CG(H) by definition. Since
(x y)(u v) = (x y)(a b)2 (u v) it is enough to implement the permutation
(a b)(u v).

Now, we have two cases (up to reordering variables). Either u ∈ {a, b, c} and
v /∈ {a, b, c} or {u, v}∩{a, b, c} = ∅. By analysing cases, the claim reduces to the
Alt5 or the Alt4 situation of the previous lemma. ��

246 T. Boykett et al.

5 Control-Universality

As corollaries of the previous section, we will now find control-universal families
of gates for our revitals of interest: the full revital B(A) =

⋃
n Sym(An), the

conservative revital Cons(A), the alternating revital Even(A) =
⋃

n Alt(An)
and the alternating conservative revital ECons(A). Corollaries 1, 2, 3 and 4
below provide control-universal gate sets for these revitals.

(a) The full revital B(A). Define the graph G
(1)
A,n that has nodes An and edges

(u, v) where the Hamming distance between u and v is one.

Lemma 6. The graph G
(1)
A,n is connected.

Let P1 = {(a b) | a, b ∈ A} ⊆ B1(A), the set of symbol swaps. The swap
group of G

(1)
A,n is then 〈CP (n − 1, P1)〉 so, by Lemma 3, we have the following:

Corollary 1. For all n, P1 is n-control-universal for the revital B(A).

(b) The conservative revital Cons(A). Define the graph G
(2)
A,n that has nodes

An and edges (uabv, ubav) for all a, b ∈ A and words u, v with |u| + |v| = n − 2.

Lemma 7. The connected components of G
(2)
A,n are the weight classes.

Corollary 2. Let P2 = {(ab ba) | a, b ∈ A} ⊆ B2(A). Then P2 is n-control-
universal for the conservative revital Cons(A), for all n ≥ 1.

The classical Fredkin gate that operates on {0, 1}3 is a 1-controlled P2-
permutation. However, note that in the case of a larger alphabet the controlled
P2-permutations only swap a specific pair of symbols, not just the arbitrary
contents of two cells.

We can extend this result to Modk(A) by considering the graph as above with
added edges (uak, ubk) for all a, b ∈ A and u ∈ A∗ with |u| = n−k. Then the set
of permutations P2 ∪{(ak bk) | a, b ∈ A} ⊆ B2(A)∪Bk(A) is n-control-universal
for Modk(A) for large enough n.

(c) The alternating revital Even(A). Define the 3-hypergraph G
(3)
A,n that

has nodes An and hyperedges (uabv, uacv, udbv) where a, b, c, d ∈ A, a �= d and
b �= c, that is, all triples of words of which two are at Hamming distance 2 and
others at distance 1, and the symbol differences are in consecutive positions.

Lemma 8. If n ≥ 2, then G
(3)
A,n is connected. If n = 1, then G

(3)
A,n is discrete.

Corollary 3. Let P3 = {(ab ac db) | a, b, c, d ∈ A} ⊆ B2(A). Then P3 is n-
control-universal for the alternating revital Even(A), for all n ≥ 2.

(d) The alternating conservative revital ECons(A). Define the 3-
hypergraph G

(4)
A,n that has nodes An and hyperedges (uabcv, ubcav, ucabv) where

a, b, c are single symbols, that is, all (word) rotations that rotate three consecu-
tive symbols.

Strongly Universal Reversible Gate Sets 247

Lemma 9. If n > |A|, then the connected components of G
(4)
A,n are the weight

classes.

Proof. When n > |A| and two words x and y are in the same weight class then
there is an even permutation α ∈ Sn such that y = πα(x). This is because x
contains some letter twice, say in positions i and j, so that π(i j)(x) = x for the
odd permutation (i j) ∈ Sn. The even permutation α is a composition of 3-cycles
of the type (k k+1 k+2). (To see this, apply Lemma 5 on the 3-hypergraph with
the vertex set {1, . . . , n} and hyperedges (k, k +1, k +2) for 1 ≤ k ≤ n− 2.) But
then also πα is a composition of wire swaps of the type π(k k+1 k+2). Clearly, for
all u ∈ An, words u and π(k k+1 k+2)(u) belong to the same hyperedge of G

(4)
A,n

so we conclude that x and y = πα(x) are in the same connected component. ��
We note that if n ≤ |A|, then there are weight classes where each symbol

occurs at most once. These classes split into two connected components depend-
ing on the parity of the ordering of the letters.

Corollary 4. Let P4 = {(abc bca cab) | a, b, c ∈ A} ⊆ B3(A). Then P4 is
n-control-universal for the alternating conservative revital ECons(A), for all
n > |A|.

6 Finite Generating Sets of Gates

In order to apply the Induction Lemma we first observe that 2-controlled 3-word-
cycles in any five element set can obtained from 1-controlled 3-word-cycles.

Lemma 10. Let X ⊆ An contain at least five elements, and let

P = {(x y z) | x, y, z ∈ X all distinct} ⊆ Bn(A)

contain all 3-word-cycles in X. Then CP (2, P) ⊆
CP (1, P)�.
Proof. Let x, y, z ∈ X be pairwise different, and pick s, t ∈ X so that x, y, z, s, t
are five distinct elements of X. Let p1 = (s t)(x y) and p2 = (s t)(y z). Then p1
and p2 consist of two disjoint word swaps, so they are both involutions. Moreover,
(x y z) = p1p2p1p2. Further, we have that

p1 = (s t x)(x s y), and
p2 = (s t y)(y s z).

Let a, b ∈ A be arbitrary and consider the 2-controlled P -permutation f =
fab,(x y z) ∈ B2+n(A) determined by the control word ab and the 3-word-cycle
(x y z). Then f = g ◦ g where

g = fa∗,p1 ◦ f∗b,p2 = fa∗,(s t x) ◦ fa∗,(x s y) ◦ f∗b,(s t y) ◦ f∗b,(y s z)

is a composition of four 1-controlled P -permutations, where the star symbol
indicates the control symbol not used by the gate. See Fig. 1 for an illustration.

248 T. Boykett et al.

s
t

x

x
s

y

s
t

y

y
s

z

s
t

x

x
s

y

s
t

y

y
s

z

a

p
1

p
1

p
2

p
2

y
z

x =
a aa ab b b b b

Fig. 1. A decomposition of the ab-controlled 3-word-cycle (x y z) into a composition
of eight 1-controlled 3-word-cycles.

To verify that indeed f = g ◦ g, consider an input w = a′b′u where a′, b′ ∈ A
and u ∈ An. If a′ �= a then g(w) = f∗b,p2(w), so that g ◦ g(w) = w = f(w)
since p2 is an involution. Analogously, if b′ �= b then g ◦ g(w) = w = f(w),
because p1 is an involution. Suppose then that a′ = a and b′ = b. We have
g ◦ g(w) = ab((p1p2p1p2)(u)) = f(w). We conclude that f ∈
CP (1, P)�, and
because f was an arbitrary element of CP (2, P), up to reordering the input and
output symbols, the claim CP (2, P) ⊆
CP (1, P)� follows. ��

Corollary 5. Let X ⊆ An, P ⊆ Bn(A) be as in Lemma 10. Then
CP (m,P)� ⊆

CP (1, P)� for all m ≥ 1.

Proof. Apply Lemma 2 with k = 1. ��

6.1 The Alternating and Full Revitals

Assuming that |A| > 1, the set X = A3 contains at least five elements. For
P = {(x y z) | x, y, z ∈ A3 all distinct} ⊆ B3(A) we then have, by Corollary 5,
that
CP (m,P)� ⊆
CP (1, P)� for all m ≥ 1.

Recall that P3 = {(ab ac db) | a, b, c, d ∈ A} ⊆ B2(A) is n-control-universal
for the alternating revital Even(A), for n ≥ 2 (Corollary 3). Clearly CP (1, P3) ⊆
P ⊆
CP (0, P)�, so by Lemma 1, for any m ≥ 1,

CP (m + 1, P3) ⊆
CP (m,P)� ⊆
CP (1, P)� .

Hence Even(A) ∩ Bm+3(A) = 〈CP (m + 1, P3)〉 ⊆
CP (1, P)�. We conclude
that
CP (1, P)� contains all permutations of Even(A) except the ones in
B1(A), B2(A) and B3(A). We have proved the following theorem.

Theorem 1. The alternating revital Even(A) is finitely generated. Even per-
mutations of A4 generate all even permutations of An for all n ≥ 4.

Corollary 6 [2,6]. Let |A| be odd. Then the full revital B(A) is finitely gener-
ated. The permutations of A4 generate all permutations of An for all n ≥ 4.

Proof. Let |A| > 1 be odd. Let P be the set of all permutations of A4, and let
n ≥ 4. By Theorem 1, the closure
P � contains all even permutations of An.
The set P also contains an odd permutation f , say the word swap (0000 1000).

Strongly Universal Reversible Gate Sets 249

Consider π = f ⊕ idn−4 ∈ Bn(A) that applies the swap f on the first four input
symbols and keeps the others unchanged. This π is an odd permutation because
it consists of |A|m−4 disjoint swaps and |A| is odd. Because
P �∩Bn(A) contains
all even permutations of An and an odd one, it contains all permutations. ��

Recall that if a circuit implements the permutation f ⊕ idk ∈ Bn+k(A), we
say it implements f ∈ Bn(A) using k borrowed bits.

Corollary 7. The revital B(A) is finitely generated using at most one borrowed
bit.

Proof. For |A| odd the claim follows from Corollary 6. When A is even then the
permutations f ⊕ id with one borrowed bit are all even, so the claim follows from
Theorem 1. ��

6.2 The Alternating Conservative Revital

Assuming |A| > 1, every non-trivial weight class of A5 contains at least five
elements. (The trivial weight-classes are the singletons {a5} for a ∈ A.) For every
non-trivial weight class X we set PX = {(x y z) | x, y, z ∈ X} ⊆ B5(A) for the
3-word-cycles in X. By Corollary 5 we know that
CP (m,PX)� ⊆
CP (1, PX)�
for all m ≥ 1. Let P be the union of PX over all non-trivial weight classes X.
Then, because
·� is a closure operator, also
CP (m,P)� ⊆
CP (1, P)� for all
m ≥ 1.

By Corollary 4, the set P4 = {(abc bca cab) | a, b, c ∈ A} ⊆ B3(A) is
n-control-universal for the alternating conservative revital ECons(A), for all
n > |A|.

Let m ∈ N be such that m ≥ 1 and m + 5 > |A|. Because CP (2, P4) ⊆ P ⊆

CP (0, P)�, by Lemma 1 we have

CP (m + 2, P4) ⊆
CP (m,P)� ⊆
CP (1, P)� .

Hence ECons(A) ∩ Bm+5(A) = 〈CP (m + 2, P4)〉 ⊆
CP (1, P)�. We conclude
that
CP (1, P)� contains all permutations of ECons(A) except possibly the ones
in Bk(A) for k ≤ 5 and for k ≤ |A|. This proves the following theorem.

Theorem 2. The alternating conservative revital ECons(A) is finitely gener-
ated. A gate set generates the whole ECons(A) if it generates, for all n ≤ 6
and all n ≤ |A|, the conservative permutations of An that are even on all weight
classes. ��

7 Non-finitely Generated Revitals

It is well known that the full revital is not finitely generated over even alpha-
bets. The reason is that any permutation f ∈ Bn(A) can only compute even
permutations on Am for m > n.

250 T. Boykett et al.

Theorem 3 [8]. For even |A|, the full revital B(A) is not finitely generated.

By another parity argument we can also show that the conservative revi-
tal Cons(A) is not finitely generated on any non-trivial alphabet, not even if
infinitely many borrowed bits are available. This generalizes a result in [9] on
binary alphabets. Our proof is based on the same parity sequences as the one
in [9], where these sequences are computed concretely for generalized Fredkin
gates. However, our observation only relies on the (necessarily) low rank of a
finitely-generated group of such parity sequences, and the particular conserved
quantity is not as important.

Let n ∈ N, and let W be the family of the weight classes of An. For any
f ∈ Cons(A) ∩ Bn(A) and any weight class c ∈ W , the restriction f |c of f on
the weight class c is a permutation of c. Let φ(f)c ∈ Z2 be its parity. Clearly,
φ(f ◦ g)c = φ(f)c +φ(g)c modulo two, so φ defines a group homomorphism from
Cons(A) ∩ Bn(A) to the additive abelian group (Z2)W . The image φ(f) that
records all φ(f)c for all c ∈ W is the parity sequence of f . Because each element
of the commutative group (Z2)W is an involution, it follows that the subgroup
generated by any k elements has cardinality at most 2k.

Consider then a function f ∈ Cons(A) ∩ B�(A) for � ≤ n. Its application
fn = f ⊕ idn−� ∈ Bn(A) on length n inputs is conservative, so it has the
associated parity sequence φ(f ′), which we denote by φn(f). Note that any
conjugate gfg−1 of f by a wire permutation g has the same parity sequence, so
the parity sequence does not depend on which input wires we apply f on.

Let f (1), f (2), . . . , f (m) ∈ Cons(A) be a finite generator set, and let us
denote by C ⊆ Cons(A) the revital they generate. Let n ≥ 2 be larger than
the arity of any f (i). Then C ∩ Bn(A) is the group generated by the applica-
tions f

(1)
n , f

(2)
n , . . . , f

(m)
n of the generators on length n inputs, up to conjugation

by wire permutations. We conclude that there are at most 2m different parity
sequences on C∩Bn(A), for all sufficiently large n. We have proved the following
lemma.

Lemma 11. Let C be a finitely generated subrevital of Cons(A). Then there
exists a constant N such that, for all n, the elements of C ∩Bn(A) have at most
N different parity sequences.

Now we can prove the following negative result. Not only does it state that no
finite gate set generates the conservative revital, but even that there necessarily
remain conservative permutations that cannot be obtained using any number of
borrowed bits.

Theorem 4. Let |A| > 1. The conservative revital Cons(A) is not finitely
generated. In fact, if C ⊆ Cons(A) is finitely generated then there exists
f ∈ Cons(A) such that f ⊕ idk �∈ C for all k = 0, 1, 2,

Proof. Let 0, 1 ∈ A be distinct. Let C be a finitely generated subrevital of
Cons(A), and let N be the constant from Lemma 11 for C. Let us fix n ≥ N +2.
For each i = 1, 2, . . . , N +1, consider the non-trivial weight classes ci containing
the words of An with i letters 1 and n − i letters 0. For each i, let fi be the

Strongly Universal Reversible Gate Sets 251

the permutation fi ∈ Cons(A) ∩ Bn(A) that swaps two elements of ci, keeping
all other elements of An unchanged. This fi is odd on ci and even on all other
weight classes, so all fi have different parity sequences. We conclude that some
fi is not in C.

For the second, stronger claim, we continue by considering an arbitrary k ∈ N.
For i = 1, 2, . . . , N + 1, let c

(k)
i be the parity class of An+k containing the words

with i letters 1 and n + k − i letters 0. Note that f
(k)
i = fi ⊕ idk is odd on

c
(k)
i and even on all c

(k)
j with j < i. This means that the parity sequences of

f
(k)
1 , f

(k)
2 , . . . , f

(k)
N+1 are all different, hence some f

(k)
i is not in C. But then, for

some i ∈ {1, 2, . . . , N + 1}, there are infinitely many k ∈ N with the property
that f

(k)
i = fi ⊕ idk is not in C. This means that fi ⊕ idk �∈ C for any k ∈ N as

fi ⊕ idk ∈ C implies that fi ⊕ id� ∈ C for all � > k. The permutation f = fi has
the claimed property. ��

The theorem generalizes directly to revitals defined by a certain type of
conserved quantities, at least when borrowed bits are not used.

Definition 3. Let |A| > 1 and let ∼ be a sequence of equivalence relations, so
that for all n, ∼n is an equivalence relation on An. If u ∼n v =⇒ ua ∼n+1

va then we say ∼ is compatible, and if u ∼n v =⇒ π(u) ∼n π(v) for all
wire permutations π, then we say ∼ is permutable. We say ∼ is a generalized
conserved quantity if it is both compatible and permutable. If for all m ∈ N,
there exists n such that ∼n has at least m equivalence classes with more than
one word, we say ∼ is infinite-dimensional.

Say that f ∈ Bn(A) is ∼-preserving if f(u) ∼|u| u for all u ∈ ⋃
n An, and

write C∼ for the set of all ∼-preserving permutations.

Theorem 5. If ∼ is a generalized conserved quantity, then C∼ is a revital. If
∼ is infinite-dimensional, then C∼ is not finitely generated.

The theorem shows, for example, that the revital of functions in B({0, 1, 2})
that preserve the number of zeroes, and preserve the number of ones modulo k,
is not finitely generated.

8 Concrete Generating Families

We have found finite generating sets for revitals in the general and the conserv-
ative case. Our generating sets are of the form ‘all controlled 3-word cycles that
are in the family’, and the reader may wonder whether there are more natural
gate families that generate these classes. Of course, by our results, there is an
algorithm for checking whether a particular set of gates is a set of generators,
and in this section we give some examples.

First, we observe that CP (2, P1) (that is, 2-controlled symbol swaps) generate
all permutations of A3 and all even permutations of An for all n ≥ 4. Indeed,
by Corollary 1 they generate B3(A), and by Fig. 2 they generate CP (2, P3)

252 T. Boykett et al.

=
a ab b

x

s

b a

s t
x y x y

s t

x

s

x
s

x
ty

s

Fig. 2. A decomposition of the ab-controlled 3-cycle (xs xt ys) into a composition of
four 2-controlled swaps.

(the 2-controlled 3-cycles of length-two words). These in turn, by Corollary 3,
generate all even permutations of A4 which is enough by Theorem 1 to get all
even permutations on An for n ≥ 4.

It is easy to see that CP (2, P1) in turn is generated by all symbol swaps and
the w-word-controlled symbol swaps for a single w ∈ A2. In particular in the
case of binary alphabets, we obtain that the alternating revital is generated by
the Toffoli gate and the negation gate, which was also proved in [9].

In the conservative binary case, the Fredkin gate is known to be universal
(in the sense of auxiliary bits, see [9]). The Fredkin gate is, due to the binary
alphabet, both the unique 1-word-controlled wire swap and the unique nontrivial
conservative 1-word-controlled word swap. The natural generalizations would be
to show that in general the 1-controlled wire swaps or conservative word swaps
generate the alternating conservative revital. We do not prove this, but do show
how the universality of the Fredkin gate follows from our results and a bit of
computer search.

The following shows that the 00-word-controlled rotation is generated by the
0-word-controlled rotation.

Lemma 12. The 00-word-controlled (resp. 01-word-controlled) three-wire rota-
tion can be implemented with nine (resp. eight) 0-word-controlled three-wire rota-
tions but can not be implemented with eight (resp. seven).

Proof. A computer search shows that eight and seven gates do not suffice.
We show how to compose the 00-word-controlled rotation out of nine 0-word-
controlled rotations.

Let A = {0, 1} and R ∈ B3(A) be the rotation R = π(1 2 3). Write ρa,b,c,d(f)
for f applied to cells a, b, c, d in that order.

f00,R = ρ1,0,2,3(f0,R) ◦ ρ3,1,4,2(f0,R) ◦ ρ1,0,2,4(f0,R)◦
ρ3,0,1,2(f0,R) ◦ ρ0,1,3,4(f0,R) ◦ ρ1,2,3,4(f0,R)◦
ρ0,1,4,3(f0,R) ◦ ρ1,0,2,3(f0,R) ◦ ρ3,0,2,4(f0,R)

See Fig. 3 for the diagrams of both these. ��
A similar brute force search also shows the following.

Lemma 13. The word cycle (0001 0010 0100) can be built from six 0-
word-controlled three-wire rotations (but no less). The same is true for
(0011 0110 0101).

Strongly Universal Reversible Gate Sets 253

0

0

=

0

1

=

Fig. 3. 00-controlled and 01-controlled rotations built from 0-controlled rotations.
These are controlled by the two bottommost wires, the rotation rotates the wires in
order 2 → 3 → 4 → 2, where the bottommost wire is the 0th. The diagram is read
from left to right, in each column we perform a 0-controlled rotation. The large circle
indicates the control wire, the dots are the rotated wires, the arrows indicate rotation.

Let π1 = (001 010 100) and π2 = (011 110 101). Note that π1◦π2 is the three-
wire rotation. Then, by Lemma 12 and Lemma 2, 1-control (π1◦π2)-permutations
generate k-controlled (π1◦π2)-permutations for all k. By Lemma 13, 1-controlled
(π1 ◦π2)-permutations generate 1-controlled {π1, π2}-permutations, and then by
Lemma 1, k-controlled (π1 ◦ π2)-permutations generate k-controlled {π1, π2}-
permutations. Putting these together and combining with Corollary 4, we have:

Theorem 6. Let A = {0, 1}. Then the alternating conservative revital
ECons(A) is generated by the controlled wire rotation

f(a, b, c, d) =
{

(a, c, d, b) if a = 0
(a, b, c, d) otherwise

and the even conservative permutations of A3.

Clearly f(a, b, c, d) is generated by 1-controlled wire swaps. It follows that
the Fredkin gate together with the (unconditional) wire swap generates all even
conservative permutations of {0, 1}n for n ≥ 4.

9 Conclusion

We have precisely determined the revital generated by a finite set of generators
on an even order alphabet and show that on an odd alphabet, a finite collection
of mappings generates the whole revital. The first result confirms a conjecture

254 T. Boykett et al.

in [2] and the second gives a simpler proof of the same result from that paper.
Moreover, we have shown that the alternating conservative revital is finitely gen-
erated on all alphabets, but the conservative revital is never finitely generated.

The methods are rather general: We have developed an induction result
(Lemma 2) for finding generating sets for revitals of controlled permutations,
allowing us to determine finite generating sets for some revitals with uniform
methods. We also prove the nonexistence of a finite generating family for con-
served gates with a general method in Theorem 5, when borrowed bits are not
used. We only need particular properties of the weight function in the proof of
Theorem 4, where it is shown that the (usual) conservative revital is not finitely
generated even when borrowed bits are allowed.

In [1] the full list of reversible gate families in the binary case is listed, when
the use of auxiliary bits is allowed. This includes the conservative revital, various
modular revitals and nonaffine revitals. As we do not allow the use of auxiliary
bits, we are not limited to these revitals; still, it is an interesting question which
of them are finitely generated in our strict sense.

While this paper develops strong techniques for showing finitely generated-
ness and non-finitely generatedness of revitals, our generating sets are rather
abstract, not corresponding very well to known generating sets. It would be of
value to replace the constructions found in Sect. 8 by more understandable con-
structions, in order to find more concrete generating sets in the case of general
alphabets for conservative gates.

References

1. Aaronson, S., Grier, D., Schaeffer, L.: The classification of reversible bit operations.
Electron. Colloq. Comput. Complex. (66) (2015)

2. Boykett, T.: Closed systems of invertible maps (2015). http://arxiv.org/abs/1512.
06813, submitted

3. Fredkin, E., Toffoli, T.: Conservative logic. Int. J. Theor. Phys. 21(3), 219–253
(1982). http://dx.doi.org/10.1007/BF01857727

4. LaFont, Y.: Towards an algebraic theory of boolean circuits. J. Pure Appl. Algebra
184, 257–310 (2003)

5. Musset, J.: Générateurs et relations pour les circuits booléens réversibles. Technical
report 97-32, Institut de Mathématiques de Luminy (1997). http://iml.univ-mrs.
fr/editions/

6. Selinger, P.: Reversible k-ary logic circuits are finitely generated for odd k, April
2016. http://arxiv.org/abs/1604.01646

7. Szendrei, Á.: Clones in universal algebra, Séminaire de Mathématiques Supérieures
[Seminar on Higher Mathematics], vol. 99. Presses de l’Université de Montréal,
Montreal (1986)

8. Toffoli, T.: Reversible computing. Technical report MIT/LCS/TM-151, MIT (1980)
9. Xu, S.: Reversible Logic Synthesis with Minimal Usage of Ancilla Bits. Master’s

thesis, MIT, June 2015. http://arxiv.org/pdf/1506.03777.pdf
10. Yang, G., Song, X., Perkowski, M., Wu, J.: Realizing ternary quantum switch-

ing networks without ancilla bits. J. Phys. A 38(44), 9689–9697 (2005).
http://dx.doi.org/10.1088/0305-4470/38/44/006

http://arxiv.org/abs/1512.06813
http://arxiv.org/abs/1512.06813
http://dx.doi.org/10.1007/BF01857727
http://iml.univ-mrs.fr/editions/
http://iml.univ-mrs.fr/editions/
http://arxiv.org/abs/1604.01646
http://arxiv.org/pdf/1506.03777.pdf
http://dx.doi.org/10.1088/0305-4470/38/44/006

Enumeration of Reversible Functions
and Its Application to Circuit Complexity

Mathias Soeken1(B), Nabila Abdessaied2, and Giovanni De Micheli1

1 Integrated Systems Laboratory, EPFL, Lausanne, Switzerland
mathias.soeken@epfl.ch

2 Cyber-Physical Systems, DFKI GmbH, Bremen, Germany

Abstract. We review combinational results to enumerate and classify
reversible functions and investigate the application to circuit complex-
ity. In particularly, we consider the effect of negating and permuting
input and output variables and the effect of applying linear and affine
transformations to inputs and outputs. We apply the results to reversible
circuits and prove that minimum circuit realizations of functions in the
same equivalence class differ at most in a linear number of gates in pres-
ence of negation and permutation and at most in a quadratic number of
gates in presence of linear and affine transformations.

Keywords: Reversible function · Equivalence class · Permutation
group · Reversible circuit complexity

1 Introduction

In 1959, Nicolaas Govert de Bruijn has generalized George Pólya’s theorem [14]
for counting the number of equivalence classes that result from partitioning the
set of all functions f : D → R under the consideration of permutation groups
G and H acting on domain D and range R, respectively [4]. Two functions
f1 and f2 are considered equivalent if there exists permutations π ∈ G and
σ ∈ H such that f1(x) = σf2(πx) for all x ∈ D. The computation involves
the groups’ cycle index polynomials. Driven by the work of C.S. Lorens [12],
Michael A. Harrison has investigated the effect of negation and permutation
(using cycle indices derived by Ashenhurst [2] and Slepian [16]) and the effect of
linear and affine transformations for Boolean functions [11]. As special cases he
also considered the application of all these groups to reversible functions [8,11].
Primenko [15] applied an alternative method to count the number of equivalence
classes, but considered different permutation groups in his work.

In this paper, we review the above mentioned work. Afterwards, we and
compute and apply the combinational results to reversible circuits and circuit
complexity. We relate the investigated permutation groups to classes of reversible
gates. Furthermore,we show that the size difference of reversible circuits

c© Springer International Publishing Switzerland 2016
S. Devitt and I. Lanese (Eds.): RC 2016, LNCS 9720, pp. 255–270, 2016.
DOI: 10.1007/978-3-319-40578-0 19

256 M. Soeken et al.

composed of mixed-polarity multiple-controlled Toffoli (MPMCT) gates for func-
tions of the same equivalence class is (i) linearly bounded when applying nega-
tions and permutation of inputs and outputs and (ii) quadratically bounded
when applying linear and affine transformations to inputs and outputs.

For reversible functions with 2 and 3 variables, we explicitly enumerate all
equivalence classes and their circuit realizations which allows us to derive cor-
relations and find conjectures. It is unclear whether the classification helps to
find a class of difficult reversible functions, i.e., functions which have reversible
circuits of worst-case or almost worst-case size. Thomas G. Draper [5] has con-
ducted a similar study. He uses complementary techniques to classify Boolean
functions into the same classes and uses his results to introduce a new notion
of complexity. This notion allows to measure a circuit’s complexity in terms of
“rounds of nonlinearity” instead of counting gates.

The paper is organized as follows. Section 2 introduces necessary notation
and definitions. Section 3 reviews how to compute the number of equivalence
classes in reversible functions when applying permutation groups to inputs and
outputs. Section 4 applies the results to circuit complexity of reversible circuits
and Sect. 5 to Boolean functions. Section 6 concludes the paper.

2 Preliminaries

This section introduces background on permutation groups and reversible func-
tions and circuits.

2.1 Permutation Groups

We assume that the reader is familiar with the basics of permutation groups, i.e.,
subgroups of the symmetric group Sn over the elements {0, . . . , n−1}. Including
0 in the set is unconventional but simplifies forthcoming computations. In the
following, we introduce integer partitions and borrow the notation of [1].

Definition 1 (Integer Partition). An integer partition of a natural number
n is a sequence of natural numbers λ = (λ1, λ2, . . . , λk) such that

λ1 � λ2 � · · · � λk and λ1 + λ2 + · · · + λk = n. (1)

We call the λi the parts of λ and write λ � n to say that λ is an integer partition
of n. Sometimes it is useful to directly refer to the counts of a part. If λ =
(λ1, λ2, . . . , λk) � n, we write

λ = (1f12f2 . . . nfn), (2)

where
fi = |{1 � j � k | λj = i}| for 1 � i � n, (3)

Enumeration of Reversible Functions and Its Application 257

i.e., exactly fi of the λj are equal to i. Also, we define

zλ =
n∏

i=1

ififi!. (4)

Example 1. All integer partitions of n = 4 are

(1, 1, 1, 1) (1, 1, 2) (1, 3) (2, 2) (4).

For λ = (1, 1, 2) we have f1 = 2, f2 = 1, f3 = 0, and f4 = 0. Note that
n∑

i=1

ifi = n.

Definition 2 (Permutation Type). Let π ∈ Sn be a permutation. Then its
type type(π) � n is an integer partition where each element corresponds to the
length of one cycle in the cyclic representation of π.

Example 2. Let π = (0, 1)(2)(3, 7, 4)(5, 6) ∈ S8. Then type(π) = (1, 2, 2, 3).

Theorem 1 (e.g., [1]). For each λ � n, the number of permutations π ∈ Sn

with type(π) = λ is n!
zλ

. ��
Definition 3 (Cycle Index Polynomial). Let G ⊆ Sn be a permutation group
and

g(λ) = |{π ∈ G | type(π) = λ}| (5)

be the number of permutations in G that have type λ � n. The cycle index
polynomial of G is

ZG(x1, . . . , xn) =
1
|G|

∑
λ�n

g(λ)xf1
1 xf2

2 · · ·xfn
n . (6)

For each λ � n we implicitly assume that λ = (1f12f2 . . . nfn) as introduced
in (2). We use the fi in the same manner in the remainder of this paper.

Example 3. Let G1 = {πe} ⊂ Sn where πe is the identity permutation. Then

ZG1 = xn
1 ,

since G contains a single permutation of type λ = (1, 1, . . . , 1) and f1 = n.
Let G2 = {(0)(1)(2)(3), (0, 1)(2, 3), (0, 2)(1, 3), (0, 3)(1, 2)}. Then

ZG2 = 1
4

(
x4
1 + 3x2

2

)
,

since G contains four permutations, one of type λ = (1, 1, 1, 1) with f1 = 4 and
three of type λ = (2, 2) with f2 = 2.

Let G3 = Sn. Then

ZG3 =
1
n!

∑
λ�n

n!
zλ

xf1
1 xf2

2 · · ·xfn
n ,

because there are n! permutations out of which n!
zλ

have type λ (see Theorem 1).

258 M. Soeken et al.

Harrison reformulated De Bruijn’s enumeration theorem [4] for the special
case of reversible functions, and it is restated here.

Theorem 2 (De Bruijn [4], Harrison [8]). The number of classes of
reversible functions of n variables with a group G acting on the domain and
a group H acting on the range is

ZG

(
∂

∂z1
,

∂

∂z2
, · · · ,

∂

∂zk

)
ZH(1 + z1, 1 + 2z2, . . . , 1 + szs) (7)

evaluated at z1 = z2 = · · · = zs = 0 where s � 2n.

Harrison introduces the notation of a product of variables to ease writing the
complex cycle index polynomials (see also Sect. 3.2).

Definition 4 (Product of Variables [10]). Let xi1
1 · · ·xir

r and xj1
1 · · ·xjs

s be
two products of variables. The product of these terms, written ‘×’, is defined as∏

p,q

(xip
p × xjq

q) (8)

where

xip
p × xiq

q = x
ipjq gcd(p,q)

lcm(p,q)

and gcd and lcm are the greatest common divisor and least common multiple,
respectively.

2.2 Reversible Functions and Circuits

Let B = {0, 1} denote the Boolean values. We refer to functions f : Bn → Bm

as Boolean multiple-output functions with n inputs and m outputs. We define
x0 = x̄ and x1 = x.

Definition 5 (Reversible Function). A function f : Bn → Bn is called
reversible if f is bijective, i.e., if each input pattern uniquely maps to an output
pattern, and vice versa. Otherwise, it is called irreversible.

Each reversible function f : Bn → Bn corresponds to a permutation πf ∈ S2n

by letting

f(x0, . . . , xn−1) = (y0, . . . , yn−1) if and only if π(x) = y, (9)

where x = (x0x1 . . . xn−1)2 and y = (y0y1 . . . yn−1)2 are the binary expansions of
x and y. Reversible functions over n variables are realized by reversible circuits
consisting of least n lines with gates from library of reversible gates. In this work,
we consider the library of mixed-polarity multiple control Toffoli gates [18].

Enumeration of Reversible Functions and Its Application 259

x1 1

x2 1

0 cin s 0

0 1 cout

1

0

0

0

1

0

0

0

1

0

0

1
x1 x2

x2 x1

x1 x2

x2 x1

Fig. 1. Reversible circuits.

Definition 6 (MPMCT Gate). Let X = {x1, . . . , xn} be a set of variables.
A mixed-polarity multiple-control Toffoli (MPMCT) gate T(C, t) has control
lines C = {xp1

j1
, xp2

j2
, . . . , xpk

jk
} and a target line t ∈ X with {t, t̄} /∈ C. The

gate maps t 	→ t ⊕ (xp1
j1

∧ xp2
j2

∧ · · · ∧ xpk

jk
). Values on remaining lines are passed

through unaltered. A positive literal in C is referred to as positive control line
and a negative literal as negative control line. A gate T({xi}, t) is called a CNOT
gate, and a gate T({}, t) is called a NOT gate.

Example 4. Figure 1a shows a reversible circuit that realizes a full adder. The
annotated values demonstrate the intermediate values of the gates for a given
input assignment. The control lines are either denoted by solid black circles
to indicate positive controls, or white circles to indicate negative controls. The
target line is denoted by ‘⊕’. Figure 1b depicts a SWAP gate for two variables
and its realization using CNOT gates. In total three gates are required. The
SWAP gate is not part of the MPMCT gate library.

3 Reversible Function Classification

In this section we review the main results from [8,11]. These works derive the
number of classes after applying different permutation groups, which are sub-
groups of S2n , to the domain and range of reversible Boolean functions over
n variables. The considered permutation groups are the group of complemen-
tations Cn, the group of permutations Sn, the group of complementations and
permutations Gn, the group of linear transformations Ln, and the group of affine
transformations An. We slightly simplified the notation of the groups compared
to the original papers for the sake of readability. We provide detailed definitions
of all groups in the remainder of this section; a summary of the groups is given
in Table 1.

3.1 Permutation Groups

The aim of the following definitions is to describe a constructive approach on
how to derive the permutations that are contained in the considered groups.
This is orthogonal to the algebraic approach used in [8,11] in which the groups
are expressed in terms of other algebraic structures.

260 M. Soeken et al.

Table 1. The permutation groups that are considered in this paper to act on the inputs
and outputs of reversible functions over n variables. The table shows its notation, order,
corresponding gate library, as well as the reference in which the cycle index polynomial
has been derived.

Group Notation Order Gates Cycle index

Complementations Cn 2n NOT [2]

Permutations Sn n! SWAP [10]

Compl. and perm Gn n!2n SWAP, NOT [10]

Linear transf. Ln 2n(n−1)/2�n
i=1(2

i − 1) CNOT [11]

Affine transf. An 2n(n+1)/2�n
i=1(2

i − 1) CNOT, NOT [11]

Definition 7. The group of all 2n complementations of n variables is

Cn =
⋃

0�b<2n

πb, (10)

where πb ∈ S2n is a permutation such that πb(j) = j ⊕ b for all 0 � j < 2n

and j ⊕ b refers to the bit-wise exclusive OR (addition modulo 2) on the binary
expansions of j and b.

Example 5. The group G2 = {(0)(1)(2)(3), (0, 1)(2, 3), (0, 2)(1, 3), (0, 3)(1, 2)} in
Example 3 is C2.

The group Cn contains all permutations that are described by all reversible
circuits on n lines that only contain NOT gates.

Definition 8. The group of all n! permutations of n variables is

Sn =
⋃

σ∈Sn

πσ, (11)

where πσ ∈ S2n is a permutation such that πσ(j) = (jσ0jσ1 . . . jσ(n−1))2 and
j = (j0j1 . . . jn−1)2 is the binary expansion of j.

Example 6. We have S2 = {πe, (1, 2)} and

S3 = {π3, (1, 2)(5, 6), (2, 4)(3, 5), (1, 2, 4)(3, 6, 5), (1, 4)(3, 6), (1, 4, 2)(3, 5, 6)}.
The group Sn contains all permutations that are described by all reversible

circuits on n lines that only contain SWAP gates.

Definition 9. The group of all complementations and permutations is the com-
bination of Cn and Sn and is denoted

Gn = Cn � Sn, (12)

where ‘�’ is the semi-direct product.

Enumeration of Reversible Functions and Its Application 261

Example 7. We have

G2 = {πe, (0, 3), (1, 2), (0, 1)(2, 3), (0, 2)(1, 3), (0, 3)(1, 2), (0, 1, 3, 2), (0, 2, 3, 1)}.
The notion of the semi-direct product is transferred to the circuit analogy

of the group: The group Gn contains all permutations that are described by all
reversible circuits on n lines that only contain SWAP and NOT gates.

Definition 10. The group of all linear transformations on n variables is

Ln =
⋃

A∈Bn×n

det(A) �=0

πA (13)

where πA ∈ S2n is a permutation such that

πA(j) = k if, and only if A(j0, j1, . . . , jn−1)T = (k0, k1, . . . , kn−1)T ,

where j = (j0j1 . . . jn−1)2 and k = (k0k1 . . . kn−1)2 are the binary expansions of
j and k. Note that all arithmetic operations in det(A) are modulo 2.

Example 8. We have

L2 = {πe, (1, 2), (2, 3), (1, 3), (1, 2, 3), (1, 3, 2)}.
The group Ln contains all permutations that are described by all reversible

circuits on n lines that only contain CNOT gates that have a positive control
line.

Definition 11. The group of all affine transformations on n variables is

An = Cn � Ln. (14)

Example 9. We have A1 = S2 and A2 = S4. However, note that A3 �= S8,
as for example permutation (6, 7) ∈ S8 which corresponds to the Toffoli gate
T({x1, x2}, x3) is not contained in A3.

The group Ln contains all permutations that are described by all reversible
circuits on n lines that only contain CNOT gates and NOT gates.

3.2 Cycle Index Polynomials

In order to derive the number of equivalence classes using Theorem 2, one must
derive the cycle index polynomial of the considered group. These are not simple
to derive and we only give the general idea on how to derive them. References
to detailed proofs are listed in the last column of Table 1. The simplest one is
ZCn

:

ZCn
=

1
2n

(
x2n

1 + (2n − 1)x2n−1

2

)
(15)

262 M. Soeken et al.

The group Cn contains of the identity (corresponds to no NOT gate on any line)
and 2n − 1 permutations that consists of 2n−1 transpositions, i.e., cycles of size
2 [2] (corresponds to all configuration where there is at least one NOT gate on
a line).

Example 10. We give an example on how Theorem 2 can be applied to

ZC2 =
1
4

(
x4
1 + 3x2

2

)
in order to derive the number of equivalence classes of reversible functions over
2 variables with complementation acting on inputs and outputs. We need to
compute

ZC2

(
∂

∂z1
,

∂

∂z2

)
ZC2(1 + z1, 1 + 2z2)

evaluated at z1 = z2 = 0. The first factor in the product evaluates to

ZC2

(
∂

∂z1
,

∂

∂z2

)
=

1
4

(
∂4

∂z41
+ 3

∂2

∂z22

)

and the second product evaluates to

ZC2(1 + z1, 1 + 2z2) =
1
4
((1 + z1)4 + 3(1 + 2z2)2).

The first factor is a sum containing partial derivatives and the second factor is a
sum containing polynomials. The effect of the distributive law when multiplying
the two factors is to combine all partial derivatives with all polynomials:

1
16

(
∂4

∂z41
(1 + z1)4 +

∂4

∂z41
3(1 + 2z2)2 + 3

∂2

∂z22
(1 + z1)4 + 3

∂2

∂z22
3(1 + 2z2)2

)

The second and the third term vanish and one gets 1
16 · 24 · 3 · 24 = 6.

In [8], a lemma describes the effect of applying the resulting partial derivatives
to the resulting polynomials in general. This allows to obtain a closed form
solution for some cycle index polynomials. For example, applying Theorem 2 to
ZCn

simplifies to
1

22n

(
2n! + (2n − 1)2(2n−1)!22

n−1
)

. (16)

Key to derive the cycle index polynomial for Sn is to notice that πσ in (11)
is a homomorphism from Sn to S2n [10]. From this, one can derive that for two
permutations σ1, σ2 ∈ Sn with type(σ1) = type(σ2) one also has type(πσ1) =
type(πσ2). Investigating in detail how a k-cycle in σ translates to πσ yields

ZSn
=

1
n!

∑
λ�n

n!
zλ

∏
i1|1

· · ·
∏
in|n

x
g(f1,i1)···g(fn,in) gcd(i1,...,in)
lcm(i1,...,in) (17)

Enumeration of Reversible Functions and Its Application 263

where

g(fk, ik) =
1
ik

∑
d|ik

2fkdμ

(
ik
d

)
(18)

where μ is the Möbius function.
A technique in [7] shows how to derive the cycle index polynomial for a

permutation group G = G1 � G2 from its constituent groups. Applied to Gn =
Cn � Sn, this yields [8]:

ZGn
=

1
n!2n

∑
λ�n

n!2n∏n
i=1 fi!(2i)fi

ną

i=1

⎛
⎜⎜⎝∏

d|i
x

e(d)
d +

∏
d|2i
d�i

x
g(d)
d

⎞
⎟⎟⎠

×fi

(19)

with

e(k) =
1
k

∑
d|k

2dμ

(
k

d

)
and g(2k) =

1
2k

∑
d|2k
d�k

2d/2μ

(
2k

d

)
. (20)

Based on the properties of irreducible polynomials of Z2[x] and the tech-
nique described in [7], in [11] the cycle index polynomials for Ln and An are
derived. Since their description is quite involved and requires a lot of additional
definitions, the reader is referred to [11] for all details.

The number of equivalence classes that result from applying the described
five permutation groups both to the inputs and outputs of n-variable reversible
functions is given in Table 2 for n � 4. In the remainder, we refer to two reversible
functions f and g as NN-equivalent, if they are in the same equivalence class when
the group Cn acts on both inputs and outputs. We use the abbreviations PP-,
NPNP-, LL-, and AA-equivalent for the groups Sn, Gn, Ln, and An, respectively.

Table 2. Number of equivalence classes when applying a permutation group to the
inputs and outputs of all reversible functions over n variables.

n Cn (NN) Sn (PP) Gn (NPNP) Ln (LL) An (AA)

1 1 2 1 2 1

2 6 7 2 2 1

3 924 1 172 52 10 4

4 81 738 720 000 36 325 278 240 142 090 700 52 246 302

4 Application to Reversible Circuits

In this section we discuss how to apply the above introduced classification to
reversible circuits. We study the relation of optimal circuit realizations for func-
tions in the same equivalence class. Optimality refers to the minimal number of
required Toffoli gates in an MPMCT circuit.

264 M. Soeken et al.

Theorem 3. Let f and g be two NPNP-equivalent reversible functions over n
variables. Then the size difference of two optimal circuits for f and g is at most
3(n − 1) gates.

Proof. Let F be an optimal circuit for f . Since f and g are NPNP-equivalent,
there exists two permutations π, σ ∈ Sn and two bit-vectors p, q ∈ Bn such that

gj(x1, . . . , xn) = f
qj

σj

(
xp1

π1, . . . , x
pn
πn

)
for all 1 � j � n. A circuit for g can therefore be obtained from F by extending
it with circuits for the permutations and negations:

x1 g1 x1, . . . , xn

x2 g2 x1, . . . , xn

xn gn x1, . . . , xn

π p F σ q

Since each permutation in Sn can be decomposed into n − 1 transpositions, the
circuits for π and σ consist each of at most n − 1 SWAP gates. The circuits for
p and q consist each of at most n NOT gates.

First, we move the circuit for p to the right of F by switching the polarities
of the controls on lines i if pi = 1 [17], leading to an updated circuit F ′ of the
same size. Using the identities

we can then pass the NOT gates to the back of the circuit, which changes
p into p′:

The circuit that realizes p′ ⊕ q requires at most n NOT gates. A generalization
of the identities in (21) is

A

B

B

A

in which A and B are either an empty line, a control line, or a target line. This
identity allows to move all SWAP gates in π over F ′ by updating the gates
accordingly, resulting in a circuit F ′′ still of the same size as F :

The permutation π ◦ σ is still an element of Sn and hence can be realized using
(n − 1) SWAP gates which are 3(n − 1) CNOT gates.

Enumeration of Reversible Functions and Its Application 265

The identity

allows to absorb NOT gates from p⊕ q into CNOT gates from π ◦ σ. The worst
case requires all (n− 1) SWAP gates, since a SWAP gate need at least 3 CNOT
gates [19]. In other words, in the worst case, there cannot be a line that is not
part of a CNOT gate but contains a NOT gate. ��
Conjecture 1. Let σ ∈ Sn. Any circuit that realizes πσ requires at least 3(n− 1)
gates.

A proof to Conjecture 1 would make the upper bound of Theorem 3 a tight
bound. We leave the proof to this conjecture for future work, but show experi-
mental evidences for the validity later in this section and show that the conjecture
is valid for n = 2 and n = 3.

Theorem 4. Let f and g be two LL-equivalent reversible functions over n vari-
ables. Then the size difference of two optimal circuits for f and g is at most 2n2

gates.

Proof. We apply the same technique as in Theorem 3 and construct a circuit for
g from a minimal circuit for f by extending it with two circuits in the front and
in the back that realize linear reversible functions. The result follows from the
property that any linear reversible function over n variables can be realized with
at most n2 CNOT gates [3]. Since CNOT gates cannot easily be moved through
a circuit without changing the size of the circuit, improving the bound as in the
proof for Theorem 3 is not obvious. ��

Table 3. Equivalence classes for all 2-variable reversible functions in NPNP-, LL-, and
AA-classification.

0, 1, 2, 3
0, 3, 2, 1

0, 1, 2, 3
2, 3, 0, 1

0, 1, 2, 3

266 M. Soeken et al.

Table 4. Number of equivalence classes of Boolean functions when applying a permu-
tation group to the domain.

0, 1, 2, 3, 4, 5, 6, 7
0, 1, 6, 7, 4, 5, 2, 3
0, 1, 2, 7, 4, 5, 6, 3
0, 1, 7, 6, 5, 4, 2, 3
0, 5, 6, 3, 4, 1, 2, 7
0, 3, 6, 5, 4, 7, 2, 1
0, 1, 7, 6, 4, 5, 3, 2
0, 1, 6, 5, 4, 7, 2, 3
0, 1, 7, 6, 4, 5, 2, 3
0, 1, 2, 5, 6, 7, 4, 3
0, 1, 2, 5, 4, 7, 6, 3
0, 1, 2, 7, 6, 5, 4, 3
0, 3, 5, 6, 7, 4, 2, 1
0, 1, 3, 6, 5, 4, 2, 7
0, 1, 5, 6, 7, 4, 2, 3
0, 3, 7, 5, 4, 6, 2, 1
0, 1, 2, 5, 4, 3, 6, 7
0, 1, 7, 5, 4, 6, 3, 2
0, 1, 7, 5, 4, 6, 2, 3
0, 1, 6, 5, 4, 7, 3, 2
0, 5, 3, 6, 4, 1, 2, 7
0, 3, 5, 6, 4, 7, 2, 1
0, 1, 5, 6, 4, 7, 2, 3
0, 1, 2, 4, 7, 6, 5, 3
0, 1, 2, 5, 7, 6, 4, 3
0, 1, 3, 5, 6, 7, 4, 2
0, 1, 3, 5, 4, 6, 7, 2
0, 1, 2, 5, 4, 6, 7, 3
0, 5, 2, 1, 4, 7, 6, 3
0, 1, 3, 5, 4, 7, 6, 2
0, 1, 2, 4, 5, 7, 6, 3
1, 0, 2, 5, 4, 7, 6, 3
0, 1, 2, 6, 7, 5, 4, 3
1, 0, 2, 7, 6, 5, 4, 3
0, 1, 3, 4, 7, 6, 2, 5
0, 1, 3, 6, 7, 4, 2, 5
0, 1, 5, 2, 3, 4, 6, 7
0, 1, 5, 7, 6, 4, 3, 2
0, 7, 3, 1, 4, 6, 2, 5
0, 1, 2, 4, 5, 3, 7, 6

0, 1, 2, 5, 4, 3, 7, 6
0, 1, 3, 5, 4, 2, 6, 7
0, 5, 3, 1, 4, 6, 2, 7
0, 1, 3, 5, 4, 6, 2, 7
0, 5, 6, 1, 4, 3, 7, 2
0, 5, 1, 6, 4, 3, 2, 7
0, 1, 5, 2, 4, 3, 6, 7
0, 5, 2, 1, 3, 6, 4, 7
0, 1, 2, 5, 4, 6, 3, 7
0, 5, 2, 1, 4, 6, 7, 3
0, 1, 2, 5, 6, 4, 7, 3
0, 5, 3, 1, 6, 4, 2, 7

0, 1, 2, 3, 4, 5, 6, 7
4, 5, 6, 7, 0, 1, 2, 3
0, 1, 2, 7, 4, 5, 6, 3
4, 1, 2, 3, 0, 5, 6, 7
4, 7, 6, 5, 0, 1, 2, 3
0, 1, 2, 5, 4, 7, 6, 3
2, 1, 0, 7, 4, 5, 6, 3
4, 6, 7, 5, 0, 1, 2, 3
0, 1, 2, 5, 4, 6, 7, 3
1, 0, 2, 5, 4, 7, 6, 3

0, 1, 2, 3, 4, 5, 6, 7
0, 1, 2, 7, 4, 5, 6, 3
0, 1, 2, 5, 4, 7, 6, 3
0, 1, 2, 5, 4, 6, 7, 3

Corollary 1. Let f and g be two AA-equivalent reversible functions over n vari-
ables. Then the size difference of two optimal circuits for f and g is at most 2n2

gates.

Enumeration of Reversible Functions and Its Application 267

Proof. This follows from applying the NOT absorption argument used in the
proof to Theorem 3 to the result of Theorem 4. ��

Evaluation. We computed all optimal reversible circuits for reversible functions
of 2 and 3 variables and classified them with respect to NPNP-, LL-, and AA-
equivalence. Tables 3 and 4 list the results of the evaluation. Each row refers to
one equivalence class identified by its representative, which is chosen to be the
lexicographically smallest permutation. For each class, the tables mention the
size of the equivalence class (Size), the size of the smallest optimal reversible
circuit in the class (Min), and the size of the largest optimal reversible circuit in
the class (Max). Equivalence classes are sorted first by the size of the smallest
circuit and in case of a tie by the size of the largest circuit. The bottom row lists
the number of classes and the number of reversible functions.

The experimental results give evidence for the validity of Conjecture 1. The
equivalence class πe for NPNP-classification has Min = 0 and Max = 3 for n = 2
and Min = 0 and Max = 6 for n = 3, i.e., the difference is 3(n − 1). Among
the largest circuits in the equivalence class are the permutations π(0,1) ∈ S2 and
π(0,1)(1,2) ∈ S3, which are those permutations with the maximum number of
transpositions:

and

It is hard to derive from the results a class of difficult functions, i.e., where
almost each function requires the maximum number of gates in its optimal circuit
realization. For NPNP-equivalence of 3-variable functions, there are 4, 30, and 18
classes for which Max is 4, 5, and 6. For LL- and AA-equivalence each equivalence
class contains at least one difficult function (however, a regular pattern of the val-
ues for Min can be observed). As a result, without results for reversible functions
with more than 3 variables, it is not possible to derive any conclusions.

Already Lorens [13] listed all equivalence classes of 3-variable reversible func-
tions under these permutation groups. He devised a further classification based
on properties of the inverse permutations of the equivalence classes’ representa-
tives. However, no correspondence to reversible circuits is given.

We provide the details of this evaluation including one minimal MPMCT cir-
cuit for each function in each equivalence class (for each considered permutation
group) on msoeken.github.io/revclass.html. We expect that several interesting
correlations and conjectures can be found in this data set. The web page also con-
tains the programs that produced the enumeration results. By integrating them
with the techniques described by Golubitsky [6], one may be able to obtain the
classification results for 4-variable reversible functions.

5 Application to Boolean Functions

Harrison has also investigated the effect of the groups Cn, Sn, Gn, Ln, and An

when being applied to the domain of Boolean functions f : Bn → B. The results

http://msoeken.github.io/revclass.html

268 M. Soeken et al.

can be found in [10,11]. All these groups are subgroups of S2n which is isomorphic
to the set of all reversible functions over n variables (see Eq. (9)). In this section,
we investigate the effect of the group S2n when applied to the domain of Boolean
functions. This corresponds to a reversible transformation of the input variables,
which can, e.g., be realized using a reversible circuit.

We apply Pólya’s theorem [14] to compute the number of equivalence classes
with respect to S2n by assigning 2 to all variables in the cycle index polynomial:

ZS2n (2, . . . , 2) =
∑
λ�2n

1
zλ

2f1+···+f2n (22)

(cf. Example 3). The number of equivalence classes when additionally considering
output negation is [9]

1
2

(ZS2n (2, . . . , 2) + ZS2n (0, 2, 0, 2, . . . , 0, 2)) . (23)

Tables 5 and 6 show all numbers for n up to 6.

Conjecture 2. Let us denote the results of Eqs. (22) and (23) with an and bn.
Then the numbers in the tables lead us to conjecture that an = 2n + 1 and
bn = an−1. We have not found these equations nor their derivations in the
literature, but assume that such identities have already been proven.

Table 5. Number of equivalence classes of Boolean functions when applying a permu-
tation group to the domain.

n Cn [10] Sn [10] Gn [10] Ln [11] An [11] S2n

1 3 4 3 4 3 3

2 7 12 6 8 5 5

3 46 80 22 20 10 9

4 4 336 3 984 402 92 32 17

5 134 281 216 37 333 248 1 228 158 2 744 382 33

6 288 230 380 379 570 176 25 626 412 338 274 304 400 507 806 843 728 950 998 216 15 768 919 65

Table 6. Number of equivalence classes of Boolean functions when applying a permu-
tation group to the domain and output complementation.

n Cn [9] Sn [9] Gn [9] Ln [11] An [11] S2n

1 2 2 2 2 2 2

2 5 6 4 4 3 3

3 30 40 14 10 6 5

4 2 288 1 992 222 46 18 9

5 67 172 352 18 666 624 616 126 1 372 206 17

6 144 115 192 303 714 304 12 813 206 169 137 152 200 253 952 527 184 475 999 108 7 888 299 33

Enumeration of Reversible Functions and Its Application 269

6 Conclusions

We have reviewed the research on classification of reversible Boolean functions
and applied the results to reversible circuit complexity. Our main result is that
the size difference of optimal circuit realizations for two NPNP-equivalent func-
tions is at most linear and that the size difference of optimal circuit realizations
for two LL- or AA-equivalent functions is at most quadratic. We have exhaus-
tively classified all reversible functions with 2 and 3 variables. The results can
help to discover further properties of reversible functions and circuits. In future
work we further investigate the two conjectures in this paper.

Acknowledgments. This research was supported by H2020-ERC-2014-ADG 669354
CyberCare and by the European COST Action IC 1405 ‘Reversible Computation’.

References

1. Andrews, G.E.: The Theory of Partitions. Cambridge University Press, Cambridge
(1984)

2. Ashenhurst, R.L.: The application of counting techniques. In: Proceedings of the
ACM National Meeting, pp. 293–305 (1952)

3. Beth, T., Rötteler, M.: Quantum algorithms: applicable algebra and quantum
physics. In: Springer Tracts in Modern Physics, vol. 173, pp. 96–150 (2001)

4. De Bruijn, N.G.: Generalization of Pólya’s fundamental theorem in enumerative
combinational analysis. Konikl. Nederl. Akademie Van Wetenschappen A 52(2),
59–69 (1959)

5. Draper, T.G.: Nonlinear complexity of Boolean permutations. Ph.D. thesis, Uni-
versity of Maryland (2009)

6. Golubitsky, O., Maslov, D.: A study of optimal 4-bit reversible toffoli circuits and
their synthesis. IEEE Trans. Comput. 61(9), 1341–1353 (2012)

7. Harrison, M.A.: Combinational problems in Boolean algebras and applications to
the theory of switching. Ph.D. thesis, University of Michigan (1963)

8. Harrison, M.A.: The number of classes of invertible Boolean functions. J. ACM
10(1), 25–28 (1963)

9. Harrison, M.A.: The number of equivalence classes of Boolean functions under
groups containing negation. IEEE Trans. Electron. Comput. 12, 559–561 (1963)

10. Harrison, M.A.: The number of transitivity sets of Boolean functions. J. Soc. Appl.
Ind. Math. 11, 806–828 (1963)

11. Harrison, M.A.: On the classification of Boolean functions by the general linear
and affine groups. J. Soc. Appl. Ind. Math. 12, 285–299 (1964)

12. Lorens, C.S.: Invertible Boolean functions. Technical report 21, Space-General Cor-
poration, El Monte, California, Research Memorandum (1962)

13. Lorens, C.S.: Invertible Boolean functions. IEEE Trans. Electron. Comput. 13,
529–541 (1964)

14. Pólya, G.: Kombinatorische Anzahlbestimmungen für Gruppen, Graphen und
Chemische Verbindungen. Acta Math. 68, 145–253 (1937)

15. Primenko, É.A.: Equivalence classes of invertible Boolean functions. Cybernetics
20(6), 771–776 (1984)

270 M. Soeken et al.

16. Slepian, D.: On the number of symmetry types of Boolean functions of n variables.
Can. J. Math. 5, 185–193 (1953)

17. Soeken, M., Thomsen, M.K.: White dots do matter: rewriting reversible logic cir-
cuits. In: International Conference on Reversible Computation, pp. 196–208 (2013)

18. Toffoli, T.: Reversible computing. In: de Bakker, J.W., van Leeuwen, J. (eds.)
ICALP 1980. LNCS, vol. 85, pp. 632–644. Springer, Heidelberg (1980)

19. Vatan, F., Williams, C.: Optimal quantum circuits for general two-qubit gates.
Phys. Rev. A 69, 032315-1–032315-5 (2004)

A Finite Alternation Result for Reversible
Boolean Circuits

Peter Selinger(B)

Dalhousie University, Halifax, Canada
selinger@mathstat.dal.ca

Abstract. We say that a reversible boolean function on n bits has alter-
nation depth d if it can be written as the sequential composition of d
reversible boolean functions, each of which acts only on the top n−1 bits
or on the bottom n−1 bits. We show that every reversible boolean func-
tion of n � 4 bits has alternation depth 9.

1 Introduction

A reversible boolean function on n bits is a permutation of {0, 1}n. It is well-
known that the NOT, controlled NOT, and Toffoli gates form a universal gate
set for reversible boolean functions [1,2,4]. More precisely, these gates generate
(via the operations of composition and cartesian product, and together with
the identity functions) all reversible boolean functions on n bits, when n � 3,
and all even reversible boolean functions on n bits, when n � 4. A particular
representation of a reversible boolean function as a composition of cartesian
products of generators and identity functions is called a reversible circuit. The
problem of finding a (preferably short) circuit to implement a given reversible
function is called the synthesis problem [3].

When working with reversible boolean functions and circuits, it is not typi-
cally possible to reason inductively; we cannot usually reduce a problem about
circuits on n bits to a problem about circuits on n − 1 bits. In this paper, we
prove a theorem that may, in some cases, make such inductive reasoning possi-
ble: we prove that when n � 4, every even reversible function on n bits can be
decomposed into at most 9 reversible functions on n − 1 bits:

...
...

...
...

...
...

...
...

...
...

.

(1)

It is of course not remarkable that n-bit circuits can be decomposed into (n−1)-
bit circuits: after all, we already know that they can be decomposed into 3-
bit circuits, namely gates. What is perhaps remarkable is that the bound 9 is
independent of n.

There are some potential applications of such a result — although admit-
tedly, they may not be very practical. As a first application, one may obtain an
c© Springer International Publishing Switzerland 2016
S. Devitt and I. Lanese (Eds.): RC 2016, LNCS 9720, pp. 271–285, 2016.
DOI: 10.1007/978-3-319-40578-0 20

272 P. Selinger

alternative proof of universality, by turning any universal gate set on n bits into
a universal gate set on n + 1 bits, provided that n � 3. This also yields a new
method for circuit synthesis: given a good procedure for synthesizing n-bit cir-
cuits, we obtain a procedure for synthesizing (n + 1)-bit circuits that is at most
9 times worse. By applying this idea recursively, we obtain circuits of size O(9n)
for any reversible function on n bits. This is worse than what can be obtained by
other methods. However, it may be possible to improve this procedure further,
for example by noting that the 9 subcircuits need not be completely general;
they can be chosen to be of particular forms, which may be easier to synthesize
recursively.

Another potential application is the presentation of (even) reversible boolean
functions by generators and relations. While the NOT, CNOT, and Toffoli gates
are a well-known set of generators, to the author’s knowledge, no complete set
of relations for these generators is known. For any given n, the group of n-bit
reversible functions is a finite group, so finding a complete set of relations for any
fixed n is a finite (although very large) problem. However, it is not trivial to find
a set of relations that works for all n; at present, it is not even known whether
the theory is finitely axiomatizable. If we had a procedure for rewriting every
circuit into one of the form (1), then we could obtain a complete set of relations
for n-bit circuits by considering (a) a complete set of relations for (n − 1)-bit
circuits, (b) the relations required to do the rewriting, and (c) any relations
required to prove equalities between circuits of the form (1). In particular, if it
could be shown that a finite set of relations are sufficient for (b) and (c), a finite
equational presentation of reversible boolean functions could be derived.

2 Statement of the Main Result

We write S(X) for the group of permutations of a finite set X. For f ∈ S(X)
and g ∈ S(Y), let f × g ∈ S(X × Y) be the permutation defined componentwise
by (f × g)(x, y) = (f(x), g(y)). We also write idX ∈ S(X) for the identity
permutation on X. Recall that a permutation is even if it can be written as a
product of an even number of 2-cycles.

Let 2 = {0, 1} be the set of booleans, which we identify with the binary digits
0 and 1. By abuse of notation, we also write 2 = id2 for the identity permutation
on the set 2.

Definition. Let A be a finite set, and let σ ∈ S(2 × A × 2) be a permutation.
We say that σ has alternation depth d if it can be written as a product of d
factors σ = σ1σ2 · · · σd, where each factor σi is either of the form f × 2 for some
f ∈ S(2 × A) or of the form 2 × g for some g ∈ S(A × 2).

The purpose of this paper is to prove the following theorem:

Theorem 2.1. Let A be a finite set of 3 or more elements. Then every even
permutation σ ∈ S(2 × A × 2) has alternation depth 9.

A Finite Alternation Result for Reversible Boolean Circuits 273

In circuit notation, Theorem2.1 can be understood as stating that every
reversible boolean function on the set 2 × A × 2 can be expressed as a circuit in
the following form:

x

a

y .

(2)

Here, the lines labelled x and y each represent a bit, and the line labelled a
represents an element of the set A. The case of boolean circuits arises as the
special case where the cardinality of A is a power of 2.

Remark 2.2. The evenness of σ is a necessary condition for Theorem 2.1, because
all permutations of the forms f × 2 and 2 × g are even, and therefore only even
permutations can have an alternation depth.

Our proof of Theorem2.1 is in two parts. In Sect. 3, we will show that every
even permutation of a certain form g + h has alternation depth 5. In Sect. 4, we
will show that every even permutation can be decomposed into a permutation of
alternation depth 4 and a permutation of the form g +h. Together, these results
imply Theorem 2.1.

3 First Construction: Balanced Permutations

3.1 Preliminaries

We fix some terminology. The support of a permutation σ ∈ S(X) is the set
supp σ = {x ∈ X | σ(x) �= x}. Two permutations σ, τ ∈ S(X) are disjoint if
supp σ ∩ supp τ = ∅. In this case, σ and τ commute: στ = τσ. We also call στ
a disjoint product in this case. Recall the cycle notation for permutations: for
k > 1, we write (a1 a2 . . . ak) for the permutation with support {a1, . . . , ak}
defined by a1 �→ a2, a2 �→ a3, . . . , ak−1 �→ ak and ak �→ a1. Such a permutation
is also called a k-cycle. Every permutation can be uniquely decomposed (up to
the order of the factors) into a product of disjoint cycles. A k-cycle is even if
and only if k is odd.

Two permutations σ, σ′ ∈ S(X) are similar, in symbols σ ∼ σ′, if there exists
τ such that σ′ = τ−1στ . It is easy to see that σ, σ′ are similar if and only if their
cycle decompositions contain an equal number of k-cycles for every k.

If g, h ∈ S(X) are permutations on some finite set X, we define their disjoint
sum g + h ∈ S(2 × X) as

(g + h)(0, x) = (0, g(x)) and (g + h)(1, x) = (1, h(x)).

We note the following properties:

g + g = 2 × g, (3)
(g + h) × 2 = g × 2 + h × 2, (4)

(g + h)(g′ + h′) = gg′ + hh′. (5)

274 P. Selinger

(a)

A A

A Af f

f × 2

(b)

A A

A A

g

g

2 × g

(c)

A A

A A

g

h

g + h

Fig. 1. Visualizing permutations of 2 ×A× 2

Property (3) also helps explain our choice of writing “2” for the identity permu-
tation in S(2).

Although it will not be strictly necessary for the proofs that follow (which
are combinatorial), it may sometimes be helpful to visualize sets of the form
2 × A × 2, and permutations thereon, as follows. We visualize the set 2 × A as
two copies of A stacked vertically, with elements of the form (0, a) and (1, a)
belonging to the lower and upper copy, respectively. Similarly, we visualize the
set A × 2 as two copies of A side by side, with elements of the form (a, 0) and
(a, 1) belonging to the left and right copy, respectively. In the same vein, we
visualize the set 2×A×2 as four copies of A arranged in two rows and columns.
The effect of a permutations of the form f ×2 is to apply f separately to the left
and right column, as shown in Fig. 1(a). Similarly, the effect of 2 × g is to apply
g separately to the top and bottom rows, and the effect of g + h is to apply g to
the bottom row and h to the top row, as shown in Fig. 1(b) and (c).

3.2 Decomposition into Balanced Permutations

Definition. A permutation σ is balanced if the number of k-cycles in its cycle
decomposition is even for all k � 2. Moreover, σ is nearly balanced if the number
of k-cycles in its cycle decomposition is even for all k � 3.

For example, the permutation (1 2)(3 4)(5 6 7)(8 9 10) is balanced, the
permutation (1 2)(3 4 5)(8 9 10) is nearly balanced, and (1 2)(3 4)(5 6 7) is
neither balanced nor nearly balanced.

Remark 3.1. The disjoint product of any number of (nearly) balanced permuta-
tions is (nearly) balanced. Moreover, a nearly balanced permutation is balanced
if and only if it is even.

The purpose of this subsection is to prove that every even permutation on
a set of 5 or more elements can be decomposed into a product of two balanced
permutations. This will be Proposition 3.8 below. The proof requires a sequence
of lemmas.

Lemma 3.2. Let σ be a k-cycle, where k � 2 and k �= 3. Then there exists a
balanced permutation ρ and a nearly balanced permutation τ such that σ = τρ.
Moreover, supp τ ∪ supp ρ ⊆ supp σ.

A Finite Alternation Result for Reversible Boolean Circuits 275

Proof. Let σ = (a1 a2 . . . ak). If k = 2t is even, let

ρ = (a1 a2 . . . at)(at+1 at+2 . . . a2t),
τ = (a1 at+1).

If k = 2t + 1 is odd (and therefore, by assumption, t � 2), let

ρ = (a1 a2 . . . at)(at+1 at+3 at+4 . . . a2t+1),
τ = (a1 at+1)(at+2 at+3).

In both cases, the conclusion of the lemma is satisfied.

Lemma 3.3. Let σ be the disjoint product of a 3-cycle and a k-cycle, where
k � 2. Then there exists a balanced permutation ρ and a nearly balanced per-
mutation τ such that σ = τρ. Moreover, supp τ ∪ supp ρ ⊆ supp σ.

Proof. Let σ = (b1 b2 b3)(a1 a2 . . . ak). If k = 2, let

ρ = (b1 b2)(a1 a2),
τ = (b1 b3).

If k = 3, let
ρ = (b1 b2)(a1 a2),
τ = (b1 b3)(a1 a3),

If k = 4, let
ρ = (b1 b2 b3)(a1 a2 a3),
τ = (a1 a4).

If k = 2t + 1 is odd, with t � 2, let

ρ = (b1 b2 b3)(at at+1 a2t+1),
τ = (a1 a2 . . . at)(at+2 at+3 . . . a2t+1).

If k = 2t is even, with t � 3, let

ρ = (a3 a4 . . . at a2t)(at+1 at+2 . . . a2t−1),
τ = (b1 b2 b3)(a1 a2 a3)(at+1 a2t).

In all cases, the conclusion of the lemma is satisfied.

Lemma 3.4. Let σ be a disjoint product of two or more 3-cycles. Then there
exist balanced permutations ρ, τ such that σ = τρ. Moreover, supp τ ∪ supp ρ ⊆
supp σ.

Proof. By assumption, σ factors as σ = γ1γ2 · · · γ�, where γ1, . . . , γ� are pairwise
disjoint 3-cycles and � � 2. Note that γ2

i is also a 3-cycle, and γ4
i = γi, for all i.

If � is even, let ρ = τ = γ2
1γ2

2 · · · γ2
� . If � is odd, let ρ = γ1γ

2
2γ2

3 · · · γ2
�−1 and

τ = γ2
2γ2

3 · · · γ2
�−1γ�. In both cases, the conclusion of the lemma is satisfied.

276 P. Selinger

Lemma 3.5. Let σ be an even permutation, other than a 3-cycle. Then σ can
be written as σ = τρ, where ρ, τ are balanced.

Proof. By considering the cycle decomposition of σ, it is easy to see that σ can
be factored into disjoint factors such that each factor satisfies the premise of one
of Lemmas 3.2, 3.3, or 3.4. Let σ = σ1 · · · σ� be such a factorization. Using the
lemmas, each σi can be written as σi = τiρi, where ρi is balanced and τi is nearly
balanced. Moreover, since the support of each ρi and τi is contained in that of
σi, the ρi are pairwise disjoint, the τi are pairwise disjoint, and ρiτj = τjρi

whenever i �= j. Let ρ = ρ1 · · · ρ� and τ = τ1 · · · τ�. Then we have σ = τρ.
Moreover, by Remark 3.1, ρ is balanced and τ is nearly balanced. Finally, since
σ and ρ are even permutations, so is τ , and it follows, again by Remark 3.1, that
τ is balanced.

Lemma 3.6. Let σ be a 3-cycle in S(X), where |X| � 5. Then there exist
balanced permutations ρ, τ such that σ = τρ.

Proof. Let σ = (a1 a2 a3). Since |X| � 5, there exist elements a4, a5 of X that
are different from each other and from a1, . . . , a3. Let

ρ = (a1 a2)(a4 a5),
τ = (a1 a3)(a4 a5).

Then the conclusion of the lemma is satisfied.

Remark 3.7. Unlike the situation in Lemmas 3.2–3.5, it is not possible to choose
ρ and τ in Lemma 3.6 so that their support is contained in that of σ. An easy
case distinction shows that Lemma 3.6 is false when |X| � 4.

Proposition 3.8. Let σ be an even permutation in S(X), where |X| � 5. Then
there exist balanced permutations ρ, τ such that σ = τρ.

Proof. By Lemma 3.6 if σ is a 3-cycle, and by Lemma 3.5 otherwise.

3.3 Alternation Depth of Permutations of the Form g + h

We now come to the main result of Sect. 3, which is that every even permutation
of the form g + h has alternation depth 5.

Proposition 3.9. Let A be a finite set of 3 or more elements, and let g, h ∈
S(A × 2) be permutations such that σ = g + h is even. Then σ has alternation
depth 5.

The proof requires two lemmas.

Lemma 3.10. Let τ ∈ S(A × 2) be a balanced permutation. Then there exist
permutations g ∈ S(A × 2) and h ∈ S(A) such that

τ = g−1(h × 2)g.

A Finite Alternation Result for Reversible Boolean Circuits 277

Proof. For all k � 2, let yk be the number of k-cycles in the cycle decomposition
of τ . Since the cycles are disjoint, we have

∑
k kyk � 2|A|. Since τ is balanced,

all yk are even. We can therefore find a permutation h ∈ S(A) whose number of
k-cycles is exactly yk/2, for all k. Since h × 2 and τ have, by construction, the
same number of k-cycles for all k, we have h × 2 ∼ τ . By definition of similarity,
it follows that there exists some g with τ = g−1(h × 2)g, as claimed.

Lemma 3.11. Let τ ∈ S(A×2) be a balanced permutation, and let σ = idA×2+
τ ∈ S(2 × A × 2). Then there exist permutations g ∈ S(A × 2) and f ∈ S(2 × A)
such that

σ = (2 × g−1)(f × 2)(2 × g).

Proof. By Lemma 3.10, we can find g ∈ S(A × 2) and h ∈ S(A) such that
τ = g−1(h × 2)g. Let f = idA + h ∈ S(2 × A). Then

(2 × g−1)(f × 2)(2 × g)

= (2 × g−1)((idA + h) × 2)(2 × g)

= (g−1 + g−1)(idA × 2 + h × 2)(g + g)

= (g−1 idA×2 g) + (g−1(h × 2)g)
= idA×2 + τ

= σ.

Here, in addition to the defining properties of f , g, h, and σ, we have also used
(3) and (4) in the second step and (5) in the third step.

Proof (Proof of Proposition 3.9). Let τ = hg−1 ∈ S(A × 2), and note that τ is
even. By Proposition 3.8, there exist balanced permutations τ1, τ2 ∈ S(A × 2)
such that τ = τ2τ1. By Lemma 3.11, there exist g1, g2 ∈ S(A × 2) and f1, f2 ∈
S(2 × A) such that idA×2 + τi = (2 × g−1

i)(fi × 2)(2 × gi), for i = 1, 2. Then we
have:

σ = g + h
= idA×2g + τg
= (idA×2 + τ)(g + g)
= (idA×2 + τ2τ1)(2 × g)
= (idA×2 + τ2)(idA×2 + τ1)(2 × g)
= (2 × g−1

2)(f2 × 2)(2 × g2)(2 × g−1
1)(f1 × 2)(2 × g1)(2 × g)

= (2 × g−1
2)(f2 × 2)(2 × g2g

−1
1)(f1 × 2)(2 × g1g),

which is of alternation depth 5 as desired.

4 Second Construction: Colorings

4.1 Colorings

As before, let 2 = {0, 1}. If X is any finite set, a coloring of X is a map c : X → 2.
Here, we think of the binary digits 0 and 1 as colors, i.e., x ∈ X has color c(x).

278 P. Selinger

We say that the coloring c is fair if there is an equal number of elements of each
color, i.e., |c−1{0}| = |c−1{1}|.

The group S(X) acts in a natural way on the colorings of X as follows: we
define σ • c = c′, where c′(x) = c(σ−1(x)). Note that (στ) • c = σ • (τ • c). Also,
σ • c is fair if and only if c is fair.

On a set of the form 2×X, the standard coloring is the one given by cst(0, x) =
0 and cst(1, x) = 1, for all x.

Remark 4.1. The standard coloring is fair. Conversely, if c is a fair coloring of
2 × X, there exists a permutation f ∈ S(2 × X) such that f • c = cst.

The following lemma relates colorings to permutations of the form g + h
considered in the previous section.

Lemma 4.2. A permutation σ ∈ S(2 × X) is of the form σ = g + h, for some
g, h ∈ S(X), if and only if σ • cst = cst.

Proof. This is elementary. We have σ • cst = cst if and only if for all x, σ(0, x)
is of the form (0, y), and σ(1, x) is of the form (1, z). By setting g(x) = y and
h(x) = z, this is equivalent to σ being of the form g + h.

We are now ready to state the main result of Sect. 4, which is that every fair
coloring of 2 × A × 2 can be converted to the standard coloring by the action of
a permutation of alternation depth 4.

Proposition 4.3. Let A be a finite set of 3 or more elements, and let c be a
fair coloring of 2×A×2. Then there exists a permutation σ ∈ S(2×A×2) such
that σ • c = cst and σ has alternation depth 4.

The proof of Proposition 4.3 will take up the remainder of Sect. 4.

4.2 Visualizing Colorings

Colorings on 2 × A × 2 can be visualized in the same row-and-column format
we used in Fig. 1. An example of a coloring, where A = {p, q, r}, is shown in
Fig. 2(a). The figure indicates, for example, that c(1, p, 0) = 0, c(1, q, 0) = 1,
and so on. When the names of the elements of A are not important, we omit
them. Additionally, we sometimes represent the colors 0 and 1 by black and
white squares, respectively, as in Fig. 2(b).

(a) p q r p q r

0 1 1 1 1 1
0 0 0 1 0 0

(b)

Fig. 2. Visualizing colorings of 2 ×A× 2

A Finite Alternation Result for Reversible Boolean Circuits 279

4.3 Color Pairs

We begin by characterizing when two colorings c, c′ of 2 × X are related by the
action of a permutation of the form 2 × g for g ∈ S(X). This is the case if and
only if c and c′ have the same color pair distribution.

Definition. Let X be a set, and consider a coloring c of 2 × X. We define a
function c∗ : X → 2 × 2 by c∗(x) = (c(0, x), c(1, x)). We call c∗(x) the color pair
of x.

Informally, a color pair corresponds to a single column of digits in Fig. 2(a).
We note that the action of permutations g ∈ S(X) respects color pairs in the
following sense: let c′ = (2 × g) • c. Then

c′∗(g(x)) = (c′(0, g(x)), c′(1, g(x))) = (c(0, x), c(1, x)) = c∗(x). (6)

In particular, the action of 2 × g on colorings does not change the number of
elements of X with each color pair. Conversely, whenever two colorings c, c′

have this property, then they are related by the action of 2 × g, for some g. The
following definition helps us state this more precisely.

Definition. Let X be a set, and c a coloring of 2 × X. For any i, j ∈ 2, define
Nc(i, j) ⊆ X to be the set of elements with color pair (i, j), i.e.,

Nc(i, j) = {x ∈ X | c∗(x) = (i, j)}.

Note that X is the disjoint union of the Nc(i, j), for i, j ∈ 2. Let nc(i, j) =
|Nc(i, j)| be the number of elements with color pair (i, j). Then the color pair
distribution of c is the 4-tuple

(nc(0, 0), nc(0, 1), nc(1, 0), nc(1, 1)).

For example, the coloring from Fig. 2 has color pair distribution (1, 4, 0, 1),
because the color pair (0, 0) occurs once, the color pair (0, 1) occurs four times,
and so on. The following lemma is then obvious.

Lemma 4.4. Let c, c′ be colorings of 2 × X. Then c, c′ have the same color
pair distribution if and only if there exists a permutation g ∈ S(X) such that
c′ = (2 × g) • c. ��

4.4 Color Standardization

Definition. Let A be a set, and let c be a coloring of 2×A×2. We say that c is

– standard if c = cst, i.e., if c∗(a, 0) = c∗(a, 1) = (0, 1) for all a ∈ A;
– symmetric if c∗(a, 0) = c∗(a, 1) for all a ∈ A;
– regular if each color pair occurs an even number of times, i.e., if nc(0, 0),

nc(0, 1), nc(1, 0), and nc(1, 1) are even;

280 P. Selinger

– nearly standard if c∗(a, 0) = c∗(a, 1) = (0, 1) for almost all a ∈ A, except that
there is at most one a1 ∈ A such that c∗(a1, 0) = (0, 0) and c∗(a1, 1) = (1, 1),
and at most one a2 ∈ A such that c∗(a2, 0) = (0, 1) and c∗(a2, 1) = (1, 0);

– nearly symmetric if c∗(a, 0) = c∗(a, 1) for almost all a ∈ A, except that there
is at most one a1 ∈ A such that c∗(a1, 0) = (0, 0) and c∗(a1, 1) = (1, 1), and
at most one a2 ∈ A such that c∗(a2, 0) = (0, 1) and c∗(a2, 1) = (1, 0).

An example of each of these properties is shown in Fig. 3. Our strategy for
proving Proposition 4.3 is to use the action of permutations of the forms 2×g and
f ×2 to successively improve the properties of a coloring until it is standard. This
procedure is also outlined in Fig. 3, along with the number of the lemma that
will be used in each step. The remainder of this section is devoted to the state-
ments and proofs of these lemmas, culminating in the proof of Proposition 4.3
in Sect. 4.5.

Lemma 4.5. Let c be a symmetric fair coloring of 2 × A × 2. Then there exists
f ∈ S(2 × A) such that (f × 2) • c is standard.

Proof. Since c is symmetric, we have c(i, a, 0) = c(i, a, 1) for all (i, a) ∈ 2 × A;
write p(i, a) = c(i, a, 0). Since c is fair, p : 2 × A → 2 is also fair. By Remark 4.1,
there exists a permutation f ∈ S(2 × A) such that f • p is the standard coloring
of 2 × A. It follows that (f × 2) • c is the standard coloring of 2 × A × 2.

Lemma 4.6. Let c be a regular coloring of 2 × A × 2. Then there exists g ∈
S(A × 2) such that (2 × g) • c is symmetric.

Proof. Since c is regular, we can find integers p, q, r, s such that nc(0, 0) = 2p,
nc(1, 1) = 2q, nc(0, 1) = 2r, and nc(1, 0) = 2s. Note that nc(0, 0) + nc(0, 1) +

fair
2×g

(Lemma 4.10)

nearly symmetric

f×2 (Lemma 4.9)

nearly standard

f×2 (Lemma 4.8)

regular
2×g

(Lemma 4.6)

symmetric

f×2 (Lemma 4.5)

standard

Fig. 3. Standardizing a fair permutation

A Finite Alternation Result for Reversible Boolean Circuits 281

nc(1, 0)+nc(1, 1) = 2|A|, and therefore p+ q + r + s = |A|. Write A as a disjoint
union of sets P ∪Q∪R ∪S, where |P | = p, |Q| = q, |R| = r, and |S| = s. Define
a coloring c′ by

c′∗(a, 0) = c′∗(a, 1) = (0, 0), if a ∈ P ,
c′∗(a, 0) = c′∗(a, 1) = (1, 1), if a ∈ Q,
c′∗(a, 0) = c′∗(a, 1) = (0, 1), if a ∈ R,
c′∗(a, 0) = c′∗(a, 1) = (1, 0), if a ∈ S.

Then by construction, c′ is symmetric and has the same color pair distribution
as c. Hence by Lemma 4.4, there exists g ∈ S(A × 2) such that c′ = (2 × g) • c,
which was to be shown.

Lemma 4.7. Suppose |A| = 3 and c is a nearly standard coloring of 2 × A × 2.
Then there exists f ∈ S(2 × A) such that (f × 2) • c is regular.

Proof. Write A as the disjoint union A1 ∪ A2 ∪ A3, where c∗(a1, 0) = (0, 0) and
c∗(a1, 1) = (1, 1) for all a1 ∈ A1, c∗(a2, 0) = (0, 1) and c∗(a2, 1) = (1, 0) for all
a2 ∈ A2, and c∗(a, 0) = c∗(a, 1) = (0, 1) for all a ∈ A3. By the definition of
nearly standard, we know that A1 and A2 have at most one element each. Since
we assumed |A| = 3, this leaves us with four cases.

– Case 1. Assume |A1| = |A2| = 0. Say A3 = {p, q, r}. Since c∗(a, 0) = c∗(a, 1) =
(0, 1) for all a ∈ A, c is the following coloring (using the notation of Sect. 4.2):

p q r p q r
1 1 1 1 1 1
0 0 0 0 0 0.

Since c is already regular (in fact, standard), we can take f to be the identity
permutation.

– Case 2. Assume |A1| = 1 and |A2| = 0. Say A1 = {a1} and A3 = {p, q}. Then
c is the coloring

a1 p q a1 p q
0 1 1 1 1 1
0 0 0 1 0 0.

Define f : 2×A → 2×A by f(0, a1) = (1, p), f(1, p) = (0, q), f(0, q) = (0, a1),
and the identity elsewhere. Then (f × 2) • c is the coloring

a1 p q a1 p q
0 0 1 1 1 1
0 0 1 0 0 1.

– Case 3. Assume |A1| = 0 and |A2| = 1. Say A2 = {a2} and A3 = {p, q}. Then
c is the coloring

a2 p q a2 p q
1 1 1 0 1 1
0 0 0 1 0 0.

282 P. Selinger

Define f : 2×A → 2×A by f(0, a2) = (1, p), f(1, p) = (0, q), f(0, q) = (0, a2),
and the identity elsewhere. Then (f × 2) • c is the coloring

a2 p q a2 p q
1 0 1 0 1 1
0 0 1 0 0 1.

– Case 4. Assume |A1| = |A2| = 1. Say A1 = {a1}, A2 = {a2}, and A3 = {p}.
Then c is the coloring

a1 a2 p a1 a2 p
0 1 1 1 0 1
0 0 0 1 1 0.

Define f : 2 × A → 2 × A by f(0, a1) = (1, a2), f(1, a2) = (0, p), f(0, p) =
(0, a1), and the identity elsewhere. Then (f × 2) • c is the coloring

a1 a2 p a1 a2 p
0 0 1 1 1 1
0 0 1 0 1 0.

In all four cases, (f × 2) • c is regular, as desired.

Lemma 4.8. Suppose |A| � 3 and c is a nearly standard coloring of 2 × A × 2.
Then there exists f ∈ S(2 × A) such that (f × 2) • c is regular.

Proof. The only difference to Lemma 4.7 is that A may have more than 3 ele-
ments. However, by the definition of nearly standard, c is already standard (hence
regular) on the excess elements. Therefore, we can ignore all but 3 elements of
A and proceed as in Lemma 4.7.

Lemma 4.9. Let c be a nearly symmetric fair coloring of 2×A× 2. Then there
exists f ∈ S(2 × A) such that (f × 2) • c is nearly standard.

Proof. Let A′ = {a ∈ A | c∗(a, 0) = c∗(a, 1)}, and let c′ be the coloring of
2×A′×2 obtained by restricting c to the domain 2×A′×2. Then c′ is symmetric.
By definition of “nearly symmetric”, there exists at most two elements a1, a2 ∈
A\A′; moreover, the element a1, if any, satisfies c∗(a1, 0) = (0, 0) and c∗(a1, 1) =
(1, 1) and the element a2, if any, satisfies c∗(a2, 0) = (0, 1) and c∗(a2, 1) = (1, 0).
By assumption, c is fair. Since c restricted to 2 × (A \ A′) × 2 is evidently fair as
well, it follows that c′ is also fair. We will choose the permutation f so that its
support does not touch the elements a1 and a2; it therefore suffices to find some
permutation f ′ ∈ S(2 × A′) such that (f ′ × 2) • c′ is standard. But such an f ′

exists by Lemma 4.5.

Lemma 4.10. Let c be a fair coloring of 2×A×2. Then there exists g ∈ S(A×2)
such that (2 × g) • c is nearly symmetric.

A Finite Alternation Result for Reversible Boolean Circuits 283

Proof. The proof is very similar to that of Lemma4.6. Consider the color pair
distribution (nc(0, 0), nc(0, 1), nc(1, 0), nc(1, 1)) of the given coloring c, and note
that

nc(0, 0) + nc(0, 1) + nc(1, 0) + nc(1, 1) = 2|A|. (7)

Because c is fair, we must have nc(0, 0) = nc(1, 1), and in particular, nc(0, 0)
and nc(1, 1) have the same parity (even or odd). From (7), it follows that
nc(0, 1) and nc(1, 0) have the same parity. Therefore, there exist natural numbers
p, q, r, s, t, u, with t, u ∈ {0, 1}, such that

nc(0, 0) = 2p + t, nc(1, 1) = 2q + t, nc(0, 1) = 2r + u, nc(1, 0) = 2s + u.

(As a matter of fact, p = q, but we will not make further use of this fact).
From (7), we have that p + q + r + s + t + u = |A|. Write A as a disjoint union
P ∪ Q ∪ R ∪ S ∪ T ∪ U , where |P | = p, |Q| = q, |R| = r, |S| = s, |T | = t, and
|U | = u. Define a coloring c′ by

c′∗(a, 0) = c′∗(a, 1) = (0, 0), if a ∈ P ,
c′∗(a, 0) = c′∗(a, 1) = (1, 1), if a ∈ Q,
c′∗(a, 0) = c′∗(a, 1) = (0, 1), if a ∈ R,
c′∗(a, 0) = c′∗(a, 1) = (1, 0), if a ∈ S,

c′∗(a, 0) = (0, 0) and c′∗(a, 1) = (1, 1), if a ∈ T ,
c′∗(a, 0) = (0, 1) and c′∗(a, 1) = (1, 0), if a ∈ U .

By construction, c′ has the same color pair distribution as c. Hence by
Lemma 4.4, there exists g ∈ S(A × 2) such that c′ = (2 × g) • c. On the other
hand, by construction, c′ is nearly symmetric (with a1 being the unique element
of T , if any, and a2 being the unique element of U , if any).

4.5 Proof of Proposition 4.3

Proposition 4.3 is now an easy consequence of Lemmas 4.5–4.10. Figure 3 contains
a proof “without words”. For readers who prefer a proof “with words”, we give
it here:

Assume |A| � 3 and let c be a fair coloring of 2 × A × 2. By Lemma 4.10,
there exists g1 ∈ S(A × 2) such that c1 = (2 × g1) • c is nearly symmetric. By
Lemma 4.9, there exists f2 ∈ S(2 × A) such that c2 = (f2 × 2) • c1 is nearly
standard. By Lemma 4.8, there exists g3 ∈ S(A × 2) such that c3 = (2 × g3) • c2
is regular. By Lemma 4.6, there exists g4 ∈ S(A×2) such that c4 = (2×g4)•c3 is
symmetric. By Lemma 4.5, there exists f5 ∈ S(2×A) such that c5 = (f5 ×2)•c4
is standard. Let

σ = (f5 × 2)(2 × g4)(2 × g3)(f2 × 2)(2 × g1)
= (f5 × 2)(2 × g4g3)(f2 × 2)(2 × g1).

Then σ • c = cst, and σ has alternation depth 4, as claimed. ��

284 P. Selinger

5 Proof of the Main Theorem

Our main result, Theorem 2.1, follows from Propositions 3.9 and 4.3. Specifically,
let σ ∈ S(2 × A × 2) be an even permutation, and let c = σ−1 • cst. By Proposi-
tion 4.3, we can find τ ∈ S(2×A×2) of alternation depth 4 such that τ •c = cst.
Note that τ is even by Remark 2.2. Let ρ = στ−1. Then ρ is also even, and
ρ • cst = σ • (τ−1 • cst) = σ • c = cst. Therefore, by Lemma 4.2, ρ is of the form
g + h, for g, h ∈ S(A × 2). By Proposition 3.9, ρ has alternation depth 5, and it
follows that σ = ρτ has alternation depth 9, as claimed. ��

6 Conclusion and Further Work

We showed that every even permutation of 2×A×2 has alternation depth 9. The
bound 9 is probably not tight. The constructions of Sects. 3 and 4 have many
degrees of freedom, making it plausible that a tighter bound on alternation depth
can be found.

The best lower bound for alternation depth known to the author is 5. An
exhaustive search shows that for A = {a, b, c}, a 3-cycle with support {0} ×
A × {0} cannot be written with alternation depth 4. Of course, this particular
permutation can be realized with alternation depth 5 by Proposition 3.9.

It is reasonable to conjecture that there is nothing special about the number
2 in Theorem 2.1. Specifically, if N and M are finite sets, I conjecture that
there exists a finite bound on the alternation depth of all permutations σ ∈
S(N × A × M) (or all even permutations, when N and M are even), for large
enough A, independently of the size of A.

The reader may have noticed that in our definition of alternation depth, in
the factors of the form f ×2 and 2×g, we did not require the permutations f and
g to be even. However, if the construction is to be used recursively (as required,
for example, by some potential applications mentioned in the introduction), each
f and g must be even. We say that σ ∈ S(2 × A × 2) has even alternation depth
d if it can be written as a product of d factors of the forms f × 2 or 2 × g,
where each such f ∈ S(2 × A) and g ∈ S(A × 2) is an even permutation. Then
an analogue of Theorem2.1 holds for even alternation depth. A very inefficient
proof is the following: first, it is easy to find some odd permutation g ∈ S(A×2)
and even permutations f1, f3, f5 ∈ S(2 × A) and g2, g4 ∈ S(A × 2) such that
(2×g) = (f1×2)(2×g2)(f3×2)(2×g4)(f5×2). Using this, every permutation of
alternation depth d can be rewritten as a permutation of even alternation depth
at most 5d + 1. Naturally, this naive proof yields a bound on even alternation
depth that is not very tight, namely, d = 5 · 9 + 1 = 46. With a more careful
argument, it can be shown that the even alternation depth is in fact bounded
by 13, and I expect that it is bounded by 9 or less. But the details of this are
left for future work.

A Finite Alternation Result for Reversible Boolean Circuits 285

References

1. De Vos, A., Raa, B., Storme, L.: Generating the group of reversible logic gates. J.
Phys. A 35(33), 7063 (2002)

2. Musset, J.: Générateurs et relations pour les circuits booléens réversibles. Technical
report 97–32, Institut de Mathématiques de Luminy (1997). http://iml.univ-mrs.
fr/editions/

3. Saeedi, M., Markov, I.L.: Synthesis and optimization of reversible circuits – a survey.
ACM Comput. Surv. 45(2), 34 p. (2013). arXiv:1110.2574

4. Toffoli, T.: Reversible computing. In: de Bakker, J., van Leeuwen, J. (eds.)
Automata, Languages and Programming. LNCS, vol. 85, pp. 632–644. Springer,
Heidelberg (1980). Abridged version of Technical Memo MIT/LCS/TM-151, MIT
Lab. for Comput. Sci. (1980)

http://iml.univ-mrs.fr/editions/
http://iml.univ-mrs.fr/editions/
http://arxiv.org/abs/1110.2574

Syntheses

Generating Reversible Circuits from
Higher-Order Functional Programs

Benôıt Valiron(B)

LRI, CentraleSupélec, Université Paris Saclay,
Bâtiment 650, 91405 Orsay Cedex, France

benoit.valiron@lri.fr

Abstract. Boolean reversible circuits are boolean circuits made of
reversible elementary gates. Despite their constrained form, they can sim-
ulate any boolean function. The synthesis and validation of a reversible
circuit simulating a given function is a difficult problem. In 1973, Ben-
nett proposed to generate reversible circuits from traces of execution
of Turing machines. In this paper, we propose a novel presentation of
this approach, adapted to higher-order programs. Starting with a PCF-
like language, we use a monadic representation of the trace of execution
to turn a regular boolean program into a circuit-generating code. We
show that a circuit traced out of a program computes the same boolean
function as the original program. This technique has been successfully
applied to generate large oracles with the quantum programming lan-
guage Quipper.

1 Introduction

Reversible circuits are linear, boolean circuits with no loops, whose elementary
gates are reversible. In quantum computation, reversible circuits are mostly used
as oracle: the description of the problem to solve. Usually, this description is given
as a classical, conventional algorithm: the graph to explore [17], the matrix coef-
ficients to process [13], etc. These algorithms use arbitrarily complex structures,
and if some are rather simple, for example [28], others are quite complicated and
make use of analytic functions [13], memory registers [2] (which thus have to be
simulated), etc.

This paper is concerned with the design of reversible circuits as operational
semantics of a higher-order purely functional programming language. The lan-
guage is expressive enough to encode most algorithms: it features recursion,
pairs, booleans and lists, and it can easily be extended with additional struc-
tures if needed. This operational semantics can be understood as the compilation
of a program into a reversible circuit.

Compiling a program into a reversible circuit is fundamentally different from
compiling on a regular back-end: there is no notion of “loop”, no real control flow,
and all branches will be explored during the execution. In essence, a reversible
circuit is the trace of all possible executions of a given program. Constructing a
reversible circuit out of the trace of execution of a program is what Bennett [3]
c© Springer International Publishing Switzerland 2016
S. Devitt and I. Lanese (Eds.): RC 2016, LNCS 9720, pp. 289–306, 2016.
DOI: 10.1007/978-3-319-40578-0 21

290 B. Valiron

proposed in 1973, using Turing machines. In this paper, we refer to it as Landauer
embeddings [16].

In this paper, we build up on this idea of circuit-as-trace-of-program and
formalize it into an operational semantics for our higher-order language. This
semantics is given externally as an abstract machine, and internally, as a monadic
interpretation.

The strength of our approach to circuit synthesis is to be able to reason on a
regular program independently from the constraints of the circuit construction.
The approach we follow is similar to what is done in Geometry of synthesis [9]
for hardware synthesis, but since the back-end we aim at is way simpler, we can
devise a very natural and compact monadic operational semantics.
Contribution. The main contribution of this paper is a monadic presentation
of Landauer embeddings [16] in the context of higher-order programs. Its main
strength is its parametricity: a program really represents a family of circuits,
parametrized on the size of the input. Furthermore, we demonstrate a compo-
sitional monadic procedure for generating a reversible circuit out of a regular,
purely functional program. The generated circuit is then provably computing the
same thing as the original program. This can be used to internalize the genera-
tion of a reversible circuit out of a functional program. It has been implemented
in Quipper [23] and used for building complex quantum oracles.
Related Works. From the description of a conventional function it is always
possible to design a reversible circuit computing the function out of its truth
table or properties thereof and several methods have been designed to generate
compact circuits (see e.g. [7,12,18,24,25,35]). However, if these techniques allow
one to write reversible functions with arbitrary truth tables [34], they do not
usually scale well as the size of the input grows.

Synthesis of reversible circuits can be seen as a small branch of the vast area of
hardware synthesis. In general, hardware synthesis can be structural (description
of the structure of the circuit) or behavioral (description of algorithm to encode).
Functional programming languages have been used for both. On the more struc-
tural side one finds Lava [6], BlueSpec [20], functional netlists [22], etc. On the
behavioral side we have the Geometry of Synthesis [9], Esterel [4], ForSyDe [26],
etc. Two more recent contributions sitting in between structural and behavioral
approaches are worth mentioning. First, the imperative, reversible synthesis lan-
guage SyRec [36], specialized for reversible circuits. Then, Thomsen’s proposal
[33], allowing to represent a circuit in a functional manner, highlighting the
behavior of the circuit out of its structure.

On the logic side, the geometry of interaction [10] is a methodology that can
be used to turn functional programs into reversible computation [1,9,32]: it is
based on the idea of turning a typing derivation into a reversible automaton.

There have also been attempts to design reversible abstract machines and to
compile regular programs into reversible computation. For example, a reversible
version of the SEMCD machine has been designed [15]. More recently, the com-
piler REVS [21] aims at compiling conventional computation into reversible cir-
cuits.

Generating Reversible Circuits from Higher-Order Functional Programs 291

Monadic semantics for representing circuits is something relatively common,
specially among the DSL community: Lava [6], Quipper [11], Fe-Si [5], etc. Other
approaches use more sophisticated constructions, with type systems based on
arrows [14] in order to capture reversibility.

In the present work, the language is circuit-agnostic, and the interest of the
method lies more in the fact that the monadic semantics to build reversible cir-
cuits is completely implicit and only added at circuit-generation time, following
the approach in [31], rather than in the choice of the language. Compared to [14],
our approach is also parametric in the sense that a program does not describe
one fixed-size circuit but a family of circuits, parametrized by the size of the
input.
Plan of the Paper. Section 2 presents the definition of reversible circuits and

how to perform computation with them. Section 3 describes a PCF-like lambda-
calculus and proposes two operational semantics: one as a simple beta-reduction
and one using an abstract machine and a partial evaluation procedure generating
a circuit. Section 4 describes the call-by-value reduction strategy and explains how
to internalize the abstract-machine within the language using a monad. Section 5
discusses the use of this technique in the context of the generation of quantum
oracles. Finally, Sect. 5 concludes and proposes some future investigations.

2 Reversible Circuits

A reversible boolean circuit consists in a set of open
wires and elementary gates attached onto the wires.
Schematically, a reversible boolean circuit is of the form
shown on the right. To each gate is associated a boolean
operation, supposed to be reversible. In this circuit
example, G is a one-bit operation (for example a not-
gate, flipping a bit) while F is a two-bit operation. In each wire, a bit “flows”
from left to right. All the bits go at the same pace. When a gate is met, the corre-
sponding operation is applied on the wires attached to the gate. Since the gates
are reversible, the overall circuit is reversible by making the bits flow backward.
Choice of Elementary Gates. Many gates have been considered in the
literature [24]. In this paper, we will consider multi-controlled-not gates.
A not gate, represented by ⊕ is flipping the value of the wire on

which it is attached. The operator not stands for the bit-flip opera-
tion. Given a gate F acting on n wires, a controlled-F is a gate act-
ing on n + 1 wires. The control can be positive or negative, represented

x • x

y F

x ◦ x

y F

respectively as shown on the right. In both cases, the
top wire is not modified. On the bottom wires, the gate
F is applied if x is true for the positive control, and
false for the negative control. Otherwise, no gate is applied: the values �y flow
unchanged through the gate. A positively-controlled not gate will be denoted
CNOT.

292 B. Valiron

A reversible circuit runs a computation on some query: some input wires
correspond to the query, and some output wires correspond to the answer. The
auxiliary input wires that are not part of the query are initially fed with the
boolean “false” (also written 0).
Computing with Reversible Circuits. As described by Landauer [16] and
Bennett [3], a conventional, classical algorithm computing a boolean function
f : bitn → bitm can be mechanically transformed into a reversible circuit
sending the triplet (x,�0,�0) to (x, trace, f(x)), as in Fig. 1a. Its input wires are
not modified by the circuit, and the trace of all intermediate results are kept in
garbage wires.

Because of their particular structure, two Landauer embeddings Tg and Th

can be composed to give a Landauer embedding of the composition h ◦ g.
Figure 1b shows the process: the wires of the output of Tg are fed to the input
of Th, and the output of the global circuit is the one of Th. The garbage wires
now contain all the ones of Tg and Th.

Tf

0

x

f (x)

x

0 · · ·0 trace

(a) Landauer embedding of f .

Tg

0

x

g(x)

x

0 · · ·0

Th

0 h(g(x))

trace

0 · · ·0

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(b) Composing two Landauer embeddings.

Fig. 1. Landauer embeddings.

Note that it is easy to build elementary Landauer embeddings for negation
and conjunction: the former is a negatively-controlled not while the latter is a
positively doubly-controlled not. Any boolean function can then be computed
with Landauer embeddings.

3 Reversible Circuits as Trace of Programs

In this section, we present an implementation of Landauer embeddings to the
context of a higher-order functional programming language, and show how it
can be understood through an abstract machine.

3.1 Simple Formalization of Reversible Circuits

A reversible circuit has a very simple structure. As a linear sequence of elemen-
tary gates, it can be represented as a simple list of gates.

Definition 1. A reversible gate G is a term N(i ·bj1
1 . . . bjn

n) where i, j1,. . . ,jn are
natural numbers such that for all k, i �= jk, and where b1,. . . ,bn are booleans. If
the list of bjk

k is empty, we simply write N(i) in place of N(i ·). The wires of the
gate N(i · bj1

1 . . . bjn
n) is the set of natural numbers {i, j1, . . . , jn}. The wire i is

Generating Reversible Circuits from Higher-Order Functional Programs 293

called active and the jk’s are called the control wires. Given a list C of gates, the
union of the sets of wires of the elements of C is written Wires(C). Finally, the
boolean values True and False flowing in the wires are respectively represented
with tt and ff throughout the paper.

Definition 2. A reversible boolean circuit is a triplet (I, C,O) where C is a list
of reversible gates and where I and O are sets of wires. The list C is the raw
circuit, I is the set of inputs wires and O the set of outputs wires. We also call
Wires(C) \ I the auxiliary wires and Wires(C) \ O the garbage wires.

Executing a reversible circuit on a given tuple of booleans computes as fol-
lows.

Definition 3. Consider a circuit (I, C,O) and a family of bits (xi)i∈I . A val-
uation for the circuit is an indexed family v = (vj)j∈Wires(C)∪I∪O of booleans.
The execution of a gate N(i ·bj1

1 . . . bjn
n) on the valuation v is the valuation w such

that for all l �= i, wl = vl and wi = vi xor ∧n
k=1 (vjk xor bk xor tt) if n ≥ 1 and

wi = not(vi) otherwise. The execution of the circuit (I, C,O) with input (xi)i∈I

is the succession of the following operations: (1) Initialization of a valuation v
such that for all k ∈ I, vk = xk, and for all the other values of k, vk is false. (2)
Execution of every gate in C on v, in reverse order. (3) The execution of the
circuit returns the sub-family (vk)k∈O.

3.2 A PCF-like Language with Lists of Booleans

In this section, we present the functional language PCFlist that we use to
describe the regular computations that we eventually want to perform with a
reversible circuit. The language is simply-typed and it features booleans, pairs
and lists.

M,N ::= x |λx.M |MN | 〈M,N〉 |π1(M) |π2(M) | skip |M ;N | tt | ff |
if M then N else P | and | xor | not | inj1(M) | inj2(M) |
match P with (x �→ M |y �→ N) | splitA |Y (M) | Err,

A,B ::= bit |A ⊕ B |A × B | 1 |A → B | [A].

The language comes equipped with the typing rules of Table 1. There are several
things to note. First, the construct if - then - else can only output first-order
types. A first order type is a type from the grammar A0, B0 ::= bit |A0 ×
B0 | [A0]. Despite the fact that one can encode them with the test construct, for
convenience we add the basic boolean combinators not, xor and and. There are
no constructors for lists, but instead there is a coercion from 1 ⊕ (A × [A]) to
[A]; the term split turns a list-type into a additive type. There is a special-
purpose term Err that will be used in particular in Sect. 3.4 as an error-spawning
construct. The boolean values True and False are respectively represented with
tt and ff. skip is the unit term and M ;N is used as the destructor of the unit.
Finally, Y is a fixpoint operator. As we shall eventually work with a call-by-value
reduction strategy, we only consider fixpoints defining functions.

294 B. Valiron

Table 1. Typing rules of PCFlist.

Notation 4. We write nil for inj1(skip) and M :: N in place of inj2(M ×N).
We also write [M1, . . . Mn] for M1 :: . . . :: Mn :: nil. We also write general prod-
ucts 〈M1, . . . ,Mn〉 as 〈M1, 〈. . . Mn . . .〉〉. Projections πi for i ≤ n extends
naturally to n-ary products. We write letrec f x = M in N for the term
(λf.N)(Y (λf.λx.M)).

Remark 5. The typing rule of the if-then-else construct imposes a first-
order condition on the branches of the test. This will be clarified in Remark 19.
For now, let us just note that this constraint can be lifted with some syn-
tactic sugar: if M and N are of type A1 → . . . → An, where An is first-
order, then a “higher-order” test if P then M else N can be defined using
the native, first-order test by an η-expansion with the lambda-abstraction
λx1 . . . xn.if P then Mx1 . . . xn else Nx1 . . . xn.

3.3 Small-Step Semantics

We equip the language PCFlist with the smallest rewrite-system closed under
subterm reduction, satisfying the rewrite rules of Table 2, and satisfying the
obvious rules regarding not, and and xor: for example, not tt → ff and not ff →
tt. Note that the term Err does not reduce. This is on purpose: it represents an
error that one cannot catch with the type system; in particular it will be used
in Sect. 3.4. The usual safety properties are satisfied, modulo the error-spawning
term Err.

Table 2. Small-step semantics for PCFlist: reduction rules, acting on subterms.

Generating Reversible Circuits from Higher-Order Functional Programs 295

Definition 6. A value is a term V defined by the grammar λx.M | 〈U1, U2〉 |
inji(U) | c, where c is a constant term: skip, tt, ff.

Theorem 7 (Safety). Type preservation and progress are verified: (1) If Δ

M : A, then for all N such that M → N we also have Δ
 N : A. (2) If M is
a closed term of type A then either M is a value, or M contains the term Err,
or M reduces. ��

In summary, the language is well-behaved. It is also reasonably expressive,
in the sense that most of the computations that one could want to perform on
lists of bits can be described, as shown in Example 9.

Convention 8. When defining a large piece of code, we will be using a Haskell-
like notation. So instead of defining a closed function as a lambda-term on a
typing judgment, we shall be using the notation

function : type_of_the_function
function arg1 arg2 ... = body_of_the_function

Also, we shall use the convenient notation let x = M in N for (λx.N)M and
the notation let 〈x, y〉 = M in N for let z = M in let x = π1(z) in let y =
π1(z) in N . Similarly, we allow multiple variables for recursive functions, and
we use pattern-matching for lists and general products in the same manner.

Example 9 (List Combinators). The usual list combinators can be defined.
Here we give the definition of foldl: (A → B → A) → A → [B] → A. The other
ones (such as map, zip. . .) are written similarly.

foldl f a l = letrec g z l’ = match (split l’) with
nil �→ z

| 〈h,t〉 �→ g (f z h) t
in g a l

Example 10 (Ripple-Carry Adder). One can easily encode a bit-adder: it takes
a carry and two bits to add, and it replies with the answer and the carry to
forward.

bit_adder : bit → bit → bit → (bit × bit)
bit_adder carry x y =

let majority a b c = if (xor a b) then c else a in
let z = xor (xor carry x) y in
let carry’ = majority carry x y in 〈carry’, z〉

Encoding integers as lists of bits, low-bit first, one can use the bit-adder to write
a complete adder in a ripple-carry manner, amenable to a simple folding. We
use an implementation similar to the one done in [23].

adder_aux : (bit × [bit]) → (bit × bit) → (bit × [bit])
adder_aux 〈w, cs〉 〈a, b〉 = let 〈w’, c’〉 = bit_adder w a b in 〈w’, c’::cs〉

adder : [bit] → [bit] → [bit]
adder x y = π2 (foldl adder_aux 〈ff, nil〉 (zip y x))

296 B. Valiron

3.4 Reversible Circuits from Operational Semantics

We consider the language PCFlist as a specification language for boolean
reversible circuits in the following sense: A term of type x1 : bit, . . . , xn : bit

M : bitm computes a boolean function fM : bitn → bitm.

In this section, we propose an operational semantics for the language PCFlist

generating Landauer embeddings, as described in Sect. 2. The circuit is produced
during the execution of an abstract machine and partial evaluation of terms.
Essentially, a term reduces as usual, except for the term constructs handling the
type bit, for which we only record the operations to be performed. Formally,
the definitions are as follows.

Definition 11. A circuit-generating abstract machine is a tuple consisting of
(1) a typing judgment p1 : bit, . . . , pn+k : bit
 M : bitm ; (2) a partial
circuit RC := ({1, . . . , n}, C) where C is a list of gates; (3) a one-to-one linking
function mapping the free variables pi of M to the wires Wires(C) ∪ {1, . . . , n}.

Intuitively, {1, . . . , n} is the set of input wires. The set of output wires is not
yet computed: we only get it when M is a value. If G is a gate, we write G :: (I, C)
for the partial circuit (I,G :: C). Given a judgment p1 : bit, . . . , pn : bit
 M :
bitm, the empty machine is (M, ({1, . . . , n}, {}), {pi �→ i | i = 1 . . . n}) and is
denoted with EmptyAM(M). The size of the domain of a linking function L is
written �(L).

By abuse of notation, we shall write abstract machine with terms, and not
typing judgements. It is assumed that all terms are well-typed according to the
definition.

Definition 12. Given a linking function L, a first-order extension of L consists
of a term of shape M ::= pi | 〈M1, . . . Mn〉 | [M1, . . . Mn], where the pi’s are in the
domain of L. We say that two first-order extensions of L have the same shape
provided that they are both products with the same size or lists with the same
size such as their components have pairwise the same shape.

The set of circuit-generating abstract machines is equipped with a rewrite-
system (→am) defined using a notion of beta-context, that is, a term with a hole,
as follows.

C[−] ::= [−] | λx.C[−] | (C[−])N | M(C[−]) | 〈C[−], N〉 | 〈M, C[−]〉 |
π1(C[−]) | π2(C[−]) | C[−];N | M ;C[−] | if C[−] then N else P |
ifM then C[−] elseP | ifM thenN else C[−] | inj1(C[−]) | inj2(C[−]) |
match C[−] with (x �→ M |y �→ N) | match P with (x �→ C[−]|y �→ N) |
match P with (x �→ M |y �→ C[−]) | Y (C[−]).

The constructor [−] is the hole of the context. Given a context C[−] and a term
M , we define C[M] as the variable-capturing substitution of the hole [−] by M .

The rewrite rules can then be split in two sets. The first set concerns all
the term constructs unrelated to the type bit. In these cases, the state of the
abstract machine is not modified, only the term is rewritten. The rules, presented

Generating Reversible Circuits from Higher-Order Functional Programs 297

Table 3. Rewrite rules for circuit-generating abstract-machine: generic rules.

Table 4. Rewrite rules for circuit-generating abstract-machines: rules for booleans

in Table 3, are the same as for the small-step semantics of Table 2: apart from
the two rules concerning if-then-else, all the others are the same.

The second set of rules concerns the terms dealing with the type bit, and can
be seen as partial-evaluation rules: we only record in the circuit the operations
that would need to be done. The rules are shown in Table 4. The linking function
L′ is L ∪ {pi0 �→ i0}, where i0 is a new wire. The variable pi0 is assumed to be
fresh. For the case of the if-then-else, we assume V and W are first-order
extensions of L with the same shape. The term U is a first-order extension of
L with the same shape as V and W containing only (pairwise-distinct) free
variables and mapping to new distinct garbage wires. L′′ is L updated with this
new data. Suppose that V contains the variables v1, . . . vk, that W contains the
variables w1, . . . wk and that U contains the variables u1, . . . uk. Then RC ′ is RC
with the following additional series of gates: N(uj ·ttpittvi)) and N(uj ·ffpittwi).

Remark 13. Note that the set I is never modified by the rules

Safety properties hold for this new semantics, in the sense that the only error
uncaught by the type system is the term Err that might be spawned.

Theorem 14 (Type Preservation). If p1 : bit, . . . , p�(L) : bit
 M : bitm, if
(M,RC,L) is an abstract machine and if (M,RC,L) →am (N,RC ′, L′), then
we have the judgement p1 : bit, . . . , p�(L′) : bit
 N : bitm. ��
Theorem 15 (Progress). If p1 : bit, . . . , p�(L) : bit
 M : bitm is valid and
if (M,RC,L) is an abstract machine then either M is a value, or M contains
Err, or (M,RC,L) reduces through (→am). ��

3.5 Simulations

The abstract machine M generates a circuit computing the same function as the
small-step reduction of M in the following sense.

298 B. Valiron

Definition 16. Let (M, (I, C), L) be an abstract machine. We write
C(M, (I, C), L) for the circuit defined as (I, C,Range(L)). Let (vk)k∈Range(L)

be the execution of the circuit C(M, (I, C), L) on the valuation �u = (ui)i∈I . We
define T (M, (I, C), L)(�u) as the term M where each free variable x has been
replaced with vL(x).

Intuitively, if (M,RC,L) is seen as a term where some boolean operations
have been delayed in RC, then T (M,RC,L) corresponds to the term resulting
from the evaluation of the delayed operations.

Theorem 17. Consider a judgment x1 : bit, . . . , xn : bit
 M : bitm and
suppose that EmptyAM(M) →am

∗ (〈pi1 , . . . pik〉, (I, C), L). Then k = m, and
provided that �u = (bi)i∈I , the term T (〈pi1 , . . . pik〉, (I, C), L)(�u) is equal to
〈c1, . . . cm〉 if and only if the term let 〈x1, . . . xn〉 = 〈b1, . . . bn〉 in M reduces
to 〈c1, . . . cm〉.

The proof is done using an invariant on a single step of the rewriting of
abstract machines, stated as follows.

Lemma 18. Consider a judgment x1 : bit, . . . , xn : bit
 M : bitm and
suppose that (M, (I, C), L) →am (N, (I, C ′), L′). Let �u = (ui)i∈I be a valu-
ation. Then either the term T (M, (I, C), L)(�u) is equal to T (N, (I, C ′), L′)(�u)
if the rewrite corresponds to the elimination of a boolean tt or ff, or
T (M, (I, C), L)(�u) → T (N, (I, C ′), L′)(�u), or N contains the error term
Err. ��
Proof of Theorem 17. If EmptyAM(M) →am

∗ (〈pi1 , . . . pik〉, (I, C), L), then
there is a sequence of intermediate rewrite steps where none of the terms
involved is the term Err. From Lemma 18, one concludes that for all valu-
ations �u on I, T (EmptyAM(M))(�u) →∗ T (〈pi1 , . . . pik〉, (I, C), L)(�u). Choos-
ing �u = (bi)i∈I , T (EmptyAM(M))(�u) is the term M where each free vari-
able pij has been substituted with its corresponding boolean bij . Similarly,
T (〈pi1 , . . . pik〉, (I, C), L) is equal to the value〈bi1 , . . . bik〉. We can conclude the
proof by remarking that the term let 〈x1, . . . xn〉 = 〈b1, . . . bn〉 in M reduces to
M where each of the free variables pij have been substituted with bij , that is,
the term T (EmptyAM (M))(�u). ��

One would have also hoped to have a simulation result in the other direction,
stating that if a (closed) term M : bitm reduces to a tuple of booleans, then
EmptyAM (M) generates a circuit computing the same tuple. Unfortunately this
is not the case, and the reason is the particular status of the type bit and the
way the if-then-else behaves.

Remark 19. Let us re-visit the first-order constraint of the if-then-else dis-
cussed in Remark 5 in the light of this operational semantics. Here, this test
behaves as a regular boolean operator acting on three arguments: they need to
be all reduced to values before continuing. This test is “internal” to the cir-
cuit: both branches are evaluated during a run of the program. Because it is

Generating Reversible Circuits from Higher-Order Functional Programs 299

“internal”, the type of the branches have to be “representable”: thus the con-
straint on first-order. This test does not control the execution of the program:
its characteristic only appears at circuit-evaluation time.

With this operational semantics, it is also interesting to note that there are
two kinds of booleans: the “internal” type bit, and the “external” type defined
e.g. as bool = 1 ⊕ 1. If the former does not control the flow, the latter does
with the match constructor. And unlike if-then-else, match does not have
type constraints on its branches.

The term Err can be explained in the light of this discussion. Thanks to
the condition on the shape of the output branches of the test, it is used to
enforce the fact that bit cannot be coerced to a bool. Indeed, consider the term
if b then nil else [tt]: using a match against the result of the test, it would
allow one to use the bit b for controlling the shape of the rest of the circuit. As
there is not such construct for reversible circuits, it therefore has to be forbidden:
it is not possible to control the flow of execution of the program through the type
bit. And the fact that a well-typed term can produce an error is simply saying
that the type-system is not “strong enough” to capture such a problem. It is
very much related to the fact that the zip operator on lists cannot be “safely”
typed without dependent types.

4 Internalizing the Abstract Machine

Instead of defining an external operational semantics as we did in Sect. 3.4,
one can internalize the definition of circuits in the language PCFlist. Given a
program, provided that one chooses a reduction strategy, one can simulate the
abstract-machine semantics inside PCFlist using a generic monadic lifting, close
to what was proposed in [31].

4.1 Monadic Lifting

Before going ahead with the full abstract-machine semantics, we present the
monadic lifting of PCFlist for a monadic function-type. It is the transposi-
tion of Haskell’s monads to our language PCFlist. The main characteristic of
the reversible abstract-machine is to change the operational behavior of the
type bit: the terms tt, ff, the inline bit-combinators and the term construct
if - then - else do not reduce as regular lambda-terms. Instead, they trigger a
side-effect, which can be simulated within a monad.

Definition 20. A monad is a function-type M (−) together with two terms
returnA

M : A → M (A) and appA,B
M : M (A) → (A → M (B)) → M (B). A

reversible-circuit monad is a monad together with a type wire and the terms
mttM , mffM : M (wire), mifA

M : wire → M (A) → M (A) → M (A), and
mnotA

M : M (wire → M (wire)), and finally mandA
M , mxorA

M : M (wire×wire →
M (wire)).

300 B. Valiron

Definition 21. Given a reversible-circuit monad M , we inductively define the
M -monadic lifting of a type A, written LiftM(A). We omit the index M for
legibility.

Lift (bit) = wire, Lift (1) = 1,

Lift (A → B) = Lift (A) → M (Lift (B)), Lift (A × B) = Lift (A) × Lift (B),
Lift (A ⊕ B) = Lift (A) ⊕ Lift (B), Lift ([A]) = [Lift (A)].

The M -monadic lifting of a term M , denoted with LiftM(M), is defined
as follows. First, we set Lift (tt) = mtt, Lift (ff) = mff, Lift (and) = mand,
Lift (xor) = mxor and Lift (not) = mnot. Then

Lift (x) = return x, Lift (skip) = return skip,

Lift (λx.M) = return λx.Lift (M), Lift (split) = return λx.return (split x),

Lift (MN) = app Lift (M) λx.app Lift (N) λy.xy,

Lift (〈M, N〉) = app Lift (M) λx.app Lift (N) λy.return 〈x, y〉,
Lift (πi(M)) = app Lift (M) λx.return πi(x),

Lift (inji(M)) = app Lift (M) λx.return inji(x),

Lift (M ;N) = app Lift (M) λx.app Lift (N) λy.return x;y,

Lift (match P with (z1 �→M |z2 �→N)) =

app Lift (P) λx.match x with (z1 �→Lift (M)|z2 �→Lift (N)),

Lift (Y (M)) = app Lift (M) λf.return (Y (λy.λz.app (y skip) f))skip

Lift (ifP thenM elseN) = app Lift (P) λx.((mif x) Lift (M)) Lift (N)

Remark 22. Note that in this definition of the lifting, we followed a call-by-
value approach: the argument N : M (A) of a function M : A → M (B) is first
reduced to a value before being fed to the function. This will be discussed in
Sect. 4.3.

The fact that a monad is equipped with mtt, mff, mxor, mand, mnot and mif
is not a guarantee that the lifting will behave as expected. One has to choose the
right monad for it. It is the topic of Sect. 4.2. However, in general this monadic-
lifting operation preserves types (proof by induction on the typing derivation).

Theorem 23. Provided that x1 : A1, . . . , xn : An
 M : B is valid, so is the
judgment x1 : LiftM(A1), . . . , xn : LiftM(An)
 LiftM(M) : M (LiftM(B)). ��

4.2 Reversible Circuits from Monadic Lifting

All the structure of the abstract machine can be encoded in the language
PCFlist. A wire is a natural number. A simple way to represent them is with
the type wire := [1]. The number 0 is the empty list while the successor of n is
(skip :: n). A gate is then gate := wire × [wire × bit]. A raw circuit is [gate].

We now come to the abstract machine. In the formalization of Sect. 3.4,
we were using a state with a circuit and a linking function. In this internal

Generating Reversible Circuits from Higher-Order Functional Programs 301

representation, the linking function is not needed anymore: the computation
directly acts on wires. However, the piece of information that is still needed is
the next fresh value. The state is encapsulated in state := [gate]×wire. Finally,
given a type A, we write circ(A) for the type state → (state × A): this is a
computation generating a reversible circuit.

The type operator circ(−) can be equipped with the structure of a
reversible-circuit monad, as follows. First, it is obviously a state-monad, mak-
ing the two first constructs automatic: return := λx.λs.(s, x) and app :=
λxf.λs.let 〈s′, a〉 = x s in (f a) s′. The others are largely relying on the fact
that PCFlist is expressive enough to emulate what was done in Sect. 3.4.
Provided that S stands for the successor function, we can mff as the
lambda-term λs.let 〈c, w〉 = s in 〈〈c,Sw〉, w〉 and mtt as the lambda-term
λs.let 〈c, w〉 = s in 〈〈〈w, nil〉::c,Sw〉, w〉. Note how the definition reflects the
reduction rules corresponding to tt and ff in Table 4: in the case of ff, the
returned wire is the next fresh one, and the state is updated by increasing the
“next-fresh” value by one unit. In the case of tt, on top of this we add a not-gate
to the list of gates in order to flip the value of the returned wire. The definitions
of mnot, mand and mxor are similar. For mif, one capitalizes on the fact that we
know the structure of the branches of the test, as they are of first-order types.
One can then define a zip-operator A0 × A0 → A0 for each first-order type A0.

4.3 Call-by-Value Reduction Strategy

As was mentioned in Remark 22, the monadic lifting intuitively follows a call-
by-value approach. It can be formalized by developing a call-by-value reduc-
tion strategy for circuit-abstract machines. Such a definition follows the one
of the reduction proposed in Sect. 3.4: we first design a notion of call-by-
value evaluation context E[−] characterizing the call-by-value redex that can
be reduced. We then define the reduction: the generic rules of Table 3 are turned
into their call-by-value version in the standard way. For example, we require
that (E[(λx.M)V], RC,L) →cbv (E[M [V/x]], RC,L) happens only when V is
a value. The rule requiring care is the rule for the fixpoint Y : we ask that
(E[Y (λx.M)], RC,L) →cbv (E[M [Y (λx.M)/x]], RC,L), for the term not to
loop. Finally, the rules of Table 4 are similar, replacing C[−] with E[−].

In the light of this reduction strategy and of the monadic lifting of the pre-
vious section, one can now formalize what was mentioned in Remark 22. First,
one can turn an abstract machine into a lifted term.

Definition 24. Let x1 : bit, . . . , xn+k : bit
 M : B and let (M, (C, I), L) be
an abstract machine where I = {1 . . . n}. Then we define Lift (M, (C, I), L) as
the term(

Lift (M)[L(xn+1)/xn+1 . . . L(xn+k)/xn+k]
)

〈C,Smax(Range(L))〉,

where C is the representation of C as a term of type [gate] × wire, and where
n with n an integer is the representation of n as a term of type [1].

302 B. Valiron

Then, provided that �β stands for the reflexive, symmetric and transitive
closure of the beta-reduction on terms and choosing M and (M, (C, I), L) as in
Definition 24:

Theorem 25. Suppose that (M,RC,L) →cbv (M ′, RC ′, L′). Then Lift
(M,RC,L) is beta-equivalent to Lift (M ′, RC ′, L′). ��

Provided that the beta-reduction is confluent, this essentially says that the
abstract-machine semantics can be simulated with the monadic lifting.

Corollary 26. If
 M : bitm and EmptyAM(M) →cbv (〈x1, . . . xm〉,
(C, I), L), then the term π1(Lift (M)) is beta-equivalent to C, where C is the
representation of C as a term, as described in Definition 24. ��

5 Discussion

In this section, we present the main use for this tool: the design of oracles of
quantum algorithms in the language Quipper [11]. We then discuss the optimality
of the method.
Synthesis of Quantum Oracles. A rapid explanation is needed here: In

quantum computation, one does not deal with classical bits but with the so-
called quantum bits. At the logical level, a quantum algorithm consists of one or
several quantum circuits, that is, reversible circuits with quantum bits flowing
in the wires.

Quantum algorithms are used to solve classical problems. For example: fac-
toring an integer [28], finding an element in a unordered list [19], finding the
solution of a system of linear equations [13], finding a triangle in a graph
[17], etc. In all of these algorithms, the description of the problem is a com-
pletely non-reversible function f : bitn → bitm and it has to be encoded
as a reversible circuit computing the function f̄ : bitn × bitm → bitn ×
bitm sending (x, y) to (x, y xor f(x)), possibly with some auxiliary wires set
back to 0.

A canonical way to produce such a circuit is
with a Bennett embedding. The procedure is shown
on the right. First the Landauer embedding Tf of
f is applied. Then the output of the circuit is xor’d
onto the y input wires, and finally the inverse of Tf is applied. In particular, all
the auxiliary wires are back to the value 0 at the end of the computation.

The method we propose in this paper offers a procedure for generating the
main ingredient of this construction: the Landauer embedding. One just has to
encode the problem in the language PCFlist (or extension thereof), possibly test
and verify the program, and generate a corresponding reversible circuit through
the monadic lifting. Theorems 17 and 26 guarantee that the monadic lifting of
the program will give a circuit computing the same function as the original
program.

Generating Reversible Circuits from Higher-Order Functional Programs 303

This algorithm was implemented within the language Quipper, and used for
non-trivial oracles [11,23]. Note that Quipper is not the only possible back-end
for this generic monadic lifting: nothing forbids us to write a back-end in, say,
Lava [6].

Example 27. The first example of code we saw (Example 10) computes an
adder. One can run this code to generate a reversible adder: Fig. 2 shows the
circuit generated when fed with 4-bits integers. One can see 4 blocks of pairs of
similar shapes.

Example 28. In the oracle for the QLSA algorithm [13,27], one has to solve a
system of differential equations coming from some physics problem using finite
elements method. The bottom line is that it involves analytic functions such as
sine and atan2.

Using fixed-point real numbers on 64 bits, we wrote a sine function using
a Taylor expansion approximation. In total, we get a reversible circuit of
7,344,140 multi-controlled gates (with positive and negative controls). The func-
tion atan2 was defined using the CORDIC method. The generated circuit con-
tains 34,599,531 multi-controlled gates. These two functions can be found in
Quipper’s distribution [23].

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Fig. 2. Reversible adder for 4-bit integers.

Efficiency of the Monadic Lifting. The monadic lifting proposed in this
paper generates circuits that are efficient in the sense that the size of a gener-
ated circuit is linear in the number of steps it takes to evaluate the corresponding
program. This means that any program running in polynomial time upon the
size of its input generates a polynomial-sized circuit. Without any modification
or optimization whatsoever, the technique is therefore able to generate an “effi-
cient” circuit for an arbitrary, conventional algorithm. This is how the circuit
for the function sine cited in Example 28 was generated: first, a conventional
implementation was written and tested. When ready the lifting was performed,
generating a circuit.
Towards a Complete Compiler. Compared to other reversible compilers [21],
the approach taken in this paper considers the construction of the circuit as a
process that can be completely automatized: the stance is that it should be possi-
ble to take a classical, functional program with conventional inductive datatypes

304 B. Valiron

and let the compiler turn it into a reversible circuit without having to interfer
(or only marginally). We do not claim to have a final answer: we only aim at
proposing a research path towards such a goal.

A first step towards a more complete compiler for PCFlist would involve
optimization passes on the generated circuits. Indeed, as can be inferred from a
quick analysis of Fig. 2, if monadic lifting generates efficient circuits it does not
produces particularly lean circuits. There is a rich literature on optimization of
reversible circuits [18,24,29,30]. If all of these works are relevant for reducing the
size of the circuits we get, we can more specifically capitalize on the particular
shapes we obtain from the monadic semantics. If the reduction of a lambda-
term into a reversible circuit is so verbose, it is partly due to the fact that
garbage wires are created for every single intermediate result. It is possible to
characterize a few optimization rules stemming from the circuit generation. And
indeed, by applying these optimization schemes on the reversible adder of Fig. 2,
one gets the circuit presented in Fig. 3. One can now clearly see the carry-ripple
structure, and it is in fact very close to known reversible ripple-carry adders (see
e.g. [8]). These optimizations were implemented in Quipper: applied on larger
circuits such as the ones of Example 28, we get in general a size reduction by a
factor of 10.

St
ar

t c
la

ss
ic

al
 c

irc
ui

t in[0]

in[1]

in[2]

in[3]

in[4]

in[5]

in[6]

in[7]

0

0

0

En
d

cl
as

si
ca

l c
irc

ui
t out[0]

out[1]

out[2]

out[3]

Fig. 3. Reversible adder for 4-bit integers, optimized.Reversible adder for 4-bit integers,
optimized.

Confronting these specific optimizations against the original code of the pro-
gram suggests that these could be designed at the level of code, therefore auto-
matically generating leaner circuits up front. This opens the door to the design
of specific type systems and code manipulations in a future full compiler.
Conclusion and Future Work. In this paper, we presented a simple and
scalable mechanism to turn a higher-order program acting on booleans into into
a family of reversible circuits using a monadic semantics. The main feature of
this encoding is that an automatically-generated circuit is guaranteed to perform
the same computation as the original program. The classical description we used
is a small PCF-like language, but it is clear from the presentation that another
choice of language can be made. In particular, an interesting question is whether
it is possible to use a language with a stronger type system for proving properties
of the encoded functions.

A second avenue of research is the question of the parallelization of the gen-
erated circuits. The circuits we produce are so far completely linear. Following
the approach in [9], using parallel higher-order language might allow one to get
parallel reversible circuits, therefore generating circuits with smaller depths.

Generating Reversible Circuits from Higher-Order Functional Programs 305

Finally, the last avenue for research is the design of generic compiler with
a dedicated type-system, code optimizations and back-end, specific circuit opti-
mizations.

References

1. Abramsky, S.: A structural approach to reversible computation. Theor. Comput.
Sci. 347(3), 441–464 (2005)

2. Ambainis, A., Childs, A.M., et al.: Any AND-OR formula of size n can be evaluated

in time n
1
2+o(1) on a quantum computer. SIAM J. Comput. 39, 2513–2530 (2010)

3. Bennett, C.H.: Logical reversibility of computation. IBM J. Res. Dev. 17, 525–532
(1973)

4. Berry, G.: The foundations of esterel. In: Proof, Language, and Interaction, Essays
in Honour of Robin Milner. MIT Press, Cambridge (2000)

5. Braibant, T., Chlipala, A.: Formal verification of hardware synthesis. In: Sharygina,
N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 213–228. Springer, Heidelberg
(2013)

6. Claessen, K.: Embedded languages for describing and verifying hardware. Ph.D.
thesis, Chalmers University of Technology and Göteborg University (2001)

7. Fazel, K., Thornton, M.A., Rice, J.E.: ESOP-based Toffoli gate cascade generation.
In: Proceedings of PacRim, pp. 206–209 (2007)

8. Feynman, R.P.: Quantum mechanical computers. Optics News 11, 11–20 (1985)
9. Ghica, D.R.: Geometry of synthesis. In: Proceedings of POPL, pp. 363–375 (2007)

10. Girard, J.-Y.: Towards a geometry of interaction. Contemp. Math. 92, 69–108
(1989)

11. Green, A.S., Lumsdaine, P.L., et al.: Quipper: a scalable quantum programming
language. In: Proceedings of PLDI, pp. 333–342 (2013)

12. Gupta, P., Agrawal, A., Jha, N.K.: An algorithm for synthesis of reversible logic
circuits. IEEE Trans. CAD Int. Circ. Syst. 25(11), 2317–2330 (2006)

13. Harrow, A.W., Hassidim, A., Lloyd, S.: Quantum algorithm for linear systems of
equations. Phys. Rev. Lett. 103(15), 150–502 (2009)

14. James, R.P., Sabry, A.: Information effects. In: Proceedings of POPL, pp. 73–84
(2012)

15. Kluge, W.: A reversible SE(M)CD machine. IFL’99. LNCS, vol. 1868, pp. 95–113.
Springer, Heidelberg (1999)

16. Laundauer, R.: Irreversibility and heat generation in the computing process. IBM
J. Res. Dev. 5, 261–269 (1961)

17. Magniez, F., Santha, M., Szegedy, M.: Quantum algorithms for the triangle prob-
lem. SIAM J. Comput. 37(2), 413–424 (2007)

18. Maslov, D., Dueck, G W., Miller, D.M.: Fredkin/Toffoli templates for reversible
logic synthesis. In: Proceedings of ICCAD, pp. 256–261 (2003)

19. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information.
Cambridge Univ. Press, Cambridge (2002)

20. Nikhil, R.S.: Bluespec: a general-purpose approach to high-level synthesis based
on parallel atomic transactions. In: Coussy, P., Morawiec, A. (eds.) High-Level
Synthesis, pp. 129–146. Springer, Heidelberg (2008)

21. Parent, A., Roetteler, M., Svore, K.M.: Reversible circuit compilation with space
constraints. arXiv:1510.00377 (2015)

http://arxiv.org/abs/1510.00377

306 B. Valiron

22. Park, S., Kim, J., Im, H.: Functional netlists. In: Proceedings of ICFP, pp. 353–366
(2008)

23. Quipper. http://www.mathstat.dal.ca/∼selinger/quipper/
24. Saeedi, M., Markov, I.L.: Synthesis and optimization of reversible circuits - a sur-

vey. ACM Comput. Surv. 45(2), 21:1–21:34 (2013)
25. Sanaee, Y., Saeedi, M., Zamani, M.S.:Shared-PPRM: a memory-efficient repre-

sentation for boolean reversiblefunctions. In: Proceedings of ISVLSI, pp. 471–474
(2008)

26. Sander, I.: System modeling and design refinement in ForSyDe. Ph.D. thesis, Royal
Institute of Technology, Stockholm, Sweden (2003)

27. Scherer, A., Valiron, B., et al.: Resource analysis of the quantum linear system
algorithm. arxiv:1505.06552 (2015)

28. Shor, P.: Algorithms for quantum computation: discrete logarithm and factoring.
In: Proceedings of FOCS (1994)

29. Soeken, M., Frehse, S., Wille, R., Drechsler, R.: RevKit: an open source toolkit for
the design of reversible circuits. In: De Vos, A., Wille, R. (eds.) RC 2011. LNCS,
vol. 7165, pp. 64–76. Springer, Heidelberg (2012)

30. Green, A.S., Lumsdaine, P.L.F., Ross, N.J., Selinger, P., Valiron, B.: White dots
do matter: rewriting reversible logic circuits. In: Dueck, G.W., Miller, D.M. (eds.)
RC 2013. LNCS, vol. 7948, pp. 196–208. Springer, Heidelberg (2013)

31. Swamy, N., Guts, N., et al.: Lightweight monadic programming in ML. In: Pro-
ceedings of ICFP, pp. 15–27 (2011)

32. Terui, K.: Proof nets and boolean circuits. In: Proceedings of LICS, pp. 182–191
(2004)

33. Thomsen, M.K.: A functional language for describing reversible logic. In: Proceed-
ings of FDL, pp. 135–142 (2012)

34. Wille, R., Große, D., et al.: RevLib: an online resource for reversible functions
and reversible circuits. In: International Symposium on Multi-valued Logic, pp.
220–225 (2008)

35. Wille, R., Le, H.M., Dueck, G.W., Grosse, D.: Quantified synthesis of reversible
logic. In: Proceedings of DATE, pp. 1015–1020 (2008)

36. Wille, R., Offermann, S., Drechsler, R.:SyReC: a programming language for syn-
thesis of reversible circuits. In: Forum on Specification Design Languages, pp. 1–6
(2010)

http://www.mathstat.dal.ca/~selinger/quipper/
http://arxiv.org/abs/1505.06552

A Fast Symbolic Transformation Based
Algorithm for Reversible Logic Synthesis

Mathias Soeken1(B), Gerhard W. Dueck2, and D. Michael Miller3

1 Integrated Systems Laboratory, EPFL, Lausanne, Switzerland
mathias.soeken@epfl.ch

2 University of New Brunswick, Fredericton, NB, Canada
3 University of Victoria, Victoria, BC, Canada

Abstract. We present a more concise formulation of the transforma-
tion based synthesis approach for reversible logic synthesis, which is one
of the most prominent explicit ancilla-free synthesis approaches. Based
on this formulation we devise a symbolic variant of the approach that
allows one to find a circuit in shorter time using less memory for the
function representation. We present both a BDD based and a SAT based
implementation of the symbolic variant. Experimental results show that
both approaches are significantly faster than the state-of-the-art method.
We were able to find ancilla-free circuit realizations for large optimally
embedded reversible functions for the first time.

Keywords: Reversible circuit synthesis · Symbolic methods · Binary
decision diagrams · Boolean satisfiability

1 Introduction

The most important application areas of reversible logic are quantum computing
and low power design. Due to the requirement of reversibility, only n-input and
n-output Boolean functions that represent permutations can be considered. One
of the most important problems to solve is synthesis, which is the problem of
finding a circuit that realizes a given reversible function f : Bn → Bn.

Due to the reversibility, a reversible circuit cannot have fanout. Therefore, it
is composed as a cascade of reversible gates. The circuit has r ≥ n circuit lines.
If r = n, i.e., no additional ancilla line is required to realize f , the synthesis is
called ancilla-free. So far, almost all presented ancilla-free synthesis approaches
(e.g., [4,7,9]) use an explicit representation of f , e.g., as a truth table or a per-
mutation, which grows exponentially with n. Consequently, the approaches are
not applicable to large reversible functions. Recently, two ancilla-free synthesis
approaches [14,15] have been presented that work on a symbolic representation
of f (using decision diagrams) and therefore overcome the limitation and are
applicable to much larger functions.

In this paper, we present a symbolic ancilla-free synthesis approach based
on the most prominent explicit ancilla-free synthesis approach, called transfor-
mation based synthesis [9]. We reformulate the algorithm in a more concise way
c© Springer International Publishing Switzerland 2016
S. Devitt and I. Lanese (Eds.): RC 2016, LNCS 9720, pp. 307–321, 2016.
DOI: 10.1007/978-3-319-40578-0 22

308 M. Soeken et al.

x1 = 0 y1 = 1

x2 = 0 y2 = 1

x3 = 1 y3 = 01

1

0

1

1

0

1

1

1

0

1

1

Fig. 1. Example reversible circuit with sample simulation

and derive properties which we exploit in the symbolic variant. In addition to
a binary decision diagram (BDD) based implementation that follows principles
from [15] and [14], we also present an implementation based on Boolean sat-
isfiability (SAT) of the symbolic synthesis approach for the first time. So far
Boolean satisfiability was only used for minimal circuit synthesis [6,20], which is
only applicable to very small functions. Due to the symbolic description of the
algorithm, it can be performed using fewer computation steps and using lower
memory requirements for the representation of f . An experimental evaluation
shows that the SAT based implementation outperforms the BDD based approach
and both approaches outperform the previously presented symbolic approaches
significantly.

The contributions of the paper can be summarized as follows: (1) a more
concise formulation for the transformation based synthesis approach presented
in [9], (2) a generic symbolic variant of the algorithm, and (3) two implementa-
tions, one based on BDDs and one based on SAT. With these contributions we
were able to find ancilla-free circuit realizations for several benchmarks for the
first time (including reversible functions with 68 variables). All these contribu-
tions make our approach particularly interesting for hierarchical reversible logic
synthesis to ensure local optimal results with respect to the number of ancilla
lines.

2 Preliminaries

A reversible function is a Boolean multi-output function f : Bn → Bn that
is bijective, i.e., every possible input pattern corresponds to a unique output
pattern. Let X be a set of lines identified as {1, . . . , n}. In this work, we consider
the family of multiple-controlled Toffoli gates. A Toffoli gate, denoted T(C, t),
inverts a target line t ∈ X if, and only if, the value of each control line in
C ⊆ X \ {t} is 1. All other lines remain unchanged. If |C| = 0 or if |C| = 1, we
refer to the gate as a NOT gate or a CNOT gate, respectively. As an example,
the gate T({1, 2}, 3) inverts the value of line 3 if, and only if, the first two lines
are set to 1. We use the customary notation of solid circles to denote control
lines and the ‘⊕’ symbol to denote the target line. Figure 1 shows an example
circuit using this notation with a simulation of the assignment 001 �→ 110.

The assignment of a variable xi in a Boolean function f(x1, . . . , xn) is referred
to as the co-factor of f with respect to xi. If xi is assigned 1, the co-factor is
called positive and denoted fxi

. Otherwise, it is called negative and denoted
fx̄i

. Existential quantification of a variable in a Boolean function, also called

A Fast Symbolic Transformation Based Algorithm 309

smoothing, is defined as ∃xi f = fx̄i
∨ fxi

. The effect is that all occurrences of
xi and x̄i are removed from an expression representing f .

Let f(x1, . . . , xn) = (y1, . . . , ym) be a multiple-output function, where each
output is specified by a Boolean function yi = fi(x1, . . . , xn). Then the charac-
teristic function of f is

F (x1, . . . , xn, y1, . . . , ym) =
m∧
i=1

(ȳi ⊕ fi(x1, . . . , xn)) . (1)

Note that ā ⊕ b = a ⊕ b is the XNOR operation.
Due to space limitations we refer the reader to the relevant literature for

binary decision diagrams (e.g., [3]) and Boolean satisfiability (e.g., [2]).

3 Truth Table Based Algorithm

The transformation based synthesis algorithm [9] is one of the first and most
popular ancilla-free synthesis algorithms for reversible functions. It works on the
truth table representation of a reversible function f : Bn → Bn. In each step, f
is updated by applying a gate g = T (C, t):

f ← f ◦ g (2)

This step is repeated until f is the identity function and at completion the
composition of all collected gates g1, . . . , gk realizes the original f .

The gates are selected such that they transform output patterns to input
patterns in an assignment x �→ y with x = x1 . . . xn and y = y1 . . . yn. The
step in (2) is repeatedly applied to transform y in order to match x. Each gate
will change one bit position yi that differs from xi in an order that first 0’s are
changed to 1’s and then 1’s are changed to 0’s. Let Xp = {i | xi = p} and
Yp = {i | yi = p} partition the bits in x and y according to their polarities. The
sets X1 ∩ Y0 and X0 ∩ Y1 characterize the bit positions in which x and y differ.
Inserting the gate sequence

©
i∈X1∩Y0

T(Y1, i) ◦ ©
i∈X0∩Y1

T(X1, i) (3)

in reverse order to the front end of the circuit will transform the output pattern
such that it matches the input pattern. Here, ‘©’ denotes the accumulation
symbol for functional decomposition. Besides transforming y to match x, the
gates also transform other output patterns in the truth table. However, the
following essential property holds. All output patterns y′ �= y such that y′ ≤ x
are not affected by any gate in (3). This property was first observed in [1].
Hence, applying this transformation to all input/output assignments x(i) �→ y(i)

for 1 ≤ i ≤ 2n will result in the identity function if the input patterns x(i) are
ordered such that

x(i) �= x(j) for all i �= j and x(i) �≤ x(j) for all i > j, (4)

310 M. Soeken et al.

x1x2x3 y1y2y3 X1 ∩ Y0 X0 ∩ Y1

000 ∅ {1, 2, 3}
001 ∅ {1, 2}

010 ∅ {1, 3}
011 {2} {1}

101 ∅ {2}

Fig. 2. Example application of the transformation based synthesis method. The syn-
thesis five input/output assignments whose values after gate application are underlined.
The two rightmost columns show the values of the sets X1 ∩ Y0 and X0 ∩ Y1 in each of
these steps.

where ‘≤’ refers to bitwise comparison. Ordering the input patterns with respect
to their integer representation, i.e., 0 . . . 00, 0 . . . 01, . . . , 1 . . . 11 satisfies (4). The
following algorithm formalizes the synthesis approach using this order.

Algorithm T. (Transformation based synthesis). Given an n-variable reversible
function f , this algorithm computes a reversible circuit C that realizes f by
transforming output patterns in numerical order of their corresponding input
patterns.

T1. [Initialize.] Let C be empty and set x ← 0.
T2. [Prepend gates.] Compute X0, X1, Y0, and Y1 for x and y = f(x). Set

f ← f ◦ ©
i∈X1∩Y0

T(Y1, i) ◦ ©
i∈X0∩Y1

T(X1, i) (5)

according to (3) and prepend the gates in reverse order to C.
T3. [Terminate?] If x = 2n − 1, terminate. Otherwise, set x ← x + 1 and return

to step 2.

The function f is updated in (5) by adjusting all output patterns in f that match
the control lines of the gates. An example application of the algorithm using this
order is given in Fig. 2 that results in the reversible circuit

x1 y1
x2 y2
x3 y3

The time complexity of Algorithm T is exponential in the number of variables
for all functions f since x is incremented by 1 in step 3 until all 2n input patterns
have been considered. One can check whether f(x) �= x before computing X0,
X1, Y0, and Y1. However, the gain in efficiency is negligible. The problem is
that there is no way to skip a whole sequence of assignments and jump to the
next one that requires adjustment. In Sect. 5, we will present a symbolic variant
of Algorithm T that allows such jumps, enabling a linear time complexity for
certain classes of functions in the best case.

A Fast Symbolic Transformation Based Algorithm 311

Since gates are appended to the front end of the circuit at each step, the
algorithm is referred to as backward-directed transformation based synthesis.
The algorithm can also be applied in the forward direction by adjusting input
patterns to match their output patterns. For this purpose, gates

©
i∈X0∩Y1

T(X1, i) ◦ ©
i∈X1∩Y0

T(Y1, i) (6)

are appended to the back end of the circuit at each step and the output patterns
y(i) are ordered with respect to the constraints that are obtained by replac-
ing x with y in (4). The two approaches can be combined into a bidirectional
approach by fixing a valid order of patterns z(1), . . . , z(2

n) and at each step i
either inserting gates according to (3) in the backward direction to adjust the
assignment z(i) �→ f(z(i)) or inserting gates according to (6) in the forward
direction to adjust the assignment f−1(z(i)) �→ z(i). A good heuristic for choos-
ing the direction is to select the assignment with the smaller Hamming distance,
which directly corresponds to the number of gates. The circuits for the func-
tion in Fig. 2 obtained by applying the algorithm in the forward direction and
bidirectional are

and

respectively. In the case of a tie for the Hamming distance in the bidirectional
approach, backward direction was chosen.

The two circuits obtained from the unidirectional approaches each consist of
10 gates, whereas using the bidirectional algorithm a circuit consisting of 8 gates
can be obtained. An optimal realization for the function using Tofolli gates with
positive control lines requires 7 gates.

It is worth noting that the Toffoli gates in (3) to change 0’s to 1’s have the
same set of control lines Y1 and the Toffoli gates to change 1’s to 0’s have the
same set of control lines X1. This fact can be emphasized and the representation
can be made more concise when allowing Toffoli gates to have multiple targets
by passing a set of lines instead of a line as the second parameter for ‘T’:

T(Y1, Y0 ∩ X1) ◦ T(X1,X0 ∩ Y1) (7)

4 Symbolic Representation of Reversible Functions

We make use of binary decision diagrams to symbolically manipulate and evalu-
ate a reversible function f : Bn → Bn. When representing f using a BDD over n
variables and n start vertices, the reversibility of f is not explicitly represented.
Such a BDD representation corresponds to considering each column of the truth
table representation of f individually. Instead, we use the BDD representation
for the characteristic function of f (see [14,15]), which in the remainder of the
paper is denoted F . Each one-path in the BDD of F represents one input/output
assignments in f .

312 M. Soeken et al.

F

�

y1

y2

⊥

y1

y2

x2

y1y1

x1

x2

F

y1

x1

y1

�⊥

x2

y2

x2

y2

Fig. 3. BDDs for F in (8) using (a) the natural and (b) the interleaved variable order

As an example consider the CNOT gate T({1}, 2) over 2 variables. Its char-
acteristic function is

F (x1, x2, y1, y2) = (ȳ1 ⊕ x1)(ȳ2 ⊕ x2 ⊕ x1)
= x̄1x̄2ȳ1ȳ2 ∨ x̄1x2ȳ1y2 ∨ x1x̄2y1y2 ∨ x1x2y1ȳ2.

(8)

The first expression emphasizes the functional behavior of the gate, i.e., y1 = x1

and y2 = x2 ⊕ x1, whereas the second expression lists all input/output assign-
ments explicitly.

The order of the variables in the BDD of a characteristic function F for a
reversible function f is crucial. If inputs are evaluated before outputs, e.g., in
their natural order x1 < · · · < xn < y1 < · · · < yn, the size of F will always
be exponential. After all inputs have been evaluated each output pattern must
be represented by a node y1 , and there are 2n different output patterns. The
same effect can be observed if all outputs are evaluated before inputs due to the
function reversibility. However, if we interleave the inputs with the outputs, e.g.,
x1 < y1 < · · · < xn < yn, compact representations are possible [16]. Figure 3
shows the BDDs for F in (8) both in the natural and the interleaved order. Solid
and dashed lines refer to high and low edges, respectively.

The symbolic representation of the reversible function f by the character-
istic function F allows several operations that can be implemented efficiently
using BDDs. The most important one is functional composition which is reduced
to multiplication of the permutation matrices represented by the respective
BDDs. Let f1(x1, . . . , xn) = (z1, . . . , zn) and f2(z1, . . . , zn) = (y1, . . . , yn) be
two reversible functions and F1 and F2 their characteristic functions. Also, let
h = f1 ◦ f2 be the composition of f1 and f2. Then

H = ∃z(F1 ∧ F2) (9)

is the characteristic function of h (see, e.g., [18]). We demonstrate how this
operation works illustrated on the disjunctive normal forms that are represented

A Fast Symbolic Transformation Based Algorithm 313

by the BDDs. Note that existential quantification can be implemented using
Bryant’s APPLY algorithm [3] in the conventional manner. Let

F1 = x̄1x̄2z̄1z̄2 ∨ x̄1x2z̄1z2 ∨ x1x̄2z1z2 ∨ x1x2z1z̄2

and
F2 = z̄1z̄2y1ȳ2 ∨ z̄1z2y1y2 ∨ z1z̄2ȳ1ȳ2 ∨ z1z2ȳ1y2

be the characteristic functions of the CNOT gate T({1}, 2) and the NOT gate
T({}, 1), respectively. The operation F1 ∧ F2 pairs up those minterms for which
the polarities of z1 and z2 are equal; all other combinations evaluate to false and
therefore vanish from the expression, i.e.,

F1 ∧ F2 = x̄1x̄2z̄1z̄2y1ȳ2 ∨ x̄1x2z̄1z2y1y2 ∨ x1x̄2z1z2ȳ1y2 ∨ x1x2z1z̄2ȳ1ȳ2,

and existentially quantifying over z1 and z2 removes these gluing variables from
the expression:

∃z1∃z2(F1 ∧ F2)= x̄1x̄2y1ȳ2 ∨ x̄1x2y1y2 ∨ x1x̄2ȳ1y2 ∨ x1x2ȳ1ȳ2.

If the variable names don’t match, one can also use existential quantification
to locally rename them. To rename a function F (x, y) to F (x, z), denoted Fy→z,
one computes

∃y (F ∧ ∧n
i=1 ȳi ⊕ zi) . (10)

5 Symbolic Algorithm

The truth table based variant of the transformation based algorithm visits all 2n

assignments. It is not possible to only visit the assignments that need adjustment,
i.e., for which the output pattern differs from the input pattern. In this section
we discuss a symbolic variant of the algorithm. Besides a symbolic representation
of the function, which can decrease the space requirements, a major difference
of the symbolic variant is the order in which the assignments are visited. The
truth table based variant of the algorithm, Algorithm T, visits all assignments
in numerical order of the input patterns. For example, if n = 4, the order is

0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111,
1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111. (11)

Ordering the input patterns according to their Hamming weight, i.e., the
number of ones, is also valid. The symbolic variant of the transformation based
algorithm makes use of this property. For n = 4, the order is

0000,

0001,
0010,
0100,
1000,

0011,
0101,
0110,
1001,
1010,
1100,

0111,
1011,
1101,
1110

1111 (12)

314 M. Soeken et al.

where the order of patterns within a set of patterns of the same Hamming weight
can be arbitrary. The key difference in the symbolic variant is that it iterates
through these sets (of which there are n+ 1, i.e., linearly many) instead of iter-
ating through all patterns individually (of which there are 2n, i.e., exponentially
many). For each set the algorithm extracts assignments (in a possibly arbitrary
order) that are not matched yet and disregards those that are already matched.
The constraint (4) ensures that the inserted gates do not affect any other assign-
ment within the current set or previously considered sets.

For an n-variable reversible function f , we can symbolically represent all
input patterns x with Hamming weight k such that f(x) �= x with the expression

F (x, y) ∧ S=k(x) ∧ D(x, y) (13)

where F is the characteristic function of f , x = x1, . . . , xn, and y = y1, . . . , yn.
The symmetric function

S=k(x) = [x1 + · · · + xn = k] (14)

restricts the assignments to those that have input patterns of Hamming weight k.
The function

D(x, y) =
n∨

i=1

xi ⊕ yi (15)

further restricts the assignments such that the input patterns and output pat-
terns differ in at least one bit. These are all requirements to describe the symbolic
transformation based algorithm.

Algorithm S. (Symbolic transformation based synthesis). Given the character-
istic function F to an n-variable reversible function f , this algorithm finds a
circuit C that realizes f . In this algorithm, f and F always refer to the same
function in different representations.

S1. [Initialize.] Let C be empty and set k ← 0.
S2. [Terminate?] If k = n + 1, terminate.
S3. [Increment k.] If F ∧ S=k ∧ D = ⊥, set k ← k + 1 and go to step 2.
S4. [Extract assignment and prepend gates.] Extract x �→ y by picking any

minterm from F ∧ S=k ∧ D and compute X0, X1, Y0, and Y1. Set

f ← f ◦ ©
i∈X1∩Y0

T(Y1, i) ◦ ©
i∈X0∩Y1

T(X1, i) (16)

and prepend the gates in reverse order to C. Return to step 3.

The linear runtime complexity is readily verified by inspecting step 2. The pos-
sible exponential complexity comes with step 4 as it is executed

(
n
k

)
times in the

worst case for each k ∈ {0, . . . , n} and therefore
∑n

i=0

(
n
k

)
= 2n times in total.

In the following, two implementations of Algorithm S are described. The first
uses BDDs while the second uses SAT. There are two parts in the algorithm that
require individual attention depending on the underlying technique: (i) solving
F ∧ S=k ∧ D in step 3, extracting a solution in step 4 in case of the expression
being satisfiable, and (ii) updating F in step 4 according to (16).

A Fast Symbolic Transformation Based Algorithm 315

5.1 BDD Based Implementation

Solving F∧S=k∧D is done in a straightforward way by checking whether its BDD
is not equal to . If that is the case, a satisfying solution can be extracted by
picking any path from the start vertex to . Every such path visits all variables
and therefore represents a minterm. This is true because each path in F already
represents a minterm and S=k and D only restrict F further.

The BDD of F is updated by composing it with a BDD that represents the
characteristic function of a gate from the right. In order to execute fewer BDD
operations we make use of the fact that the gates in (16) can be expressed as
two multiple-target gates as described in (7). The characteristic function of a
multiple-target gate T(C, T) is

G =
∧
i∈T

(
ȳi ⊕ xi ⊕ ∧

j∈C xj

)
∧

∧
i∈T

(ȳi ⊕ xi) (17)

where T = {1, . . . , n} \ T . The gate can then be multiplied to F by computing
F ← ∃z (Fy→z ∧ Gx→z) as described in (10).

5.2 SAT Based Implementation

For the SAT based implementation a satisfiability check is performed on the
formula F ∧ S=k ∧ D. For this purpose, the formula needs to be represented in
conjunctive normal form. The characteristic function F is initially represented
as a BDD as in the BDD based implementation. Each node xi with children
h and l represents the function fv = xi ?h : l and is translated to

(x̄i ∨ h̄ ∨ fv)(x̄i ∨ h ∨ f̄v)(xi ∨ l̄ ∨ fv)(xi ∨ l ∨ f̄v). (18)

Similar clauses are added for each node yi . To enforce only valid input/output
assignments the variable representing the start vertex fv0 is added as a unit
clause.1 The subexpression S=k is called a cardinality constraint and several ways
to encode such constraints as clauses have been proposed. One such encoding
has been proposed in [11], which is also used in this implementation. Finally, the
formula D can be translated using the Tseytin encoding for representing gates
as clauses. Some of the clauses can be saved by making use of blocked clause
elimination [8,10].

The tricky part in Algorithm S is updating F in step 4. As the aim is to
avoid BDD operations, we cannot just compute a new F by multiplying it with
the gates that are computed from the extracted assignment. Instead, we extend
the SAT formula by further constraints that represent the gates, and—since
gates update the output patterns of f—compute new outputs yi. Let T(C, T)

1 We also tried to write F to an AIG, perform circuit optimization, and obtain the CNF
from the optimized AIG, however, no improvement in runtime could be observed,
although the number of clauses can be decreased this way.

316 M. Soeken et al.

be a multiple-target gate that is added in step 4. For each i ∈ T we add a new
variable y′

i and clauses for the constraint

G =
∧
i∈T

(
ȳ′
i ⊕ yi ⊕ ∧

j∈C yj

)
(19)

using the Tseytin encoding. In this manner all created gates can be encoded
and are added to the subsequent SAT calls, i.e., one updates F by setting F ←
F ∧G1 ∧G2 where G1 and G2 are the two encoded multiple-target gates added
in step 4. It is important to take care of the updated output variables which
occur in D, see (15), and each G, see (19). For this purpose, we first introduce a
set of variables ỹ1, . . . , ỹn initially set to ỹi ← yi for i ≤ 1 ≤ n. Then, we replace
yi by ỹi and yj by ỹj in Eqs. (15) and (19). Finally, we update ỹi ← y′

i for each
i ∈ T in each added multiple-target gate T(C, T).

In order to speed up the solving process, we have implemented the SAT
based approach in an incremental manner. Constraints for S=k and D are added
using activation literals to the solver whenever updated versions are required
and enforced by assuming the respective activation literals in the SAT calls (see,
e.g., [5]).

5.3 Runtime Behavior

A thorough experimental evaluation is given in the next section. In order to
understand the differences of the BDD based and the incremental SAT based
implementations of the transformation based synthesis approaches better, this
section presents the results of a simple runtime evaluation experiment.

For each assignment, we recorded the runtime it took to obtain and apply the
assignment (i.e., performing steps 3 and 4 in Algorithm S) as well as the size of
F at that moment. In the case of the BDD implementation, the size of F is the
number of nodes in the BDD, and in the case of the SAT implementation, the size
of F is the number of clauses in the SAT instance. Four selected benchmarks,
namely dk27, alu3, x2, and dk17 serve as representatives. Other benchmarks
show similar effects.

The results of the experimental evaluation are provided in the plots in Fig. 4.
The x-axis shows the number of adjusted assignments, i.e., how often step 4
has been applied, the marks (left y-axis) show the required runtime in seconds
to obtain and apply each assignment and the solid line (right y-axis) shows
the current size of F . The four plots on the left hand side show the results
for the BDD based implementation. It can be seen that the runtime to obtain
and adjust an assignment correlates with the size of F . Also, the size of F is
initially small, increases very quickly and then decreases towards the size of the
identity function. All considered benchmark functions show this same effect; only
four of them are depicted here as representatives. The effect may be explainable
as follows: It is well-known that BDDs have an exponential size in the average
case [19] when considering random Boolean functions, but often show reasonable
space requirements for the very small subset of “nonrandom functions” that are

A Fast Symbolic Transformation Based Algorithm 317

0 200 400

0
0
.1

0
3
, 0

0
0

0 500 1,000

0
0
.2

5

0
5
,0

0
0

0 200 400 600 800

0
0
.3

0

0 500 1,000

0
0
.8

0
9
,5

0
0

0 100 200 300 400

0
0
. 0

8

0
4
4
, 0

0
0

0 500 1,000

0
0
.9

1
1
2
,0

0
0

0 200 400 600 800

0
0
. 7

1
1
6
,0

0
0

0 500 1,000

0
0
.8

1
4
4
,0

0
0

(a)

(b)

Fig. 4. Runtime behavior of (a) the BDD based and (b) the SAT based approach. The
x-axis shows the number of assignments, the left y-axis (marks) shows the runtime to
solve each assignment in seconds, the right y-axis (line) shows the size of the BDD
(nodes) or SAT instance (clauses)

318 M. Soeken et al.

often considered in realistic applications. The characteristic function that is input
to Algorithm S is not random, and neither is the identity characteristic function
which is obtained after the last step. However, applying the Toffoli gates in the
course of the algorithm can depart this nonrandom space.

A completely different behavior is observed for the SAT based implementa-
tion, shown in the plots on the right hand side. The size of F increases linearly
due to the addition of clauses for S=k, D, and the gates. The runtime does not
correlate with the size, although larger runtimes are only observed once the SAT
instance has many clauses—yet many assignments can be obtained and adjusted
in a very short time even when the number of clauses is large.

This experiment demonstrates that the SAT based approach in general is
advantageous compared to the BDD based approach: (i) the size of F cannot
explode, since it increases linearly, and (ii) the runtimes are not overly affected
by the size of F . An improved encoding of the SAT instance therefore has a
significant effect on the overall solution time. Also note that the size of F , both
for BDDs and SAT, does not impact the size of the resulting reversible circuit,
but only the number of assignments that need to be adjusted.

6 Experimental Evaluation

We have implemented both symbolic transformation based synthesis approaches
in C++ on top of RevKit [13] in the command ‘tbs’.2 We have compared the app-
roach to the state-of-the-art symbolic ancilla-free synthesis approach presented
in [14] that is based on functional decomposition (DBS). It was shown that the
DBS approach is faster than the approach presented in [15]. Benchmarks were
taken from www.revlib.org as PLA files and optimally embedded using the app-
roach presented in [16] which returns a BDD of the characteristic function. The
experimental results are shown in Table 1. Besides the benchmark function, their
number of inputs and outputs are listed together with the minimum number of
lines after optimum embedding. The columns list the number of gates and the
runtime in seconds (with a timeout of one hour, referred to as TO) required for
each synthesis approach. For both transformation based synthesis approaches,
also the number of adjusted assignments, i.e., how often step 4 is executed in
Algorithm S, is reported.

Our main concern in this work is scalability and the possibility to obtain a
circuit with a minimum number of lines. Therefore, we compare the approaches
with respect to runtime. Other metrics such as gate count and quantum cost
can be improved using post optimization approaches. The SAT based variant
outperforms the BDD based approach, in particular for alu1, apex4, and ex5p.
Both approaches outperform the decomposition based synthesis approach; that
algorithm did not terminate for the majority of the benchmarks within the one
hour timeout. In very few cases (see parity and urf6) the DBS approach was
able to find a solution in which both TBS approaches did not find a solution.
2 The code can be downloaded at https://www.github.com/msoeken/cirkit. Check the

file addons/cirkit-addon-reversible/demo.cs for a usage demonstration.

https://www.github.com/msoeken/cirkit

A Fast Symbolic Transformation Based Algorithm 319

T
a
b
le

1
.
E

x
p
er

im
en

ta
l
re

su
lt

s

320 M. Soeken et al.

When both DBS and TBS find a circuit, DBS shows a comparable perfor-
mance and is sometimes even faster. Particularly, the reported gate costs for the
circuits obtained by DBS is significantly lower compared to the circuits obtained
from TBS. This effect is also observed when comparing the truth-table based
implementations of these two algorithms. One reason for this improvement may
be the ability of DBS to support mixed-polarity control lines, which cannot easily
be utilized in transformation-based synthesis.

We have not compared our approach with heuristic hierarchical approaches
that allow the use of additional lines. Such approaches are typically faster and
can be applied to larger functions—however, with the disadvantage of adding a
possibly large number of additional lines. For some functions, particularly arith-
metic components, hand-crafted synthesis results exist that lead to significantly
better results (see, e.g., [17])—however, we intend to have a general purpose
algorithm that is not tailored to a specific function type.

7 Conclusions

In this paper we have presented a symbolic variant of the transformation-based
synthesis approach for reversible logic. The approach allows the realization of
large reversible functions without additional ancilla lines. It exploits a prop-
erty considering the ordering in which assignments need to be considered for
adjustment. Both a BDD and a SAT based implementation of the symbolic syn-
thesis algorithm have been presented. So far, SAT has not been used for the
synthesis of large reversible functions. An experimental evaluation shows that
it significantly outperforms the state-of-the-art ancilla-free symbolic synthesis
approaches regarding runtime. For some benchmarks, ancilla-free realizations
have were found for the first time. In future work, we want to integrate further
optimizations that have been proposed for the truth-table variant of the algo-
rithm, such as bidirectional adjustment and the consideration of a larger gate
library [12].

Acknowledgments. This research was supported by H2020-ERC-2014-ADG 669354
CyberCare and by the European COST Action IC 1405 ‘Reversible Computation’.

References

1. Alhagi, N., Hawash, M., Perkowski, M.A.: Synthesis of reversible circuits with no
ancilla bits for large reversible functions specified with bit equations. In: ISMVL,
pp. 39–45 (2010)

2. Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability,
Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press, Amster-
dam (2009)

3. Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. IEEE-
TC 35(8), 677–691 (1986)

4. De Vos, A., Rentergem, Y.: Young subgroups for reversible computers. Adv. Math.
Commun. 2(2), 183–200 (2008)

A Fast Symbolic Transformation Based Algorithm 321

5. Eén, N., Mishchenko, A., Amla, N.: A single-instance incremental SAT formulation
of proof- and counterexample-based abstraction. In: FMCAD, pp. 181–188 (2010)

6. Große, D., Wille, R., Dueck, G.W., Drechsler, R.: Exact multiple-control Toffoli
network synthesis with SAT techniques. TCAD 28(5), 703–715 (2009)

7. Gupta, P., Agrawal, A., Jha, N.K.: An algorithm for synthesis of reversible logic
circuits. TCAD 25(11), 2317–2330 (2006)

8. Järvisalo, M., Biere, A., Heule, M.: Blocked clause elimination. In: Esparza, J.,
Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 129–144. Springer,
Heidelberg (2010)

9. Miller, D.M., Maslov, D., Dueck, G.W.: A transformation based algorithm for
reversible logic synthesis. In: DAC, pp. 318–323 (2003)

10. Plaisted, D.A., Greenbaum, S.: A structure-preserving clause form translation. JSC
2(3), 293–394 (1986)

11. Sinz, C.: Towards an optimal CNF encoding of boolean cardinality constraints. In:
CP, pp. 827–831 (2005)

12. Soeken, M., Chattopadhyay, A.: Fredkin-enabled transformation-based reversible
logic synthesis. In: ISMVL, pp. 60–65 (2015)

13. Soeken, M., Frehse, S., Wille, R., Drechsler, R.: RevKit: a toolkit for reversible
circuit design. Multiple-Valued Logic Soft Comput. 18(1), 55–65 (2012)

14. Soeken, M., Tague, L., Dueck, G.W., Drechsler, R.: Ancilla-free synthesis of large
reversible functions using binary decision diagrams. JSC 73, 1–26 (2016)

15. Soeken, M., Wille, R., Hilken, C., Przigoda, N., Drechsler, R.: Synthesis of
reversible circuits with minimal lines for large functions. In: ASP-DAC, pp. 85–92
(2012)

16. Soeken, M., Wille, R., Keszocze, O., Miller, D.M., Drechsler, R.: Embedding of
large Boolean functions for reversible logic. JETC (2015). arXiv:1408.3586

17. Takahashi, Y., Tani, S., Kunihiro, N.: Quantum addition circuits and unbounded
fan-out. Quantum Inf. Comput. 10(9&10), 872–890 (2010)

18. Touati, H.J., Savoj, H., Lin, B., Brayton, R.K., Sangiovanni-Vincentelli, A.L.:
Implicit state enumeration of finite state machines using BDDs. In: ICCAD, pp.
130–133 (1990)

19. Wegener, I.: The size of reduced OBDDs and optimal read-once branching pro-
grams for almost all Boolean functions. IEEE Trans. Comput. 43(11), 1262–1269
(1994)

20. Wille, R., Große, D., Dueck, G.W., Drechsler, R.: Reversible logic synthesis with
output permutation. In: VLSI Design, pp. 189–194 (2009)

http://arxiv.org/abs/1408.3586

Checking Reversibility of Boolean Functions

Robert Wille1,2(B), Aaron Lye3, and Philipp Niemann3

1 Institute for Integrated Circuits, Johannes Kepler University,
4040 Linz, Austria

robert.wille@jku.at
2 Cyber-Physical Systems, DFKI GmbH, 28359 Bremen, Germany

3 Institute of Computer Science, University of Bremen,
28359 Bremen, Germany

{lye,pniemann}@informatik.uni-bremen.de

Abstract. Following the reversible computation paradigm is essential in
the design of many emerging technologies such as quantum computation
or dedicated low power concepts. The design of corresponding circuits
and systems heavily relies on information about whether the function
to be realized is indeed reversible. In particular in hierarchical synthesis
approaches where a given function is decomposed into sub-functions, this
is often not obvious. In this paper, we prove that checking reversibility
of Boolean functions is indeed coNP-complete. Besides that, we propose
two complementary approaches which, despite the complexity, can tackle
this problem in an efficient fashion. An experimental evaluation shows
the feasibility of the approaches.

1 Introduction

Reversible circuits realize an alternative computation paradigm which, in con-
trast to conventional circuits, employs n-input n-output functions that map each
possible input vector to a unique output vector. In other words, bijections are
realized. This provides an essential characteristic for many emerging technologies
such as

– quantum computation [15], which allows for solving many practical relevant
problems (e.g. factorization [18] or database search [11]) exponentially faster
and relies on quantum operations that are inherently reversible or

– certain aspects in low-power design motivated by the fact that reversible com-
putation is information loss-less and, hence, the absence of information loss (at
least theoretically) helps avoiding energy dissipation during computations1.

Besides that, superconducting quantum interference devices [16], nanoelectro-
mechanical systems [12,13], adiabatic circuits [2], and many further technologies
utilize this computation paradigm. Even for conventional design tasks, useful

1 Initial experiments verifying the underlying link between information-loss and ther-
modynamics have been reported in [3].

c© Springer International Publishing Switzerland 2016
S. Devitt and I. Lanese (Eds.): RC 2016, LNCS 9720, pp. 322–337, 2016.
DOI: 10.1007/978-3-319-40578-0 23

Checking Reversibility of Boolean Functions 323

applications have been proposed recently, e.g. for the design of efficient on-chip
interconnect codings [28].

Because of this steadily increasing interest, also the design of reversible cir-
cuits and systems is gaining interest. Here, the inherent reversibility constitutes
a major obstacle. In order to not violate the paradigm, each reversible function
has to be realized by a sequence or cascade of (atomic) reversible operations
or gates, respectively. To this end, established gate libraries (see e.g. [24]) or
assembly-like software instructions (see e.g. [23]) have been introduced in the
past. But how to realize (complex) reversible functionality in terms of these
atomic operations remains a major problem.

To this end, complementary approaches have been introduced in the past.
One set of solutions requires a fully reversible function as input (e.g. [10,14,17,
20]). As frequently also irreversible functionality is to be realized, a pre-synthesis
process called embedding is conducted before (see e.g. [21,27]). As an alternative,
hierarchical solutions e.g. based on decision diagrams or two-level representations
have been proposed e.g. in [25] or [8], respectively. Here, large functionality
is decomposed into smaller sub-functions from which the respectively desired
atomic representations can be derived.

However, both directions suffer from the fact that it is often not known
whether the respectively considered (sub-)function is indeed reversible. In fact,
this causes that approaches such as proposed e.g. in [10,14,17,20] are usually
applicable to rather small functions only, while solutions e.g. proposed in [8,25]
yield designs of very large costs (this is discussed in more detail later in Sect. 3).
As a consequence, the non-availability of solutions for efficiently checking the
reversibility of a given function constitutes a major obstacle in the design of
reversible circuit and systems2.

In this work, we are addressing this problem. We first consider the underly-
ing problem from a theoretical perspective showing that checking reversibility
for a given function is coNP-complete. Afterwards, we provide efficient solu-
tions which tackle this problem despite the proven complexity. More precisely,
two complementary approaches are proposed: one utilizing the efficient func-
tion manipulation capabilities provided by decision diagrams and another which
exploits the deductive power of solving engines for Boolean satisfiability.

In an experimental evaluation we demonstrate the applicability of the pro-
posed approaches. While both complementary strategies can efficiently handle
the problem, also differences between them are unveiled. Overall, the solution
based on satisfiability solvers is capable of checking the reversibility of functions
in negligible run-time even for some of the largest function considered in the
design of reversible circuits and systems thus far.

The remainder of this work is structured as follows: The next section provides
preliminaries, i.e. definitions of the different function representations utilized

2 Note that this problem has been recognized in other works concerning embedding
(e.g. [21]) and synthesis (e.g. [19]). But, thus far, the issue has only been addressed
peripherally and without a theoretical consideration, explicit algorithms, or an exper-
imental evaluation.

324 R. Wille et al.

in this work. Section 3 discusses the importance of checking for reversibility
and, hence, provides the motivation of this work. Afterwards, the complexity
of the considered problem is considered in Sect. 4 before the two complemen-
tary approaches are introduced in Sects. 5 and 6. Results of the experimental
evaluation are summarized in Sect. 7. Section 8 concludes this paper.

2 Preliminaries

Logic computations can be defined as functions over Boolean variables. More
precisely:

Definition 1. A Boolean function is a mapping f : Bn → B with n ∈ N.
A function f is defined over its primary input variables X = {x1, x2, . . . , xn}
and, hence, is also denoted by f(x1, x2, . . . , xn). The concrete mapping may be
described in terms of Boolean algebra with expressions formed over the variables
from X and operations like ∧ (AND), ∨ (OR), or · (NOT).

A multi-output Boolean function is a mapping f : Bn → B
m with n,m ∈ N.

More precisely, it is a system of Boolean functions fi(x1, x2, . . . , xn). The respec-
tive functions fi (1 ≤ i ≤ m) are also denoted as primary outputs.

The set of all Boolean functions with n inputs and m outputs is denoted
by Bn,m = {f | f : Bn → B

m}.
In this work, we consider the design of circuits and systems realizing reversible

functions. Reversible functions are a subset of multi-output functions and are
defined as follows:

Definition 2. A multi-output function f : Bn → B
m is reversible iff f is a

bijection.

In other words, its number of inputs is equal to the number of outputs, i.e.
f ∈ Bn,n, and it performs a permutation of the set of input patterns. A function
that is not reversible is termed irreversible.

Besides the representation in Boolean algebra, (reversible) functions can also
be represented in terms of set relations.

Definition 3. A function f : Bn → B
m is by definition a relation F ⊂ B

n ×B
m

of all possible input patterns to the set of possible output patterns. For a reversible
function, this relation additionally inherits the property that each input pattern is
related to exactly one output pattern, i.e. ∀y ∈ B

m : |{x ∈ B
n | (x, y) ∈ F}| = 1.

The composition of two set relations F and G (i.e. two functions f and g) is
defined by (G ◦ F) ⊂ B

n × B
k so that

G ◦ F = {(x, y) | ∃z ∈ B
m : (x, z) ∈ F ∧ (z, y) ∈ G}.

Finally, the input/output mapping of a (reversible) function can also be rep-
resented in terms of a characteristic function.

Definition 4. The characteristic function for a Boolean relation F is defined
as χF : Bn × B

m → B where χF (x, y) = 1 if and only if (x, y) ∈ F .

Checking Reversibility of Boolean Functions 325

3 Motivation

Although never explicitly considered thus far, knowing whether a given func-
tion is reversible is an important information in the design of reversible circuits
and systems. This section briefly reviews the current state-of-the-art synthe-
sis approaches and discusses why the non-availability of corresponding checking
methods constitutes a major obstacle in the development of design methods for
reversible circuits and systems.

3.1 Obstacles to the Embedding Process

Not surprisingly, many design methods for reversible circuits (e.g. those pro-
posed in [10,14,17,20]) require a fully reversible function as input. As frequently
also irreversible functionality is to be realized in reversible logic, a pre-synthesis
process called embedding is conducted before (see e.g. [21,27]).

To this end, additional outputs (so-called garbage outputs) are added to the
considered function f ∈ Bn,m. More precisely, �log2(μ(f))� additional outputs
are required, whereby μ is the maximal number of times an output pattern
is generated by f , i.e. μ(f) = maxy∈Bm(|{x | y = f(x)}|). In order to keep
the number of inputs and outputs equal, this may also result in the addition
of further inputs. That is, an irreversible function f : Bn → B

m is embedded
into a function f ′ : Bm+�log2(µ)� → B

m+�log2(µ)�. While f ′ is to be specified in
a fully reversible fashion, the desired target functionality can be employed by
setting the additionally added inputs to a constant value and recognizing only
the non-garbage outputs. An example illustrates the idea.

Example 1. Consider the Boolean function f : B2 → B
1 with f(x1, x2) = x1 ∧x2

to be synthesized as a reversible circuit. Obviously, f is irreversible. The maximal
number of times an output pattern is generated by f is μ(f) = 3 (namely 0 for
the input patterns 00, 01, and 10). Hence, in order to realize f using a synthesis
approach as e.g. proposed in [10,14,17,20], this function has to be embedded
into a function f ′ : B2+1 → B

1+2 with �log2(3)� = 2 additional outputs and
1+�log2(3)�−2 = 1 additional input. The resulting function f ′ can be specified as

– f ′
1(x1, x2, x3) = x1

– f ′
2(x1, x2, x3) = x2

– f ′
3(x1, x2, x3) = (x1 ∧ x2) ⊕ x3.

This function is reversible (as can be checked by applying all 23 = 8 possible
input assignments) and realizes the target functionality f by setting x3 to a
constant zero value, i.e. f = x1 ∧ x2 = (x1 ∧ x2) ⊕ 0 = f ′

3(x1, x2, 0).

However, generating an embedding as sketched above is an exponentially
complex tasks: In order to determine μ, all 2n output patterns generated by
the inputs have to be inspected. Previous work tried to avoid this complexity
by not aiming for a minimal result with respect to the number of additionally

326 R. Wille et al.

required outputs, but a heuristic one: In fact, since μ can never exceed 2n, at
most �log2(2n)� = n additional garbage outputs are required [27], i.e. any irre-
versible function can be embedded into a function f ′ : Bn+m → B

m+n. But also
here, the question remains how to specify the functionality of the newly added
garbage outputs. Although heuristics assigning the additional outputs with a
dedicated functionality as e.g. done in Example 1 are very promising, no solu-
tions are available yet which guarantee that the resulting function f ′ is indeed
reversible. As a consequence those heuristics did not become established and,
hence, the design methods from [10,14,17,20] mostly remain applicable to small
functions only.

3.2 Obstacles to the Synthesis Process

In order to overcome the problems sketched above, researchers considered alter-
native synthesis schemes (see e.g. [8,25]) relying on conventional decomposition
methods (e.g. according to Shannon). Here, a given function f is decomposed
with respect to an input variable xi into two sub-functions fxi=0 and fxi=1

such that f = (xi ∧ fxi=0) ∨ (xi ∧ fxi=1) holds. The sub-functions are called
co-factors of f and are obtained by assigning xi to 0 and 1, respectively.
The resulting co-factors are further decomposed until sub-functions result for
which a building block is available. Plugging the resulting building blocks
together eventually yields a circuit realizing the desired function. Because of
this, no explicit embedding scheme is required, but the function is implicitly
embedded.

In these approaches, information about the reversibility of the respectively
considered (sub-)functions is essential to the quality of the resulting circuits.
In fact, the decomposition almost always yields sub-functions which are not
reversible anymore (even if the originally given function is). Hence, again garbage
outputs and constant inputs are required in order to derive building blocks for
them. Since this is conducted for each single sub-function (out of which a signif-
icant amount exists for a originally given function to be synthesized), this even-
tually leads to a significant amount of additional circuitry which is far beyond
upper bounds (as evaluated by a corresponding study in [27]).

Being able to check whether a (sub-)function is reversible may offer the
prospect of performing a decomposition such that not two arbitrary Boolean
functions, but two reversible Boolean functions result. Since they can be real-
ized with no additionally required outputs, significantly more compact circuits
may be derived from that.

Either way, the non-availability of methods for checking the reversibility of
a given function poses a major obstacle to the design of reversible circuits and
systems. It prevents the application of (heuristic) embedding methods allow-
ing to efficiently synthesize the desired function with dedicated approaches and
it prevents the alternative, namely approaches based on decomposition, from
generating compact circuits.

Checking Reversibility of Boolean Functions 327

4 Theoretical Consideration

The previous section discussed why checking the reversibility of Boolean func-
tions is of high importance. Now, we are considering the complexity of this
problem. More precisely, the following decision problem is considered:

Definition 5. Let f ∈ Bn,n be a Boolean function with n inputs and n outputs3.
Moreover, let Revn denote the set of all reversible functions with n inputs and
n outputs, i.e. Revn = {g ∈ Bn,n | g is reversible}. Then, REV is the decision
problem asking whether f ∈ Revn.

Note that the means of representing f is essential. For example, if f is given as
a truth table, the check can be performed in linear time on the exponential input
representation. In the following, we will consider the complexity with respect to
the number of inputs/outputs. For this, we will prove the following:

Proposition 1. REV is coNP-hard.

The complexity of REV is shown by a reduction from the embedding problem
which has been investigated in [21]. Using the notation of [21], let f ∈ Bn,m, let
μ(f) = max{|f−1({y})| | y ∈ B

m} denote the number of occurrences of the most
frequent output pattern, and let l(f) = �log2μ(f)� denote the minimal number
of additional variables required to embed f . Then, it was shown that:

Lemma 1 (Proposition 4.3 in [21]). For each fixed l ≥ 0, it is coNP-hard to
decide for a given f ∈ Bn,m whether l(f) = l.

In order to apply this in our context, we have to consider the case l = 0 for
m = n. Then, we immediately obtain the following:

Corollary 1. Let f ∈ Bn,n (n ≥ 1). It is coNP-hard to decide whether l(f) = 0.

Proof. (adapted from [21]) The basic idea to proof this corollary is to provide
a polynomial time many-one reduction from the validity problem for proposi-
tional formulas. This problem asks whether a propositional formula is a tau-
tology and itself is known to be coNP-complete [6]. To this end, for a fixed
propositional formula φ over the variables {x1, . . . , xn}, we compute the func-
tion f = (f1, . . . , fn) ∈ Bn,n by defining the component functions fi by means
of the propositional formulas

fi(x1, . . . , xn) := xi ∧ φ(x1, . . . , xn) ∧ φ(0, . . . , 0).

Clearly, this computation can be performed in polynomial time. Now, as we have
the equivalence

l(f) = 0 ⇐⇒ �log2μ(f)� = 0
⇐⇒ max{|f−1({y})| | y ∈ B

n} = 1
⇐⇒ f is injective,

3 Since functions f : Bn → B
m with n �= m are not reversible by definition, we are

assuming an equal number n of inputs and outputs in the following.

328 R. Wille et al.

it remains to show that the original formula φ is valid if and only if f is injective.
Now, if φ is valid, we have fi = xi and f turns out to be the identity function
on B

n which is indeed injective. On the other hand, if φ is not valid there is an
assignment x̃ = {x̃1, . . . , x̃n} such that φ(x̃) = 0. For the case x̃ = {0, . . . , 0},
all fi are contradictions by construction and f always evaluates to 0n. For the
other case, x̃ �= {0, . . . , 0}, we obtain f(x̃) = 0n = f(0, . . . , 0). In both cases, f
is not injective which proves the corollary. ��

As we have seen in the proof, l(f) = 0 is equivalent to the injectivity of f .
Moreover, as f has the same (finite) domain and codomain B

n, injectivity is
equivalent to bijectivity and, thus, reversibility. Consequently, we obtain the
following corollary from which Proposition 1 can be implied immediately:

Corollary 2. Let f ∈ Bn,n(n ≥ 1). It is coNP-hard to decide whether f ∈ Revn.

Note that, in order to show coNP-completeness, a counterexample for
reversibility is only polynomially sized (two inputs that provide the same out-
put) and can also be checked in polynomial time (by evaluating the function
for the two inputs). This inheritance in coNP together with the coNP-hardness
proves, in fact, the coNP-completeness of REV.

Knowing the complexity of the considered problem, in the remainder of this
work, we focus on how to solve it as efficient as possible. To this end, two
complementary approaches are introduced and discussed.

5 Checking for Reversibility Using Decision Diagrams

Graph-based representation and manipulation of (Boolean) functions became
very popular in computer-aided design after the initial work on Binary Deci-
sion Diagrams (BDDs) by Bryant [5]. Graph-based representations of Boolean
functions have – besides others – two major advantages: (1) they describe the
entire function in a compact manner and (2) they allow for efficiently applying
logical manipulations (e.g. computing f ∧ g). Accordingly, they can be utilized
for the problem considered in this work. In this section, a corresponding solution
based on BDDs is introduced. To this end, we first sketch the general idea before
details about the implementation are provided.

5.1 General Idea

While BDDs allow for an efficient representation of Boolean functions, the char-
acteristic of reversibility cannot directly be derived from them. Consequently,
our aim is to use the various possibilities for (efficient) function manipulation
in order to transform a given function f ∈ Bn,n in such a way that its (non)-
reversibility becomes clearly evident.

To this end, we exploit the fact that the composition of a reversible func-
tion with its inverse yields the identity function. Hence, the general idea of the
proposed approach is to

Checking Reversibility of Boolean Functions 329

1. determine the inverse function f−1 and, afterwards,
2. check whether the composition of f and f−1 is equivalent to the identity

mapping, i.e.
f−1 ◦ f = idBn .

If the check for identity holds, the considered function is reversible. Other-
wise, it can be concluded that the considered function is not reversible.

However, while checking equivalence of two functions using their BDD rep-
resentation is straight-forward, there are two main issues of this procedure that
are non-trivial:

(1) how to create the inverse of f (especially: what if f is irreversible?) and
(2) how to perform the composition?

These issues will be addressed in the following.

5.2 Generating the Inverse Function

Unfortunately, an inverse function can only be constructed if the original func-
tion is reversible. To overcome this and to develop a procedure that can also be
applied to irreversible functions, we consider the graph of the function, i.e. the
underlying set relation, and perform the reversibility check at the level of rela-
tions (cf. Definition 3 from Sect. 2). Here, an inverse can easily be created by
swapping the first and the second component of each pair.

Example 2. Consider the function f ∈ B2,2 shown in Fig. 1(a). The correspond-
ing set relation F ⊂ B

2 × B
2 is shown in Fig. 1(b) in terms of a complete list

of related pairs. The inverse relation F−1 which is obtained by swapping the
first and second component of each pair is shown in Fig. 1(c). Apparently, the
composition F−1 ◦F (as shown in Fig. 1(d)) is clearly different from the identity
relation (as shown in Fig. 1(e)), since the pattern 10 is not only related to itself,
but also to 11. Consequently, f is not reversible.

However, set relations are – in contrast to BDDs – not a very efficient rep-
resentation of a function. But the same concept can similarly be applied to
characteristic functions (cf. Definition 4 from Sect. 2) and, hence function repre-
sentations for which BDDs are applicable.

x1 x2 f1 f2
0 0 0 1

0 1 1 0

1 0 1 1

1 1 1 1

(a) f

(00, 01)

(01, 10)

(10, 11)

(11, 11)

(b) F

(01, 00)

(10, 01)

(11, 10)

(11, 11)

(c) F−1

(00, 00)

(01, 01)

(10, 10)

(10, 11)

(11, 10)

(11, 11)

(d) F−1 ◦ F

(00, 00)

(01, 01)

(10, 10)

(11, 11)

(e) id

Fig. 1. Set relations of Boolean functions

330 R. Wille et al.

0
0

0
1

1
0

1
1

00 0 0 0 0

01 1 0 0 0

10 0 1 0 0

11 0 0 1 1

Inputs

O
u
tp

u
ts

(a) MF

0
0

0
1

1
0

1
1

00 0 1 0 0

01 0 0 1 0

10 0 0 0 1

11 0 0 0 1

Inputs

O
u
tp

u
ts

(b) MF−1

Fig. 2. Matrix representations of characteristic functions.

Example 3. The characteristic function of a relation F , χF can be represented
by a matrix MF with entries mij = χF (i, j), i.e. the columns denote the pos-
sible input patterns and the rows denote the possible output patterns. Thus, a
matrix entry is 1 if and only if the corresponding input pattern is related to
the corresponding output pattern. The corresponding matrices for the relations
from Fig. 1(b) and (c) are shown in Fig. 2(a) and (b), respectively. Note that the
matrix for the inverse relation can be obtained by transposing the matrix MF ,
i.e. MF−1 = MT

F .

Now, given χF , the representation for χF−1 can be obtained from the one for
χF by simply swapping input and output variables and re-labelling the corre-
sponding nodes. However, a multi-output Boolean function f = (f1, . . . , fn)
is usually not given in terms of its characteristic function, but rather by a
set (forest) of individual BDDs describing the component functions. Conse-
quently, we have to compute χF as a pre-processing step in the first place.
This is done by first computing the characteristic functions for the components
χFi

= fi�yi (where � denotes the XNOR-operation) and then combining these
to χF = χF1 ∧ . . . ∧ χFn

.

5.3 Computing the Composition

Given the characteristic functions, χF and χF−1 , we have to compute χF−1◦F .
In order to conduct this, we recall that the corresponding set relation is given
by F−1 ◦ F = {(x, y) | ∃z : (x, z) ∈ F ∧ (z, y) ∈ F−1}. Returning to the level of
characteristic functions, this translates to

χF−1◦F (x, y) = ∃z : χF (x, z) ∧ χF−1(z, y)

In order to construct this function, we use an (established) logic operation
called existential quantification.

Definition 6. Given f ∈ Bn,m over variables x1, . . . , xn, we define the (Boolean)
function (∃xi : f) ∈ Bn−1,m by (∃xi : f) := fxi=0 ∨ fxi=1, where fxi=0 and
fxi=1 denote the co-factors of f restricted to the respective value of xi. That means
(∃xi : f) evaluates to true for an input assignment (x1, . . . , xi−1, xi+1, . . . , xn) if
and only if xi can be chosen such that f(x1, . . . , xi−1, xi, xi+1, . . . , xn) = 1.

Checking Reversibility of Boolean Functions 331

This operation can be employed for our purpose of composing χF and χF−1

as follows: we define a (Boolean) helper function

H(x, y, z) = χF (x, z) ∧ χF−1(z, y)

and can then obtain χF−1◦F by existentially quantifying z:

χF−1◦F = (∃z : H).

After this, the characteristic function for the identity function idBn has to be
created. This can easily be done by constructing a BDD representing the function
χid = x1�y1 ∧ . . . ∧ xn�yn (again, note that � denotes the XNOR-operation).
This states that χid(x, y) = 1 if and only if x = y.

Finally, the resulting BDD representing χF−1◦F and the BDD represent-
ing χid have to be checked for equivalence. After constructing both BDDs this
test can be performed in constant time. If both are equivalent, the considered
function f is reversible. Otherwise, it has been shown that f is irreversible.

Another way to employ existential quantification for checking reversibility, as
sketched in [19], is to quantify over all input variables of the characteristic func-
tion, i.e. to compute ∃x : χF , which yields the disjunction of all output patterns.
The resulting function is a tautology if and only if f is surjective/reversible. How-
ever, as existential quantification is the most expensive BDD operation used in
the proposed flow, this alternative approach will not perform significantly dif-
ferent.

6 Checking for Reversibility Using Satisfiability Solvers

As an alternative to the BDD-based approach, we additionally propose a comple-
mentary solution to the problem considered in this work which is based on search
methods. More precisely, solvers for the Boolean satisfiability problem (SAT prob-
lem) are utilized. In this section, we again sketch the general idea first before
details on the implementation are provided.

6.1 General Idea

The SAT problem itself is simple to describe: For a given Boolean formula Φ,
the SAT problem is about determining an assignment α to the variables of Φ
such that Φ(α) evaluates to true or to prove that no such assignment exists.

In the past years, tremendous improvements have been achieved in the devel-
opment of corresponding solving engines (so-called SAT solvers). Instead of sim-
ply traversing the complete space of assignments, powerful techniques such as
intelligent decision heuristics, conflict based learning schemes, and efficient impli-
cation methods e.g. through Boolean Constraint Propagation (BCP) are applied
(see e.g. [7,9]). These techniques led to effective search procedures which can han-
dle instances composed of thousands of variables and constraints. Furthermore,

332 R. Wille et al.

the SAT problem has been proven to be NP-complete [6], i.e. every problem in
NP can be reduced in polynomial time to the SAT problem.

However, checking whether a given Boolean function is reversible does not
obviously look like a satisfiability problem at a first glance: A certain property
(namely unique output patterns) has to be checked for all possible input pat-
terns. But this problem can easily be reformulated to a SAT problem: Instead of
checking the uniqueness of all output patterns, we can negate the problem for-
mulation and ask whether two input patterns exist which yield the same output
pattern. This is a classical satisfiability problem.

Note that, by using this formulation, we are not considering the REV -
problem (cf. Definition 5 in Sect. 4) anymore, but its negation (denoted by
NOTREV in the following). Since REV is in coNP, the complementary prob-
lem NOTREV is in NP and, hence, can be solved as a SAT problem4. More
formally, the following problem is left to be solved: Let f ∈ Bn,n. Then, the SAT
solver is asked for two patterns x, y, x �= y such that f(x) = f(y) holds.

6.2 Implementation

In order to implement the proposed idea, the question “Do two input assign-
ments x, y ∈ B

n exist so that f(x) = f(y)?” has to be formulated in terms of a
SAT instance Φ which can be handled by corresponding solvers. Often, satisfia-
bility solvers require the respectively given function Φ for which an assignment
has to be determined in Conjunctive Normal Form, in bit-vector logic, or similar.
In order to generate this formulation, the following steps have to be performed:

– Introduce (SAT-)variables which symbolically represent all possible assign-
ments: A symbolic formulation for all possible assignments that have to be
checked has to be created. In the problem considered here, this is accom-
plished by introducing a new free (Boolean) variable for each primary input,
primary output, and internal signal of the considered function f . Since two
different assignments are to be determined, all these variables have to be cre-
ated twice (in the following distinguished between x-variables and y-variables).
Figure 3(a) exemplary provides the respectively needed variables for checking
the function f = (a ∧ b) ⊕ c.

– Introduce constraints in order to allow for valid solutions only: Obviously, just
passing the newly created variables to a solving engine does not lead to any
useful result – without further constraints, the solver would just generate arbi-
trary assignments. Hence, in another step, constraints must be added which
restrict the solving engine to determining valid solutions only. In the scenario
considered here, this particularly includes constraints ensuring a valid input-
output mapping of the considered function, i.e. depending on the representa-
tion of f , the internal signals and, by this, the primary outputs are restricted.

4 A similar idea has been employed for equivalence checking in the domain of verifi-
cation (see e.g. [1,4]). In our context, instead of two different functions, the same
function is considered twice and, instead of applying the same pattern on both func-
tions, we apply different patterns.

Checking Reversibility of Boolean Functions 333

f = (a ∧ b) ⊕ c

Φ1 x6 x1 x4 x2 x5 x3

Φ2 y6 y1 y4 y2 y5 y3

(a) Variables

Φ1 = ((x4 = (x1 ∧ x2)) ∧ (x5 = (x4 ⊕ x3)) ∧ (x6 = x5))

Φ2 = ((y4 = (y1 ∧ y2)) ∧ (y5 = (y4 ⊕ y3)) ∧ (y6 = y5))

(b) Constraints

Φobj = ((x1 �= y1) ∨ (x2 �= y2) ∨ (x3 �= x3)) ∧ (x6 = y6)

(c) Objective

Fig. 3. SAT formulation

This has to be done for both “copies” eventually leading to a sub-instance Φ1

and a sub-instance Φ2. This is illustrated in Fig. 3(b) for the function from
above.

– Employ the objective: With the formulation thus far, a symbolic representa-
tion of the evaluation of the given function f for two arbitrary assignments
is available. Finally, constraints have to be employed which enforce the con-
sidered objective. For the problem considered here, this includes constraints
enforcing that both inputs are not equal, while their primary outputs must be
equal (leading to a sub-instance Φobj). This is illustrated in Fig. 3(c) for the
function from above.

Passing the conjunction of all sub-instances, i.e. Φ = Φ1 ∧ Φ2 ∧ Φobj , to a
SAT solver, a satisfying assignment of the SAT variables is derived if indeed two
input assignments exist for which f yields the same output. Then, these input
assignments can be obtained from the solution determined by the SAT solver
and serve as a witness for the non-reversibility. If in contrast the SAT solver
proved that no satisfying assignment for the considered instance exists, it can
be concluded that the function is reversible.

7 Experimental Evaluation

The approaches presented above provide non-trivial solutions to the coNP-
complete problem of checking whether a given Boolean function is reversible.
In order to evaluate how they eventually cope with the underlying complexity
(as discussed in Sect. 4), both approaches have been implemented and thor-
oughly evaluated. In this section, we summarize and discuss the results of these
evaluations.

7.1 Setup

The BDD-based approach from Sect. 5 and the SAT-based approach from Sect. 6
have been implemented in C/C++. To this end, CUDD [22] and MiniSAT [7]

334 R. Wille et al.

have been utilized as existing libraries for BDD construction and satisfiability
solvers, respectively.

As benchmarks we considered functions from RevLib [26] and the well-known
LG-Synth package. Since most of the functions are not reversible (particularly
for large functions; see also the discussion of the obstacles for the design of these
functions in Sect. 3), some irreversible functions have been made reversible using
the implicit embedding from the BDD-based synthesis as proposed in [25]. More
precisely, the originally given (irreversible) functions have been synthesized and,
afterwards, functional descriptions have been derived from the resulting circuits
using a restricted set of input/output mappings (ignoring constant inputs and
garbage outputs). This way, a variety of reversible as well as irreversible functions
of different sizes became available for evaluation.

Finally, all resulting functions have been processed with the implemented
solutions. All experiments have been conducted on a 3 GHz Dual Opteron 2222
with 32 GB of main memory.

7.2 Results and Discussion

A selection of the obtained results are summarized in Table 1. The first columns
provide the name of the respectively considered benchmarks (Benchmark), its
number of inputs/outputs (n), as well as the desired information of whether it

Table 1. Experimental evaluation

BDD-based SAT-based

Benchmark n REV? Nodes Time (s) Vars Clses Time (s)

9sym 27 ✓ 16304 0.51 9731 8269 <0.01

9sym 9 ✗ 961 <0.01 353 545 <0.01

cordic 52 ✓ 31948 2.23 27601 20993 0.08

cordic 23 ✗ 2849 <0.01 879 1281 <0.01

revsyn 9sym 27 ✓ 233020 12.97 1929 1931 <0.01

revsyn cordic 52 ✓ > 108 >3600 1941 1573 <0.01

revsyn xor5 6 ✓ 214 <0.01 161 109 <0.01

xor5 6 ✓ 178 <0.01 161 109 <0.01

xor5 5 ✗ 214 <0.01 123 185 <0.01

add64 184 193 ✓ 12606 0.53 7403 11171 0.02

add64 184 129 ✗ > 108 >3600 4693 6743 0.01

bw 87 ✓ > 108 >3600 13345 9417 0.03

bw 28 ✗ 12480 16.23 3143 3493 <0.01

dk17 224 21 ✓ 7544 0.08 1449 2077 <0.01

in0 235 26 ✓ 26246 1.15 6427 10019 <0.01

in0 235 15 ✗ 361 <0.01 299 271 <0.01

Checking Reversibility of Boolean Functions 335

is reversible or not (denoted by ✓and ✗, respectively, in column REV?). After-
wards, the results obtained by the proposed approaches are summarized. Since
both always provided the correct result on whether the function is reversible,
only performance values are listed: For the BDD-based approach, the maximum
number of nodes required to represent the (characteristic) function (Nodes) is
given, while, for the SAT-based approach, the number of variables (Vars) and
clauses (Clses) required to formulate the corresponding satisfiability problem is
given. For both approaches additionally the required run-time (Time, in CPU
seconds) is provided.

The results clearly show that both approaches are successful in efficiently
solving the considered problem. Considering the coNP-hardness of the task,
functions composed of more than 100 variables (constituting one of the largest
functions currently considered in the design of reversible circuits and systems)
can be handled quite efficiently.

Comparing both (complementary) solutions against each other, it is obvious
that the SAT-based approach performs significantly better than the BDD-based
approach. This can be explained by the “memory explosion” of the BDD repre-
sentation. In fact, BDDs are known for their efficient representation of Boolean
functions, but eventually require exponential space in the worst case. In the sce-
nario considered here, this worst case is often approached because characteristic
functions are considered. Building these often requires the BDD package to fold
up the entire functionality before reductions e.g. due to sharing can be exploited.
This obviously harms the efficiency of the approach.

In contrast, the SAT-based approach can handle the respective search space
in a more efficient fashion. Even for larger functions, always negligible run-time
is required. Hence, the SAT-based solution clearly constitutes itself as a very
efficient solution for checking the reversibility of a given function.

8 Conclusions

In this work, we considered how to check whether a given function is reversible.
Although never explicitly considered thus far, the absence of corresponding solu-
tions constitutes a major obstacle in the design of reversible circuits and sys-
tems. We proved that the underlying problem is coNP-complete and proposed
two complementary approaches addressing it – one based on decision diagrams
and another exploiting satisfiability solvers. The experimental evaluation showed
that, despite the complexity, both solutions can handle the problem. In fact, the
SAT-based solution is even capable of solving the task in negligible run-time even
for some of the largest functions considered in the design of reversible circuits
and systems thus far.

Acknowledgments. This work has partially been supported by the EU COST Action
IC1405.

336 R. Wille et al.

References

1. Amarú, L., Gaillardon, P.E., Wille, R., De Micheli, G.: Exploiting inherent char-
acteristics of reversible circuits for faster combinational equivalence checking. In:
Design, Automation and Test in Europe (2016, to appear)

2. Athas, W., Svensson, L.: Reversible logic issues in adiabatic CMOS. In: Proceedings
of Workshop on Physics and Computation PhysComp 1994, pp. 111–118 (1994)

3. Berut, A., Arakelyan, A., Petrosyan, A., Ciliberto, S., Dillenschneider, R., Lutz, E.:
Experimental verification of Landauer’s principle linking information and thermo-
dynamics. Nature 483, 187–189 (2012)

4. Brand, D.: Verification of large synthesized designs. In: International Conference
on CAD, pp. 534–537 (1993)

5. Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. IEEE
Trans. Comp. 35(8), 677–691 (1986)

6. Cook, S.: The complexity of theorem-proving procedures. In: Symposium on The-
ory of Computing, pp. 151–158. ACM (1971). http://doi.acm.org/10.1145/800157.
805047

7. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella, A.
(eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

8. Fazel, K., Thornton, M., Rice, J.: ESOP-based Toffoli gate cascade generation. In:
IEEE Pacific Rim Conference on Communications, Computers and Signal Process-
ing (PacRim 2007), pp. 206–209. IEEE (2007)

9. Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: Conflict-driven answer set
solving. In: International Joint Conference on Artificial Intelligence, pp. 386–392
(2007)

10. Große, D., Wille, R., Dueck, G.W., Drechsler, R.: Exact multiple control Toffoli
network synthesis with SAT techniques. IEEE Trans. CAD 28(5), 703–715 (2009)

11. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Theory
of Computing, pp. 212–219 (1996)

12. Houri, S., Valentian, A., Fanet, H.: Comparing CMOS-based and NEMS-based
adiabatic logic circuits. In: Dueck, G.W., Miller, D.M. (eds.) RC 2013. LNCS, vol.
7948, pp. 36–45. Springer, Heidelberg (2013)

13. Merkle, R.C.: Reversible electronic logic using switches. Nanotechnology 4(1), 21–
40 (1993)

14. Miller, D.M., Maslov, D., Dueck, G.W.: A transformation based algorithm for
reversible logic synthesis. In: Design Automation Confernce, pp. 318–323 (2003)

15. Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cam-
bridge University Press, Cambridge (2000)

16. Ren, J., Semenov, V., Polyakov, Y., Averin, D., Tsai, J.S.: Progress towards
reversible computing with nSQUID arrays. IEEE Trans. Appl. Supercond. 19(3),
961–967 (2009)

17. Saeedi, M., Zamani, M.S., Sedighi, M., Sasanian, Z.: Synthesis of reversible circuit
using cycle-based approach. J. Emerg. Technol. Comput. Syst. 6(4), 1–26 (2010)

18. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factor-
ing. Foundations of Computer Science, pp. 124–134 (1994)

19. Soeken, M., Tague, L., Dueck, G.W., Drechsler, R.: Ancilla-free synthesis of large
reversible functions using binary decision diagrams. J. Symb. Comput. 73, 41:
1–41: 26 (2016). http://dx.doi.org/10.1016/j.jsc.2015.03.002

20. Soeken, M., Wille, R., Hilken, C., Przigoda, N., Drechsler, R.: Synthesis of
reversible circuits with minimal lines for large functions. In: ASP Design Automa-
tion Conference, pp. 85–92 (2012)

http://doi.acm.org/10.1145/800157.805047
http://doi.acm.org/10.1145/800157.805047
http://dx.doi.org/10.1016/j.jsc.2015.03.002

Checking Reversibility of Boolean Functions 337

21. Soeken, M., Wille, R., Keszocze, O., Miller, D.M., Drechsler, R.: Embedding of
large Boolean functions for reversible logic. J. Emerg. Technol. Comput. Syst.
12(4), 1–26 (2015). http://doi.acm.org/10.1145/2786982

22. Somenzi, F.: Efficient manipulation of decision diagrams. Softw. Tools Technol.
Transf. 3(2), 171–181 (2001)

23. Thomsen, M.K.: Describing and optimising reversible logic using a functional
language. In: Gill, A., Hage, J. (eds.) IFL 2011. LNCS, vol. 7257, pp. 148–163.
Springer, Heidelberg (2012)

24. Toffoli, T.: Reversible computing. In: de Bakker, W., van Leeuwen, J. (eds.)
Automata, Languages and Programming. LNCS, vol. 85, pp. 632–644. Springer,
Heidelberg (1980)

25. Wille, R., Drechsler, R.: BDD-based synthesis of reversible logic for large functions.
In: Design Automation Conference, pp. 270–275 (2009)

26. Wille, R., Große, D., Teuber, L., Dueck, G.W., Drechsler, R.: RevLib: an online
resource for reversible functions and reversible circuits. In: International Sym-
posyum on Multi-Valued Logic, pp. 220–225 (2008). http://www.revlib.org

27. Wille, R., Keszöcze, O., Drechsler, R.: Determining the minimal number of lines
for large reversible circuits. In: Design, Automation and Test in Europe, pp. 1204–
1207. IEEE (2011)

28. Wille, R., Drechsler, R., Osewold, C., Garcia-Ortiz, A.: Automatic design of low-
power encoders using reversible circuit synthesis. In: Design, Automation and Test
in Europe, pp. 1036–1041. IEEE (2012)

http://doi.acm.org/10.1145/2786982
http://www.revlib.org

Author Index

Abdessaied, Nabila 255
Anticoli, Linda 213
Arı, Atakan B. 169
Arrighi, Pablo 73
Axelsen, Holger Bock 89, 153

Barylska, Kamila 105
Boykett, Tim 239

Cingolani, Davide 137
Cristescu, Ioana 3

De Micheli, Giovanni 255
Demaine, Erik D. 121
Drechsler, Rolf 160
Dueck, Gerhard W. 307

Erbil, Selçuk Oğuz 169

Hanay, M. Selim 169

Ianni, Mauro 137
Inoue, Yuma 181

Kari, Jarkko 239
Keszocze, Oliver 160
Koutny, Maciej 105
Krivine, Jean 3
Kuhn, Stefan 20
Kutrib, Martin 89

Lye, Aaron 322
Lynch, Jayson 121

Malcher, Andreas 89
Martiel, Simon 73
Medić, Doriana 36
Mezzina, Claudio Antares 36
Mikulski, Łukasz 105
Miller, D. Michael 307

Minato, Shin-ichi 181
Moraga, Claudio 175

Niemann, Philipp 322

Othmer, Lars 160

Paler, Alexandru 199
Pellegrini, Alessandro 137
Perdrix, Simon 73
Piątkowski, Marcin 105
Piazza, Carla 213

Quaglia, Francesco 137
Quetschlich, Nils 181

Salo, Ville 239
Schultz, Ulrik Pagh 153
Selinger, Peter 271
Soeken, Mathias 255, 307

Taglialegne, Leonardo 213
Thomsen, Michael Kirkedal 160
Tiezzi, Francesco 52
Tyagi, Nirvan 121

Ulidowski, Irek 20

Valiron, Benoît 289
Varacca, Daniele 3

Wendlandt, Matthias 89
Wille, Robert 160, 181, 322

Yasuda, Norihito 181
Yoshida, Nobuko 52
Yüksel, Mert 169

Zakablukov, Dmitry V. 223
Zuliani, Paolo 213

	Preface
	Organization
	Abstracts of Invited Talks
	Classical Problems to Make Quantum Computing a Reality
	DEMONIC Programming: A Computational Language for Single-particle Equilibrium Thermodynamics, and its Formal Semantics

	Contents
	Process Calculi
	Rigid Families for the Reversible -Calculus
	1 The Reversible -calculus
	1.1 Name Substitution
	1.2 The LTS

	2 Rigid Families for the -Calculus
	2.1 The Unlabelled Rigid Families
	2.2 The Labelled Rigid Families for the -Calculus

	3 Encoding the Reversible -Calculus
	4 Causality
	5 Operational Correspondence Between R and Rigid Families
	6 Conclusion
	References

	A Calculus for Local Reversibility
	1 Introduction
	2 A Calculus of Covalent Bonding
	3 Properties of CCB
	3.1 CCB Without Weak Actions
	3.2 Concerted Transitions

	4 The Hydration of Formaldehyde in Water
	4.1 The Most Common Path Through the Reaction
	4.2 Other Paths Through the Reaction

	5 Conclusion
	References

	Static VS Dynamic Reversibility in CCS
	1 Introduction
	2 CCS and Its Reversible Variants
	2.1 Reversible CCS
	2.2 CCS with Communication Keys

	3 Encoding CCSK in RCCS
	4 Encoding RCCS in CCSK
	5 Conclusions and Future Work
	References

	Reversing Single Sessions
	1 Introduction
	2 Background on Session-Based -calculi
	3 Reversibility of Single Binary Sessions
	3.1 Single Sessions
	3.2 Binary Session Reversibility

	4 Reversibility of Single Multiparty Sessions
	5 Concluding Remarks
	References

	Reversible Models
	Reversible Causal Graph Dynamics
	1 Introduction
	2 Pointed Graph Modulo, Paths, and Operations
	3 Causal Graph Dynamics and Invertibility
	4 Invertibility and Almost-Vertex-Preservingness
	5 Reversible Causal Graph Dynamics
	6 Conclusion
	A Proofs of Sections 4 and 5
	A.1 Proofs of Section 4
	A.2 Proofs of Section 5

	References

	Boosting Reversible Pushdown Machines by Preprocessing
	1 Introduction
	2 Preliminaries
	3 Computational Capacity
	4 Closure Properties
	References

	Reversible Computation vs. Reversibility in Petri Nets
	1 Introduction
	1.1 Previous Work
	1.2 Our Contribution
	1.3 Organisation of This Paper

	2 Preliminaries
	3 Motivating Examples
	4 Undecidability of MESTR
	5 Decidability of CSE
	6 Concluding Remarks
	References

	Programming Languages
	Toward an Energy Efficient Language and Compiler for (Partially) Reversible Algorithms
	1 Introduction
	2 Previous Work
	3 Language Design
	3.1 Logging and Unrolling
	3.2 Language Levels

	4 Correct Program Conventions
	5 Control Logic Operators
	5.1 Jumps
	5.2 Conditional Statements
	5.3 For and While Loops
	5.4 Function Calls

	6 Energy Simulation
	7 Conclusion and Future Work
	References

	Mixing Hardware and Software Reversibility for Speculative Parallel Discrete Event Simulation
	1 Introduction
	2 Related Work
	3 The Simulation Engine
	3.1 Basics
	3.2 Simulation Horizons and Value of Speculative Work
	3.3 Engine Architecture

	4 Experimental Results
	5 Conclusions
	References

	Elements of a Reversible Object-Oriented Language
	1 Introduction
	2 Reversible Object-Oriented Programming
	3 Encapsulation and Construction
	3.1 Encapsulation
	3.2 Construction and Unconstruction
	3.3 Object References

	4 Inheritance and Virtual Calls
	5 Implementation
	References

	Initial Ideas for Automatic Design and Verification of Control Logic in Reversible HDLs
	1 Introduction
	2 Control Logic in Reversible HDLs
	3 Envisioned Solution
	3.1 Generation of fi-Conditions
	3.2 Check for Partial Reversibility

	4 Conclusions
	References

	Quantum Computing
	Design and Fabrication of CSWAP Gate Based on Nano-Electromechanical Systems
	Abstract
	1 Introduction
	2 Information Storage via Buckling
	3 NEMS Based CSWAP Gate
	3.1 Design
	3.2 Nano-Fabrication

	4 Conclusion
	Acknowledgements
	References

	Design of p-Valued Deutsch Quantum Gates with Multiple Control Signals and Mixed Polarity
	Abstract
	1 Introduction
	2 Realization of a p-Valued Deutsch Quantum Gate with Three Controlling Qupits
	3 Introducing Mixed Polarity
	4 On the Complexity of Realization for Any Number of Control Qupits
	5 Conclusions
	References

	Using DDs for Nearest Neighbor Optimization of Quantum Circuits
	1 Introduction
	2 Background
	2.1 Quantum Circuits
	2.2 Nearest Neighbor Optimization

	3 Motivation
	4 General Idea
	4.1 Permutation Decision Diagrams (DDs)
	4.2 Proposed Exploitation of DDs

	5 Applying Restrictions to the DDs
	5.1 Obtaining and Weighting Restrictions
	5.2 Applying Resulting Restrictions to the DD

	6 Experimental Evaluation
	7 Conclusions
	References

	Quantum Programming
	Circular CNOT Circuits: Definition, Analysis and Application to Fault-Tolerant Quantum Circuits
	1 Motivation
	2 Circular CNOT Circuits
	3 Boolean Model of Circular CNOT Circuits
	3.1 Stabiliser Transformations
	3.2 A Single CNOT
	3.3 Modelling Cuts
	3.4 Modelling an Entire Circular Circuit
	3.5 Discussion

	4 ICM Circuits Are Instances of Circular CNOT Circuits
	5 Example: The ICM Toffoli Gate
	6 Applications of Circular CNOT Circuits
	7 Conclusion
	References

	Towards Quantum Programs Verification: From Quipper Circuits to QPMC
	1 Introduction
	2 Preliminaries
	3 From Circuits to Quantum Markov Chains
	4 Implementation and Experiments
	5 Conclusions
	References

	Circuit Theory
	Application of Permutation Group Theory in Reversible Logic Synthesis
	1 Introduction
	2 Asymptotically Optimal Synthesis Algorithm
	3 Generalized Replacement Rules for Gate Compositions
	4 Boolean Hypercube Search
	4.1 Effective Disjoints of Cycles
	4.2 Left and Right Multiplication

	5 Combining Cycle-Based and RM-spectra Based Algorithms
	6 Experimental Results
	7 Conclusion
	References

	Strongly Universal Reversible Gate Sets
	1 Introduction
	2 Background
	3 Induction Lemma
	4 Some Combinatorial Group Theory
	5 Control-Universality
	6 Finite Generating Sets of Gates
	6.1 The Alternating and Full Revitals
	6.2 The Alternating Conservative Revital

	7 Non-finitely Generated Revitals
	8 Concrete Generating Families
	9 Conclusion
	References

	Enumeration of Reversible Functions and Its Application to Circuit Complexity
	1 Introduction
	2 Preliminaries
	2.1 Permutation Groups
	2.2 Reversible Functions and Circuits

	3 Reversible Function Classification
	3.1 Permutation Groups
	3.2 Cycle Index Polynomials

	4 Application to Reversible Circuits
	5 Application to Boolean Functions
	6 Conclusions
	References

	A Finite Alternation Result for Reversible Boolean Circuits
	1 Introduction
	2 Statement of the Main Result
	3 First Construction: Balanced Permutations
	3.1 Preliminaries
	3.2 Decomposition into Balanced Permutations
	3.3 Alternation Depth of Permutations of the Form g+h

	4 Second Construction: Colorings
	4.1 Colorings
	4.2 Visualizing Colorings
	4.3 Color Pairs
	4.4 Color Standardization
	4.5 Proof of Proposition4.3

	5 Proof of the Main Theorem
	6 Conclusion and Further Work
	References

	Syntheses
	Generating Reversible Circuits from Higher-Order Functional Programs
	1 Introduction
	2 Reversible Circuits
	3 Reversible Circuits as Trace of Programs
	3.1 Simple Formalization of Reversible Circuits
	3.2 A PCF-like Language with Lists of Booleans
	3.3 Small-Step Semantics
	3.4 Reversible Circuits from Operational Semantics
	3.5 Simulations

	4 Internalizing the Abstract Machine
	4.1 Monadic Lifting
	4.2 Reversible Circuits from Monadic Lifting
	4.3 Call-by-Value Reduction Strategy

	5 Discussion
	References

	A Fast Symbolic Transformation Based Algorithm for Reversible Logic Synthesis
	1 Introduction
	2 Preliminaries
	3 Truth Table Based Algorithm
	4 Symbolic Representation of Reversible Functions
	5 Symbolic Algorithm
	5.1 BDD Based Implementation
	5.2 SAT Based Implementation
	5.3 Runtime Behavior

	6 Experimental Evaluation
	7 Conclusions
	References

	Checking Reversibility of Boolean Functions
	1 Introduction
	2 Preliminaries
	3 Motivation
	3.1 Obstacles to the Embedding Process
	3.2 Obstacles to the Synthesis Process

	4 Theoretical Consideration
	5 Checking for Reversibility Using Decision Diagrams
	5.1 General Idea
	5.2 Generating the Inverse Function
	5.3 Computing the Composition

	6 Checking for Reversibility Using Satisfiability Solvers
	6.1 General Idea
	6.2 Implementation

	7 Experimental Evaluation
	7.1 Setup
	7.2 Results and Discussion

	8 Conclusions
	References

	Author Index

