
Fast In-Memory Checkpointing with POSIX
API for Legacy Exascale-Applications

Jan Fajerski, Matthias Noack, Alexander Reinefeld, Florian Schintke,
Torsten Schütt, and Thomas Steinke

Abstract Exascale systems will be much more vulnerable to failures than today’s
high-performance computers. We present a scheme that writes erasure-encoded
checkpoints to other nodes’ memory. The rationale is twofold: first, writing to
memory over the interconnect is several orders of magnitude faster than traditional
disk-based checkpointing and second, erasure encoded data is able to survive
component failures. We use a distributed file system with a tmpfs back end and
intercept file accesses with LD_PRELOAD. Using a POSIX file system API, legacy
applications which are prepared for application-level checkpoint/restart, can quickly
materialize their checkpoints via the supercomputer’s interconnect without the need
to change the source code.

Experimental results show that the LD_PRELOAD client yields 69 % better
sequential bandwidth (with striping) than FUSE while still being transparent to
the application. With erasure encoding the performance is 17 % to 49 % worse
than striping because of the additional data handling and encoding effort. Even so,
our results indicate that erasure-encoded memory checkpoint/restart is an effective
means to improve resilience for exascale computing.

1 Introduction

The path towards exascale computing with 1018 operations per second is paved with
many obstacles. Three challenges are being tackled in the DFG project ‘A Fast and
Fault-Tolerant Microkernel-Based System for Exascale Computing’ (FFMK) [21]:
(1) the vulnerability to system failures due to transient and permanent errors, (2) the
performance losses due to workload imbalances in applications running on hundreds
of thousands of cores, and (3) the performance degradation caused by interactions
and noise of the operating system.

J. Fajerski (�) • M. Noack • A. Reinefeld • F. Schintke • T. Schütt • T. Steinke
Zuse Institute Berlin (ZIB), Berlin, Germany
e-mail: fajerski@zib.de; noack@zib.de; reinefeld@zib.de; schintke@zib.de; schuett@zib.de;
steinke@zib.de

© Springer International Publishing Switzerland 2016
H.-J. Bungartz et al. (eds.), Software for Exascale Computing – SPPEXA
2013-2015, Lecture Notes in Computational Science and Engineering 113,
DOI 10.1007/978-3-319-40528-5_19

427

mailto:fajerski@zib.de
mailto:noack@zib.de
mailto:reinefeld@zib.de
mailto:schintke@zib.de
mailto:schuett@zib.de
mailto:steinke@zib.de

428 J. Fajerski et al.

This paper addresses the first challenge, that is, to improve the fault tolerance of
exascale systems. Such systems consist of hundreds of thousands of components,
each designed to be reliable by itself. But running them all together will render
node failures a common event applications have to cope with [4, 7]. Several
mechanisms for improving fault tolerance in HPC have been suggested, like fault-
tolerant communication layers and checkpoint/restart (C/R) techniques.

C/R typically uses fast parallel file systems like Lustre,1 GPFS [17], or Pana-
sas [10] to materialize the checkpoints on disks. Unfortunately, C/R will reach
its limits as the applications’ memory footprint grows faster than the parallel I/O
bandwidth. Writing a checkpoint to disk will make the system processors idle for
a growing fraction of time, which becomes increasingly uneconomic. On a typical
HPC system like the Cray XC40 at ZIB [2] it takes more than half an hour to write
the main memory’s capacity to the parallel Lustre file system.2 Thus, reducing the
time of checkpointing is of vital importance. It does not only improve the efficiency,
but it will become a necessity when the mean time between failure (MTBF) becomes
shorter than the time needed to persist a checkpoint to disk.

2 Related Work

In-memory checkpointing [12] has been known for a long time. Several schemes
like Charm++ [23, 24] and FTI [3, 8] have been successfully deployed. SCR3

implements multi-level checkpointing, where checkpoints are written to different
media like RAM, flash or rotating disks. It uses a simple RAID5 encoding to be
able to cope with additional component failures.

Unfortunately, the mentioned approaches are difficult to apply to legacy appli-
cations. They are either limited to the use of specific object-oriented programming
languages like Charm++ or they require source code modifications to use specific
APIs like the one used by SCR for reading and writing checkpoints. The BLCR [5]
checkpoint framework is able to checkpoint unmodified applications but requires
support from the MPI library, because it can only create a consistent checkpoint of
MPI applications when no messages are in flight.

Our approach, in contrast, is based on POSIX which makes it suitable for
legacy applications, since many applications are prepared to write and read their
checkpoints using POSIX file system operations.

1http://wiki.lustre.org/
2The Cray XC40 ‘Konrad’ is operated at ZIB as part of the North German Supercomputer Alliance.
It comprises 1872 nodes (44.928 cores), Cray Aries network, 120 TB main memory, and a parallel
Lustre file system of 4.5 PB capacity and 52 GB/s bandwidth.
3https://computation.llnl.gov/project/scr/

http://wiki.lustre.org/
https://computation.llnl.gov/project/scr/

Fast In-Memory Checkpointing with POSIX API for Legacy Exascale-Applications 429

3 In-Memory Checkpointing with POSIX API

3.1 Implementation with XtreemFS

We use XtreemFS [19], a scalable distributed file system developed at ZIB, as a
basis for our in-memory checkpointing mechanism. XtreemFS supports POSIX
semantics for file operations while—transparently for the application—providing
fault tolerance via file replication on distributed servers. We modified XtreemFS to
perform I/O operations in-memory rather than on disk. This was possible because
XtreemFS is a user-space file system and is therefore not as tightly integrated into
the operating system kernel as other parallel file systems. Hence, it is well-suited
for providing in-memory checkpointing on top of the L4-microkernel used in the
FFMK project [21].

An instance of XtreemFS comprises three services: the Directory Service (DIR)
is a central registry for all XtreemFS services and is used for service discovery. The
Metadata and Replica Catalog (MRC) stores the directory tree and file metadata,
and it manages user authentication and file access authorization. The Object
Storage Device (OSD) stores the actual file data as objects. Figure 1 illustrates the
architecture of XtreemFS. Clients and servers (MRC, OSD, DIR) are connected via
some network with no specific requirements in terms of security, fault tolerance and

Fig. 1 XtreemFS architecture illustrating the three services (OSD, MRC and DIR) and the
communication patterns between them and a client

430 J. Fajerski et al.

performance. The separation of the metadata management in the MRCs from the
I/O-intensive management of file content in the OSDs is a design principle found
in many object-based file systems [10, 20]. To maximize scalability, metadata and
storage servers are loosely coupled. They have independent life cycles and do not
directly communicate with each other.

OSDs store data in their local directory tree. The underlying file system is only
required to offer a POSIX compliant interface. We configured the OSDs to use the
tmp directories of their respective nodes for data storage. The tmp directory is a
tmpfs file system that exports Linux’ disk caching subsystem as a RAM-based file
system with an overflow option into swap space when the main memory capacity
is exhausted. Thereby, all data sent to an OSD is stored solely in the node’s main
memory.

To create an XtreemFS instance, at least one OSD, MRC and DIR are needed.
Though to make full use of XtreemFS’ fault tolerance and scalability features,
several OSDs should be started on different servers. Once all desired services are
started and a volume is created, it can be mounted on any number of clients. All
clients will see the same file system with the same directory tree. An XtreemFS
volume is mounted through the FUSE kernel module4 to provide a virtual file
system. All operations in this file system are passed to the XtreemFS client library,
which distributes the data to the OSD devices.

3.2 Fault-Tolerance and Efficiency with Erasure Codes

Data replication is a frequently used option in distributed file systems to provide
fault tolerance. However, replication implies storage and communication overhead
compared to the number of tolerated failures. The commonly used 3-way replica-
tion [18, 19] causes a 2=3 overhead of the available raw storage capacity but can only
tolerate one failed replica.

Erasure codes (EC) offer a more space-efficient solution for fault tolerance and
have recently gained a lot of attention [1, 6, 9, 11, 14–16]. EC are a family of error
correction codes that stripe data across k chunks. Every k data words are encoded
to k C m D n words such that the original data words can be recovered from any
subset fs j s 2 P.n/; jsj � kg (cf. Fig. 2). Compared to replication, EC offers the
same or higher fault tolerance at a fraction of the storage overhead.

An EC is considered systematic if it keeps the original k data words in its original
representation. This property is desirable for storage applications since a fault-free
read operation can simply consider the data striped across k objects. They can be
read in parallel and no decoding is necessary.

4FUSE—Filesystem in Userspace allows the creation of a file system without changing Linux
kernel code.

Fast In-Memory Checkpointing with POSIX API for Legacy Exascale-Applications 431

k = 3

object stripe

data device code device

m = 2

Fig. 2 Scheme of a systematic erasure code where data is striped across three devices and two
code words per stripe are stored on two coding devices. Note that the last stripe only contains two
data words

In order to exploit these advantages we implemented generic kCm erasure coding
in XtreemFS using the Jerasure library [13]. The encoding and decoding operation
is implemented in the client library of XtreemFS.

File system operations are passed to the client library which then translates the
request into a number of object requests, that are sent to the OSDs. A read request
is performed optimistically by the client as it tries to read only the necessary data
objects. If all OSDs with the corresponding data objects answer, the replies are
concatenated and returned. If one or more OSDs fail to reply, the client will send
out the necessary requests to OSDs storing coding objects. As soon as at least k out
of n objects per stripe have been received, the data can be decoded and returned.

The implementation of a write operation is more complex. Since the encoding
takes place in the client (i.e. on the client system) it needs a sufficient amount of
data to calculate the coding objects. This establishes two requirements for write
operations: (1) the size of a write operation should be k � object_size or a multiple
thereof and (2) a write operation should align with stripes, i.e. the operation’s offset
should be a multiple of k � object_size. These two requirements would diminish the
POSIX compliance as POSIX does not put any restrictions on a write operation’s
size or offset.

This problem can be solved by implementing a read-modify-write (rmw) cycle
in the client. When the client library receives a write request that violates the
requirements above, it simply reads the necessary data to fulfill both requirements.
The write request is then padded with the additional data, encoded and sent to the
OSDs for storage. A write to the end of a file can simply be padded with zeros, since
they act as neutral elements in the encoding operation.

However, we decided not to implement a rmw cycle, because we observed that
writing checkpoint data is usually an append operation to the end of a file rather
than updating random file locations. This means that both requirements of our client
side implementation can be satisfied by simply caching write operations until a full
stripe can be encoded and written to the OSDs or the file is closed. In the latter case
the left over data is padded with zeros, encoded and then written to the OSDs.

432 J. Fajerski et al.

At a later stage we will add a server side implementation of erasure coding to
XtreemFS that does not suffer from the described shortcomings and will be fully
POSIX compliant.

4 Deployment on a Supercomputer

4.1 Access to RAM File System

For Linux and Unix systems, there are two client solutions: the FUSE-based client
that allows to mount an XtreemFS volume like any other file system, and the lib-
xtreemfs library for C++ and Java, which allows application developers to directly
integrate XtreemFS support into applications.

Since many HPC systems use a Linux-based operating system, the FUSE-
client of XtreemFS would be a natural choice to use for our C/R system. But for
performance reasons Linux configurations on HPC systems are often optimized
and kernel modules like FUSE are typically disabled. We therefore developed
a third client that intercepts and substitutes calls to the file system with the
LD_PRELOAD mechanism. LD_PRELOAD allows to load libraries that are used to
resolve dynamically linked symbols before other libraries (e.g. libc) are considered.

We implemented a libxtreemfs_preload that can be specified via the environment
variable LD_PRELOAD. It intercepts and substitutes file system calls of an
application. If an intercepted call relates to an XtreemFS volume or file, it is
translated into its corresponding libxtreemfs call, which is similar to what the FUSE
adapter does. Otherwise calls are passed through to the original glibc function,
which would have handled it without the pre-load mechanism in place. Whether or
not XtreemFS should be used is determined via a configurable path prefix, that can
be thought of as a virtual mount point. For example, copying a file to an XtreemFS
volume via FUSE using cp as application would be performed as follows:

$> mount.xtreemfs my.dir.host/myVolume /xtreemfs
$> cp myFile /xtreemfs
$> umount.xtreemfs /xtreemfs

The same operation with the LD_PRELOAD and libxtreemfs_preload instead of
FUSE could be achieved with the following command:

$> XTREEMFS_PRELOAD_OPTIONS="my.dir.host/myVolume /xtreemfs" \
LD_PRELOAD="libxtreemfs_preload.so" \
cp myFile /xtreemfs

This example can be easily generalized into a shell script that wraps cp or other
applications, such that the environment setup is hidden.

Figure 3 shows all three client solutions in comparison. The LD_PRELOAD
client combines the transparency of the FUSE client with the potential performance
benefits of directly using the libxtreemfs. Section 5 provides benchmark results on
the different XtreemFS client solutions.

Fast In-Memory Checkpointing with POSIX API for Legacy Exascale-Applications 433

Application

glibc

FUSE
Kernel Module

FUSE
XtreemFS Adapter

XtreemFS Client
(libxtreemfs)

XtreemFS Services

POSIX API

ke
rn

el
sp

ac
e

ne
tw

or
k

a)
Application

XtreemFS Client
(libxtreemfs)

XtreemFS Services

ne
tw

or
k

Client API

b)
Application

LD PRELOAD
(libxtreemfs preload)

XtreemFS
related?

glibc

XtreemFS Client
(libxtreemfs)

XtreemFS Services

ye
s

no

POSIX API

ne
tw

or
k

. . .

c)

Fig. 3 Three different client solutions for XtreemFS. (a) The application interacts transparently
with XtreemFS via FUSE. (b) The direct use of the client library avoids overhead but is intrusive.
(c) The interception with LD_PRELOAD is non-intrusive and avoids FUSE as a bottleneck

Note that a similar approach is available with the liblustre5 library in the Lustre
parallel file system. Here, data of a Lustre volume can be accessed via LD_PRE-
LOAD without the need of mounting. However, liblustre targets more at portability
than performance.

4.1.1 Issues with LD_PRELOAD

The LD_PRELOAD mechanism is only able to intercept calls to dynamically linked
functions. In most cases this works fine for the low-level file system calls of interest.
However, there are situations where some of the calls are inaccessible. If we wanted,
for instance, to intercept all close() calls made by an application there are two
possible situations: the application either directly calls close() or it uses a higher-
level operation like fclose() which then calls close() indirectly. The second
case is problematic, since both calls are inside glibc and the inner close() call
could have been inlined or statically linked, depending on the glibc-build. If so, it
can not be intercepted by the LD_PRELOAD mechanism. One possible workaround
is to also intercept the higher-level calls, but this would mean re-implementing and
maintaining large parts of the glibc, which is not a good choice. A more practical

5http://wiki.lustre.org/index.php/LibLustre_How-To_Guide

http://wiki.lustre.org/index.php/LibLustre_How-To_Guide

434 J. Fajerski et al.

workaround is to use a simple test-program to detect whether or not all needed calls
can be intercepted, and if not use a specifically built glibc.

4.2 Placement of Services

One important decision is, where to store the erasure encoded checkpoint data so
that it can be later safely retrieved—even under harsh conditions with correlated
component failures. A look into the operators’ machine books at major HPC sites
reveals that single hardware components like memory DIMMs, processors, power
supplies or network interface cards (NIC) fail independently, but they cause larger
parts of the systems to crash. Similarly, software crashes also cause parts of the
system to fail. In all cases the failure unit is typically a single node, which comprises
some CPU sockets with associated ccNUMA memory and a NIC.

On the Cray XC40, the smallest failure unit is a compute blade with four
nodes because they share one Aries NIC and other support hardware. Consequently,
erasure encoded checkpoint data should be distributed over several blades in the
Cray. As shown in another work [22], the latency increases only by a negligible
amount when writing data from one blade to another in the same electrical unit
via the Aries network (Fig. 4). This is also true when using the longer-distance
fiber optics cables between different electrical units (pairs of cabinet). Moreover,
the bandwidths are almost homogeneous across the entire system.

When an application crashed due to a node failure, additional resources are need
to resume the application from a checkpoint. If all resources in the system are fully
utilized, it may be difficult to provide additional nodes for the crashed application.
On exascale systems, however, we expect the cost of reserving a few spare nodes per
job to be negligible. Alternatively, the system provider could provide spare nodes
from job fragmentation. The job will then be restarted with the same number of
nodes but a slightly different job placement. As shown in [22] the cost for different
placements varies only by a few percent.

Fig. 4 Cray XC40 component hierarchy: node, blade, chassis, cabinet, electrical group

Fast In-Memory Checkpointing with POSIX API for Legacy Exascale-Applications 435

4.3 Deployment on a Cray XC40

Jobs on a Cray XC40 may be either run in extreme scalability mode (ESM) or in
cluster compatibility mode (CCM). ESM is designed for scalable high performance
applications. Only a minimal amount of system services are running on the compute
nodes to minimize interference. Applications need to use Cray MPI and to be started
with the command-line tool aprun. After the application finishes, the node-checker
checks the node for errors and cleans up all remaining traces of the previous job. The
ESM mode is not suited for our approach, because we need to run both, XtreemFS
and the application on the same node. Additionally, we need to restart the application
on these nodes and read the checkpoint from XtreemFS resp. the RAM-disk which
is impossible with ESM.

In CCM, the reserved compute nodes can be treated like a traditional cluster.
Standard system services, like an ssh daemon, are available. However, Cray MPI is
not available in CCM. Instead, Cray provides an InfiniBand (IB) verbs emulation on
top of the Aries network. For our experiments, we ran OpenMPI over the IB verbs
emulation.

For a proof of concept we used the parallel quantum chromodynamics code
BQCD.6 It has a built-in checkpoint/restart mechanism. At regular intervals, it writes
a checkpoint of its state to the local disk. In case of a crash, it can be restarted from
these checkpoints.

We used ssh to start the XtreemFS services on the nodes in CCM mode. The
services were distributed as follows: DIR, MRC and one OSD on the first node, and
one OSD on all other nodes. We used the LD_PRELOAD client and OpenMPI to
start BQCD. In this setup BQCD’s snapshots are written to XtreemFS. We manually
killed the BQCD job and successfully restarted it from the memory checkpoint.

5 Experimental Results

First, we evaluate the three XtreemFS client solutions described in Sect. 4.1. In order
to compare the cost of the different data paths depicted in Fig. 3, we performed
micro-benchmarks of the read and write operations to an XtreemFS volume with
each solution. The different XtreemFS services ran on a single node, so there
is no actual network traffic that might pose a bottleneck. A node has two Intel
Xeon E5-2630v3 with 64 GB main memory and runs a Ubuntu 14.04 with a 3.13
kernel. Caching mechanisms of the kernel and FUSE were disabled by using the
direct_io option of FUSE. This ensures that all requests reach the XtreemFS
client and the OSDs, and are not just cached locally, which is especially important

6https://www.rrz.uni-hamburg.de/services/hpc/bqcd.html

https://www.rrz.uni-hamburg.de/services/hpc/bqcd.html

436 J. Fajerski et al.

0

200

400

600

1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 20480 30720

Filesize in MiB

Th
ro

ug
hp

ut
 in

 M
iB

/s

Client
fuse
ld_preload
libxtreemfs

Sequential Read on tmpfs RAM−disk

Fig. 5 Sequential read performance using the three different client approaches (RAM-disk)

for checkpoint data. All result values are averages over multiple runs, the error bars
visualize the standard error.

Figures 5 and 6 show the results for sequential reading and writing, respec-
tively. In both cases, the results match our expectations: libxtreemfs is faster than
LD_PRELOAD which is faster than FUSE. For reading, LD_PRELOAD is between
35 % and 91 % faster than FUSE with an average of 69 %. Compared to libxtreemfs,
it is around 21 % slower on average (between 0.5 % and 29 %). Writing performance
is similar. LD_PRELOAD compared to FUSE is around 74 % faster (between 44 %
and 91 %), and 23 % (between 6 % and 33 %) slower when compared to libxtreemfs.
The results show that the newly developed LD_PRELOAD client approach yields
a better sequential bandwidth than FUSE while still being transparent to the
application. Regardless of performance, LD_PRELOAD is the only solution for
applications that run in an environment where FUSE is not available and where
modifying the application code is not possible.

The absolute throughput values of these micro-benchmarks are limited by the
synchronous access pattern and the use of only a single data stream and a single
client. In a real world scenario, there would be at least one client or data stream (i.e.

Fast In-Memory Checkpointing with POSIX API for Legacy Exascale-Applications 437

0

200

400

600

1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 20480 30720

Filesize in MiB

Th
ro

ug
hp

ut
 in

 M
iB

/s

Client
fuse
ld_preload
libxtreemfs

Sequential Write on tmpfs RAM−disk

Fig. 6 Sequential write performance using the three different client approaches (RAM-disk)

file) per rank or thread, whose throughput would add up to an overall throughput that
would be limited by some physical bound of the underlying hardware (i.e. memory,
disk, or network bandwidth).

In a second experiment we compared the sequential throughput and scaling
characteristics of the existing striping implementation and the client side erasure-
coding solution. We used a distributed XtreemFS setup with 2–13 data OSDs. On
each data OSD runs one IOR7 process that reads/writes 1 GiB of data via the FUSE
interface. MRC and DIR run on a separate machine. All machines have two Intel
Xeon E5-2630v3 and 64 GB main memory, and all machines are interconnected
with 10 Gbit/s. In the erasure-coding experiment, the XtreemFS instance has two
additional OSDs for coding data and thus provides a RAID6-like configuration. All
result values are averages over 10 runs with error bars that visualize the standard
error.

7IOR is a I/O micro benchmark software by NERSC. https://www.nersc.gov/users/computational-
systems/cori/nersc-8-procurement/trinity-nersc-8-rfp/nersc-8-trinity-benchmarks/ior/

https://www.nersc.gov/users/computational-systems/cori/nersc-8-procurement/trinity-nersc-8-rfp/nersc-8-trinity-benchmarks/ior/
https://www.nersc.gov/users/computational-systems/cori/nersc-8-procurement/trinity-nersc-8-rfp/nersc-8-trinity-benchmarks/ior/

438 J. Fajerski et al.

0

1000

2000

3000

4000

2 3 4 5 6 7 8 9 10 11 12 13

Number of Data OSDs

Th
ro

ug
hp

ut
 in

 M
iB

/s

Operation
read
write

Access to striped Volume

Fig. 7 Sequential read/write performance on a striped XtreemFS volume with an increasing
number of OSDs and clients

Figures 7 and 8 show the results for reading and writing to variably sized
XtreemFS instances. Both the striping and erasure-coding configuration exhibit
good scaling characteristics. Compared to the striping configuration, writes to the
erasure coded volume are 17–49 % slower, which reveals the overhead caused by the
additional coding data. This corresponds roughly to the 15 % to 50 % data overhead
the coding induces. For reference, a replicated setup that provides the same level of
fault tolerance would induce a 200 % data overhead. The read operation exhibits a
slowdown between 5 % and 14 % in the erasure-coding configuration.

The results show a performance penalty for using erasure codes in both reading
and writing. For writes this slowdown was to be expected since each write operation
creates a coding data overhead. When the achieved fault tolerance is taken into
consideration the overhead appears insignificant.

Fast In-Memory Checkpointing with POSIX API for Legacy Exascale-Applications 439

0

1000

2000

3000

4000

2 3 4 5 6 7 8 9 10 11 12 13

Number of Data OSDs (+ 2 additional EC OSDs)

Th
ro

ug
hp

ut
 in

 M
iB

/s

Operation
read
write

Access to erasure coded Volume

Fig. 8 Sequential read/write performance on an erasure coded XtreemFS volume with an increas-
ing number of OSDs and clients

6 Summary

Checkpoint/Restart is a viable means to increase failure tolerance on supercom-
puters. We presented results on the implementation of a POSIX based check-
point/restart mechanism. Checkpoints are stored in a RAM based distributed file
system using XtreemFS. For fault tolerance checkpoints are encoded using erasure
codes.

We evaluated our solution on a Cray XC40 with the quantum chromodynam-
ics code BQCD which is already prepared for application-level checkpointing.
XtreemFS provides three different clients: a FUSE based client, LD_PRELOAD
and libxtreemfs. The first requires the FUSE kernel module to be loaded, which is
typically not available on supercomputer environment. The last client, libxtreemfs,
requires the application code to be modified and is therefore also not a good choice.
The LD_PRELOAD client results in performance improvements for sequential
access and extends the number of supported platforms and applications. The new
client implementation transparently bypasses the operating system overhead by
intercepting POSIX file system calls and redirecting them to libxtreemfs.

440 J. Fajerski et al.

Acknowledgements We thank Johannes Dillmann who performed some of the experiments. This
work was supported by the DFG SPPEXA project ‘A Fast and Fault-Tolerant Microkernel-Based
System for Exascale Computing’ (FFMK) and the North German Supercomputer Alliance HLRN.

References

1. Asteris, M., Dimakis, A.G.: Repairable fountain codes. In: 2012 IEEE International Sympo-
sium on Information Theory Proceedings (ISIT), pp. 1752–1756. IEEE (2012)

2. Baumann, W., Laubender, G., Läuter, M., Reinefeld, A., Schimmel, C., Steinke, T., Tuma,
C., Wollny S.: HLRN-III at Zuse Institute Berlin. In: Vetter, J. (ed.) Contemporary High
Performance Computing: From Petascale Toward Exascale, vol. 2, pp. 85–118. Chapman &
Hall/CRC Press (2014)

3. Bautista-Gomez, L., Tsuboi, S., Komatitsch, D., Cappello, F., Maruyama, N., Matsuoka, S.:
FTI: high performance fault tolerance interface for hybrid systems. In: Proceedings of 2011
International Conference for High Performance Computing, Networking, Storage and Analysis
(SC’11), New York, pp. 32:1–32:32. ACM (2011)

4. Cappello, F., Geist, A., Gropp, W., Kale, S., Kramer, B., Snir, M.: Toward exascale resilience:
2014 update. Supercomput. Front. Innov. 1(1), 1–28 (2014)

5. Hargrove, P.H., Duell, J.C.: Berkeley lab checkpoint/restart (BLCR) for Linux clusters. In:
Proceedings of SciDAC 2006, Denver (2006)

6. Huang, C., Simitci, H., Xu, Y., Ogus, A., Calder, B., Gopalan, P., Li, J., Yekhanin, S.: Erasure
coding in Windows Azure storage. In: Presented as Part of the 2012 USENIX Annual Technical
Conference (USENIX ATC 12), Boston, pp. 15–26. ACM (2012)

7. Lucas, R., et al.: Top ten exascale research challenges. Department of Energy ASCAC
subcommittee report (2014)

8. Moody, A., Bronevetsky, G., Mohror, K.K., de Supinski, B.R.: Design, modeling, and
evaluation of a scalable multi-level checkpointing system. In: Proceedings of ACM/IEEE
International Conference for High Performance Computing, Networking, Storage and Analysis
(SC’10), New York. ACM (2010)

9. Mu, S., Chen, K., Wu, Y., Zheng, W.: When Paxos meets erasure code: reduce network and
storage cost in state machine replication. In: Proceedings of the 23rd International Symposium
on High-Performance Parallel and Distributed Computing (HPDC’14), New York, pp. 61–72.
ACM (2014)

10. Nagle, D., Serenyi, D., Matthews, A.: The Panasas activescale storage cluster: delivering
scalable high bandwidth storage. In: Proceedings of the SC’04, Pittsburgh, p. 53. ACM (2004).
http://dl.acm.org/citation.cfm?id=1049998

11. Peter, K., Reinefeld, A.: Consistency and fault tolerance for erasure-coded distributed storage
systems. In: Proceedings of the Fifth International Workshop on Data-Intensive Distributed
Computing Date (DIDC’12), New York, pp. 23–32. ACM (2012)

12. Plank, J., Li, K.: Diskless checkpointing. IEEE Trans. Parallel Distrib. Syst. 9(10), 972–986
(1998)

13. Plank, J.S., Simmerman, S., Schuman, C.D: Jerasure: a library in C facilitating erasure coding
for storage applications. Technical report CS-07-603, University of Tennessee Department of
Electrical Engineering and Computer Science (2007)

14. Rashmi, K.V., Shah, N.B., Gu, D., Kuang, H., Borthakur, D., Ramchandran, K.: A “Hitch-
hiker’s” guide to fast and efficient data reconstruction in erasure-coded data centers. SIG-
COMM Comput. Commun. Rev. 44(4), 331–342 (2014)

15. Rashmi, K.V., Nakkiran, P., Wang, J., Shah, N.B., Ramchandran, K.: Having your cake and
eating it too: jointly optimal erasure codes for I/O, storage, and network-bandwidth. In: 13th
USENIX Conference on File and Storage Technologies (FAST 15), Santa Clara, pp. 81–94.
USENIX Association (2015)

http://dl.acm.org/citation.cfm?id=1049998

Fast In-Memory Checkpointing with POSIX API for Legacy Exascale-Applications 441

16. Sathiamoorthy, M., Asteris, M., Papailiopoulos, D., Dimakis, A.G., Vadali, R., Chen, S.,
Borthakur, D.: XORing elephants: novel erasure codes for big data. Proc. VLDB Endow. 6(5),
325–336 (2013)

17. Schmuck, F., Haskin, R.: GPFS: a shared-disk file system for large computing clusters. In:
Proceedings of the USENIX FAST’02, Monterey. USENIX Association (2002)

18. Shvachko, K., Kuang, H., Radia, S., Chansler, R.: The Hadoop distributed file system. In:
Proceedings of the 2010 IEEE 26th Symposium on Mass Storage Systems and Technologies
(MSST) (MSST’10), Washington, DC, pp. 1–10. IEEE Computer Society (2010)

19. Stender, J., Berlin, M., Reinefeld, A.: XtreemFS – a file system for the cloud. In: Kyriazis,
D., Voulodimos, A., Gogouvitis, S., Varvarigou, T. (eds.) Data Intensive Storage Services for
Cloud Environments. IGI Global (2013)

20. Weil, S.A., Brandt, S.A., Miller, E.L., Long, D.D.E., Maltzahn, C.: Ceph: a scalable, high-
performance distributed file system. In: 7th Symposium on Operating Systems Design and
Implementation (OSDI’06), Seattle, pp. 307–320. ACM (2006)

21. Weinhold, C., Lackorzynski, A., Bierbaum, J., Küttler, M., Planeta, M., Härtig, H., Shiloh, A.,
Levy, E., Ben-Nun, T., Barak, A., Steinke, T., Schütt, T., Fajerski, J., Reinefeld, A., Lieber,
M., Nagel, W.E.: FFMK: a fast and fault-tolerant microkernel-based system for exascale
computing. In: Proceedings of SPPEXA Symposium, Garching. Springer (2016)

22. Wende, F., Steinke, T., Reinefeld, A.: The impact of process placement and oversubscription
on application performance: a case study for exascale computing. In: Exascale Applications
and Software Conference (ESAX-2015), Edinburgh (2015)

23. Zheng, G., Shi, L., Kalé, L.V.: FTC-Charm++: an in-memory checkpoint-based fault tolerant
runtime for Charm++ and MPI. In: 2004 IEEE International Conference on Cluster Computing,
San Diego, pp. 93–103. IEEE (2004)

24. Zheng, G., Ni, X., Kalé, L.V.: A scalable double in-memory checkpoint and restart scheme
towards exascale. In: Proceedings of the 2nd Workshop on Fault-Tolerance for HPC at Extreme
Scale (FTXS), Boston, pp. 1–6. IEEE (2012)

	Fast In-Memory Checkpointing with POSIX API for Legacy Exascale-Applications
	1 Introduction
	2 Related Work
	3 In-Memory Checkpointing with POSIX API
	3.1 Implementation with XtreemFS
	3.2 Fault-Tolerance and Efficiency with Erasure Codes

	4 Deployment on a Supercomputer
	4.1 Access to RAM File System
	4.1.1 Issues with LD_PRELOAD

	4.2 Placement of Services
	4.3 Deployment on a Cray XC40

	5 Experimental Results
	6 Summary
	References

