
A Tool Environment for Managing Families
of Model Transformation Rules

Daniel Strüber(B) and Stefan Schulz

Philipps-Universität Marburg, Marburg, Germany
{strueber,schulzs}@informatik.uni-marburg.de

Abstract. Model transformation systems often contain families of rules
that are substantially similar to each other. Variability-based rules are
a recent approach to express such families of rules in a compact rep-
resentation, enabling the convenient editing of multiple rule variants at
once. On the downside, this approach gives rises to distinct maintenance
drawbacks: Users are required to view and edit presence conditions. The
complexity and size of the resulting rules may impair their readability.

In this paper, we propose to facilitate the editing of variability-based
rules through suitable tool support. Inspired by the paradigms of filtered
editing and virtual seperation of concerns, we present a tool environment
that offers editable views for variants expressed in a variability-based
rule. We demonstrate that our tool environment is helpful to address the
identified issues, rendering variability-based rules a highly feasible reuse
approach.

1 Introduction

Model transformation is a key enabling technology for Model-Driven Engineer-
ing. Algebraic graph transformation is one of the main paradigms in this field,
enabling a high-level, declarative specification based on graph rewriting rules [1].
Non-trivial graph transformation systems often contain rules that are substan-
tially similar to each other. Such rules may share a large bulk of intended actions,
while differing only marginally, leading to a large amount of pattern duplications.

Several approaches can be used to capture such families of rules while avoid-
ing pattern duplication. Many of these approaches embody a composition-based
paradigm: rule variants are assembled from fragmentary building blocks. In the
case of rule inheritance [2], the implementation of a rule family comprises a hier-
archy of a base rule with sub-rules. Rule refinement [3] extends this concept by
supporting multiple base rules and the capability to modify super-rules. While
these approaches clearly avoid pattern duplication, they may entail managing
a large number of interrelated fragments. Their semantics are often intricate; a
scheduling mechanism may be required to handle conflicts during composition.

Inspired by product line engineering approaches [4], we propose variability-
based (VB) rules, an annotative approach to managing families of rules. The key
idea is to encode a family of rules as one VB rule. Portions of this VB rule are

c© Springer International Publishing Switzerland 2016
R. Echahed and M. Minas (Eds.): ICGT 2016, LNCS 9761, pp. 89–101, 2016.
DOI: 10.1007/978-3-319-40530-8 6

90 D. Strüber and S. Schulz

Fig. 1. Three variants of the move method refactoring.

Fig. 2. Variability-based rule expressing the same three variants.

annotated with presence conditions to assign them to a subset of the encoded
rules. The portion common to all rules, called the base rule, is not annotated.

Example. Consider a family of three in-place transformation rules. The rules,
shown in Fig. 1, express variants of the move method refactoring for class models.
The first rule specifies the relocation of a method between two classes. The second
one additionally creates a wrapper method of the same name in the source class.
The third one adds an annotation to mark the wrapper method as deprecated.

These three rule variants can be expressed using the VB rule shown in
Fig. 2. Several elements are annotated with presence conditions over the literals
wrapper and deprecate. The variants are obtained by configuring the rule, i.e.,
binding these literals to true or false and removing elements whose presence

A Tool Environment for Managing Families of Model Transformation Rules 91

condition evaluates to false. Configuration {wrapper=false; deprecate=false}
yields the base rule, a rule isomorphic to rule moveMethod in Fig. 1. The
rules induced by the configurations {wrapper=true; deprecate=false} and
{wrapper=true; deprecate=true} produce the additional variants. To avoid the
illegal configuration {wrapper=false; deprecate=true}, the rule has a constraint
called variability model, shown in the title bar, requiring wrapper to be true if
deprecate is true.

This example highlights several maintainability benefits of VB rules: (i) Dur-
ing maintenance, all included variants are viewed and edited at once. While evi-
dently convenient, this editing style may also be less error-prone: Fixing the same
bug in multiple rules manually may lead to residual bugs not being considered.
(ii) The representation is more compact, in terms of the number of rules, the
total number of rule elements and the used amount of space. While compact-
ness does not necessarily equal better readability, it is still an explicit goal of
compositional approaches [3]. (iii) In contrast to compositional approaches, no
additional mechanism is needed to glue fragments together, adding to the com-
pactness of the specification. The structure of each variant is directly present;
maintainers are not required to obtain a mental representation by assembling
fragments.

Conversely, the example also illustrates a set of drawbacks of VB rules. (i) The
use of presence conditions creates a “noisy” or “cluttered” impression, impairing
readability. To make matters worse, these presence conditions are required to be
edited manually, a tedious and potentially error-prone process. (ii) The rule size
in terms of average number of elements per rule is greater. A detrimental effect
of diagram size on readability is reported in [5]. (iii) To understand individual
rule variants, developers are required to identify and focus on selected portions,
posing a high cognitive effort. While color-coding would be helpful to mitigate
this issue, it is at least complicated if not unavailable due to existing color-coding.

In this work, we address the following research question: How can the
efficient viewing and editing of variability-based rules be facilitated?
Our key idea is to provide dynamic representations suitable to the task at hand
rather than one static representation – an idea inspired by the paradigms of
filtered editing [6] and virtual separation of concerns [7]. We propose a tool envi-
ronment that offers views on rule variants selected by the user. These views are
helpful to mitigate the identified drawbacks by (i) removing the need to read
and edit presence conditions, (ii) being smaller in size, and (iii) reducing the
cognitive effort in deriving mental representations. In addition, we provide sup-
port for converting a legacy rule set into a VB rule with little manual effort. The
basic concepts of VB rules and their automatic creation have been introduced
elsewhere [8–10].

We have implemented our tool environment on top of Henshin [11], a model
transformation language based on algebraic graph transformations. Lifting the
concepts proposed in this work to other languages and paradigms is desirable,
but left to future work. The tool and a description of its use can be found at
https://www.uni-marburg.de/fb12/swt/forschung/software/varhenshin/.

https://www.uni-marburg.de/fb12/swt/forschung/software/varhenshin/

92 D. Strüber and S. Schulz

2 Variability-Based Rules

In this section, we briefly revisit the main concepts of variability-based rules.
We assume the reader to be familiar with double-pushout graph transformation
rules, such as those shown in Fig. 1. The underlying graph kind may include typ-
ing and attributes since these concepts are orthogonal to variability. We further
use the concept of subrule, a rule that can be embedded into a larger rule in an
injective manner. A detailed account of these concepts is given in [10].

Definition 1 (Variability-based (VB) rule). Given a set of atomic terms V ,
called variability points, a VB rule ř = (r, S, vm, pc) consists of a rule r, a set S
of subrules of r, a propositional term vm ∈ LV and a function pc : S∪{r} → LV ,
where LV is the set of propositional terms over V . Term vm is called variability
model. Function pc defines presence conditions for subrules s.t. pc(r) is true and
∀s ⊆ s′ : pc(s′) =⇒ pc(s). The base rule is the intersection of all subrules.

Figure 2 shows a VB rule over variability points {wrapper, deprecate}. The
rule is shown in a compact representation where subrules are not shown explic-
itly, but denoted using element presence conditions. Rule r is the entire rule,
ignoring annotations. S comprises a subrule for each propositional term over
V. Each subrule contains those elements whose presence conditions are implied
by its own presence condition. For instance, subrule s with pc(s) = wrapper ∧
¬deprecate contains all elements annotated with wrapper and without annota-
tions, but not those annotated with deprecate. The variability model is deprecate
→ wrapper.

Definition 2 (Configuration). Let a VB rule ř = (r, S, vm, pc) over V be
given. A configuration is a total function c : V → {true, false}. A configuration
c satisfies a term t ∈ LV if t evaluates to true when each variable v in t is
substituted by c(v). A configuration c is valid if c satisfies vm.

In the example, {wrapper=true; deprecate=false} is a valid configuration, sat-
isfying the presence condition wrapper, but not the presence condition deprecate.

Definition 3 (Rule variant). For a valid configuration c, there exists a unique
set of subrules Sc ⊆ S s.t. ∀s ∈ S : s ∈ Sc iff c satisfies pc(s). Gluing together all
elements contained in one of these subrules yields a rule rc, called rule variant
induced by c.

The example VB rule can be used to produce three variants; details are pro-
vided in the previous description of the example. Categorically, the gluing can be
expressed as a consecutive multi-pullback and multi-pushout construction [10].

There are two main application scenarios for VB rules. First, a specific user
intention may lead to the selection and application of one particular rule variant.
For instance, in the example, the user may configure the rule so that it produces
a wrapper method. Such an external configuration process leads to an individual
rule being applied in the classic way. Second, all rules in a rule set may be applied

A Tool Environment for Managing Families of Model Transformation Rules 93

simultaneously. Such rule sets are found in batch transformation scenarios, such
as translation or migration suites. In this case, configurations can be set inter-
nally by the transformation engine. This approach allows to consider the base
rule of all variants at once, leading to considerable performance savings [8].

3 Main Features

In this section, we present the main features of our tool environment. The design
of these features is informed by Cognitive Dimension [12] (CD), a framework
of usability dimensions for visual programming environments. First, we give
an overview of the features, relating each to the CD framework. Second, we
exemplify the use of these features from the user perspective.

• View specific rule variants: Each variant expressed in a VB rule corre-
sponds to a configuration, a binding of all variability points to true or false.
To view specific variants, we provide a live configuration feature: The user
performs a partial or total binding of variability points, leading to immedi-
ate feedback. Irrelevant rule elements can be either turned invisible or toned
down. The former option helps the user during the comprehension of individ-
ual variants. The latter one facilitates the comparison of variants.
This feature addresses several cognitive dimensions: The visibility of rule vari-
ants is increased. The need for hard mental operations is reduced by shielding
users from the cognitive effort of deriving variants. Notational diffuseness is
reduced as fewer different symbols are needed to capture variability.

• Edit rule variants: A crucial issue of editing VB rules is the requirement
to have users edit presence conditions, a tedious and error-prone process.
We provide features to mitigate this issue: When creating a new element,
a presence condition corresponding to the currently selected configuration
is assigned automatically. We also support the reassigning of elements to
different variants by moving them to a more general or specific configuration
(i.e., one where more or less variability points are unbound).
By lifting the abstraction level from editing presence conditions to moving

elements between variants, we aim to reduce error-proneness. The capability
to move multiple elements also reduces viscosity, the resistance to change.

• Explore relationships between rule variants: We provide multiple fea-
tures to support exploring multiple variants and their interrelations. First,
a favorites feature allows rapid switching between variants. Second, a quick
access feature provides instant access to distinguished variants such as the
base rule and the maximum rule. Third, an auto-completion feature reduces
the configuration effort of by inferring certain open bindings automatically.
These features are key to increasing role-expressiveness, the ease of under-

standing “how each component [...] relates to the whole” [12].

• Manage variability points: We provide a dedicated viewer component for
the management of variability points. Using this viewer, variability points can
be created and deleted. To ensure consistency, presence conditions referring

94 D. Strüber and S. Schulz

to the deleted variability point can be updated automatically.
This dedicated component inceases the visibility of variability management.

• Sanitize legacy rule sets: Legacy rule sets may exhibit a high degree of
pattern duplication, notably, if they were devised in a copy-and-paste manner.
To sanitize such rule sets, we provide clone detection and merge refactoring
features. Clone detection allows identifying cloned portions in a set of rules.
These portions may serve as input to merge refactoring, a feature that creates
VB rules automatically, including an optimization to preserve layout infor-
mation from the input rules. We present this technique in [9].
This feature shields from premature commitment : VB rules do not have to

be devised from scratch. Users may develop rules in an ad-hoc manner and
decide to use VB rules later, while retaining key layout information.

Fig. 3. Our tool environment from the user perspective.

User Perspective. Our tool environment is integrated with the default user
interface of Henshin. The main components of this user interface, a graphical
editor and its attached properties view, are shown in the left of Fig. 3. As cus-
tom components, we provide the variability and sanitizing views, shown in the
right. The variability view comprises features for the definition and configura-
tion of variability points. The variant produced from the current configuration
is displayed in the editor. The sanitizing view can be used to sanitize legacy
transformations.
Variability view. The variability view allows variability points in a rule to be

created and deleted. To view and edit variants individually, the user config-
ures the rule by setting the bindings for these variability points. Three literals

A Tool Environment for Managing Families of Model Transformation Rules 95

are supported: true, false, and unbound. Per default, each variability point is
unbound, yielding the maximal rule, all elements regardless of their annotations.
Configurations are validated against the given variability model, deprecate →
wrapper in this case. Invalid configurations and rules lead to error messages being
displayed.

Fig. 4. Variability view with favorites
menu.

To navigate variants efficiently, frequ-
ently used configurations can be saved as
favorites using the button in the tool-
bar. The star appears in yellow if a favored
configuration is currently active. Each
configuration has a user-specified name.
In Fig. 4, the user has created two
favorites, WrapperWithDeprecate and
WrapperWithoutDeprecate, the latter one
being active. Upon selection, the configu-
ration is loaded and shown in the table at
the bottom of the view.

A view mode feature allows to access
distinguished variants rapidly. In the max-
imum rule mode, represented by the
icon, all elements included in the rule are shown regardless of the configura-
tion. In the variant mode (), elements absent in the current configuration are
concealed. In the base rule mode (), elements with a non-empty presence con-
dition are concealed.

To further improve the handling of variability, the view allows the users to
choose a concealing strategy, depicted in Fig. 5. First, elements can be turned
invisible. This avoids a cluttered representation of the rule and lets users focus
on the variant at hand. On the other hand, to allow the comparison of a variant
with the full rule, users may choose to have the elements toned down instead.

Fig. 5. Concealing strategies.

Using the button, users can select an editing mode to define which variants
are affected by edits to the rule. The supported options are: all variants, variants
included in the selected configuration, or variants associated to the current view

96 D. Strüber and S. Schulz

mode. In particular, the editing mode determines which presence condition is
assigned during the addition or deletion of elements to a rule.

Sanitizing view. The sanitizing view, shown in the lower right of Fig. 6, supports
two operations for sanitizing legacy rule sets: clone detection and merging. Clone
detection allows the identification of duplications in the rule set. The result is
a list of clone groups. To display the most relevant clone groups prominently,
the clone groups are ordered by their size, i.e., the number of common ele-
ments. Users can inspect the duplication interactively; when a rule is selected,
the affected portions in the rule are focused and highlighted. Internally, clone
detection aims to identify isomorphic sub-graphs, a computationally expensive
problem in general. To ensure reasonable response times, our approach uses
a heuristics provided by ConQAT [13], a clone detection technique originally
introduced for Simulink models. We discuss our adaptation of this technique
elsewhere [14].

Fig. 6. Sanitizing view.

The merge button enables the merge refactoring feature. An algorithm is exe-
cuted to construct a semantically equivalent variability-based rule automatically,
using the identified duplication as base rule and annotating the variant-specific
parts with their rule names [9]. The user can inspect and post-process the refac-
toring result using the viewing and editing features. In case that the result is
not satisfactory, the process can be undone.

Context menus. Additional context menu entries allow to manage variability
at the level of individual elements. Multiple nodes, edges and attributes can be
selected and moved to a different configuration simultaneously.

A Tool Environment for Managing Families of Model Transformation Rules 97

4 Architecture and Implementation

In this section, we describe the architecture of our tool and our design principles
during the implementation.

Fig. 7. Architecture.

We give an overview of the
architecture in Fig. 7. The novel
features presented in this work
are encapsulated by Variabil-
ity UI, an integrating layer on
top of the UI, Clone Detec-
tion, Merging and Variability
extensions for the Henshin lan-
guage core. To combine the
Henshin UI with the variabil-
ity implementation first intro-
duced in [8], the Variability
UI provides the variability view
and its editor integration. Clone
detection and merging are made
available to users in the Sanitizing View. The merging component acts as a bridge
between the clone detection and variability extensions: It enables the conversion
of rules affected by cloning to variability-based rules. GMF, GEF, EMF and
Eclipse are featured as underlying frameworks. The Henshin language is based
on an EMF meta-model. The Henshin UI comprises a GMF-based editor to
enable the visual viewing and editing of transformations.

The main design goal in our architectural design was non-intrusiveness: Chang-
ing the Henshin core and UI should be avoided where possible. The rationale for
this design goal was to keep the Henshin language core, its UI and analysis func-
tionality as simple as possible. Variability is deployed as a drop-in language exten-
sion, orthogonal to additional extensions, such as the existing support for Triple
Graph Grammars [15] or possible future support for uncertainty [16]. Including
multiple of these extensions might lead to feature interactions that need to be
addressed explicitly by the designers of the extensions.

To define language extensions in a non-intrusive way, the Henshin meta-
model provides a flexible annotation mechanism. Any element contained in a
transformation may be annotated with key-value pairs of strings. The language
extension at hand is responsible for processing these annotations. This concept
allowed us to implement variability-based rules in the variability extension alone,
without modifying the language core.

5 Related Work

Model Transformation Reuse. There are two groups of reuse approaches
for model transformations. The first group focuses on intra-transformation
reuse [17], the reuse of artifacts within the same transformation. In this group,

98 D. Strüber and S. Schulz

many approaches are composition-based: Rule refinement, the modularization of
a rule into a set of fragmentary rules, has been implemented in the eMoflon tool
[18]. The modularization of a graph transformation rules into multiple aspects
is another compositional approach [19]. A feature-based composition approach
for the reuse of ATL transformations has been proposed by Sijtema [20]. Many
of these approaches do not provide an automated tool to split a legacy rule into
a set of composition fragments, an issue that might be addressed by applying a
general-purpose splitting tool [21,22]. An important annotative approach is rule
amalgamation. While this approach allows the specification of mandatory and
optional parts in a rule, in contrast to VB rules, the optional parts are matched
and applied as often as possible. VB rules provide the capability to assign one
element to multiple variants, which is not supported in amalgamation. Amalga-
mation has been implemented in the AToM3 meta-modeling tool [23] and the
eMoflon Triple Graph Grammar tool [24].

The second group focuses on inter-transformation reuse [17], the reuse of
artifacts across multiple transformations. VCT [25] is a comprehensive toolkit
that allows to accommodate variability in a chain of multiple transformations
and to compose larger transformations from smaller ones. Cuadrado et al. [26]
have introduced a component model to orchestrate the reuse of model trans-
formations across multiple different modeling languages. Their Bentō [27] tool
provides support for generic rules for ATL transformations. These generic rules
are typed over concepts, abstract meta-models. To consider a new scenario, con-
cepts are instantiated by binding them to the types of the required meta-model.
To increase the flexibility of this approach, de Lara et al. propose an extension
that accounts for heterogeneity between concepts and meta-models [28]. Criado
et al. [29] propose to reuse existing transformations by annotating them. These
works are orthogonal to ours as they address a different reuse scenario.

Implementation Approaches to Software Product Lines. We adopted the
distinction of annotative and composition-based mechanisms from software prod-
uct line (SPL) engineering [4], where it refers to different approaches to imple-
menting a SPL. An important composition-based approach is Feature-Oriented
Programming [30], in which a SPL is developed by dividing its specification into
features and implementing each feature as a separate module. The AHEAD [31]
tool made this approach applicable for Java. An example for an annotative app-
roach are #ifdef directives: Portions of the source code are annotated with vari-
ability conditions and optionally removed during compilation. Virtual separa-
tion of concerns (VSoC) is a paradigm aiming to combine the benefits of both
approaches by means of tool support [7]. In the CIDE tool [4], users are provided
custom views, visual representations, and variability-aware type checks. Based
on the VSoC paradigm, Walkingshaw et al. [32] propose an editing model for
variational software based on an isolation principle: Edits to a view shall only
affect the variants associated with this view. We adopt this principle in one of
the editing modes of our tool. In a related work of Schwägerl et al. [33], the
scope of variants affected by an edit is set using a separate configuration.

A Tool Environment for Managing Families of Model Transformation Rules 99

The FeatureIDE [34] framework integrates many of these approaches and
makes them available during the entire development cycle. Its aim is to establish
a uniformity principle of managing variability consistently in all design, imple-
mentation, and documentation artifacts. The integration of our approach into
this framework is a promising avenue for future work.

Usability-oriented Model Transformation. As we aim to improve the main-
tainability of complex rules, our work is related to usability-oriented model
transformation, a field of research addressed in [35]. Based on the premise that
users may prefer mature model editors to experimental transformation tools, the
authors provide a new modeling language that can be instantiated in any given
model editor and mapped back to a host transformation language. This work
is complementary to ours since we aim to contribute to the maturity of model
transformation tools instead of replacing them.

6 Future Work and Additional Improvement

The most important task left to future work is a user study to validate the
claim that our tool environment improves usability during editing. Such a study
would substantiate our anecdotic evidence that the development of rule fami-
lies without a dedicated reuse concept is a highly inconvenient and error-prone
task. Furthermore, we are eliciting future usability improvements. First, the vis-
ibility of distinguished variants, such as the base rule, can be further increased
by providing a “hot corner” feature. Implementing such a feature proves to
be challenging due to limitations of the underlying editor framework. Second,
relationships between variability points are currently expressed using a logical
formula. In product line engineering, dedicated formalism have emerged to cap-
ture variability, the most important one being feature models [36]. Combining
feature models with VB rules seems a promising avenue for future work.

References

1. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph
Transformation. Springer, Heidelberg (2006)

2. Wimmer, M., Kappel, G., Kusel, A., Retschitzegger, W., Schönböck, J., Schwinger,
W., Kolovos, D.S., Paige, R.F., Lauder, M., Schürr, A., Wagelaar, D.: Surveying
rule inheritance in model-to-model transformation languages. J. Object Technol.
11(2), 3:1–3:46 (2012)

3. Anjorin, A., Saller, K., Lochau, M., Schürr, A.: Modularizing triple graph gram-
mars using rule refinement. In: Gnesi, S., Rensink, A. (eds.) FASE 2014 (ETAPS).
LNCS, vol. 8411, pp. 340–354. Springer, Heidelberg (2014)

4. Kästner, C., Apel, S., Kuhlemann, M.: Granularity in software product lines.
In: Proceedings of the International Conference on Software Engineering (ICSE).
ACM, pp. 311–320 (2008)

5. Störrle, H.: On the impact of layout quality to understanding UML diagrams: size
matters. In: Dingel, J., Schulte, W., Ramos, I., Abrahão, S., Insfran, E. (eds.)
MODELS 2014. LNCS, vol. 8767, pp. 518–534. Springer, Heidelberg (2014)

100 D. Strüber and S. Schulz

6. Sarnak, N., Bernstein, R.L., Kruskal, V.: Creation and maintenance of multiple
versions. In: SCM. Berichte des German Chapter of the ACM, vol. 30, pp. 264–
275. Teubner (1988)

7. Kästner, C.: Virtual separation of concerns, Ph.D. dissertation, University of
Magdeburg (2010)

8. Strüber, D., Rubin, J., Chechik, M., Taentzer, G.: A variability-based approach
to reusable and efficient model transformations. In: Egyed, A., Schaefer, I. (eds.)
FASE 2015. LNCS, vol. 9033, pp. 283–298. Springer, Heidelberg (2015)

9. Strüber, D., Rubin, J., Arendt, T., Chechik, M., Taentzer, G., Plöger, J.: Rule-
Merger: automatic construction of variability-based model transformation rules.
In: Stevens, P., W ↪asowski, A. (eds.) FASE 2016. LNCS, vol. 9633, pp. 122–140.
Springer, Heidelberg (2016). doi:10.1007/978-3-662-49665-7 8

10. Strüber, D.: Model-driven engineering in the large: Refactoring techniques for mod-
els and model transformation systems, Ph.D. dissertation, Philipps-Universität
Marburg (2016)

11. Arendt, T., Biermann, E., Jurack, S., Krause, C., Taentzer, G.: Henshin: advanced
concepts and tools for in-place EMF model transformations. In: Rouquette, N.,
Haugen, Ø., Petriu, D.C. (eds.) MODELS 2010, Part I. LNCS, vol. 6394, pp. 121–
135. Springer, Heidelberg (2010)

12. Green, T.R.G., Petre, M.: Usability analysis of visual programming environments:
a ’cognitive dimensions’ framework. J. Vis. Lang. Comput. 7(2), 131–174 (1996)

13. Deissenboeck, F., Hummel, B., Juergens, E., Pfaehler, M., Schaetz, B.: Model clone
detection in practice. In: International Workshop on Software Clones, pp. 57–64.
ACM (2010)

14. Strüber, D., Plöger, J., Acreţoaie, V.: Clone detection for graph-based model
transformation languages. In: International Conference on Model Transformation
(ICMT). Springer, 2016

15. Hermann, F., Gottmann, S., Nachtigall, N., Braatz, B., Morelli, G., Pierre, A.,
Engel, T.: On an automated translation of satellite procedures using triple graph
grammars. In: Duddy, K., Kappel, G. (eds.) ICMB 2013. LNCS, vol. 7909, pp.
50–51. Springer, Heidelberg (2013)

16. Famelis, M.: Managing design-time uncertainty in software models, Ph.D. disser-
tation, University of Toronto (2016)

17. Kusel, A., Schönböck, J., Wimmer, M., Kappel, G., Retschitzegger, W., Schwinger,
W.: Reuse in model-to-model transformation languages: are we there yet? J. Softw.
Syst. Model. 14, 1–36 (2013)

18. Kulcsár, G., Leblebici, E., Anjorin, A.: A solution to the FIXML case study using
triple graph grammars and eMoflon. In: TTC@STAF, pp. 71–75 (2014)

19. Machado, R., Foss, L., Ribeiro, L.: Aspects for graph grammars. Electron. Com-
mun. EASST 18 (2009)

20. Sijtema, M.: Introducing variability rules in ATL for managing variability in MDE-
based product lines. MtATL 10, 39–49 (2010)

21. Strüber, D., Selter, M., Taentzer, G.: Tool support for clustering large meta-models.
In: BigMDE Workshop on the Scalability of Model-Driven Engineering. ACM Dig-
ital Library, pp. 7.1–7.4 (2013)

22. Strüber, D., Lukaszczyk, M., Taentzer, G.: Tool support for model splitting using
information retrieval and model crawling techniques. In: BigMDE: Workshop on
Scalability in Model Driven Engineering, pp. 44–47. CEUR-WS.org (2014)

23. de Lara, J., Ermel, C., Taentzer, G., Ehrig, K.: Parallel graph transformation for
model simulation applied to timed transition petri nets. Electron. Notes Theor.
Comput. Sci. 109, 17–29 (2004)

http://dx.doi.org/10.1007/978-3-662-49665-7_8

A Tool Environment for Managing Families of Model Transformation Rules 101

24. Leblebici, E., Anjorin, A., Schürr, A., Taentzer, G.: Multi-amalgamated triple
graph grammars. In: Parisi-Presicce, F., Westfechtel, B. (eds.) ICGT 2015. LNCS,
vol. 9151, pp. 87–103. Springer, Heidelberg (2015)

25. Basso, F.P., Pillat, R.M., Oliveira, T.C., Becker, L.B.: Supporting large scale model
transformation reuse. In: ACM SIGPLAN Notices, vol. 49(3), pp. 169–178. ACM
(2013)

26. Sánchez Cuadrado, J., Guerra, E., de Lara, J.: A component model for model
transformations. IEEE Trans. Softw. Eng. 40(11), 1042–1060 (2014)

27. Cuadrado, J.S., Guerra, E., de Lara, J.: Reusable model transformation compo-
nents with bentō. In: Kolovos, D., Wimmer, M. (eds.) ICMT 2015. LNCS, vol.
9152, pp. 59–65. Springer, Heidelberg (2015)

28. de Lara, J., Guerra, E.: Towards the flexible reuse of model transformations: a
formal approach based on graph transformation. J. Logical Algebraic Methods
Program. 83(5), 427–458 (2014)

29. Criado, J., Mart́ınez, S., Iribarne, L., Cabot, J.: Enabling the reuse of stored model
transformations through annotations. In: Kolovos, D., Wimmer, M. (eds.) ICMT
2015. LNCS, vol. 9152, pp. 43–58. Springer, Heidelberg (2015)

30. Prehofer, C.: Feature-oriented programming: a fresh look at objects. In: Akşit,
M., Matsuoka, S. (eds.) ECOOP 1997. LNCS, vol. 1241, pp. 419–433. Springer,
Heidelberg (1997)

31. Batory, D.: Feature-oriented programming and the AHEAD tool suite. In: Interna-
tional Conference on Software Engineering (ICSE), pp. 702–703. IEEE Computer
Society (2004)

32. Walkingshaw, E., Ostermann, K.: Projectional editing of variational software. In:
Generative Programming: Concepts and Experiences, pp. 29–38. ACM (2014)

33. Schwägerl, F., Buchmann, T., Westfechtel, B.: SuperMod: a model-driven tool that
combines version control and software product line engineering. In: International
Conference on Software Paradigm Trends. SCITEPRESS, pp. 5–18 (2015)

34. Thüm, T., Kästner, C., Benduhn, F., Meinicke, J., Saake, G., Leich, T.: Fea-
tureIDE: an extensible framework for feature-oriented software development. Sci.
Comput. Program. 79, 70–85 (2014)

35. Acretoaie, V., Störrle, H., Strüber, D.: Transparent model transformation: turning
your favourite model editor into a transformation tool. In: Kolovos, D., Wimmer,
M. (eds.) ICMT 2015. LNCS, vol. 9152, pp. 121–130. Springer, Heidelberg (2015)

36. Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: Feature-oriented
domain analysis (FODA) feasibility study. Technical report, DTIC Document
(1990)

	A Tool Environment for Managing Families of Model Transformation Rules
	1 Introduction
	2 Variability-Based Rules
	3 Main Features
	4 Architecture and Implementation
	5 Related Work
	6 Future Work and Additional Improvement
	References

