
Automated Performance Modeling
of the UG4 Simulation Framework

Andreas Vogel, Alexandru Calotoiu, Arne Nägel, Sebastian Reiter,
Alexandre Strube, Gabriel Wittum, and Felix Wolf

Abstract Many scientific research questions such as the drug diffusion through
the upper part of the human skin are formulated in terms of partial differential
equations and their solution is numerically addressed using grid based finite element
methods. For detailed and more realistic physical models this computational
task becomes challenging and thus complex numerical codes with good scaling
properties up to millions of computing cores are required. Employing empirical
tests we presented very good scaling properties for the geometric multigrid solver in
Reiter et al. (Comput Vis Sci 16(4):151–164, 2013) using the UG4 framework that is
used to address such problems. In order to further validate the scalability of the code
we applied automated performance modeling to UG4 simulations and presented
how performance bottlenecks can be detected and resolved in Vogel et al. (10,000
performance models per minute—scalability of the UG4 simulation framework. In:
Träff JL, Hunold S, Versaci F (eds) Euro-Par 2015: Parallel processing, theoretical
computer science and general issues, vol 9233. Springer, Springer, Heidelberg,
pp 519–531, 2015). In this paper we provide an overview on the obtained results,
present a more detailed analysis via performance models for the components of the
geometric multigrid solver and comment on how the performance models coincide
with our expectations.

A. Vogel (�) • A. Nägel • S. Reiter • G. Wittum
Goethe Universität Frankfurt, Frankfurt, Germany
e-mail: andreas.vogel@gcsc.uni-frankfurt.de; arne.naegel@gcsc.uni-frankfurt.de;
sebastian.reiter@gcsc.uni-frankfurt.de; wittum@gcsc.uni-frankfurt.de

A. Calotoiu • F. Wolf
Technische Universität Darmstadt, Darmstadt, Germany
e-mail: calotoiu@cs.tu-darmstadt.de; wolf@cs.tu-darmstadt.de

A. Strube
Jülich Supercomputing Center, Germany
e-mail: a.strube@fz-juelich.de

© Springer International Publishing Switzerland 2016
H.-J. Bungartz et al. (eds.), Software for Exascale Computing – SPPEXA
2013-2015, Lecture Notes in Computational Science and Engineering 113,
DOI 10.1007/978-3-319-40528-5_21

467

mailto:andreas.vogel@gcsc.uni-frankfurt.de
mailto:arne.naegel@gcsc.uni-frankfurt.de
mailto:sebastian.reiter@gcsc.uni-frankfurt.de
mailto:wittum@gcsc.uni-frankfurt.de
mailto:calotoiu@cs.tu-darmstadt.de
mailto:wolf@cs.tu-darmstadt.de
mailto:a.strube@fz-juelich.de


468 A. Vogel et al.

1 Introduction

The mathematical description for many important scientific and industrial questions
is given by a formulation in terms of partial differential equations. Numerical sim-
ulations of the modeled systems via finite element and finite volume discretizations
(e.g., [6, 10, 16]) can help to better understand the physical behavior by comparing
with measured data and ideally provide the possibility to predict physical scenarios.
Using detailed computational grids the discretization thereby leads to large sparse
systems of equations and these matrix equations can be resolved using advanced
methods of optimal order—such as the multigrid method (e.g., [6, 15]).

Looking at the variety of applications and the constantly growing computing
resources on modern supercomputers the efficient solution of partial differential
equations is an important challenge and it is advantageous to address the numerous
problems with a common framework. Ideally, the framework should provide
scalable and reusable components that can be applied in all of the fields of interest
and serve as a common base for the construction of applications for concrete
problems. To this end the UG software framework has been developed and a
renewed implementation has been given in the current version 4.0 [35, 37] that pays
special attention to parallel scalability.

In order to validate the scaling properties of the software framework on such
architectures we carried out several scalability studies. Starting with a hand-crafted
analysis we presented close to optimal weak scaling properties of the geometric
multigrid solver in [27]. However, the study focused only on a few coarse-grained
aspects leaving room for potential performance bottlenecks, that are not visible at
current scales due to a small execution constant, but may become dominant at largest
scales due to bad asymptotic behavior. Therefore, in a subsequent study we analyzed
entire UG 4 runs in [38] applying an automated performance modeling approach by
Calotoiu et al. [7] to UG 4 simulations. The modeling approach creates performance
models at a function level granularity and uses few measurement runs at smaller
core counts in order to predict the asymptotic behavior of each code kernel at largest
scales. By detecting bad asymptotic behavior for code kernels in the grid setup phase
we were able to detect and remove a performance bottleneck.

In this paper we focus on more detailed models for the geometric multigrid solver
and explain how the observed performance models meet our expectations. Since the
geometric multigrid solver is one of the crucial aspects for simulation runs in terms
of scalability, we have evaluated in more depth the models for fine-grained kernels
of the employed geometric multigrid solver and compare the observed behavior to
the intended implementation.

The main aspects of this report are:

• Summarize the automated modeling approach and obtained results for its
application to the simulation framework UG 4.

• Provide a detailed analysis for components of the geometric multigrid solver.
• Validation of the scaling behavior for the multigrid solver components.



Automated Performance Modeling of the UG4 Simulation Framework 469

The remainder of this paper is organized as follows. In Sect. 2, the UG 4
simulation environment is presented with focus on the parallelization aspects of the
parallel geometric multigrid (Sect. 2.2) and the skin permeation problem (Sect. 2.3)
used in the subsequent studies. Section 3 outlines the performance modeling
approach. In Sect. 4 we briefly summarize previously obtained analysis results for
entire simulation runs and then present a detailed performance modeling for the
geometric multigrid solver used in a weak scaling study for the skin problem.
Sections 5 and 6 are dedicated to related work and concluding remarks.

2 The UG4 Simulation Framework

As a real world target application code for the performance modeling approach
we will focus on the simulation toolbox UG 4 [37]. The software framework is
written in C++ and uses grid-based methods to numerically address the solution of
partial differential equations via finite element or finite volume methods. With the
main goal to address questions from biology, technology, geology and finance with
one common effort, several components are reused in all types of applications and
thus the performance modeling for those program parts provides insight into the
performance of all these applications. In the following we give a brief overview on
the used numerical methods and especially comment on the parallelization aspects.

2.1 Concepts and Numerical Methods

In order to construct the required geometries the meshing software ProMesh [25, 26]
is used that shares code parts with the UG 4 library. Meshes can be composed of
different element types (e.g., tetrahedron, pyramid, prism and hexahedron in 3d) and
subset assignment is used to distinguish parts of the domain with different physics
or where boundary conditions are to be set. Once loaded in UG 4 meshes are further
processed to create distributed, unstructured, adaptive multigrid hierarchies with
or without hanging nodes. Implemented load-balancing strategies [25] range from
simple but fast bisection algorithms to more advanced strategies including usage
of external algorithms such as ParMetis [22]. In this study, however, we restrict
ourselves to a 3d hexahedral grid hierarchy generated through globally applied
anisotropic refinement (cf. [38]). A study for adaptive hierarchies with hanging
nodes is work in progress and will be considered in a subsequent study.

A flexible and combinable discretization module allows to combine different
kinds of physical problems discretized by finite element and finite volume methods
(e.g., [6, 10, 16]) and boundary conditions in a modular way to build a new physical
problem selecting from basic building blocks [36, 37]. As algebraic structures for the
discretized solutions and associated matrices, block vectors and a CSR (compressed
sparse row) matrix implementation are provided. For the parallel solution of such



470 A. Vogel et al.

matrix equations several solvers are implemented, including Krylov methods such
as CG and BiCGStab and preconditioners such as Jacobi, Gauss-Seidel, incomplete
LU factorization, ILUT and block versions of these types (e.g., [28]). In addition,
a strong focus is on multigrid methods (e.g. [15]) and geometric and algebraic
multigrid approaches [17, 27].

The parallelization for the usage on massively parallel computing clusters with
hundred thousands of cores is achieved using MPI. The separate library called PCL
(parallel communication layer, [27]) builds on top of MPI and is used to ease
the graph-based parallelization. Both, the parallelization of the computing grid—
assigning a part of the multigrid hierarchy to each process—and of the algebraic
structures are programmed based on the PCL. By storing parallel copies on each
process in a well-defined order in interface containers identification is performed in
an efficient way [25, 27, 37], and global IDs are dispensable.

In order to hide parallelization aspects and ease the usage for beginners the
scripting language Lua [18] is used as end-user interface. A flexible plugin system
allows to add additional functionality if required.

2.2 Parallel Hierarchical Geometric Multigrid

The multigrid method [16] is used to solve large sparse systems of equations that
arise typically by the discretization of some partial differential equation. We briefly
recap the idea of the algorithm and our modifications and implementation [27] for
the parallel version. Given the linear equation system ALxL D bL on the finest grid
level L, the desired solution xL is computed iteratively: starting with some arbitrary
initial guess xL, in every iteration the defect dL D bL � ALxL is used to compute a
multigrid correction cL D ML.dL/, where ML is the multigrid operator, that is added
to the approximate solution xL WD xL C cL. In order to compute the correction cL

not only the fine grid matrix AL is used but several auxiliary coarse grid matrices
Al; LB � l � L; are employed, where LB denotes the base level. The multigrid
cycle is then defined in a recursive manner: given a defect dl on a certain level l the
correction is first partly computed via a smoothing operator (e.g. Jacobi iteration).
Then the defect is transferred to the next coarser level, where the algorithm is
applied to the restricted defect dl�1. The thereby computed coarse grid correction
cl�1 is then prolongated to the finer level and added to the correction on level l,
followed by some postsmoothing. Once the algorithm reaches the base level LB,
the correction is computed exactly as cl D A�1

l dl by, e.g., using LU factorization.
Algorithm 1 summarizes this procedure.

The matrix equations for complex problems can easily grow beyond the size of
billions of unknowns. In order to solve such problems, massively parallel linear
solvers with optimal complexity have to be used. The multigrid algorithm only
depends linearly on the number of unknowns and therefore good weak scaling
properties are to be expected. As demonstrated in [27] geometric multigrid solvers



Automated Performance Modeling of the UG4 Simulation Framework 471

Algorithm 1 cl D Ml.dl/ [16, 27]
Requirement: dl D bl � Alxl

if l D LB then
Base solver: cl D Al

�1dl

return cl

else
Initialization: d0

l WD dl, c0
l WD 0

(Pre-)Smoothing for k D 1; : : : ; �1:
c D Sl.dk�1

l /,
dk

l D dk�1
l � Alc, ck

l D ck�1
l C c

Restriction: dl�1 D PT
l d�1

l
Coarse grid correction: cl�1 D Ml�1.dl�1/

Prolongation:
c�1C1

l D c�1

l C Plcl�1,

d�1C1
l D d�1

l � AlPlcl�1

(Post-)Smoothing for k D 1; : : : ; �2:
c D Sl.d

�1Ck
l /,

d�1C1Ck
l D d�1Ck

l � Alc, c�1C1Ck
l D c�1Ck

l C c
return c�1C1C�2

l

can exhibit nearly perfect weak scalability when employed in massively parallel
environments with hundred thousands of computing cores.

To this end, the components of the algorithm must be parallelized. The basic idea
is to construct a distributed multigrid hierarchy as follows:

1. Start with a coarse grid on a small number of processes.
2. Refine the grid several times to create additional hierarchy levels.
3. Redistribute the finest level of the hierarchy to a larger set of processes.
4. Repeat at (2) until the desired grid resolution is obtained. At this point all active

processes should contain a part of the finest level of the multigrid hierarchy.

Refining the grid, new levels of the multigrid hierarchy are created and after some
refinements the finest grid level is distributed to a larger set of processes and
communication structures (called vertical interfaces) are established. This process
can be iterated, successively creating a tree structure of processes holding parts of
the hierarchical grid. Figure 1 shows a process hierarchy for a distributed multigrid
hierarchy on four processes (cf. [25, 27]). The communication structures in vertical
direction are used to parallelize the transfer between the grid levels, i.e. to implement
the transfer of data between grid levels at restriction and prolongation phases
within a multigrid cycle. However, if no vertical interface is present the transfer
operators act completely process-locally. For the communication within multigrid
smoothers on each grid level additional horizontal interfaces are required. These
interfaces will be used to compute the level-wise correction in a consistent way. An
illustration for the resulting hierarchy distribution and interfaces is given in Fig. 2
(cf. [25, 27, 36, 38]). In order to compute the required coarse grid matrices, each
process calculates the contribution of the grid part assigned to the process itself.



472 A. Vogel et al.

l=0

l=1

l=2

l=3

P0 P1 P2 P3

Fig. 1 Illustration for a 1d process hierarchy on 4 processes. Ghost elements (red) are sent
during redistribution. Data is communicated between ghosts and actual elements through vertical
interfaces (orange) (cf. [25, 27])

l=0

l=1

l=2

l=3 l=3

l=2
l=1

P0 P1

Fig. 2 Illustration for a 1d parallel multigrid hierarchy distributed onto two processes. Parallel
copies are identified via horizontal (blue) and vertical interfaces (orange) (From [38], cf. also [27])

Thus, the matrices are stored in parallel in an additive fashion and no communication
is required for this setup.

A Jacobi smoother has very good properties regarding scalability, however it may
not be suitable for more complicated problems (e.g. with anisotropic coefficients or
anisotropic grids). To handle this issue for anisotropic problems, we use anisotropic
refinement in order to construct grid hierarchies with isotropic elements from
anisotropic coarse grids: refining only those edges in the computing grid that are
longer than a given threshold, and halving this threshold in each step, the approach
yields a grid hierarchy which contains anisotropic elements on lower levels and
more and more isotropic elements on higher levels. An illustration for a resulting
hierarchy is shown in Fig. 3. The used refinement strategy produces non-adaptive
grids, i.e. meshes that fully cover the physical domain. This eases the load-balancing
compared to adaptive meshes where huge differences in the spatial resolution and
thereby element distribution may occur during refinement and redistribution is
necessary. In this work we focused on the non-adaptive strategy only, however, plan
to report on the adaptive case in future works.

Reconsidering the hierarchical distribution approach described above, lower
levels of the multigrid hierarchy are only contained on a smaller number of
processes. This is well suited for fast parallel smoothing, prolongation and restric-
tion operations thanks to maintaining a good ratio between computation and
communication costs on all levels. A smoothing operation on coarser levels with



Automated Performance Modeling of the UG4 Simulation Framework 473

Fig. 3 Grid hierarchy created
by anisotropic refinement for
the 3d brick-and-mortar
model (in exploded view).
The aspect ratio of the grid
elements improve with every
refinement step

only few inner unknowns would be dominated by the communication and thus the
work is agglomerated to fewer processes resulting in idle processes on coarse levels.
However, the work on finer grid levels is dominating the overall runtime.

2.3 Application: Human Skin Permeation

As an exemplary application from the field of computational pharmacy we focus on
the permeation of substances through the human skin. These simulations consider
the outermost part of the epidermis, called stratum corneum, and are used to estimate
the throughput of chemical exposures. An overview on different descriptions of the
biological and geometric approaches to simulate such a setting can be found in [20]
and the references therein. For this study, we use the same setup as used in [38]: the
transport in two subdomains s 2 fcor; lipg (corneocyte, lipid) is described by the
diffusion equation

@tcs.t; x/ D r � .Dsrcs.t; x// ;

using a subdomain-wise constant diffusion coefficient Ds. We use a 3d brick-and-
mortar model consisting of highly anisotropic hexahedral elements with aspect
ratios as bad as 1=300 in the coarse grid. Employing anisotropic refinements we
construct a grid hierarchy with better and better aspect ratios on finer levels. The
resulting grid hierarchy is displayed in Fig. 3. For a more detailed presentation we
refer to [38].



474 A. Vogel et al.

3 Automated Performance Modeling

The automated modeling approach used to analyze the UG 4 framework has been
presented by Calotoiu et al. in [7, 8]. Here, we give a brief overview on the procedure
and ideas. For further details please refer to [7, 30, 38, 40].

Automated performance modeling is used to empirically determine the asymp-
totic scaling behavior for a large number of fine-grained code kernels. These
scaling models can then be inspected and compared to the expected complexity: a
discrepancy indicates a potential scalability bug that can be addressed and hopefully
removed by the code developers. If no such scalability issues are found this can be
taken as a strong evidence that no unexpected scalability problems are present. In
addition the created models can also be used to predict the resource consumption at
larger core counts if required.

In order to create the models, the simulation framework UG 4 has been
instrumented to measure relevant metrics such as time, bytes sent/received or
floating-point operations in program regions at a function level granularity. Running
simulations at different core counts now offers the opportunity to determine via
cross-validation [24] which choice of parameters in the performance model normal
form (PMNF, [7])

f .p/ D
nX

kD1

ck � pik � log jk
2 .p/;

with ik; jk 2 I; J � Q, best fits the measurements. The approach is applicable to
strong and weak scaling. In this study, however, we have focused on weak scaling
only. In order to account for jitter, several runs for every core count have to be
executed. The required effort for this approach therefore is to run the application a
few times at a few core counts.

For the correct analysis of the multigrid algorithm in weak scaling studies,
a more careful approach than just analyzing the code kernels directly has to be
taken [38]. This is due to the following observation: within a weak scaling study
the problem size has to be increased and for multigrid approaches this leads to
an increase in the number of grid levels. The multigrid algorithm—traversing the
multigrid hierarchy top-down and then again bottom-up, applying smoothers and
level transfers for every level—will thus create a different call tree at different
core counts for multigrid functions due to the varying numbers of grid levels.
However, the performance modeling approach usually assumes the same call tree
for all core counts. Therefore, we preprocess the call tree: only kernels present in
all measurements remain in the modified call tree and measurement data of code
kernels not present in modified call trees is added to the parent kernel. This approach
is not only limited to multigrid settings but may be useful for all codes that use
recursive calls whose invocation count increases within a scaling study.



Automated Performance Modeling of the UG4 Simulation Framework 475

4 Results

The automated performance modeling (Sect. 3) has been applied to entire simulation
runs of the UG 4 simulation framework (Sect. 2) and several aspects of the analysis
have been reported in [38]. In order to analyze and validate the code behavior the
proceeding and reasoning is as follows: we run several simulations at different core
counts p and measure detailed metric information (times, bytes sent) at a function
level granularity. By this, we receive fine grained information for small code kernels.
For all of these kernels and all available metrics we create performance models and
then rank these by their asymptotic behavior with respect to the core count. All code
kernels with constant or only logarithmical dependency are considered optimal.
However, if some code kernel, e.g., in the multigrid method would show a linear
or quadratic dependency, this would not match our performance expectations and
we consider it a scalability bug that has to be addressed and removed. Inspecting
all measured code kernels thus provides us with a fine grained information for
different parts of the simulation code. Given that all code kernels show an optimal
dependency we finally obtain a validation of the expected scaling properties.

Here, we first briefly give an overview on the results presented in [38] and
then show more detailed results focusing on the multigrid kernels and their scaling
properties.

4.1 Analysis for Grid Hierarchy Setup and Solver Comparison

In a first test, we analyzed entire runs in a weak scaling study for the human
skin permeation simulating the steady-state concentration distribution on a three-
dimensional brick-and-mortar skin geometry. A scalability issue has been detected
by the performance modeling that can be explained and resolved [38]: at the
initialization of the multigrid hierarchy an MPI_Allreduce operation for an
array of length p was used to inform each process about its intended communicator
group membership. The resulting p � O.MPI_Allreduce/ dependency has been
addressed by using MPI_Comm_split instead that can be implemented with a
O.log2 p/ [31] behavior. By this, we were able to remove this potential bottleneck
at this stage of code development.

In a second study, we provided a comparison for two different types of solvers:
the geometric multigrid solver has been compared in a weak scaling study to the
unpreconditioned conjugate gradient (CG) method. The unpreconditioned conjugate
gradient method is known to have unpleasant weak-scaling properties due to the
increase by a factor of two for the iteration count resulting in a O.

p
p/ dependency

(see [38] for a detailed theoretical analysis). Due to the created models we confirmed
that the theoretical expectations are met by our implementation of the parallel
solvers.



476 A. Vogel et al.

4.2 Scalability of Code Kernels in the Geometric Multigrid

In this section we give a more detailed view on the code kernels for the geometric
multigrid. For the analysis of the multigrid solver we consider the human skin per-
meation model: we compute the steady-state of the concentration distribution for the
brick-and-mortar model described in Sect. 2.3 and choose the diffusion parameter to
Dcor D 10�3 and Dlip D 1. For the solution of the arising linear system of equations,
the geometric multigrid solver is used. As acceleration an outer conjugate gradient
method is applied. For the smoothing a damped Jacobi is employed with three
smoothing steps. As cycle type the V-cycle is used and as base solver we use a LU
factorization. The stopping criterion for the solver is the reduction of the absolute
residuum to 10�10. The anisotropic refinement as laid out in Sect. 2.2 is used to
enhance the aspect ratios of the hierarchy from level to level. Once satisfactory
ratios are reached, this level is used as base level for the multigrid algorithm.

In Fig. 4 we present the accumulated wallclock times for exemplary coarse-
grain kernels of the multigrid method and provide information on the number
of used cores and the size of the solved matrix system (degrees of freedom).
Please note that the iteration counts are bounded as expected for a multigrid
method. Since the assembling for the matrix is an inherent parallel process without
any communication it can be performed—given an optimal load-balancing—with
constant wall-clock time in the weak scaling. This is confirmed by the generated
performance model. All other shown aspects of the multigrid method show a
logarithmical dependency. This is due to the fact that the number of involved coarse
grid levels L D O.log p/ depends on the number of processes in a weak scaling.
We consider this logarithmical dependency still as optimal since even allreduce
operations implemented in a tree-like fashion will show the same behavior and are
used to check for convergence.

The performance models for several code kernels are shown in Table 1. Please
note that all code kernels in our measurements have shown constant or logarithmical
dependency with respect to the number of processes. Here, we show some selected
kernels in order to give more details on the parallelization aspects of the multigrid
method. For a more detailed description on the mathematical algorithm and
parallelization aspects we refer to Sect. 2 and [27].

The presmoothing is performed in a two step fashion: first, the Jacobi iteration
is applied on process-wise data structures resulting in no data transfer (CG !
GMG ! PreSmooth ! Jacobi ! apply ! step). In a second phase
update information is exchanged between nearest neighbors in order to gain a
consistent update resulting in data transfer (PreSmooth! Jacobi! apply!
AdditiveToConsistent! MPI_Isend). All behaviors are found to depend
logarithmically due to the increase in grid levels that are using this method.

The grid transfer is performed process-wise as well (Restrict ! apply).
No communication is needed unless vertical interfaces are present. The setup
phase (Restrict ! init) simply assembles the transfer operators into a matrix
structure on each process and a constant time within a weak scaling is thus observed.



Automated Performance Modeling of the UG4 Simulation Framework 477

(a)

(b)

p L DoF ngmg

16 6 290,421 25

128 7 2,271,049 27

1024 8 17,961,489 29

8192 9 142,869,025 29

65536 10 1,139,670,081 29

Kernel Model for time [s]

GMG Init log p
GMG Cycle log p
Matrix Setup

PreSmoothing log p
Prolongation log p

(d)(c)

Fig. 4 Measured accumulated wallclock times (marks) and models (lines) for the skin 3d problem
(self time and subroutines). (a) (cf. [38]) Initialization of the multigrid solver and time spent in the
multigrid cycle. (b) Times for coarse matrix assembling, smoothing and prolongation. (c) (From
[38]) Number of grid refinements (L), degrees of freedom (DoF) and number of iterations of the
solver (ngmg). (d) Performance models for the kernels shown in the graphs

Finally, we show some kernels for the outer CG iteration. In order to check
for convergence, the norm of a defect vector is computed in each iteration step.
After a nearest neighbor communication in order to change the storage type of the
vector (CG ! norm ! AdditiveToUnique! MPI_Isend), the norm is first
computed on each process (CG ! norm) and then summed up globally (CG !
norm ! allreduce ! MPI_Allreduce).

This way our expectations for the code kernels of the multigrid solver are
confirmed and we have strong evidence that only logarithmical complexity with
respect to the core count (or better) occurs.



478 A. Vogel et al.

T
ab

le
1

Sk
in

3d
st

ud
y.

M
od

el
s

fo
r

se
lf

-t
im

e
an

d
by

te
s

se
nt

fo
r

se
le

ct
ed

ke
rn

el
s

of
th

e
ge

om
et

ri
c

m
ul

ti
gr

id
m

et
ho

d
w

it
h

ou
te

r
C

G
it

er
at

io
n.

j1
�

R
2
j,t

he
ab

so
lu

te
di

ff
er

en
ce

be
tw

ee
n

R
2

an
d

th
e

op
ti

m
um

sc
al

ed
by

1
0

�
3
,c

an
be

co
ns

id
er

ed
a

no
rm

al
iz

ed
er

ro
r

K
er

ne
l

T
im

e
B

yt
es

se
nt

M
od

el
j1

�
R

2
j

M
od

el
j1

�
R

2
j

ti
m

e
D

f.
p/

Œm
s�

[1
0

�
3
]

by
te

s
D

f.
p/

[1
0

�
3
]

C
G

!
G
M
G

!
P
r
e
S
m
o
o
t
h

!
J
a
c
o
b
i

!
a
p
p
l
y

!
s
t
e
p

1
8
:9

C
0
:4

�lo
g

p
42

.6
0

0
:0

C
G

!
G
M
G

!
P
r
e
S
m
o
o
t
h

!
J
a
c
o
b
i

!
a
p
p
l
y

!
A
d
d
i
t
i
v
e
T
o
C
o
n
s
i
s
t
e
n
t

!
M
P
I
_
I
s
e
n
d

1
:5

1
C

1
:1

2
�lo

g
p

36
.0

5
:7

7
�10

5
C

0
:9

5
�10

5
�lo

g
p

5
3
:2

C
G

!
G
M
G

!
R
e
s
t
r
i
c
t

!
i
n
i
t

5
1
0

0.
0

0
0
:0

C
G

!
G
M
G

!
R
e
s
t
r
i
c
t

!
a
p
p
l
y

5
1
:0

C
0
:0

5
�lo

g
p

37
8

0
0
:0

C
G

!
n
o
r
m

3
:5

2
C

0
:0

0
2

�lo
g2

p
54

4
0

0
:0

C
G

!
n
o
r
m

!
A
d
d
i
t
i
v
e
T
o
U
n
i
q
u
e

!
M
P
I
_
I
s
e
n
d

0
:5

2
C

0
:4

5
�lo

g
p

38
.9

1
:9

5
�10

5
C

0
:3

4
�10

5
�lo

g
p

4
5
:5

C
G

!
n
o
r
m

!
a
l
l
r
e
d
u
c
e

!
M
P
I
_
A
l
l
r
e
d
u
c
e

1
:6

7
C

0
:9

2
�lo

g2
p

7.
5

O
.M
P
I
_
A
l
l
r
e
d
u
c
e

/
0
:0



Automated Performance Modeling of the UG4 Simulation Framework 479

5 Related Work

Numerous analytical and automated performance modeling approaches have been
proposed and developed. The field ranges from manual models [5, 23], over source-
code annotations [34] to specialized languages [32]. Automated modeling methods
are developed based on machine-learning approaches [19], and via extrapolating
trace measurements in [42] (extrapolating from single-node to parallel architec-
tures), in [41] (predicting communication costs at large core counts) and in [9]
(extrapolating based on a set of canonical functions). The Dimemas simulator
provides tools for performance analysis in message-passing programs [13].

Various frameworks to solve partial differential equations use multigrid methods.
Highly scalable multigrid methods are presented in [4, 14, 29, 33], and [39] for
geometric multigrid, and in [1, 2], and [3] for algebraic multigrid methods. Work
on performance modeling for multigrid can be found in [11, 38] for geometric and
in [12] for algebraic multigrid. For an overview for the numerical treatment of skin
permeation, we refer to [21] and the references therein.

6 Conclusion

The numerical simulation framework UG4 consists of half a million lines of code
and is used to address problems formulated in terms of partial differential equations
employing multigrid methods to solve arising large sparse matrix equations. In
order to analyze, predict and improve the scaling behavior of UG4 we have
conducted a performance modeling at code kernel granularity. Inspecting automated
performance models we validated the scalability of entire simulations and presented
the close to optimal weak scaling properties for the components of the employed
geometric multigrid method that only depend logarithmically on the core count.

Acknowledgements Financial support from the DFG Priority Program 1648 Software for Exas-
cale Computing (SPPEXA) is gratefully acknowledged. The authors also thank the Gauss Centre
for Supercomputing (GCS) for providing computing time on the GCS share of the supercomputer
JUQUEEN at Jülich Supercomputing Centre (JSC).

References

1. Baker, A., Falgout, R., Kolev, T., Yang, U.: Multigrid smoothers for ultra-parallel computing.
SIAM J. Sci. Comput. 33, 2864–2887 (2011)

2. Baker, A.H., Falgout, R.D., Gamblin, T., Kolev, T.V., Schulz, M., Yang, U.M.: Scaling
algebraic multigrid solvers: on the road to exascale. In: Competence in High Performance
Computing 2010, pp. 215–226. Springer, Berlin/New York (2012)

3. Bastian, P., Blatt, M., Scheichl, R.: Algebraic multigrid for discontinuous Galerkin discretiza-
tions of heterogeneous elliptic problems. Numer. Linear Algebra 19(2), 367–388 (2012)



480 A. Vogel et al.

4. Bergen, B., Gradl, T., Rude, U., Hulsemann, F.: A massively parallel multigrid method for
finite elements. Comput. Sci. Eng. 8(6), 56–62 (2006)

5. Boyd, E.L., Azeem, W., Lee, H.H., Shih, T.P., Hung, S.H., Davidson, E.S.: A hierarchical
approach to modeling and improving the performance of scientific applications on the KSR1.
In: Proceedings of the 1994 International Conference on Parallel Processing, St. Charles,
vol. III, pp. 188–192. IEEE (1994)

6. Braess, D.: Finite Elemente. Springer, Berlin (2003)
7. Calotoiu, A., Hoefler, T., Poke, M., Wolf, F.: Using automated performance modeling to

find scalability bugs in complex codes. In: Proceedings of the ACM/IEEE Conference on
Supercomputing (SC13), Denver. ACM (2013)

8. Calotoiu, A., Hoefler, T., Wolf, F.: Mass-producing insightful performance models. In:
Workshop on Modeling & Simulation of Systems and Applications, Seattle, Aug 2014

9. Carrington, L., Laurenzano, M., Tiwari, A.: Characterizing large-scale HPC applications
through trace extrapolation. Parallel Process. Lett. 23(4), 1340008 (2013)

10. Ciarlet, P.G., Lions, J.: Finite Element Methods (Part 1). North-Holland, Amsterdam (1991)
11. Gahvari, H., Gropp, W.: An introductory exascale feasibility study for FFTs and multigrid.

In: International Symposium on Parallel & Distributed Processing (IPDPS), pp. 1–9. IEEE,
Piscataway (2010)

12. Gahvari, H., Baker, A.H., Schulz, M., Yang, U.M., Jordan, K.E., Gropp, W.: Modeling
the performance of an algebraic multigrid cycle on HPC platforms. In: Proceedings of the
International Conference on Supercomputing, pp. 172–181. ACM, New York (2011)

13. Girona, S., Labarta, J., Badia, R.M.: Validation of dimemas communication model for MPI
collective operations. In: Proceedings of the 7th European PVM/MPI Users’ Group Meeting
on Recent Advances in Parallel Virtual Machine and Message Passing Interface, pp. 39–46.
Springer, London (2000). http://dl.acm.org/citation.cfm?id=648137.746640

14. Gmeiner, B., Köstler, H., Stürmer, M., Rüde, U.: Parallel multigrid on hierarchical hybrid grids:
a performance study on current high performance computing clusters. Concurr. Comput.: Pract.
Exp. 26(1), 217–240 (2014)

15. Hackbusch, W.: Multi-grid Methods and Applications, vol. 4. Springer, Berlin/New York
(1985)

16. Hackbusch, W.: Theorie und Numerik elliptischer Differentialgleichungen: mit Beispielen und
Übungsaufgaben. Teubner (1996)

17. Heppner, I., Lampe, M., Nägel, A., Reiter, S., Rupp, M., Vogel, A., Wittum, G.: Software
framework ug4: parallel multigrid on the hermit supercomputer. In: High Performance
Computing in Science and Engineering ’12, pp. 435–449. Springer, Cham (2013)

18. Ierusalimschy, R., De Figueiredo, L.H., Celes Filho, W.: Lua-an extensible extension language.
Softw. Pract. Exp. 26(6), 635–652 (1996)

19. Lee, B.C., Brooks, D.M., de Supinski, B.R., Schulz, M., Singh, K., McKee, S.A.: Methods
of inference and learning for performance modeling of parallel applications. In: Proceedings
of the 12th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming
(PPoPP ’07), pp. 249–258. ACM, New York (2007)

20. Nägel, A., Heisig, M., Wittum, G.: A comparison of two- and three-dimensional models for
the simulation of the permeability of human stratum corneum. Eur. J. Pharm. Biopharm. 72(2),
332–338 (2009)

21. Nägel, A., Heisig, M., Wittum, G.: Detailed modeling of skin penetration—an overview. Adv.
Drug Deliv. Rev. 65(2), 191–207 (2013)

22. ParMetis (Nov 2015), http://glaros.dtc.umn.edu/gkhome/metis/parmetis/overview
23. Petrini, F., Kerbyson, D.J., Pakin, S.: The case of the missing supercomputer performance:

achieving optimal performance on the 8,192 processors of ASCI Q. In: Proceedings of the
ACM/IEEE Conference on Supercomputing (SC’03), pp. 55ff. ACM, New York (2003)

24. Picard, R.R., Cook, R.D.: Cross-validation of regression models. J. Am. Stat. Assoc. 79(387),
575–583 (1984)

25. Reiter, S.: Efficient algorithms and data structures for the realization of adaptive, hierarchical
grids on massively parallel systems. Ph.D. thesis, University of Frankfurt, Germany (2014)

http://dl.acm.org/citation.cfm?id=648137.746640
http://glaros.dtc.umn.edu/gkhome/metis/parmetis/overview


Automated Performance Modeling of the UG4 Simulation Framework 481

26. Reiter, S.: Promesh (Nov 2015), http://wwww.promesh3d.com
27. Reiter, S., Vogel, A., Heppner, I., Rupp, M., Wittum, G.: A massively parallel geometric

multigrid solver on hierarchically distributed grids. Comput. Vis. Sci. 16(4), 151–164 (2013)
28. Saad, Y.: Iterative Methods for Sparse Linear Systems. SIAM, Philadelphia (2003)
29. Sampath, R., Biros, G.: A parallel geometric multigrid method for finite elements on octree

meshes. SIAM J. Sci. Comput. 32, 1361–1392 (2010)
30. Shudler, S., Calotoiu, A., Hoefler, T., Strube, A., Wolf, F.: Exascaling your library: will your

implementation meet your expectations? In: Proceedings of the International Conference on
Supercomputing (ICS), Newport Beach, pp. 1–11. ACM (2015)

31. Siebert, C., Wolf, F.: Parallel sorting with minimal data. In: Recent Advances in the Message
Passing Interface, pp. 170–177. Springer, Berlin/New York (2011)

32. Spafford, K.L., Vetter, J.S.: Aspen: a domain specific language for performance modeling. In:
Proceedings of the International Conference on High Performance Computing, Networking,
Storage and Analysis, SC ’12, pp. 84:1–84:11. IEEE Computer Society Press, Los Alamitos
(2012)

33. Sundar, H., Biros, G., Burstedde, C., Rudi, J., Ghattas, O., Stadler, G.: Parallel geometric-
algebraic multigrid on unstructured forests of octrees. In: Proceedings of the International
Conference on High Performance Computing, Networking, Storage and Analysis, p. 43. IEEE
Computer Society Press, Los Alamitos (2012)

34. Tallent, N.R., Hoisie, A.: Palm: easing the burden of analytical performance modeling. In:
Proceedings of the International Conference on Supercomputing (ICS), pp. 221–230. ACM,
New York (2014)

35. UG4 (Nov 2015), https://github.com/UG4
36. Vogel, A.: Flexible und kombinierbare Implementierung von Finite-Volumen-Verfahren

höherer Ordnung mit Anwendungen für die Konvektions-Diffusions-, Navier-Stokes- und
Nernst-Planck-Gleichungen sowie dichtegetriebene Grundwasserströmung in porösen Medien.
Ph.D. thesis, Universität Frankfurt am Main (2014)

37. Vogel, A., Reiter, S., Rupp, M., Nägel, A., Wittum, G.: UG 4: a novel flexible software system
for simulating PDE based models on high performance computers. Comput. Vis. Sci. 16(4),
165–179 (2013)

38. Vogel, A., Calotoiu, A., Strube, A., Reiter, S., Nägel, A., Wolf, F., Wittum, G.: 10,000
performance models per minute—scalability of the UG4 simulation framework. In: Träff,
J.L., Hunold, S., Versaci, F. (eds.) Euro-Par 2015: Parallel Processing, Theoretical Computer
Science and General Issues, vol. 9233, pp. 519–531. Springer, Heidelberg (2015)

39. Williams, S., Lijewski, M., Almgren, A., Straalen, B.V., Carson, E., Knight, N., Demmel, J.: s-
step Krylov subspace methods as bottom solvers for geometric multigrid. In: 28th International
Parallel and Distributed Processing Symposium, pp. 1149–1158. IEEE, Piscataway (2014)

40. Wolf, F., Bischof, C., Hoefler, T., Mohr, B., Wittum, G., Calotoiu, A., Iwainsky, C., Strube,
A., Vogel, A.: Catwalk: a quick development path for performance models. In: Euro-Par 2014:
Parallel Processing Workshops. Lecture Notes in Computer Science, pp. 589–600. Springer,
Cham (2014)

41. Wu, X., Mueller, F.: ScalaExtrap: trace-based communication extrapolation for SPMD pro-
grams. In: Proceedings of the 16th ACM Symposium on Principles and Practice of Parallel
Programming (PPoPP ’11), pp. 113–122. ACM, New York (2011)

42. Zhai, J., Chen, W., Zheng, W.: Phantom: predicting performance of parallel applications on
large-scale parallel machines using a single node. Sigplan Not. 45(5), 305–314 (2010)

http://wwww.promesh3d.com
https://github.com/{UG}4

	Automated Performance Modeling of the UG4 Simulation Framework
	1 Introduction
	2 The UG4 Simulation Framework
	2.1 Concepts and Numerical Methods
	2.2 Parallel Hierarchical Geometric Multigrid
	2.3 Application: Human Skin Permeation

	3 Automated Performance Modeling
	4 Results
	4.1 Analysis for Grid Hierarchy Setup and Solver Comparison
	4.2 Scalability of Code Kernels in the Geometric Multigrid

	5 Related Work
	6 Conclusion
	References


