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Abstract The parallel performance of several classical Algebraic Multigrid (AMG)
methods applied to linear elasticity problems is investigated. These methods include
standard AMG approaches for systems of partial differential equations such as the
unknown and hybrid approaches, as well as the more recent global matrix (GM) and
local neighborhood (LN) approaches, which incorporate rigid body modes (RBMs)
into the AMG interpolation operator. Numerical experiments are presented for both
two- and three-dimensional elasticity problems on up to 131,072 cores (and 262,144
MPI processes) on the Vulcan supercomputer (LLNL, USA) and up to 262,144
cores (and 524,288 MPI processes) on the JUQUEEN supercomputer (JSC, Jülich,
Germany). It is demonstrated that incorporating all RBMs into the interpolation
leads generally to faster convergence and improved scalability.

1 Introduction

Classical Algebraic Multigrid (AMG) methods were originally designed for scalar
partial differential equations (PDEs) and usually assume that the nullspace of the
operator is one-dimensional and constant. This assumption does not hold for many
systems of PDEs. For elasticity problems in particular, the nullspace consists of
three (in 2D) or six (in 3D) rigid body modes (RBMs), which comprise translations
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and rotations. Classical AMG methods, including standard approaches modified to
handle systems of PDEs, e.g., the unknown approach [23], interpolate translations
but not rotations. This limitation will typically result in a loss of optimality and
scalability for these approaches when applied to systems problems.

Different approaches to handle linear elasticity problems with AMG methods
have been suggested in the last decades, e.g., smoothed aggregation [7, 27],
unsmoothed aggregation [3, 4, 8, 19–21], AMGe [6], element-free AMGe [15], local
optimization problems to incorporate the RBMs in the interpolation [13], or the
global matrix (GM) and local neighborhood (LN) approaches [2].

In this paper, we provide a brief overview of AMG methods and AMG for
systems in Sects. 2 and 3. In Sects. 4 and 5, we describe the GM and LN approaches,
which were first introduced in [2]. These two approaches explicitly incorporate
given smooth error vectors into the AMG interpolation in order to handle the
correction of these error components in the coarse grid correction. We note that the
descriptions of the AMG methods and interpolations in this paper are based on both
[2] (which only considered sequential AMG) and on Chap. 4 of the dissertation [18].
In Sect. 6, we compare the performance of AMG approaches for systems of PDEs
and show that the GM and LN approaches can improve convergence and scalability
for elasticity problems. The parallel numerical results on up to half a million MPI
processes presented in Sect. 6 are new and have not been published elsewhere (as
[2] contained only serial results for small problems).

2 Algebraic Multigrid

We first give a brief overview of AMG. Consider the linear system Au D f , which is
often generated from the discretization of a scalar PDE. We denote with ui the i-th
entry of u. As in geometric multigrid, one needs to define a hierarchy of coarser grids
or levels, adequate smoothers or relaxation schemes for each level and restriction,
and interpolation operators to move between levels. However, unlike geometric
multigrid, algebraic multigrid methods are applied to the linear system without any
geometrical or mesh-related information.

Because grid information is not given, one needs to use the linear system to
define a “grid”. The variables ui are now the grid points and the non-zero entries aij

of matrix A define the connections between the grid points. Because not all variables
are equally important, one defines the concept of strong dependence. For a threshold
0 < � � 1, a variable ui strongly depends on the variable uj if

� aij � � max
k¤i

.�aik/ : (1)

To determine the coarse-grid variables, which are a subset of the variables ui, one
first eliminates all connections that do not fulfill (1). Then one applies a coarsening
algorithm to the remaining “grid”. For brevity, we do not describe any coarsening
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algorithms here, but note that descriptions of several common coarsening strategies
and an investigation of their parallel performance can be found in [28] (e.g., Ruge-
Stüben [23, 25], HMIS [11] and Falgout [16]).

In AMG, errors are reduced by two separate operations: the smoothing or
relaxation steps and the coarse grid correction. For an optimal AMG method,
the coarse grid correction and the relaxation strategy must be chosen carefully to
complement each other. While simple pointwise relaxation methods such as Jacobi
or Gauß-Seidel rapidly reduce errors in the directions of eigenvectors associated
with large eigenvalues, the reduction in directions of eigenvectors associated with
small eigenvalues is less optimal; see [6] for details. Errors that are poorly reduced
by the smoothing steps are referred to as smooth errors. More precisely, algebraic
smooth errors can be characterized by Ae � 0, where e is an eigenvector associated
with a small eigenvalue. For an effective AMG method, the smooth error must be
reduced by the coarse grid correction. Therefore, an interpolation operator P needs
to be defined in such a way that the smooth errors are approximately in the range
of P [6]. For additional details on interpolation operators, we refer the reader to
various publications, e.g. [12, 23, 25, 26, 29]. The restriction operator R is often
defined to be the transposed operator PT , so that in the case of a symmetric positive
definite matrix A, the coarse grid operator RAP is also symmetric positive definite.
After interpolation, restriction, and coarse grid operators have been defined and a
relaxation strategy has been determined, the solve phase can be performed.

For simplicity, consider the two-level case with one fine grid and one coarse grid.
For an approximate solution u and the exact solution u� of the system Au� D f on
the fine grid, we have the relationship Ae D r, where e WD u� � u is the error
vector and r WD f � Au is the residual. One AMG cycle to correct (or update) u is as
follows:

(1) Smooth �1 times on: Au D f
(2) Compute the residual: r D f � Au
(3) Solve on the coarse grid: RAPec D Rr
(4) Correct u: u D u C Pec

(5) Smooth �2 times on: Au D f :

T obtain a full multi-level AMG V-cycle, one needs to apply this algorithm
recursively, as depicted in Fig. 1. For more details on classical AMG methods, see,
e.g., [23, 25].

3 Algebraic Multigrid for Systems of PDEs

We now consider a linear system of equations Au D f derived from the discretization
of a system of PDEs with p scalar functions or unknowns. Now, each variable or
degree of freedom (dof) of the linear system describes one physical quantity in
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Fig. 1 One AMG V-cycle. Smoothing on the fine grid ! Restricting to the coarsest grid !
Solving on coarsest grid ! Interpolating to the finest grid (Figure from [18])

a grid point or node. For example, in linear or nonlinear elasticity, we have one
dof describing one spatial direction in each node. For simplicity, we restrict our
presentation here to the two-dimensional case and consider an elasticity problem
with two unknowns, x and y, representing the two spatial directions. A detailed
three-dimensional description can be found in [2].

For algebraic multigrid methods, the two common approaches to treating systems
of PDEs such as Au D f are the unknown approach (U-AMG) and the nodal
approach, e.g., [1, 10, 14, 22, 23, 25]. While U-AMG completely separates the
different physical quantities, the nodal approach considers all unknowns belonging
to the same node at once and thus acts on a nodal basis.

We first take a brief look at the U-AMG. Here, we assume an unknown-related
ordering of the system matrix (i.e., first all dofs related to the unknown x followed
by those associated with y):

A D
�

Axx Axy

Ayx Ayy

�
: (2)

One now applies classical AMG coarsening and interpolation strategies to the
different variables separately, i.e., only to the diagonal blocks Axx and Ayy. Note
that this strategy ignores couplings between unknowns x and y, which are contained
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in Axy and Ayx, and leads to an AMG interpolation matrix P that has the diagonal
block structure

P D
�

Px 0

0 Py

�
: (3)

In general, U-AMG is often used to handle systems of PDEs and is quite effective
for problems with weak coupling between the different unknowns. Of course,
performance also strongly depends on the general quality of the chosen coarsening,
interpolation, and smoothing techniques for the diagonal blocks Axx and Ayy.

We now describe the nodal approach, which is often a more effective approach
for problems with a stronger coupling between the different physical quantities.
If we block all unknowns that share the same node and consider a node-related
ordering, then the system matrix A can be written as

A D

2
6664

A11 A12 � � � A1N

A21 A22 � � � A2N
:::

:::
: : :

:::

AN1 AN2 : : : ANN

3
7775 ; (4)

where the 2 � 2 blocks Aij connect nodes i and j. Note that if we define N as the
number of nodes or grid points, then A is a N � N block matrix. With the nodal
approach, we consider strong dependence between two nodes i and j, instead of
between two variables. Therefore, we now have to compare block entries, such as Aji

or Ajj. This comparison typically involves an appropriate norm such as the Frobenius
norm jj � jjF or the row-sum norm jj � jj1. Applying the norm to the blocks of the
system matrix A results in a condensed N � N matrix with scalar entries

C D

2
6664

c11 c12 � � � c1N

c21 c22 � � � c2N
:::

:::
: : :

:::

cN1 cN2 : : : cNN

3
7775 WD

2
6664

jjA11jj jjA12jj � � � jjA1N jj
jjA21jj jjA22jj � � � jjA2N jj

:::
:::

: : :
:::

jjAN1jj jjAN2jj : : : jjANN jj

3
7775 : (5)

The definition of strong dependence in Eq. (1) is based on A or C being an M-matrix,
i.e., a matrix whose off-diagonal elements have the opposite sign of the diagonal
elements. Therefore, we change the diagonal elements cii of C to cii D �jjAiijj or

cii D �
NX

jD1;j¤i

jjAijjj: (6)

This approach as well as additional options for defining C are further discussed
in [10]. In our experiments, we found the latter approach (i.e., the row-sum norm) to
give better convergence, and we are using Eq. (6) in the numerical results presented
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in Sect. 6. The AMG coarse grids are now obtained by applying classical AMG
coarsening techniques to the condensed matrix C. In the nodal coarsening approach,
all unknowns on one grid point share the same set of coarse grids. Note the contrast
with the unknown approach, which can result in completely different coarse meshes
for each unknown. The interpolation matrix in the nodal approach can be obtained
by applying scalar AMG interpolation techniques to the blocks (e.g., [14]). Another
option, used in our experiments in Sect. 6, is to combine nodal coarsening with
unknown-based interpolation. We call this approach the hybrid approach (H-AMG).

4 The Global Matrix Approach

As mentioned in Sect. 2, smooth error vectors should be in the range of the
interpolation operator. In the case of linear elasticity, the nullspace of the matrix
A consists of the rigid body modes (RBMs), i.e., all rotations and translations
of the domain. Since classical AMG interpolation P already interpolates constant
vectors exactly, we only have to take care of rotations (i.e., in two dimensions,
the single rotation s.x; y/ WD Œ y; �x�). A possible approach to incorporate an
exact interpolation of smooth error vectors in the AMG interpolation is, as already
mentioned, the global matrix (GM) approach, introduced in [2]. The following
description is restricted to two levels. A generalization to the multilevel-case can
be found in [2].

The GM approach is based on the idea of augmenting a given global AMG
interpolation matrix P with several matrices Q j. Each matrix Q j is chosen to exactly
interpolate a specified smooth error vector sj. We designate the rotation s WD Œ y; �x�

in two dimensions as the smooth error vector. We define sC as the restriction of s
onto the coarse grid and define a new interpolation matrix QP by augmenting P:

eP WD ŒP Q�; such that s 2 range.eP/ : (7)

There are several possibilities to define a matrix Q fulfilling Eq. (7) and also retain
the sparsity of P. We will consider both variants suggested in [2]. For Variant 1 or
GM1 we define eP such that

eP
�

0

1

�
D s ; (8)

whereas for Variant 2 or GM2, eP is defined such that

eP
�

sC

1

�
D s : (9)
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For GM1, the coefficients Qij of Q, where i is the index of a fine grid point and j the
index of a coarse grid point, are then defined as

Qij WD Pij

� siP
k2Ci

Pik

�
; (10)

where Ci is the set of coarse points in the direct neighborhood of i, i.e., the indices
of the columns with non-zero entries in row i of the interpolation P. For GM2, the
entries Qij, are given by

Qij WD Pij

� si

.
P

k2Ci

Pik/
� .sC/j

�
: (11)

The unknown-based GM interpolation in two dimensions can then be written as

eP D
�

Px 0 Qx

0 Py Qy

�
;

where Qx and Qy can be computed independently and have the same sparsity as Px

and Py. Note that this leads to a coarse grid space with a larger number of degrees of
freedom than the coarse grid space generated by the unknown-based or the hybrid
approach. The increase in degrees of freedom is even further exacerbated in three
dimensions, where one needs to add three rigid body modes. So, while we expect
improved convergence, the new method is potentially significantly more expensive,
and the increased complexities could prevent better performance. Therefore, to
mitigate the increase in complexities, we also truncate the Q matrices (see also our
numerical results in Sect. 6). Truncation of Q needs to be done independently from
truncation of P, because P-truncation is normalized to interpolate constants whereas
the truncated Q matrices need to interpolate the rotations. When truncating Q to QQ,
we adjust the weights of QQ so that the row sums of QQ equal those of Q.

Interestingly enough, the application of both variants beyond the first level leads
to very different algorithms. GM1 needs to only interpolate constants after the
first level, whereas GM2 needs to continue to interpolate coarser versions of the
rigid body modes, thus requiring the storage of coarse grid versions of the rigid
body modes as well as additional computations. More details are available in [2].
However, note that GM2 leads to coefficients of similar size, which is not the case
for GM1. It is therefore much more difficult to effectively truncate the Q matrices
generated in GM1. This difficulty will become evident in Sect. 6.
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5 The Local Neighborhood Approach

We now consider an approach where the rigid body modes are incorporated locally.
Because exact local interpolation leads to exact global interpolation, this approach
should work at least as well as the global matrix approach. This approach requires
looking at interpolation from a different angle. Assume that the error at the fine
points, eF , is interpolated by the error at the coarse points, eC, such that

eF D WFCeC : (12)

Let QC be the set of new coarse points that have been introduced by adding new
degrees of freedom to the coarse nodes. Further, s is a rigid body mode, sC is s at the
original coarse grid points, and sF is s at the fine grid points. The idea for the local
neighborhood approach is then to exactly interpolate the rigid body mode using an
extension operator

eF D WFCeC C WF QCe QC s:t: sF D WFCsC C WF QCs QC ; (13)

where s QC D 1 at the new degrees of freedom in QC. The LN interpolation matrix
needs to be defined by harmonic extension based on the local extension QWFC D
ŒWFC; WF QC�. Let Ds be the matrix with diagonal s. Because WFC interpolates
constants, the following definition, which is similar to GM2, satisfies Eq. (13):

WF QC D ŒDF
s WFC � WFCDC

s � : (14)

To allow for an arbitrary interpolation matrix P, the implementation of this
approach performs a preprocessing step (cf. “iterative weight refinement” [9]) that
results in NP where

NPij D � 1

aii

�
aij C

X
k2Fi

aikwkj

�
; (15)

where Fi is the fine neighborhood of point i and

wkj D PkjP
n2Ci

Pkn
: (16)

Now that NP is based on harmonic extension, Q can be determined using the following
formula

Qij D � 1

aii

X
k2Fi

aikwkj.sk � sj/ : (17)
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For k rigid body modes s1; : : : ; sk, the new LN interpolation operator is given by

QP D Œ NP Q1 : : : Q k � : (18)

Note that this approach assumes that As D 0. However, the unknown-based
interpolation is not generated from A, but from the block diagonal matrix AD with
block diagonals Axx and Ayy in 2D (as well as Azz in 3D). In this situation it is
important to modify Eq. (17) by incorporating the non-zero residual. We refer to [2]
for further details. In addition, like GM2, the LN approach requires the generation
of Q on all coarse levels.

6 Numerical Results

In this section, we present numerical results that compare the performance of the
previously described AMG approaches. AMG is here used as a preconditioner to
either GMRES or CG. The parallel experiments were conducted on the Vulcan
supercomputer (LLNL), except for those presented in Table 6, which were computed
on the JUQUEEN supercomputer (JSC) [24]. JUQUEEN and Vulcan were ranked
11th and 12th respectively on the TOP500 list of the world’s fastest supercomputers
of November 2015. JUQUEEN is a 28,672 node 6 Petaflop Blue Gene/Q system at
Jülich Supercomputing Center (JSC, Germany), with a total number of 458;752

processor cores. Vulcan is a 24;576 node 5 Petaflop Blue Gene/Q production
system at Lawrence Livermore National Laboratory (USA) with a total number of
393;216 processor cores. Both Blue Gene/Q systems use a Power BQC 16C 1.6 GHz
processor with 16 cores and 16 GB memory per node.

We use BoomerAMG [16], the unstructured algebraic multigrid solver in hypre
version 2.10.0b [17], which now provides an efficient parallel implementation of
the GM and the LN approaches. In hypre version 2.10.0b, the user now simply
has to provide the smooth error vectors on the fine grid in addition to the linear
system. In our case, we provide the rotations sj, one in 2D, three in 3D. In order to
make efficient use of the hardware threads for the 3D results in Tables 3 and 6, we
use oversubscription with 2 MPI ranks for each core of the Power BQC processor.
Note that no parallel results are given in [2], as a parallel implementation was not
available at that time. To ensure a fair comparison of the different methods, we
chose an AMG setup such that all components have shown the potential to scale up
to large scales. In particular, for all methods, we use HMIS coarsening, introduced
in [11], the extended+i interpolation method described in [12, 29] and symmetric
SOR/Jacobi smoothing in a V(1,1)-cycle.

We consider the compressible linear elasticity problem

�2� div.�.u// � �grad.div.u// D f ;
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where u is the unknown displacement and �.u/ is the strain. The parameters are
� D �E

.1C�/.1�2�/
; � D E

2.1C�/
(cf. [5]), where the Young modulus is E D 210, and

we vary the Poisson ratio � between 0:3 and 0:49.
More detailed descriptions of the various model problems in two and three

dimensions are given in subsequent subsections. The finite element assembly is
performed in PETSc, and we also use PETSc’s GMRES/CG implementation. In
all tables we use the abbreviations U-AMG for the unknown approach, H-AMG for
the hybrid approach with the nodal coarsening strategy in Eq. (6) and the row-sum
norm, and H-AMG-GM1/GM2/LN for the interpolation approaches GM1, GM2, and
LN, respectively. Cop denotes the operator complexity, which is defined as the sum
of the non-zeros of all matrices Ai on all levels divided by the number of non-zeros
of the original matrix A. Operator complexity is an indication of memory usage and
the number of flops per iteration and also affects setup times. In order to reduce
Cop, we truncate P to at most Pmax non-zero elements per row and use a truncation
factor of Q-th (absolute threshold) to truncate Q. In the tables, we mark the fastest
time (for the sum of setup and solve) as well as the lowest number of iterations
in bold face. As a baseline for our weak scalability tests, in order to avoid cache
effects, we use the smallest problem which still makes use of at least a single full
node.

6.1 Results in Two Dimensions

If a Dirichlet boundary condition is applied to a large portion of the boundary,
standard nodal or unknown approaches are known to perform well, and we do not
expect any additional benefit from the GM or LN approach. Therefore, we consider
an elasticity problem on a rectangular domain Œ0; 8� � Œ0; 1� in 2D, fixed on one of
the short sides. A volume force orthogonal to the longer sides is applied. We refer
to this problem as 2D beam, and a solution for a linear elastic material is presented
in Fig. 2. We use piecewise quadratic finite elements on triangles in all experiments
in two dimensions, and, by reordering the unknowns, we ensure that each MPI rank
holds a portion of the beam of favorable shape, i.e., close to a square. We present
weak scalability results for the 2D beam in Tables 1 and 2, comparing the unknown

Fig. 2 Solution of the 2D beam considering linear elasticity with E D 210 and � D 0:3. The
color represents the norm of the displacement
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approach U-AMG, the hybrid approach H-AMG, and, representing the interpolation
approaches, the GM2 approach. The GM1 and LN approaches performed similarly
to or worse than GM2 here, but are included in a more detailed discussion on the
results in three dimensions, where differences between the approaches are more
interesting.

In the weak scaling results in Table 1, the number of GMRES iterations for
the unknown approach increases from 23 to 59 iterations, resulting in a noticeable
increase in the iteration time as well. However, both the hybrid and GM2 approaches
achieve good weak scalability. Comparing the hybrid and the GM2 approaches,
the AMG setup times are slightly higher with the GM2 approach. This increased
computational cost is expected due to the exact interpolation of the rotation. Since
iteration counts and thus the iteration times are lower, the GM2 approach is always
the fastest approach in this comparison.

Table 2 also contains weak scaling results for the 2D beam, but the problem
sizes are approximately 2.6 times larger per core. Results are similar to the results
in Table 1, but here, for the largest problem with 6:7 billion degrees of freedom,
the hybrid approach needs 52 compared to only 21 GMRES iterations for the GM2
approach. This improvement leads to a much faster convergence for GM2; see also
Fig. 3 for a visualization.

We can conclude that with our settings, all three approaches work well for
smaller problems. For larger problems (and larger numbers of cores), the GM2
approach remains scalable whereas U-AMG and H-AMG experience an increase
in the number of iterations. The setup cost for the GM2 approach is slightly higher,

Fig. 3 Weak scalability of total solution time for the two-dimensional beam with � D 0:3 and
E D 210; cf. Table 2
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compared to the other two approaches, but the setup time is scalable and amortized
in the iteration phase; see also Fig. 3.

6.2 Results in Three Dimensions

Now we present results for several three-dimensional domains. In particular, we
first investigate weak scalability for a 3D beam problem. We also investigate the
effect of a higher Poisson ratio � on the 3D beam, showing scalability results and
presenting a small study that increases �. Second, we examine doubling the beam
length. And for a third model problem, we consider a heterogeneous material with
different boundary condition, called the 3D cuboid.

6.2.1 3D Beam Problem

Similar to the 2D beam, the 3D beam problem is defined on the domain Œ0; 8� �
Œ0; 1�� Œ0; 1� for � D 0:3, � D 0:45 and � D 0:49. First, we present weak scalability
results in Table 3 for the 3D beam with � D 0:3 for all approaches. For the 262K
MPI ranks case, we also include a larger problem to show the effect of increasing
problem size on performance at large scale.

From the results in Table 3 (see also Figs. 4 and 5), we conclude that for smaller
problems, a set of parameters can be found for all approaches such that the results
are satisfactory with respect to the numbers of iterations and the solution times.
However, for the larger problems (e.g., 262K MPI ranks), the AMG approaches
adapted specifically for elasticity, i.e., GM1, GM2, and LN, result in smaller
numbers of CG iterations. Note that in the case of the GM1 approach, the low
numbers of iterations come at the expense of high complexities because GM1
suffers from the lack of a suitable truncation strategy. As a result, the H-AMG
approach is actually faster than GM1. The GM2 and LN approaches achieve the
fastest overall total times (with a slight advantage for the LN approach) due to their
low iteration counts and acceptable complexities. These considerations also hold
when viewing the results for 262K MPI ranks and the increased problem size of 6.3
billion unknowns in Table 3.

Now we increase the Poisson ratio to � D 0:45 for the 3D beam. The results
in Table 4 (see also Figs. 6 and 7) show that all approaches suffer from a higher
number of iterations compared to the case of � D 0:3. The GM2 and LN approaches
remain superior as a result of combining low numbers of iterations with acceptable
complexities. For U-AMG and H-AMG, depending on the choice of parameters,
either the numbers of iterations are high or the complexities increase substantially.
The times are visualized in Figs. 6 and 7. Since GM1 with Pmax=3 requires too
much memory, we use it here with Pmax=2. Note that GM1 fails for the largest
problem considered.
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Fig. 4 Weak scalability of the BoomerAMG Setup (left) and the time spent in the AMG-CG solve
phase (right) for the three-dimensional beam with � D 0:3 and E D 210; cf. Table 3

Fig. 5 Weak scalability of total solution time for the three-dimensional beam with � D 0:3 and
E D 210; cf. Table 3

Next, in Table 5, the effect of the Poisson ratio on the different AMG approaches
is studied. We see that H-AMG does not converge within the limit of 1000 iterations
for � D 0:49. For the other approaches, the convergence rate suffers from an
increasing value of � towards almost incompressibility. This deterioration is also
the case for the AMG approaches which are especially adapted for (compressible)
elasticity problems, i.e., GM1, GM2, and LN, but which are based on H-AMG. For
� D 0:49, U-AMG, while exhibiting the highest Cop, is the fastest variant in terms
of total time.
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Fig. 6 Weak scalability of the BoomerAMG Setup (left) and the time spent in the AMG-CG solve
phase (right) for the three-dimensional beam with � D 0:45 and E D 210; cf. Table 4

Fig. 7 Weak scalability of total solution time for the three-dimensional beam with � D 0:45 and
E D 210; cf. Table 4

6.2.2 3D Beam Problem with Double Length

For � D 0:3, we examine the effect of doubling the length of the 3D beam such that
the domain is Œ0; 16� � Œ0; 1� � Œ0; 1�. Table 6 lists the results obtained for the 3D
beam with double the length, using up to 16 of the total 28 racks of the JUQUEEN
supercomputer. Again, these experiments show the clear advantage of the GM2
and LN approaches for this problem over the standard methods. The largest three
dimensional problem with approximately 13 billion unknowns is solved in less than
81 s using the LN approach. Here, the solve phase time of LN is twice as fast as that
of the fastest standard approach H-AMG.
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6.2.3 3D Cuboid Problem

Finally, we consider a 3D cuboid problem. The cuboid has the same form and size
as the original 3D beam, but is fixed on the two opposite sides with x D 0 and x D 8.
We then compress the cuboid to 95 % of its length. Note that for the 3D cuboid, we
have a core material with E D 210 and � D 0:45 in the part of the cuboid where
0:25 < y < 0:75 and 0:25 < z < 0:75. Here .x; y; z/ denotes the coordinates in the
undeformed reference configuration of the cuboid. In the remaining hull, we have
E D 210 and � D 0:3.

The results for the 3D cuboid problem in Table 7 show that the AMG approaches
benefit from the larger Dirichlet boundary as compared to the 3D beam. However,
the GM2 and LN approaches show the best numerical scalability, i.e., the numbers
of iterations only increase from 29 to 44 for GM2 and from 24 to 39 for LN when
scaling weakly from 64 to 262 K MPI ranks. For this problem, the H-AMG approach
remains competitive as well for the largest number of ranks with regard to total times
as a result of its low setup time.

6.3 Parallel Problem Assembly and Reordering Process

Although the focus of this paper is on the parallel performance of AMG for
linear elasticity problems, we also comment on the parallel problem assembly
and setup, presenting timing results in Table 8. In order to assemble the global
elasticity problems in two and three dimensions, we first decompose the domain
into nonoverlapping parts of equal size, one for each MPI rank. We then assemble
local stiffness matrices corresponding to these local parts. These computations
are completely local to the ranks and thus perfectly scalable. The local assembly
process is denoted as Local Asm. in Table 8. To assemble the local stiffness
matrices to one global and parallel stiffness matrix, some global communication is
necessary. This global assembly process is denoted as Global Asm. in Table 8. This
process scales fine up to 32 K ranks. Scaling further, the amount of communication
and synchronization slows the global assembly down. A classical lexicographical
ordering of the global indices is often not optimal for the convergence, especially
using hybrid approaches, and we therefore reorder the indices. After the reordering
process, each rank holds a portion of the global stiffness matrix which has a
shape close to a square in two dimensions and a cube in three dimensions. The
implementation of the index reordering step is very fast (see Table 8) but makes use
of the same communication patterns as the global assembly process leading to the
same deterioration on more than 32 K cores.
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Table 8 Presentation of problem assembly and setup timings, which are independent of the chosen
AMG preconditioner. Values are averages over the measured values in all runs presented in Table 3.
The total runtime of the complete 3D beam application can be obtained by adding these three times
to the time Setup + Solve from Table 3

#MPI ranks Problem size Local Asm. (s) Global Asm. (s) Reorder (s)

64 839;619 19:10 0:81 0:67

512 6;502;275 19:14 0:86 0:84

4096 51;171;075 19:14 0:93 0:77

32,786 406;003;203 19:05 1:44 1:57

262,144 3;234;610;179 19:03 8:82 9:35

7 Conclusions

We investigated the performance of hypre’s AMG variants for elasticity for several
2D and 3D linear elasticity problems with varying Poisson ratios �. We compared
the unknown and hybrid approaches, which use prolongation operators that only
interpolate the translations, with three approaches, GM1, GM2 and LN, that are
based on the hybrid approach and also incorporate the rotations. In all cases, GM1,
GM2 and LN showed improved convergence over the hybrid approach when using
the same truncation for P. For � D 0:3, all hybrid approaches scaled better than
the unknown approach, and the GM2 and LN approaches were overall faster for
very large problems. For the largest problem in three dimensions with 14 billion
unknowns and using the largest number of processes considered, i.e., 524;288

processes, the LN approach was 40 % faster than the standard approaches. For
� D 0:45, GM2 and LN clearly scale better than the other approaches and are
more than twice as fast on 32;768 processes with better complexities and five times
as fast as the hybrid approach with the same operator complexity.

We also found that the unknown approach was more robust with regard to an
increase in � than the other approaches, solving the problem with � D 0:49 faster
than any of the other approaches, but generally needed larger complexities. While
the hybrid approach did not converge within 1000 iterations for � D 0:49, GM1,
GM2 and LN were able to solve the problem in less than 200 iterations.

Overall, our study shows that the inclusion of the rigid body modes into AMG
interpolation operators is generally beneficial, especially at large scale. We conclude
that, for elasticity problems, using enhancements of the interpolation, parallel AMG
methods are able to scale to the largest supercomputers currently available.
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27. Vaněk, P., Mandel, J., Brezina, M.: Algebraic multigrid by smooth aggregation for second and

fourth order elliptic problems. Computing 56, 179–196 (1996)
28. Yang, U.M.: Parallel algebraic multigrid methods – high performance preconditioners. In:

Bruaset, A., Tveito, A. (eds.) Numerical Solutions of Partial Differential Equations on Parallel
Computers. Lecture Notes in Computational Science and Engineering, pp. 209–236. Springer,
Berlin (2006)

29. Yang, U.M.: On long-range interpolation operators for aggressive coarsening. Numer. Linear
Algebra Appl. 17, 453–472 (2010)

http://www.llnl.gov/CASC/hypre/
http://dx.doi.org/10.17815/jlsrf-1-18

	Scalability of Classical Algebraic Multigrid for Elasticity to Half a Million Parallel Tasks
	1 Introduction
	2 Algebraic Multigrid
	3 Algebraic Multigrid for Systems of PDEs
	4 The Global Matrix Approach
	5 The Local Neighborhood Approach
	6 Numerical Results
	6.1 Results in Two Dimensions
	6.2 Results in Three Dimensions
	6.2.1 3D Beam Problem
	6.2.2 3D Beam Problem with Double Length
	6.2.3 3D Cuboid Problem

	6.3 Parallel Problem Assembly and Reordering Process

	7 Conclusions
	References


