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Abstract DASH is a realization of the PGAS (partitioned global address space)
programming model in the form of a C++ template library. It provides a multi-
dimensional array abstraction which is typically used as an underlying container for
stencil- and dense matrix operations. Efficiency of operations on a distributed multi-
dimensional array highly depends on the distribution of its elements to processes
and the communication strategy used to propagate values between them. Locality
can only be improved by employing an optimal distribution that is specific to the
implementation of the algorithm, run-time parameters such as node topology, and
numerous additional aspects. Application developers do not know these implications
which also might change in future releases of DASH. In the following, we identify
fundamental properties of distribution patterns that are prevalent in existing HPC
applications. We describe a classification scheme of multi-dimensional distribu-
tions based on these properties and demonstrate how distribution patterns can be
optimized for locality and communication avoidance automatically and, to a great
extent, at compile-time.

1 Introduction

For exascale systems the cost of accessing data is expected to be the dominant
factor in terms of execution time as well as energy consumption [3]. To minimize
data movement, applications have to consider initial placement and optimize both
vertical data movement in the memory hierarchy and horizontal data movement
between processing units. Programming systems for exascale must therefore shift
from a compute-centric to a more data-centric focus and give application developers
fine-grained control over data locality.

On an algorithmic level, many scientific applications are naturally expressed
in multi-dimensional domains that arise from discretization of time and space.
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However, few programming systems support developers in expressing and
exploiting data locality in multiple dimensions beyond the most simple one-
dimensional distributions. In this paper we present a framework that enables HPC
application developers to express constraints on data distribution that are suitable to
exploit locality in multi-dimensional arrays.

The DASH library [10] provides numerous variants of data distribution schemes.
Their implementations are encapsulated in well-defined concept definitions and
are therefore semantically interchangeable. However, no single distribution scheme
is suited for every usage scenario. In operations on shared multi-dimensional
containers, locality can only be maintained by choosing an optimal distribution.
This choice depends on:

• the algorithm executed on the shared container, in particular its communication
pattern and memory access scheme,

• run-time parameters such as the extents of the shared container, the number of
processes and their network topology,

• numerous additional aspects such as CPU architecture and memory topology.

The responsibility to specify a data distribution that achieves high locality and
communication avoidance lies with the application developers. These, however, are
not aware of implementation-specific implications: a specific distribution might be
balanced, but blocks might not fit into a cache line, inadvertently impairing hardware
locality.

As a solution, we present a mechanism to find a concrete distribution variant
among all available candidate implementations that satisfies a set of properties. In
effect, programmers do not need to specify a distribution type and its configuration
explicitly. They can rely on the decision of the DASH library and focus only on
aspects of data distribution that are relevant in the scenario at hand.

For this, we first identify and categorize fundamental properties of distribution
schemes that are prevalent in algorithms in related work and existing HPC applica-
tions. With DASH as a reference implementation, we demonstrate how optimized
data distributions can then be determined automatically and, to a great extent, at
compile-time.

From a software engineering perspective, we explain how our methodology
follows best practices known from established C++ libraries and thus ensures that
user applications are not only robust against, but even benefit from future changes
in DASH.

The remainder of this paper is structured as follows: the following section
introduces fundamental concepts of PGAS and locality in the context of DASH.
A classification of data distribution properties is presented in Sect. 3. In Sect. 4,
we show how this system of properties allows to exploit locality in DASH in
different scenarios. Using the use case of SUMMA as an example, the presented
methods are evaluated for performance as well as flexibility against the established
implementations from Intel MKL and ScaLAPACK. Publications and tools related
to this work are discussed in Sect. 6. Finally, Sect. 7 gives a conclusion and an
outlook on future work where the DASH library’s pattern traits framework is
extended to sparse, irregular, and hierarchical distributions.
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2 Background

This section gives a brief introduction to the Partitioned Global Address Space
approach considering locality and data distribution. We then present concepts in
the DASH library used to express process topology, data distribution and iteration
spaces. The following sections build upon these concepts and present new mecha-
nisms to exploit locality automatically using generic programming techniques.

2.1 PGAS and Multi-dimensional Locality

Conceptually, the Partitioned Global Address Space (PGAS) paradigm unifies
memory of individual, networked nodes into a virtual global memory space. In
effect, PGAS languages create a shared namespace for local and remote variables.
This, however, does not affect physical ownership. A single variable is only located
in a specific node’s memory and local access is more efficient than remote access
from other nodes. This is expected to matter more and more even within single
(NUMA) nodes in the near future [3]. As locality directly affects performance and
scalability, programmers need full control over data placement. Then, however, they
are facing overwhelmingly complex implications of data distribution on locality.

This complexity increases exponentially with the number of data dimensions.
Calculating a rectangular intersection might be manageable for up to three dimen-
sions, but locality is hard to maintain in higher dimensions, especially for irregular
distributions.

2.2 DASH Concepts

Expressing data locality in a Partitioned Global Address Space language builds upon
fundamental concepts of process topology and data distribution. In the following, we
describe these concepts as they are used in the context of DASH.

2.2.1 Topology: Teams and Units

In DASH terminology, a unit refers to any logical component in a distributed mem-
ory topology that supports processing and storage. Conventional PGAS approaches
offer only the differentiation between local and global data and distinguish between
private, shared-local, and shared-remote memory. DASH extends this model by a
more fine-grained differentiation that corresponds to hierarchical machine models
as units are organized in hierarchical teams. For example, a team at the top level
could group processing nodes into individual teams, each again consisting of units
referencing single CPU cores.
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2.2.2 Data Distribution: Patterns

Data distributions in general implement a two-level mapping:

1. From index to process (node- or process mapping)
2. From process to local memory offset (local order or layout)

Index sets separate the logical index space as seen by the user from physical
layout in memory space. This distinction and the mapping between index domains
is usually transparent to the programmer.

Process mapping can also be understood as distribution, arrangement in local
memory is also referred to as layout e.g. in Chapel [5].

In DASH, data decomposition is based on index mappings provided by different
implementations of the DASH Pattern concept. Listing 1 shows the instantiation
of a rectangular pattern, specifying the Cartesian index domain and partitioning
scheme. Patterns partition a global index set into blocks that are then mapped to
units. Consequently, indices are mapped to processes indirectly in two stages: from
index to block (partitioning) and from block to unit (mapping). Figure 1 illustrates a
pattern’s index mapping as sequential steps in the distribution of a two-dimensional
array. While the name and the illustrated example might suggest otherwise, blocks
are not necessarily rectangular.

In summary, the DASH pattern concept defines semantics in the following
categories:

Distribution Well-defined distribution of indices to units,
depending on properties in the subordinate categories:

Partitioning Grouping indices into blocks
Mapping Distributing blocks to units in a team

Layout Arrangement of blocks and block elements in local memory
Indexing Operations related to index sets for iterating data

elements in global and local scope

Layout semantics specify the arrangement of values in local memory and, in effect,
their order. Indexing semantics also include index set operations like slicing and
intersection but do not affect physical data distribution.

Fig. 1 Example of partitioning, mapping, and layout in the distribution of a dense, two-
dimensional array
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We define distribution semantics of a pattern type depending on the following set
of operations:

local.iG/ 7! .u; iL/ Index iG to unit u and local offset iL

global.u; iL/ 7! iG Unit u and local offset iL to global index iG

unit.iG/ 7! u Index iG to unit u

local_block.iG/ 7! .u; iLB/ Index iG to unit u and local block index iLB

global_block.iG/ 7! iGB Index iG to global block index iGB

with n-dimensional indices iG, iL as coordinates in the global/local Cartesian
element space and iGB, iLB as coordinates in the global/local Cartesian block space.
Instead of a Cartesian point, an index may also be declared as a point’s offset in
linearized memory order.

1 // Brief notation:
2 TilePattern<2> pattern(global_extent_x, global_extent_y,
3 TILED(tilesize_x), TILED(tilesize_y));
4 // Equivalent full notation:
5 TilePattern<2, dash::default_index_t, ROW_MAJOR>
6 pattern(DistributionSpec<2>(
7 TILED(tilesize_x), TILED(tilesize_y),
8 SizeSpec<2, dash::default_size_t>(
9 global_extent_x, global_extent_y),

10 TeamSpec<1>(
11 Team::All()));

Listing 1 Explicit instantiation of DASH patterns

DASH containers use patterns to provide uniform notations based on view proxy
types to express index domain mappings. User-defined data distribution schemes
can be easily incorporated in DASH applications as containers and algorithms
accept any type that implements the Pattern concept.

Listing 2 illustrates the intuitive usage of user-defined pattern types and the
local and block view accessors that are part of the DASH container concept.
View proxy objects use a referenced container’s pattern to map between its index
domains but do not contain any elements themselves. They can be arbitrarily
chained to refine an index space in consecutive steps, as in the last line of Listing 2:
the expression array.local.block(1) addresses the second block in the
array’s local memory space.

In effect, patterns specify local iteration order similar to the partitioning of
iteration spaces e.g. in RAJA [11]. Proxy types implement all methods of their
delegate container type and thus also provide begin and end iterators that specify
the iteration space within the view’s mapped domain. DASH iterators provide an
intuitive notation of ranges in virtual global memory that are well-defined with
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respect to distance and iteration order, even in multi-dimensional and irregular index
domains.

1 CustomPattern pattern;
2 dash::Array<double> a(size, pattern);
3 double g_first = a[0] // First value in global memory,
4 // corresponds to a.begin()
5 double l_first = a.local[0]; // First value in local memory,
6 // corresponds to a.local.begin()
7 dash::copy(a.block(0).begin(), // Copy first block in
8 a.block(0).end(), // global memory to second
9 a.local.block(1).begin()); // block in local memory

Listing 2 Views on DASH containers

3 Classification of Pattern Properties

While terms like blocked, cyclic and block-cyclic are commonly understood, the
terminology of distribution types is inconsistent in related work, or varies in
semantics. Typically, distributions are restricted to specific constraints that are not
applicable in the general case for convenience.

Instead of a strict taxonomy enumerating the full spectrum of all imaginable
distribution semantics, a systematic description of pattern properties is more
practicable to abstract semantics from concrete implementations. The classification
presented in this section allows to specify distribution patterns by categorized,
unordered sets of properties. It is, of course, incomplete, but can be easily extended.
We identify properties that can be fulfilled by data distributions and then group these
properties into orthogonal categories which correspond to the separate functional
aspects of the pattern concept described in Sect. 2.2.2: partitioning, unit mapping,
and memory layout. This categorization also complies with the terminology and
conceptual findings in related work [16].

DASH pattern semantics are specified by a configuration of properties in these
dimensions:

Global � Partitioning � Mapping
„ ƒ‚ …

Distribution

� Layout

Details on a selection of single properties in all categories are discussed in the
remainder of this section.

3.1 Partitioning Properties

Partitioning refers to the methodology used to subdivide a global index set into
disjoint blocks in an arbitrary number of logical dimensions. If not specified
otherwise by other constraints, indices are mapped into rectangular blocks. A



Expressing and Exploiting Multi-Dimensional Locality in DASH 347

partitioning is regular if it only creates blocks with identical extents and balanced
if all block have identical size.

rectangular Block extents are constant in every single dimension,
e.g. every row has identical size.

minimal Minimal number of blocks in every dimension, i.e. at
most one block for every unit.

regular All blocks have identical extents.
balanced All blocks have identical size (number of elements).
multi-dimensional Data is partitioned in at least two dimensions.
cache-aligned Block sizes are a multiple of cache line size.

Note that with the classification, these properties are mostly independent: rectan-
gular partitionings may produce blocks with varying extents, balanced partitionings
are not necessarily rectangular, and so on. For example, partitioning a matrix into
triangular blocks could satisfy the regular and balanced partitioning properties. The
fine-grained nature of property definitions allows many possible combinations that
form an expressive and concise vocabulary to express pattern semantics.

3.2 Mapping Properties

Well-defined mapping properties exist that have been formulated to define multipar-
titionings, a family of distribution schemes supporting parallelization of line sweep
computations over multi-dimensional arrays.

The first and most restrictive multipartitioning has been defined based on the
diagonal property [15]. In a multipartitioning, each process owns exactly one tile in
each hyperplane of a partitioning so that all processors are active in every step of a
line-sweep computation along any array dimension as illustrated in Fig. 2.

General multipartitionings are a more flexible variant that allows to assign more
than one block to a process in a partitioned hyperplane. The generalized definition

Fig. 2 Combinations of mapping properties. Numbers in blocks indicate the unit rank owning the
block
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subdivides the original diagonal property into the balanced and neighbor mapping
properties [7] described below. This definition is more relaxed but still preserves the
benefits for line-sweep parallelization.

balanced The number of assigned blocks is identical for every unit.
neighbor A block’s adjacent blocks in any one direction along a

dimension are all owned by some other processor.
shifted Units are mapped to blocks in diagonal chains in at

least one hyperplane.
diagonal Units are mapped to blocks in diagonal chains in all

hyperplanes.
cyclic Blocks are assigned to processes like dealt from a deck of

cards in every hyperplane, starting from first unit.
multiple At least two blocks are mapped to every unit.

The constraints defined for multipartitionings are overly strict for some algorithms
and can be further relaxed to a subset of its properties. For example, a pipelined
optimization of the SUMMA algorithm requires a diagonal shift mapping [14, 18]
that satisfies the diagonal property but is not required to be balanced. Therefore, the
diagonal property in our classification does not imply a balanced mapping, deviating
from its original definition.

3.3 Layout Properties

Layout properties describe how values are arranged in a unit’s physical memory
and, consequently, their order of traversal. Perhaps the most crucial property is
storage order which is either row- or column-major. If not specified, DASH assumes
row-major order as known from C. The list of properties can also be extended to
give hints to allocation routines on the physical memory topology of units such as
NUMA or CUDA.

row-major Row major storage order, used by default.
col-major Column-major storage order.
blocked Elements are contiguous in local memory within a single

block.
canonical All local indices are mapped to a single logical index

domain.
linear Local element order corresponds to a logical linearization

within single blocks (tiled) or within entire local memory
(canonical).
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Fig. 3 Morton order memory layout of block elements

While patterns assign indices to units in logical blocks, they do not necessarily
preserve the block structure in local index sets. After process mapping, a pattern’s
layout scheme may arrange indices mapped to a unit in an arbitrary way in physical
memory. In canonical layouts, the local storage order corresponds to the logical
global iteration order. Blocked layouts preserve the block structure locally such
that values within a block are contiguous in memory, but in arbitrary order. The
additional linear property also preserves the logical linearized order of elements
within single blocks. For example, Morton order memory layout as shown in Fig. 3
satisfies the blocked property, as elements within a block are contiguous in memory,
but does not grant the linear property.

3.4 Global Properties

The Global category is usually only needed to give hints on characteristics of the
distributed value domain such as the sparse property to indicate the distribution of
sparse data.

dense Distributed data domain is dense.
sparse Distributed data domain is sparse.
balanced The same number of values is mapped to every unit after

partitioning and mapping.

It also contains properties that emerge from a combination of the independent
partitioning and layout properties and cannot be derived from either category
separately. The global balanced distribution property, for example, guarantees the
same number of local elements at every unit. This is trivially fulfilled for balanced
partitioning and balanced mapping where the same number of blocks b of identical
size s is mapped to every unit. However, it could also be achieved in a combination
of unbalanced partitioning and unbalanced mapping, e.g. when assigning b blocks
of size s and b=2 blocks of size 2s.
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4 Exploiting Locality with Pattern Traits

The classification system presented in the last section allows to describe distribution
pattern semantics using properties instead of a taxonomy of types that are associated
with concrete implementations. In the following, we introduce pattern traits, a
collection of mechanisms in DASH that utilize distribution properties to exploit
data locality automatically.

As a technical prerequisite for these mechanisms, every pattern type is anno-
tated with tag type definitions that declare which properties are satisfied by its
implementation. This enables meta-programming based on the patterns’ distribution
properties as type definitions are evaluated at compile-time. Using tags to annotate
type invariants is a common method in generic C++ programming and prevalent in
the STL and the Boost library.1

1 template <dim_t NDim, ...>
2 class ThePattern {
3 public:
4 typedef mapping_properties<
5 mapping_tag::diagonal,
6 mapping_tag::cyclic >
7 mapping_tags;
8 ...
9 };

Listing 3 Property tags in a pattern type definition

4.1 Deducing Distribution Patterns from Constraints

In a common use case, programmers intend to allocate data in distributed global
memory with the use for a specific algorithm in mind. They would then have to
decide for a specific distribution type, carefully evaluating all available options for
optimal data locality in the algorithm’s memory access pattern.

To alleviate this process, DASH allows to automatically create a concrete pattern
instance that satisfies a set of constraints. The function make_pattern returns a
pattern instance from a given set of properties and run-time parameters. The actual
type of the returned pattern instance is resolved at compile-time and never explicitly
appears in client code by relying on automatic type deduction.

1http://www.boost.org/community/generic_programming.html

http://www.boost.org/community/generic_programming.html
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1 static const dash::dim_t NumDataDim = 2;
2 static const dash::dim_t NumTeamDim = 2;
3 // Topology of processes, here: 16x8 process grid
4 TeamSpec<NumTeamDim> teamspec(16, 8);
5 // Cartesian extents of container:
6 SizeSpec<NumDataDim> sizespec(extent_x, extent_y);
7 // Create instance of pattern type deduced from
8 // constraints at compile-time:
9 auto pattern =

10 dash::make_pattern<
11 partitioning_properties<
12 partitioning_tag::balanced >,
13 mapping_properties<
14 mapping_tag::balanced, mapping_tag::diagonal >,
15 layout_properties<
16 layout_tag::blocked >
17 >(sizespec, teamspec);

Listing 4 Deduction of an optimal distribution

To achieve compile-time deduction of its return type, make_pattern employs the
Generic Abstract Factory design pattern [2]. Different from an Abstract Factory that
returns a polymorphic object specializing a known base type, a Generic Abstract
Factory returns an arbitrary type, giving more flexibility and no longer requiring
inheritance at the same time.

Pattern constraints are passed as template parameters grouped by prop-
erty categories as shown in Listing 4. Data extents and unit topology
are passed as run-time arguments. Their respective dimensionality (Num-
DataDim, NumTeamDim), however, can be deduced from the argument types at
compile-time. Figure 4 illustrates the logical model of this process involving
two stages: a type generator that resolves a pattern type from given constraints
and argument types at compile-time and an object generator that instantiates the
resolved type depending on constraints and run-time parameters.

Fig. 4 Type deduction and pattern instantiation in dash::make_pattern
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Every property that is not specified as a constraint is a degree of freedom
in type selection. Evaluations of the GUPS benchmark show that arithmetic for
dereferencing global indices is a significant performance bottleneck apart from
locality effects. Therefore, when more than one pattern type satisfies the constraints,
the implementation with the least complex index calculation is preferred.

The automatic deduction also is designed to prevent inefficient configurations.
For example, pattern types that pre-generate block coordinates to simplify index
calculation are inefficient and memory-intensive for a large number of blocks. They
are therefore disregarded if the blocking factor in any dimension is small.

4.2 Deducing Distribution Patterns for a Specific Use Case

With the ability to create distribution patterns from constraints, developers still have
to know which constraints to choose for a specific algorithm. Therefore, we offer
shorthands for constraints of every algorithm provided in DASH that can be passed
to make_pattern instead of single property constraints.

1 dash::TeamSpec<2> teamspec(16, 8);
2 dash::SizeSpec<2> sizespec(1024, 1024);
3 // Create pattern instance optimized for SUMMA:
4 auto pattern = dash::make_pattern<
5 dash::summa_pattern_traits
6 >(sizepec, teamspec);
7 // Create matrix instances using the pattern:
8 dash::Matrix<2, int> matrix_a(sizespec, pattern);
9 dash::Matrix<2, int> matrix_b(sizespec, pattern);

10 \ldots
11 auto matrix_c = dash::summa(matrix_a, matrix_b)

Listing 5 Deduction of a matching distribution pattern for a given use-case

4.3 Checking Distribution Constraints

An implementer of an algorithm on shared containers might want to ensure that
their distribution fits the algorithm’s communication strategy and memory access
scheme.

The traits type pattern_constraints allows querying constraint attributes
of a concrete pattern type at compile-time. If the pattern type satisfies all requested
properties, the attribute satisfied is expanded to true. Listing 6 shows its
usage in a static assertion that would yield a compilation error if the object
pattern implements an invalid distribution scheme.
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1 // Compile-time constraints check:
2 static_assert(
3 dash::pattern_contraints<
4 decltype(pattern),
5 partitioning_properties< ... >,
6 mapping_properties< ... >,
7 layout_properties< ... >
8 >::satisfied::value
9 );

10 // Run-time constraints check:
11 if (dash::check_pattern_contraints<
12 partitioning_properties< ... >,
13 mapping_properties< ... >,
14 indexing_properties< ... >
15 >(pattern)) {
16 // Object ’pattern’ satisfies constraints
17 }

Listing 6 Checking distribution constraints at compile-time and run-time

Some constraints depend on parameters that are unknown at compile-time, such as
data extents or unit topology in the current team.

The function check_pattern_constraints allows checking a given
pattern object against a set of constraints at run-time. Apart from error handling,
it can also be used to implement alternative paths for different distribution schemes.

4.4 Deducing Suitable Algorithm Variants

When combining different applications in a work flow or working with legacy code,
container data might be preallocated. As any redistribution is usually expensive, the
data distribution scheme is invariant and a matching algorithm variant is to be found.

We previously explained how to resolve a distribution scheme that is the
best match for a known specific algorithm implementation. Pattern traits and
generic programming techniques available in C++11 also allow to solve the inverse
problem: finding an algorithm variant that is suited for a given distribution.
For this, DASH provides adapter functions that switch between an algorithm’s
implementation variants depending on the distribution type of its arguments. In
Listing 7, three matrices are declared using an instance of dash::TilePattern
that corresponds to the known distribution of their preallocated data. In compilation,
dash::multiply expands to an implementation of matrix–matrix multiplication
that best matches the distribution properties of its arguments, like dash::summa
in this case.
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1 typedef dash::TilePattern<2, ROW_MAJOR> TiledPattern;
2 typedef dash::Matrix<2, int, TiledPattern> TiledMatrix;
3 TiledPattern pattern(global_extent_x, global_extent_y,
4 TILE(tilesize_x), TILE(tilesize_y));
5 TiledMatrix At(pattern);
6 TiledMatrix Bt(pattern);
7 TiledMatrix Ct(pattern);
8 ...
9 // Use adapter to resolve algorithm suited for TiledPattern:

10 dash::multiply(At, Bt, Ct); // --> dash::summa(At, Bt, Ct);

Listing 7 Deduction of an algorithm variant for a given distribution

5 Performance Evaluation

We choose dense matrix–matrix multiplication (DGEMM) as a use case for
evaluation as it represents a concise example that allows to demonstrate how slight
changes in domain decomposition drastically affect performance even in highly
optimized implementations.

In principle, the matrix–matrix multiplication implemented in DASH realizes
a conventional blocked matrix multiplication similar to a variant of the SUMMA
algorithm presented in [14]. For the calculation C D A � B, matrices A, B and C are
distributed using a blocked partitioning. Following the owner computes principle,
every unit then computes the multiplication result

Cij D Aik � Bkj D
K�1
X

kD0

AikBkj

for all sub-matrices in C that are local to the unit.
Figure 5 illustrates the first two multiplication steps for a square matrix for sim-

plicity, but the SUMMA algorithm also allows rectangular matrices and unbalanced
partitioning.

We compare strong scaling capabilities on a single processing node against
DGEMM provided by multi-threaded Intel MKL and PLASMA [1]. Performance
of distributed matrix multiplication is evaluated against ScaLAPACK [8] for an
increasing number of processing nodes.

Ideal tile sizes for PLASMA and ScaLAPACK had to be obtained in a large series
of tests for every variation of number of cores and matrix size. As PLASMA does
not optimize for NUMA systems, we also tried different configurations of numactl
as suggested in the official documentation of PLASMA.

For the DASH implementation, data distribution is resolved automatically using
the make_pattern mechanism as described in Sect. 4.2.
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Fig. 5 Domain decomposition and first two block matrix multiplications in the SUMMA imple-
mentation. Numbers in blocks indicate the unit mapped to the block

5.1 Eperimental Setup

To substantiate the transferability of the presented results, we execute benchmarks
on the supercomputing systems SuperMUC and Cori which differ in hardware
specifications and application environments.

SuperMUC phase 22 incorporates an Infiniband fat tree topology interconnect
with 28 cores per processing node. We evaluated performance for both Intel MPI
and IBM MPI.

Cori phase 13 is a Cray system with 32 cores per node in an Aries dragonfly
topology interconnect. As an installation of PLASMA is not available, we evaluate
performance of DASH and Intel MKL.

5.2 Results

We only consider the best results from MKL, PLASMA and ScaLAPACK to provide
a fair comparison to the best of our abilities.

In summary, the DASH implementation consistently outperformed the tested
variants of DGEMM and PDGEMM on distributed and shared memory scenarios
in all configurations (Fig. 6, 7, 8).

More important than performance in single scenarios, overall analysis of results
in single-node scenarios confirms that DASH in general achieved predictable
scalability using automatic data distributions. This is most evident when comparing
results on Cori presented in Fig. 7: the DASH implementation maintained consistent
scalability while performance of Intel MKL dropped when the number of processes
was not a power of two, a good example of a system-dependent implication that is
commonly unknown to programmers.

2https://www.lrz.de/services/compute/supermuc/systemdescription/
3http://www.nersc.gov/users/computational-systems/cori/cori-phase-i/

https://www.lrz.de/services/compute/supermuc/systemdescription/
http://www.nersc.gov/users/computational-systems/cori/cori-phase-i/
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Fig. 6 Strong scaling of matrix multiplication on single node on SuperMUC phase 2, Intel MPI
and IBM MPI, with 4 to 28 cores for increasing matrix size
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Fig. 7 Strong scaling of matrix multiplication on single node on Cori phase 1, Cray MPICH, with
4 to 32 cores for increasing matrix size

6 Related Work

Various aspects of data decomposition have been examined in related work that
influenced the design of pattern traits in DASH.

The Kokkos framework [9] is specifically designed for portable multi-
dimensional locality. It implements compile-time deduction of data layout
depending on memory architecture and also specifies distribution traits roughly
resembling some of the property categories introduced in this work. However,
Kokkos targets intra-node locality focusing on CUDA- and OpenMP backends
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1. Intel MPI 2. IBM MPI
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Fig. 8 Strong scaling of dash::summa and PDGEMM (ScaLAPACK) on SuperMUC phase 2 for
IBM MPI and Intel MPI for matrix size 57344 � 57344

and does not define concepts for process mapping. It is therefore not applicable
to the PGAS language model where explicit distinction between local and remote
ownership is required.

UPC++ implements a PGAS language model and, similar to the array concept in
DASH, offers local views for distributed arrays for rectangular index domains [12].
However, UPC++ does not provide a general view concept and no abstraction of
distribution properties as described in this work.

Chapel’s Domain Maps is an elegant framework that allows to specify and
incorporate user-defined mappings [5] and also supports irregular domains. The
fundamental concepts of domain decomposition in DASH are comparable to DMaps
in Chapel with dense and strided regions like previously defined in ZPL [6]. Chapel
does not provide automatic deduction of distribution schemes, however, and no
classification of distribution properties is defined.

Finally, the benefits of hierarchical data decomposition are investigated in recent
research such as TiDA, which employs hierarchical tiling as a general abstraction
for data locality [17]. The Hitmap library achieves automatic deduction of data
decomposition for hierarchical, regular tiles [4] at compile-time.

7 Conclusion and Future Work

We constructed a general categorization of distribution schemes based on well-
defined properties. In a broad spectrum of different real-world scenarios, we then
discussed how mechanisms in DASH utilize this property system to exploit data
locality automatically.

In this, we demonstrated the expressiveness of generic programming techniques
in modern C++ and their benefits for constrained optimization.
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Automatic deduction greatly simplifies the incorporation of new pattern types
such that new distribution schemes can be employed in experiments with minimal
effort. In addition, a system of well-defined properties forms a concise and
precise vocabulary to express semantics of data distribution, significantly improving
testability of data placement.

We will continue our work on flexible data layout mappings and explore concepts
to further support hierarchical locality. We are presently in the process of separating
the functional aspects of DASH patterns (partitioning, mapping and layout) into
separate policy types to simplify pattern type generators. In addition, the pattern
traits framework will be extended by soft constraints to express preferable but non-
mandatory properties.

The next steps will be to implement various irregular and sparse distributions
that can be easily combined with view specifiers in DASH to support the existing
unified sparse matrix storage format provided by SELL-C-� [13]. We also intend to
incorporate hierarchical tiling schemes as proposed in TiDA [17]. The next release
of DASH including these features will be available in the second quarter of 2016.
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