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Abstract In this paper, aspects of the two-scale simulation of dual-phase steels
are considered. First, we present two-scale simulations applying a top-down one-
way coupling to a full thermo-elastoplastic model in order to study the emerging
temperature field. We find that, for our purposes, the consideration of thermo-
mechanics at the microscale is not necessary. Second, we present highly parallel
fully-coupled two-scale FE? simulations, now neglecting temperature, using up to
458,752 cores of the JUQUEEN supercomputer at Forschungszentrum Jiilich. The
strong and weak parallel scalability results obtained for heterogeneous nonlinear
hyperelasticity exemplify the massively parallel potential of the FE?> multiscale
method.

D. Balzani (<) ¢ A. Gandhi (<)

Faculty of Civil Engineering, Institute of Mechanics and Shell Structures, TU Dresden, Dresden,
Germany

e-mail: daniel.balzani @tu-dresden.de; ashutosh.gandhi @tu-dresden.de

A. Klawonn () « M. Lanser (2<))
Mathematisches Institut, Universitit zu K6ln, K6ln, Germany
e-mail: axel.klawonn @uni-koeln.de; martin.lanser @uni-koeln.de

0. Rheinbach (<)

Institut fiir Numerische Mathematik und Optimierung, Technische Universitit Bergakademie
Freiberg, Freiberg, Germany

e-mail: oliver.rheinbach@math.tu-freiberg.de

J. Schroder (0<)

Faculty of Engineering, Department of Civil Engineering, Institute of Mechanics, Universitit
Duisburg-Essen, Essen, Germany

e-mail: j.schroeder @uni-due.de

© Springer International Publishing Switzerland 2016 91
H.-J. Bungartz et al. (eds.), Software for Exascale Computing — SPPEXA

2013-2015, Lecture Notes in Computational Science and Engineering 113,

DOI 10.1007/978-3-319-40528-5_5


mailto:daniel.balzani@tu-dresden.de
mailto:ashutosh.gandhi@tu-dresden.de
mailto:axel.klawonn@uni-koeln.de
mailto:martin.lanser@uni-koeln.de
mailto:oliver.rheinbach@math.tu-freiberg.de
mailto:j.schroeder@uni-due.de

92 D. Balzani et al.
1 Introduction

Advanced High Strength Steels (AHSS) provide a good combination of both,
strength and formability and are therefore applied extensively in the automotive
industry, especially in the crash relevant parts of the vehicle. One such AHSS
which is widely employed is dual-phase (DP) steel. The excellent macroscopic
behavior of this steel is a result of the inherent micro-heterogeneity and complex
interactions between the ferritic and martensitic phases in the microstructure. The
microstructural phases are affected by both, mechanical and thermal loads. The
modeling of such steels poses a challenge because capturing all the mentioned
effects leads to rather complex phenomenological models, which may still be valid
for a limited number of loading scenarios.

A more promising modeling approach is the application of multiscale methods.
The current contribution proposes a two-scale strategy to analyze the forming
process of a DP steel sheet. In this context, the predictions of the overall mechanical
response of phenomenological and multiscale-based approaches are compared. We
also study the impact of considering pure mechanics versus thermo-mechanics at
the microstructure on the quality of the results with view to a predictive mechanical
response and the computational effort. Our scale-coupling approach for the two-
scale computation of maximal stresses in largely deformed dual-phase steel sheets
can be seen as a two-scale FE? approach with one-way coupling which consists of
two steps. First, a single-scale macroscopic simulation of the deformed steel sheet
based on a phenomenological material model representing the macroscopic material
behavior is performed. Then, the macroscopic deformation gradient is stored at all
Gaul} points for each iterated load step. On the basis of macroscopic distributions
of plastic strains or stresses, critical regions are identified. Second, microscopic
boundary value problems are solved for all Gauf3 points within the critical regions.
Here, the macroscopic deformation gradients are used to define the microscopic
deformation-driven boundary conditions. In order to enable a higher efficiency of
the scheme we propose to only compute the thermo-mechanical problem at the
macroscale. Based on the temperature at each macroscopic Gauf3 point, we focus on
a purely mechanical microscopic boundary value problem, where the temperature-
dependent material parameters are updated in each load step according to the
macroscopic temperature.

Compared to the high computational cost of the fully-coupled thermo-
mechanical FE?> scheme considering the temperature field at the macro- and
microscale, the proposed method is clearly computationally cheaper. Furthermore,
an estimator for the quality of the phenomenological macroscopic material model
in the critical macroscopic region is obtained by comparing it to the homogenized
material response from the microscopic computations. For the simulations including
the temperature field we have made use of computing resources in Essen as well as
of the CHEOPS cluster in Cologne.
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The parallel scalability results for nonlinear hyperelasticity problems presented
in this paper were obtained on the JUQUEEN supercomputer [30] at Forschungszen-
trum Jiilich and make use of the FE2TI software package. The FE2TI package is a
parallel implementation of the fully coupled FE? approach using FETI-DP (Finite
Element Tearing and Interconnecting—Dual Primal) methods to solve the problems
on the microscopic scale. The FE2TI package has qualified for the High-Q-Club'
membership in 2015, and its parallel performance has previously been reported
in [19, 20]. JUQUEEN is a 28,672 node 6-petaflops Blue Gene/Q system at Jiilich
Supercomputing Center (JSC, Germany), with a total number of 458,752 processor
cores and a power consumption of 2.3 MW. It runs Linux and is ranked 11th on
the TOPS500 list of the world’s fastest supercomputers of November 2015. It uses a
Power BQC 16C 1.6 GHz processor with 16 cores and 16 GB memory per node.

The paper is organized in various sections. The material model and a numerical
differentiation scheme based on complex step derivative approximation (CSDA) that
has been used in the implementation of numerical examples of the one-way coupling
FE? method are briefly discussed in Sect.2. A short summary of the general FE?
multiscale method and the one-way scale-coupling strategy introduced here to study
the DP steel sheet response is given in Sect. 3. The details regarding the numerical
example and the results obtained with the various strategies are then illustrated in
Sect. 4. In Sect. 5 the parallel implementation of the FE> method is described, weak
parallel scalability for production runs up to the complete JUQUEEN are presented,
and strong parallel scalability results for up to 131,072 cores are reported. Finally,
the conclusion is presented in Sect. 6.

2 Thermodynamic and Continuum Mechanical Framework

We now present the thermo-elastoplastic framework used in our one-way scale-
coupling method. Thermo-mechanics at finite strains are governed by the balance
equation of linear momentum and energy. In this section, we only recapitulate the
main results of the formulation in the reference configuration, given as

—DivFS—f=0, (1)

1. .
S-§C+,00r—Divq0—p0(\I’+9n)=O, 2

and refer the interested reader to [15] for a detailed derivation of these equations
and the corresponding weak forms required for the finite element implementation.
In equation (2), the Legendre transformation ¥ = U — 67 has been performed,
where ¥, U, n and 6 denote the Helmholtz free energy, the specific internal energy,
the specific entropy and the temperature, respectively, cf. [33] and [28]. S denotes

Thttp://www.fz-juelich.de/ias/jsc/EN/Expertise/High-Q-Club/FE2TI/_node.html
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the second Piola-Kirchoff stress tensor, C = FTF represents the right Cauchy
Green deformation tensor, F = Grade is the deformation gradient and ¢ defines
the nonlinear deformation map, which maps points X of the undeformed reference
configuration %, onto points x of the deformed (actual) configuration. Note that a
simple dot notation is used in S - Cto express the full contraction of S and C. Qo
is the heat flux through the body in the reference configuration, which is related to
the Cauchy heat flux q = —kpgradf by qp = JF~!q. Herein, ky is the isotropic
heat conduction coefficient and J is the determinant of F. The operators Grad(e)
and grad(e) denote the gradient with respect to coordinates in the reference and
actual configuration. Also, f, r and py are the body force vector, internal heat source
and the reference density of the body, respectively. Applying the standard Galerkin
method, the weak forms of these balance equations can be derived, see e.g. [34]
or [28]. Herein, approximations for the displacements in the sense of isoparametric
finite elements are inserted. Thus the system to be solved can be written as

Nele

Gu — tht _ Glelxl ~ Z((Sdle])T [rle],im _ rg,exl] =0, (3)
e=1
Nele

G9 — Gi@m ext A~ Z(Sd [ eint eexl:l =0 i (4)

where ‘G’ denotes the weak forms, while the elemental residuals and degree of
freedom vectors are introduced as r® and d° respectively. Here, the subscripts ‘u’
and ‘0’ represent the mechanical and thermal contributions, respectively, and n, is
the number of elements.

2.1 Incorporation of Thermo-mechanics

Since advanced high strength steels are fundamentally thermo-mechanical in nature,
the study presented here employs a thermo-elastoplastic material model, as estab-
lished in [33] and [28]. The main features of the implementation are briefly
described in this section. The deformation gradient is multiplicatively decomposed
into an elastic (F¢) and a plastic part (F”) such that F = F°F”. The isotropic free
energy function, incorporating isotropic hardening, takes the form ¥ = ¥ (b°, 6, «),
where b* = F°F°" and o represent the left Cauchy-Green deformation tensor
and the equivalent plastic strain, respectively. The internal dissipation consists of
a mechanical and a thermal contribution, Zint = Zmech + Ziherm- The expressions
for these are obtained using the principle of maximum dissipation, the evolution
equations for the internal variables b°, o and the Kuhn-Tucker optimality conditions.
For a von Mises type limit surface, the mechanical part reduces to0 Zmech =

A \/g y(6), where A is the consistency parameter and y(6) the temperature dependent
initial yield stress. Exploiting the entropy inequality and GauB-theorem in (1)
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and (2) leads upon discretization to the detailed form of the elemental residual
vectors

nen

gt=> /@ B)'SdV, 5)
I=1 0

rz,im _ Z/ ((Bé)qu +N1p09850l1/é + N'po0d2 W o
1=17% ©
+N pof2, W - b + N'A \/gy((?)) dv..

Here, B, and By matrices hold the derivatives of the shape functions with respect to
spatial coordinates, cf. [4], the () represents the material time derivative of (e) and
nen is the number of nodes per element. Note that in the current work we use an
additively decoupled, isotropic free energy function with a mechanical part ¥ | +
v + WP, a thermo-mechanical coupling part ¥¢ and thermal part vl e ¥ =

We(b®) + WP(ar) + WC(bC, 0) + WP (0), with the individual parts

we, =< [10*=1)—1nJ],

vol P0

e = % [trb:(oletbe)—l/3 -3],
yr = mH(x , (7)
ye = _/Qio“‘ (0 —6o) 0,95,

gt =—poc(91n9%—9+90) .

For the yield stress y(6), a linearly decreasing function in terms of the temperature
is considered. Here, H is the linear isotropic hardening modulus for plasticity.
The external residual vectors in Eqgs. (3) and (4) are obtained on discretizing the
external parts of the weak form consisting of the traction vectors and the surface
heat fluxes for mechanical and thermal contributions respectively, cf. [34]. These are
not discussed here for conciseness of the text; for further details on the algorithmic
treatment of thermoplasticity see [28].

2.2 Implementation Using a Complex Step Derivative
Approximation

Two widely used numerical differentiation schemes, namely the finite difference
method (FD) and the Complex Step Derivative Approximation (CSDA) approach,
have been employed to evaluate the stiffness matrix in nonlinear finite element
simulations; cf. [22, 25]. Another successful approach is Automatic Differentiation
(AD) and, interestingly, relations of CSDA to the forward mode of AD have been
pointed out [13]. All these approaches eliminate the need to compute analytical
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linearizations of the weak forms, which is especially useful in the early development
stage of elaborate material models. However, the FD approach leads to round-
off errors for small step sizes. The CSDA based strategy overcomes this issue by
applying perturbations (of size /) along the imaginary axis of the complex number
(cf. [31]) and thus permits the choice of perturbations at the order of the machine
precision. Thus, although the method is a (second order) approximation, as with
AD, local quadratic convergence can be expected. The implementation of CSDA
is simple, especially if a Fortran FD implementation is already available, since
Fortran and Fortran libraries have handled complex numbers consistently for a long
time. The computational cost, however, is typically larger than for the forward mode
of AD.

Our implementation of CSDA was extended also to nonlinear thermo-mechanical
problems, where again quadratic convergence rates were obtained; see [4]. A brief
summary of this method is presented here. Considering conservative loading and

the functional dependencies of the residuals, i.e., ré™ := r¢i"(d¢, d$) and rf .
r5™(d¢, d), the linearized increments are obtained by dlfferentlatlng o™ and 5™
Wlth respect to both df and dj and can be written as
. Nele
AGP™ ~ Y " (8d)T (kG Adg + ki Adf) | (8)
e=1
Nele
AGE'™" ~ Z(é‘d )T (K, AdS + kG, AdY) 9)

Now the CSDA scheme can be used to evaluate the stiffness matrix contributions.
The approximations of the k-th column vectors kuu(k) and keu(k) in Kk, and kj,
respectively, and of the j-th column vectors kee() and kgg() in ku9 and kj,,
respectively, are given by

Re al‘ﬁ’im :9 e(de + lhdu(k)’ dg)
® = S o
uu 3{de}, ] h
X greint S [ro(de, dg + lhde(j))
Ky = —— &~ — ,
O g {ds ) h
o = 1 (10)
. et | rp(dg + ihdy,,. df)
) T Grger B
u 3{de}, ] h
ke arz,im 3 rg (de d =+ lhd@(/))
000) T Hgey T ’
9 {dg}, h

where the indices k € [l,tdofy] and j € [1,tdofy] on the left hand side of
the equations represent the column index. On the right hand side these indices
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correspond to the individual perturbation vectors d’ whose components with indices
m € [1,tdof,] and g € [1, tdofy], respectively, are defined as

{Zlﬁ(k)}m = 8@m and {21;( e =80y - (11)

Herein, the Kronecker symbol is defined as 6,5 = 1 fora = b and 8, = 0
otherwise. tdof,, and tdofy are the total mechanical and thermal elemental degrees of
freedoms, respectively, and < is the imaginary operator.

3 Framework for Direct-Micro-Macro Computations

The direct micro-macro approach for computation of material behavior of micro-
heterogeneous materials has been well-developed in the last 15 years, see e.g. [9—
12, 23, 24, 29], see also [27]. For sake of completeness, in the following subsection
this method is briefly recapitulated. Thereafter in Sect. 3.2, we discuss the multiscale
treatment proposed here to model DP steel sheet behavior.

3.1 General Approach

The general FE? concept involves solving a microscopic boundary value problem
at each macroscopic integration point during the solution of the macroscopic
boundary value problem. These nested problems are defined on representative
volume elements (RVEs) that describe the complex geometry of the microstructure
adequately. Appropriate boundary conditions are applied to these in terms of, e.g.,
the deformation gradients at the macroscopic integration point. After solving the
microscopic problem, suitable volume averages of microscopic stresses P and
microscopic tangent moduli A are computed and returned back to the macroscopic
integration point, which replaces the evaluation of a classical phenomenological
macroscopic material law.
These averages are computed as

— 1 — 1 | B T
P=— PdV and A= — AdV——-L' K7L, L= B AdV .
@0 V @0 V l%o

v
(12)

Here, P, A represent the macroscopic first Piola-Kirchhoff stresses and the macro-
scopic material tangent moduli. The global stiffness matrix and the spatial deriva-
tives of the shape functions of the microscopic boundary value problem are denoted
by K and B, respectively. This procedure eliminates the need of a phenomenological
law at the macroscale. Furthermore, certain effects like anisotropy, and its evolution
as well as kinematic hardening are automatically included through the solution of
the micro-problem due to its heterogeneity.
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Algorithm 1 Algorithmic description of the FE>TI approach. Overlined letters
denote macroscopic quantities. This algorithm consists of the classical FE?> scheme
using (ir)FETI-DP for solving the microscopic boundary value problems. We
consider all macroscopic as well as microscopic Newton iterations as converged,
if the /,-norm of the Newton update is smaller than le — 6. The GMRES iteration in
our FETI-DP methods is stopped, if a relative residual reduction of 1e—8 is reached.
This pseudocode is taken from [20]

Repeat until convergence of the Newton iteration:

1. Apply boundary conditions to RVE (representative volume element) based on macro-
scopic deformation gradient: Enforce x = FX on the boundary of the microscopic
problem 0.4 in the case of Dirichlet constraints.

2. Solve one microscopic nonlinear implicit boundary value problem for each macroscopic
GauB} point using Newton-Krylov-(ir)FETI-DP or related methods.

3. Compute and return macroscopic stresses as volumetric average of microscopic stresses
P’

-1 .\
P=—E P'dv .
1% /T
Ter

4. Compute and return macroscopic tangent moduli as average over microscopic tangent
moduli A":

1 1 -
A= — Z/A"dV)——LT(K) L.
4 (TE‘[ r v
5. Assemble tangent matrix and right hand side of the linearized macroscopic boundary
. =h —h
value problem using P and A".
6. Solve linearized macroscopic boundary value problem.
7. Update macroscopic deformation gradient F.

Note that, because of the two-scale procedure, the Newton linearization of the
FE? method was not straight forward but rather a significant step in the development
of the method. In our fully coupled FE? simulations, we use a consistent Newton
linearization and thus can expect locally quadratic convergence of the fully coupled
two-scale method, i.e., of the outermost loop in Algorithm 1.

For a brief description of the algorithm and an efficient parallel implementation,
see also Sect. 5.1 and Algorithm 1.

3.2 Approaches for Multiphase-Steel Incorporating
Thermo-mechanics

Two-scale analysis is performed to study the influence of macroscopic deformation
on the microscopic mechanical fields to obtain more realistic simulations of sheet
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metal forming processes. For efficiency reasons, here, we focus on a one-way scale-
coupling scheme, using efficient parallel algorithms to solve complex microscopic
boundary value problems of DP steel microstructures. For that purpose we first
perform a thermo-mechanical simulation of the macroscopic sheet metal forming
process using a phenomenological thermo-elastoplastic material model at finite
strains, as described in Sect. 2, which would be used in engineering practice. Then,
in order to obtain more information of those mechanical fields at the microscale
which are important for failure initialization analysis, the macroscopic regime with
high plastic strains is identified. Only there, additional microscopic boundary value
problems are solved which are driven by the macroscopic deformation gradients and
temperatures computed at the macroscopic integration points. In detail, regarding
the displacements, linear displacement boundary conditions are applied to the real
DP steel microstructures and periodic boundary conditions are considered when
using statistically similar RVEs (Representative Volume Elements) in the sense
of [5]. The microstructure consists of two phases—ferrite as the matrix phase and
martensite as the inclusion phase.

With respect to the temperature, we focus on different approaches: (i) the
temperature calculated at the macroscopic integration point is applied to the
boundary of the microscopic boundary value problem, where thermo-mechanics are
considered and the temperature is free to evolve, and (ii) the microscopic thermal
fluctuations are considered to be small due to small deviations of thermo-mechanical
parameters for ferrite and martensite. Therefore, only mechanical boundary value
problems taking into account temperature-dependent yield stresses are considered
at the microscale. The latter approach enables more efficient computations since the
temperature is not a degree of freedom in the microscopic calculations anymore.
Simulations based on such one-way scale-couplings have two important advantages
compared with purely macroscopic computations: first, they provide valuable
information regarding those microscopic mechanical fields in the macroscopic
domains where failure is expected to initialize. Second, an estimation of the quality
of the macroscopic material model is obtained by comparing to the more accurate
micro-macro computation.

4 Numerical Examples for the One-Way FE? Coupling

In the analysis performed here, we consider at the macroscale the extension of a
DP steel sheet containing a regular arrangement of holes. The dimensions of the
sheet and the diameter of the holes are 140 x 140 x 6 mm and 20 mm, respectively.
A displacement of 10mm is applied in X-direction at the outer surface of the
sheet such that the metal sheet is extended up to 14.28 % nominal strain. The time
considered for this deformation is 10s. Due to the symmetry of the problem, we
only simulate 1/8th of the plate, see Fig. 1a, and incorporate appropriate symmetry
conditions. The plate is discretized with 10-noded tetrahedral finite elements.
As a phenomenological description at the macroscale, we consider the thermo-
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Fig. 1 (a) 1/8th geometry of the plate with tetrahedral finite element mesh, macroscopic (b)
von Mises stress, (¢) equivalent plastic strain and (d) temperature distributions in the deformed
configuration of the sheet metal after applying full extension at the macro-level

mechanical formulation of [28], which was implemented using the new CSDA
scheme. The initial yield stress as well as the linear hardening modulus were
adjusted to yield curves calculated as volumetric averages of purely mechanical
micro-macro computations of uni-axial tension tests. The hardening modulus was
chosen such that the model response matches this yield curve at approximately 30 %
strain. In the micro-macro computations the same thermo-mechanical framework
was used as in the macroscopic computations. The resulting distributions of stress,
equivalent plastic strains and temperature are as shown in Fig. 1b—d, respectively.
As can be seen, the fluctuation of temperature is rather small although rather large
plastic strains are obtained. However, in particular for the detection of necking, the
incorporation of even small temperature deviations may be essential, cf. the findings
in [28]. In Fig. 1a the eighth of the complete sheet metal considered for computation
is depicted. Additionally, the outline of a subregion is marked which is considered
as most critical for failure initialization since here the largest macroscopic stresses
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(b)

Fig. 2 (a) Undeformed SSRVE structure for evaluation of the microscopic problem at the point of
interest indicated by the bullet and (b) deformed configuration of the SSRVE at full load

are found. This subregion is therefore considered as the most relevant regime, and
detailed micro-macro computations are performed, here. For this purpose, there the
deformation gradient and the temperature at each macroscopic integration point
is stored for every load step in order to be applied in subsequent microscopic
computations.

In order to analyze the influence of the two approaches (i) and (ii) we focus
on statistically similar RVEs (SSRVEs) which were computed for DP steel in [5];
cf. Fig. 2a. For the analysis, we consider a macroscopic integration point within the
critical region, where its position is marked by the bullet in Fig. 1a. The hardening
modulus for the pure ferrite and the pure martensite is chosen such that the model
response corresponds to the experimental yield stress in uni-axial tension at 10 %
strains. The distributions of von Mises stresses and equivalent plastic strains as
a result of the thermo-mechanical computations associated with approach (i) are
depicted in Fig.3. They indicate a higher development of stresses and negligible
plastic strains in the martensitic inclusions. The ferritic matrix phase shows lower
stresses and higher plastic strains are accumulated here due to the lower yield stress
as compared to the martensite.

For the purely mechanical microscopic computation the temperature-dependent
initial yield stress y is taken into account such that y = (w(6 — 6y) + yo — Yo) + Yo,
where the Macauley brackets ((e)) = %[|(o)| + (e)] ensure a limiting yield
stress yo. Herein, 6, 6y and w are the current temperature, the room temperature
and a thermal softening parameter; yo denotes the initial yield stress at room
temperature. When comparing the stresses and plastic strains resulting from the
purely mechanical computation where the temperature-dependent yield behavior is
incorporated (approach (ii)), see Fig. 4, we obtain quite similar distributions at the
microscale. This is also observed for the macroscopic values: the macroscopic von
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Fig. 3 (a) Von Mises stresses and (b) equivalent plastic strain distributions at full macroscopic
deformation for the thermo-mechanical microstructure computations according to approach (i).
The SSRVE, see Fig. 2b, has been clipped to visualize the interior
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Fig. 4 (a) Von Mises stresses and (b) equivalent plastic strain distributions over the SSRVE at full
macroscopic deformation for the purely mechanical calculations according to approach (ii). The
SSRVE, see Fig. 2b, has been clipped to visualize the interior

Mises stress is computed from the volume averaged Cauchy stress and takes a value
of 1050.4 MPa, whereas for the thermo-mechanical computation it is 1009.85 MPa.

Now, we compare the results of the micro-macro computations with the response
of the purely macroscopic phenomenological model. Therefore, the macroscopic
von Mises stress versus nominal extension at the bullet point in the sheet metal is
plotted in Fig. 5a. As can be seen, the difference between the purely macroscopic
computation and the micro-macro computation is rather large, compared to the
difference between the two approaches (i) and (ii). Furthermore, Fig. 5b shows
the temperature distribution at the microscale as a result of approach (i). A quite
small fluctuation even below 1 K is observed. This indicates that the consideration
of thermo-mechanics at the microscale is not necessarily required. In Fig. 5a also
the response of a purely mechanical micro-macro computation is plotted, where not
even the temperature dependency of the yield stress is taken into account. A small
deviation from the computation including temperature-dependent yield stresses
is observed. However, the incorporation of temperature-dependent evolving yield
stresses may be important in order to accurately represent a potential necking at the
microscale, cf. [28]. Therefore, in the following, the model based on approach (ii) is
used to perform parallel micro-macro simulations of the entire critical region as seen
in Fig. la which consists of 468 microscopic boundary value problems associated
with the macroscopic integration points. We consider realistic microstructures with
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Fig. 5 (a) Comparison of the macroscopic von Mises stress vs. nominal strain curves resulting
from the macroscopic phenomenological law and from the micro-macro computations and (b)
bi-sectional view of the temperature distribution at the microscale as a result of approach (i)
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Fig. 6 (a) Von Mises stresses in the critical region after applying the full extension obtained
from averaging the stress distributions from the microscopic boundary value problems with the
(c) realistic microstructure; (b) von Mises stresses in the deformed configuration of one exemplary
microscopic boundary value problem corresponding to the macroscopic integration point P marked
with the black dot in Fig. 6a

206,763 degrees of freedom each, see Fig. 6¢. For an efficient and fast solution we
decomposed the microstructure in eight cubical subdomains and used a Newton-
Krylov FETI-DP approach. All microscopic computations have been performed
on eight cores of the CHEOPS cluster at the RRZK in Cologne. In Fig.6b we
present the von Mises stresses in the deformed configuration of one exemplary
microscopic problem and in Fig. 6b the von Mises stresses in the complete critical
region of the macroscopic problem. The von Mises stresses in the integration
points of the macroscopic problem are obtained from a suitable volumetric average
over the microscopic quantities. When comparing the results with the purely
macroscopic computations shown in Fig. la, the qualitative distribution of the
stresses looks similar. The quantitative results differ however more than 30 %, which
shows the necessity to analyze scale-coupled computations. In addition to a more
reliable prediction of stresses at the macroscale, microscopic stress distributions
are available building the basis for failure initialization analysis. We additionally
provide a brief summary of the RVE computations performed on CHEOPS and
using FETI-DP for the solution of all linear systems; see Table 1.
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Table 1 RVEs using the J2 plasticity material model in 3D. For the three dimensional micro
structure; see Fig. 6¢c. Average Newton It. denotes the number of Newton iterations per RVE,
summed up over all macroscopic load steps and averaged over all RVEs

Realistic RVEs with thermo-plasticity and realistic microstructure

#RVEs D.of. FETI-DP Average Total
per RVE subdomains Newton It. coreX h
per RVE
468 206,763 8 2113 9.28h x 8 x 468

5 FE2TI: A Parallel Implementation of the Fully Coupled
FE? Approach

The FE2TI software is a parallel implementation of the (fully coupled) FE?
method using FETI-DP domain decomposition methods to solve the microscopic
boundary value problems. We have reported on the software package and its
parallel performance previously [19, 20]. In the current paper, for the first time, we
provide weak scalability results for large production runs with parallel I/O on the
complete machine. We also investigate the strong scalability of the FE2TI software,
which has not been done before. For a detailed description of FETI-DP methods,
see [8, 16-18].

5.1 Implementation Remarks

FE2TI is implemented using PETSc 3.5.2 [3], MPI, and hybrid MPI/OpenMP. Fur-
thermore, we make use of the software libraries MUMPS [1, 2], UMFPACK [6], and
PARDISO [26] as sequential (or parallel) direct solvers for subdomain problems.
We also make use of inexact FETI-DP variants using BoomerAMG [14] from
the hypre [7] package as a preconditioner of the FETI-DP coarse problem. On
Blue Gene/Q, the software environment is compiled using the IBM XL C/C++
compilers using auto vectorization. When using UMFPACK as a direct solver for
the subproblems, a large portion of the computing time is spent inside IBM’s
ESSL library, which implements efficient auto vectorization. In the computations
presented here, we use piecewise linear brick elements (Q1) for all finite element
discretizations. In our FE2TI implementation, an MPI_Comm_split is used to
create subcommunicators for the computations on the RVEs (Representative Volume
Elements). On Blue Gene/Q supercomputers, we use the environment variable

PAMID COLLECTIVES MEMORY OPTIMIZED=1

to enable an efficient communicator split even for a large number of cores.



One-Way and Fully-Coupled FE? Methods for Heterogeneous Elasticity and Plasticity 105

Each RVE is assigned to exactly one of the MPI subcommunicators, and the
computations in 1. to 4. in Algorithm 1 can be carried out independently on
each subcommunicator. This includes several parallel (inexact reduced) FETI-
DP [17] setups and solves. Communication in between the several communicators
is only necessary for the assembly of the linearized macroscopic problem (see
5. in Algorithm 1) and the update of the macroscopic variables (see 7. in Algo-
rithm 1). The macroscopic solve (see 6. in Algorithm 1) is performed on each
MPI rank redundantly, using a sparse direct solver. This is feasible due to the
small macroscopic problem size. To assemble and solve the macroscopic problem
on each MPI rank, the consistent tangent moduli and the averaged stresses in the
macroscopic Gauf} points have to be communicated to all ranks. Therefore, we have
implemented a gather operation in two steps. First, the tangent moduli and stresses
are averaged and collected on the master ranks of each RVE subcommunicator.
This corresponds to an MPI_Reduce operation on each subcommunicator. In a
second step, an MPI_Gather operation collects the data from the master ranks of
the subcommunicators in the global master rank. This avoids a global all-to-all
communication and only includes one MPI rank per RVE. Finally, we broadcast
all tangent moduli and stresses from the global master rank to all MPI ranks. For
some more details on the FE2TI implementation, see [19, 20].

A highly efficient parallel I/O strategy is also provided in the FE2TI package,
based on HDFS5 [32]. All data, as stresses and displacements on the RVEs, is written
to one single parallel file, currently once every four macroscopic load steps. For a
production run on the complete JUQUEEN, we have measured an I/O time of less
than 2 % of the total runtime.

In all computations presented in this section, we consider two different Neo-
Hooke materials. Note that for the results in this section, we do not use a CSDA
approximation but rather the exact tangent. We have inclusions of stiff material (£ =
2100, v = 0.3) in softer matrix material (E = 210, v = 0.3) and consider a realistic
microstructure depicted in [20, Fig. 1]. The strain energy density function of the
Neo-Hooke material W [15, 34] is given by

W) = = («c(F'F) — 3) — pln(J) + %ln2 )

DT

with the Lamé constants A = W(EI—ZV) n= ﬁ and the deformation gradient
F(x) := Ve@(x); here, ¢(x) = x 4 u(x) denotes the deformation and u(x) the

displacement of x.

5.2 Production Runs on the JUQUEEN Supercomputer

First, we present three different production runs of different problem sizes in
Table 2. Here, as a macroscopic problem, we discretize a thin plate with a
rectangular hole with 8, 32, and finally 224 finite elements. This corresponds to a
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full simulation of 64, 256, and finally 1792 RVEs in the corresponding macroscopic
Gaul} integration points. In 40-41 load steps, we apply a deformation of the plate of
approximately 8 %. A visualization of the results of the largest production run has
been previously reported on in [20, Fig. 1]. Considering only a few macroscopic
load steps and disabling I/O, e.g., for checkpointing, we have already shown
nearly optimal weak scalability for the FE2TI package [19, 20]. Here, for the first
time, we present weak scalability for the production runs using full I/O (using
HDF5 [32]), many load steps, an unstructured mesh on the macroscale, and a
realistic microstructure from dual phase steel.

In our multiscale approach, the size of the RVE must be determined such that
it is representative of the microstructure (sufficient size) and that it must capture
all important features of the microstructure (sufficient resolution). Once the type
of discretization is chosen, the number of degrees of freedom for the RVE is
thus fixed. Here, each RVE has 823,875 degrees of freedom. In our computation,
a problem on an RVE is then solved iteratively and in parallel, using 512 MPI
ranks running on 256 cores, by a FETI-DP domain decomposition method using
512 subdomains. This choice results in an appropriate workload for each core.
Therefore, the largest multiscale production run on the complete JUQUEEN at
Forschungszentrum Jiilich (917,504 MPI ranks on 458,752 cores) makes use of a
total number of 1,476,384,000 degrees of freedom (of course representing a much
larger full scale problem).

Neglecting the fact that we use slightly different dimensions for the macroscopic
plate in the three different production runs, this set of production runs can also
be viewed as a weak parallel scaling test. In addition to the total time to solution,
we have also reported on the average runtime for the solution of a nonlinear RVE
problem in Table 2. Here, we have a slight increase in the runtime of approximately
10 % when scaling from 1 to 28 racks. This is partially due to a small increase
in I/O time and also slightly higher numbers of GMRES iterations in the FETI-
DP solver, probably due to the larger and more complicated macroscopic problem.
Nevertheless, for a complete production run including parallel I/O, these scalability
results are satisfying. In Table 2, we also provide timings for the macroscopic solve.
Since the macroscopic problem is currently solved redundantly on each core, this
phase of the method does not scale. But even for the largest production run, the cost

Table 2 Complete FE? production runs using the FE2TT software; realistic microstructure in the
RVESs; nonlinear elasticity model; 32 MPI ranks per node. Avg. RVE Solve denotes the average
runtime to solve the nonlinear microscopic boundary value problems; Avg. Macro Solve denotes
the average runtime of a direct solve on the macroscale
JUQUEEN—Complete FE? runs for elasticity
#Racks| #MPI ranks| #RVEs #Load steps| Time (s)| Avg. RVE solve (s)| Avg. macro solve (s)
1 32,768 64RVEs |41LS 16,899 | 101.13 0.06
4 131,072 256 RVEs | 41LS 17,733 | 105.95 0.22
28 917,504 | 1792RVEs | 40LS 18,587 | 112.48 1.54
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for the macroscopic problem is currently negligible, i.e., it contributes less than 1%
to the total runtime.

5.3 Strong Scalability on JUQUEEN

For the first time, we also present strong scalability results for the FE2TI software
for a nonlinear model problem; see Table 3. Let us first describe the model problem
used here. On the macroscale, we use the geometry and discretization of the second
largest production run presented before in Table 2. Thus we have 256 microscopic
boundary value problems (RVEs). In contrast to the previous production runs, we
now consider smaller RVEs with 107K degrees of freedom each. Each RVE has
one stiff, spherical inclusion and is decomposed into 512 FETI-DP subdomains.
The subdomains are thus quite small, only consisting of 375 degrees of freedom.
Let us note that this setup avoids memory problems on the smallest partition (1024
MPI ranks). Let us remark that we always use 32 MPI ranks per BlueGene/Q node
and thus less than 512 MByte are available per rank. This setup was found to be
most efficient in [19, 20].

In our strong scaling test, we simulate one macroscopic load step which
converges in three Newton steps. In 222 of the 256 RVE problems, 9 microscopic
Newton steps are necessary for convergence during the complete macroscopic load
step. For the remaining 34 Gauf} points only 8 microscopic Newton steps are

Table 3 Strong scaling of FE? using the FE2TI software; nonlinear elasticity model; 32 MPI ranks
per node. Macroscopic problem with 256 Gauf} integration points; in each macroscopic integration
point an RVE with 107K degrees of freedom is solved using 512 FETI-DP subdomains. Simulation
of one macroscopic load step. Time to Solution denotes the total time needed for one FE? load step;
Eff. denotes the parallel efficiency, where the total time to solution on 1024 ranks is chosen as
a baseline; Speedup denotes the speedup compared to the runtime on 1024 cores; Avg. FETI-DP
Setup Time denotes the average runtime necessary for a FETI-DP setup for one linearized system
on an RVE; Avg. Ass. Time denotes the average runtime of the assembly of one linearized system
on an RVE; Avg. Solve Time denotes the average iteration time to solve one linearized system on
an RVE; all averages consider all linearized systems occurring in all microscopic Newton steps

Strong scaling on JUQUEEN

Time Avg. FETI-DP | Avg. Avg.

MPI ranks | to solution (s) | Eff. (%) | Speedup | setup time (s) | ass. time (s) | solve time (s)
1024 1568.9 100 1.00 14.98 44.29 21.08
2048 822.0 95 1.91 6.97 22.13 11.54
4968 431.7 91 3.63 3.51 11.07 5.65
8192 225.0 87 6.97 1.85 5.54 3.05
16,384 138.7 71 11.39 1.04 2.77 2.32
32,768 90.0 54 17.42 0.61 1.38 1.43
65,536 40.4 61 38.81 0.39 0.69 0.67

131,072 35.6 34 44.10 0.29 0.35 0.65
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performed. This means, depending on the RVE, we perform 11 or 12 FETI-DP
setups including problem assembly, while 35 or 36 FETI-DP solves are necessary.
Let us recall that we have to perform one FETI-DP setup and solve per microscopic
Newton step. Additionally, after convergence on the microscale, we have to compute
the consistent tangent moduli (see 4. in Algorithm 1). Therefore, for each of the
three macroscopic Newton steps, one further FETI-DP setup and nine FETI-DP
solves with different right hand sides are necessary. This sums up to the mentioned
number of FETI-DP setups and solves on each microstructure. In average, we have
44.8 GMRES iterations for each FETI-DP solve. Let us remark that we consider all
macroscopic as well as microscopic Newton iterations as converged, if the /,-norm
of the Newton update is smaller than le — 6.

Since the lion’s share of the runtime of the FE2TI package is spent in the
assembly of the microscopic problems and in FETI-DP, the strong scalability is
dominated by three phases: the problem assembly on the RVEs, the FETI-DP setup,
and the FETI-DP solve; see also [21] for a detailed discussion on the strong scaling
behavior of (ir)FETI-DP methods. Therefore, we provide detailed timings for those
three phases in Table 3. We obtain, as it can be expected, perfect scalability for
the assembly phase and also convincing results for the FETI-DP setup phase. The
FETI-DP solution phase scales well up to 65K ranks. Scaling further up to 131K
ranks the additional benefit is small. These results are also depicted in Fig. 7. All in
all, this leads to a satisfying strong scaling behavior of the complete FE2TI package
from 1 K up to 65K ranks with 61 % parallel efficiency and a speedup of 38.8; see
also Fig. 8. Let us finally remark that the FE2TI package can thus solve 256 times 36
linear systems with 107 K degrees of freedom in approximately 40 s on 65 K MPI
ranks and 32 K BlueGene/Q cores.

Fig. 7 Strong scalability of fac © Avg. FETI-DP Setup © Avg. Assembly
the FE2TI software. Figure Bz o Avg. Solve Time

corresponds to data from
Table 3. Scalability of the
different phases of the RVE
solver FETI-DP

Runtime in [s]

0.1
1024 2048 4096 8192 16384 32768 65536 131072
MNumber of MPI Ranks
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Fig. 8 Strong scalability of 1,567.9 © FE2TI > ldeal Scaling
the FE2TI software. Figure ey 822.0
1000 4317
corresponds to data from 1= 95,0
Table 3. Top: Total time to __5_ .. 1377 66
solution. Bottom: Speedup 2 100 0
® - 4 356
=] - ~
[:]
£ 10
l—
®
ke’

1
1024 2048 4096 8192 16384 32768 65536 131072
Number of MPI Ranks

© Speedup FE2TI < |deal Speedup
100
- B

Speedup

1
1024 2048 4096 8192 16384 32768 65536 131072
Number of MPI Ranks

6 Conclusion

We have presented two steps towards the realistic two-scale simulation of dual-
phase steel. First, we have discussed our isotropic, thermodynamically-consistent,
thermo-elastoplastic material model, based on [28], to be employed in the multiscale
simulation of dual-phase steel sheets. A numerical differentiation scheme, which
relies on the complex step derivative approximation approach, was used to compute
the tangent stiffness matrices in the thermo-mechanical simulations. It allows to
obtain locally quadratic convergence of Newton’s method. Within this setting, a one-
way coupling scheme is utilized to increase the efficiency in the multiscale analysis
of the steel sheet subjected to inhomogeneous deformations. The multiscale analysis
presented here indicates that the higher level of information involved in the micro-
level computation leads to a more accurate assessment of critical states during the
forming process. The resulting mechanical field distributions help to identify areas
in the microstructure geometry where concentrations of stress or strains may lead to
initialization of failure. This information is not accessible by purely phenomeno-
logical material models and limits their predictive capabilities. Additionally, the
comparison between various approaches at the micro-level show that, for DP steels,
where the thermal properties of the phases are almost identical, for the considered
nominal strain rates (¢ &~ 10~2s~!), the thermo-mechanical consideration does not
yield significantly different response than the purely mechanical one. Thus, for cases
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similar to the one presented here, considering only mechanics at the microscale can
reduce computational effort substantially without significant loss of accuracy.

Second, we have presented the FE2TI software package for the two-scale
simulation of steel. The package allows one-way coupling, as described above, as
well as two-way, two-scale coupling using the FE? approach. We have discussed
weak scalability for up to 458,752 cores for the fully coupled FE?> production
runs using full I/O, many load steps, an unstructured mesh on the macroscale,
and a realistic microstructure from dual phase steel. As a result of the previous
considerations, in these computations, we could neglect temperature effects. We
have also presented strong scalability results for the FE2TI software using up to
131 072 cores of the JUQUEEN supercomputer.
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