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Abstract The simulation of long-range electrostatic interactions in huge particle
ensembles is a vital issue in current scientific research. The Fast Multipole Method
(FMM) is able to compute those Coulomb interactions with extraordinary speed
and controlled precision. A key part of this method are its shifting operators,
which usually exhibit O(p*) complexity. Some special rotation-based operators
with O(p?) complexity can be used instead. However, they are still computationally
expensive. Here we report on the parallelization of those operators that have been
implemented for a GPU cluster to speed up the FMM calculations.

1 Introduction

The simulation of dynamical systems of N particles subject to physical potentials,
such as gravitation or electrostatics, is a crucial issue in scientific research. This
problem is commonly referred as the N-body problem, which has no analytical
solution for N > 3. However, using an iterative numerical approach, the dynamical
behavior of such systems can be simulated. Therefore, the total force exerted on each
particle is computed at discrete time intervals, so that the velocities and positions of
the particles can be updated.

A typical example is the simulation of a system of particles with electric charges
gi- The Coulomb force F;; of a particle j with charge g; acting on a particle i with
charge g; is defined by the following expression:
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where r;; is the distance vector between particles i and j. Given that, the total force
F; acting on each particle i can be expressed as the following summation:
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As we can observe, calculating the forces acting on each particle has a com-
putational complexity of O(N) since we have to compute all pairwise interactions
of the current particle with the rest of the system. Therefore, a naive algorithm
for computing all forces F; exhibits O(N?) complexity. The update step has a
complexity of O(N) since computing the velocities from the forces just needs to
iterate once over each particle. The same applies for the position update step. In this
regard, the quadratic complexity may be negligible for a small number of particles,
but interesting and useful simulations often involve huge particle ensembles, so the
simulation will be considerably slowed down to a point in which it is non-viable to
apply this kind of summation method. Fortunately, due to the increasing importance
of N-body simulations for research purposes, fast summation methods have been
developed throughout the latter years [1-3, 5, 7, 8].

In this work, we will focus on the Fast Multipole Method (FMM). The main goal
is to develop a CUDA accelerated implementation of a rotation operator that is used
during the FMM passes to reduce the computational complexity of the typical FMM
mathematical operators, used for shifting and converting the multipole expansions,
from O(p*) to O(p?). In contrast to other GPU implementations[13, 16], we focus
our efforts on achieving good performance for a high multipole order (p > 10)
required for MD simulations.

This document is structured as follows: Sect.?2 introduces the FMM, its core
aspects and the role of the M2M operator as well as the functioning of the rotation-
based operators. Section 3 describes the existing CPU/sequential implementation
of the FMM O(p?) and O(p*) operators and sets baseline timings for all of
them. Section 4 explains the changes in the application layout and the included
abstraction layers to support the future GPU implementation. Section 5 shows the
implementation details of the GPU-accelerated version using CUDA. In Sect. 6 we
draw conclusions about this work and outline possible future improvements.

2 Theoretical Background

In this section we provide a brief description of the FMM, reviewing its core
aspects and its mathematical foundations. We also briefly describe the role of the
mathematical operators used for shifting. At last, we explain how the application of
rotation-based operators to those expansions is capable to reduce the complexity of
the aforementioned operators from O(p*) to O(p?).
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2.1 The FMM Workflow

The FMM is a fast summation method which is able to provide an approximate
solution to the calculation of forces, potentials or energies within a given precision
goal, namely AE. The FMM developed at JSC is capable of automatically tuning
[4] the FMM parameters for a given energy threshold AE. The method exhibits
linear computational complexity O(N), resulting from a sophisticated algorithmic
structure. The core aspects of the FMM are: spatial grouping of particles, hierarchi-
cal space subdivision, multipole expansion of the charges and a special interaction
scheme.

The main idea behind the FMM is based on the following intuitive property of the
Coulomb and gravitational potential: the effect of particles close to the observation
point (called target), on the target particle is dominant compared to the effect
produced by remote particles. As opposed to a cutoff scheme, the FMM takes into
account the effects of all particles no matter how remote. Cutoff methods have a
O(N) complexity, but ignore interactions beyond a cutoff completely.

Consider the particle distribution shown in Fig. 1, for which the remote interac-
tions between two clusters shall be computed: target, with m particles, and source,
with n particles. The FMM is based on the idea that a remote particle from a spatial
cluster will have almost the same influence on the target particle as another one from
the same cluster, given that the inter-cluster distance is large enough. The FMM
therefore groups all particles in the remote cluster into a pseudo-particle. By doing
this, the amount of interactions is effectively reduced to m. This grouping scheme
is also used in reverse, by grouping the target cluster thus requiring » interactions.
When grouping both source and target clusters, the computation reduces to a single
however more complex interaction.

To implement spatial grouping, the simulation space is subdivided to generate
particle groups. The FMM decomposes space recursively in cubic boxes, generating
eight different child boxes from each parent box. This hierarchy of cubes is arranged
in a tree, called octree of depth d. Figure 2 shows an example of this recursive
subdivision visualized in a 2D plane.
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Fig. 1 From left to right: (a) Direct interactions of the particles of one cluster with all particles
in the other cluster. (b) Interaction via source pseudo-particle. (c) Interaction via target pseudo-
particle. (d) Interaction with both source and target pseudo-particles
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Fig. 2 Space subdivision using an octree. From left to right: Trees with depthd = 0,d = 1,
d=2andd =3

Given a certain separation criterion ws, the multipole order p and the depth of the
tree d, the FMM consists of the following steps, called passes:

* Pass 1: Expand charges into spherical multipole moments w;,, on the lowest level
for each box, and translate multipole moments wy,, of each box up the tree

¢ Pass 2: Transform remote multipole moments @y, into local moments p, for
each box on every level

¢ Pass 3: Translate local moments pi;,, down the tree towards the leaf nodes

¢ Pass 4: Compute far field contributions: potentials @gg, forces Fgp, and energy
Erg on the lowest level

* Pass 5: Compute near field contributions: potentials @ng, forces Fng, and energy
Eng on the lowest level

This algorithm exhibits a linear computational complexity. Its derivation is
beyond the scope of this work, and can be found in [11]. The first pass is performed
by the P2M operator, which is often considered a preprocessing step, and the M2M
operator, while the second one is done via the M2L operator and the third one
with the L2L operator. This work focuses on the M2M operator. The extension to
the remaining operators M2L and L2L is straightforward and can be implemented
following the same strategies.

2.2 Mathematical Operators

As mentioned in Sect. 2.1, the FMM needs three fundamental mathematical oper-
ators during its workflow, namely M2M, M2L, and L2L. Those operators are
responsible for shifting the multipole expansions up and down the tree levels,
and also to convert remote multipole expansions to local ones at each level. We
will briefly review the first operator to provide the context for the rotation-based
operators, which is described in Sect. 2.3.
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2.2.1 Multipole-to-Multipole (M2M) Operator

The M2M is a vertical operator which shifts the multipole coefficients up to higher
levels of the tree structure. Each box of the 3D tree has eight child boxes in the
next lower level. The M2M operator sums up all the moments of the multipole
expansions of the child boxes at the center of the parent box. This operator is applied
to each level up to the root of the tree. By doing this, each box on every level has
a multipole expansion. This operator is applied in the first pass, and is also known
as A.

From a mathematical perspective, each child multipole expansion e’ at the center
a; of that child box i is shifted up to the center a + b of its parent box (see Fig. 3).
Equation (3) shows how the moments a)j?k (a;) of each child multipole expansion
are shifted by the A operator to produce the moments ], (a; + b;) of the parent’s
expansion:

I
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All the shifted moments of the eight child boxes are finally added up to conform
the multipole expansion at the center of the parent box

8
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Fig. 3 The left panel shows the analytical domain of the M2M operator in a 2D tree. The centers
(blue dots) of a sample child box and the parent are shown. The right panel depicts the functioning
of the M2M operator for a 2D system. The operator has O( p*) complexity
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2.3 Rotation-Based Operators

A set of more efficient operators with O( p*) computational complexity scaling were
proposed by White and Head-Gordon [15]. The reduced complexity is achieved by
rotating the multipole expansions so that the translations or shifts are performed
along the quantization axis of the boxes (see Fig.4). This reduces the 3D problem
to a 1D one.

The multipole moments of an expansion with respect to a coordinate system
which has been rotated twice, first by an angle ¢ about the z-axis and then by 6 about
the y-axis, can be expressed as a linear combination of the moments with respect to
the original coordinate system. The rotated multipole expansion (see Fig. 4) can be
expressed as wj, as shown in Eq. (5):
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In the last equation, d;”’k represents Wigner small d-rotation coefficients whose
computation falls beyond the scope of this work. A detailed explanation and
implementation on how to compute them can be found in [9]. The term e/*?
represents a factor that is needed for each moment to compute the rotation.
Usually, the operator will compute both terms on the fly, adding a prefactor to
the O(p?) complexity of this operator. However, that prefactor can be removed by
precomputing and reusing the constants.
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Fig. 4 The coordinate system of the box B is rotated to align it along the 7’-axis defined by the
quantization direction. The multipole expansion is translated into a multipole expansion around
the center of A. The new multipole expansion is rotated back to the original coordinate system

yielding
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3 Existing Implementation

In this section we will describe the existing C++ implementation of the FMM,
which has been implemented within the GROMEX SPPEXA project. This
project addresses the development, implementation, and optimization of a unified
electrostatics algorithm that will account for realistic, dynamic ionization states
(A-dynamics) [6] and at the same time overcome scaling limitations on current
architectures.

We will show benchmarks carried out to determine a baseline for future
optimizations, i.e., the parallel implementation. In addition, this baseline will prove
the effectiveness of the O(p?) operators.

From an application point of view, the FMM is implemented in a set of
abstraction layers, each on top of another, with different responsibilities. By using a
layered approach, the internal functionality of a layer can be changed and optimized
at any time without having to worry about the other layers. This design provides
flexibility, and it is implemented with the help of templates in the different layers
(see Fig.5).

As shown in the figure, the implementation is composed of four well distin-
guished layers: (1) the algorithm, (2) data structures, (3) allocator and (4) memory.
The top layer contains the FMM logic itself, i.e., the implementations of the
described passes. Here, we keep the focus on the M2M operator, for which templates
allow us to choose between the O(p*) or O(p?) version.

Those implementations need data structures to store the information that is being
processed. In this regard, the algorithm layer leverages to the data structures one.
This layer contains the data types needed for the algorithm, e.g., coefficient matrices
(w), rotation matrices (R), and other simple data structures, including their internal

) <p*/p*>
algorithm M2M M2L L2L
data <float/double>
(0] R POD
structures
<std::allocator>
allocator
memory

Fig. 5 Layout of the existing FMM implementation for CPUs. There are four different abstraction
layers: the algorithm, the data structures, the allocator and the memory. The algorithm layer is
templated to choose between the p* or p* operators. The data structures are also templated so that
the underlying data type precision can be chosen. The allocator is templated as well, so that it can
make use of custom or predefined memory allocators
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logic. The templated design allows to choose the precision of the underlying data
types.

The allocator layer enables the data structures to allocate memory for storing
their information. The data structures delegate the memory allocation to an allocator
performing the corresponding calls for allocating and deallocating memory. This
layer is also templated, so any allocator can perform this task.

This existing CPU implementation was tested to establish a set of baseline
performance results. A baseline helps to determine multiple facts: the actual
effectiveness of the reduced complexity operators, the impact of the precomputed
constants, and precision bounds. It will also serve as a starting point to compare the
performance of the GPU implementation.

The benchmarks were carried out on the JUHYDRA cluster at the JSC, featuring
an Intel Xeon E5-2650 CPU. Both versions of the M2M operator, O( p*) and O( p?),
were compared. Our benchmarks are focused on this operator since it is the one that
we decided to parallelize on the GPU as a starting point, given the fact that the
optimizations performed over the M2M phase can be easily applied to the M2L and
L2L ones. In addition, it can even be argued that porting the M2M phase to a GPU
implementation is harder than the M2L one, due to less workload and parallelism.
Note that the O( p*) operators employ some prefactors for the rotation steps. Those
prefactors as well as the Wigner d-matrices are computationally expensive but can
be precomputed to reduce the runtime. We tested both variants of the rotation-based
operators: on the fly and precomputed. The benchmarks were carried out for both
single and double precision floating point datatypes.

As seen in Fig. 6, the M2M O(p?) on the fly operator is even slower than the
O(p*) version. However, when all the constants are precomputed the complexity
reduction pays off because most of its prefactor penalty is removed. Nevertheless,
there is still a small prefactor which makes it slower than its O( p*) counterpart when
the order of poles is small. The single precision plot (Fig. 6 top) shows unexpected
results in the interval for 10-20 multipoles. By taking a closer look, we can point out
a significant runtime increase from multipole order 13 until order 18 for the O(p?)
precomputed operator. The slope of the O(p*) operator also changes suddenly
after p = 15. This behavior is caused by the limited precision of the float
datatype. When a certain order of poles is requested, underflows in the multipole
representation occur and the numbers fall in the denormalized range of the single
precision type. Because of this, the denormalized exception handling mechanism
of the FPU starts acting, thus increasing the execution time due to additional
function calls. At a certain point, for instance p = 18 in the precomputed operator,
the numbers drop to zero so no additional denormalized exception overhead is
produced. That is the reason why the curve stabilizes after order 18. The float
implementation achieves a 2.5x speedup before denormalization overhead starts at
p=13.

If we look at the double precision plot (Fig. 6 bottom), the unexpected slope does
not occur since the double representation is able to handle the required precision.
The runtime is reduced by one order of magnitude (13.8x speedup) when using
order 50.
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Fig. 6 Runtimes of a full M2M execution from the lowest level of an FMM tree with tree depth
d = 4 to the highest one, i.e., 4096 M2M operator runs, shifting all boxes into a single one
at the top level. Both M2M variants with O(p*) and O(p?) complexity were tested. The O(p®)
operator was tested using non-precomputed constants which were calculated on the fly, and using
those precomputed constants. The upper panel shows the timings using single precision floating
point numbers and the lower panel shows those timings using double precision ones, varying the
multipole order. For single-precision the speedup for the precomputed O(p*) compared to O(p*)
was 2.5X, for double precision 13.8X. The kinks between multipole order four and six are only
visible on the Sandy Bridge architecture, on Ivy Bridge the kinks are smaller, on Haswell the effect
is not visible

In conclusion, a significant benefit is obtained by using the optimized operators.
However, the complexity reduction implies a more sophisticated implementation
and also a computationally more expensive prefactor, which should therefore be
precomputed. These benchmarks establish a baseline for future improvements.
In the following section, we will discuss the required steps prior to the CUDA-
optimized implementation that will be deployed on a GPU.
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4 Application Layout

Having a performance baseline using the existing CPU implementation, we start the
code transformation into a CUDA-based one that can be deployed on GPU. The
first steps consist of adapting the current application to support computations on the
GPU. For that purpose, we need to allocate the data structures into the GPU memory
so that they can be accessed directly by the CUDA kernels. Since we want to keep
the changes in our codebase to a minimum, we leverage the application layout,
previously described in Sect. 3. Those changes will heavily rely on templates and
additional indirection layers. In this section, we describe the modifications applied
to the aforementioned application layout to support efficient GPU execution.

4.1 Custom Allocator

The data structures need to be moved to GPU memory. This is achieved by explicit
CUDA memory transfer calls whenever those data structures are needed. However,
this approach will clutter the current application code since we need to include
those explicit memory transfer operations in the algorithm layer, sabotaging the
abstraction layer concept described in Sect. 3.

Modern NVIDIA GPUs provide a unified memory model that fits our require-
ments. Since all data structures make use of the allocator abstraction layer, we can
just modify that layer without affecting the rest. In this way, we do not add any
additional logic to the algorithm or the data structures. In addition, the allocator
layer is templated so that we are flexible enough to choose between an allocator for
CPU or GPU memory easily.

In this regard, we developed a custom CUDA managed allocator, which inherits
from the std: :allocator class and overrides the allocation and deallocation
methods. It can be plugged in as a template parameter to our allocator abstraction
layer.

In order to ease development, we decided to make use of unified memory
despite its reduced efficiency when compared to other memory transfer operations,
especially when data can be batched. Nevertheless, our current design provides
complete control over the internal memory management mechanisms, so it can be
easily extended to support other memory models or techniques such as overlapping
memory transfers with computation.

4.2 Pool Allocator

The raw CUDA managed allocator has drawbacks if a considerable number of
allocations has to be done. For big problem sizes bad allocations occur due to the
limited amount of memory map areas a process can provide. The Linux kernel value
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vm.max_map_ count limited our allocations to 65,536. Since most of our data
structures contain other nested ones, our implementation performs many allocation
calls and for big problem sizes we eventually reach that limit.

There are several ways to solve this problem. In our case, we resorted to
using a pool allocator with a reasonable chunk size to decrease the number of
allocation calls that reach the operating system. This memory management scheme
is integrated in our application as a new abstraction layer between the data structures
and the actual allocator.

The pool allocator allocates chunks of a predefined size and then serves parts
of those chunks to the allocation calls performed by the data structures. The
improvement compared to the previous layout is twofold, (i) it decreases the
execution time since each allocation call has a significant latency penalty, and
(ii) allows to fully utilize the GPU memory without hitting the allocation calls limit.

Thanks to the decoupled design and the templated layers, introducing this middle
level is straightforward. Neither algorithm logic nor data structures code has to be
changed to include a new memory management strategy. We carried out a set of
benchmarks that confirmed that adding this intermediate layer has no performance
impact.

4.3 Merging the CPU and GPU Codebases

The pool allocator enables the application to efficiently deal with big problem sizes.
However, two distinct implementations of the same routines exist for CPU and GPU
architecture. As a result code cannot be reused at the algorithm level and if one
implementation changes, the other has to be changed manually.

CPU kernels for the different operators and the rotation steps take references as
input arguments by design. Additionally these kernels are usually implemented by
a set of nested loops which iterate over all the elements of the coefficient matrix in a
sequential manner. The GPU kernels make use of pointers to those data structures,
and the loop starting points and strides are different since the threads will no
longer iterate sequentially over them but rather choose the data elements to compute
depending on their identifiers or positions in the block/grid.

To merge both implementations into a single codebase, the data structures are
converted from references to pointers for the GPU kernel wrappers or launchers.
The GPU kernels access the corresponding elements of the pointers to the data
structures and call the operator or rotation kernels which make use of references.
These operator and rotation kernels are used by both the CPU and the GPU. Figure 7
shows the final layout of our application with all the aforementioned layers.
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algorithm CPU&r M2M + M2L - L2L  GPU p + #macros

data ® R POD
structures

pool
allocator
allocator

std cuda
:

memory CPU unified memory GPU

Fig. 7 Final application layout after merging the CPU and GPU logic for M2M, M2L, and L2L
operators. The CPU uses references directly and the GPU launchers wrap them as pointers for the
kernels. Also, preprocessor macros allow us to determine the loop starting points and strides, and
specific features depending on the architecture

S CUDA Implementation

As a starting point for the CUDA-optimized implementation, we focus on the M2M
kernel. As we previously stated in Sect. 3, the optimizations performed over the
M2M phase can be easily reused later for the M2L and L2L ones. Furthermore,
it can even be argued that porting the M2M phase to a GPU implementation is
harder than the M2L one, due to less floating point operations. Hence, an efficient
implementation of M2M automatically enables an even better performance for the
M2L operator, which has a significantly increased workload (see Fig. 8).

Now we will describe the parallelization of the O( p*) M2M operator, including
both rotation steps, forwards and backwards. We will first focus on how to distribute
the work to expose enough parallelism for the kernel functions to ensure a high GPU
utilization. Then we will take an in-depth look at the different optimization strategies
and CUDA techniques applied to each of the kernels. We will close showing the
results of the accelerated operator and the speedup with respect to the CPU version.

5.1 Exposing Parallelism

A possible way to expose parallelism in a simple manner is to make each thread
compute the whole operator for a single box, i.e., the rotation forward, M2M
operator, and rotation backwards. This naive approach will spawn as many threads
as boxes have to be processed. In the best case scenario we will have (2¢) boxes in
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Fig. 8 Relative time distribution for the different passes of the FMM. Relative timings obtained
after a full FMM run with 103k particles, d = 4, p = 10 and ws = 1. The CUDA parallelized
versions of the O( p*) operators [12] were executed on a K40m
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Fig. 9 Representation of the coefficient matrix datatype with an exemplary number of 15 poles.
As the coefficient matrix grows, the precision increases, so a higher number of poles leads to
more accurate simulations. Both axes are in the range [0, p], this produces a coefficient matrix of
(p + )(p + 2)/2 coefficients. The coefficients, which are represented as squares in the picture,
are multipole or local moments depending on the type of the expansion. Each one of them holds a
complex number

the lowest level of the tree. This means that for d = 3 we will launch 512 threads,
and even for d = 4 only 4096 threads will be launched. Even for small block sizes,
the grids will be composed of only a few blocks, preventing us to achieve a high
GPU utilization.

Since there are not enough boxes to be processed, we have to take another
approach to expose more parallelism. Before getting into any more detail, it is worth
taking a look at the main data structure that is processed by the rotation and operator
steps: the coefficient matrix. Figure 9 shows the representation of the coefficient
matrix using only its upper part. It consists of a set of coefficients, representing the
local or multipole moments, which are distributed in a triangular shape along the
horizontal / and the vertical m axes. Each coefficient is represented by a complex
number, and the rotation and operator steps usually iterate over all those coefficients
to apply certain transformations (rotations, shifts, or translations). More parallelism
can be exposed by assigning each warp (group of 32 threads which is the minimum
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Fig. 10 Grid configuration. Each row is composed by p + 1 blocks b. The grid consists of ¢ rows,
with ¢ being the total number of boxes minus one
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Fig. 11 Block configuration with 32 X 4 threads ¢. Each block is 32 threads wide and consists of
four warps w of 32 threads each

unit processed in a SIMT fashion by a CUDA-capable device) the task of computing
all the operations required for a certain coefficient.

Accordingly, we created the grid configuration shown in Fig. 10. Each block
row is responsible of a full coefficient matrix. Since each box is represented by
a coefficient matrix, the grid has one row per each box that has to be processed.
Note that by using grid-strided loops [10], we can launch less blocks and distribute
the work accordingly. The block configuration is shown in Fig. 11. Each consists of
four warps of 32 threads thus creating a 32 x 4 2D structure.

Since each row of the grid is responsible of a full coefficient matrix, i.e., the
blockIdx.y determines which coefficient matrix the block processes each block
of the row is assigned to a certain column of the corresponding coefficient matrix.
In other words, the blockIdx . x gets mapped to the [/ axis as shown in Fig. 12.

Once the blocks are mapped to the coefficient matrix, the next step does the same
with the threads inside those blocks. Since we have groups of 32 threads inside each
block which share the same y position, i.e., each warp has the same threadIdx.y,
we can map the warps to individual coefficients or cells of the assigned column.
This means that the threadIdx .y variable will be mapped to the m dimension of
the coefficient matrix. Figure 13 shows the warp distribution for an arbitrary block.
However, the distribution is not trivial since each column has a different height and
after the fourth column there are more coefficients to process than warps in the
threads.

To overcome this, the warps are reassigned to the remaining coefficients in
a round-robin way. By doing this, warp zero will be always assigned to m €
{0,4,8, ...}, warp one to m € {1,5,9,...}, warp two to m € {2,6,10,...} and
warp three to m € {3,7, 11, ...} taking into account the block configuration shown
in Fig. 11. It is important to remark that, even considering that the warps will be
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Fig. 12 Grid block row distribution. blockIdx.x is mapped to the / dimension of the
corresponding coefficient matrix which is selected by the blockIdx.y, i.e., the y position of
the block in the grid. The left panel shows the block mapping for an exemplary coefficient matrix
with p = 15, so each grid row is composed of 16 blocks. The right panel shows an example of
work assigned to a block. In this case the block b;¢ with blockIdx.x = 10 will have to compute
all the coefficients of the highlighted column / = 10 of its corresponding coefficient matrix
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Fig. 13 Block warp distribution. Individual elements of the corresponding column of the coeffi-
cient matrix, depending on threadIdx .y, are mapped to warps in a round-robin fashion. The left
panel shows the warp distribution in an exemplary coefficient matrix with p = 15. The right panel
shows an example with the coefficients assigned to the first warp wy of a block b;o highlighted.
That warp will compute the elements (10, 0), (10, 4), and (10, 8). Although it would be assigned to
the element (10, 12) too, it will not compute it because it is outside the boundaries of the coefficient
matrix (m > 1)

theoretically assigned to a certain m, they will not process that coefficient if it is not
part of the coefficient matrix. Basically, warps will only compute if m < [.

The next step is mapping the threads depending on their threadIdx.x value
which identifies the 32 threads inside each warp. Depending on the step to be
performed (rotation, operator or rotation backwards) different computations will be
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carried out with the coefficient, either by using the elements of the same row or the
ones from the same column.

The process of iterating over the coefficient matrix is implemented by two nested
loops, one for the / dimension and another one for the m one. The computations
carried out for each coefficient are implemented as another nested loop, namely k.
Depending on the aforementioned possibilities, this loop will iterate from k = 1 to
I, from k = mto [, or from k = 1 to m. In the end, individual threads will perform
the work of that inner loop, which means that threadIdx.x gets mapped to k.

With this parallelization scheme, sufficient parallelism is exposed, so that a
low GPU occupancy does not limit the performance. For instance, with d = 3
and p = 15 the GPU will launch 983,040 threads for the previously shown grid
configuration. For d = 4 and p = 15, ~ 7.9M threads will be launched. For
increasing problem sizes, we might get to a point where we can’t launch all the
blocks we need. However, the mappings are implemented using grid-strided loops,
so we can support any problem size by launching an arbitrary number of blocks and
reusing them in a scalable manner.

Nevertheless, this approach has also some drawbacks. Due to the shape of the
coefficient matrix and the way the m loop is mapped, a workload unbalance is
produced among warps of the same block. Figure 14 shows two examples of warps
with unbalanced load. Ideally, all the warps will perform the same amount of work,
otherwise the early finishers will have to wait for the long running threads to finish
to deallocate their resources. Also, because of the pattern followed by the k loop,
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Fig. 14 Warp divergence due to different workload among the different warps of the same block.
Blocks get scheduled and some of the warps finish earlier than others so they will be idle waiting
for the others to end their workload. The resources allocated for the early finished warps are wasted
since they will remain allocated until the longest running warp of the same block finishes. The left
panel shows the workload for the different warps of block by, three warps will compute three
coefficients each but the last warp will only compute two. The right panel shows another example
of divergence in the block b3 since two warps will compute four coefficients each one and the
other two will only calculate three each



Accelerating an FMM-Based Coulomb Solver with GPUs 501

not all the threads execute the same code path, so thread divergence may lead to
performance degradation.

Despite the disadvantages, this strategy provides a starting point to start getting
performance out of the GPU, although it can be improved to avoid the aforemen-
tioned pitfalls.

5.2 Results

We carried out a performance study to determine the improvement achieved by the
CUDA -accelerated implementation. Figure 15 shows the results of that benchmark
for single and double precision representations.
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Fig. 15 Runtimes of full M2M O( p?) operator execution over the lowest level of an FMM tree
with depth d = 4, i.e., 4096 M2M operator runs, shifting all boxes into a single one at the top
level. Both CPU baseline implementation and GPU-CUDA-accelerated implementation are shown
as a function of multipole order. The upper panel shows the results using single precision floating
point numbers (with and without denormalization handling), the lower panel corresponds to double
precision. All tests were executed on the JUHYDRA cluster at the JSC, the CPU tests ran on an
Intel Xeon E5-2650 while the GPU ones used the NVIDIA Tesla K40m
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For the floating point representation the same problem mentioned in Sect.3
occurs again: the £loat datatype is not able to handle the required precision,
leading to exception handling mechanisms of the CPU increasing the execution
time. Currently, GPUs do not support denormalized numbers and truncate to zero
immediately if an underflow occurs. For valid results, with p < 10, no gain is
achieved by using the current GPU implementation.

The double precision benchmarks show that the extended representation is able
to cope with the required precision. The crossover point is located at p = 7, from
there the GPU implementation shows a faster execution time than the CPU one. A
maximum speedup of 4.0x is obtained at the biggest problem size tested, p = 30.

The results confirm that it is possible to improve the performance of the M2M
operator by using a massively parallel device such as a GPU. However, a significant
computational load is required to hide the costs of parallelism. Furthermore, there is
still plenty of room for improvement, further optimizations, and architecture specific
tuning. An in-depth profiling of the aforementioned kernels should provide guidance
for improving the results.

6 Conclusion

In this work, we have shown how the rotation-based M2M operator of the FMM can
be accelerated by executing it on a GPU using CUDA. In addition, we integrated
both the CPU and GPU code into a single codebase using a flexible design, based
on a set of abstraction layers to decouple responsibilities. The starting point was
an existing FMM implementation pipeline with O(p?) and O(p*) operators. We
analyzed the implementation by carrying out benchmarks to set a performance
baseline for all the operators. This baseline helped to quantify the performance gain
achieved by using the rotation-based operators.

We enhanced the code to make it able to execute on the CPU or on the GPU in
a transparent manner using CUDA. For this purpose, a set of abstraction layers was
introduced: (1) algorithms, (2) data structures, (3) pool allocator, and (4) memory
allocator. We developed an accelerated version of the rotation-based M2M operator.
The improvements made to that operator can be easily ported to the other ones.
Our benchmarks show that the GPU-accelerated M2M operator runs up to four
times faster than the highly optimized single-core CPU implementation when using
double precision floating point representation.

The highlights of this work can be summarized as follows:

* aflexible application layout with a single codebase for the CPU/GPU implemen-
tation, based on a set of abstraction layers, atop of another:

— an algorithm layer to hold the FMM logic

— adata structures layer containing types, structures and their internal logic
— apool allocator layer for efficient memory management

— an allocator layer for transparent memory space allocation
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a CUDA-accelerated version of the rotation-based M2M operator

— flexible and scalable grid-strided loops

— coalesced accesses to the data structures and fast warp reductions using
CUB [14]

— launch bounds to help the compiler optimize kernels

— precomputed factors to save global memory round trips

Here we focused on building the abstraction layout and on accelerating the

rotation-based M2M operator. The acceleration of the remaining operators M2L and
L2L is straightforward since they share the same data representation and building
blocks used for M2M. In addition, all the CUDA kernels can be further optimized

to

improve occupancy and reduce divergence. Furthermore, architecture specific

tuning can be applied.
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