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Abstract. Chemical reaction networks can be automatically generated
from graph grammar descriptions, where transformation rules model
reaction patterns. Because a molecule graph is connected and reactions
in general involve multiple molecules, the transformation must be per-
formed on multisets of graphs. We present a general software package
for this type of graph transformation system, which can be used for
modelling chemical systems. The package contains a C++ library with
algorithms for working with transformation rules in the Double Pushout
formalism, e.g., composition of rules and a domain specific language for
programming graph language generation. A Python interface makes these
features easily accessible. The package also has extensive procedures for
automatically visualising not only graphs and transformation rules, but
also Double Pushout diagrams and graph languages in form of directed
hypergraphs. The software is available as an open source package, and
interactive examples can be found on the accompanying webpage.
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1 Introduction

It has been common practice in chemistry for more than a century to repre-
sent molecules as labelled graphs, with vertices representing atoms, and edges
representing the chemical bonds between them [23]. It is natural, therefore, to
formalize chemical reactions as graph transformations [6,11,13,20]. Many com-
putational tools for graph transformation have been developed; some of them are
either specific to chemistry [21] or at least provide special features for chemical
systems [18]. General graph transformation tools, such as AGG [24], have also
been used to modelling chemical systems [11].

Chemical graph transformation, however, differs in one crucial aspect from
the usual setup in the graph transformation literature, where a single (usu-
ally connected) graph is rewritten, thus yielding a graph language. Chemical
reactions in general involve multiple molecules. Chemical graph transformations
therefore operate on multisets of graphs to produce a chemical “space” or “uni-
verse”. A similar viewpoint was presented in [17], but here we let the basic graphs
remain connected, and multisets of them are therefore dynamically constructed
and taken apart in direct derivations.

Graph languages can be infinite. This is of course also true for chemical uni-
verses (which in general contain classical graph languages as subsets). In the case
of chemistry, the best known infinite universes comprise polymers. The combi-
natorics of graphs makes is impossible in most cases to explore graph languages
or chemical universes by means of a simple breadth-first search. This limitation
can be overcome at least in part with the help of strategy languages that guide
the rule applications. One such language has been developed for rewriting port
graphs [12], implemented in the PORGY tool [5]. We have in previous work pre-
sented a similar strategy language [4] for transformation of multisets of graphs,
which is based on partial application of transformation rules [2].

Here, we present the first part of the software package MedØlDatschgerl (in
short: MØD), that contains a chemically inspired graph transformation system,
based on the Double Pushout formalism [10]. It includes generic algorithms for
composing transformation rules [2]. This feature can be used, e.g., to abstract
reaction mechanisms, or whole pathways, into overall rules [3]. MØD also imple-
ments the strategy language [4] mentioned above. It facilitates the efficient gen-
eration of vast reaction networks under global constraints on the system. The
underlying transformation system is not constrained to chemical systems. The
package contains specialized functionalities for applications in chemistry, such
as the capability to load graphs from SMILES strings [26]. This first version of
MØD thus provides the main features of a chemical graph transformation system
as described in [27].

The core of the package is a C++ 11 library that in turn makes use of the
Boost Graph Library [22] to implement standard graph algorithms. Easy access
to the library is provided by means of extensive Python bindings. In the following
we use these to demonstrate the functionality of the package. The Python mod-
ule provides additional features, such as embedded domain-specific languages
for rule composition, and for exploration strategies. The package also provides
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comprehensive functionality for automatically visualising graphs, rules, Double
Pushout diagrams, and hypergraphs of graph derivations, i.e., reaction networks.
A LATEX package is additionally included that provides an easy mechanism for
including visualisations directly in documents.

In Sect. 2 we first describe formal background for transforming multisets of
graphs. Section 3 gives examples of how graph and rule objects can be used,
e.g., to find morphisms with the help of the VF2 algorithms [8,9]. Sections 4
and 5 describes the interfaces for respectively rule composition and the strategy
language. Section 6, finally, gives examples of the customisable figure generation
functionality of the package, including the LATEX package.

The source code of MedØlDatschgerl as well as additional usage examples
can be found at http://mod.imada.sdu.dk. A live version of the software can be
accessed at http://mod.imada.sdu.dk/playground.html. This site also provides
access to the large collection of examples.

2 Transformation of Multisets of Graphs

The graph transformation formalism we use is a variant of the Double Pushout
(DPO) approach (e.g., see [10] more details). Given a category of graphs C, a
DPO rule is defined as a span p = (L l←− K

r−→ R), where we call the graphs L,
K, and R respectively the left side, context, and right side of the rule. A rule can
be applied to a graph G using a match morphism m : L → G when the dangling
condition and the identification condition are satisfied [10]. This results in a new
graph H, where the copy of L has been replaced with a copy of R. We write such
a direct derivation as G

p,m
==⇒ H, or simply as G

p
=⇒ H or G ⇒ H when the match

or rule is unimportant. The graph transformation thus works in a category C of
possibly disconnected graphs.

Let C′ be the subcategory of C restricted to connected graphs. A graph G ∈ C
will be identified with the multiset of its connected components. We use double
curly brackets {{. . . }} to denote the construction of multisets. Hence we write
G = {{g1, g2, . . . gk}} for an arbitrary graph G ∈ C with not necessarily distinct
connected components gi ∈ C′. For a set G ⊆ C′ of connected graphs and a graph
G = {{g1, g2, . . . , gk}} ∈ C we write G ∈∗ G whenever gi ∈ G for all i = 1, . . . , k.

We define a graph grammar Γ (G,P) by a set of connected starting graphs
G ⊆ C′, and a set of DPO rules P based on the category C. The language of
the grammar L(G,P) includes the starting graphs G. Additional graphs in the
language are constructed by iteratively finding direct derivations G

p
=⇒ H with

p ∈ P and G,H ∈ C such that G ∈∗ L(G,P). Each graph h ∈ H is then defined
to be in the language as well. A concise constructive definition of the language
is thus L(G,P) =

⋃∞
k=1 Gk with G1 = G and

Gk+1 = Gk ∪
⋃

p∈P
{h ∈ H | ∃G ∈∗ Gk : G

p
=⇒ H}

In MØD the objects of the category C are all undirected graphs without
parallel edges and loops, and labelled on vertices and edges with text strings.

http://mod.imada.sdu.dk
http://mod.imada.sdu.dk/playground.html
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(a) (b) (c)

Fig. 1. The pushout object of (a) in the category of simple graphs is either not existing
or is the graph depicted in (b) where the two edges are merged. For multigraphs the
pushout object would be the graph depicted in (c).

The core algorithms can however be specialised for other label types. We also
restrict the class of morphisms in C to be injective, i.e., they are restricted to
graph monomorphisms. Note that this restriction implies that the identification
condition of rule application is always fulfilled.

The choice of disallowing parallel edges is motivated by the aim of modelling
of chemistry, where bonds between atoms are single entities. While a “double
bond” consists of twice the amount of electrons than a “single bond”, it does
not in general behave as two single bonds. However, when parallel edges are
disallowed a special situation arises when constructing pushouts. Consider the
span in Fig. 1a. If parallel edges are allowed, the pushout object is the one shown
in Fig. 1c. Without parallel edges we could identify the edges as shown in Fig. 1b.
This approach was used in for example [7]. However, for chemistry this means
that we must define how to add two bonds together, which is not meaningful.
We therefore simply define that no pushout object exists for the span. A direct
derivation with the Double Pushout approach thus additionally requires that the
second pushout is defined.

The explicit use of multisets gives rise to a form of minimality of a derivation.
If {{ga, gb, gb}} p,m

==⇒ {{hc, hd}} is a valid derivation, for some rule p and match m,
then the extended derivation {{ga, gb, gb, q}} p,m

==⇒ {{hc, hd, q}} is also valid, even
though q is not “used”. We therefore say that a derivation G

p,m
==⇒ H with the

left-hand side G = {{g1, g2, . . . , gn}} is proper if and only if

gi ∩ img(m) 
= ∅,∀1 ≤ i ≤ n

That is, if all connected components of G are hit by the match. The algorithms
in MØD only enumerate proper derivations.

3 Graphs and Rules

Graphs and rules are available as classes in the library. A rule (L l←− K
r−→ R)

can be loaded from a description in GML [16] format. As both l and r are
monomorphisms the rule is represented without redundant information in GML
by three sets corresponding somewhat to the graph fragments L\K, K, and
R\K (see Fig. 2 for details).

Graphs can similarly be loaded from GML descriptions, and molecule graphs
can also be loaded using the SMILES format [26] where most hydrogen atoms
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are implicitly specified. A SMILES string is a pre-order recording of a depth-
first traversal of the connected graph, where back-edges are replaced with pairs
of integers.

Both input methods result in objects which internally stores the graph struc-
ture, where all labels are text strings. Figure 2 shows examples of graph and rule
loading, using the Python interface of the software.

Fig. 2. Creation of two graph objects and a transformation rule object in the Python
interface. The (molecule) graph ‘formaldehyde’ is loaded from an external GML file,
while the (molecule) graph ‘caffeine’ is loaded from a SMILES string [26], often
used in cheminformatics. General labelled graphs can only be loaded from a GML
description, and all graphs are internally stored simply as labelled adjacency lists.
The DPO transformation rule ‘ketoEnol’ is loaded form an inline GML description.
When the GML sections ‘left’, ‘context’, and ‘right’ are considered sets, they encode
a rule (L ← K → R) with L = ‘left’ ∪ ‘context’, R = ‘right’ ∪ ‘context’, and
K = ‘context’ ∪ (‘left’ ∩ ‘right)’. Vertices and edges that change label are thus
specified in both ‘left’ and ‘right’. Note that in GML the endpoints of edges are
described by ‘source’ and ‘target’, but for undirected graphs these tags have no
particular meaning and may be exchanged. The graphs and rules are visualised in
Fig. 5.

Graphs have methods for counting both monomorphisms and isomorphisms,
e.g., for substructure search and for finding duplicate graphs. Counting the num-
ber of carbonyl groups in a molecule ‘mol’ can be done simply as

carbonyl = smiles("[C]=O") count = carbonyl.monomorphism(mol ,
maxNumMatches =1337)

By default the ‘monomorphism’ method stops searching after the first morphism
is found; alternative matches can be retrieved by setting the limit to a higher
value.
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Rule objects also have methods for counting monomorphisms and isomor-
phisms. A rule morphism m : p1 → p2 on the rules pi = (Li

li←− Ki
ri−→ Ri), i =

1, 2 is a 3-tuple of graph morphisms mX : X1 → X2,X ∈ {L,K,R} such that
they commute with the morphisms in the rules. Finding an isomorphism between
two rules can thus be used for detecting duplicate rules, while finding a monomor-
phism m : p1 → p2 determines that p1 is at least as general as p2.

4 Composition of Transformation Rules

In [2,3] the concept of rule composition is described, where two rules p1 =
(L1 ← K1 → R1), p2 = (L2 ← K2 → R2) are composed along a common
subgraph given by the span R1 ← D → L2. Different types of rule composition
can be defined by restricting the common subgraph and its relation to the two
rules. MØD implements enumeration algorithms for several special cases that
are motived and defined in [2,3]. The simplest case is to set D as the empty
graph, denoted by the operator •∅, to create a composed rule that implements
the parallel application of two rules. In the most general case, denoted by •∩, all
common subgraphs of R1 and L2 are enumerated. In a more restricted setting
R1 is a subgraph of L2, denoted by •⊆, or, symmetrically, L2 is a subgraph of
R1, denoted by •⊇. When the subgraph requirement is relaxed to only hold for a
subset of the connected components of the graphs we denoted it by •c⊆ and •c⊇.

The Python interface contains a mini-language for computing the result of
rule composition expressions with these operators. The grammar for this lan-
guage of expressions is shown in Fig. 3.

Fig. 3. Grammar for rule composition expressions in the Python interface, where
〈graphs〉 is a Python expression returning either a single graph or a collection of
graphs. Similarly is 〈rules〉 a Python expression returning either a single rule or a
collection of rules. The pseudo-operators 〈op〉 each correspond to a mathematical rule
composition operator (see [2,3]). The three functions ‘rcBind’, ‘rcUnbind’, and ‘rcId’
refers to the construction of the respective rules (∅ ← ∅ → G), (G ← ∅ → ∅), and
(G ← G → G) from a graph G.

Its implementation is realised using a series of global objects with suitable
overloading of the multiplication operator. A rule composition expression can
be passed to an evaluator, which will carry out the composition and discard
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duplicate results, as determined by checking isomorphism between rules. The
result of each 〈rcExp〉 is coerced into a list of rules, and the operators consider
all selections of rules from their arguments. That is, if ‘P1’ and ‘P2’ are two rule
composition expressions, whose evaluation results in two corresponding lists of
rules, P1 and P2. Then, for example, the evaluation of ‘P1 *rcParallel* P2’
results in the following list of rules:

⋃

p1∈P1

⋃

p2∈P2

p1 •∅ p2

Each of these rules encodes the parallel application of a rule from P1 and a rule
from P2.

In the following Python code, for example, we compute the rules correspond-
ing to the bottom span (G ← D → H) of a DPO diagram, arising from applying
the rule p = (L ← K → R) to the multiset of connected graphs G = {{g1, g2}}.

exp = rcId(g1) *rcParallel* rcId(g2) *rcSuper(allowPartial=False)* p
rc = rcEvaluator(ruleList) res = rc.eval(exp)

Here, the rule composition evaluator is given a list ‘ruleList’ of known rules that
will be used for detecting isomorphic rules. Larger rule composition expressions,
such as those found in [3], can similarly be directly written as Python code.

5 Exploration of Graph Languages Using Strategies

A breadth-first enumeration of the language of a graph grammar is not always
desirable. For example, in chemical systems there are often constraints that can
not be expressed easily in the underlying graph transformation rules. In [4] a
strategy framework is introduced for the exploration of graph languages. It is a
domain specific programming language that, like the rule composition expres-
sions, is implemented in the Python interface, with the grammar shown in Fig. 4.
The language computes on sets of graphs. Simplified, this means that each execu-
tion state is a set of connected graphs. An addition strategy adds further graphs
to this state, and a filter strategy removes graphs from it. A rule strategy enu-
merates direct derivations based on the state, subject to acceptance by filters
introduced by the left- and right-predicate strategies. Newly derived graphs are
added to the state. Strategies can be sequentially composed with the ‘>>’ oper-
ator, which can be extended to k-fold composition with the repetition strategy.
A parallel strategy executes multiple strategies with the same input, and merges
their output. During the execution of a program the discovered direct derivations
are recorded as an annotated directed multi-hypergraph, which for chemical sys-
tems is a reaction network. For a full definition of the language see [4] or the
MØD documentation.

A strategy expression must, similarly to a rule composition expression, be
given to an evaluator which ensures that isomorphic graphs are represented
by the same C++/Python object. After execution the evaluator contains the
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Fig. 4. Grammar for the domain specific language for guiding graph transformation,
embedded in the Python interface of the software package. The non-terminal 〈strats〉
must be a collection of strategies, that becomes a parallel strategy from [4]. The
production 〈strat〉 ‘>>’ 〈strat〉 results in a sequence strategy.

generated derivation graph, which can be visualised or programmatically used
for subsequent analysis.

The strategy language can for example be used for the simple breadth-first
exploration of a grammar with a set of graphs ‘startingGraphs’ and a set of
rules ‘ruleSet’, where exploration does not result in graphs above a certain size
(42 vertices):

strat = (
addSubset(startingGraphs)

>> rightPredicate[
lambda derivation: all(g.numVertices <= 42 for g in derivation.right)

]( repeat(ruleSet) )
)
dg = dgRuleComp(startingGraphs , strat)
dg.calc()

The ‘dg’ object is the evaluator which afterwards contains the derivation graph.
More examples can be found in [1,4] where complex chemical behaviour is incor-
porated into strategies. An abstract example can also be found in [4] where the
puzzle game Catalan [14] is solved using exploration strategies.

6 Figure Generation

The software package includes elaborate functionality for automatically visualis-
ing graph, rules, derivation graphs, and derivations. The final rendering of figures
is done using the TikZ [25] package for LATEX, while the layouts for graphs are
computed using Graphviz [15]. However, for molecule graphs it is possible to
use the cheminformatics library Open Babel [19] for laying out molecules and
reaction patterns in a more chemically familiar manner.

Visualisation starts by calling a ‘print’ method on the object in question.
This generates files with LATEX code and a graph description in Graphviz format.
Special post-processing commands are additionally inserted into another file.
Invoking the post-processor will then generate coordinates and compile the final
layout. In addition, an aggregate summary document is compiled that includes
all figures for easy overview. Figure 5 shows an example, where the wrapper script
‘mod’ provided by the package is used to automatically execute both a Python
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(a) Additional Python code to Fig. 2,
for generating figures.
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(b) Automatically compiled figure
of the two graphs loaded in Fig. 2.
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(c) Automatically compiled figure of the DPO rule loaded in Fig. 2.

Fig. 5. Example of automatic visualisation of graphs and rules, using the post-
processor. The Python code is an extension of the code from Fig. 2, and can be executed
using the provided ‘mod’ script that invokes both the Python interpreter ‘python3’ and
the post-processor, ‘mod post’. Edges with special labels are as default rendered in a
special chemical manner, as illustrated with the left graph of (b) (formaldehyde). In
the right graph of (b) (caffeine) the edge labels are shown explicitly. Both graphs uses
chemical colouring. The colouring of the transformation rule, (c) denote the differences
between L, K, and R. (Color figure online)

script and subsequently the post-processor. The example also shows part of the
functionality for chemical rendering options, such as atom-specific colouring,
charges rendered in superscript, and collapsing of hydrogen vertices into their
neighbours.

Derivation graphs can also be visualised automatically, where each vertex is
depicted with a rendering of the graph it represents. The overall depiction can
be customised to a high degree, e.g., by annotation or colouring of vertices and
hyperedges using user-defined callback functions. Figure 6 illustrates part of this
functionality.

Individual derivations of a derivation graph can be visualised in form of
Double Pushout diagrams. The rendering of these diagrams can be customised
similar to how rules and graph depictions can, e.g., to make the graphs have a
more chemical feel. An example of derivation printing is illustrated in Fig. 7.

Composition of transformation rules is a core operation in the software, and
for better understanding the operation we provide a mechanism for visualising
individual compositions. An example of such a visualisation is shown in Fig. 8,
where only the left and right graphs of two argument rules and the result rule
are shown. The composition relation is shown as red dashed lines between the
left graph of the first rule and the right graph of the second rule.

Including Figures in LATEX Documents. To make it easier to use illustra-
tions of graphs and rules we have included a LATEX package in the software. It
provides macros for automatically generating Python scripts that subsequently
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(a) Python code for customised visualisation of a derivation graph
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(b) Example of automatically laid out and rendered derivation graph with
custom labelling and colour.

Fig. 6. Example of derivation graph printing. Each vertex is as default labelled with
the name of the graph it represents, and a figure of the graph is embedded. Each
hyperedge is as default labelled with the name of the rule used in the derivation the
hyperedge represents. A general hyperedge is represented by a box, but for hyperedges
with only 1 head and 1 tail the box is omitted, and a single labelled arc is rendered.
(Color figure online)

generate figures and LATEX code for inclusion into the original document. For
example, the depictions in Fig. 5 are inserted with the following code.

\graphGML[collapse hydrogens=false][scale =0.4]{ formaldehyde.gml}
\smiles[collapse hydrogens=false , edges as bonds=false][scale =0.4]

{Cn1cnc2c1c(=O)n(c(=O)n2C)C}
\ruleGML{ketoEnol.gml}{ \dpoRule[scale =0.4]}

Each ‘\graphGML’ and ‘\smiles’ macro expands into an ‘\includegraphics’ for
a specific PDF file, and a Python script is generated which can be executed to
compile the needed files. The ‘\ruleGML’ macro expands into

\dpoRule[scale =0.4]{ fileL.pdf}{fileK.pdf}{fileR.pdf}
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Fig. 7. Example of visualisation of derivations. Each derivation from a derivation graph
can be printed, with the same customisation options as for graphs and rules. Additional
colouring is used to highlight the image of the rule into the lower span. (Color figure
online)

Fig. 8. Visualisation of the composition of two rules pi = (Li ← Ki → Ri, i = 1, 2,
along the a common subgraph of R1 and L2, indicated by the dashed red lines. Only
the left and right graphs of both rules, and the resulting rule, are shown. The rendering
can be customised in the same manner as the rendering for graphs and rules can. (Color
figure online)

where the three PDF files depict the left side, context, and right side of the rule.
The ‘\dpoRule’ macro then expands into the final rule diagram with the PDF
files included.

7 Summary

MedØlDatschgerl is a comprehensive software package for DPO graph transfor-
mation on multisets of undirected, labelled graphs. It can be used for generic,
abstract graph models. By providing many features for handling chemical data it
is particularly well-suited for modelling generative chemical systems. The pack-
age includes an elaborate system for automatically producing high-quality visu-
alisations of graphs, rules, and DPO diagrams of direct derivations.

The first public version of MØD described here is intended as the foundation
for a larger integrated package for graph-based cheminformatics. Future versions
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will for example also include functionalities for pathway analysis in reaction net-
works produced by the generative transformation methods described here. The
graph transformation system, on the other hand, will be extended to cover more
complicated chemical properties such as radicals, charges, and stereochemistry.

Acknowledgements. This work is supported by the Danish Council for Independent
Research, Natural Sciences, the COST Action CM1304 “Emergence and Evolution of
Complex Chemical Systems”, and the ELSI Origins Network (EON), which is sup-
ported by a grant from the John Templeton Foundation. The opinions expressed in
this publication are those of the authors and do not necessarily reflect the views of the
John Templeton Foundation.

A Examples

The following is a short list of examples that show how MedØlDatschgerl can be
used via the Python interface. They are all available as modifiable script in the
live version of the software, accessible at http://mod.imada.sdu.dk/playground.
html.

A.1 Graph Interface

Graph objects have a full interface to access individual vertices and edges. The
labels of vertices and edges can be accessed both in their raw string form, and
as their chemical counterpart (if they have one).

g = graphDFS("[R]{x}C([O-])CC=O")

print("|V| =", g.numVertices)

print("|E| =", g.numEdges)

for v in g.vertices:

print("v%d: label='%s'" % (v.id , v.stringLabel), end="")

print("\tas molecule: atomId =%d, charge =%d" % (v.atomId , v.charge), end="")

print("\tis oxygen?", v.atomId == AtomIds.Oxygen)

print("\td(v) =", v.degree)

for e in v.incidentEdges: print("\tneighbour:", e.target.id)

for e in g.edges:

print("(v%d, v%d): label='%s'" % (e.source.id , e.target.id , e.stringLabel), end="")

try:

bt = str(e.bondType)

except LogicError:

bt = "Invalid"

print("\tas molecule: bondType =%s" % bt , end="")

print("\tis double bond?", e.bondType == BondType.Double)

A.2 Graph Morphisms

Graph objects have methods for finding morphisms with the VF2 algorithms
for isomorphism and monomorphism. We can therefore easily detect isomorphic
graphs, count automorphisms, and search for substructures.

mol1 = smiles("CC(C)CO")

mol2 = smiles("C(CC)CO")

# Check if there is just one isomorphism between the graphs:

isomorphic = mol1.isomorphism(mol2) == 1

print("Isomorphic?", isomorphic)

# Find the number of automorphisms in the graph ,

# by explicitly enumerating all of them:

numAutomorphisms = mol1.isomorphism(mol1 , maxNumMatches =1337)

print("|Aut(G)| =", numAutomorphisms )

http://mod.imada.sdu.dk/playground.html
http://mod.imada.sdu.dk/playground.html
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# Let's count the number of methyl groups:

methyl = smiles("[CH3]")

# The symmetry of the group it self should not be counted ,

# so find the size of the automorphism group of methyl.

numAutMethyl = methyl.isomorphism(methyl , maxNumMatches =1337)

print("|Aut(methyl )|", numAutMethyl)

# Now find the number of methyl matches ,

numMono = methyl.monomorphism(mol1 , maxNumMatches =1337)

print("#monomorphisms =", numMono)

# and divide by the symmetries of methyl.

print("#methyl groups =", numMono / numAutMethyl)

A.3 Rule Loading

Rules must be specified in GML format.
# A rule (L <- K -> R) is specified by three graph fragments:

# left , context , and right

destroyVertex = ruleGMLString('rule [ left [ node [ id 1 label "A" ] ] ]')
createVertex = ruleGMLString( 'rule [ right [ node [ id 1 label "A" ] ] ]')
identity = ruleGMLString( 'rule [ context [ node [ id 1 label "A" ] ] ]')
# A vertex/edge can change label:

labelChange = ruleGMLString(""" rule [

left [ node [ id 1 label"A"] edge [ source 1 target 2 label"A"] ]

# GML can have Python -style line comments too

context [ node [ id 2 label"Q"] ]

right [ node [ id 1 label"B"] edge [ source 1 target 2 label"B"] ]

]""")

# A chemical rule should probably not destroy and create vertices:

ketoEnol = ruleGMLString(""" rule [

left [

edge [ source 1 target 4 label"-"] edge [ source 1 target 2 label "-"]

edge [ source 2 target 3 label "="]

node [ id 3 label"O"] node [ id 4 label"H"]

]

context [

node [ id 1 label"C"] node [ id 2 label"C"]

]

right [

edge [ source 1 target 2 label "="] edge [ source 2 target 3 label "-"]

node [ id 3 label"O-"] node [ id 4 label"H+"]

]

]""")

# Rules can be printed , but label changing edges are not visualised in K:

ketoEnol.print ()

# Add with custom options , like graphs:

p1 = GraphPrinter ()

p2 = GraphPrinter ()

p1.disableAll ()

p1.withTexttt = True

p1.withIndex = True

p2.setReactionDefault ()

for p in inputRules: p.print(p1, p2)

# Be careful with printing options and non -existing implicit hydrogens:

p1.disableAll ()

p1.edgesAsBonds = True

p2.setReactionDefault ()

p2.simpleCarbons = True # !!

ketoEnol.print(p1 , p2)

A.4 Rule Composition 1 — Unary Operators

Special rules can be constructed from graphs.
glycolaldehyde.print ()

# A graph G can be used to construct special rules:

# (\ emptyset <- \emptyset -> G)

bindExp = rcBind(glycolaldehyde)

# (G <- \emptyset -> \emptyset)

unbindExp = rcUnbind(glycolaldehyde)

# (G <- G -> G)

idExp = rcId(glycolaldehyde)

# These are really rule composition expressions that have to be evaluated:

rc = rcEvaluator(inputRules)

# Each expression results in a lists of rules:

bindRules = rc.eval(bindExp)

unbindRules = rc.eval(unbindExp)

idRules = rc.eval(idExp)

postSection("Bind Rules")
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for p in bindRules: p.print()

postSection("Unbind Rules")

for p in unbindRules: p.print ()

postSection("Id Rules")

for p in idRules: p.print()

A.5 Rule Composition 2 — Parallel Composition

A pair of rules can be merged to a new rule implementing the parallel transfor-
mation.

rc = rcEvaluator(inputRules)

# The special global object 'rcParallel ' is used to make a pseudo -operator:

exp = rcId(formaldehyde) *rcParallel* rcUnbind(glycolaldehyde)

rules = rc.eval(exp)

for p in rules: p.print ()

A.6 Rule Composition 3 — Supergraph Composition

A pair of rules can (maybe) be composed using a supergraph relation.
rc = rcEvaluator(inputRules)

exp = rcId(formaldehyde) *rcParallel* rcId(glycolaldehyde)

exp = exp *rcSuper* ketoEnol_F

rules = rc.eval(exp)

for p in rules: p.print ()

A.7 Reaction Networks 1 — Rule Application

Transformation rules (reaction patterns) can be applied to graphs (molecules) to
create new graphs (molecules). The transformations (reactions) implicitly form
a directed (multi-)hypergraph (chemical reaction network).

# Reaction networks are expaned using a strategy:

strat = ( # A molecule can be active or passive during evaluation.

addUniverse(formaldehyde) # passive

>> addSubset(glycolaldehyde) # active

# Aach reaction must have a least 1 active educt.

>> inputRules )

# We call a reaction network a 'derivation graph '.
dg = dgRuleComp(inputGraphs , strat)

dg.calc()

# They can also be visualised.

dg.print ()

A.8 Reaction Networks 2 — Repetition

A sub-strategy can be repeated.
strat = ( addUniverse(formaldehyde)

>> addSubset(glycolaldehyde)

# Iterate the rule application 4 times.

>> repeat [4]( inputRules) )

dg = dgRuleComp(inputGraphs , strat)

dg.calc()

dg.print ()
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