
Handling Silent Data Corruption
with the Sparse Grid Combination Technique

Alfredo Parra Hinojosa, Brendan Harding, Markus Hegland,
and Hans-Joachim Bungartz

Abstract We describe two algorithms to detect and filter silent data corruption
(SDC) when solving time-dependent PDEs with the Sparse Grid Combination
Technique (SGCT). The SGCT solves a PDE on many regular full grids of
different resolutions, which are then combined to obtain a high quality solution.
The algorithm can be parallelized and run on large HPC systems. We investigate
silent data corruption and show that the SGCT can be used with minor modifications
to filter corrupted data and obtain good results. We apply sanity checks before
combining the solution fields to make sure that the data is not corrupted. These
sanity checks are derived from well-known error bounds of the classical theory of
the SGCT and do not rely on checksums or data replication. We apply our algorithms
on a 2D advection equation and discuss the main advantages and drawbacks.

1 Introduction

Faults in high-end computing systems are now considered the norm rather than the
exception [13]. The more complex these systems become, and the larger the number
of components they have, the higher the frequency at which faults occur. Following
the terminology in [33], a fault is simply the cause of an error. Errors, in turn, are
categorized into three groups: (1) detected and corrected by hardware (DCE), (2)
detected but uncorrectable errors (DUE), and (3) silent errors (SE). If an error leads
to system failure, it is called masked; otherwise it is unmasked. We say that a system
failed if there is a deviation from the correct service of a system function [2].

The field of fault tolerance explores ways to avoid system failures when faults
occur. Different strategies can be followed depending on the type of fault. For
example, one might be interested in tolerating the failure of single MPI processes,

A. Parra Hinojosa (�) • H.-J. Bungartz
Technische Universität München, München, Germany
e-mail: hinojosa@in.tum.de; bungartz@in.tum.de

B. Harding • M. Hegland
Mathematical Sciences Institute, The Australian National University, Canberra, ACT, Australia
e-mail: brendan.harding@anu.edu.au; markus.hegland@anu.edu.au

© Springer International Publishing Switzerland 2016
H.-J. Bungartz et al. (eds.), Software for Exascale Computing – SPPEXA
2013-2015, Lecture Notes in Computational Science and Engineering 113,
DOI 10.1007/978-3-319-40528-5_9

187

mailto:hinojosa@in.tum.de
mailto:bungartz@in.tum.de
mailto:brendan.harding@anu.edu.au
mailto:markus.hegland@anu.edu.au

188 A. Parra Hinojosa et al.

since one process failure can cause the whole application to crash, and new parallel
libraries have been developed to handle these issues [5]. Another option is to use
Checkpoint/Restart (C/R) algorithms, where the state of the simulation is stored to
memory and retrieved in case of failure. The simulation is then restarted from the
last complete checkpoint. Alternatively, developers could make replicas of certain
critical processes as backups in case one of them fails [12].

These algorithms are usually applied when errors trigger a signal and thus can be
easily detected. But we might run into problems if the errors don’t trigger any signal.
This is the case for silent data corruption (SDC), a common type of unmasked silent
errors. SDC arises mainly in the form of undetected errors in arithmetic operations
(most prominently as bit flips) and memory corruption [33]. Although SDC is
expected to occur less often than detectable errors (such as hardware failure), one
single occurrence of SDC could lead to entirely incorrect results [10]. The frequency
at which silent errors occur has not been quantified rigorously, but evidence suggests
that they occur frequently enough to be taken seriously [33].

Previous research has focused on algorithms that deal with detectable errors
when using the SGCT [20]. We now want to understand the effect of SDC on
the SGCT when solving PDEs. Elliott et al. [11] have outlined a methodology
to model and simulate SDC, and they have described guidelines to design SDC-
resilient algorithms. We adopt their recommendations in this paper, and we now
briefly describe their main ideas.

1.1 Understanding Silent Data Corruption

Many algorithm designers start by assuming that SDC will occur exclusively in the
form of bit flips. For this reason, they have chosen to simulate SDC by randomly
injecting bit flips into an existing application, and then attempting to detect and
correct wrong data. But this can only tell us how the application behaves in average,
and one might fail to simulate the worst-case scenarios. Additionally, the exact
causes of SDC in existing and future parallel systems are still poorly understood.
For this reason we should avoid making assumptions about the exact causes of SDC.
This lack of certainty does not mean that we should not attempt to simulate SDC
(and, if possible, overcome it). On the contrary, by making no assumptions about
the exact origins and types of SDC, we can focus on what really matters in terms
of algorithm design: numerical errors. A robust algorithm should be able to handle
numerical errors of arbitrary magnitude in the data without any knowledge of the
specific sources of the error. In this way, the problem can be posed purely in terms
of numerical analysis and error bounds.

But how does one actually design robust algorithms? There are several things
to keep in mind. For instance, it is important to determine in which parts of
the algorithm we cannot afford faults to occur, and in which parts we can relax
this condition. This is called selective reliability [6]. It is also useful to identify
invariants in a numerical algorithm. Energy conservation is a typical example, as

Handling Silent Data Corruption with the Sparse Grid Combination Technique 189

well as requiring a set of vectors to remain orthogonal. These invariants can be good
places to start when searching for anomalous data. Furthermore, algorithm experts
should try to develop cheap sanity checks to bound or exclude wrong results. Our
research is largely based on this last recommendation. Finally, SDC can cause the
control flow of the algorithm to deviate from its normal behavior. Although it is
difficult to predict what this would mean for a specific application code, one can
still turn to selective reliability to make sure that vulnerable sections of the code
are dealt with properly by specifying conditions of correctness. We do not address
problems in control flow explicitly in this work, but we do mention briefly how our
algorithms could encompass this type of faults.

Many authors opt for a much more elaborate (and expensive) methodology
based on checksums. (See [33], Sect. 5.4.2 for an extensive list of examples.)
Implementing checksums even for a simple algorithm can prove a very difficult
task. A good example is the self-healing, fault-tolerant preconditioned CG algorithm
described in [8]. To perform the checksums, the authors require local diskless
checkpointing, additional checkpoint processes, and a fault-tolerant MPI implemen-
tation. The programming effort and computational costs are substantial. In many
cases checksums cannot be applied at all. Data replication can be sometimes useful
(see [9]), but it also comes at a cost. These experiences motivate the search for new
algorithmic, numerics-based solutions.

1.2 Statement of the Problem

We now want to translate these ideas into an SDC-resilient version of the Sparse
Grid Combination Technique (SGCT) algorithm, which we describe in detail in the
next section. The SGCT is a powerful algorithm that has been used to solve a wide
variety of problems, from option pricing [31] and machine learning [14] to plasma
physics [28] and quantum mechanics [16]. Our focus will be high-dimensional,
time-dependent PDEs. Full grids with high discretization resolution are usually too
computationally expensive, especially in higher dimensions. The SGCT solves the
original PDE on different coarse, anisotropic full grids. Their coarseness makes
them computationally cheap. The solutions on these coarse grids are then combined
properly to approximate the full grid solution in an extrapolation-like manner. (We
will see in Sect. 2.1 what it means to combine grids of different resolutions.) Our
main concern is the following: the solution on one (or more) of the coarse grids
might be wrong due to SDC, which can cause the final combined solution to
be wrong as well. We therefore want to implement cheap sanity checks to make
sure that wrong solutions are filtered and not considered for the combination. In a
sense, the fact that the SGCT solves the same PDE on different grids means that it
inherently shows data replication, and it is precisely this fact that we will exploit.
But before continuing our discussion of SDC we take a small detour to recall the
theory of sparse grids, and we describe the SGCT in detail.

190 A. Parra Hinojosa et al.

2 Basics of Sparse Grids

Let us first introduce some notation. To discretize the unit interval Œ0; 1� we use a
one-dimensional grid ˝l with 2l � 1 inner points and one point on each boundary
(2l C 1 points in total). This grid has mesh size hl WD 2�l and grid points xl;j WD j � hl

for 0 � j � 2l, with l 2 N D f1; 2; : : :g.
In d dimensions we use underlined letters to denote multi-indices, l D

.l1; : : : ; ld/ 2 Nd, and we discretize the d-unit cube using a d-dimensional full
grid, ˝l WD ˝l1 � � � � � ˝ld . This grid has mesh sizes

hl WD .hl1 ; : : : ; hld / WD 2�l (1)

and grid points

xl;j WD .xl1;j1 ; : : : ; xld ;jd / WD j � hl for 0 � j � 2l : (2)

Comparisons between multi-indices are done componentwise: two multi-indices i
and j satisfy i � j if ik � jk for all k 2 f1; : : : ; dg. (The same applies for similar
operators.) We will also use discrete lp-norms j � jp for multi-indices. For example,
jlj1 WD l1 C � � � C ld. Additionally, the operation i ^ j denotes the componentwise
minimum of i and j, i.e., i ^ j WD .minfi1; j1g; : : : ; minfid; jdg/. Finally, if I is a set
of multi-indices, we define the downset of I as I# WD fl 2 Nd W 9k 2 I s.t. l �
kg. The downset I# includes all multi-indices smaller or equal to all multi-indices
in I .

Suppose u.x/ 2 V � C.Œ0; 1�d/ is the exact solution of a d-dimensional PDE.
A numerical approximation of u will be denoted ui.x/ 2 Vi � V , where Vi DNd

kD1 Vik is the space of piecewise d-linear functions defined on a grid ˝i [15],

Vi WD spanf�i;j W 0 � j � 2ig : (3)

The d-dimensional hat functions �i;j are the tensor product of one-dimensional hat
functions,

�i;j.x/ WD
dY

kD1

�ik;jk .xk/ ; (4)

with

�i;j.x/ WD max.1 � j2ix � jj; 0/ : (5)

As a result, the interpolation of ui.x/ on grid ˝i can be written as

ui.x/ D
X

0�j�2i

ui;j�i;j.x/ : (6)

The coefficients ui;j 2 R are simply the height of the hat functions �i;j (see Fig. 1,
left). We call (6) the nodal representation of ui.x/, and ui;j are the nodal coefficients.

Handling Silent Data Corruption with the Sparse Grid Combination Technique 191

Fig. 1 Two different bases to interpolate a one-dimensional function using discretization level
i D 3. Left: nodal representation. We store the values of ui;j, which correspond to the height of

the nodal hat functions. Right: hierarchical basis. We store the hierarchical coefficients ˛
.i/
l;j , which

represent the increments w.r.t. the previous level l � 1. Their magnitude decreases as the level l
increases

Apart from Vi we will also consider hierarchical spaces Wl defined as

Wl WD span
˚
�l;j.x/ W j 2 Il

�
; (7)

where the index set Il is given by

Il WD ˚
j W 1 � jk � 2lk � 1; jk odd, 1 � k � d

�
: (8)

A hierarchical space Wi can be defined as the space of all functions ui 2 Vi such
that ui is zero on all grid points in the set

S
l<i ˝l [20]. The space W1 is treated

separately, since it is endowed with two additional basis functions �0;0 and �0;1 to
include the boundary conditions, as illustrated in Fig. 1.1 Using hierarchical spaces
allows us to decompose a space Vi as

Vi D
M

l�i

Wl : (9)

Equations (7), (8), and (9) tell us that each ui 2 Vi can be written alternatively as

ui.x/ D
X

l�i

hl.x/; hl.x/ 2 Wl (10)

D
X

l�i

X

j2Il

˛
.i/
l;j �l;j.x/ : (11)

1For a detailed discussion on the boundary treatment, see [30].

192 A. Parra Hinojosa et al.

This is the hierarchical representation of ui.x/, and ˛
.i/
l;j 2 R are the hierarchical

coefficients or hierarchical surpluses. This decomposition is illustrated for a 1D
function in Fig. 1 (right). The hierarchical coefficients can be directly obtained
from the values of ui at the corresponding grid points. In one dimension, they are
calculated as

˛
.i/
l;j D ui.xl;j/ � 1

2
.ui.xl;j�1/ C ui.xl;jC1//

D �� 1
2

1 � 1
2

�
l;j

ui.xl;j/ :

(12)

This operation is called hierarchization, and can be extended to d dimensions
using the one-dimensional stencil above,

˛
.i/
l;j D

dY

kD1

�� 1
2

1 � 1
2

�
lk ;jk

!

ui.xl;j/ : (13)

This is simply a transformation from the nodal to the hierarchical basis. The inverse
operation (calculating the nodal coefficients from the hierarchical coefficients) is
called dehierarchization.

If we discretize a problem on a uniform d-dimensional full grid ˝n (with mesh
size hn D 2�n in every dimension), this grid will have O.h�d

n / D O.2nd/ grid points.
This exponential dependence on n and d makes running algorithms on such grids
infeasible, a fact commonly referred to as the curse of dimensionality. Sparse grids
aim to alleviate the curse of dimensionality via a hierarchical approach [7, 15]. The
classical sparse grid space Vs

n � Vn is defined as

Vs
n WD

M

jlj1�nCd�1

Wl ; (14)

which we have illustrated in Fig. 2 for d D 2 and n D 4. A sparse grid has
O.h�1

n .log h�1
n /d�1/ points, which represents a dramatic reduction from the O.h�d

n /

WWW(111WW ,1)

WWW(1WW ,2)

WWWWWWW(4((WWWW ,3)

WWW(2WW ,2) WWW(3WW ,2)

WWWWW(2WW ,4))) WWWWW(3(3(3WW ,4)44

WWW(1WW ,3) WWW(3WW ,3)

WWW(3(3(3WW ,1)11

WWWWWWWWWWWWW(4((44WWWWWW ,4)4444))

WWW(2WW ,1)))

WWWWWWW(4WW ,2)

WWW(2WW ,3)))

Fig. 2 A sparse grid of level 4 and the hierarchical subspaces that compose it

Handling Silent Data Corruption with the Sparse Grid Combination Technique 193

discretization points required by a full grid of the same level n. However, for
functions whose mixed second derivatives are bounded, the interpolation error on
a sparse grid is in O.h2

n.log h�1
n /d�1/, only slightly larger than on a full grid, which

is in O.h2
n/ [30].

2.1 The Sparse Grid Combination Technique

Sparse grids allow us to reduce the number of degrees of freedom in a discrete
problem without sacrificing much in terms of accuracy. However, it is in general
difficult to discretize a problem on a sparse grid. Luckily, there exists a variant of
sparse grids, the Sparse Grid Combination Technique (SGCT)[17, 18], which can
overcome this problem. We illustrate the SGCT using a simple time-dependent PDE,
the linear advection equation in two dimensions plus time given by

@u

@t
C cx

@u

@x
C cy

@u

@y
D 0 ; (15)

in the unit square .x; y/ 2 Œ0; 1�2 with initial condition u.x; y; t D 0/ D
sin.2�x/ sin.2�y/ and periodic boundary conditions in x and y. The velocities cx

and cy are real positive constants. The analytical solution of (15) is u.x; y; t/ D
sin.2�.x � cxt// sin.2�.y � cyt//.

Suppose we use an explicit discretization scheme in time, such as Lax-
Wendroff [34]. In Fig. 3 (left) we have plotted the solution of (15) at time t D 0:5

with cx D cy D 0:5 using the Lax-Wendroff scheme on a grid ˝n of discretization
level n D .4; 4/ (i.e. with .24 C 1/ � .24 C 1/ points). On the right, we have done
the same but on five coarser grids of different discretization level, each of which
has four times fewer discretization points than the grid ˝.4;4/. The idea behind the
SGCT is to combine those five grids with weights C1 and �1 (as indicated in the

VVVVV(1VV ,2)22 VVVVVVVV(33333VV ,2)22))

VVVVVVV(1VV ,3)33 VVVVVVVVVVVVV(33333VV ,3)33))))

VVVVVVV(4444444VVVVVV ,1)1111))))VVVVV(33333VV ,1)11))VVV(222VV ,1)11

VVVVVVVVVVV(22222VV ,4)4444

VVVVVV(222VV ,3)33

VVVVVVVVVVV(1VV ,4)4444

VVVVVVVVVVVVVVVVVVVVVVV(4444444VVVVVVVV ,3)3333))))))

VVVVV(222VV ,2)22 VVVVVVVVVVVVVVV(4444444VVVVVV ,2)2222))))

VVVVVVVVVVVVVVVVVVVVV(333333333VV ,4)4444))))))

VVV(1VV ,1)11

= ≈ =
VVVVV(1VV ,2)22

VVVVVVV(1VV ,3)33

VVVVVVV(4444444VVVVVV ,1)1111))))VVVVV(33333VV ,1)11))

VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV(4444444444444VVVVVVVVVVVV ,4)44444444))))))))))

VVV(222VV ,1)11

VVVVVVVVVVV(1VV ,4)4444

VVVVVVVVVVVVVVVVVVVVVVV(4444444VVVVVVVV ,3)3333))))))

VVVVV(222VV ,2)22

VVVVVVVVVVVVVVVVVVVVV(333333333VV ,4)4444))))))

VVV(1VV ,1)11

Fig. 3 A classical SGCT to solve the 2D advection equation using n D .4; 4/ and � D 2 (imin D
.2; 2/). The combination of the five resulting grids results in a sparse grid approximation of the full
grid ˝.4;4/

194 A. Parra Hinojosa et al.

figure) to obtain an approximation of the solution on grid ˝.4;4/. The union of these
grids results in a sparse grid, depicted on the middle right.

The grids are usually combined either using interpolation or hierarchization. The
former means that each combination grid is interpolated to the full grid space (in
our example, ˝.4;4/) and the grids are combined together in this space. The latter
requires us to transform each solution into the hierarchical basis (using Eq. (13)),
after which the hierarchical coefficients ˛

.i/
l;j can be added directly in the sparse grid

space [23, 25].
We can now write down the classical definition of the SGCT. We approximate

the full grid solution un by a function u.c/
n as follows:

un � u.c/
n D

X

i2I
ciui : (16)

The weights ci 2 R are called combination coefficients, and each ui is a numerical
approximation of u on a coarse, anisotropic full grid ˝i. We call the ui combination
solutions, the grids ˝i combination grids, u.c/

n the combined solution, and its
corresponding grid ˝

.c/
n the combined grid (which is a sparse grid). I is a set of

multi-indices.
The approximation quality of the combined solution (16) strongly depends on

the coefficients ci and the set I , since only certain choices yield reasonable results.
One such choice is the classical combination technique given by

u.c/
n D

d�1X

qD0

.�1/q

�
d � 1

q

�

„ ƒ‚ …
Dci

X

i2In;q;�

ui : (17)

Here, the index set In;q;� is defined as

In;q;� WD fi 2 Nd W jij1 D jiminj1 C � � q and imin D n � � � 1 > 0g ; (18)

where � 2 N, and imin specifies a minimal resolution level in each dimension. The
classical combination technique depicted in Fig. 3 was generated by choosing n D
.4; 4/ and � D 2 (imin D .2; 2/), giving the combination

u.c/
n D u.2;4/ C u.3;3/ C u.4;2/ � u.2;3/ � u.3;2/ :

For a general combination of the form (16), the combination coefficients can be
calculated as

ci D
X

i�j�iC1

.�1/jj�ij�I .j/ ; (19)

where �I is the indicator function of set I [19].

Handling Silent Data Corruption with the Sparse Grid Combination Technique 195

The main advantage of the SGCT is that it approximates a full grid solution
very well by using a combination of solutions on coarse anisotropic grids. The
combination of these grids results in a sparse grid, but we avoid discretizing
our problem directly on the sparse grid, which is cumbersome and requires
complex data structures. However, by using the combination technique we have
an extra storage overhead compared to a single sparse grid, since there is some
data redundancy among the combination grids. The storage requirements of the
combination technique are of order O.d.log h�1

n /d�1/ � O.h�1
n / [30]. This data

redundancy is the key feature of the SGCT that will allow us to deal with data
corruption.

Finally, it is important to mention that the combination coefficients ci and the
index set I can be chosen in various different ways, and the resulting combinations
vary in approximation quality. This is the underlying idea behind dimension-
adaptive sparse grids [24], and their construction is inherently fault tolerant.

3 The SGCT in Parallel and Fault Tolerance
with the Combination Technique

The SGCT offers two levels of parallelism. First, since we solve the same PDE on
different grids, each solver call is independent of the rest. Second, on each grid
one can use domain decomposition (or other parallelization techniques). But if the
PDE is time-dependent we have to combine the solutions every certain number
of time steps to avoid divergence, which requires communication. The fraction of
time spent in the solver and in the communication steps depends on how often one
combines the grids. If the PDE is not time-dependent we combine only once at the
end. Algorithm 2 summarizes the main components of a parallel implementation of
the classical SGCT. It can be implemented using a master/slave scheme. The master
distributes the work and coordinates the combination of the grids. The slaves solve
the PDE on the different grids and communicate the results to the master. Most of

Algorithm 2 Classical SGCT in Parallel
1: input: A function SOLVER; maximum resolution n; parameter � ; time steps per combination Nt

2: output: Combined solution u
.c/
n

3: Generate index set In;q;� F Eq. (18)
4: Calculate combination coefficients ci F Eq. (19)
5: for i 2 In;q;� do
6: ui u.x; t D 0/ F Set initial conditions by sampling
7: while not converged do
8: for i 2 In;q;� do in parallel
9: ui SOLVER(ui ,Nt) F Solve the PDE on grid ˝i (Nt time steps)

10: ui HIERARCHIZE(ui) F Transform to hier. basis, Eq. (13)
11: u

.c/
n REDUCE(ci ui) F Combined solution (in the hier. basis)

12: u
.c/
n DEHIERARCHIZE(u.c/

n) F Transform back to nodal basis
13: for i 2 In;q;� do

14: ui SCATTER(u.c/
n) F Sample each ui from new u.c/

n

196 A. Parra Hinojosa et al.

the time and computational resources are spent on the calls to the actual PDE solver,
line 9.

We are currently working on a massively parallel implementation of the
SGCT [22]. It is a C++ framework that can call existing PDE solvers (e.g.
DUNE [3]) and apply the SGCT around them. To develop such an environment,
three major issues have to be carefully taken into consideration:

1. Load balancing. The work load (calculating all combination solutions ui, line 9)
has to be distributed properly among the computing nodes. The time to solution
of each ui depends on the number of unknowns and the anisotropy of each grid
˝i. This problem has been studied in [21].

2. Communication. After performing Nt time steps, the different ui have to be
combined, which requires communication (line 11). The combined solution u.c/

n

is used as initial condition for the next Nt time steps for all combination solutions
ui (line 14), and this also requires communication. Efficient communication
patterns for the SGCT have been studied in detail in [26]. The problem of
determining how often the grids should be combined is still under investigation,
since the frequency depends on the specific PDE.

3. Fault tolerance. In light of increasing hardware and software faults, the Fault
Tolerant Combination Technique (FTCT) has been developed [20]. It has been
applied to plasma physics simulations and proved to scale well when hard faults
occur [1, 29]. This is the area where our group contributes to the C++ framework.

All three points raise interesting algorithmic questions, but since the third plays a
central role in our discussion of SDC, we should add a few words about it. In Fig. 4
(left) we depict a classical SGCT with n D .5; 5/ and � D 3 (imin D .2; 2/). Suppose
the system encounters a fault during the call to solver. As a result, one or more
combination solutions ui will be lost. In Fig. 4 (left) we have assumed that solution
u.4;3/ has been lost due to a fault. Instead of recomputing this lost solution, the FTCT
attempts to find alternative ways of combining the successfully calculated solutions,
excluding the solutions lost due to faults. The possible alternative combinations are
almost as good as the original combination. In Fig. 4 (right) we see an alternative
combination that excludes solution u.4;3/, using instead solution u.3;2/. But notice
that u.3;2/ was not part of the original set of solutions. The main idea of the FTCT
is to compute some extra solutions beforehand (such as u.3;2/) and use them only
in case of faults. This results in a small extra overhead, but it has been shown to
scale [20]. In the original SGCT we solve the PDE on grids ˝i with index i 2 In;q;�

for q D 0; : : : ; d � 1, Eq. (17). The FTCT extends this set to include the indices that
result from setting q D d; dC1. We call this set I ext

n;q;� . The combination coefficients
ci that correspond to these extra solutions are set to zero if no faults occur and can
become nonzero if faults occur.

Handling Silent Data Corruption with the Sparse Grid Combination Technique 197

Fig. 4 Example of FTCT with n D .5; 5/ and � D 3. The original index set I.5;5/;q;3 is extended
with the additional sets I.5;5/;2;3 D f.2; 3/; .3; 2/g and I.5;5/;3;3 D f.2; 2/g, and the additional
solutions are used only in case of faults

3.1 SDC and the Combination Technique

If SDC occurs at some stage of Algorithm 2, it is most likely to happen during
the call to the solver, line 9, which is where most time is spent. This means that
the solver could return a wrong answer, and this would taint the combined solution
u.c/

n during the combination (reduce) step in line 11. Since the combination step is a
linear operation, the error introduced in the combined solution would be of the same
magnitude of the affected combination solution. Additionally, if the convergence
criterion in line 7 has not been met, the scatter step would propagate the spurious
data to all other combination solutions, potentially ruining the whole simulation.

To simulate an occurrence of SDC we follow an approach similar to [10]. Let us
first assume that SDC only affects one combination solution ui, and that only one of
its values ui.xi;j/ is altered in one of the following ways:

1. Qui.xi;j/ D ui.xi;j/ � 10C5 (very large)2

2. Qui.xi;j/ D ui.xi;j/ � 10�0:5 (slightly smaller)
3. Qui.xi;j/ D ui.xi;j/ � 10�300 (very small)

This fault injection is performed only once throughout the simulation,3 at a given
time step. Altering only one value of one combination solution is a worst-case
scenario, since a solution with many wrong values should be easier to detect. If the
wrong solution is not detected, the wrong data would propagate to other grids during

2The authors in [10] use a factor of 10C150 to cover all possible orders of magnitude, but we choose
10C5 simply to keep the axes of our error plots visible. The results are equally valid for 10C150.
3The assumption that SDC occurs only once in the simulation is explained in [10].

198 A. Parra Hinojosa et al.

the scatter step. In our tests we also simulated additive errors of various magnitudes,
as well as random noise, and the results did not offer new insights. We thus focus
on multiplicative errors in what follows.

If we want to make sure that all ui have been computed correctly, we should
introduce sanity checks before the combination step (between lines 10 and 11).
These checks should not be problem-dependent, since the function solver could
call any arbitrary code. Although it is not possible in general to know if a
given combination solution ui is correct, we have many of them (typically tens or
hundreds), each with a different discretization resolution. We can therefore use this
redundant information to determine if one or more solutions have been affected by
SDC. We know that all ui should look similar, since they are all solutions of the same
PDE. The question is how similar? Or equivalently, how different can we expect an
arbitrary pair of combination solutions (say us and ut) to be from each other? If two
solutions look somehow different we can ask if such a difference falls within what
is theoretically expected or not. The theory of the SGCT provides a possible answer
to this question.

Early studies of the SGCT show that convergence can be guaranteed if each ui

satisfies the error splitting assumption (ESA) [18], which for arbitrary dimensions
can be written as [19]

u � ui D
dX

kD1

X

fe1;:::;ekg�f1;:::;dg

Ce1;:::;ek .x; hie1
; : : : ; hiek

/hp
ie1

� � � hp
iek

; (20)

where p 2 N and each function Ce1;:::;ek .x; hie1
; : : : ; hiek

/ depends on the coordinates
x and on the different mesh sizes hi. Additionally, for each fe1; : : : ; ekg � f1; : : : ; dg
one has jCe1;:::;ek .x; hie1

; : : : ; hiek
/j � �e1;:::;ek .x/, and all �e1;:::;ek are bounded by

�e1;:::;ek .x/ � �.x/. Equation (20) is a pointwise relation, i.e. it must hold for all
points x independently, which can be seen by the explicit dependence of each
function Ce1;:::;ek on x.

In one dimension (d D 1), the ESA is simply

u � ui D C1.x1; hi/h
p
i ; jC1.x1; hi/j � �1.x1/ : (21)

From (12) it follows that the hierarchical coefficients also satisfy the ESA

˛l;j � ˛
.i/
l;j D D1.xl;j; hi/h

p
i ; jD1.xl;j; hi/j � 2�1.xl;j/ ; (22)

where ˛l;j is the exact hierarchical coefficient at point xl;j.
Similarly, in two dimensions we have

u � ui D C1.x1; x2; hi1 /h
p
i1

C C2.x1; x2; hi2 /h
p
i2

C C1;2.x1; x2; hi1 ; hi2 /h
p
i1

hp
i2

: (23)

Handling Silent Data Corruption with the Sparse Grid Combination Technique 199

There are univariate contributions from each dimension and a cross term that
depends on both dimensions. Analogously, for the hierarchical coefficients we have

˛l;j � ˛
.i/
l;j D D1.xl;j; hi1 /h

p
i1

C D2.xl;j; hi2 /h
p
i2

C D1;2.xl;j; hi1 ; hi2 /h
p
i1

hp
i2

; (24)

with jD1j � 4�1.xl;j/, jD2j � 4�2.xl;j/, and jD1;2j � 4�1;2.xl;j/. This follows
from (13).

Now suppose we take two arbitrary combination solutions us and ut in two
dimensions. If these two solutions satisfy the ESA it is straightforward to show
that the difference of their corresponding hierarchical coefficients satisfies

˛
.t/
l;j � ˛

.s/
l;j D D1.xl;j; ht1 /h

p
t1 C D2.xl;j; ht2 /h

p
t2 C D1;2.xl;j; ht1 ; ht2 /h

p
t1hp

t2

� D1.xl;j; hs1/h
p
s1

� D2.xl;j; hs2/h
p
s2

� D1;2.xl;j; hs1 ; hs2 /h
p
s1

hp
s2

:
(25)

Clearly, this equation holds only for the hierarchical spaces common to both grids
˝s and ˝t, i.e. for all Wl with .1; 1/ � l � s ^ t. Equation (25) tells us that
the difference between the hierarchical coefficients of two combination solutions
depends mainly on two things: (1) how coarse or fine the grids are, and (2) the
distance jt � sj1, which tells us whether grids ˝s and ˝t have similar discretization
resolutions. The former can be observed by the explicit dependence on ht and hs,
dominated by the univariate terms. The latter means that if two grids have similar
discretizations, the terms in (25) will tend to cancel each other out. Equation (25) is
(pointwise) bounded by

ˇ
.s;t/
l;j WD j˛.t/

l;j �˛
.s/
l;j j � 4 ��.xl;j/ � .hp

t1 Chp
s1

Chp
t2 Chp

s2
Chp

t1 hp
t2 Chp

s1
hp

s2
/; l � s^ t :

(26)

This result can help us to detect SDC, as we soon show.
Our goal is to implement Algorithm 3. A sanity check is done before the

combination step (line 11). This is where we attempt to detect and filter wrong

Algorithm 3 FTCT with sanity checks for SDC
1: input: A function SOLVER; maximum resolution n; parameter � ; time steps per combination Nt

2: output: Combined solution u
.c/
n

3: Generate extended index set I ext
n;q;�

4: Calculate combination coefficients ci F Eq. (19)
5: for i 2I ext

n;q;� do in parallel
6: ui u.x; t D 0/ F Set initial conditions by sampling
7: while not converged do
8: for i 2I ext

n;q;� do in parallel
9: ui SOLVER(ui ,Nt) F Solve the PDE on grid ˝i (Nt time steps)

10: ui HIERARCHIZE(ui) F Transform to hier. basis, Eq. (13)
11: fisdcg SDCSANITYCHECK({ui }) F Check for SDC in all ui
12: if fisdcg not empty then F Did SDC affect any ui?
13: fcig COMPUTENEWCOEFFS(fisdc g) F Update combination coeffs.
14: u

.c/
n REDUCE(ci ui) F Combined solution (in the hier. basis)

15: u
.c/
n DEHIERARCHIZE(u.c/

n) F Transform back to nodal basis
16: for i 2I ext

n;q;� do

17: ui SCATTER(u.c/
n) F Sample each ui from new u

.c/
n

200 A. Parra Hinojosa et al.

combination solutions, based on (26). If we are able to detect whether one or more
combination solutions are wrong, we can apply the FTCT, treating wrong solutions
in the same way as when hard faults occur, finding a new combination of solutions
that excludes them, see Fig. 4. We now describe two possible implementations of
the function sdcSanityCheck.

3.2 Sanity Check 1: Filtering SDC via Comparison
of Pairs of Solutions

The first possible implementation of a simple sanity check is to apply (26) directly:
we compare pairs of solutions us and ut in their hierarchical basis and make sure that
the bound (26) is fulfilled. If one of the solutions is wrong due to SDC, the quantity
ˇ

.s;t/
l;j will be large and the bound might not be fulfilled, indicating that something is

wrong. Unfortunately, the constant �.xl;j/ in the bound is in fact a function of space
and is problem-dependent. This means that it has to be approximated somehow at
all points xl;j, which is not trivial. It is only possible to estimate it once the solutions
ui have been calculated, but this is done assuming that all ui have been computed
correctly. Of course, this assumption does not hold if SDC can occur.

Despite these disadvantages, it is still possible to use bound (26) to detect and
filter SDC. First, note that the function �.xl;j/ decays exponentially with increasing
level l. This is due to the fact that the hierarchical coefficients ˛l;j themselves decay
exponentially with l (see Fig. 1, right). For a simple interpolation problem they
behave as [7]

j˛l;jj � 2�d �
�

2

3

�d=2

� 2�.3=2/�jlj1 � ��D2.ujsupp �l;j/
�
�

L2
; (27)

with D2.u/ WD @4u
@x2

1@x2
2

. We can account for this exponential decay by normalizing the

quantity ˇ
.s;t/
l;j as follows:

Ǒ.s;t/
l;j WD j˛.t/

l;j � ˛
.s/
l;j j

min
n
j˛.t/

l;j j; j˛.s/
l;j j
o for all l � s ^ t; 0 � j � 2l : (28)

If no SDC occurs, j˛.s/
l;j j and j˛.t/

l;j j should be very similar, so it does not matter which
of the two we use for the normalization. But if SDC occurs and their difference is
large, dividing by the smaller one will amplify this difference. We can then take the
largest Ǒ.s;t/

l;j over all grid points xl;j,

Ǒ.s;t/ WD max
l�s^t

max
j2Il

Ǒ.s;t/
l;j : (29)

Handling Silent Data Corruption with the Sparse Grid Combination Technique 201

Algorithm 4 Sanity check via comparison of solutions
1: input: The set of all combination solutions {ui} (in the hierarchical basis)
2: output: The set of indices corresponding to the solutions affected by SDC,
3: fisdcg
4: function SDCSANITYCHECK({ui })
5: for all pairs .us; ut/ with s; t 2I ext

n;q;� do

6: Compute Ǒ.s;t/ F Eq. (29)
7: if Ǒ.s;t/ too large then
8: Mark pair .s; t/ as corrupted
9: From list of corrupted pairs .s; t/, determine corrupted grids fisdcg

10:
11: Returnfisdcg

Pair Ǒ.s;t/

(7, 9) (7, 8) 8.71e+04
(7, 8) (9, 7) 4.95e+04
(8, 7) (7, 7) 2.50e-02
(7, 9) (8, 8) 3.67e-02
(7, 7) (8, 8) 4.91e-02
(8, 7) (8, 8) 2.50e-02
(7, 9) (8, 7) 6.03e-02
(7, 9) (7, 7) 3.76e-02
(9, 7) (7, 7) 3.76e-02
(9, 7) (8, 8) 3.67e-02
(7, 8) (7, 7) 5.01e+04
(8, 7) (7, 8) 4.97e+04
(8, 7) (9, 7) 1.24e-02
(7, 9) (9, 7) 7.24e-02
(7, 8) (8, 8) 8.68e+04

This quantity simply gives us the largest (normalized) difference between two
combination solutions in the hierarchical basis, and it does not decay exponentially
in l. Our goal is to keep track of this quantity, expecting it to be small for all pairs
of combination solutions. If this is not the case for a specific pair .us; ut/ we can
conclude that one solution (or both) was not computed correctly during the call to
the function solver.

Algorithm 4 summarizes this possible implementation of the function sdc-
SanityCheck. The table on the right illustrates what the function generates
for a simple implementation of a 2D FTCT. We solved once again the advection
equation (15) for t D 0:25 and 129 time steps, with cx D cy D 0:5. The FTCT
parameters used where n D .9; 9/ and � D 2, which results in six combination
grids. We injected SDC of small magnitude (case 2 from the previous section) into
one of the combination grids at the very last time step. The table shows a list of all
pairs .s; t/ and the calculated value of Ǒ.s;t/. Some pairs have unusually large values
of Ǒ.s;t/, shown in boldface. It should be evident that solution u.7;8/ has been affected
by SDC, being the only one appearing in all five pairs marked as corrupted.

There remains one unanswered question: which values of Ǒ.s;t/ should be
considered and marked as “too large” (lines 7 and 8)? We discussed that it is difficult
to calculate a specific value for the upper bound (26), since �.xl;j/ is problem-
dependent. But we might not need to. We simply need to recognize that some values
of Ǒ.s;t/ are disproportionately large compared to the rest. The values highlighted in
the table are indeed clear outliers, and the wrong solution can be identified. The idea
of detecting outliers leads us to our second implementation of sdcSanityCheck.

202 A. Parra Hinojosa et al.

3.3 Sanity Check 2: Filtering SDC via Outlier Detection

So far we have used two facts about the combination technique to be able to deal
with SDC. First, although we cannot tell in general if one single combination
solution has been computed correctly, we know that all combination solutions
should look somewhat similar. And second, this similarity can be measured, and
the difference between two solutions cannot be arbitrarily large, since it is bounded.

Consider the value of the combined solution u.c/
n at an arbitrary grid point xl;j of

the combined grid ˝
.c/
n . This value, u.c/

n .xl;j/, is obtained from the combination of the
different solutions ui that include that grid point (with the appropriate combination
coefficients). For every grid point xl;j there is always at least one combination
solution ui that includes it, and at most jI j such grids. For example, all combination
grids ui include the grid points with l D 1 (x1;j, corresponding to subspace W1). In
other words, we have jI j solutions of the PDE at the grid points x1;j. Let’s call
Nl D 1; : : : ; jI j the number of combination solutions ui that contain the grid points
xl;j. We expect the different versions of a point u.c/

n .xl;j/ to be similar, but with slight
variations. This variance is given by

VarŒu.c/
n .xl;j/� D 1

Nl

X

l0�l

�
ul0.xl;j/ � EŒu.c/

n .xl;j/�
	2

; l; l0 2 I ; (30)

since a grid point xl;j can be found in all combination solutions ul0 with l0 � l (see

Eq. (9)). The mean value of u.c/
n .xl;j/ over all combination solutions is defined as

EŒu.c/
n .xl;j/� D 1

Nl

X

l0�l

ul0.xl;j/ : (31)

Since we have been working in the hierarchical basis, the variance of the value at
point xl;j in this basis is given by

VarŒ˛.c/
n .xl;j/� D 1

Nl

X

l0�l

˛

.l0/
l;j � EŒ˛.c/

n .xl;j/�
�2

: (32)

This quantity is in fact bounded, due to (26), by

VarŒ˛.c/
n .xl;j/� D 1

2N2
l

X

s�l

X

t�l

˛

.s/
l;j � ˛

.t/
l;j

�2

� 8 � �2.xl;j/

N2
l

X

s�l

X

t�l
t¤s

g2.hp
s ; hp

t / ; (33)

with g.hp
s ; hp

t / WD hp
t1 C hp

s1
C hp

t2 C hp
s2

C hp
t1hp

t2 C hp
s1

hp
s2

.

Handling Silent Data Corruption with the Sparse Grid Combination Technique 203

Equation (33) tells us that if we observe how the solution of our PDE at point
xl;j varies among the different combination solutions, the variance will not be
arbitrarily large. This gives us a second way to perform a sanity check to filter
SDC, summarized in Algorithm 5. Using the fact that the variance of each point
is bounded, we can apply existing algorithms from robust statistics to find outliers
among the different versions of each point. The algorithms used are described in
Sect. 4.1. This allows us to filter solutions with unusually large variation and we can
be certain that the rest of the solutions has been computed correctly. Just as we did in
the first implementation of sdcSanityCheck, we do not need to find a value for
the upper bound of the variance (33), but simply to detect unusually large variations.

There is one special case to consider. What happens for subspaces Wl for which
we only have one version of the solution (Nl D 1)? These are the grid points found
in the highest hierarchical subspaces (largest l). In the very unfortunate case where
one of these values is wrong and the fault does not propagate to neighboring points,
we have no other values with which to compare it and thus it cannot be filtered
with this approach (nor with the previous). A possible way to detect such errors
can be deduced from the fact that the hierarchical coefficients should decrease
exponentially in magnitude with increasing level l (Eq. (27)). This means that the
coefficients on the highest hierarchical subspace should be very small compared to
the rest. We verified this exponential decay for our advection problem as well as for
the more complex plasma simulation code GENE [27]. One can try to verify that the
hierarchical coefficients at the highest level are smaller than those at a lower level,
say, m levels lower,

j˛.l/
l;j j < j˛.l/

l�m�ek;jj : (34)

The direction ek should be chosen preferably to be the most finely discretized one
(i.e. that for which lk is largest, which will be large in exascale simulations). For
our experiments, m D 3 worked well. This check could return false positives if
lower coefficients are small, so more robust checks could be useful. Note, however,
that this check is not even necessary for the combination solutions with the finest
discretization, since the combination step would not propagate the fault to other
combination solutions. This further reduces the significance of this special case.

Algorithm 5 Sanity check via outlier detection
1: input: The set of all combination solutions {ui} (in the hierarchical basis)
2: output: The set of indices corresponding to the solutions affected by SDC, fisdcg
3: function SDCSANITYCHECK({ui })
4: for all grid points xl;j in ˝

.c/
n do in parallel

5: ˛Œl0 � GATHER(˛.l0 /

l;j) for all l0 � l
6: if any OUTLIER_TEST(˛Œl0 �) then
7: Add outlier l0 to set of corrupted indices fisdcg
8: return fisdcg

204 A. Parra Hinojosa et al.

4 Numerical Tests

4.1 Experimental Setup

We implemented Algorithm 3 with both types of sanity checks (Algorithms 4 and 5)
in Python for our 2D advection equation (15) with cx D cy D 1. Despite this being a
toy problem, the algorithms presented are general enough to be applied to any PDE
solver for which the SGCT converges. In other words, if a PDE can be solved using
the SGCT, our sanity checks are guaranteed to work, thanks to the error splitting
assumption (20). The function solver is a Lax-Wendroff solver, which has order
two in space and time. For the FTCT we use a maximum resolution n D .9; 9/

and � D 3 (giving imin D .6; 6/). This results in a classical index set In;q;� with 7
elements and an extended set I ext

n;q;� with 10 elements. We calculate the solution at
time t D 0:5 using 512 total time steps for all combination solutions, which ensures
that the CFL condition is met. We combine the solutions twice during the simulation
(reduce step), once at the middle (after 256 time steps) and at the end (after 512
time steps).

For this discussion we use only the second version of the function sdcSanity-
Check (detecting outliers), since we found it to be more robust and to have more
potential for parallelization. In particular, the gather step can be combined with
the reduce step, so we would only need to communicate once instead of twice.
And second, this gather+reduce step can be performed efficiently using the
algorithm Subspace Reduce [26] with small modifications.

All simulations presented here were carried out serially. To detect if any

of the hierarchical coefficients ˛
.l0/
l;j is an outlier, we used the Python library

statsmodels [32], specifically, the function outlier_test from the module
linear_model. As of version 0.7.0 the function implements seven outlier
detection methods, all of which performed very similarly. For our tests we chose
method=’fdr_by’ which is based on a false discovery rate (FDR) method
described in [4]. We consider a grid to be affected by SDC if at least one of its
values is detected as an outlier.

4.2 Results

In Fig. 5 we have plotted six sets of simulation results. Each set has an iteration
number (from 0 to 511) on the x-axis, which represents the time step in the function
solver at which SDC was injected. This means that each of the six plots shows
512 different simulations. On the y-axis we have plotted the L2 relative error of
the combined solution u.c/

n with respect to the exact solution at the end of each
simulation. The three rows of plots show the different magnitudes of the SDC (105,
10�0:5, and 10�300). For all simulations, the wrong value was injected into the same
combination solution, u.7;8/. (Choosing different solutions made no difference in the

Handling Silent Data Corruption with the Sparse Grid Combination Technique 205

0 100 200 300 400 500
10−5
10−4
10−3
10−2
10−1
100
101
102
103
104
105
106

ũi(xl1,j1, xl2,j2) = ui(xl1,j1, xl2,j2) × 105

0 100 200 300 400 500
10−5

10−4

10−3

10−2

10−1

100
101

ũi(xl1,j1, xl2,j2) = ui(xl1,j1, xl2,j2) × 10−0.5

0 100 200 300 400 500

Timestep where fault occurs, lowest hierarchical subspace

10−5

10−4

10−3

10−2

10−1

100
101

ũi(xl1,j1, xl2,j2) = ui(xl1,j1, xl2,j2) × 10−300

0 100 200 300 400 500
10−5
10−4
10−3
10−2
10−1
100
101
102
103
104
105
106

ũi(xl1,j1, xl2,j2) = ui(xl1,j1, xl2,j2) × 105

0 100 200 300 400 500
10−5

10−4

10−3

10−2

10−1

100
101

ũi(xl1,j1, xl2,j2) = ui(xl1,j1, xl2,j2) × 10−0.5

0 100 200 300 400 500

Timestep where fault occurs, highest hierarchical subspace

10−5

10−4

10−3

10−2

10−1

100
101

ũi(xl1,j1, xl2,j2) = ui(xl1,j1, xl2,j2) × 10−300

Full Grid CT, no SDC CT, with SDC CT, recovered

Fig. 5 L2 relative error of the FTCT when SDC of various magnitudes are injected into one
combination solution

results.) Finally, the plots on the left differ from those on the right by the choice
of the grid point where SDC was injected. Recall that each combination solution ui

is transformed to the hierarchical basis after the call to the solver (line 10). If the
solver returns a ui with wrong values, the hierarchization step can propagate these
wrong values to various degrees depending on which grid point(s) were affected. For
the three plots on the left we injected SDC on the lowest hierarchical level (more
precisely, in the middle of the domain), whereas for the plots on the right, the wrong
value was inserted on one point of the highest hierarchical level (right next to the
middle of the domain).

The blue line on each plot is the error of the full grid solution u.9;9/; the green

dotted line is the error of the combined solution u.c/
n when no SDC is injected; each

red dot represents the error of the combined solution when SDC has been injected
and not filtered; and the blue crosses are the error of the combined solution after
detecting and filtering the wrong solution (u.7;8/) and combining the rest of the grids
with different coefficients.

As discussed earlier, the error of the combined solution is proportional to the
error of the wrong combination solution. In all but one of the 6 � 512 D 3072

simulations the wrong solution was detected and filtered. This was the case when
SDC of magnitude 10�0:5 was injected on the lowest hierarchical subspace during
the last iteration, because the value of the solution of the PDE at that point is very
close to zero. (Recall that the exact solution is a product of sine functions, so it
is equal to zero at various points.) This is also true during (roughly) the first and
last ten iterations, and from the plots we can see that the outlier detection method
as we applied it is too sensitive. Even when SDC is barely noticeable (thus not
affecting the quality of the combined solution), it is still detected, and the recovered

206 A. Parra Hinojosa et al.

solution (blue crosses) can actually be slightly worse than the solution with SDC
(red circles). This is actually not too bad, since the error of the recovered combined
solution is always very close to that of the unaffected combined solution, and we
consider it a very unlikely worst-case scenario. This no longer happens if the value
affected by SDC is not originally very close to zero. Some fine-tuning can be done to
make the outlier detection method less sensitive. (Outlier detection functions usually
involve a sensitivity parameter that can be varied.)

Whether SDC affects a point on the lowest hierarchical subspace or the highest
makes almost no difference, but this is problem-dependent. In a different experi-
ment, we added a constant to the initial field so that the solution is nowhere close
to zero. This resulted in a higher error when SDC was injected in a low hierarchical
subspace. One can also see that faults occurring in early iterations result in a larger
error at the end. (Notice the small step in the blue crosses at iteration 256.)

There were some simulation scenarios where the wrong combination solution
was not properly filtered, or when correct combination solutions were wrongly
filtered. This happened when the minimum resolution of the SGCT (imin) was too
small. For our problem, the choice imin � .5; 5/ was large enough for the outlier
detection algorithms to work properly. As long imin is chosen large enough, both the
SGCT and the sanity checks work as expected.

Finally, if SDC causes alterations in the control flow of the program, two
scenarios are possible (assuming once again that the fault occurs when calling the
solver): either the solver returns a wrong solution or does not return at all. The first
case can be treated by our algorithms. The second case can either translate into a
hard fault (i.e., an error signal is produced—and this can be dealt with) or cause the
solver to hang indefinitely. We plan to investigate this last scenario in the future.

Despite these fine-tuning issues, our approach offers several advantages over
existing techniques. We do not implement any complicated checksum schemes;
there is no checkpointing involved at any memory level; and there is no need to
replicate MPI processes nor data. We simply make use of the existing redundancy
in the SGCT to either calculate a norm or to look for outliers. These two algorithms
are inexpensive and should not be difficult to implement in parallel. We plan to
investigate robust, parallel implementations in future work, as well as to carry out
further experiments.

5 Conclusions

The SGCT and its fault tolerant version, the FTCT, offer an inherent type of
data redundancy that can be exploited to detect SDC. Assuming that one or
more combination solutions can be affected by SDC of arbitrary magnitude, one
can perform sanity checks before combining the results. The sanity checks work
even in the worst-case scenario where only one value in one field is affected
by a factor of arbitrary magnitude. These recovery algorithms do not require
checkpointing. Existing outlier detection techniques from robust statistics can be

Handling Silent Data Corruption with the Sparse Grid Combination Technique 207

directly incorporated into the FTCT, which requires only minimal modifications.
Only some fine-tuning is required to minimize false positives or negatives, but
this algorithmic approach avoids the drawbacks of the alternative techniques. We
plan to demonstrate the applicability of these algorithms in massively large parallel
simulations in the near future.

Acknowledgements This work was supported in part by the German Research Foundation (DFG)
through the Priority Programme 1648 “Software for Exascale Computing” (SPPEXA). We thank
the reviewers for their valuable comments. A. Parra Hinojosa thanks the TUM Graduate School
for financing his stay at ANU Canberra, and acknowledges the additional support of CONACYT,
Mexico.

References

1. Ali, M.M., Strazdins, P.E., Harding, B., Hegland, M., Larson, J.W.: A fault-tolerant gyrokinetic
plasma application using the sparse grid combination technique. In: Proceedings of the
2015 International Conference on High Performance Computing & Simulation (HPCS 2015),
pp. 499–507. IEEE, Amsterdam (2015)

2. Avižienis, A., Laprie, J.C., Randell, B., Landwehr, C.: Basic concepts and taxonomy of
dependable and secure computing. IEEE Trans. Dependable Secure Comput. 1(1), 11–33
(2004)

3. Bastian, P., Blatt, M., Dedner, A., Engwer, C., Klöfkorn, R., Ohlberger, M., Sander, O.: A
generic grid interface for parallel and adaptive scientific computing. Part I: abstract framework.
Computing 82(2–3), 103–119 (2008)

4. Benjamini, Y., Yekutieli, D.: The control of the false discovery rate in multiple testing under
dependency. Ann. Stat. 29(4), 1165–1188 (2001)

5. Bland, W., Bouteiller, A., Herault, T., Bosilca, G., Dongarra, J.J.: Post-failure recovery of MPI
communication capability: design and rationale. Int. J. High Perform. Comput. Appl. 27(3),
244–254 (2013)

6. Bridges, P.G., Ferreira, K.B., Heroux, M.A., Hoemmen, M.: Fault-tolerant linear solvers via
selective reliability. Preprint arXiv:1206.1390 (2012)

7. Bungartz, H.J., Griebel, M.: Sparse grids. Acta Numer. 13, 147–269 (2004)
8. Chen, Z., Dongarra, J.: Highly scalable self-healing algorithms for high performance scientific

computing. IEEE Trans. Comput. 58(11), 1512–1524 (2009)
9. van Dam, H.J.J., Vishnu, A., De Jong, W.A.: A case for soft error detection and correction in

computational chemistry. J. Chem. Theory Comput. 9(9), 3995–4005 (2013)
10. Elliott, J., Hoemmen, M., Mueller, F.: Evaluating the impact of SDC on the GMRES iterative

solver. In: 2014 IEEE 28th International Parallel and Distributed Processing Symposium,
pp. 1193–1202. IEEE (2014)

11. Elliott, J., Hoemmen, M., Mueller, F.: Resilience in numerical methods: a position on fault
models and methodologies. Preprint arXiv:1401.3013 (2014)

12. Ferreira, K., Stearley, J., Laros III, J.H., Oldfield, R., Pedretti, K., Brightwell, R., Riesen, R.,
Bridges, P.G., Arnold, D.: Evaluating the viability of process replication reliability for exascale
systems. In: Proceedings of 2011 International Conference for High Performance Computing,
Networking, Storage and Analysis, p. 44. ACM (2011)

13. Fiala, D., Mueller, F., Engelmann, C., Riesen, R., Ferreira, K., Brightwell, R.: Detection
and correction of silent data corruption for large-scale high-performance computing. In:
Proceedings of the International Conference on High Performance Computing, Networking,
Storage and Analysis, p. 78. IEEE Computer Society Press (2012)

208 A. Parra Hinojosa et al.

14. Garcke, J.: A dimension adaptive sparse grid combination technique for machine learning.
ANZIAM J. 48, 725–740 (2007)

15. Garcke, J.: Sparse grids in a nutshell. In: Garcke, J., Griebel, M. (eds.) Sparse Grids and
Applications. Lecture Notes in Computational Science and Engineering, pp. 57–80. Springer,
Berlin/Heidelberg (2013)

16. Garcke, J., Griebel, M.: On the computation of the eigenproblems of hydrogen and helium
in strong magnetic and electric fields with the sparse grid combination technique. J. Comput.
Phys. 165(2), 694–716 (2000)

17. Griebel, M.: The combination technique for the sparse grid solution of PDE’s on multiproces-
sor machines. Parallel Process. Lett. 2, 61–70 (1992)

18. Griebel, M., Schneider, M., Zenger, C.: A combination technique for the solution of sparse
grid problems. In: Iterative Methods in Linear Algebra, pp. 263–281. IMACS, Elsevier, North
Holland (1992)

19. Harding, B.: Adaptive sparse grids and extrapolation techniques. In: Sparse Grids and
Applications. Lecture Notes in Computational Science and Engineering, pp. 79–102. Springer,
Cham (2015)

20. Harding, B., Hegland, M., Larson, J., Southern, J.: Fault tolerant computation with the sparse
grid combination technique. SIAM J. Sci. Comput. 37(3), C331–C353 (2015)

21. Heene, M., Kowitz, C., Pflüger, D.: Load balancing for massively parallel computations with
the sparse grid combination technique. In: PARCO, pp. 574–583. IOS Press, Garching (2013)

22. Heene, M., Pflüger, D.: Scalable algorithms for the solution of higher-dimensional PDEs.
In: Proceedings of the SPPEXA Symposium. Lecture Notes in Computational Science and
Engineering. Springer, Garching (2016)

23. Heene, M., Pflüger, D.: Efficient and scalable distributed-memory hierarchization algorithms
for the sparse grid combination technique. In: Parallel Computing: On the Road to Exascale,
Advances in Parallel Computing, vol. 27, pp. 339–348. IOS Press, Garching (2016)

24. Hegland, M.: Adaptive sparse grids. ANZIAM J. 44, C335–C353 (2003)
25. Hupp, P.: Performance of unidirectional hierarchization for component grids virtually maxi-

mized. Procedia Comput. Sci. 29, 2272–2283 (2014)
26. Hupp, P., Jacob, R., Heene, M., Pflüger, D., Hegland, M.: Global communication schemes for

the sparse grid combination technique. Adv. Parallel Comput. 25, 564–573 (2013). IOS Press
27. Jenko, F., Dorland, W., Kotschenreuther, M., Rogers, B.N.: Electron temperature gradient

driven turbulence. Phys. Plasmas 7(5), 1904–1910 (2000). http://www.genecode.org/
28. Kowitz, C., Hegland, M.: The sparse grid combination technique for computing eigenvalues in

linear gyrokinetics. Procedia Comput. Sci. 18, 449–458 (2013)
29. Parra Hinojosa, A., Kowitz, C., Heene, M., Pflüger, D., Bungartz, H.J.: Towards a fault-tolerant,

scalable implementation of gene. In: Recent Trends in Computational Engineering – CE2014.
Lecture Notes in Computational Science and Engineering, vol. 105, pp. 47–65. Springer, Cham
(2015)

30. Pflüger, D.: Spatially Adaptive Sparse Grids for High-Dimensional Problems. Verlag Dr. Hut,
München (2010)

31. Reisinger, C., Wittum, G.: Efficient hierarchical approximation of high-dimensional option
pricing problems. SIAM J. Sci. Comput. 29(1), 440–458 (2007)

32. Seabold, S., Perktold, J.: Statsmodels: econometric and statistical modeling with python. In:
Proceedings of the 9th Python in Science Conference, pp. 57–61 (2010). http://statsmodels.
sourceforge.net/

33. Snir, M., Wisniewski, R.W., Abraham, J.A., Adve, S.V., Bagchi, S., Balaji, P., Belak, J., Bose,
P., Cappello, F., Carlson, B., et al.: Addressing failures in exascale computing. Int. J. High
Perform. Comput. Appl. 28, 129–173 (2014)

34. Winter, H.: Numerical advection schemes in two dimensions (2011). www.lancs.ac.uk/~
winterh/advectionCS.pdf

http://www.genecode.org/
http://statsmodels.sourceforge.net/
http://statsmodels.sourceforge.net/
www.lancs.ac.uk/~winterh/advectionCS.pdf
www.lancs.ac.uk/~winterh/advectionCS.pdf

	Handling Silent Data Corruption with the Sparse Grid Combination Technique
	1 Introduction
	1.1 Understanding Silent Data Corruption
	1.2 Statement of the Problem

	2 Basics of Sparse Grids
	2.1 The Sparse Grid Combination Technique

	3 The SGCT in Parallel and Fault Tolerance with the Combination Technique
	3.1 SDC and the Combination Technique
	3.2 Sanity Check 1: Filtering SDC via Comparison of Pairs of Solutions
	3.3 Sanity Check 2: Filtering SDC via Outlier Detection

	4 Numerical Tests
	4.1 Experimental Setup
	4.2 Results

	5 Conclusions
	References

