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Abstract. The AGREE approach to graph transformation allows to
specify rules that clone items of the host graph, controlling in a fine-
grained way how to deal with the edges that are incident, but not
matched, to the rewritten part of the graph. Here, we investigate in which
ways cloning (with controlled embedding) may affect the dependencies
between two rules applied to the same graph. We extend to AGREE
the classical notion of parallel independence between the matches of two
rules to the same graph, identifying sufficient conditions that guarantee
that two rules can be applied in any order leading to the same result.

1 Introduction

Graph Transformations (GT) are very much used to specify systems where con-
currency and non-determinism are present. For instance GT has been used to
model the evolution of biological systems [6], chemical reactions [15] and also
concurrent models of computations [8]. From this perspective a major concern is
to investigate how the application of different rules may affect each other. There
are two classical questions:

1. (parallel independence) Given two rules with matches in the same graph
G, are they independent? That is, can they be applied in any order (or even
in parallel) with the same result?

2. (sequential independence) Given a sequence of two rewrite steps, is the
second step independent of the first? That is, could the second rule be applied
first, followed by the application of the first rule, leading to the same result?

In this paper we shall consider parallel independence only. In the classical setting,
where typically rules are injective, two rewrite steps are parallel independent if
their matches overlap only on items that are preserved by both. In other words,
they are not parallel independent if there is a conflict of the following types:
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delete-delete: two rules try to delete the same item. In this case the conflict
is symmetric and it means that the rules are mutually exclusive.
preserve-delete: a rule deletes an item that is preserved by the other. In this
situation the conflict is asymmetric because the application of the rule that
deletes the item prevents the other to occur, but not the other way around.

Parallel independence is usually formalized, in the algebraic approaches to
GT, making reference to the following diagram. The rewrite step using rule 2
at match m2 is said to be (parallel) independent from the rewrite step using
rule 1 at match m1 if there exists a morphism m2d such that m2 = g1 ◦ m2d

(and symmetrically for rule 1). That is, it is still possible to apply rule 2 after
rule 1 has been applied, using the “same” match, and in this case the Local
Church-Rosser Theorem shows that the resulting graph is the same.

Those problems have been studied in many GT approaches: double pushout
(DPO) [5], single pushout [12], sesqui-pushout (SqPO) [4], reversible sesqui-
pushout [7], with negative application conditions [13], borrowed contexts [1] and
nested application conditions [11]. To our knowledge, in all these approaches
(but for [7]) rules are required to be linear, i.e. both the left- and the right-hand
side have to be monomorphisms. In this paper we address the problem of par-
allel independence for the AGREE approach [3]. The main feature of AGREE
rewriting is the ability to clone matched items, like in the SqPO approach that
it extends, but with the possibility of specifying how edges incident to the image
of the match can be handled. Because of this feature the analysis of parallel
independence becomes quite more complex than in the other approaches, since
new kinds of conflicts between rewrite steps arise.

The paper is organized as follows. We start with an informal introduction to
AGREE in Sect. 2, showing how, from a programmer point of view, AGREE
rewrite rules can be specified by exploiting the ability both to clone items, and
to control the embedding of the preserved or cloned items in the context. In
Sect. 3 we recall from [3] the formal definition of AGREE rewriting. Then we
present in Sect. 4, through several canonical counter-examples, how new types
of conflicts may arise due to cloning. Those counter-examples will motivate the
assumptions needed for the main result that is stated and proved in Sect. 5.
Finally we conclude and sketch future developments in Sect. 6.

2 Controlling the Embedding in AGREE

AGREE is a GT approach: states are represented by graphs and transitions are
specified by rules. When specifying a transition between states using an AGREE
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rule (see the left diagram of (2)), the designer describes with the left-hand side
L the items that must be present to trigger the application of the rule. The
morphism l from the gluing graph K to L describes which items of L will be
preserved, cloned or deleted. More precisely an item of L is deleted if it is not
in the image of l, it is preserved if it is the image of exactly one item of K
along l, and it is cloned if it is the image of more than one item along l. The
morphism r to the right-hand side R, that we assume to be mono in this paper,
defines the items that will be created, i.e. those not in the image of r. Finally
the embedding component TK , which is typical of AGREE, is used to describe
how the preserved or cloned items are embedded in the rest of the state graph.

To apply a rule to a graph G (see the right diagram of (2)), first an image of L
in G has to be found (a match).1 Then, basically, all items from G are removed,
preserved or cloned according to the rule (using L, K and TK), and new items
are added according to r. In the following, we explain intuitively how to specify
the embedding component of a rule, and how rule application is performed in
the case of typed graphs. The formal definitions will be given in Sect. 3.

The embedding component describes how to handle the context, i.e. the part
of G that is not in the image of the match. To specify this component, we first
build a graph containing the gluing graph K and all possible ways in which it is
connected to the rest. This is done by a construction called partial map classifier
for K, denoted by T (K) [2]. This graph contains the following classes of items:

(i) preserved items: K (the gluing graph);
(ii) independent context items: a copy of the type graph (to describe the

part of the state graph that is not touched by the rule application);
(iii) gluing context edges: one instance of each type of edge (from the type

graph) for each pair of nodes of K; and
(iv) embedding context edges: one instance of each type of edge (from the type

graph) for each pair made of a node in class (i) and a node in class (ii).

We call the items in classes (ii) to (iv) �-items. They are used to represent the
context: given any graph X with a map to T (K), we can classifiy X’s items
into items that represent K’s items (whose images are in (i)) and items that are
context (whose images are in (ii)–(iv)). Now, to obtain the embedding component
of a rule, one can specify how the preserved or cloned items are embedded in the
rest of the graph by removing from T (K) all items that should not be maintained
when the rule is applied, or adding some items to obtain more copies of specific
elements of the state graph.

For example, consider the graphs in Fig. 1. TG is a type graph having two
nodes and two different edges. The items to be preserved/cloned by a rule are

1 In the AGREE approach matches have to be monic.
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Fig. 1. Embedding Component Examples

shown in graph K (here the left- and right-hand sides are not important since
we only want to illustrate the embedding component). To obtain T (K) we follow
the steps previously described. As a graphical notation, we use arrows with tips
at both sides to depict two edges, one in each direction, all �-items are marked
with � and there is a vertical bar dividing T (K) as follows: we put to the right
of the bar the items of (ii) (the copy of the type graph), to the left the items
of (i) (graph K) and (iii) (all possible kinds of edges among K’s nodes), and
connect the left and right sides with items of (iv) (all possible types of edges
between items of K and of the copy of the type graph). Choosing for a rule any
embedding component TK that does not include all the items of (ii) (or adds
some elements to (ii)) would result in a rule with non-local effects. For example, if
TKa is the embedding component of a rule with gluing graph K, the application
of this rule would remove from a graph all square nodes and dashed edges, even
if not in the image of the match, because TKa specifies that the context should
not have those items. Instead the embedding component TKb has a local effect
since the part to the right side of the bar is a copy of TG. The application of this
rule would remove dashed edges between node 1© and the rest of the graph, and
solid edges between node 2© and the rest of the graph (only one edge between
nodes 1© and 2© would remain, since this edge is in K).

In the rest of this section we consider local rules only, that is, the embed-
ding component must include a copy of the type graph.2 For simplicity we also
assume that the embedding component is included in T (K) (even if the formal
development does not require it), thus it is obtained from T (K) by deleting only
items belonging to (iii) and (iv). For a simpler graphical representation of the
embedding component, to the right of the vertical bar we draw only the nodes
of the type graph (considering the edges implicitly there), since only the nodes
of (ii) are needed to specify how the gluing graph is connected to the context.

To illustrate the AGREE approach and the effect of the embedding compo-
nent, we will model the generation of Sierpinski triangles. A Sierpinski triangle
is a well-known fractal in which an equilateral triangle is divided into smaller
equilateral triangles in a controlled way, given by a rule like the one depicted in
Fig. 2(a). Applying this rule repeatedly and fairly a convenient number of times
leads to shapes like the ones shown in Fig. 2(b).

In [16] the generation of Sierpinski triangles was used as a case study to
compare different graph transformation tools. There, a triangle was modeled as
a graph with three nodes and three edges, and each step of the generation deleted

2 We refer the interested reader to [3] for a formal definition of locality.
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Fig. 2. (a) Sierpinski generation rule (b) Sierpinski triangles generation

Fig. 3. (a) Type Graph (b) Graph Representation (c) Start Graph

edges and created new nodes and edges. Here, instead, we consider a triangle as
a single node, and each step will split (or clone) the triangle into three other ones
and create suitable connections (edges) among them. To control how many times
the splitting process should occur, we use a special kind of edge: the number of
dashed loops on a node indicates how many times the splitting process can be
applied. To make the example more interesting, we will color the triangles: a gray
loop on a triangle indicates its color (b for black, g for green, r for red and w
for white). Moreover, there will be three different edges that are used to connect
triangles, called ur (up-right), ul (up-left) and lr (left-right). The corresponding
type graph is shown in Fig. 3(a). Figure 3(b) depicts a Sierpinski triangle and its
corresponding graph representation, and Fig. 3(c) presents a possible start state
for the generation of Sierpinki triangles of order 3.

Fig. 4. Rules for generation and coloring of Sierpinski triangles.

To model the splitting of the triangle we use rule Split of Fig. 4: whenever
there is a triangle that may be split (has a dashed loop) L1, it is split and new
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connections between the copies are created. Also note that the new triangles are
colored with white in R1. The embedding component is graph TK1. Remind
that we are using local rules, thus only the nodes of the type graph of Fig. 3(a)
are drawn to the right of the bar (the edges are implicitly there). Since TK1
does not contain gray loops on the left node, any possible color of the matched
node is deleted by the application of the rule. The same happens in all other
rules, but for TurnRed . The last three rules change the color of the triangle
to black, green or red in slightly different ways. Rule TurnBlack adds a black
color to the matched triangle after removing any colored or dashed loop, thus
preventing further splitting. Rule TurnGreen changes the color of a triangle
(of any color) to green and requires the presence of at least one dashed loop,
and preserves all dashed loops. Finally rule TurnRed changes the color of a
triangle to red, if the triangle was white, and keeps all existing connections (the
embedding component of this rule is the partial maps classifier of K4).

When a match m : L → G from an AGREE rule to a graph G is found, this
match induces a partition of G’s items into the following classes:

(i) preserved/cloned items: items in the image of K,
(ii) independent context items: the items that are neither in the image of

L nor are connections to items in the image of L,
(iii) gluing context edges: edges not in the image of L that connect nodes in

the image of K,
(iv) embedding context edges: edges not in the image of L that connect

nodes in the image of K to other nodes in G (not in the image of L),
(v) deleted items: items in the image of L and not in the image of K,
(vi) dangling edges: edges that connect nodes marked for deletion (in class

(v)) to other nodes (not in (v)).

The embedding component TK of a local rule is a subgraph of T (K) that
includes K, it specifies that items in classes (i) and (ii) remain untouched. The
control of the embedding is performed on items of classes (iii) and (iv): edges of
types that are in T (K) and not in TK must be removed/can not be cloned. An
AGREE rule application can be constructed by the following steps:

Deletion: delete from G all items that are in classes (v) and (vi); delete all
items that are in classes (iii) and (iv) of G and whose type is not in TK;

Cloning/Preserving: clone or preserve all items of (i) according to l : K → L,
and all edges from (iii) and (iv) according to TK (for every node that is
cloned, clone all edges connected to this node whose type is in TK);

Creation: add new items according to r : K � R.

Two examples of derivations using AGREE rules are shown in Fig. 5. Start-
ing with graph G1 rule Split is applied (to the right), deleting one of the dashed
loops of the triangle and splitting the triangle in three (cloning also the rest of
the dashed loops and creating a white-loop in each of the resulting triangles).
To the left, rule TurnBlack is applied, removing all the dashed arrows from the
triangle. These extra deletion effects are specified in the corresponding embed-
ding components (see TK2 in Fig. 4).
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Fig. 5. AGREE rewrite steps using rules TurnBlack (left) and Split (right)

3 The AGREE approach to graph transformation

In this section we recall basic definitions of the AGREE approach to rewriting
[3]. We assume the reader to be familiar with categorical notions used in the alge-
braic approaches to GT (including pushouts, pullbacks and their properties).The
following definition will be useful in the technical development in Sect. 5.

Definition 1 (reflection). Given arrows , we say that (the
image of) A is reflected identically by f (to B) if the square below to the right
is a pullback for some mono A � B or equivalently if the pullback object of f
and m is isomorphic to A.

Intuitively, this means that f is an iso when restricted to the
image of A. If objects are concrete structures like graphs, then
every item of the image of A in C has exactly one inverse image
along f in B.

We assume that the category in which GT is performed has
partial maps classifiers [2] (needed for the definition of AGREE rewriting [3])
and is adhesive, the latter assumption being standard for the results about
parallelism [10,14].

Definition 2 (partial map classifier). Let C be a category with pullbacks
along monos. A partial map over C, denoted (i, f) : Z ⇀ Y , is a span (i : X �
Z, f : X → Y ) in C with i mono, up to the equivalence relation (i′, f ′) ∼ (i, f)
when there is an isomorphism h with i′ ◦ h = i and f ′ ◦ h = f . Category C has
a partial map classifier (T, η) if T is a functor T : C → C and η is a natural
transformation η : IdC

.→ T , such that for each object Y and each partial map
(i, f) : Z ⇀ Y there is a unique arrow ϕ(i, f) : Z → T (Y ) such that (i, f) is a
pullback of (ϕ(i, f), ηY ) (see the left diagram of (3)).3

Then ηY is mono for each Y , T preserves pullbacks, and η is cartesian, which
means that for each f : X → Y the span (ηX , f) is a pullback of (T (f), ηY ). For

3 Intuitively, a partial map classifier provides a bijective correspondence between par-
tial maps over C from object Z to Y and arrows of C from Z to T (Y ), given by
[(i, f)] ⇐⇒ φ(i, f), as described by the left diagram of (3).
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each mono i : X � Z let ı = ϕ(i, idX); then ı is characterized by the fact that
(i, idX) is a pullback of (ı, ηX) (right diagram of (3)).

By composing the right and middle squares we get the left one, which proves
that for each partial map (i, f) : Z ⇀ Y :

ϕ(i, f) = T (f) ◦ ı (4)

For the definition of adhesivity, we stick to the seminal work [14]. Since then
adhesivity has been generalized in several variants and sometimes in subtly dif-
ferent ways: for a recollection of such notions the reader is referred to [10].

Definition 3 (adhesive category). A category C is adhesive if it has all pull-
backs, pushouts along monos, and if each pushout along a mono, like the square
to the left below, is a Van Kampen square, i.e. if for any commutative cube as
below to the right, where the pushout is the bottom face and the back faces are
pullbacks, we have: the top face is a pushout if and only if the front faces are
pullbacks.

We recall that in an adhesive category pushouts preserve monos, and pushouts
along monos are also pullbacks; pullbacks preserve monos in any category.

Definition 4 (AGREE rewriting). Let C be an adhesive category with a
partial map classifier (T, η), An AGREE rule is a triple of arrows with the
same source , with r and t mono. Arrows l and
r are the left- and right-hand side, respectively, and t is the embedding. A
match of rule ρ is a mono . An AGREE rewrite step G ⇒ρ,m H is
constructed as follows (see diagram (6)). First is the pullback
of . It follows that there is a unique n : K → D such that
n′ ◦ n = t, g ◦ n = m ◦ l and (l, n) is a pullback of (m, g), and that n is mono.
Then is the pushout of .
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The assumptions of Definition 4 are satisfied by the categories of graphs, of
typed graphs (defined as a slice category), and by toposes in general.

Notice that, differently from [3], we stick to rules with monic right-hand side,
thus rules which possibly model the cloning of items, but not their merging.
This choice is supported by the observation that matches must be monic in
AGREE, and thus even if a monic morphism, say, m1d : L1 � D2 can be found
(see diagram (1)), its composition with a non-monic h2 : D2 → H2 would not
necessarily result in a legal (i.e., monic) match of L1 in H2. The analysis of such
more complex situations is left as future work.

Finally it is worth recalling that as proved in [3], AGREE rewriting coincides
with SqPO rewriting [4] for rules where TK = T (K).

4 Analysis of Independence of Rewrite Steps

As stated in the Introduction, parallel independence is a condition on two rewrite
steps from the same graph that ensures that they can be applied sequentially in
both orders, leading to the same result. We formalize this last property with the
following notion of commutativity, also known as diamond property.

Definition 5 (Commutativity of rewrite steps). Let ρ1 and ρ2 be two
rules and for i ∈ {1, 2} let mi be a match for ρi in G. We say that the rewrite
steps G ⇒ρ1,m1 H1 and G ⇒ρ2,m2 H2 commute if there exist an object H and
matches m12 of ρ1 in H2 and m21 of ρ2 in H1 such that H1 ⇒ρ2,m21 H and
H2 ⇒ρ1,m12 H.

We discussed two possible kinds of conflicts that could prevent commutativity
in classical approaches to GT: preserve-delete (one of the rules deletes some
item that is preserved by the other) and delete-delete (two rules delete the
same item). In AGREE we still have these kinds of conflicts. But we have to
investigate what is the impact of using the embedding component TK of the
rules, and of allowing the cloning of items.

Let us now consider some examples illustrating different kinds of situations
that may occur in AGREE derivations. These examples are meant to show
that, although cloning is a kind of preservation, the application of a rule that
clones may hinder the application of a rule that uses the cloned items, since the
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Fig. 6. Rewrite steps with rules TurnGreen and Split : Clone-Use Confict

match may become non-deterministic (leading to different results) and items
that belong to the context of one rule application may be changed in a way that
prevents the other rule from being applied. Moreover, even if no cloning is used,
rules may get into conflict due to the treatment of context items specified in the
TK component of one of the rules.

Cloning vs Use. Consider the derivations shown in Fig. 6, where rules Turn-
Green (left) and Split (right) are applied to graph G1 (indices indicate the
match). The application of rule TurnGreen just changes the color of the trian-
gle and, after applying this rule, it would still be possible to apply Split to the
same match (that is, it is possible to extend m1 to H3) and the result would be
a graph with 3 white triangles (and corresponding edges). However, if Split is
applied first, we would have three possibilities to match rule TurnGreen that
would be extensions of m1. By choosing any of them, the result would be a graph
with 3 triangles, two white and one green, i.e. the results would not be the same.

Fig. 7. Applying TurnBlack and TurnGreen : Context Deletion–Preservation Confict

Context Deletion vs Preservation. Now consider the derivations shown in
Fig. 7, where rules TurnBlack (left) and TurnGreen (right) are applied to
graph G1. The application of rule TurnGreen just changes the color of the tri-
angle and, after applying this rule, it would still be possible to apply TurnBlack
to the same match (that is, it is possible to extend m2 to H3) and the result
would be a graph with only one black triangle. But if TurnBlack is applied
first, all dashed loops are removed (as specified by TK2) preventing TurnGreen
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from being applied. None of these rules clones items, thus this kind of con-
flict depends only on the embedding component of the rules: if the embedding
components were TK2 = T (K2 ) and TK3 = T (K3 ), no conflict would arise
because all context items would be preserved by both rules.

Fig. 8. AGREE Derivations using rule Split

Figure 5 shows a situation where both of the above cases occur: rule TurnBlack
removes the dashed loops, preventing Split from being applied, and Split clones
the triangle, creating three different matches for TurnBlack . Finally, Fig. 8
shows an example involving cloning and using a non-trivial embedding compo-
nent (TK1 �= T (K1 )), where the two steps commute. In fact the two matches
do not overlap, and thus are trivially parallel independent.

Summarizing, using AGREE rules, we have three new kinds of conflict:

clone-use (where use could be delete or preserve or clone): an item that is
preserved/deleted/cloned by one rule is cloned by the other.

ctxdel-use (context deletion-use): an item used in one rule is specified for
context-deletion by the embedding component TK of the other rule.

ctxclone-use (context clone-use): an item used in one rule is specified for
context-cloning by the embedding component TK of the other rule4.

5 The Church-Rosser Property for AGREE

This section is devoted to the main result of the paper, that is the identification
of sufficient conditions for two AGREE rewrite steps to commute, according to
Definition 5. Such conditions are identified in the next definition.

4 We did not present examples of this kind of conflict, which can be avoided by requir-
ing the embedding component to be included in T (K).
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Definition 6 (Parallel Independence in AGREE). Let C be an adhesive

category with a partial map classifier (T, η). Let ρi = (Ki
li→ Li,Ki

ri� Ri,Ki

ti�
TK,i), for i ∈ {1, 2}, be two AGREE rules and let L1

m1� G and L2

m2� G be two
matches for them to the same object G. Consider the corresponding AGREE
rewriting steps G ⇒ρ1,m1 H1 and G ⇒ρ2,m2 H2 depicted in the following dia-
gram.5

Then G ⇒ρ1,m1 H1 and G ⇒ρ2,m2 H2 are parallel independent if the following
are satisfied:

1. In the left diagram of (7) where the inner and the outer squares are built as
pullbacks, the mediating morphism K1K2 → L1L2 is an isomorphism.

2. The right diagram of (7) is a pullback for i ∈ {1, 2}, that is the image of
T (L1L2) is reflected identically by l′i to TK,i

The main result is formulated as follows.

Theorem 1 (Local Church-Rosser). If two AGREE rewrite steps are par-
allel independent, then they commute.

As a first observation note that, unlike most related results for other algebraic
approaches to GT, parallel independence does not require explicitly the existence

5 For future reference we also depict the dashed arrows m1d and m2d, which are not
mentioned in this definition.
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of arrows m1d and m2d, which will be inferred in the proof from the other con-
ditions. Nevertheless, note that the first condition can be seen as a direct trans-
lation in categorical terms of the classical set-theoretical definition of parallel
independence (see [9]) requiring m1(L1) ∩ m2(L2) ⊆ m1(l1(K1)) ∩ m2(l2(K2)).

Since the conditions of Definition 6 are pretty technical, let us explain them
by making reference to the specific case of graphs. The first condition guarantees
that each item of G that is needed for the application of both rules (belongs to the
intersection of the images of L1 and L2) is preserved by both rules (is in the image
of both K1 and K2) and it is not cloned by any rule (it has only one inverse image
in K1K2). This forbids all delete-use and clone-use conflicts. Equivalently, if a rule
duplicates or deletes an item of G, that item cannot be accessed by the other rule
not even in a read-only way. For example, the application of rulesTurnGreen and
Split shown in Fig. 6 does not satisfy this condition because the pullback of L3 →
G1 and L1 → G1 contains a single node, while the pullback of K3 → L3 → G1
and K1 → L1 → G1 contains three nodes, and thus they are not isomorphic.

For the second condition, remember from Sect. 2 that for any graph X, the
partial map classifier T (X) is made of a copy of X plus the �-elements which,
given any graph Y with a partial morphism to X, classify in a unique way the
items of the context, i.e. the items of Y on which the morphism is not defined.
Thus the second condition expresses a strong requirement on the embeddings
TK,i of the two rules: they cannot modify (i.e. delete or duplicate) any item in the
context of L1L2. For example, this condition is not satisfied by the application
of rules TurnBlack and TurnGreen to graph G1 in Fig. 7. In fact, in this case
the pullback object of L2 → G1 and L3 → G1 is a single node (it is identical
to L2), but T (L2) is not reflected identically by TK2 → T (L2), because the
embedding TK2 (see Fig. 4) does not contain the �-loop on the left node.

Proof (of Theorem 1). We present the overview of the proof, which is detailed
in the rest of the section. We focus on the application of ρ2 and ρ1 in this
order, since the reverse order is symmetric. Consider Diagram (8), where for
readability reasons we do not depict the embeddings of the rules and the partial
maps classifiers, even if they are necessary for the constructions. Objects in plain
math style exist by hypotheses, others (in bold) are introduced during the proof.

By Lemma 1, L1 is reflected identically by D2 g2 ��G providing the mono
, which composed with becomes a match .By

Construction 1 the AGREE rewrite step H2 ⇒ρ1,m12 H12 generates objects
D12 and H12 in the bottom line. Symmetrically, the AGREE rewrite step
H1 ⇒ρ2,m21 H21 generates the objects D21 and H21 in the right column. By
Lemma 2, defining D as the pullback of square 5©, K1 is reflected identi-
cally by and R1 is reflected identically by , providing
monos . Lemma 3 shows that the only arrow

that makes square 6© a pullback also makes the composed square
2©+ 6© a pushout. It concludes by building H in 8© as the pushout object
of D21 � D � D12 (where the arrow D � D12 is built symmetrically to
D � D21, making square 7© a pullback) and showing, by compositionality of
pushouts, that H must be isomorphic to H12. The result follows by symmetry.
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Lemma 1. Consider the left diagram of (9). There is a unique (monic) arrow
m1d : L1 → D2 making the top and the back-left faces commuting, and the top
face a pullback. Thus L1 is reflected identically by g2.

Proof. In the left cube, the front-left face is a pullback by construction of step
G ⇒ρ2,m2 H2, the bottom face is a pullback by hypothesis (see (7)), and the
back-right face is trivially a pullback. In addition the front-right face commutes:
in fact on one hand we have T (πL

2 ) ◦ πL
1 = ϕ(πL

1 , πL
2 ) by property (4) of partial

maps classifiers, on the other hand the right diagram of (9) proves that m2◦m1 =
ϕ(πL

1 , πL
2 ). The statement follows by the decomposition property of pullbacks.
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Construction 1. Arrow m1d : L1 → D2 of Lemma 1 composed with h2 : D2 →
H2 (see (8)) provides a match m12 = h2 ◦ m1d : L1 → H2: it is mono because
both m1d and h2 are, the latter because pushouts preserve monos in adhesive
categories. The left diagram of (10) represents the resulting AGREE rewrite
step H2 ⇒ρ1,m12 H12. The right diagram of (10) represents the symmetric rewrite
step H1 ⇒ρ2,m21 H21, where m21 = h1 ◦ m2d.

The proofs of the next two lemmas are omitted for space constraints, and
will appear in the full version of the paper.

Lemma 2. Let D2 Dd2�� d1 ��D1 be the pullback of D2 g2 ��G D1g1�� (see
square 5© of (8)), and consider the diagrams (11).

1. In the left cube, there is a unique (monic) arrow n1d : K1 → D making the
top and the back-left faces commuting, and the top face a pullback. Thus K1

is reflected identically by d1.
2. In the right cube, there is a unique (monic) arrow p1d : R1 → D21 making

the top and the back-left faces commuting, and the top face a pullback. Thus
R1 is reflected identically by g21.

Lemma 3. In the left diagram of (12) there is a unique arrow d21 : D → D21

making the top and the back-left faces commuting and the top face a pullback.
Symmetrically, we get an arrow d12 : D → D12. Furthermore, the top face of
the central diagram is a pushout. Now define D21

��H D12
�� as the pushout

of D21 Dd21�� d12 ��D12 (see square 8© of (8)). Then from the right diagram we
infer that H ∼= H12.
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6 Conclusion and Related Works

In this paper we proposed sufficient conditions to ensure that two rewrite steps
in the AGREE approach to GT commute. Unlike most of previous works on
parallel independence [1,4,5,11–13], we consider an approach in which cloning
is possible. Actually, general rules are considered also in the restricted version
of the SqPO approach proposed in [7]: the exact relationship with those results
is under investigation. The possibility of cloning makes the analysis of parallel
independence more complex. Moreover, the fact that the embedding of cloned
parts can be finely tuned in AGREE adds another layer of complexity: besides of
conflicts that may arise from overlapping matches (as for classical approaches),
new conflicts may arise from cloning or deletion of edges incident to the matched
parts of the transformed graph.

The conditions for commutativity proposed in this paper are sufficient, but
not necessary. It is easy to build a counterexample with two rules, that act as the
identity transformation on a given graph G (the left- and right-hand sides are
all identities on G), but differ in the embedding component in such a way that
the second condition of Definiton 6 is not satisfied. For example, the first rule
has the partial map classifier T (G) as embedding, while the second has a larger
embedding (e.g. duplicating some contextual arc). Since the first rule acts as the
identity (both G and the context are preserved), the two rules clearly commute
when applied to G, even if they are not “parallel independent” according to
Definition 6. We are currently working on the identification of refined conditions
which could enjoy completeness. A first analysis suggests that such conditions,
if they exist, should also depend on the right-hand sides of the rules, differently
from those identified in Sect. 5.

Following the classical outline of the theory of parallelism for the algebraic
approaches to GT, other interesting topics worthy of study are the analysis
of conditions for sequential independence for AGREE rewrite steps, and the
definition of parallel rules allowing to model the simultaneous application of two
rules to a state. Both topics look not obvious: the first one because AGREE
rewrite steps are intrinsically non-symmetric (unlike, e.g., DPO or Reversible
SqPO rewrite steps); the second because of the need of merging in some way the
embedding components of the two rules.
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