FFMK: A Fast and Fault-Tolerant
Microkernel-Based System for Exascale
Computing

Carsten Weinhold, Adam Lackorzynski, Jan Bierbaum, Martin Kiittler,
Maksym Planeta, Hermann Hirtig, Amnon Shiloh, Ely Levy, Tal Ben-Nun,
Amnon Barak, Thomas Steinke, Thorsten Schiitt, Jan Fajerski, Alexander
Reinefeld, Matthias Lieber, and Wolfgang E. Nagel

Abstract In this paper we describe the hardware and application-inherent chal-
lenges that future exascale systems pose to high-performance computing (HPC)
and propose a system architecture that addresses them. This architecture is based
on proven building blocks and few principles: (1) a fast light-weight kernel that
is supported by a virtualized Linux for tasks that are not performance critical,
(2) decentralized load and health management using fault-tolerant gossip-based
information dissemination, (3) a maximally-parallel checkpoint store for cheap
checkpoint/restart in the presence of frequent component failures, and (4) a runtime
that enables applications to interact with the underlying system platform through
new interfaces. The paper discusses the vision behind FFMK and the current state
of a prototype implementation of the system, which is based on a microkernel and
an adapted MPI runtime.

C. Weinhold (P<) » A. Lackorzynski ¢ J. Bierbaum ¢ M. Kiittler » M. Planeta « H. Hartig
Department of Computer Science, TU Dresden, Dresden, Germany
e-mail: carsten.weinhold @tu-dresden.de

A. Shiloh ¢ E. Levy * T. Ben-Nun * A. Barak
Department of Computer Science, The Hebrew University of Jerusalem, Jerusalem, Israel
e-mail: amnon@cs.huji.ac.il

T. Steinke * T. Schiitt * J. Fajerski * A. Reinefeld
Zuse Institute Berlin, Berlin, Germany
e-mail: ar@zib.de

M. Lieber « W.E. Nagel
Center for Information Services and HPC, TU Dresden, Dresden, Germany
e-mail: wolfgang.nagel @tu-dresden.de

© Springer International Publishing Switzerland 2016 405
H.-J. Bungartz et al. (eds.), Software for Exascale Computing — SPPEXA

2013-2015, Lecture Notes in Computational Science and Engineering 113,

DOI 10.1007/978-3-319-40528-5_18

mailto:carsten.weinhold@tu-dresden.de
mailto:amnon@cs.huji.ac.il
mailto:ar@zib.de
mailto:wolfgang.nagel@tu-dresden.de

406 C. Weinhold et al.
1 Exascale Challenges

Many reports and research papers, e.g. [12, 14, 19, 25], highlight the role of systems
software in future exascale computing systems. It will gain importance in man-
aging dynamic applications on heterogeneous, massively parallel, and unreliable
platforms—a burden that cannot be the responsibility of application developers
alone anymore, but has to shift to the operating system and runtime (OS/R). The
starting point for the design of FFMK is the expectation that these major challenges
have to be addressed by systems software for exascale systems:

Dynamic Applications Current high-end HPC systems are tailored towards
extremely well-tuned applications. Tuning of these applications often includes
significant load balancing efforts [11, 23, 38]. We believe a major part of this
effort will have to shift from programmers to OS/Rs because of the complexity and
dynamics of future applications. Additionally, exascale applications will need
to expose more fine-grained parallelism, leading to new challenges in thread
management. A number of runtime systems already addresses these challenges,
notably Charm++ [1] and X10 [26]. We further believe that an exascale operating
system must accommodate elastic application partitions that extend and shrink
during their runtime. Still, the commonly used batch schedulers assume fixed
size partitioning of hardware resources and networks. FFMK plans to provide
interfaces for the cooperation between applications and their runtime to coordinate
application-level balancing with overall system management.

Increasing Heterogeneity of Hardware Many current high-end HPC systems
consist of compute nodes with at most two types of computing elements, a general
purpose CPU (like x86) and an accelerator (like GPGPUs). These elements are
assumed and selected to perform very regularly. We assume future hardware will
have less regular performance due to fabrication tolerances and thermal concerns.
This will add to the unbalanced execution of applications. We also assume that not
all compute elements can be active at all time (dark silicon). In addition we assume
that other types of computing elements can be expected, for example FPGAs. We
believe that systems software can be adapted to such hardware more easily, if the
lowest level of software is a small light-weight kernel (LWK) instead of a large and
complex system like the Linux kernel.

Higher Fault Rates The sheer size of exascale computers with an unprecedented
number of components will have significant impact on the failure-in-time rate for
applications. Some OS/Rs already address this concern by enabling incremental
and application-specific checkpoint/recovery and by using on-node memory to
store checkpoint data. We believe a systems software design for exascale machines
must contain a coordinated approach across system layers. For example, runtime
checkpointing routines should be able to make use of memory management
mechanisms at the OS level to support asynchronous checkpoints.

FFMK: A Fast and Fault-Tolerant Microkernel-Based System for Exascale Computing 407

Deeper Memory Hierarchies We expect more types of memory that differ in
aspects like persistence, energy requirements, fault tolerance, and speed. Important
examples are on-node non-volatile memory (phase-change memory, flash, etc.)
and stacked DRAM. A highly-efficient checkpoint store requires an integrated
architecture that makes optimal use of these different types of memory.

Energy Constraints We understand, that provision and running cost of energy
will become a—if not the—dominating cost and feasibility factor. To address this
problem, we postulate that systems software should be based on an energy model
of the complete system. The model should enable a design where each resource
management decision can be controlled based on energy/utility functions for
resources. For example, an on-node scheduler may choose between running one core
at higher speed than others to balance execution times of compute processes. The
scheduler’s decision should be based on knowledge about which option provides the
required cycles at the lowest energy and automatically-inferred predictions of how
much time and memory certain computations (e.g., time steps) require.

2 FFMK Architecture Overview

We believe that a systems software design for exascale machines that addresses
the challenges described above must be based on a coordinated approach across
all layers, including applications. The platform architecture as shown in Fig. 1 uses
an L4 microkernel [24] as the light-weight kernel (LWK) that runs on each node.

I | Decision Making | | Gossip |
I Global Platform Management
Application 7 —
— |Checkpointing | | MPI |
I Proxies
|
8
| MPI Library | .g 4 .
=
| Monitor | ICommunication I | Checkpointing | > L LI n ux
Runtime —" L Service 0S
| L4 microkernel |
I I I I O T I I O o I O
Compute Cores Service Cores

Fig. 1 FFMK software architecture. Compute processes with performance-critical parts of (MPI)
runtime and communication driver execute directly on L4 microkernel; non-critical functionality
split out into proxy processes on Linux, which also hosts global platform management

408 C. Weinhold et al.

All cores are controlled by this minimal common foundation; the microkernel itself
is supported by few extra services that provide higher-level OS functionality such
as memory management (not shown in the figure). Additionally, an instance of a
service OS is running on top of it, but only on a few dedicated cores we refer to as
“service cores”. In our case the system is a full-featured virtualized Linux.

Applications Applications on the system are started by the service OS and can
use any functionality offered by it, including device drivers, such as for InfiniBand
and network, as well as libraries and programming environments such as MPI. To
exercise execution control over the HPC applications, the applications are decoupled
from the service OS and run independently on the LWK. Any requests of the
application to the service OS, such as system calls, are forwarded and handled.

Dynamic Platform Management In the presence of frequent component failures,
hardware heterogeneity, and dynamic demands, applications can no longer assume
that compute resources are assigned statically. Instead, load and health monitoring
is part of the node OS and the platform as a whole is managed by a load distribution
service. The necessary monitoring and decision making is done at three levels: (1)
on each multi-core node, (2) per application/partition among nodes, and (3) based
on a global view of a master management node.

Node-local thread schedulers take care of (1); scalable gossip algorithms dis-
seminate information required to handle (2) and (3). Using gossip, the nodes build
up a distributed, inherently fault tolerant, and scalable bulletin board that provides
information on the status of the system. Nodes have partial knowledge of the whole
system: they know about only a subset of the other nodes, but enough of them in
order to make decisions on how to balance load and how to react to failures in a
decentralized way. Through new interfaces, applications can pass hints to the local
management component, such that it can better predict resource demands and thus
help decision making. The global view over all nodes is available to a master node,
which receives gossip messages from some nodes. It makes global decisions such
as where to put processes of a newly started application.

Fault Tolerance To handle hardware faults, a fast checkpointing module takes
intermediate state from applications and distributes and stores it redundantly in
various types of memory across several nodes. However, we also envision node-
local fault tolerance mechanisms (e.g., replication, micro-reboots) and interfaces to
let applications communicate their fault tolerance requirements to the FFMK OS/R.

3 Microkernel-Based Node OS

We have chosen the L4Re microkernel system as basis for node-local OS function-
ality. For a detailed description of L4, we refer to [24]. In this document, we restrict
ourselves to a short intro.

FFMK: A Fast and Fault-Tolerant Microkernel-Based System for Exascale Computing 409

L4 Microkernel L4 had been designed for extensibility rather than as a minimized
Unix. As such, it provides few basic abstractions: address spaces, threads, and inter-
process communication (IPC). Key ingredient to enabling extensibility is a design
that enables both IPC and unblocking of threads to be fast. The IPC mechanism is
not only used to transmit ordinary data but also grant access rights to resources,
such as capabilities and memory, to other address spaces. On L4, policies are
implemented in user-level components. One example is memory management where
so-called “pagers” manage the virtual address space of applications and implement
any required policy. The microkernel itself only provides the mechanism to grant
memory pages.

The fast and simple IPC mechanism enables us to build a componentized FFMK-
OS that can achieve high performance. An important feature in this context is that
the L4 kernel maps hardware interrupts to IPC messages. As a result, IPC messages
can directly wake currently blocked application processes with low latency not only
when required input is computed by another process on the same node, but also
by processes running on other nodes when messages arrive over the HPC system’s
interconnect.

Virtualized Linux Our system also runs Linux as a service OS on each node
to provide and reuse functionality that is not performance critical such as system
initialization. We chose [#Linux, a modified Linux kernel that runs in a virtual
machine on the microkernel; it is binary compatible to standard Linux and therefore
capable of running unmodified Linux applications.

On the FFMK platform, HPC applications are ordinary Linux programs, too.
They are loaded by the service OS and they can use all functionality offered by
it, including device drivers and Linux-based runtime environments such as MPI.
However, the underlying L4 microkernel is better suited, when applications perform
their most “critical” work, which in the context of HPC and exascale systems means
“critical to performance”. For example, the microkernel can switch context faster
than Linux and it provides much better control over what activities run on which
core. The latter property is essential to let applications execute undisturbed from the
various management and housekeeping tasks that a commodity OS performs in the
background.

Decoupled Thread Execution To isolate HPC applications from such “noise”,
the FFMK OS allows their threads to be decoupled from the service OS and
run undisturbed on dedicated compute cores. This novel mechanism leverages the
tight integration of the paravirtualized commodity kernel and the L4 microkernel.
[*Linux uses different L4 address spaces for the Linux kernel and each application
process running on top of it. To virtualize CPU cores, it uses a vCPU execution
model [20]. Such a vCPU is a special variant of an L4 thread. The Linux scheduler
maps all Linux threads to one or more vCPUs, which then migrate between address
spaces as they execute either kernel code during Linux system calls or user code
of any of the Linux processes. However, since each process on top of I*Linux is
backed by its own L4 address space, the code and data contained in it are accessible
from all cores in the system, not just those assigned to the service OS.

410 C. Weinhold et al.

Address space L4 host thread Izidngjcxozh rlizd
(running) mactiF\)/e) ’
L4Linux
| L4 microkernel |
[o O e O O O O o O o
Compute Cores Service Cores

Fig. 2 Split execution model: the paravirtualized I*Linux kernel supports handing off thread
execution of Linux programs to the underlying L4 microkernel, such that they can perform
computations free of “OS noise” on cores controlled by the L4 microkernel. Decoupled threads
are moved back temporarily to a service core assigned to Linux, whenever the program performs a
Linux system call

To decouple a thread of a user process from unpredictable Linux behavior,
[*Linux creates an additional L4 host thread to execute the application’s code.
Whenever the application is executing on the host thread, the corresponding Linux
thread is detached from the scheduler of the service OS. Since this host thread is put
on a separate compute core, which is controlled by L4 directly, it can thus execute
in parallel to vCPUs of the service Linux (see Fig. 2). Thus, a noise-sensitive HPC
application can run undisturbed and will not be subject to scheduling decisions of
Linux, nor will it be interrupted by incoming interrupts.

Decoupled Linux programs can still perform Linux system calls. When doing
so, the host thread causes an exception that is forwarded to [*Linux, which then
reactivates the decoupled Linux thread and performs the requested operation in its
context. Returning from the system call causes the thread to be decoupled again.

Device Access A key advantage of the decoupling mechanism apart from noise
reduction is that it fits naturally into high-performance I/O stacks. For example,
the InfiniBand driver stack consists of a Linux kernel driver and several user-space
libraries (1ibibverbs and 1ibmlx5 in the case of recent Mellanox InfiniBand
cards). These libraries contain the functionality that is on the performance-critical
paths, which is why the user-space driver in 1ibmlx5 has direct access to I/O
memory of the host-channel adapter (HCA) without having to call the kernel. Most
of the management tasks (e.g., creating queue pairs, registering memory regions) are
implemented in the kernel module; the user-space libraries communicate with the
in-kernel driver, which is accessible through the system call forwarding as described
in the preceding paragraph.

FFMK: A Fast and Fault-Tolerant Microkernel-Based System for Exascale Computing 411

FFMK Node OS The previously described components and mechanisms form the
basis of the FFMK node OS. It also hosts a decentralized platform management
service which will be described in the next sections.

4 Dynamic Platform Management

FFMK addresses applications with varying resource demands and hardware plat-
forms with variable resource availability (e.g. due to thermal limits or hardware
faults). Although the FFMK OS/R is currently limited to node-local scheduling,
we envision the full-featured version to dynamically optimize the usage of the
application’s resources by rebalancing its workload, optimizing network usage,
and reacting to changing demands when its elastic partition shrinks or expands.
Elastic partitions enable the FFMK platform to allocate resources to an application
dynamically during the lifetime of the application (see Fig. 3b, c). The main task of
the dynamic platform management is to continuously optimize the utilization of the
system by means of an economic model. This economic model will include various

EEEEEEENE EEEEEEER
EEEEENEN EEEEEEEE
EEEEEEENE EEEEEEER
EEEEEEENE EEEEEEER
EEEN
EEEE [«)
Gl [§ |
N [§ |
EEEN
EEEN
EEEN
EEEN
@)
EEEN
EEEN
EEEN
EEEN
MMMMMMMM d)

Fig. 3 Dynamic platform management. (a) Multicore nodes are organized in colonies. (b) Elastic
applications partitions can expand and shrink. (¢) Partitions can span mutliple colonies and expand
to new colonies. (d) A redundant set of master nodes monitors and controls the system

412 C. Weinhold et al.

aspects such as throughput and energy efficiency, fairness among applications,
resiliency, and quality of service. However, its details are still subject to research.

The dynamic platform management consists of two basic components: mon-
itoring and decision making. To achieve the scalability and resilience required
for exascale systems, we decided to use gossip algorithms for all cross-node
information dissemination of the monitoring component (see Sect.4.2) and make
decisions decentralized where possible (see Sect. 4.3).

4.1 Application Model

To support dynamic management of applications on our platform, we require an
application model that is more flexible than the coarse-grained and static division
of work that common MPI implementations impose. In our model, the decom-
position of an application’s workload is decoupled from the number execution
units. The units of decomposition are migratable fasks that communicate with
each other (see Fig.4). For example, a core may run multiple tasks (one after
each other) by preempting at blocking communication calls—a principle called
overdecomposition [1]. At an abstract level, tasks are units which generate load for
different hardware resources (e.g. cores, caches, memory, and network bandwidth)
and the OS/R can map them to the hardware in order to optimize the application’s
performance. There are several reasons why we think this approach makes sense:

» Applications can be decomposed mostly independent from the number of nodes
the program uses, which allows sizing the tasks according to the cache size or
application-specific data structures.

 If the resource consumption of tasks varies among the tasks and over runtime,
the OS/R is able to map and remap tasks intelligently to balance resource usage.
This means that the OS/R, and not the application developer, is responsible for
load balancing.

* The OS/R shrinks and expands applications to optimize global throughput.

* The OS/R is able to reduce communication costs by doing a communication-
aware (re)mapping of tasks to nodes.

Fig. 4 Applications are
decomposed into tasks.
Multiple tasks are mapped to
a node and can be migrated
by the OS/R to expand/shrink
the application’s partition, to
load balance the application,
and to optimize
communication

FFMK: A Fast and Fault-Tolerant Microkernel-Based System for Exascale Computing 413

» Tasks waiting for a message are not scheduled to a core (i.e. busy waiting is
avoided). This allows other tasks to run and to overlap communication with
computation. Additionally, the OS/R is able to prioritize tasks that other tasks
wait for.

e The OS/R may place tasks of different applications on the same node. Co-
locating applications with different resource demands may increase the system
utilization and throughput [42].

If, for example, bandwidth is the limiting resource on a node, the OS/R may
increase the bandwidth available to the tasks by running fewer of them concurrently
and migrating some of the tasks to another node. Additionally, the OS/R may either
turn off unneeded cores (to reduce energy consumption) or co-locate bandwidth-
insensitive tasks, possibly belonging to another application.

4.2 Monitoring and Gossip-Based Information Dissemination

To be capable of dynamic platform management, the system needs to collect status
information about available resources of the nodes and their usage. The status
information should contain:

e Current load on the node (cores, caches, memory, memory and network band-
width)

e Maximum load the node can carry (i.e. available resources, may vary due to faults
and thermal limits)

¢ Communication partners of the tasks running on that node.

The OS/R will use online monitoring (e.g. based on hardware counters) to gather
the information on each node. We currently disseminate across node boundaries
only information describing the overall resource state of a node. If that turns out to
be too coarse-grained, we consider adding information about resource demands of
individual tasks. Additionally, applications may pass hints to the runtime that enable
a better prediction of future application behavior. The collected and disseminated
information is the basis for making decisions as mentioned in the previous section.

Randomized Gossip As briefly introduced in Sect.2, we will use randomized
gossip algorithms to disseminate the resource information and build up the dis-
tributed bulletin board. In randomized gossip algorithms each node periodically
sends messages with the latest information about other nodes to randomly selected
nodes. Received information is merged with the local bulletin board by selecting the
newest entry for each node. Thus, each node accumulates local information about
the other nodes over time.

We have shown that these algorithms are resilient and they scale to exascale-
size systems [5]. Scalability is achieved by dividing the system into colonies, each
containing in the order of 1000 nodes. The colonies should consist of topologically
nearby nodes, see Fig. 3. For the time being we assume that colonies are fixed and

414 C. Weinhold et al.

independent of the elastic application partitions. We run the gossip algorithm within
each colony independently such that each node knows the status of all other nodes
in the same colony; the colonies form the lower level of a gossip hierarchy.

Hierarchical Gossip One level above the colonies, a set of redundant master nodes
maintains the global view on all nodes. The masters receive gossip messages from
random nodes of each colony to obtain a complete picture of the resource usage and
availability of the system. For decentralized decisions concerning multiple colonies
(e.g. load balancing of a multi-colony application), the masters additionally send
gossip messages with summary information about all colonies back to some colony
nodes, which then disseminate it within the colony.

Quality of Information and Overhead Recent results of our research have shown
the scalability and resiliency of the randomized gossip algorithms [5]. They work
well even when some nodes fail, without the need for any recovery protocol,
which is an advantage over tree-based approaches [2]. We developed formal
expressions for approximating the average age (i.e., quality of information) of the
local information at each node and the information collected by the master. These
results closely match the results of simulations and measurements on up to §192
nodes of a Blue Gene/Q system, as shown in Fig. 5.

We also investigated the overhead of gossip algorithms on the performance of
HPC applications sharing network and compute resources [22]. The measurement
results for two applications running concurrently to gossip with large information
records per node (1024 bytes) are shown in Fig.6. Sending gossip messages at
an interval of 256 ms and above does not cause noticeable overhead, except for
extremely communication-intensive codes like MPI-FFT (fast fourier transform).

2048 Nodes 8192 Nodes
Relative age of Relative age of
master’s information master’s information

0O 5 10 15 20 0 10 20 30 40

B Approximation
M Simulation
B Measurement

Maximum age of
gossip messages

Fig. 5 Average age of the master’s information using different age thresholds for gossip message
entries (sending only newest information). The age is given relative to the interval of gossip
messages. Approximations, simulations, and measurements on Blue Gene/Q match very well

FFMK: A Fast and Fault-Tolerant Microkernel-Based System for Exascale Computing 415

COSMO-SPECS+FD4 MPI-FFT
runtime seconds runtime seconds

0 10 20 30 40 50 O 10 20 30 40 50

Without Gossip 37.3s
373s
37.3s
37.5s 299s

379s 352

38.2s 422

Interval = 1024 ms
Interval = 256 ms
Interval = 64 ms
Interval = 16 ms

Interval = 8 ms

Fig. 6 Runtime overhead of gossip on two benchmark applications on 8192 Blue Gene/Q nodes
when varying the interval of gossip messages. The inner red part indicates the MPI portion

4.3 Decision Making

Deciding on how to optimize system utilization is performed at three levels:
within each node, decentralized between nodes for each application partition, and
centralized at the master nodes. Each level is responsible for a part of the dynamic
management of applications as outlined in Sect.4.1. In the following, we explain
the three levels top—down.

* Whole system: the master nodes optimize elastic partitions (i.e., shrinking
and expanding them), multi-application resource assignment, placement of new
partitions, and handling of failures. The master assigns nodes to partitions, but
does not care about the mapping of individual tasks to nodes.

* Per application partition: gossiping nodes perform decentralized load balanc-
ing and communication optimization by migrating tasks within the partition.
We will focus on scalable, distributed algorithms that act on small node
neighborships or pairs of nodes. Depending on the application behavior, different
algorithms will be considered (e.g., Diffusion-based [13], MOSIX [3]). Addi-
tionally, partition optimization decisions from the master are realized on the task
level, e.g. decide which tasks to migrate to new nodes of an expanded partition.

* Within each node: the scheduler of the node OS assigns tasks to cores, taking
into account data dependencies and arrival of messages from the network. It also
performs dynamic frequency scaling and decides on which execution units to
power up (dark silicon).

The FFMK OS makes load management decisions using local knowledge that
each node acquired through monitoring and gossip-based information dissemination
as described in Sect.4.2. This information is always about the past, which is not
always a good forecast of future behavior of highly dynamic workloads. Therefore,
we plan to use techniques to predict resource consumption, like those employed
by ATLAS [33]. ATLAS is an auto-training look-ahead scheduler that correlates
observed behavior (e.g., execution times, cache misses) and application-provided

416 C. Weinhold et al.

information (“metrics”) about the next chunk of work to be executed. Applications
pass these metrics to the OS to help it make more accurate predictions of future
behavior. If, for example, an HPC application’s workload in the next time step
depends on the number of particles in a grid cell, then this metric (the number of
particles) can be used by ATLAS to predict the required compute time to complete
the time step; it does so by inferring this information from observed correlation
of previous (metric, execution time) pairs. We expect—and hear from application
developers—that providing such metrics can be done with little effort. Additionally,
applications may inform the OS/R about future workload changes, such that the
platform management is able to proactively adapt resource allocations.

5 MPI Runtime

The FFMK architecture is designed such that it can support different runtimes on
the LWK at the same time, such as MPI, X10 or Charm++. Due to limited resources
and because MPI is the foundation of the vast majority of applications, we focus on
dynamizing this traditional HPC runtime such that the FFMK OS can perform load
balancing at the OS/R level.

5.1 MPI and Load Balancing

Load balancing applications for exascale HPC systems is a major challenge [14,
25]. For example, in the case of MPI-based applications, each of the participating
MPI processes is usually mapped to its own core. If a few MPI processes reach a
synchronization point later than the others, the majority of cores become effectively
idle, thereby wasting resources. Unfortunately, load imbalances are typical for many
important classes of applications, including atmospheric simulations [41], particle
simulations [38], and fluid dynamics [17].

Load Balancing by Overdecomposition As explained in the previous sections, the
common approach for tackling these load balancing issues is to (1) overdecompose
by splitting the problem into more parts (i.e., tasks) than cores available, (2) assign
the parts to cores, and (3) adapt this mapping dynamically during runtime so as
to minimize both imbalance and communication costs. Typically, this method of
dynamic load balancing is implemented at the application and library level [23,
38], because MPI implementations do not provide any built-in load management
mechanism. This means that the mapping of MPI processes to cores remains static
and the application itself is responsible for redistributing workload among ranks to
maintain the balance. Even though this approach proved very effective in reducing
imbalances and thereby improving performance, it is most often tailored to a specific
application or problem domain and cannot be applied to arbitrary workloads easily.
Thus, developers are forced to “reinvent the wheel” over and over again.

FFMK: A Fast and Fault-Tolerant Microkernel-Based System for Exascale Computing 417

Adaptive MPI (AMPI) To save developer effort, one could overdecompose at
the level of MPI ranks by just creating more ranks than cores available. AMPI
[1] is an example of an MPI implementation that does exactly this. It is based
on Charm++ [18] and maps each MPI rank to a “chare”, which is the Charm++
equivalent of a task. This approach enables the underlying Charm++ runtime system
to perform load balancing and migration of MPI ranks transparently. However,
chares are not OS-level processes, but C++ objects encapsulating all code and data.
Thus, MPI ranks in AMPI share the same address space of a single Charm++
runtime process on each node. Therefore, most MPI applications have to be
modified to work on top of AMPI, because global variables are disallowed. Also,
multithreaded MPI ranks cannot be supported, because chares are single threaded
entities.

5.2 OS/R Support for Oversubscription

Adaptive MPI’s compatibility limitations can be overcome by actually creating more
MPI compute processes—and thereby more threads—which are subject to a system-
level load balancer.

Requirements Analysis The advantage of MPI overdecomposition is that it
enables automatic load balancing for MPI applications without having to modify
their code. However, it comes at the cost of additional management and commu-
nication overhead due to the increased number of ranks. Furthermore, current MPI
implementations cause any process that waits for a message transfer to complete
to occupy a core, because polling is used. Such busy waiting causes unacceptable
overhead in combination with oversubscription, because it effectively prevents
overlapping computation and communication. In order for process-level oversub-
scription to work, waiting must be performed in a blocking fashion instead and the
additional overhead must be kept at a minimum to allow for real performance gains.
Thus, the OS/R has to provide light-weight message and thread management that
allows for fast unblocking of a rank once a message for this rank arrives. Ideally,
the system also takes communication dependencies into account when making
scheduling decisions: it should prioritize those communication partners that other
processes are waiting for so as to keep message latency low.

Preliminary Study To assess the potential of this approach, we conducted a
preliminary study where we used MVAPICH2 [29] for oversubscribed runs of the
weather simulation code COSMO-SPECS+FD4 [23] and the atomistic simulation
CP2K [30]. Both are prone to load imbalances.! We used a small FDR InfiniBand
test cluster with four nodes that ran a standard GNU/Linux system, since Linux

1COSMO-SPECS+FD4 has an internal load balancer, which we disabled in the experiments
described here.

418 C. Weinhold et al.

CP2K COSMO-SPECS+FD4
200s 300s Os 100s 200s 300s
T T T T

0s 100s
T

Total runtime
N Polling
I Blocking
I Balanced

Oversubscription Factor
[0 o BT~ N R

Fig. 7 Preliminary oversubscription study with the applications CP2K and COSMO-SPECS+FD4
using MVAPICH2 on a 16-core/4-node InfiniBand test cluster

kernels preinstalled on HPC systems are typically tuned to not migrate processes
between cores. MVAPICH2 does not only support native InfiniBand as a commu-
nication back-end but also allows for blocking communication, where the library
will block in the kernel until a new message arrives instead of actively polling for
messages.

We found that blocking causes only a small overhead compared to busy waiting,
as shown in Fig.7 for the two applications: the purple bars show the runtime
when using polling (traditional MPI behavior), the orange bars below show the
same benchmark with blocking enabled. However, the results also indicate that
overdecomposition and oversubscription of MPI processes can indeed improve
performance. Compared to the configurations at the top of the diagrams, which show
the total runtime with one MPI process per core (i.e., oversubscription factor of 1),
we can see significant improvements in those runs where we oversubscribed the
cores by a factor of up to 16 times. The workload remained the same in all cases;
we just increased the number of MPI ranks working on the problem.

The MPI library was configured to block in the kernel when waiting for mes-
sages; no busy waiting was performed in MPI routines. This allows the scheduler
of the Linux OS to migrate threads among cores in order to utilize all cores equally,
thereby overlapping wait times with computations in other MPI processes.

For comparison, we also give the runtime of COSMO-SPECS+FD4 with its
internal load balancer enabled (green bar labeled “balanced’). We can see that OS-
level oversubscription still does not achieve the same performance, but it gets within
7 % at 4x oversubscription. The improvement in the oversubscribed configuration is
achieved with no effort from the developer’s side; in contrast, several person years
went into COSMO-SPECS+FD4’s load balancer.

More results of oversubscription experiments, also showing the benefit of
multiple applications sharing the same nodes, are described in a tech report [37].

FFMK: A Fast and Fault-Tolerant Microkernel-Based System for Exascale Computing 419
6 Migration

The FFMK prototype does not support inter-node process migration yet. It can
only balance load within each node, where the OS scheduler migrates threads
among cores. Nevertheless, we regard migration as the “swiss army knife” of an
exascale OS/R: this mechanism can be used to (1) further improve load balancing,
for (2) proactive fault tolerance as described in Sect. 7, and (3) as a tool for achieving
better energy efficiency.

The Case for Migration Migration of MPI processes within a single node is
taken care of by the local scheduler of the node OS. However, this approach to
load balancing is no longer optimal, if the total amount of work per node varies
within the application partition (i.e., the processes on some nodes take longer than
on others). An example of this situation is shown for CP2K in Fig. 8. It visualizes
how much time each of the 1024 MPI ranks spent doing useful computation in each
time step. Green indicates a high computation/communicationratio, whereas yellow
and red areas of the heatmap show that most of the time is spent in MPI waiting for
communication to finish.

To reduce the load imbalance, nodes hosting “green” processes need to migrate
some MPI ranks to nodes that are mostly red and yellow. Fortunately, our analysis
of CP2K and other applications such as COSMO-SPECS+FD4 revealed that the

1000
(@]
=
5 £
< 600 06 =
5]
“ =
~ 8
= 04 %
é 400 5
[®)
=
O
200 0.2
0 IO
0 10 20 30 40 50

Timestep

Fig. 8 Load imbalances in CP2K. Colors show computation vs communication ratio of each MPI
process (Y axis) per time step (X axis). Yellow and red indicate short computation time vs long
waiting for other MPI ranks; a small number of overloaded processes delay all others, because
they need significantly longer to compute their chunk of work in a time step (green areas)

420 C. Weinhold et al.

load caused by each process changes rather slowly, if at all. This observation is
encouraging, because inter-node migration takes much more time than migrating a
thread within the same node, but can be performed less frequently.

Migration Obstacles Inter-node migration is complicated due to the static nature
of communication back-ends such as InfiniBand and MPI itself. For the benefit of
performance, implementations are designed such that after an initial setup phase,
modifications to the partners involved in a communication are not easily possible.
The RDMA-based job migration scheme [31] by Ouyang et.al. addresses this
problem by tearing down all communication endpoints prior to migration and re-
establishes them when the application resumes. The approach [4] taken by Barak
et al. only works with TCP/IP-based communication. Despite these research efforts
and others in the area [36], migration has never been integrated into production MPI
libraries, even though the MPI standard [28] does not prohibit this feature.

Checkpoint-Migrate-Restart Given that transparent inter-node migration is hard
with state-of-the-art communication stacks, and since it is needed only infrequently,
we consider a simpler solution to the load-balancing problem that is based on
coordinated checkpoint/restart (C/R): to migrate individual MPI processes, we
(1) checkpoint at a convenient time (e.g., after completing a time step) the current
state of the whole application, (2) terminate all processes, and then (3) restart
them, but with certain processes assigned to previously underloaded nodes. The
new placement of “migrated” processes is determined based on system monitoring
and decision making as described in Sects. 4.2 and 4.3, respectively.

Checkpoint/Restart Approach The efficacy of the approach relies on the ability
of the system to perform checkpoint/restart with very low overhead. A key metric
to optimize is the amount of data that needs to be checkpointed and/or sent over the
network. Compared to system-level C/R solutions such as BLCR [8], application-
assisted checkpointing usually produces much smaller state. The reason is that they
serialize just the internal state that is needed to restart, but not the contents of
entire address spaces. Application-specific C/R support is common in HPC codes.
There are also frameworks such as SCR [27] that support multi-level checkpointing,
where data is stored in memory before it is transferred to persistent storage in the
background. On the other hand, support for BLCR-like system-level solutions has
been deprecated recently, or removed entirely from major MPI implementations. We
therefore focus on application-assisted checkpoint/restart as the process-migration
mechanism in the FFMK OS, but system-level C/R would work, too.

Furthermore, earlier work by Ouyang et al. [31] found that the restart phase
takes by far the longest time in this migration scheme. We can confirm that
re-initialization after restarting is still a major factor, but also one that leaves
room for optimizations. For example, we found that, in MVAPICH2, MPI Init
spends several hundred milliseconds to obtain topology information about the
local node using the hwloc library. Older versions of the MPI library also called
initialization routines of the InfiniBand driver stack multiple time. This overhead

FFMK: A Fast and Fault-Tolerant Microkernel-Based System for Exascale Computing 421

can be eliminated by caching results or removing any redundant function calls; we
submitted patches that fix the latter performance issue to the MVAPICH2 authors.

Finally, to achieve the level of performance for C/R to be usable as a migration
mechanism, we employ in-memory checkpointing to make serialized application
state accessible from any node where processes are migrated to. The next section on
fault tolerance techniques covers requirements for a suitable checkpoint store.

7 Fault Tolerance

The HPC research community expects that the total number of individual com-
ponents in exascale machines will grow dramatically. It is already becoming
increasingly common to add more levels of node-local memory (e.g., SSDs), and
heterogeneous architectures using accelerators are state of the art. This increased
complexity and the expectation of higher failure rates for individual components and
the whole system require a much more sophisticated approach to fault tolerance. In
the following paragraphs, we give an overview of the key techniques and how they
fit into the FFMK architecture.

Protecting Applications: Checkpoint/Restart The state-of-the-art mechanism to
protect applications from crashes and other fail-stop errors is to make their execution
state recoverable using checkpoint/restart (C/R) [10, 34]. FFMK aims at integrating
a high-performance C/R system that utilizes the distributed storage built into all
nodes of an exascale system, instead of relying on a traditional parallel file system
that is connected to the supercomputer via a small number of I/O nodes. The general
approach has been shown to scale extremely well with the number of nodes, for
example in work by Rajachandrasekar et al. [32].

The FFMK project implements scalable C/R based on XtreemFS [40]. Due to
space constraints, we do not discuss this distributed file system in detail, but give
only a brief summary: XtreemFS supports storing erasure-coded file contents (e.g.,
checkpointed application state) in local memory of (potentially all) nodes of an HPC
system. Erasure coding ensures that data is still accessible even if multiple nodes
fail; at the same time, it minimizes both the network bandwidth required to transmit
checkpoint data over the network and the amount of on-node storage that is required.

Proactive Fault Handling The FFMK OS’ automatic load management and
migration support (see Sect.6) can also be used for proactive fault tolerance
similar to [36]. By migrating all processes away from a node that is about to
fail, the system can keep applications running without having to restart them
from a checkpoint. To this end, FFMK leverages the hardware monitoring and
information dissemination support described in Sect. 4.2: if a node observes critical
CPU temperatures or correctable bit flips in a failing memory bank, it can initiate
migration of all local processes to another node. We also consider partial node
failures, where, for example, a single core becomes unreliable, but all other cores
continue working properly. In both cases, the system may temporarily oversubscribe

422 C. Weinhold et al.

healthy resources (other nodes or unaffected local cores) by migrating processes. We
consider any slowdowns caused by such “emergency evacuations” a special case of
load imbalance, which can be resolved either by the FFMK load balancing system
or by assigning replacement nodes to the application.

Resilient Gossip Algorithms At the system level, however, the FFMK OS relies
on fault-tolerant algorithms. The most important ones are the randomized gossip
algorithms, which are used to propagate information about the health of each
node. Furthermore, they indirectly allow the system to identify nodes that stopped
responding (e.g., due to an unexpected crash or network failures). The algorithms
themselves are inherently fault-tolerant and they provide good quality of informa-
tion even when some of the participating nodes failed; details of the theoretical
foundations and simulation are discussed in [5].

The overview on fault tolerance concludes the presentation of the FFMK
architecture. In the next section, we discuss related work.

8 Related Work

There exist several other projects that build operating systems for future HPC
systems. In the following, we will characterize the projects from our point of view
and emphasize the differences.

Argo and Hobbes The first two OSes, Hobbes [9] and Argo [6], are based on
a general architecture similar to ours. They include a node OS as basis, global
platform management, and an intermediate runtime providing a light weight thread
abstraction. To our knowledge, the global management in both cases is based on
MRNet [2], a fault-tolerant tree management structure, whereas FFMK uses gossip
algorithms [5] for their inherent fault tolerance properties. The Argo consortium
includes the research group behind Charm++ [18] to provide a versatile load balanc-
ing and resource management together with a light weight thread-like abstraction.
The philosophy behind Charm++ is similar to our task-based application model.
Argo uses Linux as the basis of their node OS. Hobbes is based on a newly built
microkernel named Kitten [21]. In contrast to L4, Kitten’s interface resembles the
Unix interface, but is cut down and tailored towards enabling Linux applications to
run directly on the microkernel. As does FFMK, Hobbes also relies on virtualization
technology to support Linux applications that require features not provided by the
microkernel; system calls not supported by Kitten are forwarded to Linux.

mOS The mOS project [39] at Intel is also based on a light-weight kernel (LWK)
that runs colocated with a fully-fledged Linux. System calls that are not supported
by the LWK are forwarded to the Linux kernel. However, in contrast to the FFMK
platform, the mOS LWK controls only compute cores, whereas the L4 microkernel
of our OS platform is in control of all cores.

FFMK: A Fast and Fault-Tolerant Microkernel-Based System for Exascale Computing 423

Manycore OS Riken’s OS [35] developed under Yukata Ishikawa also is a hybrid
system. To the best of our knowledge, the main difference compared to FFMK is
the fact that the microkernel can run on accelerators such as Xeon Phi, but remains
under control of a Linux. The system pioneered splitting the InfiniBand driver stack,
such that processes running on the accelerators can reuse the functionality hosted
on Linux by way of communication between Linux and the microkernel.

9 Summary and Future Work

State of the Union In this paper, we described the challenges that future HPC
systems pose to system and application developers. Based on these challenges, we
motivated an architecture for an exascale operating system and runtime (OS/R):
the microkernel-based FFMK OS. We described the current state of our prototype
implementation, which, at the time of this writing, is capable of running unmod-
ified MPI applications. The implementation of the node OS consists of an L4
microkernel, which is supported by a virtualized Linux kernel that we use as a
service OS. While our gossip algorithms are well-studied and found to be suitable,
the decision making algorithms that build on top are not yet implemented; gobal
platform management is therefore not part of the prototype. However, the node OS
has been successfully tested on a 112-node InfiniBand cluster across 1,344 Intel
Xeon cores.

Future Work Our short-term agenda focuses on evaluating process-level overde-
composition and oversubscription of MPI applications (see Sect.5). Furthermore,
our work on the “decoupled thread” execution model presented in Sect. 3 is currently
under peer review. The FFMK project is funded for three more years, during which
we plan to finalize and integrate those building blocks of the architecture that are not
yet complete. This includes especially the checkpoint/restart layer and cross-node
migration support.

A key area of future work in the long term is research into novel interfaces
between applications and the OS/R. We already have experience with sched-
ulers [33] that can make better decisions based on application-provided hints about
future behavior. We also investigated “programming hints” for optimizing memory
accesses in GPU-based applications [7]. Application-level hints seem also promis-
ing for fault tolerance: HPC application developers [15] are already researching
fault-tolerant versions of the core algorithms used in their HPC codes. Such codes
may be able to handle node failures without restarting from a checkpoint, provided
that the application can inform the OS/R about its fault tolerance requirements
through a suitable interface.

424 C. Weinhold et al.

Acknowledgements This research and the work presented in this paper is supported by the
German priority program 1648 “Software for Exascale Computing” via the research project
FFMK [16]. We also thank the cluster of excellence “Center for Advancing Electronics Dresden”
(cfaed). The authors acknowledge the Jiilich Supercomputing Centre, the Gauss Centre for
Supercomputing, and the John von Neumann Institute for Computing for providing compute time
on the JUQUEEN supercomputer.

References

1. Acun, B., Gupta, A., Jain, N., Langer, A., Menon, H., Mikida, E., Ni, X., Robson, M., Sun, Y.,
Totoni, E., Wesolowski, L., Kale, L.: Parallel programming with migratable objects: Charm++
in practice. In: Proceedings of the Supercomputing 2014, Leipzig, pp. 647-658. IEEE (2014)

2. Arnold, D.C., Miller, B.P.: Scalable failure recovery for high-performance data aggregation.
In: Proceedings of the IPDPS 2010, Atlanta, pp. 1-11. IEEE (2010)

3. Barak, A., Guday, S., Wheeler, R.: The MOSIX Distributed Operating System: Load Balancing
for UNIX. Lecture Notes in Computer Science, vol. 672. Springer, Berlin/New York (1993)

4. Barak, A., Margolin, A., Shiloh, A.: Automatic resource-centric process migration for MPL. In:
Proceedings of the EuroMPI 2012. Lecture Notes in Computer Science, vol. 7490, pp. 163—
172. Springer, Berlin/New York (2012)

5. Barak, A., Drezner, Z., Levy, E., Lieber, M., Shiloh, A.: Resilient gossip algorithms for
collecting online management information in exascale clusters. Concurr. Comput. Pract. Exper.
27(17), 4797-4818 (2015)

6. Beckman, P, et al.: Argo: an exascale operating system. http://www.argo-osr.org/. Accessed
20 Nov 2015

7. Ben-Nun, T., Levy, E., Barak, A., Rubin, E.: Memory access patterns: the missing piece of the
multi-GPU puzzle. In: Proceedings of the Supercomputing 2015, Newport Beach, pp. 19:1-
19:12. ACM (2015)

8. Berkeley Lab Checkpoint/Restart. http://ftg.1bl.gov/checkpoint. Accessed 20 Nov 2015

9. Brightwell, R., Oldfield, R., Maccabe, A.B., Bernholdt, D.E.: Hobbes: composition and
virtualization as the foundations of an extreme-scale OS/R. In: Proceedings of the ROSS’13,
pp. 2:1-2:8. ACM (2013)

10. Bronevetsky, G., Marques, D., Pingali, K., Stodghill, P.: Automated application-level check-
pointing of MPI programs. ACM Sigplan Not. 38(10), 84-94 (2003)

11. Burstedde, C., Ghattas, O., Gurnis, M., Isaac, T., Stadler, G., Warburton, T., Wilcox, L.:
Extreme-scale AMR. In: Proceedings of the Supercomputing 2010, Tsukuba, pp. 1-12. ACM
(2010)

12. Cappello, F, Geist, A., Gropp, W., Kale, S., Kramer, B., Snir, M.: Toward exascale resilience:
2014 update. Supercomput. Front. Innov. 1(1), 5-28 (2014)

13. Corradi, A., Leonardi, L., Zambonelli, F.: Diffusive load-balancing policies for dynamic
applications. IEEE Concurr. 7(1), 22-31 (1999)

14. Dongarra, J., et al.: The international exascale software project roadmap. Int. J. High Speed
Comput. 25(1), 3-60 (2011)

15. EXAHD - An Exa-Scalable Two-Level Sparse Grid Approach for Higher-Dimensional
Problems in Plasma Physics and Beyond. http://ipvs.informatik.uni-stuttgart.de/SGS/EXAHD/
index.php. Accessed 29 Nov 2015

16. FFMK Website. http://ffmk.tudos.org. Accessed 20 Nov 2015

17. Harlacher, D.F., Klimach, H., Roller, S., Siebert, C., Wolf, F.: Dynamic load balancing for
unstructured meshes on space-filling curves. In: Proceedings of the IPDPSW 2012, pp. 1661—
1669. IEEE (2012)

http://www.argo-osr.org/
http://ftg.lbl.gov/checkpoint
http://ipvs.informatik.uni-stuttgart.de/SGS/EXAHD/index.php
http://ipvs.informatik.uni-stuttgart.de/SGS/EXAHD/index.php
http://ffmk.tudos.org

FFMK: A Fast and Fault-Tolerant Microkernel-Based System for Exascale Computing 425

18.

19.

20.

21.

22.

23

24.

25.

26.

217.

28.

29.

30.
. Ouyang, X., Marcarelli, S., Rajachandrasekar, R., Panda, D.K.: RDMA-based job migration

31

32.

33.

34.

35.

36.

37.

Kale, L.V., Zheng, G.: Charm++ and AMPI: adaptive runtime strategies via migratable
objects. In: Parashar, M., Li, X. (eds.) Advanced Computational Infrastructures for Parallel
and Distributed Adaptive Applications, chap. 13, pp. 265-282. Wiley, Hoboken (2009)
Kogge, P., Shalf, J.: Exascale computing trends: adjusting to the “New Normal” for computer
architecture. Comput. Sci. Eng. 15(6), 16-26 (2013)

Lackorzynski, A., Warg, A., Peter, M.: Generic virtualization with virtual processors. In:
Proceedings of the 12th Real-Time Linux Workshop, Nairobi (2010)

Lange, J., Pedretti, K., Hudson, T., Dinda, P., Cui, Z., Xia, L., Bridges, P., Gocke, A., Jaconette,
S., Levenhagen, M., Brightwell, R.: Palacios and Kitten: new high performance operating
systems for scalable virtualized and native supercomputing. In: Proceedings of the IPDPS
2010, Atlanta, pp. 1-12. IEEE (2010)

Levy, E., Barak, A., Shiloh, A., Lieber, M., Weinhold, C., Hartig, H.: Overhead of a
decentralized gossip algorithm on the performance of HPC applications. In: Proceedings of
the ROSS’ 14, Munich, pp. 10:1-10:7. ACM (2014)

. Lieber, M., Griitzun, V., Wolke, R., Miiller, M.S., Nagel, W.E.: Highly scalable dynamic

load balancing in the atmospheric modeling system COSMO-SPECS+FD4. In: Proceedings
of the PARA 2010. Lecture Notes in Computer Science, vol. 7133, pp. 131-141. Springer,
Berlin/New York (2012)

Liedtke, J.: On micro-kernel construction. In: Proceedings of the 15th ACM Symposium on
Operating Systems Principles (SOSP’95), Copper Mountain Resort, pp. 237-250. ACM (1995)
Lucas, R., et al.: Top ten exascale research challenges. DOE ASCAC subcommittee report.
http://science.energy.gov/~/media/ascr/ascac/pdf/meetings/20140210/Top 10reportFEB 14.pdf
(2014). Accessed 20 Nov 2015

Milthorpe, J., Ganesh, V., Rendell, A.P., Grove, D.: X10 as a parallel language for scientific
computation: practice and experience. In: Proceedings of the IPDPS 2011, Anchorage,
pp. 1080-1088. IEEE (2011)

Moody, A., Bronevetsky, G., Mohror, K., de Supinski, B.: Detailed modeling, design, and
evaluation of a scalable multi-level checkpointing system. Technical report LLNL-TR-440491,
Lawrence Livermore National Laboratory (LLNL) (2010)

MPIL: A message-passing interface standard, version 3.1. http://www.mpi-forum.org/docs
(2015). Accessed 20 Nov 2015

Mvapich: Mpi over infiniband. http://mvapich.cse.ohio-state.edu/. Accessed 20 Nov 2015
Open Source Molecular Dynamics. http://www.cp2k.org/. Accessed 20 Nov 2015

framework for MPI over Infiniband. In: Proceedings of the IEEE CLUSTER 2010, Heraklion,
pp- 116-125. IEEE (2010)

Rajachandrasekar, R., Moody, A., Mohror, K., Panda, D.K.: A 1 PB/s file system to checkpoint
three million MPI tasks. In: Proceedings of the HPDC’13, New York, pp. 143-154. ACM
(2013)

Roitzsch, M., Wachtler, S., Hirtig, H.: Atlas: look-ahead scheduling using workload metrics.
In: Proceedings of the RTAS 2013, Philadelphia, pp. 1-10. IEEE (2013)

Sato, K., Maruyama, N., Mohror, K., Moody, A., Gamblin, T., de Supinski, B.R., Matsuoka,
S.: Design and modeling of a non-blocking checkpointing system. In: Proceedings of the
Supercomputing 2012, Venice, pp. 19:1-19:10. IEEE (2012)

Sato, M., Fukazawa, G., Yoshinaga, K., Tsujita, Y., Hori, A., Namiki, M.: A hybrid operating
system for a computing node with multi-core and many-core processors. Int. J. Adv. Comput.
Sci. 3, 368-377 (2013)

Wang, C., Mueller, F., Engelmann, C., Scott, S.L.: Proactive process-level live migration and
back migration in HPC environments. J. Par. Distrib. Comput. 72(2), 254-267 (2012)

Wende, E, Steinke, T., Reinefeld, A.: The impact of process placement and oversubscription
on application performance: a case study for exascale computing. Technical report 15-05, ZIB
(2015)

http://science.energy.gov/~/media/ascr/ascac/pdf/meetings/20140210/Top10reportFEB14.pdf
http://www.mpi-forum.org/docs
http://mvapich.cse.ohio-state.edu/
http://www.cp2k.org/

426

38.

39.

40.
41

42.

C. Weinhold et al.

Winkel, M., Speck, R., Hiibner, H., Arnold, L., Krause, R., Gibbon, P.: A massively parallel,
multi-disciplinary Barnes-Hut tree code for extreme-scale N-body simulations. Comput. Phys.
Commun. 183(4), 880-889 (2012)

Wisniewski, R.W., Inglett, T., Keppel, P., Murty, R., Riesen, R.: mOS: an architecture for
extreme-scale operating systems. In: Proceedings of the ROSS’ 14, Munich, pp. 2:1-2:8. ACM
(2014)

XtreemFS — a cloud file system. http://www.xtreemfs.org. Accessed 20 Nov 2015

. Xue, M., Droegemeier, K.K., Weber, D.: Numerical prediction of high-impact local weather:

a driver for petascale computing. In: Bader, D.A. (ed.) Petascale Computing: Algorithms and
Applications, pp. 103—124. Chapman & Hall/CRC, Boca Raton (2008)

Zheng, F., Yu, H., Hantas, C., Wolf, M., Eisenhauer, G., Schwan, K., Abbasi, H., Klasky,
S.: Goldrush: resource efficient in situ scientific data analytics using fine-grained interference
aware execution. In: Proceedings of the Supercomputing 2013, Eugene, pp. 78:1-78:12. ACM
(2013)

http://www.xtreemfs.org

	FFMK: A Fast and Fault-Tolerant Microkernel-Based System for Exascale Computing
	1 Exascale Challenges
	2 FFMK Architecture Overview
	3 Microkernel-Based Node OS
	4 Dynamic Platform Management
	4.1 Application Model
	4.2 Monitoring and Gossip-Based Information Dissemination
	4.3 Decision Making

	5 MPI Runtime
	5.1 MPI and Load Balancing
	5.2 OS/R Support for Oversubscription

	6 Migration
	7 Fault Tolerance
	8 Related Work
	9 Summary and Future Work
	References

