
Intelligent Systems Reference Library 111

Eman El-Sheikh
Alfred Zimmermann
Lakhmi C. Jain Editors

Emerging Trends
in the Evolution of
Service-Oriented
and Enterprise
Architectures

Intelligent Systems Reference Library

Volume 111

Series editors

Janusz Kacprzyk, Polish Academy of Sciences, Warsaw, Poland
e-mail: kacprzyk@ibspan.waw.pl

Lakhmi C. Jain, University of Canberra, Canberra, Australia;
Bournemouth University, UK;
KES International, UK
e-mails: jainlc2002@yahoo.co.uk; Lakhmi.Jain@canberra.edu.au

About this Series

The aim of this series is to publish a Reference Library, including novel advances
and developments in all aspects of Intelligent Systems in an easily accessible and
well structured form. The series includes reference works, handbooks, compendia,
textbooks, well-structured monographs, dictionaries, and encyclopedias. It contains
well integrated knowledge and current information in the field of Intelligent
Systems. The series covers the theory, applications, and design methods of
Intelligent Systems. Virtually all disciplines such as engineering, computer science,
avionics, business, e-commerce, environment, healthcare, physics and life science
are included.

More information about this series at http://www.springer.com/series/8578

http://www.springer.com/series/8578

Eman El-Sheikh • Alfred Zimmermann
Lakhmi C. Jain
Editors

Emerging Trends
in the Evolution
of Service-Oriented
and Enterprise Architectures

123

Editors
Eman El-Sheikh
Center for Cybersecurity
University of West Florida
Pensacola, FL
USA

Alfred Zimmermann
Hochschule Reutlingen
Reutlingen
Germany

Lakhmi C. Jain
KES International
Leeds
UK

and

University of Canberra
Canberra, ACT
Australia

and

Bournemouth University
Poole
UK

ISSN 1868-4394 ISSN 1868-4408 (electronic)
Intelligent Systems Reference Library
ISBN 978-3-319-40562-9 ISBN 978-3-319-40564-3 (eBook)
DOI 10.1007/978-3-319-40564-3

Library of Congress Control Number: 2016942895

© Springer International Publishing Switzerland 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG Switzerland

Foreword

Almost 25 years ago Henderson and Venkatraman were writing “Even though the
information technology has evolved from its traditional orientation and adminis-
trative support toward a more strategic role within an organization, there is still a
glaring lack of fundamental frameworks within which to understand the potential of
IT for tomorrow’s organizations” (IBM Systems Journal 32(1), 1993). Targeting to
master this challenging issue, they developed a model, strategic alignment model,
and derived four perspectives of alignment with specific impacts for guiding
management practices in order to “leverage IT for transforming organizations.”

More recent technologies and paradigms (such as cloud computing, big data,
IoT) show that not the ownership of IT resources but their strategic management is
the foundation for sustainable competitive advantage, as it was earlier defended by
Mata, Fuerst, and Barney (MIS Quaterly, 1995).

A decade ago, Ross, Weill, and Robertson in their book “Enterprise Architecture
as Strategy: Creating a Foundation for Business Execution” (2006) illustrated
through numerous companies worldwide, how constructing the right enterprise
architecture enhances profitability and time to market, improves strategy execution,
and even lowers IT costs.

Enterprise architecture (EA) aimed (i) to understand the interactions and all
kinds of articulations between business and IT, (ii) to define how to align business
components and IT components, as well as business strategy and IT strategy, and
more particularly (iii) to develop and support a common understanding and sharing
of those purposes of interest. EA is also used to map the enterprise goals and
strategy to the enterprise’s resources (actors, assets, and IT supports) and to manage
the evolution of this mapping.

Services are the governing principle for EA. Nearly all newly created EAs are
service-oriented. Service-oriented enterprise architecture (SoEA) easily integrates
widespread technological approaches such as SOA or emerging ones as cloud
computing because they also use service as structuring and governing paradigm.
The scope of SoEA is much broader than the scope of the SOA and also includes
services not accessible through software such as business services and infrastructure

v

services. Services of different purposes and granularities may be interconnected in
service (value) nets to provide higher-level services.

Today, foundations of social computing influence EA in new ways. The senior
management defines organizational structures no longer alone, but weak ties that
are initiated by individuals superimpose the organization. Innovation is no longer a
process guided by an elite, but can be initiated by every member of an organization.
Decisions are no longer only made by experts, but are also results of collaborative
processes. Big data technologies allow to process data with higher velocity, variety,
and volume and to create new information flows and data services within EAs.

EA is positioned as a coordination and steering mechanism and as an instrument
to support the strategic direction of digital enterprises, which new frontiers require
permeability and which new structures require elasticity. The service paradigm and
the underlying mechanisms offer an accelerator for nurturing the elasticity of EAs
and that of the enterprises themselves, to allow them to survive in evolving business
ecosystems. In this context, service ecosystems offer a new land of application for
the Nash equilibrium.

The new challenges for the “design by reuse” of modern IT solutions (recom-
mended to be built in shorter cycles), in accordance with SOA and EA frameworks,
impose in turn new challenges to the “design for reuse.” The latter should (i) handle
the potential components (services), in terms of abilities to satisfy functional
business requirements in manyfold contexts and also (ii) deal with new capabilities
for mastering nonfunctional requirements, such as flexibility, maintainability, and
trustworthiness, which may themselves be variable in different contexts.

The twelve chapters of this book all together present challenging issues and hot
topics related to the emerging trends in the evolution of service-oriented and
enterprise architectures, as the evolution of EAs and systems, the flexibility, the
maintainability, the security of the underlying software solutions and infrastruc-
tures, the digital transformation, the capability management, the forecasting of
service demands, the conciliation of resilient and stable parts of EA, which are
essential for the integrity of transactions and reliability of systems, with a
fast-speed-architecture offering channels that are pivotal for the customer experi-
ence. As advocated by one of the contributors, “Digital Transformation sets a new
challenge for the enterprise architect: she has now not just to align the IT with the
demands from the business but to enable and even invent new business opportu-
nities. So the architecture capability of an organization gets an active part in
shaping the business”.

Selmin Nurcan
University Paris 1 Panthéon-Sorbonne

vi Foreword

Preface

This research oriented book presents emerging trends in the evolution of
Service-Oriented and Enterprise architectures. New architectures and methods of
both business and IT are integrating services to support mobility systems, Internet
of Things, Ubiquitous Computing, collaborative and adaptive business processes,
Big Data, and Cloud ecosystems. They inspire current and future digital strategies
and create new opportunities for the digital transformation of next digital products
and services. Service-Oriented Architectures (SOA) and Enterprise Architectures
(EA) have emerged as useful frameworks for developing interoperable, large-scale
systems, typically implementing various standards, like Web Services, REST, and
Microservices. Managing the adaptation and evolution of such systems presents a
great challenge. Service-Oriented Architectures enable flexibility through loose
coupling, both between the services themselves and between the IT organizations
that manage them. Enterprises evolve continuously by transforming and extending
their services, processes and information systems. Enterprise Architectures provide
a holistic blueprint to help define the structure and operation of an organization with
the goal of determining how an organization can most effectively achieve its
objectives. This book presents several novel approaches to address the challenges
of the service-oriented evolution of digital enterprise and software architectures.

The book is directed to the researchers, postgraduate, graduate and undergrad-
uate students, professors and practitioners who are interested in the service-oriented
evolution of digital enterprise and software architectures.

We are grateful to the contributors and reviewers for their very valuable
expertise and contributions without which this book would not have existed. We
wish to show our appreciation to Springer-Verlag for their support right from the
concept development to the final typesetting phase of this book.

The unconditional support provided by our universities is acknowledged.

USA Eman El-Sheikh
Germany Alfred Zimmermann
Australia Lakhmi C. Jain

vii

Contents

1 Evolution of Service-Oriented and Enterprise Architectures:
An Introduction . 1
Eman El-Sheikh, Alfred Zimmermann and Lakhmi C. Jain
1.1 Introduction . 1
References. 3

2 Approaches to the Evolution of SOA Systems. 5
Norman Wilde, Bilal Gonen, Eman El-Sheikh
and Alfred Zimmermann
2.1 Introduction . 5
2.2 Perspectives on Software Evolution . 6

2.2.1 Design for Evolvability . 7
2.2.2 Support for Evolution . 7

2.3 Design for Evolvability Approaches to SOA 8
2.4 Support for Evolution Approaches to SOA. 10

2.4.1 Code Level Approaches to SOA Evolution 10
2.4.2 Service Interaction Level Approaches to SOA

Evolution. 11
2.4.3 Model Level Approaches to SOA Evolution 13

2.5 Emerging Trends . 16
2.5.1 Microservices and Design for Evolvability 16
2.5.2 Knowledge-Based Support . 16

2.6 Concluding Remarks. 18
References. 18

3 Flexible and Maintainable Service-Oriented Architectures
with Resource-Oriented Web Services . 23
Michael Gebhart, Pascal Giessler and Sebastian Abeck
3.1 Introduction . 23
3.2 Fundamentals . 25

3.2.1 SOAP . 25
3.2.2 REST . 26

ix

http://dx.doi.org/10.1007/978-3-319-40564-3_1
http://dx.doi.org/10.1007/978-3-319-40564-3_1
http://dx.doi.org/10.1007/978-3-319-40564-3_1
http://dx.doi.org/10.1007/978-3-319-40564-3_1#Sec1
http://dx.doi.org/10.1007/978-3-319-40564-3_1#Sec1
http://dx.doi.org/10.1007/978-3-319-40564-3_1#Bib1
http://dx.doi.org/10.1007/978-3-319-40564-3_2
http://dx.doi.org/10.1007/978-3-319-40564-3_2
http://dx.doi.org/10.1007/978-3-319-40564-3_2#Sec1
http://dx.doi.org/10.1007/978-3-319-40564-3_2#Sec1
http://dx.doi.org/10.1007/978-3-319-40564-3_2#Sec2
http://dx.doi.org/10.1007/978-3-319-40564-3_2#Sec2
http://dx.doi.org/10.1007/978-3-319-40564-3_2#Sec3
http://dx.doi.org/10.1007/978-3-319-40564-3_2#Sec3
http://dx.doi.org/10.1007/978-3-319-40564-3_2#Sec4
http://dx.doi.org/10.1007/978-3-319-40564-3_2#Sec4
http://dx.doi.org/10.1007/978-3-319-40564-3_2#Sec5
http://dx.doi.org/10.1007/978-3-319-40564-3_2#Sec5
http://dx.doi.org/10.1007/978-3-319-40564-3_2#Sec6
http://dx.doi.org/10.1007/978-3-319-40564-3_2#Sec6
http://dx.doi.org/10.1007/978-3-319-40564-3_2#Sec7
http://dx.doi.org/10.1007/978-3-319-40564-3_2#Sec7
http://dx.doi.org/10.1007/978-3-319-40564-3_2#Sec8
http://dx.doi.org/10.1007/978-3-319-40564-3_2#Sec8
http://dx.doi.org/10.1007/978-3-319-40564-3_2#Sec8
http://dx.doi.org/10.1007/978-3-319-40564-3_2#Sec9
http://dx.doi.org/10.1007/978-3-319-40564-3_2#Sec9
http://dx.doi.org/10.1007/978-3-319-40564-3_2#Sec10
http://dx.doi.org/10.1007/978-3-319-40564-3_2#Sec10
http://dx.doi.org/10.1007/978-3-319-40564-3_2#Sec11
http://dx.doi.org/10.1007/978-3-319-40564-3_2#Sec11
http://dx.doi.org/10.1007/978-3-319-40564-3_2#Sec12
http://dx.doi.org/10.1007/978-3-319-40564-3_2#Sec12
http://dx.doi.org/10.1007/978-3-319-40564-3_2#Sec13
http://dx.doi.org/10.1007/978-3-319-40564-3_2#Sec13
http://dx.doi.org/10.1007/978-3-319-40564-3_2#Bib1
http://dx.doi.org/10.1007/978-3-319-40564-3_3
http://dx.doi.org/10.1007/978-3-319-40564-3_3
http://dx.doi.org/10.1007/978-3-319-40564-3_3
http://dx.doi.org/10.1007/978-3-319-40564-3_3#Sec1
http://dx.doi.org/10.1007/978-3-319-40564-3_3#Sec1
http://dx.doi.org/10.1007/978-3-319-40564-3_3#Sec2
http://dx.doi.org/10.1007/978-3-319-40564-3_3#Sec2
http://dx.doi.org/10.1007/978-3-319-40564-3_3#Sec3
http://dx.doi.org/10.1007/978-3-319-40564-3_3#Sec3
http://dx.doi.org/10.1007/978-3-319-40564-3_3#Sec4
http://dx.doi.org/10.1007/978-3-319-40564-3_3#Sec4

3.2.3 Quality Model . 27
3.3 Scenario . 28
3.4 Quality Indicators for Resource-Oriented Web Services 29

3.4.1 Unique Categorization . 30
3.4.2 Loose Coupling . 32
3.4.3 Discoverability. 34
3.4.4 Autonomy . 36

3.5 Conclusion and Outlook . 37
References. 38

4 Knowledge Elicitation and Conceptual Modeling to Foster
Security and Trust in SOA System Evolution 41
John W. Coffey, Arthur Baskin and Dallas Snider
4.1 Introduction . 41
4.2 Security and Trust in SOA Federations 42
4.3 Concept Maps, Knowledge Models, and Knowledge

Modeling . 44
4.4 Studies in Knowledge Modeling for SOA Security

and Trust . 45
4.4.1 Developing a Security Assurance Case

Through Knowledge Modeling 45
4.4.2 Assessing Trust Needs for a SOA Federation 48

4.5 Discussion . 55
4.6 Conclusions . 56
References. 57

5 The Fractal Nature of SOA Federations: A Real
World Example . 59
Arthur Baskin, Robert Reinke and John W. Coffey
5.1 Introduction . 60
5.2 The Historical Context of This Work . 62
5.3 Literature on SOA Federations, SOA Elements,

Algorithms and Data Persistence . 63
5.4 Three Levels of Abstraction for SOA Federations 65
5.5 Dimensions of Our SOA World at Each Level

of Abstraction: Real World Example . 66
5.5.1 Enterprise Federation. 67
5.5.2 Desktop Federation . 70
5.5.3 Tool Federation . 72

5.6 Fractal Issues We Have Identified. 76
5.6.1 Finiteness Limits Drive the Need for Structure 76
5.6.2 SOA Federations Favor Some Structural Patterns

Over Others . 78
5.6.3 SOA Federations Favor Late Binding 81

x Contents

http://dx.doi.org/10.1007/978-3-319-40564-3_3#Sec5
http://dx.doi.org/10.1007/978-3-319-40564-3_3#Sec5
http://dx.doi.org/10.1007/978-3-319-40564-3_3#Sec6
http://dx.doi.org/10.1007/978-3-319-40564-3_3#Sec6
http://dx.doi.org/10.1007/978-3-319-40564-3_3#Sec7
http://dx.doi.org/10.1007/978-3-319-40564-3_3#Sec7
http://dx.doi.org/10.1007/978-3-319-40564-3_3#Sec8
http://dx.doi.org/10.1007/978-3-319-40564-3_3#Sec8
http://dx.doi.org/10.1007/978-3-319-40564-3_3#Sec9
http://dx.doi.org/10.1007/978-3-319-40564-3_3#Sec9
http://dx.doi.org/10.1007/978-3-319-40564-3_3#Sec10
http://dx.doi.org/10.1007/978-3-319-40564-3_3#Sec10
http://dx.doi.org/10.1007/978-3-319-40564-3_3#Sec11
http://dx.doi.org/10.1007/978-3-319-40564-3_3#Sec11
http://dx.doi.org/10.1007/978-3-319-40564-3_3#Sec12
http://dx.doi.org/10.1007/978-3-319-40564-3_3#Sec12
http://dx.doi.org/10.1007/978-3-319-40564-3_3#Bib1
http://dx.doi.org/10.1007/978-3-319-40564-3_4
http://dx.doi.org/10.1007/978-3-319-40564-3_4
http://dx.doi.org/10.1007/978-3-319-40564-3_4
http://dx.doi.org/10.1007/978-3-319-40564-3_4#Sec1
http://dx.doi.org/10.1007/978-3-319-40564-3_4#Sec1
http://dx.doi.org/10.1007/978-3-319-40564-3_4#Sec2
http://dx.doi.org/10.1007/978-3-319-40564-3_4#Sec2
http://dx.doi.org/10.1007/978-3-319-40564-3_4#Sec3
http://dx.doi.org/10.1007/978-3-319-40564-3_4#Sec3
http://dx.doi.org/10.1007/978-3-319-40564-3_4#Sec3
http://dx.doi.org/10.1007/978-3-319-40564-3_4#Sec4
http://dx.doi.org/10.1007/978-3-319-40564-3_4#Sec4
http://dx.doi.org/10.1007/978-3-319-40564-3_4#Sec4
http://dx.doi.org/10.1007/978-3-319-40564-3_4#Sec5
http://dx.doi.org/10.1007/978-3-319-40564-3_4#Sec5
http://dx.doi.org/10.1007/978-3-319-40564-3_4#Sec5
http://dx.doi.org/10.1007/978-3-319-40564-3_4#Sec8
http://dx.doi.org/10.1007/978-3-319-40564-3_4#Sec8
http://dx.doi.org/10.1007/978-3-319-40564-3_4#Sec12
http://dx.doi.org/10.1007/978-3-319-40564-3_4#Sec12
http://dx.doi.org/10.1007/978-3-319-40564-3_4#Sec13
http://dx.doi.org/10.1007/978-3-319-40564-3_4#Sec13
http://dx.doi.org/10.1007/978-3-319-40564-3_4#Bib1
http://dx.doi.org/10.1007/978-3-319-40564-3_5
http://dx.doi.org/10.1007/978-3-319-40564-3_5
http://dx.doi.org/10.1007/978-3-319-40564-3_5
http://dx.doi.org/10.1007/978-3-319-40564-3_5#Sec1
http://dx.doi.org/10.1007/978-3-319-40564-3_5#Sec1
http://dx.doi.org/10.1007/978-3-319-40564-3_5#Sec2
http://dx.doi.org/10.1007/978-3-319-40564-3_5#Sec2
http://dx.doi.org/10.1007/978-3-319-40564-3_5#Sec3
http://dx.doi.org/10.1007/978-3-319-40564-3_5#Sec3
http://dx.doi.org/10.1007/978-3-319-40564-3_5#Sec3
http://dx.doi.org/10.1007/978-3-319-40564-3_5#Sec4
http://dx.doi.org/10.1007/978-3-319-40564-3_5#Sec4
http://dx.doi.org/10.1007/978-3-319-40564-3_5#Sec5
http://dx.doi.org/10.1007/978-3-319-40564-3_5#Sec5
http://dx.doi.org/10.1007/978-3-319-40564-3_5#Sec5
http://dx.doi.org/10.1007/978-3-319-40564-3_5#Sec6
http://dx.doi.org/10.1007/978-3-319-40564-3_5#Sec6
http://dx.doi.org/10.1007/978-3-319-40564-3_5#Sec11
http://dx.doi.org/10.1007/978-3-319-40564-3_5#Sec11
http://dx.doi.org/10.1007/978-3-319-40564-3_5#Sec16
http://dx.doi.org/10.1007/978-3-319-40564-3_5#Sec16
http://dx.doi.org/10.1007/978-3-319-40564-3_5#Sec21
http://dx.doi.org/10.1007/978-3-319-40564-3_5#Sec21
http://dx.doi.org/10.1007/978-3-319-40564-3_5#Sec22
http://dx.doi.org/10.1007/978-3-319-40564-3_5#Sec22
http://dx.doi.org/10.1007/978-3-319-40564-3_5#Sec23
http://dx.doi.org/10.1007/978-3-319-40564-3_5#Sec23
http://dx.doi.org/10.1007/978-3-319-40564-3_5#Sec23
http://dx.doi.org/10.1007/978-3-319-40564-3_5#Sec24
http://dx.doi.org/10.1007/978-3-319-40564-3_5#Sec24

5.6.4 SOA Federations Contain Mixed Initiative Dialogs 82
5.6.5 SOA Federations Depend upon the Explicit

Management of Trust, Reliability, and Authoritative
Source . 84

5.7 Conclusions . 86
References. 87

6 Leveraging Analytics for Digital Transformation of Enterprise
Services and Architectures . 91
Alfred Zimmermann, Rainer Schmidt, Kurt Sandkuhl,
Eman El-Sheikh, Dierk Jugel, Christian Schweda, Michael Möhring,
Matthias Wißotzki and Birger Lantow
6.1 Introduction . 92
6.2 Digitization of Products and Services . 94
6.3 Digital Enterprise Architecture . 96
6.4 Decision Case Management . 98
6.5 Collaborative Decision Processes . 102
6.6 Decision Analytics . 103
6.7 Semantic Support for Architectural Analytics 105
6.8 Conclusions and Future Work . 108
References. 108

7 A Framework to Support Digital Transformation 113
Oliver F. Nandico
7.1 Changed Role of IT and the Enterprise Architecture

in the Times of Digital Transformation. 113
7.1.1 Changed Role of the Architect 113
7.1.2 Services as Atomic Building Blocks

of the Architecture. 114
7.1.3 Time Is the Most Limited Resource 114
7.1.4 Agile Approach Necessary . 114
7.1.5 Need for a Lightweight Enterprise Architecture

Framework . 115
7.1.6 Overview of This Article. 115

7.2 Digital Transformation and the Consequences
for a Respective Framework . 116

7.3 The Lightweight Enterprise Architecture Framework—A
Very Focused Customization of TOGAF 117

7.4 Drivers of Digital Transformation Provide a Foundation
for Architecture Guidelines and Principles 118

7.5 Issues to Be Addressed for Digital Transformation
by a Lightweight Enterprise Architecture Framework 120

Contents xi

http://dx.doi.org/10.1007/978-3-319-40564-3_5#Sec25
http://dx.doi.org/10.1007/978-3-319-40564-3_5#Sec25
http://dx.doi.org/10.1007/978-3-319-40564-3_5#Sec26
http://dx.doi.org/10.1007/978-3-319-40564-3_5#Sec26
http://dx.doi.org/10.1007/978-3-319-40564-3_5#Sec26
http://dx.doi.org/10.1007/978-3-319-40564-3_5#Sec26
http://dx.doi.org/10.1007/978-3-319-40564-3_5#Sec27
http://dx.doi.org/10.1007/978-3-319-40564-3_5#Sec27
http://dx.doi.org/10.1007/978-3-319-40564-3_5#Bib1
http://dx.doi.org/10.1007/978-3-319-40564-3_6
http://dx.doi.org/10.1007/978-3-319-40564-3_6
http://dx.doi.org/10.1007/978-3-319-40564-3_6
http://dx.doi.org/10.1007/978-3-319-40564-3_6#Sec1
http://dx.doi.org/10.1007/978-3-319-40564-3_6#Sec1
http://dx.doi.org/10.1007/978-3-319-40564-3_6#Sec2
http://dx.doi.org/10.1007/978-3-319-40564-3_6#Sec2
http://dx.doi.org/10.1007/978-3-319-40564-3_6#Sec3
http://dx.doi.org/10.1007/978-3-319-40564-3_6#Sec3
http://dx.doi.org/10.1007/978-3-319-40564-3_6#Sec4
http://dx.doi.org/10.1007/978-3-319-40564-3_6#Sec4
http://dx.doi.org/10.1007/978-3-319-40564-3_6#Sec5
http://dx.doi.org/10.1007/978-3-319-40564-3_6#Sec5
http://dx.doi.org/10.1007/978-3-319-40564-3_6#Sec6
http://dx.doi.org/10.1007/978-3-319-40564-3_6#Sec6
http://dx.doi.org/10.1007/978-3-319-40564-3_6#Sec7
http://dx.doi.org/10.1007/978-3-319-40564-3_6#Sec7
http://dx.doi.org/10.1007/978-3-319-40564-3_6#Sec8
http://dx.doi.org/10.1007/978-3-319-40564-3_6#Sec8
http://dx.doi.org/10.1007/978-3-319-40564-3_6#Bib1
http://dx.doi.org/10.1007/978-3-319-40564-3_7
http://dx.doi.org/10.1007/978-3-319-40564-3_7
http://dx.doi.org/10.1007/978-3-319-40564-3_7#Sec1
http://dx.doi.org/10.1007/978-3-319-40564-3_7#Sec1
http://dx.doi.org/10.1007/978-3-319-40564-3_7#Sec1
http://dx.doi.org/10.1007/978-3-319-40564-3_7#Sec2
http://dx.doi.org/10.1007/978-3-319-40564-3_7#Sec2
http://dx.doi.org/10.1007/978-3-319-40564-3_7#Sec3
http://dx.doi.org/10.1007/978-3-319-40564-3_7#Sec3
http://dx.doi.org/10.1007/978-3-319-40564-3_7#Sec3
http://dx.doi.org/10.1007/978-3-319-40564-3_7#Sec4
http://dx.doi.org/10.1007/978-3-319-40564-3_7#Sec4
http://dx.doi.org/10.1007/978-3-319-40564-3_7#Sec5
http://dx.doi.org/10.1007/978-3-319-40564-3_7#Sec5
http://dx.doi.org/10.1007/978-3-319-40564-3_7#Sec6
http://dx.doi.org/10.1007/978-3-319-40564-3_7#Sec6
http://dx.doi.org/10.1007/978-3-319-40564-3_7#Sec6
http://dx.doi.org/10.1007/978-3-319-40564-3_7#Sec7
http://dx.doi.org/10.1007/978-3-319-40564-3_7#Sec7
http://dx.doi.org/10.1007/978-3-319-40564-3_7#Sec8
http://dx.doi.org/10.1007/978-3-319-40564-3_7#Sec8
http://dx.doi.org/10.1007/978-3-319-40564-3_7#Sec8
http://dx.doi.org/10.1007/978-3-319-40564-3_7#Sec9
http://dx.doi.org/10.1007/978-3-319-40564-3_7#Sec9
http://dx.doi.org/10.1007/978-3-319-40564-3_7#Sec9
http://dx.doi.org/10.1007/978-3-319-40564-3_7#Sec10
http://dx.doi.org/10.1007/978-3-319-40564-3_7#Sec10
http://dx.doi.org/10.1007/978-3-319-40564-3_7#Sec10
http://dx.doi.org/10.1007/978-3-319-40564-3_7#Sec11
http://dx.doi.org/10.1007/978-3-319-40564-3_7#Sec11
http://dx.doi.org/10.1007/978-3-319-40564-3_7#Sec11

7.6 The Viewpoints of the Lightweight Enterprise
Architecture Framework . 125
7.6.1 Viewpoints at Enterprise Level 126
7.6.2 Viewpoints at Project Level. 129

7.7 The Challenge for the Architect of a Digital Transformation
Program . 137

References. 137

8 A Two-Speed Architecture for the Digital Enterprise. 139
Oliver Bossert
8.1 Introduction . 139
8.2 The Digital Era . 140
8.3 Fundamentals of a Two-Speed Architecture 144

8.3.1 Implications for Enterprise Architecture 145
8.4 The Building Blocks of Digital-Enterprise Architecture 147
8.5 Organizational and Process Implications 148
8.6 Conclusion . 150
References. 150

9 Capability-Driven Development . 151
Hasan Koç, Jan-Christian Kuhr, Kurt Sandkuhl and Felix Timm
9.1 Introduction . 151
9.2 Problem Investigation: The Need for Capability-Driven

Development. 153
9.2.1 Flexible Business Services in Utility Industries 153
9.2.2 Adaptive E-Government Services 155
9.2.3 Industrial Requirements . 155

9.3 Background and Related Work . 156
9.3.1 Notion of Capability in CDD and EAM

Capabilities . 157
9.3.2 Context Modelling. 158
9.3.3 Overview of Capability Design Methods 159
9.3.4 Summary . 161

9.4 Capability-Driven Development . 162
9.4.1 CDD Method. 163
9.4.2 CDD Implementation. 165

9.5 Real-World Use Case: Utility Industry . 167
9.5.1 Background and Motivation . 167
9.5.2 Use Case Scenario. 168
9.5.3 Capability Model . 170
9.5.4 Clearing Center . 171

9.6 Summary and Recommendations . 174
References. 175

xii Contents

http://dx.doi.org/10.1007/978-3-319-40564-3_7#Sec12
http://dx.doi.org/10.1007/978-3-319-40564-3_7#Sec12
http://dx.doi.org/10.1007/978-3-319-40564-3_7#Sec12
http://dx.doi.org/10.1007/978-3-319-40564-3_7#Sec13
http://dx.doi.org/10.1007/978-3-319-40564-3_7#Sec13
http://dx.doi.org/10.1007/978-3-319-40564-3_7#Sec16
http://dx.doi.org/10.1007/978-3-319-40564-3_7#Sec16
http://dx.doi.org/10.1007/978-3-319-40564-3_7#Sec22
http://dx.doi.org/10.1007/978-3-319-40564-3_7#Sec22
http://dx.doi.org/10.1007/978-3-319-40564-3_7#Sec22
http://dx.doi.org/10.1007/978-3-319-40564-3_7#Bib1
http://dx.doi.org/10.1007/978-3-319-40564-3_8
http://dx.doi.org/10.1007/978-3-319-40564-3_8
http://dx.doi.org/10.1007/978-3-319-40564-3_8#Sec1
http://dx.doi.org/10.1007/978-3-319-40564-3_8#Sec1
http://dx.doi.org/10.1007/978-3-319-40564-3_8#Sec2
http://dx.doi.org/10.1007/978-3-319-40564-3_8#Sec2
http://dx.doi.org/10.1007/978-3-319-40564-3_8#Sec3
http://dx.doi.org/10.1007/978-3-319-40564-3_8#Sec3
http://dx.doi.org/10.1007/978-3-319-40564-3_8#Sec4
http://dx.doi.org/10.1007/978-3-319-40564-3_8#Sec4
http://dx.doi.org/10.1007/978-3-319-40564-3_8#Sec5
http://dx.doi.org/10.1007/978-3-319-40564-3_8#Sec5
http://dx.doi.org/10.1007/978-3-319-40564-3_8#Sec6
http://dx.doi.org/10.1007/978-3-319-40564-3_8#Sec6
http://dx.doi.org/10.1007/978-3-319-40564-3_8#Sec7
http://dx.doi.org/10.1007/978-3-319-40564-3_8#Sec7
http://dx.doi.org/10.1007/978-3-319-40564-3_8#Bib1
http://dx.doi.org/10.1007/978-3-319-40564-3_9
http://dx.doi.org/10.1007/978-3-319-40564-3_9
http://dx.doi.org/10.1007/978-3-319-40564-3_9#Sec1
http://dx.doi.org/10.1007/978-3-319-40564-3_9#Sec1
http://dx.doi.org/10.1007/978-3-319-40564-3_9#Sec2
http://dx.doi.org/10.1007/978-3-319-40564-3_9#Sec2
http://dx.doi.org/10.1007/978-3-319-40564-3_9#Sec2
http://dx.doi.org/10.1007/978-3-319-40564-3_9#Sec3
http://dx.doi.org/10.1007/978-3-319-40564-3_9#Sec3
http://dx.doi.org/10.1007/978-3-319-40564-3_9#Sec4
http://dx.doi.org/10.1007/978-3-319-40564-3_9#Sec4
http://dx.doi.org/10.1007/978-3-319-40564-3_9#Sec5
http://dx.doi.org/10.1007/978-3-319-40564-3_9#Sec5
http://dx.doi.org/10.1007/978-3-319-40564-3_9#Sec6
http://dx.doi.org/10.1007/978-3-319-40564-3_9#Sec6
http://dx.doi.org/10.1007/978-3-319-40564-3_9#Sec7
http://dx.doi.org/10.1007/978-3-319-40564-3_9#Sec7
http://dx.doi.org/10.1007/978-3-319-40564-3_9#Sec7
http://dx.doi.org/10.1007/978-3-319-40564-3_9#Sec8
http://dx.doi.org/10.1007/978-3-319-40564-3_9#Sec8
http://dx.doi.org/10.1007/978-3-319-40564-3_9#Sec9
http://dx.doi.org/10.1007/978-3-319-40564-3_9#Sec9
http://dx.doi.org/10.1007/978-3-319-40564-3_9#Sec10
http://dx.doi.org/10.1007/978-3-319-40564-3_9#Sec10
http://dx.doi.org/10.1007/978-3-319-40564-3_9#Sec11
http://dx.doi.org/10.1007/978-3-319-40564-3_9#Sec11
http://dx.doi.org/10.1007/978-3-319-40564-3_9#Sec12
http://dx.doi.org/10.1007/978-3-319-40564-3_9#Sec12
http://dx.doi.org/10.1007/978-3-319-40564-3_9#Sec13
http://dx.doi.org/10.1007/978-3-319-40564-3_9#Sec13
http://dx.doi.org/10.1007/978-3-319-40564-3_9#Sec14
http://dx.doi.org/10.1007/978-3-319-40564-3_9#Sec14
http://dx.doi.org/10.1007/978-3-319-40564-3_9#Sec15
http://dx.doi.org/10.1007/978-3-319-40564-3_9#Sec15
http://dx.doi.org/10.1007/978-3-319-40564-3_9#Sec16
http://dx.doi.org/10.1007/978-3-319-40564-3_9#Sec16
http://dx.doi.org/10.1007/978-3-319-40564-3_9#Sec17
http://dx.doi.org/10.1007/978-3-319-40564-3_9#Sec17
http://dx.doi.org/10.1007/978-3-319-40564-3_9#Sec18
http://dx.doi.org/10.1007/978-3-319-40564-3_9#Sec18
http://dx.doi.org/10.1007/978-3-319-40564-3_9#Sec19
http://dx.doi.org/10.1007/978-3-319-40564-3_9#Sec19
http://dx.doi.org/10.1007/978-3-319-40564-3_9#Bib1

10 Exploring the Nature of Capability Research 179
Matthias Wißotzki
10.1 Introduction . 179
10.2 Research Approach . 180
10.3 Planning the Review. 180

10.3.1 Motivating Research Questions 181
10.3.2 Source Selection . 182
10.3.3 Time Frame Selection . 182

10.4 Performing the Review . 183
10.4.1 Article Selection . 183
10.4.2 Data Collection . 184

10.5 Review Report . 185
10.5.1 Types of Capabilities. 190
10.5.2 Descriptive Capability Elements 192
10.5.3 Correlations of Capability Elements 194

10.6 Conclusion and Outlook . 197
References. 198

11 Enterprise Architecture Analytics and Decision Support 201
Rainer Schmidt and Michael Möhring
11.1 Introduction . 201
11.2 Data Sources for Enterprise Architecture Analytics 203

11.2.1 Structured Data . 203
11.2.2 Semi-structured Data . 204
11.2.3 Unstructured Data . 204

11.3 Analyzing Architectural Data . 204
11.4 Applications of Big Data and Advanced

Analytics in Enterprise Architecture . 207
11.4.1 Forecasting the Demand and Prices of EA Services . . . 207
11.4.2 Service Recommendation for Different Customers. 209
11.4.3 Analyzes of Unstructured Data 211

11.5 Outlook. 214
11.5.1 Graph-Based Data . 214
11.5.2 Frameworks for Stream-Based Data Processing. 214

11.6 Conclusion . 215
References. 215

12 A Guide for Capability Management . 219
Matthias Wißotzki and Anna Sonnenberger
12.1 Introduction . 219
12.2 Strategic Management and Enterprise Architecture 221
12.3 Capability Management . 224
12.4 Capability Management Process v3.0 . 227

12.4.1 BB1—Preparation . 228
12.4.2 Catalog Design . 240

Contents xiii

http://dx.doi.org/10.1007/978-3-319-40564-3_10
http://dx.doi.org/10.1007/978-3-319-40564-3_10
http://dx.doi.org/10.1007/978-3-319-40564-3_10#Sec1
http://dx.doi.org/10.1007/978-3-319-40564-3_10#Sec1
http://dx.doi.org/10.1007/978-3-319-40564-3_10#Sec2
http://dx.doi.org/10.1007/978-3-319-40564-3_10#Sec2
http://dx.doi.org/10.1007/978-3-319-40564-3_10#Sec3
http://dx.doi.org/10.1007/978-3-319-40564-3_10#Sec3
http://dx.doi.org/10.1007/978-3-319-40564-3_10#Sec4
http://dx.doi.org/10.1007/978-3-319-40564-3_10#Sec4
http://dx.doi.org/10.1007/978-3-319-40564-3_10#Sec5
http://dx.doi.org/10.1007/978-3-319-40564-3_10#Sec5
http://dx.doi.org/10.1007/978-3-319-40564-3_10#Sec6
http://dx.doi.org/10.1007/978-3-319-40564-3_10#Sec6
http://dx.doi.org/10.1007/978-3-319-40564-3_10#Sec7
http://dx.doi.org/10.1007/978-3-319-40564-3_10#Sec7
http://dx.doi.org/10.1007/978-3-319-40564-3_10#Sec8
http://dx.doi.org/10.1007/978-3-319-40564-3_10#Sec8
http://dx.doi.org/10.1007/978-3-319-40564-3_10#Sec9
http://dx.doi.org/10.1007/978-3-319-40564-3_10#Sec9
http://dx.doi.org/10.1007/978-3-319-40564-3_10#Sec10
http://dx.doi.org/10.1007/978-3-319-40564-3_10#Sec10
http://dx.doi.org/10.1007/978-3-319-40564-3_10#Sec11
http://dx.doi.org/10.1007/978-3-319-40564-3_10#Sec11
http://dx.doi.org/10.1007/978-3-319-40564-3_10#Sec12
http://dx.doi.org/10.1007/978-3-319-40564-3_10#Sec12
http://dx.doi.org/10.1007/978-3-319-40564-3_10#Sec13
http://dx.doi.org/10.1007/978-3-319-40564-3_10#Sec13
http://dx.doi.org/10.1007/978-3-319-40564-3_10#Sec14
http://dx.doi.org/10.1007/978-3-319-40564-3_10#Sec14
http://dx.doi.org/10.1007/978-3-319-40564-3_10#Bib1
http://dx.doi.org/10.1007/978-3-319-40564-3_11
http://dx.doi.org/10.1007/978-3-319-40564-3_11
http://dx.doi.org/10.1007/978-3-319-40564-3_11#Sec1
http://dx.doi.org/10.1007/978-3-319-40564-3_11#Sec1
http://dx.doi.org/10.1007/978-3-319-40564-3_11#Sec2
http://dx.doi.org/10.1007/978-3-319-40564-3_11#Sec2
http://dx.doi.org/10.1007/978-3-319-40564-3_11#Sec3
http://dx.doi.org/10.1007/978-3-319-40564-3_11#Sec3
http://dx.doi.org/10.1007/978-3-319-40564-3_11#Sec4
http://dx.doi.org/10.1007/978-3-319-40564-3_11#Sec4
http://dx.doi.org/10.1007/978-3-319-40564-3_11#Sec5
http://dx.doi.org/10.1007/978-3-319-40564-3_11#Sec5
http://dx.doi.org/10.1007/978-3-319-40564-3_11#Sec6
http://dx.doi.org/10.1007/978-3-319-40564-3_11#Sec6
http://dx.doi.org/10.1007/978-3-319-40564-3_11#Sec7
http://dx.doi.org/10.1007/978-3-319-40564-3_11#Sec7
http://dx.doi.org/10.1007/978-3-319-40564-3_11#Sec7
http://dx.doi.org/10.1007/978-3-319-40564-3_11#Sec8
http://dx.doi.org/10.1007/978-3-319-40564-3_11#Sec8
http://dx.doi.org/10.1007/978-3-319-40564-3_11#Sec9
http://dx.doi.org/10.1007/978-3-319-40564-3_11#Sec9
http://dx.doi.org/10.1007/978-3-319-40564-3_11#Sec10
http://dx.doi.org/10.1007/978-3-319-40564-3_11#Sec10
http://dx.doi.org/10.1007/978-3-319-40564-3_11#Sec11
http://dx.doi.org/10.1007/978-3-319-40564-3_11#Sec11
http://dx.doi.org/10.1007/978-3-319-40564-3_11#Sec12
http://dx.doi.org/10.1007/978-3-319-40564-3_11#Sec12
http://dx.doi.org/10.1007/978-3-319-40564-3_11#Sec13
http://dx.doi.org/10.1007/978-3-319-40564-3_11#Sec13
http://dx.doi.org/10.1007/978-3-319-40564-3_11#Sec14
http://dx.doi.org/10.1007/978-3-319-40564-3_11#Sec14
http://dx.doi.org/10.1007/978-3-319-40564-3_11#Bib1
http://dx.doi.org/10.1007/978-3-319-40564-3_12
http://dx.doi.org/10.1007/978-3-319-40564-3_12
http://dx.doi.org/10.1007/978-3-319-40564-3_12#Sec1
http://dx.doi.org/10.1007/978-3-319-40564-3_12#Sec1
http://dx.doi.org/10.1007/978-3-319-40564-3_12#Sec2
http://dx.doi.org/10.1007/978-3-319-40564-3_12#Sec2
http://dx.doi.org/10.1007/978-3-319-40564-3_12#Sec3
http://dx.doi.org/10.1007/978-3-319-40564-3_12#Sec3
http://dx.doi.org/10.1007/978-3-319-40564-3_12#Sec4
http://dx.doi.org/10.1007/978-3-319-40564-3_12#Sec4
http://dx.doi.org/10.1007/978-3-319-40564-3_12#Sec5
http://dx.doi.org/10.1007/978-3-319-40564-3_12#Sec5
http://dx.doi.org/10.1007/978-3-319-40564-3_12#Sec10
http://dx.doi.org/10.1007/978-3-319-40564-3_12#Sec10

12.4.3 Detail Development . 250
12.4.4 Catalog Governance . 256

12.5 Conclusion and Outlook . 262
References. 263

Author Index . 265

xiv Contents

http://dx.doi.org/10.1007/978-3-319-40564-3_12#Sec14
http://dx.doi.org/10.1007/978-3-319-40564-3_12#Sec14
http://dx.doi.org/10.1007/978-3-319-40564-3_12#Sec18
http://dx.doi.org/10.1007/978-3-319-40564-3_12#Sec18
http://dx.doi.org/10.1007/978-3-319-40564-3_12#Sec22
http://dx.doi.org/10.1007/978-3-319-40564-3_12#Sec22
http://dx.doi.org/10.1007/978-3-319-40564-3_12#Bib1

About the Editors

Eman El-Sheikh is professor of computer science and
director of the Center for Cybersecurity at the
University of West Florida. She received her Ph.D. and
M.Sc. in computer science from Michigan State
University and her B.Sc. in computer science from the
American University of Cairo. Her research interests
include artificial intelligence, machine learning, intel-
ligent systems, cybersecurity and software mainte-
nance and evolution. Dr. El-Sheikh has applied her
research to various problem domains, including edu-
cation, health care, finance, software maintenance, and
robotics. She has authored over 60 publications and

given over 50 conference presentations in her research areas and enjoys engaging
and mentoring undergraduate and graduate students in research activities.

Alfred Zimmermann is a professor of computer
science at Reutlingen University, director of the
Graduate Cooperative Research School for Services
Computing, and the research director of the Herman
Hollerith Center, Boeblingen, Germany. His research
is focused on digital transformation and digital enter-
prise architecture in close relationship with services
and cloud computing. He graduated in medical infor-
matics at the University of Heidelberg and obtained his
Ph.D. in informatics from the University of Stuttgart,
Germany. He keeps the academic relations of his home
university to the GI——the German Computer Science
Society, the ACM——the US Association for
Computing Machinery, and the IEEE, where he is a
part of specific research groups, programs, and initia-

xv

tives like software architecture, enterprise architecture and management, services
computing, and cloud computing. Additionally, he is a visiting professor and
honorary professor at international universities: La Plata University—Buenos Aires,
the Marmara University, and the Yeditepe University of Istanbul.

Lakhmi C. Jain is a visiting professor at
Bournemouth University, UK, and adjunct professor at
University of Canberra, Australia.

Dr. Jain founded the KES International for pro-
viding a professional community the opportunities for
publications, knowledge exchange, cooperation, and
teaming. Involving around 5000 researchers drawn
from universities and companies worldwide, KES
facilitates international cooperation and generates
synergy in teaching and research. KES regularly pro-
vides networking opportunities for professional com-
munity through one of the largest conferences of its
kind in the area of KES.

His interests focus on the artificial intelligence paradigms and their applications
in complex systems, security, e-education, e-health care, unmanned air vehicles,
and intelligent systems.

www.kesinternational.org

xvi About the Editors

http://www.kesinternational.org

Chapter 1
Evolution of Service-Oriented
and Enterprise Architectures:
An Introduction

Eman El-Sheikh, Alfred Zimmermann and Lakhmi C. Jain

Abstract This chapter presents an introduction to emerging trends in the evolution
of service-oriented and enterprise architectures. The primary aim of this book is to
highlight some of the most recent research results in the field. Brief descriptions of
the chapters included in the book are provided.

1.1 Introduction

Services Oriented Architectures (SOA) and Enterprise Architectures (EA) have
emerged as useful frameworks for developing interoperable, large-scale systems,
typically implemented using the Web Services (WS) standards [1]. SOA typically
refers to large systems-of-systems in which composite applications are created by
orchestrating loosely coupled service components that run on different nodes and
communicate via message passing [2]. Often an infrastructure layer, sometimes
called an Enterprise Service Bus (ESB), mediates the communication, providing
features such as routing, security, and data transformation. Such systems present
several software engineering challenges because they need to orchestrate diverse
services having different owners, and have complex reliability requirements.

While developing SOA applications presents many software engineering challenges,
managing the evolution of such systems presents even greater challenges [3, 4]. SOA

E. El-Sheikh (&)
Center for Cybersecurity, University of West Florida, Pensacola, FL, USA
e-mail: eelsheikh@uwf.edu

A. Zimmermann
Faculty of Informatics, Reutlingen University, Reutlingen, Germany
e-mail: alfred.zimmermann@reutlingen-university.de

L.C. Jain
University of Canberra, Canberra, Australia
e-mail: Lakhmi.Jain@canberra.edu.au; jainlc2002@yahoo.co.uk

L.C. Jain
Bournemouth University, Poole, UK

© Springer International Publishing Switzerland 2016
E. El-Sheikh et al. (eds.), Emerging Trends in the Evolution of Service-Oriented
and Enterprise Architectures, Intelligent Systems Reference Library 111,
DOI 10.1007/978-3-319-40564-3_1

1

provides flexibility through loose coupling, both between the services themselves and
between the IT organizations that manage them. However, this flexibility may create
significant problems when the composite application needs to evolve. Several
researchers have pointed out challenges in the evolution of SOA systems [3, 4, 5].

Information, data and knowledge are fundamental concepts of our everyday
activities. Social networks, smart portable devices, and intelligent cars, represent
only a few instances of a pervasive, information-driven vision for the next wave of
the digital economy and the digital transformation. Digitization has a major impact
for the current development of modern societies and questions fundamental struc-
tures in society, economy, and technology. Smart connected products and services
expand physical components from their traditional core by adding information and
connectivity services using the Internet. Digitized products and services with
service-oriented architectures amplify the basic value and capabilities and offer
exponentially expanding opportunities. Both business and technology are impacted
from the digital transformation by complex relationships between architectural
elements, which directly affect the evolution of adaptable service-oriented archi-
tectures for digital products and services and their related digital governance.

Enterprise Architectures provide a conceptual blueprint to help define the
structure and operation of an organization with the goal of determining how an
organization with their digitized services can most effectively achieve its current
and future objectives. Several approaches and methods have been proposed to
address the challenges of EA evolution and manage digital transformations.
Enterprise architecture comprises a holistic, consistent and coherent set of princi-
ples, methods, guidelines, and models, which are used to support the top level
design and implementation of organizational structures, business products and
services, business processes, information systems, and their infrastructure.
Enterprise architecture is positioned as a coordination and steering mechanism and
as an instrument to support the digital enterprise’s strategic direction.

This book presents emerging trends in the evolution of service-oriented and
enterprise architectures. Chapter 2 describes how SOA design principles can facil-
itate SOA evolvability and examines several approaches and emerging trends to
support and enhance SOA evolution. Chapter 3 presents a toolset that developers can
use to design resource-oriented web services in a service-oriented architecture sys-
tematically in a quality-oriented manner. Chapter 4 describes a knowledge elicitation
and modeling approach to identify trust and security concerns as SOA systems
evolve along with two examples of knowledge modeling in support of SOA system
evolution. Chapter 5 describes the fractal nature of SOA designs for sustainment
management tools as these tools evolve into even more dynamic, federated systems
and summarizes insights gained from more than twenty years of software devel-
opment, maintenance, and evolution of a major pavement engineering tool named
PAVER™. Chapter 6 investigates mechanisms for analyzing enterprise architectures
to provide decision support for architectural evolution and adaptation and presents a
novel approach that leverages a new extended digital enterprise architecture model
that is well suited for adaptive models and transformation mechanisms.

2 E. El-Sheikh et al.

http://dx.doi.org/10.1007/978-3-319-40564-3_2
http://dx.doi.org/10.1007/978-3-319-40564-3_3
http://dx.doi.org/10.1007/978-3-319-40564-3_4
http://dx.doi.org/10.1007/978-3-319-40564-3_5
http://dx.doi.org/10.1007/978-3-319-40564-3_6

Chapter 7 describes a lightweight enterprise architecture framework that pro-
vides enterprise architects with an agile development approach for digital trans-
formations. Chapter 8 presents a two-speed enterprise architecture that enables
more established companies to manage digital transformation. Chapter 9 describes a
novel approach for designing capabilities to tackle the challenges of rapidly
changing enterprise environments by modeling the application context. Chapter 10
reviews the body of capability-driven management literature and provides an
overview of capability research investigations over the last 15 years. Chapter 11
highlights the increased capabilities of enterprise architecture analytics and decision
support through the use of a data-driven approach and provides insights into current
research work in this area. Chapter 12 describes a capability management guide that
provides a flexible “engineering” approach for identifying, structuring, and main-
taining enterprise capabilities.

References

1. Josuttis, N.M.: SOA in Practice: The Art of Distributed System Design. O’Reilly. ISBN:
0-596-52955-4 (2007)

2. Lewis, G., Morris, E., Simanta, S., Smith, D.: Service orientation and systems of systems. IEEE
Softw. 28(1), 58–63 (2011). doi:10.1109/MS.2011.15

3. Gold, N., Knight, C., Mohan, A., Munro, M.: Understanding service-oriented software. IEEE
Softw. 21, 71–77 (2004). doi:10.1109/ms.2004.1270766

4. Lewis, G.A., Smith, D.B.: Service-oriented architecture and its implications for software
maintenance and evolution. Frontiers Softw. Maint. 2008 (FoSM), 1–10. doi:10.1109/fosm.
2008.4659243

5. Gold, N., Bennett, K.: Program comprehension for web services. International Conference on
Program Comprehension (2004). doi:10.1109/wpc.2004.1311057

1 Evolution of Service-Oriented and Enterprise Architectures: An Introduction 3

http://dx.doi.org/10.1007/978-3-319-40564-3_7
http://dx.doi.org/10.1007/978-3-319-40564-3_8
http://dx.doi.org/10.1007/978-3-319-40564-3_9
http://dx.doi.org/10.1007/978-3-319-40564-3_10
http://dx.doi.org/10.1007/978-3-319-40564-3_11
http://dx.doi.org/10.1007/978-3-319-40564-3_12
http://dx.doi.org/10.1109/MS.2011.15
http://dx.doi.org/10.1109/ms.2004.1270766
http://dx.doi.org/10.1109/fosm.2008.4659243
http://dx.doi.org/10.1109/fosm.2008.4659243
http://dx.doi.org/10.1109/wpc.2004.1311057

Chapter 2
Approaches to the Evolution of SOA
Systems

Norman Wilde, Bilal Gonen, Eman El-Sheikh
and Alfred Zimmermann

Abstract The evolution of Services Oriented Architectures (SOA) presents many
challenges due to their complex, dynamic and heterogeneous nature. We describe
how SOA design principles can facilitate SOA evolvability and examine several
approaches to support SOA evolution. SOA evolution approaches can be classified
based on the level of granularity they address, namely, service code level, service
interaction level and model level. We also discuss emerging trends, such as
microservices and knowledge-based support, which can enhance the evolution of
future SOA systems.

2.1 Introduction

Early in the history of modern computing it became evident that most of the
software developer’s work actually takes place after an application’s initial deliv-
ery. This work came to be known as “software maintenance”. Despite its economic
importance, in the literature it was usually relegated to a supposedly uninteresting
box at the bottom end of the waterfall software development life cycle.

With time, the term “maintenance” became unpopular because it was found that
most of the work had little to do with repair, and much to do with the evolution of
user needs and of computing environments [1]. As each new need or environment
emerges the application must either adapt, be rewritten, or die.

N. Wilde
Department of Computer Science, University of West Florida, Pensacola, FL, USA
e-mail: nwilde@uwf.edu

A. Zimmermann
Faculty of Informatics, Reutlingen University, Reutlingen, Germany
e-mail: alfred.zimmermann@reutlingen-university.de

B. Gonen
School of Information Technology, University of Cincinnati, Cincinnati, OH, USA

E. El-Sheikh (&)
Center for Cybersecurity, University of West Florida, Pensacola, FL, USA
e-mail: eelsheikh@uwf.edu

© Springer International Publishing Switzerland 2016
E. El-Sheikh et al. (eds.), Emerging Trends in the Evolution of Service-Oriented
and Enterprise Architectures, Intelligent Systems Reference Library 111,
DOI 10.1007/978-3-319-40564-3_2

5

So today we speak more of “software evolution” than “software maintenance”.
This term is also somewhat problematic since “to evolve” is a passive verb, and
thus gives the impression that evolution is something that just happens. In fact,
keeping an application up to date requires very hard work, often under cruel
deadline pressure, performed by very highly qualified professionals. In this chapter
we use both terms since either, “evolution” or “maintenance”, allows us to dis-
tinguish a greenfield software development situation in which design decisions can
be taken freely, from the highly constrained context faced in making changes to an
existing system.

The defining characteristic of software maintenance/evolution as opposed to
development is that any proposed change needs to take into account a large base of
existing software. This software has usually been molded by decisions taken,
possibly years earlier, in circumstances very different from the current reality. Any
change is thus highly constrained.

The emergence of Services Oriented Architecture (SOA) systems in the first
decade of this century certainly did not eliminate the problems of software evo-
lution, but it did change their nature. As a series of authors have pointed out, some
aspects of SOA favor the job of the maintainer while others make it more difficult.
New challenges are created both for practitioners and for researchers [2–6].

In this chapter we first briefly discuss perspectives on software evolution in
general before going on to highlight some of the main approaches when these
perspectives are applied to SOA systems. We cannot attempt to identify all of the
diverse approaches to our subject, but we aim to contrast some of the main themes
and explore advantages and disadvantages. The books and papers we mention are
by no means an exhaustive list, but rather typify different ways of looking at the
SOA evolution problem. We close with some discussion of emerging trends both in
SOA architectures and in using knowledge-based methods to understand these
architectures.

2.2 Perspectives on Software Evolution

One can identify two broad perspectives on software evolution that have dominated
both theory and practice. On the one hand, software can be designed initially to
make evolution easier. This is a perspective for the original software developer. It
focuses on design approaches and implementation architectures that are hoped to
facilitate future evolution. We might call this approach design for evolvability.

The second perspective looks for tools and methods to support ongoing main-
tenance of an existing system. This is a perspective for a maintenance software
engineer. He must accept the system as it is, warts and all, and try to do the best
possible job of keeping it up to date. We could call this perspective support for
evolution.

6 N. Wilde et al.

2.2.1 Design for Evolvability

In design for evolvability, a key theme has been to find the “right” modularity. Any
large application must be implemented as modules that connect together to provide
the overall system functionality. The choice of modules, their interfaces, and the
connection methods all strongly affect the ease with which changes can be made.

A key initial insight was the concept of “information hiding”, generally credited
to Parnas writing in 1972:

We propose instead that one begins with a list of difficult design decisions or design
decisions which are likely to change. Each module is then designed to hide such a decision
from the others [7].

A designer thus should anticipate change, and hide expected changes within a
single module. If the maintainer has to make one of the expected changes, then he
or she can work within that single module. Design, coding and testing of the change
will thus be far simpler than they would have been if many modules had been
affected.

The difficulty for the designer, of course, is in identifying the likely changes so
early in the system’s lifetime. Security and performance considerations can also
constrain what data and functionality need to be kept together, and thus lead to a
decomposition that may seem less than optimal.

It is also not trivial to find a way of implementing the resulting modules without
encountering insuperable barriers in the programming language or runtime envi-
ronment. Many of the advances of programming languages have involved pro-
viding better mechanisms for modularity, with an explicit or implied goal of
facilitating information hiding.

2.2.2 Support for Evolution

A great diversity of tools has been proposed to support the evolution of an existing
software application. One might think of configuration management systems, edi-
tors that compare software versions, impact analysis tools, regression testing
frameworks, and so on. But one important theme has been to provide the maintainer
with support for program comprehension.

If the biggest difference between development and evolution is the presence of
an existing code base, then the biggest practical difference to the software engineer
is his need to understand that code base. The developer presumably understands the
code he deals with because he, or his immediate colleagues, wrote it. The main-
tainer is often separated from the code’s original authors by a distance of many
miles or many years. He or she must reconstruct sufficient understanding of the
application to be able to change it safely, without unexpected and possibly disas-
trous side effects.

2 Approaches to the Evolution of SOA Systems 7

Understanding legacy software is a complex task, both because of the scale of
many existing software applications and because of the variety of relationships that
may need to be understood. It has long been clear that software maintainers cannot
attempt to understand large applications in their entirety or each maintenance task
would take far too long. Instead they try to use a pragmatic as-needed strategy to
understand only what is immediately relevant for the task at hand [8]. Even within
that limitation, however, there is a bewildering variety of information which may be
relevant: the structure of program text, dynamic structure and control flow at
runtime, program functionality and programming plans at different levels of
abstraction, domain knowledge which relates concepts in the real world to struc-
tures in the code, and so on [9].

2.3 Design for Evolvability Approaches to SOA

Services Oriented Architecture is generally regarded not as a specific architecture,
but rather as a general architectural style for structuring software applications.
Terminology varies but typically composite applications are constructed by
orchestrating services running on different nodes and communicating via message
passing. Often an infrastructure layer, sometimes called an Enterprise Service Bus
(ESB), mediates service interactions providing functions such as message routing,
reliable messaging and data transformations (Fig. 2.1).

Within the broad constraints of this style, there are many different ways of
architecting any particular application. Many commentators on SOA have enun-
ciated sets of design principles to guide this process (e.g. [10]), and many of the
principles have evolvability as a goal. Some of the principles have become common
practice while others are still somewhat aspirational.

One general principle is loose coupling of services, meaning generally that the
designer tries to reduce dependencies between services as much as is practicable.
Loose coupling may aid evolution because changes that would otherwise have
required the intervention of a maintenance software engineer are instead handled

Fig. 2.1 Structure of a simple SOA composite application

8 N. Wilde et al.

automatically. For example at run time each service can publish its address in a
registry, so that other services can find it automatically. The alternative of a
hardwired address in code would require an edit, a build, and a new deployment.
However as Josuttis points out, many of the more advanced strategies designed to
provide loose coupling, such as asynchronous communication and error handling
by compensation, have the side effect of increasing the complexity of code and thus
may hinder maintainability [11].

Perhaps the most universally applied SOA design principle is that each service
should implement a published interface or contract. This principle restates the
module information hiding principle mentioned earlier; the service is a module that
hides all the implementation details behind the interface. The Web Services
Description Language (WSDL) [12] was developed to standardize interface
descriptions across different hardware and software platforms. If the interface is
unchanged, the service implementation can evolve with little or no impact on other
services or on the application as a whole.

The WSDL standard greatly aids runtime linking of services, but it still leaves
great flexibility in the design of services and their interfaces. These design decisions
can have a great impact on evolvability. For example Borovskiy et al. [13] argue
that generic services with flexible interfaces should often be preferred. However
there is a tradeoff since a generic interface is less explicit about the data a service
expects to receive, and thus provides less guidance to service consumers.

An alternative to formulating general principles for SOA design is to formulate
design patterns to guide SOA design. This approach recognizes the difficulty of
establishing principles that are universally applicable and instead defines patterns
that have been found to be effective to achieve specific design goals in specific
circumstances. These design goals often have to do with evolvability and specifi-
cally with managing versioning of a service as it changes (see [14], especially
Chap. 7).

WSDL interface descriptions also aid evolution by facilitating interoperability of
components from diverse owners. Interoperation has been described as having two
or more independent systems operate in a coordinated and meaningful fashion such
that processes are effectively merged or information is effectively shared [15].
If reusable, interoperable components are utilized, then both development and
maintenance of the composite application should be easier because less special-
purpose coding should be required.

However service reuse, as an organizational SOA strategy, seems to have been
more difficult to achieve. Some companies have set out to build portfolios of
reusable services with the idea that these will then be composed into new appli-
cations as the need arises. In some cases the concept seems to be that business
process modeling tools will allow this composition to be done by business experts
with little intervention from scarce software engineers. However the development
of large-scale reusable software components has always been difficult [16] and the
complexities of the assembly of distributed components are daunting. It is perhaps
not surprising that Josuttis finds that assembly is best done “… by business and IT
experts sitting together” and that service reuse is often less than expected [11]. In

2 Approaches to the Evolution of SOA Systems 9

http://dx.doi.org/10.1007/978-3-319-40564-3_7

general the contribution of reuse to SOA evolution has probably been much less
than originally anticipated.

2.4 Support for Evolution Approaches to SOA

As previously stated, the support for evolution perspective looks for tools and
methods to aid in the ongoing maintenance of an existing system. The maintainer
has to take the system as it is and solve problems effectively while working within
organizational time constraints. A key theme in this perspective is helping the
maintainer understand the existing system so that he or she can make changes
safely.

As we look at SOA composite applications, perhaps one way to classify the
different support for evolution approaches would be to look at the level of granu-
larity they address. We could distinguish:

1. Service code level approaches that focus on understanding and manipulating the
source code for a service.

2. Service interaction level approaches that focus on understanding how services
work together in the application.

3. Model level approaches that focus on how the services relate to models of the
application’s domain.

2.4.1 Code Level Approaches to SOA Evolution

Historically, many organizations decided to begin their SOA efforts by exposing
existing data or functionality as web services. Vendors soon moved to provide tools
to automate this process so that it became easy to expose code written in a wide
range of languages, from COBOL to C#, and hosted on platforms ranging from
mainframes to Linux™.

The tools vary in their capabilities, but it is common to provide the ability to take
existing code and create a service and its WSDL, or to take a WSDL and create
shell code for a client or a service implementation. For example in the Java envi-
ronment, one can take a Java class annotated with @WebService and use the wsgen
tool to create the WSDL and classes that will handle the messaging. Going the other
way, one can take a WSDL from an existing service and use the wsimport tool to
create shell code for a client to access that service. Finally, if using a “WSDL-first”
or “contract-first” development style, one may create the WSDL by hand and, once
it is approved by all stakeholders, use it to generate shell code for the service
implementation [17].

If a composite application was developed using source code based tools, then it
is natural to continue maintaining it using these same tools. One advantage is that

10 N. Wilde et al.

most of the vendor tools are available through an integrated development envi-
ronment (IDE) that supports program comprehension with code search, code nav-
igation and debugging facilities.

However a focus on code and code-generating tools for SOA evolution also has
several pitfalls. If used incautiously, the tools can generate unwanted dependencies
between a service and its client, thus tightening the coupling between them. To take
just one example, a software engineer may accidentally include in an interface some
of a service’s internal data types. Then the client will necessarily have to use these
same data types. Any change to the data structure on the server will force a change
in the client. The more such code-generating tools are used over the life of a system,
the more likely it is that this sort of design flaw will be introduced.

An important consideration may be the depth of the change. Papazoglou et al.
[18] distinguish between shallow changes, that affect a single service and its
immediate clients, and deep changes whose effects may cascade widely within a
system. Perhaps a code focus may be acceptable in dealing with shallow changes,
but deep changes require a more complex service life cycle to allow for more
complete analysis and for more time for changes to propagate across the service
landscape.

2.4.2 Service Interaction Level Approaches to SOA
Evolution

Many of the tasks involved in SOA evolution do not require studying the code, but
rather focus on understanding the interactions between services. For example a
maintainer may be considering reconfiguring or replacing a service. Or he may need
to locate where particular kinds of data are exchanged or where performance bot-
tlenecks are developing. Much of the research on SOA maintenance and program
comprehension has thus focused at the service interaction level of granularity.

It may be convenient to distinguish here between tools implementing dynamic
and static approaches, since the practicalities of using tools will be different in each
case. Dynamic tools get their input from actual execution of the system and use logs
or message traces, often supplemented to meet the needs of the tool. Static
approaches take as their input descriptions of the SOA system, such as requirements
or design documentation, UML models, WSDL interface descriptions, etc. Each
approach has its advantages and drawbacks.

One of the earliest dynamic approaches came from a group at IBM. De Pauw
et al. [19] describe a visualization tool, Web Services Navigator, which helps users
to understand SOA applications better. The tool collects data from event logs and
processes it to generate visual abstractions, such as flow patterns, as well as views
of transaction flows and data content. The paper describes how the tool has been
used to understand overall application behavior in several different problem solving
scenarios.

2 Approaches to the Evolution of SOA Systems 11

A narrower application of dynamic analysis attempts to recover and understand
feature sequences, that is, the service interaction messages that occur when an end
user makes use of a particular feature of the application. The problem is that there
may be other concurrent users or routine system interactions that obscure the
desired feature. Coffey et al. compute a relevance index for each observed message,
giving greater weight to messages that are seen when a feature is known to be
active. A Feature Sequence Viewer lets the maintainer set a threshold to view the
sequence of the most relevant messages [20].

Zawawy et al. [21] present an interesting method that combines dynamic analysis of
service logs with preliminary manual encoding of requirements information in goal
trees. Their objective is to aid in root cause analysis of failures during corrective
maintenance. Their method compares the events recorded in the logs with the goal trees
describing expected behavior to locate the fault that is the root cause for a failure.

Chen et al. [22] describe a general framework that can be used to collect
dynamic information to monitor SOA applications for a wide variety of mainte-
nance and evolution tasks. They aim to integrate monitoring techniques into web
service frameworks, so that the information for dynamic analysis will be trans-
parently available for all applications using the framework.

Espinha et al. also use dynamic analysis to describe the runtime topology of a
SOA application, by which they mean identifying which services are running, and
how they depend and interact with one another. They provide an interesting
analysis of the data a maintainer needs for different evolution scenarios. Their
Serviz tool intercepts incoming requests to each service to capture the data they
need for system visualizations [23].

The dynamic analysis approaches have many advantages. As can be seen from
the examples we have cited, dynamic data can support striking visualizations to
provide insight into the running system. Also dynamic data comes from the as-built
system and thus, unlike models or documentation, is reliably up to date. However it
can be difficult to take data from a running system at all the necessary points
without encountering instrumentation, performance, and even confidentiality diffi-
culties. Also, any dynamic data depends on what the system was doing at the
moment when it was being observed; exceptional or rare behavior may be missed.

Static analysis methods, on the other hand, try to help a maintainer understand a
SOA application without having to run it. They thus avoid the data collection
problems of dynamic analysis, but with some costs.

One simple approach is to build on well-established search technologies to
support SOA maintainers. The SOAMiner tool searches both text documentation
and WSDLs, XML data schemas, and Business Process Execution Language
(BPEL) code [24]. As well as conventional search, the tool also has a rule-based
SOA Intel component that creates searchable abstractions from any XML structured
inputs. The abstractions summarize relationships within the system and were
defined based on the results of SOA comprehension case studies [25].

The problem with the search-based approach is that it largely leaves it up to the
maintainer to formulate queries and understand the responses. The abstractions
extracted from WSDLs, data descriptions, and BPEL can go only so far in

12 N. Wilde et al.

providing high-level understanding of the system. However to go beyond the
search-based approach seems to require additional inputs which may or may not be
present for an existing SOA application.

For example Coffey et al. reverse engineer the WSDLs, data descriptions and
BPELs into automatically generated concept maps which provide a convenient
visualization of the SOA system. The intent is to then conduct interviews with
system experts to annotate these maps into a more complete system description that
would document it for future maintenance [26].

In another static approach, Kabzeva et al. present a very interesting method that
focuses on managing the relationships in a large service network. However as well
as the WSDL and BPEL inputs mentioned previously, they require information in
modeling notations such as Business Process Model and Notation (BPMN) and
Event-Driven Process Chains (EPC). If this information is present they can provide
a relationships model that would seem to be very useful for maintenance tasks such
as impact analysis [27].

Similarly Bauer et al. propose the use of a SOA repository with advanced
analysis capabilities to identify relationships between the services and perform
several important kinds of analysis, both to detect already existing problems
(as-is-analyses), as well as problems that might occur due to future service changes
(what-if-analyses). However they do not make clear how their repository would be
populated with information and what manual inputs may be required [28].

So for static analysis at the service interaction level, there is a tradeoff between
undemanding approaches such as search that leave a great deal to the user, and
more sophisticated approaches with more complete results, but that require human
data collection or accurate pre-existing system models.

2.4.3 Model Level Approaches to SOA Evolution

Modeling approaches can be used to support SOA evolution. Such approaches
focus on the development of models to represent service oriented or enterprise
architectures and the use of such models to guide their maintenance and evolution.

One such example is the OASIS Reference Model for Service Oriented
Architecture [29], which is an abstract framework that guides reference architec-
tures [30]. The ESARC—Enterprise Services Architecture Reference Cube [31]
(Fig. 2.2) is more specific and completes these architectural standards in the context
of EAM—Enterprise Architecture Management, and extends these architecture
standards for services and cloud computing.

ESARC provides an abstract model to support the integration of business
architectures with application architectures and implementation of service-based
enterprise systems, and with the technology and operation architecture. ESARC is
an original architecture reference model, which provides an integral view for main
interweaved architecture types. ESARC abstracts from a concrete business scenario
or technologies. The Open Group Architecture Framework provides the basic

2 Approaches to the Evolution of SOA Systems 13

blueprint and structure for the extended service-oriented enterprise software
architecture domains like: Architecture Governance, Architecture Management,
Business and Information Architecture, Information Systems Architecture,
Technology Architecture, Operation Architecture, and Cloud Services Architecture.
ESARC provides a coherent aid for the evolution of architectures by facilitating
their examination, comparison, classification, quality evaluation and optimization
of architectures.

Enterprise Architecture Management for Services Computing is a commonly
preferred approach to organize, build and utilize distributed capabilities for Digital
Transformation [32]. They provide flexibility and agility in business and IT sys-
tems. The development of such applications integrates the Internet of Things
(IoT) [33], Web Services [34], REST Services [35], Cloud Computing [36] and Big
Data [37], among other frameworks and methods, like architectural semantic sup-
port. Today’s information systems span a broad range of domains including:
intelligent mobility systems and services, intelligent energy support systems, smart
personal health-care systems and services, intelligent transportation and logistics
services, smart environmental systems and services, intelligent systems and soft-
ware engineering, intelligent engineering and manufacturing. Microservices [38–
40] and the Internet of Things [33] are examples of base technologies for the fast
performing digital transformation. The Internet of Things enables a large number of
physical devices to connect each other to perform wireless data communication and
interaction using the Internet as a global communication environment.

Research reported in [41] focuses on extending the Enterprise Services
Architecture Reference Cube (ESARC) by mechanisms for architectural integration
and evolution to support adaptable information systems and architectural trans-
formations for changing architectural models. ESARC is an extendable classifica-
tion framework, which sets a conceptual baseline for digital architectural models.

Fig. 2.2 ESARC—enterprise software architecture reference cube

14 N. Wilde et al.

ESARC makes it possible to verify, define and track the improvement path of
different business and IT changes considering alternative business operating mod-
els, business functions and business processes, enterprise services and systems,
their architectures and related technologies.

To integrate a huge amount of dynamically growing architectural descriptions
for services, microservices, or the Internet of Things into consistent enterprise
architectures is a considerable challenge. Further research focuses on integrating
small EA descriptions for each relevant IoT object. EA-IoT-Mini-Description
consists of partial EA-IoT-Data, partial EA-IoT-Models, and partial
EA-IoT-Metamodels associated with main IoT objects like IoT-Resource,
IoT-Device, and IoT-Software-Component [33]. This research addresses questions
such as how can we federate these EA-IoT-Mini-Descriptions to a global EA model
and information base by promoting a mixed automatic and collaborative decision
process [42]. For the automatic part, model federation and transformation approa-
ches are extended by introducing sematic-supported architectural representations,
e.g. by using partial and federated ontologies and associated mapping rules—as
universal enterprise architectural knowledge representation, which are combined
with special inference mechanisms [43–46].

Metamodels can be used to define architecture model elements and their rela-
tionships within ESARC. These metamodels serve as an abstraction for architec-
tural elements and relate them to architecture ontologies [47]. The OASIS
Reference Model for SOA [29] is an abstract framework, which defines generic
elements and their relationships for service-oriented architectures. Models and
metamodels such as ESARC allow software maintainers to navigate the multidi-
mensional space of service oriented and enterprise architectures and facilitate the
development and use of semantic-supported navigation and intelligent inferences.

For years semantic technologies were said to revolutionize the web but for the
time being the adoption rate is rather low. The basic idea of semantic web is to
make the content of the web understandable for machines via the creation of
semantic knowledge bases called ontologies. Semantic Web Services are typically
extensions to conventional web services [48]. Semantic web services add extra
semantic information in order to support automatic web service discovery, auto-
matic web service invocation, automatic web service composition and interopera-
tion [49]. Model Driven Architecture (MDA) uses UML as its preferred modeling
language. Semantic models are extremely expressive when modeling structural
knowledge. This facilitates modeling as well as maintenance of a model.

Salhofer et al. [50] presents an approach to apply the principles of Model Driven
Architecture (MDA) combined with a semantic model. Model Driven Architecture
focuses on the creation of models that should be turned into code automatically by
code generators. The core idea is to create a model of a system that only represents
its functionality but is not influenced by any technological platform. This model is
called the Platform Independent Model (PIM). From the PIM, the Platform Specific
Model (PSM) is generated. The PSM is then turned into source code by a code
generator.

2 Approaches to the Evolution of SOA Systems 15

2.5 Emerging Trends

This section describes several emerging trends that can support the evolution of
SOA systems.

2.5.1 Microservices and Design for Evolvability

A recent trend in many software application domains has been the shortening of
software product delivery cycles. Companies have recognized that there is a strong
commercial advantage to providing new features to customers ahead of their
competitors. Software is often now delivered as a web application, perhaps com-
bined with a client “app” automatically pushed to customer smartphones. In this
environment the customer gets each new version transparently and there is no
barrier to releasing new software daily or hourly. Terms used to describe this new
software production model include continuous deployment, continuous delivery and
DevOps since the roles of software developers and IT system operators become
merged [51].

To support this model, new software engineering practices are being adopted
such as small teams, tight communication between developers and other stake-
holders, identical development and production environments, automatic build on
commit, automatic testing on build, and automatic deployment on successful test.
For these practices to work, the architecture of the application needs to be carefully
planned.

Microservices is a name that has been given to an architectural style intended to
work within these foreshortened delivery cycles [40]. The term is still relatively
new and there is controversy about exactly what constitutes a microservices
architecture. Recently at the 11th SEI Architecture Technology User Network
(SATURN) Conference, a workshop characterized microservices as shown in
Fig. 2.3 [38, 39].

The concept is that there will be small teams each responsible for a few small
independent services. Teams will work at their own pace deploying new versions of
services when they are ready, without having to coordinate versions. In our ter-
minology, this is clearly a “design for evolvability” approach to SOA evolution. It
remains to be seen if this approach will stand the test of time.

2.5.2 Knowledge-Based Support

Knowledge-based methods can support the evolution of increasingly complex SOA
systems of the future. Such methods involve the use of knowledge representations
to model SOA systems and reasoning strategies to support maintenance tasks and

16 N. Wilde et al.

Fig. 2.3 The microservices
architectural style

code comprehension. In particular, ontological modeling can support SOA evolu-
tion by representing both high-level business and architectural views of the whole
application as well as lower level, code-focused views.

A commonly used ontology, the Open Group SOA ontology, can be extended to
develop a SOA Evolution Ontology that better addresses software maintenance
demands [30]. The Open Group’s ontology describes business processes, services
and their interfaces in a fairly abstract manner. The maintainer needs that
description, but also needs to deal with concrete implementation details as may be
found in design rationale, detailed interface specifications and in code. As an
example of this approach, an ontology was developed to support semantic browsing
and help a maintainer quickly acquire the information needed for a particular
maintenance task [52]. A specialized semantic browser can be used to support the
navigation of the large repositories of textual, semi-structured artifacts describing a
SOA system. Textual artifacts include natural language design rationale, design and
code documentation, semi-formal service interface specifications (e.g. WSDLs),
BPEL orchestration code, etc. These artifacts are annotated through semantic labels
that support discovery of the semantic relations between different artifacts.

Although little research has been reported on the development and use of
knowledge-based methods for the maintenance and evolution of SOA systems there
is literature on the application of semantic web techniques for maintaining tradi-
tional (non-SOA) software systems. The research reported in [52] focused on
providing ontological support for software artifacts such as source code and doc-
umentation. In work reported by Witte et al. [53], customized ontologies were
populated automatically from source code and documentation, and then queried to

2 Approaches to the Evolution of SOA Systems 17

provide support for source code security analysis, for traceability links between
source code and documentation and for architecture analysis. In work by
Hyland-Wood et al. [54], an ontology was developed to describe the relationship
between object-oriented software components.

Rastgoo et al. [55] is one of the few papers that take a knowledge-based
approach to facilitate software engineering processes for SOA. The paper proposes
automated generation of requirements ontologies using UML diagrams. The gen-
erated ontology considers the behavior and hierarchical relationship of services.
Experimental results demonstrate the improvement of the proposed approach from
perspectives, such as completeness and automatic generation of requirements
ontology for SOA systems.

Knowledge-based support and ontological models can help address SOA evo-
lution challenges to keep them in continuous service in the face of rapidly changing
environments, continually emerging security risks, and a dynamic mix of partner
organizations. Future trends will see the development of ecosystems of ontologies to
describe increasingly complex SOA systems [41]. Consistent modeling approaches
will need to emerge to bridge architectural levels and address the different concerns
of business experts, developers and maintainers. The task of supporting the evo-
lution of SOA systems will always be challenging, but such knowledge-based
models could greatly ease the burden on software maintainers.

2.6 Concluding Remarks

In this chapter we described the challenges of software maintenance and evolution
and examined various approaches specifically within the context of Services
Oriented Architectures. We argue that SOA design principles such as loose cou-
pling and service interfaces can facilitate SOA system evolvability. We described
various approaches for SOA evolution support, which were classified by their level
of granularity: service code level, service interaction level and model level
approaches. We also presented emerging trends in supporting the maintenance and
evolution of SOA systems, including microservices and knowledge-based support.
Approaches such as the ones examined in this chapter can enhance the evolution of
future SOA systems.

References

1. Lientz, B.P., Swanson, E.B., Tompkins, G.E.: Characteristics of application software
maintenance. Commun. ACM 21(6), 466–471 (1978)

2. Gold, N., Mohan, A., Knight, C., Munro, M.: Understanding service-oriented software. Softw.
IEEE 21(2), 71–77 (2004)

3. CanforaHarman, G., Di Penta, M.: New frontiers of reverse engineering. Future Softw. Eng.
(2007) (IEEE Computer Society)

18 N. Wilde et al.

4. Lewis, G., Smith, D.B.: Service-oriented architecture and its implications for software
maintenance and evolution. Frontiers Softw. Maint. (FoSM) (2008) (IEEE)

5. Kontogiannis, K.: Challenges and opportunities related to the design, deployment and,
operation of Web Services. Front. Softw. Maint. (FoSM) (2008) (IEEE)

6. Lewis, G.A., Smith, D.B., Kontogiannis, K.: Proceedings of the Fourth International
Workshop on a Research Agenda for Maintenance and Evolution of Service-Oriented Systems
(MESOA 2010) (2011)

7. Parnas, D.L.: On the criteria to be used in decomposing systems into modules. Commun.
ACM 15(12), 1053–1058 (1972)

8. Koenemann, J., Robertson, S.P.: Expert problem solving strategies for program
comprehension. In: Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems. ACM (1991)

9. Von Mayrhauser, A.: Program comprehension during software maintenance and evolution.
Computer 28(8), 44–55 (1995)

10. Erl, T.: SOA Principles of Service Design, vol. 37, pp. 71–75. Prentice Hall, Boston (2007)
11. Josuttis, N.M.: SOA in Practice: The Art of Distributed System Design. O’Reilly (2007).

ISBN 0-596-52955-4
12. Christensen, E., Curbera, F., Meredith, G., Weerawarana, S.: Web services description

language (WSDL) 1.1 (2001)
13. Borovskiy, V., Mueller, J., Schapranow, M., Zeier, A.: Ensuring service backwards

compatibility with generic web services. In: Proceedings of the 2009 ICSE Workshop on
Principles of Engineering Service Oriented Systems. IEEE Computer Society (2009)

14. Daigneau, R.: Service Design Patterns: Fundamental Design Solutions for SOAP/WSDL and
Restful Web Services. Addison-Wesley (2011)

15. Scholl, H.J., Klischewski, R.: E-government integration and interoperability: framing the
research agenda. Int. J. Publ. Adm. 30(8–9), 889–920 (2007)

16. Glass, R.L.: Facts and Fallacies of Software Engineering. Addison Wesley (2003)
17. Hewitt, E.: Java SOA Cookbook. O’Reilly Media Inc. (2009)
18. Papazoglou, M.P., Andrikopoulos, V., Benbernou, S.: Managing evolving services. Softw.

IEEE 28(3), 49–55 (2011)
19. De Pauw, W., Lei, M., Pring, E., Villard, L., Arnold, M., Morar, J.F.: Web services navigator:

visualizing the execution of web services. IBM Syst. J. 44(4), 821–845 (2005)
20. Coffey, J., White, L., Wilde, N., Simmons, S.: Locating software features in a SOA composite

application. In: 2010 IEEE 8th European Conference on Web Services (ECOWS). IEEE
(2010)

21. Zawawy, H., Mylopoulos, J., Mankovskii, S.: Requirements-driven framework for root cause
analysis in SOA environments. In: Proceedings of the Fourth International Workshop on a
Research Agenda for Maintenance and Evolution of Service-Oriented Systems (MESOA
2010) (2011)

22. Chen, C., Zaidman, A., Gross, H.: A framework-based runtime monitoring approach for
service-oriented software systems. In: Proceedings of the International Workshop on Quality
Assurance for Service-Based Applications. ACM (2011)

23. Espinha, T., Zaidman, A., Gross, H.G.: Understanding the runtime topology of
service-oriented systems. In: 2012 19th Working Conference on Reverse Engineering
(WCRE), pp. 187–196. IEEE (2012)

24. Wilde, N., Leal, D., Goehring, G., Terry, C.: Enhanced search: an approach to the maintenance
of services oriented architectures. In: Ninth International Conference on Software Engineering
Advances (ICSEA 2014). Nice, France, 12–16 Oct 2014

25. El-Sheikh, E., Reichherzer, T., White, L., Wilde, N., Coffey, J., Bagui, S., et al.: Towards
enhanced program comprehension for service oriented architecture (SOA) systems (2013)

26. Coffey, J.W., Reichherzer, T., Owsnick-Klewe, B., Wilde, N.: Automated concept map
generation from service-oriented architecture artifacts, pp. 49–56 (2012)

2 Approaches to the Evolution of SOA Systems 19

27. Kabzeva, A., Götze, J., Lottermann, T., Müller, P.: Service relationships management for
maintenance and evolution of service networks. In: The Eighth International Conference on
Software Engineering Advances (ICSEA 2013) (2013)

28. Bauer, T., Buchwald, S., Tiedeken, J., Reichert, M.: A SOA repository with advanced analysis
capabilities-improving the maintenance and flexibility of service-oriented applications (2015)

29. MacKenzie, C.M., Laskey, K., McCabe, F., Brown, P.F., Metz, R., Hamilton, B.A.: Reference
model for service oriented architecture 1.0, p. 12. OASIS Standard (2006)

30. Open Group: Service-oriented architecture ontology (2010)
31. Zimmermann, A., Buckow, H., Gross, H., Nandico, O.F., Piller, G., Prott, K.: Capability

diagnostics of enterprise service architectures using a dedicated software architecture reference
model. In: 2011 IEEE International Conference on Services Computing (SCC). IEEE (2011)

32. Zimmermann, A., Schmidt, R., Sandkuhl, K., Jugel, D., Moehring, M., Wissotzki, M.:
Enterprise architecture management for the internet of things. Lecture Notes in Informatics
(2015), Dec 15, Boeblingen, Germany

33. Patel, P., Cassou, D.: Enabling high-level application development for the internet of things.
J. Syst. Softw. 103, 62–84 (2015)

34. Papazoglou, M.P., Web Services & SOA: Principles and Technology. Pearson—Prentice Hall
(2012)

35. Ebert, J., Erl, T., Carlyle, B., Pautasso, C., Balasubramanian, R.: SOA with REST: Principles,
Patterns & Constraints for Building Enterprise Solutions with REST. ACM SIGSOFT
Software Engineering Notes, vol. 38(3), pp. 32–33 (2013)

36. Marinescu, D.C.: Cloud Computing: Theory and Practice. Newnes (2013)
37. Berman, J.J.: Principles of Big Data: Preparing, Sharing, and Analyzing Complex Information.

Newnes (2013)
38. Microservices Workshop at SATURN 2015 [Internet]. Available from: https://saturnnetwork.

wordpress.com/2015/05/07/microservices-workshop-at-saturn-2015
39. SATURN2015-Microservices-Workshop Key Outcomes [Internet]. Available from: https://

github.com/michaelkeeling/SATURN2015-Microservices-Workshop/blob/master/outcomes/
key-outcomes.md

40. Newman, S.: Building Microservices. O’Reilly Media, Inc. (2015)
41. Zimmermann, A., Gonen, B., Schmidt, R., El-Sheikh, E., Bagui, S., Wilde, N.: Adaptable

enterprise architectures for software evolution of smart life ecosystems. In: 2014 IEEE 18th
International Enterprise Distributed Object Computing Conference Workshops and
Demonstrations (EDOCW). IEEE (2014)

42. Jugel, D., Schweda, C.M., Zimmermann, A.: Modeling decisions for collaborative enterprise
architecture engineering. In: Advanced Information Systems Engineering Workshops.
Springer (2015)

43. Breu, R., Agreiter, B., Farwick, M., Felderer, M., Hafner, M., Innerhofer-Oberperfler, F.:
Living models-ten principles for change-driven software engineering. Int. J. Softw. Inform. 5
(1–2), 267–290 (2011)

44. Farwick, M., Pasquazzo, W., Breu, R., Schweda, C.M., Voges, K., Hanschke, I.: A
meta-model for automated enterprise architecture model maintenance. In: 2012 IEEE 16th
International Enterprise Distributed Object Computing Conference (EDOC). IEEE (2012)

45. Trojer, T., Farwick, M., Häusler, M., Breu, R.: Living modeling of IT architectures: challenges
and solutions. In: Software, Services, and Systems, pp. 458–474. Springer (2015)

46. Khan, N.A.: Transformation of enterprise model to enterprise ontology (2011)
47. Zimmermann, A., Zimmermann, G.: Enterprise architecture ontology for services computing.

In: Service Computation, pp. 64–9 (2012)
48. Alonso, G., Casati, F., Kuno, H., Machiraju, V.: Web Services. Springer (2004)
49. Martin, D., Paolucci, M., McIlraith, S., Burstein, M., McDermott, D., McGuinness, D., et al.:

Bringing semantics to web services: the OWL-S approach. In: Semantic Web Services and
Web Process Composition, pp. 26–42. Springer (2005)

50. Salhofer, P., Stadlhofer, B.: Semantic MDA for e-government service development. In: 2012
45th Hawaii International Conference on System Science (HICSS). IEEE (2012)

20 N. Wilde et al.

https://saturnnetwork.wordpress.com/2015/05/07/microservices-workshop-at-saturn-2015
https://saturnnetwork.wordpress.com/2015/05/07/microservices-workshop-at-saturn-2015
https://github.com/michaelkeeling/SATURN2015-Microservices-Workshop/blob/master/outcomes/key-outcomes.md
https://github.com/michaelkeeling/SATURN2015-Microservices-Workshop/blob/master/outcomes/key-outcomes.md
https://github.com/michaelkeeling/SATURN2015-Microservices-Workshop/blob/master/outcomes/key-outcomes.md

51. Wikipedia: DevOps [Internet] (2015). Available from: http://en.wikipedia.org/wiki/DevOps
52. Gonen, B., Fang, X., El-Sheikh, E., Bagui, S., Wilde, N., Zimmermann. A., et al.:

Maintaining SOA Systems of the future—how can ontological modeling help? In: KEOD
2014—Proceedings of the International Conference on Knowledge Engineering and Ontology
Development, Rome, Italy, 21–24 Oct 2014

53. Witte, R., Zhang, Y., Rilling, J.: Empowering software maintainers with semantic web
technologies. In: The Semantic Web: Research and Applications, pp. 37–52. Springer (2007)

54. Hyland-Wood, D., Carrington, D., Kaplan, S.: Towards a software maintenance methodology
using semantic web techniques and paradigmatic documentation modelling. Softw. IET 2(4),
337–347 (2008)

55. Rastgoo, V., Hosseini, M., Kheirkhah, E.: Semantic web-based software engineering by
automated requirements ontology generation in SOA. Int. J. Web Seman. Technol. 5(2), 1
(2014)

Author Biographies

Norman Wilde is Nystul Chair and Professor of Computer Science at the University of West
Florida. He received his Ph.D. in Mathematics and Operations Research from the Massachusetts
Institute of Technology in 1971. His research interests are Software Engineering, Software
Maintenance/Evolution, Services Oriented Architectures and Cybersecurity.

Bilal Gonen is an Assistant Professor of Information Technology at the University of Cincinnati.
He received his Ph.D. in Computer Science and Engineering from University of Nevada, Reno, in
2011. His research interests are Software Engineering, Services Oriented Architectures, Computer
Networks, Complex Networks, Social Network Analysis, Semantic Web, Algorithms, Machine
Learning.

Eman El-Sheikh is Professor of Computer Science and Director of the Center for Cybersecurity at
the University of West Florida. She received her Ph.D. in Computer Science from Michigan State
University in 2001. Her research interests include Artificial Intelligence, Machine Learning,
Intelligent Systems, Cybersecurity, Software Maintenance and Evolution, and Services Oriented
Architectures.

Alfred Zimmermann is Professor of Computer Science at Reutlingen University and Research
Director of the Herman Hollerith Center for Services Computing Boeblingen, Germany. His
research is focused on Digital Transformation and Digital Enterprise Architecture in close
relationship with Services and Cloud Computing. He graduated in Medical informatics at the
University of Heidelberg and got his Ph.D. in Informatics from the University of Stuttgart,
Germany.

2 Approaches to the Evolution of SOA Systems 21

http://en.wikipedia.org/wiki/DevOps

Chapter 3
Flexible and Maintainable
Service-Oriented Architectures
with Resource-Oriented Web Services

Michael Gebhart, Pascal Giessler and Sebastian Abeck

Abstract The implementation of service-oriented architectures is mostly driven by
the motivation to create a flexible and maintainable IT. Whether this goal can be
achieved or not strongly depends on the design quality of the services. For that
reason, the services within a service-oriented architecture have to be created with
care. In the past, several quality attributes and quality indicators were identified that
provide information about the design quality of a service. These quality indicators
were described with focus on method-driven services based on SOAP. However,
today, services are often designed in a resource-oriented way using REST or similar
approaches to enable technology-independent interactions. For that reason, this
chapter maps the existing quality attributes and quality indicators onto resource-
oriented web services. As result, architects and developers get a toolset to design
resource-oriented web services in a service-oriented architecture systematically in a
quality-oriented manner. The quality indicators are illustrated by means of a
resource-oriented web service in the context of a service-oriented SmartCampus
system developed at the Karlsruhe Institute of Technology. The scenario shows that
the application of the quality indicators limits the design scope and accelerates
making design decisions.

3.1 Introduction

Today, the motivation behind the implementation of service-oriented architectures
is mostly the creation of a flexible and maintainable IT. The quality of the resulting
architecture is strongly influenced by the quality of its building blocks which are
represented by services. For that reason, services also have to be designed in a
quality-oriented manner. In the last years, several quality attributes were identified

M. Gebhart (&) � P. Giessler
iteratec GmbH, Stuttgart, Germany
e-mail: michael.gebhart@iteratec.de

S. Abeck
Karlsruhe Institute of Technology, Karlsruhe, Germany

© Springer International Publishing Switzerland 2016
E. El-Sheikh et al. (eds.), Emerging Trends in the Evolution of Service-Oriented
and Enterprise Architectures, Intelligent Systems Reference Library 111,
DOI 10.1007/978-3-319-40564-3_3

23

that are considered as important for services in service-oriented architectures.
Examples are loose coupling, autonomy, and discoverability introduced by Erl [1].
As quality attributes describe only abstract concepts, the evaluation of services
regarding their quality requires the refinement of quality attributes into measurable
elements, the so-called quality indicators. Previous work by Gebhart and Abeck [2]
introduced quality indicators for the most widespread quality attributes. These
indicators refer to the interface of services and their internal logic. To evaluate
concrete web service implementation artifacts regarding these quality indicators, a
mapping of these conceptual indicators onto concrete technology is necessary. For
this purpose, in [3], Gebhart mapped the indicators onto the Web Service
Description Language (WSDL) as language to describe the web service interface
and onto the Service Component Architecture (SCA) to model the internal logic.
Based on this mapping, the quality indicators can be partially automatically
measured.

However, due to their lightweight and technology-independence, more and more
resource-oriented approaches, such as REpresentation State Transfer (REST)
introduced by Fielding [4], based on Hypertext Transfer Protocol (HTTP) are
chosen to implement web services in service-oriented architectures. Resource-
oriented approaches differ from the method-oriented design represented by for
instance SOAP and WSDL. In the past, existing work described quality attributes
only in an abstract manner [2] or mapped them onto SOAP-based web services [3].
Thus, for architects and developers it is not obvious, whether developed
resource-oriented web services consider the quality attributes correctly. Therefore,
it is necessary to map important quality attributes for service-oriented architectures
and their indicators onto service designs with resource-orientation in mind.

This article maps the quality indicators derived by Gebhart and Abeck [2] from
widespread literature onto the concepts of resource-oriented web services. For that
purpose, this article shows for each quality indicator, which aspects of a
resource-oriented web service, such as the Unified Resource Identifier (URI) or the
design of its parameters, influence the quality indicator. Furthermore, the desired
characteristic is determined. This will help architects and developers to understand
how to design resource-oriented web services in a way that the design supports the
flexibility and maintainability of the service-oriented architecture. In this chapter,
the focus is on resource-orientation in general over HTTP and not RESTful web
services in special. According to Fielding in [4], a truly RESTful web service
requires the application of Hypermedia As The Engine Of Application State
(HATEOAS). However, this methodology is mostly not applied in industry due to
its implementation complexity. For that reason, we focus on resource-orientation
without hypermedia. I.e., we do not consider RESTful but resource-oriented web
services. According to the Richardson Maturity Model (RMM), this kind of web
service is positioned on the second maturity level [5].

To illustrate the quality indicators and their mapping onto resource-oriented web
services, the AccessibilityInfoService of the service-oriented SmartCampus system
at the Karlsruhe Institute of Technology (KIT) is designed and developed

24 M. Gebhart et al.

considering the quality indicators. The SmartCampus supports members, guests,
and students at the KIT in their daily campus life. For example, they can determine
routes to certain rooms or can find free workplaces. The AccessibilityInfoService is
a new web service for people with disability, developed in cooperation with the
study centre for visually impaired (SZS). The service provides detailed information
about the accessibility of building and lecture rooms in a barrier-free way according
to the Web Content Accessibility Guidelines (WCAG) in version 2.0 [6]. The
application of the quality indicators by means of this web service will show how the
quality indicators support architects and developers during the design and devel-
opment of a resource-oriented web service.

This book chapter is structured as follows: Sect. 3.2 gives a brief introduction
into the fundamentals, such as SOAP, REST, and the used quality model. The
scenario, i.e., the SmartCampus and the AccessibilityInfoService are described in
Sect. 3.3. Section 3.4 introduces the quality indicators for service-oriented archi-
tectures and maps them onto resource-oriented web services. Section 3.5 concludes
this book chapter and presents an outlook on future research work.

3.2 Fundamentals

The following section forms the basis on which the described concepts in this book
chapter build on. For interface design, there are two types of service interfaces:
(1) proprietary and platform-dependent interfaces and (2) standardized and
platform-independent interfaces [7]. Due to our focus on platform-independent
service interfaces, we only consider standardized interfaces that are frequently used
for web services. For web services, there are two widespread distinctive types:
(1) SOAP-based web services and (2) web services based on Representation State
Transfer (REST) with increasing popularity [7, 8]. Each of them is presented by a
subsection. After describing and illustrating the two web service types, a quality
model derived from the ISO/IEC 25010:2011 [9] is introduced to define the terms
for service design quality.

3.2.1 SOAP

SOAP is a wire protocol, which defines the format and structure of the transmitting
data [10, 11]. For transmission of SOAP messages, the application layer protocol
HTTP (Hypertext Transport Protocol) is typically used [12]. The Web Service
Description Language (WSDL) describes the interface of SOAP-based web services
and the exchanged messages. By using WSDL, three different aspects of a web
service can be defined: (1) the exposed operations of the service, (2) the input and
output parameters for these operations, and (3) the technology binding by which a
client can communicate with the web service [7]. Compared to resource-oriented

3 Flexible and Maintainable Service-Oriented Architectures … 25

web services, this web service type can be denoted as a method-oriented web
service due to its exposed operation declarations.

3.2.2 REST

REST is a hybrid architectural style as result of combining different network-based
architectural styles together with another constraint for the uniform interface [4]. An
architectural style can be seen as a crosscutting concept for designing software
architectures, which can be grouped in different categories. Garlan and Shaw [13]
define an architectural style as a “vocabulary of components and connectors that
can be used in instances of that style, together with a set of constraints on how they
can be combined” [13, p. 6].

For the design of REST, Fielding [4] has identified the following four key
characteristics, which were proved as responsible for the success of the World Wide
Web (WWW) [14]: (1) Low entry-barrier, (2) extensibility, (3) distributed hyper-
media, and (4) internet-scale. REST ensures these characteristics through the fol-
lowing six constraints:

• Client and Server: A client component sends a request to a server component for
executing a remote operation. It is incumbent upon the server component to
perform or reject the request [4].

• Statelessness: Each request from client to server has to contain all necessary
information to perform the request, which leads to the following advantage:
“There is no need for the server to maintain an awareness of the client state
beyond the current request” [4, p. 199].

• Layered Architecture: A layered client-server architecture enables the applica-
tion of the Separation of Concerns (SoC) principle and the opportunity to add
features like load balancing or caching mechanisms to multiple layers [4, 15].

• Caching: This constraint allows a client to match its request to a previous
response from the server with the result that no request has to be transmitted
over the network [14].

• Code on Demand: With the usage of Code on Demand, additional programming
logic can be requested from the server that is needed for processing information
received from the server [14].

• Uniform Interface: The term “uniform interface” (hereinafter the
resource-oriented interface) can be seen as an umbrella term, since it can be
decomposed into four sub-constraints [14]: (1) identification of resources,
(2) manipulation of resources through representations, (3) self-descriptive
messages, and (4) hypermedia.

Typically, web services based on REST will be used in combination with the
application layer protocol HTTP [7, 12]. But, also other protocols can be used such

26 M. Gebhart et al.

as CoAP [14, 16]. Through the usage of hypermedia and semantic markups, no
further information is necessary to interact with this type of web services [5, 9].

3.2.3 Quality Model

The following quality model is based on the ISO/IEC 25010:2011 [9] and builds the
foundation for the qualitative perspective in this book chapter. Besides the defini-
tion of the quality terms, also the relationship between them will be defined.
Together, they form the basis for evaluating service design quality in the upcoming
sections.

A quality characteristic represents a “category of software quality attributes that
bears on software quality” and can be refined into multiple sub-characteristics over
several levels according to the ISO/IEC 25010:2011 [9]. Finally, there are quality
attributes on which an “inherent property or characteristic of an entity can be
distinguished quantitatively or qualitatively by human or automated means” [9].
The quality attributes thus permit a statement about the manifestation of one or
more quality characteristics of the service under investigation. To get a hint about
the manifestation of a quality attribute, so-called quality indicators can be used. The
quality indicators are represented by quality metrics that allow a “measurement of
the degrees to which software has given quality attributes” [17]. Quality indicators
can be derived from design patterns, best practices, conventions, or similar quality
influencing concepts. On the other hand, the quality criteria defines the threshold
“for satisfaction and the corresponding measures” [9]. For illustration purpose,
Fig. 3.1 shows the quality model.

Fig. 3.1 Quality model
applied in this chapter based
on ISO/IEC 25010:2011

3 Flexible and Maintainable Service-Oriented Architectures … 27

In [2], Gebhart derived four central quality attributes for services from existing
work: unique categorization, loose coupling, discoverability, and autonomy. As
basis, the work of Erl [1], Cohen [18], Perepletchikov et al. [19–21], Hirzalla et al.
[22], and Choi et al. [23] were used. These quality attributes influence the flexibility
and maintainability of service-oriented architectures. Existing work describes these
quality attributes mostly only abstractly and textually. Therefore, architects and
developers cannot apply them without additional interpretation effort. For that
reason, they are not sufficient to design services systematically in a quality-oriented
way. Instead, a quality attribute has to be refined into quality indicators that can be
evaluated on concrete design or implementation artifacts. In [2], Gebhart introduced
quality indicators for services in general. These quality indicators constitute the
basis for this book chapter.

3.3 Scenario

This section provides a detailed description of the AccessibilityInfoService, a web
service as part of the service-oriented SmartCampus system at the KIT, at which the
designed and developed quality indicators were applied. The application proves our
assumption that they limit the design scope and accelerate making design decision
with quality in mind. For a generally valid statement, further software projects have
to be realized while considering our provided set of quality indicators. Such an
explorative study is outside of the scope of this chapter. However, this chapter
provides the necessary information to accomplish such a study. The provided
scenario shall therefore not act as an evidence of our quality indicators rather than it
will be used to illustrate our identified quality indicators. In the following, the scope
of the scenario will be described in detail.

The SmartCampus system provides services for several platforms, in particular
for mobile devices, to support the daily life at the university. Today, there are
several services, such as the ParticipationService for system consenting [24], the
CampusGuide service for navigating on the campus, and the CompetenceService
for searching competences with an ontology-based approach.

The AccessibilityInfoService is a new web service for people with disability,
which is currently under development in cooperation with the study centre for
visually impaired (SZS). The service provides detailed information about the
accessibility of buildings and lecture rooms in a barrier-free way according to the
Web Content Accessibility Guidelines (WCAG) in version 2.0 [6]. For example,
there is information about main and side entrance of buildings regarding the
existence of stairs, amount of stair steps, existence of a ramp function, and auto-
matic door openers. Besides the retrieval of available information, there is also a
notification system that notifies the people about risks in the near surroundings or
requested buildings and lecture rooms.

From a technical point of view, the AccessibilityInfoService was designed and
developed with modern state of the art technologies, such as AngularJS and Spring.

28 M. Gebhart et al.

For the service interface, a resource-oriented approach was chosen similar to REST
with one exception: no hypermedia was used for state transitions according to the
principle of HATEOAS. In the transmitted representations, there are no hyperlinks
for further proceeding in form of new interactions with the service. Instead of this,
the logic for further processing was implemented directly in JavaScript. Therefore,
the web service is not RESTful according to the constraints by Fielding [4], but
rather a resource-oriented web service. Compared to the maturity model by
Richardson, the web service can be positioned on the second level [5].

Figure 3.2 illustrates the AccessibilityInfoService as part of the SmartCampus
system at the KIT in form of a use case diagram from the perspective of people
with disability. We differentiate between a user with and without authentication
(anonymous) on the AccessibilityInfoService.

3.4 Quality Indicators for Resource-Oriented Web
Services

This section introduces the quality attributes and the technology-independent
quality indicators that have been identified as important for services in
service-oriented architectures. Afterwards, each of the technology-independent
quality indicators is mapped onto aspects of resource-oriented web services. This
enables architects and developers to design resource-oriented web services sys-
tematically in a quality-oriented manner. Furthermore, by application of these

Fig. 3.2 Use cases covered by AccessibilityInfoService

3 Flexible and Maintainable Service-Oriented Architectures … 29

quality indicators, existing resource-oriented web services can be evaluated
regarding the introduced quality attributes to identify potential for improvement.
The mapping of quality indicators onto aspects of resource-oriented web services is
illustrated by means of the AccessibilityInfoService as introduced in Sect. 3.3.

3.4.1 Unique Categorization

According to Erl [1], the unique categorization in the context of service-orientation
is comparable to the concept of cohesion in object-orientation. In general, it means
that functionality that belongs together should be grouped into one service. On the
other side, functionality with no focus on related aspects should be separated into
several services. According to Gebhart and Abeck [2], this quality attribute can be
broken down into the following quality indicators:

Separation of Business-Related and Technical Functionality
To increase the maintainability of services, business-related and technical func-
tionality should be separated into different services because these two kinds of
functionality change in different time intervals.

In the context of resource-oriented web services, one web service focuses on one
resource that can be either business-related or technical. In case of
business-relation, the covered resource reflects an entity of the domain model.
According to this quality indicator, all operations of the web service, represented by
HTTP methods, should relate to the considered resource. If technical functionality
is required as part of a business-related resource, this functionality should be part of
a separate web service representing a more technical resource. For example:

GET/users/bfc6cacf9bad9a02c87c3061a491b11b

This request returns the user with the md5-generated ID bfc6-
cacf9bad9a02c87c3061a491b11b. To get the information whether the user is cur-
rently logged in, what represents a more technical functionality, the following way
is a bad style as it is more method-oriented than resource-oriented:

GET/users/bfc6cacf9bad9a02c87c3061a491b11b/loggedIn

Instead, for the login information a separate resource-oriented web service
should be created that allows querying login information for a specific user ID.

GET/logins/bfc6cacf9bad9a02c87c3061a491b11b

Separation of Agnostic and non-Agnostic Functionality
To increase the reusability of services, agnostic functionality should be separated
from non-agnostic functionality. Agnostic functionality represents generic func-
tionality that can be used in several business contexts. A typical example for an
agnostic functionality is a user query with a certain user ID.

30 M. Gebhart et al.

A resource-oriented web service typically provides information that relates to a
resource representing a functional entity of the domain model. As the provided
HTTP methods enable Create, Read, Update, and Delete (CRUD) operations that
can be used in several contexts, the web service provides only agnostic function-
ality. For specific functionality, an explicit resource should be created. For example,
if a web service is expected to provide functionality to subscribe to rooms or
buildings, a separate resource for subscriptions should be created. This means that
the following request is a bad style to subscribe to rooms with md5-based ID
d8ce37c2d80891095497a73e37432d56.

POST /rooms/d8ce37c2d80891095497a73e37432d56/subscribe

Instead, the following resource is recommended:

POST /subscriptions

As payload, the service consumer sends the ID of the room, i.e., in this example
d8ce37c2d80891095497a73e37432d56. Sometimes, especially behind non-agnostic
functionality there are complex and long-running business processes. In this case,
the quality indicator of asynchronicity as part of the loose coupling quality attribute
should be considered.

Data Superiority
The statement behind data superiority is that there is only one service that is
responsible for the management of a certain business entity, such as customers or
invoices. In this context, management means the creation, reading, updating, and
deletion (CRUD) of the business entity. For that reason, it is comparable to the
Separation of Concerns (SoC) principle. The data superiority increases the main-
tainability since all managed functionality is collected in one central place. If the
data schemas are changed, only one service has to be adapted.

For resource-oriented web services, the data superiority means: If there is a
building service which provides information about buildings, then no further ser-
vice with similar functionality for buildings should exist. Thus, if a resource-
oriented web services manages only the covered resource, then the web service
automatically fulfills this quality indicator.

Common Business Entity Usage
According to this quality indicator, a service should provide functionality that uses
only common business entities. This means that all provided functionality uses
either the same business entity or dependent ones. A business entity “A” depends
on another one “B” if the entity “A” cannot exist without “B”. An example is the
business entity building with a contained address considered as an explicit business
entity. A building service should focus on a building but as an address cannot exist
without the superordinate building, the building service can also work with
addresses. An explicit address service is not necessary. In domain models that are
described using the Unified Modeling Language (UML), this dependency would be
described by means of compositions.

3 Flexible and Maintainable Service-Oriented Architectures … 31

For resource-oriented web services, this quality indicator means that one web
service should only consider one resource and its composing resources that are
often called sub-resources (Fig. 3.3).

3.4.2 Loose Coupling

Intention of a loose coupling between services is the reduction of its dependencies.
This quality attribute represents one of the most widespread ones since it is often
mentioned as an important success factor for service-oriented architecture projects.
A loose coupling between services promotes the scalability, fault tolerance, flexi-
bility, and maintainability of the entire service-oriented architecture. The following
quality indicators provide architects and developers hints about the current degree
of coupling.

Asynchronicity
To reduce the dependencies, in case of long-running operations, asynchronous
operation calls are expected to be supported. This means that the service consumer
invokes the service provider, who returns the result proactively by calling the
service consumer. This enables that the service consumer does not have to wait
until the operation has been finished. Asynchronicity decouples the service con-
sumer from the service provider during the execution. As result, for example, the
service consumer is not required to be active and correctly running during the entire
execution time.

Fig. 3.3 Mapping composition from domain model onto resource model

32 M. Gebhart et al.

For that purpose, in resource-oriented web services, a POST request is sent to
initiate the long-running operation.

POST /subscriptions

As payload, a Callback Resource Identifier should be provided by means of a
URL that can be called by the operation to initiate the callback. In case of
long-running operations, the POST request returns the ID of the process repre-
senting the operation execution. By this means, it is possible to query the current
state of the operation or to terminate it.

GET /subscriptions/d8ce37c2d80891095497a73e37432d56

This request returns a representation of the operation with the process ID
d8ce37c2d80891095497a73e37432d56.

As alternative to the Callback Resource Identifier, it would be possible to use
polling to recognize when the operation is finished. However, especially in mobile
environments, this solution is not recommended due to declining battery life.
Another option is push services, which notify service consumer over well-defined
interfaces about the process status. An interaction from client-side is not necessary.

Common Data Types Complexity
If service providers and consumers use the same data types, their coupling increases
as changing the data types within one of the parties results in adapting the other
party. For that reason, service consumer and service provider should not use the
same data types in case of complex ones. The only shared data types should be the
primitive ones, such as string or integer.

To consider this quality indicator in resource-oriented web services, the imple-
mentation has to be considered: When using JSON as representation data format,
only strings are exchanged. Therefore, in this case, it depends on the internally used
data types: If service providers and consumers use the same complex data types
internally and create serialized representations of these data types to exchange data,
then this indicator is not fulfilled. However, if service provider and consumer use
similar data types contained in different packages or the JSON string is created
manually, this indicator is fulfilled.

Abstraction
Another aspect that supports the loose coupling is the abstraction of operations
and parameters. This means that both the operations and the expected parameters
should hide technical details. For example, if the functionality of a service is the
storage of users in the database, the service provider should only provide the
abstract information that users are stored. The usage of a database should be
hidden. Also in the context of parameters, only functional information should
be expected. Implementation details, such as database credentials, should not be
expected parameters. This enables to change the underlying implementation and
the backend without changing the service consumer.

3 Flexible and Maintainable Service-Oriented Architectures … 33

Regarding operations in resource-oriented web services, the URLs have to be
considered as the operations themselves are preset by HTTP (GET, POST, PUT,
and DELETE). A typical non-abstract URL is:

GET /buildingsInDatabase

Technical information, such as the data store should be avoided in the URL.
Regarding the parameters, it is very similar to the method-oriented approaches as it
depends on the implementation: The transferred data, e.g., described with JSON
should not provide non-abstract information. For example, the following JSON
object to create a new customer should be avoided:

POST /users
{

“lastname”: “Doe”,
“firstname”: “John”,
“db_username”: “database-user1”,
“db_password”: “database-pw1”

}

Compensation
Aservice should provide compensating functionality in case of state-changing
functionality. For example, if a service provides functionality to change the state of
a business entity, such as users, it should also provide functionality to compensate
this step. This is especially needed in transactional contexts.

For resource-oriented web services, this means that on the one hand the HTTP
methods have to be correctly applied as described in Table 3.1.

And on the other hand, POST and DELETE always have to be available together
as they are the compensating ones for each other. PUT is for updating an entry and
if it is idempotent it is also self-compensating.

3.4.3 Discoverability

Reusing existing functionality is another important aspect in the context of
service-oriented architectures. Certain functionality should only be available once
and thus should not be implemented twice. For that reason, it is necessary that

Table 3.1 HTTP method
characteristics

HTTP method Safe Idempotent

POST No No

GET Yes Yes

PUT No Yes

DELETE No Yes

34 M. Gebhart et al.

existing service are discoverable. The discoverability can be broken down into the
following three quality indicators:

Functional Naming
To discover existing functionality, it is necessary that all externally visible parts of a
service are functionally named. Compared to the abstraction introduced as quality
indicator for the loose coupling, the functional naming is not limited to the
avoidance of technical details. Instead the focus is on functional naming in general.
For example, a service that is responsible for the management of buildings should
be named as buildings service and not simply service A or service B. This has to be
considered for all externally visible parts.

In resource-oriented web services, the operations themselves are preset by
HTTP. Therefore, this part is fixed and cannot be changed. However, the URLs
should be functionally named. A URL like the following should be avoided:

/A/d8ce37c2d80891095497a73e37432d56

Instead, the following URL should be chosen.

/buildings/d8ce37c2d80891095497a73e37432d56

Furthermore, the representations, i.e., the exchanged data, in case of JSON
especially the attributes, have to be functionally named.

{

“I”: 5331,
“BN”: “01.13”,
“N”: “Mensa new building”,
“ADD”: “Straße am Forum 4”,
“LA”: 49.0118,
“LO”: 8.41688,
“EMGNUM”: null,
“IDK”: false,
“MISC”: null,
“CATID”: 27053

}

Should be replaced by:

{

“id”: 5331,
“buildingNumber”: “01.13”,
“name”: “Mensa new building”,
“address”: “Straße am Forum 4”,
“lat”: 49.0118,
“lon”: 8.41688,
“emergencyNumber”: null,

3 Flexible and Maintainable Service-Oriented Architectures … 35

“infodesk”: false,
“miscellaneous”: null,
“categoryId”: 27053

}

Naming Convention Compliance
Both in literature and in companies there are naming conventions that should be
considered when designing a service. For example, operations are expected to
include verbs and nouns. Furthermore, capitalization rules should be correctly
applied and there is no mixture of singular or plural. This helps architects and
developers to find appropriate existing functionality.

Transferred to resource-oriented web services, this is very similar to the func-
tional naming. Also in this case, the URLs and the attributes in data objects have to
follow naming conventions. For example bad URLs could be:

/BUILDING/d8ce37c2d80891095497a73e37432d56
/ROOMS/c779b524addc6effc9334eea029208ca

Instead, the following convention should be chosen:

/buildings/d8ce37c2d80891095497a73e37432d56
/rooms/c779b524addc6effc9334eea029208ca

Information Content
The more information the service provides to potential service consumers the easier
the appropriate functionality can be found. For that reason, the extent of informa-
tion content, such as documentation of the service interface, indicates the discov-
erability of a service.

For resource-oriented web services, there is no formal description available as it
is for web services based on SOAP and WSDL. For that reason, as much infor-
mation as possible should be documented: The resources, available methods,
attributes of exchanged data. Especially for the documentation of attributes, the
Application Level Protocol Semantics (ALPS) can be chosen to provide the
semantics for the exchanged data [25].

3.4.4 Autonomy

The autonomy represents the independency from one service to other services, i.e.,
to what extent a service can be used without other ones. To get a hint regarding the
degree of autonomy of a service, architects and developers can apply the following
quality indicators.

36 M. Gebhart et al.

Service Dependency
Functionality that requires other services decreases the autonomy of the considered
service since it requires the presence of other services for operating. For that reason,
the direct dependencies between one service and other services give a hint about its
autonomy.

In the context of resource-oriented web services, the implementation has to be
considered to measure the number of dependencies to other services.

Functional Overlap
Furthermore, the autonomy is decreased if the provided functionality overlaps with
the functionality of other services. In this case, the service can only be used in
combination with functionality of other services what reduces its autonomous
usage.

Similar to service dependency, this quality indicator has no REST-specific
characteristic. The implementation has to be considered to evaluate the functional
overlap with other services.

3.5 Conclusion and Outlook

In the past, mostly web services based on the method-oriented approaches, such as
SOAP, have been developed. However, due to its lightweight, today, more and
more resource-oriented web services based on HTTP are developed. This kind of
web services can also be applied even though if the service-oriented architecture is
implemented using certain trends, such as microservices [26]. As the design of
these web services strongly influences the quality of the resulting service-oriented
architecture, the web services have to be designed with care.

For that reason, quality attributes with focus on design and implementation
aspects of services in service-oriented architectures have been described. As these
quality attributes are mostly only described textually, Gebhart and Abeck [2] broke
them down into measurable quality indicators. However, these quality indicators are
still technology-independent. For that reason, in the past, they have been mapped
onto method-oriented web services, such as the ones based on SOAP. In this
chapter, the outstanding mapping onto resource-oriented web services was
described.

To illustrate the mapping, the quality indicators were applied on a real-world
scenario, the AccessibilityInfoService developed at the Karlsruhe Institute of
Technology (KIT). The AccessibilityInfoService is a web service developed for
people with disability in cooperation with the study centre for visually impaired
(SZS) as part of the SmartCampus system. The application showed that the quality
indicators give valuable hints about how to design the web services so that the
desired quality attributes, such as loose coupling, are supported.

3 Flexible and Maintainable Service-Oriented Architectures … 37

By means of the mapping onto resource-oriented web services, architects and
developers get a tool to design and implement resource-oriented web services based
on HTTP systematically in a quality-oriented manner. Furthermore, by means of the
quality indicators, it is possible to evaluate existing web services to identify
potential for improvement. For that reason, the present work supports the creation
of service-oriented architectures that fulfill the goals initially associated with this
kind of architecture: A highly flexible and maintainable IT architecture.

For the future, we plan to support the automatic evaluation of web services
regarding the described quality indicators. For that purpose, we are working on an
open source tool, the QA82 Analyzer [27]. As the evaluation regarding the quality
indicators mostly requires expert knowledge, this tool supports an evaluation
mechanism, where automatic evaluations are combined with manual expert
knowledge. We call this approach “hybrid quality analysis”. The tool allows the
creation of further metrics and can be integrated into existing tool chains.

References

1. Erl, T: SOA: Principles of Service Design. Prentice Hall, Upper Saddle River (2007). ISBN
978-0132344821

2. Gebhart, M., Abeck, S.: Metrics for evaluating service designs BASED on SoaML. Int. J. Adv.
Softw. 4(1&2), 61–75 (2011)

3. Gebhart, M.: Query-based static analysis of web services in service-oriented architectures. Int.
J. Adv. Softw. 7(1&2), 136–147 (2014)

4. Fielding, R.: Architectural Styles and The Design of Network-Based Software Architectures.
University of California, Irvine (2000)

5. Webber, J., Parastatidis, S., Robinson, I.: REST in practice: Hypermedia and Systems
Architecture. O’Reilly Media Inc (2010)

6. W3C: Web Content Accessibility Guidelines (WCAG) 2.0 (2008)
7. Dikmans, L., Luttikhuizen, R.: SOA Made Simple. PACKT Publishing (2012). ISBN

9781849684163
8. Mason, R.: How REST Replaces SOAP on the Web: What it means to you. http://www.infoq.

com/articles/rest-soap (2011)
9. ISO/IEC 25010: Systems and software engineering—Systems and software Quality

Requirements and Evaluation (SQuaRE)—System and software quality models (2011)
10. ISO/IEC 40210: Information technology—W3C SOAP Version 1.2 Part 1: Messaging

Framework (2011)
11. ISO/IEC 42020: Information technology—W3C SOAP Version 1.2 Part 2: Adjuncts (2011)
12. IETF RFC 2616: Hypertext Transfer Protocol—HTTP/1.1 (1999)
13. Garlan, D., Shaw, M.: An introduction to software architecture. Pittsburgh, PA (1994)
14. Richardson, L., Amundsen, M., Sam, R.: RESTful Web APIs. O`Reilly & Associates (2013).

ISBN 978-1449358069
15. Evans, E.: Domain-Driven Design: Tacking Complexity In the Heart of Software.

Addison-Wesley Longman Publishing Co, Boston (2003). ISBN 0321125215
16. IETF RFC 7252: The Constrained Application Protocol (CoAP) (2014)
17. Summers, B.L.: Software Engineering Reviews and Audits. CRC Press, Boca Raton (2011)
18. Cohen, S.: Ontology and taxonomy of services in a service-oriented architecture. Microsoft

Archit. J. (2007)

38 M. Gebhart et al.

http://www.infoq.com/articles/rest-soap
http://www.infoq.com/articles/rest-soap

19. Perepletchikov, M., Ryan, C., Frampton, K., Schmidt, H.: Formalising service-oriented
design. J. Softw. 3, 1–14 (2008)

20. Perepletchikov, M., Ryan, C., Frampton, K., Schmidt, H.: Cohesion metrics for predicting
maintainability of service-oriented software. In: Seventh International Conference on Quality
Software (QSIC) (2007)

21. Perepletchikov, M., Ryan, C., Frampton, K., Tari, Z.: Coupling metrics for predicting
maintainability in service-Oriented design. In: Australian Software Engineering Conference
(ASWEC) (2007)

22. Hirzalla, M., Cleland-Huang, J., Arsanjani, A.: A metrics suite for evaluating flexibility and
complexity in service oriented architecture. In: ICSOC (2008)

23. Choi, S.W., Kimi, S.D.: A quality model for evaluating reusability of services in soa. In: 10th
IEEE Conference on E-Commerce Technology and the Fifth Conference on Enterprise
Computing, E-Commerce and E-Services (2008)

24. Gebhart, M., Giessler, P., Burkhardt, P., Abeck, S.: Quality-oriented requirements engineering
for agile development of restful participation service. Ninth International Conference on
Software Engineering Advances, pp. 69–74 (2014)

25. Amundsen, M., Richardson, L., Foster, M. W.: Application-Level Profile Semantics (ALPS).
http://alps.io/spec/ (2014). Last-accessed 17 May 2015

26. Newman, S.: Building Microservices. O’Reilly (2015)
27. QA82: QA82 Analyzer. http://www.qa82.org

Author Biographies

Michael Gebhart is Senior IT Management Consultant at iteratec GmbH in Stuttgart, Germany.
He did his Ph.D. in the context of quality-oriented design of services in service-oriented
architectures. Michael Gebhart is author of numerous articles, speaker at conferences, lecturer at
universities, and researcher in the areas of service-oriented architectures, web applications, and
quality analysis of software.

Pascal Giessler is a software engineer, author and researcher working at iteratec GmbH in
Stuttgart, Germany. He holds a master degree in computer science from the Karlsruhe Institute of
Technology (KIT) and is currently doing a doctorate in the area of software quality analysis
regarding the maintainability at the KIT. During his study, he worked for a leading multimedia
company and some startups.

Sebastian Abeck is Professor at the Karlsruhe Institute of Technology (KIT). He is head of the
research group Cooperation & Management (C&M) which is doing research and teaching in the
area of service-oriented and mobile web applications. His current research topics are: systematical
requirements analysis, quality metrics, accessibility, security patterns for identity and access
management.

3 Flexible and Maintainable Service-Oriented Architectures … 39

http://alps.io/spec/
http://www.qa82.org

Chapter 4
Knowledge Elicitation and Conceptual
Modeling to Foster Security and Trust
in SOA System Evolution

John W. Coffey, Arthur Baskin and Dallas Snider

Abstract Software systems based upon Service-Oriented Architecture (SOA) are
often large, heterogeneous and difficult to understand. Evolving such systems
presents some unique challenges. For example, it is critical to understand the
impacts on trust relationships and security as SOA systems evolve. A substantial
body of work exists on the idea of knowledge elicitation and management through
the creation of knowledge models, which are created to represent the conceptual
knowledge of experts. Knowledge modeling based upon concept maps is an effi-
cient process and knowledge representation scheme that holds potential to assist
planning in evolving SOA systems. This chapter contains two examples of
knowledge modeling in support of SOA system evolution. The first example is an
academic study that illustrates the use of knowledge modeling to create a software
security assurance case. The second example, which is the main focus of this
chapter, pertains to the ongoing evolution of a large, real-world Sustainment
Management System software suite named PAVER™. This software is being
modified to allow third-party add-in functionality to interact with the base system
and to create a SOA federation with other enterprise systems. This article contains a
description of a knowledge elicitation and modeling effort to identify trust concerns
as this increasingly large and complex federation evolves.

4.1 Introduction

Service Oriented Architecture (SOA) technologies provide new possibilities for the
creation of more flexible and interoperable heterogeneous systems. However, with
these enhanced capabilities come new and complex issues pertaining to system

J.W. Coffey (&) � D. Snider
Department of Computer Science, The University of West Florida,
Pensacola, FL 32514, USA
e-mail: jcoffey@uwf.edu

A. Baskin
Intelligent Information Technologies, Indianapolis, IN 46216, USA

© Springer International Publishing Switzerland 2016
E. El-Sheikh et al. (eds.), Emerging Trends in the Evolution of Service-Oriented
and Enterprise Architectures, Intelligent Systems Reference Library 111,
DOI 10.1007/978-3-319-40564-3_4

41

security and to the issue of whether or not a service one might employ is trust-
worthy. A major goal of SOA is to foster the creation of more agile and flexible
systems which implies that system evolution might occur at a rapid pace. If a
system evolves strictly through software extensions to create new functionality, it
will likely evolve more slowly than if a system evolves through the recombination
of (potentially newly discovered) pre-defined services. Thus, having a clear
understanding of security and trust issues is critical in rapidly evolving SOA sys-
tems. Concept mapping [1] and knowledge modeling [2] hold potential to provide
efficient ways to capture and represent knowledge and reasoning about security and
trust issues in SOA systems. Some preliminary work [3, 4] has demonstrated the
utility of concept mapping and knowledge modeling in SOA system development.

Concept mapping provides a visual representation of structured knowledge that
allows people to organize and express knowledge of a domain such as security or
trust. Subject matter experts (SMEs) can collaborate with knowledge engineers
(KEs) in a knowledge elicitation process to create concept maps in order to address
a security or trust issue. A substantial body of work exists on the creation of
knowledge models, which are created to represent the conceptual knowledge of
experts. For some examples, see [5–8]. Knowledge modeling based upon concept
maps is an efficient process and knowledge representation scheme.

This chapter contains two examples of concept mapping to address security
concerns and trust issues in SOA systems. The first example is an academic study
that illustrates the use of knowledge modeling to create a security assurance case
[3], a means of demonstrating that security concerns have been met for a software
system. This example illustrates the idea of collaborative knowledge modeling with
a security expert, the software developer and a knowledge elicitor in order to create
the security assurance case. The second example is the main focus of this chapter.
A significant ongoing evolution of a large, real-world Sustainment Management
System software suite named PAVER™ is to allow third-party add-in functionality
to interact with the base system and to create a SOA federation of PAVER™ with
other enterprise systems. A knowledge elicitation and modeling effort was carried
out in order to address these trust concerns.

The remainder of this article includes a review of literature on security and trust
models in SOA systems. A review of the use of concept maps and knowledge
models for the capture and representation of structural knowledge follows.
Strategies for the elicitation and representation of structured knowledge are dis-
cussed. Following this groundwork are the two case studies. The article concludes
with a discussion of the work presented and some conclusions.

4.2 Security and Trust in SOA Federations

Security and trust are two related concerns in SOA system evolution. Rasmussen
and Jansson [9] stated that security and trust concerns must be treated together to
provide protection for Internet commerce. They consider traditional security

42 J.W. Coffey et al.

measures such as authentication and access controls as hard security while using the
term soft security to describe the concept of trust and the use of reputation systems
that allow for the recognition and approval of services to be utilized. Thomas et al.
[10] motivated the interrelatedness but dissimilarity of these two ideas by
describing security concerns across trust domains. They cite the commonly
occurring scenario in federated SOA systems of the authentication of a service user
within the user’s local trust domain, and the need for the service provider to trust
the authentication performed by the user’s identity provider. They described a
probabilistic trust level model that seeks to quantify the level of trust that can be
placed in an authentication event.

Many of the trust models for SOA services cite the work of Marsh [11] who
conceptualized trust as something that could be computed and modeled. In his
seminal research, Marsh created formulae to estimate trust between agents
regardless of whether the agents are humans or machines. He also formalized levels
of risk, competence and cooperation. He described the need to consider how trust
levels change over time. He envisioned that his work could be applied to sociology,
psychology and in a distributed artificial intelligence environment. Marsh realized
that his publication was a work in progress and welcomed other researchers to
extend his formulae.

Skopik et al. [12] extended the work of Marsh by using previous experiences and
crowdsourcing techniques to create a rule-based approach to establish trust among
humans and services. Their approach utilized both qualitative and quantitative
measures. Some of the sources for their model include interactions, profiles,
structural relations and hierarchies, and manually declared relationships. They
utilized directed graphs where the vertices of the graph are the actors and the edges
represent the trust relations among the actors. Because there can exist both human
and non-human actors in a dynamic SOA system, Skopik et al. established the
following five classes of measures to assist in building flexible rules that can adjust
with the environment: interaction among the actors, similarity of attributes among
the actors, trust relations (e.g., personal, bidirectional, and temporal dynamics),
collaboration (e.g., reciprocity and response times), and group statistics such as
mean and distribution of directed graph metrics.

Cayirci [13] presented a mathematical model which calculates both trust and risk
for services, that provides modeling and simulation as a service (MSaaS). The trust
and risk model takes into consideration not only security but also the quality of
service and grade of service as stated in service level agreements. The goal of
Cayirci’s research was to build a model that can help determine if a service has
enough credibility and accountability, thus offering protection for both the provider
and the consumer of the service.

Kovac and Trcek [14] examined trust in SOA services from a socio-cognitive
perspective and presented a model using the following input attributes: temporal
dynamics between agents, dependencies on feedback from other agents, the context
of the trust relationship between agents, and knowledge gained from prior expe-
riences. The components of their trust model include directed graphs representing
social networks, a set of trust values and operators, an algorithm to compute trust

4 Knowledge Elicitation and Conceptual Modeling … 43

and a set of policies that define trust interactions. Their architecture incorporates a
global trust web service, distributed trust engines and a web-based user interface.
Security in SOA systems requires authentication and fine-grained level of access
control. Nair et al. [15, 16] proposed a federated web services framework that
would utilize hardware virtualization to provide detailed management of group
level permissions, data security and process isolation.

From the previous discussion, one might conclude that both security and trust
must be treated as relative terms (relatively trustworthy, poorly secured, etc.) as
opposed to two-place predicates (trusted or not, secure or not). Furthermore, the
level of security and trust in a federated system can change significantly over time.
One might view security as starting from a hardware/software perspective and trust
as originating as a human concern to be encoded, somehow, in software. Both
present significant ongoing challenges for SOA system developers.

4.3 Concept Maps, Knowledge Models,
and Knowledge Modeling

Concept maps [1] are comprised of concepts and linking phrases that make explicit
the relationship between concepts. A concept is defined by Novak as a perceived
regularity in events or objects, or a record of events or objects, designated by a
label. Triples comprised of [concept—linking phrase—concept] form propositions
which are described as fundamental units of knowledge. For instance, the propo-
sition “knowledge generation presupposes and extends structural or conceptual
knowledge” is comprised of the concepts “knowledge generation” and “structural
or conceptual knowledge” and the linking phrase “presupposes and extends.”
Concept maps make manifest the principles of subsumption and progressive dif-
ferentiation from Ausubel’s [17, 18] Assimilation Theory in which more specific
concepts are differentiated from and subsumed under more general ones.

Early work on concept mapping for knowledge elicitation was conducted at the
Institute for Human and Machine Cognition [19]. Since then, several groups have
embraced concept mapping for knowledge elicitation. McNeese et al. [20, 21] used
concept maps to externalize the expertise of pilots regarding their decision-making
strategies, to create conceptual designs of cockpits, and for internal information
management systems and procedures. Knowledge elicitation with concept maps has
been used as a means of idea generation in groups of people [22, 23]. Beyond the
use of concept maps as a learning and teaching tool, successful applications of
concept mapping include institutional memory preservation [6, 24], sharing of
domain expertise for public outreach [5], visualization of artifacts in Service-
Oriented Architecture (SOA) composite applications [25], representation of soft-
ware security assurance cases [26], and many other uses.

Building concept maps in electronic format with a tool such as CmapTools [27]
offers capabilities to connect the maps via navigational links and to associate

44 J.W. Coffey et al.

supplementary resources such as video clips, images, and links to Web sites with
the concepts in the maps. A hierarchical, ordered collection of interconnected
concept maps and their accompanying resources pertaining to a given topic com-
prise what is called a knowledge model [2, 5, 6, 24]. Moon et al. [8] have created a
comprehensive resource pertaining to applications of concept mapping and
knowledge modeling.

4.4 Studies in Knowledge Modeling for SOA Security
and Trust

This section contains two examples of the use of knowledge elicitation and
knowledge modeling for SOA systems. The first study illustrates a process of
developing a security assurance case for a newly-developed composite application.
The second study illustrates the use of knowledge modeling to address security and
trust concerns pertaining to a large sustainment management system (an
enterprise-level system used to track a large collection of physical assets and to
foster decision-making regarding how to maintain them) as the system evolves with
the addition of third-party add-in functionality and is more extensively integrated
into a federation with other enterprise systems.

4.4.1 Developing a Security Assurance Case Through
Knowledge Modeling

Agudo et al. [28] stated that security assurance cases are meant to provide evidence
that a system meets specific criteria in order to create confidence in the system’s
security. Techniques for building such cases range from informal to semi-formal to
highly formal. Agudo et al. advocated for semi-formal approaches that encompass
both functional and non-functional requirements. The current study would properly
be characterized as a semi-formal approach focused on both functional and
non-functional requirements. The work was performed by teams comprised of
faculty and Master’s level software engineering students at a regional university.
The work pertains to the development of a SOA system pertaining to a flight
reservation system.

4.4.1.1 Motivation

Developing comprehensive security cases is prohibitively expensive in all but the
most security-critical software. The goal of the work in this case study was to assess
the viability of the idea of developing a set of the most critical security concerns to

4 Knowledge Elicitation and Conceptual Modeling … 45

be addressed using a knowledge modeling approach and then developing the case
with three key participants: a security expert, the software developer, and a
knowledge engineer. The current approach represents an attempt to bring effi-
ciencies to the security assurance development process, making it feasible to
develop a case considering only the major concerns of the security expert.

4.4.1.2 Methods and Results

Planning for the development of the security assurance case proceeded in parallel
with the actual software development. The process of developing the security
assurance case using this approach is conceived as being comprised of two phases:

Phase 1: The security expert and knowledge engineer collaborate to create a
concept map identifying issues to be addressed in the security assurance
case.

Phase 2: The security expert, knowledge engineer and software developer create a
concept map that constitutes the actual security assurance case.

Planning for Phase 1 of the process is carried out by building a concept map
pertaining to the particular security concerns of interest to the security expert. In the
current study, informal discussions were carried out prior to the building of the
concept map which was performed solely by the knowledge engineer. In the general
situation, interactive development of the concept map in collaborative work
between the knowledge elicitor and the expert would supplant the preliminary
informal discussions. Figure 4.1 contains the concept map that was developed to
reflect the results of the planning process.

The box in the top-left corner of Fig. 4.1 reads “How are the design and
implementation vulnerabilities being addressed in a Security Assurance case?”
This item is called a focus question—a question that is posed at the beginning of the
collaborative mapping process in order to ensure that the knowledge elicited
remains relevant to the issue being explored. The goal of the knowledge elicitation
effort is to answer the focus question. Making the focus question explicit by
recording it in the concept map helps collaborators stay on topic and avoid irrel-
evancies in the elicited knowledge.

In the concept map in Fig. 4.1, one can see that the software security assurance
case will involve both a design touchpoint and an implementation touchpoint—the
two times in the development cycle when security issues would be examined under
the chosen protocol. This concept map also reveals that the rationale for the case
rests with best practices and involves four specific vulnerabilities (in bold near the
center of the map) to be addressed:

• Error handling vulnerabilities,
• The need for transaction logs,
• Ensuring that no embedded authentication data is present,
• Allowing minimal privileges for proper operations.

46 J.W. Coffey et al.

In Phase 2, two knowledge engineering sessions were conducted with the
software developers, one after the product’s design phase, and the other after the
product’s implementation phase. Figure 4.2 contains one of the concept maps that
was developed as part of the security assurance review of the design. At the top of
Fig. 4.2, one can see the specific vulnerabilities that appear repeated from the phase
1 planning concept map. Below them is specific documentation regarding how
these security issues were addressed.

The review and knowledge modeling effort comprised only a small increment in
the overall time required to design and implement the software. The main additional
cost of employing this approach was the time of the three participants to conduct the
interviews. Each interview lasted approximately an hour. If the total work in design
and implementation of the project were 40 h (a very conservative estimate), the
security assurance review sessions only added 5 % to the total time required. The
resulting concept map-based security assurance case was judged to be a very good
communication tool for reviews and other subsequent uses by both the students in
the class and by some industry experts who evaluated the work.

Fig. 4.1 A concept map showing the plan for the security assurance case

4 Knowledge Elicitation and Conceptual Modeling … 47

Fig. 4.2 The software security assurance case pertaining to the four vulnerabilities

4.4.2 Assessing Trust Needs for a SOA Federation

4.4.2.1 Motivation

A large-scale sustainment management system named PAVER™ is used by the
Department of Defense and NATO to track pavement and roadway inventories and
conditions in airports. PAVER™ is being integrated with third-party “add-ins”
which are other applications that enhance the functionality of the base product.
Additionally, the system is being integrated more extensively with other enterprise
systems including a GIS system and other sustainment management systems such
as systems that track inventories and condition of railroad track and building roofs.
The increased integration of these systems creates federations of interoperating
SOA systems at a variety of levels. The goal of the work reported here is to identify
trust issues across these levels and to make progress in identifying ways that these
issues can be resolved.

The concept of federation in this context can be considered at three different
levels of abstraction (from highest to lowest):

• Enterprise Federation—the highest level; PAVER™ and a second system
named PCASE are federated with other enterprise systems

• Desktop Federation—an integrated sustainment management system hosting
PAVER™, PCASE and add-ins

• Tool Federation—PAVER™ component services interact with add-ins.

48 J.W. Coffey et al.

4.4.2.2 Methods

Two rounds of knowledge elicitation were conducted in this study. The first round
focused on the Desktop and Tool Federation levels of abstraction. The second
round focused on the enterprise level of abstraction. Two participants were involved
in the work, a SME and a KE. Both the KE and the SME were familiar with this
approach to knowledge modeling since they had collaborated on a previous project.

A preliminary informal discussion spanning approximately one hour was
devoted to the exchange of background information that was pertinent to the
problem areas to be addressed. The knowledge elicitation efforts were quite efficient
in terms of human resources—only a single knowledge elicitor working with a
single expert. Since the participants were not co-located (one was in Florida and the
other in Indiana), WebEx was used with a shared desktop so that both participants
could view the emerging concept maps.

The groundwork laid by the expert and knowledge engineer yielded two initial
focus questions for round one:

1. What capabilities might we develop to increase trust between PAVER™/
PCASE and the add-ins?

2. What are the major concerns that need to be addressed in the management of
trust relationships among the add-in vendors, and how do we address them?

A second knowledge elicitation round had a focus on the Enterprise level of
abstraction. This level pertains to the entire PAVER™/PCASE + add-ins com-
posite architecture interoperating with other enterprise systems. For instance,
PAVER™/PCASE can be used in conjunction with a Global Information System
that tracks locations of government property. The second round started with a broad
focus question regarding trust issues at the enterprise level. After eliciting a concept
map pertaining to the enterprise level of federation, several additional focus ques-
tions were identified and an additional concept map was created.

Each session yielded one concept map. After each knowledge elicitation session,
the knowledge engineer carried out a refinement process of cleaning up typographic
errors, refining or clarifying the linking phrases, generally “wordsmithing” the
concepts and linking phrases, and rearranging the structure of the concept maps to
enhance clarity and simplicity of reading. After cleaning up the maps, the knowl-
edge engineer passed the maps to the expert who evaluated them for completeness
and correctness.

4.4.2.3 Results

In the first concept mapping session, spanning two hours, two concept maps were
elicited. In the second round, two more maps were created. Table 4.1 contains a few
statistics on the concept maps that were elicited in the sessions.

4 Knowledge Elicitation and Conceptual Modeling … 49

The first knowledge elicitation round enabled the identification of additional
focus questions that allow “tunneling in” on issues at a greater depth. While none of
them was explored within the scope of the current project, the following focus
questions were identified:

1. What are alternative means of resolving trust issues surrounding the numerous
file formats at the various layers of federation?

2. How do we resolve competing industry and Department of Defense
(DoD) requirements and the corresponding trust issues (in general, or for the file
format issue specifically)?

3. In light of trust issues, how should we approach choosing add-ins for direct
access to each other through the desktop?

4. How should we assess and foster trust on the file reader issue?

From the first session in the second round on trust at the enterprise level, two
additional focus questions were identified:

1. What should be done in the short run and in the long run when mandated
authoritative source differs from the operational data source?

2. How can we foster trust in summary data within the enterprise federation?

Construction of the map in Fig. 4.3 yielded several key ideas. First, that trust is
fostered through a family of methods supporting discovery, orchestration and
composition in SOA applications. After that, the key components in the system
were identified. As can be seen in Fig. 4.3, a key idea is that, for the management of
trust among add-ins, two key elements are needed: a host object and a window into
a database.

Another concept that was captured was the idea of host objects as those
responsible for the registration of callback routines for the add-ins. Additionally, the
concept of the database adapter as a helper object to the host object was captured.
The issue that host objects need to know if the implementation is local in a
Windows machine or Web-based (but the database helper does not) was made
explicit. Another key idea was that interface contracts foster trust.

An important design principle which the SME characterized as internalization
versus externalization was identified. The issue is the degree to which the host
object must know about the inner workings of add-ins. If functionality is inter-
nalized, the add-in has all the information it needs to perform its responsibilities.

Table 4.1 The inventory of
concept maps that were
elicited in the sessions

Map Concepts Linking phrases

Round 1

Capabilities 47 51

Concerns 39 44

Round 2

Enterprise trust issues 49 53

Authoritative source 42 49

50 J.W. Coffey et al.

The alternative, externalization, requires the host object to be aware of internal
functioning of the add-in which yields a higher degree of coupling between the host
and the add-in. The more desirable avenue is to limit how much the host object
must know about the inner workings of the add-in (to limit externalization) and to
have the add-in internalize as much functionality as possible.

Such an approach yields lower coupling from a software engineering standpoint
and fosters trust on the part of the add-in creator. Externalization fosters greater
coupling, and greater dependency on the host object to “keep doing the right thing.”
This approach is bad from the perspective of the add-in developer. The reader
should refer to Fig. 4.3 to appreciate how these and other ideas are represented in
elicited concept map form.

Figure 4.4 contains the second concept map elicited in the first round. As can be
seen in Fig. 4.4, this session successfully identified several issues pertaining to the
integration of add-ins including how to make an add-in available—to install or
bring it into scope through the desktop. The trust relationship is established by the
add-in’s presence in the desktop since administrative privileges are now necessary

Fig. 4.3 A concept map pertaining to fostering trust between PAVER™/PCASE and the add-ins

4 Knowledge Elicitation and Conceptual Modeling … 51

to its installation there. A second important issue was how to have trusting rela-
tionships as add-ins directly interact without PAVER™ as an intermediary.

The numerous file formats for data complicate trust relationships at these levels,
and the issue of identifying trusted readers that correctly read data in any of the
various formats in which data might be stored is a significant concern. The
divergent positions of industry partners and the DoD on interoperability with
add-ins was identified in this round. The DoD favors increased agility and adapt-
ability in the system by the enhanced use of add-ins whereas industry partners are
more conservative on trust issues. For instance, one partner asserted that the only
sufficient basis for trust would be through acquisition and direct control of
PAVER™.

A second round of knowledge elicitation sought to address trust issues at the
enterprise federation level. This level involves interoperation of other enterprise
systems with the PAVER™/PCASE + add-in system. Figure 4.5 contains the first
concept map that was created. As can be seen in Fig. 4.5, a significant trust issue at
the enterprise level pertains to the authoritative source of data when multiple sys-
tems contain their own data stores for the same data. In actual system operation,
there is a mandated authoritative source and an operational authoritative source,
which ideally should be the same. However, in actual systems, the mandated source
might be different than the actual or operational authoritative source if the opera-
tional source has better data than the mandated source.

Two examples of this disparity were identified. The tagging of pavement by
facility ID and GIS data were both identified as instances in which the mandated

Fig. 4.4 A concept map on the management of trust relationships at the tool and desktop levels

52 J.W. Coffey et al.

and operational authoritative source are different. A subsequent round of KE was
conducted to focus on the range of options for dealing with such a disparity.

Data replication versus reference back to a single original data source was
another significant concern that was identified. Historically, different levels of
replication (full, partial, or none) have been employed. Elicitation of heuristics for
when to employ each of these approaches forms a suitable focus question for
subsequent analysis. A third major data concern was fostering trust in summary
data. Different systems have varying quality of data and employ different algo-
rithms to summarize their data. The quality of these summary data and how these
summaries are generated creates another trust issue.

Figure 4.6 is a concept map about the trust issues that arise when a mandated
authoritative source of data is different from the operational or actual authoritative
source. A root cause of this problem is the historical lack of a clear incentive for the
mandated source to be vigilant in incrementally updating the data. A field engineer
is usually the one who detects the problem when the data from the software is at
odds with conditions at a physical facility s/he is visiting. A trust issue arises when
the field engineer detects such a disparity.

A second trust issue pertains to the field engineer getting properly updated data
back to the mandated authoritative source. The disparity between mandated and
operational authoritative source has been an ongoing problem which is finally
improving due to the imposition of sanctions on the mandated source when it does
not maintain good data. The KE session led to the identification of trust

Fig. 4.5 A general concept map on trust issues at the enterprise federation level

4 Knowledge Elicitation and Conceptual Modeling … 53

relationships between the DoD and PAVER™ and between PAVER™ and the
other industry enterprise systems. Efforts made to foster and maintain those rela-
tionships are ongoing and sensitive in nature, and therefore will not be discussed in
depth in the current work.

The knowledge elicitation work resulted in the creation of five concept maps,
four of which are presented here. The relationships among the ones presented in this
work are shown in Fig. 4.7 which contains a graphic of a “map of maps.” In the
actual knowledge model, the icons on four of the nodes are actually dropdown
menus that afford access to the concept map on that topic. The two concept maps
pertaining to the Tool and Desktop federation level were both at the same level of
generality. The second concept map in the Enterprise level (Authoritative Source)
illustrates an effort to “tunnel in” on an issue of importance from the more general
concept map “Enterprise Federation Trust Issues.” Accordingly, that concept map is
included at a lower level in the hierarchy.

The purpose of the current work is to illustrate how knowledge elicitation and
modeling can lead to a greater understanding of issues in SOA evolution through a
systematic examination of the known issues, not to carry out a comprehensive
analysis of all issues pertaining to the evolution of this system. In a more com-
prehensive effort, a similar tunneling in would be performed on a number of
additional trust issues.

Fig. 4.6 A concept map on trust issues when mandated and operational authoritative source are
not the same

54 J.W. Coffey et al.

4.5 Discussion

The two studies in knowledge elicitation presented here, for security and trust,
addressed issues at two levels. The first example demonstrated specific and
low-level documentation of security issues and how they were addressed in
developed software. The second example illustrates how high-level abstract con-
ceptual knowledge of broad strategies and approaches to resolve trust issues can be
elicited. The two levels of focus are not disjoint, and either can feed into the other.

For example, the security criterion “allowing minimal access privileges” from
the software security assurance case, requires a specific implementation that affords
different levels of access (e.g.: none, read only, read/update) to various parts of the
system and for various categories of users. Actually deploying the system and
making decisions regarding who has a given level of access to what requires that
trust decisions be made. Another way of phrasing the question of minimal privilege
is “What are the relevant trust domains for this system, what is the level of trust we
assign to users in each domain, and how much access should each user level have?”
Operationalizing a question in such a manner allows use of expert knowledge
elicitation techniques to support decision-making. Knowledge modeling for secu-
rity at a software implementation level can give rise to the need to answer
higher-level human-centric conceptual questions such as those about trust, and vice
versa.

The work described here evidences progress on capturing known security and
trust issues across both case studies. However, it might be concluded that little
success occurred in anticipating currently unknown issues, either in the software
security assurance case or in the trust work. It is well known that anticipating an
unknown security threat is a significant problem and that zero-day attack vulner-
abilities [29] are usually only understood after-the-fact. With a relatively stable and
definable set of current and potential trust domains, these domains can be identified
through knowledge elicitation, and trust relationships can be constructed via either
ad hoc methods, or by knowledge elicitation. However, in a rapidly evolving

Fig. 4.7 A map of maps for
the concept maps created in
this knowledge elicitation
effort

4 Knowledge Elicitation and Conceptual Modeling … 55

federation, understanding the evolving trust relationships is an inherently difficult
problem for which idea generation via knowledge modeling is one potential answer.
No claim is made that knowledge modeling is a panacea for this problem, but it is at
least one potential partial answer.

Results of this work provide some confirmation for the claims pertaining to the
fractal nature of SOA applications across different levels of abstraction presented in
Baskin, Reinke, and Coffey (in this volume). For example, the new work in this
article focuses on trust, and (among other things) authoritative source as a critical
element of trust. The issue of dealing with multiple sources of the same data and the
need to know which is the one to be most trusted, and trust issues pertaining to data
reader modules cross-cut all levels of abstraction. At the tool and desktop levels
trust in readers and core tools maintaining interoperability with add-ins was a
critical concern. Authoritative source and how to access it was the issue. At the
enterprise level, the issue of the mandated authoritative source being different than
the operational authoritative source was an important concern. While this paper has
a narrower focus than the companion paper, similar validations could be obtained
with methods advocated here.

4.6 Conclusions

The first study demonstrates several advantages that arise from use of the proposed
scheme for the development of security assurance cases. The knowledge engi-
neering approach facilitates the introduction of assurance case touch points into the
development process in a way that does not entail a burdensome increment in work
load. Participation in the interviews was shown to improve programmer sensitivity
to potential software vulnerabilities. The concept map security assurance cases
would be routinely linked to other documentation such as design rationale, to
provide a view of the software structure in which the security concerns are seam-
lessly integrated. Finally, the visual nature of concept map-based security assurance
cases could facilitate communication with diverse project stakeholders. While the
security assurance case described here pertained to initial software development, the
same approach with the more narrow focus on security issues pertaining to changes
to a system could be made as a system evolves.

The second study yielded a knowledge model that provides a global view of the
major trust issues at three levels of abstraction within a large, evolving, real-world
SOA federation. The knowledge model provides an historical context regarding
how data replication versus single-source data has been utilized, it establishes
operating principles for the incorporation of add-ins to the code base of a large
sustainment management system and for trust concerns of both industry partners
and governmental agencies that are forming an increasingly integrated
enterprise-level federation. These results were achieved in a personnel-efficient
manner with only two participants, a knowledge engineer and a subject matter
expert and in a time-efficient way. While discretion pertaining to the ongoing nature

56 J.W. Coffey et al.

of the evolving trust relationships involved here limits the authors’ ability to delve
into details, an improved awareness of important issues was gained as a result of the
knowledge elicitation sessions.

References

1. Novak, J.D., Gowin, D.B.: Learning how to learn. Cambridge University Press, New York
(1984)

2. Coffey, J.W., Cañas, A.J., Reichherzer, T., Hill, G., Suri, N., Carff, R., Mitrovich, T., Eberle,
D.: Knowledge modeling and the creation of El-Tech: a performance support and training
system for electronic technicians. Expert Syst. Appl. 25(4), 483–492 (2003)

3. Coffey, J.W., Snider, D., Reichherzer, T., Wilde, N.: Concept mapping for the efficient
generation and communication of security assurance cases. In: Proceedings of IMCIC’14,
Orlando, FL. 4–7 Mar 2014, pp. 173–177. ISBN-978-1-936338-97-9

4. Coffey, J.W., Baskin, A., Reichherzer, T., Wilde, N.: Recovering SOA system architecture
from low-level artifacts with a semi-automated approach involving CARET and knowledge
elicitation. Int. J. Softw. Eng. Knowl. Eng. 26(1) (2016, Jan) (to appear)

5. Briggs, G., Shamma, D., Cañas, A.J., Scargle, J., Novak, J.D.: Concept maps applied to Mars
exploration public outreach. In: Cañas, A.J., Novak, J.D., González, F. (eds.) Concept Maps:
Theory, Methodology, Technology. Proceedings of the First International Conference on
Concept Mapping, pp. 125–133. Pamplona, Spain (2004)

6. Coffey, J.W., Eskridge, T.: Case studies of knowledge modeling for knowledge preservation
and sharing in the U.S. nuclear power industry. J. Inf. Knowl. Manage. 7(3), 173–185 (2008)

7. Coffey, J.W., Hoffman, R.R., Cañas, A.J.: Concept map-based knowledge modeling:
perspectives from information and knowledge visualization. Inf. Vis. 5, 192–201 (2006)

8. Moon, B., Hoffman, R.R., Novak, J., Canas, A. (eds.): Applied Concept Mapping: Capturing,
Analyzing, and Organizing Knowledge. CRC Press (2011). ISBN 9781439828601

9. Rasmusson, L., Jansson, S.: Simulated social control for secure internet commerce. In:
Proceedings of the 1996 Workshop on New Security Paradigms (NSPW ‘96), pp. 18–25. Lake
Arrowhead, CA (1996)

10. Thomas, I., Menzel, M., Meinel, C.: Using quantified trust levels to describe authentication
requirements in federated identity management. In: Proceedings of SWS’08, October 31,
2008, Fairfax, Virginia, USA, pp. 71–79. ACM 978-1-60558-292 (2008)

11. Marsh, S.P.: Formalising trust as a computational concept. Stirling, Scotland: Ph.D.
dissertation, Dept. Computing Science and Mathematics, University of Stirling (1994)

12. Skopik, F., Schall, D., Dustdar, S.: Modeling and mining of dynamic trust in complex
service-oriented systems. Inf. Syst. 35, 735–757 (2004)

13. Cayirci, E.: A joint trust and risk model for MSaaS mashups. In: Proceedings of the 2013
Winter Simulation Conference, 8–11 Dec 2013, Washington, D.C, pp. 1347–1358

14. Kovac, D., Trcek, D.: Qualitative trust modeling in SOA. J. Syst. Architect. 55, 255–263
(2009)

15. Nair, S.K., Djordjevic, I., Crispo, B., Dimitrakos, T.: Secure web service federation
management using TPM virtualisation. In: Proceedings of the 2007 Secure Web Services
Workshop (SWS’07), pp. 112–121. Fairfax, VA (2007)

16. Nair, S.K., Djordjevic, I., Crispo, B., Dimitrakos, T.: Secure web service federation
management using TPM virtualisation. In: Proceedings of the 2007 Secure Web Services
Workshop (SWS’07), 2 Nov 2007, pp. 73–82, Fairfax, Virginia, USA

17. Ausubel, D.P.: Educational Psychology: A Cognitive View. Rinehart and Winston, New York
(1968)

4 Knowledge Elicitation and Conceptual Modeling … 57

18. Ausubel, D.P.: The Acquisition Retention of Knowledge: A Cognitive View. Kluwer,
Dordrecht (2000)

19. Ford, K.M., Cañas, A.J., Coffey, J.W.: Participatory explanation. In: Proceedings of the Sixth
Florida Artificial Intelligence Research Symposium (FLAIRS ‘93), Ft. Lauderdale, FL, Apr
1993. pp. 111–115

20. McNeese, M., Zaff, B., Brown, C., Citera, M., Selvaraj, J.: Understanding the context of
multidisciplinary design: establishing ecological validity in the study of design problem
solving. In: Proceedings of the 37th Annual Meeting of the Human Factors Society, 1993.
Santa Monica, CA

21. McNeese, M., Zaff, B.S., Citera, M., Brown, C.E., Whitaker, R.: AKADAM: eliciting user
knowledge to support participatory ergonomics. Int. J. Ind. Ergon. 15, 345–363 (1995)

22. Novak, J.D.: Learning, Creating, and Using Knowledge: Concept Maps As Facilitative Tools
in Schools and Corporations. Lawrence Erlbaum and Associates (1998). ISBN-13:
978-0805826265

23. Coffey, J.W.: Facilitating idea generation and decision-making with concept maps. J. Inf.
Knowl. Manage. 3(2), 1–14 (2004)

24. Coffey, J.W., Hoffman, R.R.: Knowledge modeling for the preservation of institutional
memory. J. Knowl. Manage. 7(3), 38–49 (2003)

25. Coffey, J.W., Reichherzer, T., Wilde, N., Owsnicki-Klewe, B.: Automated concept-map
generation from service-oriented architecture artifacts. In: Proceedings of the 5th International
Conference on Concept Mapping. Valetta, Malta, Sept 2012

26. Snider, D., Coffey, J.W., Reichherzer, T., Wilde, N., Terry, C., Vandeville, J., Heinen, A.,
Pramanik, S.: Using concept maps to introduce software security assurance cases.
CrossTalk J. Defense Softw. Eng. 27(5), 4–9 (2014)

27. Cañas, A.J., Hill, G., Carff, R., Suri, N., Lott, J., Eskridge, T., Gómez, G., Arroyo, M.,
Carvajal, R.: CmapTools: a knowledge modeling and sharing environment. In: Cañas, A.J.,
Novak, J.D., González, F. (eds) Concept Maps: Theory, Methodology, Technology.
Proceedings of the First International Conference on Concept Mapping, Pamplona, Spain
(2004)

28. Agudo, I., Vivas, J.L., López, J.: Security assurance during the software development cycle.
In: Proceedings of CompSysTech ‘09, the International Conference on Computer Systems and
Technologies and Workshop for PhD Students in Computing. ACM, June, 2009, pp. II.7-1–
II.7-6

29. Bilge, L., Dumitras, T.: Before we knew it an empirical study of zero-day attacks in the real
world. In: Proceedings of CCS’12, October 16–18, 2012, Raleigh, North Carolina, USA.
2012, pp. 833–844. ACM 978-1-4503-165

58 J.W. Coffey et al.

Chapter 5
The Fractal Nature of SOA Federations:
A Real World Example

Arthur Baskin, Robert Reinke and John W. Coffey

Abstract Fractal concepts are often said to be recursively self-similar across
multiple levels of abstraction. In this paper, we describe our experience with the
fractal nature of SOA designs for sustainment management tools as these tools
evolve into even more dynamic, federated systems that are orchestrated over the
web. This chapter summarizes insights gained from more than twenty years of
software development, maintenance, and evolution of a major pavement engi-
neering tool named PAVER™. We consider both theoretical and experiential
aspects of SOA federations at three levels of abstraction: (1) a loosely coupled
federation of enterprise systems with PAVER™ as one member, (2) a tightly
coupled federation of two pavement management tools (PAVER™ and PCASE)
where each has a separate domain identity and development team, and (3) an
emerging federation of plugin tools, which provide additional pavement engi-
neering functionality and can come from competing civil engineering firms. These
plugin tools exist at different levels of abstraction within the level of the main
system and are, again, fractal. We organize the presentation of our experiences in
this domain by describing how SOA elements including Ontologies, Discovery,
Composition, and Orchestration are fractal whether we are looking at algorithms or
persistent state. We also define and describe a third orthogonal fractal dimension:
Evolution. Although the details of the implementation solutions at the differing
levels of abstraction can be substantially different, we will show that the underlying
principles are strikingly similar in what problems they need to solve and how they
generally go about solving them.

A. Baskin (&) � R. Reinke
Intelligent Information Technologies Corporation, Indianapolis, IN 46216, USA
e-mail: abaskin@intelligent-it.com

J.W. Coffey
Department of Computer Science, The University of West Florida,
Pensacola, FL 32514, USA

© Springer International Publishing Switzerland 2016
E. El-Sheikh et al. (eds.), Emerging Trends in the Evolution of Service-Oriented
and Enterprise Architectures, Intelligent Systems Reference Library 111,
DOI 10.1007/978-3-319-40564-3_5

59

5.1 Introduction

It is the goal of this article to make the case that fundamental concerns in the
development and evolution of SOA systems are self-similar or fractal across dif-
ferent levels of abstraction in SOA systems. These observations about the fractal
nature of federations of service oriented systems (SOA) are grounded in more than
twenty years of software development and maintenance of a series of
condition-based civil engineering maintenance management systems. Foremost
among these systems has been the PAVER™ system, which is a pavement man-
agement system for airfields and roadways. In some cases, these decision support
tools are targeted at elevating the expertise of a normal practitioner to be closer to
that of the expert, whose expertise is embodied in the system. In other cases, these
systems support a loose federation of human decision makers, who are again
engaged in complex decision making. For example, the PAVER™ pavement
management system embodies international standards for ways to convert visual
observations of the pavement into a standard pavement condition index, which can
be used prioritize the use of scarce resources for civil infrastructure repairs.

The author’s experiences with many of the principles, which are described here,
predate the general emergence of SOA concepts, and, therefore, we interpret some
of the historical material looking backward. To enable this perspective, we provide
a brief historical account of PAVER™. We justify this retrospective interpretation
of history because we were responding to the needs for modular evolution of
separate tools and the need for loose coupling among tools to allow human decision
makers to compose data from varying sources to make engineering judgements. We
assert that these are some of the same requirements that SOA systems are proposed
to address. Increasingly over the last ten years, we have been actively injecting
insights from the SOA approach into the structure and organization of our software
systems. In fact, the preparation of the material for this chapter has had a direct
impact on the emerging support for plugins to the pavement engineering desktop
because we have used SOA principles to guide the definition and implementation of
the plugin framework, which has overlapped the development of the material for
this chapter in time.

In what follows, we try to present both the experiences that drove us to arrive at
or validate principles as well as a theoretical basis for the principles where we
believe we have found one. Two of the authors (Baskin and Reinke) have been
involved with software development tasks where attention to the evolution of the
software was part of the problem and the time to reflect on why some development
techniques work better than others was available. In some situations, the principles
emerged from the experience supporting the evolution of the software and in other
situations, we were able to bring principles from other disciplines to bear on our
software develop projects.

We have attempted to organize what we have learned at two distinct levels of
abstraction: (1) overall principles and (2) origin of the principles. Where possible,
we have attempted to provide both a theoretical derivation of the principles and

60 A. Baskin et al.

concrete examples of the principles, which are drawn from our experience with
pavement management systems. Readers may wish to pursue either the theoretical
or historical description of the principles or simply review the summaries of what
we believe we have learned.

We have found SOA Federations to be effective for managing complex software
systems: Across time with the interplay of (relatively) independent actors, domains
of problem solving, and goals (with or without a common owner). Unpacking this
deceptively simple statement is our goal in this chapter. Because many of the terms
we use do not have precise definitions (or even agreed definitions), we will spend
some time in each section describing what we mean by our terms. These definitions
will be especially important because we need to use them across several fractal
levels of abstraction. Although we focus on the domain of pavement engineering
maintenance management systems in this chapter, we have applied these principles
in the development of decision support systems in other areas of civil engineering
and in shortening time to market for new products by using agile software devel-
opment techniques to begin to develop software to test a new product even before
the design of the new product has been finalized.

Figure 5.1 shows the three fundamental dimensions of our separation of issues
for SOA Federations.

In the Fig. 5.1, we identify traditional SOA issues along one axis. At the risk of
oversimplification, we can say that ontologies precede and are necessary for sup-
porting Discovery, Orchestration, and Composition. In our analysis, we look at
ontologies for procedural and declarative aspects of a problem and the need for
evolution of ontologies, which might be the hardest problem of all to solve. The
remaining three SOA issues: Discovery, Orchestration, and Composition can be
thought of as describing the state of a particular SOA system at one point in time.
That is, a working SOA system must discover procedural and declarative elements
so that they can be composed and finally orchestrated. In our SOA desktop for
pavement engineering, the desktop follows a discovery process each time it is
started to determine the components, which are available for composition in this
user session. The human user plays a central role in orchestrating the interoperation
of some of the components and simplifies the software orchestration problem for us.

Fig. 5.1 Three dimensions of
issues for fractal analysis. We
separate SOA issues into
procedural and declarative
approaches to software
construction. Finally, we
explore the evolution of all of
these aspects over time

5 The Fractal Nature of SOA Federations: A Real World Example 61

5.2 The Historical Context of This Work

Our work on PAVER™ started with a series of workshops, which were sponsored
by the Federal Highway Administration and supervised by Shahin [1] who con-
tinues to guide these efforts for the U.S. Army Corps of Engineers, which owns the
software. The workshops brought together researchers in pavement engineering,
practicing pavement engineers, and our software development team. These work-
shops guided the development of the software to help define the best practices in the
pavement management domain and to embody them in a revised version of the
PAVER™ system. These user group meetings continued for years after the startup
phase ended and the interplay of the expert users and the software designers has
supported the co-evolution of best practices for pavement management and the
design of new PAVER™ features [2]. New features have also been driven by
pavement engineering research carried out by Dr. Shahin and others. This emergent
requirement for software evolution as a consequence of best practice evolution,
which was, in turn, partially stimulated by the PAVER™ software system, gives
rise to our attention to evolution as a basic area of interest.

The PCASE system evolved largely independent of PAVER™ but was used by
many of the same pavement engineers at the same locations. About fifteen years
ago, the U.S. Air Force funded an integration program to bring PAVER™ and
PCASE together in what the user would experience as a seamlessly integrated
system. In addition, each separate system had to be able to be deployed indepen-
dently as it had been done in the past. A user needed to be able to install either of
these civil engineering tools first and then optionally add the other. Finally, this
federation of loosely coupled tools had to be developed by two different research
groups with two largely disjoint user groups and rates of evolution. Our experience
with such a federation of largely independent software development efforts that
produce a seamless integration of the tools in the user experience has led to our
attention to the issues of discovery, orchestration, and, again, evolution of software
systems in federations of civil engineering tools.

In the latest iteration of work on these pavement engineering tools, we have been
tasked by the Corps of Engineers to expand the existing tools to provide support for
international users, interoperation with other Department of Defense enterprise
systems, and to support the incremental evolution of these pavement engineering
tools through an enhanced version of the plugin mechanisms, which have been
available but underutilized for ten years. We have explicitly used the principles
described in this chapter to guide the additions to the plugin machinery and to
suggest requirements that might not otherwise have emerged from the domain
requirements.

62 A. Baskin et al.

5.3 Literature on SOA Federations, SOA Elements,
Algorithms and Data Persistence

In the following section, we provide a brief overview of literature pertaining to
SOA federations, the SOA elements we consider to be fractal in nature, and the
relationship between the cross-cutting concerns of algorithms and persistent data.
An extensive literature is available on the topic of SOA federations. Zdun [3]
describes a federation as a controlled environment with a collection of peer ser-
vices. Each service might be controlled by one or more federations, but within a
single federation, peer services can easily interact. Federations are based upon
middleware that fosters interoperability of loosely-coupled services. The term
federation appears in the literature in two contexts and it has evolved out of two
distinct but increasingly interrelated technological bases. The High-Level
Architecture, and accompanying Real-Time Interface (HLA-RTI) [3–5] originated
in the mid-1990s in the DoD as a platform for real-time simulation. The IEEE 1516
standard grew out of the High-Level Architecture initiative. In this context, a
federation is a collection of simulation entities connected and orchestrated by the
real-time interface. A federate is an individual IEEE 1516-compliant simulation
entity. The HLA includes a federation management API [6].

By the late 1990s, well after early versions of PAVER™ were already in use,
SOA was an emergent technology for the creation of composite applications. SOA
is based upon W3C standards including WSDL, SOAP, and XML Schema [7–9].
The HLA-RTI notion of federation is somewhat distinct from the more general
notion of federation as described in SOA literature because it is a particular use in
simulations rather than for the creation of composite applications that accomplish a
broad range of business or engineering purposes. However in more recent times,
calls for integration of HLA and SOA have occurred [5] as it is viewed that lessons
learned in one community might benefit the other. Additionally, benefits might be
obtained by the interoperation of both standards. For instance, Seo and Zeigler [10]
described the DEVS/SOA system to provide web service-based simulations.

A major concern in the creation of federations involving multiple providers is
managing identities and access of federates [11]. Several standards-based protocols
have been proposed or implemented to create federations [12–14]. Li and Karp
claim that the federated identity management approach has proven to be difficult to
use and upgrade, and is not scalable. They state that federation based upon identity
is the wrong focus, rather the focus should be on access management instead. They
illustrate implementing access control policies using SAML certificates [15].
Thomas and Meinel [16] describe their own management system, which also relies
on open web service standards, to provide reliable digital identities. Hatakeyama
[17] describes what is termed a “federation bridge” to facilitate cross domain
identity federation. Anastasi et al. [18] state that service providers offer their ser-
vices using proprietary management software, interfaces and virtualization tech-
nologies which make interoperability more difficult to achieve. They discuss their
simulation tool SmartFed which is designed to simulate cloud-based federations.

5 The Fractal Nature of SOA Federations: A Real World Example 63

Since a detailed review of literature pertaining to the SOA elements of discovery,
composition, orchestration and ontology would encompass an entire book chapter
in itself, we refer the interested reader to the following representative works.
Al-Masri and Mahmoud [19] attempt to incorporate client goals into service dis-
covery queries via a means that would rank candidate services in a manner similar
to query result rankings implemented in general-purpose web search capabilities.
Dsbrowski and Pacyna [20] address inter-domain service discovery and claim that
service discovery systems will require a strongly interwoven identity management
component. They state that support for service discovery across service domain
boundaries must be implemented in identity management systems in order to
provide a safe discovery system between services from different business areas.

Tolk et al. [21, 22] have done important work on composition and orchestration
within large governmental SOA federations. They describe current Homeland
Security systems which must integrate data and processing capabilities from twenty
two previously separate agencies. In [21] they describe model-based, top-down
orchestration of heterogeneous Homeland Security systems with discovery and
composition of IT capabilities included in a system-of-systems bottom up. In [22]
they describe a mathematical model for the selection or elimination of candidate
services, and for their orchestration and execution. They describe this work as a first
step towards self-organizing federation languages. Work by Rathnam and Paredis
[23] provides an ontology-based framework to simplify the reuse of federates in a
federation object model. While their work pertains to HLA-RTI federations, it is
applicable in principle to SOA systems in general.

We have identified as key issues in the current work, the cross-cutting concerns
of algorithms and data persistence in SOA. Calvanese et al. [24] discuss this issue
stating that one’s view of the pre-eminence of data or process is often a function of
one’s viewpoint, for instance if one is a business process analyst or a data manager.
They cite an article by Reichert [25] which makes the claim that “data and pro-
cesses should be considered as two sides of the same coin.” They discuss
“data-aware processes” and conclude that the database theory community has
developed the defining techniques to deal with data and processes. They cite several
important issues including verification issues pertaining to the modeling of what
data can be changed by a process. Dobos et al. [26] describe a platform for the
management of reusable process components and for the federation of data stores in
order to support data persistence, statistical analysis and presentation of the data.

Data persistence is an important aspect of data management. Krizevnik and Juric
[27] cite data persistence problems stemming from poor data quality, heterogeneity
of data sources and poor system performance in SOA systems. They describe a
SOA persistence model relying on master data management (MDM), and data
transfer standardization by the use of service data objects (SDOs) [28] in order to
build a data services layer in a SOA system. Software companies seek to build in
data services layers in their SOA architecture solutions. For instance BEA Systems
[29] describe the AquaLogic Data Services Platform (ALDSP) stating that the
environment employs a declarative approach to the construction of data services

64 A. Baskin et al.

that are based upon XML Schema for data definitions and XQuery as the service
composition language.

Takatsuka et al. [30] state that cloud computing and machine-to-machine tech-
nologies require “context-aware” services to deal with heterogeneous data from
distributed systems. They describe a rule-based framework to create context-aware
services where context is taken to mean situational information that can be true or
false. Sarelo [31] describes the HERMES framework for ubiquitous communication
management using web services with serialized XML, data replication with peers
storing full copies, and simultaneous data update of all replicates. The previous
literature review barely scratches the surface of available literature on all these
aspects of SOA, but it provides the interested reader with a starting point for further
exploration.

5.4 Three Levels of Abstraction for SOA Federations

Although the development of the systems of interest in the current work has
evolved from support tools for a single practicing field engineer toward the needs of
enterprise systems, we may now look at these emerging systems from the top down.
Figure 5.2 shows the three major levels of abstraction for the tools which we
discuss in this chapter:

Dr. Shahin’s work on condition-based maintenance management systems gave
rise to a series of similar system. We put forth RAILER, which is a system for
maintenance management of railroad track, and ROOFER, which is a system for
maintenance for roofing on buildings, as examples of this more extended family of
civil engineering systems. Taken together, these systems, which are focused on
largely disjoint assets, form an enterprise level system for the application of best

Fig. 5.2 Three levels of
abstraction for SOA
Federations: (1) Enterprise
Federation, which brings
together separate line of
business systems for
exchange of summary data;
(2) Desktop Federation,
which brings together more
tightly coupled systems with
separate identities and
intersecting user functionality,
(3) Tool Federations, which
break individual desktop tools
into component services as a
technique for managing
complexity or ease of
extension

5 The Fractal Nature of SOA Federations: A Real World Example 65

practices for maintenance management so as to provide the safest and most pro-
ductive use of the civil infrastructure assets for the lowest possible cost. There is
increasing demand for interoperability among these separate systems with sepa-
rately developed enterprise systems for geographical information systems (GIS) and
enterprise systems for real property and asset management. GIS systems are used to
integrate disparate data bringing together data from separate systems and overlaying
these data geospatially. Asset management systems are used to track the value of
assets and to plan for allocation and preservation of these assets.

The development of the desktop federation of PAVER™ and PCASE was driven
by the user need for these systems to share a common inventory and constrained by
the need to allow the tools to retain their separate identities while being able to be
seamlessly combined in a single desktop when needed. One of the greatest chal-
lenges in this federation was to support the separate rates of evolution of PAVER™
and PCASE and to accommodate the various possible combinations of separate
versions.

In its latest incarnation, PAVER™ has been modified to support multiple users
and multiple deployment options, which include the traditional standalone install, a
thick client-server installation, a shared remote application server, and a web
browser interface. As part of managing both the increased pavement engineering
capabilities and the varied deployment options, we have used traditional SOA
concepts to break the main PAVER™ application into a family of interoperating
component services, which can be dynamically loaded in a standalone application
or accessed over a web service interface to a remote server. The user is able to
switch seamlessly between these modes on each “File/Open” operation, which
might open a local database with local services one time and a remote database with
remote services the next. This Tool Federation has been extended to support plugins
(called Add Ins in PAVER™). Plugins can be a way to extend the core pavement
engineering modules and a way to bring together tools from other pavement
engineering companies to leverage the common inventory and GIS display tools in
much the same what that PCASE can do.

5.5 Dimensions of Our SOA World at Each Level
of Abstraction: Real World Example

This section describes our experience with each of the elements in our three
dimensional space at each level of abstraction as an extended real world example of
these issues at three distinct levels of abstraction. The next section identifies the
fractal issues, which have been found to be common to these different levels of
abstraction.

66 A. Baskin et al.

5.5.1 Enterprise Federation

The Enterprise Federation of relatively independent systems is a major initiative in
the U. S. Department of Defense (DoD) and the work on pavement management
systems has been an early emphasis. Unlike the more mature developments at lower
levels of abstraction, the Enterprise Federation is still a work in progress; therefore,
the results of our analysis at this level are a bit more tentative but we are able to
bring lessons learned from the lower levels of abstraction to bear at this level to help
guide the software development.

5.5.1.1 Ontologies

Declarative: The PAVER™ system is considered the authority of record for
condition-based maintenance of roadway and airfield pavements in the U.S. DoD
and for NATO. Using the system, a pavement engineer obtains data about the state
of the pavement, its likely future condition, and the cost of foreseeable maintenance.
Because the pavement engineer will usually actually stand on or drive over the
pavement to make an inventory and condition assessment, the pavement engineer
can determine the specific pavement quality and present usage. In addition, the
pavement engineer will break the overall pavement extent into manageable sizes for
future work planning. The enterprise GIS system and PAVER™ must share a
common geospatial rendering of the overall pavement extents (a shared ontology)
and PAVER™ can be used to subdivide the overall area into subcomponents,
which are the smallest unit of measure on the pavements (called Sections). Sections,
again, form a shared ontology between the systems. In this case, the GIS system is
the authority of record for the overall pavement extent and PAVER™ is the
authority for the section boundaries, which are needed for work planning. In a
similar way, the pavement engineer is often in the best place to tag the pavement
according to the required asset management attributes, which are called CATCD
(category code to summarize type, use, and cost) and RPUID (Facility identifier).
Within this rigid standardization, a facility can be divided into “segments” as long
as each segment is part of the facility and can be assigned a CATCD. In this second
case, the shared ontology is closely controlled by the real property system (CATCD
and RPUID) but the segmentation and the assignment of attribute tags to elements
of pavement might be shared between the asset management system, which is the
authority of record, and the pavement management system because the pavement
engineer is more likely to actually stand on the pavement. Definition of these shared
ontologies has consumed many hundreds of hours of group meetings, which have
involved many more systems than PAVER™, and the implementation of the
software support for the emerging ontology has been the simplest part.

Procedural: Unlike the shared declarative ontology, which can be shared
between the U.S. Air Force, Navy, and Army, the procedural ontology varies by
service because the GIS and real property asset systems are not the same. The state

5 The Fractal Nature of SOA Federations: A Real World Example 67

of the procedural ontology for reconciling data at the enterprise level is at the same
place that PAVER was more than twenty years ago. There have been many
meetings and deliberations collecting required data, reconciling the differences
between the mandated authoritative sources for the data and the operational sources
for the data. The PAVER system is only one of sixteen major systems participating
in this process. The fact that pavement management data must interoperate with
different enterprise level systems and be collected according to a variety of business
rules means that the ontology must be able to evolve with the emerging changes. As
the enterprise data become more available, the best practices as the enterprise level
will co-evolve alongside the software systems in the same way that best practices
for pavement management and PAVER co-evolved twenty years ago.

Evolution: The enterprise federation brings together different types of structures:
vertical (e.g. buildings) and horizontal (e.g. roadways, power grids) for a variety of
largely independent entities (e.g. Air Force, Navy, Army, municipalities). The real
property/asset management ontology relates physical structures to congressional
authorization for funding and is closely controlled. The individual services have
evolved separate approaches for the segmentation of assets and the assignment of
CATCDs. In the process of integrating sixteen different civil engineering disci-
plines, of which PAVER™ is just one, the formal ontology for sharing of GIS data
has gone through several major versions and version four of the specification is
nearing completion and has shown that the services must support evolution of their
components driven by their history, current needs, and future missions.

5.5.1.2 Discovery

Declarative: The discovery problem for the enterprise federation is still being
solved by ongoing business process reengineering and software development. Each
service is developing its own standard operating procedures for how these data
should be collected, coordinated, and used for resource allocation and sustainment
of the assets. These declarative procedures are tailored to the details of the oper-
ations of each service.

Procedural: As a practical matter, these systems are all composed of a union of
humans and software systems. In some situations, procedures can be automated and
in others, some form of engineering judgement about the interpretation of the data is
required. Some agencies have chosen a focus on data replication and some on direct
linkage of data. In some situations, the process can be fully automated and in others
only semi-automated. The GIS systems and the real property linkage must be able
to tolerate the variety of presentations of shared data from each service and/or from
each civil engineering domain.

Evolution: The methods for discovery must be able to vary across the services (a
form of evolution across situations rather than time) and they must be able to evolve
along with changes in technology and best practices. The methods for this type of
modular replacement of parts are still being developed, but the problem is clearly

68 A. Baskin et al.

present in the variety of approaches to this data alignment problem continues to
increase.

5.5.1.3 Composition

Declarative: The PAVER™ inventory has long been “composed” of Networks,
which contain Branches, which, in turn, contain Sections. A Section is the smallest
unit of maintenance activity and must have both a uniform structure and history.
A section may be broken into samples, which allows quicker inspections by
extrapolating data from samples to the entire section instead of inspecting every-
thing. The GIS data integration problem is being addressed by the notion of a map
which is “composed” of layers. Each layer can be associated with an engineering
discipline, e.g. pavements, and data attributes for a region in that layer can come
from either geospatial data (e.g. area), asset management (e.g. CATCD), or a
maintenance management system (e.g. condition of the asset). A maintenance
system is usually expected to rollup lower level data (from segments) into values at
the facility level.

Procedural: The procedural aspects of composition at the enterprise level are
easiest to see in the GIS presentations, which are data visualization tools at their
core. Much of the composition of maps can be interactively driven by a human
viewer, who can turn layers on and off as well as selecting among a variety of
coloring strategies. In the pavement domain, image capture devices are now able to
capture roadway images, which can be analyzed for distresses and dynamically
aggregated into “samples,” which can then treated like the more traditional samples
at the bottom of the pavement composition structure. Rollup of data over the
composition structure can be seen as flattening the depth of the composition to get
summary data and the flattening algorithms can be weighted by size or importance
to mission.

Evolution: The composition of the various engineering maintenance manage-
ment systems is evolving as some new condition-based maintenance management
systems are added and others consolidated. The composition of GIS information in
the form of layers and coloring strategies (“themes”) is constantly changing as new
theme definitions are defined and new attributes added to each layer.

5.5.1.4 Orchestration

Declarative: The prevalence of standard operating procedures for components of
the Enterprise Federation provides a roadmap for orchestrating the interaction of the
systems, which is frequently driven by human users. These best practices for
orchestrating the interaction of the data and systems are still being developed.

Procedural: As much as practical, the orchestration of the interaction among
these systems will be automated. Again, because this level of abstractions is the
newest, the development of orchestrations algorithms is in its infancy.

5 The Fractal Nature of SOA Federations: A Real World Example 69

Evolution: The orchestration of the interaction among the members of the
Enterprise Federation is evolving as the different historical contingencies of the
various services (Air Force, Army, and Navy) are incorporated and as the differing
enterprise systems for GIS and real property asset management are included. The
orchestration techniques must be allowed to evolve with some independence as
each service meets its different mission needs.

5.5.2 Desktop Federation

The desktop federation of PAVER and PCASE has been hosted on a common
pavement engineering desktop for the past fifteen years. Users can install either
program alone or install both to get a seamless integration of the tools.

5.5.2.1 Ontologies

Declarative: The integration effort began with many months of matching up key
concepts in the systems in order to arrive at a shared ontology for the shared
inventory elements. The shared ontology contained Network, Branch, and
Section from PAVER as well as the pavement use and surface type. The notions of
non-destructive test data and layer definition were taken from PCASE. Additional
ontological elements were identified as predominantly being associated with one
system but these concepts are useful, in principle, to both.

Procedural: Each of the two members of this federation had its own database
structures behind the ontologies. Once the competing ontologies were reconciled,
we needed to unify the persistence while respecting the constraint of allowing each
system to retain its separate identity and independent development team. We
accomplished this by having the system construct a single logically unified database
by linking the various databases from PAVER and PCASE into it. In this way, we
could manage a unified common set of core inventory data and allow for the union
of additional persistent data, which is managed by one member of the federation but
could be reported by either.

Evolution: The PAVER and PCASE teams have been free to control the portion
of the ontology, which is predominantly controlled by one group. Changes to the
core shared inventory elements required both groups. At one point, PAVER had
two different versions (versions 5 and 6) deployed with different file formats and
internal object structures. Backward compatibility with PCASE was provided by
use of a façade, which made version 6 appear to provide the same ontological
model as version 5 to PCASE.

70 A. Baskin et al.

5.5.2.2 Discovery

Declarative: The desktop federation of PAVER and PCASE might be comprised of
either application alone or both together. We honored this constraint by having the
Desktop executable search for a file with a special extension so as to discover what
tools were available. These files described the root level application object to
instantiate and put into a collection of application objects being hosted by the
desktop. In PAVER versions 5 and 6 and PCASE versions 2.08 and 2.09, the menu
system for each application was also declaratively stated in a tabular format and
discovered by the desktop load on startup.

Procedural: PAVER versions 5, 6, and 7 all use a search to discover applica-
tions to load. Starting with Version 7, the menu system has been described pro-
cedurally and merged on desktop startup. The Version 7 desktop can also be used to
host additional tools, which are derived from PAVER, i.e. the Image Inspector (for
analyzing roadway images) and the Field Inspector (for collecting distress data in
the field) both use this same desktop together with a procedural menu system and a
configuration file to be discovered by the desktop when it loads.

Evolution: For the past fifteen years, the discovery mechanism in each version
of the shared pavement management desktop has supported the independent evo-
lution of PAVER and PCASE and, more recently, plugins.

5.5.2.3 Composition

Declarative: The shared ontology dictates that both PAVER and PCASE have a
shared inventory, which is a composition of inventory levels. The shared ontology
also defines time series data, which are items with a date under the sections, e.g.
Work History, Inspections, and Conditions.

Procedural: In addition to the declarative (predefined) compositions, users and
tools can add members to the collection of “condition measures.” PCASE adds
measures and users may add their own measure scales. When additional condition
measures are added, it is as if there are now more compositions of conditions
available for data entry and reporting. The GIS reporting tools and the tabular
reporting tools will detect the new compositions of condition data and show the
user reports with the new types of data.

Evolution: The available condition measures have evolved with the evolution of
best practices and the advent of more automated data collection tools. In addition,
users can control the presence of certain compositions of descriptive fields, which
are used for asset management and even hide some of the compositions or repur-
pose them for another use in the system. In this way, the system supports a limited
amount of evolution of the composition of the data. The advent of “Add In”
modules in version 5, which have been expanded in version 7.1, brought the ability
to add procedural behavior to these new compositions of data and to compose
behaviors for new compositions through procedures encoded in a dynamically
loaded plugin module.

5 The Fractal Nature of SOA Federations: A Real World Example 71

5.5.2.4 Orchestration

Declarative: We say that the Desktop “orchestrates” the separate application
objects (PAVER and PCASE) because it handles the process of wiring up the
objects and passing action messages from menu items and such to the correct
application object. This declarative definition of the orchestration behavior is
enforced by interface contracts, which an application object must honor. Starting in
version 7, the declarative machinery was enhanced to allow application objects and
individual component tools within an application object, to register “interest” in one
or more events and to be notified when they occur.

Procedural: The shared desktop orchestrates some activities with a combination
of procedural processes and notifications, e.g. when a user changes unit system (e.g.
Metric to English) or changes language (e.g. from English to Italian), the desktop
can handle some of these operations itself and must orchestrate the notification and
update process for all of the tools within all the applications and plugins. In versions
5 and 6, notifications were broadcast to all participant tool objects independent of
declared interest in the changes. In version 7, tool objects can register to receive
notifications and are responsible for handling them without further help from the
desktop. This change of architecture was needed to allow the same mechanism to be
used for Windows forms and web pages, which realize their user interfaces in
radically different ways but can share this orchestration logic.

Evolution: As mentioned before, the desktop orchestration machinery has been
required to evolve in order to handle PCASE 2.08 and PCASE 2.09 together with
versions 5 and 6 of PAVER. More recently, the same family of orchestration tools
has been used to control a version of PAVER 7 for Windows and the Web. Finally,
the orchestration machinery for notifications about a user’s focus of interest is open
ended and can be extended by tools at runtime to support notification messages,
which were not originally predefined.

5.5.3 Tool Federation

The Tool Federation represents a subdivision of the PAVER level of abstraction
into a collection of partially separable tools. In version 7, the system was extended
to support multiple users in either a web or thick client—server configuration. The
client-server interaction is through web services using Microsoft’s Windows
Communication Framework (WCF). Unlike many stateless web service protocols,
WCF supports the notion of a user session and we have extended that notion to
allow us to have web services, which can initialize web services with a user specific
data context and return what amounts to a handle to the web service.

Web service protocols are often stateless and each service call must stand on its
own. In our systems, we often need to have what amounts to a web service that can
return a handle to another service where the new service shares common user data.
We use the WCF notion of a user session to implement what amounts to web

72 A. Baskin et al.

services that can return web service handles in order to support complex chains of
processes. In addition to the separate web service tools within PAVER, the Tool
Federation also includes the “Add Ins” (plugins) to the desktop, which can also
extend PAVER. These additional modules live almost entirely on the client, but
they have access to the persistent data on the server through a constrained interface.
Because these tools live within the level of the overall PAVER system, they have
access to many of the SOA elements of the overall application. In this section, we
discuss only those aspects that are specific to the Tool Federation.

5.5.3.1 Ontologies

Declarative: The WCF protocol makes the distinction between declarative
ontologies (Data Contracts) and Procedural Ontologies (Operation Contracts).
These data contracts are not interesting for this analysis because they are more an
artifact of technology than a true ontology. Our preference for developing models of
the application domain and then solving problems using the model makes these data
contracts more like ontologies than they would otherwise be. The declarative
ontologies for plugins are directly related to this material. Version 71, extends the
machinery for plugins to be able to store data in the main inventory database as well
as the separate and potentially shared system tables database. These data can par-
ticipate in the Import/Export process for sharing data between users by file sharing
and updates to these data are multiuser safe. The Desktop imposes an overall
declarative structure on these data, which involves a GUID for the plugin and a
“Class Name,” which must be supplied by the plugin when retrieving or storing
data. The “Class Name” is basically like the name of a component ontology, which
is managed by the plugin. This block of data can consist of a miniature database,
which is composed of a collection of potentially interrelated tables. The plugin
provides the meaning for the internals of these tables and the Desktop imposes the
structure of the key fields used to distinguish the individual blocks of data.

Procedural: Again, the procedural ontologies associated with the WCF services
are needed in order to break PAVER into a set of component web services, but they
are relatively uninteresting for this work. The plugin machinery provides all of the
aspects used by WCF and several more. The procedural ontologies are defined by a
special interface contract DLL component to which plugins must conform. The
various interface contracts define how the desktop and the plugins can communi-
cate. For example, a plugin can place menu items at various locations in the system
(main menu items or GIS map display options) and the procedural ontology for
plugins governs how this is done. In addition, the plugin itself controls the semantic
meaning of the items and their associations with other items through its algorithms
for data collection, validation, value added processing, and presentation.

Evolution: The plugin machinery provides a means for ontological evolution by
its mere presence. The high level constraints of the storage of mini-databases only
modestly constrain how these items are packaged. In some situation, such as for

5 The Fractal Nature of SOA Federations: A Real World Example 73

non-destructive testing, there are domain ontologies, which can be supported by
plugins even when these ontologies vary from one equipment vendor to another.

5.5.3.2 Discovery

Declarative: The Desktop uses declarative information about an inventory, which
the user can access through File/Open, to determine whether to access data locally
or on a remote server. The discovery process for plugins is more interesting for this
analysis. Each user has a declarative (tabular) set of preferences, which specifies
whether an available plugin should be loaded for that user or not. The desktop
manages the discovery of installed plugin modules on startup and handles the
dialog with the user to discover which items the user wants to access. The selection
of plugins to use is persistent between user sessions and is user specific.

Procedural: The Desktop uses a procedural search together with requirements
for contracts to be implemented by plugins to discover available plugins on
startup. For software security reasons, this discovery process is constrained to
distinguish between “certified” plugins and “external” plugins and is constrained to
a tightly controlled set of locations. The underlying procedural discovery and
composition of plugins is capable of supporting less restrictive policies. Perhaps the
most interesting discovery operation involves plugins being able to discover other
plugins. When a plugin is loaded into the collection of active plugins, the desktop
can determine if the plugin is willing to be visible to other plugins. A plugin with a
dependency on another plugin can determine if the other plugin has been loaded
and can obtain a pointer to the other plugin. After the desktop has facilitated the
connection between the plugins, they may continue to cooperate directly or indi-
rectly through the database and/or the user interface.

Evolution: The plugin machinery exists for the purpose of allowing the dis-
covery of incrementally added modules of functionality. Thus, its primary purpose
is to allow the main desktop system to evolve separately from these additional tools.
Although the discovery of one plugin by another plugin is mediated by the desktop,
there is relatively little constraint on how these interactions are handled once
established.

5.5.3.3 Composition

Declarative: The WCF composition of web services in the main system reduces the
complexity of the overall system and provides for incremental recovery from failed
client—server interactions. Increasingly, new features in the main system are being
packages as “certified” plugins in order to simplify the extension of the main system
and to simplify the system versioning problem. These certified plugins are func-
tionally part of the main application, but they benefit frommany of the simplifications
resulting from loosely coupled SOA modules. Finally, the user can use the desk-
top plugin manager to select or deselect a plugin for inclusion in the user interface.

74 A. Baskin et al.

This selection process can be thought of as a (tool) composition process, which is
controlled by the user. Some users may not need to use all of the functions in the
system and this dynamic tool composition allows for a simplified user interface.

Procedural: As described already, the plugin machinery supports mechanisms
for dynamic composition of algorithms and data. One commonly occurring
example of procedural composition involves reader modules for field data, where
there are competing vendor file formats, e.g. falling weight deflection data. The
field data may be in any of a dozen data formats and each vendor will usually have
the best reader for its format among competing readers. In this situation, we have
been forced to allow plugins to be able to specify a precedence ordering over
potential tool compositions to favor the vendor’s reader over those of others. By
supporting the composition of an ordered collection of readers, plugins can share a
common set of reader code rather than needing to maintain separate versions of
what should be substantially the same functionality.

Evolution: Again, the plugin machinery exists to support evolution of incre-
mental parts of the system without a need to version the overall system. Also, the
composition of algorithms and data from multiple sources (i.e. separate civil
engineering firms) allows each plugin to leverage the shared inventory and
reporting tools of the desktop.

5.5.3.4 Orchestration

Declarative: The desktop allows plugins to supply call back objects that implement
required interface contracts for use when a user requests functionality from a plugin
item. The desktop manages the user interface for the invocation of plugin func-
tionality as well as loading an initializing the plugin. Also, plugins that plan to offer
functionality to other plugins will usually define one or more interface contracts to
facilitate the interoperation of the plugins. The desktop orchestrates the connection
between the plugins and may not be involved going forward.

Procedural: Because these are decision support tools for practicing pavement
engineers, a portion of the orchestration of the component services is actually done
by the human user when implementing best practices in the domain. We may say
that the human user helps to orchestrate the operation of the various services
through the sequence of engineering tools used and through the various tool win-
dows concurrently opened. The user interface supports the concurrent use of a
collection of component tool windows, which may have originated from the main
application or a plugin. The desktop also supports limited abilities to remember tool
window configurations from one user session to another, which allows each user to
control some of the orchestration settings across sessions, e.g. a user may request
that a GIS map be opened on startup if available and the locations and sizes of tool
windows can be remembered, which allows the user to play a role in the orches-
tration of tool windows.

Evolution: The evolution of the orchestration of the interaction of tools comes in
part from the ability to add new tools with a variable number of user interface

5 The Fractal Nature of SOA Federations: A Real World Example 75

elements for launching components of each tool or plugin. In addition, the ability of
plugins to interoperate after they have been connected to each other by the desktop
provides a path for the inclusion of new orchestration patterns by the inclusion of
additional plugins. In fact, we are planning to mitigate the client versioning problem
by the use of more and more certified plugins rather than main system versions.
Because the orchestration of the underlying engineering algorithms depends, in
part, on the user’s selection of sequences of engineering operations and/or reporting
parameters, there is room for the orchestration of the tools by the combination of the
human user and the desktop to evolve with changing best practices.

5.6 Fractal Issues We Have Identified

Some of these issues were known to the authors prior to encountering them in the
pavement management domain and some of them have emerged during the course
of working in this domain. In this section, we will summarize the high level issues
we found and relate them back to the real world example. We have identified the
following overarching principles from our experience:

• Finiteness limits drive the need for increased structure—constraints on time
and/or resources can require a more highly structured solution in order to solve
the problem at hand within the given constraints;

• SOA Federations favor some structural patterns over others—some patterns of
software structure produce better SOA Federations than others and there are
some guiding principles for choice of good patterns;

• SOA Federations favor late binding—late binding to a particular solution ele-
ment avoids the details of selecting the best component tool until it is actually
needed;

• Mixed Initiative Dialog—a recognition that SOA systems, whether made up of
human or machine actors interact more as peers and either side of the com-
munication may have the initiative from time to time;

• Trust, Reliability, Ability, and Authoritative Source—when designing SOA
systems or discovering a candidate for dynamic composition, potential human or
software actors cannot always be treated equally.

For each of these issues, we provide a theoretical basis and a basis in our
experience. These two items independently provide support for our conclusions
about the fractal nature of these issues and their importance in SOA.

5.6.1 Finiteness Limits Drive the Need for Structure

Baskin et al. have explored this idea in detail in [32]. In the interest of keeping this
material self-contained, we briefly summarize the key parts of this principle here.

76 A. Baskin et al.

Theoretical Basis: Think of a problem to solve in the form of a mathematical
function, which is a subset of the domain of input values cross the range of output
values. Any computable function can be represented by a universal Turing machine
with a starting tape containing a definition of the finite state controller for the
machine and a finite amount of starting data. The Kolmogorov complexity [33] of
the function can be thought of as the length of the shortest universal Turing
machine starting tape that solves the problem. Multiple minimal starting tape can
exist with different structures. The size of the function can be taken to be the length
of a starting tape with a simple finite state controller that exhaustively searches a
table of input/output pairs and matches the given input value(s) to find the corre-
sponding output value. If the size of the function is equal to the Kolmogorov
complexity, then there is no room for the use of structure within the function to
reduce the size of the starting tape and still solve the function. If the Kolmogorov
complexity is less than the size of the problem, then there are some combinations of
the various input values that lead to a common outcome. In this formulation, we can
think of finiteness limits as limits on the run time of the universal Turing machine
and/or limits on the length of the starting tape (i.e. limits on the size of the starting
data and/or the state transition diagram for the finite state machine controller).

When finiteness limits are imposed, the nature of the solution must be modified
from an exhaustive lookup table to exploit the commonality among subsets of the
presenting inputs. This process innately involves the explicit incorporation of these
patterns of commonality into the structure of the solution. The recognition of the
commonality in the structure of the problem requires increased structure within the
solution and that structure must exploit the patterns of commonality within the
function. Finiteness limits may be expanded also. When finiteness limits are
expanded, e.g. by increasing speed and/or expressive power of solution platforms,
then either less highly structured solutions can be used or more complex functions
can now be addressed within the expanded limits.

Domain Examples: The initial impetus for the integration of PAVER and
PCASE into a single desktop came from the imposition of a finiteness limit, i.e. the
push to replace two (partially redundant) inventory definitions with a single (uni-
fied) inventory structure. In a similar way, combining the functionality of these
closely related tools matched the reduction in staffing (another finiteness limit),
which accompanied the reduction in field engineering office head counts during the
past twenty years. The more recent pursuit of enterprise level asset data manage-
ment was stimulated by a DoD push to respond to pressure on budgets over the past
decade and a need to be more efficient in the allocation of resources. The push for
plugin modules in the Desktop represents an attempt to reduce the cost (a finiteness
limit) of civil engineering tools by leveraging the common inventory and presen-
tation tools so that each vendor’s civil engineering tool does not need to have its
own (redundantly expensive) version of these shared tools. In fact, it might be
possible for some civil engineering tools to actually have a shorter development
time, lower development cost, and increased range of functionality by leveraging

5 The Fractal Nature of SOA Federations: A Real World Example 77

the desktop tools. In order to exploit these things, the complexity of the plugin tools
must generally be increased by the need to conform to the structures demanded by
the plugin framework, which is a layer of abstraction that could otherwise be
avoided.

5.6.2 SOA Federations Favor Some Structural Patterns
Over Others

As we saw in the previous section, some representations of the form of the solution
can embody more knowledge about the structure of the problem at hand than others.
Among competing structures for solutions, we have found that some structures are
more useful than others. We have identified the following structural patterns, which
are especially useful for constructing SOA federations, but are also good software
engineering principles as well:

• Matching—the patterns of coupling and functional decomposition in the solu-
tion will be simplest and more robust if they match the analogous patterns in the
problem domain itself;

• Favor Composition over Specialization—is a common adage in software
engineering but it is especially useful in SOA federations because this bias
makes discover and dynamic composition much easier;

• Manage Variation Explicitly—try to find a balance point between exhaustive
enumeration of standards and the chaos that results from a lack of attention to
the explicit management of patterns of variation;

• Manage patterns of coupling to maximize convergence of the SOA solution
under change—the evolution of best practices means that large SOA systems
will change and convergence under change is essential;

Theoretical Basis: The imposition of finiteness limits drives the increase in
structure for solutions. We first encountered the notion of matching in biology [34]
but we have actively employed it for decades now. Among competing structures for
solutions, biology and, by analogy, best software practice, favors solutions whose
structure matches the patterns of structure in the environment and in the structure of
the problem. In software this means an analysis model where all object class names
and relationships are recognizable by a domain expert as a model of the domain.
The domain model will be more stable than any particular solution structure and
will be better suited for evolution to solve related problems later. The principle of
matching suggests that wherever there are components of the problem domain with
differing rates of evolution, there should be a factor point (composition) to allow
two components of the software to evolve separately. Similarly, when two com-
ponents in the problem domain are highly coupled, then they should be coupled in
the structure of the solution.

78 A. Baskin et al.

The virtue of composition as a tool for modular replaceable parts is well known.
The notions of Discovery and Composition in SOA are intended to directly exploit
composition. Composition is also a key tool for avoiding duplication of function-
ality in multiple places where the evolution of the functionality needs to be shared.

Explicitly managing variation is closely related to the principle of matching,
which was described earlier. It involves finding boundaries in the domain where
elements can vary separately and then match that boundary with a comparable
software module boundary. Either enumerate the variety completely (e.g. Metric or
English unit systems) or explicitly allow for variation in a constrained way, e.g.
using in interface contract. Patterns in dynamical systems can also be shown to
suggest that some structural patterns support evolution better than others [35].

First derived in mechanical engineering but also applied to software, the prin-
ciples of Axiomatic Design [36] show that it is possible to form a dependency
matrix describing patterns of coupling among software modules and describing the
pattern of use of software modules to solve a problem. When the dependency
matrix for the software modules can be made lower triangular, then there is a
precedence ordering over the modules such that they are stably convergent under
changes in them. Software modules and patterns of using them to solve a problem
for which the coupling matrix cannot be made lower triangular require simulta-
neous and coupled changes in multiple places and are not convergent under change.
Changes in software modules can be driven by changes in the requirements and
changes in technology. Explicitly managing patterns of coupling facilitates software
evolution.

Domain Examples: The object model for PAVER is a domain model, which is
then used implement the various requirements for best practices. It matches the real
world pavement domain and, hence, has evolved well. The origin of the enterprise
systems as separate “smokestacks” also mirror the substantial separation of these
functions. The origin PAVER as a separate system made it natural to see the
engineering rules and analysis modules as an extension of the basic inventory. In
hindsight, this use of specialization to add functions to the basic inventory was a
mistake. We should have favored composition and, then, when PCASE came along,
both PAVER and PCASE could have shared the inventory as a commonly held
part. Unfortunately, it has not proven practical to fix this mistake and a workaround
has been required. Had we favored composition originally even when there was not
an obvious use for it, we would have had a better domain model and an easier time
integrating PCASE with a shared inventory.

Managing variation explicitly has been done extensively in PAVER where
certain things can be locked down via analytic closure (e.g. surfaces are flexible,
rigid, or unpaved). In other places where the domain allows for meaningful vari-
ation and/or extension, then users are allowed to extend built-in types and are
required to supply engineering attributes of these types so that they can be used by
the analysis algorithms. The most interesting examples of explicitly managing
variation come from the Enterprise Federation. The integration of GIS attributes
between PAVER and the enterprise GIS attributes has been seen as a problem of
locking down the attributes to be supplied by PAVER to the enterprise GIS system.

5 The Fractal Nature of SOA Federations: A Real World Example 79

At first glance, a specifically enumerated set of attribute values would appear to
make the problem simpler but it actually makes it harder. Especially in a GIS where
users can define their own coloring strategies for attributes, there is constant
demand for more and varied attributes from PAVER. The ultimate solution was to
define a GUID in the GIS to be matched to a GUID in PAVER and then to have the
GIS user “join” the GIS data to the PAVER data as needed. This explicit man-
agement of variation by identifying the only legitimate standardization and toler-
ating complete freedom after that point is simultaneously an instance of matching,
explicit management of variation, and late binding as presented in the next section.

The integration of the real property/asset management data also provides an
instance of matching, explicit management of variation, patterns of coupling and
late binding. Both the pavement domain and the real property domain have an
inventory hierarchy and the hierarchies are highly correlated. The original software
requirements given to the PAVER development team were to modify PAVER to
enforce the congruence of the pavement domain inventory hierarchy and the real
property hierarchy. The high correlation of these two inventory structures (80 %)
made this convergence appear to be simpler than allowing them to be different. By
applying principles of domain modeling and matching, the PAVER development
team was able to push back and get permission to implement the real property tags
at a lower level than originally requested with the justification that there were
legitimate domain rationales for an item to be at two incompatible places in the two
hierarchies and by tagging lower level elements, it was possible to dynamically roll
up the PAVER inventory according to tags representing a somewhat different
composition. The system allowed tags to be supplied at the originally requested
higher level and only exceptions to that assignment were needed at the lower level.
This approach exactly matched the predicted pattern of domain variability. Despite
repeated attempts to force field engineers to use the original exact correspondence
and tag at the originally requested level, the system was not usable for some
locations. Once users were allowed to tag exceptions at the lower level, the system
was accepted. This is an example of predicting a domain requirement based upon
fractal SOA principles and persevering in the face of resistance from contract
monitors.

Explicit management of patterns of coupling is a combination of software
development practices and domain modeling. It is possible to explicitly manage
patterns of coupling by using a heavily constrained N-tier software development
model. Each tier consists of an interface contracts module, which is visible only to
the layer above, and an implementation module, which is not visible to the layer
above. These constraints can be enforced by allowable patterns of reference among
modules. Using this approach, it is not possible for implementation code in one
layer to become coupled to implementation code in a lower layer. Using a strongly
contract driven pattern of allowable coupling does lead to a larger number of
modules than would otherwise be required. If needed, these decoupled modules can
be merged at the last minute to ease packaging while retaining the constraints on
coupling.

80 A. Baskin et al.

5.6.3 SOA Federations Favor Late Binding

As shown in the issues surrounding trust, the SOA ideas of discovery and com-
position imply a substantial departure from the historical notions of “link editing”
all of the software modules in a software system into a single executable at load
time. Like other issues we have identified, the notion of late binding applies at all
levels of abstraction.

Theoretical Basis: The notion of late binding has actually been around for a
long time. In the original LISP implementations, the boundary between program
and data was blurred and a LISP program could build a list of instructions and then
execute those instructions! We stop short of that ultimate example of late binding in
our discussions here, but we note that the inclusion of human users as one of the
SOA Federation members, we achieve late binding of a similar order because the
human users may elect to compose data sources in entirely new ways and may
interpretively execute algorithms by invocation of SOA Services where the algo-
rithm exists only inside the user’s mind or is codified in a best practices manual.

We find another model for late binding in what Lu et al. [37] has called
Engineering as Collaborative Negotiation (ECN). The ECN paradigm was devel-
oped for mechanical engineering product design and we have applied some of its
principles in our work. The basic idea of ECN is to identify constraints on the
design result as early as possible but with the broadest tolerances possible. This
approach is in contrast to more traditional mechanical engineering design approa-
ches that emphasize the preparation of relatively specific designs for major sub-
systems as the overall product design matures. By identifying broad constraints on
the design as early as possible and delaying selection of specific design values until
as late as possible, designers can detect conflicts in the design much earlier than
would otherwise be possible. This late binding approach leads to a more agile and
cost effective design process. We find a similar situation in SOA Federations
because the delay in binding to details can afford opportunities for opportunistic
selection of tools for composition.

Domain Examples: The mechanisms for late binding are different at each level
of abstraction, but there is value to late binding at each level. The matchup for GIS
data and Real property data needs to be late bound because the Air Force, Navy,
and Army all use PAVER but use different enterprise systems. We can use a single
data harvest mechanism, but each service must use its own tools for accessing the
data. Secondly, the data may be referenced in place (planned for the Air Force) or
by accessing a “published” copy of data (Army and Navy).

The Desktop federation of PAVER and PCASE uses late binding when
importing data and when exporting data. This federation has a collection of
application tools, which may contain one tool or both tools depending upon what
the user has installed. The import and export tools actually bind to the collection of
applications for putting data into an export file or bringing in data from an import
file. These operations are internalized into each of the Desktop SOA federation
members. The data for all plugin modules is processed by the desktop for

5 The Fractal Nature of SOA Federations: A Real World Example 81

import/export but each plugin module will only be bound to data if there is both
data in the plugin persistence and the plugin is activated for the user. Another
example of late binding occurs when the user opens a database. Any given database
might have been created with PAVER alone, PCASE alone, or both PAVER and
PCASE installed. During the file open process, each application is allowed the
opportunity to create any missing databases, which might be exclusively managed
by one tool and to add them to the single logically unified database. In this way, the
number of databases and data tables is late bound at the time of file open.

Late binding is a fundamental part of the plugin machinery. Some plugin
modules may be installed as an integral but optional module. We refer to these
plugin modules as “certified” because they can be recognized as being compiled
with the same trust level as the main application code. The user can opt to include
these tools in the user interface and, thereby, cause a late binding of user visible
functionality. For plugin modules from other civil engineering firms, there is both
late binding of those tools to the desktop and also there can be late binding of these
tools to each other through a SOA discovery and composition protocol, which is
mediated by the Desktop as it orchestrates the initial setup of each plugin module.

5.6.4 SOA Federations Contain Mixed Initiative Dialogs

One reason that we have used the word federation throughout this discussion is the
realization that we are bringing together a collection of relatively coequal partici-
pants where the union of what the participants know and can do is needed to solve
complex problems. This relative symmetry of the participants gives rise to the
situation where one federation member may predominate at one point in time and
another participant at another time, and, hence, gives rise to the need to support a
mixed initiative dialog at all levels of abstraction.

Theoretical Basis: We borrow the notion of a mixed initiative dialog from
intelligent tutoring systems [38, 39] in which two semi-autonomous agents interact
with each other while exchanging the control over the interaction. In intelligent
tutoring systems, the human student is made to be more actively involved by being
put into a position of active participation rather than passive listening. In our work
on engineering field office automation in the 80’s, we saw a clear role for sup-
porting the field engineer with individual decision support systems and later groups
of engineers with group decision support systems. By keeping the practicing
engineer involved in the decision making process, some of the harder problems can
be offloaded onto the human user and, thus, we arrive at expert support systems
(where the expert is the human decision maker) rather than expert systems (where
the computer system is expected to be an expert).

Domain Examples: In our civil engineering maintenance management tools, we
emphasize supporting the decisions of a practicing pavement engineer rather than
replacing their decision making with expert-derived rules or algorithms. Examples
of this include the provision of common domain defaults for all required inputs for

82 A. Baskin et al.

work planning together with the ability for the engineer to override the defaults or
extend them, e.g. an initial set of work types, surface types, cost tables, and budgets.
The incorporation of plugin modules is another example of a mixed initiative dialog
where in the installation of a plugin module requires administrative privileges but
does not automatically activate the plugin for the user. By using the “add in
manager” tool, the user can control which Add Ins (plugins) are actually presented
in the user interface. Finally, the composition of functionality among different
plugins requires a dialog between the desktop and the plugin to expose it to other
modules, which, in turn, enter into another mixed initiative dialog to exchange data
and/or provide composite calculations.

At the Enterprise SOA Federation level, we see a mixed initiative dialog
between the systems in the federation where the authoritative source (Spatial Data
Standard system or real property/asset system) might temporarily give way to an
operational authoritative source like PAVER because a field engineer standing on
the pavement may be a more trusted source for those data as a byproduct of the field
data collection.

Within the SOA Federation containing PAVER and PCASE, we again see a
mixed initiative dialog, which we are still trying to fully realize: one system indi-
cates that the most effective intervention is reconstruction and the other designs the
details of the new construction. Each member of this federation draws upon the
shared inventory but has the initiative for capturing and processing largely disjoint
sets of time series data and analyses.

While there is technically a mixed initiative dialog between the various
web-services for PAVER itself, the late binding of add on modules is more inter-
esting and subsumes these internal issues. The mixed initiative dialog begins with
the user electing to use the “Add In Manager” tool to activate one or more installed
additional modules. Each plugin module has the option at this time to require a
license key from the user and either it agrees to become activated or not. Once the
plugin module has been activated, it can request that the Desktop host user interface
items by which the user can request the plugin to respond. The Desktop and the
human user have the initiative more often going forward, but a plugin module can
do things like monitor a GPS feed and/or host its own user interface and the result
of these data can be pushed back into the Desktop Federation to shift the user’s
focus of attention to see the newly selected data. This bi-directional control is most
visible when there are two GIS maps being synchronized bi-directionally—one
from PAVER and one from a plugin. To the human user, the two maps are part of a
single unified interaction experience but the communication among the SOA Tool
Federation members is not a seamless as it appears to the user.

Finally, plugin modules can call upon other plugin modules in something
approximating the normal SOA Discovery and Composition techniques. During the
instantiation of the plugin module, the Desktop and the plugin engage in a back and
forth dialog by which plugin modules can agree to allow them to be used by others
and a link between the modules can be directly established. Plugin modules that
communicate directly with each other no longer need the Desktop to mediate
further communication. Because these modules may also have their own user

5 The Fractal Nature of SOA Federations: A Real World Example 83

interaction items, they behave more like co-routines than procedure call services
and, again, we find a mixed initiative dialog between the plugin modules.

5.6.5 SOA Federations Depend upon the Explicit
Management of Trust, Reliability, and Authoritative
Source

As the length of this section title suggests, management of the issues surrounding
trust is a somewhat messy problem. It involves issues between humans only,
between software modules only, and between software systems and human users of
those systems. As we will see below, this is also an issue between software
development teams whose software systems will be members of a SOA Federation.

Theoretical Basis: The distinction between Authentication (do I believe you are
who you claim to be) and Authorization (what I allow that authenticated identity to
do) is well established, and we build upon that as a foundation for related issues.
Implicit in the SOA notions of Discovery and Composition is the ability to select
among competing sources for providing a required service based upon things like
performance and competence. Rephrasing this in terms of trust, we get the question:
Can I trust you to provide correct services/data in a timely fashion? A subtly related
point can be used to limit which features are shown to human users: Can I trust you
to be able to understand this feature and not be overwhelmed by too many features?
Both of these two questions can be thought of as complementary aspects of the
notion of competence—competence to provide and to consume.

Reliability closely relates to competence: (1) Can I rely upon you to provide
good data/services in a timely fashion? (2) Can I rely upon you to understand and
not corrupt the data and services I expose to you? These questions apply equally
between all SOA Federation members whether they be a human or a computer
software modules.

During the work on the enterprise federation of civil engineering tools for DoD,
we encountered the notion of “authoritative source,” which means the agency
and/or software system designated as the official “go to” source for a body or data
and/or expertise. We have coined the notion of “operational authoritative source,”
which means a source different from the officially designated source but, at least
temporarily, better able to supply reliable data at a particular place and time. As we
will see in the domain examples, these two competing sources will be separates
SOA Federation members and they will enter into a mixed initiative dialog whereby
the authoritative source may be updated by the transient activity of the operational
source.

Although we are still trying to fully understand the fractal nature of trust issues,
we have identified a key role for trust in the following substantially separable areas:

84 A. Baskin et al.

• Trust between software development teams for different SOA Federation
members (federates), which involves territoriality, use of tools you cannot
control, schedule compatibility, and competence;

• Trust between federates and their sources, which involves authoritative sources,
perceived competence/timeliness of the services, and dependence on services
whose availability cannot be guaranteed;

• Trust in the longevity of the available SOA services, which is critical in civil
engineering data management where data must be kept over decades and the
nominal life of the asset may be 50–100 years;

• Trust in user competence, which causes tension between those managing low
level data and managers who must necessarily look across data from multiple
sites/facilities and may not understand low level data.

These diverse aspects of the concept of trust can be found in surprisingly diverse
situations and frequently prove to be deceptively simple to identify and incredibly
difficult to resolve.

Domain Examples: The designation of an authoritative source is entirely
external to the issues being discussed here but the existing authoritative sources for
GIS data and Real Property/Asset data constitute a constraint on major aspects of
the Enterprise SOA Federation. Although these systems are the authoritative source,
PAVER can frequently be asked to provide updated data of higher quality as a
byproduct of field surveys. In fact, many field surveys using PAVER are now
required to obtain the latest GIS and Real Property data and for use in the inspection
process and to return for potential update of the authoritative sources. This mixed
initiative dialog between the systems may be fully or partially automated, but the
authoritative source is responsible for the eventual integrity of the data and may
refine or refuse proposed updates. At the enterprise level, trust between software
development groups and SOA Federation members tends to be resolved by des-
ignation of by a single shared authority, i.e. the Secretary of Defense. The existence
of a single “owner” for all of the SOA Federation members is on a panacea for
resolving trust issues but it is a surprisingly underappreciated necessary condition.
At the enterprise level, the issue of trust for the competence of the various SOA
Federation members has been resolved by their separate evolution and individual
validation. Again, the existence of a common governing authority with control over
allocation of resources and the independently justified existence of the systems
means that the longevity problem is also solved.

The development of the original Federation of PAVER and PCASE, which
predated the inclusion of SOA principles, involved a process of reconciling the
respective pavement engineering domain ontologies and establishing trust between
the separate development groups (one made up of government employees for
PCASE and the PAVER development team). Because there is a natural process of
turnover in software teams, and because these civil engineering systems deal with
problems over a period of decades, it has proven surprisingly difficult to maintain
this trust between the groups over time.

5 The Fractal Nature of SOA Federations: A Real World Example 85

The trust issues between plugins provide the richest examples of trust issues in
the three layers of abstraction. When plugin modules can originate with the PAVER
development team or with competing civil engineering firms there can be no illu-
sion of a common controlling authority and no illusion that these SOA Federation
members will always be there because plugin modules may be separately devel-
oped, licensed and distributed. Increasingly, these plugin modules depend upon
external web services for data and operations and, again, continuity of access is
qualitatively lower than for modules distributed as part of the main system.

The issue of trust is not an absolute distinction. An external authority can des-
ignate an authoritative source, but that distinction is artificial and external to all of
the issues of the SOA Federation. The trust issues generally exist on a precedence
ordering and not as a crisp distinction. We can illustrate this point with the fol-
lowing detailed example.

5.7 Conclusions

This chapter summarizes insights gained from more than twenty years of software
development, maintenance, and evolution of a major pavement management system
(PAVER™). We consider the traditional SOA concepts: (1) Ontologies,
(2) Discovery, (3) Composition, and (4) Orchestration. Often, discussions of SOA
techniques focus on stateless operations, which certainly have their place.
Managing the persistence of time series data is essential whether orchestrating the
collaboration of human civil engineers in a technology mediated federation or
managing diet/exercise data with an app on a cell phone. Accordingly, we have
cited this as a cross-cutting concern. We conclude that time series trends in such
data are much more meaningful than any single snapshot of data. This observation
leads us to an additional dimension, which cuts across all of the SOA concepts
above: Algorithms versus Persistent State. Finally, during twenty years of experi-
ence in the pavement management domain, we have become attuned to the issue of
evolution of best practices and associated decision support software systems, as
well as the need for SOA Federations to support this evolution. This fact gives rise
to a third dimension which we have explored in this work: Evolution. After
reviewing our experiences with SOA Federations at three levels of abstraction, we
have found the following basic principles to be self-similar at three levels of
abstraction:

• Finiteness limits on time, participants, and/or resources demand more highly
structured solutions;

• SOA Federations work best when they (a) match patterns of coupling/evolution
in the domain, (b) favor composition, (c) manage variation as a first class issue,
and (d) explicitly manage patterns of coupling;

• SOA Federations benefit greatly from late binding—especially when paired with
management of variation;

86 A. Baskin et al.

• SOA Federations work best when there is a mixed initiative dialog among
federates and human users;

• Trust issues must be managed by SOA Federations and among software
development teams.

We have found all of these fractal principles in our historical review and we have
used them prospectively to guide the development of new SOA system federates to
good effect.

References

1. Shahin, M.Y.: Pavement Management for Airports, Roads, and Parking Lots. Chapman &
Hall, New York (1994)

2. Reinke, R., et al.: Domain frameworks for collaborative systems: lessons learned from
engineering maintenance management. CTS 2007, 396–405 (2007). doi:10.1109/CTS.2007.
4621780

3. Zdun, U.: Pattern-based design of a service-oriented middleware for remote object federations.
ACM Trans. Intern. Tech. 8, 3, Article 15 (2008). doi:10.1145/1361186.1361191

4. Li, Z., Cai, W., Turner, S.J., Pan, K.: Federate migration in a service oriented HLA RTI. 11th
IEEE Symposium on Distributed Simulation and Real-Time Application, pp. 113–121. doi:10.
1109/DS-RT.2007.31

5. Wang, W., Yu, W., Li, Q, Wang, W., Liu, X.: Service-oriented high level architecture. In:
Proceedings of summer computer simulation conference, 2008. Article 16

6. IEEE: Standard 1516 (HLA Rules), 1516.1 (Federate Interface Specification) and 1516.2
(Object Model Template), September 2000

7. WSDL: Web services description language (WSDL) Version 2.0 Part 1: Core Language http://
www.w3.org/TR/wsdl20/. Accessed 20 Mar 2014

8. SOAP: SOAP Version 1.2 Part 0: Primer (Second Edition) http://www.w3.org/TR/2007/REC-
soap12-part0-20070427/

9. XML Schema: XML Schema Part 1: Structures Second Edition http://www.w3.org/TR/
xmlschema-1/. Accessed 20 June 32013

10. Seo, C., Zeigler, B.P.: Simulation model standardization through web services: interoperation
and federation on the DEVS/SOA platform. In: Proceedings of symposium on theory of
modeling and simulation—DEVS integrative M&S symposium, 2012. Article 46

11. Li, J., Karp, A.H.: Access control for the services oriented architecture. In: Proceedings of
ACM workshop on secure web services, pp. 9–17 (2007). doi:10.1145/1214418.1314421

12. specs@openid.net. “OpenID Authentication 2.0 Final.” 2007. Available online at http://
openid.net/developers/specs/

13. Liberty Alliance Project: Liberty ID-WSF web services framework overview. Version 1.1,
2005. Available online at http://www.projectliberty.org/liberty/specifications__1

14. OASIS: Web services security: WS-security core specification 1.1. OASIS Standard, 2006.
Available online at http://docs.oasis-open.org/wss/v1.1/

15. OASIS: Security assertion markup language (SAML) 2.0 Technical Overview, Working Draft
05’, 10 May 2005. http://www.oasisopen.org/committees/download.php/12549/sstc-saml-
techoverview-2%5B1%5D.0-draft-05.pdf

16. Thomas, I., Meinel, C.: An identity provider to manage reliable digital identities for SOA and
the web. In: Proceedings of IDtrust ’10, pp. 26–36 (2010). doi:10.1145/1750389.1750393

17. Hatameyama, M.: Federation proxy for cross domain identity federation. In: Proceedings of
DIM ’09, 13 November 2009, pp. 53–62. doi:10.1145/1655028.1655041

5 The Fractal Nature of SOA Federations: A Real World Example 87

http://dx.doi.org/10.1109/CTS.2007.4621780
http://dx.doi.org/10.1109/CTS.2007.4621780
http://dx.doi.org/10.1145/1361186.1361191
http://dx.doi.org/10.1109/DS-RT.2007.31
http://dx.doi.org/10.1109/DS-RT.2007.31
http://www.w3.org/TR/wsdl20/
http://www.w3.org/TR/wsdl20/
http://www.w3.org/TR/2007/REC-soap12-part0-20070427/
http://www.w3.org/TR/2007/REC-soap12-part0-20070427/
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-1/
http://dx.doi.org/10.1145/1214418.1314421
http://openid.net/developers/specs/
http://openid.net/developers/specs/
http://www.projectliberty.org/liberty/specifications__1
http://docs.oasis-open.org/wss/v1.1/
http://www.oasisopen.org/committees/download.php/12549/sstc-saml-techoverview-2%255B1%255D.0-draft-05.pdf
http://www.oasisopen.org/committees/download.php/12549/sstc-saml-techoverview-2%255B1%255D.0-draft-05.pdf
http://dx.doi.org/10.1145/1750389.1750393
http://dx.doi.org/10.1145/1655028.1655041

18. Anastasi, G.F., Carlini, E., Dazzi, P.: Smart cloud federation simulations with CloudSim. In:
Proceedings of ORMACloud’13, June 17, 2013, pp. 9–16 (2013). doi:10.1145/2465823.
2465828

19. Al-Masri, E., Mahmoud, Q.H.: Identifying client goals for web service discovery. 2013 IEEE
international conference on services computing 2009, pp. 202–209. doi:10.1109/SCC.2009.60

20. Dabrowski, M., Pacyna, P.: Cross-identifier domain discovery service for unrelated user
identities. In: Proceedings of the 4th ACM workshop on digital identity management,
pp. 81–88 (2008). doi:10.1145/1456424.1456438

21. Tolk, A., Turnitsa, C.D., Diallo, S.Y.: Model-based alignment and orchestration of
heterogeneous homeland security applications enabling composition of system of systems.
In: Henderson, S.G., Biller, B., Hsieh, M-H., Shortle, J., Tew, J.D., Barton, R.R. (eds.) IEEE
winter simulation conference, Dec 2007, pp. 842–850. doi:10.1109/WSC.2007.4419680

22. Tolk, A., Diallo, S.Y., Turnitsa, C.D.: Mathematical models towards self-organizing formal
federation languages based on conceptual models of information exchange capabilities. In:
Mason, S.J., Hill, R.R., Mönch, L., Rose, O., Jefferson, T., Fowler, J.W. (eds.) IEEE winter
simulation conference, Dec 2008, pp. 966–974. doi:10.1109/WSC.2008.4736163

23. Rathnam, T., Paredis, C.J.J.: Developing federation object models using ontologies. In:
Ingalls, R.G., Rossetti, M.D., Smith, J.S., Peters, B.A. (eds.) Proceedings of the IEEE 2004
Winter Simulation Conference, pp. 1054–1062 (2004). doi:10.1109/WSC.2004.1371429

24. Calvanese, D., De Giacomo, G., Montali, M.: Foundations of data-aware process analysis: a
database theory perspective. In: Proceedings of PODS ’13, 22–27 June 2013. doi:10.1145/
2463664.2467796

25. Reichert, M.: Process and data: two sides of the same coin? In Proceedings of the On the Move
Confederated International Conference (OTM 2012), volume 7565 of Lecture Notes in
Computer Science, 2–19 (2012)

26. Dobos, L., Csabai, I., Szalay, A.S., Budavári, T., Li, N.: Graywulf: a platform for federated
scientific data and services. Proceedings of SSDBM ’13, July 29–31 2013, Baltimore, MD,
USA, 2013 ACM 978-1-4503-1921-8/13/07 (Pázmány Péter sétány)

27. Krizevnik, M., Juric, M.B.: Improved SOA persistence architectural model. ACM SIGSOFT
Newsletter 35(3), 1–8 (2010). doi:10.1145/1764810.1764821

28. Williams, K., Daniel, B.: An introduction to service data objects. Java Developer’s J. (2004)
29. Carey, M.: The BEA AquaLogic Data Services Platform. Proceedings of SIGMOD 2006, June

27–29, 2006, Chicago, Illinois, USA. Copyright 2006 ACM 1-59593-256
30. Takatsuka, H., et al.: Design and implementation of rule-based framework for context-aware

services with web services. In: Proceedings of iiWAS ’14, 4–6 December 2014, Hanoi,
Vietnam. doi:10.1145/2684200.2684310

31. Sarelo, K.: A SOA for ubiquitous communication management. In: Proceedings of
iiWAS2009, 14–16 December 2009, Kuala Lumpur, Malaysia. doi:10.1145/1806338.
1806386

32. Baskin, A., et al.: Exploring the role of finiteness in the emergence of structure. In: Mittenthal,
J., Baskin, A. (eds.) The principles of organization in organisms. Santa Fe Institute studies in
the sciences of complexity, Proceedings vol 13. Addison-Wesley, Reading, pp. 337–377
(1992)

33. Li, M., Vitanyi, P.M.B.: Two decades of applied Kolmogorov complexity: in memoriam of
Andrei Nikolaevich Kolmogorov 1903–1987. In: Proceedings of 3rd annual structure in
complexity theory conference, Georgetown University, Washington, 14–17 June 1988

34. Mittenthal, J.E., et al.: Patterns of structure and their evolution in the organization of
organisms: modules, matching, and compaction. In: Mittenthal, J., Baskin, A. (eds.) The
principles of organization in organisms. Santa Fe Institute studies in the sciences of
complexity, Proceedings vol. 13. Addison-Wesley, Reading, pp 321–332 (1992)

35. Kauffman, S.A.: The sciences of complexity and “origins of order”. In: Mittenthal, J., Baskin,
A. (eds.) The principles of organization in organisms. Santa Fe Institute studies in the sciences
of complexity, Proceedings vol 13. Addison-Wesley, Reading, pp. 303–319 (1992)

36. Suh, N.P.: Axiomatic Design. Oxford University Press, New York (2001)

88 A. Baskin et al.

http://dx.doi.org/10.1145/2465823.2465828
http://dx.doi.org/10.1145/2465823.2465828
http://dx.doi.org/10.1109/SCC.2009.60
http://dx.doi.org/10.1145/1456424.1456438
http://dx.doi.org/10.1109/WSC.2007.4419680
http://dx.doi.org/10.1109/WSC.2008.4736163
http://dx.doi.org/10.1109/WSC.2004.1371429
http://dx.doi.org/10.1145/2463664.2467796
http://dx.doi.org/10.1145/2463664.2467796
http://dx.doi.org/10.1145/1764810.1764821
http://dx.doi.org/10.1145/2684200.2684310
http://dx.doi.org/10.1145/1806338.1806386
http://dx.doi.org/10.1145/1806338.1806386

37. Lu, S.C.Y., et al.: A scientific foundation of collaborative engineering. CIRP Ann. Manufact.
Technol. 56(2), 605–634 (2007). doi:10.1016/j.cirp.2007.10.010

38. Chan, T-W., Baskin, A.: Studying with the prince: the computer as a learning companion. In
Proceedings of the ITS-88 Conference (1988), pp. 194–200

39. Graesser, A.C., et al.: AutoTutor: an intelligent tutoring system with mixed-initiative dialogue.
IEEE Trans. Educ. 48(4), 612–618 (2005). doi:10.1109/TE.2005.856149

5 The Fractal Nature of SOA Federations: A Real World Example 89

http://dx.doi.org/10.1016/j.cirp.2007.10.010
http://dx.doi.org/10.1109/TE.2005.856149

Chapter 6
Leveraging Analytics for Digital
Transformation of Enterprise Services
and Architectures

Alfred Zimmermann, Rainer Schmidt, Kurt Sandkuhl,
Eman El-Sheikh, Dierk Jugel, Christian Schweda,
Michael Möhring, Matthias Wißotzki and Birger Lantow

Abstract The digital transformation of our society changes the way we live, work,
learn, communicate, and collaborate. The digitization of software-intensive prod-
ucts and services is enabled basically by four megatrends: Cloud Computing, Big
Data Mobile Systems, and Social Technologies. This disruptive change interacts
with all information processes and systems that are important business enablers for
the current digital transformation. The Internet of Things, Social Collaboration
Systems for Adaptive Case Management, Mobility Systems and Services for Big
Data in Cloud Services environments are emerging to support intelligent
user-centered and social community systems. Modern enterprises see themselves
confronted with an ever growing design space to engineer business models of the
future as well as their IT support, respectively. The decision analytics in this field
becomes increasingly complex and decision support, particularly for the develop-
ment and evolution of sustainable enterprise architectures (EA), is duly needed.
With the advent of intelligent user-centered and social community systems, the
challenging decision processes can be supported in more flexible and intuitive
ways. Tapping into these systems and techniques, the engineers and managers of
the enterprise architecture become part of a viable enterprise, i.e. a resilient and
continuously evolving system that develops innovative business models.

A. Zimmermann (&) � D. Jugel � C. Schweda
Reutlingen University, Reutlingen, Germany
e-mail: alfred.zimmermann@reutlingen-university.de

R. Schmidt
Munich University, Munich, Germany

K. Sandkuhl � D. Jugel � M. Wißotzki � B. Lantow
University of Rostock, Rostock, Germany

E. El-Sheikh
Center for Cybersecurity, University of West Florida, Pensacola, FL, USA
e-mail: eelsheikh@uwf.edu

M. Möhring
Munich University, Munich, Germany

© Springer International Publishing Switzerland 2016
E. El-Sheikh et al. (eds.), Emerging Trends in the Evolution of Service-Oriented
and Enterprise Architectures, Intelligent Systems Reference Library 111,
DOI 10.1007/978-3-319-40564-3_6

91

6.1 Introduction

Information, data and knowledge are fundamental concepts of our everyday
activities. Social networks, smart portable devices, and intelligent cars, represent
only a few instances of a pervasive, information-driven vision [1] for the next wave
of the digital economy and better-aligned information systems. Digitization [2]
encompasses the collaboration of human beings and autonomous objects beyond
their local context using digital technologies. Digitization further increases the
importance of information, data and knowledge as fundamental concepts of our
everyday activities. By exchanging information human beings and intelligent
objects are able to make decisions in a broader context and with higher quality.
Major trends for digital enterprise transformation are investigated by Leimeister
et al. [3]: (i) Digitization of products and services: products and services are
enriched with value-added services or are completely digitized; (ii) Context-
sensitive value creation: though popularity of mobile devices location contexts are
used more frequently and enable on demand customized solutions; (iii)
Consumerization of IT: One of the challenges is the safe integration of mobile
devices into a managed enterprise architecture for both business and IT;
(iv) Digitization of work: Today it is much easier to work together over large
distances, which allows often an uncomplicated outsourcing of business tasks; and
the (v) Digitization of business models: Businesses need to adapt and have to
rethink their business models to develop innovative business models according to
employees’ current skills and competencies.

The technological and business architectural impact of digitization has multiple
aspects, which directly affect adaptable digital enterprise architectures and their
supported systems. Smart companies are extending their capabilities continuously
managing their changing Business Operating Model [4] by developing and
maintaining Enterprise Architectures as the architectural part of a changing IT
Governance [5]. Enterprise Architecture Management [6–8] and Services
Computing [9, 10] is the approach of choice to organize, build, utilize, and dis-
tribute capabilities for digital enterprise architectures [11, 12]. They provide flex-
ibility and agility in business and IT systems. The development of such
applications integrates Web and REST Services, Cloud Computing and Big Data
management, among other frameworks and methods for the architectural semantic
support. Today’s information systems span a broad range of domains including:
intelligent mobility systems and services, intelligent energy support systems, smart
personal health-care systems and services, intelligent transportation and logistics
services, smart environmental systems and services, intelligent systems and soft-
ware engineering. One of the challenges is the safe integration of mobile devices
into managed enterprise architecture of both business and IT. Today it is much
easier to work together over large distances, which allows often an uncomplicated
outsourcing of business tasks. Businesses need to adapt and have to rethink their
business models to develop innovative business models according to employees’
current skills and competencies.

92 A. Zimmermann et al.

Digitization of products and services requires the close alignment of business
models and digital technologies for creative digital strategies and solutions, as well
as for their digital transformation. Unfortunately, the current state of art and practice
of enterprise architecture lacks an integral understanding and support of collabo-
rative decisions in the process of architectural adaptation and enterprise transfor-
mation. We have therefore to extend previous approaches of enterprise architecture
to fit to the digitization of new products and services and by introducing suitable
mechanisms for collaborative architectural engineering and decision support with
adaptive case management for agile changing business models, information systems
and their digital enterprise architecture.

We are investigating concepts and mechanisms for analyzing enterprise archi-
tectures to provide decision support for the architectural evolution and adaptation.
We abstain from defining a heavyweight framework for EA management, but
provide a platform laying a basis for manifold analysis techniques that can be
combined as necessary. We regard this approach advantageous over the state-of-
the-art with its abundance of “ingredients” that are often not adopted in the practice
of EA management. Further, the analysis techniques allow a focus on key aspects of
the ongoing transformation, like a cloud transformation, without losing the enter-
prise context, which is represented in different perspectives and stakeholder-specific
viewpoints.

A new refocused decision-oriented approach for digital enterprise architectures
should be both holistic and easily adaptable. Our aim is to support flexibility and
agile transformations for both business domains and related enterprise systems
through semiautomatic semantic-supported decisional processes, which are com-
bined with analytics of real-time changing information environments. The present
research is focused on decisional support for conceptual and architectural infor-
mation, analytics-based methods, semantic representations and inference mecha-
nisms, which are combined to enable stakeholder-centric decisional processes and
transparency information for digital transformations.

Section 6.2 describes our fundamental orientation for digitized products and
services. Section 6.3 focuses on our research platform for digital enterprise archi-
tecture, which was extended by concepts from adaptive case management, mech-
anisms for architectural adaptation and a specific model integration method.
Section 6.4 presents our decision case management environment and links this in
Sect. 6.5 with collaborative decision services and mechanisms. In Sect. 6.6 we
present the decisional metamodel for digital enterprise architectures as a base for
our decision analytics approach. Section 6.7 sketches the semantic support for
architectural analytics by adding a suitable knowledge representation for both
architectural concepts and decision metamodels. Finally, we summarize in Sect. 6.8
our findings and our future research plans.

6 Leveraging Analytics for Digital Transformation … 93

6.2 Digitization of Products and Services

Digitized products and digitized services are both software-intensive and therefore
malleable and usually service-oriented. They are able to increase their capabilities
accessing cloud-services and change their behavior. Digitized products support the
co-creation of value together with the customer and other stakeholders. Digitized
products and services offer disruptive opportunities for new business solutions
having new smart connected functionalities. At first, the high level of interest
surprises, because the digital representation of information and performing digital
calculation operations have been established for decades. The term digitization has
its origin in [13] and is used for the digital representation of information, and
processing since years [14].

There are definitions that consider digitization a primarily technical term [15].
Technologies often associated with digitization [16] are: cloud computing [17], big
data [18, 19] advanced analytics, social software, and the Internet of Things [20].
The set of technologies increases. New technologies such as deep learning [21] are
emerging that allow computing to be applied to activities that were considered as
exclusive to human beings.

Therefore the question arises, what causes the present emphasis on digitization
and what is different about digitization. Out thesis is, that digitization today
embraces effects from both a product, and a value-creation perspective. Digitization
can be described from both a product and a value-creation perspective: digitized
products and the digitized value chains. Digitized products offer new capabilities to
interact with their environment and the customer. They are also capable to collect
data.

Classic industrial products are static [22]. You can change the production not or
only to a limited extent. Digitization creates products containing software that can
be upgraded via network connections. In addition, products over network con-
nections can use external services. Software and especially services are also easier
to update. New software functions can be added and additional services can be
integrated. Therefore, the functionality of products is no longer static, but can be
adapted to changing requirements and hidden customer needs. In particular, it is
possible to create digitized products and services step-by-step or provide tem-
porarily unlockable functionalities. So, customers whose requirements have risen
can add functions without hardware modification.

Digitalization [2] allows products to capture their own state and submit this
information into linked contexts. The provider can remotely determine whether the
product is still functional and encourage, where appropriate, maintenance and
repairs. This is the basis on which, instead of the physical product, the use of the
product as a service changes the traditional offer. These services will be measured
on their effectiveness and their practical usage. This will lay the foundation for
usage-based billing models. In addition to the usage information also the condition
of the product by the manufacturer can be queried.

94 A. Zimmermann et al.

In this context, concepts of preventive maintenance [23] can be developed.
These have the objective of unscheduled stoppages whenever possible to avoid.
Evaluation of status information and analysis of the history of use of the product
can be predicted, when a malfunction of the product is likely. A maintenance or
replacement of the product is performed before the respective date. In this context,
the collected data can also be used to provide information for a repair on the spot, so
that a high first time solution rate can be achieved. At the same time, storage can be
improved in this way of spare parts.

The Internet of Things [24] enables the creation of products that are constantly in
communication with the manufacturer. In this way, the manufacturer can win
genuine information about the use of the product. The collection of information on
the use of products is no longer dependent on the cooperation with the customer. In
addition, it is possible to collect important information for up—and cross—selling
in this way. By linking devices on networks, benefits are generated from two areas.
Both the functionality increases and there are positive effects arising from the
overarching data use. Furthermore, the production of more customer-oriented
products [25] is possible.

Network effects [26] grow exponentially, because they are based on the number
of participants and the number of possible connections. The possibility to connect
devices of the network increases the possibilities of the individual device, because
increasing the number of potential partners. This benefit increase is disproportionate
higher as the number of devices, since the number of possible connections grows
faster as the device number [27].

This increase of commercial value also happens through services provided by a
lot of partners with complementary skills [22]. Software platforms that support the
collection, analysis and exchange of data are rapidly growing. Winners in this
environment will be companies, enable network effects to create value for cus-
tomers. Network effects become apparent not only in functionality, but also in the
scope of the data. These effects are called network intelligence [13]. By bringing
together data from different network nodes, trends can be detected much earlier and
more accurately.

By linking data from different sources [28], it is possible to establish correlations
that would not have been possible with the data of a single device. This effect
increases with the number of devices. By integrating external data sources, the
extraction of relevant information can be improved also. Particularly the ability of
big data and advanced analytics helps to process particularly semi- and unstructured
data.

Characteristic is the involvement of individual product in an information system,
which accelerates the learning and knowledge processes across all products [19]. In
this way, a number of other beneficial effects can be achieved as network opti-
mization, maintenance optimization, improved restore capabilities, and additional
evidence against the consideration of individual systems.

Central is the idea that the producer of goods creates value and the value is
determined at the moment of exchange of goods. It was tried to transfer this idea on
services. However, this led to a service definition, which considers services as a

6 Leveraging Analytics for Digital Transformation … 95

negation of physical goods [29]. Services are not material, but already the missing
homogeneity can be challenged for industrial services. Services are also not
divisible, i.e. they must be provided as a whole. Services are also not durable; they
are not stored and are provided only at the moment of need.

Basis for the implementation of the co-creation [30] approach of service-
dominant logic is the continuous connection of the products with the manufacturer.
The manufacturer can win genuine information about the use of the product.
Important information for the development of new products can be obtained in this
way. The consumer converts dynamically to be co-producer [31]. Platforms are
complementary products, which cooperate via standardized interfaces [32]. Since
the development of new functionalities by different partners is distributed [33]
platforms significantly speed-up the development time of new solutions.

6.3 Digital Enterprise Architecture

Enterprise Architecture Management (EAM) [6, 7, 9, 34] defines today with
frameworks [35], languages [36], and standards [37, 38], tools and practical
expertise a quite large set of different views and perspectives. EAM can be e.g. used
to support and implement business processes as well as to reach business goals [39].
Benefits of EAM are influenced by different influence factors such as EAM
knowledge, landscape complexity and Business IT alignment [40]. We argue in this
paper that a new refocused digital enterprise architecture approach should support
digitization of products and services, and should be both holistic [41, 42] and easily
adaptable [43] to support the digital transformation with new business models and
technologies like social software, big data, services and cloud computing, mobility
platforms and systems, security systems, and semantics support. We are extending
the first versions of ESARC–Enterprise Services Architecture Reference Cube
[41, 42] (Fig. 6.1).

In this paper we extend our service-oriented enterprise architecture reference
model for the context of managed adaptive cases and decisions [44, 45], which are
supported by case services of a collaborative case framework [44] within an
adaptive case management environment [46]. Additionally we have considerably
extended our architectural metamodel integration approach [47] to support digital
enterprise architectures for digital transformations [11] and the integration of
Internet of Things [12, 24] architectures.

ESARC—Enterprise Services Architecture Reference Cube [41, 42] is an
architectural reference model for an extended view on evolved digital enterprise
architectures. ESARC is more specific than existing architectural standards of
EAM—Enterprise Architecture Management [35, 36] and extends these architec-
tural standards for digital enterprise architectures with services and cloud computing.
ESARC provides a holistic classification model with eight integral architectural
domains. These architectural domains cover specific architectural viewpoint
descriptions [37, 38] in accordance to orthogonal dimensions of both architectural

96 A. Zimmermann et al.

layers and architectural aspects [6, 34, 42]. ESARC abstracts from a concrete business
scenario or technologies, but it is applicable for concrete architectural instantiations to
support digital transformations. The Open Group Architecture Framework [35]
provides the basic blueprint and structure for our extended service-oriented enterprise
architecture domains of ESARC [41, 43] having: Architecture Governance,
Architecture Management, Business and Information Architecture, Information
Systems Architecture, Technology Architecture, Operation Architecture, and Cloud
Services Architecture. ESARC provides a coherent aid for examination, comparison,
classification, quality evaluation and optimization.

We developed an architectural evolution approach to integrate and adapt most
valuable parts of existing EA frameworks and metamodels from theory and practice
[47]. Additionally to handling architectural structures for dynamically extending
core metamodels we see a chance to integrate decentralized mini-metamodels,
models and data of architectural descriptions coming from small devices and new
decentralized architectural elements, which traditionally are not covert by enterprise
architecture environments. The focused model integration approach is based on
special correlation matrixes to identify similarities between analyzed model ele-
ments from different provenience and integrate them according their most valuable
contribution for an integrated model. According to [48] we are building the con-
ceptualization of EA in 4 steps—from stakeholders’ needs, to the concerns of
stakeholders, then the extraction of stakeholder relevant concepts, and last but not
least the definition of relationships for new tailored architectural metamodels.

Our research consists of a metamodel-based model extraction and integration
approach [47] for digital enterprise architecture viewpoints, models, standards,
frameworks and tools to support digital transformations [11, 12]. Currently we are
working on the idea of continuously integrating small EA descriptions for relevant
objects of digital enterprise architecture. These EA-Mini-Descriptions consists of

Fig. 6.1 Enterprise services architecture reference cube [41–43]

6 Leveraging Analytics for Digital Transformation … 97

partial EA data and partial EA models and related metamodels. Our goal is to be
able to support an integral architectural engineering and transformation process.

Adaptation drives the survival [49–51] of digital enterprise architectures [47],
platforms and application ecosystems. Adapting rapidly to new technology and
market contexts improves the fitness of adaptive ecosystems. Volatile technologies
and markets typically drive the evolution of ecosystems. We have additionally to
consider internal factors. The alignment of Architecture-Governance [4, 5] shapes
resiliency, scalability and composability of components and services for distributed
information systems.

6.4 Decision Case Management

A Decision support system (DSS) is a system “[…] to help improve the effec-
tiveness of managerial decision making in semi-structured tasks” [52, p. 255], and
according to [53]. In particular knowledge intensive management activities, like
EAM, can benefit from a DSS to improve architectural decision-making. In the
following we explore how an EA cockpit [54] can be leveraged and extended to a
DSS for EAM. A cockpit presents a facility or device via which multiple view-
points on the system under consideration can be consulted simultaneously. Each
stakeholder who takes place in a cockpit meeting can utilize a viewpoint that
displays the relevant information. Thereby, the stakeholders can leverage views that
fit the particular role like Application Architect, Business Process Owner or
Infrastructure Architect [55]. The viewpoints applied simultaneously are linked to
each other such that the impact of a change performed in one view can be visualized
in other views as well. Figure 6.2 gives the idea of an example architectural cockpit.

Jugel et al. [56] present a collaborative approach for decision-making for EA
management. They identify decision making in such complex environment as a
knowledge-intensive process strongly depending on the participating stakeholders.
Therefore, the collaborative approach presented is built based on the methods and
techniques of adaptive case management (ACM).

Adaptive Case Management (ACM) [44, 45] offers a lightweight model to
support knowledge-intensive processes, which are driven by user decision-making.

Fig. 6.2 Example: enterprise architecture cockpit [54, 56]

98 A. Zimmermann et al.

Knowledge processes of usually high-skilled stakeholders, like enterprise archi-
tects, require process adaptations at run-time. ACM is not dictating a predefined
course of action [57] and provides the necessary information and knowledge sup-
port to be able to solve a case. A case [45] is typically a collection of all relevant
information into one place, which is handled by one or more knowledge workers
during solving this case. The case is the jointly used focal point for assessing the
situation, initiating activities and processes, implementing the work, and reflecting
results based on a history record about what was really done. A case brings together
all the necessary resources and also tracks everything that has happened into a
record history, which can be mined to synthesize best practices, patterns of success,
and used and extended instruments. Fundamental aspects and requirements for
ACM, are mentioned in [57]:

1. The adaptation aspect of ACM consists of content, people, and reporting
capabilities to be able to change the knowledge process at run-time by
end-users. Additionally to the adaptation aspect a knowledge worker should be
able to continuously improve his case templates.

2. The organization aspect groups policies, processes, and data. In ACM data is the
dominant factor as opposed to the process-oriented view from BPM. Knowledge
work requires the integration of data [50] into the execution process.

3. The case handling aspect is about collaboration, decision support, and inte-
gration of resources, events, and communication. Complex problems are typi-
cally solved collaboratively by involving individual stakeholders in respect of
different necessary knowledge types and stakeholder concerns. Decision support
requires transparency within a shared understanding of analyzed EA scenarios
by named stakeholders.

Opposed to routine work, which can be supported by business process man-
agement because of its repeatable kind, knowledge work is typically unpredictable.
Knowledge workers [58, 59] are acting under uncertainty. An unpredictable process
[45] does not repeat in routine patterns and emerges as the work is done. The
practice of preparing for many possible courses is called agility. Differentiating
seven domains of predictability [45] case management can be focused on two main
types:

1. Product Case Management: Supports design-time knowledge processes with a
well-known set of actions, having much variation between individual cases. It is
not possible to set out a single fixed process. Knowledge workers are actively
involved in deciding the course of events for a case.

2. Adaptive Case Management: Knowledge workers are involved not only in the
case, and picking predefined actions, but they are constantly adapting the pro-
cess and striving for innovative approaches, and may want to share and discuss
process plans.

The Case Management Modeling Notation (CMMN) [60] is a notation for ACM
that describes mandatory and optional tasks (DiscretionaryItem), and thereby

6 Leveraging Analytics for Digital Transformation … 99

supports flexible processes. In line with Jugel et al. [61], we utilize the CMMN to
describe a collaborative decision-making case for EAM, cf. Fig. 6.3.

The Issue is the starting point of a collaborative decision-making case. This issue
describes the problem space of the decision-making activity, which aligns with the
perspective of Mayring [62]. We further assume that goals and success criterions, as
required by Johnson and Ekstedt [63], have already been defined as part of strategic
management activities. The issue is the reason why the EA has to be analyzed and
decided upon. Based on this issue, involved stakeholders choose viewpoints that
they need to analyze the issue.

The decision-making step is the central activity of the decision-making case
presented in Fig. 6.3. This step can involve different optional activities in which
different kinds of quantitative and qualitative analysis techniques [64] are applied to
gain additional insights [60]:

• Expert-based analysis techniques are dependent on expert knowledge and tacit
information of the involved stakeholders. Jugel and Schweda [54] identify these
techniques with interactive functions like “graphical highlighting and filtering”.

• Rule-based analysis techniques correspond to algorithms that are used to
indentify patterns in the EA. Hanschke provides so-called analysis patterns in
[65], which are examples of rule-based analysis techniques.

• Indicator-based analysis techniques are formal methods that compute indicators
from properties of the EA. Matthes [66] present quantitative, metrics-driven EA
analyses by quantitatively assessing architectural properties and therefore use an
indicator-based analysis technique.

Fig. 6.3 CMMN model of collaborative decision making case [61]

100 A. Zimmermann et al.

The stakeholders apply different of these techniques in the decision-making step
and interpret the results of the techniques for additional insights [62]. While per-
forming a decision-making step, stakeholders can choose analysis techniques,
which are part of a catalog. The catalog is independent of a particular case. After
choosing an analysis technique, it is performed. In case of rule-based and
indicator-based analysis techniques, the techniques can be performed automatically
using algorithms and aggregations. In case of an expert-based analysis technique,
stakeholders must manually analyze the EA by using and interaction with the
cockpit’s views.

The decision-making step is based on case data consisting of an EA model and
additional insights elicited in previous steps. Consequently, the insights gained
during each step contribute to the case file (CaseFile) of the decision-making case.
Derived values, like the values of KPIs are thereby not considered additional
information, but only a different way of representing and aggregating existing
information. If stakeholders based on the values of a KPI decide on affected
architecture elements, these decisions and considerations represent new informa-
tion, which is added to the case file. In particular, the stakeholders’ interpretation
can yield following additional elements for the case file (CaseFileItem):

• An evaluation represents the stakeholder’s opinion on the analysis results.
• A new issue refines the previously analyzed one based on the analysis.
• A decision reflects a design alternative that is useful to resolve the issue.

During the decision-making, alternative designs can be identified [63]. In the
final step of the decision-making process, not all previously evaluated designs will
prevail. At the end of every decision-making step, the stakeholders have to decide,
whether additional information is required or not—represented by to
UserEventListeners in the CMMN diagram in Fig. 6.3. The case file of the
decision-making case has to be structured appropriately to accommodate for the
decision-making process.

The Object Management Group (OMG) has published the Case Management
Model and Notation (CMMN) [60] as a first step to support modeling for case
management scenariosmanagement scenarios. A case study of a TOGAF-style
process [35] for EAM with CMMN was implemented in [67]. The upcoming
standard Decision Model and Notation (DMN) of OMG [68] discern three usage
models: for modeling human decision-making, for modeling requirements for
automated decision-making, and for implementing automated decision-making.
DMN bridges the gap between business decision designs and their implementation
by providing a common notation for decision models. The purpose of DMN is to
facilitate a decision model framework, which is easily usable for decision diagrams
and as a base for optionally automating decisions. Decision-making support is
addressed from basically two perspectives: normal BPMN business Process Models
can be expanded by defining specific decision tasks, or decision logic can be used to
support individual decisions, e.g. business rules, decision tables, or executable
analytic models. DMN can additionally provide a third perspective to bridge

6 Leveraging Analytics for Digital Transformation … 101

between business process models and decision logic by introducing the Decision
Requirements Diagram. Complementary to the DMN notation, which is used to
model decisional relationships and concepts like Decision, Input Data, Business
Logic, Application, Application Risk, etc. DMN introduces an expression language
to represent decision tables, decision rules, and function invocations. Today we are
exploring the suitable usage and close link of DNM for decisional support logic
within our architectural engineering and analytics research.

6.5 Collaborative Decision Processes

Although concepts such as Business Process Management [69] introduced a
customer-oriented perspective, it still contains many concepts following the ideas
developed already in [70]. These are the division of larger tasks into defined,
smaller tasks and the assignment of individual responsible to accomplish these
tasks. Therefore it does not surprise, that a plenty of approaches such as [71],
Swenson [44] tried to develop support for cooperation beyond strictly structured
business processes as almost all WFMSs and most of the BPMSs, but also some
groupware and case management systems. However these approaches become not
as successful as expected.

One has to meet a number of challenges when supporting EA management
processes. The first challenge is the lack of a pre-defined workflow. Similar to
adaptive case management [44, 45] the control-flow of EA management processes
cannot be predefined in most situation. Instead the control-flow is defined
“on-the-fly” during execution of the EA management process.

The second challenge is organizational integration [72]. Many early approaches
addressing the support of EA management processes limited the participation of
stakeholders. E.g. although classical groupware abstained from pre-defining a strict
control flow, specific access rights to documents had been assigned. Thus the group
of possible contributors had been limited. In this way an a priori-decision had been
made deciding who may contribute and who may not. Some stakeholders were not
able to contribute.

The third challenge is semantic integration [72]. Due to the involvement of a
multitude of stakeholders, semantic frictions such as homonyms and synonyms
create misunderstandings between the process participants. These semantic frictions
may delay the EA management process or even worse, may cause deficient
architectures.

Social software is based on four basic principles: social production [73], weak
ties [74], collective decisions [75], and value co-creation [76]. Each of these
principles support EA management processes by addressing one or more chal-
lenges, as addressed in Fig. 6.4.

Social production [73] is the creation of artifacts without a top-down created
plan but by combining the suggestions and decisions from independent contribu-
tors. By abstaining from Tayloristic top-down planning, new and innovative

102 A. Zimmermann et al.

contributions outside the original scope can be identified and added. Due to these
properties, social production matches the requirements of EA management pro-
cesses. The control flow of EA management processes can be defined in an ad hoc
manner. During execution of the EA process, architectural artifacts can be inves-
tigated in a cooperative way.

Collective decisions [75] provide a new way in EA management processes to
make decisions. They provide statistically better results than experts, if the decision
cannot be made using scientific means and the participants decide independently.
Surowiecki describes in [78] the approach of the so-called the wisdom of crowds.
He argues that a decision made by several persons often leads to better results,
because each person has a specific knowledge. Value-co-production [78] is also
supporting the definition and execution of EA management processes by integrating
contributions from the business side. By abolishing the separation between artifact
producer and consumer, a better adaptation to the individual requirements can be
achieved. Furthermore value co-production enhances the organizational integration.

6.6 Decision Analytics

In this section we present a decisional metamodel based on the work of Jugel et al.
[61] to support the decision-making case presented in the previous section. The
metamodel focuses on the documentation of decision and rationalizing information
and is a combination of several approaches that partly cover aspects of
decision-making.

• Plataniotis et al. [79] describe an approach called “EA Anamnesis” focusing on
ex-post modeling EA decisions and decision-making strategies. However, they
do not describe decision processes. Furthermore, they do not describe rationales.

Fig. 6.4 Collaborative engineering and transformation [77]

6 Leveraging Analytics for Digital Transformation … 103

• ISO Standard 42010 [37] describes how the architecture of a system can be
documented using architecture descriptions. The standard uses views, which are
governed by viewpoints to address stakeholders’ concerns and their information
demands.

• Jugel and Schweda [54] introduce an annotation mechanism to add additional
knowledge to an architecture description represented by an EA model. In
addition, in [61] they refine the viewpoint concept of [37] by dividing it into
Atomic Viewpoint and Viewpoint Composition to model coherent viewpoints
that can be applied simultaneously in a cockpit to support stakeholders in
decision-making.

• Buckl et al. [64] provide a classification of analysis techniques that can be used
to get insights into an EA. Stakeholders in decision-making use analysis
techniques.

The Case Management Modeling Notation (CMMN) [60] is a notation for ACM
to describe flexible processes including optional tasks. The notation provides us
base concepts to model cases.

Figure 6.5 illustrates the decisional metamodel. The background colors of the
concepts indicate their origin. Green colored concepts have their origin in ISO
Standard 42010 [37], gray colored concepts in “EA Anamnesis” [79], blue colored
concepts in CMMN [60], yellow colored concepts in [64] and red colored concepts
in [54, 61]. The decisional metamodel focuses on the stakeholders using viewpoints
to perform a Decision making Step that is in line with CMMN [60] a HumanTask.
During this step, stakeholders have the ability to choose Analysis Techniques that
are in line of CMMN [60] DiscretionaryItems. Additional information during a step
is created and persisted as Annotations to the deci-sional views. Annotations as well
as Views are in line with CMMN [60] CaseFileItems, because both represent
relevant information within a case and are therefore part of a CaseFile. The
annotation concept aligns with the one presented by Jugel et al. in [54] and reflects
different EA issues (also the initial one of the decision case), Evaluations of the

Fig. 6.5 Collaborative EA decision making metamodel

104 A. Zimmermann et al.

analyses’ results, and EA decisions. As the annotations can be based on the results
of an analysis technique, also the applied techniques are part of the metamodel and
are persisted in the CaseFile. Latter notion corresponds to the terminology of
CMMN.

For the utilized viewpoints, we distinguish between Atomic Viewpoints and
Viewpoint Compositions [61]. Whereas an Atomic Viewpoint is a single Viewpoint
in line with ISO Standard 42010 [37], a Viewpoint Composition forms a composite
structure and consists of coherent Atomic Viewpoints or other Viewpoint
Compositions needed by Stakeholders to satisfy their information demands elicited
by their Concerns. Viewpoint Compositions are assembled to address a specific
decision-making case from multiple perspectives. A cockpit, as presented in the
previous chapter, is a viewpoint composition.

In addition, Annotations are the triggers for the next Decision Making Step. One
or more Stakeholders are responsible for a step and perform them. Within Decision
Making Step stakeholders can choose between different Analysis Techniques to get
additional information needed to satisfy their information demands. Analysis
Techniques are based on Annotations as well on the EA model. Annotations
describe additional information related to EA Artifacts. EA Issues and EA
Decisions, as already present in the model of Plataniotis et al. [79], represent
additional knowledge and are therefore specializations of Annotation. As described
in [79], EA Decisions can be decomposed, translated and substituted into other EA
Decisions. Modeling alternatives is also possible. According to our
decision-making case, we added Evaluation as a third sub-concept of Annotation.

6.7 Semantic Support for Architectural Analytics

Semantic technologies [80] in general and ontologies in particular provide support
for architectural analytics in many ways. The general features of ontologies address
some of the aforementioned challenges and requirements for architectural analytics.
Namely, the provision of domain specific knowledge and vocabulary allows the
creation of stakeholder specific views (cf. Sect. 6.6), ontology alignment and
mapping are common mechanisms of semantic integration (cf. Sect. 6.5), inference
on ontologies can identify patterns in the domain knowledge (cf. Sect. 6.4) and can
make implicit knowledge explicit by adding new facts to the knowledgebase.

Thus, many approaches have been made to represent enterprise models or
enterprise architecture respectively by creating ontologies for this domain. The most
popular examples are probably Uschold et al.’s “The Enterprise Ontology” [80] and
Dietz’s DEMO approach [8]. Further publications in the area are [81–83]. The
Enterprise Architecture Ontology for Services Computing from [83] extends the
ESARC metamodel from [41] with e semantic representation for enterprise archi-
tectures. Ontologies in enterprise modeling and architecture are useful, as shown by
Sandkuhl et al. [84].

6 Leveraging Analytics for Digital Transformation … 105

The most widely used definition of ontologies in computer science characterizes
ontologies as “formal, explicit specification of a shared conceptualization” [85].
Here, “conceptualization” means creating an abstract model of real world phe-
nomena by identifying relevant concepts of them. “Explicit” refers to a clear def-
inition of concepts, concept types, and the constraints on their use. “Formal” means
that an ontology is machine readable, and “shared” reflects the intention that the
ontology should be a consensus, accepted within the communities.

Literature defines several functionalities and features of ontologies that support
enterprise architecture analytics. Uschold and Gruninger [86] names three uses of
ontologies: (1) Communication, (2) Interoperability, and (3) Systems engineering.
Since ontologies are shared conceptualizations in communities they provide a base
for human communication. Being a normative, assuring consistency, and avoiding
ambiguity they foster knowledge exchange in collaborative decision scenarios, as
they are present in enterprise architecture analytics scenarios. Furthermore, they
provide networks of relationships that relate the knowledge regarding different
concerns of stakeholders and they provide a semantic integration of this knowledge
on the level of human communication. Interoperability or integration by ontologies
provides the same features on the level of externalized knowledge in information
systems. Thus a better information quality can be achieved for decision situations. At
last, the use of ontologies for systems engineering assures reuse of existing
knowledge and better interoperability of information systems. Bürger and Simperl
additionally name in [87] specifically (4) Computational Inference and
(5) Knowledge Reuse and Organization as contributions of ontology use.
Computational inference allows for deriving implicit facts and logical inconsisten-
cies. Having concepts and rules systematically formalized, reuse of models and
model-party in different domains becomes possible.

Antunes et al. describe in [88, 89] specifically the use of ontologies in enterprise
architecture analysis:

• Improved extensibility and expressiveness of the enterprise architecture through
ontology based integration of domain-specific meta-models.

• Improved enforcement of meta-model coherence by defining constraints of
concept use.

• Improved meta-model conformance verification by the use of reasoners that can
identify logical inconsistencies in enterprise architecture models.

• Improved analysis for decision making through the use of inference and query
mechanisms.

These features can be derived from the general features of ontologies.
Subsuming the discussion, the benefits of ontologies for enterprise architecture
analytics are twofold. First, they provide means for a better communication in the
collaborative decision scenarios of enterprise architecture analytics. Second, they
support rule-based analysis techniques by computational inference and a potentially
broad information base through interoperability.

106 A. Zimmermann et al.

Antunes et al. propose in [81] a general four-step process of enterprise archi-
tecture analysis using ontologies:

1. Identify stakeholders and analysis needs: After identifying the stakeholders,
their information needs are gathered in the form of questions and the expected
type of answer (e.g. a list of processes or actors). Afterwards, the analysis of
questions identifies relevant concepts and instances.

2. Review enterprise architecture models: A comparison between concepts needed
for analysis and those in the enterprise architecture model is performed. If there
is a gap, hence the model does no cover the stakeholders needs, new concepts
have to be added by ontology engineering or by integration of domain specific
ontologies.

3. Instantiate model: A model instance for a specific scenario is created.
4. Perform analysis: Computational inference mechanisms are used to answer the

questions. In the concrete approach by Antunes et al. Description Logic
(DL) queries are used. However, depending on the used tools other ontology
query languages can be used.

Antunes et al. provide in [89] an investigation regarding the possibilities of
supporting analysis types [4, 5] using DL. Reasoning tasks of DL are:

• Subsumption: Organizing concepts in taxonomy. Hence, finding the most
specific super class for a given class.

• Instance checking: Verifying if an instance is a member of a specific class or
represents a specific concept respectively.

• Relation checking: Verifying whether two instances are related to each other in a
certain way.

• Concept consistency: Verifying that there is no contradiction in concept defi-
nitions or concept definition chains.

• Knowledgebase consistency: Verifying that there is no contradiction in the
model instance.

Taking general ontology engineering approaches, such as Ontology 101 by Noy
and McGuiness [90] into account, step 2 also includes the integration or definition
of semantic rules that allow deriving implicit facts within the model instance. Thus,
queries performed in step 4 may also refer to facts that have been added to the
model instance by computational inference. Antunes et al. show the practical
applicability of their approach in [89] by the analysis of an ArchiMate [36] model
using the Domain Independent Ontology (DIO, representing a conceptualization of
the ArchiMate [36] meta-model) and an integration of Domains Specific Ontologies
(DSO, representing concepts used by specific stakeholders).

Besides these general steps for ontology based enterprise architecture analysis, it
remains unclear where the use of this approach is appropriate and where not. Two
dimensions have to be considered answering this question. First, a classification of
possible analysis tasks is needed. Different approaches can be used here; analysis
patterns by Hanschke [65], and analysis dimensions by Buckl et al. [64] are

6 Leveraging Analytics for Digital Transformation … 107

prominent examples. Second, a classification of reasoning tasks that can be per-
formed in ontologies is needed. Assuming commonly used OWL ontologies, the
reasoning tasks supported by Description Logic (DL) cover the reasoning potential.

6.8 Conclusions and Future Work

In this paper we have identified the need for an integral understanding and support
of collaborative decisions in the process of architectural adaptation and enterprise
transformation. According to our research approach we have leveraged a new
model of extended digital enterprise architecture, which is well suited for adaptive
models and transformation mechanisms. We have extended the previous more static
defined basic enterprise reference architecture by new metamodel elements for
supporting cooperative decisions using mechanisms from adaptive case manage-
ment. Related to our second research question we have presented our approach for
collaborative processes in architectural engineering and transformation endeavors.
We have combined architectural engineering and transformation processes with
elements from adaptive case management. We have adapted typical architectural
engineering processes with elements from social production, collective
decision-making, value co-production, and week ties. Adaptive case management
offers a lightweight model for knowledge-intensive processes. We have merged
them with user decision-making processes within cooperative distributed environ-
ments for enterprise architecture management. We have introduced suitable indi-
vidual decision support models and embedded them into cooperative analysis and
engineering environments.

We are currently working on extended decision support mechanisms for an
architectural cockpit for digital enterprise architectures and related engineering
processes. Future work will extend both mechanisms for adaptation and flexible
integration of digital enterprise architectures as well as will extend decisional
processes by extensions of rationales and explanations.

References

1. Aier, S., et al.: Towards a more integrated EA planning: linking transformation planning with
evolutionary change. In: Proceedings of EMISA 2011, pp. 23–36, Hamburg, Germany (2011)

2. Schmidt, R., et al.: Digitization—A multi-perspective definition. In: Proceedings of IDEA
2015, ESOCC Taormina, Italy. Springer, Berlin (2015)

3. Leimeister, J.M., et al.: Research program “Digital Business Transformation HSG”. In:
Working Paper Services of University of St. Gallen—Institute of Information Management,
No. 1, St. Gallen, Switzerland (2014)

4. Ross, J.W., et al.: Enterprise Architecture as Strategy—Creating a Foundation for Business
Execution. Harvard Business School Press (2006)

108 A. Zimmermann et al.

5. Weill, P., Ross, J.W.: It Governance: How Top Performers Manage It Decision Rights for
Superior Results. Harvard Business School Press (2004)

6. Lankhorst, M., et al.: Enterprise Architecture at Work: Modeling, Communication and
Analysis. Springer, Berlin (2013)

7. Johnson, P., et al.: IT Management with Enterprise Architecture. KTH, Stockholm (2014)
8. Bente, S., et al.: Collaborative Enterprise Architecture. Morgan Kaufmann, Los Altos (2012)
9. Zhang, L.J., et al.: Services Computing. Springer, Berlin (2007)
10. Papazoglou, M.P.: Web Services & SOA. Pearson (2012)
11. Zimmermann, A., et al.: Evolving enterprise architectures for digital transformations. In:

Zimmermann, A., Rossmann, A. (eds.) Lecture Notes in Informatics, vol. P-244, pp. 183–194,
DEC 15, 25–26 June 2015, Böblingen, Germany (2015)

12. Zimmermann, A., et al.: Digital Enterprise Architecture—Transformation for the Internet of
Things. EDOCW 2015 with SoEA4EE, 21–25 Sept 2015, Adelaide, Australia (2015)

13. Tapscott, D.: The Digital Economy: Promise and Peril in the Age of Networked Intelligence,
vol. 1. McGraw-Hill, New York (1996)

14. Brynjolfsson, E.: Understanding the Digital Economy: Data, Tools, and Research. The MIT
Press, Cambridge (2000)

15. Weill, P., Woerner, S.: Thriving in an increasingly digital ecosystem. MIT Sloan Management
Review, June 2015

16. Westerman, G., Bonnet, D.: Revamping your business through digital transformation. MIT
Sloan Management Review, Feb 2015

17. Mell, P., Grance, T.: The NIST Definition of Cloud Computing. NIST (2011)
18. Agrawal, D., Das, S., El Abbadi, A.: Big data and cloud computing: current state and future

opportunities. In: Proceedings of the 14th International Conference on Extending Database
Technology, pp. 530–533 (2011)

19. Evans, P.C., Annunziata, M.: Industrial Internet: Pushing the Boundaries of Minds and
Machines, General Electric, p. 21 (2012)

20. Atzori, L., Iera, A., Morabito, G.: The internet of things: a survey. Comput. Netw. 54(15),
2787–2805 (2010)

21. Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw 61, 85–117
(2015)

22. Brynjolfsson, E., McAfee, A.: The Second Machine Age: Work, Progress, and Prosperity in a
Time of Brilliant Technologies. W.W. Norton & Company (2014)

23. Duffuaa, S.O., Raouf, A.: Preventive maintenance, concepts, modeling, and analysis. In:
Planning and Control of Maintenance Systems. Springer International Publishing, pp. 57–94
(2015)

24. Uckelmann, D., et al.: Architecting the Internet of Things. Springer, Berlin (2011)
25. Schmidt, R., et al.: Industry 4.0—Potentials for Creating Smart Products: Empirical Research

results. In Abramowicz, W. (ed.) 18th International Conference on Business Information
Systems, LNBIP 2008. Springer, Berlin, pp. 16–27 (2015)

26. Weitzel, T., et al.: Reconsidering network effect theory. ECIS 2000 Proceedings, Paper 91
(2000)

27. Metcalfe, B.: Invention is a flower, innovation is a weed. Tech. Rev. 102(6), 54–57 (1999)
28. Provost, F., Fawcett, T.: Data Science for Business: What You Need to Know about Data

Mining and Data-analytic Thinking, 1 edn. O’Reilly Media, Sebastopol (2013)
29. Vargo, S.L., Lusch, R.F.: The four service marketing myths: remnants of a goods-based

manufacturing model. J. Serv. Res. 6(4), 324–335 (2004)
30. Vargo, S., Lusch, R.: Service-dominant logic: continuing the evolution. J. Acad. Mark. Sci.

36(1), 1–10 (2008)
31. Ritzer, G., Jurgenson, N.: Production, consumption, prosumption the nature of capitalism in

the age of the digital ‘prosumer’. J. Consum. Culture 10(1), 13–36 (2010)
32. Baldwin, C.Y., Woodard, C.J.: The architecture of platforms: a unified view. In: Platforms,

Markets and Innovation, pp. 19–44 (2009)

6 Leveraging Analytics for Digital Transformation … 109

33. Eisenmann, T.R.: Managing proprietary and shared platforms. Calif. Manag. Rev. 50(4), 31–
53 (2008)

34. Iacob, M.-E., et al.: Delivering Business Outcome with TOGAF® and ArchiMate®. eBook
BiZZdesign (2015)

35. The Open Group: TOGAF Version 9.1. Van Haren Publishing (2011)
36. The Open Group: ArchiMate 2.0 Specification. Van Haren Publishing (2012)
37. ISO/IEC/IEEE: Systems and Software Engineering—Architecture Description. Technical

Standard (2011)
38. Emery, D., Hilliard, R.: Every Architecture Description needs a Framework: Expressing

Architecture Frameworks Using ISO/IEC 42010. IEEE/IFIP WICSA/ECSA 2009, pp. 31–39
(2009)

39. Jonkers, H., et al.: Enterprise architecture: management tool and blueprint for the organization.
Inf. Syst. Front. 8(2), 63–66 (2006)

40. Schmidt, R., et al.: Benefits of enterprise architecture management—Insights from European
experts. In: Proceedings of PoEM 2015, Valencia. Springer, Berlin (2015)

41. Zimmermann, A., et al.: Capability diagnostics of enterprise service architectures using a
dedicated software architecture reference model. In: IEEE International Conference on
Services Computing (SCC), pp. 592–599, Washington DC, USA, 2011

42. Zimmermann, A., et al.: Towards Service-oriented Enterprise Architectures for Big Data
Applications in the Cloud. EDOC 2013 with SoEA4EE, pp. 130–135, 9–13 Sept 2013,
Vancouver, BC, Canada (2013)

43. Zimmermann, A., et al.: Adaptable enterprise architectures for software evolution of SmartLife
ecosystems. In: Proceedings of the 18th IEEE International Enterprise Distributed Object
Computing Conference Workshops (EDOCW 2014), pp. 316–323, Ulm, Germany (2014)

44. Swenson, K.D.: Mastering the Unpredictable: How Adaptive Case Management will
Revolutionize the Way that Knowledge Workers Get Things Done. Meghan-Kiffer Press
(2010)

45. Swenson, K.D.: State of the Art In Case Management. White Paper Fujitsu (2013)
46. Collenbusch, D., et al.: Experiencing adaptive case management capabilities with cognoscenti.

In: Zimmermann, A., Rossmann, A. (eds.) Lecture Notes in Informatics, vol. P-244, pp. 233–
243, DEC 15, 25–26 June 2015, Böblingen, Germany (2015)

47. Zimmermann, A., et al.: Towards an integrated service-oriented reference enterprise
architecture. In: ESEC/WEA 2013 on Software Ecosystem Architectures, pp. 26–30, St.
Petersburg, Russia (2013)

48. Buckl, S., et al.: Modeling the supply and demand of architectural information on enterprise
level. In: 15th IEEE International EDOC Conference 2011, pp. 44–51, Helsinki, Finland
(2011)

49. Tiwana, A.: Platform Ecosystems: Aligning Architecture, Governance, and Strategy. Morgan
Kaufmann, Los Altos (2013)

50. Heistacher, T., et al.: Pervasive Service Architecture for a Digital Business Ecosystem. arXiv
preprint cs/0408047 (2004)

51. Bertossi, L.: Database Repairing and Consistent Query Answering. Morgan & Claypool
Publishers (2011)

52. Keen, P.G.W.: Decision support systems: the next decade. In: Decision Support Systems, vol.
3(3), pp. 253–265. Elsevier, Amsterdam (1987)

53. Keen, P.G.W., Morton, M.S.S.: Decision Support Systems: An Organizational Perspective.
Addison-Wesley, Reading (1978)

54. Jugel, D., Schweda, C.M.: Interactive functions of a Cockpit for Enterprise Architecture
Planning. In: International Enterprise Distributed Object Computing Conference Workshops
and Demonstrations (EDOCW 2014), pp. 33–40, Ulm, Germany (2014)

55. Wißotzki, M., Köpp, C., Stelzer, P.: Rollenkonzepte im Enterprise Architecture Management.
In: Zimmermann, A., Rossmann, A. (eds.) Lecture Notes in Informatics, vol. P-244, pp. 127–
138, DEC 15, 25–26 June 2015, Böblingen, Germany (2015)

110 A. Zimmermann et al.

56. Jugel, D., Kehrer, S., Schweda, C. M.: Providing EA decision support for stakeholders by
automated analysis. In: Zimmermann, A., Rossmann, A. (eds.) Lecture Notes in Informatics,
vol. P-244, pp. 151–162, DEC 15, 25–26 June 2015, Böblingen, Germany (2015)

57. Hauder, M., Pigat, S., Matthes, F.: Research challenges in adaptive case management: a
literature review. In: International Enterprise Distributed Object Conference Workshops and
Demonstrations (EDOCW 2014), pp. 98–107, Ulm, Germany (2014)

58. Fischer, L.: Taming the Unpredictable Real World Adaptive Case Management: Case Studies
and Practical Guidance, Future Strategies (2011)

59. Fischer, L.: Empowering Knowledge Workers, Future Strategies (2014)
60. Object Management Group: Case Management Modeling Notation 1.0 (2014)
61. Jugel, D., Kehrer, S., Schweda, C.M., Zimmermann, A.: A decision-making case for

collaborative enterprise architecture engineering. In: Cunningham, D., Hofstedt, P., Meer, K.,
Schmitt, I. (eds.) Informatik 2015, Lecture Notes in Informatics (LNI). Koellen Verlag (2015)

62. Mayring, P.: Qualitative Inhaltsanalyse, 11th edn, Beltz (2010)
63. Johnson, P., Ekstedt, M.: Enterprise Architecture—Models and Analyses for Information

Systems Decision Making, Studentlitteratur (2007)
64. Buckl, S., Matthes, F., Schweda, C.M.: Classifying enterprise architecture analysis approaches.

In: The 2nd IFIP WG5.8 Workshop on Enterprise Interoperability (IWEI’2009), pp. 66–79,
Valencia, Spain (2009)

65. Hanschke, I.: Strategisches Management der IT-Landschaft: Ein praktischer Leitfaden für das
Enterprise Architecture Management, 3rd edn. Hanser Verlag, München (2013)

66. Matthes, F.: EAM KPI Catalog v.1.0, Technical Report, Technical University Munich, Chair
for Informatics 19, München, Germany (2011)

67. Hauder, M., Münch, D., Michel, F., Utz, A., Matthes, F.: Examining adaptive case management
to support processes for enterprise architecture management. In: International Enterprise
Distributed Object Conference Workshops and Demonstrations (EDOCW), pp. 23–32, Ulm,
Germany (2014)

68. Object Management Group: Decision Model and Notation 1.0—Beta 1 (2014)
69. Weske, M.: Business Process Management: Concepts, Languages, Architectures. Springer,

Berlin (2007)
70. Taylor, F.W.: The Principles of Scientific Management, vol. 202, New York (1911)
71. Bruno, G.: Requirements elicitation as a case of social process: an approach to its description.

In: Business Process Management Workshops, pp. 243–254 (2010)
72. Bruno, G., Dengler, F., Jennings, B., Khalaf, R., Nurcan, S., Prilla, M., Sarini, M., Schmidt,

R., Silva, R.: Key challenges for enabling agile BPM with social software. J. Softw. Maint.
Evol. Res. Pract. 23(4), 297–326, June 2011

73. Benkler, Y.: The Wealth of Networks: How Social Production Transforms Markets and
Freedom. Yale University Press (2006)

74. Granovetter, M.: The Strength of Weak Ties. Am. J. Sociol. 78(6), 1360–1380 (1973)
75. Tapscott, D., Williams, A.: Wikinomics: How Mass Collaboration Changes Everything (2006)
76. Vargo, S.L., Maglio, P.P., Akaka, M.A.: On value and value co-creation: a service systems

and service logic perspective. Eur. Manag. J. 26(3), 145–152 (2008)
77. Schmidt, R., Zimmermann, A., Möhring, M., Jugel, D., Bär, F., Schweda, C. M.: Social-

software-based support for enterprise architecture management processes. In: Business Process
Management Workshops, pp. 452–462. Springer, Berlin (2014)

78. Surowiecki, J.: The Wisdom of the Clouds. Anchor (2005)
79. Plataniotis, G., De Kinderen, S., Proper, H.A.: EA anamnesis: an approach for decision

making analysis in enterprise architecture. Int. J. Inf. Syst. Model. Des. 4(1), 75–95 (2014)
80. Uschold, M., King, M., Moralee, S., Zorgios, Y.: The enterprise ontology. Knowl. Eng. Rev.

13(01), 31–89 (1998)
81. Kang, D., Lee, J., Choi, S., Kim, K.: An ontology-based enterprise architecture. Expert Syst.

Appl. 37(2), 1456–1464 (2010)

6 Leveraging Analytics for Digital Transformation … 111

82. Wagner, G.: Ontologies and rules for enterprise modeling and simulation. In: 2011 15th IEEE
International Enterprise Distributed Object Computing Conference Workshops (EDOCW),
pp. 385–394, Aug 2011

83. Azevedo, C.L., Almeida, J.P.A., van Sinderen, M., Quartel, D., Guizzardi, G.: An
ontology-based semantics for the motivation extension to archimate. In: 2011 15th IEEE
International Enterprise Distributed Object Computing Conference (EDOC), pp. 25–34 (2011)

84. Sandkuhl, K., Smirnov, A., Shilov, N., Koç, H.: Ontology-driven enterprise modeling in
practice: experiences from industrial cases. In: Advanced Information Systems Engineering
Workshops, pp. 209–220. Springer International Publishing (2015)

85. Gruber, T.R.: A translation approach to portable ontology specifications. Knowl. Acquis. 5(2),
199–220 (1993)

86. Uschold, M., Gruninger, M.: Ontologies: principles, methods and applications. Knowl. Eng.
Rev. 11(02), 93–136 (1996)

87. Bürger, T., & Simperl, E.: Measuring the benefits of ontologies. In: On the Move to
Meaningful Internet Systems: OTM 2008 Workshops, pp. 584–594. Springer, Berlin (2008)

88. Antunes, G., Bakhshandeh, M., Mayer, R., Borbinha, J., Caetano, A.: Using ontologies for
enterprise architecture analysis. In: 2013 17th IEEE International Enterprise Distributed Object
Computing Conference Workshops (EDOCW), pp. 361–368 (2013)

89. Antunes, C., Caetano, A., Borbinha, J.: Enterprise architecture model analysis using description
logics. In: 2014 IEEE 18th International Enterprise Distributed Object Computing Conference
Workshops and Demonstrations (EDOCW), pp. 237–244 (2014)

90. Noy, N., McGuinness, D.L.: Ontology Development, vol. 101. Knowledge Systems
Laboratory, Stanford University (2011)

112 A. Zimmermann et al.

Chapter 7
A Framework to Support Digital
Transformation

Oliver F. Nandico

Abstract This chapter proposes a lightweight enterprise architecture framework
which serves the demands of enterprise architects being confronted with a digital
transformation scenario with an agile development approach. This framework
therefore emphasizes the adaptability and the possibility for propagation of change
throughout the defined architecture instead of addressing all possible concerns of all
stakeholders. The framework itself is roughly based on TOGAF 9.1 and uses
definitions of its content metamodel and follows ADM.

7.1 Changed Role of IT and the Enterprise Architecture
in the Times of Digital Transformation

“IT no longer supports the business, IT is the business”. This subtle play on words
shows the role change information technology underwent in recent years. There is a
growing part of enterprises and organizations, where information technology is in
the core of the business, where IT not just supports but enables new or enhanced
offerings. We call this evolution—or better, looking at the time frame—revolution
“Digital Transformation” or “Digital Business Transformation”.

7.1.1 Changed Role of the Architect

“Digital Transformation” sets a new challenge for the enterprise architect: She has
now not just to align the IT with the demands from the business but to enable and
even invent new business opportunities. So the architecture capability of an orga-
nization gets an active part in shaping the business. The architect no longer sits in

O.F. Nandico (&)
Capgemini, Munich, Germany
e-mail: oliver.f.nandico@capgemini.com

© Springer International Publishing Switzerland 2016
E. El-Sheikh et al. (eds.), Emerging Trends in the Evolution of Service-Oriented
and Enterprise Architectures, Intelligent Systems Reference Library 111,
DOI 10.1007/978-3-319-40564-3_7

113

her office awaiting demands or requirements from the business, but is part of the
leadership team shaping the new, digital transformed enterprise. The architect does
not only change her role in respect to the business, but to the IT as well. She needs
not to just support, but to enable IT development for Digital Transformation.

7.1.2 Services as Atomic Building Blocks of the Architecture

Though there is an upheaval in enterprise architecture from this high perspective,
the general approach and toolset of enterprise architecture has not changed so much.
The old virtues of service oriented architecture still prevail, as using services, i.e.,
self-contained pieces of work with a focused business purpose, as the atomic ele-
ments for any architecture. Today, service-oriented architecture is the generally
accepted standard for architecture work, which does not need any further discus-
sion. If one wants to describe, what an information system does, she or he will start
with describing its intended services. There is still an ongoing discussion on the
definition of services, their granularity, technical aspects like SOAP versus REST
and the need for additional elements like events and triggers etc. Nevertheless,
services as basic elements for architecture have prevailed.

7.1.3 Time Is the Most Limited Resource

Time is the most limited resource in the digital transformation scenario. Therefore,
the deliverables of the architect has to be limited to the amount really providing
benefit. Basically this leads to a way how to define the deliverables required from
the architect: Think of the issue to be resolved for a successful digital transfor-
mation, and—by this, derive the necessary deliverable.

7.1.4 Agile Approach Necessary

But new drivers require adaption for architecture as well: Volatile and fast-paced
markets require flexibility and adaptability of the IT solution and an agile as well as
lean approach for its development is the state-of-art to achieve this.

Some evangelists of “Agile” utter criticism of the conventional way of doing
architecture or doing architecture at all: It would create many use- and meaningless
concepts, lead to the notorious “Big Design Up-front”, which no one helps.
Enterprise architects would impose rules and guidelines on the projects which
prevent simple, practical solution and prevent quick adaption to change. To be
honest, many of these reproaches are quite justified, looking at some enterprise
architecture practices.

114 O.F. Nandico

There are several techniques and methods used under the broad idea of agile. So
we refer here to the Agile Manifesto (http://www.agilemanifesto.org/) as the
common ground for these. I want to emphasize two aspects from this manifesto:

• Working software over comprehensive documentation
• Responding to change over following a plan

So there is a need to develop architecture together with the working software.
When following an agile approach, it makes no sense to develop thoroughly a
complete architecture for the whole enterprise and have it implemented with the
Digital transformation program. Instead the architect starts with a coarse overall
draft plan, to be detailed when the need for decision arises or the answer to change
is requested.

7.1.5 Need for a Lightweight Enterprise Architecture
Framework

This requires a light weight enterprise architecture framework, simple to use and to
maintain, with a minimal set of essential architecture deliverables. With TOGAF
9.1 I see an architecture framework as “a conceptual structure used to develop,
implement, and sustain an architecture”. The main purpose of such a framework are
to visualize solution and solution alternatives for the organizational and IT structure
with their consequences, to marshal all the development work within a digital
transformation program and to provide guidance for architecture decisions.

As an answer to this challenge I propose such an enterprise architecture
framework to support Digital Transformation developed “under fire”, i.e., in
practice, for digital transformation programs.

7.1.6 Overview of This Article

In this article we first look at the specifics of a Digital Transformation program and
the requirements it poses for the architecture work. After this we motivate the use of
TOGAF as a foundation for the proposed lightweight framework, and analyze the
drivers for its customization.

After this we show how to resolve the issues of the conventional enterprise
architecture approach. This is followed by a more detailed description of the
viewpoints of the proposed lightweight enterprise architecture framework. Here we
differentiate between the enterprise or program level on the one hand, where the
architect works in a coarse and programmatic way and the project level, where she
works making decisions and deriving solutions.

7 A Framework to Support Digital Transformation 115

http://www.agilemanifesto.org/

We close with a reflection of the challenges an architect has to face in a digital
transformation program.

7.2 Digital Transformation and the Consequences
for a Respective Framework

To address the right issues for the proposed framework, we have to define the term
“Digital Transformation” one step further. So, when we speak of “digital trans-
formation” of an enterprise, we mean the change of this enterprise with the intention
to provide a new or significantly enhanced offering to its customers, where this new
offering or enhancement is based on information technology as key enabler or even
part of the offering.

The new or enhanced offering will comprise new or enhanced services, products
or both. Basically, the enterprise uses “digital transformation” to take the oppor-
tunities the development in information technology provides. Initiatives for digital
transformation are centered on envisioning new business models, customer expe-
rience and operating models with their respective operational processes.

The following examples may clarify the Digital Transformation scenario:

• A passenger transport carrier changes to a mobility service provider where it
now not only provides own transport services but in addition brokers other
provider’s services to get a passenger from point A to point B.

• An apparel manufacturer changes from ready-made clothing to custom-made
where its clients use augmented reality to make their orders.

Though the digital transformation scenario needs to and will change the IT of the
respective enterprise drastically, it is totally business driven, i.e., the drivers are
rooted in the business, and business decides on executing the “digital transforma-
tion” scenario. As a result of this transformation, the mission, vision and operating
model of the enterprise may change radically, and so will the business architecture
of the respective enterprise. So the architecture work for digital transformation is
strongly governed by the business context, much more as it has been in the past.

This differs totally from the “IT only”-transformation programs we used to see.
What has been and still is called a SOA program, i.e., a transformation program to
implement service oriented architecture, was a change more or less affecting the IT
only. Even when IT consultants talked about to provide better alignment with the IT
and more IT flexibility, those programs aimed essentially at IT rationalization and
modernization. As a result, business appreciated the pursuit of IT, but did not
realize IT as anything like an enabler for new business opportunities.

This has now changed. For many industries IT has or will become a vital if not
the only part of the business. With the introduction of smart phones, wearables and
the internet of things these digital transformed businesses find their counterpart at
the consumers’ side.

116 O.F. Nandico

Of course, there is still the need to move and transform physical objects. But
with the progress which 3D printing has made, one can imagine that even this may
shift to information technology.

So what are the implications of digital transformation for service-oriented and
enterprise architecture?

Clear business orientation: The architect needs to design for business outcome
and business value. She has to look explicitly for new business opportunities and by
this exceeds the traditional limitations of enterprise architecture. So a framework for
digital transformation has to reflect this clear business orientation.

Building something new: Digital transformation is about building something
new, business and IT-wise. Therefore new systems are preferred to the adaption of
legacy systems: Even if the enterprise wants to keep legacy systems, they must not
slow it down or create the need for half-baked compromises. A slash-and-burn
approach will usually be the approach of choice. It may make sense to keep legacy
back-office systems in strongly regulated business areas, e.g., finance, if they go along
with the new business models and operational processes. But the architect has to be
careful: Do not perpetuate big legacy systems at the end of their life cycle instead of
replacing these by truly standardized systems or outsourcing the whole process.

Integration beyond organizational boundaries: In the era of digital transfor-
mation enterprises are finally no longer islands in the vast ocean of the internet,
with a defined boundary between land and sea. These boundaries between enter-
prises get fuzzy, if not totally dissolved. Enterprises, organizations and even con-
sumers communicate, share information and interact by means of information
technology services. These IT services may be used inside of an organization in the
same way as provided to the outside. The value-adding process in the digital sphere
is based on using some IT services of some providers, combine and augment them
and provide them to respective consumers, beyond any organizational or other
boundaries. So a framework for digital transformation is truly service oriented.

When we speak of “Digital Transformation”, we assume a digital transfor-
mation program for the whole or at least a bigger part of the enterprise, i.e., the
organization in scope. This program usually is broken down into manageable parts,
i.e., projects within this program. Therefore I differentiate in this article between
the work of the architect at program or enterprise level and at project level.

7.3 The Lightweight Enterprise Architecture
Framework—A Very Focused Customization
of TOGAF

There are many enterprise architecture frameworks the architect can chose of: From
the ancestor of all of them, the Zachmann framework to the widely accepted
standard TOGAF, the architecture framework of the open group and some more
which come with various tools the architect may use.

7 A Framework to Support Digital Transformation 117

All of these architecture frameworks are quite comprehensive and it will cost
much effort and time to follow them thoroughly. Obviously, there is no use in
defining just another framework. As TOGAF is the general accepted standard for
enterprise architecture, we follow in this description the TOGAF definitions. This
proposed framework is not totally new, but orients towards and makes use of
TOGAF, especially of its Architecture Development Method (ADM) and its content
metamodel. So the framework proposed here is basically a very focused cus-
tomization of TOGAF.

Taking TOGAF literally and to the full extent of its described deliverables, there
is always the risk of interpreting it in a way we want to avoid. In the digital
transformation scenario, it is of no use to define the whole target architecture in
terms of business, information system and technology architecture after obtaining a
statement of architecture work, which is based on the architecture vision. (TOGAF
9.1). As learned from some digital transformation projects, the enterprise architect
needs her assignment based on the business strategy, the underlying business ideas
and the business objective. The enterprise architect may already contribute to this
according to the opportunities IT may provide to the business ideas. An architecture
vision and a coarse architecture action plan—an extension to TOGAF for Phase A
proposed here—aligned with stakeholders is all what is needed to start a digital
transformation program. The actual architecture change takes place in the projects
of this digital transformation program. The digital transformation program can and
will not wait for a comprehensive architecture designed by the omniscient and
omnipotent enterprise architect.

The TOGAF ADM proposes a preliminary phase, which serves for customiza-
tion, tool selection etc., basically the preparation of the “TOGAF architecture
project”. Though I think some preparation is always useful, the proposed light-
weight enterprise architecture framework does no reference this phase explicitly.
The considerations of this article together with implementation for an actual digital
transformation program more or less follows the idea of this preliminary phase.

7.4 Drivers of Digital Transformation Provide
a Foundation for Architecture Guidelines
and Principles

Both, the architecture vision and the architecture action plan, have to reflect the
drivers of a digital transformations program. Instead of trying to resolve every
architecture issue up front, the architect shows and prioritizes the forces which will
rule her decisions. These drivers set constraints for the architecture approach und
thus form architecture principles and guidelines. If the architect does not consider
these drivers, her work may be useless or ineffective at best. On the other hand, just
stating these some architecture principles without basing any decisions on it, turns
those principles into useless documents.

118 O.F. Nandico

The following main drivers of digital transformation program will lead to a good
foundation of principles for governing the architecture work:

• Reducing time-to-market
There may be two archetypical situations within the digital transformation
scenario. Either the enterprise is ahead of the completion, the first with the new
business idea and wants to make most of this competitive advantage or the
enterprise has to catch up with competitors which already make their business in
the digital sphere and threaten the enterprise’s market position. Either way, there
is a very strong pressure to reduce the time for implementation of the business
idea and to provide the new services to the customers, i.e., the time-to-market.
But there is a caveat: One may fail, if the new offering is technically immature or
provides security risks. So the architect is caught in the middle: Architecture
design must not slow down the implementation of the business idea, but has to
show a robust, yet flexible structure of the solution, which the core business
deserves.

• Flexibility, robustness and responsiveness
Digital transformation requires services at any time, at any location, with any
device with minimal response time. Usually, this is nothing one can build as an
addition to the existing process and IT landscape, but has to be designed as an
intrinsic element. Separation of model from view, flexible routing concepts and
online solutions instead of batch processing are old design virtues, in memory
solutions and mobile app framework new technology solutions to be considered.

• Security and reliability
It is hard to gain the user’s trust and it is easily lost. Therefore, all architecture
decisions have to put in security and the users’ requirements on data privacy in
the first place. But security comprises the aspects of availability at all times as
well. When information systems are not available, users will look for another—
and may be lost. So investment in robustness and resilience of IT solutions are
investments in customer loyalty.

• Small, single purpose services as elementary building blocks
Functional flexibility calls for single purpose, mutually independent, highly
decoupled and context free services, a concept termed “micro services”. For
creating options within the architecture, respective IT services shall be able to be
deployed independently and easily switched on or off during run time. This
obviously requires new ways of automated deployment and operations. Of
course, this concept of small, single purpose services may increase cost as well,
and the architect has to balance this with the business value for meeting the
“window of opportunity”.

• Focus on standardization and business value of information systems and their
services to be added:
To build up the solution as fast as possible one has to rely on already available
services, especially for infrastructure, platform and integration. Those infor-
mation systems and platform services may be provided by external service
provides, as a cloud services, by package based applications or even legacy

7 A Framework to Support Digital Transformation 119

applications. They have to comply with common standards, so they can be
orchestrated easily within the solution.

• Complete real-time automated end-to-end processes
Within the digital transformation scenario we build new end-to-end fully
automated processes, which work real-time. There are no over-night batch
processes but direct and immediate reaction of the whole application landscape
and update of the complete information status.

The architect considers these drivers for the architecture decisions she makes.
This consideration leads to principles and guidelines for the architecture to be
defined.

7.5 Issues to Be Addressed for Digital Transformation
by a Lightweight Enterprise Architecture Framework

A lightweight framework for digital transformation has to address the following
issues:

Issue: What has the digital transformation of the enterprise to achieve?

This issue is about, why we actually want to transform the business. There is a
business idea and some business goals with an underlying business strategy, and set
business objectives according to this business strategy. When looking at business
transformation, opportunities the IT provides trigger the business idea, at least to
some extent. So there is already a close mutual interference between business and
IT at the starting point of digital transformation.

There may be some additional business constraints: the given time frame,
geographical scope, a general functional scope, the target operation model etc. If the
legacy IT landscape is of any importance, a coarse heat map or gap analysis is also
part of these considerations.

All together, this forms the Architecture Context for digital transformation. The
architect is well advised, to clarify this context with all the stakeholders before a
first step of his work. This clarification comprises also her formal assignment, the
statement of architecture work as referred to in TOGAF: “verifying and under-
standing the documented business strategy and goals” (p. 71). The context may be
mostly vague in some parts in the beginning. Some aspects of this context may even
change during this digital transformation endeavor. So the documents for describing
the architecture context shall allow tracing changes of it and the decisions which
triggered the changes.

As the digital transformation scenario is focused on implementing something
new, the architect does not take the legacy business strategy much into consider-
ation. If this is part of the acknowledged Architecture Context it is usually referred
to as an add-on to the target business strategy and thus part of it.

120 O.F. Nandico

The benefit in compiling this architecture context is to set a goal for the digital
transformation in order to align all stakeholders. As digital transformation is usually
a risky and costly engagement, it is imperative to rally everyone around the set
goals.

From a TOGAF customization perspective we formally add Architecture
Context as an architectural input. We do not assume that it will be fully clarified or
in any way constant for the digital transformation program, not even for an itera-
tion. Quite the contrary, it will and has to change according to market experience
and demand, customer feedback, competitive situation etc.

Issue: What is going to be realized?

Derived from the Architecture Context, the architect creates an architecture sketch.
She looks for overall value chain of the enterprise, the business and IT capabilities
required to realize this value chain and orders all of this in some reasonable way, in
so-called domains. This may already include some preliminary decisions on in- and
outsourcing, and thus on the scope. This will show a way to make the achievement
of goals for the digital transformation program feasible. All in all, this results in an
Architecture Vision.

The benefit of an architecture vision is the alignment of the architect and the
stakeholders of the transformation on the future structure of the transformed
enterprise. By this the architect’s assignment from the architecture context gets
clarified, but there is no need for a formal statement of architecture work—which is
in practice rarely issued.

Looking at the TOGAF customization, we see the architecture vision as the first
deliverable of the enterprise architect, not as a means to get the statement of
architecture work signed off. The statement of architecture work is therefore
skipped. Following the principles of the agile manifesto, we see no value in a
formal assignment for the architect. The respective stakeholders should trust her in
realizing the goals and objectives as compiled in the architecture context. This
follows the statement from the Agile Manifesto “Customer collaboration over
contract negotiation”, where the digital transformation program may be seen as the
architect’s customer.

Issue: What are we going to do to realize the architecture vision?

After clarification on the architecture vision, there is a need to describe on a high
level the necessary measures to get this architecture vision into reality. This com-
prises two deliverables: From the overall drivers of digital transformation and the
architecture context, we derive business and architecture principles as guidelines for
the actions to be taken and for future architect decisions. So, they form the guide
rails for the digital transformation program. These architecture principles applied to
the domains in the architecture vision gives a foundation for measures to be taken
realize the architecture vision. The description of these measures has to be rather
coarse to leave room for options and reaction to change. They are to be detailed in
individual projects to be started within the digital transformation program. So the

7 A Framework to Support Digital Transformation 121

architecture principles together with the defined measures for realizing the archi-
tecture vision form the Architecture Action Plan.

The architecture action plan is the architect’s input to the digital transformation
portfolio and roadmap. Of course, the management of a digital transformation
program has to take some other aspects beyond the architectural aspects into
consideration when deciding on project portfolio and roadmap, like the availability
of knowledgeable resources, investment plan etc.

These three activities, compiling the architecture context, deriving the archi-
tecture vision and the architecture action is all what the enterprise architect needs at
the beginning of a digital transformation program. Anymore details shall be left to
the individual projects/initiatives or later architecture decisions to be made at the
right time. So architecture vision and architecture action plan have to be coarse and
flexible. Business may change at short notice, and we want—true to the agile
manifesto—embrace change.

Especially there is no use in elaborated design before the actual implementation
starts. It will just slow down the program, and any decisions taken will be too early
and will not pass the test of time.

Of course, the architect bases architecture vision and architecture action plan for
a digital transformation always on business considerations and business architec-
ture. So there is no sense putting business in opposite to IT, we need a holistic view.
And we have to keep in mind our starting statement: IT is the business.

TOGAF 9.1 lacks something like an architecture action plan, and proposes an
architecture roadmap instead. But this architecture roadmap needs a defined
architecture as prerequisite. This is too detailed for the approach we want to follow
here.

Issue: What is the contribution of a certain project to the realization of the
architecture action plan?

When the digital transformation program starts, i.e., the defined project portfolio
gets worked off; there is a need to provide guide rails for each project. According to
the defined scope of each project, the measures from the architecture action plan
defined for this respective scope become part of the project’s backlog.

This is formalized by an Architecture Contract or an Architecture Outline for
a certain project. This deliverable documents the contribution of the project to the
architecture action plan.

By putting together the architecture outlines of the projects with their degree of
implementation the enterprise architecture is able to value the degree of realization
of the architecture vision.

TOGAF 9.1 thinks of an overarching architecture project, which then starts
certain work packages to implement the proposed architecture. In practice, the
enterprise architect almost never starts projects. Usually, she is an advisor to the
portfolio management when defining individual projects. But to ensure the align-
ment of the projects within a digital transformation program, the architecture outline
is needed. Otherwise all the sprints within the projects will only result in a “caucus

122 O.F. Nandico

race” (Lewis Carrol, Alice in Wonderland). So the Architecture Outline in the sense
used here is an add-on with respect to TOGAF 9.1.

Issue: What functionality does a project implement?

We assume that the individual projects within a digital transformation program will
follow an agile approach. Given that there will be the need for adapting the digital
transformation program at short notice. There is no alternative to it. So user stories
provide functional requirement which populate a projects’ backlog. These func-
tional requirements have to be fulfilled by atomic building blocks, the services.
When we look at these from a business perspective, we see them as business
services.

A business service is described on the one hand by a triple: its business goal, i.e.,
the purpose of a service, the business role as the role of the actor of this service and
the activity this actor executes. Another viewpoint for a business service is the
business objects as consumed input of a business service and created or transformed
business objects.

Linking the business services by their provided respectively consumed business
objects shows the dependency between the services. This forms a special viewpoint
for business services, the business collaboration view.

From the required business services the project architect will derive the required
information system services and the platform services needed to support these. She
will map technical or “non-functional” requirements to these derived information
system services. As this takes place under the imperative of digital transformation
we can assume a one-to-one relationship between business and information system
services.

As a result the project architect maintains a Conceptual View of the services to
be implemented in the course of the project. This conceptual view consists of the
cross reference of business services, information system services and platform
services and the business collaboration view.

With this conceptual view, the project keeps track on already implemented
services and its backlog of functionality still to be implemented.

This conceptual view customizes TOGAF 9.1 strongly. This approach does not
go for the whole business architecture, as we only need the required business
services. How these business services collaborate the business collaboration view
shows. A digital transformation scenario focuses on the application architecture.
Therefore the information system services form the basis for the further architecture
considerations.

Issue: How do the services work together?

The heart of the architecture work in a project is the grouping of the information
system services within the scope of a project. From the business collaboration view
the project architect sees the dependencies between certain business services, which
result in dependencies of information system services. Architecture principles, the
domain structure as defined in the architecture vision and the joint utilization of

7 A Framework to Support Digital Transformation 123

business objects result in an ideal structure of components. The architecture outline
of the respective project sets scope and guidelines for this blueprint.

By the terms of digital transformation we think of the application structure
reflects directly the business structure. The project architect derives application
components based on the business structure. So we get a logical view on application
components.

A project architect orders the platform services required to support the appli-
cation services as well and thereby creates the logical view on technology
components.

Both, the logical application component and the logical technology component
view, form the Logical Component View. Its purpose is to show the ideal intended
architecture and the effect of architecture decisions to it.

Again, this is a very strong customization of TOGAF 9.1, focused on application
architecture within the scope project and taking the necessary technology archi-
tecture in consideration. This logical component view is seen as a minimal view-
point, a project architect may need to derive further viewpoint when special
concerns of stakeholders become apparent.

Issue: With what does the project realize the logical components?

Considerations from the architecture context, like procurement of services, like
using cloud service, utilizing a software package or even continue legacy appli-
cations lead us to the actual components to build. For the majority of required
services and logical components these will be provided by either
commercial-off-the-shelf (COTS) software packages or services provided from the
cloud. As time-to-market is the strongest driver within the digital transformation
scenario, newly build services and their respective components have to be limited to
the really necessary ones. Ideally, we follow a more or less mesh-up approach for
the implementation.

So the architecture has to decide between different solution alternatives using
different combinations of software packages and cloud solutions—and possible
different ways of integrating them. This leads to a number of architecture tradeoff
decisions based on the ideal structure given by the logical component view.

The resulting Physical Component View is the IT blueprint and will serve to
resolve deployment and operations issues. It provides the project with a concise and
consistent view on the decisions which are meant to last. Of course, this view will
show areas where adaption to change is still possible, due to built-in options.

So this physical component view provides the project a concept for a stable base
on which the project can build upon.

Again, for the physical component view we focus on application and technology
architecture in combined way, which is different from the approach TOGAF 9.1
takes.

124 O.F. Nandico

So within a project, the project architect creates and maintains three basic views
for the project: the conceptual, the logical and the physical view, with the archi-
tecture outline as the starting point.

Issue: How does the enterprise architect execute architecture governance?

The enterprise architect is responsible for maintaining and adapting the architecture
vision and the architecture action plan, tracking the progress the projects make
towards realizing the architecture vision and the carrying through of the architecture
action plan. These are the competencies by which the enterprise architect executes
architecture governance.

To get information on the progress the projects within the digital transformation
program have made, the enterprise architect organizes Architecture Reviews.

This review checks how far the project has implemented the architecture outline
but also derivations from this architecture outline and need for adaptation of the
architecture action plan and/or the architecture vision.

Business reasons, outside triggers or any other reason may pose the need for
change on the architecture vision and—consequently—on the architecture action
plan. This, of course, triggers change within in the architecture outline of the
projects and change in the projects, especially in the project’s architecture views
and implementation. So another part of the architecture governance is the tracking
of applied change throughout the digital transformation program.

The benefits of architecture governance are quite clear. Only with effective
architecture governance the architecture vision will be realized. If there is no
architecture governance, it will be difficult to apply change of the digital trans-
formation program to all the projects.

7.6 The Viewpoints of the Lightweight Enterprise
Architecture Framework

According to the issues the enterprise architect has to address, we defined view-
points and deliverables of a Lightweight Enterprise Architecture Framework for
Digital Transformation. The general maxim for this is “as minimalistic as possible”.
For this framework we only define those deliverables which we see as mandatory.
Instead of putting effort into more and more viewpoints, we want to keep the
existing set current and consistent and propagate any change directly. Effort is best
invested in keeping the core viewpoints up to date, instead of creating a big set of
viewpoints one cannot maintain all of them.

There may be a need to generate further viewpoints addressing certain concerns
of specific stakeholders. These additional viewpoints shall be based on what is
defined by this minimal set. If so, we advise to use them only as snapshots with
temporary character of the currently defined architecture.

7 A Framework to Support Digital Transformation 125

7.6.1 Viewpoints at Enterprise Level

There is a challenge for the enterprise architect: How to align the need for an overall
architecture definition at enterprise level with the implementation design the indi-
vidual projects do and where the actual change occurs? The proposed way for this
is, to keep the architecture vision at a coarse level to give flexibility to the projects
but to provide rail guides to orchestrate the pursuits of the projects towards the
common target architecture (Fig. 7.1).

7.6.1.1 Defining the Goal: Architecture Vision

Goals and deliverables
Objectives of Phase “Architecture Vision” according to TOGAF are to “develop a
high-level aspirational vision of the capabilities and business value to be delivered
as a result of the proposed enterprise architecture” and to “obtain approval for a
Statement of Architecture Work that defines a program of works to develop and
deploy the architecture outlined in the Architecture Vision”. Unlike TOGAF, we
see the architecture vision already as assigned architecture work and as the answer
to the business request for digital transformation.
The purpose of the architecture vision is the creation of an overview and to set
guidelines for all projects within in a digital transformation program in order to
achieve its business goals.
A domain model provides a business driven framework to the envisaged change of
the IT landscape. So the overall change is detailed by ordering the description of the
future state and the required business capabilities to the domains of the domain
model.

IT-Strategy
Sub 2

Business
Strategies
Sales,etc.

IT-Portfolio

N o . A r c h i t e c t ur e P ri nc ip l e

1 rutcetihcrA e G o ve r n sIecna Ba s ed o n A rc h ite c tu re P r in c selpi

I2 T S o lu t io n s A r tnailpmoCe t o Lo c a nal d I nt er n a noit Lla a w a n d I anretn seiciloPl

3 T h e L H G r o up niamoD M o d e ediuGl s t he E n te rp r esi A r c etih c tu r e D ev e lo pm e n t

4 orPssenisuB c e ss e s A re to B e S t dradna dezi

5 orPssenisuB c e ss e s H a ve t o S up p or tS e a m le ss I nt eg r a noit

I7 T S o lu t io n s S h eBlla E ff tneici fo r T rieh L ife emiT

1 2 I T S y s t e m s S ha Ill tnemelpm T-itluM e n an c y

snoituloSTI31 S h eBlla I eporetn r a b tiwel h I n- a nd O u ts id e P a rtn e rs I n a St an d ar d iz ed W ay

Principles

Domain Model

IT-Strategy
Sub 3

IT-Strategy
Sub1

IT-Strategy
Group

Architecture
Vision

Action Plan

Retail Internet Call Center

Service
Procurement

Service
Development

(Custom)
Sales Operations

Service
Management

Customer
Management

Order
Management

Finance &
Controlling

Business
Intelligence

HR

Illustratives Domänenmodell

Planning
Service

Development
(Standard)

Fig. 7.1 Deriving architecture vision and architecture action plan

126 O.F. Nandico

All the information from the architecture context and the architecture principles as
derived from this architecture context, provide the guidelines for the proposed
architecture visions.

Input

• Architecture Context
Business idea, business drivers, business mission & vision and business
objectives give us the business rationale for the digital transformation endeavor.
The target operating model and the required business capabilities enables the
design of the architecture visions.

Activities

• Derive and align architecture principles
An architecture principle is an approach, a statement or belief that drives the
architecture development. In this step, we take the architecture context and derive
those statements from them which are significant for the target architecture.

• Compile and align the domain model
We define domains based on the top level value chain and top level required
capabilities to structure the information system landscape.
“A domain is a business area of focus, interest, study, and/or specialization. It is
an area for which a body of knowledge exists. Sometimes this is just a tacit body
of knowledge but it is nonetheless a body of knowledge. All other things aside,
domains are the primary tops of a system” (Coplien, Lean Architecture). So we
see a domain as an abstract that describes an area of knowledge, rules, policies,
views etc. and provides an ordering framework for architecture artifacts. As we
assume that business and information system aspects are consistent in a digital
transformation scenario we define only one domain model for both aspects.
We align the compiled domain model with the respective stakeholders in order
to specify domains in a way so that we can map the required business capa-
bilities to a domain. This mapping characterizes the domains further (Fig. 7.2).

• Create and align the architecture vision for the digital transformation program
According to high-level demands and the architecture principles for each
domain the target architecture of each domain is described as some top-level
logical components with an outlook of the planned target architecture in each
domain.

Output

• Domain Model
A graphic representation of all the domains with a concise and consistent
description of the domains.

• Architecture Vision
One or more general statements per domain and a view of proposed top-level
logical components on the pursued target architecture as a result of high-level
requirements, business objectives and goals.

7 A Framework to Support Digital Transformation 127

7.6.1.2 The Enterprise Architects’ Instrument of Effectiveness:
Architecture Action Plan

Goals and deliverables
The architecture action plan shows, how the target architecture gets implemented,
i.e., what the measures to introduce new capabilities are and how to address the
stakeholder concerns.
Basically the architecture action plan outlines a program of works to develop and
deploy the architecture by the digital transformation program. For upcoming
engagements and programs, the architecture action plan provides guidelines how to
contribute to the overall architecture roadmap to realize the architecture vision.

Input

• Architecture Context
• Architecture Vision.

Activities

• Create and align the architecture action plan for digital transformation
According to the envisioned target architecture for each domain the measures to
be taken for implementation are described in general terms.

Output

• Architecture Action Plan.

Domain model

Service provider domain map

Domain DesignTop level business services

Major business objects

Business dimensions
Kunden / Marken

…
Produkte

Länge der
Wertschöpfungskette

Kundenkanäle

• Premiummarke
•Billigmarke
•…

• Pauschalreise
• Individualreise

• Reisebüro
• Internet
• Call Center

z.B.
• eigene Unterkunft
• Vorabeinkauf
• Bedarfseinkauf

Core top level business
services provide candidates

Detailing by business dimen-
sion or service decomposition

Business objects provide
candidates

Supporting business services
provide candidates

Finalize

1

2

3

4

5

Retail Internet Call Center

Planning Service
Procurement

Service
Development

(Custom)

Service
Development

(Standard)

Sales Operations

Service
Management

Customer
Management

Order
Management

Finance &
Controlling

Business
Intelligence HR

Fig. 7.2 Creating domain model

128 O.F. Nandico

7.6.2 Viewpoints at Project Level

The actual change, the implementation of the digital transformation, happens in
individual defined projects within the transformation program. So the projects’
architect does the detailed architecture work which results in an implementation
blueprint. Obviously, there is a need to connect the architecture in each project to
the architecture vision and the architecture action plan. These connections are the
architecture outline, which defines the contribution of each project to the overall
architecture vision, and architecture reviews, which checks if the architecture cre-
ated in the project and the architecture at enterprise level are still in sync. These
architecture reviews may call for change of either the enterprise architecture or the
project architecture or both.

Change may occur on enterprise level as well and the architecture vision and
subsequently, the architecture action plan have to adapt. This may lead to some
change for the architecture outlines for some projects. To propagate change quickly,
effective and thoroughly, the enterprise architect has to carefully maintain the
relationships and traceability between architecture vision, architecture action plan
and architecture outlines. This requires automation and tool support.

7.6.2.1 Giving Rail Guides for the Projects: Architecture Outline

Goals and deliverables
The architecture visions shows a coarse picture of the target architecture, the
architecture action plan lists the measures to be take to achieve it. The individual
projects of the digital transformation program shall contribute to the architecture
action plan and thereby to the realization of the architecture vision. To ensure the
projects moving in the right direction, i.e., as given by the architecture vision and
the architecture action plan the enterprise architect aligns with the project at the
very first stage.
By the given scope of a project, the architect “places” the project within the domain
model, so that architecture responsibility is clarified and which statements from the
architecture action plan apply. By the comparison of the proposed projects scope
and goals with the architecture action plan, the architect recognizes, how the project
may contribute in principle to the architecture action plan and to what extent. The
architecture outline corresponds to the architecture vision in the sense of TOGAF
(Fig. 7.3).

Input

• Architecture action plan
The current architecture action plan as enterprise architecture has defined.

• Project proposal
We assume that a project proposal comprises at least the business objectives, top
level requirements, the scope and a coarse solution idea for this project.

7 A Framework to Support Digital Transformation 129

Activities

• “Place” the engagement in the domain model
Based on the given scope and solution idea of a project, the architect maps this
engagement to the domains affected by it, i.e., she “places” a project in the
domain model.

• Determine architecture requirements and recommendations for the project
Given by the placement within the domain model, the architect determines the
relevant statements from the architecture action plan which applies to this
project. Thereby, she describes, how the project shall contribute to the imple-
mentation of the architecture action plan.

• Align and sign off of an architecture outline
We align and discuss the architecture requirements with the project stakehold-
ers, relate how they can be fulfilled by the project, with its business goals given
and how the enterprise architect will support.

Retail Internet Call Center

Service
Procurement

Service
Development

(Custom)
Sales Operations

Service
Management

Customer
Management

Order
Management

Finance &
Controlling

Business
Intelligence

HR

Illustratives Domänenmodell

Planning
Service

Development
(Standard)

Architecture
Contract

Fig. 7.3 Define architecture outline

130 O.F. Nandico

The agreed architecture requirements and recommendations, i.e., the architec-
ture outline of the project form the architecture contract, which will be formally
signed off.

Output

• Functional Placement
Mapping of the scope of the project to the domain model

• Architecture Outline
The architecture outline is an agreement of the project with enterprise archi-
tecture. It consists of architecture requirements and recommendations as given
by the scope of the project and the applicable parts of the architecture action
plan.

At the level of a single project, architecture becomes concrete and lead to an
implementation blueprint. But even when the sequence of phases given here may
imply an order, it is not meant this way. Basically the project’s architect starts with
a rather “blurred” model. This is based on a few services, a very coarse logical view
and a quite incomplete physical view. With the discovery of more and more ser-
vices, the architecture becomes clearer. From decisions at the logical and physical
level, implications are fed back. As the physical architecture is meant to be
implemented, there is feedback from implementation to the architecture as well. So
the proposed deliverables are not in any way solid blocks resistant to change, but
flexible and adaptable networks of decisions. The challenge for the project’s
architect lies in maintaining the relationships within this network and the right
propagation and channeling of change.

So the viewpoints and phases proposed here are a combined approach what
TOGAF ADM sees as the phases B, C and D.

7.6.2.2 What the Project Implements: Conceptual View

Goals and deliverables
Starting with the architecture context, the project’s architect wants to derive detailed
functional and non functional requirements to determine the detailed target archi-
tecture within the scope of the project. From the required new business capabilities,
the other demands given by architecture context and by interaction with the
stakeholders, user stories will be derived. Based on them, the required business
services are determined. We see the business services as atomic in the context of the
projects, i.e., they refer to one activity of one role for an elementary business goal.
For these business functions we determine the business objects which are in- and/or
output of the business functions.
The business collaboration view shows the dependencies between business services
based on a consumer-producer relationship of business objects between business
services.

7 A Framework to Support Digital Transformation 131

Within a digital transformation program business services shall translate directly
into information system services as we assume that any functional requirement will
be fulfilled by some function within IT. The relationship between business services
based on passing business objects translates into a flow of data entities between the
respective information system services.
For the derived information system services the architect looks for required plat-
form services to support them.

Input

• Architecture context
• Architecture vision
• Architecture outline.

Activities

• Detail requirements
By appropriate means and tools, the top level requirements are detailed.

• Determine business services and business objects, detail them to the right
granularity
From the functional requirements on the appropriate level, the architect derives
required business services. Business services are atomic elements of business
behavior, characterized by one goal or purpose, one activity and one role exe-
cuting this activity. Input and output of a business service are business objects
(Fig. 7.4).

• Marshal business services
We map the business services to the appropriate domains. We derive how the
business services work together: Business services are related to each other by
the business objects one business service produces and other business services
consume. The viewpoint for this is the business function collaboration view
(Fig. 7.5).

Business
Object

Behaviour

Goal

Role

Business
Activity

1

1

1

Transformation

Business
Object

Business
Service

Fig. 7.4 Business service

132 O.F. Nandico

• Derive required information system services
We derive information system services from the business services in scope:
Information services will implement the activities of business service in IT as we
assume full automation of business services as the target state of digital trans-
formation (Fig. 7.6).

• Derive required platform services.

Output

• Requirements and user stories
Functional and non-functional requirements at the right level of detail

• Business services

Fig. 7.6 Deriving information system services

Business
Service 1

Business
Service 2

Business
Service 3

Business
Service 4

Business
Service 5

b

d

c

x

x
y

y

a

Fig. 7.5 Business
collaboration view

7 A Framework to Support Digital Transformation 133

• Business service collaboration view
• Information system services
• Platform services
• Cross reference business service—information system services—platform

services.

7.6.2.3 How Services Work Together: Logical View

Goals and deliverables
The architect models and composes an ideal structure of application and technology
according to her architecture thinking, the architecture principles and further
modeling criteria like grouping services of only one domain to application domain
or services working on the same or related data.

Input

• Architecture context
• Architecture vision
• Architecture outline
• Business services
• Business service collaboration view
• Information system services
• Platform services
• Cross reference business service—information system services—platform

services.

Activities

• Model Logical Application Components
From the information system services in scope the architect models logical
application components, i.e., ideal to-be-applications/components or “proto-
types of application”.
The first cut is done by domain: All information services in a domain/sub
domain may be grouped together. A second cut is done by usage of business
data: Services reading one business data are separated from services reading
another business data. Further modeling is done based on architectural thinking.
In this way, we obtain the ideal target application architecture (Fig. 7.7).
Based on required technology functionality, technology standards and reference
architectures and technology architect’s modeling, the project’s technology
architect determines logical components with their respective services to be used
to support the application in the scope of a project.

Output

• Logical Components.

134 O.F. Nandico

7.6.2.4 With What the Services Get Realized: Physical View

Goals and deliverables
The architect takes the logical view of his project and derives different solution
alternative from this by evaluating the use of COTS software and cloud services
covering the logical components and their respective services. So there is a fit gap
analysis for the different solution alternatives.

Input

• Logical Components.

Activities

• Derive solution alternatives
We compile prospective solution alternatives, by considering buy or make
alternatives or even the right use of legacy systems. A market analysis and a
exploration of the intended future IT ecosystem of the digital transformed
enterprise leads to available services, as cloud services and applicable COTS
software. As time-to-market is one key success factor, digital transformation
should make use of as much as possible of already available services.
A solutions alternative is then a combination of software products which covers
the logical component structure at least partially and complies with the archi-
tecture outline of the project.

• Conduct fit gap analysis and decide on solution
For each derived solution, the project architect checks the coverage of the
logical architecture in terms of the information system services provided, and

Ideal Architecture Blueprint

Component DesignDomain Model

IS Services

Assign IS services to domains

Categorize IS services

Identify Component candidates

Refine components

Finalize

1

2

3

4

5

Service provider domain map

Retail Internet Call Center

Planning
Service

Procurement

Service
Development

(Custom)

Service
Development
(Standard)

Sales Operations

Service
Management

Customer
Management

Order
Management

Finance &
Controlling

Business
Intelligence HR

Name Description

Service User Travel Agent

Trigger and (Pre)-Conditions Request for Price

Services and resources are
configured, compatibility is
checked

Service actions and Protocol Service contains only one service
action

Result and (Post-)Conditions Price for a given custom tour is
calculated

Non functional Requirements Service is available 99% 24h per
Day

… …

Name Description

Service User Travel Agent

Trigger and (Pre)-Conditions Request for Price

Services and resources are
configured, compatibility is
checked

Service actions and Protocol Service contains only one service
action

Result and (Post-)Conditions Price for a given custom tour is
calculated

Non functional Requirements Service is available 99% 24h per
Day

… …

Name Description

Service User Travel Agent

Trigger and (Pre)-Conditions Request for Price

Services and resources are
configured, compatibility is
checked

Service actions and Protocol Service contains only one service
action

Result and (Post-)Conditions Price for a given custom tour is
calculated

Non functional Requirements Service is available 99% 24h per
Day

… …

Name Description

Service User Travel Agent

Trigger and (Pre)-Conditions Request for Price

Services and resources are
configured, compatibility is
checked

Service actions and Protocol Service contains only one service
action

Result and (Post-)Conditions Price for a given custom tour is
calculated

Non functional Requirements Service is available 99% 24h per
Day

… …

Fig. 7.7 Define logical components

7 A Framework to Support Digital Transformation 135

detailed requirements fulfilled. The resulting gaps are assessed and decisions
have to be made how to close or mitigate them—or accept them (Fig. 7.8).

Output

• Physical Components.

7.6.2.5 How to Spread Change: Architecture Governance

Goals and deliverables
The architect checks the actual project architecture against the architecture outline
and compiles the deviations. From these deviations changes or amendments of the
project architecture, the architecture outline or even the architecture vision and
action plan may result which has to be fed back to the respective deliverables and
propagated accordingly.

Input

• Architecture outline
• Project architecture: Conceptual, logical and physical view.

Activities

• Review project architecture
Together, the enterprise architect and the project architect assess the current
conceptual, logical and physical view of the project’s architecture and check if
the constraints and assignments of the architecture outline are met. If not, they
state a deviation for any gap they recognize. In addition, they look for decisions
the project architect has made in detailing the project architecture and decide if

serviceservr ice

service

service

service

service

service

service

service

service

service

service

service

Domain B

LISC BA LISC BB

LISC BC

service

service

service

service

service

service

service

service

service

service

service

service

serviceserviceserviceservice

COTS Software B

service

service

service

service

service

serviceservice

service

service

service

service

service

service

service

service

service

service

service

serviceserviceservice

service

service

service

service

service

service

service

service

service

Fig. 7.8 Fit gap analysis at service level

136 O.F. Nandico

and how these decisions influence the architecture outline. This will be for-
mulated as amendments.

• Execute architecture change
For any deviation a decisions has to be made how to mitigate it. This defined
mitigation may cause change for the project architecture or amends the archi-
tecture outline. Amendments to the architecture outline may result in changes
for the architecture vision and architecture action plan. The enterprise architect
executes this change and propagates it accordingly.

Output

• Project architecture deviations
• Architecture change.

7.7 The Challenge for the Architect of a Digital
Transformation Program

As stated above, the proposed framework reflects the key issue of digital trans-
formation programs: Provide the flexibility and adaptability to actually enable, even
embrace change on architecture. On the other hand, it is stated “architecture is about
decisions that last”. But if we think of architecture as solid blocks, the waves of
change will destroy them over time. Therefore, architecture has to be done in a way
that it can absorb change, propagate it to the right point and by this, control it.

There are risks, though. Changes may come in an uncontrolled way, as a tidal
wave and overwhelm the architect as well as the architecture. Then measures have
to be taken to canalize the flood, which usually results in drawing a stable baseline
for the architecture. Concurrent and contradicting changes may cause to the
architecture to “swing”. By aligning the architecture changes more closely to the
business objectives and the goals of the digital transformation, the architect can halt
this and enable control again.

References

1. The Open Group: TOGAF™ Version 9.1. The Open Group (2011)
2. Schwaber, K., Beedle, M.: Agile Software Development with Scrum. Pearson

Education/Prentice Hall (2002)
3. Hoogendoorn, S.: Das kleine Agile Buch. Pearson Deutschland (2013)
4. van’t Wout, J., Waage, M., Hartman, H., Stahlecker, M., Hofman, A.: The Integrated

Architecture Framework Explained: Why, What, How. Springer-Verlag (2010)
5. Engels, G., Hess, A., Humm, B., Juwig, O., Lohmann, M., Richter, J.-P., Voß, M., Willkomm,

J.: Quasar Enterprise, Dpunkt-Verlag (2008)

7 A Framework to Support Digital Transformation 137

6. Bente, S., Dr., Bombosch, U., Langade, S.: Collaborative Enterprise Architecture:
Enriching EA with Lean, Agile, and Enterprise 2.0 Practices. Morgan Kaufmann Waltham,
Elsevier (2012)

7. Op’t Land, M., Proper, E., Waage, M., Cloo, J., Steghuis, C.: Enterprise Architecture: Creating
Value by Informed Governance. The Enterprise Engineering Series. Springer-Verlag, Berlin,
Heidelberg (2009)

8. Coplien, J.: Lean Architecture: For Agile Software Development. John Wiley and Sons Ltd.,
Chichester (2010)

9. Westerman, G., Bonnet, D., McAfee, A.: Leading Digital: Turning Technology into Business
Transformation. Harvard Business Review Press (2014)

138 O.F. Nandico

Chapter 8
A Two-Speed Architecture for the Digital
Enterprise

Oliver Bossert

Abstract In all customer facing businesses, time to market is a key differentiator.
The quicker a business is, the more successful it is likely to be. And today, more
and more companies, even those not explicitly in technology, need to master
technology so they can move quickly enough to survive (Weill and Woerner in MIT
Sloan Management Review 56(4):27, 2015 [1]). For new, digitally native busi-
nesses, that’s no problem. They’re built for speed. But more established businesses,
even successful ones, have for many years delivered technology solutions to their
employees and customers on lengthy release schedules that no longer make sense in
today’s accelerated environment. Based on our research and client work, we have
developed and refined a two-speed architecture that lets more mature companies
compete effectively with the upstarts.

Keywords Enterprise architecture � Digital � 2-speed architecture � Business
enablement � Business transformation

8.1 Introduction

In recent years, established businesses have made many attempts to move faster.
Some well-publicized approaches, like managing internal incubators and buying
digital pure plays, have yielded mixed results. Transforming everything often serves
as a sign of desperation. Our research is based on a structured review of enterprise
architecture engagements across industries; an in-depth outside-in analysis of
technology, governance, and organization of digital natives and startup companies;
and work with our clients. Through our research, we wanted to learn how com-
panies with a history could adapt successfully to the new digital world. Moving an

O. Bossert (&)
McKinsey & Company, Frankfurt, Germany
e-mail: oliver_bossert@mckinsey.com

© Springer International Publishing Switzerland 2016
E. El-Sheikh et al. (eds.), Emerging Trends in the Evolution of Service-Oriented
and Enterprise Architectures, Intelligent Systems Reference Library 111,
DOI 10.1007/978-3-319-40564-3_8

139

entire company to a fast speed all at once is unlikely to succeed, and that is true of a
company’s digital architecture as well. As we learned more, we discovered that the
companies are more likely to succeed in going digital if they do so by adopting a
two-speed approach [2].

The need for change is clear. To remain in existence, companies across a wide
range of industries have adopted digital business models. Social networks and
ecommerce websites have raised customer expectations regarding ease, speed, and
agility. Consumers expect similar performance from their banks, retailers, and
telecommunications companies. Many older companies are struggling to keep up
with these expectations.

The ability to offer new products on a timely basis has become an important
competitive differentiator. Some of the more advanced digital natives, such as
Netflix, release new code within 1 h [3]. For larger companies at the forefront of
digital, weekly or more frequent software releases for the digital platform have
become common. Such speed is possible only through the inherently error-prone
software-development approach of testing, failing, learning, adapting, and iterating
rapidly. That experimental approach cannot be applied to legacy systems. Nor
should it be, since key back-end legacy systems must be particularly resilient and
stable. That is why many companies need to adopt an IT architecture that can
operate at different speeds.

Unlike enterprises that are born digital, traditional companies do not have the
luxury of starting with a clean slate. Established organizations must build an
architecture designed for the digital enterprise with a legacy foundation. We
identified the core elements that make such a transformation successful—and others
more likely to lead to failure.

8.2 The Digital Era

The digital revolution not only changes our personal lives but it also has massive
implications on the competitive landscape. To win in this new environment,
established companies need to develop new products quickly, interact across
channels, analyze customer behavior in real-time, and automate processes. Digital
can lower barriers to entry for new players, causing long-understood boundaries
between sectors to become more ambiguous and permeable. At the same time, the
“plug and play” nature of digital assets disaggregates value chains, creating
openings for focused, fast-moving competitors.

New market entrants often can scale rapidly at lower cost than legacy players,
and returns may grow with astonishing speed as more customers join the new
networks. Digital capabilities increasingly will determine which companies create
or lose value. Those shifts take place in the context of industry evolution, which
isn’t monolithic but tend to follow a common path: new trends emerge and dis-
ruptive entrants appear, their products and services embraced by early adopters [4]
(see Exhibit 8.1). Forward-looking incumbents then begin to adjust to these

140 O. Bossert

changes, accelerating the rate of customer adoption until the industry’s level of
digitization—among companies but more critically among consumers—reaches a
tipping point. What was once radical becomes normal and unprepared incumbents
run the risk of becoming disappearing as quickly and surely as Blockbuster. Other
legacy players that successfully built new capabilities (as Burberry did in retailing),
transform into powerful digital players.

Such a digital transformation requires companies to adapt faster to new trends
and invest massively in digital. If organizations miss the tipping point, they often
also miss the chance to further invest in technology. The agility of the company
diminishes and it will eventually go out of business.

The digital trend impacts different industries differently. Our research shows that
some industries will go through a radical reshaping transformation over the next
years while others will be impacted more by what digital enables for them. As
shown in Exhibit 8.2, customer-facing industries tend to be the ones most impacted
by digital.

The digital revolution is driven by the end-customer—the consumer. As shown
in Exhibit 8.3, most companies identify the digital engagement of consumers as
their number one strategic priority among digital trends. Just 34 % of executives
say it’s a Top Three priority for their companies, even though automation may
significantly help businesses in sectors that are undergoing digital disruption [5].

The power of customers become apparent when looking at the extraordinary
growth rates of new offerings that directly address the end-customer—such as Uber
in transportation and AirBnb in lodging. More than one-third of all C-level
respondents said they expect at least 15 % of their companies’ growth in the next
three years will be driven by digital. Their top priority is to tap into new profit pools
and create new business models, addressing customer segments that are not yet in
the companies’ strategic focus (Exhibit 8.4).

Constructing a new digital business model for an incumbent player necessitates
building on existing strengths. But adding to existing capabilities also requires
building atop the existing IT landscape. In contrast to “digital native” players, most
large incumbents have an architecture built over time that acts not as a competitive
weapon but as a hindrance to innovation. What is in those legacy systems can’t just
be abandoned; the data is crucial to the overall business’s survival. For a retailer,
the only possible way to compete with the pure-play online ecommerce stores is to
establish a solid omnichannel strategy. This strategy requires transparency into store
inventories managed by an outdated legacy system. It may be outdated, but it is still
necessary.

At the same time, companies have to move quickly if they do not want to be
disrupted. The speed of digital transformation doesn’t allow for a year-long
transformation but rather requires an architecture of two speeds. That fast speed will
be different in different industries. For a public agency, fast may mean a new
deployment every two weeks when it used to be every three months. For digitally
native Netflix, which offers best-in-class continuous updates, it means as many as
100 deployments a day [6]. It’s all relative to how quickly an organization’s cus-
tomers are expecting changes to the user experience of a certain company.

8 A Two-Speed Architecture for the Digital Enterprise 141

Exhibit 8.1 Schematic development of new digital trends and their impact on established
business models

Exhibit 8.2 Analysis segmenting industries by their cost out potential and projected online sales

142 O. Bossert

Exhibit 8.3 Results of a global survey among senior executions on their view on digital trends

Exhibit 8.4 Results from the same survey as above analyzing the key objects of digital growth

8 A Two-Speed Architecture for the Digital Enterprise 143

8.3 Fundamentals of a Two-Speed Architecture

Layering is not new to IT. It is easy to confuse a two-speed architecture with
traditional technology layers, such as business logic and the presentation layer. One
might think about the two speeds as divided into systems of record and other
systems that do not hold master data. But when focusing on the desired outcome of
a two-speed architecture, it quickly becomes clear that these views are not quite
correct.

The objective of a two-speed architecture is to separate those elements that are
required to quickly change the customer experience from other elements that are
more important for the integrity of transactions. It differentiates the systems that
must be most flexible and agile from those that have to be more reliable and deliver
the highest quality.

Some systems containing business logic or master data records are pivotal for the
implementation of this value proposition. Consider the fast architecture that a
retailer has implemented (see Exhibit 8.5). A two-speed architecture has to cut
across different layers of the technology stack:

• The fast-speed-architecture contains the channels that are pivotal for the cus-
tomer experience.

• To change the customer experience, companies have to do more than alter the
front end presentation layer. New functionalities (such as a new loyalty pro-
gram) have to be implemented at the same speed within the same deployment
cycle. Changing the design without changing what the design enables is not
enough and merely delays the more important work.

• Some of the systems of record also have to move into the fast speed architecture.
Customer data structures as well as product data have to change quickly to
enable new business models. Without them, companies cannot enable a differ-
entiating customer experience.

Digitally native businesses can excel at giving consumers what they want, while
many older companies struggle to meet current customer expectations. For estab-
lished businesses, success requires strong capabilities in four areas:

First, because the digital-business model lets businesses create digital product
services and bring them to market quickly, companies need to become skilled at
digital product innovation that meet changed customer expectations. Consider
the new generation of auto insurance policies, enabled by geotracking technology,
that determine the price of a premium based on how much and how aggressively an
individual actually drives.
Second, companies need to provide a seamless multichannel experience, both in
the digital and physical realms, so consumers can move effortlessly from one
channel to another. Many shoppers use smartphones to reserve a product online and
then pick it up in person at a store.

144 O. Bossert

Third, companies should use big data and advanced analytics to better
understand customer behavior. Gaining insight into customers’ buying habits—
with their consent, of course—can lead to improved customer experience and
increased sales.
Fourth, companies need to improve their capabilities in automating operations
and digitizing business processes. This is a sure way to enable quicker response
times to customers while cutting operating costs (Exhibit 8.6).

8.3.1 Implications for Enterprise Architecture

Each of these four levers poses a substantial challenge for IT. For example, many
banking-product lines—such as credit cards, investments, and checking and savings
accounts—are managed in silos. This makes it difficult for a business to quickly get
a comprehensive view of customers to assess their loan applications. What’s more,
channels are often managed and tracked independently, complicating matters for
customers who wish to use multiple channels as they pursue a transaction. For
example, customers who start a loan application on their smartphone often find that
they have to re-enter data when they switch to a desktop computer to fill in the more

Master data management

Multimedia product catalog

360° Customer database

Engines

Loyalty
management

Commerce

One-to-one
marketing

Social
shopping

Shopping
assistance

Customer
support

eChannels

Call CentereTV Kiosk/POSWeb Tablet Smartphone

Exhibit 8.5 Retail architecture bundling the necessary digital capabilities in one fast speed
platform

8 A Two-Speed Architecture for the Digital Enterprise 145

detailed information required. Weak systems integration and slow database-access
times prevent customers from enjoying a real-time shopping and purchasing
experience. Analytics is especially difficult to integrate with operational process
flows. Manual steps in these processes, such as rekeying and transferring infor-
mation, present major obstacles to both analytics and automation of processes. They
also discourage potential and existing customers.

While a handful of players have overcome some of these hurdles, implementing
all four levers so customers can purchase individually tailored products across
multiple channels is quite a challenge. Legacy IT architectures and organizations
that run the supply-chain and operations systems responsible for executing online
product orders often lack the speed and flexibility needed to survive in the digital
marketplace.

Offering new products in a timely manner has become a competitive differen-
tiator. For an ecommerce platform, this might require weekly software releases.
That kind of speed can only be achieved with an inherently error-prone
software-development approach of testing, failing, learning, adapting, and iterat-
ing rapidly. That experimental approach would not work with legacy systems,
where the demand for perfection is far higher. Quality comes slowly but is critical
for risk- and regulatory-compliance management, as well as for core transactional
activities such as finance and online sales. In contrast, lower IT-system quality and

Exhibit 8.6 Core value levels of a 2-speed architecture

146 O. Bossert

resilience can be acceptable in customer-facing areas. This is particularly true when
users participate in the testing of new software. They expect to encounter mistakes.

8.4 The Building Blocks of Digital-Enterprise
Architecture

In our experience, digital-enterprise architecture needs to accommodate the fol-
lowing elements to deliver the functionality that the digital enterprise requires
(Exhibit 8.7).

Two-speed architecture: This implies a fast-speed, customer-centric part of the
architecture running alongside a slower release cycle, transaction-focused stable
architecture. For software-release cycles and deployment mechanisms, the
customer-facing part should be modular. This permits quick deployment of new
software by avoiding time-consuming integration work. In contrast, the transac-
tional core systems must be designed for stability and high-quality data manage-
ment, hence their longer release cycles.

Instant cross-channel deployment of functionality: New microservices
defining only a small amount of functionality, such as lookup of the next product a
consumer might purchase, should be deployed in hours rather than weeks. Such

Transactional
architecture

Fast speed architecture

Alternative Integration Service Bus

Zero down-time
upgrade

MDM

Automation

SQL No SQL

Development Integration Test

Instant deployment

Repository

Apps used across channels

App – online

App – mobile

Auto
scalability

ERP

CRM

SCM

…

Micro service

On premise

Auto
scalability

API

Public/private
cloud

Private cloud

Public cloud

Functional resilience Language-independent
container

Exhibit 8.7 Reference architecture showing the building blocks of a 2-speed architecture

8 A Two-Speed Architecture for the Digital Enterprise 147

microservices should be available across all channels. Ideally, developers should
create these services in multiple programming languages rather than being locked
into a single development framework and should be able to deploy them into
production following a DevOps approach.

Zero downtime: In digital global operations, the era of days-long maintenance
windows is long gone. Upgrades of systems affecting the consumer’s experience
should be seamless. They are best achieved by deploying a new software or service
in parallel with the old version. At first, only a small percentage of user traffic
should be routed to the new version. Then the switchover progresses. Only when
the new version meets a set of key performance indicators will all traffic be routed
to the new version. Moreover, in daily operations there should be fallback mech-
anisms in place so that issues arising in one service do not harm overall operations.
If, for example, a retailer’s personalized recommendation service is unavailable, a
random recommendation could be displayed rather than an annoying error page.

Real-time data analytics: Customers generate data with every move they make
within an app. That makes analytics an integral part of operational processes. For
example, one retailer analyzes customers’ purchases automatically when they pay
with their credit card. Along with the receipt, the business provides a savings
coupon for a product customers may be interested in buying the next time they shop
at the store.

Easy process configuration: Business users should be able to change automated
processes without requiring time-consuming coding by an IT developer.

Product factory: Industries that provide digital products, such as banking and
telecommunications, need to decouple their products from their processes. Banks,
for example, are best-served by implementing one sales process and reusing it for
all products, such as deposit accounts and credit cards.

Automated scaling of IT platforms: In a digital business, workloads expand
and become less predictable. Ideally, this load is balanced across private-cloud
environments as well as public-cloud ones, with mechanisms in place to ensure that
when one provider has an outage, others can assume the workload.

Secure architecture: Cybersecurity must be an integral part of the overall
application. Not only do digital companies have more valuable data to protect,
making them more enticing to hackers, but the digital strategy also opens new
interfaces to customers, suppliers, and partners that can be exploited by hackers.

8.5 Organizational and Process Implications

Unlike enterprises that are born digital, traditional companies don’t have the luxury
of starting with a clean slate. They must build an architecture designed for the
digital enterprise on a legacy foundation. It wasn’t long ago that most companies
would have been comfortable enduring a three-to-five-year transformation and not
implementing new features until the process was complete. Today’s highly com-
petitive markets no longer allow altering architecture and business models

148 O. Bossert

sequentially. Digital transformation is a continuous process of delivering new
functionality. Successful digital transformations focus on the following aspects:

Design the target architecture: The transformation can only be sustained if a
high-level target architecture and standards in critical areas such as cybersecurity
are described clearly from the beginning. Without target architecture and a sound
security concept in place, any transformation can be slowed down by the com-
plexity of managing legacy and new hardware and application provisioning.

View the transformation as a continuous software-solution process: There
isn’t time to develop software by using a waterfall model and then separating the
transformation into several long phases, as was common in traditional multiyear IT
transformations. Now, the software solution for each business challenge has to be
continuously developed, tested, and implemented in an integrated fashion.

Start the transformation with a pilot: The transformation should be based on
agile software development and the advanced governance processes that come with
it. For companies new to agile, we advise piloting the methodology and tailoring it
to their specific needs in a smaller-scale context.

Develop the transactional architecture, too: It’s important to establish a clear
distinction between the two IT models from the beginning and not only focus on the
fast-speed part but also develop the transactional back-end architecture. One should
not be pursued at the expense of the other.

Build a new organization and governance model in parallel with the new
technology: In the digital enterprise, business and IT work together in new and
integrated ways. Boundaries blur. This partnership has to be established and
solidified during the transformation.

Change mindsets: By transforming the architecture, technology can become a
key factor for a company’s competitiveness. This requires increased management
attention and, usually, a place on the board agenda. While IT efficiency remains
important, spending levels may rise as companies transform IT from necessary
expense to true business enabler. As such, expenses must now be thought of as
investments rather than just costs.

Run waves of change in three parallel streams: In a two-speed transformation,
it makes sense to have an implementation plan that runs in three parallel streams.
The digital-transformation stream builds new functionality for the business, sup-
ported by the results of a short-term optimization stream. That stream develops
solutions that might not always be compliant with the target architecture. To ease
the development of short-term measures and to create a sustainable IT infrastruc-
ture, an architecture-transformation stream is a third necessary component.

When an IT organization releases new digital functions on a faster deployment
cycle, new levels of agility and coordination emerge, and they may require sub-
stantial organizational change. One large industrial company recently established
digital product management as a separate organizational unit that owns the com-
pany’s website, mobile applications, and digital interactions; has accountability for
new functionality; and collaborates closely with business and IT leaders.

Creating joint IT-business teams to coordinate new initiatives proved invaluable
at a bank trying to catch up with rivals. It used big data and advanced analytics to

8 A Two-Speed Architecture for the Digital Enterprise 149

change products and marketing on the fly in response to evolving customer pref-
erences. Product specialists now collaborate closely with model builders to create
the automated tools that assess customer needs in real time and offer related
financial products. The IT organization collaborates closely as it selects the best
data processing technologies to support the new algorithmic models. None of this
compromises the bank’s transactional backbone, which is managed separately to
ensure its ongoing integrity.

8.6 Conclusion

This was intended as a research endeavor focusing on how established companies
could best manage digital transformations. As we developed the two-speed archi-
tecture and saw it in practice, we learned that the two-speed architecture was as
much about organizational architecture and process architecture as it was about
technology architecture. The practices we suggest in this paper don’t merely spell
out how a technology organization could thrive at two speeds, but how an entire
enterprise can benefit from thinking that way. Best of all, we saw that companies
adopting a two-speed architecture could build businesses out of their internal
improvements, offering them as white-label solutions to other companies, even
competitors. To create and sustain a successful digital strategy that may lead to
unexpected benefits, businesses have to build up and stick to a two-speed strategy.

References

1. Weill, P., Woerner, S.L.: Thriving in an increasingly digital ecosystem. MIT Sloan Manage.
Rev. 54(4), 27 (Summer 2015 Research Feature, 16 June 2015)

2. Bossert, O., Ip, C., Laartz, J.: A Two-Speed IT Architecture for the Digital Enterprise.
McKinsey on Business Technology (2014)

3. Bowles, G.: Self Service Build and Deployment at Netflix (Agile 2013). Engineering Tools at
Netflix. http://de.slideshare.net/garethbowles/self-servicebuilddeploymentagile2013

4. Hirt, M., Willmott, P.: Strategic Principles for Competing in the Digital Age. McKinsey
Quarterly (2014)

5. Willmott, P., Gottlieb, J.: The Digital Tipping Point: McKinsey Global Survey results.
McKinsey Quarterly (2014)

6. Schmaus, B.: Deploying the Netflix API, 14 Aug 2013. http://techblog.netflix.com/2013/08/
deploying-netflix-api.html

150 O. Bossert

http://de.slideshare.net/garethbowles/self-servicebuilddeploymentagile2013
http://techblog.netflix.com/2013/08/deploying-netflix-api.html
http://techblog.netflix.com/2013/08/deploying-netflix-api.html

Chapter 9
Capability-Driven Development

A Novel Approach to Design Enterprise
Capabilities

Hasan Koç, Jan-Christian Kuhr, Kurt Sandkuhl and Felix Timm

Abstract Technological advances, changes in regulations and increasing global-
ization of the economy demand high adaptability from enterprises in many areas.
Enterprise Architecture Management provides organizations with an integrated
view enabling such adaptability. In this respect, development and management of
the capabilities receive attention, as the term is associated with flexibility, dynamics
and variation. On the contrary, little effort has been put towards developing and
modeling capabilities. This chapter focuses on the Capability-Driven Development
(CDD) method, which is a novel approach for designing capabilities to tackle the
challenges of rapidly changing enterprise environments by modeling the application
context. The results presented in this chapter are (i) a description of the state of
research in capability development methods, (ii) a component-wise structured
capability modeling method based on business processes, goals and concepts of an
enterprise, (iii) a demonstration of the method application in a use case from the
utilities industry and (iv) observations made during the capability development and
strategy use.

9.1 Introduction

Enterprises are confronted with rapidly changing situations in regulations, global-
ization, time-to-market pressures and advances in technology. In many industrial
sectors, efficient and effective value creation and service delivery processes are
considered as the key factors to competitiveness in a globalized market environ-
ment. Systematic management of enterprise architectures including the technical,

H. Koç (&) � K. Sandkuhl � F. Timm
Chair of Business Information Systems, Institute of Computer Science,
The University of Rostock, Albert-Einstein-Str. 22, 18059 Rostock, Germany
e-mail: hasan.koc@uni-rostock.de

J.-C. Kuhr
SIV Software-Architektur & Technologie GmbH, Konrad-Zuse-Str. 1,
18184 Roggentin, Germany

© Springer International Publishing Switzerland 2016
E. El-Sheikh et al. (eds.), Emerging Trends in the Evolution of Service-Oriented
and Enterprise Architectures, Intelligent Systems Reference Library 111,
DOI 10.1007/978-3-319-40564-3_9

151

application and business architecture is emerging into an important discipline in
enterprises. One of the objectives of this discipline is to manage and systematically
develop the capabilities of an enterprise, which often are reflected in the business
services offered to customers and the technical services associated to them. In this
context, networked enterprises, value networks and extended enterprises massively
use service-oriented and process-oriented architectures.

The notion of capability has received a lot of attention as the enabler of
business/IT alignment in changing environments. The term is used in various
industrial and academic contexts with often different meanings. Most conceptual-
izations of the term agree that capability includes the ability to do something
(know-how, organizational preparedness, appropriate competences) and the ca-
pacity for actual delivery in an application context. In Information Systems
(IS) field the term capability is used as an instrument to develop Enterprise
Architecture (EA) and tools for tackling the dynamic complexity of systems with
diverse concerns. This indicates that flexibility, dynamics and variation are attri-
butes associated with capability.

Even though the capability concept is an important element in service-oriented
architectures and enterprise information systems, little effort has been put towards
developing and modeling capabilities. Most notably, the state of the art research has
shown that the notion of context is neglected, which might provide the required
flexibility in changing situations. This paper focuses on the Capability-Driven
Development (CDD) method, which is a novel approach for designing capabilities
to tackle the challenges of rapidly changing enterprise environments by considering
and modeling the application context. To be more concrete, the paper investigates
the background, core concepts and most important features of the CDD method.
The research questions investigated in this chapter can be summarized as follows:

1. What are the current problems in capability modeling for enterprises and what
are the requirements for a potentially successful solution?

2. Which methods are available in the literature to design capabilities as enablers
of business/IT alignment and to what extent do they fulfill the industrial
requirements?

3. What are the benefits and drawbacks of the application of CDD in an industrial
setting?

The research method is design science oriented and consists of a combination of
three different methods:

• Addressing the relevance cycle, we conducted exploratory case studies for
elaborating frame conditions and pathways for adaptation in industry as well as
for validating the CDD. In particular, the study included three cases
(multiple-case study based on a literal replication), whereas only one case is
detailed in this chapter (focus of RQ3, Sects. 9.4 and 9.5).

• In rigor cycle we use the applicable knowledge in the literature by investigating
frameworks, models and methods that might help in solving the problem and for
grounding the work in state of research (focus of RQ2, Sect. 9.3)

152 H. Koç et al.

• In the design cycle, we develop the artifact in line with the inputs from both
cycles, observe how the developed artifact behaves in these scenarios and refine
the artifact after the gathered feedback in the evaluation. Here, we apply an
argumentative, deductive approach for developing the methodological basis for
capability development (focus of RQ1, Sect. 9.2).

The remainder of the paper is structured as follows: Sect. 9.2 investigates the
need for capability-driven development and the resulting requirements by consid-
ering two cases from practice, one of them from utility industries and one from
e-government. Section 9.3 presents the theoretical background for our work that
includes the notion of capabilities, current research in context modeling and in the
field of capability design methods. Section 9.4 introduces the Capability-Driven
Development method with a focus on the components of the methodology and the
tools supporting its implementation. In order to demonstrate the practical use of
CDD, Sect. 9.5 discusses a case from utility industries and initial experiences
collected. Section 9.6 concludes this chapter by summarizing the work and pre-
senting recommendations.

9.2 Problem Investigation: The Need
for Capability-Driven Development

Before presenting the CDD method in detail, this chapter motivates the purpose of
the CDD. Therefore, a problem investigation comprising the elaboration of
industrial needs for designing capabilities has to be conducted. Further, require-
ments towards the CDD method have to be derived that guide the method’s
development. While Sects. 9.2.1 and 9.2.2 discuss two industrial settings regarding
capability design, Sect. 9.2.3 then derives the requirements. Please note that the
method has been developed based on the requirements derived from both use cases
whereas the work at hand demonstrates the CDD approach only in utility industries
use case due to place limitations.

9.2.1 Flexible Business Services in Utility Industries

The SIV group is a vertically integrated German enterprise that specifically serves
the utility industry (cf. Fig. 9.1). It acts both as an independent software vendor
(ISV) and as a business service provider (BSP). The group has a longstanding
market presence in developing and selling the industry-specific ERP platform
kVASy®. The platform is widely used by public utilities in Germany, especially for
the commodities electricity, natural gas, district heating and water. Within the
European Union the former two markets are strictly regulated, which in turn has led
to increasingly complex business relationships and market rules. In Germany,

9 Capability-Driven Development 153

market rules are subject to change, driven by the need to optimize existing pro-
cesses and/or by altered legal framework. In the past, these changes have consid-
erably impacted the way in which business operates within the market.

The SIV group has a vital interest in rendering its ERP product as well as
offering flexible services adaptable to continuously changing markets. New
opportunities, altered regulations and a growing competition lead to a demand for
solutions that are delivering business value in ever changing context situations [1].

Given the constantly rising complexity of the market, public utilities increasingly
consider outsourcing of their business processes to external service providers.
The SIV group offers such services for customers running kVASy® by its sub-
sidiary SIV Utility Services GmbH. Of particular relevance are business processes
that deal with the exchange of data between market partners (market communi-
cation). Given the complex interrelationships of the market, exchanged data may
easily get into conflict with other data, thereby initiating a clearing procedure.

This is the principal scenario for the SIV group’s use case in the CaaS project.
For any occurring exception the BSP acts as a clearing center with costly manual
interaction. This further causes organizational efforts, such as the arrangement of
BSP’s human resources schedule. Contractual agreements between the BSP and its
clients have to support a dynamic routing behavior in order to decide whether or not
an individual clearing case should be routed from the customer to the BSP (cf.
Fig. 9.1). The routing decision depends on various factors such as the backlog size
of the client, message type that has thrown an exception or the type of the com-
modity. The awareness of such context-specific information would facilitate CDD
in the business process outsourcing use case. In Sect. 9.5 a detailed description of
the SIV use case and a demonstration of CDD method are provided.

Fig. 9.1 Business relationships in the utility sector that are covered by the SIV group

154 H. Koç et al.

9.2.2 Adaptive E-Government Services

everis is a multinational consulting firm providing business and strategy solutions,
application development, maintenance, and outsourcing services. The everis use
case is based on the public sector and the main emphasis is put on electronic
services provided to municipalities, which are then used by citizens and companies.
The company’s service oriented architecture (SOA) platform provides a service
catalogue with up to 100 services, which are active in 250 municipalities. Different
factors and actors involved have to be taken into account when offering these
services, such as small and medium-sized enterprises (SMEs), multinational cor-
porations providing services, several public administration’s laws, regulations,
administrative consortia and calendars, as well as various technological tools. everis
has to adapt the electronic services every time the platform is deployed to a new
municipality and whenever the context changes. For the time being, service cus-
tomization is done at the code level [2].

The SOA platform deployed at one municipality faces the challenge of irregular
page visits and activity, which sometimes causes shortage of computational
resources or unused resources. everis aims to optimize the utilization of compu-
tational resources. For instance, for a small number of daily visits of users the SOA
platform could only use the necessary amount of computational resources.
Identifying indications like social events would help to automatically integrate
additional resources to the platform. This would ensure the fast and effective service
execution in high load situations. Further, the integration of contextual data could
be used to promote special services of the municipality enhancing the users’ sat-
isfaction with the platform [3].

A useful method for capability design considering all contextual influences
should facilitate variability management and automate such customization as much
as possible, flexible resource allocation as well as automatic service promotion.

9.2.3 Industrial Requirements

In order to serve as a basis for developing a CDD method, requirements were
defined that the method should meet. Afterwards, current literature was analyzed
regarding these prerequisites for already existing solutions for capability design the
CDD could adapt. The results of this analysis are presented in Sect. 9.3. The CaaS
project follows a use case-driven approach. Thus, requirements towards the CDD
were derived from the industrial use cases presented above by conducting work-
shops and expert interviews with the industrial partners as well as analyzing sec-
ondary data. For each individual use case requirements were defined. Then, the
resulting requirements set was merged into a set addressing the CDD approach as a
whole, which also revealed synergies and differences among the use cases. Further,
the authors of [4, 5] cross-examined the use case requirements based on

9 Capability-Driven Development 155

industry-wide surveys that illustrated its relevance towards a wider user base rather
than just the project’s industrial partners.

The identified requirements are represented in a form of business goals. In [3]
these goals were interrelated to each other with a goal model. As a result, 29 goals
have been identified. This section concentrates on goals that are directly related to
the use cases described in Sects. 9.2.1 and 9.2.2. The central goal is to increase the
value of the business services at hand (REQ1), which is addressed towards the
exception handling service of the SIV.AG as described in Sect. 9.5.2. It is directly
supported by the goals related to improve use case execution (REQ2) that includes
goals characterizing both capability design-time and run-time issues. While
design-time addresses service customization according to its context and the
identification of proper capability metrics, run-time considers adjusting the services
by monitoring the context and change requirements prediction at delivery. Finally,
to support different ways of working, the CDD has to provide a flexible develop-
ment method (REQ3) by documenting the steps to design a capability, the important
concepts as well as their representation.

During the requirements specification both enterprises raised the concern of
dealing with variability and service line management. Thus, CDD has to provide
means for managing variability efficiently (REQ4). As stated in earlier sections,
compliance with regulatory requirements (REQ5) is a serious issue for SIV group
operating in the utility industry and everis cooperating with governments. Further, it
was revealed that both enterprises intend to increase the level of process automation
(REQ6) due to service improvement and cost pressure. Another requirement is to
dynamically allocate computational and human resources for service delivery
(REQ7). This would help SIV group to meet SLA requirements as a BSP. Likewise,
the integration of internal and external information systems (REQ8) was identified
as a challenge for the CDD. For instance, everis needs the integration not only of
municipality’s information systems but also of sponsor systems and the usage of
national services. While SIV group additionally identifies the need for the CDD to
develop new digital services (REQ9), everis asks CDD to increase the usage of
services (REQ10) delivered through the SOA platform by means of automatic
promotion. In [4, 5] the process of developing the goals model is made transparent
and illustrates the overall goals model with all goals explained.

9.3 Background and Related Work

The notion of capability has received a lot of attention as an instrument to align
business and IT in changing environments to gain a competitive advantage. This
section provides an overview of the related approaches to CDD. Section 9.3.1
introduces the notion of capabilities and positions our view within the Enterprise
Architecture Management (EAM). Section 9.3.2 reports on context modeling
approaches. Then, Sect. 9.3.3 presents the results of a systematic mapping study on
the capability design methods and finally Sect. 9.3.4 summarizes the results.

156 H. Koç et al.

9.3.1 Notion of Capability in CDD and EAM Capabilities

The term capability originates from the system engineering and military domain.
Oxenham [6] uses it synonymously with military capability, meaning to apply the
overall potential of the armed forces for combat or other operations. The literature
analysis exposes three types of capabilities in IS field, such as organizational,
system and operational capability. Boonpattarakan [7] considers organizational
capabilities in the field of strategic management as the foundation in which orga-
nizations utilize their strengths to increase competitiveness, contribute to growth,
and enhance organizational performance. The system capability describes the
ability of a system to execute a particular course of action or achieve a desired
effect, under a specified set of conditions. Finally, Adcock and Hoboken define the
operational capability as the ability of a system to perform within the intended
operational environment, particularly with respect to meeting the requirements of its
stakeholders [8].

Although there seems to be an agreement about what constitutes a capability, it
is hard to find a standard definition. Sandkuhl et al. [9] state that the definitions
mainly put the focus on “combination of resources”, “capacity to execute an
activity”, “perform better than competitors” and “possessed ability”. A general
consensus is that the capabilities are enablers of competitive advantage; they help
companies to continuously deliver a certain business value in dynamically changing
circumstances [10]. According to Chen and Tsou [11] the performance of an
enterprise is the best, when the enterprise maps its capabilities to IT applications.

Enterprises are complex systems operating in changing environments. Ahlemann
et al. [12] state that managing strategies, processes, applications, information
infrastructures and roles is a challenge for an enterprise and there is a need to have
an holistic view. Such an integrated view can be reached by implementing
Enterprise Architecture Management (EAM). The IS domain adopts the term
capability as an instrument to develop Enterprise Architecture (EA) and tools for
tackling the dynamic complexity of systems with diverse concerns. For instance,
Antunes et al. [13] identify the fostering of communication between stakeholders on
technical and organizational levels as one of the most important merits of capa-
bilities. Regarding Wißotzki et al. [14] an EAM capability describes the specific
combination of know-how in terms of organizational knowledge, procedures and
resources able to externalize this knowledge in a specific process with appropriate
resources to achieve a specific outcome for a defined enterprise initiative.

We define capability as the ability and capacity that enables an enterprise to
achieve a business goal in a certain context [3]. Ability refers to the level of
available competence, where competence is understood as talent, intelligence and
disposition, of a subject or enterprise to accomplish a goal; capacity means avail-
ability of resources, e.g., money, time, personnel, tools. This definition requires
taking a slightly different view on capabilities as they are perceived in EAM. The
first distinction lays in the investigation of operational aspects of an enterprise
rather than management aspects, which necessarily challenges the integration of

9 Capability-Driven Development 157

capabilities with enterprise modeling as well as their implementation (cf. REQ1,
REQ2, REQ3 and REQ8). The modeling aspect includes analysis and design of
enterprise models such as goals model, business process models or concept models.
The implementation aspect consists of tools, transformation languages, notations
and procedures. The second differentiation lies within the notion of context in the
perception of what a capability is (cf. REQ4, REQ5, REQ6 and REQ7). As men-
tioned earlier, capabilities are useful instruments for enterprises in rapidly changing
environments. Capabilities as such are directly related to the provision of business
services and products, which are affected from the changes in the application
context, such as, regulations, customer preferences and system performance. We
hence argue that the notion of context plays a central role to support such flexibility,
which is considered as the adaptability to change by Lacity et al. [15]. As a result
capability application or delivery is closely related to the context of the business
environment, which motivates the analysis of the notion of context and the context
modeling approaches in the following section.

9.3.2 Context Modelling

Context is a widely used term in different areas such as philosophy, artificial
intelligence, pragmatics, computational linguistics, computer science, and cognitive
psychology. One of the most cited definition given by Dey and Abowd describes
context as “any information that can be used to characterize the situation of any
entity”, which is adopted in this work [16]. According to Winograd [17] this defi-
nition is too broad since “something is context because of the way it is used in
interpretation, not due to its inherent properties”. Last but not least, Bazire and
Brézillon identify main components of the concept “context” by examining a corpus
of 150 definitions. The study concludes that context definitions can be analyzed in
terms of six parameters like “constraint, influence, behavior, nature, structure and
system”. As a result, “the context acts like a set of constraints that influence the
behavior of a system (a user or a computer) embedded in a given task” [18].

Although the term context is widely used in computer science, there is no general
procedure how to develop context models. Many authors of context-based systems
describe the way of developing the context model for their specific application, but
do not provide a general view. Strang and Linnhoff-Popien provide a survey of six
context modeling approaches in ubiquitous computing. These approaches consist of
(i) key-value modeling, (ii) mark-up scheme modeling (Comprehensive Structured
Context Profiles, Pervasive Profile Description Language, ConteXtML, etc.),
(iii) graphical modeling (UML, Object Role Modelling, ER, etc.), (iv) object oriented
modeling (cues, Active Object Model), (v) logic-based modeling and (vi) ontol-
ogy-based modeling (Context Ontology Language, CONtext Ontology, etc.). The
same article concludes that ontology-based modeling is the most suitable approach
for context modeling for ubiquitous computing environments [19]. In this respect Gu
et al. classify the existing context models into three categories. Application-oriented

158 H. Koç et al.

approaches are mostly used to represent low-level context information and lack
formality. Model-oriented approaches utilize conceptual modeling techniques like
ERM, UML and ORM. Ontology-oriented approaches intend to share knowledge
across distributed systems. Finally, the authors present a context model based on
ontology using OWL [20].

The state-of-the-art analysis conducted by Koç et al. [21] showed that context
modeling and context-based systems are a popular topic in contemporary research
with many different context definitions and application examples existing.
Furthermore, the works mostly focus on the conceptualization of context, i.e., what
elements context typically consists of and how to represent context models. An
off-the-shelf context modeling method fulfilling the requirements and showing what
steps to take as well as how to identify relevant context elements has not been
proposed yet. However, the different context representations proposed can be used
as inspiration based on the six parameters provided by Bazire and Brézillon [18],
namely constraint, influence, behavior, nature, structure, and system.

9.3.3 Overview of Capability Design Methods

We conducted a systematic mapping study following the method of Kitchenham
et al. [22]. To select the literature sources, we first identified A+ and A journals
based on the rankings from Schrader and Hennig-Thurau [23]. Next, we comple-
mented this list with B journals from the Business Information Systems
sub-discipline. To stabilize the journal selection we crosschecked our results with
the rankings from Peffers and Ya [24] and finalized the journal selection. After that
we populated the list of journals with A and B ranked conferences from the work in
[25], with “A” being the highest ranking. As a result, we identified a total of 112
journals and 24 conferences.

The main terms used for the initial search were “capability” (in abstract) and
“method OR design OR proc*” (in keywords). The keyword terms were populated
with additional terms “practice OR step OR modeling OR modelling”.
Consequently, we searched in the selected sources that included the term {capa-
bility} in abstract and one of the following terms {method, modeling, modelling,
proc*, design, step, practice} in keyword. After removing the duplicates and
inaccessible articles, the search resulted in a total of 362 journal articles and 178
conference papers in a time span from 1988 to 2014.

The selection of the papers was based on a set of criteria, which is applied during
abstract reading. In cases where the exclusion or inclusion was unclear, an addi-
tional full-text reading is conducted. Articles exposing the following criteria were
eliminated:

• articles that did not explicitly address “design and development of capabilities”
as their research scope,

9 Capability-Driven Development 159

• articles using the term capability as a synonym for “ability” or “future” without
relating it to its application in Information Systems,

• articles that use the term capability in the abstract and do not mention it in the
narrative text or mention dynamic capabilities to position their proposals as
means to gain competitive advantage,

• articles investigating the interrelation between capabilities and subject under
study by applying statistical methods and developing a hypothesis.

The main purpose of the investigation was analyzing the state of the research in
fields of capability design and development, in particular where processes, proce-
dures, steps, or methods are proposed to identify, model or design business capa-
bilities. To analyze the results, we used the method conceptualization of Goldkuhl
et al. [26]. In a broader perspective, a method component consists of concepts,
activities and a notation. The concepts specify what aspects of reality are regarded
as relevant in the modeling process, i.e., what is important and what should be
captured in a model. The activities describe in concrete terms how to identify the
relevant concepts in a method component and the notation specifies how the result
of the procedure should be documented. The articles are included that investigate
steps, best practices, guidelines, concepts, notations and roles in developing
capabilities. On the other hand, the publications were excluded that investigate how
for instance the IT capabilities are interlinked with the provision of e- government
services by applying statistical methods and developing hypothesis. After the
application of those criteria, a total of 22 journal articles and 23 conference papers
resulted for further analysis.1 More details about the literature analysis can be found
in the systematic mapping study of Koç [27].

One of the fields investigating the methods and approaches for designing
capabilities is Business Process Management (BPM). Niehaves et al. analyze BPM
topic from the Dynamic Capability point of view and present a framework to
support the design of BPM capabilities. The framework developed in both works
consists of three activities, namely sensing, seizing and transformation, which are
further elaborated in sub-capabilities [28]. Ortbach et al. [29] offer a method for IT
capability based business process design, which consists of 8 steps. The work
describes roles and notations in vague terms, whereas the important concepts,
outputs of the activities are not mentioned at all.

Another field investigating the capability design methods is the e-commerce. To
exemplify a few works from our analysis, Cui and Pan present a process model to
orchestrate the organizational resources in line with the changing business delivery
context. However, no steps, activities and tasks are defined and the approach lacks
notation to model the outputs of the phases [30]. Montealegre [31] suggests
strategies for practitioners how to develop organizational capabilities in
e-commerce and provides a process model including the key actions to be carried
out.

1The list of investigated journals, conferences and selected papers can be accessed from http://bit.
ly/1O5sS18.

160 H. Koç et al.

http://bit.ly/1O5sS18
http://bit.ly/1O5sS18

In addition to the above mentioned topics, Zhou et al. [32] propose a process
model for the development of capabilities to meet the fast growing business
demands. Su [33] develops a theoretical model for conceptualizing the interna-
tionalization strategies of IT vendors, which consists of amongst others a
capability-building process. Regarding both articles however, the processes cannot
be applied solely as a capability design method since the roles, goals, concepts and
notation is not defined. Besides, the latter contribution analyses the capabilities of
IT service vendors in emerging economies, which remains too specific.

9.3.4 Summary

This section provided an overview of the related approaches to CDD. The results
can be summarized as follows:

• CDD has a slight different view on capabilities than in EAM, primarily based on
the following interpretations:

– The CDD approach integrates organizational development with IS devel-
opment by considering the application context and adjusting the solution in
line with the dynamic changes. Thus, CDD assumes integration of capa-
bilities with enterprise modeling, in particular with goals modeling and
business process modeling.

– In CDD, capabilities are directly related to the flexible provision of business
services or products, which are affected from the changes in the application
context. As a result, the notion of context plays a central role in design of
capabilities.

• CDD uses a model-oriented approach to capture and represent contextual
information. As we identified the lack of support for modeling context, CDD has
to develop an own approach for context modeling including context represen-
tation and modeling process as such.

• There is a need to engineer a method since the approaches from the mapping
study do not fulfill the requirements in general and REQ3 in particular. In this
context, CDD provides a component-wise structured method to allow for flex-
ible design of capabilities. The starting point for designing a capability can be
enterprise goals, business processes or concepts, depending on the characteris-
tics of an organization [34]. A central component to the method is the “Context
Modelling Method Component”.

• The capability design and development approaches provide to some extent
support to design enterprise-grade capabilities, only partly fulfilling the
requirements introduced in Sect. 9.2.3 as well as satisfying the method con-
ceptualization concept.

9 Capability-Driven Development 161

To summarize, the analyzed approaches (i) address which factors should be
taken into account when designing capabilities, (ii) show how they influence the
capability under study (iii) provide means for capability evaluation, such as
maturity models, (iv) do not address the integration of capabilities with enterprise
modeling and finally (v) propose steps, procedures, guidelines to design capabilities
that are decoupled from enterprise goals.

9.4 Capability-Driven Development

The industrial use cases discussed in Sect. 9.2 showed a need for supporting flexi-
bility and adaptability in designing and developing IT-based business services.
Furthermore, Sect. 9.3 analyzed existing work in areas related to capability man-
agement with the conclusion that the existing methodical and technological
approaches in this area do not fully cover the needs discovered in the industrial use
cases. This section proposes an approach to capability-driven design and develop-
ment which aims at contributing to a novel paradigm for designing enterprise
capabilities by explicitly taking into account business objectives and delivery con-
texts when developing IT-based business services. This novel approach is based on
work in the EU-FP7 project “Capability as a Service in Digital Enterprises” (CaaS).
From a technology perspective, the basic idea of the CaaS project is to facilitate a
shift from the service-oriented paradigm to a capability delivery paradigm. Three
industrial cases from utility industries, e-government and insurance and finance
serve as basis development and validation of the approach for capability-driven
development.

Business services are IT-based functionalities that digital enterprises provide for
their customers. They usually serve specified business goals, are specified in a
model-based way, and include service level definitions. To ease adaptation of
business services to new delivery contexts, changes in customer processes or other
legal environments, the CDD approach, is to explicitly define (a) the potential
delivery context of a business service (i.e., all contexts in which the business service
has to be potentially delivered), (b) the potential variants of the business service for
the delivery context, and (c) what aspect of the delivery context would require what
kind of variation or adaptation of the business service.

(a) The potential delivery context basically consists of a set of parameters or
variables, the so-called context elements, which characterize the differences in
delivery. The combination of all context elements and their possible ranges
defines the context set, i.e., the problem space to cover.

(b) The potential variants of the business service, which form the solution space,
are represented by process variants. Since in many delivery contexts it will be
impractical to capture all possible variants, we propose to define patterns for

162 H. Koç et al.

the most frequent variants caused by context elements and to combine and
instantiate these patterns to create actual solutions. If no suitable pattern is
available, the conventional solution engineering process has to be used.

(c) The connection between context elements, patterns and business services has
to be captured as transformation or mapping rules. These rules are defined
during design time and interpreted during runtime.

The CDD method has to cover the development of all the above parts of a
capability model and the CDD environment has to offer tool support for this pur-
pose during design time and runtime. This section will describe both aspects of
CDD in the following two sections.

9.4.1 CDD Method

The CaaS method for capability-driven design and development (CDD) follows a
component-oriented method conceptualization with various components addressing
different modeling aspects. The most important method components are as follows:

• Capability modeling supports identification and specification of capabilities and
of relationships between capabilities. As a capability is characterized by busi-
ness goals, business services implementing these goals, delivery contexts and
patterns, a capability model basically integrates sub-models for these aspects.
The capability modeling method component defines a procedure and aids for
this integration.

• Enterprise modeling in general captures different perspectives of an organization
(e.g., processes, organization structures, products, resources) and their interre-
lations in order to support purposes, like visualization of the existing situation,
optimization of processes, business/IT alignment, or support of strategy devel-
opment [35]. In CDD, enterprise modeling is used to capture strategic objectives
or business goals related to the capability or motivating the creation of the
capability. These objectives should be specified in a precise, measurable and
accepted way, for example by using the goal modeling techniques from enter-
prise modeling.

• Business process modeling aims at specifying workflows and their execution.
In CDD, the business service(s) offered to customers within the capability have
to be specified using a model-based approach. Currently, the focus is on
process-oriented approaches using process modeling.

• Context modeling: the potential application context(s) where the business ser-
vice is supposed to be deployed has to be specified, which is supported by a
newly developed context modeling method component. This specification also
has to capture at what points in the process what variation will have to happen.
The specification of the capability’s potential deployment contexts is captured in
a context model.

9 Capability-Driven Development 163

• During runtime, the execution of a business service in the defined context has to
be monitored, including all variations of the solution for different context
instances. As the context defines the switching between variants and potential
parameterization of business services, a method component is needed to derive
the configuration of monitoring application from context model and business
service model.

• Pattern elicitation: patterns specify reusable design-time or run-time elements
for reaching business goals under specific situational contexts. The run-time
patterns are also called capability delivery patterns. The CDD method includes a
method component for identification, elicitation and representation of patterns.

The relationships and interdependencies between different elements of the CDD
method are illustrated in Fig. 9.2. The figure shows on the right hand side the meta-
model and the modeling languages, which are core elements of the CDD approach
(cf. [9, 36]). The meta-model defines all concepts and their interrelationships
needed for patterns, contexts and enterprise models. The CaaS modeling language
provides a visual modeling language for this meta-model, which is implemented in
the capability design tool (cf. Sect. 9.4.2). In addition to the CaaS modeling lan-
guage, the meta-model can also be implemented by other modeling languages, e.g.,
established modeling languages used in enterprises. The CaaS modeling language
will be used primarily to model capabilities, contexts and patterns, as these models
or views of the capability model are not available in enterprises before introducing
the CDD approach. In contrast, enterprises already have enterprise models or
models of their business services, which were developed with the modeling lan-
guage established in the enterprise. If no modeling language is established, the
CaaS language can be used for this purpose.

The middle part of Fig. 9.2 illustrates the different parts of a capability model,
which also reflect the different method components introduced in the beginning of
this section: a capability model includes the capabilities as such (Capability View),
the context models defined for individual capabilities (Context View), the patterns
used to implement adaptations in the capability during design time or runtime
(Pattern View), the business goals related to the capability (part of the Enterprise
Model) and the relation to the business service model (captured in the Business
Service Model).

The left hand side of Fig. 9.2 shows method components related to runtime
activities of CDD. The Capability Delivery Navigation Application (CNA) is an
application which can be used to monitor and adjust the delivery of a capability
during runtime (cf. Sect. 9.4.2). What has to be monitored in CNA is specified in
the context model, i.e., the CNA has to be configured based on the context model.
CDD provides a method element for the configuration process which implements
the pre-defined Configuration Options. Furthermore, the runtime includes the
executable IT-solution for providing the business service. However, this solution is
not part of CDD.

164 H. Koç et al.

The CDD method will be developed in several versions:

• CaaS base method: the main purpose of the initial CaaS method, also called
“base method”, is to support the industrial use cases of the CaaS project in
developing initial capability models, i.e., the business services to be considered
in the use cases including their context. For this purpose, the base method covers
only selected ways of capability modeling and provide method components
supporting these selected ways.

• CaaS method: the “regular” CaaS method will support a wider selection of
capability development processes and extend the base method also towards
capability delivery and runtime adaptation.

• CaaS method extensions: each of the industrial cases in CaaS are supposed to
develop extensions of the regular CaaS method.

• Final CaaS method: one of the final results of the CaaS project will be a final
version of the CDD method including the method extensions and packaged for
use outside the CaaS project.

9.4.2 CDD Implementation

In order to implement the CDD approach, a capability development and delivery
environment was designed and deployed in the industrial cases of the CaaS project.
The architecture of the environment is shown in Fig. 9.3 and distinguishes com-
ponents required at runtime for operating and monitoring capabilities, at design time
for capability-driven development and as resources either for runtime or design
time. Furthermore, Fig. 9.3 divides the architecture into functional components that
have been developed in CaaS to implement the CDD approach (right side) and

Fig. 9.2 CDD method components and their interrelations

9 Capability-Driven Development 165

components that are expected to be available in organizations independently of
CDD (left side). The latter include a Development Environment for IT-based
business services (design time) and a Runtime Environment for delivery of the
business services (runtime) and the capabilities based on these business services.
The development environment could, for example, exist of a modeling environment
for workflow models and a software development toolkit for developing services
required when executing the workflows. The runtime environment—or Capability
Delivery Application (CDA)—could consist of a workflow engine with activity
monitor and an application server for the services integrated into the workflows.

The main functional components developed in CaaS for implementing the CDD
approach are as follows:

• Capability Design Tool (design time)—provides modeling environment based
on the CDD meta-model and CaaS modeling language, i.e., capabilities can be
modeled including business service (e.g., business process model), business
goals, context and relations to patterns.

• Configuration Tool for Capability Context Platform (design time)—the context
model within the capability model specifies, which context elements have to be
monitored during operations. The configuration tool for the capability context
platform allows for connecting the design time view of context elements to the
runtime view of data sources for these context elements, i.e., with this tool it can
be specified which web service or database has to be used during runtime to get
the actual values of context elements.

• Repository Manager Tool (design time)—manages creation, use and retrieval of
patterns both for design time and for runtime use. The repository offers a defined

Fig. 9.3 Architecture and function components of the CDD environment

166 H. Koç et al.

structure for storing patterns and a user interface for browsing the content.
Furthermore, it offers interfaces which can be used by other design time and
runtime tools.

• Capability Context Platform (CCP) (runtime)—captures data from external data
sources including sensing hardware and Internet based services such as social
networks. It aggregates data and provides these data to the capability navigator.
It is configured using the configuration tool.

• Capability Navigator (runtime)—provides means for monitoring and adjustment
of capability delivery. It includes a monitoring module for monitoring context
and goal KPI, predictive evaluation of capability delivery performance and
delivery adjustment algorithms. The capability delivery adjustment algorithms
are built-in in the capability delivery navigation application. The algorithms
continuously evaluate necessary adjustments and pass capability delivery
adjustment commands to the capability delivery application.

Furthermore, there is an interface between the capability navigator and the
runtime environment for capability delivery in order to be able to receive capability
delivery adjustment commands from the capability delivery navigation application
and to provide the capability delivery performance information.

9.5 Real-World Use Case: Utility Industry

9.5.1 Background and Motivation

In order to liberalize the utilities industry within the single European market, the
European Commission since 1996 has enacted a number of directives that—in
effect—make the unbundling of vertically integrated enterprises mandatory. In
particular, grid operator and energy supplier are to be distinct market players.
Non-discriminatory access to the grid must be granted to any interested party, such
that there may be fair competition in the market.

In Germany, the Bundesnetzagentur2 (BNetzA) is in charge of overseeing the
utilities sector for the commodities electricity and natural gas and to ensure the
European directives are put into national practice. To this end, the BNetzA has
established a market role model that demands a clear separation of responsibilities
among actors, of which an example is shown in Fig. 9.4.

While the consumer receives electricity from the Balance Supplier (step 1), it is
the Grid Access Provider that takes care of the collection of the meter readings3

(step 2). The latter forwards the meter readings periodically to the Balance Supplier

2cf. www.bundesnetzagentur.de.
3The actual reading is carried out by still another party (metered data collector), but this distinction
is not relevant for the current use case.

9 Capability-Driven Development 167

http://www.bundesnetzagentur.de

(step 3) who invoices the customer on the basis of the transmitted consumption data
by means of a consumption bill (step 4).

In this scenario, balance supplier and grid access provider perform distinct, yet
complementary business functions. The interaction of both market roles is strictly
bound to regulations enacted by the BNetzA. In Germany, data exchange between
utilities and grid operators generally follows the EDIFACT standard, which is a
widely used cross-industry specification for electronic business interactions. While
the standard is issued and maintained by the United Nations, there exist specially
adapted formats that regulatory authorities have made compulsory for the German
market.

It is important to note that regulations are not fixed, but are rather subject to
constant change. These changes can have significant impact on how companies run
their businesses and as such they pose a constant challenge to utilities and ERP
vendors likewise.

9.5.2 Use Case Scenario

This section details the use case that is currently developed and investigated by the
SIV group to evaluate and demonstrate the CDD approach. The use case is based on
the exchange of energy consumption data between grid access provider and
supplier.

Fig. 9.4 Regulation of the energy distribution market in Germany makes the separation of market
roles mandatory, where each of them performs distinct business functions. The underlying scenario
is the electronic transmission of meter readings from a grid access provider to a balance supplier.
These data are needed by the latter when invoicing the consumer with the energy consumption bill

168 H. Koç et al.

Such business-to-business interaction is a typical example of what is called
market communication. Note that market partners usually run a cross-commodity
business, including electricity, natural gas and district heating. In the utility sector,
market communication is an indispensable and important value chain element of
supplier and grid access provider likewise. Usually it requires the processing of
bulk data that are transmitted within a single file.

For the exchange of energy consumption data, the BNetzA has mandated the use
of the MSCONS format [2]. MSCONS is a member of the EDIFACT specification
family and stands for Metered Services Consumption. German regulators have
made the MSCONS format subject to biannual change, where each of them can
impact the way how market players run their respective business processes.

Upon reception of an MSCONS file from a market partner, the Balance Supplier
executes a business process to import the transmitted values into the ERP system
(cf. Fig. 9.5). This process includes a file-level check, a validation step and the
processing of the individual meter readings. Due to the complex nature of the
market rules, meter readings are frequently found to be in conflict with other data
such as master data. Unfortunately, many of these conflict situations cannot be
resolved programmatically by the ERP system but rather require manual inter-
vention by a domain expert (so-called clearing). The status of each of the client’s
business processes, including the ones that have failed, may be monitored by a
business activity monitoring (BAM).

In an outsourcing scenario as shown in Fig. 9.5, clearing can be done either by
the client or by the BSP. In the current use case, the Business Service Provider is
SIV Utility Services GmbH, which is a member of the SIV group (cf. Fig. 9.1).

Fig. 9.5 Outsourcing of a supplier-run business process

9 Capability-Driven Development 169

A contract specifies operative conditions, such as commodity, type of measurement
and the receivers’ market role, upon which the service provision shall take care of
failed MSCONS process instances. However, currently the service is completely
manually operated and lacks a context-aware supporting system.

9.5.3 Capability Model

Balance supplier and grid access providers likewise expect from the BSP the
capability to clear failed instances of market communication processes in a timely
fashion and at low costs. In order to address this need with a CDD approach, a
capability model has been developed, as shown in Fig. 9.6.

The model follows a goals first approach, i.e., capabilities are subordinate to an
enterprise’s vital goals. In the current use case, the goal of Optimization of case
throughput drives the need for the capability Clearing of failed instances. Note that
the SIV group’s goals as illustrated in Fig. 9.6 are related to the use case and not
necessarily derived from the requirements concerning the CDD method, as speci-
fied in Sect. 9.2.3. The implementation of this capability requires the execution of
some business processes within the BSP’s environment. Details on this process—
which is typically modeled using the BPMN language—are shown in Fig. 9.8.

Context Model. In Fig. 9.6, the elements Context Set, Context Element and
Measurable Property make those factors explicit that are relevant once the

Fig. 9.6 Simplified capability model for the use case

170 H. Koç et al.

capability in question is to be transferred to a different application context. An
example of such an application context is a newly established market role.4

• A Context Element captures any characteristic information about a given entity
[16].

• Measurable Property refers to any attribute that is to be measured in order to
obtain the value of a context element.

• Capability deployment is usually subject to contextual restrictions. To capture
this notion, context elements may be bound to Context Ranges.

• For each capability, all associated context ranges are grouped into a Context Set,
such that each combination of context ranges constitutes an application context.

For the MSCONS scenario, important contextual factors are:

• the type of consumption measurement (e.g., the service may apply to meter
readings only or to time series only),

• the commodity that is delivered to the consumer,
• the critical backlog for the client.

For each of these context elements exists a measurable property, which allows
for the calculation of the context element’s value. Such measurable properties may
be obtained from the corresponding fields in the underlying contract, as illustrated
in Fig. 9.6.

In a more general sense, even the message format itself may be considered a
context element, i.e., the MSCONS clearing capability may well be extended to
other EDIFACT formats, such as UTILMD and INVOIC.

Besides these factors, further context elements exist that are usually associated
with the individual processing failure and determine the proper clearing procedure.
All of these factors may be considered as local context since they refer to only a
single client. We speak of global context if context data from all clients is aggre-
gated to high-level key indicators. Such quantities can offer enhanced functional-
ities to the BSP, especially regarding the proactive allocation of human resources.

9.5.4 Clearing Center

The application of the CDD approach to the use scenario described in the last
section has led to the notion of a Clearing Center (cf. Fig. 9.7). This subsection
details the clearing center from a conceptual point of view.

The clearing center is an integrated application that comprises the components
CCP, CNA and CDA (cf. Sect. 9.4.2). It is the technological platform that

4In 2011, German regulators have created the additional roles metered data collector and meter
operator, which has increased the complexity of the utility market.

9 Capability-Driven Development 171

implements for the BSP the capability clearing of failed instances as described in
the previous section (cf. Sect. 9.5.3; Fig. 9.6).

Upon the occurrence of a data processing failure in the client’s environment, an
exception is thrown. This event immediately triggers the creation of a corrective
process instance in the BSP’s system. Alongside with the exception, the relevant
case data such as the conflicting file (MSCONS) is also forwarded to the BSP.

In order to clear the failed instances, there are a number of important context
elements that need to be captured by the CCP and then evaluated and navigated by
the CNA. These elements will help to significantly extend and enhance the as-is
functionality of the BSP.

Contract. The contract between client and BSP is changeable but not volatile. It
may specify quantities such as a list of commodities that are to be supported, a
critical threshold of the client’s backlog, and the client’s market role.

Critical Backlog. The backlog tells the BSP the current number of outstanding
failed instances at the client’s side. In a simple scenario, action of the BSP may be
required if the current backlog is greater than some contractually specified critical
backlog. More realistically, this decision may also depend on other context factors,
thereby offering greater flexibility and responsiveness to the client’s demands.

Availability. The availability of BSP resources may also influence the runtime
adjustments at the first variation point. This factor may be captured by binding an
associated context element to the personnel deployment plan.

Fig. 9.7 Envisioned architecture of the Clearing Center

172 H. Koç et al.

Figure 9.8 shows a business process that implements the clearing capability. It
has two variation points, where each of them is driven by the context and depends
on runtime adjustments done by the CNA.

Variation Point 1. The purpose of this variation point is to automatically
determine whether action is to be taken by the BSP or not. This decision completely
depends on the current context, which is accordingly evaluated by the task Eval
Ctx1. Note that context may refer not only to the client’s but also to the BSP’s side.

The variation point has two possible outcomes, depending on whether the BSP is
expected to do the clearing of the current case or not. In the latter event, the case is
left with the client. However, statistical data may be collected by the CDA to
support the client’s future decision making.

In the former event, the BSP shall take action to clear the failed MSCONS
process instance. As this decision is context-driven and the context may change
over time, there can be no simple built-in rule that directs the control flow of the
business process. Rather, the relevant information is external to the process. Again,
to support the client’s future decision making, statistical data are collected and
made accessible for the client.

Variation Point 2. This variation point enables adjustments that substitute at
runtime the actual clearing procedure by a proper business process (pattern).
Patterns are recurring building blocks that may be used in many solutions. They
may be considered best practices, so, in general, they can be anticipated at design
time. A thorough analysis carried out to support the current use case has suggested
that many of such patterns really exist and that they play a crucial role for delivering
the BSP’s capability to the clients.

Fig. 9.8 Clearing business process as executed by the BSP

9 Capability-Driven Development 173

Depending on the outcome of the task Eval Ctx2, the appropriate Pattern x is
selected. However, the relevant context can only be determined at runtime.
Navigation through the context requires access to data that are external to the
current process instance, such as the contract between client and the BSP.

All of the pre-built patterns are registered in a CNA-held repository as shown in
Fig. 9.7. Note that patterns may also contain process variants that correspond to
minor deviations from a given best practice.

9.6 Summary and Recommendations

Enterprises operate in rapidly changing environments, which requires the imple-
mentation of adaptable solutions. This work introduced a capability management
approach to tackle these challenges. The CDD approach consists primarily of a
component-based methodology which at its core supports the modeling of appli-
cation contexts (REQ4 and REQ5) and required adaptions of business services and
tools supporting the CDD implementation at design time and runtime (REQ6,
REQ7).

Experiences from evaluating capability management show so far that capability
management is in particular promising if the following conditions are given:

• the business service under consideration exists in different variations and is
subject to changes as soon as the application context changes,

• the business service is subject to the changes, e.g., by regulatory authorities or
changing market environments, which cannot be planned, anticipated or con-
trolled by the service provider,

• in order to optimize the service, different information sources have to be inte-
grated during runtime.

When introducing CDD into an enterprise, the existing development method-
ologies and technologies do not have to be replaced or severely updated (REQ8).
Capability management and CDD can be implemented as complementary approach.
However, competences in CDD have to be developed within the enterprise.

Within the use case-driven CaaS project, three different strategies for capability
modeling and design have been explored and elaborated for a flexible use in dif-
ferent industrial settings (REQ3). Goals-first capability design starts with the
analysis of enterprise goals and defines how they can be reached in terms of
capabilities, business processes and which context properties should be considered.
Goals-first strategy is recommended for the enterprises that already have defined
top-level organizational goals. The process-first capability design proposes that the
starting point of the capability design is a process underlying a business service.
The business service is further refined and extended by adding context awareness
and adaptability, so as to establish a capability that can deliver this service in
varying circumstances. Selecting this strategy requires the existence of detailed

174 H. Koç et al.

business process specifications or process-oriented culture. Last but not least,
concepts-first capability design analyzes the existing knowledge structures in an
enterprise and their relationships with the application context, which are essentially
captured as concept models. For this, enterprises need pre-defined management
structures, product structures or other conceptual models. A detailed comparison of
the strategies can be found in [34].

The CDD use and “capability thinking” improves the understanding how
business goals and technologies for implementing them are related. This contributes
to the alignment of business and IT. In CDD, this is supported by the close rela-
tionship between enterprise model (includes goals, KPIs, business processes),
capability design (includes explicitly defined application contexts) and capability
delivery (runtime level for connecting the technological implementations in dif-
ferent application contexts). This kind of modeling can be used to analyze which
IT-supported services would be suitable potentially for other customer groups or
markets and what adaptations would have to be made for this purpose (REQ1).

By adopting the goals-first strategy in a use case from utilities industry, we
developed a capability model to demonstrate the feasibility of the approach. The
application of the CDD approach to the use case scenario described in Sect. 9.5 has
led to the notion of a clearing center; a context-aware system offering flexible
services responsive to customer demands (REQ2). Moreover, by modeling the
goals and related business processes of the SIV group as well as making the
application context explicit, it should be possible to develop new services in the
continuously changing energy distribution market and/or increase the usage of
existing services (REQ9). Experiences regarding the economic effects of CDD so
far cannot be reported as the number of cases and the time frame available is not
sufficient.

References

1. Goebel, C., Jacobsen, H., del Razo, V., et al.: Energy Informatics. Bus. Inf. Syst Eng 6(1), 25–
31 (2014). doi:10.1007/s12599-013-0304-2

2. España, S., González, T., Grabis, J., et al.: Capability-driven development of a SOA platform:
a case study. In: Advanced Information Systems Engineering Workshops, LNBIP Vol. 178.
Springer International Publishing, Cham, pp 100–111 (2014)

3. Bērziša, S., Bravos, G., Gonzalez, T., et al.: Capability driven development: an approach to
designing digital enterprises. Bus. Inf. Syst. Eng. 57(1), 15–25 (2015). doi:10.1007/s12599-
014-0362-0

4. Bravos, G., Grabis, J., Henkel, M., et al.: Supporting evolving organizations: IS development
methodology goals. In: Perspectives in Business Informatics Research, LNBIP, vol. 194,
pp. 158–171. Springer International Publishing (2014)

5. Zdravkovic, J., Stirna, J., Kuhr, J., et al.: Requirements engineering for capability driven
development. In: The Practice of Enterprise Modeling, LNBIP, vol. 197, pp. 193–207.
Springer, Berlin (2014)

6. Oxenham, D.: The next great challenges in systems thinking: a defence perspective. Civil Eng.
Environ. Syst. 27(3), 231–241 (2010). doi:10.1080/10286608.2010.482661

9 Capability-Driven Development 175

http://dx.doi.org/10.1007/s12599-013-0304-2
http://dx.doi.org/10.1007/s12599-014-0362-0
http://dx.doi.org/10.1007/s12599-014-0362-0
http://dx.doi.org/10.1080/10286608.2010.482661

7. Boonpattarakan, A.: Model of Thai small and medium sized enterprises’ organizational
capabilities: review and verification. JMR 4(3), (2012). doi:10.5296/jmr.v4i3.1557

8. BKCASE Editorial Board: The guide to the systems engineering body of knowledge
(SEBoK), v. 1.3. R.D. Adcock (EIC). The Trustees of the Stevens Institute of Technology,
Hoboken, NJ (2014). Accessed 12 July 2015. www.sebokwiki.org. BKCASE is managed and
maintained by the Stevens Institute of Technology Systems Engineering Research Center, the
International Council on Systems Engineering, and the Institute of Electrical and Electronics
Engineers Computer Society

9. Sandkuhl, K., Koç, H., Stirna, J.: Context-aware business services: technological support for
business and IT-alignment. In: Business Information Systems Workshops, LNBIP, vol. 183,
pp. 190–201. Springer International Publishing (2014)

10. Stirna, J., Grabis, J., Henkel, M., et al.: Capability driven development—an approach to
support evolving organizations. In: The Practice of Enterprise Modeling, LNBIP, vol. 134,
pp. 117–131. Springer, Berlin (2012)

11. Chen, J., Tsou, H.: Performance effects of 5IT6 capability, service process innovation, and the
mediating role of customer service. J. Eng. Tech. Manage. 29(1), 71–94 (2012). doi:10.1016/j.
jengtecman.2011.09.007

12. Ahlemann, F., Stettiner, E., Messerschmidt, M., et al.: Strategic Enterprise Architecture
Management. Springer, Berlin Heidelberg (2012)

13. Antunes, G., Barateiro. J., Becker, C., et al.: Modeling contextual concerns in enterprise
architecture. In: 15th IEEE International Enterprise Distributed Object Computing Conference
Workshops (EDOCW), pp. 3–10 (2011)

14. Wißotzki, M., Koç, H., Weichert, T., et al.: Development of an Enterprise Architecture
Management Capability Catalog. In: Perspectives in Business Informatics Research, LNBIP,
vol. 158, pp. 112–126. Springer, Berlin (2013)

15. Lacity, M.C., Khan, S.A., Willcocks, L.P.: A review of the IT outsourcing literature: insights
for practice. J. Strateg. Inf. Syst. 18(3), 130–146 (2009). doi:10.1016/j.jsis.2009.06.002

16. Dey, A.: Understanding and using context. Pers Ubiquitous Comput. 5(1), 4–7 (2001). doi:10.
1007/s007790170019

17. Winograd, T.: Architectures for Context. Human-Comp. Interact. 16(2), 401–419 (2001).
doi:10.1207/S15327051HCI16234_18

18. Bazire, M., Brézillon, P.: Understanding context before using it. In: Modeling and Using
Context, LNCS, vol, 3554, pp. 29–40. Springer, Berlin (2005)

19. Strang, T., Linnhoff-Popien, C.: A context modeling survey. In: Workshop on Advanced
Context Modelling, Reasoning and Management, UbiComp 2004—The Sixth International
Conference on Ubiquitous Computing, Nottingham/England, pp 31–41 (2004)

20. Gu, T., Wang, X.H., Pung, H.K., et al.: An ontology-based context model in intelligent
environments. In: Proceedings of Communication Networks and Distributed Systems
Modelling and Simulation Conference, pp. 270–275 (2004)

21. Koç, H., Hennig, E., Jastram, S., et al.: State of the art in context modelling—a systematic
literature review. In: Advanced Information Systems Engineering Workshops, LNBIP, vol.
178, pp. 53–64. Springer International Publishing, Cham (2014)

22. Kitchenham, B., Brereton, O.P., Budgen, D., et al.: Systematic literature reviews in software
engineering—a systematic literature review. Inf. Softw. Technol. 51(1), 7–15 (2009). doi:10.
1016/j.infsof.2008.09.009

23. Schrader, U., Hennig-Thurau, T.: VHB-JOURQUAL2: method, results, and implications of
the German academic association for business research’s journal ranking, 14 Mar 2010

24. Peffers, K., Ya, T.: Identifying and evaluating the universe of outlets for information systems
research: ranking the journals. J. Inf. Technol. Theory Appl. (JITTA) 5(1) (2003)

25. WI: Die Sprecher der Wissenschaftlichen Kommission Wirtschaftsinformatik im Verband der
Hochschullehrer für Betriebswirtschaft und des Fachbereichs Wirtschaftsinformatik der
Gesellschaft für Informatik (GI-FB WI-Orientierungslisten. Wirtschaftsinformatik 50(2), 155–
163. doi:10.1365/s11576-008-0040-2

176 H. Koç et al.

http://dx.doi.org/10.5296/jmr.v4i3.1557
http://www.sebokwiki.org
http://dx.doi.org/10.1016/j.jengtecman.2011.09.007
http://dx.doi.org/10.1016/j.jengtecman.2011.09.007
http://dx.doi.org/10.1016/j.jsis.2009.06.002
http://dx.doi.org/10.1007/s007790170019
http://dx.doi.org/10.1007/s007790170019
http://dx.doi.org/10.1207/S15327051HCI16234_18
http://dx.doi.org/10.1016/j.infsof.2008.09.009
http://dx.doi.org/10.1016/j.infsof.2008.09.009
http://dx.doi.org/10.1365/s11576-008-0040-2

26. Goldkuhl, G., Lind, M., Seigerroth, U.: Method integration: the need for a learning
perspective. Softw. IEE Proc. 145(4), 113–118 (1998). doi:10.1049/ip-sen:19982197

27. Koç, H.: Methods in designing and developing capabilities: a systematic mapping study. In:
The Practice of Enterprise Modelling, LNBIP, vol. 235, pp. 209–222. Springer International
Publishing (2015)

28. Niehaves, B., Plattfaut, R., Sarker, S.: Understanding dynamic IS capabilities for effective
process change: a theoretical framework and an empirical application. ICIS 2011 Proceedings
(2011)

29. Ortbach, K., Plattfaut, R., Poppelbuß, J., et al.: A dynamic capability-based framework for
business process management: theorizing and empirical application. In: 2012 45th Hawaii
International Conference on System Sciences (HICSS), pp. 4287–4296 (2012)

30. Cui, M., Pan, S.L.: Developing focal capabilities for e-commerce adoption: a resource
orchestration perspective. Inf. Manag. 52(2), 200–209 (2015). doi:10.1016/j.im.2014.08.006

31. Montealegre, R.: A process model of capability development: lessons from the electronic
commerce strategy at Bolsa de Valores de Guayaquil. Organ. Sci. 13(5), 514–531 (2002).
doi:10.1287/orsc.13.5.514.7808

32. Zhou, J., Zuo, M., Li, Q., et al.: Developing an agile it capability accompanying business’s fast
growing: a case study on a Chinese e-commerce company Ho Chi Minh City. In: PACIS 2012
Proceedings, Paper 24 (2012)

33. Su, N.: Internationalization strategies of IT vendors from emerging economies: the case of
China. In: ICIS 2008 Proceedings. Paper 96 (2008)

34. España, S., Grabis, J., Henkel, M., et al.: Strategies for capability modelling: analysis based on
initial experiences. In: Advanced Information Systems Engineering Workshops, LNBIP,
vol. 215, pp. 40–52. Springer International Publishing, Cham (2015)

35. Sandkuhl, K., Stirna, J., Persson, A., et al.: Enterprise Modeling: Tackling Business
Challenges with the 4EM Method. The Enterprise Engineering Series. Springer, Heidelberg
(2014)

36. Zdravkovic, J., Stirna, J., Henkel, M., et al.: Modeling business capabilities and context
dependent delivery by cloud services. In: Advanced Information Systems Engineering, LNCS,
vol. 7908, pp. 369–383. Springer, Berlin (2013)

9 Capability-Driven Development 177

http://dx.doi.org/10.1049/ip-sen:19982197
http://dx.doi.org/10.1016/j.im.2014.08.006
http://dx.doi.org/10.1287/orsc.13.5.514.7808

Chapter 10
Exploring the Nature of Capability
Research

Matthias Wißotzki

Abstract Triggered by the progressive change from an industrial to an digital
information society, not only social but also economic conditions are modified. Fast
shifting business models and ever shorter product lifecycles are just few reasons
why modern enterprises need a strategy how to deal with those unpredictable
changes in order to stay competitive. Therefore, the concept of capability-driven
management gets more and more attention by executives and scientists. In the last
decade IS and management journals as well as conferences were publishing an
increasing number of capability related articles, but a common understanding
corresponding the identification of capabilities, their management, types or ele-
ments seems to be not existing. This work encapsulates the body of capability
literature to provide an overview about capability research investigations over the
last 15 years.

10.1 Introduction

Especially in times of virtualization enterprises are confronted with a lot of different
challenges triggered by new technologies like big data, cloud computing, social
business or cyber-physical systems. To handle these challenges, enterprises are
using a composition of different management concepts. Especially, adaptability of
IT focused business models or business and IT-alignment is supported by disci-
plines like Enterprise Architecture Management (EAM), Service Oriented
Architecture (SOA) or IT Management (ITM). These disciplines expected to con-
tribute to the above challenges by capturing the essential structures and processes of
an enterprise on different architectural levels (e.g., business, data, application,
technology), showing dependencies, supporting strategic planning and systematic
development [41] (Fig. 10.1).

M. Wißotzki (&)
University of Rostock, Rostock, Germany
e-mail: matthias.wissotzki@uni-rostock.de

© Springer International Publishing Switzerland 2016
E. El-Sheikh et al. (eds.), Emerging Trends in the Evolution of Service-Oriented
and Enterprise Architectures, Intelligent Systems Reference Library 111,
DOI 10.1007/978-3-319-40564-3_10

179

However, enterprises have to reach certain goals through developing and
implementing its strategies [40]. In order to reach these goals capability is a known
term in science and practice. Capabilities appear in quite all functional areas of an
enterprise from Business Process Management over Knowledge Management up to
IT Management. Thus, understanding and methodology varies considerably from
one approach to another which represents a challenge for companies to start in
depth with capability driven management. Consequently, there is still an analytical
lack of understanding and methods, regarding the commonalities and differences
between different capability types and their research topics [14, 26, 35, 41].

What are capabilities of an enterprise and how they put together? Since there
are plenty of books, journals and conference proceedings dealing with capabilities.
This article deals with an extensive qualitative analysis within the capability
research area intending a current state of research investigations. In order to figure
out which research topics different capability types are referred to and to find
similarities or differences between commonly used capability approaches, we used a
systematic literature review approach executed in a larger exploration. Therefore,
21 persons in six teams from the Universities of Reutlingen and Rostock performed
same structured SLAs based on the approach defined by Kitchenham [20].

10.2 Research Approach

This review should provide an overview about the capability research investigation
in terms of abilities within enterprise context (not human or individual context)
during the past 15 years. Therefore, we used a systematic literature review that
supports a systematically identification, evaluation and interpretation of relevant
sources in order to answer defined research questions by using a standardized
process [20, 30]. Referred to [20] we performed three key stages and corresponding
sub-steps that need to be processed to conduct a SLA. The first stage deals with the
review planning and provides research questions (RQ), literature resources and time
frame definitions for the investigation (Sect. 10.3). The second stage is called
performing the review (Sect. 10.4), here we selected relevant articles and collect
data for answering the RQs, realized in the final step: review report (Sect. 10.5), our
conclusion and outlook is presented in Sect. 10.6.

10.3 Planning the Review

Considering the purposes of this work to be transparent, conclusive and give a
comprehensive latest state, research questions had to deal with topics like research
activity, research approaches, and statistics of identified concepts. All six teams
received the same precisely described SLA process, same set of RQs and time
frame. Just the literature source and databases were allocated in a team specific

180 M. Wißotzki

manner. The first review was executed in November/December 2014. Due to the
fact that not all reviewed conferences and journals submitted their articles at the end
of 2014, the author performed a second review just for 2014 in July 2015 by
following exactly the same SLR process.

10.3.1 Motivating Research Questions

The first stage our investigation starts with the definition of research questions (RQ):

1. How has capability research been conducted within the last 15 years?
2. What research subjects are being investigated?
3. Who is active in this research area?
4. What research approaches are being used?
5. What capability definitions and descriptive elements are being used?

TheseRQs are answered based on found articles classified as relevant in Sect. 10.4.

Fig. 10.1 Relationships between capabilities and EA (according to William and Rosen [39])

10 Exploring the Nature of Capability Research 181

10.3.2 Source Selection

After identifying research questions the selection of right sources has to be defined.
With the intention to work on journals and conferences with high scientific impact,
we formulated several criterions for the selection.

The first criterion relates to the journal and conference ranking that we assigned
by the CORE Journal [3] and CORE Conference Ranking [9]. Due to the fact that
not all selected journals and conferences rankings are provided by CORE [3, 9] we
have been constrained to include another ranking provider like the Journal Quality
List [18]. Moreover, in order to support the ranking criterion we include the
H-Index (calculated by SCImago [32]) which represents another indicator for sci-
entific impact as well. According to these criterions, the selected journals and
conference have to be well established, have to be published on a regular basis in
order to cover recent research topics and trends.

The published journals and papers had to be freely available. Therefore, the
selected journals and conferences had to provide their publications on databases
(DB) that are accessible by both university networks. Furthermore, these databases
have to support the formulation of user-defined search-strings, which ensures that
the reviewer teams could use unified terms and search rules.

Table 10.1 illustrates just an extract of thirty literature sources that fulfil these
criteria The first column includes the literature source, the second informs about the
utilized databases and the third about the impact. For instance, we analyzed the
whole AISeL basket of journals and conferences supplemented by a selection of
impact and content relevant journals and conferences known former investigations
[42], like the Journal of Management, Information Systems Journal, The Practice of
Enterprise Modeling, Perspectives in Business Informatics Research or IEEE
International Conference on Commerce and Enterprise Computing.

10.3.3 Time Frame Selection

Identifying an appropriate time frame is considered to be the second step and
reflects a contemporary state of research. Nevertheless, which period of time seems
to be an appropriate one? For example, Simon et al. [34] selected a time frame of
23 years, McLean and DeLone [25] reviewed quite a half (1992 to mid-2002)
whereas Urbach et al. reduced the period again by selecting articles published
between 2003 and 2007 [30]. In the light of the above and in consideration of the
journal and conference lifecycles we have chosen the period from 2000 to 2014.
Thus, we searched for articles dealing with capability related topics published in
defined literature sources within the last 15 years.

182 M. Wißotzki

10.4 Performing the Review

This phase includes selection of articles, relevance evaluation, data extraction, and
data synthesis tasks. On the basis of that stage, we figured out which articles should
be included in the final data extraction and synthesis regarding answering defined
research questions.

10.4.1 Article Selection

In order to choose relevant articles from journals and conferences, search terms
must be figured out and corresponding search strings has to be defined in the same
way for all teams. Search terms should cover all possible keywords that are used to
gather content-related articles. Moreover, in order to achieve an adequate result it
was important to consider possible abbreviations and synonyms of the origin search
term. The term ‘Capability’ is a quite strong term itself, because a common
abbreviation does not exist [22, 27]. According to Refs. [22, 27] competence, skill,
ability, aptitude are common synonyms, but they are commonly used in context of

Table 10.1 Selection of literature sources and databases

Literature source description DB Rank/H-index

ISJ—Information systems journal [18] A [8, 17]
H-Index: 52 [32]

SoSyM—Journal on software and systems modeling [43] B [8]
H-Index: 28 [32]

JoM—Journal of management [16] A [17]
H-Index 114 [32]

SMJ—Strategic management journal [18] A [17]
H-Index 166 [32]

MISQ—Management information systems quarterly [1, 10] A [17]
H-Index 132 [32]

JAIS—Journal of the association of information systems [1] A [8]
H-Index 31 [32]

CAIS—Communications of the association for information
systems

[1] A [8]
H-Index 15 [32]

BISE—Business and information systems engineering [1] n/a
H-Index 18 [32]

SJIS—Scandinavian journal of information systems [1] A [8]
H-Index 2

CAiSE—International conference on advanced information
systems engineering

[43] A [9]

ECIS—European conference on information systems [1] A [9]

HICSS—Hawaii international conference on system sciences [15] A [9]

10 Exploring the Nature of Capability Research 183

persons and individuals and not that relevant to describe the concept in terms of the
defined research field (Sect. 10.2). Therefore, the following basis search terms were
defined: capability and capabilities. In order to get articles primary dealing with a
capability topic, it is assumed that the search terms are included in title or abstract.
In particular, to answer RQ five we added secondary search terms to our search
string that are optionally related to basis ones. Thus, the following conceptual
search string for all reviews was defined:

((“Capability” OR “Capabilities”) AND (“Identification” OR “Assessment” OR
“Evaluation” OR “Framework” OR “Engineering” OR “Development” OR “Maturity”
OR “Definition”))

In this context, conceptual means that the search string syntax has to be slightly
adjusted to the specific advanced search features of used databases (Table 10.1).
Under consideration of the defined time frame and the titles and abstracts search all
six teams performed the same relevance check procedure in order to eliminate the
articles of the whole set of search results, that do not refer to the following
restrictions: (1) The article has been deemed relevant by reading the abstract. (2) A
search for primary and secondary search terms within the article was performed and
the content found was classified as relevant. (3) If in doubt about the classification,
the article was flagged for a second review (possible relevant). In order to increase
the quality of the article selection process, different team members have performed
the relevance classification of single articles. In order to evaluate article relevance
we defined three categories: irrelevant, possible relevant and relevant. Articles
classified as possible relevant have always been reviewed by second team member
(second control). All classified as relevant articles were finally check by the project
lead (third control).

Finally, after eliminating non-relevant articles and a third relevance check by the
author we identified a total number of 190 relevant articles for answering our RQs.
144/191 articles were published in 18 conference proceedings and 46/190 articles in
12 journals. More than thirty countries and over 400 different authors were
involved.

10.4.2 Data Collection

This section describes the data collection activities. Therefore, relevant classified
papers were completely read, analyzed, data extracted and documented under
consideration of the following aspects: journal/conference name, title, publication
year, focus, research topic and method, authors and affiliation, capability definitions
and descriptive/context elements, methods/frameworks/processes affiliation. We
used these aspects as columns for our literature database and stored found infor-
mation for each article, which provides the base for our review report.

184 M. Wißotzki

10.5 Review Report

In order to answer the defined RQs this section presents and illustrates the findings
and interpretations of the extracted data.

RQ1: How has capability research been conducted within the last 15 years?

In general, capability research has become more and more popular exemplified
by an increasing trend of publications since 2000 (dotted line in Fig. 10.2). The first
research activity we identified covered a resource-based perspective on IT capa-
bilities and was published by the MISQ in 2000 [7], followed by an ECIS con-
ference article regarding a theory of architectural knowledge integration capability
in 2001 [36]. The first two peaks could be identified within half of the whole time
frame. In 2005 and 2006 we counted 12 publications each with a 2/3 conference
distribution. Nevertheless, from a journal perspective especially the MISQ pub-
lished three of four noticeable articles regarding business and dynamic capability
topics in 2006. Most intensive activities we recognized between 2009 and 2014
with over 20 articles/year in average with a majority of conference publications
(76 %). Furthermore, it we documented a huge raise of published articles in 2011
compared to 2010. In this year the number of conference articles raises from 8 to 17
whereas the number of journal articles increases just by one. We locate an
increasing interest in IT capabilities by researchers and practitioners, because more
than half of the articles (10) were focused on that capability type. In 2008 we
recognized a trend slump by more than 50 % from average 12.3 article/year down

Fig. 10.2 Trend and number or relevant publications per year

10 Exploring the Nature of Capability Research 185

to 6 papers. One reason for such an abrupt drift could be that the strongest publisher
failed their average e.g., conferences like HICCS (0/2.1) with an average of 2.1
article/year published no article in 2008 or ECIS (1/1.8) with just one article.
Journals like MISQ (0/1.34) and CAIS (0/0.54) published no articles as well in
2008.

For 2014, it cannot exclude that the number of 20 publications (found in the first
run) could continue to rise, because not all analyzed conferences and journals
already submitted their publications to the analyzed databases by the end of the year
2014. Therefore, we requested the literature sources (same procedure like in the first
run) again, especially focused on 2014 (July 2015) and we found additional relevant
7 articles not published in December 2014 (5 PACIS, 1 MCIS). Finally the total
number of relevant articles increases to 26 for 2014.

Not the amount of published articles per year but also the amount of articles
published by each single journal or conference can be illustrated. To improve
readability, Fig. 10.3 just illustrates journals and conference with more than one
relevant publication at all.

The vast majority (32/191 articles) of article publications is attributable to the
HICSS (17 %), followed by ECIS (15 %) and AMCIS (10 %). The MISQ (9 %)
tops the list of journal article, followed by the JAIS (4 %) and the CAIS (4 %). Five
journals ISJ, S and SMJ, SJIS, JGIM, IJKM, BISE published only one article in
recent years and should be considered optional for future studies. Nevertheless,
lifecycle information of journals and conferences should be considered in order to
avoid premature decision regarding the thematic importance. For instance, BISE
starts publishing in English since 2009, but the German version starts publishing in
1959 with changing names over the last decades and already enjoyed a wide
standing in IS research (e.g., 1990–2008: Wirtschaftsinformatik). Thus, the number
of article per year, and lifecycle information of a literature source combined with its
impact (e.g., H-Index, Ranking, Impact Factor) are important aspects for the
argumentation in terms of answering research questions.

18

2

7 8

2 3

26

32

13

2

8

2 3

17

22

2

6
3 3

0

5

10

15

20

25

30

35

Fig. 10.3 Articles per journal and conference per year >1

186 M. Wißotzki

RQ2: What research subjects are being investigated?

In the field of capabilities research the diversity of research investigations are
increasingly widespread. In order to give an overview, we categorize all relevant
articles and assign them to the following eight subjects:

(1) Business Strategy Management: contains all articles regarding strategic
issues of a company like Process Change Management, Enterprise Transformation,
organizational change, dynamic capabilities or the alignment of a company on
E-Business, with positive effect on the business outcomes. (2) Knowledge
Management: includes articles in the topic of Knowledge Management (e.g.,
Knowledge Transfer, Knowledge Integration, Data-Warehouse). (3) Software
Development: covers articles that explicitly handle Software Engineering and
Development or refer to the Capability Maturity Model. (4) Project Management:
contains articles with an explicit referral to the topic of Project Management.
(5) Architecture Management: covers articles with a holistic view on enterprise
organization and architecture. Also includes elements of business process man-
agement, corporate performance management and alliance performance. (6) IT-
Management: includes articles within the field of Information Technology- and
Information System Management. This category contains the development,
implementation and measurement of IT Systems as well as their impact on other
categories. (NOTE: this category does not contain papers applied to the Software
Development category). (7) Supplier and Contract Management: covers articles
regarding suppliers or Supply Chain Management, as well as Contract Management
and Sourcing Strategies. (8) Development and Assessment processes: contains
articles within the topic of Business Process Management focused on development
and assessment/measurement processes.

Several articles refer to more than one of the listed subjects or describe the
impact of one subject to another. Therefore, these articles were assigned to more
than one subject category. Figure 10.4 shows the number of articles assigned to
their research subjects.

The reviewed scientific literature does not contain explicit articles about capa-
bility management, but we identified some articles regarding the nature of

41

24

6

3

2

72

1

11

8

10

5

Business Strategy Management

Knowledge Management

Project Management

Process Management

Innovation Management

IT Management

Business Performance Management

Supplier & Contract Management

Development and Assessment processes

Architecture Management

Software Development

Fig. 10.4 Number of articles assigned to research subject

10 Exploring the Nature of Capability Research 187

capabilities and capability modeling. Aside from software development and project
management all subjects were discussed by more than one paper. Especially
IT-Management (69) and Business Strategy Management (41) are focused topics
within capability investigations. Knowledge Management (24), Supplier and
Contract Management (10), Software Development (4), Project Management
(6) and Architecture Management (10) would play a minor role. We recognized a
fluent shift between Business Strategy Management and IT-Management, because
former ones uses more and more IT-Management strategies and its capabilities for
e.g., implementing business model, digitalize supply chains or communication.
They represent more than 50 % of the reviewed articles.

RQ3: Who is active in this research area?

In order to identify the authors and institutes, who are active in the respective
research area, responsible authors and institutes have been linked to each article.
The frequency of articles published in relation to the respective authors and insti-
tutes can offer a better idea of who is engaged with capability topics in the
long-term. Figure 10.5 lists all these countries that published more than three
articles the last 15 years.

We identified 30 different countries whereas the USA dominates the list of
publication with more than 67 published articles within conferences and journals
(2/3 conference articles). Furthermore, it is apparent that German (20) and Chinese
(18) research institutes and scientists follow up investigations concerning capability
topics. In addition to these very active countries, there are also Australia (17) and
Canada (10), which seems to be interested in capability research topics. It is con-
spicuous that nearly all involved research institutes are resident in the world’s
leading industrial nations.

Furthermore, the publication activities can be differentiated regarding the pub-
lishing institutions. For instance, a drill down of the USA basket of published
articles shows an evident tendency that especially in the South-East lots of insti-
tutions are dealing with capability topics. Figure 10.6 pictures an extract of insti-
tutions that has had more than one article. Most of them are universities like
University of Texas, Georgia State University or Emory University. Nevertheless,
University of Münster (Germany), City University of Hong Kong, RMIT

67

20 18 17 10 8 7 7 6 6 5

Fig. 10.5 Poblication per country >3

188 M. Wißotzki

University (Australia) or Queen’s University (Canada) represent additional exam-
ples that published at least two articles.

Only a small number of authors belong to a company instead of a university. For
instance, we discover companies like Sogeti Netherlands (Dedicated to Technology
and Testing Services), Centric (offers software solutions, IT outsourcing, business
process outsourcing and staffing services), Z-Sharp (offers IT and business service)
or alfabet AG (software company providing an EAM tool + consulting services).

Another interesting fact could be found when looking at the cited authors in
articles. Bhardwaj [7], Sambamurthy [31] and Helfat and Peteraf [12], each of them,
has been cited more than thousand times. It can be assumed that their work rep-
resents recognized scholars in the field. Nevertheless, within this work RQ3 was
answered focusing on publishing institutes and corresponding countries. Topics like
co-authorship or citation analysis are considered within the review, but not part of
this paper.

RQ4: What research approaches are being used?

Beside the article count of involved authors and their institutes, another inter-
esting point of a comprehensive analysis is important. Authors of relevant articles
used different research approaches and methods to acquire preferred results.
Focused on IS research, Wilde and Hess [38] classified two generally research
approaches, firstly, the design science research and secondly, behavioristic research
methods. Prototyping, simulation, reference modeling, conceptual -deductive,
argumentative deductive analysis and action research are mainly used in design
science research. Grounded theory, quantitative-empirical analysis,
qualitative-empirical analysis and case studies are behavioristic methods.

Figure 10.7 illustrates that quantitative- and qualitative-empirical analyses are
the most common research methods. They are often supported by methods like

Fig. 10.6 Publication per district in the USA

10 Exploring the Nature of Capability Research 189

literature analysis or reference modeling. The distribution of research methods
illustrates that capabilities have practical relevance, because *77 % of all research
methods were used with practical focus.

RQ5: What kind of capability definitions and descriptive elements are being used?

With RQ2 it has already been stated that relevant articles discussed different
research subjects. This situation and the diverse capability interpretations lead to a
variety of distinct views. Due to the huge amount of different viewpoints regarding
the term “capability”, it was obvious to establish a structure based on found defi-
nitions and its elements. Organizational capability, (strategic) technological capa-
bility, (strategic) business capability, IT knowledge integration, customer
orientation capability represent just a small set of identified viewpoints. In order to
differentiate capability-types we superimposed all found definitions and looked for
characteristics or elements that specify its type more detailed. Similarities have been
extracted, sorted and combined to the following capability types (A) and its basic
structure in terms of descriptive elements (B).

10.5.1 Types of Capabilities

The range of investigated research subjects contains IT-Management, Business
Process Management, Project Management, Supply Chain Management,
Knowledge Management and more. We started with a pre-categorization into

Fig. 10.7 Research approaches

190 M. Wißotzki

internal and external capabilities that is based on Wade and Hulland [37] and its
interpretation of how capabilities can be classified. Wade and Hulland speak of
inside-out, outside-in, and spanning capabilities while the inside-out capabilities
deal with internal affairs, outside-in with external affairs and spanning capabilities
involve both internal and external.

Referred to all analyzed articles we found four basic capability cluster
(Fig. 10.8). On the one hand the “Business Capability”, “IT-Capability” and “Core
Capability” that focus on internal operations, and on the other hand “Dynamic
Capabilities” that are mainly used within the enterprise’s environment. In the fol-
lowing, all capability types are explained in more detail.

IT-Capabilities (117): Using their own IT-capabilities enterprises are able to
mobilize IT-resources, “to leverage their IT infrastructure to provide accurate,
timely, and reliable data and information to users” [26], and to manage their IT
resources in order to realize agility. The central goal of IT-capability represents the
realization of business value and maintenance of competitive advantages in terms of
IT services and/or IT products. Furthermore, IT-capabilities are used to develop,
mediate and leverage other organizational capabilities—e.g., business and core
capabilities—and thus, are sometimes described as subtype or subcategory in the
literature [29]. The IT Knowledge Integration Capability represents a subtype that
concatenates knowledge management and IT resources [6]. Examples for synonyms
or subcategories we found in literature are: IS-capability [13], IT infrastructure
integration capability [29], IT infrastructure capability [23] or IT Knowledge
Integration Capability [6].

Business Capabilities (73): Referred to a corporate business goal the aim of
business capabilities is to activate, use and maintain resources for specific business
activities. These capabilities may belong to different business management sections
as seen in Fig. 10.8. For instance, customer management capabilities enable the

Fig. 10.8 Capability types and possible subsets

10 Exploring the Nature of Capability Research 191

detection and determination of requirements and preferences to a company’s cus-
tomer. Process management capabilities are set in product delivery, non-product
and non-service business growth processes like support processes, which important
in contemporary business environments as well. To mention another example,
performance management capabilities are used to “design and manage an effective
performance measurement and analysis system, including selection of appropriate
metrics, gathering of data from appropriate sources of performance, analysis of data
to support managerial decision making[…]” [7, 23, 26].

Examples for synonyms or subcategories we found in literature are: Supply
Chain Process Integration Capability [29], Customer Orientation Capability [33],
Manufacturing Capability [4], Online Informational Capability [5], Marketing and
Distribution Capability [8].

Dynamic Capabilities (73): The focus of dynamic capabilities is broader than of
all others since a dynamic capability deals directly with the business environment
and its contemporary dynamic behavior. In case an enterprise acquired dynamic
capabilities, it has the ability to be responsive to alterations of enterprise environ-
ment by e.g., recombining resources. Thus, enterprises are able to identify changes
within the environment and to respond to it. Dynamic capabilities are steadily used
in combination with other capabilities in order to maximize performance or goals
[19]. The Innovative Capability subtype refers to the development and supply of
both new products and services.

Core Capabilities (13): Core capabilities are described in general terms. They
represent the execution of core competencies within a business process for the
purpose of providing either products or services. In addition, core capabilities are
supported by both enabling (these capabilities that are necessary but not sufficient)
and supplemental (even though they create an added value, they are replaceable)
capabilities. Examples for synonyms or subcategories we found in literature are:
core BPM capabilities [24].

EAM Capabilities (19): An EAM capability describes the specific combination
of know-how in terms of organizational knowledge, procedures and resources able
to externalize this knowledge in a specific process with appropriated and available
resources to achieve a specific outcome for a defined strategic initiative that change
an EA.

10.5.2 Descriptive Capability Elements

Due to the wide spectrum of research subjects and capability-type assignments
presented above, it was hard to find a general “capability” explanation in a way that
comprises all research subjects and types occurred. At a first glance, we just sum-
marized found capability types and extracted its capability definitions in order to
evolve a comprising understanding for it which results in the following definition:
“In general a capability involves the ability of an organization to use and combine
available tangible and intangible resources to accomplish or enhance business

192 M. Wißotzki

processes and tasks in order to reach predefined goals”. Questions like “How (can
capabilities be enabled)?”, “What (can be done with these capabilities)?” and “Why
(is the usage of these capabilities useful)?” can be generally described by using this
general description. Nevertheless, with this kind of capability picture we have not
made any progress in order to deliver detailed descriptions for different capability
types and answer questions like: “What does my organization need to be equipped
with an EAM capability like Impact Analysis IS Architecture? What are the key
elements of my business capability Customer Management? With this a definition
we are not able to answer such questions. Thus, on a second attempt we analyzed
relevant articles for potential descriptive capability elements. For example, we start
this investigation by analyzing the usage of most obvious descriptive elements of a
capability. Amit and Schoemaker already described capabilities as abilities that “[…]
refer to an organization’s ability to assemble, integrate, and deploy valued resources,
usually, in combination or compresences” [2]. They figured out that capabilities are
formed and build up on resources, which need to be used in order to do something.
Nevertheless, they did not describe the cause why capabilities should be used and
what kind of additional aspects like information or activities should be considered.
Nineteen years later in another example, Ortbach et al. [28] describe that a capability
refer to the ability of an enterprise to perform coordinated activities/tasks (which
needs governance) to reach defined goals, which resembles with the definition of a
process—maybe the next descriptive element of a capability. Furthermore, they
assigned capabilities to resources and assets as well. We listed, counted and
aggregated potential descriptive elements from the whole set of relevant articles
which results in the following outcomes:

• Resource (103): over hundred times a capability was related to tangible/material
or non-tangible/immaterial goods that are required in order to define capabilities.

• Enterprise Context (84): Capabilities are connected to an overarching subject
(see RQ2) or an environment (internal/external) that consider any relevant
information which describe the specific situation of an enterprise.

• Outcome (101): As an enterprise represents a goal-oriented system, every
capability is attended to a certain business goal from a logical perspective.
Nevertheless, identified capability concepts are not always directly related to a
business goal. In this case, business goals mostly referred to firm performance
and competitiveness arguments in terms of outcomes (e.g., produce competitive
advantages, satisfying customer wishes, provide services).

• Processes (73): 73 times capability was associated to business processes that
represent the sequence of activities in order to achieve a certain outcome.

• Information/Knowledge (72): 72 times a capability was linked to an information
concept that represents a requirement for owning this specific capability. If we
identified information and its demand in a specific (enterprise) context, we
classified a knowledge demand.

• Role/Actor (50): 50 times capability was assigned to some roles or actors. In this
case, these roles or actors could be organizational units like marketing, financial
and accounting, etc. (i.e. specific domains within an organization).

10 Exploring the Nature of Capability Research 193

Figure 10.9 illustrates the distribution of descriptive elements by capability type.
For instance, goal and resource oriented element descriptions have often been used
to describe the character of an IT capability. The relative distribution of descriptive
elements within an IT capability is shown in Fig. 10.10.

All in all the most important element of a capability is represented by a goal
definition (64 %), followed by specification of required resources (62 %). Process
and Information are associated with 46 % and 45 % to a capability. Last but not
least roles are just considered by 29 % (Fig. 10.11).

10.5.3 Correlations of Capability Elements

The analysis of the descriptive elements leads us to a conceptual illustrations based
on the correlations (Table 10.2) of capability elements. A capability represents the
ability of an enterprise to join information and roles able to execute a specific activity

0 10 20 30 40 50 60 70 80

Ressource
Role

Information
Process

Outcome

Ressource
Role

Information
Process

Outcome

Ressource
Role

Information
Process

Outcome

Ressource
Role

Information
Process

Outcome

Ressource
Role

Information
Process

Outcome

D
yn

am
ic

C

ap
ab

il
it

y
C

or
e

C
ap

ab
il

it
y

B
us

in
es

s
C

ap
ab

il
it

y
E

A
M

 C
ap

ab
il

it
y

IT
 C

ap
ab

il
it

y

Fig. 10.9 Distribution of descriptive elements by capability type

194 M. Wißotzki

Fig. 10.10 IT capability—distribution of its descriptive elements

Fig. 10.11 Overall distribution of capability’s descriptive elements

10 Exploring the Nature of Capability Research 195

with available resources in order to support strategy goals under consideration of its
context. We illustrate the relationships and elements of our findings in the
Fig. 10.12.

The gray rectangle illustrates the descriptive elements and its interrelations that
bring a capability into existence. The number in brackets describes the relative
relationship between two descriptive elements based on 508 found relations
(Table 10.2).

A capability takes place in a specific context like business-, EAM- or IT-context.
The specification of a capability context enhanced its accuracy considering capa-
bility management activities like identification, development or maintenance which
positively affected its outcome as well [42]. For a specific capability a defined set of
roles act on a process (e.g., plan, execute or control). In order to preform its tasks
each role is occupied by an optimal set of resources (e.g., competencies or skills).
Furthermore, resources (human resources, material, and immaterial goods) are
consumed by a set of activities/processes performed by roles as well. That

Table 10.2 Correlations of capability elements

Resource Role Info. Process Goal

Resource – 53 58 58 99

Role 0.10 – 28 30 45

Information 0.10 0.05 – 40 67

Process 0.11 0.06 0.07 – 62

Outcome 0.18 0.08 0.12 0.11 –

Fig. 10.12 Correlations of capability elements

196 M. Wißotzki

activities/processes generate the capability desired outcome and could be iterative
or divided in sub-processes. Information required for process execution, corre-
sponding roles could be blended of explicit, embodied/implicit or embedded
information. The desired outcome of a capability enables the achievement or
decisions about the implementation of strategic goals.

10.6 Conclusion and Outlook

Enterprises reach their goals by implementing strategies. Therefore, organizations
have to take appropriate actions, which are being summarized by these strategies.
A successful strategy implementation is also accompanied by challenges that an
enterprise has to face and to overcome. Enterprises require specific capabilities in
order to be able to implement strategies efficiently and achieve a specific outcome.
We already realized that the capabilities related topics are widely treated in lots of
different research areas and publications which motivated us to get a comprehensive
overview of the status quo in literature. In order to do so, this investigation merged
six systematic literature reviews following the same structural pattern [20].
Therefore we scan five scientific databases and over 21 people analyzed more than
190 relevant articles. We could confirm our impression from recent investigation
[42] that an increasing awareness of capability related topics occurs within the last
15 years. A lot of journal articles have been written in the last 5 years and been
published in the USA.

The analyzed articles are citied over thirteen thousand times, whereas more than
93 % of all citations are accomplished by 12 different journals representing just a
quarter of all relevant articles. It is remarkable to note that the MISQ provides 63 %
of all citations, followed by the SMJ with just 22 % (Fig. 10.13). Therefore, the most
cited article is published by the MISQ journal as well. “A resource-based perspective
on information technology capability and firm performance: an empirical investi-
gation” [7] leads the ranking with more than 3000 citations (captured 08.04.15)

8478

2904

575 395 345 176 125 102 84 52

J J J C J C C J C C

MISQ SMJ JoM HICSS JAIS ECIS ICIS CAIS POEM AMCIS

Fig. 10.13 Top ten impact relevant capability sources by citations >50

10 Exploring the Nature of Capability Research 197

followed by SMJ article “The dynamic resource-based view: capability lifecycles”
[12] with 2229 citations. On the conference side the articles “Development and
Validation of a Knowledge Management Capability Assessment Model” [21] and
“Developing eInteractions—A Framework for Business Capabilities and
Exchanges” [11] are representing the top two cited articles with 62 and 50 citations
which already represents 12 % of all conference paper citations (930).

The analysis of research approaches identifies that capability research is bounded
on behavioristic research and its methods. The trend of the last few years shows that
quantitative-empirical analyses, literature reviews and case studies are suitable
methods for capability research. Over the last five years we could identify a trend of
multi-methodological research approaches. The usage of different research
approaches and methods in a single article seems to deliver more accurate research
results and practice-oriented problem solving, which support the utilization of such
research approaches like design science as well. However, a number of articles
could not be mapped to a research method or method, because it was not described
or not comprehensible argued in the text.

The results of this literature exploration end in a conceptualization of a capability
term, which includes a set of descriptive elements like outcome, information, role,
resource, and activity/process. We added the element context, which represents an
additional perspective like application area or subject that we derived from identified
research subjects. We identified five capability types, but these are not free from
overlaps. The classification of these capability types and its elements should form the
basis a capability management approach that supports capability identification,
structuring and maintenance in order to enhance strategy implementation quality.

Future work needs to validate these findings in order to define a clear catego-
rization of capability types. Nevertheless, this work is limited by quantitative and
qualitative factors. The range of selected literature sources and time frame could be
extended in order to discover additional literature sources. Furthermore, fee-based
literature (e.g., Gartner Inc., Forrester Inc.) or additional library literature infras-
tructures could be analyzed in order to expand the set of recognized articles. From a
qualitative point of view, the article analysis and classification was performed by a
given process (e.g., SLA process, search string, threefold control) and given
explanations for used concepts, but individuals perform and interpret information
slightly different anyway. Most interpretations above just provide information about
the quantity of article contributions and participation in the scientific discourse. We
cannot provide a statement or measurement of quality of each contribution.

References

1. AISeL-database. http://aisel.aisnet.org/. Accessed 24 March 2015
2. Amit, R., Schoemaker, P.J.H.: Strategic assets and organizational rent. Strateg. Manag. J. 14

(1), 33–46 (1993)

198 M. Wißotzki

http://aisel.aisnet.org/

3. Banker, R.D., Bardhan, I.R., Chang, H., Lin, S.: Plant information systems, manufacturing
capabilities, and plant performance. MIS Q. 315–337 (2006)

4. Barua, A., Konana, P., Whinston, A.B., Yin, F.: An empirical investigation of net-enabled
business value. MIS Q. 28(4), 585–620 (2004)

5. Basaglia, S., Caporarello, L., Magni, M.: The mediating role of IT knowledge integration
capability in the relationship between team performance and team climate, Italy (2009)

6. Bharadwaj, A.S. (2000) A resource-based perspective on information technology capability
and firm performance: an empirical investigation. MIS Q. 169–196

7. Ceccagnoli, M., Forman, C., Huang, P., Wu, D.J.: Co-creation of value in a platform
ecosystem: the case of enterprise software. MIS Q. 36(1), 263–290 (2012)

8. CORE Journal Ranking. http://www.core.edu.au/ (2010). Accessed 24 March 2015
9. CORE Conference Ranking. http://103.1.187.206/core/ (2014). Accessed 24 March 2015
10. EBSCOhost Online Research Databases. http://www.ebscohost.com/. Accessed 24 March

2015
11. Goldkuhl, G., Lind, M.: Developing eInteractions—a framework for business capabilities and

exchanges. In: ECIS 2004 Proceedings, vol. 72 (2004)
12. Helfat, C.E., Peteraf, M.A.: The dynamic resource-based view: capability lifecycles. Strateg.

Manag. J. 24(10), 997–1010 (2003)
13. Hobbs, G., Scheepers, R.: Agility in information systems: enabling capabilities for the IT

function. Pac. Asia J. Assoc. Inf. Syst. 4, 2 (2010)
14. Hwang, Y., Kettinger, W.J., Yi, M.: Understanding information behavior and the relationship

to job performance. Commun. Assoc. Inf. Syst. 8, 113–128 (2010)
15. IEEE Xplore Digital Library. http://ieeexplore.ieee.org/Xplore/home.jsp/. Accessed 24 March

2015
16. Journals—Wiley Online Library. http://onlinelibrary.wiley.com/browse/publications?type=

journal. Accessed 24 March 2015
17. Journal of Management. http://jom.sagepub.com/. Accessed 24 March 2015
18. Journal Quality List. http://www.harzing.com (2015). Accessed 24 March 2015
19. Kim, G., et al.: IT capabilities, process-oriented dynamic capabilities, and firm financial

performance. J. Assoc. Inf. Syst. 7, 487–517 (2011)
20. Kitchenham, B.: Procedures for performing systematic reviews. Keele, UK, Keele University

33 (2004)
21. Kulkarni, U., Freeze, R.: Development and validation of a knowledge management capability

assessment model. In: ICIS 2004 Proceedings, 54 (2004)
22. Langenscheits Handwörterbuch Englisch: Heinz Messinger. Langenscheidt KG, Berlin,

Germany (2009)
23. Lu, Y., Ramamurthy, K.: Understanding the link between information technology capability

and organizational agility: an empirical examination. MIS Q. 35, 931–954 (2011)
24. Mathiesen, P., et al.: A critical analysis of business process management education and

alignment with industry demand: an Australian perspective. Commun. Assoc. Inf. Syst. 1, 27
(2013)

25. McLean, E.R., DeLone, W.H.: The delone and mclean model of information systems success:
a ten-year update. J. Manag. Inf. Syst. 9–30 (2003)

26. Mithas, S., Ramasubbu, N., Sambamurthy, V.: How information management capability
influences firm performance. MIS Q. 35, 237–256 (2011)

27. Oxford Dictionary Thesaurus & Wordpower Guide. Oxford Univerity Press, New York, USA
(2001)

28. Ortbach, K., Plattfaut, R., Poppelbuss, J., Niehaves, B.: A dynamic capability-based
framework for business process management: theorizing and empirical application. In:
System Science (HICSS), 2012 45th Hawaii International Conference, 4287, 4296 (2012)

29. Rai, A., Patnayakuni, R., Seth, N.: Firm performance impacts of digitally enabled supply chain
integration capabilities. MIS Q. 225–246 (2006)

30. Riempp, G., Urbach, N., Smolnik, S.: The state of research on information systems success.
Bus. Inf. Syst. 4 (2009)

10 Exploring the Nature of Capability Research 199

http://www.core.edu.au/
http://103.1.187.206/core/
http://www.ebscohost.com/
http://ieeexplore.ieee.org/Xplore/home.jsp/
http://onlinelibrary.wiley.com/browse/publications?type=journal
http://onlinelibrary.wiley.com/browse/publications?type=journal
http://jom.sagepub.com/
http://www.harzing.com

31. Sambamurthy, V., Bharadwaj, A., Grover, V.: Shaping agility through digital options:
reconceptualizing the role of information technology in contemporary firms. MIS Q. 237–263
(2003)

32. SCImago Journal & Country Rank. http://www.scimagojr.com. Accessed 24 March 2015
33. Setia, P., Venkatesh, V., Joglekar, S.: Leveraging digital technologies: how information

quality leads to localized capabilities and customer service performance. MIS Q. 37, 565–590
(2013)

34. Simon, D., Fischbach, K., Schoder, D.: An exploration of enterprise architecture research.
Commun. Assoc. Inf. Syst. 32 (2013)

35. Tallman, S., Fladmoe-Lindquist, K.: Internationalization, globalization, and capability-based
strategy. Calif. Manag. Rev. 45, 116 (2002)

36. Tiwana, A., McLean, E.R.: Towards a theory of architectural knowledge integration
capability: a test of an empirical model in eBusiness project teams. In: ECIS 2001
Proceedings, vol. 113 (2001)

37. Wade, M., Hulland, J.: Review: the resource-based view and information systems research:
review, extension, and suggestions for future research. MIS Q. 28, 107–142 (2004)

38. Wilde, T. Hess, T.: Forschungsmethoden der Wirtschaftsinformatik. Wirtschaftsinformatik,
280–287 (2007)

39. William U., Rosen, M.: The business capability map: the “Rosetta stone” of business/IT
alignment. Enterp. Archit., Cutter Consortium 14(2) (2011)

40. Wißotzki, M., Koç, H., Weichert, T., Sandkuhl, K.: Development of an enterprise architecture
management capability catalog. In: Kobyliński, A., Sobczak, A. (eds.) Perspectives in
Business Informatics Research, vol. 158, Springer (2013)

41. Wißotzki, M., Sandkuhl, K.: Elements and characteristics of enterprise architecture
capabilities. Perspectives in Business Informatics Research. Springer International
Publishing, 82–96 (2015)

42. Wißotzki, M.: The capability management process—finding your way into capability
engineering. In: Simon, D., Schmidt, C. (eds.) Business Architecture Management—
Architecting the Business for Consistency and Alignment; To be published by Springer in
the series “Management Professionals” (2015)

43. SpringerLink. http://link.springer.com/. Accessed 24 March 15

200 M. Wißotzki

http://www.scimagojr.com
http://link.springer.com/

Chapter 11
Enterprise Architecture Analytics
and Decision Support

Rainer Schmidt and Michael Möhring

Abstract The discipline of Enterprise Architecture Management started using a
model-driven approach. In contrary to the model-driven approaches, our approach
follows strives to tap also the information contained in the operational systems that
support IT-Service-Management. Therefore, this paper aims at indicating the
increased capabilities of Enterprise Architecture Analytics and Decision Support
through the use of a data-driven approach. It will give fundamental insights in the
current research work of enterprise architecture management analytics as well as
decision support based on this quantitative data.

Keywords Enterprise architecture management � IT-Service-Management �
Decision support � Analytics

11.1 Introduction

Enterprise architecture management (EAM) has several benefits for enterprises and
organizations and is a very important keystone and challenge for modern enter-
prises [1–4]. EAM is according to Aier et al. [5] “[…] concerned with the estab-
lishment and continuous development of EA”. In which Enterprise architecture
(EA) can be understood as the “the fundamental structures of a company (or
government agency) and enables its transformation by bridging the gap between
business and information technology (IT)” [5].

The discipline of Enterprise Architecture Management started using a
model-driven [6] approach. Based on the enterprise strategy, “to-be” architectures
were designed and modeled using notations such as Archimate [7] following a
top-down approach. The top-level models were then refined into information

R. Schmidt (&) � M. Möhring
Munich University of Applied Sciences, Lothstrasse 64, 80335 Munich, Germany
e-mail: Rainer.Schmidt@hm.edu

© Springer International Publishing Switzerland 2016
E. El-Sheikh et al. (eds.), Emerging Trends in the Evolution of Service-Oriented
and Enterprise Architectures, Intelligent Systems Reference Library 111,
DOI 10.1007/978-3-319-40564-3_11

201

system architectures and application design. However, at the same time there are
large collections of data from the operational parts of IT-infrastructure in databases
such as the configuration management database [8]. Unfortunately, the models of
Enterprise Architecture created in a top-down manner and the data from
IT-infrastructure collected in a bottom-up manner are not integrated. This rupture
was already identified in [9] and the vision of real-time enterprise architecture was
sketched. Also in [10, 11] the need for an integration of enterprise architecture and
data from operational IT-Systems has been identified and the vision of an auto-
mated integration has been outlined.

The lack of integration between enterprise architecture and operational
IT-systems becomes even more urging by the evolution of the IT-infrastructure.
Technical architectures vary and applications evolve independently from strategy.
As a result, abstract models and IT-Infrastructure develop apart. This phenomenon
is known as model-reality-gap [12]. To cope with it, a number of approaches have
been developed. In [13] process models are introduced for maintaining enterprise
architecture models. They are based on information from both human and technical
interfaces. However, the processes are very abstract and first ideas are provided how
to operationalize them. In [14] the process designs for automation are joined with
others to provide a complete framework of automatic maintenance processes. Other
approaches start from the process levels such as [15]. The use of a data warehouse
[16] for combining enterprise architecture and operational data is depicted in [17].
The uses of an Enterprise Service Bus for automating enterprise architecture doc-
umentation is proposed in [18]. System decision making can be supported by
enterprise architecture models and analyses [19].

In contrary to top-down, model-driven approaches, our approach follows strives
to tap also the information contained in the operational systems used for
IT-Service-Management [20]. Until recently, it was very difficult, expensive,
time-consuming or even impossible to collect data for architectural analyzes. Only a
small portion could be collected automatically by using specialized software. Most
of the data had to be entered manually, a time-consuming and error-prone approach
that created huge efforts and costs. The repositories created in this way were often
incomplete and erroneous.

Fortunately, the situation has changed due to technological advances. A number
of data sources are available as shown in [21]. Today’s enterprise architectures such
as fabrics [22] and cloud environments [23] are almost entirely composed of vir-
tualized resources. This means that the resources used for enterprise architecture are
not only customizable but also completely transparent in their structure and their
properties. The properties of all computing, storage, and networking elements are
queryable and accessible for analysis. Furthermore, many infrastructure compo-
nents such as applications, databases etc. are generating information on events,
performance resource consumption etc. Modern administration systems such as
configuration management databases [8], Log Files [24], and Performance

202 R. Schmidt and M. Möhring

Monitoring [25] have increased the amount of data available for architectural
analysis significantly, too. At the same time, distributed architectures in the context
of Big Data [26] such as Hadoop [27] and Spark [28] provide huge-enough com-
puting capabilities to process these data. They also enable the processing of data
hitherto ignored or neglected such as semi- and unstructured data.

Therefore, this paper aims at indicating the increased capabilities of Enterprise
Architecture Analytics and Decision Support through the use of a data-driven
approach. It will give fundamental insights in the current research work of enter-
prise architecture management analytics as well as decision support based on this
quantitative data e.g. [29, 30].

11.2 Data Sources for Enterprise Architecture Analytics

Data for Enterprise Architecture Analytics originates from three classes of sources:
structured, semi-structured and unstructured data sources.

11.2.1 Structured Data

Structured data [27] has an explicit schema, that means there are metadata
describing the data types and the relationships of the data types. For structured data,
a schema-on-write-approach is applied [27]. When data is entered into a database,
the schema data is available and the data are organized according to the schema.
The most frequent use of structured data are relational databases [31]. They
structure data in order to facilitate their use in arbitrary queries. However, there is a
tradeoff, the increase in flexibility also increases the effort to read the data. An
important example are joins [31] that are used to denormalize data temporarily.

The most important source of structured data for enterprise architecture analytics
are fabrics [22]. Fabrics are composed of virtualized computing, storage and net-
working resources. Using these resources, services are created that support the
business process of the enterprise. Fabrics are managed by sophisticated adminis-
tration systems that manage the whole lifecycle of virtualized resources and the
creation of services from them. Examples are the System Center Product Suites
from Microsoft [32] or Vmware [33]. The core of these systems are configuration
management databases that contain representations of all virtualized resources and
the services built from them. In contrary to a physical environment all architectural
data are complete and in-sync because they are also used for the operational pro-
cesses in the fabric. Fabrics also provide easy access to events and performance
data, because all components created are under the control of the administration
system.

11 Enterprise Architecture Analytics and Decision Support 203

11.2.2 Semi-structured Data

Semi-structured data [27] have a schema, however, this schema is not available
explicitly. That means, the schema of semi-structured data can be recovered by
applying algorithms. An important example of semi-structured data are so-called
log-files Log Files [24]. Typically, the entries in log files consist of a line with
information such as data, time, type of event etc. Log files do not have an explicit
structure; however, their schema can be reconstructed.

Semi-structured data is used with a schema on read approach [27]. They are
stored without information on the schema, but the schema is recovered when the
data are read from the data store. This approach has both advantages and disad-
vantages. As long as the data are not changed and their structure accords with the
task to be done, data can be accessed faster than data in a relational database.
However, as soon as data have to be changed frequently, the frequent effort to
reconstruct the schema surmounts that of normalized data.

11.2.3 Unstructured Data

Unstructured data [27] have no recoverable Data schema. Instead, the information
has to be extracted by applying statistical approaches etc. Unstructured data orig-
inate from text files, e.g documentation. They contain information that does not
follow a predefined schema. Instead, they contain information belonging to different
contexts or even completely irrelevant information.

Examples for unstructured data are documents containing descriptions of
information systems architectures. They contain the information how the compo-
nents of the architecture relate to each other. However, this is done in natural
language and does not follow a predefined or at least standardized structure. In
consequence, every single chunk of information has to be extracted by linguistic
analysis.

11.3 Analyzing Architectural Data

Classical data warehouses have been used for the analysis of architecture data since
long [16]. However, they are not suitable for the processing of semi—and
unstructured data [29]. Although the extract transform load cycle (ETL) is at least
partially able to integrate semi—and unstructured data, this approach is very
computing intensive. Conventional warehouse architectures are overwhelmed by it.
Due to these limited processing capabilities, mainly structured data were used for
analyzes in enterprise architecture management. Another problem is that the
treatment through a series of intermediate data products creates a high latency from

204 R. Schmidt and M. Möhring

data input to the analysis result [34]. This and the limited use of semi—and
unstructured data restrict the use of data warehouses to strategic decision-making.
Furthermore, the data analyzed are mostly static ones, describing architectural
relations of single items. The analyzes performed were mainly a posteriori ones that
created aggregations such as the number of hardware items or software licenses
used (Fig. 11.1).

One reason for the hesitant use of semi-structured data before the advent of Big
Data [26] has been the computation effort needed to rebuild the schema.
Unstructured data require an even higher effort [27] and, therefore, were ignored
mostly. It does not surprise that many data from event logs were thrown away after
a short time without applying any analysis on them. By the progress of Big Data,
the situation has changed significantly. Big Data is a very disruptive information
technological development [35, 36]. The advance provide by Big Data can be
described in the three dimensions volume, variety and velocity [37] as shown in
Fig. 11.2.

Fig. 11.1 Processing of architectural data based on [29]

Fig. 11.2 Big data scales out analytics based on [38]

11 Enterprise Architecture Analytics and Decision Support 205

Big Data significantly increases the type and amount of data available for
enterprise architecture analytics [29]. Now not only backward-looking, descriptive
analyzes can be done, but also forward-directed predictive and prescriptive ana-
lyzes. Therefore, not only strategical decisions but also tactical and operational
decisions are supported.

The capabilities of Big Data process and increased volume, variety and velocity
of data is based on its highly distributed processing architecture [27]. It enables
increasing the volume of data by processing data in parallel. Also, the latency of
computation is decreased, that means the velocity of computation is raised in this
way. Furthermore many Big Data approaches use a drive-through approach for
processing, avoiding latency-increasing intermediate data such as often found in
data warehouses [39]. The increased processing capabilities also enable Big Data to
process semi- and unstructured data that need a processing overhead in order to
reconstruct the schema, as with semi-structured data, or to detect information in
unstructured data.

In the beginning, Big Data frameworks such as Hadoop provided only simple
processing algorithms such as MapReduce [40]. It performs transformations and
sorting of key-value pairs in a distributed manner. However, over the time more
sophisticated frameworks were developed such as Yarn [41] and Spark [28],
GraphX [42]. They provide more sophisticated processing capabilities such as
graph processing.

Stream processing is a very important theme [43]. Many data relevant for
enterprise architecture analytics such as log data is arriving continuously. To exploit
these data, a continuous analysis is necessary. Modern Big Data frameworks such
as Spark [28] provide such stream processing and analysis capabilities. They pro-
cess the incoming data organized as so-called micro-batches. Chunks of data
embracing of approximately 1 s are created and processed one by one.

The use of enterprise architecture analytics can generate positive business value
and business impacts. Important architecture decisions can now be done based on a
better data quality and not only on a gut instinct. Therefore the following metrics
[44, 45] can be better acquired:

• Cost metrics
• Scalability metrics
• Portability metrics
• Security metrics
• Etc.

A comparison of different architecture variants based on metrics shows CIOs a
better view of the possibilities and constraints of each. As a result, better decisions
can be applied [29]. This comparison can be applied for example by using a utility
analysis [46]. An example of a group utility analysis based on the metrics above is
shown in Fig. 11.3.

206 R. Schmidt and M. Möhring

11.4 Applications of Big Data and Advanced Analytics
in Enterprise Architecture

Big Data and Advanced Analytics offer a number of new application areas in
Enterprise Architecture. Three examples shall be presented. The following exam-
ples are made in the area of EAM and IT service management [20].

11.4.1 Forecasting the Demand and Prices of EA Services

Schmidt et al. [29] argue, that the IT service demands can be better predicted trough
a broader database. Therefore, different metrics and influence factors, as well as
information through the analysis of unstructured data (cf. Sect. 11.2), can be used to
decrease the forecast error [29]. Knowing the IT demand is very important to
construct a stable enterprise architecture. In general the forecast error can be defined
as follows [29, 47, 48]:

forecast error ¼ demandreal � demandpredicted
�
�

�
�

Equation 1: Forecast error [29]
Furthermore, the quality of the predicted demand can be measured by other

metrics like the root mean square error (RMSE), the mean absolute percentage error
(MAPE) or the Nash-Sutcliffe coefficient of efficiency (NSC) [49]. Schmidt et al.
[29] define a saving of idle time (provided IT services, but not really used) by
reducing the forecast error for each IT service demands and pre-production costs.

In general, there are different quantitative approaches to predict time series [50,
51] like autoregressive integrated moving average models (ARIMA), linear
regression, artificial neuronal networks or Winters/Holt methods. The basic element
of artificial networks is a neuron [52, 53]. This has a number of inputs. Based on
weighted inputs, the neuron computes its output. Several neurons can be organized
into layers, which can be switched again in a row. There are different types of
neuronal networks. Some are connected in one direction only and others allow a
feedback from the output to the input. The peculiarity of deep learning lies in the

Fig. 11.3 Example of utility analysis of architecture variants [29]

11 Enterprise Architecture Analytics and Decision Support 207

Sub-symbolic way of working [54]. While classic machine learning techniques
using symbolic representations of numbers, statements, etc., know that neuronal
networks only input and output signals. Particular, artificial neuronal networks are
very flexible because they do not ignore the non-linear behavior of the independent
variables [51, 55]. Furthermore, trends and structural interruptions must be rec-
ognized [56, 57].

For all cases, different prediction algorithms should be tested with historical data
and compared by different quality metrics like the forecast error (cf. see above).
After evaluation, the best algorithms should be used to predict the IT demand.
Prediction algorithms are implemented through many software tools like R project,
IBM SPSS, SAS or Rapid Miner.

In the following a short example will be described for prediction the IT demand
via Rapid Miner under use of a prediction algorithm. Rapid Miner is a well-known
and recognized software for data analytics in practice and research [58]. There are
different software license possibilities for Rapid Miner—like a use for free (cf.
www.rapidminer.com).

The sample case will be the monthly prediction of the execution of the IT service
4242 (“VM installation”). The IT demand can be used to evaluate the current
enterprise architecture and to improve it based e.g. on the service requirements. The
amount of requests and the firm’s turnover is given for execution (Table 11.1).

Different prediction algorithms can be used in Rapid Miner [58]. For instance, an
artificial neuronal network for prediction the IT demand can be implemented like
shown in Fig. 11.4.

First historical data must be loaded and analyzed by a neuronal network
(Neuronal Net). In this step, a model is built for prediction and used by the “Apply
Model” component to predict new months with the given independent variables (in
our example e.g. requests, turnover, old executions).

In our example, we want to predict the amount of execution of the service 4242
by using historical data of the amount of execution, requests, and turnover one
month ago (see table above). By applying an artificial neuronal network algorithm
like described above, we got the following results (prediction (Y): predicted amount
of execution, X1 last month execution, X2 last month requests, X3: last month
turnover) (Fig. 11.5).

Table 11.1 IT demand prediction example

Month IT-service IT-service-ID Executions Requests Firms turnover (Mio)

January 2015 VM installation 4242 60 80 4.5

February 2015 VM installation 4242 56 76 5.2

March 2015 VM installation 4242 65 92 5.4

April 2015 VM installation 4242 73 108 5.6

May 2015 VM installation 4242 78 123 5.7

June 2015 VM installation 4242 ? ? ?

208 R. Schmidt and M. Möhring

http://www.rapidminer.com

Other algorithms are easy to implement by change the ANN component to
another (e.g. regression, SVM, etc.). Based on prediction evaluation with historical
data, the best algorithms should be used.

11.4.2 Service Recommendation for Different Customers

In large enterprises and organizations with a huge number of internal and maybe
external IT service customers, it is not easy to offer all customers all of the
implemented services. Requirements and use cases maybe differ from department to
department as well as from firm to firm. A good IT support and exchange of
requirements is very important to well implement IT-Business Alignment [59] to
achieve business and IT goals.

Therefore, traditional Data Mining techniques like association algorithms can
help to find similarities in the use and buying behavior of IT services in the
enterprise architecture of different customers. Association algorithms are very well
known for a so-called “market basket analysis”, where co-occurrences of items in

Fig. 11.4 Use of prediction algorithms in Rapid Miner

Fig. 11.5 Sample prediction via ANN

11 Enterprise Architecture Analytics and Decision Support 209

individual purchases were analyzed [60, 61]. Therefore, the enterprise architecture
can be improved by providing a better basement for business process in different
departments by analyzing similar user behavior.

The following example based on IT services. It can be also applied for different
enterprise architecture patterns as well as architectural decisions.

To generate this information from data several steps are needed [61]:

1. Data preparation in a transaction format
2. Generate binomial format with the occurrence of the items
3. Generation of relevant association rules

The first and second step is illustrated in Fig. 11.6.
Finally the relevant association rules are calculated [60, 61]. Therefore, the

Furthermore, the confidence as a measure of the likelihood of support of an item
(relative frequency) in the transaction set is extracted [61]. In our short example a
VM installation is in all cases (2/2 ! support = 1), GSM update in one of two
(1/2 ! support = 0.5) and the combination of VM installation and GSM update
also in one of two cases (1/2 ! support = 0.5).

Furthermore, the confidence as a measure of the likelihood of the occurrence is
calculated [61]. For our example the following equation describes the calculation of
the confidence of getting a GSM update after VMInstallation (confi-
dence = 0.5/1 ! 0.5) [61]:

Confidence VMInstallation ! GSMupdate

¼ Support VMInstallation[GSMupdateð Þ
Support VMInstallationð Þ

Equation 2: sample of the calculation of confidence (according to [61])

Fig. 11.6 Item set generation

210 R. Schmidt and M. Möhring

Finally the relevant association rules are calculated [60, 61]. Therefore, the
support of an item (relative frequency) in the transaction set is extracted [61]. There
are further metrics like lift or conviction to analyze association rules as well as
different processes of rule generation implemented in Text Mining software [61].
For instance in Rapid Miner [58] it is possible to generate association rules with the
“association and item set mining” part (Fig. 11.7).

First, data is loaded (e.g. via CSV). After this step, binomial item sets are
calculated. The third step is the calculation of frequent item sets and finally asso-
ciation rules are generated based on this results.

Finally we get the association rules for EA IT services to be more competitive by
providing more customer oriented services and adopt as well transform the enter-
prise architecture to a more customer-oriented one In our example we got the
association rule:

Rule 1: VM installation—implies ! GSM update

In general, the cases are more complex. This example should only demonstrate
the functionality of the algorithms behind this approach. It can also be used for EA
patterns (in contrast to IT services).

11.4.3 Analyzes of Unstructured Data

In the field of EAM, there are a lot of unstructured data sources [62]. For instance,
documentation in MS Word, PDF or E-Mails as well as descriptions trough EAM
software and frameworks.

Fig. 11.7 Rapid Miner for association rules generation

11 Enterprise Architecture Analytics and Decision Support 211

To analyze this kind of data, new approaches are needed. For analyzing textual
information Text Mining can be applied [63]. Text Mining can be defined as an
extension of the traditional data mining methods to extracting interesting patterns or
knowledge from textual data [63–66]. Text Mining can be used for improving EAM
in different ways (cf. [29, 62, 66]):

• check differences between models and documentation for auditing
• improving forecasts by using textual information
• EAM process improvement
• etc.

In general Fig. 11.8 summarizes the possibilities and steps to analyze unstruc-
tured data.

After loading textual data (e.g. in PDF or MS Word format) in the Text Mining
environment (e.g. R Project or Rapid Miner), the text must be transformed in
different tokens (e.g. each word become a token) [67]. Then there is may be a case
conversion (e.g. lower case), that each token has the same case [67]. Furthermore (if
needed) stop words like “the”, “that” can be removed. Finally, the tokens are
stemmed to their “basic form”. These steps are summarized in Fig. 11.9 [67].

There are different software tools (free or commercial use) to analyze textual data.
Rapid Miner is one well-known and established data mining tools [58]. Under use of
the Text Mining add-on, textual data for EAM can be preprocessed (Fig. 11.10).

Fig. 11.8 Analyzing unstructured data (according to [66])

212 R. Schmidt and M. Möhring

First, the text is pre-processed like described above (e.g. tokenization, etc.). Then
different classification algorithms (like K-NN, Bayes, SVM) can be used to analyze
hidden structure in the text data (e.g. differences between different textual EAM
landscape description) [66].

Fig. 11.9 Text pre-processing according to [67]

Fig. 11.10 Text Mining via Rapid Miner

11 Enterprise Architecture Analytics and Decision Support 213

11.5 Outlook

The data-driven approach of enterprise architecture management will profit from a
number of technologies in development. Using them the analyzes will be acceler-
ated and improved in quality.

11.5.1 Graph-Based Data

The data in the structure an IT infrastructure can be represented in the form of a
directed multi-property graph. Each device is represented as a node. Between nodes
may be zero, one or more edges. Properties may be associated with both nodes and
edges.

This directed graph to be analyzed using developed and adapted graph mining
algorithms to recognize recurring patterns. So, problematic structures can be
determined by identifying specific subgraph. In addition, it can be determined how
far the current infrastructure differs from risky configurations. To do this, algo-
rithms and methods can be developed, which are based on a modified Graph
version of the Levenshtein [68] distance. E.g. by measuring this modified
Levenshtein distance between the graph of the present infrastructure and dangerous
fabric configurations, important triggers for improving the resilience of the fabric
can be determined.

In recent years, a number of graph-oriented specialized databases and frame-
works in recent years have been created. Examples are the database Neo4J [69],
which can store graph data and query them [71], the Spark framework [70] with
GraphX [42] that is capable of parallel processing graph data to a large extent. Both
systems can represent multigraphs, i.e. graphs where multiple edges may connect
the nodes. Nodes and edges can also be assigned with properties.

11.5.2 Frameworks for Stream-Based Data Processing

Stream-based data [43] are another form of data that often arises in the context of
enterprise architecture. Log file entries and performance data are a continuous
stream of data, which needs to be analyzed. For this purpose, a series of frameworks
is also available. In Spark [70], stream processing is based on micro batch-based
processing. The streams of data are divided up into chunks of approximately
one-half to several seconds duration. The collected data are processed in turn with
the resilient distributed datasets [70]. The preprocessing can be, for example, with
Apache Kafka [71] framework. An alternative framework represents the Apache
Flink [72]. It offers a full stream processing, i.e. there is no distribution in micro

214 R. Schmidt and M. Möhring

batches like in spark. Contrary to Apache Spark, Flink is not resilient. In the case of
malfunctions, lost data are not restored.

11.6 Conclusion

There are two approaches for Enterprise Architecture Management, a model-driven
and a data-driven approach. The model-driven approach has long been predomi-
nant, because the automatic data collection necessary for the data-driven approach,
was very limited. This changed significantly by the increasing proliferation of
virtualized environments and big data. Architecture data available are now largely.
They can be distinguished according to topology, variability, modality and mor-
phology. Big data and advanced analytics provide the necessary means to analyze
this newly available data.

Enterprise architecture analytics leverage a broader database of structured and
unstructured data for analyzing the past, current and future enterprise architecture.
Therefore, enterprises, as well as organizations, can get a better view of their
enterprise architecture and improve decisions related to EAM. This chapter shows
the basics of EAM analytics and shows some different practical scenarios how to
use EAM analytics.

References

1. Jonkers, H., Lankhorst, M.M., ter Doest, H.W., Arbab, F., Bosma, H., Wieringa, R.J.:
Enterprise architecture: management tool and blueprint for the organisation. Inf. Syst.
Frontiers. 8, 63–66 (2006)

2. Schmidt, R., Möhring, M., Härting, R.-C., Reichstein, C., Zimmermann, A., Luceri, S.:
Benefits of enterprise architecture management—insights from European experts. Presented at
the PoEM 2015: 8th IFIP WG 8.1 working conference on the Practice of Enterprise Modelling,
Berlin (2015)

3. Buckl, S., Ernst, A.M., Lankes, J., Matthes, F., Schweda, C.M.: Enterprise architecture
management patterns–exemplifying the approach. In: Enterprise Distributed Object
Computing Conference, 2008. EDOC’08. 12th International IEEE. pp. 393–402. IEEE (2008)

4. Aier, S., Riege, C., Winter, R.: Unternehmensarchitektur-Literaturüberblick und Stand der
Praxis. Wirtschaftsinformatik 50, 292–304 (2008)

5. Aier, S., Gleichauf, B., Winter, R.: Understanding enterprise architecture management
design-an empirical analysis. In: Wirtschaftsinformatik, p. 50 (2011)

6. Power, D.J., Sharda, R., Burstein, F.: Decision support systems. Wiley Online Library (2002)
7. Lankhorst, M.M., Proper, H.A., Jonkers, H.: The architecture of the ArchiMate language. In:

Enterprise, Business-Process and Information Systems Modeling, pp. 367–380 (2009)
8. Brenner, M., Garschhammer, M., Sailer, M., Schaaf, T.: CMDB-yet another MIB? On

Reusing Management Model Concepts in ITIL Configuration Management. Large Scale
Management of Distributed Systems, pp. 269–280 (2006)

9. ter Doest, H., Lankhorst, M.: Tool Support for Enterprise Architecture-A Vision. Telematica
Instituut, Enschede (2004)

11 Enterprise Architecture Analytics and Decision Support 215

10. Buckl, S., Matthes, F., Schweda, C.M.: Future Research Topics in Enterprise Architecture
Management—A Knowledge Management Perspective. In: Dan, A., Gittler, F., Toumani, F.
(eds.) Service-Oriented Computing. ICSOC/ServiceWave 2009 Workshops. pp. 1–11.
Springer Berlin Heidelberg (2010)

11. Roth, S., Matthes, F.: Future research topics in enterprise architectures evolution analysis. In:
Software Engineering (Workshops), pp. 201–206 (2013)

12. Erol, S., Granitzer, M., Happ, S., Jantunen, S., Jennings, B., Johannesson, P., Koschmider, A.,
Nurcan, S., Rossi, D., Schmidt, R.: Combining BPM and social software: contradiction or
chance? J. Softw. Maintenance Evol. Res. Pract. 22, 449–476 (2010)

13. Farwick, M., Agreiter, B., Breu, R., Ryll, S., Voges, K., Hanschke, I.: Automation processes
for enterprise architecture management. In: Enterprise Distributed Object Computing
Conference Workshops (EDOCW), 2011 15th IEEE International, pp. 340–349. IEEE (2011)

14. Farwick, M., Schweda, C.M., Breu, R., Hanschke, I.: A situational method for semi-automated
enterprise architecture documentation. Softw. Syst. Model. 1–30 (2014)

15. Correia, A., Abreu, F.: Integrating it service management within the enterprise architecture. In:
Fourth International Conference on Software Engineering Advances, 2009. ICSEA’09,
pp. 553–558 (2009)

16. Kimball, R., Ross, M., et al.: The Data Warehouse Toolkit: The Complete Guide to
Dimensional Modelling. Wiley, New York [ua] (2002) (Nachdr)

17. Veneberg, R.K.M., Iacob, M.E., Van Sinderen, M.J., Bodenstaff, L.: Enterprise architecture
intelligence: combining enterprise architecture and operational data. In: Enterprise Distributed
Object Computing Conference (EDOC), 2014 IEEE 18th International, pp. 22–31 (2014)

18. Buschle, M., Ekstedt, M., Grunow, S., Hauder, M., Matthes, F., Roth, S.: Automating
enterprise architecture documentation using an enterprise service bus (2012)

19. Johnson, P., Ekstedt, M.: Enterprise architecture: models and analyses for information systems
decision making (2007)

20. Galup, S.D., Dattero, R., Quan, J.J., Conger, S.: An overview of IT service management.
Commun. ACM 52, 124–127 (2009)

21. Farwick, M., Breu, R., Hauder, M., Roth, S., Matthes, F.: Enterprise architecture
documentation: Empirical analysis of information sources for automation. In: 2013 46th
Hawaii International Conference on System Sciences (HICSS), pp. 3868–3877. IEEE (2013)

22. Bär, F., Schmidt, R., Möhring, M.: Fabric-Process Patterns. In: Bider, I., Gaaloul, K.,
Krogstie, J., Nurcan, S., Proper, H.A., Schmidt, R., Soffer, P. (eds.) Enterprise,
Business-Process and Information Systems Modeling, pp. 139–153. Springer, Berlin (2014)

23. Schmidt, R.: A framework for comparing cloud-environments. In: 2011 Federated Conference
on Computer Science and Information Systems (FedCSIS), pp. 553–556. IEEE, Stettin (2011)

24. List of Log Files in Configuration Manager: (2007) http://technet.microsoft.com/en-us/library/
bb892800.aspx

25. Fensterer, M.: Supporting capacity planning of cloud computing data centers with long term
trend analysis of performance monitoring data (2012)

26. Zikopoulos, P., Eaton, C.: Understanding Big Data: Analytics for Enterprise Class Hadoop
and Streaming Data. McGraw-Hill Osborne Media (2011)

27. White, T.: Hadoop: The definitive guide. O’Reilly Media (2012)
28. Zaharia, M., Chowdhury, M., Franklin, M.J., Shenker, S., Stoica, I.: Spark: cluster computing

with working sets. In: Proceedings of the 2nd USENIX conference on Hot topics in cloud
computing, pp. 10–10 (2010)

29. Schmidt, R., sotzki, M.W., Jugel, D., Möhring, M., Sandkuhl, K., Zimmermann, A.: Towards
a framework for enterprise architecture analytics. In: Grossmann, G., Hallé, S., Karastoyanova,
D., Reichert, M., Rinderle-Ma, S. (eds.) 18th IEEE International Enterprise Distributed Object
Computing Conference Workshops and Demonstrations, EDOC Workshops 2014, Ulm,
Germany, 1–2 Sep 2014, pp. 266–275. IEEE Computer Society (2014)

30. Schmidt, R., Zimmermann, A., Möhring, M., Jugel, D., Bär, F., Schweda, C.M.:
Social-software-based support for enterprise architecture management processes. In:
Fournier, F., Mendling, J. (eds.) Business Process Management Workshops—BPM 2014

216 R. Schmidt and M. Möhring

http://technet.microsoft.com/en-us/library/bb892800.aspx
http://technet.microsoft.com/en-us/library/bb892800.aspx

International Workshops, Eindhoven, The Netherlands, 7–8 Sep 2014, Revised Papers,
pp. 452–462. Springer (2014)

31. Codd, E.F.: Relational completeness of data base sublanguages. IBM Corporation (1972)
32. Beaumont, S., Gasser, D., Baumgarten, A.: Microsoft System Center 2012 Service Manager

Cookbook. Packt Publishing, Birmingham (2012)
33. Bunch, C.: Automating vSphere with VMware vCenter Orchestrator. VMware Press (2012)
34. Hajlaoui, J.E., Hamdani, N.: Active data warehouse: Review, challenges and issues. In: 2014

World Symposium on Computer Applications and Research (WSCAR), pp. 1–6. IEEE (2014)
35. Bughin, J., Chui, M., Manyika, J.: Clouds, big data, and smart assets: Ten tech-enabled

business trends to watch. McKinsey Quarterly. 56 (2010)
36. LaValle, S., Lesser, E., Shockley, R., Hopkins, M.S., Kruschwitz, N.: Big data, analytics and

the path from insights to value. MIT Sloan Manage. Rev. 52, 21–32 (2011)
37. Chen, H., Chiang, R.H., Storey, V.C.: Business intelligence and analytics: from big data to big

impact. MIS Q. 36, 1165–1188 (2012)
38. Schmidt, R., Möhring, M.: Strategic alignment of cloud-based architectures for big data. In:

Proceedings of the 17th IEEE International Enterprise Distributed Object Computing
Conference Workshops (EDOCW). Vancouver, Canada (2013)

39. Mohanty, S., Jagadeesh, M., Srivatsa, H.: Big Data Imperatives: Enterprise “Big Data”
Warehouse, “BI” Implementations and Analytics. Apress (2013)

40. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters. Commun.
ACM 51, 107–113 (2008)

41. Murthy, A.: Apache Hadoop YARN: moving beyond MapReduce and batch processing with
Apache Hadoop 2. Pearson, Upper Saddle River, NJ (2014)

42. Xin, R.S., Crankshaw, D., Dave, A., Gonzalez, J.E., Franklin, M.J., Stoica, I.: GraphX:
unifying data-parallel and graph-parallel analytics. arXiv:1402.2394 [cs] (2014)

43. Psaltis, G.: Streaming Data. Manning (2015)
44. Aier, S., Ahrens, M., Stutz, M., Bub, U.: Deriving SOA evaluation metrics in an enterprise

architecture context. In: Service-Oriented Computing-ICSOC 2007 Workshops, pp. 224–233
(2009)

45. Vasconcelos, A., Sousa, P., Tribolet, J.: Information system architecture metrics: an enterprise
engineering evaluation approach. Electron. J. Inf. Syst. Eval. 10, 91–122 (2007)

46. Weirich, P.: Decision space: Multidimensional utility analysis. Cambridge University Press
(2001)

47. Leitch, G., Tanner, J.E.: Economic forecast evaluation: profits versus the conventional error
measures. Am. Econ. Rev. 580–590 (1991)

48. Cao, L., Soofi, A.S.: Nonlinear deterministic forecasting of daily dollar exchange rates. Int.
J. Forecast. 15, 421–430 (1999)

49. Faruk, D.Ö.: A hybrid neural network and ARIMA model for water quality time series
prediction. Eng. Appl. Artif. Intell. 23, 586–594 (2010)

50. Vogel, J.: Prognose von zeitreihen. Springer (2014)
51. Zhang, G.P.: Time series forecasting using a hybrid ARIMA and neural network model.

Neurocomputing 50, 159–175 (2003)
52. Jain, A.K., Mao, J., Mohiuddin, K.M.: Artificial neural networks: A tutorial. Computer,

pp. 31–44 (1996)
53. Zurada, J.M.: Introduction to Artificial Neural Systems. West St, Paul (1992)
54. Schmidhuber, J.: Deep learning in neural networks: An overview. Neural Networks 61, 85–

117 (2015)
55. Zhang, G., Patuwo, B.E., Hu, M.Y.: Forecasting with artificial neural networks: The state of

the art. Int. J. Forecast. 14, 35–62 (1998)
56. Chow, G.C.: Tests of equality between sets of coefficients in two linear regressions.

Econometrica J. Econometric Soc. 591–605 (1960)
57. Hansen, B.E.: Testing for parameter instability in linear models. J. Policy Model. 14, 517–533

(1992)

11 Enterprise Architecture Analytics and Decision Support 217

http://arxiv.org/abs/1402.2394

58. Hofmann, M., Klinkenberg, R.: RapidMiner: Data Mining Use Cases and Business Analytics
Applications. CRC Press (2013)

59. Luftman, J., Kempaiah, R.: An update on business-IT alignment: “A line” has been drawn.
MIS Q. Executive 6, 165–177 (2007)

60. Agrawal, R., Imieliński, T., Swami, A.: Mining association rules between sets of items in large
databases. In: ACM SIGMOD Record, pp. 207–216. ACM (1993)

61. Kotu, V.: Predictive Analytics and Data Mining: Concepts and Practice with Rapidminer.
Elsevier, Waltham (2014)

62. Möhring, M., Schmidt, R., Härting, R.-C., Bär, F., Zimmermann, A.: Classification
Framework for Context Data from Business Processes. In: Fournier, F., endling, J. (eds.)
Business Process Management Workshops—BPM 2014 International Workshops, Eindhoven,
The Netherlands, 7–8 Sep 2014, Revised Papers. pp. 440–445. Springer (2014)

63. Tan, A.: Text Mining: the state of the art and the challenges. In: Proceedings of the PAKDD
1999 Workshop on Knowledge Disocovery from Advanced Databases, pp. 65–70 (1999)

64. Fayyad, U., Piatetsky-Shapiro, G., Smyth, P.: From data mining to knowledge discovery in
databases. AI Mag. 17, 37 (1996)

65. Simoudis, E.: Reality check for data mining. IEEE Intell. Syst. 11, 26–33 (1996)
66. Schmidt, R., Möhring, M., Härting, R.-C., Zimmermann, A., Heitmann, J., Blum, F.:

Leveraging textual information for improving decision-making in the business process
lifecycle. In: Neves-Silva, R., Jain, L.C., Howlett, R.J. (eds.) Intelligent Decision
Technologies. Sorrent (2015)

67. Tan, P.-N., Blau, H., Harp, S., Goldman, R.: Textual data mining of service center call records.
In: Proceedings of the sixth ACM SIGKDD international conference on Knowledge discovery
and data mining, pp. 417–423. ACM (2000)

68. Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions, and reversals. In:
Soviet physics doklady, pp. 707–710 (1966)

69. Jordan, G.: Practical Neo4j. Apress, Berkeley (2014)
70. Ryza, S. (ed.): Advanced Analytics with Spark: Paterns for Learning from Data at Scale.

O’Reilly, Beijing (2015)
71. Kreps, J., Narkhede, N., Rao, J.: Kafka: A distributed messaging system for log processing. In:

Proceedings of the NetDB (2011)
72. Markl, V.: Breaking the chains: On declarative data analysis and data independence in the big

data era. Proceedings of the VLDB Endowment. 7, 1730–1733 (2014)

218 R. Schmidt and M. Möhring

Chapter 12
A Guide for Capability Management

Matthias Wißotzki and Anna Sonnenberger

Abstract Digitalization, shorter product cycles, oversupply of markets and the
increasing customer requirements both determine and affect the movement from an
industrial to an information society. As a result companies are faced with new
challenges to keep their market position, transparency and efficiency. Enterprises
overcome these challenges by implementing strategies. In order to implement
strategies successfully and achieve desired goals enterprises should have certain
capabilities. Thus, the demand for a methodical capability management approach is
growing. This chapter introduces a process for identifying, structuring, and main-
taining enterprise capabilities. The guide is based on an integrated capability
approach that results from a number of scientific investigations and practical
experiences performed over years. Comprised of four building blocks, the capability
management guide represents a flexible “engineering” approach for capability
catalog developers, designers and evaluators.

12.1 Introduction

Dynamic markets, ever-shrinking product cycles and a persistent need for inno-
vation are just a few challenges faced by companies looking for long-term success
and corresponding strategies. Depending of the global changes enterprises face a
variety of internal and external challenges. As a result they develop a variety of
strategies, which are hierarchical arranged to reach global business goals and even
pragmatic, short-term initiatives. To do so, management teams are needed to plan,
transform and control organizational components like processes, technologies or

M. Wißotzki (&) � A. Sonnenberger
University of Rostock, Rostock, Germany
e-mail: matthias.wissotzki@uni-rostock.de

© Springer International Publishing Switzerland 2016
E. El-Sheikh et al. (eds.), Emerging Trends in the Evolution of Service-Oriented
and Enterprise Architectures, Intelligent Systems Reference Library 111,
DOI 10.1007/978-3-319-40564-3_12

219

resources. Therefore, organizations need to know appropriately about their capa-
bilities and how to use them to handle and solve occurring challenges. What does
that mean? Companies need to know themselves! In order to do so the pure
identification of structural enterprise components is quickly done in most cases, but
thereafter?

Our research offers a close relationship between strategic choices (e.g. projects,
initiatives) and the capabilities needed for successful strategy implementation. Only
then a long-term, economically efficient and structural effective existence is pos-
sible. Therefore, it is crucial to evaluate which abilities are currently available and
which are required in the future, when for example:

• New business models, products or services are introduced,
• Collaborations or mergers and acquisitions are planned or received,
• New technologies or applications have to be integrated.

We understand capabilities as expressions describing factors like roles, resour-
ces, processes and information required by a company enabling the achievement of
strategies. This approach is necessary to refine existing capabilities in particular
models and/or to be able to merge them with existing enterprise architectures. Why
architectures? If we look at a company as a whole there is a sum of considered
components (processes, roles, departments, resources, equipment, locations) which
enables business outcomes. However, a rapid and precise identification of capa-
bilities is the basis for adequate, company-specific measures and directions of
development. Decisions regarding outsourcing and insourcing, market positioning,
corporate culture, innovation opportunities, etc. can be better established by
capability oriented thinking. All in all, capability management needs to cope with
several internal and external, market-depending and global, business and IT factors.
Therefore, this section provides a guiding process focused on the following
requirements:

• Scoping and preconditions for capability management
• Identification of involved stakeholders
• Identification of capability types and their relations
• Structuring of capabilities and their models as a catalog
• Governance of the resulting capability catalog

Consequently, the introduced guiding process should help to systematically
derive capabilities, gathered and maintained in a repository—called capability
catalog. The process is developed for all interested parties, independent of the
enterprise size, branch or market. It includes working steps and specific recom-
mended tools to visualize and notate these ones. Hence, it is adoptable to different
circumstances. Generally it is addressed to all organizational departments and
workers interesting in the topic itself, strategic alignment or even managing the
challenges enterprises are faced to in the present days.

220 M. Wißotzki and A. Sonnenberger

12.2 Strategic Management and Enterprise Architecture

The terms enterprise and organization are used in the same wording for this work.
An enterprise represents an entity which is involved in a set of economic activities.
It consists of a variety of subsystems influencing the entity itself—external and
internal. Major external factors of influences could be triggered by markets,
political, legal, demographic and/or economic. Internal factors like processes,
policies, employees and culture influences an enterprise within its organization.
Internal and external factors have to be considered in order to combine enterprise
abilities in an optimal way, which requires a management discipline.

The origin of management can be traced back to the 1920s and generally implies
activities like planning, organizing, staffing, directing, coordinating, reporting,
decision making, budgeting and controlling. These functions are representing major
management tasks excluding specific focus, instruments, methods or stakeholders.
Obviously, the variety is big and primary depends on the management focus. IT and
business management are examples for different focus areas that requires different
management strategies as well.

In general, strategies could be understood as impulses for actions to be taken to
reach a certain goal. The term “strategy” originally comes from the military field
and represents an adjustable construct used to convert an actual state into a target
state. Moreover, the own market positioning in comparison to that of competitors
needs to be identified and either maintained or improved in consideration of market
conditions, stakeholders, and available/required resources.

According to Fischer [12], Stutz [21], we follow five fundamental strategic
management steps (Fig. 12.1) when it comes to the realization of business strategies
to achieve defined goals.

Strategy management involves the creation of an action catalog for strategy
implementation. In order to be effective, such an action catalog requires controlling
techniques and a structured view of its capabilities though.

Next to the management functions above, a main challenge represents the
controlling of enterprise complexity. Complexity is understood as the increasing
number of elements and their relations within a system. Enterprise complexity
means can be measured be relations between processes, roles, departments,
resources, equipment, locations or information flows. Therefore, an enterprise-wide
and integrated management system is required in order to control its complexity and

Fig. 12.1 Strategic management process (cp. [12, 21])

12 A Guide for Capability Management 221

ensure organizational success. From an architectural point of view, this is supported
by developing representations of enterprises in abstract architecture models.

An approach to that is called Enterprise Architecture Management (EAM) and
serves as a mediator between two perspectives on an enterprise: the business- and
IT perspective (Fig. 12.2). The business view is characterized by corporate goals,
business model and their realization in value chains and processes considering
motivational elements like corporate policies and standards, constraints, and dri-
vers. Business goals and strategies used to achieve these corporate goals lead to the
adjustment of the IT perspective, which is characterized (among others) by business
information services, integration services, application landscape, middleware, net-
works and hardware resources.

EAM is defines as a management practice that establishes, maintains and uses a coherent set
of guidelines, architecture principles and governance regimes that provide direction an
practical help in the design and development of an enterprise’s architecture to achieve its
vision and strategy. [2, p. 3]

Architecture Management requires to document states of the past, the present, as
well as the possibility of how it could be in the future. From these states, plans are
derived and transformations are triggered. The main challenge is to extrapolate
which decisions are responsible for the present situation and which ones are the best
to plan desired future situations. Obviously, these strategic plans should aligned
with the whole enterprises architecture.

Therefore, the EAM is aligned to the strategic- and IT management. In order to
align both perspectives successfully upcoming (inter) dependencies and relation-
ships should be known and discussed. If not, problems are emphasized by the fact
that business critical projects fail in 2 out of 3 enterprises which is reduced to the
circumstance that a lot of decision makers failure caused by conflicting interests,
insufficient information quality or decisions taken elsewhere [7]. Therefore, it is not
only important to be aware of the existing challenges and problems, but also to
continuously gather and asses information about organizational knowledge,

Fig. 12.2 Enterprise architecture management as mediator between business and IT

222 M. Wißotzki and A. Sonnenberger

corresponding responsibilities, available resources and processes required for the
strategy implementation [27].

Exactly for this purpose we will use the capability concept, because capabilities
could provide information for supporting the different management perspectives
and could avoid mistakes before they arise. Each company is equipped with various
capabilities that are specific to its organizations, but many of them are not aware of
them.

For this purpose an elementary approach is needed that identifies capabilities
required for an efficient operationalization of an enterprise strategy. Figure 12.3
summarized the three different management perspectives, its interrelations and
spaces for enterprise capabilities. These capabilities should be derived systemati-
cally through structured process, gathered and controlled in a discipline called
capability management.

In terms of its organizational value capabilities support:

• high-level representation of organizational activities
• strategic decisions like mergers and acquisition, out- and in-sourcing or

budgeting
• transparency
• a common language between business and IT responsible
• identification of new competitive advantages
• the identification of organizational requirements for a successful strategy

implementation
• scenario planning
• relating IT perspective to business value.

Fig. 12.3 Management perspectives, interrelations and potential capability areas (according to
Fischer [12], Stutz [21], Wißotzki et al. [26])

12 A Guide for Capability Management 223

12.3 Capability Management

The management of capabilities represents the core concept of this work. Due to
both decrease complexity as well as increase transparency, integration and (inter)
operationalization, a comprehensible management approach for enterprise capa-
bilities is needed. Therefore its definition and in-depth explanation is presented in
this section. Capability Management is especially focused on: scoping and plan-
ning, development, structuring, maintaining as well as controlling of enterprise
capabilities. It aims to optimize the economical actions in order to current capa-
bilities, enriched by strategic and operational decision-making by the development
of capabilities.

Academics and practitioners used the term “to express the ability or expertise
their organization requires to engage in the execution of their business strategy and
plans” [24]. In general a capabilities could be understood as the combination of
resources, information, processes and business environments to reach a specific
outcome (e.g. customer satisfaction, product and service quality) specified by
appropriated stakeholders.

In general, they could be capabilities could be characterized as Ulrich and
Smallwood [22], Bharadwaj [5]:

• intangible,
• non-redundant
• stable over time,
• process-independent, when even influenced
• hierarchical and combinable,
• heavily influenced by human resources (e.g. personnel, training),
• organizational conditionally (resulting in the ability of enterprise

reconstruction),
• attributed to clear (management) responsibilities within an enterprise and
• directly market value delivering.

Thus capabilities answer the question of: “What are we doing?” To answer this,
in most cases capabilities describe an actual summary of named expertise as well as
the needed ones to fill gaps. However, the answer of “How can we reach our goals
by performing high efficient strategies?” requires a more detailed capability con-
cept. The concept should describe both the actual situation of required capability
components, desired ones as well as procedures that closes occurring gaps.
Therefore a capability represents the ability of an enterprise to join an appropriate
content depth of information and roles able to execute a specific activity with
available resources under consideration of its context in order to support opera-
tionalized goals within strategies (cp. [28]). Thus the usage of capabilities is more
detailed and explicate than strategy elements, but less comprehensive than business
processes [15]. Our capability model is derived from finding of Wißotzki and
Sandkuhl [27], Wißotzki [27] and illustrated in Fig. 12.4.

224 M. Wißotzki and A. Sonnenberger

In view of the above and considering also the existence of different management
contexts a wide range of capability types theoretically exists. Basically a distinction
between external and internal focused capabilities leads to a categorization in:
dynamic capabilities, business capabilities, IT capabilities, core capabilities [27].

In line with the integrated capability model (Fig. 12.4) we distinguish between
business, EAM and IT capabilities characterized by its context elements, which
depend on the area of application (e.g. management discipline and/or affected
architecture/subject views). For instance, the context of business capabilities rep-
resents a combination of objects of the business architecture (e.g. product, market,
or customer) and traditional management activities, whereas the EAM capabilities
context is defined as a combination of architectural objects (e.g., application,
information flow, or component) and management functions like dialog, planning,
transforming and monitoring (Fig. 12.3). However “What capability type is
required for an enterprise within a certain area of application in order to achieve
defined goals?” We deal with this question using our integrated enterprise capa-
bility model again in terms of roles, resources and tasks called descriptive elements
that starts with the definition of the already mentioned enterprise context (capability
context) followed by capability’ required information, roles, resources and
process/activities.

Personal and organizational attitudes, skills, aims and missions, as well as their
specific level of knowledge are mentioned within the capability literature [3, 10]. In

assigned to

realized by

is produced by executes/ governs

consumes

provides access to

influences

Process

Outcome

Information Resource

RoleCapability

Strategy realized/evaluated by

Context

Goal

shapes

KPImeasured by

classified in
motivates

defines

Organizational
Resource

Human
Resource

is a

is a

utilized

Organization

provides

provides

Competencehas

Responsibility

Governance
Structure

defines

has

requires

equipped with

requires

Fig. 12.4 Integrated enterprise capabilty model (IECM)

12 A Guide for Capability Management 225

order to clearly distinguish the understanding of the capability concept from con-
cepts like competencies, abilities, skills or even processes, we start classifying the
concepts by the approach of Ulrich and Smallwood [22] followed by introducing
some classification criteria.

The main element to distinguish between competencies and capabilities is the
individual/human context and the enterprise/business focus [28]. According to
Ulrich and Smallwood [22], competencies are related to technical skill sets while
capabilities and abilities are referred to social skill sets. “Organizational capabilities
emerge when a company combines (and delivers on) individuals’ competencies and
abilities” [22, p. 2]. An organizational capability “[…] represents an organization’s
underlying DNA, culture, and personality. These might include such capabilities as
innovation and speed” [22, p. 2]. Day [9] defines competencies as routines combined
with enterprise investments due to activate specific functions, whereas capabilities
call the mechanisms and processes creating new competencies (Table 12.1).

“Ability refers to the level of available competence, where competence is
understood as talent intelligence and disposition” [11]. Both of them are addressed
to reach a goal. Skills describe abilities of a person within the organization. The
distinction of capabilities and processes is not favored by the variety of possible
nomenclatures. Especially the verb-noun expression for capabilities (e.g. introduce
products) forces misunderstanding the terms. An enterprise capability expresses
“what the enterprise does” whereas a business process is about “how an enterprise
operates” (cp. [8]). Processes can require granular or complex capabilities as well as
the other way around. But they do not have to. One process can map different
capabilities having conflicting, matching or independent requirements [15].

Next to the term differentiation by Ulrich and Smallwood [22], we demarcate the
terms function, process and capability by using a set of several criteria that help us
to clarify the differences (Table 12.2).

Next to the classification criteria, a set of capabilities should fulfill the following
characteristics (independent from capability type): allows the reconstruction of
enterprise organization, attributed to clear management responsibilities within the
enterprise, heretical and combinable, temporally stable and process independent,
but rather influenced, non-redundant and directly value delivering.

Table 12.1 Competence, ability and capability according to Ulrich and Smallwood [22]

Individual Organizational

Technical Individual functional competence
(e.g. expertise in marketing, finance,
or manufacturing)

Organizational core competencies (e.g.
financial services firm must know how
to manage risk)

Social Individual leadership ability (e.g. to
communicate a vision, or to motivate
people)

Organizational capabilities (e.g.
innovation and speed)

226 M. Wißotzki and A. Sonnenberger

12.4 Capability Management Process v3.0

The initial capability management process (CMP) model version 1.0 is developed
by Wißotzki [27] since 2013. The current version 3.0 is includes result from sci-
entific investigation and practical evaluation cycles [27, 29]. This section offers a
description of the CMP 3.0 (Fig. 12.5).

The process is aligned to the common accepted Business Process Modeling
Notation (BPMN). Therefore, it starts with a start event and is finished after
reaching the end event. Gateways are symbolized by “crossing X” and offer min-
imum 2 alternatives ways. For example, the transition from the 3rd to the 4th

Table 12.2 Classification Criteria [27]

Classification
criteria

Capability Function Process

Decomposition Business by strategic
goals

Business by
tasks/objectives

Business by
activities

Extension Enterprise wide Unit specific Task specific

Solidity Enduring and stable Change
frequently

Purpose What How

Focus Strategically Tactically Operatively

Layer Business execution

Modelling
approaches

E.g. figures, text,
Archimate 2.0

E.g. 4EM, Archimate
2.0

E.g. BPMN,
EPC etc.

Fig. 12.5 Process model—the capability management process v.3.0

12 A Guide for Capability Management 227

Building Block can start directly by going to Catalog Deployment by skipping the
first two, optional working steps or starting right at the beginning.

The process consists of four Building Blocks (BB’s) each focusing on distinct
contents and having distinct outputs. In short, the first building block sets prepa-
ration conditions like problem, scope, and stakeholder definition. The second
building block designs the capability catalog structure, whereas the third block
develops the detailed capability content. The governance building block covers
catalog evaluation and maintenance issues. Every Building Block consists of sev-
eral working steps (WS). These are shortly summarized by the following central
goals:

• Identification of involved parties and definition of terms and preconditions
• Identification of capability types and corresponding capabilities for opera-

tionalizing of strategic goals
• Systematic derivation of capabilities, gathered and maintained in a repository

called capability catalog.

12.4.1 BB1—Preparation

The first building block defines conditions for the capability catalog to be created.
Hence, the following requirements should be handled:

• Problem definition and clear scoping of the application area
• Define developer and user groups of the capability catalog
• Negotiate terms and perspectives
• Define capability types and context objects
• Agree on a common development procedure
• Form the outer frame of the catalog.

Within this Building Block it is critical to derive requirements regarding to the
future capability catalog because of neglecting the current constraints. As a result,
the first building block is divided into the following four, visualized working steps
(Fig. 12.6):

Fig. 12.6 BB1—overview working steps

228 M. Wißotzki and A. Sonnenberger

12.4.1.1 WS1: Scope and Application Area

This working step forms the outer frame of the catalog but does not determine the
concept of capability in depth, its level of detail, the specific context, as well as the
strategy and design of the catalog. Stakeholders and the focus of the required
capability model must be clarified. The involved parties have to agree on the
application area and the goals of the capability catalog that is to be created. The
initiators of a capability driven initiative have to agree on a capability approach due
to select appropriate and specific tools and models, as well as storage media during
the further development. Stakeholders are responsible to select models and tools,
storage media and further approaches directly at the beginning or during the
development. To summarize, the main question that has to be answered within this
working step is:

For which purpose do we need capabilities?

For instance the detection of business weaknesses as well as IT alignment could
be reasons for creating a capability catalog. The objectives depend on the alignment
motivation like profit-, strategic- or improve-oriented motivation.

Accordingly, several driving questions are relevant for scoping:

• What is the purpose/motivation for capability oriented thinking?
• Which goals and strategies need to be supported?
• What are the benefits for our organization?
• Which area of application requires a capability catalog?
• Are there any industry-specific capabilities that need to be considered?
• What is the proportion of profit about?
• What are the driver and constrains?

Table 12.3 illustrates an exemplary analysis of a capability catalog’s application
area with respect to a potential goal to improve the business-IT-alignment.

Table 12.3 Procedure example for a goal, strategy and application area description

Goal Improve our
business-IT-alignment

Challenge: “IT is not able to deliver to the
business strategy say 75 % of CFOs” [14]

Strategy Development and
maintenance of an
architecture inventory

Benefits: Reliable architecture information,
standardized communication, cross-company
comparability of applications, reduced efforts
for current landscape analysis and ad hoc
reporting, ability to identify redundancies
and change impacts

Application
area

Enterprise architecture
management

Activities: E.g. situation analysis, elaborate
options, develop target state, road mapping
and migration planning, project portfolio
planning, etc.

12 A Guide for Capability Management 229

According to human nature, there is a warily behavior towards change as long as
it is not assessable. Consequently different stakeholders need to be involved by
using its individual pick-up points in order to diminish this behavior and support the
preparation of the capability catalog.

Which kind of stakeholders should involved e.g. managers, architects or other
kind of addressee? A stakeholder analysis supports the identification of parties that
are or at least should be involved, their interests, and corresponding pick-up points.
Therefore, the following questions need to be answered:

• What kind of support do stakeholders expect from a capability catalog?
• Who will have which benefits?
• Who provides the input and must be involved as a result?
• What is the general attitude towards the project (positive, negative, or neutral)?
• Who already is or needs to be informed about project goals/addressed

problems?
• Who is essential to initiate the project and who will be affected by project

outcomes?
• What is the general attitude of users and stakeholders towards the project?

– Supporter, neutral, opponent
– Interested/not interested
– Engaged/not engaged

As better the governance structure of an organization including clearly defined
roles and tasks, as better works the identification of stakeholders and their agree-
ment on development conditions. According to CEB [8] we recommend to motivate
a selection of the following stakeholder groups:

• Executive Management: because it articulates the vision of how business
capabilities will drive enterprise value, ensure that the senior management are
engaged in the initiative, approved the overall concept and release the budget for
the catalog development.

• Senior Management: because it represents knowledge carrier of organization’s
mission, operations, and performance objectives, identifies potential capability
stewards who will be accountable for required information, validates drafted
capabilities to ensure that they accurately represent activities of their business
unit, function or organization.

• Middle Management: because its articulate how their units operational activities
link to strategic goals, can validate drafted business capabilities to ensure that
they accurately reflect the activities of their function.

• Enterprise Architects: because its knowledge about enterprise architecture,
modeling techniques and industry frameworks is essential to engineer capabil-
ities in depth.

• Business Architects: is deep understanding about most important business
activities is crucial for capability engineering.

230 M. Wißotzki and A. Sonnenberger

We recommend three facts that should be taken into account when selecting
stakeholders:

1. Find stakeholders who could give feedback: Comments, changes, additions,
incomes and outcomes to a capability catalog project like:

(a) Managers with an enterprise-wide understanding.
(b) Domain experts with knowledge on what they do.

2. Integrate a business unit or functional division: Who is interested in future
changes and has a positive attitude towards the topic. For example:
Development of a capability catalog to support the relations between business
and IT.

3. Locate a executive or senior manager by illustrating benefits of a capability
oriented thinking.

Most work recommends the senior and middle management as main addressees.
These hierarchical layers provide the majority of required information and resource
responsibility for capability engineering initiatives. The definition of the general
scope and application area, overall budget and distribution of resource responsi-
bilities is embedded in executive layer. Architects combine the different (archi-
tectural) views with the management information. If for any reason a distinction in
such management groups not possible chosen stakeholders should provide at least
the following characteristics, rated from low to high importance:

• Architecture work and technical mastery like technical and deep domain expert
knowledge

• Strategic thinking like long-term business oriented thinking
• Business and IT understanding like knowledge about enterprise processes and

architecture
• Engagement skills like collaboration, decision-making, change management,

facilitation

For all involved stakeholder a common (moderate) business language as well as
specific enterprise vocabulary should be in order to document results understand-
able, transparent and identifiable. Especially, capabilities should be defined and
documented with understandable terms, which at least depend on involved stake-
holders and its chosen languages. We recommend that any form of documentation
should be written from an outside-in-perspective to allow addressees and may
project external stakeholders to understand it.

Documentation Example: Relationships and dependencies of this WS could be
documented within a project concept or scoping description, visualized by models
like goal models, business models and/or stakeholder diagrams (Fig. 12.7), bubble
diagrams, portfolio charts, organizational charts, spider charts etc. However, storing
of reached results is of significant importance and could be supported by (1) cen-
tralized (2) access to.

12 A Guide for Capability Management 231

1. Centralized and/or distributed data storage; e.g. MS SharePoint Services, local
and/or global storage server and file systems, internet based services

2. Access to documents and database(s): e.g. provided servers, online-platforms,
wikis, personal (electronic) files, cloud services, knowledge management
systems

Finally, Table 12.4 summarized the inputs, throughputs and outputs of this WS.

12.4.1.2 WS2: Identification of Terms and Concepts

The understanding and choice of a capability concept may vary among relevant
stakeholders. So a common understanding between different stakeholders with
differing languages (not in the understanding of spoken language, but rather the
specific working vocabulary) must be found. Starting with a general capability
approach may create a common understanding of the perspective at hand.
Nevertheless, obtaining an overview of already existing definitions and concepts is
advisable in order to either use or extend present concepts. At this point, the global
requirements of the capability catalog development are defined and the existing

Fig. 12.7 Visualization
example—stakeholder
diagram

Table 12.4 BB1.WS1—Summary

Input Throughput Output

Vision, strategy and goals,
business model, organizational
model

Scoping and basic
conditions for the capability
catalog

Approved scope and
stakeholder
commitment

232 M. Wißotzki and A. Sonnenberger

concepts are compared and enhanced by missing components. This working step
identifies terms and perspectives to define a consistent capability concept.

How do we extend already existing, documented terms and concepts?

We recommend a deductive procedure: starting with a general example of the
capability approach for a common understanding, specific constellations and ele-
ments can be derived during this WS. The brief overview of existing and docu-
mented terms must be extended and modified in detail. For example, present
approaches can be adapted to new situations or its relation within an enterprise can
be reconsidered (Fig. 12.8).

The driving questions are:

• Are there any existing capability definitions, maps, projects, catalogs, contracts
etc. within the organization?

• What is the understanding of used terms about?

– Internal, external, common

• What hopes are desired by developing such a catalog?
• How is the concept of capabilities applied?
• How can we implement the identified capability concept into the existing

organizational structure?
• Which degree of detail is currently reached?
• Which architecture types are involved and/or influenced?

Fig. 12.8 Documentation example to document capability relations within an enterprise
(according to Greski [15])

12 A Guide for Capability Management 233

Enterprise capabilities influence the results of transformations specified and
measured by strategies. Architectural components like processes, information, roles
and physical resources are assigned to these enterprise capabilities. These basic
components are part of the business architecture model and has to be considered in
order to analyze its causal correlations.

Documentation Example—Results like written explanations of the single terms
and statements are sufficient and should be collected in a central glossary, (internal)
wiki and/or file repository (see WS1). Relationships between defined concepts
could additionally be visualized within informal or formal models. Nevertheless, no
single visualization tool or technique could be recommended for this working step,
but we recommend to orient themselves on enterprise standards like modeling
languages, or knowledge management procedures. Finally, Table 12.5 sums up the
inputs, throughputs and outputs of this WS.

12.4.1.3 WS3: Description of an Integrated Capability Approach

In this step, the fundamental capability approach and context definition is worked
out. According to Abowd et al. [1], a context describes any information that can be
used to characterize the situation of an entity. As mentioned indicated, an integrated
capability approach represents an object-based concepts including its context and
relations within the enterprise architecture. Referring to Buckl et al. [6], capabilities
have either a direct or indirect relationship to (other) architectural objects. The
enterprise context contains the description of any information characterizing a
specific situation. Consequently, the sum of internal and external factors influencing
a specific situation has to be identified and defined. Within this working step these
architectural objects including its relations and enterprise context are assigned to a
capability concept in order to specify its structure and type.

What is the capability context like?

Our Integrated Enterprise Capability Model (IECM) supports the identification of
specific capability types required for effective operationalization of specific goals and
strategies. In line with an enterprise architecture approach (Fig. 12.9), both the appli-
cation area and the elements required for a capability could be identified, assigned
within an EA and finally results in a specific capability type. We distinguish between

Table 12.5 BB1.WS2—Summary

Input Throughput Output

Scope and
application area

Identifies used terms and perspectives to define
a consistent capability concept

Approved capability
working definition

Approved architecture
concept

Idea of required
capability types

234 M. Wißotzki and A. Sonnenberger

three basic capability types: (1) Business Capabilities → Business context, (2) EAM
Capabilities → architectural mediator context, (3) IT Capabilities → IT context.

Each type is imbedded in an enterprise context, which in turn depend on the area
of application (BB1.WS1). For instance, the context of business capabilities rep-
resents a combination of objects of the business architecture (e.g. product, market,
or customer) and management activities, whereas the EAM capability context is
defined as a combination of architectural objects (e.g., application, information
flow, or component) and management functions.

What capability characteristics are required for an enterprise within a context in order to
achieve defined goals?

We deal with this question using our integrated capability approach. Next to the
enterprise context, the specific definition of a capability requires an additional set of
elements: the required information, roles/actors with competences to help create a
specific outcome, the relevant activities or processes, and appropriate resources
(Fig. 12.10).

Fig. 12.9 Capability types
and context relations

Fig. 12.10 Conceptual structure of a capability (cp. [27])

12 A Guide for Capability Management 235

Capabilities are connected to an overarching subject (e.g. application area) or an
environment (internal/external) and describe the specific situation of capability
usage. These are called “Enterprise Context Objects”. The capability context and
descriptive elements are assigned to architectural layers of the organization’s EA,
which could be broken down more detailed other than the conceptual examples
described here.

Procedural Example—Business objects like costumer, contract, and order
combined with management functions (e.g. planning, implementing, controlling)
can be used for a business capability context definition (Fig. 12.11). Furthermore,
time horizon (e.g. current and future) and/or more specific management functions
like situation analysis, elaborate options and roadmaps could be used.

Procedural Example—For an EAM capability we refer to architectural layers
and/or architectural objects like application or information flow. Furthermore, we
recommend to use specific EAM management function to define an EAM capability
context (Fig. 12.12).

Fig. 12.11 Example of a business capability

Fig. 12.12 Example of a EAM capability

236 M. Wißotzki and A. Sonnenberger

The indicative questions, helping to define which context objects are required:

• Do we need related, underlying and/or linked information, roles, resources, and
processes for our capability definition?

• Which descriptive elements are important for us?
• Which capabilities do we need and use?
• Which capability types exist in specified practice?
• Are there any context objects derivable from the application area? If yes: How?

Finally, Table 12.6 summarized the inputs, throughputs and outputs of this WS.

12.4.1.4 WS4: Definition of the Development Strategy

Questions of how the catalog is constructed are answered in this section. During the
development of strategies, it is necessary to obtain management approvals and
support. In addition, all relevant organizational units and employees (BB1.WS1)
have to get access to required information and documents. In fact, informing rel-
evant stakeholders about, e.g., the upcoming activities and the corresponding
timeframe is essential in order to obtain the required support. The relevance of the
overall project to the enterprise, the purpose of the capability catalog, a time
schedule, planned activities, the involved parties, a common understanding of how
capabilities will be applied—all of these aspects need to be clear and/or available
right at the beginning. The main objective here is to create openness among the
involved parties or, say, stakeholders to upcoming analyses in order to have a
positive influence on both quality and correctness of the identified capabilities. The
need for personnel and monetary resources required in the context of a capability
development project may have to be justified during the first building block as well.
The following aspects may generally support the value justification:

• Added value of the capability catalog in accordance with the overall perfor-
mance of an enterprise, e.g., cost savings or quality enhancements

• Development of competitive advantages with the aid of capability-based plan-
ning and investment

• Improvement of the documentation and auditability of organizational require-
ments used to achieve goals

Table 12.6 BB1.WS3—Summary

Input Throughput Output

Capability
concept

Description of the specific capability type by
context definition

Integrated capability
approach

12 A Guide for Capability Management 237

What is the overall capability development strategy?

Two situations can be differed and should be considered during the definition
process of this WS: there is already is an existing catalog or a new catalog has to be
developed. Furthermore, the strategy definition should include: purpose, time
schedule, planned activities, stakeholders, resources, common wording and
understanding, documentation and engineering approach. Obviously, the previous
three working steps provide the basis for the development strategy, e.g. the purpose
and addressees defined in BB1.WS1, the defined elements like resources in BB1.
WS2 as well as the context (BB1.WS3) to derive possible effects and, as a result, to
plan comfortable in time in this working step.

Procedural Example—Justification of strategy alignment can be reached by:

• Increasing competitive advantages with the aid of capability-based planning and
investment

• Added value of the capability catalog in accordance with the overall enterprise
performance, e.g. cost saving

• Improvement of communication and documentation purposes
• Top-down planning procedure—starting with basic goals and directions to

specific objectives and required activities.

The driving questions are:

• How can we anchor strategic goals into our capability catalog?
• How can we learn and translate existing processes into capabilities?
• What personnel and financial resources are needed to realize the development

project?
• How can the output of the project be valued and accordingly measured (fi-

nancial, organizational, personnel)?
• How are the capabilities used or usable in practice?
• How is the timeline and division of responsibilities for each activity?

Procedural Example—a comprehensive strategy planning view should consider
the following three levels (cp. [22]):

• 1st Intellectual Level: It has to make sure that stakeholders from top to bottom
know what the strategy is, what it is crucial influenced by and what is its need
and importance.

• 2nd Behavioral Level: Time plans and the real spending in strategic issues as
well as their degree of influencing must be analyzed.

• 3rd Procedural Level: The continual invest in strategic essential procedures
must be stressed.

Next to the planning perspective, the engineering approach, the modeling lan-
guages and modeling/documentation software tools have to be defined. For the
engineering approach we recommend three different ways (according to Espana
et al. [11]):

238 M. Wißotzki and A. Sonnenberger

• Goals-oriented: Starting with defining and modeling a goal hierarchy, required
capabilities to reach the organizational intentions and objectives must be ana-
lyzed. Top-down-modeling is recommended.

• Process-oriented: Starting point is a process underlying a business model, which
is further modeled and defined in order to adopt it in different scenarios. This
approach assumes (at least) an existing organizational process model.

• Concept-oriented: Static aspects (e.g. structures, materials, customer profiles) of
enterprises, called concepts, have to be modeled and analyzed in order to
illustrate organizational knowledge.

The selected engineering approach directly affects the modeling languages,
provided syntax, visualization techniques and at least the software tool decision.
The authors recommend a central storage/repository idea for the capability catalog
documentation due to more comfortable and easy data access by other information
systems. Furthermore, isolated solutions and redundancies are avoided as far as
possible. An overview of possible different engineering approaches is summarized
by Table 12.7 (cp. [11].

Table 12.8 sums up the key points of this WS.

Table 12.7 Capability engineering approaches (cp. [11]

Aspect of
comparison

Goals-oriented Process-oriented Concept-oriented

Starting point
of modeling

Goals Process(es) Static aspects

Basic intention Enterprises gain to
reach their goals.
Capabilities fulfill
them

Capabilities are a set of
processes

Any kind of resources
flow into capabilities as
well their effects

Preconditions
with respect to
models

Goal hierarchy Process model Structured and defined
organization (worker,
organizational structure,
resources)

Primary
stakeholders

Executive and
senior mgt.

Domain experts, product
owner, senior and middle
mgt.

Product managers

Degree of
flexibility of
the modelling
strategy

Iterative and
incremental
modeling process

Flexible process
engineering with regard of
capability design revision
and cope with ill specified
goal or concept models

Flexible with regard to
the business process
specification and cope
with different levels of
concept granularity

Organizational
impact

Reinforces
strategic vision
and clarifies the
IT-business
alignment

Improvement of the total
enterprise context

Grouping of
organizational concepts

12 A Guide for Capability Management 239

12.4.2 Catalog Design

Subsequent to the determination of the basic conditions within the first building
block, the design of the capability catalog is initiated. Hence, capability candidates
are identified, collected, structured as well as their relationships identified. The
building block consists of the following three working steps (Fig. 12.13):

According to Ulrich and Rosen [23], Wißotzki and Sandkuhl [27], the following
list summarized a number of basic principles important for capability identification
and definition:

• BB1.WS1: Application Area affects capability context and its type.
• BB2.WS2: Capabilities define what is done, not how to do something.
• BB1.WS2: Current capability understanding.
• BB1.WS3: A capability is defined by its set of descriptive elements.
• BB1.WS2: Capabilities are nouns.
• BB2.WS1: Capabilities are defined in the business language of its application

area (i.e., there should be no technical terms for describing business
capabilities).

• BB2.WS2: A capability should be enduring and stable, not volatile.
• BB2.WS2: Capabilities are not redundant.
• BB2.WS2: There is one capability map for an application area.
• BB2.WS3: Capabilities can have relationships to other capability types.

12.4.2.1 Working Step 1: Identification of Capability Candidates

The phase starts off with the “capability candidate identification.” The focus of this
activity is the definition of the first capabilities. Prior to any analyses, it is important
to accurately define the area of application and coordinate the required work (BB1.

Table 12.8 BB1.WS3—Summary

Input Throughput Output

Integrated
capability
approach

Detailed scoping of the project and
alignment to the outcomes of the
previous working steps

Definition of the project plan and
engineering
approach → development strategy

Fig. 12.13 BB2—overview working steps

240 M. Wißotzki and A. Sonnenberger

WS1). The area of application determines the content and concepts that are sig-
nificant for the identification process. Therefore, the output of BB1 provides the
basis for the planning of required identification activities, involved experts, and the
effort estimation. For the actual identification process, there are several possibilities
that have been successfully used in other fields such as enterprise modeling.
According to Wißotzki [27] different identification methods with respect to their
field of application exist e.g. brainstorming, survey, document analysis, written
cases or moderated workshops. Initial activities for identifying capabilities should
be kept as short as possible. In general, these initial activities result in a roughly
structured collection of individual capabilities or at least capability ideas.

Procedural Example—The following Table 12.9 illustrates a couple of exam-
ples of typical industry-related business capabilities in order to provide guidance for
a simple one dimensional (only one capability context element) capability
identification.

Next to the one dimensional example above, we recommend an additional
approach for a multidimensional capability identification process with two or three
capability context elements. The origin of this identification concept is a so-called
“capability identification matrix/cube.” At the axis of the identification matrix the
context elements of a capability type are positioned. In case that more than two
context elements are defined, the set has to be stretched to multidimensional spaces.
Engineers should consider that this set is much more complex. Consequently, we
recommend not more than three context elements in order to avoid complexity at
the beginning and enhance handling and understanding, because the identification
of first capability candidates represents the main objective of this working step.

Example—In context of our IEC approach an EAM capability like “Impact
Analysis Application Landscape” (IAAL) could be identified as follows. The
already defend context elements “architectural objects” and “management func-
tions” name the X- and Y-axis of the capability identification matrix. At the X-axis,
we position the following simplified EA management processes:

• “planning”—involving the phases: situation analysis, elaborate options, develop
target state, road mapping and migration planning, project portfolio planning.

• “transformation”—involving phases: project set-up, design solution, implement
solution, roll-out.

Table 12.9 BB1.WS3—Summary

Capability context—
industry

Business capability examples

Utility Claims management, network capacity management

Automotive Production equipment manufacturing, supply chain
management

Banking Safety management, credit management, compliance
management

Software Product life-cycle management, test and validation management

Mining Production planning, core extraction, waste management

12 A Guide for Capability Management 241

• “monitoring”—involving phases: control and evaluate EA, manage change
needs.

The Y-axis (architectural objects) contains architecture elements of the business,
application and technical layer (Fig. 12.9). In order to provide examples for
upcoming explanations we exemplary assign a set of elements to the defined
architectural layers illustrated in Fig. 12.14.

For our example an application architecture objects called “application” is
selected. This architecture element represents an IT system that provides features in
a business manner to user or other applications. Applications based and operate on
elements of the technical architecture. The matrix cell at the intersection of the
“application” object and for this example “situation analysis” of the “planning”
phase represents a possible EAM capability. The engineering team has to discuss
and decide about the meaningfulness of this intersection in terms of “Does this
intersection represents a capability for us?” The current situation of an application
and its relations to other architecture objects provides important inputs for addi-
tional process like transformation or changing activities. Consequently, the question

Fig. 12.14 Example for an enterprise architecture and typical layer elements (cp. [20])

242 M. Wißotzki and A. Sonnenberger

above could be answered with yes. The upcoming EAM capability is exemplary
called “Impact Analysis Application Landscape” capability. Figure 12.15 illustrates
the example.

Naming of capability represents another important issue of this WS. In this
context two options for the nomenclature of capabilities could be distinguish:

1. Noun declarations
2. Verb-noun declarations

In terms of classification purposes (cp. Table 12.2) we recommend to name
capabilities by nouns, whereas other organizational elements (e.g. processes,
business functions, value streams) should use noun-verb declarations. A suitable
declaration facilitates a fundamental goal of a capability management in terms of
being an instrument of communication between different enterprise perspective
(Fig. 12.2) by enhancing the understanding and transparency of what these per-
spectives do. Nevertheless, even at this early stage suitable declarations should
fulfill the following definitions:

• As simple and short as possible,
• Conclusive and consistent,
• Focused and transparent,
• Describing and comprehensive,
• As significant as possible,
• Statement-like.

Fig. 12.15 Concept of an EAM capability identification matrix—management context element
planning

12 A Guide for Capability Management 243

Table 12.10 represents an example for a suitable and unfavorable capability
declaration.

Questions helping to identify capabilities are:

• What kind of abilities do we need to do our business?
• Could we derive capabilities from core processes?
• Could we derive capabilities from value chain?
• Could we derive capabilities from business functions?
• What kind of analysis methods could we use for an initial identification?

The identification should be made by a core team, which is enlarged by domain
experts during the next working steps or further iterations. These domain experts
obtain special knowledge from practice or scientist in order to provide completeness
and different perspective regarding a capability. However, this WS ends in a
roughly structured collection of capabilities that could be visualized by different
techniques.

Documentation Examples—Cluster maps (box-in-box), Capability Identification
Matrix (Table 12.11), mind maps, simple lists or text or other collection docu-
mentations are usable. A common capability visualization technique repents the

Table 12.10 Comparison of good and poor capability description (cp. [8], p. 17)

Example
business
capability

Suitable declaration Unfavorable declaration

Capability
name

Financial planning and analysis Planning financial issues

Description Ability to build and manage
annual budget and operating
plan

Ability to prepare annual operating plans
and monthly forecast, generate product
line profitability reports, create financial
models and perform budget variance
analysis within the required timelines

Outcome Budgets and plans are
completed efficiently and on
time

99.9 % uptime for all financial planning
systems

Budget and plans are accurately
estimate financial outcomes

Real-time integration of transactional and
master data for all financial planning and
analysis applications

Responsible Senior mgt., corporate finance –

Table 12.11 BB2.WS1—Summary

Input Throughput Output

Comprehensive
development strategy

Identification of capability
candidates

Roughly structured collection of
capabilities

244 M. Wißotzki and A. Sonnenberger

cluster map (Fig. 12.16). However, irrespective of the chosen techniques each of
them should be centrally saved as editable document for the engineering team and
authorized stakeholders.

12.4.2.2 Working Step 2: Structuring and Summarization

Within the step “structuring and combining,” redundant elements are removed and
capabilities that have a strong coherence as to content are aggregated or further
specified. Content-related aspects are combined to create a catalog that is both easy
and clear to understand. Subsequent to first refinements of the capability catalog,
participants work on additional iterations with the aid of the collected questions and
critical comments in order to suggest further changes and enhancements.

The objective of this step is to classify identified capabilities, create a consistent
structure, fix capability names and prepare stable descriptions in order to keep the
amount of as small as possible, but as large as needed. Therefore, the following
activities should be considered:

• Review of the first substantial results of the brainstorming activities
• Pooling of redundant elements with similar stating points
• Register coherences between capabilities (aggregates, interrelation)
• Further analysis and reorganizations are needed.

Consequently, initial identified capability candidates have to be analyzed, dis-
cussed and, where necessary, restructured. Restructuring can be differed into:

1. Removing—of unnecessary elements
2. Grouping—similar capabilities are either pooled or integrated using appropriate

criteria like:

Fig. 12.16 Visualization of a
business capability collection
in a cluster map

12 A Guide for Capability Management 245

• Collection criteria e.g. all capabilities of the same business, all capabilities
required for value proposition; capabilities required to reach defined results,
capabilities related to specific roles, task or business functions; capabilities
related to a specific business partner, capabilities required to overcome a
business challenge.

• Nomenclature e.g. nouns for capabilities and noun-verbs for other descrip-
tive elements in order to differentiate them at first glance.

• Aggregation levels e.g. high levels for a first complete overview, pooling of
same (sub-) hierarchies levels.

• Miscellaneous e.g. competitive and support, importance, customer faced,
operative and strategic, business and IT, available and theoretical, general
and specialized, enabling and disable.

3. Extending/Modification—includes the further specification or aggregation of
elements.

The following driving questions support the structuring process:

• Are there similar or rather redundant capabilities? Yes: Is it possible to
aggregate or reduce these ones? Or Do they have to be more specified in
relation to a better distinguishing?

• Is the capability catalog unambiguous and easy to understand by the stake-
holders? No: Are there any techniques like reduction, composition and
decomposition to increase it?

After reducing and summarizing, content-related capabilities they can be
restructured, grouped or aggregated like illustrated in Figs. 12.17, 12.18 and 19.

Example—The business capability decomposition of strategy and governance
management can look as the following (Fig. 12.19).

Summarizations and new structures should be accepted by the involved parties,
especially if capabilities are removed or modified to answer questions like: Does
our new catalog structure represent our application area? There are two possibilities
to answer the question above:

1. Yes: Everything is fine. The structuring process is finished. The next working
step can be started.

2. No: More questions have to be asked and answered:

(1) How can we reach more acceptances?
(2) Are there serious reasons for resistance?

Questions and critical comments have to be documented in formal and informal.
Moreover, in the course of several iterations, it is necessary to use suitable docu-
ments in order to implement a resistant and stable documentation process.

Especially from here, we recommend a combination of the capability identifi-
cation matrix (Fig. 12.20) and a software tool. Next to identification purposes the
matrix concept provides a structuring concept for this stage (Table 12.12).

246 M. Wißotzki and A. Sonnenberger

12.4.2.3 Working Step 3: Identification of Relationships

Since the collected improvement suggestions just provide content-related horizontal
breadth and not particularly vertical a depth of a capability catalog, it is necessary to
conduct further analyses and reorganizations. In addition to an improved level of
detail that is achieved in BB3, dependencies among capabilities need to be

Fig. 12.17 Restructuring example—capability grouping

Fig. 12.18 Examples capability aggregation levels

12 A Guide for Capability Management 247

Fig. 12.19 Capability levels
of strategy and governance
management

Fig. 12.20 Documentation example for an aggregation of the impact analysis application
architecture

Table 12.12 BB2.WS2—Summary

Input Throughput Output

Roughly structured
collection of
capabilities

Classify capabilities, create a consistent structure,
and fix capability names and prepare stable
descriptions

Capability
catalog
structure

248 M. Wißotzki and A. Sonnenberger

identified and documented previously. During the step “relationships identifica-
tion,” different relationships are documented and analyzed. As a result of identi-
fying missing relationships, removing inconsistencies, and discovering gaps, there
is an enhancement of both the knowledge represented by the catalog and the
understanding of capabilities being available within an enterprise (Fig. 12.21).

The different types of relationships have to be documented and analyzed.
Basically, it can be distinguished between the following relationship types:

• Dependencies and correlations—One capability needs another one. Informative
dependencies are a subtype in term of information need.

• Interdependencies—Mutual reliance between (at least) two capabilities.
• Independencies—Capabilities exist side by side without any link.
• Synergies—The sum of capabilities has more value than the separate ones. The

entire relation of them is in the interest.

The following subtypes of relationships are rated as useful within a capability
catalog:

• Informative—One capability needs information from other ones.
• Supportive—One capability is a precondition for other ones.
• Functional—Two capabilities represent different connections/aspects in the

same character (one of the context elements are identical).

There are three main tasks fixing relationships:

1. Find missing relationships: gaps must be discovered and missing relationships
identified and inserted

Fig. 12.21 Visualization example for relationships in the capability identification matrix

12 A Guide for Capability Management 249

2. Redundancies (=one capability is implemented by several systems) have to be
removed

3. Overlaps (=one system implements multiple capabilities) have to be removed

The main activity is identifying and adjusting implicit, undesired and overlap-
ping relationships. Therefore, a process (e.g. [13]) and corresponding domain
experts have to be involved detecting relationships due to their practical experi-
ences, knowledge about capability context elements and application area
(Table 12.13).

The indicative questions are:

• What kinds of relationships exist between the capabilities?

– Informative, supportive, functional

• Are the relationships totally identified and defined?

– No: Where are the missing ones? How can we fill the gaps?

• Are there any wasted, inconsistent or unnecessary relationships?

– Yes: How can we eliminate them?

• Do the stakeholders agree to the identified relationships?

12.4.3 Detail Development

As described, capability management is typically an iterative process of identifying,
defining, controlling and maintaining. Thus, it is completed once when every
capability is described in a sufficient level of detail for supporting the specific
strategy implementation of an enterprise. The third building block is responsible for
the refinement and renewing of already achieved results by applying the following
steps (Fig. 12.22):

Table 12.13 BB2.WS3—Summary

Input Throughput Output

Capability catalog
structure

Identification, differentiation and integration of
capability relationships

Capability
catalog v1.0

Fig. 12.22 BB3—overview working steps

250 M. Wißotzki and A. Sonnenberger

12.4.3.1 Working Step 1: Definition of Content Layer

The initial step of the third building block, “catalog content layer definition,”
addresses the definition of the content and associated depth in order to provide both
a final structure and relations of the capability catalog details. This step is important
in case the catalog needs to achieve a high level of detail in terms of content (e.g.,
by specifying descriptive elements and defining assessment criteria). Content layers
are crucial to define content in an associated depth in order to provide both a final
structure and an order of the catalog. Therefore, the descriptive elements, the
content objects and other needed terms have to be specified in a high level of detail.

The example in Fig. 12.23 illustrates a three-level approach for the content layer
definition. The capability identification matrix represents the first level and is used
to identify contextual capabilities. At the content level the descriptive elements are
precisely specified. Last but not least, different kinds of assessment criteria and
procedures are defined at the third level.

Procedural Example—Weldon and Burton [24] differ between the following
three layers due to being familiar, logical, comprehensive and adaptable to all
stakeholders:

• Level 0: Contextual—identification and naming of context objects (e.g. sell,
market, service, partner, procure)

• Level 1: Conceptual—identification and naming of related capabilities (e.g. for
the context object “sell” there might be “sell miles to partners” and “sell miles to
members”)

• Level 2: Logical—further and more detailed sub-classification by chosen criteria
(e.g. domestically sell or export for partners or members)

In particular the middle management might need more details in order to elab-
orate planning scenarios like level 1–2 from above, whereas the executive

Fig. 12.23 Example for content layers [28]

12 A Guide for Capability Management 251

management is more focused on high-level capability content in order to receive
global and complete overviews like level 0–1. First content layer depth impressions
can be derived from assigned aggregation levels of BB2.WS2.

Questions, helping to identify and define content layers are:

• Which degree of detail should be reached/is required?
• Which layer differentiation should be used?

– Foundation, groups, types, descriptive elements, KPIs
– Contextual, conceptual, logical
– Corporate, cluster, single capability, descriptive elements, KPIs

• How many content layers are practical and rather needed?
• How are the single layers connected?
• Which issues should be described in each layer?

Easy, clear and appropriate vocabulary is recommended to define the layer
names and its content requirements. Due to the increasing content complexity, the
more substantive documentation should be made within a software tool. Hence,
both the previously identified relationships between capabilities as well as between
descriptive elements can be taken into account. Regarding the levels, different
approaches clarify the terms, needs and visualizing models. For example, the
capability identification matrix is an appropriate tool to design the catalog and to
identify, define descriptive elements and describe appropriate criteria as well. Some
of them are: Nested Cylinders and spheres, Cubes, 3D Scatterplots, Net layer
models/charts, Tree layer models, Parallel coordinates/matrices, Cluster maps,
Portfolios (Fig. 12.24).

They have to be selected in relation to their respective addressees and degree of
detail (Table 12.14).

12.4.3.2 Working Step 2: Capability Content Engineering

Within this step identified capabilities are described in further detail. The catalog’s
structures are depicted with the help of models that support a clear and consistent
conception of the catalog. Prior to any adjustment, a review of previous work is
required. Hence, the refinement or renewing of descriptive elements can be
initiated.

Therefore, the following questions should be answered for each specific
capability:

• Which are the related, underlying and/or linked roles, processes, departments
and capabilities?

• Which information is needed as input?
• Which resources are needed as input?
• Which information and resources are needed?
• How can these sources be provided?

252 M. Wißotzki and A. Sonnenberger

• What does the capability action in practice look like?
• Are there common accepted activities, business processes and responsible roles

regarding each capability?
• Are there under-/over performing and/or missing capabilities (gap analysis)

based on performance targets derived from the strategy?
• Which relevant metrics and/or key performance indicators (derived from

strategic objectives) can be identified?

– How are they scored (e.g. in terms of properties of the EA to which the
capability is linked)?

• How can we link capabilities to their motivation (strategic goals)?
• How can we link capabilities to their implementation (e.g. descriptive elements

as represented by EA models)?
• Do we have to involve any experts and stakeholder? Which ones?
• Is there any estimation about the needed time and resources?

Domain experts and manager must be involved in order to give specific inputs.
Depending on its expertise it is desirable and certainly possible that these

Fig. 12.24 Example for a content layers cube from the EACN project (cp. [26, 30])

Table 12.14 BB3.WS1—Summary

Input Throughput Output

Capability catalog
v1.0

Content layer
definition

Capability catalog v2.0 incl. content layer
concept

12 A Guide for Capability Management 253

stakeholders pass over to a role relation using a responsibility assignment matrix
(RACI, PACSI, RASCI, RACIQ etc.). For instance, if a stakeholder provides
activities that are required for a capability like informing, consulting, accountability
or responsibility (RACI) for resources, information, processes or company specific
descriptive elements, they pass over from its stakeholder position to a role element
of the capability (Fig. 12.25).

During the engineering process, the entire catalog is subject of substantial
changes of the structure, design and content. Additionally, the catalog’s structure is
depicted by clear and visualized models to stress the consistent understanding
(Fig. 12.26; Table 12.15).

The state of the catalog can be characterized as:

• Representation of revised results of several iterative activities
• Detailed and accepted relationships between the capabilities
• High level of detail.

Fig. 12.25 Example for a capability stakeholder-to-role map using RACI assignment

Fig. 12.26 Documentation of content layer 1 and layer 2 within the capability identification matrix

Table 12.15 BB3.WS2—Summary

Input Throughput Output

Capability catalog
v2.0

Detailing the descriptive elements and defined
content layer

Capability catalog
v3.0

254 M. Wißotzki and A. Sonnenberger

12.4.3.3 Working Step 3: Development of Stakeholder Views

When describing capabilities in detail, it is necessary to ensure that every capability
is formulated in a general manner, i.e., there should not be any connections to
objects such as particular applications or markets. In general, views might be
applied to present specific sets of capabilities to different kinds of stakeholder
groups. In particular, one of the following sample views could be created:

• required maturity level vs. current maturity, level of a capability used for
strategy implementation,

• costs of bringing a theoretical capability (some of the descriptive elements are
described but nonexistent in the enterprise) into real,

• dependencies between capabilities,
• capabilities required for a particular strategy implementation
• financial aspects,
• just a capability overview map.

For presentation purposes, different tools and technical measures may be used.
Different kinds of evaluation criteria are developed in this working step. When
describing capabilities in detail, it is necessary to ensure that every capability
content layer and its defined elements are formulated and may be linked to other
logical elements of the EA.

Procedural Example—The connection between goals, strategies, initiative and
corresponding capabilities for realization could be captured in a view (Fig. 12.27).

Fig. 12.27 Example impact analysis application architecture capability

12 A Guide for Capability Management 255

For presentation purposes, different tools, technical methods views could be
used. Some views for capability representation are exemplarily listed in
Tables 12.16 and 12.17.

The state of the catalog can be characterized as:

• Representation of revised results after several iterative process activities
• Detailed and accepted relationships between the capabilities
• High level of detail
• Completed.

12.4.4 Catalog Governance

This last building block is very important due to introducing and keeping capa-
bilities up-to-date. In fact, the governance process addresses the quality manage-
ment of the created capability catalog. It thus includes activities referring to the
assessment, deployment, and maintenance of a catalog illustrated in Fig. 12.28.

Even though there are a lot of approaches dealing with quality criteria and
valuation methods in the context of, for example, enterprise architectures [19].

Table 12.16 Views for stakeholder specific capability representation

Strategic views Information views

Performance charting
Strategy maps
Feedback diagrams
Magic quadrants
Spray diagrams
Affinity diagrams
Mintzberg’s organigraph
Strategic game boards

Radar charts
Cone tree maps
Hyperbolic tree
Cycle diagram

Concept views Compound views

Mind map
Square of oppositions
Concentric cycles
Synergy map
Force field diagram
Argumentation map
Perspective diagram

Graphic facilitation
Rich picture
Knowledge map
Informural
Learning map

Table 12.17 BB3.WS3—Summary

Input Throughput Output

Capability catalog
v3.0

View models simple measurement methods
and tools

Capability catalog
v4.0

256 M. Wißotzki and A. Sonnenberger

There is still little progress in the application area of evaluating capabilities, in
which approaches most often build on ordinary methods for quality control or are
impractical for the designated purpose. This might have originated from an omitted
preparation phase, which is normally used to describe the quality criteria a catalog
has to satisfy.

12.4.4.1 Working Step 1: Assessment

In order to both counteract deficient quality and promote the functionality of a
catalog, the optional step “assessment” can be used. The focus of the assessment
concept can be the development process (the way the catalog is constructed), the
designed result (the catalog itself), or both. Accordingly, the quality level and
quality criteria have to be elaborated during this stage. Appropriate criteria can
normally be derived from the goals predefined in BB1 or from the deeper content
layers defined and formulated in BB3. In addition to conducting an overall review
of general quality standards such as completeness, accuracy, flexibility, linkage,
simplicity, intelligibility, and usability, it is recommended to apply comprehensive
assessment approaches, e.g., capability maturity models or capability assessment
matrices. From the process perspective after such an assessment phase, it is possible
to revisit the second and third BB in order to integrate assessment results in a new
iteration. Moreover, if the assessment results are absolutely not satisfactory or
primary goals are not achieved, the first BB has to be visited again in order to
analyze critical points and re-define scope, definitions, stakeholder groups or
development strategy. There are three kinds of proposed subject:

• Development process—the way the catalog was constructed
• Engineering result(s)—the content of catalog itself
• Both

The indicative questions are:

• What is the objective of the assessment?
• Should the catalog be verified (theory-oriented) or validated

(practice-oriented)?
• Are there any existing quality criteria (e.g. from BB1 or BB3)?

– No: What criteria should we use?

There are several opportunities for assessment. 1st: If a maturity model is used.
Maturity models are specific management instruments, which define various

Fig. 12.28 BB4—overview working steps

12 A Guide for Capability Management 257

degrees of maturities in order to evaluate to what extent a particular competency
fulfils the qualitative requirements that are defined for a set of competency objects
[25] and the development processes in organisations [4]. According to Wißotzki
et al. [26, 30] the utilization of maturity models in the capability context compre-
hends three different variants: descriptive, prescriptive or comparative. The
descriptive maturity models could be applied to asses the current state (as-is) of a
capability or a capability group. Prescriptive models do not only assess the as-is
situation, but also recommend guidelines, best practices and roadmaps in order to
reach higher degrees of capability maturity. A comparative maturity model can be
applied for benchmarking across different capabilities. Following questions can
guide the maturity assessment step:

• For each phase/maturity state:

– Which kind of maturity approach do we need?
– What criteria should they assess?
– Which kind of maturity states/levels do we need?
– How can we close gaps between current and desired states/levels?

Procedural example—The current data quality of capability can be illustrated by
a spider chart (Fig. 12.29). The chart shows significant gaps between the desired
level (100 %) and the current level of the required descriptive elements.

2nd: Portfolios are a good possibility to compare different assessment criteria
like the mapping of investments to existing capabilities (e.g. internal and external
distribution; human resource, IT and procure management) illustrated in Fig. 12.30.

Using highlights and/or priorities for a third criterion (e.g. their importance
regarding the global enterprise goals) the same portfolio can offer gaps and mis-
leading investments. Consequently, future measurements can be derived due to
increase investment in capabilities of low strategic importance and the other way
around.

Fig. 12.29 Descriptive
elements—maturity
visualization

258 M. Wißotzki and A. Sonnenberger

However, the quality level of the assessment depends on appropriate chosen
assessment criteria. We distinguish between general and specific criteria. General
criteria are generally applicable for all capability type. Some examples: com-
pleteness, accuracy, flexibility, linkage, simplicity, reasonability, intelligibility,
usability, availability or system support.

Specific criteria are capability specific quality indicators and have to be individually
defined for each capability. In terms of our EAM Capability “Impact Analysis
Application Architecture” driving questions for the quality of its descriptive element
“information” could be: Inventory of AA architecture objects available? Are depen-
dencies between AA architecture objects known? Are dependencies to business
architecture objects known? Are dependencies to technology architecture objects
known? These questions could be answered by a metric like in Table 12.18.

Fig. 12.30 Example for a investment/capability portfolio

Table 12.18 Evaluation matrix

12 A Guide for Capability Management 259

This evaluation can be made for all descriptive element of a capability. The sum
of results can, for example, reflect the level of maturity or taken as base for variance
analysis (Table 12.19).

12.4.4.2 Working Step 2: Rollout

The way of integrating a catalog into an enterprise has a vital influence on the
success of this catalog. To this end, the “catalog rollout” step addresses the
implementation/rollout of a catalog in the organization. As specified earlier, cre-
ating a capability catalog is only reasonable in case the management approves and
supports the process. Accordingly, both upper and middle management need to be
convinced. That being said, the success of integrating a capability catalog depends
on two major elements: quality and stakeholder satisfaction.

The completed capability catalog thus needs to be formally presented to the
steering committee and contracting authority, respectively. This should be delivered
either in the form of an intermediate presentation or as part of the project com-
pletion. It thus needs to be ensured that the needs of the stakeholders are satisfied.
To achieve this, accurate planning and preparation is required. The project team
needs to be able to enhance the results of the capability catalog creation process,
i.e., converting the final catalog version, descriptions, and illustrations into an
appropriate form of presentation. Relevant stakeholders might, for example, obtain
a copy of the document in order to prepare themselves for approval.

All in all, the catalog rollout needs to pursue the goal of achieving an acceptance
of the results and creating an activity plan in terms of additional elaborations or
unresolved issues. Even though an initial evaluation of the achieved state should
have been conducted in the preceding building blocks, it is unlikely that a single
iteration is sufficient. The second goal is to receive user feedback provided by
individuals or working groups in order to improve the catalog utilization. In this
regard, it is recommended to perform internal surveys or workshops after a certain
period of time. The way of integrating a catalog into an enterprise has a vital
influence on the success of it. Two major elements influence the integration sig-
nificantly: (1) The capability catalog has a high-quality level, (2) Stakeholders (e.g.
board level, business developers, line managers) are satisfied with both the
approaches and achieved results.

Table 12.19 BB4.WS1—Summary

Input Throughput Output

Capability catalog v4.0 Evaluation, indicators, measurements Capability catalog v4.1

Table 12.20 BB4.WS2—Summary

Input Throughput Output

Capability catalog v4.1 Integration Capability catalog v4.2

260 M. Wißotzki and A. Sonnenberger

Three subsequent aspects need to be considered in the context of catalog
deployment: Obtain feedback from users and steering committee, obtain decisions
about the maintenance of the catalog and the allocation of resources, integrate the
catalog into existing standards (Table 12.20).

12.4.4.3 Working Step 3: Maintenance

Feedback from the previous working step or especially from catalog utilization can
result in a change in the structure and/or in the function of catalog elements. Besides,
changes in the enterprise (e.g. governance, new orientation, management) and its
branch can create the need for improvements in the catalog. For these reasons, and
given that an enterprise may have to meet new challenges over time and capabilities
need to be modified accordingly, there is an ongoing “maintenance” process in
addition to the aforementioned evaluation methods applied to create a high-quality
capability catalog. Consequently, an improvement of both quality and usage period
of the catalog is addressed within the last step of this building block. Modifications
in the catalog structure as well as slight changes may occur in this step.

Due to changing challenges for enterprises over time, capabilities need to be
modified accordingly. With the collaboration of the optional, aforementioned eval-
uation methods, an ongoing maintenance results in a high-quality capability catalog.

Which measures and modifications improve the catalog quality?

The including advantages are:

• Structure and comprehensibility
• Precise descriptions
• Simplified modifications and reorganizations of the created catalog
• Contributes to the organizational learning and securing of organizational

knowledge
• An improvement of both usage period and quality of the catalog is addressed.

Fig. 12.31 Capability catalog maintenance patterns according to Lahrmann and Marx [17]

12 A Guide for Capability Management 261

Table 12.21 BB4.WS3—Summary

Input Throughput Output

Capability catalog v4.2 Maintenance activities Capability catalog v5.0

From Lahrmann and Marx [17], we adopted three of four extension patterns for
the purpose of catalog maintenance (Fig. 12.31).

A general update of capability catalog elements by adding new descriptive ele-
ments or updating the evaluation mechanism (e.g., maturity assessment procedure)
may be examples of the first pattern. It is also possible to add new context objects or
reorder their configurations, e.g., by changing attributes that might influence the
identification process (BB2) or at least reconfigure the relationships between dif-
ferent capabilities. Although these extension patterns challenge the meta-structure of
the capability catalog to some extent, they would not require passing the first
building block and beginning the development process again by redefining the
scope, as this would go beyond the scope of maintenance. All stakeholders (initia-
tors, developers and users) have to maintain the existing catalog and influence its
improvement (all-do-some approach), if there are any needs of change.

Is an update or upgrade necessary?

The differentiation between upgrade and update is in the point of interest.

1. Update: adding new descriptive elements or content objects; updating the
evaluation methods; any kind of modifications (BB2–BB4)

2. Upgrade: total renewing of the catalog starting with BB1

Procedural example—When enterprise roles changed or processes are basically
modified (f.i. by automatization), the existing catalog has to be updated by new
iteration in terms of identifying additional or obsolete capabilities starting from BB2
to BB4. An organizational restructuring or market change can lead to a capability
catalog upgrade starting from re-scoping in BB1–BB4.

The existing capability catalog has to be: Modified regarding the steps of BB2 till
BB4 and comply with the described state of the art OR totally renewed from BB1.
Then the existing capability catalog is rejected and a new one, corresponding to the
single BB’s and working steps, is designed (Table 12.21).

12.5 Conclusion and Outlook

We presented a generic approach that can be used to derive capabilities through a
structured process and gather them in an enterprise-specific catalog for an effective
operationalization of enterprise strategies. A capability here describes a certain
combination of information, roles, activities/procedures, and resources to support
issues like strategy management, enterprise architecture management and IT
management considering EA objects and management tasks like planning, trans-
formation and controlling.

262 M. Wißotzki and A. Sonnenberger

Following a four-building-block approach, we described a straightforward and
flexible process for capability catalog developers and designers, which allows the
integration of descriptive elements for different capability types. The capability
management guide version 3 is based on the approach of Wißotzki [28] and
includes changes of two expert evaluations. It should form a tool that facilitates the
development of scientifically well-founded capability catalogs aligned with the
design science research guidelines [16] and process [18]. In particular, our approach
provides a building block covering the continuous assessment and maintenance in
order to enhance capability and catalog quality.

Additional detailed content of the building blocks and corresponding steps are
still in development and have only been mentioned to some extent in this chapter.
Our future research will elaborate on this topic and demonstrate more practical use
cases of capability catalog engineering projects. In fact, our aim is to focus more on
use cases and/or possible applications in order to indicate the tradeoffs of our
approach and to evaluate and potentially extend the process.

References

1. Abowd, G.D., Dey, A.K., Brown, P.J., Davies, N., Smith, M., Steggles, P.: Towards a better
understanding of context and context-awareness. In: Proceedings of the 1st International
Symposium on Handheld and Ubiquitous Computing, Karlsruhe, Germany, 27–29 Sept 1999

2. Ahlemann, F., Stettiner, E., Messerschmidt, M., Legner, C. (eds.): Strategic Enterprise
Architecture Management: Challenges, Best Practices, and Future Developments. Springer,
Berlin (2012)

3. Andreu, R., Ciborra, C.: Organisational learning and core capabilities development: the role of
it. J. Strateg. Inf. Syst. 5, 111–127 (1996)

4. Back, A.: Reifegradmodelle im Management von Enterprise 2.0. BITKOM (2010)
5. Bharadwaj, A.: A resource-based perspective on information technology capability and firm

performance: an empirical investigation. MIS Q. 24(1), 169–196 (2000)
6. Buckl, S., Dierl, T., Matthes, F., Schweda, C.M.: Building blocks for enterprise architecture

management solutions. In: Harmsen F., Proper E., Schalkwijk F., Barjis J., Overbeek S.
(eds) Practice-driven research on enterprise transformation, lecture notes in business
information processing, vol. 69, pp. 17–46. Springer, Heidelberg (2010)

7. Capgemini Application Landscape Report 2011: Radar exosystems specialists: Whitepaper.
The impact of data silos on IT planning (2012)

8. CEB CIO Leadership Council (ed): Get business capabilities right. CEB CIO Leadership
Council (2015)

9. Day, G.S.: The capabilities of market-driven organizations. J. Mark. 58(4), 37–52 (1994)
10. Dosi, G., Nelson, R.R., Winter, S.G.: The nature and dynamics of organizational capabilities.

Introduction: The Nature and Dynamics of Organizational Capabilities, pp. 1–22. Oxford
University Press, Oxford (2000)

11. Espana, S., Grabis, J., Henkel, M., Koc, H., Sandkuhl, K., Stirna, J., Zdravkovic, J.: Strategies
for capability modelling: analysis based on initial experiences. In: Persson A.,
Stirna J. (eds) CAiSE 2015 Workshops, LNBIP 215. Springer, Berlin (2015)

12. Fischer, R.: Organisation der Unternehmensarchitektur: Entwicklung der aufbau-und
ablauforganisatorischen Strukturen unter besonderer Berücksichtigung des Gestaltungsziels
Konsistenzerhaltung. Univ, Diss.–Sankt Gallen, 1st ed. Verlag Dr. Kovac (2008)

12 A Guide for Capability Management 263

13. Freitag, A., Matthes, F., Schulz, C., Nowobilska, A.: A method for business capability
dependency analysis. In: International Conference on IT-enabled Innovation in Enterprise
(ICITIE2011), Sofia (2011)

14. Gartner Inc.: Technology issues for financial executives: 2011 annual report. Gartner and
Financial Executives International (FEI), Morristown, NJ (2011)

15. Greski, L.: Business capability modeling: theory & practice. Architecture & Governance
Magazine, 22 Dec 2009

16. Hevner, A.R., March, S.T., Park, J., Ram, S.: Design science in information systems research.
MIS Q. 28(1), 75–106 (2004)

17. Lahrmann, G., Marx,F.: Systematization of maturity model extensions. In: Winter R., Zhao J.
L., Aier S. (eds) Global Perspectives on Design Science Research. Lecture Notes in Computer
Science, vol. 6105, pp. 522–525. Springer, Berlin (2010)

18. Peffers, K., Tuunanen, T., Rothenberger, M.A., Chatterjee, S.: A design science research
methodology for information system research. J. Manage. Syst. (JMIS) 24(3), 45–77 (2008)

19. Sandkuhl, K., et al.: Enterprise Modeling. Tackling Business Challenges with the 4EM
Method, 309, Springer (2014)

20. Simon, D., Fischbach, K., Schoder, D.: Enterprise architecture management and its role in
corporate strategic management. IseB 12(1), 5–42 (2014)

21. Stutz, M.: Kennzahlen für Unternehmensarchitekturen – Entwicklung einer Methode zum
Aufbau eines Kennzahlensystems für die wertorientierte Steuerung der Veränderungen von
Unternehmensarchitekturen. Univ, Diss.–Sankt Gallen, 1st ed. Verlag Dr. Kovac, Hamburg,
Germany (2009)

22. Ulrich, D., Smallwood, N.: Capitalizing on capabilities. Harvard Business Review on Point,
12 June 2004

23. Ulrich, W., Rosen, M.: The business capability map: the “Rosetta Stone” of business/IT
alignment. Cut. Consort. Enterp. Archit. 14(2) (2011)

24. Weldon, L., Burton, B.: Use Business Capability Modeling to Illustrate Strategic Business
Priorities. Gartner Inc. (2011)

25. Wendler, R.: Reifegradmodelle für das IT-Projektmanagement. Techn. Univ. Fak.
Wirtschaftswiss, Dresden (2009)

26. Wißotzki, M., Koç, H., Weichert, T., Sandkuhl, K.: Development of an enterprise architecture
management capability catalog. In: Kobyliński A., Sobczak A. (eds) Perspectives in Business
Informatics Research. Lecture Notes in Business Information Processing, vol. 158,
pp. 112–126. Springer, Berlin, Heidelberg (2013)

27. Wißotzki, M., Sandkuhl, K.: Elements and characteristics of enterprise architecture
capabilities. In: Perspectives in Business Informatics Research, pp. 82–96. Springer
International Publishing (2015)

28. Wißotzki, M.: The capability management process—finding your way into capability
engineering. In: Simon D., Schmidt C. (eds) Business Architecture Management—
Architecting the Business for Consistency and Alignment. To be published by Springer in
the series “Management Professionals” (2015)

29. Wißotzki, M., Koç, H.: Evaluation concept of the enterprise architecture management
capability navigator. In: 16th International Conference on Enterprise Information Systems
(ICEIS 2014), Lisbon, Portugal (2014). ISBN: 978-989-758-027-7

30. Wißotzki, M., Koç, H., Weichert, T.: A project driven approach for enhanced maturity model
development for EAM capability evaluation. In: Bagheri E. (ed) 17th IEEE International
Enterprise Distributed Object Computing—Conference, pp. 296–305. Vancouver and Canada
(2013). ISBN: 978-0-7695-5085-5

264 M. Wißotzki and A. Sonnenberger

Author Index

A
Abeck, Sebastian, 23

B
Baskin, Arthur, 41, 59
Bossert, Oliver, 139

C
Coffey, John W., 41, 59

E
El-Sheikh, Eman, 1, 5, 91

G
Gebhart, Michael, 23
Giessler, Pascal, 23
Gonen, Bilal, 5

J
Jain, Lakhmi C., 1
Jugel, Dierk, 91

K
Koç, Hasan, 151
Kuhr, Jan-Christian, 151

L
Lantow, Birger, 91

M
Möhring, Michael, 91, 201

N
Nandico, Oliver F., 113

R
Reinke, Robert, 59

S
Sandkuhl, Kurt, 91, 151
Schmidt, Rainer, 91, 201
Schweda, Christian, 91
Snider, Dallas, 41
Sonnenberger, Anna, 219

T
Timm, Felix, 151

W
Wißotzki, Matthias, 91, 179, 219
Wilde, Norman, 5

Z
Zimmermann, Alfred, 1, 5, 91

© Springer International Publishing Switzerland 2016
E. El-Sheikh et al. (eds.), Emerging Trends in the Evolution of Service-Oriented
and Enterprise Architectures, Intelligent Systems Reference Library 111,
DOI 10.1007/978-3-319-40564-3

265

	Foreword
	Preface
	Contents
	About the Editors
	1 Evolution of Service-Oriented and Enterprise Architectures: An Introduction
	Abstract
	1.1 Introduction
	References

	2 Approaches to the Evolution of SOA Systems
	Abstract
	2.1 Introduction
	2.2 Perspectives on Software Evolution
	2.2.1 Design for Evolvability
	2.2.2 Support for Evolution

	2.3 Design for Evolvability Approaches to SOA
	2.4 Support for Evolution Approaches to SOA
	2.4.1 Code Level Approaches to SOA Evolution
	2.4.2 Service Interaction Level Approaches to SOA Evolution
	2.4.3 Model Level Approaches to SOA Evolution

	2.5 Emerging Trends
	2.5.1 Microservices and Design for Evolvability
	2.5.2 Knowledge-Based Support

	2.6 Concluding Remarks
	References

	3 Flexible and Maintainable Service-Oriented Architectures with Resource-Oriented Web Services
	Abstract
	3.1 Introduction
	3.2 Fundamentals
	3.2.1 SOAP
	3.2.2 REST
	3.2.3 Quality Model

	3.3 Scenario
	3.4 Quality Indicators for Resource-Oriented Web Services
	3.4.1 Unique Categorization
	3.4.2 Loose Coupling
	3.4.3 Discoverability
	3.4.4 Autonomy

	3.5 Conclusion and Outlook
	References

	4 Knowledge Elicitation and Conceptual Modeling to Foster Security and Trust in SOA System Evolution
	Abstract
	4.1 Introduction
	4.2 Security and Trust in SOA Federations
	4.3 Concept Maps, Knowledge Models, and Knowledge Modeling
	4.4 Studies in Knowledge Modeling for SOA Security and Trust
	4.4.1 Developing a Security Assurance Case Through Knowledge Modeling
	4.4.1.1 Motivation
	4.4.1.2 Methods and Results

	4.4.2 Assessing Trust Needs for a SOA Federation
	4.4.2.1 Motivation
	4.4.2.2 Methods
	4.4.2.3 Results

	4.5 Discussion
	4.6 Conclusions
	References

	5 The Fractal Nature of SOA Federations: A Real World Example
	Abstract
	5.1 Introduction
	5.2 The Historical Context of This Work
	5.3 Literature on SOA Federations, SOA Elements, Algorithms and Data Persistence
	5.4 Three Levels of Abstraction for SOA Federations
	5.5 Dimensions of Our SOA World at Each Level of Abstraction: Real World Example
	5.5.1 Enterprise Federation
	5.5.1.1 Ontologies
	5.5.1.2 Discovery
	5.5.1.3 Composition
	5.5.1.4 Orchestration

	5.5.2 Desktop Federation
	5.5.2.1 Ontologies
	5.5.2.2 Discovery
	5.5.2.3 Composition
	5.5.2.4 Orchestration

	5.5.3 Tool Federation
	5.5.3.1 Ontologies
	5.5.3.2 Discovery
	5.5.3.3 Composition
	5.5.3.4 Orchestration

	5.6 Fractal Issues We Have Identified
	5.6.1 Finiteness Limits Drive the Need for Structure
	5.6.2 SOA Federations Favor Some Structural Patterns Over Others
	5.6.3 SOA Federations Favor Late Binding
	5.6.4 SOA Federations Contain Mixed Initiative Dialogs
	5.6.5 SOA Federations Depend upon the Explicit Management of Trust, Reliability, and Authoritative Source

	5.7 Conclusions
	References

	6 Leveraging Analytics for Digital Transformation of Enterprise Services and Architectures
	Abstract
	6.1 Introduction
	6.2 Digitization of Products and Services
	6.3 Digital Enterprise Architecture
	6.4 Decision Case Management
	6.5 Collaborative Decision Processes
	6.6 Decision Analytics
	6.7 Semantic Support for Architectural Analytics
	6.8 Conclusions and Future Work
	References

	7 A Framework to Support Digital Transformation
	Abstract
	7.1 Changed Role of IT and the Enterprise Architecture in the Times of Digital Transformation
	7.1.1 Changed Role of the Architect
	7.1.2 Services as Atomic Building Blocks of the Architecture
	7.1.3 Time Is the Most Limited Resource
	7.1.4 Agile Approach Necessary
	7.1.5 Need for a Lightweight Enterprise Architecture Framework
	7.1.6 Overview of This Article

	7.2 Digital Transformation and the Consequences for a Respective Framework
	7.3 The Lightweight Enterprise Architecture Framework—A Very Focused Customization of TOGAF
	7.4 Drivers of Digital Transformation Provide a Foundation for Architecture Guidelines and Principles
	7.5 Issues to Be Addressed for Digital Transformation by a Lightweight Enterprise Architecture Framework
	7.6 The Viewpoints of the Lightweight Enterprise Architecture Framework
	7.6.1 Viewpoints at Enterprise Level
	7.6.1.1 Defining the Goal: Architecture Vision
	7.6.1.2 The Enterprise Architects’ Instrument of Effectiveness: Architecture Action Plan

	7.6.2 Viewpoints at Project Level
	7.6.2.1 Giving Rail Guides for the Projects: Architecture Outline
	7.6.2.2 What the Project Implements: Conceptual View
	7.6.2.3 How Services Work Together: Logical View
	7.6.2.4 With What the Services Get Realized: Physical View
	7.6.2.5 How to Spread Change: Architecture Governance

	7.7 The Challenge for the Architect of a Digital Transformation Program
	References

	8 A Two-Speed Architecture for the Digital Enterprise
	Abstract
	8.1 Introduction
	8.2 The Digital Era
	8.3 Fundamentals of a Two-Speed Architecture
	8.3.1 Implications for Enterprise Architecture

	8.4 The Building Blocks of Digital-Enterprise Architecture
	8.5 Organizational and Process Implications
	8.6 Conclusion
	References

	9 Capability-Driven Development
	Abstract
	9.1 Introduction
	9.2 Problem Investigation: The Need for Capability-Driven Development
	9.2.1 Flexible Business Services in Utility Industries
	9.2.2 Adaptive E-Government Services
	9.2.3 Industrial Requirements

	9.3 Background and Related Work
	9.3.1 Notion of Capability in CDD and EAM Capabilities
	9.3.2 Context Modelling
	9.3.3 Overview of Capability Design Methods
	9.3.4 Summary

	9.4 Capability-Driven Development
	9.4.1 CDD Method
	9.4.2 CDD Implementation

	9.5 Real-World Use Case: Utility Industry
	9.5.1 Background and Motivation
	9.5.2 Use Case Scenario
	9.5.3 Capability Model
	9.5.4 Clearing Center

	9.6 Summary and Recommendations
	References

	10 Exploring the Nature of Capability Research
	Abstract
	10.1 Introduction
	10.2 Research Approach
	10.3 Planning the Review
	10.3.1 Motivating Research Questions
	10.3.2 Source Selection
	10.3.3 Time Frame Selection

	10.4 Performing the Review
	10.4.1 Article Selection
	10.4.2 Data Collection

	10.5 Review Report
	10.5.1 Types of Capabilities
	10.5.2 Descriptive Capability Elements
	10.5.3 Correlations of Capability Elements

	10.6 Conclusion and Outlook
	References

	11 Enterprise Architecture Analytics and Decision Support
	Abstract
	11.1 Introduction
	11.2 Data Sources for Enterprise Architecture Analytics
	11.2.1 Structured Data
	11.2.2 Semi-structured Data
	11.2.3 Unstructured Data

	11.3 Analyzing Architectural Data
	11.4 Applications of Big Data and Advanced Analytics in Enterprise Architecture
	11.4.1 Forecasting the Demand and Prices of EA Services
	11.4.2 Service Recommendation for Different Customers
	11.4.3 Analyzes of Unstructured Data

	11.5 Outlook
	11.5.1 Graph-Based Data
	11.5.2 Frameworks for Stream-Based Data Processing

	11.6 Conclusion
	References

	12 A Guide for Capability Management
	Abstract
	12.1 Introduction
	12.2 Strategic Management and Enterprise Architecture
	12.3 Capability Management
	12.4 Capability Management Process v3.0
	12.4.1 BB1—Preparation
	12.4.1.1 WS1: Scope and Application Area
	12.4.1.2 WS2: Identification of Terms and Concepts
	12.4.1.3 WS3: Description of an Integrated Capability Approach
	12.4.1.4 WS4: Definition of the Development Strategy

	12.4.2 Catalog Design
	12.4.2.1 Working Step 1: Identification of Capability Candidates
	12.4.2.2 Working Step 2: Structuring and Summarization
	12.4.2.3 Working Step 3: Identification of Relationships

	12.4.3 Detail Development
	12.4.3.1 Working Step 1: Definition of Content Layer
	12.4.3.2 Working Step 2: Capability Content Engineering
	12.4.3.3 Working Step 3: Development of Stakeholder Views

	12.4.4 Catalog Governance
	12.4.4.1 Working Step 1: Assessment
	12.4.4.2 Working Step 2: Rollout
	12.4.4.3 Working Step 3: Maintenance

	12.5 Conclusion and Outlook
	References

	Author Index

