Chapter 2
Approaches to the Evolution of SOA
Systems

Norman Wilde, Bilal Gonen, Eman El-Sheikh
and Alfred Zimmermann

Abstract The evolution of Services Oriented Architectures (SOA) presents many
challenges due to their complex, dynamic and heterogeneous nature. We describe
how SOA design principles can facilitate SOA evolvability and examine several
approaches to support SOA evolution. SOA evolution approaches can be classified
based on the level of granularity they address, namely, service code level, service
interaction level and model level. We also discuss emerging trends, such as
microservices and knowledge-based support, which can enhance the evolution of
future SOA systems.

2.1 Introduction

Early in the history of modern computing it became evident that most of the
software developer’s work actually takes place after an application’s initial deliv-
ery. This work came to be known as “software maintenance”. Despite its economic
importance, in the literature it was usually relegated to a supposedly uninteresting
box at the bottom end of the waterfall software development life cycle.

With time, the term “maintenance” became unpopular because it was found that
most of the work had little to do with repair, and much to do with the evolution of
user needs and of computing environments [1]. As each new need or environment
emerges the application must either adapt, be rewritten, or die.

N. Wilde
Department of Computer Science, University of West Florida, Pensacola, FL, USA
e-mail: nwilde @uwf.edu

A. Zimmermann
Faculty of Informatics, Reutlingen University, Reutlingen, Germany
e-mail: alfred.zimmermann @reutlingen-university.de

B. Gonen
School of Information Technology, University of Cincinnati, Cincinnati, OH, USA

E. El-Sheikh (B)
Center for Cybersecurity, University of West Florida, Pensacola, FL, USA
e-mail: eelsheikh@uwf.edu

© Springer International Publishing Switzerland 2016 5
E. El-Sheikh et al. (eds.), Emerging Trends in the Evolution of Service-Oriented

and Enterprise Architectures, Intelligent Systems Reference Library 111,

DOI 10.1007/978-3-319-40564-3_2

6 N. Wilde et al.

So today we speak more of “software evolution” than “software maintenance”.
This term is also somewhat problematic since “to evolve” is a passive verb, and
thus gives the impression that evolution is something that just happens. In fact,
keeping an application up to date requires very hard work, often under cruel
deadline pressure, performed by very highly qualified professionals. In this chapter
we use both terms since either, “evolution” or “maintenance”, allows us to dis-
tinguish a greenfield software development situation in which design decisions can
be taken freely, from the highly constrained context faced in making changes to an
existing system.

The defining characteristic of software maintenance/evolution as opposed to
development is that any proposed change needs to take into account a large base of
existing software. This software has usually been molded by decisions taken,
possibly years earlier, in circumstances very different from the current reality. Any
change is thus highly constrained.

The emergence of Services Oriented Architecture (SOA) systems in the first
decade of this century certainly did not eliminate the problems of software evo-
lution, but it did change their nature. As a series of authors have pointed out, some
aspects of SOA favor the job of the maintainer while others make it more difficult.
New challenges are created both for practitioners and for researchers [2—6].

In this chapter we first briefly discuss perspectives on software evolution in
general before going on to highlight some of the main approaches when these
perspectives are applied to SOA systems. We cannot attempt to identify all of the
diverse approaches to our subject, but we aim to contrast some of the main themes
and explore advantages and disadvantages. The books and papers we mention are
by no means an exhaustive list, but rather typify different ways of looking at the
SOA evolution problem. We close with some discussion of emerging trends both in
SOA architectures and in using knowledge-based methods to understand these
architectures.

2.2 Perspectives on Software Evolution

One can identify two broad perspectives on software evolution that have dominated
both theory and practice. On the one hand, software can be designed initially to
make evolution easier. This is a perspective for the original software developer. It
focuses on design approaches and implementation architectures that are hoped to
facilitate future evolution. We might call this approach design for evolvability.

The second perspective looks for tools and methods to support ongoing main-
tenance of an existing system. This is a perspective for a maintenance software
engineer. He must accept the system as it is, warts and all, and try to do the best
possible job of keeping it up to date. We could call this perspective support for
evolution.

2 Approaches to the Evolution of SOA Systems 7

2.2.1 Design for Evolvability

In design for evolvability, a key theme has been to find the “right” modularity. Any
large application must be implemented as modules that connect together to provide
the overall system functionality. The choice of modules, their interfaces, and the
connection methods all strongly affect the ease with which changes can be made.

A key initial insight was the concept of “information hiding”, generally credited
to Parnas writing in 1972:

We propose instead that one begins with a list of difficult design decisions or design
decisions which are likely to change. Each module is then designed to hide such a decision
from the others [7].

A designer thus should anticipate change, and hide expected changes within a
single module. If the maintainer has to make one of the expected changes, then he
or she can work within that single module. Design, coding and testing of the change
will thus be far simpler than they would have been if many modules had been
affected.

The difficulty for the designer, of course, is in identifying the likely changes so
early in the system’s lifetime. Security and performance considerations can also
constrain what data and functionality need to be kept together, and thus lead to a
decomposition that may seem less than optimal.

It is also not trivial to find a way of implementing the resulting modules without
encountering insuperable barriers in the programming language or runtime envi-
ronment. Many of the advances of programming languages have involved pro-
viding better mechanisms for modularity, with an explicit or implied goal of
facilitating information hiding.

2.2.2 Support for Evolution

A great diversity of tools has been proposed to support the evolution of an existing
software application. One might think of configuration management systems, edi-
tors that compare software versions, impact analysis tools, regression testing
frameworks, and so on. But one important theme has been to provide the maintainer
with support for program comprehension.

If the biggest difference between development and evolution is the presence of
an existing code base, then the biggest practical difference to the software engineer
is his need to understand that code base. The developer presumably understands the
code he deals with because he, or his immediate colleagues, wrote it. The main-
tainer is often separated from the code’s original authors by a distance of many
miles or many years. He or she must reconstruct sufficient understanding of the
application to be able to change it safely, without unexpected and possibly disas-
trous side effects.

8 N. Wilde et al.

Understanding legacy software is a complex task, both because of the scale of
many existing software applications and because of the variety of relationships that
may need to be understood. It has long been clear that software maintainers cannot
attempt to understand large applications in their entirety or each maintenance task
would take far too long. Instead they try to use a pragmatic as-needed strategy to
understand only what is immediately relevant for the task at hand [8]. Even within
that limitation, however, there is a bewildering variety of information which may be
relevant: the structure of program text, dynamic structure and control flow at
runtime, program functionality and programming plans at different levels of
abstraction, domain knowledge which relates concepts in the real world to struc-
tures in the code, and so on [9].

2.3 Design for Evolvability Approaches to SOA

Services Oriented Architecture is generally regarded not as a specific architecture,
but rather as a general architectural style for structuring software applications.
Terminology varies but typically composite applications are constructed by
orchestrating services running on different nodes and communicating via message
passing. Often an infrastructure layer, sometimes called an Enterprise Service Bus
(ESB), mediates service interactions providing functions such as message routing,
reliable messaging and data transformations (Fig. 2.1).

Within the broad constraints of this style, there are many different ways of
architecting any particular application. Many commentators on SOA have enun-
ciated sets of design principles to guide this process (e.g. [10]), and many of the
principles have evolvability as a goal. Some of the principles have become common
practice while others are still somewhat aspirational.

One general principle is loose coupling of services, meaning generally that the
designer tries to reduce dependencies between services as much as is practicable.
Loose coupling may aid evolution because changes that would otherwise have
required the intervention of a maintenance software engineer are instead handled

e I

Node 1 Node 2 Node 3

Fig. 2.1 Structure of a simple SOA composite application

2 Approaches to the Evolution of SOA Systems 9

automatically. For example at run time each service can publish its address in a
registry, so that other services can find it automatically. The alternative of a
hardwired address in code would require an edit, a build, and a new deployment.
However as Josuttis points out, many of the more advanced strategies designed to
provide loose coupling, such as asynchronous communication and error handling
by compensation, have the side effect of increasing the complexity of code and thus
may hinder maintainability [11].

Perhaps the most universally applied SOA design principle is that each service
should implement a published interface or contract. This principle restates the
module information hiding principle mentioned earlier; the service is a module that
hides all the implementation details behind the interface. The Web Services
Description Language (WSDL) [12] was developed to standardize interface
descriptions across different hardware and software platforms. If the interface is
unchanged, the service implementation can evolve with little or no impact on other
services or on the application as a whole.

The WSDL standard greatly aids runtime linking of services, but it still leaves
great flexibility in the design of services and their interfaces. These design decisions
can have a great impact on evolvability. For example Borovskiy et al. [13] argue
that generic services with flexible interfaces should often be preferred. However
there is a tradeoff since a generic interface is less explicit about the data a service
expects to receive, and thus provides less guidance to service consumers.

An alternative to formulating general principles for SOA design is to formulate
design patterns to guide SOA design. This approach recognizes the difficulty of
establishing principles that are universally applicable and instead defines patterns
that have been found to be effective to achieve specific design goals in specific
circumstances. These design goals often have to do with evolvability and specifi-
cally with managing versioning of a service as it changes (see [14], especially
Chap. 7).

WSDL interface descriptions also aid evolution by facilitating interoperability of
components from diverse owners. Interoperation has been described as having two
or more independent systems operate in a coordinated and meaningful fashion such
that processes are effectively merged or information is effectively shared [15].
If reusable, interoperable components are utilized, then both development and
maintenance of the composite application should be easier because less special-
purpose coding should be required.

However service reuse, as an organizational SOA strategy, seems to have been
more difficult to achieve. Some companies have set out to build portfolios of
reusable services with the idea that these will then be composed into new appli-
cations as the need arises. In some cases the concept seems to be that business
process modeling tools will allow this composition to be done by business experts
with little intervention from scarce software engineers. However the development
of large-scale reusable software components has always been difficult [16] and the
complexities of the assembly of distributed components are daunting. It is perhaps
not surprising that Josuttis finds that assembly is best done “... by business and IT
experts sitting together” and that service reuse is often less than expected [11]. In

http://dx.doi.org/10.1007/978-3-319-40564-3_7

10 N. Wilde et al.

general the contribution of reuse to SOA evolution has probably been much less
than originally anticipated.

2.4 Support for Evolution Approaches to SOA

As previously stated, the support for evolution perspective looks for tools and
methods to aid in the ongoing maintenance of an existing system. The maintainer
has to take the system as it is and solve problems effectively while working within
organizational time constraints. A key theme in this perspective is helping the
maintainer understand the existing system so that he or she can make changes
safely.

As we look at SOA composite applications, perhaps one way to classify the
different support for evolution approaches would be to look at the level of granu-
larity they address. We could distinguish:

1. Service code level approaches that focus on understanding and manipulating the
source code for a service.

2. Service interaction level approaches that focus on understanding how services
work together in the application.

3. Model level approaches that focus on how the services relate to models of the
application’s domain.

2.4.1 Code Level Approaches to SOA Evolution

Historically, many organizations decided to begin their SOA efforts by exposing
existing data or functionality as web services. Vendors soon moved to provide tools
to automate this process so that it became easy to expose code written in a wide
range of languages, from COBOL to C#, and hosted on platforms ranging from
mainframes to Linux .

The tools vary in their capabilities, but it is common to provide the ability to take
existing code and create a service and its WSDL, or to take a WSDL and create
shell code for a client or a service implementation. For example in the Java envi-
ronment, one can take a Java class annotated with @WebService and use the wsgen
tool to create the WSDL and classes that will handle the messaging. Going the other
way, one can take a WSDL from an existing service and use the wsimport tool to
create shell code for a client to access that service. Finally, if using a “WSDL-first”
or “contract-first” development style, one may create the WSDL by hand and, once
it is approved by all stakeholders, use it to generate shell code for the service
implementation [17].

If a composite application was developed using source code based tools, then it
is natural to continue maintaining it using these same tools. One advantage is that

2 Approaches to the Evolution of SOA Systems 11

most of the vendor tools are available through an integrated development envi-
ronment (IDE) that supports program comprehension with code search, code nav-
igation and debugging facilities.

However a focus on code and code-generating tools for SOA evolution also has
several pitfalls. If used incautiously, the tools can generate unwanted dependencies
between a service and its client, thus tightening the coupling between them. To take
just one example, a software engineer may accidentally include in an interface some
of a service’s internal data types. Then the client will necessarily have to use these
same data types. Any change to the data structure on the server will force a change
in the client. The more such code-generating tools are used over the life of a system,
the more likely it is that this sort of design flaw will be introduced.

An important consideration may be the depth of the change. Papazoglou et al.
[18] distinguish between shallow changes, that affect a single service and its
immediate clients, and deep changes whose effects may cascade widely within a
system. Perhaps a code focus may be acceptable in dealing with shallow changes,
but deep changes require a more complex service life cycle to allow for more
complete analysis and for more time for changes to propagate across the service
landscape.

2.4.2 Service Interaction Level Approaches to SOA
Evolution

Many of the tasks involved in SOA evolution do not require studying the code, but
rather focus on understanding the interactions between services. For example a
maintainer may be considering reconfiguring or replacing a service. Or he may need
to locate where particular kinds of data are exchanged or where performance bot-
tlenecks are developing. Much of the research on SOA maintenance and program
comprehension has thus focused at the service interaction level of granularity.

It may be convenient to distinguish here between tools implementing dynamic
and static approaches, since the practicalities of using tools will be different in each
case. Dynamic tools get their input from actual execution of the system and use logs
or message traces, often supplemented to meet the needs of the tool. Static
approaches take as their input descriptions of the SOA system, such as requirements
or design documentation, UML models, WSDL interface descriptions, etc. Each
approach has its advantages and drawbacks.

One of the earliest dynamic approaches came from a group at IBM. De Pauw
et al. [19] describe a visualization tool, Web Services Navigator, which helps users
to understand SOA applications better. The tool collects data from event logs and
processes it to generate visual abstractions, such as flow patterns, as well as views
of transaction flows and data content. The paper describes how the tool has been
used to understand overall application behavior in several different problem solving
scenarios.

12 N. Wilde et al.

A narrower application of dynamic analysis attempts to recover and understand
feature sequences, that is, the service interaction messages that occur when an end
user makes use of a particular feature of the application. The problem is that there
may be other concurrent users or routine system interactions that obscure the
desired feature. Coffey et al. compute a relevance index for each observed message,
giving greater weight to messages that are seen when a feature is known to be
active. A Feature Sequence Viewer lets the maintainer set a threshold to view the
sequence of the most relevant messages [20].

Zawawy et al. [21] present an interesting method that combines dynamic analysis of
service logs with preliminary manual encoding of requirements information in goal
trees. Their objective is to aid in root cause analysis of failures during corrective
maintenance. Their method compares the events recorded in the logs with the goal trees
describing expected behavior to locate the fault that is the root cause for a failure.

Chen et al. [22] describe a general framework that can be used to collect
dynamic information to monitor SOA applications for a wide variety of mainte-
nance and evolution tasks. They aim to integrate monitoring techniques into web
service frameworks, so that the information for dynamic analysis will be trans-
parently available for all applications using the framework.

Espinha et al. also use dynamic analysis to describe the runtime topology of a
SOA application, by which they mean identifying which services are running, and
how they depend and interact with one another. They provide an interesting
analysis of the data a maintainer needs for different evolution scenarios. Their
Serviz tool intercepts incoming requests to each service to capture the data they
need for system visualizations [23].

The dynamic analysis approaches have many advantages. As can be seen from
the examples we have cited, dynamic data can support striking visualizations to
provide insight into the running system. Also dynamic data comes from the as-built
system and thus, unlike models or documentation, is reliably up to date. However it
can be difficult to take data from a running system at all the necessary points
without encountering instrumentation, performance, and even confidentiality diffi-
culties. Also, any dynamic data depends on what the system was doing at the
moment when it was being observed; exceptional or rare behavior may be missed.

Static analysis methods, on the other hand, try to help a maintainer understand a
SOA application without having to run it. They thus avoid the data collection
problems of dynamic analysis, but with some costs.

One simple approach is to build on well-established search technologies to
support SOA maintainers. The SOAMiner tool searches both text documentation
and WSDLs, XML data schemas, and Business Process Execution Language
(BPEL) code [24]. As well as conventional search, the tool also has a rule-based
SOA Intel component that creates searchable abstractions from any XML structured
inputs. The abstractions summarize relationships within the system and were
defined based on the results of SOA comprehension case studies [25].

The problem with the search-based approach is that it largely leaves it up to the
maintainer to formulate queries and understand the responses. The abstractions
extracted from WSDLs, data descriptions, and BPEL can go only so far in

2 Approaches to the Evolution of SOA Systems 13

providing high-level understanding of the system. However to go beyond the
search-based approach seems to require additional inputs which may or may not be
present for an existing SOA application.

For example Coffey et al. reverse engineer the WSDLs, data descriptions and
BPELs into automatically generated concept maps which provide a convenient
visualization of the SOA system. The intent is to then conduct interviews with
system experts to annotate these maps into a more complete system description that
would document it for future maintenance [26].

In another static approach, Kabzeva et al. present a very interesting method that
focuses on managing the relationships in a large service network. However as well
as the WSDL and BPEL inputs mentioned previously, they require information in
modeling notations such as Business Process Model and Notation (BPMN) and
Event-Driven Process Chains (EPC). If this information is present they can provide
a relationships model that would seem to be very useful for maintenance tasks such
as impact analysis [27].

Similarly Bauer et al. propose the use of a SOA repository with advanced
analysis capabilities to identify relationships between the services and perform
several important kinds of analysis, both to detect already existing problems
(as-is-analyses), as well as problems that might occur due to future service changes
(what-if-analyses). However they do not make clear how their repository would be
populated with information and what manual inputs may be required [28].

So for static analysis at the service interaction level, there is a tradeoff between
undemanding approaches such as search that leave a great deal to the user, and
more sophisticated approaches with more complete results, but that require human
data collection or accurate pre-existing system models.

2.4.3 Model Level Approaches to SOA Evolution

Modeling approaches can be used to support SOA evolution. Such approaches
focus on the development of models to represent service oriented or enterprise
architectures and the use of such models to guide their maintenance and evolution.

One such example is the OASIS Reference Model for Service Oriented
Architecture [29], which is an abstract framework that guides reference architec-
tures [30]. The ESARC—Enterprise Services Architecture Reference Cube [31]
(Fig. 2.2) is more specific and completes these architectural standards in the context
of EAM—Enterprise Architecture Management, and extends these architecture
standards for services and cloud computing.

ESARC provides an abstract model to support the integration of business
architectures with application architectures and implementation of service-based
enterprise systems, and with the technology and operation architecture. ESARC is
an original architecture reference model, which provides an integral view for main
interweaved architecture types. ESARC abstracts from a concrete business scenario
or technologies. The Open Group Architecture Framework provides the basic

14 N. Wilde et al.

Technology
Architecture

N

Architecture
Management

‘ Security Architecture 7
: /

Fig. 2.2 ESARC—enterprise software architecture reference cube

blueprint and structure for the extended service-oriented enterprise software
architecture domains like: Architecture Governance, Architecture Management,
Business and Information Architecture, Information Systems Architecture,
Technology Architecture, Operation Architecture, and Cloud Services Architecture.
ESARC provides a coherent aid for the evolution of architectures by facilitating
their examination, comparison, classification, quality evaluation and optimization
of architectures.

Enterprise Architecture Management for Services Computing is a commonly
preferred approach to organize, build and utilize distributed capabilities for Digital
Transformation [32]. They provide flexibility and agility in business and IT sys-
tems. The development of such applications integrates the Internet of Things
(IoT) [33], Web Services [34], REST Services [35], Cloud Computing [36] and Big
Data [37], among other frameworks and methods, like architectural semantic sup-
port. Today’s information systems span a broad range of domains including:
intelligent mobility systems and services, intelligent energy support systems, smart
personal health-care systems and services, intelligent transportation and logistics
services, smart environmental systems and services, intelligent systems and soft-
ware engineering, intelligent engineering and manufacturing. Microservices [38—
40] and the Internet of Things [33] are examples of base technologies for the fast
performing digital transformation. The Internet of Things enables a large number of
physical devices to connect each other to perform wireless data communication and
interaction using the Internet as a global communication environment.

Research reported in [41] focuses on extending the Enterprise Services
Architecture Reference Cube (ESARC) by mechanisms for architectural integration
and evolution to support adaptable information systems and architectural trans-
formations for changing architectural models. ESARC is an extendable classifica-
tion framework, which sets a conceptual baseline for digital architectural models.

2 Approaches to the Evolution of SOA Systems 15

ESARC makes it possible to verify, define and track the improvement path of
different business and IT changes considering alternative business operating mod-
els, business functions and business processes, enterprise services and systems,
their architectures and related technologies.

To integrate a huge amount of dynamically growing architectural descriptions
for services, microservices, or the Internet of Things into consistent enterprise
architectures is a considerable challenge. Further research focuses on integrating
small EA descriptions for each relevant IoT object. EA-IoT-Mini-Description
consists of partial EA-IoT-Data, partial EA-IoT-Models, and partial
EA-IoT-Metamodels associated with main IoT objects like IoT-Resource,
IoT-Device, and IoT-Software-Component [33]. This research addresses questions
such as how can we federate these EA-IoT-Mini-Descriptions to a global EA model
and information base by promoting a mixed automatic and collaborative decision
process [42]. For the automatic part, model federation and transformation approa-
ches are extended by introducing sematic-supported architectural representations,
e.g. by using partial and federated ontologies and associated mapping rules—as
universal enterprise architectural knowledge representation, which are combined
with special inference mechanisms [43—46].

Metamodels can be used to define architecture model elements and their rela-
tionships within ESARC. These metamodels serve as an abstraction for architec-
tural elements and relate them to architecture ontologies [47]. The OASIS
Reference Model for SOA [29] is an abstract framework, which defines generic
elements and their relationships for service-oriented architectures. Models and
metamodels such as ESARC allow software maintainers to navigate the multidi-
mensional space of service oriented and enterprise architectures and facilitate the
development and use of semantic-supported navigation and intelligent inferences.

For years semantic technologies were said to revolutionize the web but for the
time being the adoption rate is rather low. The basic idea of semantic web is to
make the content of the web understandable for machines via the creation of
semantic knowledge bases called ontologies. Semantic Web Services are typically
extensions to conventional web services [48]. Semantic web services add extra
semantic information in order to support automatic web service discovery, auto-
matic web service invocation, automatic web service composition and interopera-
tion [49]. Model Driven Architecture (MDA) uses UML as its preferred modeling
language. Semantic models are extremely expressive when modeling structural
knowledge. This facilitates modeling as well as maintenance of a model.

Salhofer et al. [S0] presents an approach to apply the principles of Model Driven
Architecture (MDA) combined with a semantic model. Model Driven Architecture
focuses on the creation of models that should be turned into code automatically by
code generators. The core idea is to create a model of a system that only represents
its functionality but is not influenced by any technological platform. This model is
called the Platform Independent Model (PIM). From the PIM, the Platform Specific
Model (PSM) is generated. The PSM is then turned into source code by a code
generator.

16 N. Wilde et al.

2.5 Emerging Trends

This section describes several emerging trends that can support the evolution of
SOA systems.

2.5.1 Microservices and Design for Evolvability

A recent trend in many software application domains has been the shortening of
software product delivery cycles. Companies have recognized that there is a strong
commercial advantage to providing new features to customers ahead of their
competitors. Software is often now delivered as a web application, perhaps com-
bined with a client “app” automatically pushed to customer smartphones. In this
environment the customer gets each new version transparently and there is no
barrier to releasing new software daily or hourly. Terms used to describe this new
software production model include continuous deployment, continuous delivery and
DevOps since the roles of software developers and IT system operators become
merged [51].

To support this model, new software engineering practices are being adopted
such as small teams, tight communication between developers and other stake-
holders, identical development and production environments, automatic build on
commit, automatic testing on build, and automatic deployment on successful test.
For these practices to work, the architecture of the application needs to be carefully
planned.

Microservices is a name that has been given to an architectural style intended to
work within these foreshortened delivery cycles [40]. The term is still relatively
new and there is controversy about exactly what constitutes a microservices
architecture. Recently at the 11th SEI Architecture Technology User Network
(SATURN) Conference, a workshop characterized microservices as shown in
Fig. 2.3 [38, 39].

The concept is that there will be small teams each responsible for a few small
independent services. Teams will work at their own pace deploying new versions of
services when they are ready, without having to coordinate versions. In our ter-
minology, this is clearly a “design for evolvability” approach to SOA evolution. It
remains to be seen if this approach will stand the test of time.

2.5.2 Knowledge-Based Support

Knowledge-based methods can support the evolution of increasingly complex SOA
systems of the future. Such methods involve the use of knowledge representations
to model SOA systems and reasoning strategies to support maintenance tasks and

2 Approaches to the Evolution of SOA Systems 17

Fig. 2.3 The microservices The SOA Architectural style, roughly consistent of these
architectural style constraints:

e Communication via messages
e Each service is independently deliverable
e Loosely coupled
Plus organizational constraints
e Decentralized design authority
e Architectis a coach
e Architecture is enforced through tooling
e Limited team size
In order to

e Sustain high delivery velocity by removing
contention between teams and allowing rapid
evolution (i.e. business agility and responding to
change)

code comprehension. In particular, ontological modeling can support SOA evolu-
tion by representing both high-level business and architectural views of the whole
application as well as lower level, code-focused views.

A commonly used ontology, the Open Group SOA ontology, can be extended to
develop a SOA Evolution Ontology that better addresses software maintenance
demands [30]. The Open Group’s ontology describes business processes, services
and their interfaces in a fairly abstract manner. The maintainer needs that
description, but also needs to deal with concrete implementation details as may be
found in design rationale, detailed interface specifications and in code. As an
example of this approach, an ontology was developed to support semantic browsing
and help a maintainer quickly acquire the information needed for a particular
maintenance task [52]. A specialized semantic browser can be used to support the
navigation of the large repositories of textual, semi-structured artifacts describing a
SOA system. Textual artifacts include natural language design rationale, design and
code documentation, semi-formal service interface specifications (e.g. WSDLs),
BPEL orchestration code, etc. These artifacts are annotated through semantic labels
that support discovery of the semantic relations between different artifacts.

Although little research has been reported on the development and use of
knowledge-based methods for the maintenance and evolution of SOA systems there
is literature on the application of semantic web techniques for maintaining tradi-
tional (non-SOA) software systems. The research reported in [52] focused on
providing ontological support for software artifacts such as source code and doc-
umentation. In work reported by Witte et al. [53], customized ontologies were
populated automatically from source code and documentation, and then queried to

18 N. Wilde et al.

provide support for source code security analysis, for traceability links between
source code and documentation and for architecture analysis. In work by
Hyland-Wood et al. [54], an ontology was developed to describe the relationship
between object-oriented software components.

Rastgoo et al. [55] is one of the few papers that take a knowledge-based
approach to facilitate software engineering processes for SOA. The paper proposes
automated generation of requirements ontologies using UML diagrams. The gen-
erated ontology considers the behavior and hierarchical relationship of services.
Experimental results demonstrate the improvement of the proposed approach from
perspectives, such as completeness and automatic generation of requirements
ontology for SOA systems.

Knowledge-based support and ontological models can help address SOA evo-
lution challenges to keep them in continuous service in the face of rapidly changing
environments, continually emerging security risks, and a dynamic mix of partner
organizations. Future trends will see the development of ecosystems of ontologies to
describe increasingly complex SOA systems [41]. Consistent modeling approaches
will need to emerge to bridge architectural levels and address the different concerns
of business experts, developers and maintainers. The task of supporting the evo-
Iution of SOA systems will always be challenging, but such knowledge-based
models could greatly ease the burden on software maintainers.

2.6 Concluding Remarks

In this chapter we described the challenges of software maintenance and evolution
and examined various approaches specifically within the context of Services
Oriented Architectures. We argue that SOA design principles such as loose cou-
pling and service interfaces can facilitate SOA system evolvability. We described
various approaches for SOA evolution support, which were classified by their level
of granularity: service code level, service interaction level and model level
approaches. We also presented emerging trends in supporting the maintenance and
evolution of SOA systems, including microservices and knowledge-based support.
Approaches such as the ones examined in this chapter can enhance the evolution of
future SOA systems.

References

1. Lientz, B.P., Swanson, E.B., Tompkins, G.E.: Characteristics of application software
maintenance. Commun. ACM 21(6), 466471 (1978)

2. Gold, N., Mohan, A., Knight, C., Munro, M.: Understanding service-oriented software. Softw.
IEEE 21(2), 71-77 (2004)

3. CanforaHarman, G., Di Penta, M.: New frontiers of reverse engineering. Future Softw. Eng.
(2007) (IEEE Computer Society)

10.

11

12.

13.

14.
15.
16.

. Hewitt, E.: Java SOA Cookbook. O’Reilly Media Inc. (2009)
18.

17

19.

20.

21.

22.

23.

24.

25.

26.

Approaches to the Evolution of SOA Systems 19

. Lewis, G., Smith, D.B.: Service-oriented architecture and its implications for software

maintenance and evolution. Frontiers Softw. Maint. (FoSM) (2008) (IEEE)

. Kontogiannis, K.: Challenges and opportunities related to the design, deployment and,

operation of Web Services. Front. Softw. Maint. (FoSM) (2008) (IEEE)

. Lewis, G.A., Smith, D.B., Kontogiannis, K.: Proceedings of the Fourth International

Workshop on a Research Agenda for Maintenance and Evolution of Service-Oriented Systems
(MESOA 2010) (2011)

. Parnas, D.L.: On the criteria to be used in decomposing systems into modules. Commun.

ACM 15(12), 1053-1058 (1972)

. Koenemann, J., Robertson, S.P.: Expert problem solving strategies for program

comprehension. In: Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems. ACM (1991)

. Von Mayrhauser, A.: Program comprehension during software maintenance and evolution.

Computer 28(8), 44-55 (1995)
Erl, T.: SOA Principles of Service Design, vol. 37, pp. 71-75. Prentice Hall, Boston (2007)

. Josuttis, N.M.: SOA in Practice: The Art of Distributed System Design. O’Reilly (2007).

ISBN 0-596-52955-4

Christensen, E., Curbera, F., Meredith, G., Weerawarana, S.: Web services description
language (WSDL) 1.1 (2001)

Borovskiy, V., Mueller, J., Schapranow, M., Zeier, A.: Ensuring service backwards
compatibility with generic web services. In: Proceedings of the 2009 ICSE Workshop on
Principles of Engineering Service Oriented Systems. IEEE Computer Society (2009)
Daigneau, R.: Service Design Patterns: Fundamental Design Solutions for SOAP/WSDL and
Restful Web Services. Addison-Wesley (2011)

Scholl, H.J., Klischewski, R.: E-government integration and interoperability: framing the
research agenda. Int. J. Publ. Adm. 30(8-9), 889-920 (2007)

Glass, R.L.: Facts and Fallacies of Software Engineering. Addison Wesley (2003)

Papazoglou, M.P., Andrikopoulos, V., Benbernou, S.: Managing evolving services. Softw.
IEEE 28(3), 49-55 (2011)

De Pauw, W., Lei, M., Pring, E., Villard, L., Arnold, M., Morar, J.F.: Web services navigator:
visualizing the execution of web services. IBM Syst. J. 44(4), 821-845 (2005)

Coffey, J., White, L., Wilde, N., Simmons, S.: Locating software features in a SOA composite
application. In: 2010 IEEE 8th European Conference on Web Services (ECOWS). IEEE
(2010)

Zawawy, H., Mylopoulos, J., Mankovskii, S.: Requirements-driven framework for root cause
analysis in SOA environments. In: Proceedings of the Fourth International Workshop on a
Research Agenda for Maintenance and Evolution of Service-Oriented Systems (MESOA
2010) (2011)

Chen, C., Zaidman, A., Gross, H.: A framework-based runtime monitoring approach for
service-oriented software systems. In: Proceedings of the International Workshop on Quality
Assurance for Service-Based Applications. ACM (2011)

Espinha, T., Zaidman, A., Gross, H.G.: Understanding the runtime topology of
service-oriented systems. In: 2012 19th Working Conference on Reverse Engineering
(WCRE), pp. 187-196. IEEE (2012)

Wilde, N., Leal, D., Goehring, G., Terry, C.: Enhanced search: an approach to the maintenance
of services oriented architectures. In: Ninth International Conference on Software Engineering
Advances (ICSEA 2014). Nice, France, 12-16 Oct 2014

El-Sheikh, E., Reichherzer, T., White, L., Wilde, N., Coffey, J., Bagui, S., et al.: Towards
enhanced program comprehension for service oriented architecture (SOA) systems (2013)
Coffey, J.W., Reichherzer, T., Owsnick-Klewe, B., Wilde, N.: Automated concept map
generation from service-oriented architecture artifacts, pp. 49-56 (2012)

20

217.

28.

29.

30.

31.

32.

33.

34.

35.

36

38.

39.

40.
41.

42.

43.

44.

45.

46.
47.

48

50.

N. Wilde et al.

Kabzeva, A., Gotze, J., Lottermann, T., Miiller, P.: Service relationships management for
maintenance and evolution of service networks. In: The Eighth International Conference on
Software Engineering Advances (ICSEA 2013) (2013)

Bauer, T., Buchwald, S., Tiedeken, J., Reichert, M.: A SOA repository with advanced analysis
capabilities-improving the maintenance and flexibility of service-oriented applications (2015)
MacKenzie, C.M., Laskey, K., McCabe, F., Brown, P.F., Metz, R., Hamilton, B.A.: Reference
model for service oriented architecture 1.0, p. 12. OASIS Standard (2006)

Open Group: Service-oriented architecture ontology (2010)

Zimmermann, A., Buckow, H., Gross, H., Nandico, O.F., Piller, G., Prott, K.: Capability
diagnostics of enterprise service architectures using a dedicated software architecture reference
model. In: 2011 IEEE International Conference on Services Computing (SCC). IEEE (2011)
Zimmermann, A., Schmidt, R., Sandkuhl, K., Jugel, D., Moehring, M., Wissotzki, M.:
Enterprise architecture management for the internet of things. Lecture Notes in Informatics
(2015), Dec 15, Boeblingen, Germany

Patel, P., Cassou, D.: Enabling high-level application development for the internet of things.
J. Syst. Softw. 103, 62-84 (2015)

Papazoglou, M.P., Web Services & SOA: Principles and Technology. Pearson—Prentice Hall
(2012)

Ebert, J., Erl, T., Carlyle, B., Pautasso, C., Balasubramanian, R.: SOA with REST: Principles,
Patterns & Constraints for Building Enterprise Solutions with REST. ACM SIGSOFT
Software Engineering Notes, vol. 38(3), pp. 32-33 (2013)

. Marinescu, D.C.: Cloud Computing: Theory and Practice. Newnes (2013)
37.

Berman, J.J.: Principles of Big Data: Preparing, Sharing, and Analyzing Complex Information.
Newnes (2013)

Microservices Workshop at SATURN 2015 [Internet]. Available from: https://saturnnetwork.
wordpress.com/2015/05/07/microservices-workshop-at-saturn-2015
SATURN2015-Microservices-Workshop Key Outcomes [Internet]. Available from: https://
github.com/michaelkeeling/SATURN2015-Microservices-Workshop/blob/master/outcomes/
key-outcomes.md

Newman, S.: Building Microservices. O’Reilly Media, Inc. (2015)

Zimmermann, A., Gonen, B., Schmidt, R., El-Sheikh, E., Bagui, S., Wilde, N.: Adaptable
enterprise architectures for software evolution of smart life ecosystems. In: 2014 IEEE 18th
International Enterprise Distributed Object Computing Conference Workshops and
Demonstrations (EDOCW). IEEE (2014)

Jugel, D., Schweda, C.M., Zimmermann, A.: Modeling decisions for collaborative enterprise
architecture engineering. In: Advanced Information Systems Engineering Workshops.
Springer (2015)

Breu, R., Agreiter, B., Farwick, M., Felderer, M., Hafner, M., Innerhofer-Oberperfler, F.:
Living models-ten principles for change-driven software engineering. Int. J. Softw. Inform. §
(1-2), 267-290 (2011)

Farwick, M., Pasquazzo, W., Breu, R., Schweda, C.M., Voges, K., Hanschke, I.. A
meta-model for automated enterprise architecture model maintenance. In: 2012 IEEE 16th
International Enterprise Distributed Object Computing Conference (EDOC). IEEE (2012)
Trojer, T., Farwick, M., Hausler, M., Breu, R.: Living modeling of IT architectures: challenges
and solutions. In: Software, Services, and Systems, pp. 458—474. Springer (2015)

Khan, N.A.: Transformation of enterprise model to enterprise ontology (2011)
Zimmermann, A., Zimmermann, G.: Enterprise architecture ontology for services computing.
In: Service Computation, pp. 64-9 (2012)

. Alonso, G., Casati, F., Kuno, H., Machiraju, V.: Web Services. Springer (2004)
49.

Martin, D., Paolucci, M., Mcllraith, S., Burstein, M., McDermott, D., McGuinness, D., et al.:
Bringing semantics to web services: the OWL-S approach. In: Semantic Web Services and
Web Process Composition, pp. 26—42. Springer (2005)

Salhofer, P., Stadlhofer, B.: Semantic MDA for e-government service development. In: 2012
45th Hawaii International Conference on System Science (HICSS). IEEE (2012)

https://saturnnetwork.wordpress.com/2015/05/07/microservices-workshop-at-saturn-2015
https://saturnnetwork.wordpress.com/2015/05/07/microservices-workshop-at-saturn-2015
https://github.com/michaelkeeling/SATURN2015-Microservices-Workshop/blob/master/outcomes/key-outcomes.md
https://github.com/michaelkeeling/SATURN2015-Microservices-Workshop/blob/master/outcomes/key-outcomes.md
https://github.com/michaelkeeling/SATURN2015-Microservices-Workshop/blob/master/outcomes/key-outcomes.md

2 Approaches to the Evolution of SOA Systems 21

51. Wikipedia: DevOps [Internet] (2015). Available from: http://en.wikipedia.org/wiki/DevOps

52. Gonen, B., Fang, X., El-Sheikh, E., Bagui, S., Wilde, N., Zimmermann. A., et al.
Maintaining SOA Systems of the future—how can ontological modeling help? In: KEOD
2014—Proceedings of the International Conference on Knowledge Engineering and Ontology
Development, Rome, Italy, 21-24 Oct 2014

53. Witte, R., Zhang, Y., Rilling, J.: Empowering software maintainers with semantic web
technologies. In: The Semantic Web: Research and Applications, pp. 37-52. Springer (2007)

54. Hyland-Wood, D., Carrington, D., Kaplan, S.: Towards a software maintenance methodology
using semantic web techniques and paradigmatic documentation modelling. Softw. IET 2(4),
337-347 (2008)

55. Rastgoo, V., Hosseini, M., Kheirkhah, E.: Semantic web-based software engineering by
automated requirements ontology generation in SOA. Int. J. Web Seman. Technol. 5(2), 1
(2014)

Author Biographies

Norman Wilde is Nystul Chair and Professor of Computer Science at the University of West
Florida. He received his Ph.D. in Mathematics and Operations Research from the Massachusetts
Institute of Technology in 1971. His research interests are Software Engineering, Software
Maintenance/Evolution, Services Oriented Architectures and Cybersecurity.

Bilal Gonen is an Assistant Professor of Information Technology at the University of Cincinnati.
He received his Ph.D. in Computer Science and Engineering from University of Nevada, Reno, in
2011. His research interests are Software Engineering, Services Oriented Architectures, Computer
Networks, Complex Networks, Social Network Analysis, Semantic Web, Algorithms, Machine
Learning.

Eman El-Sheikh is Professor of Computer Science and Director of the Center for Cybersecurity at
the University of West Florida. She received her Ph.D. in Computer Science from Michigan State
University in 2001. Her research interests include Aurtificial Intelligence, Machine Learning,
Intelligent Systems, Cybersecurity, Software Maintenance and Evolution, and Services Oriented
Architectures.

Alfred Zimmermann is Professor of Computer Science at Reutlingen University and Research
Director of the Herman Hollerith Center for Services Computing Boeblingen, Germany. His
research is focused on Digital Transformation and Digital Enterprise Architecture in close
relationship with Services and Cloud Computing. He graduated in Medical informatics at the
University of Heidelberg and got his Ph.D. in Informatics from the University of Stuttgart,
Germany.

http://en.wikipedia.org/wiki/DevOps

	2 Approaches to the Evolution of SOA Systems
	Abstract
	2.1 Introduction
	2.2 Perspectives on Software Evolution
	2.2.1 Design for Evolvability
	2.2.2 Support for Evolution

	2.3 Design for Evolvability Approaches to SOA
	2.4 Support for Evolution Approaches to SOA
	2.4.1 Code Level Approaches to SOA Evolution
	2.4.2 Service Interaction Level Approaches to SOA Evolution
	2.4.3 Model Level Approaches to SOA Evolution

	2.5 Emerging Trends
	2.5.1 Microservices and Design for Evolvability
	2.5.2 Knowledge-Based Support

	2.6 Concluding Remarks
	References

