
On the Operationalization of Graph Queries
with Generalized Discrimination Networks

Thomas Beyhl, Dominique Blouin, Holger Giese(B), and Leen Lambers(B)

Hasso-Plattner Institute at the University of Potsdam,
Prof.-Dr.-Helmert-Str. 2-3, 14482 Potsdam, Germany

{thomas.beyhl,dominique.blouin,
holger.giese,leen.lambers}@hpi.uni-potsdam.de

Abstract. Graph queries have lately gained increased interest due to
application areas such as social networks, biological networks, or model
queries. For the relational database case the relational algebra and gen-
eralized discrimination networks have been studied to find appropri-
ate decompositions into subqueries and ordering of these subqueries for
query evaluation or incremental updates of queries. For graph database
queries however there is no formal underpinning yet that allows us to
find such suitable operationalizations. Consequently, we suggest a simple
operational concept for the decomposition of arbitrary complex queries
into simpler subqueries and the ordering of these subqueries in form of
generalized discrimination networks for graph queries inspired by the
relational case. The approach employs graph transformation rules for
the nodes of the network and thus we can employ the underlying theory.
We further show that the proposed generalized discrimination networks
have the same expressive power as nested graph conditions.

1 Introduction

The model of typed graphs and related graph queries to explore existing graphs
and their properties has lately gained increased importance due to application
areas of increasing relevance such as social networks, biological networks, and
model queries [14] and technologies like graph databases [2] or model-driven
development [4] where graphs rather than relations are the main characteristics
of the employed models and queries.

While the definition of typed graphs by means of schemas, metamodels, or
grammars is a formally well studied topic, there is yet no clear formal under-
pinning for graph queries concerning their specification as well as their opera-
tionalization (cf. [2,16]). For the operationalization of the query evaluation and
incremental query updates of relational queries the relational calculus [1] and
generalized discrimination networks (GDN) have been suggested (cf. [13]) as a
formal framework to study which decomposition into subqueries and ordering of

This work was partially developed in the course of the project Correct Model Trans-
formations II (GI 765/1-2), which is funded by the Deutsche Forschungsgemeinschaft.

c© Springer International Publishing Switzerland 2016
R. Echahed and M. Minas (Eds.): ICGT 2016, LNCS 9761, pp. 170–186, 2016.
DOI: 10.1007/978-3-319-40530-8 11

On the Operationalization of Graph Queries 171

Fig. 1. GDNs in form of a SGDN (a) and SGDTs (b)(c) for a social network query

these subqueries is most appropriate. As depicted in Fig. 1(a), in such a network
each node (numbered block) is responsible for evaluating a subquery and for
this purpose it may compose subquery evaluations of nodes it depends on. The
overall result is then the query evaluation of the terminal node. However, such
a formal framework does not exist for graph queries so far.

Consequently, inspired by the relational case we suggest motivated by our
practical work on view maintenance for graph databases [6] a simple operational
concept for the decomposition of arbitrary complex graph queries into a suitable
ordering of simpler subqueries in form of GDNs. Rather than considering one
particular kind of GDN with particular computation nodes, we suggest employ-
ing graph transformation (GT) rules for these computation nodes such that we
are also able to employ the well understood GT theory [9] as a basis. The basic
idea to define our notion of GDN related to GT systems is to employ extra
marking nodes and edges to encode the results of subqueries and specific graph
transformation rules to describe the propagation behavior of the network nodes
via creating and reading markings.

We study in this paper what are the core ingredients required to app-
roach graph query evaluation based on an operational specification using the
above-described GDNs while having the same expressiveness as declarative graph
queries based on nested graph conditions (NGC) [12]. The latter have the expres-
sive power of first order logic on graphs and constitute as such a natural formal
foundation for pattern-based graph queries.

We assume in the following that a graph query is characterized by a request
graph L delivering its answers in form of a set of matches for L into the queried
graph G fulfilling some additional properties as described in the graph query.1,2

Based on the answer set semantics we were able to establish equivalence of NGCs
with GDNs including different specific subsets such as so-called simple GDNs
(SGDNs), simple tree-like GDNs (SGDT), and minimal SGDTs (MSGDT). In

1 It is to be noted that a simple record as provided by an SQL-statement is also a
special form of graph where no links are included.

2 While in practice the requested number of answers is often limited to a fixed upper
bound of answers, for our more theoretical considerations in this paper, we can
assume w.l.o.g. that all matches of L for G that fulfill the additional properties that
must hold are building the correct set of answers.

172 T. Beyhl et al.

particular as depicted in Fig. 1(d), as a main result we established the equivalence
between NGCs and SGDNs and in addition showed that all GDN variants are
equally expressive.

The paper is structured as follows: We first introduce our running example as
well as the foundations concerning typed graphs, graph queries in their generic
form, NGCs, and GT in Sect. 2. Then, in Sect. 3 operational graph queries in
form of GDNs are defined and it is shown how to transform SGDNs into trees
(SGDTs). That SGDNs and declarative queries based on NGCs have the same
expressive power follows in Sect. 4 and we discuss the different variants of GDNs
concerning their expressiveness and applicability w.r.t. optimization and incre-
mental updates for graph queries in Sect. 5. Finally, we conclude the paper and
provide an outlook on planned future work.

2 Prerequisites

After outlining our running example, we will introduce typed graphs, based on
that a generic notion of graph query (language) together with the concept of
equivalence, the notion of graph conditions with arbitrary nesting level (NGCs),
and GT systems. Moreover, we introduce in particular the answer set of graph
queries based on NGCs.

Fig. 2. Excerpt of social network type graph and an example graph G

Example 1 (social network query). As running example we use a social network
model and a slightly adjusted graph query employed by the LDBC benchmark [8].
A class diagram outlining the possible graph models as well as an example graph to
apply the query are depicted in Fig. 2(a) resp. (b). The considered complex graph
query looks for pairs of Tags and Persons (1) such that the Tag is new in the Posts
by a friend of this Person. To be a Post of a friend, the Post must be from a second
Person the Person knows (1.2). In order to be new, the Tag must be linked in the
latest Post of the second Person (and thus in a Post that has no successor Post)
(1.2.1) and there has to be no former Post by any other or the same friend that is
not her last one and where the same Tag has been already used (1.1). In both cases

On the Operationalization of Graph Queries 173

only Tags that are not simply inherited from a linked Post should be considered
(1.1.1 and 1.2.2). Note that the employed numbering of the conditions relates to
the tree-like network depicted in Fig. 1(c). Occurrences for the positive sentences
(1) and (1.2) in the example graph are depicted accordingly as markers in form of
blue circles with the respective number in Fig. 2(b). The circular blue markers (1)
on the graph denote the occurrence of the request graph consisting of the person
s and tag t. Marker (1.2) denotes the extra condition that the searched tag t must
be attached (hasTag) to a post created by person p that is known by person s. Note
that the markers (1) denote the only correct answer for the query. Thereby the
required match for the positive subquery (1.2) depicted by the markers (1.2) is
such that indeed no match exists for the negative subsubqueries (1.2.1) and (1.2.2).
Furthermore, as required no match for the negative subquery (1.1) consistent with
(1) exists such that no match for the negative subsubquery (1.1.1) of (1.1) can be
found. Consequently, no match for (1.1) is visualized.

We briefly reintroduce the notion of typed graphs and graph morphisms [9].
A graph G = (GV , GE , sG, tG) consists of a set GV of nodes, a set GE of edges,
a source function sG : GE → GV , and a target function tG : GE → GV .
Given the graphs G = (GV , GE , sG, tG) and H = (HV ,HE , sH , tH), a graph
morphism f : G → H is a pair of mappings, fV : GV → HV , fE : GE → HE

such that fV ◦ sG = sH ◦ fE and fV ◦ tG = tH ◦ fE . A graph morphism
f : G → H is a monomorphism if fV and fE are injective mappings. Finally,
two graph morphisms m : H → G and m′ : H ′ → G are jointly epimorphic if
mV (HV) ∪ m′V (H ′V) = GV and mE(HE) ∪ m′E(H ′E) = GE . A type graph is
a distinguished graph TG = (TGV , TGE , sTG, tTG). TGV and TGE are called
the vertex and the edge type alphabets, respectively. A tuple (G, type) of a
graph G together with a graph morphism type : G → TG is then called a typed
graph. Given typed graphs GT

1 = (G1, type1) and GT
2 = (G2, type2), a typed

graph morphism f : GT
1 → GT

2 is a graph morphism f : G1 → G2 such that
type2 ◦ f = type1. We further denote the set of all graphs typed over some type
graph TG by L(TG).

An example for a typed graph G and the type graph TG related to the social
network query Example 1 are depicted in Fig. 2.

In the rest of the paper we will compare the answer sets of graph queries
to analyze them for equivalence. Since we will compare queries stemming from
different query languages, we introduce here a generic notion of query (language)
equivalence that we will refine in the rest of the paper to particular queries and
query languages. As the most generic form of a graph query language we just
assume that it consists of a set of graph queries, where each graph query is
characterized by a request graph L typed over some type graph TG. The query
then expresses some extra properties that need to hold for the request graph L
that is searched for in the queried graph G. The answer set for this query then
describes all matches of L in the queried graph that fulfill these extra properties.

174 T. Beyhl et al.

Definition 2 (graph query (language)). Given a type graph TG, then a
graph query is characterized by a so-called request graph L, which is a finite
graph typed over TG. A graph query language is a set of graph queries.

Definition 3 (answer set mapping, equivalence). Given some graph query
language L, an answer set mapping ans for L maps each pair (qL, G) with qL a
graph query in L with request graph L typed over TG and G a graph from L(TG)
to a set of graph morphisms typed over TG with domain L and co-domain G.

Given queries qL and q′
L for some request graph L typed over TG belonging

to the graph query languages L and L′ with answer set mappings ans and ans′,
resp., then qL and q′

L are equivalent if for every graph G in L(TG) it holds that
ans(qL, G) = ans′(q′

L, G). Two graph query languages L and L′ are equivalent if
for any query qL ∈ L for some request graph L there exists some query q′

L ∈ L′

for L such that qL ∼ q′
L and vice versa. We denote equivalence also with ∼.

We reintroduce the notion of nested graph conditions (NGC) from [12], since
they represent the declarative kind of graph queries that we will consider in
this paper. Given a finite graph L, a nested graph condition (NGC) over L is
defined inductively as follows: (1) true is a NGC over L. We say that true
has nesting level 0. (2) For every morphism a : L → L′ and NGC cL′ over a
finite graph L′ with nesting level n such that n ≥ 0, ∃(a, cL′) is a NGC over
L with nesting level n + 1. (3) Given NGCs over L, cL and c′

L, with nesting
level n and n′, respectively, ¬cL and cL ∧ c′

L are NGCs over L with nesting level
n and max(n, n′), respectively. We restrict ourselves to finite NGCs, i.e. each
conjunction of NGCs is finite. We define when a morphism q : L → G satisfies a
NGC cL over L inductively: (1) Every morphism q satisfies true. (2) A morphism
q satisfies ∃(a, cL′), denoted q |= ∃(a, cL′), if there exists a monomorphism q′ :
L′ → G such that q′ ◦ a = q and q′ |= cL′ . (3) A morphism q satisfies ¬cL if it
does not satisfy cL and satisfies ∧i∈IcL,i if it satisfies each cL,i (i ∈ I). Note that
false, ∨, and ⇒ can be mapped as usual to the introduced logical connectives.
Moreover we abbreviate ∃(∅ → L′, cL′) with ∃(L′, cL′), ∃(a, true) with ∃a and
∀(a, cL′) with ¬∃(a,¬cL′). NGCs can be equipped with typing over a given type
graph TG as usual [9] by adding typing morphisms from each graph to TG and
by requiring type-compatibility with respect to TG for each graph morphism.3

Definition 4 (LNGC , ansNGC). The graph query language LNGC is the set of
all NGCs. Given some NGC cL over L, L represents the so-called request graph.
The answer set mapping ansNGC for LNGC is given by

ansNGC(cL, G) = {q : L → G|q is a monomorphism and q |= cL}

with cL ∈ LNGC a NGC with L typed over some type graph TG and G in L(TG).

3 W.l.o.g. we restrict our notion of condition satisfaction to the existence of monomor-
phisms. In particular, in [12] it is shown how to translate conditions relying on gen-
eral morphism matching/satisfaction into equivalent conditions relying on monomor-
phism matching/satisfaction and the other way round.

On the Operationalization of Graph Queries 175

Fig. 3. Graphs for the NGC c1 and its subconditions (a) and the application condition
acL1 = ∃(L1 → P 1

1) ∧ �(L1 → N1
1) ∧ �(L1 → N1

2) (b) and simple marking rule
r1 = (L1 → R1, acL1) (c)

An example NGC for the social network query of Example 1, where the sub-
conditions refer to the introduced numbering, is the following: c1 = c1.1 ∧ c1.2
with c1.1 = ¬∃(n1.1 : L1 → L1.1, c1.1.1), c1.2 = ∃(p1.2 : L1 → L1.2, c1.2.1 ∧ c1.2.2),
c1.1.1 = ¬∃(n1.1.1 : L1.1 → L1.1.1, true), c1.2.1 = ¬∃(n1.2.1 : L1.2 → L1.2.1, true),
and c1.2.2 = ¬∃(n1.2.2 : L1.2 → L1.2.2, true). The graphs L1, L1.1, L1.1.1, and
L1.2 are depicted exemplarily (see [5] for the complete example) in Fig. 3(a).
Morphisms are implied by equally named objects.

As foundation for an operational graph query evaluation we will employ typed
GT systems with priorities. We start with reintroducing GT and thereby assume
the double-pushout approach (DPO) with injective matching and non-deleting
rules [9] with application conditions of arbitrary nesting level (AC) [12]. A plain
GT rule p : L → R is a graph monomorphism. We say that the graphs L and R
are the left-hand side (LHS) and right-hand side (RHS) of the rule, respectively.
A GT rule r = 〈p, acL〉 consists of a plain rule p : L → R and a so-called
application condition acL being a graph condition over L. If the application
condition acL = ∧i∈I∃pi ∧ ∧j∈J�nj , then we say that ∃pi or ¬∃nj is a positive
application condition (PACs) or negative application condition (NAC) over L,
respectively. A rule r is applicable to a graph G via a graph monomorphism
m : L → G if m |= acL. A direct GT via rule r = 〈p, acL〉 consists of a pushout
over p and m such that m |= acL. If there exists a direct transformation from
G to G′ via rule r and match m, we write G ⇒m,r G′. If we are only interested
in the rule r, we write G ⇒r G′. If a rule r in a set of rules R exists such that
there exists a direct transformation via rule r from G to G′, we write G ⇒R G′.
A GT, denoted as G0 ⇒∗ Gn, is a sequence G0 ⇒ G1 ⇒ · · · ⇒ Gn of n ≥ 0
direct GT. GT rules and GTs can be equipped with typing over a given type
graph TG as usual [9] by adding typing morphisms from each graph to TG and
by requiring type-compatibility with respect to TG for each graph morphism.

An example for a GT rule with AC in the context of the social network
query of Example 1 is r1 = (L1 → R1, acL1) as depicted in Fig. 3(c) following the
compact notation where all graphs are embedded into a single one. In particular,

176 T. Beyhl et al.

acL1 = ∃(L1 → P 1
1) ∧ �(L1 → N1

1) ∧ �(L1 → N1
2) is depicted more precisely

in Fig. 3(b). ++ denotes elements that are created by the rule, the additional
(dashed) elements forbidden by a NAC are crossed out and the extra elements
required by a PAC are dashed as well. These crosses for NAC N1

1 are omitted
from the rule visualization in Fig. 3(c) as it equals R1

1. Note that we use in
this example in addition to the node types defined in the type graph depicted
in Fig. 2(a) (solid rectangles) already some additional marking node (dashed
circles) and edge types (dashed lines) that will be introduced later.

A graph transformation system (GTS) gts = (R,TG) consists of a set of
rules R typed over a type graph TG. If a rule r in R of gts exists such that
a direct transformation G ⇒r G′ via r exists, we also write G ⇒gts G′. If for
some graph G it holds that r is not applicable to G, then we write G �⇒r.
Moreover, if no rule in gts exists that is applicable to G, then we write G �⇒gts.
A GTS with priorities gtsp = ((R, TG), p) consists of a GTS (R, TG) and a
transitive and asymmetric relation p ⊂ R × R. We write G ⇒gtsp G′ if a rule r
in R of gtsp exists with a direct transformation G ⇒r G′ such that �r′ ∈ R :
(r, r′) ∈ p ∧ G ⇒r′ G′′. For a GTS with priorities gtsp and an initial graph G0

the set of reachable graphs REACH(gtsp, G0) is defined as {G | G0 ⇒∗
gtsp

G}
and the set of terminal reachable graphs TERM(gtsp, G0) is defined as {G|G ∈
REACH(gtsp, G0) : G �⇒gtsp}.

3 Generalized Discrimination Networks

In the following we introduce our suggestion for the operationalization of graph
queries employing generalized discrimination networks with computation nodes
based on GT rules.

Example 5 (GDN (informal)). A possible GDN for the social network query
Example 1 is depicted in Fig. 1(a). Node 1.1.1s and 1.2.2s produce their output
independently. Then, node 1.1s and 1.2s can compute the output depending on
the output of these two other nodes. Finally, the terminal node 1s can compute
its output based on the output of the nodes 1.1s and 1.2s. We further distinguish
in Fig. 1(a) positive and negated dependencies accordingly visualized by arrows
with a single solid line when representing a PAC (∃) and by arrows with a single
dashed line when representing a NAC (�).

Our queried graph G typed over TG will be marked with so-called marking
nodes and edges to keep track of (sub-)query answer sets. In particular, so-called
marking rules in a GDN will take care of that. A (simple) marking rule ri is a
restricted form of GT rule typed over a marking type graph TG′. The latter is
equal to TG but for each marking rule ri it is extended with a so-called marking
node type ti as well as an marking edge type tv per node v present in ri’s LHS Li.
This allows ri to mark each node v from Li by adding a marking node i uniquely
corresponding to ri via its marking node type ti, called the defined type, and
by adding a marking edge ev from this special marking node i to each node v in
Li. These marking edges encode again via their type tv which node v in Li they

On the Operationalization of Graph Queries 177

mark. Finally the application conditions in each marking rule allow for referring
to the marking elements (and therefore indirectly to already matched elements)
created by other rules.

The required extension for the type graph TG for the social network query
Example 5 for rule r1, which captures that a s:Person and t:Tag exist for which
additional conditions must hold, are depicted in Fig. 3(c). Additional nodes visu-
alized as circles with number 1, 1.1, and 1.2, where 1 denotes the created marking
node of the rule r1 and 1.1 and 1.2 are marking nodes of the other rules r1.1
and r1.2 all use types in TG′ but not TG. The edges between the circles and the
rectangles also belong to TG′ but not TG. We do not visualize their direction,
since they always point to nodes of a type from TG.

Definition 6 (marking type graph). Given a set of graphs (Li)i∈I typed over
TG via typei : Li → TG, the marking type graph TG′ for (Li)i∈I has node set
TG′V = TGV � {ti|i ∈ I} and edge set TG′E = TGE � {tv|v ∈ LV

i , i ∈ I} s.t.
sTG′

(e) = sTG(e) and tTG′
(e) = tTG(e) for e ∈ TGE and sTG′

(tv) = ti and
tTG′

(tv) = typeVi (v) for each v ∈ LV
i and i ∈ I otherwise. We say that the

nodes in {ti|i ∈ I} are marking node types and edges in {tv|v ∈ LV
i , i ∈ I} are

marking edge types, respectively. Given a graph G typed over TG′, then we say
that a node or edge in G such that its type equals a marking node or edge type
in TG′ is a marking node or edge in G, resp..

Definition 7 ((simple) marking rule, defined type). Given a set of graphs
(Li)i∈I typed over TG via typei : Li → TG, a marking rule (MR) is a GT rule
ri = 〈pi : Li → Ri,�pi ∧ cLi

〉 typed over the marking type graph TG′ for (Li)i∈I

such that (1) Li inherits its typing from typeLi
, (2) RV

i = LV
i � {i} with i of

type ti the so-called marking node and ti the so-called defined type of rule ri,
and (3) RE

i = LE
i � {ev|v ∈ LV

i } such that each ev has type tv and sRi(ev) = i
and tRi(ev) = v.

A simple marking rule (SMR) is a marking rule where the application con-
dition cLi

=
∧

j∈J(∃pj : Li → Pj) ∧ ∧
k∈K(�nk : Li → Nk) such that for each

j ∈ J and k ∈ K it holds that PV
j \ (pj(Li))V and NV

k \ (nk(Li))V , resp., consist
of exactly one marking node.

In addition to the defined type of its created marking node each marking rule
induces so-called referred types in the marking type graph. Based on these
referred and defined types of MRs we define a dependency relation between
MRs.

Definition 8 (referred types, dependency relation). Given a set of graphs
(Li)i∈I typed over TG and a (simple) marking rule ri = 〈pi : Li → Ri,�pi ∧ cLi

〉
typed over the marking type graph TG′ for (Li)i∈I the set of referred types rt(ri)
is the set of all node types in TG′V for nodes occurring in some (co-)domain
graph of a morphism employed in cLi

.
Given a GTS (R = (ri)i∈I , TG

′) with each rule ri a (simple) marking rule,
a dependency relation �d⊆ R × R consists of all rule pairs (ri, rj) such that
the defined type tj of rule rj belongs to the set of referred types rt(ri).

178 T. Beyhl et al.

Note that by definition a MR ri can only depend on itself if its defined type
ti is employed for typing elements in the application condition cLi

.
The SMRs for the SGDN for the social network query of Example 5 are

depicted in Fig. 4. We use here and in the following the more compact notation
for SMRs where all graphs including the PACs and NACs are embedded into a
single one as presented in Fig. 3(c), moreover the RHS as well as the NAC equal
to pi are omitted since they can be reconstructed from the rule’s LHS uniquely.

Based on the previously introduced MRs or SMRs to encode the behavior of
the computation nodes of a GDN, we can now introduce our form of GDN or
SGDN, respectively.

Definition 9 (GDN, SGDN, LGDN , LSGDN). Given a finite graph L typed
over TG and a GTS (R = (ri)i∈I , TG

′) of (simple) marking rules typed over the
marking type graph TG′ for (Li)i∈I , then gdnL = ((R, TG′),�+

d) is a (simple)
generalized discrimination network over L if the following conditions hold: (1)
the transitive closure �+

d is acyclic, (2) there is a unique so-called terminal rule
rt with LHS Lt = L for some t ∈ I, and (3) ∀i ∈ I s.t. i �= t it holds that
(rt, ri) is in �+

d . The graph query language LGDN (LSGDN) is the set of all
GDNs (SGDNs). Given some GDN gdnL (SGDN sgdnL) over L, L represents
the so-called request graph.

Note that it follows directly from this definition that no rule of the GDN tran-
sitively depends on the terminal rule otherwise the transitive closure of the
dependency relation would contain a cycle.

An example for a SGDN is depicted in Figs. 1(a) and 4, where Fig. 1(a) shows
the dependencies between the nodes and Fig. 4 shows the rules for the nodes r1s,
r1.1s, r1.2s, r1.1.1s, and r1.2.2s.

In the following definitions we assume an operational query in the form of
a GDN. In particular, each GDN represents a GTS with priorities. We consider
each graph reachable via the GDN to encode an intermediate query result and the
terminal graph then encodes the final query result. As shown in the subsequent
lemma this terminal graph is indeed unique.

Lemma 10 (unique terminal graph). Given a GDN gdnL = ((R, TG′),�+
d)

for L typed over TG, then TERM(gdnL, G) consists of exactly one graph.

Fig. 4. SMRs for the SGDN of the social network example

On the Operationalization of Graph Queries 179

Proof. (sketch; more details see [5]) As there is an upper bound on matches that
can be marked and rule applications always add exactly one such marking, gdnL

terminates. As the priorities expressed by �+
d exclude conflicting applications of

different rules and acyclicity of �+
d excludes conflicting applications of a rule

with itself, gdnL is also confluent.

Definition 11 (ansGDN). Given the graph query language LGDN , the answer
set mapping ansGDN for LGDN is given by

ansGDN (gdnL, G) := {o :L→G|Gi ⇒o′,rt G
′
i is a direct GT in t∧o(L) = o′(L)}

with gdnL = ((R, TG′),�+
d) some GDN such that L is typed over TG, G a graph

in L(TG), rt the terminal rule of gdnL and t : G ⇒∗
gdnL

G′ some transformation
with {G′} = TERM(gdnL, G).

The above definition is well-defined, since matches are never destroyed because
of dealing only with non-deleting rules and no conflicting direct transformations
arise because of the priorities encoded with �+

d and acyclicity of �+
d (as men-

tioned also w.r.t. terminal graph uniqueness). Moreover, for o′ : L → Gi it holds
that o′(L) is a subgraph of G.

In practice, it is important for efficiency reasons that we can reconstruct the
answer set ansGDN (gdnL, G) from the markings in the terminal graph G′ with-
out having to consider the transformation t leading to G′. Under the condition
that we only query graphs without parallel edges of the same type this can be
done uniquely (see [5]).

The following result shows that for each SGDN an equivalent tree-like SGDN
exists in which no two rules exist that directly depend on the same rule and each
dependency is caused by exactly one PAC/NAC. As the considerations in the
following section are considerably simpler when operating on tree-like SGDNs,
we will w.l.o.g (cf. Lemma 13) in the following restrict to tree-like networks.

Definition 12 (SGDT, LSGDT). A simple generalized discrimination tree
(SDGT) is a SGDN sgdnL = ((R = (ri)i∈I , TG

′),�+
d) such that (1) for each

(ri, rj) ∈�d no k ∈ I with k �= i exists s.t. (rk, rj) ∈�d and (2) for each i ∈ I
it holds that for each PAC or NAC of ri no other PAC or NAC in ri exists
referring to the same marking node type. The graph query language LSGDT is
the set of all SGDTs.

Lemma 13 (LSGDN ∼ LSGDT). Given a SGDN sgdnL for a graph L typed
over TG, then it holds that a SGDT sgdtL exists such that sgdnL ∼ sgdtL.
Moreover, LSGDN ∼ LSGDT .

Proof. (sketch, details see [5]) We can show by induction over the depth of �+
d

that we can construct an equivalent tree by employing copied rules with disjoint
markings. Since each SGDT is in particular also a SGDN, it directly follows that
LSGDN ∼ LSGDT .

180 T. Beyhl et al.

Fig. 5. SMRs for the SGDT for the social network example (a) and with maximal
context (b) as denoted by the orange dashed lines.

The SMRs of the SGDT related to the SGDN of Fig. 1(a) depicted in Fig. 1(b)
where multiple referenced SMRs are simply replicated are presented in Fig. 5(a).
The rules r1.1s, r1.1.1s, and r1.2.2s of Fig. 4 are not shown in Fig. 5 since they
remain the same. Rules r1s′ and r1.2s′ , which differ from the rules r1s and r1.2s
of Fig. 4 only concerning the referenced other rules are shown, along with rule
r1.1.1s′ , which is a replication of rule r1.1.1s that differs only w.r.t. created ele-
ments (omitted from the visualization).

4 Equivalence to Nested Graph Conditions

In order to prove that each NGC can be represented by some equivalent SGDT,
we first show in the following Lemmas that the standard operators in NGCs
(true, existential quantification, negation and binary conjunction) (Def. see
Sect. 2) can be simulated by equivalent constructions in a SGDT.

Lemma 14 (true). Given the NGC true over L, there exists some SGDT sgdtL
such that sgdtL ∼ true.

Proof. Let sgdtL = ({rL,true}, TG′),�+
d) for L typed over TG with mark-

ing rule rL,true = 〈p : L → R,�p〉, then for each graph G typed over TG,
ansGDN (sgdtL, G) consists of all morphisms p : L → G. This means that
sgdtL ∼ true.

Lemma 15 (∃(a : L → L′, cL′)). Given some NGC ∃(a : L → L′, cL′) and
SGDT sgdt′L′ such that sgdt′L′ ∼ cL′ , there exists some SGDT sgdtL such that
sgdtL ∼ ∃(a : L → L′, cL′).

Proof. Suppose that sgdt′L′ has the terminal rule r′
t = 〈p′

t : L′ → R′,�p′
t ∧ c′

L′〉.
We construct the SGDT sgdtL by having an additional rule rL,∃a = 〈p : L →
R,�p∧∃(p′

t◦a, true)〉 w.r.t. sgdt′L′ as terminal rule. Consider ansGDN (sgdtL, G)
consisting of all morphisms o : L → G s.t. rL,∃a created a marking to o(L).
Because of the PAC ∃(p′

t ◦ a, true) in the terminal rule rL,∃a this can only be

On the Operationalization of Graph Queries 181

the case if r′
t created a marking for some o′(L′) with o′ : L′ → G a morphism

in ansGDN (sgdt′L′ , G). Since sgdt′L′ ∼ cL′ we know that r′
t created a marking to

o′(L′) iff o′ |= cL′ . Therefore we conclude that o |= ∃(a : L → L′, cL′) and thus
sgdtL ∼ ∃(a : L → L′, cL′).

Lemma 16 (¬cL). Given some NGC ¬cL and SGDT sgdt′L such that sgdt′L ∼
cL, there exists some SGDT sgdtL such that sgdtL ∼ ¬cL.

Proof. Suppose that sgdt′L has the terminal rule r = 〈p′ : L → R′,�p′ ∧ c′
L〉.

Then consider the SGDT sgdtL having an additional rule rL,¬ = 〈p : L →
R,�p∧�p′〉 w.r.t. sgdt′L as terminal rule. Consider ansGDN (sgdtL, G) consisting
of all morphisms o : L → G s.t. rL,¬ created a marking to o(L). Because of the
NAC �p′ in the terminal rule rL,¬ this can only be the case if r did not create a
marking to o(L). Since sgdt′L ∼ cL we know that r created a marking to o(L) iff
o |= cL. Therefore we conclude that o |= ¬cL and thus sgdtL ∼ ¬cL.

Lemma 17 (c1,L ∧ c2,L). Given some NGC c1,L ∧ c2,L and SGDTs sgdt1L and
sgdt2L such that sgdt1L ∼ c1,L and sgdt2L ∼ c2,L, there exists some SGDT sgdtL
such that sgdtL ∼ c1,L ∧ c2,L.

Proof. Let r1 = 〈p1 : L → R1,�p1 ∧ cL〉 and r2 = 〈p2 : L → R2,�p2 ∧ c′
L〉 be

the terminal rules for sgdt1L and sgdt2L, respectively. Consider the SGDT sgdtL
consisting of the subtrees sgdt1L and sgdt2L with the additional rule rL,∧ = 〈p :
L → R,�p∧∃p1 ∧∃p2〉 as terminal rule. Consider ansGDN (sgdtL, G) consisting
of all morphisms o : L → G s.t. rL,∧ created a marking to o(L). Because of the
PACs ∃p1 and ∃p2 in the terminal rule rL,∧ this can only be the case if r1 as
well as r2 created a marking to o(L). Since sgdt1L ∼ c1,L resp. sgdt2L ∼ c2,L we
know that r1 resp. r2 created a marking to o(L) iff o |= c1,L resp. o |= c2,L.
Therefore we conclude that o |= c1,L ∧ c2,L and thus sgdtL ∼ c1,L ∧ c2,L.

Now we can prove that each NGC can be emulated by an equivalent SGDT.

Proposition 18. Given a NGC cL, there exists a SGDT sgdtL s.t. sgdtL ∼ cL.

Proof. We prove this by induction over the nesting level of NGCs and the way
they are constructed.
Base case: By Lemma14 it follows that for cL = true with nesting level 0 an
equivalent SGDT with a single marking rule exists. From Lemmas 16 and 17 it
follows that for any combination of conditions of nesting level 0 we can still
construct an equivalent SGDT.
Induction step: By Lemmas 15 and the induction hypothesis it follows that for
any condition ∃(a : L → L′, cL′) of nesting level n+1 it follows that an equivalent
SGDT exists. From Lemmas 16 and 17 it follows that for any combination of
conditions of nesting level n+1 we can still construct an equivalent SGDT.

We still need to show that also each SGDT can be emulated by an equivalent
NGC. An important first step thereby is the construction of a transformation
of some SGDT into a SGDT with so-called maximal context. Marking rules in

182 T. Beyhl et al.

GDNs are able to pass merely the context necessary for the next subquery, which
is a practical property for efficiency reasons, but not for showing equivalence
with NGCs based on maximal context passing. With context propagation we
therefore introduce a mechanism transforming marking rules passing only partial
context into rules passing maximal context. We moreover show that this context
propagation does not alter the answer set semantics of the corresponding SGDT.

Definition 19 (maximal context). Given a SGDT sgdtL for a graph L typed
over TG then sgdtL has maximal context if for each two SMRs ri = 〈pi : Li →
Ri,�pi ∧ ∧

j∈Ji
(∃pij : Li → P i

j) ∧ ∧
k∈Ki

(�ni
k : Li → N i

k)〉 and rl = 〈pl : Ll →
Rl,�pl ∧ ∧

j∈Jl
(∃plj : Ll → P l

j) ∧ ∧
k∈Kl

(�nl
k : Ll → N l

k)〉 with marking node l

s.t. (ri, rl) ∈�d because for some j ∈ Ji (or k ∈ Ki) pij (or ni
k, resp.) uses a

type equal to the type tl of l, the sets V i
j (or V i

k , resp.) constructed as follows are
empty:

V i
j = {n|n ∈ LV

i s.t. �e ∈ (P i
j)

E with type of sP
i
j (e) = tl ∧ tP

i
j (e) = pij(n)}

V i
k = {n|n ∈ LV

i s.t. �e ∈ (N i
k)

E with type of sN
i
k(e) = tl ∧ tN

i
k(e) = ni

k(n)}
Lemma 20 (context propagation). Given a SGDT sgdtL for a graph L typed
over TG with two rules ri and rl such that (ri, rl) ∈�d with non-empty V i

j (or
V i
k) (as given in Definition 19), then there exists some sgdtcL in which (ri, rl)

has been replaced by a SGDT with maximal context such that sgdtcL ∼ sgdtL.

Proof. (sketch; details see Lemma20) We construct a sgdtcL in which marking
rules with propagated context check in contrast to rl the presence of additional
nodes and edges in the queried graph G that would otherwise have been searched
for anyway by rule ri after all matches for rl had been found. Marking these
elements earlier does not change the overall answer set.

Lemma 21 (maximal context). For a SGDT sgdtL for a graph L typed over
TG their exists a SGDT sgdt′L with maximal context such that sgdt′L ∼ sgdtL.

Proof. We proof this lemma by induction on the height of the tree.
Base case: Suppose that we have sgdtL with height 0, then it trivially holds that
sgdtL has maximal context already.
Induction step: Suppose that we have sgdtL with height n + 1. Then apply sub-
sequently for each (rt, ri) ∈�d context propagation to sgdtL obtaining according
to Lemma 20 an equivalent sgdtcL of height n + 1. Now consider for each ri the
subtree sgdtriLc

i
in sgdtcL of height n. Then for each sgdtriLc

i
by induction hypothe-

sis an equivalent SGDT sgdt′Lc
i

with maximal context exists. Replacing in sgdtcL
each sgdtriLc

i
with sgdt′Lc

i
we obtain a SGDT sgdt′L with maximal context s.t.

sgdt′L ∼ sgdtL.

Two of the modified SMRs of the SGDT depicted in Fig. 1(c) with maximal
context related to the SGDN of Fig. 1(a) are presented in Fig. 5(b). While the
rules r1.1 and r1.2 already have maximal context and therefore differ from the

On the Operationalization of Graph Queries 183

r1.1s and r1.2s′ only concerning the referenced other rules and additional links
to bind the propagated context as depicted in Fig. 5(b) by the orange edges, the
rules r1.1.1, r1.2.1, and r1.2.2 are extended with propagated context concerning
the rules r1.1.1s, r1.1.1s′ , and r1.2.2s and in addition have to reference the new
rules.

Now we are ready to prove that for each SGDT there exists an equivalent
NGC and consequently also that the languages LSGDT and LNGC are equivalent.

Proposition 22. Given, a SGDT sgdtL for a graph L typed over TG, then
there exists a NGC cL s.t. sgdtL ∼ cL.

Proof. Because of Lemma 21 we can assume w.l.o.g. that sgdtL has maximal
context. We perform the proof by induction on the height of the tree.
Base case: If sgdtL has height 0, then it consists merely of some terminal rule
without any PACs or NACs. Then ansgdn(sgdtL, G) consists of all matches of
the terminal rule into G. If we choose cL equal to true over L then it returns
exactly the same set of morphisms s.t. sgdtL ∼ cL.
Induction step: Suppose that sgdtL has height n+1 and that it has terminal rule
r = 〈p : L → R,�p ∧ ∧

j∈J(∃pj : L → Pj) ∧ ∧
k∈K(�nk : L → Nk)〉. Then we

have a subtree sgdtLj
and sgdtLk

for each pj and each nk, respectively. Because
of induction hypothesis it holds that for each sgdtLj

and sgdtLk
there exists an

equivalent NGC cLj
and cLk

, respectively. Since sgdtL has maximal context, we
moreover know that there exist morphisms lj : L → Lj and lk : L → Lk. Consider
the NGCs cjL = ∃(lj , cLj

) and ckL = �(lk, cLk
) such that cL = ∧j∈Jc

j
L ∧ ∧k∈KckL.

Now ansGDN (sgdtL, G) for some G consists of all morphisms o : L → G such
that the terminal rule of each sgdtLj

and sgdtLk
has been applied and not been

applied, respectively. The latter is equivalent with the fact that for each j ∈ J a
morphism oj : Lj → G exists s.t. oj ◦ lj = o with oj ∈ ansGDN (sgdtLj

, G) =
ansNGC(cLj

, G). Analogously for each k ∈ K there does not exist a morphism
ok : Lk → G s.t. ok ◦ lk = o and ok ∈ ansGDN (sgdtLk

, G) = ansNGC(cLk
, G).

This is exactly what also each morphism o : L → G in ansNGC(cL, G) needs to
fulfill s.t. we can conclude that sgdtL ∼ cL.

Theorem 23. LSGDN ∼ LSGDT ∼ LNGC

Proof. From Propositions 18 and 22 we can follow directly that LSGDT ∼ LNGC .
From Lemma13 we can conclude that LSGDN ∼ LSGDT .

5 Discussion

In this section, we will discuss a more expressive variant, a minimal variant, as
well as some observations and implications for optimization of graph queries and
incremental updates concerning GDNs and the proposed SGDNs.

In particular, we can show that for minimal SGDT (MSGDT) – SGDT with
at most two direct dependencies per SMR, where all rules adhere to one of
the four rule schemes introduced in Lemmata 14, 15, 16, and 17, and where

184 T. Beyhl et al.

in addition all rules for existential quantification are limited to at most one
additional element in form of a node or edge – holds that LMSGDT ∼ LNGC

(see [5]) and thus the additional restrictions do not result in any loss of expressive
power. As often the tree-like simplification is not wanted, we further name SGDN
that are not MSGDT but fulfill all conditions besides the tree nature as MSGDN.

There are several approaches for optimization of graph queries or incremental
updates of graph queries based on RETE networks (cf. [10]) such as [7] and VIA-
TRA [4] that can be conceptually mapped to MSGDN. In these cases the RETE
network structure supports only at most two direct dependencies like MSGDN
and the computations of the nodes of the RETE network can be matched to the
four permitted cases of MSGDN. Our results also indicate that these approaches
have the same expressiveness as NGC.

In our own practical work on graph queries [6], we conceptually employ SGDN
with marking rules in form of graph transformation rules for optimization of
queries and incremental updates of graph queries. We were able to show that the
more powerful capabilities of a single node (marking rule) and advanced dynamic
pattern matching strategies [11] can lead to considerable improvements concern-
ing the computation speed and memory consumption for SGDN compared to
the restricted case of MSGDN (resp. RETE network). Similar results have been
obtained also in the relational case where it has been shown that the more gen-
eral GATOR networks can outperform RETE networks [13]. Consequently, it
seems reasonable to study the broader class of SGDN for optimization of queries
and incremental updates of graph queries and not more restricted forms such as
MSGDN or MSGDT. In particular the context propagation (see Definition 19)
and its inverse context elimination seem useful tools here to minimize the effort
for subqueries and the propagation of their results in the network.

As outlined in [5] in more detail, we can also have more expressive generalized
discrimination networks as given in Definition 9 for which we can show that
they will not lead to an increase of expressive power such that the language
equivalence LGDN ∼ LNGC holds. However this result only applies unless we
leave the realm of pattern-based property specification concepts such as NGC
and consider also path-related properties [15] or we permit cycles in the network
in a controlled manner as in our own practical work on graph queries [6] to
be able to support path-related properties (analogously to the controlled and
repeated rule applications to support path-related properties used in [3]).

6 Conclusion and Future Work

Analog to the relational database case where the relational calculus and gener-
alized discrimination networks have been studied to find appropriate decompo-
sitions into subqueries and ordering of these subqueries for query evaluation or
incremental updates of queries, we present in this paper GDN for graph queries a
simple operational concept where graph transformation describe the node behav-
ior. We further show that the proposed GDNs in different forms all have the same
expressive power as NGC.

On the Operationalization of Graph Queries 185

We plan to study in our future work the complexity of evaluating and updat-
ing SGDN, their optimization, and possible extensions of SGDNs towards path-
related properties to also formally cover our own practical work on graph queries
[6] supporting cycles in the network.

Acknowledgments. We are grateful to Johannes Dyck for his contribution to our
discussions and feedback to draft versions of the paper.

References

1. Abiteboul, S., Hull, R., Vianu, V. (eds.): Foundations of Databases: The Logical
Level, 1st edn. Addison-Wesley Longman Publishing Co., Inc., Boston (1995)

2. Angles, R.: A comparison of current graph database models. In: Proceedings of
the 28th International Conference on Data Engineering, pp. 171–177. IEEE (April
2012)

3. Becker, B., Lambers, L., Dyck, J., Birth, S., Giese, H.: Iterative development
of consistency-preserving rule-based refactorings. In: Cabot, J., Visser, E. (eds.)
ICMT 2011. LNCS, vol. 6707, pp. 123–137. Springer, Heidelberg (2011)

4. Bergmann, G., Ökrös, A., Ráth, I., Varró, D., Varró, G.: Incremental pattern
matching in the viatra model transformation system. In: Proceedings of the 3rd
International Workshop on Graph and Model Transformations, GRaMoT 2008, pp.
25–32. ACM (2008)

5. Beyhl, T., Blouin, D., Giese, H., Lambers, L.: On the Operationalization of Graph
Queries with Generalized Discrimination Networks. Technical report 106, Hasso
Plattner Institute at the University of Potsdam (2016)

6. Beyhl, T., Giese, H.: Incremental view maintenance for deductive graph databases
using generalized discrimination networks. In: Electronic Proceedings in Theoret-
ical Computer Science, Graphs as Models 2016 (2016, to appear)

7. Bunke, H., Glauser, T., Tran, T.H.: An efficient implementation of graph grammars
based on the RETE matching algorithm. In: Kreowski, H.-J., Ehrig, H., Rozenberg,
G. (eds.) Graph Grammars 1990. LNCS, vol. 532, pp. 174–189. Springer, Heidelberg
(1991)

8. Council, L.D.B.: LDBC Social Network Benchmark (SNB) - First Public
Draft Release v0.2.2 (2015). https://github.com/ldbc/ldbc snb docs/blob/master/
LDBC SNB v0.2.2.pdf

9. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph
Transformation. Springer, Heidelberg (2006)

10. Forgy, C.L.: Rete: a fast algorithm for the many pattern/many object pattern
match problem. Artif. Intell. 19(1), 17–37 (1982)

11. Giese, H., Hildebrandt, S., Seibel, A.: Improved flexibility and scalability by inter-
preting story diagrams. In: Magaria, T., Padberg, J., Taentzer, G. (eds.) Pro-
ceedings of the 8th International Workshop on Graph Transformation and Visual
Modeling Techniques, vol. 18. Electronic Communications of the EASST (2009)

12. Habel, A., Pennemann, K.H.: Correctness of high-level transformation systems
relative to nested conditions. Math. Struct. Comput. Sci. 19, 1–52 (2009)

13. Hanson, E.N., Bodagala, S., Chadaga, U.: Trigger condition testing and view main-
tenance using optimized discrimination networks. Trans. Knowl. Data Eng. 14(2),
261–280 (2002)

https://github.com/ldbc/ldbc_snb_docs/blob/master/LDBC_SNB_v0.2.2.pdf
https://github.com/ldbc/ldbc_snb_docs/blob/master/LDBC_SNB_v0.2.2.pdf

186 T. Beyhl et al.

14. He, H., Singh, A.K.: Graphs-at-a-time: query language and access methods for
graph databases. In: Proceedings of the 2008 ACM SIGMOD International Con-
ference on Management of Data, pp. 405–418. ACM (2008)

15. Poskitt, C.M., Plump, D.: Verifying monadic second-order properties of graph pro-
grams. In: Giese, H., König, B. (eds.) ICGT 2014. LNCS, vol. 8571, pp. 33–48.
Springer, Heidelberg (2014)

16. Wood, P.T.: Query languages for graph databases. SIGMOD Rec. 41(1), 50–60
(2012)

	On the Operationalization of Graph Queries with Generalized Discrimination Networks
	1 Introduction LL2,51,5
	2 Prerequisites LL3,52,75
	3 Generalized Discrimination Networks
	4 Equivalence to Nested Graph Conditions
	5 Discussion LL1,751,5
	6 Conclusion and Future Work LL?+HG?
	References

