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Abstract Substantial modifications of both the choice of the grids, the combination
coefficients, the parallel data structures and the algorithms used for the combination
technique lead to numerical methods which are scalable. This is demonstrated by
the provision of error and complexity bounds and in performance studies based on a
state of the art code for the solution of the gyrokinetic equations of plasma physics.
The key ideas for a new fault-tolerant combination technique are mentioned. New
algorithms for both initial- and eigenvalue problems have been developed and are
shown to have good performance.

1 Introduction

The solution of moderate- to high-dimensional PDEs (larger than four dimensions)
comes with a high demand for computational power. This is due to the curse of
dimensionality, which manifests itself by the fact that very large computational grids
are required even for moderate accuracy. In fact, the grid sizes are an exponential
function of the dimension of the problem. Regular grids are thus not feasible
even when future exascale systems are to be utilized. Fortunately, hierarchical
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discretization schemes come to the rescue. So-called sparse grids [53] mitigate the
curse of dimensionality to a large extent.

Nonetheless, the need for HPC resources remains. The aim of two recent
projects, one (EXAHD) within the German priority program “Software for exascale
computing” and one supported through an Australian Linkage grant and Fujitsu
Laboratories of Europe, has been to study the sparse grid combination technique
for the solution of moderate-dimensional PDEs which arise in plasma physics for
the simulation of hot fusion plasmas. The combination technique is well-suited for
such large-scale simulations on future exascale systems, as it adds a second level
of parallelism which admits scalability. Furthermore, its hierarchical principle can
be used to support algorithm-based fault tolerance [38, 46]. In this work, we focus
on recent developments with respect to the theory and application of the underlying
methodology, the sparse grid combination technique.

The sparse grid combination technique utilizes numerical solutions u.�/ of
partial differential equations computed for selected values of the parameter vector
� which controls the underlying grids. As the name suggests, the method then
proceeds by computing a linear combination of the component solutions u.�/:

uI D
X

�2I

c� u.�/ : (1)

Computationally, the combination technique thus consists of a reduction oper-
ation which evaluates the linear combination of the computationally independent
components u.�/. A similar structure is commonly found in data analytic problems
and is exploited by the Map Reduce method. Since the inception of the combination
technique, parallel algorithms were studied which made use of the computational
structure [15, 18, 19]. The current work is based on the same principles as these
earlier works, see [2, 24, 25, 28, 31, 32, 38–40, 48].

The combination technique computes a sparse grid approximation without
having to implement complex sparse grid data structures. The result is a proper
sparse grid function. In the case of the interpolation problem one typically obtains
the exact sparse grid interpolant but for other problems (like finite element solutions)
one obtains an approximating sparse grid function. Mathematically, the combination
technique is an extrapolation method, and the accuracy is established using error
expansions, see [5, 44, 45]. However, specific error expansions are only known for
simple cases. Some recent work on errors of the sparse grid combination technique
can be found in [16, 20, 21, 47]. The scarcity of theoretical results, however,
did not stop its popularity in applications. Examples include partial differential
equations in fluid dynamics, the advection and advection-diffusion equation, the
Schrödinger equation, financial mathematics, and machine learning, see, e.g., [8–
13, 17, 41, 51]. However, as the combination technique is an extrapolation method,
it is inherently unstable and large errors may occur if the error expansions do not
hold. This is further discussed in [30] where also a stabilized approach, the so-called
Opticom method, is analyzed. Several new applications based on this stabilized



Theory and Application of the Combination Technique 145

approach are discussed in [1, 7, 23, 26, 35, 51, 52]. Other non-standard combination
approximations are considered in [4, 35, 37, 43].

The main application considered in the following deals with the solution of the
gyrokinetic equations by the software code GENE [14]. These equations are an
approximation for the case of a small Larmor-radius of the Vlasov equations for
densities fs of plasmas,

@fs
@t
C v � @fs

@x
C qs

ms
.EC v � B/ � @fs

@v
D 0 : (2)

The densities are distribution functions over the state space and E and B are the
electrostatic and electromagnetic fields (both external and induced by the plasma),
v is the velocity and x the location. The fields E and B are then the solution of the
Maxwell equations for the charge and current densities defined by

�.x; t/ D
X

s

qs

Z
fs.x; v; t/ dv; and j.x; t/ D

X

s

qs

Z
fs.x; v; t/vdv : (3)

While the state space has 6 dimensions (3 space and 3 velocity), the gyrokinetic
equations reduce this to 5 dimensions. The index s numbers the different species
(ions and electrons). The numerical scheme uses both finite differences and spectral
approximations. As complex Fourier transforms are used, the densities fs are
complex.

In Sect. 2 a general combination technique suitable for our application is
discussed. In this section the set I occurring in the combination formula (1)
uniquely determines the combination coefficients c� in that formula. Some parallel
algorithms and data structures supporting the sparse grid combination technique are
presented in Sect. 3. In order to stabilize the combination technique, the combination
coefficients need to be modified and even chosen dependent on the solution. This is
covered in Sect. 4. An important application area relates to eigenvalue problems in
Sect. 5, where we cover challenges and algorithms for this problem.

2 A Class of Combination Techniques

Here we call a combination technique a method which is obtained by substituting
some of the hierarchical surpluses by zero. This includes the traditional sparse grid
combination technique [19], the truncated combination technique [4], dimension
adaptive variants [10, 29] and even some of the fault tolerant methods [24]. The
motivation for this larger class is that often the basic error splitting assumption—
which can be viewed as an assumption about the surplus—does not hold in these
cases. We will now formally define this combination technique.

We assume that we have at our disposition a computer code which is able to
produce approximations of some real or complex number, some vector or some
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function. We denote the quantity of interest by u and assume that the space of all
possible u is a Euclidean vector space (including the numbers) or a Hilbert space
of functions. The computer codes are assumed to compute a very special class of
approximations u.�/ which in some way are associated with regular d-dimensional
grids with step size hi D 2��i in the i-th coordinate. For simplicity we will assume
that in principle our code can compute u.�/ for any � 2 Nd

0. Furthermore, u.�/ 2
V.�/ where the spaces V.�/ � V are hierarchical, such that V.˛/ � V.ˇ/ when
˛ � ˇ (i.e. where ˛i � ˇi for all i D 1; : : : d). For example, if V D R then so are all
V.�/ D R. Another example is the space of functions with bounded (in L2) mixed
derivatives V D H1

mix

�
Œ0; 1�d

�
. In this case one may choose V.�/ to be appropriate

spaces of multilinear functions.
The quantities of interest include solutions of partial differential equations,

minima of convex functionals and eigenvalues and eigenfunctions of differential
operators. They may also be functions or functionals of solutions of partial
differential equations. They may be moments of some particle densities which
themselves are solutions to some Kolmogorov, Vlasov, or Boltzmann equations.
The computer codes may be based on finite difference and finite element solvers,
least squares and Ritz solvers but could also just be interpolants or projections. In
all these cases, the combination technique is a method which combines multiple
approximations u.�/ to get more accurate approximations. Of course the way how
the underlying u.�/ are computed will have some impact on the final combination
approximation.

The combination technique is fundamentally tied to the concept of the hierarchi-
cal surplus [53] which was used to introduce the sparse grids. However, there is a
subtle difference between the surplus used to define the sparse grids and the one
at the foundation of the combination technique. The surplus used for sparse grids
is based on the representation of functions as a series of multiples of hierarchical
basis functions. In contrast, the combination technique is based on a more general
decomposition. It is obtained from the following result which follows from two
lemmas in chapter 4 of [22].

Proposition 1 (Hierarchical surplus) Let V.�/ be linear spaces with � 2 Nd
0 such

that V.˛/ � V.ˇ/ if ˛ � ˇ and let u.�/ 2 V.�/. Then there exist w.˛/ 2 V.˛/

such that

X

˛��

w.˛/ D u.�/ : (4)

Moreover, the w.�/ are uniquely determined and one has

w.˛/ D
X

�2B.˛/

.�1/j˛�� j u.�/ (5)

where B.˛/ D f� � 0 j ˛ � 1 � � � ˛g and 1 D .1; : : : ; 1/ 2 Nd.
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The set of � is countable and the proposition is proved by induction over this set.
Note that the equations are cumulative sums and the solution is given in the form
of a finite difference. For the case of d D 2 and � � .2; 2/ one gets the following
system of equations:

2
66666666666664

u.2; 2/

u.1; 2/

u.2; 1/

u.0; 2/

u.1; 1/

u.2; 0/

u.0; 1/
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u.0; 0/

3
77777777777775
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: (6)

Note that all the components of the right hand side and the solution are elements
of linear spaces. The vector of w.˛/ is for the example:
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: (7)

For any set of indices I � Nd
0 we now define the combination technique as any

method delivering the approximation

uI D
X

˛2I

w.˛/ : (8)

In practice, the approximation uI is computed directly from the u.�/. The
combination formula is directly obtained from Proposition 1 and one has

Proposition 2 Let uI D P
˛2I w.˛/ where w.˛/ is the hierarchical surplus for the

approximations u.�/. Then there exists a subset I0 of the smallest downset which
contains the set I and some coefficients c� 2 Z for � 2 I0 such that

uI D
X

�2I0

c� u.�/ : (9)



148 M. Hegland et al.

Furthermore, one has

c� D
X

˛2C.�/

.�1/j��˛j�I.˛/ (10)

where C.�/ D f˛ j � � ˛ � � C 1g and where �I.˛/ is the characteristic function
of I.

The proof of this result is a direct application of Proposition 1, see also [22]. For
the example d D 2 and n D 2 one gets

uC
n D u.0; 2/C u.1; 1/C u.2; 0/� u.0; 1/� u.1; 0/ : (11)

Note the coefficients c� D 1 for the finest grids, c� D �1 for some grids
which are slightly coarser and c� D 0 for all the other grids. There are both
positive and negative coefficients. Indeed, the results above can also be shown to
be a consequence of the inclusion-exclusion principle. One can show that if 0 2 I
then

P
�2I c� D 1.

An implementation of the combination technique will thus compute a linear
combination of a potentially large number of component solutions u.�/. One thus
requires two steps, first the independent computation of the components u.�/ and
then the reduction to the combination uI . Thus the computations require a collection
of computational clusters which are loosely connected. This is a great advantage
on HPC systems as the need for global communication is significantly reduced to a
loose coupling.

Many variants of the combination technique are obtained using the technique
introduced above. They differ by their choice of the summation set I. The classical
combination technique utilizes

I D f˛ j j˛j � nC d � 1g : (12)

Many variants are subsets of this set. This includes the truncated sparse grids [3,
4] defined by

I D# f˛ j j˛j � nC d � 1; ˛ � ˇg (13)

where # is the operator producing the smallest downset containing the operand.
Basically the same class is considered in [49] (there called partial sparse grids):

I D# f˛ j j˛j � nC jˇj � 1; ˛ � ˇg (14)

for some ˇ � 1. Sparse grids with faults [24] include sets of the form

I D f˛ j j˛j � nC d � 1; ˛ ¤ ˇg (15)
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for some ˇ with jˇj D n. Finally, one may consider the two-scale combination with

I D
d[

kD1

f˛ j ˛ � n01C nkekg (16)

where ek is the standard k-th basis vector in Rd. This has been considered in [3] for
the case of n0 D nk D n. Another popular choice is

I D f˛ j j supp ˛j � kg : (17)

This corresponds to a truncated ANOVA-type decomposition. An alternative
ANOVA decomposition is obtained by choosing ˇ.k/ with j supp ˇ.k/j D k and
setting

I D
d[

kD1

f˛ j ˛ � ˇ.k/g : (18)

The sets I are usually downsets, i.e., such that ˇ 2 I if there exists an ˛ 2 I
such that ˇ � ˛. Note that any downset I especially contains the zero vector. The
corresponding vector space V.0/ typically contains the set of constant functions.

We will now consider errors. First we reconsider the error of the u.�/. In terms
of the surpluses, one has from the surplus decomposition of u.�/ that

e.�/ D u � u.�/ D
X

˛ 6��

w.˛/ : (19)

Let Is.�/ D f˛ j ˛s > �sg: Then one has

f˛ 6� �g D
d[

sD1

Is.�/ (20)

as any ˛ which is not less or equal to � contains at least one element ˛s > �s. We
now define

I.� I �/ D
\

s2�

Is.�/ (21)

for any non-empty subset � � f1; : : : ; dg. A direct application of the inclusion-
exclusion principle then leads to the error splitting

e.�/ D
X

;¤��f1;:::;dg
.�1/j� j�1z.�; �/ (22)
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where

z.�; �/ D
X

˛2I.� I�/

w.˛/ : (23)

This is an ANOVA decomposition of the approximation error of u.�/. From this
one gets the result

Proposition 3 Let uI DP
�2I0 c� u.�/ and the combination coefficients c� be such

that
P

�2I c� D 1. Then

u � uI D
X

;¤��f1;:::;dg
.�1/j� j�1

X

�2I0

c� z.�; �/ : (24)

Proof This follows from the discussion above and because 0 2 I one has

u � uI D
X

�2I0

c� e.�/ : (25)

ut
An important point to note here is that this error formula does hold for any

coefficients c� , not just the ones defined by the general combination technique. This
thus leads to a different way to choose the combination coefficients which results in
a small error. We will further discuss such choices in the next section. Note that for
the general combination technique the coefficients are uniquely determined by the
set I. In this case one has a complete description of the error using the hierarchical
surplus

eI D
X

˛ 62I

w.˛/ : (26)

In summary, we have now two strategies to design a combination approximation:
one may choose either

• the set I which contains all the w.˛/ which are larger than some threshold
• or the combination coefficients such that the sums

P
˛2I.�;�/ c� z.�; �/ are small.

One approach is to select the w.˛/ adaptively, based on their size so that

I D f˛ j kw.˛/k � �g : (27)

Such an approach is sometimes called dimension adaptive to distinguish it from the
spatially adaptive approach where grids are refined locally. One may be interested
in finding an approximation for some u.�/, for example, for � D .n; : : : ; n/. In this
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case one considers

I D f˛ � � j kw.˛/k � �g (28)

and one has the following error bound:

Proposition 4 Let I D f˛ � � j kw.˛/k � �g and u.�/ � uI be the error of the
combination approximation based on the set I relative to u.�/. Then one has the
bound

ku.�/� uIk �
dY

iD1

.�i C 1/ � : (29)

The result is a simple application of the triangle inequality and the fact that

jIj D
dY

iD1

.�i C 1/ : (30)

In particular, one has if all �i D n:

ku.�/� uIk � .nC 1/d� : (31)

While this bound is very simple, it is asymptotically (in n and d) tight due to the
concentration of measure. Note also, that a similar bound for the spatially adaptive
method is not available. An important point to note is that this error bound holds
always, independently of how good the surplus is at approximating the exact result.
For � D .n; : : : ; n/ one can combine the estimate of Proposition 4 with a bound on
u � u.�/ to obtain

ku � uIk � ku � u.�/k C ku.�/ � uIk � K 4�n C .nC 1/d� : (32)

One can then choose n which minimizes this for a given � by balancing the two
terms. Conversely, for a given n the corresponding � is given by �n D .nC1/�dK4�n.
In Fig. 1 we plot �n=K against ku�uIk=K for several different d to demonstrate how
the error changes with the threshold.

While the combination approximation is the sum of the surpluses w.˛/ over all
˛ 2 I, the result only depends on a small number of u.�/ close to the maximal
elements of I. In particular, any errors of the values u.˛/ for small ˛ have no effect
for approximations based on larger ˛. Thus when doing an adaptive approximation,
the earlier errors are forgotten.

Finally, if one has a model for the hierarchical surplus, for example, if it is of the
form

kw.˛/k � 4�j˛jy.˛/ (33)
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Fig. 1 Scaled error against
threshold

for some bounded y.˛/ then one can get specific error bounds for the combination
technique, in particular the well-known bounds for the classical sparse grid tech-
nique. In this case one gets kw.˛/k � K4�j˛j if one chooses j˛j � n as for the
classical combination technique. One can show that the terms in the error formula
for the components u.�/ satisfy

kz.�; �/k �
�

4

3

�d

4� P
j�j
sD1.��s C1/K : (34)

3 Algorithms and Data Structures

In this section we consider the parallel implementation of the combination technique
for partial differential equation solvers. For large-scale simulations, for example as
being the final target for the EXAHD project in the second phase, even a single
component grid (together with the data structures to solve the underlying PDE on
it) will not fit into the memory of a single node any more. Furthermore, the storage
of a full grid representation of a sparse grid will exceed the predicted RAM of a
whole exascale machine. Furthermore, the communication overhead across a whole
HPC systems’ network cannot be neglected. In this section we will assume that the
component grids u.�/ are implemented as distributed regular grids. In a first stage
we consider the case where the combined solution uI is also a distributed regular
grid. Later we will then discuss distributed sparse grid data structures.

The combination technique is a reduction operation combining the components
according to Eq. (1). This reduction is based on the sum u0  u0Ccu of a component
u (we omit the parameters � for simplicity) to the resulting combination u0 (or uI).
Assume that the u and u0 are distributed over P and P0 processors, respectively.

The direct SGCT algorithm involves for each of the component processes sending
all its points of u to the respective combination process. This is denoted as the
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Fig. 2 Gather and scatter steps

gather stage. In a second stage, the combination processes then first interpolates
the gathered points to the combination grid u before adding them. In a third stage,
the scatter stage, the data on each combination process is sampled and the samples
sent to the corresponding component processes, see Fig. 2.

In the direct SGCT algorithm, the components and combination are represented
by the function values on the grid points or coefficients of the nodal basis. We have
also considered a hierarchical SGCT algorithm which is based on the coefficients
of the hierarchical basis which leads to a hierarchical surplus representation. When
the direct SGCT algorithm is applied to these hierarchical surpluses there is no need
for interpolation, and the sizes of the corresponding surplus vectors are exactly the
same for both the components and the combination. However, for performance,
it is necessary to coalesce the combination of surpluses as described in [49].
As the largest surpluses only occur for one component they do not need to be
communicated. Despite the savings in the hierarchical algorithm, we found that
the direct algorithm is always faster than the hierarchical, and it scales better with
both n, d and the number of processes (cores). This does however require that
the representation of the combined grid u0 is sparse, as is described below. We
also found that the formation of the hierarchical surpluses (and its inverse) took a
relatively small amount of time, and concluded that, even when the data is originally
stored in hierarchical form, it is faster to dehierarchize it, apply the direct algorithm
and hierarchize it again [49].

New adapted algorithms and implementations have been developed with optimal
communication overhead, see Fig. 3 (left) and the corresponding paper in this
proceedings [27]. The gather–scatter steps described above have to be invoked
multiple times for the solution of time-dependent PDEs. (We found that for
eigenvalue problems it is often sufficient to call the gather–scatter only once,
see the Sect. 5.) In any case, the gather–scatter step is the only remaining global
communication of the combination technique and thus has to be examined well. In
previous work [31] we have thus analyzed communication schemes required for the
combination step in the framework of BSP-models and developed new algorithmic
variants with communication that is optimal up to constant factors. This way, the
overall makespan volume, the maximal communicated volume, can be drastically
reduced with a slightly increased number of messages that have to be sent.
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Fig. 3 Distributed hierarchical combination with optimal communication overhead (left) and run-
time results on Hazel Hen (right) for different sizes of process groups (local parallelism with
nprocs processors). The results measure only the communication (local C global) and distributed
hierarchization, not the computation. The saturation for large numbers of component grids is due
to the logarithmic scaling of the global reduce step for large numbers of process groups and up to
180,224 processors in total. In comparison, the time for a single time step with GENE for a process
group size of 4096 is shown, see [27] in this proceedings for further details

A distributed sparse grid data structure is described in [49]. The index set I for
this case is a variant of a truncated sparse grid set, see Eq. (14). Recall that the sparse
grid points are obtained by taking the union of all the component grid points. As the
number of sparse grid points is much less than the number of full grid points it
makes sense to compute only the combinations for the sparse grid points. A sparse
grid data structure has been developed which is similar to the CSR data structure
used for sparse matrices. In this case one stores both information about the value u
at the grid point and the location of the grid point. Due to the regularity of the sparse
grid this can be done efficiently.

With optimal communication, distributed data structures and corresponding
algorithms, excellent scaling can be obtained for large numbers of process groups
as shown in Fig. 3 (right) on Hazel Hen, which includes local algorithmic work to
hierarchize, local communication and global communication. See the corresponding
paper in this proceedings [27].

4 Modified Combination Coefficients

Here we consider approximations which are based on a vector .u.�//�2I of
numerical results. It has been seen, however, that the standard way to choose the
combination coefficients is not optimal and may lead to large errors. In fact one
may interpret the truncated combination technique as a variant where some of the
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coefficients have been chosen to be zero and the rest adapted. In the following we
provide a more radical approach to choosing the coefficients c� . An advantage of
this approach is that it does not depend so much on properties of the index set I, in
fact, this set does not even need to be a downset.

A first method was considered in [30, 52] for convex optimization problems.
Here, let the component approximations be

u.�/ D argminfJ.v/ j v 2 V.�/g : (35)

Then the Opticom method, a Ritz approximation over the span of given u.�/

computes

uO D argmin

8
<

:J.v/ j v D
X

�2I

c� u.�/

9
=

; : (36)

Computationally the Opticom method consists of the determination of minimiza-
tion of a convex function P.c/ of jIj variables of the form

˚.c/ D J

0

@
X

�2I

c� u.�/

1

A (37)

to get the combination coefficients. Once they have been determined, the approxi-
mation uO is then computed as in the Sects. 2 and 3. By design, one has J.uO/ �
J.u.�// for all � 2 I. If I gives rise to a combination approximation uC then
one also has J.uO/ � J.uC/. A whole family of other convex functions ˚.c/

for the combination coefficients were considered in [30]. Using properties of the
Bregman divergence, one can derive error bounds and quasi-optimality criteria for
the Opticom method, see [52].

A similar approach was suggested for the determination of combination coeffi-
cients for faulty sets I. Let I be any set and I0 be the smallest downset which contains
I. Then let the w.˛/ be the surpluses computed from the set of all u.�/ for � 2 I
and ˛ 2 I0. Finally, let the regular combination technique be defined as

uR D
X

˛2I0

w.˛/ (38)

and let for any c� a combination technique be

uC D
X

�2I

c� u.�/ : (39)
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Then the difference between the new combination technique and the regular
combination technique is

uC � uR D
X

�2I

c� u.�/�
X

˛2I0

w.˛/

D
X

�2I

c�

X

˛��

w.˛/ �
X

˛2I0

w.˛/

D
X

˛2I0

w.˛/

0

@
X

�2I.˛/

c� � 1

1

A

(40)

where I.˛/ D f� 2 I j � � ˛g. Using the triangle inequality one obtains

kuC � uRk � ˚.c/ (41)

with

˚.c/ D
X

˛2I0

�.˛/

ˇ̌
ˇ̌
ˇ̌

X

�2I.˛/

c� � 1

ˇ̌
ˇ̌
ˇ̌ ; (42)

where � is such that kw.˛/k � �.˛/. Minimizing the ˚.c/ thus seems to lead to
a good choice of combination coefficients, and this is confirmed by experiments
as well [22]. The resulting combination technique forms the basis for a new fault-
tolerant approach which has been discussed in [24].

5 Computing Eigenvalues and Eigenvectors

Here we consider the eigenvalue problem in V where one would like to compute
complex eigenvalues 	 and the corresponding eigenvectors u such that

L u D 	u ; (43)

where L is a given linear operator defined on V . We assume we have a code which
computes approximations 	.�/ 2 C and u	.�/ 2 V.�/ of the eigenvalues 	 and the
corresponding eigenvectors u. We have chosen to discuss the eigenvalue problem
separately as it does exhibit particular challenges which do not appear for initial and
boundary value problems.

Consider now the determination of the eigenvalues 	. Note that one typically
has a large number of eigenvalues for any given operator L. First one needs to
decide which eigenvalue to compute. For example, if one is interested in stability of
a system, one would like to determine the eigenvalue with the largest real part. It is
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possible to use the general combination technique, however, one needs to make sure
that the (non-zero) combination coefficients c� used are such that the eigenvectors
of L.�/ contain approximations of the eigenvector u which is of interest. However,
computing the surplus 
.˛/ for the eigenvalues 	.�/ and including all the ones
which satisfy j
.˛/j � � for some � would be a good way to make sure that we
get a good result. Furthermore, the error bound given in Sect. 2 does hold here. As
any surplus 
.˛/ does only depend on the values 	.�/ for � close to ˛ any earlier
	.�/ with a large error will not influence the final result. Practical computations
confirmed the effectiveness of this approach, see [34]. If one knows which spaces
V.�/ produce reasonable approximations for the eigenvector corresponding to some
eigenvalue 	 then one can define a set I.	/ containing only those � . Combinations
over I.�/ will then provide good approximations of 	. (However, as stated above,
the combination technique is asymptotically stable against wrong or non-existing
eigenvectors.)

Computing the eigenvectors faces the same problem one has for computing the
eigenvalues. In addition, however, one has an extra challenge as the eigenvectors
are only determined up to some complex factor. In particular, if one uses the
eigenvectors u.�/ to compute the surplus functions w.˛/ one may get very wrong
results. One way to deal with this is to first normalize the eigenvectors. For this
one needs a functional s 2 V�. One then replaces the u.�/ by u.�/=hs; u.�/i when
computing the surplus, i.e., one solves the surplus equations

X

˛��

w.˛/ D u.�/

hs; u.�/i (44)

and computes the combination approximation as

uI D
X

�2I

c�

u.�/

hs; u.�/i : (45)

In practice, this did give good results and it appears reasonable that bounds on
the so computed surplus provide a foundation for the error analysis. In any case the
error bound of the adaptive method holds. Actually, this bound even holds when
the eigenvectors are not normalized. The advantage of the normalization is really
that the number of surpluses to include are much smaller—i.e. a computational
advantage. Practical experiments also confirmed this. It remains to be shown that
error splitting assumptions are typically invariant under the scaling done above.

5.1 An Opticom Approach for Solving the Eigenvalue Problem

An approach to solving the eigenvalue problem which does not require scaling has
been proposed and investigated by Kowitz and collaborators [34, 36]. The approach
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is based on a minimization problem which determines combination coefficients in a
similar manner as the opticom method in Sect. 3. It is assumed that I is given and the
u.�/ for � 2 I have been computed and solve L.�/u.�/ D 	.�/u.�/. Let the matrix
G D Œu.�/��2I and the vector c D Œc� �T�2I , then the combination approximation for
the eigenvector can be written as the matrix-vector product

Gc D
X

�2I

c� u.�/ : (46)

This eigenvalue problem can be solved by computing

.c; 	/ D argminc;	 kLGc � 	Gck (47)

with the normal equations

.LG � 	G/�.LG � 	G/c D 0 (48)

for the solution of c. Osborne et al. [33, 42] solved this by considering the problem

�
K.	/ t

s� 0

� �
c
ˇ

�
D

�
0

1

�
(49)

with K.	/ D .LG�	G/�.LG�	G/. Here 	 is a parameter. One obtains the solution

ˇ.	/ D �hs�; K.	/�1ti�1 (50)

for which one then uses Newton’s method to solve ˇ.	/ D 0 with respect to 	. With
ˇ.	/ D 0 it follows that K.	/c D 0 and hs�; ci D 1. Thus one obtains a normalized
solution of the nonlinear eigenvalue problem (i.e., where 	 occurs in a nonlinear
way in K.	/).

Another approach for obtaining the least squares solution is its interpretation as
an overdetermined eigenvalue problem. Das et al. [6] developed an algorithm based
on the QZ decomposition which allows the computation of the eigenvalue and the
eigenvector in O.mn/ complexity, where n D jIj and m D jVj.

The approaches have both been investigated for a simple test problem (see left
of Fig. 4) and for large eigenvalue computations with GENE (see right of Fig. 4).
The combination approximations (though computed serially here) can be usually
obtained faster than the full grid approximations. Note that the run-times here
have been obtained in a prototypical implementation before the development of
the scalable algorithms described in Sect. 3. For large problems, the combination
approximation can be expected to be even significantly faster as the combination
technique exhibits a better parallel scalability than the full grid solution. For further
details, see [34, 36].
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Fig. 4 The convergence of the Newton iteration towards the root of ˇ.	/ for the simple test
problem (left) and the time for obtaining the combination approximation t.c/ compared to the time
to compute an eigenpair on a full grid of similar accuracy t.ref/ for linear GENE computations
(right)

5.2 Iterative Refinement and Iterative Methods

Besides the adaptation of the combination coefficients, the combination technique
for eigenvalue problems can also be improved by refining the u.�/ iteratively.
Based on the iterative refinement procedure introduced by Wilkinson [50], the
approximation of the eigenvalue 	I and the corresponding eigenvector uI can be
improved towards 	 and u with corrections �	 and �u by

u D uI C�u 	 D 	I C�	 : (51)

Putting this into 0 D Lu � 	u, the corrections can be obtained by solving

0 D LuI � 	IuI ��	uI C L�u � 	I�u; (52)

where the quadratic term �	�u is neglected. This system is underdetermined. An
additional scaling condition hs�; �ui D 0 with s 2 V ensures that the correction �u
does not change the magnitude of uI . Solving the linear system

�
L � 	II uI

s� 0

� �
�u
�	

�
D

�
	IuI � LuI

0

�
; (53)

we obtain the corrections �	 and �u. The linear operator L has a large rank
and its inversion is generally infeasible for high-dimensional settings. Nevertheless
computing a single matrix vector product LuI is feasible, so that the right-hand side
is easily computed. In the framework of the combination technique the corrections
�u and �	 are computed on each subspace V.�/. Therefore, the residual r D
Lu � 	u and the initial combination approximation uI are projected on V.�/

using suitable prolongation operators [18]. The corrections �u.�/ and �	.�/ are
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computed on each subspace V.�/ by solving

�
L.�/ � 	I I uI.�/

s�.�/ 0

� �
�u.�/

�	.�/

�
D

��r.�/

0

�
: (54)

Here, the significantly smaller rank of L.�/ allows the solution of the linear system
with feasible effort. The corrections from each subspace V.�/ are then combined
using the standard combination coefficients c� by

�uI D
X

�2I

c��uI.�/ �	I D
X

�2I

c��	I.�/ : (55)

After adding the correction to uI and 	I , the process can be repeated up to marginal
�	I and �uI .

Instead of using the standard combination coefficients c� , we can also adapt the
combination coefficients in order to minimize the residual r. The minimizer

.�u; �	/ D argminc kr � 	IuI C L�uI � 	I�uI ��	IuIk (56)

is then the best combination of the corrections. Both approaches have been tested
for the Poisson problem as well as GENE simulations. For details see [34].

6 Conclusions

Early work on the combination technique revealed that it leads to a suitable method
for the solution of simple boundary value problems on computing clusters. The
work presented here demonstrated, that if combined with strongly scalable solvers
for the components, one can develop an approach which is suitable for exascale
architectures. This was investigated for the plasma physics code GENE which was
used to solve initial and eigenvalue problems and stationary solutions. In addition to
the 2 levels of parallelism exhibited by the combination technique, the flexibility of
the choice of the combination coefficients led to a totally new approach to algorithm-
based fault tolerance which further enhanced the scalability of the approach.
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