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Abstract. Triple Graph Grammars (TGGs) are best known as a bidirec-
tional model transformation language, which might give the misleading
impression that they are wholly unsuitable for unidirectional application
scenarios. We believe that it is more useful to regard TGGs as just graph
grammars with “batteries included”, meaning that TGG-based tools pro-
vide simple, default execution strategies, together with algorithms for
incremental change propagation. Especially in cases where the provided
execution strategies suffice, a TGG-based infrastructure may be advan-
tageous, even for unidirectional transformations.

In this paper, we demonstrate these advantages by presenting a TGG-
based, read-only visualisation framework, which is an integral part of
the metamodelling and model transformation tool eMoflon. We argue
the advantages of using TGGs for this visualisation application scenario,
and provide a quantitative analysis of the runtime complexity and scal-
ability of the realised incremental, unidirectional transformation.

Keywords: Graph transformation · Triple graph grammars ·
Incremental model transformation

1 Introduction

Triple Graph Grammars (TGGs) [23] provide a declarative, rule-based means of
specifying how two modelling languages are related. This is done in a direction-
agnostic manner using rules that describe how related models can be simulta-
neously generated. TGGs are best known for their application to bidirectional
model transformation, as both forward and backward transformations can be
derived automatically from a TGG. When choosing the right model transforma-
tion for a certain task, one might thus assume that TGGs, being “bidirectional”,
are somehow inherently unsuitable for unidirectional tasks. This is perhaps due
to the assumption that there must be some “overhead” involved in specifying
both directions at once. While this might be conceptually true, we believe it
is more helpful to regard TGGs as just graph grammars, but with “batteries
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included”. This means that TGG-based tools provide a set of default, out-of-
the-box execution strategies including a forward transformation, a backward
transformation, simultaneous model generation [22], incremental forward and
backward change propagation [2], and consistency checking [15]. We suggest to
base the decision to use TGGs less on the question of bidirectionality and more
on the following:

Is the transformation task simple enough to be handled by one of the
default execution strategies? The forward and backward transformations
that can be derived automatically from a TGG are rather simple, performing
only a single pass over the input model (each element is visited and marked
exactly once). A transformation that is inherently complex, requiring rules
with advanced application conditions that create or delete auxiliary elements
to trigger the application of other rules, most probably cannot be expressed
elegantly (or at all) as a TGG. The same argument applies to deeply nested,
recursive control flow structures. Simple, straightforward transformations are
a much better fit for TGGs.

Is incremental change propagation required? The true potential of TGGs
lies in the formally founded infrastructure for incremental change propaga-
tion. Without any additional specification effort, the automatically derived
forward and backward transformations can be executed in an incremental
mode, updating existing related models appropriately. Incrementality is cru-
cial when the output model cannot be recreated from scratch without losing
information [7]. In many situations (large models and small changes), incre-
mentality can also speed-up the transformation process [7]. Even for “sim-
ple, straightforward” unidirectional transformations, providing support for
incremental updates is non-trivial, especially concerning a choice of sensible
semantics.

Contribution. In this paper, we present a case study for using TGGs (i. e., graph
transformations) to visualise various models used in the specification and exe-
cution of graph transformations. The generated visualisations are rendered in a
read-only view, meaning that the transformation is currently unidirectional. We
argue that using a TGG-based tool for this task is nonetheless advantageous,
as the provided infrastructure can be suitably leveraged to enable declarative,
compact specifications that can be executed incrementally.

To address justified concerns of scalability, we perform a detailed quantita-
tive analysis of the transformation, which has been implemented as a general
visualisation framework and is currently an integral part of the metamodelling
and model transformation tool eMoflon [16]. To enable a realistic evaluation, we
make use of a substantial set of real-world models collected over five years of
using eMoflon in diverse applications including industrial case studies, bootstrap-
ping eMoflon as much as possible (this includes the TGGs for the TGG-based
visualisation framework itself!), and a substantial collection of unit and system
tests (see [6] for a repository containing some of these examples).
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Structure. Section 2 presents our TGG-based visualisation framework and is com-
plemented by a quantitative evaluation of the realised incremental transformation
provided in Sect. 3. Section 4 gives a brief overview of related case studies. Section 5
concludes the paper with a summary and a brief outlook on future work.

2 A TGG-Based Visualisation Framework

A schematic overview of the TGG-based visualisation framework realised in
eMoflon is depicted in Fig. 1. Further examples can be found in the appendix.

The top part of the diagram (❶ and ❷) represents what is seen by the
end-user : ❶ is a tree-view representation of a source model. ❷ is a generated
visualisation of the currently selected model element, which is a TGG rule (red
box). The visualisation of the TGG rule is in concrete syntax, as defined by an
underlying transformation (specified as a TGG). Changes made to the source
model inside the tree-view editor are propagated incrementally to the visualisa-
tion as soon as the editor content is saved.

The bottom part of the diagram (between ❸ and ❹) depicts the chain
of transformations used to generate the visualisation from the source model.
In the most general case, the end-user makes a change ΔS (referred to in the
following as delta) to the source model GS and triggers an update by saving
the editor (represented by ❸). In this context, a “batch” transformation is just
a special case with an empty source model GS . Note that the source model is
a typed graph GS with type graph TGS . As TGG-based synchronisers operate
on triple graphs, a correspondence graph GC and visualisation model Gvis are
maintained in the background by the tool as a consistent typed triple graph
GS ← GC → Gvis with type triple graph TGS ← TGC → TGvis. In the context
of the visualisation framework, the type graph TGvis is fixed, representing the
visualisation capabilities that the framework currently supports.

For every source type graph TGS that is to be visualised, a transformation
designer must provide a TGG that specifies how triples GS ← GC → Gvis are to
be constructed. This TGG entails decisions on how source model elements are to
be mapped to visualisation elements such as rectangles, arrows, labels, colours,
and other available shapes. A forward synchroniser fwd is derived automatically
from this TGG and is used to forward propagate the applied source model delta
ΔS to yield correspondence and visualisation deltas ΔC and Δvis, respectively.
As depicted in Fig. 1, applying these computed deltas results in a new consistent
triple graph G′

S ← G′
C → G′

vis, with consistently updated correspondence graph
G′

C and visualisation G′
vis. Note that this resulting triple graph is also well-typed

even though this is not shown explicitly in Fig. 1.
In a final step, G′

vis is used to regenerate the visualisation presented to the
end-user via a model-to-text transformation m2t to produce a file in the .dot
format, which is then converted to an image (e. g., .jpeg) via the Graphviz1

command line tool dot. This final image ❹ is what the end-user can observe in

1 http://www.graphviz.org.

http://www.graphviz.org
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Fig. 1. Overview of TGG-based visualisation framework (Color figure online)

a corresponding view ❷. In contrast to fwd , note that m2t and dot are both
currently non-incremental (indicated in Fig. 1 by omitting the deltas).

3 Evaluation

In this section, we present and discuss a quantitative analysis of the forward
transformation (fwd in Fig. 1) used in our visualisation framework. In the fol-
lowing, we briefly describe the five types of source models that can be visualised,
currently. For each transformation, we provide the following statistics to give a
rough impression of the complexity of the transformation: (1) the total number
of TGG rules ntot, (2) the number of abstract TGG rules nabs,2 and (3) the
average number of (object and link) variables per TGG rule nvar.

TGG [ntot=14, nabs=4, nvar=22.1]: A TGG rule, such as depicted in Fig. 1, is
a monotonic triple rules (triples of story patterns without deletion).

SDM [ntot=11, nabs=3, nvar=15]: Story diagrams, a dialect of programmed
graph transformations that is similar to simplified UML activity diagrams,
are used to specify control flow structures in eMoflon.

2 An abstract TGG rule serves to, e. g., extract commonalities of multiple TGG rules,
but cannot itself be applied. TGG rules may refine other (abstract or non-abstract)
rules to reuse common elements. Refinement is roughly comparable to the purpose
of inheritance in object-oriented programming languages. See [3] for more details.
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SP [ntot=9, nabs=1, nvar=16.5]: A story pattern represents a regular graph
transformation rule that is embedded in an activity node of a story dia-
gram. A story pattern is a graph with annotated nodes and edges, formally
representing a graph transformation rule r : L → R in the SPO approach.

TM [ntot=3, nabs=0, nvar=16]: A triple match represents the match3 of a TGG
rule in an input model and is similar to a story pattern.

PG [ntot=3, nabs=0, nvar=11.7]: A precedence graph is a—predominantly a-
cyclic—intermediate data structure representing all possible triple matches
of all TGG rules in an input model, together with all resulting dependencies
between these triple matches. Precedence graphs are used to control the
TGG-based synchronisation process in eMoflon [2].

Our first two research questions to be investigated with this analysis focus on
the performance of fwd when executed in batch mode, i. e., the first time a user
opens a source model in an editor and chooses to visualise it.

RQ 1a: Does fwd scale? More precisely does the runtime of fwd grow non-
exponentially with source model size when executed in batch mode?

RQ 1b: Is the batch runtime of fwd acceptable for realistic source models?

The next three research questions concern the incremental execution of fwd :

RQ 2a: How large is the speed-up in runtime obtained via incremental change
propagation? More precisely, how large is the ratio of runtime of fwd in
incremental mode compared to batch mode?

RQ 2b: Is this speed-up in runtime perceivable for realistic source models?
Would an end-user notice the difference in runtime for re-translating the
whole source model as compared to incrementally propagating changes?

RQ 2c: Is it better (wrt. attained speed-up) to synchronise frequently, i. e., after
every small change, or to accumulate changes before synchronising?

Finally, the last research question investigates the optimality of fwd :

RQ 3: To what extent is incremental change propagation coupled to model size?
Optimal would be no coupling at all, i. e., constant time for propagating the
same change independent of model size.

Evaluation Setup. The dataset of the evaluation comprises two subsets:

D1: To provide for “realistic” models, required for RQs 1b and 2b, we collected
instances of all five metamodels from the current eMoflon developer workspace
and all test suite workspaces. These models have been used and collected
for over five years from various industrial case studies, the development of
eMoflon itself, and numerous examples and tests. To obtain realistic (or even
pessimistic) results, all runtime data for D1 was acquired on a typical busi-
ness notebook (i7-4600U with 2× 3.3 GHz, 12 GB RAM) running Windows 8.1
(64bit).

3 A match of a rule r : L → R in a graph G is an occurrence m : L → G of the
left-hand side L of the rule in G.
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Table 1. Characteristics of the evaluation datasets D1 and D2

Property TGG(D1) TGG(D2) SDM(D1) SP(D1) TM(D1) PG(D1)

Model count 3,660 12 4,395 11,191 11,310 293

Mean model size 173 206,945 342 45 69 2,991

Median model size 124 182,436 269 28 56 272

D2: To evaluate scalability for large models, required for RQs 1a, 2a, and 3,
we derived a TGG-based model generator [22] from the TGG for visualis-
ing TGG rules and used it to synthesise large TGG rules. We chose TGG
rules for this complementary synthetic data generation as the corresponding
visualisation is currently the most often used one in eMoflon and is thus the
richest (uses most visual elements). To be able to run the evaluation in a rea-
sonable amount of runtime, the data for D2 were acquired on a workstation
(i7-2600, 4× 3.4 GHz, 8 GB RAM) with Windows 7 Professional (64bit).

On both machines, we used Eclipse Mars 4.5 (-Xmx4G), eMoflon 2.12.04 and
version 1.0.0 of our evaluation application5. Table 1 summarises the core charac-
teristics of the datasets. The size of a model is the number of its contained nodes
(EObjects) and edges (EReferences). Both the mean and median of all model
sizes are provided to indicate the presence of outliers, e. g., in PG (D1).

3.1 RQ1: Scalability of Batch Transformation

Figure 2 depicts the runtime for batch transformation in milliseconds plotted
over model size for all models. The caption of each subplot shows the dataset
and number n of models. Each data point is the median execution time of 5 runs.
When comparing the plots, it is important to note that the x- and y-axes of all
plots are of vastly different scale. The characteristic runtime values are addition-
ally summarised in Table 2.

Table 2. Characteristic batch runtime values

Property TGG(D1) TGG(D2) SDM(D1) SP(D1) TM(D1) PG(D1)

Maximum [ms] 56.7 1, 558, 500.9 55.4 122.9 38.6 9, 019.6

Mean [ms] 6.0 417, 717.3 6.4 3.7 7.0 112.9

Median [ms] 5.0 145, 397.2 6.3 2.1 6.3 3.9

4 http://www.emoflon.org.
5 https://github.com/eMoflon/paper-icgt2016/releases/tag/icgt2016-v1.0.0.

http://www.emoflon.org
https://github.com/eMoflon/paper-icgt2016/releases/tag/icgt2016-v1.0.0


The Incremental Advantage 195

0 200 400 600 800 1000 1200

0
10

20
30

40
50

Model size [EMF node count + edge count]

M
ea

n 
ba

tc
h 

tim
e 

[m
s]

(a) TGG (D1, n=3,660)
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(b) TGG (D2, n=12)
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(c) SDM (D1, n=4,395)
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(d) SP (D1, n=11,191)
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(e) TM (D1, n=11,310)
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(f) PG (D1, n=293)

Fig. 2. Runtime of batch transformation over model size (n: model count)
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Discussion. While the size of the largest story pattern (SP) in D1 is below
700, the size of the largest precedence graph (PG) is above 100,000. This wide
range of real-world model sizes shows that the visualisation of large models is
not an unrealistic requirement, justifying our complementary dataset (D2) of
synthetically generated models (up to 500,000 in size).

The plots in Fig. 2a, c–e indicate that the runtime of the batch transformation
is generally linear for model sizes of up to about 1,000 elements. This is a positive
result, as our dataset D1 shows that most realistic models for visualisation are
in this range.

For larger models, however, Fig. 2b and f indicate non-linear behaviour. This
is to be expected, as the complexity class for TGG-based transformation is poly-
nomial [14]. The absolute values are still arguably reasonable for a visualisation
task: about 8 (25) min for a model of size 300,000 (500,000). For small models,
Table 2 shows that the mean and median runtimes for models in D1 are less
than 10 ms. The large gap between mean and median execution time for PG can
easily be explained by the three extreme outliers in D1.

In summary, our results suggest the following answers to RQ 1: (1a) fwd
appears to scale satisfactorily even up to model sizes of over 500,000, and
(1b) batch runtime for realistic source models in D1 is certainly acceptable for
visualisation purposes (being less than 10 ms).

3.2 RQ2: Synchronisation Behaviour

To analyse synchronisation behaviour, we focused on TGG models. For each
data point, we first performed a batch forward transformation and then applied
the following changes to the source model (a TGG rule), to mimic typical modi-
fications applied by an end-user: (C1 ) addition of three object variables, (C2)
renaming of one object variable, and (C3) removal of two random object vari-
ables. To investigate RQ 2c, we consider the following two situations: synchro-
nisation after every change (II), and synchronisation only after performing all
changes (III). In both cases, we compare the required time with (I), the duration
of a batch forward transformation after all changes.

Table 3 summarises the results of this experiment for both datasets, D1 and
D2. For each model, the runtimes for each situation (I)–(III) is the median of five
runs. The last two rows show the runtime of the synchronisation as a percentage
of the batch transformation (the lower the value, the greater the speed-up). The
given maximum, mean, and median values have been calculated for the metric
of each row, i. e., the maximum value for (II)/(I) is not equal to the ratio of the
maximum (II) and the maximum (I) values.

Discussion. The benefit of synchronising changes incrementally instead of re-
transforming the entire model is particularly evident for D2. The synchronisation
only takes between 0.2 % and 1.5 % of the batch transformation time in the mean
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Table 3. Comparison of batch transformation b in I and synchronisation s in II, III.

D1 D2

Max Mean Median Min Max Mean Median Min

I C1+C2+C3+b [ms] 101.0 11.4 7.8 0.4 1, 827, 980 504, 472 186, 756 233.6

II C1+s+C2+s+C3+s [ms] 17.8 1.8 1.6 0.3 2, 387.2 990.8 802.4 29.9

III C1+C2+C3+s [ms] 24.6 2.2 1.1 0.1 822.7 330.8 277.4 2.1

II/I Rem. runtime [%] 166.7 32.5 22.2 2.1 12.8 1.5 0.5 0.1

III/I Rem. runtime [%] 90.9 27.5 20.5 0.8 0.9 0.2 0.2 0.0

and median cases. In the worst case, when the ratio of synchronisation time and
batch re-transformation time is maximal, synchronising still takes only 12.8 %
to 0.9 % of batch runtime. For D1, i. e., real-world models, the speed-up is less
impressive but still remarkable: In the mean and median cases between about
70 % and 80 % of the runtime is saved.

Our results thus suggest the following answers to our research questions:
the speed-up enabled by incrementality is substantial and, as can be expected,
increases with model size (RQ 2a), even though the speed-up is still substantial
for D1, for most realistic models, an end-user probably will not notice a differ-
ence of only a few milliseconds in our visualisation scenario (RQ 2b), finally,
incremental propagation appears to perform somewhat better if changes are col-
lected (RQ 2c). Although this is not so clear for small- and medium-sized mod-
els in D1, the difference is evident for the larger models in D2. This is because
(1) every synchronisation run has a certain overhead that increases with model
size due to technical reasons, and (2) certain optimisations can be performed by
the algorithm, propagating multiple changes at the same time.

3.3 RQ3: Coupling of Incremental Change Propagation to
Model Size

The plots in Fig. 3 show the runtime of synchronisation over model size for D1
(Fig. 3a, c and e) and D2 (Fig. 3b, d and f). In each row of Fig. 3, the left figure
shows the runtime behaviour for (realistic) model sizes of up to about 1,200,
while the right figure shows asymptotic runtime behaviour for large synthetic
models. When comparing plots, note that the x- and y-axes of left and right
plots have vastly different scales.

Discussion. For an optimal synchroniser, incremental propagation time would
be constant, i. e., independent of model size. Figure 3 shows that this is not
really the case in practise (for eMoflon). Due to technical reasons and challenges
involved with using EMF collections for large models, there is a certain coupling
with model size. The results are, nonetheless, reasonably positive: for real-world
models (left plots) synchronisation time is almost constant with only a slight
linear increase (less than 0.5 ms). For large models, the linear increase is evident
but with a very small gradient: for all changes, it only takes about half a second
longer to visualise a model with 300,000 more elements.
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(a) C1 (D1, n=3,660)
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(b) C1 (D2, n=12)
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(c) C2 (D1, n=3,660)
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(d) C2 (D2, n=12)
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(e) C3 (D1, n=3,660)
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Fig. 3. Synchronisation time over model size (TGG, n: model count)
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Our answer to RQ 3 is that a certain coupling of incremental propagation
to model size is indeed still present in practise, but it is linear and reasonably
small for our application scenario.

3.4 Threats to Validity

Our primary concern is external validity, i. e., can our results be generalised
beyond our specific case study. This is a justified concern and has two orthogo-
nal dimensions: (1) Do our results hold for other TGG-based tools or are they
specific for eMoflon? (2) Do our results hold for other possibly more “complex”
application scenarios that require, e. g., hundreds of TGG rules. Concerning (1),
TGG comparison papers [12,18] have shown that TGG-based tools are quite
diverse, especially concerning their underlying synchronisation algorithms. It is
thus difficult to argue that our results hold in any way for “TGGs in general”.
More evidence should be provided with a new comparison paper, comparing
current TGG-based tools using, e. g., our data from this case study. To miti-
gate (2), we have mined all our workspaces and collected a substantial number
of real-world metamodels for the measurements (our dataset D1). This ensures
that at least the input data for the transformation is somewhat realistic and not
completely synthesised. The task of visualisation is also quite varied, ranging
from story diagrams that are deeply nested tree-like structures, to flat, highly
connected, more graph-like patterns (TGG rules, story patterns, triple matches).
The primary limitation of our case study is more the “complexity” of the TGGs
used for the visualisation, the largest TGG having only 14 rules. Although we
have 5 TGGs, so in total 40 TGG rules, this is still not comparable to other
application scenarios requiring hundreds of TGG rules. We argue, however, that
equating complexity with number of rules is näıve: we have encountered cases
that are essentially trivial 1–1 bijections, but still require hundreds of rules as
the source and target models simply have many types.

Finally, using two different machines to perform the runtime measurements
on D1 and D2, respectively, may be considered a threat to construct validity. We
emphasise here, however, that the objectives of performing the experiments on
the two datasets were rather different: While the measurements on D1 focused
on applicability in terms of acceptable runtime for realistic models, the measure-
ments on D2 served to observe the behaviour of the TGG-based visualisation for
large, synthesised models.

4 Related Work

This paper builds on our previous work in [16,17] and shares the common goal
of bootstrapping eMoflon. In [16], Leblebici et al. present the various model
transformations used in eMoflon and describe how we have progressed from
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an initial implementation of our import/export in C#, to a bootstrapped ver-
sion with story diagrams (a unidirectional programmed graph transformation
dialect), to a final bootstrapped TGG-based version that is still being optimised
and extended up until today. A runtime comparison of story diagrams and TGGs
is provided, showing on the positive side that TGGs are expressive enough to
derive both forward (export) and backward (import) transformations from the
same specification. Noteworthy is also that both directions perform comparably
well, exhibiting almost linear behaviour for up to 10,000 elements, and then poly-
nomial until running out of memory for about 300,000 elements. This indicates
that TGGs are inherently symmetric and do not favour any direction. On the
negative side, however, the measurements show that TGGs are still 10–15 times
slower than story diagrams with lots of room for improvement in this regard.
In comparison to this paper, the TGG-based transformations in [16] were not
executed incrementally and the provided measurements thus give no indication
of how feasible or useful this might be. The measurements are also for a single
TGG and a single pair of source and target metamodels, while we provide evi-
dence for various research questions using 5 TGGs and a substantial number of
diverse source metamodels collected over five years in our test and development
workspaces (the visualisation, i. e., target metamodel is fixed in all cases).

In [17], Leblebici et al. compare TGGs implemented in eMoflon with Medini
QVT6, showing that TGGs outperform Medini QVT up to a factor of 20 for
model sizes of about 1,000–200,000 elements. In comparison to this paper, the
focus of [17] is on showcasing multi-amalgamation, a new language feature of
TGGs. Only a single “toy” TGG and a fixed pair of source and target meta-
models are used for the comparison. Finally, just as with [16], the transformation
is not executed in an incremental mode.

There has also been comparable work in the TGG community such as [12,18],
which provide a comparison of various TGG tools, including runtime measure-
ments. In contrast to this paper, the focus of [12,18] is on comparing the different
tools and not on providing evidence for the performance or advantages of TGGs
in general. To ensure that all tools could be used for the exact same TGG, a
very simple toy example is used, and only synthetic data is generated for the
measurements. The results indicate, however, that there are considerable differ-
ences between TGG tools regarding runtime efficiency and expressiveness. This
means that our results are primarily valid for eMoflon and cannot be directly
generalised to all other TGG tools (see the discussion in Sect. 3.4).

A further source for TGG runtime measurements and comparison with other
tools is the annual transformation tool contest (TTC). For example, [11,13,
20] present TGG-based solutions to various contests. Although these results
provide evidence for the expressiveness and applicability of TGGs, it is difficult
to compare solutions in many cases: for example, [13] and [11] provide solutions
using different TGG tools, but the degree of freedom of the contest (the choice of
the source metamodel) makes it impossible to compare absolute runtime values.
In many cases, it is also impossible to discern the runtime complexity of the

6 http://projects.ikv.de/qvt.

http://projects.ikv.de/qvt
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solutions, as the provided test cases are more often used to ensure correctness.
Nonetheless, both [20] and [11], for example, provide encouraging evidence that
the involved TGG transformation is not necessarily the bottleneck in practical
model transformation chains. Our experience corroborates this as dot dominates
our transformation chain for large diagrams, especially as it is not incremental.

Finally, there is some evidence indicating that TGGs can be used successfully
for industrial scale applications. In [10], Hermann et al. report on using TGGs for
the translation of satellite procedures. Their results show that a pragmatic mix
of programmed graph transformation and TGGs can be made to be “more effi-
cient than what is needed for practical use” by applying advanced optimisation
techniques. Such powerful domain- and even task-specific optimisations are fea-
sible mainly due to the formal and declarative nature of graph transformations.
The application scenario of [10] provides an interesting contrast to this paper
as it is also unidirectional but not incremental. The main motivation for using
TGGs in [10] is the formal guarantee of correctness, while in the case of our visu-
alisation, correctness is important but not crucial; incrementality, conciseness,
and readability are arguably more useful for our application scenario.

An inherently incremental industrial application scenario is presented in [4].
Blouin et al. demonstrate how a synchronisation layer between textual and
graphical editors can be established using TGGs. As explained in [4], incre-
mentality, expressiveness, and scalability are crucial for the application scenario.
Unfortunately, no evaluation and measurement results are provided by Blouin
et al., making it hard to conclude more than that the TGG-based solution was
“fast enough” for practical usage. Other (industrial) case studies include work
from Giese et al., e. g., in [8] for a TGG-based synchronisation between SysML
and AUTOSAR models, and from Greenyer et al., e. g., in [9] for a TGG-based
transformation of sequence diagram specifications to timed game automata.

5 Conclusion and Future Work

In this paper, we presented a TGG-based visualisation framework, which is cur-
rently being used as an integral part of the metamodelling and model trans-
formation tool eMoflon. This is an example of a real-world, unidirectional, and
incremental application scenario for TGGs. With a detailed quantitative analy-
sis, we have shown that the realised transformation scales with model size, and
that incrementality provides a substantial speed-up. The case study highlights
the major advantage of TGGs: due to their declarative nature, multiple default
execution strategies for the same TGG can be provided by a TGG tool. Specif-
ically, we investigated the derived forward incremental mode, and made use of
the simultaneous mode for generating large models for our scalability analysis.

A current limitation of the visualisation framework is that some steps in the
tool chain are not incremental (e. g., dot used to render diagrams), and become
the bottleneck of the framework. Future work includes, therefore, use cases
that further realise the potential of TGGs such as: (1) allowing manual adjust-
ments of the layout in the visualisation (i. e., coping with information loss), and
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(2) implementing a completely incremental tool chain such as a TGG-based
code generator for EMF. Case studies considering the correspondence between
the concrete and abstract syntax (or semantics) of a specification, as discussed,
e. g., in [1,5], would also be interesting for further investigating the potential of
graph transformation in general and TGGs in particular. Finally, a comparison
of our TGG-based model generator to other model generators such as [19,21]
would be illuminating: it is, for instance, currently impossible to enforce certain
statistical properties using our model generator, but the models are at least guar-
anteed to be translatable with the underlying TGG. This would not be the case
with general purpose (random) model generators and would require a potentially
large set of additional constraints to adequately control the generation.

Acknowledgements. This work has been funded by the German Research Founda-
tion (DFG) as part of projects A01 within the Collaborative Research Centre (CRC)
1053 – MAKI.

Appendix: Examples from the eMoflon Handbook

We show concrete examples of visualised source models taken from the eMoflon
handbook,7 whose illustrative example is Leitner’s learning box, a system, e. g.,
for language learning. This system works by creating cards, sorted into sequential
partitions, with a front face showing the known word (e. g., “hello” in English)
and a back face showing the to-be-learnt word (e. g., “Hallo” in German). While
exercising, the learner takes a card from a partition, tries to guess the back-face
word based on the front-face word, and, if successful, may move the card to the
next partition. A so-called fast card contains easy-to-learn words and may be
moved to the last partition upon success, immediately.

The story diagram in Fig. 4a shows the logic of checking a card: If the answer
is correct (story pattern checkCard) and if the card is a so-called fast card (story
pattern isFastCard), then this card is promoted to the last partition, as shown
in the story pattern depicted in Fig. 4b.

Another task in the eMoflon handbook is to synchronise (using TGGs) a
learning box with a dictionary, whose entries can be thought of as simple key-
value pairs. Figure 4c shows the precedence graph resulting from translating the
sample box in the handbook into a dictionary. The root node BoxToDictionary-
Rule 0 indicates that the box is first of all translated into an empty dictionary,
before translating all cards to dictionary entries. Finally, Fig. 4d depicts the
triple match that corresponds to CardToEntryRule 5 in Fig. 4c. This match
shows that the card containing “Question One” is mapped to the entry with
content “One : Eins”.

7 http://www.emoflon.org/.

http://www.emoflon.org/
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promoteCard

FAILURE SUCCESS

promoteFastCard

FAILURE SUCCESS
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FAILURE SUCCESS

checkCard
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isFastCard
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(a) SDM checkCard

this : Partition

box : Box
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fastcard : FastCard

card

next : Partition
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(b) SP checkCard::promoteFastCard

CardToEntryRule 3

CardToEntryRule 5

CardToEntryRule 2 AllOtherCardsRule 1
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BoxToDictionaryRule 0

child
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child child

CardToEntryRule 4
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(c) PG of box-to-dictionary synchronisation

partition0 ==> 0 : Partition

card ==> Question One  : Card

card

box ==> English Numbers : Box

box cardContainer

cardToEntry ==> CardToEntry

source

entry ==> One : Eins : Entry

target

containedPartition

boxToDictionary ==> BoxToDictionary

source

dictionary ==> English Numbers : Dictionary

target

entry

(d) TM BoxToDictionaryRule 0

Fig. 4. Visualisations of sample models (a) SDM checkCard (b) SP checkCard::

promoteFastCard (c) PG of box-to-dictionary synchronisation, (d) TM

BoxToDictionaryRule 0
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1. Pérez Andrés, F., de Lara, J., Guerra, E.: Domain specific languages with graphical
and textual views. In: Schürr, A., Nagl, M., Zündorf, A. (eds.) AGTIVE 2007.
LNCS, vol. 5088, pp. 82–97. Springer, Heidelberg (2008)

2. Anjorin, A.: Synchronization of Models on Different Abstraction Levels using Triple
Graph Grammars Phd thesis, Technische Universität Darmstadt (2014)

3. Anjorin, A., Saller, K., Lochau, M., Schürr, A.: Modularizing triple graph gram-
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(eds.) ICMT 2014. LNCS, vol. 8568, pp. 57–73. Springer, Heidelberg (2014)

8. Giese, H., Hildebrandt, S., Neumann, S.: Model synchronization at work: keeping
SysML and AUTOSAR models consistent. In: Engels, G., Lewerentz, C., Schäfer,
W., Schürr, A., Westfechtel, B. (eds.) Nagl Festschrift. LNCS, vol. 5765, pp. 555–
579. Springer, Heidelberg (2010)

9. Greenyer, J., Rieke, J.: Applying advanced TGG concepts for a complex transfor-
mation of sequence diagram specifications to timed game automata. In: Schürr, A.,
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16. Leblebici, E., Anjorin, A., Schürr, A.: Developing eMoflon with eMoflon. In: Di
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