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Abstract. The interest for graph databases has increased in the recent
years. Several variants of graph query languages exist – from low-
level programming interfaces to high-level, declarative languages. In this
paper, we describe a novel SQL-based language for modeling high-level
graph queries. Our approach is based on graph pattern matching con-
cepts, specifically nested graph conditions with distance constraints, as
well as graph algorithms for calculating nested projections, shortest paths
and connected components. Extending SQL with graph concepts enables
the reuse of syntax elements for arithmetic expressions, aggregates, sort-
ing and limits, and the combination of graph and relational queries. We
evaluate the language concepts and our experimental SAP HANA Graph
Scale-Out Extension (GSE) prototype (This paper is not official SAP
communication material. It discusses a research-only prototype, not an
existing or future SAP product. Any business decisions made concerning
SAP products should be based on official SAP communication material.)
using the LDBC Social Network Benchmark. In this work we consider
only complex read-only queries, but the presented language paves the
way for a SQL-based graph manipulation language formally based on
graph transformations.

1 Introduction

In contrast to relational database management systems, graph databases employ
dedicated data structures and algorithms tailored for analytical and transac-
tional graph processing. Current applications in the domains of social network
analysis (e.g., Facebook, LinkedIn), business network analysis (e.g., Ebay, SAP
Ariba) and knowledge graphs (e.g., Google Search, Microsoft Office) show that
there is a high demand for efficient reasoning on large-scale graph data. There
exist a number of low-level graph programming models, the most prominent
being Bulk Synchronous Parallel [16]. However, in the context of enterprise appli-
cations there is a need for high-level, declarative graph query languages that
enable complex analysis scenarios. While SQL is the accepted standard query
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language in the world of relational databases, there currently is no consensus on
a standard for a general-purpose graph query language.

OpenCypher [10] is an initiative by the inventors of the Neo4j graph database
to define a common graph query language based on their Cypher language. For
historical reasons, many companies today use Cypher. However, the language in
its current form is ad hoc and lacks tool support by other vendors. SPARQL [18]
is the standard query language in the semantic web domain. While it supports
graph query concepts, it is geared into the triple store (subject-predicate-object)
concept of the Resource Description Framework (RDF). General graph analysis
applications may be encoded in SPARQL/RDF, but due the dedicated focus on
the semantic web domain, there is a limit for applications with a different scope.

SQL is widely accepted as the standard query language for relational database
systems. While extensions for hierarchical [2], geospatial [15] and time series data
exist, graph queries have not been considered in the past. Reasons may be the
complexity of graph queries (graph pattern matching, path expressions etc.) and
too much focus on methods for encoding graph data in relational database tables.
Moreover, specifying graph queries directly in SQL is cumbersome and often leads
to inefficient query executions. Particularly graph pattern matching and transitive
closures usually require dedicated graph query languages and engines.

In this paper, we propose a novel, high-level graph query language that is
based on SQL. We build on the syntax and semantics of SQL, transfer its query
concepts into the realm of graph databases, and extend them with dedicated
graph features. In particular, our language supports graph pattern matching
with nested graph conditions [3,7], expressions for traversing paths of fixed
length, calculation of transitive closures and definition of distance constraints
between matched nodes. The pattern matching is in general non-injective, but it
can be customized by adding injectivity constraints for pairs of node variables.
Moreover, dedicated functions for computing shortest paths and connected com-
ponents are included. The general structure of queries follows the one of SQL.
The syntax for arithmetic expressions, aggregates, sorting, limits etc. can be
reused entirely. Since the result of graph queries are tables, they can be embed-
ded as subqueries in standard relational SQL queries, thereby enabling a smooth
integration with relational and other types of engines in heterogeneous database
management systems. For instance, when agreeing on SQL as common base
language, graph queries could be combined with relational, geospatial or even
time series queries. Although the engine implementations are typically sepa-
rate, a common base language enables the usage of a common query processing
infrastructure including parsing, plan generation and query optimization.

We provide an execution engine for the proposed language, referred to as
the SAP HANA Graph Scale-Out Extension (GSE) prototype in the rest of this
paper. To achieve a high query performance, our engine uses optimized graph
data structures instead of relational tables. We evaluate the expressive power of
our query language and the performance of the GSE implementation using the
LDBC Social Network Benchmark [4]. We focus in this paper on complex, read-
only queries. However, our query language lays the foundation for an SQL-based
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graph manipulation language based on the theory of graph transformations.
Therefore, it paves the way for transferring formal methods, such as critical pair
analysis for confluence checking [8], into the graph database realm.

Organization: Sect. 2 first gives an overview of the graph model we use. It then
discusses graph pattern matching with nested formulas and subsequent relational
evaluation. Section 3 introduces our SQL-based graph query language. Section 4
provides an evaluation of the GSE implementation based on an LDBC bench-
mark. Section 5 gives an overview of related work. Section 6 contains conclusions
and future work.

2 Graph Pattern Matching with Relational Evaluation

In this section, we present the models and concepts that form the foundation of
our query language and engine.

2.1 Graph Model

We consider directed and undirected graphs with typed nodes, typed edges and
typed node properties. Each of these types has a fixed value range which is part
of the graph definition. Figure 1 shows the corresponding graph model.

Node

type : NodeType
id : NodeId

Edge

type : EdgeType
target : NodeId

Property

type : PropertyType
value : DataValue

0..*edges0..*properties

UndirectedGraph InverseEdgesGraph

DoublyLinkedGraph

Graph 0..*

nodes

Fig. 1. Typed graph model with node properties and inverse edges

Every node has a unique numeric ID, a list of properties, and a list of edges. A
property has a primitive data value of a data type derived from the property type
(e.g., string, integer, float). The value of a property can be NULL independently
of its data type. We consider the ID and the type of a node as special properties
with the respective property types NODEID and NODETYPE.

An edge identifies its target node by its ID. Every node can have at most one
edge of the same type and with the same target, i.e., parallel edges of the same
type are not allowed. However, edges may target their source node (loops).
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In a doubly linked graph, every edge has a corresponding edge with swapped
source and target nodes. This corresponding edge either has the same type as
the original edge or an implicitly defined inverse edge type. In the first case, the
graph is undirected. In the second case, it is an inverse edge graph where all
edges of regular type are outgoing and all edges of inverse type are incoming.

Our graph model deliberately omits edge properties (e.g., edge weights). This
design choice enables an efficient implementation, particularly in a distributed
setting. The resulting restriction can be overcome by modeling edges with prop-
erties by auxiliary edge nodes with one incoming and one outgoing edge.

2.2 Graph Pattern Matching

In graph pattern matching, the task is to find all matches between a set of
pattern variables and the nodes of a target graph that satisfy a set of conditions.
Figure 2 shows our graph pattern model and Fig. 3 a basic example pattern.

Pattern

FormulaPredicate

compareType : ( = | <> | < | > | <= | >= | LIKE )

Expression

0..1formula

children

0..*

predicates 0..*

1

patternGraph
1

graph

CompositeFormula

operator : ( AND | OR | NOT )

ExistsFormula
1right1left

Fig. 2. Pattern model with predicates and nested graph constraints

:Pattern :Graphgraph

s:Node

id = 1
type = "PERSON"

m:Node

id = 2
type = "POST"

nodes

:Edge

type = "HASCREATOR"
target = 1

edges

Fig. 3. Basic graph pattern consisting only of a pattern graph with two typed nodes
and a typed edge between these nodes
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A pattern consists of a pattern graph, a set of predicates, and an optional
nested formula. The predicates and the formula are defined over a set of pattern
variables that represent the pattern nodes, i.e., the nodes of the pattern graph.

A match of a pattern with respect to a given target graph is a map of the
pattern variables to nodes of the target graph (called the target nodes of the
match), such that (i) each pattern node is matched to a target node of the same
type, (ii) each pattern edge is matched to a target edge of the same type, (iii) all
predicates are satisfied, and (iv) the logical formula is satisfied.

Formally, conditions (i) and (ii) describe a typed graph homomorphism from
the pattern graph into the target graph. In general, this graph homomorphism
does not have to be injective. Instead, predicates comparing the IDs of the
pattern nodes can be used to guarantee that pattern nodes are matched to
different target nodes. The same approach is used to assure that a certain set of
target nodes is matched only once if the pattern graph has symmetries.

In order to be able to omit the type constraint from conditions (i) and (ii),
we add the implicitly defined type ANY to the lists of node types and edge types
of the pattern graph. Thus, if a pattern node or edge has the type ANY, it can
be matched to any target node or edge, respectively.

A predicate is a binary comparison between two expressions. Figure 4 depicts
how we model expressions. Expressions are defined over the pattern variables
and, given a potential match, evaluate to primitive data values. Literals sim-
ply evaluate to their constant value. Arithmetic expressions and functions are
evaluated recursively, i.e., after evaluating their arguments they are evaluated
as expressions over primitive data values.

Expression

Path CompositeExpression

0..*

children

ArithmeticExpression

Literal

Function

PathElement

PathEdge

type : EdgeType

PathProperty

type : PropertyType

start : NodeId
1..*

elements

1..*

elements

value : DataValue

operator : ( + | - | * | / )
flags : String[]
functionName : String

Fig. 4. Expression model

Path expressions form the link between the pattern variables and the prop-
erties of the target nodes. In their most basic form, paths consist of a pattern
variable (given by the start node ID) and a property type (given by a path prop-
erty). Such a path is called a node property path and evaluates to the property
value with the given type of the target node matched to the given variable. All
path expressions that occur in a graph pattern have to be node property paths.
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This does not restrict the expressive power of the model, since complex path con-
ditions can be expressed in the graph part of the pattern and by nested formulas.
We discuss the evaluation of more complex paths in the next section where expres-
sions containing such paths are introduced.

Note that we may access the ID of a target node and use it in other expres-
sions, most notably functions. Such functions are called graph functions and are
parametrized by optional function flags (see Table 1). They have access to the
complete target graph, allowing them to explore the neighborhood of a node
(e.g., to calculate degrees) as well as to traverse the global graph structure
(e.g., to compute distances, shortest paths, and connected components).

Table 1. Summary of currently supported graph functions

Function Args Flag Result

DEGREE 1 Degree of argument node

IN Compute in-degree

OUT Compute out-degree (default)

INOUT Compute in-degree + out-degree

DISTANCE 2 Node distance (NULL if unconnected)

SHORTEST PATH 2 Shortest paths sub-graph (as JSON)

DIRECTED Traverse edges regularly (default)

UNDIRECTED Traverse edges in both directions

INVERSE Traverse edges in inverse direction

CONNECTED COMPONENT 1 Id of node’s connected component

STRONG Assume strong connectivity (default)

WEAK Assume weak connectivity

All graph functions: EDGETYPE type Edge type restriction (default: ANY)

Formulas are used to model nested graph conditions. They are either compos-
ite (a logical operator) or an existential quantification of a nested graph pattern.
Note that this is a recursive tree structure which terminates at patterns. There
is an implicit mapping of the nodes of a pattern graph into its child pattern
graphs given by their node IDs, which for every match of the parent pattern
graph induces a pre-match of the child pattern graph.

2.3 Graph-Relational Evaluation and Nested Paths

The result of the graph pattern matching described in the previous section is a
list of matches from the pattern variables to nodes in the target graph. Based
on a feature list, graph-relational evaluation computes a table of primitive data
values from these matches. A feature is an expression as defined in the previous
section. Thus, given a list of features and a list of matches, we can compute
a table where each column corresponds to a feature. For each match, we cre-
ate a row in the table by evaluating the feature expressions over the match.
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In the following, we extend this concept by introducing expressions that do not
evaluate to single values but rather to lists of data value tuples.

In the previous section, we introduced the concept of node property paths
which evaluate to a single value. Now we extend this notion to nested projection
paths which we specify in Fig. 4. Such a nested projection path describes a nested
traversal of the target graph and evaluates to a list of property value tuples. For
this, path elements are recursively evaluated. Unlike for composite expressions,
this evaluation is carried out top down. This means that the parent path element
is evaluated first and then passes a target node as an argument to its children.

For example, consider the nested projection path depicted in Fig. 5. It con-
sists of an edge followed by at nested projection to a property and a subpath
formed by a second edge and another property. If the pattern variable (start)
is matched to a node representing a person, the path evaluation traverses all
outgoing WORKSAT edges to find all companies the person worked for. For
every company and each location of the company, the evaluation creates a pair
of the company name and the location name. Each company generates at least
one pair, even if it has no ISLOCATEDIN edge. Likewise, the whole traversal
generates at least one pair, even if the person has no outgoing WORKSAT edge
(the NULL pair).

Fig. 5. Example of a nested projection path.

In the following, we discuss nested path expressions in detail, beginning with
basic traversal paths. A traversal path expression consists of a pattern variable
(start) and a sequence of path edges followed by a path property. When evalu-
ated, the path expression first determines the target node matched to its variable
and passes it as argument to the first path edge. Every subsequent path edge is
evaluated by traversing all edges of its argument node that match its type. For
each of these traversed edges, the end-node is passed as argument to the next
path edge in the sequence.

The recursion terminates at a path property or if the argument target node of
a path edge does not have any edges of the respective type. In the first case, the
result is the respective property of the target node that was passed as argument.
In the second case, the path expression returns a set containing a single NULL
value. From a relational perspective, a traversal path expresses a left outer join
over the edge relation. From a graph-theoretic perspective, it expresses a path
traversal of the target graph starting at the start node of the path expression
and using the edge types defined by the path edges. The result is the list of
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property values of the traversal path end-nodes specified by the property type
of the path property.

If one or more of the expressions forming a feature list contains a traversal
path, the one-to-one correspondence between matches and rows of the result
table becomes a one-to-many correspondence. When evaluating the feature list
for a particular match, we first evaluate all traversal path expressions. Next,
we create the cross product of the data value lists that result from the path
traversals. Finally, we create a row in the result table for every tuple in the cross
product. For this, we first replace all traversal paths in the feature expressions by
the corresponding cross product tuple element. Then we evaluate this modified
feature list for the current match.

In addition to traversal paths, we also define nested projection paths. A nested
projection path expression and its path edges may have more than one child
path elements. In this case, the result is a list of tuples which is derived by
evaluating all child elements and creating the cross product of their result lists.
Note that the result lists of the child elements may already be tuple lists. In
this case we stay in line with relational algebra and treat the tuples as shallow,
i.e., concatenate the tuples when creating the cross product (in contrast to cre-

Table 2. Notation used to specify the syntax of our query language

Construct Notation Comments

Grammar rule rule Grammar rules use lowercase letters and
underscores

Definition = Definitions are represented by a single equal
signs

Alternation ...|... Alternatives are separated using vertical bars

Grouping (...) Grouping is represented by enclosing
parentheses

Option [...] Optional parts are represented by enclosing
square brackets

Repetition ...* Zero or more repetitions are indicated by the
suffix *

Terminal symbol KEYWORD Language keywords are written in uppercase
letters

Terminal character "." Single-character language symbols are set in
double quotes

Terminal literal literal Literals represent typed string and numerical
constants

Terminal identifier identifier::id Identifiers are indicated by the suffix ::id

List abbreviation rule::list Comma-separated lists are abbreviated by the
suffix ::list.list rule = rule (","rule

)*
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ating tuples of tuples). From a relational perspective, a nested path expresses a
cross join over its child elements. From a graph-theoretic perspective, it expresses
a tree traversal of the target graph.

During evaluation, nested projection paths are treated like traversal paths,
i.e., the result lists of the nested projection paths become part of the cross
product created over the result lists of the traversal paths. However, a feature
represented by a nested projection path expression corresponds to several table
columns, one for every element in the result tuples of the nested projection
path. A nested projection paths may appear as a subexpression of a compound
expression (e.g., a function). The compound expression is evaluated for each
tuple generated by the nested path expression.

3 Graph Query Language

The syntax and semantics of our graph query language is described in this
section. It is closely aligned with the SQL standard. It uses, where possible,
SQL syntax and extends it with graph-specific features. Some of these exten-
sions can be also found in a similar form in the query language of SAP HANA
Core Data Services (CDS) [14]. We discuss three complex example queries in
Sect. 4.

To specify the syntax of our query language, we use the notation defined in
Table 2 which is inspired by the Extended Backus-Naur Form (EBNF). For the
sake of brevity, we consider identifiers and literals as additional syntax terminals
beside the traditional syntax terminals.

Listing 1.1. Overview of graph query syntax

query = SELECT ( "*"| feature ::list ) FROM variable ::list
[ USING GRAPH graph::id ] [ WHERE condition ]
[ GROUP BY expression ::list ] [ ORDER BY expression ::list ]
[ LIMIT literal ]

feature = expression [ AS expression_alias ::id ]
variable = node_type ::id [ [ AS ] variable_alias ::id ]

condition = formula | predicate | ( path IN path )

formula = ( "("condition ( AND | OR ) condition ")")
| ( "("NOT condition ")")
| ( EXISTS variable ::list WHERE "("condition ")")

predicate = ( expression comparator expression ) | ( path IS [ NOT ] NULL )
comparator = "="| "<>"| "<"| ">"| " <="| " >="| LIKE

expression = literal | arithmetic | function | path
arithmetic = "("expression ( "+"| "-"| "*"| "/") expression ")"

| "(""-"expression ")"
function = function_name "("flag::id* expression ::list ")"

path = variable ::id [ projection ]
projection = "."element | ( ".""{"element ::list "}" )
element = property ::id | ( edge_type ::id [ projection ] )

3.1 Query Structure

A graph query is a read-only operation that performs graph pattern matching
on a given target graph followed by relational evaluation to generate a primitive-
typed result table. This table can be subsequently consumed by other relational
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operators. Therefore, graph queries can in principle be embedded in and com-
bined with standard SQL queries. Syntactically, graph queries follow closely the
structure of SELECT statements in SQL. Listing 1.1 summarizes the syntax def-
inition of our graph query language.

The query language syntax provides a clear separation between the graph pat-
tern matching and the graph-relational evaluation. This is achieved by defining
each operation in different clauses (with the only overlap of the variable definition
in the FROM clause). The pattern matching is defined by the FROM, USING
GRAPH, and WHERE clauses, whereas the relational evaluation is defined by
the SELECT, FROM, GROUP BY, ORDER BY, and LIMIT clauses.

The following query finds all matches to the graph pattern shown in Fig. 3:

1 SELECT s.ID, m.CONTENT , s.WORKSAT .{NAME ,ISLOCATEDIN.NAME} AS COMPANY
2 FROM PERSON s, POST m
3 WHERE s IN m.HASCREATOR

It then evaluates for each matched person and post the nested projection path
depicted in Fig. 5. Each matched person and post together with a traversed
company and location produce a row in the result table, containing the respective
properties.

3.2 Pattern Matching

As discussed in Sect. 2.2, in graph pattern matching we compute all matches
from the node variables of a graph pattern to the nodes of a target graph that
satisfy the conditions of a given graph pattern.

The USING GRAPH clause of a graph query identifies the target graph by
its name. Thus, multiple graphs stored in a graph database can be distinguished.

The variables in the FROM clause consist of a node type and a variable
alias. Although syntactically similar to standard SQL, the semantics of these
variables differs from relational queries. In a graph query, the variables represent
the pattern variables introduced in Sect. 2.2. During the graph pattern matching,
these variables are matched to nodes in the target graph rather than to relational
tuples. Moreover, the node type of a variable declaration is already part of the
graph pattern and defines the type of the corresponding pattern node.

The main part of the graph pattern is defined in the condition part of the
WHERE clause. The syntax of formulas, predicates, expressions, and paths
directly translates to the corresponding models discussed in Sect. 2.2.

Semantically, only paths differ from standard SQL, since they are defined over
pattern variables and not over relational variables. Note that not all syntactically
correct paths are admitted at every position in a graph query. Depending on
whether the position allows for one result or a result list and for a single value
or a tuple, traversals and nested projections may be forbidden. Moreover, the
end-property of a path is optional and defaults to NODEID.

The main difference between standard SQL conditions and graph query con-
ditions is the syntax and semantics of the IN keyword. In an IN condition, the
path before the IN keyword must be a node property path. The path after the IN
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keyword has to be a traversal path. Semantically, the IN conditions are mainly
used to define the edges and the edge types of the pattern graph.

3.3 Relational Evaluation

The relational part of a graph query is defined by the SELECT, FROM, GROUP
BY, ORDER BY, and LIMIT clauses. The optional GROUP BY, ORDER BY,
and LIMIT clauses of a graph-relational evaluation follow the standard SQL syn-
tax and semantics (see Listing 1.1), generating tables as result of graph queries.

The graph-specific part of the relational evaluation is defined in the SELECT
and FROM clauses. In the previous section, we already discussed the FROM
clause and established that semantically it defines the pattern variables. The fea-
ture list syntax directly reflects and maps to the concepts introduced in Sect. 2.3.
There, we already discussed in detail the evaluation of feature lists, including
the implicit cross-join introduced by traversal paths and nested paths.

We also allow the SELECT * syntax known from standard SQL. In a graph
query, the star symbol is expanded to a feature list which contains a nested
projection path x.{NODEID, NODTYPE, P1,..., Pk} for every variable x in the
FROM clause, where P1,..., Pk are all property types for which at least one
node of the variable’s type has a non-NULL value.

Besides the graph functions defined in Table 1, function expressions can also
be classical SQL aggregates such as COUNT or AVG and arithmetic functions
such as ABS or MOD. Since the result of the graph-relational evaluation is a
table, the semantics of aggregates (in particular in conjunction with a GROUP
BY clause) carries over from standard relational queries.

4 Evaluation

In this section, we evaluate our graph query language and the GSE prototype
engine implementation using the LDBC Social Network Benchmark.

4.1 Implementation

In the following we give an overview of the GSE prototype implementation of a
graph query engine that supports major parts of our query language.

The high-level architecture of the GSE is shown in Technical Architecture
Modeling notation in Fig. 6. Application development is supported via a high-
level programming API (C/C++, Java) and a Neo4j-compatible REST-API. An
additional connector provides an integration with SAP HANA Vora [5] – a scale-
out extension of SAP HANA for massively parallel data processing integrating
with the Hadoop framework.

The core of the graph engine uses a distributed in-memory graph store which
implements the graph model shown in Fig. 1. Data adapters enable the loading
and saving of graph data from (distributed) file systems such as HDFS, and
relational tables in SAP HANA/SAP HANA Vora.



164 C. Krause et al.

GSE Core Storage

File 
System

Pattern 
Matcher

Query
Engine

Data 
Adapter

SAP HANA 
Vora Catalog

SAP HANA 
Catalog

Distributed In-Memory Graph Store

RGraph 
Algorithms

GSE API

REST

Java

C/C++

SAP 
HANA 
Vora

R

HDFS

R
D
B
M
S

R

R

R

R

R

Fig. 6. High-level GSE architecture

The query engine parses textual queries as described in Sect. 3, translates
them to pattern models (Fig. 2) and uses the pattern matcher and graph algo-
rithm implementations to execute queries (see Table 1 for supported graph func-
tions). The query execution and pattern matching are then parallelized and dis-
tributed across a cluster. The pattern matching engine is based on an encoding
into a constraint satisfaction problem [13].

4.2 LDBC Social Network Benchmark

The Linked Data Benchmark Council (LDBC) is a non-profit organization defin-
ing benchmarks for graph data management software. We use here the Social
Network Benchmark (SNB), specifically the Interactive Workload [4], consist-
ing of 29 queries which are split into three categories: complex read, short read
and update queries. This benchmark includes different “choke points” for query
engines, such as aggregation performance and data access locality. Graphs to run
this workload against can be generated with the help of a given data generator,
which produces a social network graphs of a given scale factor.

4.3 Complex Read Queries

There are 14 complex read queries in the LDBC Social Network Benchmark. Out
of these, 13 can be represented in our graph query language. Figure 7 shows three
selected queries including informal descriptions and graphical representations of
their respective pattern graphs.

In Query 9, the implicitly defined node type ANY (line 4) is used in combi-
nation with NODETYPE (lines 7–8) enabling a simple kind of node type inher-
itance. The predicate involving the DISTANCE-function (line 9) ensures that
the two PERSON nodes are connected by a KNOWS-path of length at most 2.
Note that the :KNOWS[1..2]-path in the graphical notation refers to the length
of a shortest path between the two matched nodes. The predicate s<>p is used
to selectively ensure injective matching of the two PERSON nodes.

Query 5 consists of a cyclic pattern graph. This query is also an example of a
conversion of edges with attributes to nodes and node properties (see Sect. 2.1).
The original edge HASMEMBER from PERSON to FORUM is modeled as
a node of type HASMEMBER, which contains all properties of the original
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Fig. 7. Selected queries of the LDBC Social Network Benchmark
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edge. Two auxiliary edges of types HASMEMBER IN and HASMEMBER OUT
connect the new node with the source and target nodes. Note that our Query 5
slightly differs from the original SNB query. Specifically, our query is missing an
optional match part which is currently not implemented in GSE.

Query 4 exhibits the usage of subpatterns with the help of the EXISTS-
keyword (lines 9–15). In particular, it is combined with NOT to specify a negated
graph condition. Note that graph conditions can in general be nested and com-
bined using Boolean operators.

4.4 Performance

For performance evaluation, we use generated LDBC data of scale-factor 3, which
corresponds to a graph with 23.7M nodes and 84.8M edges. Minor adaptations
of the generated data include a conversion of string-based dates into integer-
encoded timestamps. We generate property indices for the property types ID,
NAME and FIRSTNAME. The benchmarks were executed on a 24-core Intel(R)
Xeon(R) X5650 workstation at 2.67 GHz and 96 GB main memory. The total
memory consumption of the LDBC graph at scale-factor 3 is 12.5 GB.

Our benchmark is implemented as a Java application using the Java APIs
of GSE and Neo4j. We use the Community Edition of Neo4j in version 2.3.0.
The Neo4j benchmark queries are taken from [11]. Both systems were bench-
marked independently from each other on the same machine, using the same
query parameters generated by the SNB data generation tool. The queries were
executed between 20 and 50 times, depending on query complexity. To warm up
both engines, all queries were executed with randomly chosen parameters before-
hand.

Out of the 14 SNB queries, 8 queries were implemented completely. For the
queries 1, 3 and 5, the GSE implementation is currently missing some function-
ality, specifically the addition of aggregates, nested projections, and optional
pattern nodes (which, if not regularly matched, still generate a match to an
implicitly defined null-vertex without any attributes). Therefore, we used slightly
altered versions of those queries for our benchmark. Theses changes were also
reflected in the respective Cypher queries to ensure comparability of the results.
For Query 7, GSE currently lacks support for the SQL CASE-keyword, for Query
10, a DISTINCT flag for COUNT and modulo-operation. Notice, that with the
exception of optional nodes, all missing implementation belongs to the relational
part of the query and does not represent limitations of the pattern model or the
query language. Optional nodes cannot be currently expressed in the query lan-
guage (but might be by implicitly adding a special null-vertex to every host
graph). Query 14 is the only query for which a major extension of our query
language is required, since it includes shortest paths weighted by sub-patterns.

Table 3 shows the query run-times of Neo4j and GSE in milliseconds and the
respective speed-up factors. GSE is faster for all implemented queries, staying
under the one-second mark for most of them. The long running queries, partic-
ularly Query 9, yield large match sets and result tables which need to be sorted.
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Our analysis shows that the pattern matching is efficient in these queries, but
the generation of the result table and its sorting requires most of the time.

Table 3. LDBC complex read benchmark: mean of runtimes in milliseconds and speed-
up factors. Queries marked with * include minor modifications.

Query 1* 2 3* 4 5* 6 8 9 11 12 13

Neo4j 7,041 2,122 5,496 12,262 10,074 44,625 161 405,457 197 5186 5

GSE 40 195 83 105 2,468 1,325 30 13,616 12 42 2

Speed-up 174 10 66 116 4 33 5 29 16 123 2

5 Related Work

SPARQL [18] supports graph pattern matching using an RDF-triple syntax, e.g.

PREFIX LDBC: <http :// ldbcounc i l . org / deve loper /snb>
SELECT ?m ?n WHERE { ?x LDBC:NAME ?m . ?x LDBC:KNOWS ?y . ?y LDBC:NAME ?n }

Note that both edges and primitive-valued properties are described using triples.
Conditions on properties are defined using FILTER, existential quantification
using EXISTS, and alternative patterns using the UNION keyword. Further-
more, optional patterns parts can be specified using the OPTIONAL keyword.

The openCypher [10] query language uses a different query structure, e.g.

MATCH (x:PERSON)-[:KNOWS]-(y:PERSON) RETURN x.NAME , y.NAME

Alternative pattern parts are defined using UNION and optional patterns using
OPTIONAL MATCH. There is no existential quantification of patterns but
negation and collections can be used to define more complex graph conditions.
Both the SPARQL and openCypher syntax make use of SQL-keywords. How-
ever, the general query structure is too specific to be integrated with SQL. In
contrast, our query language is closely aligned to the SQL standard and therefore
enables a smooth integration with relational database systems.

The Gremlin [12] language which is part of the Apache TinkerPop project
can be characterized as a functional embedded DSL for graph traversals.

A recent performance comparison of graph and relational databases is given
in [6]. The paper shows that state-of-the-art relational databases can compete
or even exceed the performance of graph databases in certain graph pattern
matching scenarios. However, the employed benchmark uses rather simple graph
patterns without additional (nested) graph conditions.

An encoding of graph transformation rules in SQL is presented in [17]. A
graphical syntax is used for modeling the graph transformation rules. In gen-
eral, except for the limitation of being read-only, our query language provides a
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number of features that are usually not found in graph transformations, such as
distance constraints, shortest paths, and relational operations including sorting,
limits and aggregations. Note also that graph transformations usually operate
on one match, whereas our approach always considers all matches.

6 Conclusions and Future Work

We presented a novel SQL-based graph query language supporting graph pat-
tern matching with nested graph conditions [7] and distance constraints, as well
as calculation of nested projections, shortest paths and connected components.
Since it is based on SQL, the syntax for arithmetic expressions, aggregations,
sorting etc. can be reused entirely, and graph queries can be embedded as sub-
queries in relational queries. We evaluated the language features and the GSE
prototype implementation using the LDBC Social Network Benchmark.

As future work, we plan to incorporate optional matching (see [10,18]) and
concepts for shortest paths weighted by sub-patterns as required in LDBC-SNB
Query 14. We further plan to define a SQL-based graph manipulation language
formally based on amalgamated graph transformations [1]. The planned graph
manipulation language will build on the pattern matching syntax proposed in
this paper and extend it to provide the same expressive power as graph trans-
formation rules. The syntax of FROM and WHERE clauses will be reused and
extended by an UPDATE clause for specifying created and deleted graph parts,
and updates of property values. Semantically, the relational evaluation will be
replaced by an amalgamated graph transformation step. The use of graph trans-
formations is potentially enabling formal analysis techniques, such as critical
pair analysis for confluence checking [8]. For the implementation, we plan to add
nested projections and optional matching to the GSE query engine, to incorpo-
rate Bulk Synchronous Parallel [9,16] for distributed graph algorithms, and to
compare the performance of our (distributed) engine with other graph database
engines such as Sparksee and Virtuoso.
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