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Abstract In this article we present a complete parallelization approach for sim-
ulations of PDEs with applications in optimization and uncertainty quantification.
The method of choice for linear or nonlinear elliptic or parabolic problems is the
geometric multigrid method since it can achieve optimal (linear) complexity in
terms of degrees of freedom, and it can be combined with adaptive refinement
strategies in order to find the minimal number of degrees of freedom. This optimal
solver is parallelized such that weak and strong scaling is possible for extreme
scale HPC architectures. For the space parallelization of the multigrid method
we use a tree based approach that allows for an adaptive grid refinement and
online load balancing. Parallelization in time is achieved by SDC/ISDC or a space-
time formulation. As an example we consider the permeation through human skin
which serves as a diffusion model problem where aspects of shape optimization,
uncertainty quantification as well as sensitivity to geometry and material parameters
are studied. All methods are developed and tested in the UG4 library.
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1 Introduction

From the very beginning of computing, numerical simulation has been the force
driving the development. Modern solvers for extremely large scale problems require
extreme scalability and low electricity consumption in addition to the properties
solvers are always expected to exhibit—like optimal complexity and robustness.
Naturally, the larger the system becomes, the more crucial is the asymptotic
complexity issue. In this article, in order to get the whole picture, we give a
brief review of recent developments towards optimal parallel scaling for the key
components of numerical simulation. We consider parallelization in space in Sect. 2,
in time in Sect. 4, and with respect to (uncertain) parameters in Sect. 6. These three
approaches are designed to be perfectly compatible with each other and can be
combined in order to multiply the parallel scalability. At the same time they are kept
modular and could in principle also be used in combination with other methods. We
address the optimal choice of CPU frequencies for the components of the multigrid
method in Sect. 3. This serves as a representative first step for the general problem
of finding an energy optimal solver, or respectively energy optimal components.
Finally, in Sect. 5 the whole simulation tool is embedded in a typical optimization
framework.

2 Parallel Adaptive Multigrid

To accommodate parallel adaptive multigrid computation, we developed the simu-
lation system UG [2], which is now available in the fourth version, UG4 [21, 28].
UG4 is a solver for general systems of partial differential equations. It features
hybrid unstructured grids in one, two and three space dimensions, a discretization
toolbox using finite element and finite volume schemes of arbitrary order and
geometric and algebraic multigrid solvers. It allows for adaptive grid refinement.
Furthermore, UG4 features a flexible and self adaptive graphical user interface based
on VRL [13].

In our first test we investigate the scaling properties of the geometric multigrid
method in UG4 by a weak scaling test for the simple 3d-Laplace model problem (cf.
Sect. 5 for strong scaling tests). As can be seen from Table 1 and Fig. 1 we achieve
almost perfect weak scaling.

In our second numerical test we consider the weak scaling efficiency for a slightly
more involved structural mechanics problem, 3d linear elasticity. The results in
Table 2 show the same almost perfect weak scaling.

Adaptivity is a key tool for HPC, the larger the problem becomes, the more
important adaptive grid resolution becomes. This can be seen from the following
numerical test example computed by Arne Nägel, Sebastian Reiter and Andreas
Vogel, see also [29]. To compute diffusion across human skin, we model the main
barrier, i.e. the uppermost skin layer, the stratum corneum. The stratum corneum
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Table 1 Weak scaling on JUQUEEN. 3d-Laplacian, uniform grid, finite volumes with linear
ansatz functions, geometric multigrid V-cycle, damped Jacobi smoother (�1 D �2 D 2). We denote
by p the number of processors, by dofs the number of degrees of freedom, by Niter the number of
multigrid iterations, and by Tass; Tsetup, and Tsolve the elapsed time for the assembly, setup, and
solve, respectively

p L dofs Niter Tass (eff.) Tsetup (eff.) Tsolve (eff.)

64 8 4;198;401 10 4.46 – 2.22 – 3.04 –

256 9 16;785;409 10 4.47 99:6 2.17 102:2 3.08 98:6

1;024 10 67;125;249 10 4.46 99:9 2.32 95:6 3.13 97:0

4;096 11 268;468;225 10 4.40 101:3 2.26 98:3 3.17 95:8

16;384 12 1;073;807;361 10 4.42 100:9 2.38 98:3 3.27 93:0

65;536 13 4;295;098;369 10 4.42 100:9 2.47 89:7 3.40 89:5

262;144 14 17;180;131;329 10 4.47 99:7 2.62 84:9 3.55 85:5

Fig. 1 Weak scaling on JUQUEEN. 3d-Laplacian, uniform grid, finite volumes with linear ansatz
functions, geometric multigrid V-cycle, damped Jacobi smoother (�1 D �2 D 2). Plotted is the
elapsed time Tass; Tsetup, and Tsolve for the assembly, setup and solve phase, respectively, for p D
64; : : : ; 262;144 processors (From [21])

consists of dead horn cells, the corneocyctes, which are glued together by lipid
bilayers. As geometry model we use the so-called cuboid model as shown in Fig. 2.
To compute diffusion of a substance across stratum corneum, we use a diffusion
equation with constant diffusivities in the two different materials, corneocytes and
lipids, and add a transmission condition for the interior material boundaries

@c.x; t/

@t
D div .k.x/rc.x; t//

with the diffusivities

k.x/ D
�

klip; x in lipid layer
kcor; otherwise
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Table 2 Weak scaling on JUQUEEN. 3d linear elasticity, uniform grid, finite volumes with linear
ansatz functions, geometric multigrid V-cycle, damped Jacobi smoother (�1 D �2 D 2). Legend as
in Table 1

p L dofs Tass C Tsetup C Tsolve (eff.)

1 3 14;739 7:33 –

8 4 107;811 7:42 98:8

64 5 823;875 7:58 96:8

512 6 6;440;067 7:79 94:2

4;096 7 50;923;779 7:90 92:8

32;768 8 405;017;091 8:08 90:7

262;144 9 3;230;671;875 8:21 89:4

Fig. 2 Cuboid model of
human stratum corneum. The
corneocytes are modeled by
cuboids, measuring
30 � 30�m horizontally and
1�m in vertically, the lipid
layer is assumed to be 100 nm
thick

Table 3 Weak scaling on
JUQUEEN, skin problem 3d
cuboid, uniform refinement,
geometric multigrid V-cycle,
damped Jacobi smoother
(�1 D �2 D 3, ! D 0:6),
base level 4, base solver LU.
Legend as in Table 1

p L dofs Niter Tass Tsetup Tsolve

16 6 290;421 25 1:76 8:17 20:23

128 7 2;271;049 27 1:77 8:20 22:31

1;024 8 17;961;489 29 1:78 8:45 24:10

8;192 9 142;869;025 29 1:78 8:48 23:35

65;536 10 1;139;670;081 29 1:79 8:59 24:79

and the transmission condition

Kcor=lip � clip.x; t/ jn
�

D ccor.x; t/ jn
C

for the interior material boundaries. The transmission condition describes the so-
called partitioning effect caused by the lipophilicity, respectively hydrophilicity,
of the diffusing substance. The problem here is the extreme anisotropy, which is
combined with the jumping diffusivities of the material. Together, these features
cause an optimal barrier effect as described in [12, 20]. We used this model for a
scaling study with uniform refinement. The results are shown in Table 3. The same
model was used to study the influence of adaptive grid refinement in parallel. To that
end, we did a weak scaling study of this problem with adaptive refinement using a
residual error estimator as refinement criterion and compared this with the uniform
refinement results. Plotting this into one graph, we obtain the results in Fig. 3.
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Fig. 3 Error reduction per degrees of freedom for uniform and adaptive refinement in parallel
(From [29])

From that we conclude:

• Using the full machine with the adaptive approach, we gain an accuracy
comparable to the one with a computer 512 times as large.

• Adaptivity is a leading method for power saving. To reach the same error with
the adaptive method, you need just 1024 CPUs instead of 65,536 CPUs in the
uniform case or using 65,536 CPUs for the adaptive computation, we would
need a computer 512 times larger, i.e. with 33,554,432 CPUs, to reach the same
accuracy on a uniform grid. This means saving 99.5 % in CPU time and in power
consumption.

3 Empirically Determined Energy Optimal CPU Frequencies

Besides improved scaling properties also energy efficiency poses a challenge that
needs to be tackled in order to enable exascale computing. This is due to rising
energy costs, a limited availability of electric power at many sites as well as
challenges for heat dissipation. From our point of view, increasing energy efficiency
requires approaches on multiple fields. The most important one will be efficient
algorithms as addressed in the previous and following sections. Furthermore,
efficient implementations of these algorithms are required and the resulting codes
need to be executed on energy efficient hardware. Moreover, the CPU’s clock
frequency may be adjusted according to the current load. In this section, we will
give an overview of our approach to do the latter. A detailed description of this
method has already been published in [6]. Hence, we just give a summary here and
refer to the aforementioned document regarding further details.
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3.1 Approach

Our purpose is to figure out the maximum energy saving potentials and correspond-
ing runtime impacts achievable by adjusting the CPU’s clock frequency. We hence
try to minimize the energy required to solve a given problem. This energy can be
determined by E D R t2

t1
P.t/ dt with P.t/ denoting the present power consumption

of the corresponding code, running from time t1 to t2. According to [4], P can be
approximated by P D CV2.t/f .t/ where C denotes the semiconductor’s capacity
and V.t/ respectively f .t/ denote the time dependent supply voltage as well as clock
frequency of the CPU. Hence, reducing f .t/ and V.t/ by so-called dynamic voltage
and frequency scaling (DVFS), decreases power but may increase the runtime and
therefore energy consumption.1 In phases with intensive memory access, however,
one may observe only a slight increase of runtime because the CPU is anyway forced
to wait on the memory subsystem most of the time. However, predicting memory
access characteristics in complex codes is a challenging task. Thus, it is also hard to
predict the optimal clock frequency and we therefore deploy an empirical approach.
Linux also does this in its standard configuration but clock frequency decisions are
based on an idle time analysis. In contrast to this, we take advantage of knowledge
about potential phase boundaries and adjust the clock frequency immediately to the
optimal value instead of spending time for a runtime analysis first.

In order to do so, we employ preparatory measurements to figure out energy
optimal clock frequencies and utilize them in subsequent production runs. The
overhead induced by this method is negligible if it is possible to determine optimal
frequencies within a single node or timestep and use them within plenty of those.
The core of our approach is to run the entire target code at a fixed clock frequency,
measure the resulting power consumption over time, and repeat this procedure with
all the available frequencies. The resulting energy consumption of a routine can be
determined by integrating the measured power over the routine’s runtime. Since all
routines have been run and profiled at all available frequencies, one can now—per
routine—pick out the optimal ones in terms of energy. Hence, phases with varying
memory access characteristics can be reflected by adapting the clock frequency per
routine to its optimal value.

We emphasize that—while minimizing energy—this method may significantly
increase the runtime. Nevertheless we deploy it because we are interested in the
maximum energy saving potentials and corresponding runtime impacts of DVFS, as
stated above.

1We use the commonly utilized term “energy consumption” despite the fact that electrical energy
is converted to thermal energy.
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3.2 Implementation Details

In order to implement the aforementioned approach, a measurement method is
required that yields highly reliable and time correlated results. We measure the
actual supply voltage V and current I of the used CPU and its associated memory
modules as close to these components as possible. The current flow I can be
determined according to Ohm’s law as I D VR

R with VR denoting the voltage drop
over a high precision shunt R D 0:01˝ in the CPU’s supply line. Based on these
values, one can calculate the present power consumption by P D VI. The required
measurements are performed by an A/D converter in a separate machine with high
accuracy (�relative < ˙1:5 %) and a time resolution of 80 �s.

As already mentioned before, integrating P over time yields the energy spent
in a particular routine. The corresponding time interval is determined by calls to
gettimeofday() from within the code to be evaluated. This method requires a
precise synchronization between the real time clocks of the compute node and the
measurement hardware. The Precision Time Protocol (PTP) is employed for this
purpose via a separate ethernet link. By this method, an average time deviation of
about 20 �s can be achieved, which is below the time resolution of the used A/D
converter and therefore admissible.

Unfortunately it is not possible to separate the power consumption of distinct
components—especially CPU cores—with the described method. Parallel runs on
multiple cores without tight synchronization and perfect load balancing will hence
blur the measured power consumption. We therefore restrict our method to serial
runs for a start. Parallel runs might nevertheless be regarded in future research.

In order to compensate for OS jitter as well as other transients, five runs of every
test case are evaluated and their median is used in further processing.

Since the time resolution of our measurement system is 80 �s, it is not possible to
make reasonable statements on the energy consumption of routines with a runtime in
or below this order of magnitude. We therefore take into account only routines with a
runtime of at least 1 ms. Since the used profiler solely provides accumulated times,
tac
n � 1 ms is used as the selection criterion, where tac denotes the accumulated

runtimes (including subroutine calls) of all routine calls and n denotes their number.
In analogy to this, optimal clock frequencies are selected based on the average
energy consumption of entire calls (i.e., including subroutine calls) to the respective
routine. These criteria are just one of many possible choices and other ones will be
investigated in future research.

According to [14], the frequency transition latency of current CPUs is substantial.
In case of a rapid series of frequency transition requests it is hence not reasonable to
immediately set the new frequency in the target production runs. As a consequence,
we wait for a period of 10 �s after the first request of the series, track further ones,
and serve only the latest. The choice of this value will also be subject to future
research.
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Unfortunately, the library call used for setting the frequencies2 is blocked until
completion of the transition (which may be a substantial amount of time), although
the CPU can be used in the usual manner during this period. Because of the possibly
large number of frequency transitions, this may decrease the overall performance
and at the same time raise the energy consumption to an extent that may diminish
the benefits of optimal frequency usage. We therefore trigger the actual frequency
transition from within a concurrent helper thread, cf. [6].

3.3 Evaluation

In order to evaluate the described approach, it has been applied to the already
mentioned numerical simulation code UG4. As a representative application, UG4
has been deployed to solve a time dependent convection–diffusion problem using
the vertex centered finite volume method on a two dimensional grid with the
geometric multigrid solver and several combinations of setup parameters, partic-
ularly different smoothers. Every timestep involves several phases with differing
characteristics, i.e., discretization and system assembly (memory-bounded), system
solution (CPU-bounded), as well as output of results (potentially I/O-bounded),
which may be exploited by the approach by means of differing clock frequencies.
The corresponding runs have been executed on an Ivy Bridge compute node, cf. [6]
for technical details.

To quantify the effects of the approach, we compared the resulting runtime and
energy consumption of entire runs to those resulting from Linux’ default clock
frequency management. In our first experimental measurements (cf. [6]) we have
found an average energy saving potential of about 10 %, which was, however,
contrasted by an average runtime penalty of about 19 %. By further investigating
our method since publishing those data, we have found that results are not fully
reproducible in between different runs of the approach. Despite this fact, it still
seems to be possible to reduce the energy requirements by allowing an increased
runtime.

One shortcoming of the approach is the limitation to systems with special
measurement equipment. Hence, it will be important to investigate the precision of
power estimation by means of hardware performance counters with respect to our
approach, in order to use them for the preparatory measurements on conventional
systems.

In future research, we will tackle these problems in order to enable full
reproducibility. We will, moreover, try to reduce the induced runtime penalty and
expand the method to multiple active cores within a socket.

2cpufreq_set_frequency()
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4 Parallel in Time Multigrid

Firstly we mention an inexact variant of the well known time integrator Spectral
Deferred Correction (SDC); SDC is commonly used as a smoother for multilevel
algorithms in time. The Inexact SDC (ISDC) algorithm can reduce significantly the
computational cost of SDC. In fact in SDC, a full system solution is required for
an implicit, or semi-implicit strategy. On the other hand in ISDC few multigrid V-
cycles are used to get an approximate solution. The effectiveness of this technique
is due to the iterative nature of SDC that provides an accurate initial guess for the
multigrid cycles. This method has been tested on the heat equation (see Table 4) and
Viscous Burgers’ equations in [27].

The natural usage of the ISDC time stepper is in the context of multilevel time-
parallel algorithms, e.g. MLSDC [26] or PFASST [7], based originally on SDC.
Both schemes perform SDC sweeps in a hierarchy of levels and use a FAS correction
term for the spatial representation of the problem on different levels. ISDC can
further improve parallel efficiency of those parallel-in-time methods [16].

Secondly we mention the results in the context of a multigrid space–time
solution method for the Navier-Stokes equations with periodic boundary conditions
in time [3]. The Navier-Stokes equations are discretized in space–time with high
order finite differences on a staggered grid. The discretization leads to a large, ill-
conditioned, non-linear system that has to be solved in parallel. Picard iterations
are used to treat the non-linearity and we design a block Gauss-Seidel smoother
for a space–time multigrid algorithm. A local Fourier analysis is used to analyze
the smoothing property of such a method on a staggered grid. The space–time
domain is fully decomposed resulting in a parallel-in-time method. Convergence
and weak/strong scaling were successfully tested (see Fig. 4).

Table 4 Accumulated
Multigrid V-cycles over all
sweeps to reduce the SDC or
ISDC residual below 5 � 10�8

for different values of the
diffusion coefficient k in the
heat equation and the number
of quadrature nodes M

k M SDC ISDC Savings (%)

1 3 16 12 25

5 23 20 13

7 32 28 13

k M SDC ISDC Savings (%)

10 3 36 20 44

5 61 40 34

7 79 47 41

k M SDC ISDC Savings (%)

100 3 106 52 51

5 150 104 31

7 187 167 11
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Fig. 4 Left: convergence of the Picard iteration with different numbers of multigrid cycles per
iteration. Right: strong scaling results with processors equally distributed in space and time

5 Scalable Shape Optimization Methods for Structured
Inverse Modeling in 3D Diffusive Processes

We consider the inverse modeling of the shape of cells in the outermost layer
of the human skin, the so-called stratum corneum. For this purpose we present a
novel algorithm combining mathematical shape optimization and high performance
computing. In order to show the capabilities of this method, we assume that we have
an experiment providing a time-series of data describing the spatial distribution of a
tracer in a skin sample. Based on this information, we aim at identifying the structure
and the parameters matching the experimental results best. The starting point is a
common computational model for the so-called stratum corneum based on tightly
coupled tetrakaidecahedrons. For a review, the reader is referred, e.g., to [17, 18].

From a computational point of view, this means to evaluate the model equations,
compute the defect to the measurements, evaluate sensitivities of this defect with
respect to the shape of the parameter distribution and finally update the shape in
order to minimize the defect. A special focus is on the scalability of the optimization
algorithm for large scale problems. We therefore apply the geometric multigrid
solver UG4 [28].

In this particular application, we are dealing with flows dominated by diffusion.
We thus choose the classical parabolic model equation for the simulation together
with standard finite elements. By c we denote the concentration of the quantity of
interest in the domain ˝ D ˝1 [ ˝2 over the time interval Œ0; T�. At the initial time
t D 0, the concentration c is fixed to homogeneously zero in the entire domain and
one at the upper boundary �top. The other boundaries denoted by �out are modeled
such that there is no flux across them. The permeability of the domain ˝ is given by
a jumping coefficient k taking two distinct values k1 and k2 in ˝1 and ˝2. It can thus
be thought of as a homogeneous material with inclusions of different permeability
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separated by the interior boundary �int. The underlying model is given by

min J.˝/ WD 1

2

MX
iD1

Z
˝

.c.ti/ � Nc.ti//
2dx C �

Z
�int

1 ds (1a)

s.t.
@c

@t
� div.krc/ D f in ˝ � .0; T� (1b)

c D 1 on �top � .0; T� (1c)

�c� D 0 ;

�

k
@c

@n

�

D 0 on �int � .0; T� (1d)

@c

@n
D 0 on �out � .0; T� (1e)

c D c0 in ˝ � f0g : (1f)

The first term in (1a) tracks the observations and the second term is a perimeter
regularization. Thus, the optimization tends to shapes �int with minimal surface
area. Equations (1d) describe the continuity of the concentration and of the flux
across �int.

The corresponding adjoint equation, which is obtained by deriving the
Lagrangian (cf. [25]) of problem (1a), (1b), (1c), and (1d) with respect to the
state c, then reads as

�@p

@t
� div.krp/ D

(
�.c � Nc/ in ˝ � ft1; : : : ; tMg
0 in ˝ � Œ0; T/ n ft1; : : : ; tMg (2a)

p2 D k1

@p

@n
; p D 0 in ˝ � fTg (2b)

�p� D 0 ;

�

k
@p

@n

�

D 0 on �int � Œ0; T/ (2c)

p1 D �k1p ;
@p

@n
D 0 on �out � Œ0; T/ (2d)

p D 0 on �top � Œ0; T/ : (2e)

In order to derive the derivative with respect to the shape, first the space of
feasible shapes has to be defined. For more details on the connection of shape
calculus and shape manifolds, see [22]. We consider the manifold

Be.S
2;�3/ WD Emb.S2;�3/=Diff.S2/ (3)

of smooth embeddings Emb.S2;�3/ of the unit sphere S2 into �3. Let b 2
Be.S2;�3/ be a feasible shape, then the tangent space to the manifold in b is given
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by all smooth deformations in normal direction

TbBe D fh j h D ˛n; ˛ 2 C1.S2;�/g : (4)

Additionally, we need to equip the tangential space with an inner product. Here
we take the so-called Sobolev metric for a constant 	 > 0 given by

g1 W TbBe � TbBe ! �; .u; v/ 7!
Z

b
h.id � 	
b/u; vi ds : (5)

The symbol 
b denotes the tangential Laplace or Laplace-Beltrami operator along
b. This inner product determines the representation of the shape gradient which
is then the actual update to the shape in each optimization step. The Sobolev inner
product with the Laplace-Beltrami operator and a proper parameter 	 ensure smooth
shape deformations such that the optimized shape remains in Be.

The shape derivative in direction of a smooth vector field V W ˝ ! �
3 is

defined as

dJ.˝/ ŒV� WD lim
h!0

J.˝h/ � J.˝/

h
(6)

where ˝h D fx C h � V.x/ j x 2 ˝g is perturbed according to V . For the underlying
model equations the shape derivative is derived in [25] and is given by

dJ.˝/ŒV� D
Z

�int

�Z T

0

hV; ni
�

�2k
@c

@n
@p

@n
C krcTrp

�

dt C hV; ni ��

�
ds

(7)

where � W �int ! � denotes the sum of the principle curvatures of the variable
surface �int.

In most applications, the measurements Nc are not available as a continuous
function. There is rather a set of discrete measurements in space. We thus apply
radial basis functions in order to interpolate Nc to the finite element nodes where c is
given.

The next step is to obtain a descent direction which can be applied as a
deformation to the mesh. On each triangle � � �int we evaluate the quantity

ı0 WD
�

�2k
@c

@n
@p

@n
C krcTrp

�

(8)

i.e., the jump of the value in brackets between in two opposing tetrahedra on �int

sharing a common triangle. Rescaling n, we define the vector

g0 WD ı0n: (9)
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For linear finite elements, both ı0 and gd are piecewise constant on each surface
triangle. Thus, in order to be consistent with the curvature, which is available in
each surface node, we project gd onto a vector gc in the space of piecewise linear
basis functions via the L2 projection, i.e.,

Z
�int

gc v ds D
Z

�int

gd v ds (10)

for all piecewise linear trial functions v on �int. By solving .id � 	
b/g D gc with a
discretization of the Laplace-Beltrami operator as derived in [15] we finally obtain
the representation of the shape gradient g.

One optimization iteration can be summarized in the following steps:

1. Evaluate measurements on current grid via radial basis function representation,
2. solve parabolic and its adjoint PDE with geometric multigrid,
3. compute ı0 and integrate over time,
4. L2 projection of piecewise constant gradient to linear basis function space and

add curvature for regularization,
5. solve Laplace-Beltrami equation for the representation of the gradient in the

Sobolev metric,
6. solve linear elasticity equations with g as Dirichlet condition on �int and deform

the mesh.

The algorithm described here is implemented within the software toolbox
UG4 [28]. This software is known to be scalable and features parallel multigrid
solvers [21]. Numerical experiments were conducted on the HERMIT3 supercom-
puter.

The investigation of the scalability is depicted in Fig. 5a–d. The computations
shown are based on a coarse grid with 9923 elements and, due to uniform refine-
ments, a fine grid with 325;156;864 elements on the 5th level. For strong scalability
(cf. Fig. 5a–c), one observes that most timings decrease, when p increases. All
operations not involving any solver, show this decrease. We can explain the
saturation for larger number of cores by the time the coarse grid solver requires,
which is a natural behavior. Also the weak scalability, which can be seen in Fig. 5d,
reflects our expectations. In the decreasing times, for the gradient computation one
clearly sees the difference in the asymptotic behavior of volume cells and surface
cells. A more detailed analysis can be found in [19].

In our future work we will focus especially on two issues of the presented
method. First, due to the incorporation of the shape gradient as a Dirichlet condition
in the mesh deformation, the iterated finite element grids tend to have overlapping
elements. In [23] we present shape metrics which circumvent this issue and
additionally lead to good mesh qualities. Second, the scalability of the presented

3HLRS, Stuttgart, Germany, http://www.hlrs.de/systems/platforms/cray-xe6-hermit/

http://www.hlrs.de/systems/platforms/cray-xe6-hermit/
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Fig. 5 Scaling of different components of the algorithm in first optimization iteration. (a) Strong
scaling on level 3. (b) Strong scaling on level 4. (c) Strong scaling on level 5. (d) Weak scaling,
increment factor 8 for cells and processors. (e) Legend (From [19])

approach is affected by the necessity to solve PDEs on surfaces only. In [24]
equivalent formulations for (7) using volume formulations are investigated which
overcome the effect on the scalability.

6 Uncertainty Quantification

As a typical parameter-dependent extreme scale problem we consider a PDE
involving diffusion coefficients that are parametrized by p 2 P D Œ0; 1�d,

div .k.x; p/rc.x; p// D f .x; p/; x 2 ˝.p/ C b:c: (11)

and assume that for fixed parameters p 2 P a solution c.x; p/ is computed in parallel
by the UG4 library. The parameters could, e.g., be piecewise diffusion coefficients
in each corneocyte. However, we are not interested in the whole solution c of (11)
itself but rather in a quantity  W P ! R, e.g. the integral mean of the solution
c.�; p/ over a subset ˝ :

.p/ D 1

j˝j
Z

˝

c.x; p/ dx : (12)
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Since the parameter set P is d-dimensional, even a discretization with 5 parameter
values for each component gives rise to 5d possible combinations, which exceeds
the estimated number of particles in the observable universe already for d � 150

parameters. Therefore, the full tensor cannot be stored or computed, but rather
an extremely data-sparse approximation of it. This approximation is sought in the
hierarchical low rank Tucker format [8, 11].

In [1, 10] we have devised a strategy for parallel sampling of tensors in the
hierarchical Tucker format, i.e. we compute a few of the values .p/ and derive all
others from these—based on the assumption that .�/ can be approximated in the
data sparse low rank hierarchical Tucker format (cf. [5]). In this context sampling
means that only certain entries of the tensor are required as opposed to intrusive
methods that require us to solve the underlying system of PDEs in the tensor format.
The sampling strategy that we propose is guided by the idea that samples are taken
one after the other and that later samples can be adapted to the already obtained
information of prior samples. This is in contrast to tensor completion strategies [9]
where the samples are taken randomly (perfectly parallelizable) and the tensor is
completed afterwards.

As a result of [10], parallelization of the (adaptive) sampling process is possible
with an almost optimal speedup. Since the method is only a heuristic, it would be
helpful to obtain an a posteriori estimate of the approximation quality. For this, we
require

• a representation of the underlying (discrete) operator A, the right-hand side b,
and the solution c in the hierarchical Tucker format,

• to approximately compute the (discrete) residual r D b � Ac,
• to estimate the accuracy by relating it to the residual.

This, however, is still under development. As a first step into this direction, we have
distributed the hierarchical low rank tensor according to the dimension tree layout
over 2d � 1 nodes (here we use a complete binary tree and consider only powers
of 2 for d). For such a distributed tensor the parallel tensor arithmetic has to be
developed. One key ingredient is the evaluation of the tensor, i.e. extracting a single
entry from the compressed representation. This procedure has been parallelized and
gives the results in Table 5.

Table 5 Parallel weak
scaling of the tensor
evaluation for distributed
tensors. The tensor is of size
100;000d , the number of
processors used is 2d � 1, the
internal rank is k D 500 for
every node in the dimension
tree

d Parallel time (s) Serial time (s) Speedup

4 0:127 0:246 1:9

8 0:261 0:777 3:0

16 0:433 1:880 4:3

32 0:627 4:206 6:7

64 0:882 8:673 9:8

128 0:869 18:82 21:6

256 1:057 38:09 36:0
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We observe that the parallel speedup is roughly 36 for a tensor in dimension
d D 256 with 511 processors. The loss is due the fact that the nodes in the dimension
tree have to be processed sequentially one level after the other (which was expected).
In addition to distributing the data of the tensor over several nodes, we also gain a
considerable speedup.

7 Conclusion

We have presented the development of a parallel multigrid based solver for complex
systems and tasks such as shape optimization or uncertainty quantification within
the unified UG4 software library. The modular parallelization in space, time, and
with respect to parametric dependencies allows us to provide the software for
computing way beyond exascale.
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