Chapter 5
The Fractal Nature of SOA Federations:
A Real World Example

Arthur Baskin, Robert Reinke and John W. Coffey

Abstract Fractal concepts are often said to be recursively self-similar across
multiple levels of abstraction. In this paper, we describe our experience with the
fractal nature of SOA designs for sustainment management tools as these tools
evolve into even more dynamic, federated systems that are orchestrated over the
web. This chapter summarizes insights gained from more than twenty years of
software development, maintenance, and evolution of a major pavement engi-
neering tool named PAVER™. We consider both theoretical and experiential
aspects of SOA federations at three levels of abstraction: (1) a loosely coupled
federation of enterprise systems with PAVER™ as one member, (2) a tightly
coupled federation of two pavement management tools (PAVER™ and PCASE)
where each has a separate domain identity and development team, and (3) an
emerging federation of plugin tools, which provide additional pavement engi-
neering functionality and can come from competing civil engineering firms. These
plugin tools exist at different levels of abstraction within the level of the main
system and are, again, fractal. We organize the presentation of our experiences in
this domain by describing how SOA elements including Ontologies, Discovery,
Composition, and Orchestration are fractal whether we are looking at algorithms or
persistent state. We also define and describe a third orthogonal fractal dimension:
Evolution. Although the details of the implementation solutions at the differing
levels of abstraction can be substantially different, we will show that the underlying
principles are strikingly similar in what problems they need to solve and how they
generally go about solving them.

A. Baskin (X)) - R. Reinke
Intelligent Information Technologies Corporation, Indianapolis, IN 46216, USA
e-mail: abaskin @intelligent-it.com

J.W. Coffey
Department of Computer Science, The University of West Florida,
Pensacola, FL 32514, USA

© Springer International Publishing Switzerland 2016 59
E. El-Sheikh et al. (eds.), Emerging Trends in the Evolution of Service-Oriented

and Enterprise Architectures, Intelligent Systems Reference Library 111,

DOI 10.1007/978-3-319-40564-3_5

60 A. Baskin et al.

5.1 Introduction

It is the goal of this article to make the case that fundamental concerns in the
development and evolution of SOA systems are self-similar or fractal across dif-
ferent levels of abstraction in SOA systems. These observations about the fractal
nature of federations of service oriented systems (SOA) are grounded in more than
twenty years of software development and maintenance of a series of
condition-based civil engineering maintenance management systems. Foremost
among these systems has been the PAVER™ system, which is a pavement man-
agement system for airfields and roadways. In some cases, these decision support
tools are targeted at elevating the expertise of a normal practitioner to be closer to
that of the expert, whose expertise is embodied in the system. In other cases, these
systems support a loose federation of human decision makers, who are again
engaged in complex decision making. For example, the PAVER™ pavement
management system embodies international standards for ways to convert visual
observations of the pavement into a standard pavement condition index, which can
be used prioritize the use of scarce resources for civil infrastructure repairs.

The author’s experiences with many of the principles, which are described here,
predate the general emergence of SOA concepts, and, therefore, we interpret some
of the historical material looking backward. To enable this perspective, we provide
a brief historical account of PAVER™. We justify this retrospective interpretation
of history because we were responding to the needs for modular evolution of
separate tools and the need for loose coupling among tools to allow human decision
makers to compose data from varying sources to make engineering judgements. We
assert that these are some of the same requirements that SOA systems are proposed
to address. Increasingly over the last ten years, we have been actively injecting
insights from the SOA approach into the structure and organization of our software
systems. In fact, the preparation of the material for this chapter has had a direct
impact on the emerging support for plugins to the pavement engineering desktop
because we have used SOA principles to guide the definition and implementation of
the plugin framework, which has overlapped the development of the material for
this chapter in time.

In what follows, we try to present both the experiences that drove us to arrive at
or validate principles as well as a theoretical basis for the principles where we
believe we have found one. Two of the authors (Baskin and Reinke) have been
involved with software development tasks where attention to the evolution of the
software was part of the problem and the time to reflect on why some development
techniques work better than others was available. In some situations, the principles
emerged from the experience supporting the evolution of the software and in other
situations, we were able to bring principles from other disciplines to bear on our
software develop projects.

We have attempted to organize what we have learned at two distinct levels of
abstraction: (1) overall principles and (2) origin of the principles. Where possible,
we have attempted to provide both a theoretical derivation of the principles and

5 The Fractal Nature of SOA Federations: A Real World Example 61

concrete examples of the principles, which are drawn from our experience with
pavement management systems. Readers may wish to pursue either the theoretical
or historical description of the principles or simply review the summaries of what
we believe we have learned.

We have found SOA Federations to be effective for managing complex software
systems: Across time with the interplay of (relatively) independent actors, domains
of problem solving, and goals (with or without a common owner). Unpacking this
deceptively simple statement is our goal in this chapter. Because many of the terms
we use do not have precise definitions (or even agreed definitions), we will spend
some time in each section describing what we mean by our terms. These definitions
will be especially important because we need to use them across several fractal
levels of abstraction. Although we focus on the domain of pavement engineering
maintenance management systems in this chapter, we have applied these principles
in the development of decision support systems in other areas of civil engineering
and in shortening time to market for new products by using agile software devel-
opment techniques to begin to develop software to test a new product even before
the design of the new product has been finalized.

Figure 5.1 shows the three fundamental dimensions of our separation of issues
for SOA Federations.

In the Fig. 5.1, we identify traditional SOA issues along one axis. At the risk of
oversimplification, we can say that ontologies precede and are necessary for sup-
porting Discovery, Orchestration, and Composition. In our analysis, we look at
ontologies for procedural and declarative aspects of a problem and the need for
evolution of ontologies, which might be the hardest problem of all to solve. The
remaining three SOA issues: Discovery, Orchestration, and Composition can be
thought of as describing the state of a particular SOA system at one point in time.
That is, a working SOA system must discover procedural and declarative elements
so that they can be composed and finally orchestrated. In our SOA desktop for
pavement engineering, the desktop follows a discovery process each time it is
started to determine the components, which are available for composition in this
user session. The human user plays a central role in orchestrating the interoperation
of some of the components and simplifies the software orchestration problem for us.

Fig. 5.1 Three dimensions of Dimensions of Our World of SOA Federations
issues for fractal analysis. We
separate SOA issues into
procedural and declarative) T Evolution (Time)
Discovery

approaches to software

construction. Fma!ly, we Orchestration
explore the evolution of all of i
these aspects over time Composition

Ontologies

Process State
(Procedural) (Declarative)

62 A. Baskin et al.

5.2 The Historical Context of This Work

Our work on PAVER™ started with a series of workshops, which were sponsored
by the Federal Highway Administration and supervised by Shahin [1] who con-
tinues to guide these efforts for the U.S. Army Corps of Engineers, which owns the
software. The workshops brought together researchers in pavement engineering,
practicing pavement engineers, and our software development team. These work-
shops guided the development of the software to help define the best practices in the
pavement management domain and to embody them in a revised version of the
PAVER™ system. These user group meetings continued for years after the startup
phase ended and the interplay of the expert users and the software designers has
supported the co-evolution of best practices for pavement management and the
design of new PAVER™ features [2]. New features have also been driven by
pavement engineering research carried out by Dr. Shahin and others. This emergent
requirement for software evolution as a consequence of best practice evolution,
which was, in turn, partially stimulated by the PAVER™ software system, gives
rise to our attention to evolution as a basic area of interest.

The PCASE system evolved largely independent of PAVER™ but was used by
many of the same pavement engineers at the same locations. About fifteen years
ago, the U.S. Air Force funded an integration program to bring PAVER™ and
PCASE together in what the user would experience as a seamlessly integrated
system. In addition, each separate system had to be able to be deployed indepen-
dently as it had been done in the past. A user needed to be able to install either of
these civil engineering tools first and then optionally add the other. Finally, this
federation of loosely coupled tools had to be developed by two different research
groups with two largely disjoint user groups and rates of evolution. Our experience
with such a federation of largely independent software development efforts that
produce a seamless integration of the tools in the user experience has led to our
attention to the issues of discovery, orchestration, and, again, evolution of software
systems in federations of civil engineering tools.

In the latest iteration of work on these pavement engineering tools, we have been
tasked by the Corps of Engineers to expand the existing tools to provide support for
international users, interoperation with other Department of Defense enterprise
systems, and to support the incremental evolution of these pavement engineering
tools through an enhanced version of the plugin mechanisms, which have been
available but underutilized for ten years. We have explicitly used the principles
described in this chapter to guide the additions to the plugin machinery and to
suggest requirements that might not otherwise have emerged from the domain
requirements.

5 The Fractal Nature of SOA Federations: A Real World Example 63

5.3 Literature on SOA Federations, SOA Elements,
Algorithms and Data Persistence

In the following section, we provide a brief overview of literature pertaining to
SOA federations, the SOA elements we consider to be fractal in nature, and the
relationship between the cross-cutting concerns of algorithms and persistent data.
An extensive literature is available on the topic of SOA federations. Zdun [3]
describes a federation as a controlled environment with a collection of peer ser-
vices. Each service might be controlled by one or more federations, but within a
single federation, peer services can easily interact. Federations are based upon
middleware that fosters interoperability of loosely-coupled services. The term
federation appears in the literature in two contexts and it has evolved out of two
distinct but increasingly interrelated technological bases. The High-Level
Architecture, and accompanying Real-Time Interface (HLA-RTI) [3-5] originated
in the mid-1990s in the DoD as a platform for real-time simulation. The IEEE 1516
standard grew out of the High-Level Architecture initiative. In this context, a
federation is a collection of simulation entities connected and orchestrated by the
real-time interface. A federate is an individual IEEE 1516-compliant simulation
entity. The HLA includes a federation management API [6].

By the late 1990s, well after early versions of PAVER™ were already in use,
SOA was an emergent technology for the creation of composite applications. SOA
is based upon W3C standards including WSDL, SOAP, and XML Schema [7-9].
The HLA-RTI notion of federation is somewhat distinct from the more general
notion of federation as described in SOA literature because it is a particular use in
simulations rather than for the creation of composite applications that accomplish a
broad range of business or engineering purposes. However in more recent times,
calls for integration of HLA and SOA have occurred [5] as it is viewed that lessons
learned in one community might benefit the other. Additionally, benefits might be
obtained by the interoperation of both standards. For instance, Seo and Zeigler [10]
described the DEVS/SOA system to provide web service-based simulations.

A major concern in the creation of federations involving multiple providers is
managing identities and access of federates [11]. Several standards-based protocols
have been proposed or implemented to create federations [12—-14]. Li and Karp
claim that the federated identity management approach has proven to be difficult to
use and upgrade, and is not scalable. They state that federation based upon identity
is the wrong focus, rather the focus should be on access management instead. They
illustrate implementing access control policies using SAML certificates [15].
Thomas and Meinel [16] describe their own management system, which also relies
on open web service standards, to provide reliable digital identities. Hatakeyama
[17] describes what is termed a “federation bridge” to facilitate cross domain
identity federation. Anastasi et al. [18] state that service providers offer their ser-
vices using proprietary management software, interfaces and virtualization tech-
nologies which make interoperability more difficult to achieve. They discuss their
simulation tool SmartFed which is designed to simulate cloud-based federations.

64 A. Baskin et al.

Since a detailed review of literature pertaining to the SOA elements of discovery,
composition, orchestration and ontology would encompass an entire book chapter
in itself, we refer the interested reader to the following representative works.
Al-Masri and Mahmoud [19] attempt to incorporate client goals into service dis-
covery queries via a means that would rank candidate services in a manner similar
to query result rankings implemented in general-purpose web search capabilities.
Dsbrowski and Pacyna [20] address inter-domain service discovery and claim that
service discovery systems will require a strongly interwoven identity management
component. They state that support for service discovery across service domain
boundaries must be implemented in identity management systems in order to
provide a safe discovery system between services from different business areas.

Tolk et al. [21, 22] have done important work on composition and orchestration
within large governmental SOA federations. They describe current Homeland
Security systems which must integrate data and processing capabilities from twenty
two previously separate agencies. In [21] they describe model-based, top-down
orchestration of heterogeneous Homeland Security systems with discovery and
composition of IT capabilities included in a system-of-systems bottom up. In [22]
they describe a mathematical model for the selection or elimination of candidate
services, and for their orchestration and execution. They describe this work as a first
step towards self-organizing federation languages. Work by Rathnam and Paredis
[23] provides an ontology-based framework to simplify the reuse of federates in a
federation object model. While their work pertains to HLA-RTI federations, it is
applicable in principle to SOA systems in general.

We have identified as key issues in the current work, the cross-cutting concerns
of algorithms and data persistence in SOA. Calvanese et al. [24] discuss this issue
stating that one’s view of the pre-eminence of data or process is often a function of
one’s viewpoint, for instance if one is a business process analyst or a data manager.
They cite an article by Reichert [25] which makes the claim that “data and pro-
cesses should be considered as two sides of the same coin.” They discuss
“data-aware processes” and conclude that the database theory community has
developed the defining techniques to deal with data and processes. They cite several
important issues including verification issues pertaining to the modeling of what
data can be changed by a process. Dobos et al. [26] describe a platform for the
management of reusable process components and for the federation of data stores in
order to support data persistence, statistical analysis and presentation of the data.

Data persistence is an important aspect of data management. Krizevnik and Juric
[27] cite data persistence problems stemming from poor data quality, heterogeneity
of data sources and poor system performance in SOA systems. They describe a
SOA persistence model relying on master data management (MDM), and data
transfer standardization by the use of service data objects (SDOs) [28] in order to
build a data services layer in a SOA system. Software companies seek to build in
data services layers in their SOA architecture solutions. For instance BEA Systems
[29] describe the Aqualogic Data Services Platform (ALDSP) stating that the
environment employs a declarative approach to the construction of data services

5 The Fractal Nature of SOA Federations: A Real World Example 65

that are based upon XML Schema for data definitions and XQuery as the service
composition language.

Takatsuka et al. [30] state that cloud computing and machine-to-machine tech-
nologies require “context-aware” services to deal with heterogeneous data from
distributed systems. They describe a rule-based framework to create context-aware
services where context is taken to mean situational information that can be true or
false. Sarelo [31] describes the HERMES framework for ubiquitous communication
management using web services with serialized XML, data replication with peers
storing full copies, and simultaneous data update of all replicates. The previous
literature review barely scratches the surface of available literature on all these
aspects of SOA, but it provides the interested reader with a starting point for further
exploration.

5.4 Three Levels of Abstraction for SOA Federations

Although the development of the systems of interest in the current work has
evolved from support tools for a single practicing field engineer toward the needs of
enterprise systems, we may now look at these emerging systems from the top down.
Figure 5.2 shows the three major levels of abstraction for the tools which we
discuss in this chapter:

Dr. Shahin’s work on condition-based maintenance management systems gave
rise to a series of similar system. We put forth RAILER, which is a system for
maintenance management of railroad track, and ROOFER, which is a system for
maintenance for roofing on buildings, as examples of this more extended family of
civil engineering systems. Taken together, these systems, which are focused on
largely disjoint assets, form an enterprise level system for the application of best

Fig. 5.2 Three levels of Maintenance

abstraction for SOA Management

Federations: (1) Enterprise Abstract Systems

Federation, which .brmgs (high level) PAVER /

together separate line of PCASE

business systems for : - Enterprise
exchange of summary data; Enterprfse Enterprise Asset

(2) Desktop Federation, Federation s Management
which brings together more ROOFER =
tightly coupled systems with

separate identities and Desktop | Sustainment Management Systems Desktop Host
intersecting user functionality, gederation | | pPAVER || PcaSE || Addin [[Addin | ..
(3) Tool Federations, which —

break individual desktop tools

into component services as a Tool) S3 .. ‘ [Add In H Add In ‘
teChnique for managing Federation Component services Add Ins composing Add Ins
complexity or ease of Concrete

extension (low level)

66 A. Baskin et al.

practices for maintenance management so as to provide the safest and most pro-
ductive use of the civil infrastructure assets for the lowest possible cost. There is
increasing demand for interoperability among these separate systems with sepa-
rately developed enterprise systems for geographical information systems (GIS) and
enterprise systems for real property and asset management. GIS systems are used to
integrate disparate data bringing together data from separate systems and overlaying
these data geospatially. Asset management systems are used to track the value of
assets and to plan for allocation and preservation of these assets.

The development of the desktop federation of PAVER™ and PCASE was driven
by the user need for these systems to share a common inventory and constrained by
the need to allow the tools to retain their separate identities while being able to be
seamlessly combined in a single desktop when needed. One of the greatest chal-
lenges in this federation was to support the separate rates of evolution of PAVER™
and PCASE and to accommodate the various possible combinations of separate
versions.

In its latest incarnation, PAVER™ has been modified to support multiple users
and multiple deployment options, which include the traditional standalone install, a
thick client-server installation, a shared remote application server, and a web
browser interface. As part of managing both the increased pavement engineering
capabilities and the varied deployment options, we have used traditional SOA
concepts to break the main PAVER™ application into a family of interoperating
component services, which can be dynamically loaded in a standalone application
or accessed over a web service interface to a remote server. The user is able to
switch seamlessly between these modes on each “File/Open” operation, which
might open a local database with local services one time and a remote database with
remote services the next. This Tool Federation has been extended to support plugins
(called Add Ins in PAVER™). Plugins can be a way to extend the core pavement
engineering modules and a way to bring together tools from other pavement
engineering companies to leverage the common inventory and GIS display tools in
much the same what that PCASE can do.

5.5 Dimensions of Our SOA World at Each Level
of Abstraction: Real World Example

This section describes our experience with each of the elements in our three
dimensional space at each level of abstraction as an extended real world example of
these issues at three distinct levels of abstraction. The next section identifies the
fractal issues, which have been found to be common to these different levels of
abstraction.

5 The Fractal Nature of SOA Federations: A Real World Example 67

5.5.1 Enterprise Federation

The Enterprise Federation of relatively independent systems is a major initiative in
the U. S. Department of Defense (DoD) and the work on pavement management
systems has been an early emphasis. Unlike the more mature developments at lower
levels of abstraction, the Enterprise Federation is still a work in progress; therefore,
the results of our analysis at this level are a bit more tentative but we are able to
bring lessons learned from the lower levels of abstraction to bear at this level to help
guide the software development.

5.5.1.1 Ontologies

Declarative: The PAVER™ gystem is considered the authority of record for
condition-based maintenance of roadway and airfield pavements in the U.S. DoD
and for NATO. Using the system, a pavement engineer obtains data about the state
of the pavement, its likely future condition, and the cost of foreseeable maintenance.
Because the pavement engineer will usually actually stand on or drive over the
pavement to make an inventory and condition assessment, the pavement engineer
can determine the specific pavement quality and present usage. In addition, the
pavement engineer will break the overall pavement extent into manageable sizes for
future work planning. The enterprise GIS system and PAVER™ must share a
common geospatial rendering of the overall pavement extents (a shared ontology)
and PAVER™ can be used to subdivide the overall area into subcomponents,
which are the smallest unit of measure on the pavements (called Sections). Sections,
again, form a shared ontology between the systems. In this case, the GIS system is
the authority of record for the overall pavement extent and PAVER™ is the
authority for the section boundaries, which are needed for work planning. In a
similar way, the pavement engineer is often in the best place to tag the pavement
according to the required asset management attributes, which are called CATCD
(category code to summarize type, use, and cost) and RPUID (Facility identifier).
Within this rigid standardization, a facility can be divided into “segments” as long
as each segment is part of the facility and can be assigned a CATCD. In this second
case, the shared ontology is closely controlled by the real property system (CATCD
and RPUID) but the segmentation and the assignment of attribute tags to elements
of pavement might be shared between the asset management system, which is the
authority of record, and the pavement management system because the pavement
engineer is more likely to actually stand on the pavement. Definition of these shared
ontologies has consumed many hundreds of hours of group meetings, which have
involved many more systems than PAVER™, and the implementation of the
software support for the emerging ontology has been the simplest part.
Procedural: Unlike the shared declarative ontology, which can be shared
between the U.S. Air Force, Navy, and Army, the procedural ontology varies by
service because the GIS and real property asset systems are not the same. The state

68 A. Baskin et al.

of the procedural ontology for reconciling data at the enterprise level is at the same
place that PAVER was more than twenty years ago. There have been many
meetings and deliberations collecting required data, reconciling the differences
between the mandated authoritative sources for the data and the operational sources
for the data. The PAVER system is only one of sixteen major systems participating
in this process. The fact that pavement management data must interoperate with
different enterprise level systems and be collected according to a variety of business
rules means that the ontology must be able to evolve with the emerging changes. As
the enterprise data become more available, the best practices as the enterprise level
will co-evolve alongside the software systems in the same way that best practices
for pavement management and PAVER co-evolved twenty years ago.

Evolution: The enterprise federation brings together different types of structures:
vertical (e.g. buildings) and horizontal (e.g. roadways, power grids) for a variety of
largely independent entities (e.g. Air Force, Navy, Army, municipalities). The real
property/asset management ontology relates physical structures to congressional
authorization for funding and is closely controlled. The individual services have
evolved separate approaches for the segmentation of assets and the assignment of
CATCDs. In the process of integrating sixteen different civil engineering disci-
plines, of which PAVER™ is just one, the formal ontology for sharing of GIS data
has gone through several major versions and version four of the specification is
nearing completion and has shown that the services must support evolution of their
components driven by their history, current needs, and future missions.

5.5.1.2 Discovery

Declarative: The discovery problem for the enterprise federation is still being
solved by ongoing business process reengineering and software development. Each
service is developing its own standard operating procedures for how these data
should be collected, coordinated, and used for resource allocation and sustainment
of the assets. These declarative procedures are tailored to the details of the oper-
ations of each service.

Procedural: As a practical matter, these systems are all composed of a union of
humans and software systems. In some situations, procedures can be automated and
in others, some form of engineering judgement about the interpretation of the data is
required. Some agencies have chosen a focus on data replication and some on direct
linkage of data. In some situations, the process can be fully automated and in others
only semi-automated. The GIS systems and the real property linkage must be able
to tolerate the variety of presentations of shared data from each service and/or from
each civil engineering domain.

Evolution: The methods for discovery must be able to vary across the services (a
form of evolution across situations rather than time) and they must be able to evolve
along with changes in technology and best practices. The methods for this type of
modular replacement of parts are still being developed, but the problem is clearly

5 The Fractal Nature of SOA Federations: A Real World Example 69

present in the variety of approaches to this data alignment problem continues to
increase.

5.5.1.3 Composition

Declarative: The PAVER™ inventory has long been “composed” of Networks,
which contain Branches, which, in turn, contain Sections. A Section is the smallest
unit of maintenance activity and must have both a uniform structure and history.
A section may be broken into samples, which allows quicker inspections by
extrapolating data from samples to the entire section instead of inspecting every-
thing. The GIS data integration problem is being addressed by the notion of a map
which is “composed” of layers. Each layer can be associated with an engineering
discipline, e.g. pavements, and data attributes for a region in that layer can come
from either geospatial data (e.g. area), asset management (e.g. CATCD), or a
maintenance management system (e.g. condition of the asset). A maintenance
system is usually expected to rollup lower level data (from segments) into values at
the facility level.

Procedural: The procedural aspects of composition at the enterprise level are
easiest to see in the GIS presentations, which are data visualization tools at their
core. Much of the composition of maps can be interactively driven by a human
viewer, who can turn layers on and off as well as selecting among a variety of
coloring strategies. In the pavement domain, image capture devices are now able to
capture roadway images, which can be analyzed for distresses and dynamically
aggregated into “samples,” which can then treated like the more traditional samples
at the bottom of the pavement composition structure. Rollup of data over the
composition structure can be seen as flattening the depth of the composition to get
summary data and the flattening algorithms can be weighted by size or importance
to mission.

Evolution: The composition of the various engineering maintenance manage-
ment systems is evolving as some new condition-based maintenance management
systems are added and others consolidated. The composition of GIS information in
the form of layers and coloring strategies (“themes”) is constantly changing as new
theme definitions are defined and new attributes added to each layer.

5.5.1.4 Orchestration

Declarative: The prevalence of standard operating procedures for components of
the Enterprise Federation provides a roadmap for orchestrating the interaction of the
systems, which is frequently driven by human users. These best practices for
orchestrating the interaction of the data and systems are still being developed.

Procedural: As much as practical, the orchestration of the interaction among
these systems will be automated. Again, because this level of abstractions is the
newest, the development of orchestrations algorithms is in its infancy.

70 A. Baskin et al.

Evolution: The orchestration of the interaction among the members of the
Enterprise Federation is evolving as the different historical contingencies of the
various services (Air Force, Army, and Navy) are incorporated and as the differing
enterprise systems for GIS and real property asset management are included. The
orchestration techniques must be allowed to evolve with some independence as
each service meets its different mission needs.

5.5.2 Desktop Federation

The desktop federation of PAVER and PCASE has been hosted on a common
pavement engineering desktop for the past fifteen years. Users can install either
program alone or install both to get a seamless integration of the tools.

5.5.2.1 Ontologies

Declarative: The integration effort began with many months of matching up key
concepts in the systems in order to arrive at a shared ontology for the shared
inventory elements. The shared ontology contained Network, Branch, and
Section from PAVER as well as the pavement use and surface type. The notions of
non-destructive test data and layer definition were taken from PCASE. Additional
ontological elements were identified as predominantly being associated with one
system but these concepts are useful, in principle, to both.

Procedural: Each of the two members of this federation had its own database
structures behind the ontologies. Once the competing ontologies were reconciled,
we needed to unify the persistence while respecting the constraint of allowing each
system to retain its separate identity and independent development team. We
accomplished this by having the system construct a single logically unified database
by linking the various databases from PAVER and PCASE into it. In this way, we
could manage a unified common set of core inventory data and allow for the union
of additional persistent data, which is managed by one member of the federation but
could be reported by either.

Evolution: The PAVER and PCASE teams have been free to control the portion
of the ontology, which is predominantly controlled by one group. Changes to the
core shared inventory elements required both groups. At one point, PAVER had
two different versions (versions 5 and 6) deployed with different file formats and
internal object structures. Backward compatibility with PCASE was provided by
use of a facade, which made version 6 appear to provide the same ontological
model as version 5 to PCASE.

5 The Fractal Nature of SOA Federations: A Real World Example 71
5.5.2.2 Discovery

Declarative: The desktop federation of PAVER and PCASE might be comprised of
either application alone or both together. We honored this constraint by having the
Desktop executable search for a file with a special extension so as to discover what
tools were available. These files described the root level application object to
instantiate and put into a collection of application objects being hosted by the
desktop. In PAVER versions 5 and 6 and PCASE versions 2.08 and 2.09, the menu
system for each application was also declaratively stated in a tabular format and
discovered by the desktop load on startup.

Procedural: PAVER versions 5, 6, and 7 all use a search to discover applica-
tions to load. Starting with Version 7, the menu system has been described pro-
cedurally and merged on desktop startup. The Version 7 desktop can also be used to
host additional tools, which are derived from PAVER, i.e. the Image Inspector (for
analyzing roadway images) and the Field Inspector (for collecting distress data in
the field) both use this same desktop together with a procedural menu system and a
configuration file to be discovered by the desktop when it loads.

Evolution: For the past fifteen years, the discovery mechanism in each version
of the shared pavement management desktop has supported the independent evo-
Iution of PAVER and PCASE and, more recently, plugins.

5.5.2.3 Composition

Declarative: The shared ontology dictates that both PAVER and PCASE have a
shared inventory, which is a composition of inventory levels. The shared ontology
also defines time series data, which are items with a date under the sections, e.g.
Work History, Inspections, and Conditions.

Procedural: In addition to the declarative (predefined) compositions, users and
tools can add members to the collection of “condition measures.” PCASE adds
measures and users may add their own measure scales. When additional condition
measures are added, it is as if there are now more compositions of conditions
available for data entry and reporting. The GIS reporting tools and the tabular
reporting tools will detect the new compositions of condition data and show the
user reports with the new types of data.

Evolution: The available condition measures have evolved with the evolution of
best practices and the advent of more automated data collection tools. In addition,
users can control the presence of certain compositions of descriptive fields, which
are used for asset management and even hide some of the compositions or repur-
pose them for another use in the system. In this way, the system supports a limited
amount of evolution of the composition of the data. The advent of “Add In”
modules in version 5, which have been expanded in version 7.1, brought the ability
to add procedural behavior to these new compositions of data and to compose
behaviors for new compositions through procedures encoded in a dynamically
loaded plugin module.

72 A. Baskin et al.
5.5.2.4 Orchestration

Declarative: We say that the Desktop “orchestrates” the separate application
objects (PAVER and PCASE) because it handles the process of wiring up the
objects and passing action messages from menu items and such to the correct
application object. This declarative definition of the orchestration behavior is
enforced by interface contracts, which an application object must honor. Starting in
version 7, the declarative machinery was enhanced to allow application objects and
individual component tools within an application object, to register “interest” in one
or more events and to be notified when they occur.

Procedural: The shared desktop orchestrates some activities with a combination
of procedural processes and notifications, e.g. when a user changes unit system (e.g.
Metric to English) or changes language (e.g. from English to Italian), the desktop
can handle some of these operations itself and must orchestrate the notification and
update process for all of the tools within all the applications and plugins. In versions
5 and 6, notifications were broadcast to all participant tool objects independent of
declared interest in the changes. In version 7, tool objects can register to receive
notifications and are responsible for handling them without further help from the
desktop. This change of architecture was needed to allow the same mechanism to be
used for Windows forms and web pages, which realize their user interfaces in
radically different ways but can share this orchestration logic.

Evolution: As mentioned before, the desktop orchestration machinery has been
required to evolve in order to handle PCASE 2.08 and PCASE 2.09 together with
versions 5 and 6 of PAVER. More recently, the same family of orchestration tools
has been used to control a version of PAVER 7 for Windows and the Web. Finally,
the orchestration machinery for notifications about a user’s focus of interest is open
ended and can be extended by tools at runtime to support notification messages,
which were not originally predefined.

5.5.3 Tool Federation

The Tool Federation represents a subdivision of the PAVER level of abstraction
into a collection of partially separable tools. In version 7, the system was extended
to support multiple users in either a web or thick client—server configuration. The
client-server interaction is through web services using Microsoft’s Windows
Communication Framework (WCF). Unlike many stateless web service protocols,
WCEF supports the notion of a user session and we have extended that notion to
allow us to have web services, which can initialize web services with a user specific
data context and return what amounts to a handle to the web service.

Web service protocols are often stateless and each service call must stand on its
own. In our systems, we often need to have what amounts to a web service that can
return a handle to another service where the new service shares common user data.
We use the WCF notion of a user session to implement what amounts to web

5 The Fractal Nature of SOA Federations: A Real World Example 73

services that can return web service handles in order to support complex chains of
processes. In addition to the separate web service tools within PAVER, the Tool
Federation also includes the “Add Ins” (plugins) to the desktop, which can also
extend PAVER. These additional modules live almost entirely on the client, but
they have access to the persistent data on the server through a constrained interface.
Because these tools live within the level of the overall PAVER system, they have
access to many of the SOA elements of the overall application. In this section, we
discuss only those aspects that are specific to the Tool Federation.

5.5.3.1 Ontologies

Declarative: The WCF protocol makes the distinction between declarative
ontologies (Data Contracts) and Procedural Ontologies (Operation Contracts).
These data contracts are not interesting for this analysis because they are more an
artifact of technology than a true ontology. Our preference for developing models of
the application domain and then solving problems using the model makes these data
contracts more like ontologies than they would otherwise be. The declarative
ontologies for plugins are directly related to this material. Version 71, extends the
machinery for plugins to be able to store data in the main inventory database as well
as the separate and potentially shared system tables database. These data can par-
ticipate in the Import/Export process for sharing data between users by file sharing
and updates to these data are multiuser safe. The Desktop imposes an overall
declarative structure on these data, which involves a GUID for the plugin and a
“Class Name,” which must be supplied by the plugin when retrieving or storing
data. The “Class Name” is basically like the name of a component ontology, which
is managed by the plugin. This block of data can consist of a miniature database,
which is composed of a collection of potentially interrelated tables. The plugin
provides the meaning for the internals of these tables and the Desktop imposes the
structure of the key fields used to distinguish the individual blocks of data.
Procedural: Again, the procedural ontologies associated with the WCF services
are needed in order to break PAVER into a set of component web services, but they
are relatively uninteresting for this work. The plugin machinery provides all of the
aspects used by WCF and several more. The procedural ontologies are defined by a
special interface contract DLL component to which plugins must conform. The
various interface contracts define how the desktop and the plugins can communi-
cate. For example, a plugin can place menu items at various locations in the system
(main menu items or GIS map display options) and the procedural ontology for
plugins governs how this is done. In addition, the plugin itself controls the semantic
meaning of the items and their associations with other items through its algorithms
for data collection, validation, value added processing, and presentation.
Evolution: The plugin machinery provides a means for ontological evolution by
its mere presence. The high level constraints of the storage of mini-databases only
modestly constrain how these items are packaged. In some situation, such as for

74 A. Baskin et al.

non-destructive testing, there are domain ontologies, which can be supported by
plugins even when these ontologies vary from one equipment vendor to another.

5.5.3.2 Discovery

Declarative: The Desktop uses declarative information about an inventory, which
the user can access through File/Open, to determine whether to access data locally
or on a remote server. The discovery process for plugins is more interesting for this
analysis. Each user has a declarative (tabular) set of preferences, which specifies
whether an available plugin should be loaded for that user or not. The desktop
manages the discovery of installed plugin modules on startup and handles the
dialog with the user to discover which items the user wants to access. The selection
of plugins to use is persistent between user sessions and is user specific.

Procedural: The Desktop uses a procedural search together with requirements
for contracts to be implemented by plugins to discover available plugins on
startup. For software security reasons, this discovery process is constrained to
distinguish between “certified” plugins and “external” plugins and is constrained to
a tightly controlled set of locations. The underlying procedural discovery and
composition of plugins is capable of supporting less restrictive policies. Perhaps the
most interesting discovery operation involves plugins being able to discover other
plugins. When a plugin is loaded into the collection of active plugins, the desktop
can determine if the plugin is willing to be visible to other plugins. A plugin with a
dependency on another plugin can determine if the other plugin has been loaded
and can obtain a pointer to the other plugin. After the desktop has facilitated the
connection between the plugins, they may continue to cooperate directly or indi-
rectly through the database and/or the user interface.

Evolution: The plugin machinery exists for the purpose of allowing the dis-
covery of incrementally added modules of functionality. Thus, its primary purpose
is to allow the main desktop system to evolve separately from these additional tools.
Although the discovery of one plugin by another plugin is mediated by the desktop,
there is relatively little constraint on how these interactions are handled once
established.

5.5.3.3 Composition

Declarative: The WCF composition of web services in the main system reduces the
complexity of the overall system and provides for incremental recovery from failed
client—server interactions. Increasingly, new features in the main system are being
packages as “certified” plugins in order to simplify the extension of the main system
and to simplify the system versioning problem. These certified plugins are func-
tionally part of the main application, but they benefit from many of the simplifications
resulting from loosely coupled SOA modules. Finally, the user can use the desk-
top plugin manager to select or deselect a plugin for inclusion in the user interface.

5 The Fractal Nature of SOA Federations: A Real World Example 75

This selection process can be thought of as a (tool) composition process, which is
controlled by the user. Some users may not need to use all of the functions in the
system and this dynamic tool composition allows for a simplified user interface.

Procedural: As described already, the plugin machinery supports mechanisms
for dynamic composition of algorithms and data. One commonly occurring
example of procedural composition involves reader modules for field data, where
there are competing vendor file formats, e.g. falling weight deflection data. The
field data may be in any of a dozen data formats and each vendor will usually have
the best reader for its format among competing readers. In this situation, we have
been forced to allow plugins to be able to specify a precedence ordering over
potential tool compositions to favor the vendor’s reader over those of others. By
supporting the composition of an ordered collection of readers, plugins can share a
common set of reader code rather than needing to maintain separate versions of
what should be substantially the same functionality.

Evolution: Again, the plugin machinery exists to support evolution of incre-
mental parts of the system without a need to version the overall system. Also, the
composition of algorithms and data from multiple sources (i.e. separate civil
engineering firms) allows each plugin to leverage the shared inventory and
reporting tools of the desktop.

5.5.3.4 Orchestration

Declarative: The desktop allows plugins to supply call back objects that implement
required interface contracts for use when a user requests functionality from a plugin
item. The desktop manages the user interface for the invocation of plugin func-
tionality as well as loading an initializing the plugin. Also, plugins that plan to offer
functionality to other plugins will usually define one or more interface contracts to
facilitate the interoperation of the plugins. The desktop orchestrates the connection
between the plugins and may not be involved going forward.

Procedural: Because these are decision support tools for practicing pavement
engineers, a portion of the orchestration of the component services is actually done
by the human user when implementing best practices in the domain. We may say
that the human user helps to orchestrate the operation of the various services
through the sequence of engineering tools used and through the various tool win-
dows concurrently opened. The user interface supports the concurrent use of a
collection of component tool windows, which may have originated from the main
application or a plugin. The desktop also supports limited abilities to remember tool
window configurations from one user session to another, which allows each user to
control some of the orchestration settings across sessions, €.g. a user may request
that a GIS map be opened on startup if available and the locations and sizes of tool
windows can be remembered, which allows the user to play a role in the orches-
tration of tool windows.

Evolution: The evolution of the orchestration of the interaction of tools comes in
part from the ability to add new tools with a variable number of user interface

76 A. Baskin et al.

elements for launching components of each tool or plugin. In addition, the ability of
plugins to interoperate after they have been connected to each other by the desktop
provides a path for the inclusion of new orchestration patterns by the inclusion of
additional plugins. In fact, we are planning to mitigate the client versioning problem
by the use of more and more certified plugins rather than main system versions.
Because the orchestration of the underlying engineering algorithms depends, in
part, on the user’s selection of sequences of engineering operations and/or reporting
parameters, there is room for the orchestration of the tools by the combination of the
human user and the desktop to evolve with changing best practices.

5.6 Fractal Issues We Have Identified

Some of these issues were known to the authors prior to encountering them in the
pavement management domain and some of them have emerged during the course
of working in this domain. In this section, we will summarize the high level issues
we found and relate them back to the real world example. We have identified the
following overarching principles from our experience:

e Finiteness limits drive the need for increased structure—constraints on time
and/or resources can require a more highly structured solution in order to solve
the problem at hand within the given constraints;

e SOA Federations favor some structural patterns over others—some patterns of
software structure produce better SOA Federations than others and there are
some guiding principles for choice of good patterns;

e SOA Federations favor late binding—Ilate binding to a particular solution ele-
ment avoids the details of selecting the best component tool until it is actually
needed;

e Mixed Initiative Dialog—a recognition that SOA systems, whether made up of
human or machine actors interact more as peers and either side of the com-
munication may have the initiative from time to time;

e Trust, Reliability, Ability, and Authoritative Source—when designing SOA
systems or discovering a candidate for dynamic composition, potential human or
software actors cannot always be treated equally.

For each of these issues, we provide a theoretical basis and a basis in our
experience. These two items independently provide support for our conclusions
about the fractal nature of these issues and their importance in SOA.

5.6.1 Finiteness Limits Drive the Need for Structure

Baskin et al. have explored this idea in detail in [32]. In the interest of keeping this
material self-contained, we briefly summarize the key parts of this principle here.

5 The Fractal Nature of SOA Federations: A Real World Example 71

Theoretical Basis: Think of a problem to solve in the form of a mathematical
function, which is a subset of the domain of input values cross the range of output
values. Any computable function can be represented by a universal Turing machine
with a starting tape containing a definition of the finite state controller for the
machine and a finite amount of starting data. The Kolmogorov complexity [33] of
the function can be thought of as the length of the shortest universal Turing
machine starting tape that solves the problem. Multiple minimal starting tape can
exist with different structures. The size of the function can be taken to be the length
of a starting tape with a simple finite state controller that exhaustively searches a
table of input/output pairs and matches the given input value(s) to find the corre-
sponding output value. If the size of the function is equal to the Kolmogorov
complexity, then there is no room for the use of structure within the function to
reduce the size of the starting tape and still solve the function. If the Kolmogorov
complexity is less than the size of the problem, then there are some combinations of
the various input values that lead to a common outcome. In this formulation, we can
think of finiteness limits as limits on the run time of the universal Turing machine
and/or limits on the length of the starting tape (i.e. limits on the size of the starting
data and/or the state transition diagram for the finite state machine controller).

When finiteness limits are imposed, the nature of the solution must be modified
from an exhaustive lookup table to exploit the commonality among subsets of the
presenting inputs. This process innately involves the explicit incorporation of these
patterns of commonality into the structure of the solution. The recognition of the
commonality in the structure of the problem requires increased structure within the
solution and that structure must exploit the patterns of commonality within the
function. Finiteness limits may be expanded also. When finiteness limits are
expanded, e.g. by increasing speed and/or expressive power of solution platforms,
then either less highly structured solutions can be used or more complex functions
can now be addressed within the expanded limits.

Domain Examples: The initial impetus for the integration of PAVER and
PCASE into a single desktop came from the imposition of a finiteness limit, i.e. the
push to replace two (partially redundant) inventory definitions with a single (uni-
fied) inventory structure. In a similar way, combining the functionality of these
closely related tools matched the reduction in staffing (another finiteness limit),
which accompanied the reduction in field engineering office head counts during the
past twenty years. The more recent pursuit of enterprise level asset data manage-
ment was stimulated by a DoD push to respond to pressure on budgets over the past
decade and a need to be more efficient in the allocation of resources. The push for
plugin modules in the Desktop represents an attempt to reduce the cost (a finiteness
limit) of civil engineering tools by leveraging the common inventory and presen-
tation tools so that each vendor’s civil engineering tool does not need to have its
own (redundantly expensive) version of these shared tools. In fact, it might be
possible for some civil engineering tools to actually have a shorter development
time, lower development cost, and increased range of functionality by leveraging

78 A. Baskin et al.

the desktop tools. In order to exploit these things, the complexity of the plugin tools
must generally be increased by the need to conform to the structures demanded by
the plugin framework, which is a layer of abstraction that could otherwise be
avoided.

5.6.2 SOA Federations Favor Some Structural Patterns
Over Others

As we saw in the previous section, some representations of the form of the solution
can embody more knowledge about the structure of the problem at hand than others.
Among competing structures for solutions, we have found that some structures are
more useful than others. We have identified the following structural patterns, which
are especially useful for constructing SOA federations, but are also good software
engineering principles as well:

e Matching—the patterns of coupling and functional decomposition in the solu-
tion will be simplest and more robust if they match the analogous patterns in the
problem domain itself;

e Favor Composition over Specialization—is a common adage in software
engineering but it is especially useful in SOA federations because this bias
makes discover and dynamic composition much easier;

e Manage Variation Explicitly—try to find a balance point between exhaustive
enumeration of standards and the chaos that results from a lack of attention to
the explicit management of patterns of variation;

e Manage patterns of coupling to maximize convergence of the SOA solution
under change—the evolution of best practices means that large SOA systems
will change and convergence under change is essential;

Theoretical Basis: The imposition of finiteness limits drives the increase in
structure for solutions. We first encountered the notion of matching in biology [34]
but we have actively employed it for decades now. Among competing structures for
solutions, biology and, by analogy, best software practice, favors solutions whose
structure matches the patterns of structure in the environment and in the structure of
the problem. In software this means an analysis model where all object class names
and relationships are recognizable by a domain expert as a model of the domain.
The domain model will be more stable than any particular solution structure and
will be better suited for evolution to solve related problems later. The principle of
matching suggests that wherever there are components of the problem domain with
differing rates of evolution, there should be a factor point (composition) to allow
two components of the software to evolve separately. Similarly, when two com-
ponents in the problem domain are highly coupled, then they should be coupled in
the structure of the solution.

5 The Fractal Nature of SOA Federations: A Real World Example 79

The virtue of composition as a tool for modular replaceable parts is well known.
The notions of Discovery and Composition in SOA are intended to directly exploit
composition. Composition is also a key tool for avoiding duplication of function-
ality in multiple places where the evolution of the functionality needs to be shared.

Explicitly managing variation is closely related to the principle of matching,
which was described earlier. It involves finding boundaries in the domain where
elements can vary separately and then match that boundary with a comparable
software module boundary. Either enumerate the variety completely (e.g. Metric or
English unit systems) or explicitly allow for variation in a constrained way, e.g.
using in interface contract. Patterns in dynamical systems can also be shown to
suggest that some structural patterns support evolution better than others [35].

First derived in mechanical engineering but also applied to software, the prin-
ciples of Axiomatic Design [36] show that it is possible to form a dependency
matrix describing patterns of coupling among software modules and describing the
pattern of use of software modules to solve a problem. When the dependency
matrix for the software modules can be made lower triangular, then there is a
precedence ordering over the modules such that they are stably convergent under
changes in them. Software modules and patterns of using them to solve a problem
for which the coupling matrix cannot be made lower triangular require simulta-
neous and coupled changes in multiple places and are not convergent under change.
Changes in software modules can be driven by changes in the requirements and
changes in technology. Explicitly managing patterns of coupling facilitates software
evolution.

Domain Examples: The object model for PAVER is a domain model, which is
then used implement the various requirements for best practices. It matches the real
world pavement domain and, hence, has evolved well. The origin of the enterprise
systems as separate “smokestacks” also mirror the substantial separation of these
functions. The origin PAVER as a separate system made it natural to see the
engineering rules and analysis modules as an extension of the basic inventory. In
hindsight, this use of specialization to add functions to the basic inventory was a
mistake. We should have favored composition and, then, when PCASE came along,
both PAVER and PCASE could have shared the inventory as a commonly held
part. Unfortunately, it has not proven practical to fix this mistake and a workaround
has been required. Had we favored composition originally even when there was not
an obvious use for it, we would have had a better domain model and an easier time
integrating PCASE with a shared inventory.

Managing variation explicitly has been done extensively in PAVER where
certain things can be locked down via analytic closure (e.g. surfaces are flexible,
rigid, or unpaved). In other places where the domain allows for meaningful vari-
ation and/or extension, then users are allowed to extend built-in types and are
required to supply engineering attributes of these types so that they can be used by
the analysis algorithms. The most interesting examples of explicitly managing
variation come from the Enterprise Federation. The integration of GIS attributes
between PAVER and the enterprise GIS attributes has been seen as a problem of
locking down the attributes to be supplied by PAVER to the enterprise GIS system.

80 A. Baskin et al.

At first glance, a specifically enumerated set of attribute values would appear to
make the problem simpler but it actually makes it harder. Especially in a GIS where
users can define their own coloring strategies for attributes, there is constant
demand for more and varied attributes from PAVER. The ultimate solution was to
define a GUID in the GIS to be matched to a GUID in PAVER and then to have the
GIS user “join” the GIS data to the PAVER data as needed. This explicit man-
agement of variation by identifying the only legitimate standardization and toler-
ating complete freedom after that point is simultaneously an instance of matching,
explicit management of variation, and late binding as presented in the next section.

The integration of the real property/asset management data also provides an
instance of matching, explicit management of variation, patterns of coupling and
late binding. Both the pavement domain and the real property domain have an
inventory hierarchy and the hierarchies are highly correlated. The original software
requirements given to the PAVER development team were to modify PAVER to
enforce the congruence of the pavement domain inventory hierarchy and the real
property hierarchy. The high correlation of these two inventory structures (80 %)
made this convergence appear to be simpler than allowing them to be different. By
applying principles of domain modeling and matching, the PAVER development
team was able to push back and get permission to implement the real property tags
at a lower level than originally requested with the justification that there were
legitimate domain rationales for an item to be at two incompatible places in the two
hierarchies and by tagging lower level elements, it was possible to dynamically roll
up the PAVER inventory according to tags representing a somewhat different
composition. The system allowed tags to be supplied at the originally requested
higher level and only exceptions to that assignment were needed at the lower level.
This approach exactly matched the predicted pattern of domain variability. Despite
repeated attempts to force field engineers to use the original exact correspondence
and tag at the originally requested level, the system was not usable for some
locations. Once users were allowed to tag exceptions at the lower level, the system
was accepted. This is an example of predicting a domain requirement based upon
fractal SOA principles and persevering in the face of resistance from contract
monitors.

Explicit management of patterns of coupling is a combination of software
development practices and domain modeling. It is possible to explicitly manage
patterns of coupling by using a heavily constrained N-tier software development
model. Each tier consists of an interface contracts module, which is visible only to
the layer above, and an implementation module, which is not visible to the layer
above. These constraints can be enforced by allowable patterns of reference among
modules. Using this approach, it is not possible for implementation code in one
layer to become coupled to implementation code in a lower layer. Using a strongly
contract driven pattern of allowable coupling does lead to a larger number of
modules than would otherwise be required. If needed, these decoupled modules can
be merged at the last minute to ease packaging while retaining the constraints on
coupling.

5 The Fractal Nature of SOA Federations: A Real World Example 81

5.6.3 SOA Federations Favor Late Binding

As shown in the issues surrounding trust, the SOA ideas of discovery and com-
position imply a substantial departure from the historical notions of “link editing”
all of the software modules in a software system into a single executable at load
time. Like other issues we have identified, the notion of late binding applies at all
levels of abstraction.

Theoretical Basis: The notion of late binding has actually been around for a
long time. In the original LISP implementations, the boundary between program
and data was blurred and a LISP program could build a list of instructions and then
execute those instructions! We stop short of that ultimate example of late binding in
our discussions here, but we note that the inclusion of human users as one of the
SOA Federation members, we achieve late binding of a similar order because the
human users may elect to compose data sources in entirely new ways and may
interpretively execute algorithms by invocation of SOA Services where the algo-
rithm exists only inside the user’s mind or is codified in a best practices manual.

We find another model for late binding in what Lu et al. [37] has called
Engineering as Collaborative Negotiation (ECN). The ECN paradigm was devel-
oped for mechanical engineering product design and we have applied some of its
principles in our work. The basic idea of ECN is to identify constraints on the
design result as early as possible but with the broadest tolerances possible. This
approach is in contrast to more traditional mechanical engineering design approa-
ches that emphasize the preparation of relatively specific designs for major sub-
systems as the overall product design matures. By identifying broad constraints on
the design as early as possible and delaying selection of specific design values until
as late as possible, designers can detect conflicts in the design much earlier than
would otherwise be possible. This late binding approach leads to a more agile and
cost effective design process. We find a similar situation in SOA Federations
because the delay in binding to details can afford opportunities for opportunistic
selection of tools for composition.

Domain Examples: The mechanisms for late binding are different at each level
of abstraction, but there is value to late binding at each level. The matchup for GIS
data and Real property data needs to be late bound because the Air Force, Navy,
and Army all use PAVER but use different enterprise systems. We can use a single
data harvest mechanism, but each service must use its own tools for accessing the
data. Secondly, the data may be referenced in place (planned for the Air Force) or
by accessing a “published” copy of data (Army and Navy).

The Desktop federation of PAVER and PCASE uses late binding when
importing data and when exporting data. This federation has a collection of
application tools, which may contain one tool or both tools depending upon what
the user has installed. The import and export tools actually bind to the collection of
applications for putting data into an export file or bringing in data from an import
file. These operations are internalized into each of the Desktop SOA federation
members. The data for all plugin modules is processed by the desktop for

82 A. Baskin et al.

import/export but each plugin module will only be bound to data if there is both
data in the plugin persistence and the plugin is activated for the user. Another
example of late binding occurs when the user opens a database. Any given database
might have been created with PAVER alone, PCASE alone, or both PAVER and
PCASE installed. During the file open process, each application is allowed the
opportunity to create any missing databases, which might be exclusively managed
by one tool and to add them to the single logically unified database. In this way, the
number of databases and data tables is late bound at the time of file open.

Late binding is a fundamental part of the plugin machinery. Some plugin
modules may be installed as an integral but optional module. We refer to these
plugin modules as “certified” because they can be recognized as being compiled
with the same trust level as the main application code. The user can opt to include
these tools in the user interface and, thereby, cause a late binding of user visible
functionality. For plugin modules from other civil engineering firms, there is both
late binding of those tools to the desktop and also there can be late binding of these
tools to each other through a SOA discovery and composition protocol, which is
mediated by the Desktop as it orchestrates the initial setup of each plugin module.

5.6.4 SOA Federations Contain Mixed Initiative Dialogs

One reason that we have used the word federation throughout this discussion is the
realization that we are bringing together a collection of relatively coequal partici-
pants where the union of what the participants know and can do is needed to solve
complex problems. This relative symmetry of the participants gives rise to the
situation where one federation member may predominate at one point in time and
another participant at another time, and, hence, gives rise to the need to support a
mixed initiative dialog at all levels of abstraction.

Theoretical Basis: We borrow the notion of a mixed initiative dialog from
intelligent tutoring systems [38, 39] in which two semi-autonomous agents interact
with each other while exchanging the control over the interaction. In intelligent
tutoring systems, the human student is made to be more actively involved by being
put into a position of active participation rather than passive listening. In our work
on engineering field office automation in the 80’s, we saw a clear role for sup-
porting the field engineer with individual decision support systems and later groups
of engineers with group decision support systems. By keeping the practicing
engineer involved in the decision making process, some of the harder problems can
be offloaded onto the human user and, thus, we arrive at expert support systems
(where the expert is the human decision maker) rather than expert systems (where
the computer system is expected to be an expert).

Domain Examples: In our civil engineering maintenance management tools, we
emphasize supporting the decisions of a practicing pavement engineer rather than
replacing their decision making with expert-derived rules or algorithms. Examples
of this include the provision of common domain defaults for all required inputs for

5 The Fractal Nature of SOA Federations: A Real World Example 83

work planning together with the ability for the engineer to override the defaults or
extend them, e.g. an initial set of work types, surface types, cost tables, and budgets.
The incorporation of plugin modules is another example of a mixed initiative dialog
where in the installation of a plugin module requires administrative privileges but
does not automatically activate the plugin for the user. By using the “add in
manager” tool, the user can control which Add Ins (plugins) are actually presented
in the user interface. Finally, the composition of functionality among different
plugins requires a dialog between the desktop and the plugin to expose it to other
modules, which, in turn, enter into another mixed initiative dialog to exchange data
and/or provide composite calculations.

At the Enterprise SOA Federation level, we see a mixed initiative dialog
between the systems in the federation where the authoritative source (Spatial Data
Standard system or real property/asset system) might temporarily give way to an
operational authoritative source like PAVER because a field engineer standing on
the pavement may be a more trusted source for those data as a byproduct of the field
data collection.

Within the SOA Federation containing PAVER and PCASE, we again see a
mixed initiative dialog, which we are still trying to fully realize: one system indi-
cates that the most effective intervention is reconstruction and the other designs the
details of the new construction. Each member of this federation draws upon the
shared inventory but has the initiative for capturing and processing largely disjoint
sets of time series data and analyses.

While there is technically a mixed initiative dialog between the various
web-services for PAVER itself, the late binding of add on modules is more inter-
esting and subsumes these internal issues. The mixed initiative dialog begins with
the user electing to use the “Add In Manager” tool to activate one or more installed
additional modules. Each plugin module has the option at this time to require a
license key from the user and either it agrees to become activated or not. Once the
plugin module has been activated, it can request that the Desktop host user interface
items by which the user can request the plugin to respond. The Desktop and the
human user have the initiative more often going forward, but a plugin module can
do things like monitor a GPS feed and/or host its own user interface and the result
of these data can be pushed back into the Desktop Federation to shift the user’s
focus of attention to see the newly selected data. This bi-directional control is most
visible when there are two GIS maps being synchronized bi-directionally—one
from PAVER and one from a plugin. To the human user, the two maps are part of a
single unified interaction experience but the communication among the SOA Tool
Federation members is not a seamless as it appears to the user.

Finally, plugin modules can call upon other plugin modules in something
approximating the normal SOA Discovery and Composition techniques. During the
instantiation of the plugin module, the Desktop and the plugin engage in a back and
forth dialog by which plugin modules can agree to allow them to be used by others
and a link between the modules can be directly established. Plugin modules that
communicate directly with each other no longer need the Desktop to mediate
further communication. Because these modules may also have their own user

84 A. Baskin et al.

interaction items, they behave more like co-routines than procedure call services
and, again, we find a mixed initiative dialog between the plugin modules.

5.6.5 SOA Federations Depend upon the Explicit
Management of Trust, Reliability, and Authoritative
Source

As the length of this section title suggests, management of the issues surrounding
trust is a somewhat messy problem. It involves issues between humans only,
between software modules only, and between software systems and human users of
those systems. As we will see below, this is also an issue between software
development teams whose software systems will be members of a SOA Federation.

Theoretical Basis: The distinction between Authentication (do I believe you are
who you claim to be) and Authorization (what I allow that authenticated identity to
do) is well established, and we build upon that as a foundation for related issues.
Implicit in the SOA notions of Discovery and Composition is the ability to select
among competing sources for providing a required service based upon things like
performance and competence. Rephrasing this in terms of trust, we get the question:
Can I trust you to provide correct services/data in a timely fashion? A subtly related
point can be used to limit which features are shown to human users: Can I trust you
to be able to understand this feature and not be overwhelmed by too many features?
Both of these two questions can be thought of as complementary aspects of the
notion of competence—competence to provide and to consume.

Reliability closely relates to competence: (1) Can I rely upon you to provide
good data/services in a timely fashion? (2) Can I rely upon you to understand and
not corrupt the data and services I expose to you? These questions apply equally
between all SOA Federation members whether they be a human or a computer
software modules.

During the work on the enterprise federation of civil engineering tools for DoD,
we encountered the notion of “authoritative source,” which means the agency
and/or software system designated as the official “go to” source for a body or data
and/or expertise. We have coined the notion of “operational authoritative source,”
which means a source different from the officially designated source but, at least
temporarily, better able to supply reliable data at a particular place and time. As we
will see in the domain examples, these two competing sources will be separates
SOA Federation members and they will enter into a mixed initiative dialog whereby
the authoritative source may be updated by the transient activity of the operational
source.

Although we are still trying to fully understand the fractal nature of trust issues,
we have identified a key role for trust in the following substantially separable areas:

5 The Fractal Nature of SOA Federations: A Real World Example 85

e Trust between software development teams for different SOA Federation
members (federates), which involves territoriality, use of tools you cannot
control, schedule compatibility, and competence;

e Trust between federates and their sources, which involves authoritative sources,
perceived competence/timeliness of the services, and dependence on services
whose availability cannot be guaranteed;

e Trust in the longevity of the available SOA services, which is critical in civil
engineering data management where data must be kept over decades and the
nominal life of the asset may be 50-100 years;

e Trust in user competence, which causes tension between those managing low
level data and managers who must necessarily look across data from multiple
sites/facilities and may not understand low level data.

These diverse aspects of the concept of trust can be found in surprisingly diverse
situations and frequently prove to be deceptively simple to identify and incredibly
difficult to resolve.

Domain Examples: The designation of an authoritative source is entirely
external to the issues being discussed here but the existing authoritative sources for
GIS data and Real Property/Asset data constitute a constraint on major aspects of
the Enterprise SOA Federation. Although these systems are the authoritative source,
PAVER can frequently be asked to provide updated data of higher quality as a
byproduct of field surveys. In fact, many field surveys using PAVER are now
required to obtain the latest GIS and Real Property data and for use in the inspection
process and to return for potential update of the authoritative sources. This mixed
initiative dialog between the systems may be fully or partially automated, but the
authoritative source is responsible for the eventual integrity of the data and may
refine or refuse proposed updates. At the enterprise level, trust between software
development groups and SOA Federation members tends to be resolved by des-
ignation of by a single shared authority, i.e. the Secretary of Defense. The existence
of a single “owner” for all of the SOA Federation members is on a panacea for
resolving trust issues but it is a surprisingly underappreciated necessary condition.
At the enterprise level, the issue of trust for the competence of the various SOA
Federation members has been resolved by their separate evolution and individual
validation. Again, the existence of a common governing authority with control over
allocation of resources and the independently justified existence of the systems
means that the longevity problem is also solved.

The development of the original Federation of PAVER and PCASE, which
predated the inclusion of SOA principles, involved a process of reconciling the
respective pavement engineering domain ontologies and establishing trust between
the separate development groups (one made up of government employees for
PCASE and the PAVER development team). Because there is a natural process of
turnover in software teams, and because these civil engineering systems deal with
problems over a period of decades, it has proven surprisingly difficult to maintain
this trust between the groups over time.

86 A. Baskin et al.

The trust issues between plugins provide the richest examples of trust issues in
the three layers of abstraction. When plugin modules can originate with the PAVER
development team or with competing civil engineering firms there can be no illu-
sion of a common controlling authority and no illusion that these SOA Federation
members will always be there because plugin modules may be separately devel-
oped, licensed and distributed. Increasingly, these plugin modules depend upon
external web services for data and operations and, again, continuity of access is
qualitatively lower than for modules distributed as part of the main system.

The issue of trust is not an absolute distinction. An external authority can des-
ignate an authoritative source, but that distinction is artificial and external to all of
the issues of the SOA Federation. The trust issues generally exist on a precedence
ordering and not as a crisp distinction. We can illustrate this point with the fol-
lowing detailed example.

5.7 Conclusions

This chapter summarizes insights gained from more than twenty years of software
development, maintenance, and evolution of a major pavement management system
(PAVER™). We consider the traditional SOA concepts: (1) Ontologies,
(2) Discovery, (3) Composition, and (4) Orchestration. Often, discussions of SOA
techniques focus on stateless operations, which certainly have their place.
Managing the persistence of time series data is essential whether orchestrating the
collaboration of human civil engineers in a technology mediated federation or
managing diet/exercise data with an app on a cell phone. Accordingly, we have
cited this as a cross-cutting concern. We conclude that time series trends in such
data are much more meaningful than any single snapshot of data. This observation
leads us to an additional dimension, which cuts across all of the SOA concepts
above: Algorithms versus Persistent State. Finally, during twenty years of experi-
ence in the pavement management domain, we have become attuned to the issue of
evolution of best practices and associated decision support software systems, as
well as the need for SOA Federations to support this evolution. This fact gives rise
to a third dimension which we have explored in this work: Evolution. After
reviewing our experiences with SOA Federations at three levels of abstraction, we
have found the following basic principles to be self-similar at three levels of
abstraction:

e Finiteness limits on time, participants, and/or resources demand more highly
structured solutions;

e SOA Federations work best when they (a) match patterns of coupling/evolution
in the domain, (b) favor composition, (c) manage variation as a first class issue,
and (d) explicitly manage patterns of coupling;

e SOA Federations benefit greatly from late binding—especially when paired with
management of variation;

The Fractal Nature of SOA Federations: A Real World Example 87

SOA Federations work best when there is a mixed initiative dialog among
federates and human users;

Trust issues must be managed by SOA Federations and among software
development teams.

We have found all of these fractal principles in our historical review and we have

used them prospectively to guide the development of new SOA system federates to
good effect.

References

10.

11.

12.

13.

14.

15.

16.

17.

. Shahin, M.Y.: Pavement Management for Airports, Roads, and Parking Lots. Chapman &

Hall, New York (1994)

. Reinke, R., et al.: Domain frameworks for collaborative systems: lessons learned from

engineering maintenance management. CTS 2007, 396405 (2007). doi:10.1109/CTS.2007.
4621780

. Zdun, U.: Pattern-based design of a service-oriented middleware for remote object federations.

ACM Trans. Intern. Tech. 8, 3, Article 15 (2008). doi:10.1145/1361186.1361191

. Li, Z., Cai, W., Turner, S.J., Pan, K.: Federate migration in a service oriented HLA RTL 11th

IEEE Symposium on Distributed Simulation and Real-Time Application, pp. 113-121. doi:10.
1109/DS-RT.2007.31

. Wang, W., Yu, W., Li, Q, Wang, W., Liu, X.: Service-oriented high level architecture. In:

Proceedings of summer computer simulation conference, 2008. Article 16

. IEEE: Standard 1516 (HLA Rules), 1516.1 (Federate Interface Specification) and 1516.2

(Object Model Template), September 2000

. WSDL: Web services description language (WSDL) Version 2.0 Part 1: Core Language http://

www.w3.org/TR/wsdl20/. Accessed 20 Mar 2014

. SOAP: SOAP Version 1.2 Part 0: Primer (Second Edition) http://www.w3.org/TR/2007/REC-

soap12-part0-20070427/

. XML Schema: XML Schema Part 1: Structures Second Edition http://www.w3.org/TR/

xmlschema-1/. Accessed 20 June 32013

Seo, C., Zeigler, B.P.: Simulation model standardization through web services: interoperation
and federation on the DEVS/SOA platform. In: Proceedings of symposium on theory of
modeling and simulation—DEVS integrative M&S symposium, 2012. Article 46

Li, J., Karp, A.H.: Access control for the services oriented architecture. In: Proceedings of
ACM workshop on secure web services, pp. 9-17 (2007). doi:10.1145/1214418.1314421
specs @openid.net. “OpenID Authentication 2.0 Final.” 2007. Available online at http:/
openid.net/developers/specs/

Liberty Alliance Project: Liberty ID-WSF web services framework overview. Version 1.1,
2005. Available online at http://www.projectliberty.org/liberty/specifications__1

OASIS: Web services security: WS-security core specification 1.1. OASIS Standard, 2006.
Available online at http://docs.oasis-open.org/wss/v1.1/

OASIS: Security assertion markup language (SAML) 2.0 Technical Overview, Working Draft
05°, 10 May 2005. http://www.oasisopen.org/committees/download.php/12549/sstc-saml-
techoverview-2%5B1%5D.0-draft-05.pdf

Thomas, 1., Meinel, C.: An identity provider to manage reliable digital identities for SOA and
the web. In: Proceedings of IDtrust *10, pp. 26-36 (2010). doi:10.1145/1750389.1750393
Hatameyama, M.: Federation proxy for cross domain identity federation. In: Proceedings of
DIM °09, 13 November 2009, pp. 53-62. doi:10.1145/1655028.1655041

http://dx.doi.org/10.1109/CTS.2007.4621780
http://dx.doi.org/10.1109/CTS.2007.4621780
http://dx.doi.org/10.1145/1361186.1361191
http://dx.doi.org/10.1109/DS-RT.2007.31
http://dx.doi.org/10.1109/DS-RT.2007.31
http://www.w3.org/TR/wsdl20/
http://www.w3.org/TR/wsdl20/
http://www.w3.org/TR/2007/REC-soap12-part0-20070427/
http://www.w3.org/TR/2007/REC-soap12-part0-20070427/
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-1/
http://dx.doi.org/10.1145/1214418.1314421
http://openid.net/developers/specs/
http://openid.net/developers/specs/
http://www.projectliberty.org/liberty/specifications__1
http://docs.oasis-open.org/wss/v1.1/
http://www.oasisopen.org/committees/download.php/12549/sstc-saml-techoverview-2%255B1%255D.0-draft-05.pdf
http://www.oasisopen.org/committees/download.php/12549/sstc-saml-techoverview-2%255B1%255D.0-draft-05.pdf
http://dx.doi.org/10.1145/1750389.1750393
http://dx.doi.org/10.1145/1655028.1655041

88

18.

19.

20.

21.

22.

23

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

A. Baskin et al.

Anastasi, G.F., Carlini, E., Dazzi, P.: Smart cloud federation simulations with CloudSim. In:
Proceedings of ORMACIoud’13, June 17, 2013, pp. 9-16 (2013). doi:10.1145/2465823.
2465828

Al-Masri, E., Mahmoud, Q.H.: Identifying client goals for web service discovery. 2013 IEEE
international conference on services computing 2009, pp. 202-209. doi:10.1109/SCC.2009.60
Dabrowski, M., Pacyna, P.: Cross-identifier domain discovery service for unrelated user
identities. In: Proceedings of the 4th ACM workshop on digital identity management,
pp- 81-88 (2008). doi:10.1145/1456424.1456438

Tolk, A., Turnitsa, C.D., Diallo, S.Y.: Model-based alignment and orchestration of
heterogeneous homeland security applications enabling composition of system of systems.
In: Henderson, S.G., Biller, B., Hsieh, M-H., Shortle, J., Tew, J.D., Barton, R.R. (eds.) IEEE
winter simulation conference, Dec 2007, pp. 842-850. doi:10.1109/WSC.2007.4419680
Tolk, A., Diallo, S.Y., Turnitsa, C.D.: Mathematical models towards self-organizing formal
federation languages based on conceptual models of information exchange capabilities. In:
Mason, S.J., Hill, R.R., Monch, L., Rose, O., Jefferson, T., Fowler, J.W. (eds.) IEEE winter
simulation conference, Dec 2008, pp. 966-974. doi:10.1109/WSC.2008.4736163

. Rathnam, T., Paredis, C.J.J.: Developing federation object models using ontologies. In:

Ingalls, R.G., Rossetti, M.D., Smith, J.S., Peters, B.A. (eds.) Proceedings of the IEEE 2004
Winter Simulation Conference, pp. 1054-1062 (2004). doi:10.1109/WSC.2004.1371429
Calvanese, D., De Giacomo, G., Montali, M.: Foundations of data-aware process analysis: a
database theory perspective. In: Proceedings of PODS ’13, 22-27 June 2013. doi:10.1145/
2463664.2467796

Reichert, M.: Process and data: two sides of the same coin? In Proceedings of the On the Move
Confederated International Conference (OTM 2012), volume 7565 of Lecture Notes in
Computer Science, 2-19 (2012)

Dobos, L., Csabai, 1., Szalay, A.S., Budavari, T., Li, N.: Graywulf: a platform for federated
scientific data and services. Proceedings of SSDBM °’13, July 29-31 2013, Baltimore, MD,
USA, 2013 ACM 978-1-4503-1921-8/13/07 (Pazmany Péter sétany)

Krizevnik, M., Juric, M.B.: Improved SOA persistence architectural model. ACM SIGSOFT
Newsletter 35(3), 1-8 (2010). doi:10.1145/1764810.1764821

Williams, K., Daniel, B.: An introduction to service data objects. Java Developer’s J. (2004)
Carey, M.: The BEA AquaLogic Data Services Platform. Proceedings of SIGMOD 2006, June
27-29, 2006, Chicago, Illinois, USA. Copyright 2006 ACM 1-59593-256

Takatsuka, H., et al.: Design and implementation of rule-based framework for context-aware
services with web services. In: Proceedings of iiWAS ’14, 4-6 December 2014, Hanoi,
Vietnam. doi:10.1145/2684200.2684310

Sarelo, K.: A SOA for ubiquitous communication management. In: Proceedings of
iiWAS2009, 14-16 December 2009, Kuala Lumpur, Malaysia. doi:10.1145/1806338.
1806386

Baskin, A., et al.: Exploring the role of finiteness in the emergence of structure. In: Mittenthal,
J., Baskin, A. (eds.) The principles of organization in organisms. Santa Fe Institute studies in
the sciences of complexity, Proceedings vol 13. Addison-Wesley, Reading, pp. 337-377
(1992)

Li, M., Vitanyi, P.M.B.: Two decades of applied Kolmogorov complexity: in memoriam of
Andrei Nikolaevich Kolmogorov 1903-1987. In: Proceedings of 3rd annual structure in
complexity theory conference, Georgetown University, Washington, 14—17 June 1988
Mittenthal, J.E., et al.: Patterns of structure and their evolution in the organization of
organisms: modules, matching, and compaction. In: Mittenthal, J., Baskin, A. (eds.) The
principles of organization in organisms. Santa Fe Institute studies in the sciences of
complexity, Proceedings vol. 13. Addison-Wesley, Reading, pp 321-332 (1992)

Kauffman, S.A.: The sciences of complexity and “origins of order”. In: Mittenthal, J., Baskin,
A. (eds.) The principles of organization in organisms. Santa Fe Institute studies in the sciences
of complexity, Proceedings vol 13. Addison-Wesley, Reading, pp. 303-319 (1992)

Suh, N.P.: Axiomatic Design. Oxford University Press, New York (2001)

http://dx.doi.org/10.1145/2465823.2465828
http://dx.doi.org/10.1145/2465823.2465828
http://dx.doi.org/10.1109/SCC.2009.60
http://dx.doi.org/10.1145/1456424.1456438
http://dx.doi.org/10.1109/WSC.2007.4419680
http://dx.doi.org/10.1109/WSC.2008.4736163
http://dx.doi.org/10.1109/WSC.2004.1371429
http://dx.doi.org/10.1145/2463664.2467796
http://dx.doi.org/10.1145/2463664.2467796
http://dx.doi.org/10.1145/1764810.1764821
http://dx.doi.org/10.1145/2684200.2684310
http://dx.doi.org/10.1145/1806338.1806386
http://dx.doi.org/10.1145/1806338.1806386

37.

38.

39.

The Fractal Nature of SOA Federations: A Real World Example 89

Lu, S.C.Y., et al.: A scientific foundation of collaborative engineering. CIRP Ann. Manufact.
Technol. 56(2), 605-634 (2007). doi:10.1016/j.cirp.2007.10.010

Chan, T-W., Baskin, A.: Studying with the prince: the computer as a learning companion. In
Proceedings of the ITS-88 Conference (1988), pp. 194-200

Graesser, A.C., et al.: AutoTutor: an intelligent tutoring system with mixed-initiative dialogue.
IEEE Trans. Educ. 48(4), 612-618 (2005). doi:10.1109/TE.2005.856149

http://dx.doi.org/10.1016/j.cirp.2007.10.010
http://dx.doi.org/10.1109/TE.2005.856149

	5 The Fractal Nature of SOA Federations: A Real World Example
	Abstract
	5.1 Introduction
	5.2 The Historical Context of This Work
	5.3 Literature on SOA Federations, SOA Elements, Algorithms and Data Persistence
	5.4 Three Levels of Abstraction for SOA Federations
	5.5 Dimensions of Our SOA World at Each Level of Abstraction: Real World Example
	5.5.1 Enterprise Federation
	5.5.1.1 Ontologies
	5.5.1.2 Discovery
	5.5.1.3 Composition
	5.5.1.4 Orchestration

	5.5.2 Desktop Federation
	5.5.2.1 Ontologies
	5.5.2.2 Discovery
	5.5.2.3 Composition
	5.5.2.4 Orchestration

	5.5.3 Tool Federation
	5.5.3.1 Ontologies
	5.5.3.2 Discovery
	5.5.3.3 Composition
	5.5.3.4 Orchestration

	5.6 Fractal Issues We Have Identified
	5.6.1 Finiteness Limits Drive the Need for Structure
	5.6.2 SOA Federations Favor Some Structural Patterns Over Others
	5.6.3 SOA Federations Favor Late Binding
	5.6.4 SOA Federations Contain Mixed Initiative Dialogs
	5.6.5 SOA Federations Depend upon the Explicit Management of Trust, Reliability, and Authoritative Source

	5.7 Conclusions
	References

