
Performance Engineering and Energy Efficiency
of Building Blocks for Large, Sparse Eigenvalue
Computations on Heterogeneous
Supercomputers

Moritz Kreutzer, Jonas Thies, Andreas Pieper, Andreas Alvermann,
Martin Galgon, Melven Röhrig-Zöllner, Faisal Shahzad, Achim Basermann,
Alan R. Bishop, Holger Fehske, Georg Hager, Bruno Lang,
and Gerhard Wellein

Abstract Numerous challenges have to be mastered as applications in scientific
computing are being developed for post-petascale parallel systems. While ample
parallelism is usually available in the numerical problems at hand, the efficient use
of supercomputer resources requires not only good scalability but also a verifiably
effective use of resources on the core, the processor, and the accelerator level.
Furthermore, power dissipation and energy consumption are becoming further
optimization targets besides time-to-solution. Performance Engineering (PE) is the
pivotal strategy for developing effective parallel code on all levels of modern
architectures. In this paper we report on the development and use of low-level

M. Kreutzer (�) • F. Shahzad • G. Hager • G. Wellein
Erlangen Regional Computing Center, Friedrich-Alxander-University Erlangen-Nuremberg,
Erlangen, Germany
e-mail: moritz.kreutzer@fau.de; faisal.shahzad@fau.de; georg.hager@fau.de;
gerhard.wellein@fau.de

A. Alvermann • A. Pieper • H. Fehske
Institute of Physics, Ernst-Moritz-Arndt-Universität Greifswald, Greifswald, Germany
e-mail: alvermann@physik.uni-greifswald.de; pieper@physik.uni-greifswald.de;
fehske@physik.uni-greifswald.de

M. Galgon • B. Lang
Bergische Universität Wuppertal, Wuppertal, Germany
e-mail: galgon@math.uni-wuppertal.de; lang@math.uni-wuppertal.de

J. Thies • M. Röhrig-Zöllner • A. Basermann
German Aerospace Center (DLR), Simulation and Software Technology, Köln, Germany
e-mail: jonas.thies@dlr.de; melven.roehrig-zoellner@dlr.de; achim.basermann@dlr.de

A.R. Bishop
Theory, Simulation and Computation Directorate, Los Alamos National Laboratory, Los Alamos,
NM, USA
e-mail: arb@lanl.gov

© Springer International Publishing Switzerland 2016
H.-J. Bungartz et al. (eds.), Software for Exascale Computing – SPPEXA
2013-2015, Lecture Notes in Computational Science and Engineering 113,
DOI 10.1007/978-3-319-40528-5_14

317

mailto:moritz.kreutzer@fau.de
mailto:faisal.shahzad@fau.de
mailto:georg.hager@fau.de
mailto:gerhard.wellein@fau.de
mailto:alvermann@physik.uni-greifswald.de
mailto:pieper@physik.uni-greifswald.de
mailto:fehske@physik.uni-greifswald.de
mailto:galgon@math.uni-wuppertal.de
mailto:lang@math.uni-wuppertal.de
mailto:jonas.thies@dlr.de
mailto:melven.roehrig-zoellner@dlr.de
mailto:achim.basermann@dlr.de
mailto:arb@lanl.gov

318 M. Kreutzer et al.

parallel building blocks in the GHOST library (“General, Hybrid, and Optimized
Sparse Toolkit”). We demonstrate the use of PE in optimizing a density of states
computation using the Kernel Polynomial Method, and show that reduction of
runtime and reduction of energy are literally the same goal in this case. We also
give a brief overview of the capabilities of GHOST and the applications in which it
is being used successfully.

1 Introduction

The supercomputer architecture landscape has encountered dramatic changes in
the past decade. Heterogeneous architectures hosting different compute devices
(CPU, GPGPU, and Intel Xeon Phi) and systems running 105 cores or more are
dominating the Top500 top ten [33] since the year 2013. Since then, however,
turnover in the top ten has slowed down considerably. A new impetus is expected
by the “Collaboration of Oak Ridge, Argonne, and Livermore” (CORAL)1 with
multi-100 Pflop/s systems to be installed around 2018. These systems may feature
high levels of thread parallelism and multiple compute devices at the node-level,
and will exploit massive data parallelism through SIMD/SIMT features at the core
level. The SUMMIT2 and Aurora3 architectures are instructive examples. State-
of-the-art interconnect technologies will be used to build clusters comprising 103

to 105 compute nodes. While the former will be of heterogeneous nature with
IBM Power9 CPUs and Nvidia Volta GPUs in each node, the latter is projected
to be built of homogeneous Intel Xeon Phi manycore processors. Although two
different approaches towards exascale computing are pursued here, commonalities
like increasing SIMD parallelism and deep memory hierarchies can be determined
and should be regarded when it comes to software development for the exascale era.

The hardware architecture of the CORAL systems, which are part of the DOE
Exascale Computing Project, can be considered blueprints for the systems to be
deployed on the way to exascale computing and thus define the landscape for
the development of hardware-/energy-efficient, scalable, and sustainable software
as well as numerical algorithms. Additional constraints are set by the continu-
ously increasing power consumption and the expectation that mean-time-to-failure
(MTTF) will steadily decrease. It is obvious that long-standing simulation software
needs to be completely re-designed or new codes need to be written from scratch.
The project “Equipping Sparse Solvers for Exascale” (ESSEX),4 funded by the
Priority Program “Software for Exascale Computing” (SPPEXA) of the German

1http://www.energy.gov/downloads/fact-sheet-collaboration-oak-ridge-argonne-and-livermore-
coral
2https://www.olcf.ornl.gov/summit/
3https://www.alcf.anl.gov/articles/introducing-aurora
4http://blogs.fau.de/essex

http://www.energy.gov/downloads/fact-sheet-collaboration-oak-ridge-argonne-and-livermore-coral
http://www.energy.gov/downloads/fact-sheet-collaboration-oak-ridge-argonne-and-livermore-coral
https://www.olcf.ornl.gov/summit/
https://www.alcf.anl.gov/articles/introducing-aurora
http://blogs.fau.de/essex

Performance Engineering for Sparse Building Blocks 319

Fig. 1 Basic ESSEX project
organization: the classic
boundaries of application,
algorithms, and basic building
blocks tightly interact via a
holistic performance
engineering process

P
re

co
n

d
it

io
n

er
s

E
n

er
g

y
E

ff
ic

ie
n

cy

Algorithms

Applications

Building Blocks

F
au

lt
 T

o
le

ra
n

ce

Holistic Performance Engineering

Research Foundation (DFG) is such an endeavor in the field of sparse eigenvalue
solvers.

The ESSEX project addresses the above challenges in a joint software co-
design effort involving all three fundamental layers of software development in
computational science and engineering: basic building blocks, algorithms, and
applications. Energy efficiency and fault tolerance (FT) form vertical pillars forcing
a strong interaction between the horizontal activities (see Fig. 1 for overall project
organization). The overarching goal of all activities is minimal time-to-solution.
Thus, the project is embedded in a structured holistic Performance Engineering
(PE) process that detects performance bottlenecks and guides optimization and
parallelization strategies across all activities.

In the first funding period (2013–2015) the ESSEX project has developed the
“Exascale enabled Sparse Solver Repository” (ESSR), which is accessible under a
BSD open source license.5

The application layer has contributed various scalable matrix generation routines
for relevant quantum physics problems and has used the ESSR components to
advance research in the fields of graphene structures [8, 22, 23, 25] and topological
materials [26].

In the algorithms layer various classic, application-specific and novel eigen-
solvers have been implemented and reformulated in view of the holistic PE process.
A comprehensive survey on the activities in the algorithms layer (including FT) is
presented in [32]. There we also report on the software engineering process to allow
for concurrent development of software in all three layers.

Work performed in the basic building block layer, which drives the holistic PE
process, is presented in this report.

5https://bitbucket.org/essex

https://bitbucket.org/essex

320 M. Kreutzer et al.

2 Contribution

The building block layer in ESSEX is responsible for providing an easy to use but
still efficient infrastructure library (GHOST), which allows exploiting optimization
potential throughout all software layers. GHOST is an elaborate parallelization
framework based on the “MPI+X”6 model, capable of mastering the challenges of
complex node topologies (including ccNUMA awareness and node-level resource
management) and providing efficient data structures and tailored kernels. In partic-
ular the impact of data structures on heterogeneous performance is still underrated
in many projects. On top of GHOST we have defined an interface layer that can
be used by algorithms and application developers for flexible software development
(see [32]).

In this work we illustrate selected accomplishments, which are representative for
the full project. We briefly present a SIMD/SIMT-friendly sparse matrix data layout,
which has been proposed by ESSEX and gives high performance across all available
HPC compute devices. As a sample application we choose the Kernel Polynomial
Method (KPM), which will first be used to revisit our model-driven PE process.
Then we demonstrate for the first time the impact of PE on improving the energy
efficiency on the single socket level for the KPM. Using a coupled performance
and energy model, we validate these findings qualitatively and can conclude that
the achieved performance improvements for KPM directly correlate with energy
savings.

Then we present a brief overview of the GHOST library and give an overview of
selected solvers that use GHOST in ESSEX. We finally demonstrate that sustained
petascale performance on a large CPU-GPGPU cluster is accessible for our very
challenging problem class of sparse linear algebra.

3 Holistic Performance Engineering Driving Energy
Efficiency on the Example of the Kernel Polynomial
Method (KPM)

The KPM [36] is well established in quantum physics and chemistry. It is used
for determining the eigenvalue density (KPM-DOS) and spectral properties of
sparse matrices, exposing high optimization potential and the feasibility of petascale
implementations. In the following study the KPM is applied to a relevant problem
of quantum physics: the determination of electronic structure properties of a three-
dimensional topological insulator.

6The term “MPI+X” denotes the combination of the Message Passing Interface (MPI) and a node-
level programming model.

Performance Engineering for Sparse Building Blocks 321

3.1 Performance Engineering for KPM

The naive version of the KPM as depicted in Algorithm 1 builds on several
BLAS [17] level 1 routines and the Sparse BLAS [7] level 2 spmv (Sparse matrix–
vector multiplication) kernel. The computational intensities of all involved kernels
for the topological insulator application are summarized in Table 1. To classify
the behavior of a kernel on a compute architecture it is useful to correlate the
computational intensity with the machine balance which is the flops/byte ratio of
a machine for data from main memory or, in other words, the ratio between peak
performance and peak memory bandwidth. It turns out that for each kernel in Table 1
the computational intensity is smaller than the machine balance of any relevant HPC
architecture. Even very bandwidth-oriented vector architectures like the NEC SX-
ACE with a theoretical machine balance of 1 byte/flop, fail to deliver enough data
per cycle from main memory to keep the floating point units busy. This discrepancy
only gets more severe on standard multicore CPUs or GPGPUs.

The relative share of data volume assuming minimum data traffic for each kernel
can also be seen in Table 1. As all kernels are strongly bound to main memory
bandwidth, we can directly translate the relative data volume shares to relative
runtime shares if we assume optimal implementations of all kernels and no excess
data transfers. Hence, the spmv is the dominating operation in the naive KPM-
DOS solver. This, together with the fact that BLAS level 1 routines offer only very
limited performance optimization potential, necessitates a detailed examination of
this kernel.

Algorithm 1 Naive version of the KPM-DOS algorithm with corresponding BLAS
level 1 function calls

for r D 0 to R� 1 do
jvi jrand()i
Initialization steps and computation of �0; �1

for mD 1 to M=2 do
swap.jwi; jvi/ F Not done explicitly
jui Hjvi F spmv()
jui jui � bjvi F axpy()
jwi �jwi F scal()
jwi jwi C 2ajui F axpy()
�2m hvjvi F nrm2()
�2mC1 hwjvi F dot()

Table 1 Maximum computational intensities Imax in flops/byte and approximate minimum relative
share of overall data volume in the solver for each kernel and the full naive KPM-DOS
implementation (Algorithm 1) for the topological insulators application

Kernel spmv axpy scal nrm2 dot KPM

Imax 0:317 0:167 0:188 0:250 0:250 0.295

Vmin,rel (%) 59:6 22:0 7:3 3:7 7:3 100

322 M. Kreutzer et al.

3.1.1 Sparse Matrix Data Format

Not only KPM-DOS but also many other sparse linear algebra algorithms are dom-
inated by SpMV. This gave rise to intense research dealing with the performance
of this operation. A common finding is that SpMV performance strongly depends
on the sparse matrix data format. In the past there was an implicit agreement
that an optimal choice of sparse matrix data format strongly depends on the
compute architecture used. Obviously, this poses obstacles especially in the advent
of heterogeneous machines we are facing today. This led to several efforts trying to
either identify data formats that yield good performance on all relevant architectures
or to alter the de facto standard format on CPUs (Compressed Sparse Row, or
CSR) to enable high performance CSR SpMV kernels also on throughput-oriented
architectures. The latter approach resulted in the development of ACSR [1], CSR-
Adaptive [5, 9], and CSR5 [19]. The former approach was pursued by ESSEX,
e.g., in [13] and led to the proposition of SELL-C-� as a “catch-all” sparse matrix
storage format for the heterogeneous computing era. Although re-balancing the
sparse matrix between heterogeneous devices at runtime is not in the scope of this
work, it probably is a wise decision in view of the future to choose an architecture-
independent storage format if it does not diminish the performance of CPU-only
runs. In ESSEX we decided for the SELL-C-� storage format, which we will explain
briefly in the following. Moreover, our preference of SELL-C-� over CSR will be
justified.

SELL-C-� is a generalization of the Sliced ELLPACK [21] format. The sparse
matrix is cut into chunks where each chunk contains C matrix rows, with C being
a multiple of the architecture’s SIMD width. Within a chunk, all rows are padded
with zeros up to the length of the longest row. Matrix values and according column
indices are stored along jagged diagonals and chunk after chunk. To avoid excessive
zero padding, it may be helpful to sort � successive matrix rows (� > C) by
their number of non-zeros before chunk assembly. In this case, also the column
indices of matrix entries have to be permuted accordingly. Figure 2 demonstrates
the assembly of a SELL-C-� matrix from an example matrix. In contrast to CSR,
SIMD processing is achieved along jagged diagonals of the matrix instead of rows.
This enables effective vectorized processing for short rows (comparable to or shorter
than the SIMD width), and it enhances the vectorization efficiency of longer rows
compared to CSR due to the absence of a reduction operation.

Typically, even non-vectorized code yields optimal performance for bandwidth-
bound kernels on a full multi-core CPU socket. However, a higher degree of
vectorization usually comes with higher energy efficiency. Hence, we used SELL-C-
� for our experiments. Even if no performance gain over CSR can be expected on a
full socket, we will demonstrate in Sect. 3.2 that SELL-C-� turns out to be beneficial
in terms of energy consumption. Due to the regular structure of the topological
insulator system matrix, no row sorting has to be applied, i.e., � D 1. The chunk
height C was set to 32. While it is usually a good practice to choose C as small
as possible (which would be C=4 in this case, cf. [13]) to avoid a loss of chunk
occupancy in the SELL-C-� matrix, we do not expect such problems for the present

Performance Engineering for Sparse Building Blocks 323

Fig. 2 SELL-C-� matrix construction where the SELL-2-4 matrix (b) is created from the source
matrix (a), which includes row permutation according to (c), and yields the final SELL-C-� data
structure for this matrix as shown in (d)

Algorithm 2 Enhanced version of the KPM-DOS algorithm using the augmented
SpMV kernel, which covers all operations chained by ‘&’

for r D 0 to R� 1 do
jvi jrand()i
Initialization and computation of �0; �1

for mD 1 to M=2 do
swap.jwi; jvi/
jwi D 2a.H � b1/jvi � jwi & �2m D hvjvi & �2mC1 D hwjvi

test case due to the regularity of the system matrix. Hence, we opted for a larger
C which turned out to be slightly more efficient due to a larger degree of loop
unrolling.

3.1.2 Kernel Fusion and Blocking

The naive KPM-DOS implementation is strongly memory-bound as described in the
introduction to Sect. 3.1. Thus, the most obvious way to achieve higher performance
is to decrease the amount of data traffic.

As previously described in [15], a simple and valid way to do this is to fuse
all involved kernels into a single tailored KPM-DOS kernel. Algorithm 2 shows
the KPM-DOS algorithm with all operations fused into a single kernel. Taking
the algorithmic optimization one step further, we can eliminate the outer loop by
combining all random initial states into a block of vectors and operate on vector
blocks in the fused kernel. The resulting fully optimized (i.e., fused and blocked)

324 M. Kreutzer et al.

Algorithm 3 Fully optimized version of the KPM-DOS algorithm combining kernel
fusion (see Algorithm 2) and vector blocking; each � is a vector of R column-wise
dot products of two block vectors
jVi :D jvi0::R�1 F Assemble vector blocks
jWi :D jwi0::R�1

jVi jrand()i
Initialization and computation of �0; �1

for m D 1 to M=2 do
swap.jWi; jVi/
jWi D 2a.H � b1/jVi � jWi & �2mŒW�D hVjVi & �2mC1ŒW�D hWjVi

kernel can be seen in Algorithm 3. Each of the proposed optimization steps increases
the computational intensity of the KPM-DOS solver:

Imax D 69

234

flops

byte
� 0:295

flops

byte
kernel fusion &��������!
vector blocking

69

.130=R C 24/

flops

byte
(1)

�

8
ˆ̂
<

ˆ̂
:

0:448
flops
byte R D 1 (no blocking)

2:459
flops
byte R D 32 (this work)

2:875
flops
byte R ! 1 :

(2)

Eventually, the fully optimized solver is decoupled from main memory bandwidth
on the Intel Ivy Bridge architecture as we have demonstrated in [15].

3.2 Single-Socket Performance and Energy Analysis

3.2.1 Multi-Core Energy Modeling

The usefulness of analytic models that describe the runtime and power dissipation
of programs and the systems they run on is obvious. Even if such models are often
over-simplified, they can still predict and explain many important properties of
hardware–software interaction. Bandwidth-based upper performance limits on the
CPU level have been successfully used for decades [4, 12], but modeling power
dissipation is more intricate. In [10] we have introduced a phenomenological power
and energy consumption model from which useful guidelines for the energy-optimal
operating point of a code (number of active cores, clock speed) could be derived.
In the following we briefly review the model and its predictions as far as they are
relevant for the application case of KPM.

The model takes a high-level view of energy consumption. It is assumed that the
CPU chip dissipates a constant baseline power W0, which is defined as the power at
zero (extrapolated) clock speed. W0 also contains contributions from cores in idle or
deep sleep state, and it may also comprise other system components whose power

Performance Engineering for Sparse Building Blocks 325

dissipation is roughly constant. Every active core, i.e., when executing instructions,
contributes additional dynamic power, which depends on the clock speed f . The
power dissipation at n active cores is assumed as

W D W0 C �
W1f C W2 f 2

�
n : (3)

There is no cubic term in f since measurements on current multi-core CPUs show
that the dynamic power is at most quadratic in f . The exact dependance on f is
parameterized by W1 and W2. This is a consequence of the automatic adaptation of
supply voltage to clock speed as imposed by the processor or the OS kernel [6].
Power- and energy-to-solution are connected by the program’s runtime, which is
work divided by performance. If F is the amount of work (e.g., in flops) we assume
the following model for the runtime:

T.n; f / D F

min .nP0. f /; Pmax/
; (4)

where P0 is the single-core (i.e., sequential) performance and Pmax is the maximum
performance as given by a bandwidth-based limit (e.g., as given by the product of
arithmetic intensity and memory bandwidth if the memory interface is a potential
bottleneck). Assuming linear scalability up to a saturation point is justified on
current multi-core designs if no other scaling impediments apply. In general P0 will
depend strongly on the clock speed since the serial execution time is dominated by
intra-cache data transfers or in-core execution on modern CPUs with deep cache
hierarchies. This is clearly described by our ECM performance model [31]. The
energy-to-solution is thus

E.n; f / D F � W0 C �
W1f C W2f 2

�
n

min .nP0. f /; Pmax/
: (5)

There are several immediate conclusions that can be drawn from this model [10].
Here we restrict ourselves to the case of a fixed clock speed f . Then,

• if the performance saturates at some number of cores ns, this is the number of
active cores to use for minimal energy-to-solution.

• If the performance is linear in n one must use all cores for minimal energy-to-
solution.

• Energy-to-solution is inversely proportional to performance, regardless of
whether the latter is saturated or not.

We consider the last of these conclusions to be the most important one, since
runtime (i.e., inverse performance) is the only factor in which energy is linear.
This underlines that performance optimization is the pivotal strategy in energy
reduction.

326 M. Kreutzer et al.

3.2.2 Measurements

In order to provide maximum insight into the connections between performance and
energy in a multi-core chip we use what we call a Z-plot, combining performance in
Gflop/s on the x axis with energy-to-solution in J on the y axis (see Fig. 3). One set
of data points represents measurements for solving a fixed problem with a varying
number of active cores on the chip. In a Z-plot, horizontal lines are “energy iso-
lines,” vertical lines are “performance iso-lines,” and hyperbolas are “power iso-
lines” (doubling performance, i.e., cutting the runtime in half, also halves energy).
If a program shows saturating performance with respect to the number of cores,
the curve bends upward at the saturation point, indicating that more resources (thus
more power) are used without a performance gain, leading to growing energy-to-
solution. For scalable programs the curve is expected to stay flat or keep falling if the
power model described in Sect. 3.2.1 holds. The Z-plot has the further advantage that
lines of constant energy-delay product (energy-to-solution multiplied by program
runtime, EDP) are straight lines through the origin. This is convenient when EDP is
used as an alternative target metric instead of plain energy.

All measurements shown in this section were performed on one node (actually a
single socket with ten cores) of the “Emmy” cluster at RRZE, comprising Intel Ivy
Bridge (Xeon E5-2660v2; “IVB”) CPUs with 2.2 GHz base clock speed and 32 GB
of RAM per socket. The clock frequency was set to 2.2 GHz, i.e., “Turbo Mode” was
disabled. Energy measurements were done via the likwid-perfctr tool from
the LIKWID tool suite [18, 34], leveraging Intel’s on-chip RAPL infrastructure. No

0 10 20 30 40 50 60

Performance [GFlop/s]

0

2000

4000

6000

8000

10000

E
ne

rg
y

to
 s

ol
ut

io
n

[J
]

naive SMT1
naive SMT2
augmented SMT1
augmented SMT2
blocked SMT1
blocked SMT2

1.5x

1.45x

2.9x

3.1x

1612 14 18 20

4000

5000

6000

Fig. 3 Single-socket performance and energy Z-plot of naive (squares), augmented (circles), and
blocked (triangles) versions on IVB, comparing one thread per core (filled) vs. two threads (open)
using SELL-32-1. (Inset: enlarged region of saturation for naive and blocked versions with absolute
upper performance limit)

Performance Engineering for Sparse Building Blocks 327

significant variation in energy or performance was observed over multiple runs on
the socket.

In Figure 3 we show package-level energy and performance data for the naive
implementation of KPM (Algorithm 1) and the augmented and blocked versions
(Algorithms 2 and 3) on one IVB socket at a fixed baseline frequency of 2.2 GHz.
As expected from their low computational intensities (see Table 1 and Sect. 3.1.2),
the naive and augmented variants show strong performance saturation at about 5
and 6 cores, respectively. The augmented kernel requires more cores for saturation
since it performs more work per byte transferred from main memory. In the inset
we show the bandwidth-based performance limits calculated by multiplying the
maximum achievable memory bandwidth on the chip (45 GB/s) with the respective
computational intensity. The measured saturated performance is only 6–7 % below
this limit in both cases. Note that the maximum bandwidth was obtained using a
read-only benchmark (likwid-bench load [35]) but the kernels do not exhibit
pure load characteristics. Depending on the fraction of stored vs. loaded data,
the maximum bandwidth delivered to the IVB chip can drop by more than 10 %.
The blocked variant does not suffer from a memory bandwidth bottleneck on this
processor and thus profits from all cores on the chip. As opposed to the naive and
blocked versions, it also shows a significant speedup of 12 % when using both
hardware threads per core (SMT2).

The energy-to-solution data in the figure was measured on the CPU package
level, i.e., ignoring the rest of the system such as RAM, I/O, disks, etc. On the
other hand, the particular IVB processor used for the benchmarks shows a low
dynamic power compared to chips with higher clock speeds. As a consequence,
performance improvements by algorithmic or implementation changes translate into
almost proportional energy savings. This is demonstrated by the dashed lines in
Fig. 3: Comparing full sockets, the naive version is 1.5� slower and takes 1.45�
more energy than the augmented version. The blocked version is 3.1� faster and
takes 2.9� less energy than the augmented version. This correspondence becomes
only more accurate when adding the full baseline power contributions from all
system components. Note that a further 20 % of package-level energy can be saved
with the naive and blocked versions by choosing the minimum number of cores that
ensures saturation.

The influence of SMT is minor in the saturating cases, which is expected since
SMT cannot improve performance in the presence of a strong memory bottleneck.
The 12 % performance boost for the blocked version comes with negligible energy
savings. We must conclude that executing code on both hardware threads increases
the power dissipation, which is also seen by the slight energy increase for SMT2 in
the saturated case.

A performance-energy comparison of the SELL-1-1 (a.k.a. CSR) matrix storage
format with SELL-32-1 is shown in Fig. 4 for all code versions. The energy
advantage of SELL-32-1 in the saturating case is mainly due to the higher single-
core performance and accordingly smaller number of required cores to reach the
saturation point, leading to package-level energy savings of 8 % and 13 % for the
naive and augmented kernels, respectively. We attribute the slight difference in

328 M. Kreutzer et al.

0 10 20 30 40 50 60

Performance [GFlop/s]

0

2000

4000

6000

8000

10000
E

ne
rg

y
to

 s
ol

ut
io

n
[J

]

naive SELL-1-1
naive SELL-32-1
augmented SELL-1-1
augmented SELL-32-1
blocked SELL-1-1
blocked SELL-32-1

12 14 16 18 20

4000

5000

6000

1.08x

1.13x

Fig. 4 Single-socket performance and energy Z-plot for the same kernel versions as in Fig. 3 but
comparing the SELL-1-1 (CSR) matrix format (filled symbols) with SELL-32-1 (open symbols) at
two threads per core

saturated performance to the different right-hand side data access patterns in the
SpMV. The blocked variant shows no advantage (even a slight slowdown) for the
SIMD-friendly data layout, which is expected since the access to the matrix data is
negligible.

The conclusion from the socket-level performance and energy analysis is that
optimization by performance engineering translates, to lowest order, into equivalent
energy savings. Overall, the performance ratio between the fastest variant (blocked,
with two threads per core) and the lowest (full-socket CSR-based naive implemen-
tation) is 5.1, at an energy reduction of 4.5�. At least on the Intel Ivy Bridge system
studied here we expect similar findings for other algorithms investigated in the
ESSEX project.

A comprehensive analysis of the power dissipation and energy behavior of the
studied code variants and the changes for multi-socket and highly parallel runs is
beyond the scope of this paper and will be published elsewhere.

4 An Overview of GHOST

The GHOST (General, Hybrid, and Optimized Sparse Toolkit) library summarizes
the effort put into computational building blocks in the ESSEX project. A detailed
description can be found in [16]. GHOST, a “physics” package containing several
scalable sparse matrices, and a range of example applications are available for

Performance Engineering for Sparse Building Blocks 329

download.7 GHOST features high performance building blocks for sparse linear
algebra. It builds on the “MPI+X” programming paradigm where “X” can be one of
either OpenMP+SIMD or CUDA. The development process of GHOST is closely
accompanied by analytic performance modeling, which guarantees compute kernels
with optimal performance where possible.

There are several software libraries available that offer some sort of hetero-
geneous execution capabilities. MAGMA [20], ViennaCL [30], PETSc [3], and
Trilinos [11] are arguably the most prominent approaches, all of which have their
strengths and weaknesses. PETSc and Trilinos are similar to GHOST as they also
build on “MPI+X”. MAGMA and ViennaCL, on the other hand, provide shared
memory building blocks for different architectures but do not expose any distributed
memory capabilities themselves. The most fundamental difference between GHOST
and the aforementioned libraries is the possibility of data-parallel heterogeneous
execution in GHOST (see below). GHOST has been designed from scratch with
heterogeneous architecture in mind. This has to be viewed in contrast to the sub-
sequent addition of heterogeneous computing features to originally homogeneous
libraries such as, e.g., PETSc, for which a disclaimer says:8 “WARNING: Using
GPUs effectively is difficult! You must be dedicated and willing to get into the guts
of GPU usage if you are serious about using GPUs.”

GHOST is not intended to be a rival of the mentioned libraries, but rather a
promising supplement and novel approach. Due to its young age, it certainly falls
behind in terms of robustness and maturity. While other solutions focus on broad
applicability, which often comes with sacrificing some performance, achieving
optimal efficiency for selected applications without losing sight of possible broader
applicability is clearly the main target of GHOST development. Within the ESSEX
effort, we supply mechanisms to use GHOST in higher level software frameworks
using the PHIST library [32]. To give an example, in [16] we have demonstrated
the feasibility and performance gain of using PHIST to leverage GHOST for a
Krylov-Schur algorithm as implemented in the Trilinos package Anasazi [2]. In
the following we will briefly summarize the most important features of GHOST and
how they influence the ESSEX effort.

A unique feature of GHOST is the capability of data-parallel execution across
heterogeneous devices. MPI ranks can be assigned to arbitrary combinations of
heterogeneous compute devices, as depicted in Fig. 5. A sparse system matrix is the
central data structure in GHOST, and it is distributed row-wise among MPI ranks. In
order to reflect heterogeneous systems in an efficient manner, the amount of matrix
rows per rank can be arbitrarily set at runtime. Section 5.1 demonstrates possible
performance gains due to this feature.

On top of “MPI+X”, GHOST exposes the possibility for affinity-aware task-
level parallelism. Users can create tasks, which are defined as arbitrary callback
functions. OpenMP parallelism can be used inside those tasks and GHOST will take

7https://bitbucket.org/essex/
8http://www.mcs.anl.gov/petsc/features/gpus.html, accessed 02-16-2016

https://bitbucket.org/essex/
http://www.mcs.anl.gov/petsc/features/gpus.html

330 M. Kreutzer et al.

Fig. 5 Heterogeneous compute node and sensible process placement as suggested by GHOST
(Figure taken from [16]). (a) Heterogeneous node. (b) Process placement

1 2 3 4 5 6 7 8 9 10

Number of cores

0

4

8

12

16

20

Pe
rf

or
m

an
ce

 (
G

fl
op

/s
)

SELL-4-128 (AVX intrinsics)
SELL-4-128 (plain C)
CRS (plain C)

Fig. 6 Intra-socket performance on a single CPU showing the impact of vectorization on SpMV
performance for different storage formats (Figure taken from [16])

care of thread affinity and resource management. This feature can be used, e.g., for
communication hiding, asynchronous I/O, or checkpointing. In future work we plan
to implement asynchronous preconditioning techniques based on this mechanism.

GHOST uses the SELL-C-� sparse matrix storage format as previously described
in Sect. 3.1.1. Note that this does not imply exclusion of CSR, since CSR is just a
special case of SELL-C-� with C=1 and �=1. Selected kernels are implemented
using compiler intrinsics to ensure efficient vectorization. This turned out to be a
requirement for optimal performance of rather complex, compute-intensive kernels.
However, vectorization may also pay off for kernels with lower computational
intensity. Figure 6 backs up the findings of Sect. 3.2.2 in this regard. Not only
the superior vectorization potential of SELL-C-� over CSR, but also a manually

Performance Engineering for Sparse Building Blocks 331

Fig. 7 The impact of
hard-coded loop length on the
SpMMV performance with
increasing block vector width
on a single CPU (Figure
taken from [16])

1 2 3 4 5 6 7 8

Block vector width

0

10

20

30

40

50

60

Pe
rf

or
m

an
ce

 (
G

fl
op

/s
)

Hard-coded block vector width
Runtime block vector width

vectorized implementation of the SELL-C-� SpMV kernel yields a highly energy-
efficient SpMV kernel.

Vector blocking, i.e., processing several dense vectors at once, is usually a
highly appropriate optimization technique in sparse linear algebra due to the often
bandwidth-limited nature of sparse matrix algorithms. GHOST addresses this by
supporting efficient block vector operations for row- and column-major storage.

Block vector operations often lead to short loops due to a small number of vectors
(i.e., in the order of tens) in a block. As short loops are often accompanied by
performance penalties, it is possible to define a list of small dimensions at GHOST
compile time. Block vector kernels will be automatically generated according to
this list. This mechanism is used not only for block vectors, but also for the chunk
height C in the SELL-C-� sparse matrix format. Figure 7 illustrates the performance
benefit observed due to generated block vector kernels for the sparse matrix multiple
vector multiplication (SpMMV).

Another way to improve the computational intensity of sparse linear algebra
algorithms is kernel fusion. In this regard, specialized kernels like the KPM-
DOS operator are implemented in close collaboration with experts from the
application domain. The specialization grade, i.e., the number and combination
of fused operations, of those kernels can be gradually increased, which makes
them potentially useful for applications beyond the ESSEX scope. In this regard
it should be noted that kernel fusion, while certainly being a promising optimization
approach, diminishes the potential for efficient task-parallel execution. This fact
promotes the use of kernel fusion together with data parallelism as used in GHOST.

Among others, the described features enable very high performance on
modern, heterogeneous supercomputers as demonstrated in our previous work
[14, 15, 24, 29].

332 M. Kreutzer et al.

5 GHOST Applications

In the course of the ESSEX project the GHOST library has been used by several
numerical schemes (developed and implemented in the computational algorithms
layer) to enable large-scale (heterogeneous) computations for quantum physics
scenarios defined by the application layer. Here we summarize selected (already
published) application scenarios to demonstrate the capability, the state, and
the broad applicability of the GHOST library. We have added measurements,
where appropriate, to demonstrate the performance sustainability of the GHOST
framework over several processor generations. Moreover these measurements also
provide an impression of the rather moderate technological improvements on the
hardware level during the ESSEX project period. In particular we focus on a node-
level comparison of a Cray XC30 system, which hosts one Nvidia K20X GPGPU
and one Intel Xeon E5-2670 “Sandy Bridge” (SNB) processor in each node, with a
recent CPU compute node comprising two Intel Xeon E5-2695v3 “Haswell” (HSW)
CPUs. While the Cray XC30 system (Piz Daint at CSCS Lugano) has entered the
Top500 top ten list at the start of the ESSEX project and is still ranked as #7
(November 2015), Intel Haswell-based systems showed up first in the top ten in
2015.

5.1 Density of States Computations Using KPM-DOS

The basic algorithm (KPM-DOS) used in ESSEX to compute the density of
states of large sparse matrices has been introduced in Sect. 3.1. In reference [15]
we have presented the PE process and implementation details to enable fully
heterogeneous (CPU+GPGPU) KPM-DOS computations and could achieve high
node-level performance up to 1024 nodes in weak scaling scenarios. Since then we
have extended our runs to up to 4096 nodes (which is approximately 80% of Piz
Daint) to achieve 0.5 Pflop/s of sustained performance when computing the DOS of
a topological insulator model Hamiltonian (see Fig. 8). The corresponding matrix
has a dimension of 3 � 1010 and is extremely sparse with an average of 13 non-zero
entries per row. On the node-level the optimizations described earlier have led to
significant performance gains for both devices as shown in Fig. 9, and we expect
similar energy efficiency improvements on the Cray XC30 system as demonstrated
above. Note that during the optimization steps the performance bottleneck on the
GPGPU changed from main memory saturation to the dot product. Extending the
discussion to latest CPU hardware, we find the Haswell-based system being only
15% ahead of the Cray XC30 node.

Performance Engineering for Sparse Building Blocks 333

Fig. 8 Strong and weak
scaling performance results
for different geometries for
the topological insulator test
case on Piz Daint
(measurements up to 1024
nodes have been presented
in [15])

1 64 256 1024 4096164

Number of heterogeneous nodes

0.1

1

10

100

P
er

fo
rm

an
ce

 in
 T

flo
p/

s

100% Parallel Efficiency
Square, Weak Scaling
Bar, Weak Scaling
Square, Strong Scaling

Fig. 9 Impact of
optimization steps described
in Sect. 3.1 on the node-level
performance of Piz Daint
(single device and
heterogeneous) and a
CPU-only node containing
two HSW processors (Piz
Daint numbers are taken
from [15])

Vanilla Kernel
Fusion

Kernel F.+
Blocking

0

20

40

60

80

100

120

140

160

P
er

fo
rm

an
ce

 in
 G

flo
p/

s

1xSNB
1xK20X
Node: SNB+K20X
Node: 2x HSW

5.2 Inner Eigenvalue Computation with Chebyshev Filter
Diagonalization (ChebFD)

Applying Chebyshev polynomials as a filter in an iterative subspace scheme allows
for the computation of inner eigenpairs of large sparse matrices. The attractive fea-
ture of this well-known procedure is the close relation between the filter polynomial
and the KPM-DOS scheme. Replacing the norm computation (nrm2) and the dot
product in Algorithm 1 by a vector addition (axpy) yields the polynomial filter in
our ChebFD scheme. For a more detailed description of ChebFD (which is also part
of our BEAST-P solver), and the relation to KPM-DOS we refer to the report on
the ESSEX solver repository [32] and to [24]. In ChebFD the polynomial filter is
applied to a subspace of vectors and also optimization stage 2 (see Algorithm 3)
can be applied. As compared to the KPM-DOS kernel, the lower computational

334 M. Kreutzer et al.

Fig. 10 Performance of
KPM-DOS kernel and
polynomial filter for the
topological insulator matrix
on the Nvidia K20m GPGPU,
a single SNB, and 2 HSW
sockets (the latter two only
for block vector width
R D 32)

1 2 4 8 16 32

Block vector size R

0

20

40

60

80

100

120

140

P
er

fo
rm

an
ce

 in
 G

flo
p/

s

KPM-DOS
ChebFD: Polynomial Filter

2x HSW

1x SNB

Fig. 11 Performance on a
single IVB socket of tall and
skinny matrix–matrix
multiplication X V �W
with double complex data
type, where X is R � R, V is
R �D, W is D� R and
DD 107

8 16 24 32 40 48 56 64

Block vector size R

0

20

40

60

80

100

120

140

160

180

200

P
er

fo
rm

an
ce

 in
 G

flo
p/

s

Roofline limit
GHOST
ATLAS
Intel MKL

intensity of the filter kernel reduces performance on the CPU architectures, while the
GPGPU benefits from the lack of reduction operations moving its bottleneck back to
data transfer (see Fig. 10). It is also evident that the Cray XC30 node (K20X+SNB)
outperforms the Intel Haswell node (2� HSW) on this kernel.

As a second part ChebFD requires a subspace orthogonalization step, which
basically leads to matrix–matrix multiplications involving “tall and skinny” matri-
ces. The performance of widely used BLAS level 3 multi-threaded libraries such
as Intel MKL or ATLAS are often not competitive in the relevant parameter
space addressed by ESSEX applications as can be seen in Fig. 11. Up to a block
vector size of approximately 50 they may miss the upper performance bound
imposed by the memory bandwidth and the arithmetic peak performance by a large
margin. Hence, GHOST provides optimized kernels for these application scenarios
achieving typically 80 % of the maximum attainable performance (see Fig. 11). Note

Performance Engineering for Sparse Building Blocks 335

that automatic kernel generation with compile time defined small dimensions as
described in Sect. 4 also works for “tall and skinny” GEMM operations.

The corresponding cuBLAS calls show similar characteristics and thus ESSEX
is currently preparing hand-optimized GPGPU kernels for “tall and skinny” dense
matrix operations as well.

With the current ChebFD implementation we have computed 148 innermost
eigenvalues of a topological insulator matrix (matrix dimension 109) on 512 Intel
Xeon nodes on the second phase of SuperMUC9 within 10 h (see [24] for details).
Using all of the 3072 nodes we will be able to compute the relevant inner eigenvalues
for a topological insulator matrix dimension of 1010 at a sustained performance of
approximately 250 Tflop/s on that machine.

ChebFD is similar to the recent FEAST algorithm [27]. In FEAST the accel-
eration is not done with a matrix polynomial but by a contour integration of the
resolvent, thus involving the solution of linear systems. FEAST can be faster if
a very efficient (e.g., direct) solver is available for the ill-conditioned and highly
indefinite linear systems and if high-degree polynomials must be employed in
ChebFD. In other situations, ChebFD may be superior due to the high-performance
kernels. ChebFD is limited to standard eigenvalue problems, whereas FEAST also
can address generalized problems.

5.3 Block Jacobi-Davidson QR Method

The popular Jacobi-Davidson method has been chosen in ESSEX to compute a few
low eigenpairs of large sparse matrices. A block variant (BJDQR) was implemented
which operates on dense blocks of vectors and thus increases the computational
intensity (similar to optimization stage 2 in Fig. 3) and decreases the amount of
synchronization points (see [29] and our report on the ESSEX solver repository [32]
for details).

The most time consuming operations in this algorithm are the SpMMV and
various tall-skinny matrix–matrix products for a limited number of block sizes (e.g.
2,4 and 8). The implementation was tuned to make the best possible use of the
highly optimized GHOST kernels (see Fig. 11), and in particular block vectors in
row-major storage.

As soon as all optimized CUDA “tall and skinny” GEMM kernels are imple-
mented in GHOST, BJDQR will also be available for fully heterogeneous com-
putations. For a more detailed analysis of performance and numerical efficiency
of our BJDQR solver we refer to [28, 29], where it was shown that GHOST
delivers near optimal performance on an IVB system and is clearly superior to other
implementations.

9https://www.lrz.de/services/compute/supermuc/systemdescription/

https://www.lrz.de/services/compute/supermuc/systemdescription/

336 M. Kreutzer et al.

6 Summary and Outlook

We have given an overview of the building block layer in the ESSEX project, specif-
ically the GHOST library. Using several examples of applications within the project
(Kernel Polynomial Method [KPM], Chebyshev filter diagonalization [ChebFD],
block Jacobi-Davidson QR [BJDQR]) we have shown that GHOST can address
the challenges of heterogeneous, highly parallel architectures with its consistent
“MPI+X” approach. GHOST implements the highly successful SELL-C-� sparse
matrix format, which contains several other popular formats such as CSR as special
cases. We have demonstrated our model-driven Performance Engineering approach
using the example of a KPM-DOS application, showing that improvements in the
kernel implementation (including the choice of a SIMD-friendly data layout, loop
fusion, and blocking) lead not only to the expected performance improvements but
also to proportional savings in energy-to-solution on the CPU level, both validated
using appropriate performance and power models. For KPM we have also shown
the scalability on up to 4096 nodes on the Piz Daint supercomputer, delivering
a sustained performance of 0.5 Pflop/s and 87% heterogeneous parallel efficiency
on the node-level (CPU+GPGPU). The algorithmically more challenging ChebFD
implementation benefited from the optimized tall skinny matrix multiplications in
GHOST, which reach substantially higher (in fact, near-light speed, i.e., close to
the roofline limit) socket-level performance than the vendor library (MKL) for
small to medium block vector sizes. Finally, guided by the same PE approach as
in the other cases we could improve the performance of our BJDQR implemen-
tation to yield a 3� speedup compared with the Trilinos building block library
Tpetra.

The first three years of research into sparse building blocks have already yielded
effective ways of Performance Engineering, based on analytic models and insight
into hardware-software interaction. Beyond the continued implementation and
optimization of tailored kernels for the algorithmic and application-centric parts
of the ESSEX project, we will in the future place more emphasis on optimized
(problem-aware) matrix storage schemes, high-precision reduction operations with
automatic error control, and on more advanced modeling and validation approaches.
We have also just barely scratched the surface of the energy dissipation properties
of our algorithms; more in-depth analysis is in order to develop a more detailed
understanding of power dissipation on heterogeneous hardware.

Acknowledgements The research reported here was funded by Deutsche Forschungsgemein-
schaft via the priority program 1648 “Software for Exascale Computing” (SPPEXA). The authors
gratefully acknowledge support by the Gauss Centre for Supercomputing e.V. (GCS) for providing
computing time on their SuperMUC system at Leibniz Supercomputing Centre through project
pr84pi, and by the CSCS Lugano for providing access to their Piz Daint supercomputer. Work at
Los Alamos is performed under the auspices of the USDOE.

Performance Engineering for Sparse Building Blocks 337

References

1. Ashari, A., Sedaghati, N., Eisenlohr, J., Parthasarathy, S., Sadayappan, P.: Fast sparse matrix-
vector multiplication on GPUs for graph applications. In: Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis (SC ’14),
pp. 781–792. IEEE Press, Piscataway (2014)

2. Baker, C.G., Hetmaniuk, U.L., Lehoucq, R.B., Thornquist, H.K.: Anasazi software for the
numerical solution of large-scale eigenvalue problems. ACM Trans. Math. Softw. 36(3), 13:1–
13:23 (2009)

3. Balay, S., Abhyankar, S., Adams, M.F., Brown, J., Brune, P., Buschelman, K., Dalcin, L.,
Eijkhout, V., Gropp, W.D., Kaushik, D., Knepley, M.G., McInnes, L.C., Rupp, K., Smith, B.F.,
Zampini, S., Zhang, H.: PETSc Web page (2015). http://www.mcs.anl.gov/petsc

4. Callahan, D., Cocke, J., Kennedy, K.: Estimating interlock and improving balance for pipelined
architectures. J. Parallel Distrib. Commun. 5(4), 334–358 (1988)

5. Daga, M., Greathouse, J.L.: Structural agnostic spmv: Adapting csr-adaptive for irregular
matrices. In: 2015 IEEE 22nd International Conference on High Performance Computing
(HiPC), pp. 64–74 (2015)

6. De Vogeleer, K., Memmi, G., Jouvelot, P., Coelho, F.: The energy/frequency convexity rule:
modeling and experimental validation on mobile devices. In: Wyrzykowski, R., Dongarra, J.,
Karczewski, K., Waśniewski, J. (eds.) Parallel Processing and Applied Mathematics. Lecture
Notes in Computer Science, vol. 8384, pp. 793–803. Springer, Berlin/Heidelberg (2014)

7. Duff, I.S., Heroux, M.A., Pozo, R.: An overview of the sparse basic linear algebra subpro-
grams: the new standard from the BLAS technical forum. ACM Trans. Math. Softw. 28(2),
239–267 (2002)

8. Fehske, H., Hager, G., Pieper, A.: Electron confinement in graphene with gate-defined quantum
dots. Phys. Status Solidi 252(8), 1868–1871 (2015)

9. Greathouse, J.L., Daga, M.: Efficient sparse matrix-vector multiplication on GPUs using the
CSR storage format. In: Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, pp. 769–780 (SC ’14). IEEE Press, Piscataway
(2014)

10. Hager, G., Treibig, J., Habich, J., Wellein, G.: Exploring performance and power properties of
modern multi-core chips via simple machine models. Concurr. Comput. 28(2), 189–210 (2014)

11. Heroux, M.A., Bartlett, R.A., Howle, V.E., Hoekstra, R.J., Hu, J.J., Kolda, T.G., Lehoucq,
R.B., Long, K.R., Pawlowski, R.P., Phipps, E.T., Salinger, A.G., Thornquist, H.K., Tuminaro,
R.S., Willenbring, J.M., Williams, A., Stanley, K.S.: An overview of the Trilinos project. ACM
Trans. Math. Softw. 31(3), 397–423 (2005)

12. Hockney, R.W., Curington, I.J.: f1=2: A parameter to characterize memory and communication
bottlenecks. Parallel Comput. 10(3), 277–286 (1989)

13. Kreutzer, M., Hager, G., Wellein, G., Fehske, H., Bishop, A.R.: A unified sparse matrix data
format for efficient general sparse matrix-vector multiplication on modern processors with
wide SIMD units. SIAM J. Sci. Comput. 36(5), C401–C423 (2014)

14. Kreutzer, M., Pieper, A., Alvermann, A., Fehske, H., Hager, G., Wellein, G., Bishop, A.R.:
Efficient large-scale sparse eigenvalue computations on heterogeneous hardware. In: Poster
at 2015 ACM/IEEE International Conference on High Performance Computing Networking,
Storage and Analysis (SC ’15) (2015)

15. Kreutzer, M., Pieper, A., Hager, G., Alvermann, A., Wellein, G., Fehske, H.: Performance
engineering of the kernel polynomial method on large-scale CPU-GPU systems. In: 29th IEEE
International Parallel & Distributed Processing Symposium (IEEE IPDPS 2015), Hyderabad
(2015)

16. Kreutzer, M., Thies, J., Röhrig-Zöllner, M., Pieper, A., Shahzad, F., Galgon, M., Basermann,
A., Fehske, H., Hager, G., Wellein, G.: GHOST: building blocks for high performance sparse
linear algebra on heterogeneous systems (2015), preprint. http://arxiv.org/abs/1507.08101

http://www.mcs.anl.gov/petsc
http://arxiv.org/abs/1507.08101

338 M. Kreutzer et al.

17. Lawson, C.L., Hanson, R.J., Kincaid, D.R., Krogh, F.T.: Basic linear algebra subprograms for
Fortran usage. ACM Trans. Math. Softw. 5(3), 308–323 (1979)

18. LIKWID: Performance monitoring and benchmarking suite. https://github.com/RRZE-HPC/
likwid/. Accessed Feb 2016

19. Liu, W., Vinter, B.: CSR5: An efficient storage format for cross-platform sparse matrix-
vector multiplication. In: Proceedings of the 29th ACM on International Conference on
Supercomputing (ICS ’15), pp. 339–350. ACM, New York (2015)

20. MAGMA: Matrix algebra on GPU and multicore architectures. http://icl.cs.utk.edu/magma/.
Accessed Feb 2016

21. Monakov, A., Lokhmotov, A., Avetisyan, A.: Automatically tuning sparse matrix-vector
multiplication for GPU architectures. In: Patt, Y., Foglia, P., Duesterwald, E., Faraboschi, P.,
Martorell, X. (eds.) High Performance Embedded Architectures and Compilers. Lecture Notes
in Computer Science, vol. 5952, pp. 111–125. Springer, Berlin/Heidelberg (2010)

22. Pieper, A., Heinisch, R.L., Fehske, H.: Electron dynamics in graphene with gate-defined
quantum dots. EPL 104(4), 47010 (2013)

23. Pieper, A., Heinisch, R.L., Wellein, G., Fehske, H.: Dot-bound and dispersive states in
graphene quantum dot superlattices. Phys. Rev. B 89, 165121 (2014)

24. Pieper, A., Kreutzer, M., Galgon, M., Alvermann, A., Fehske, H., Hager, G., Lang, B.,
Wellein, G.: High-performance implementation of Chebyshev filter diagonalization for interior
eigenvalue computations (2015), preprint. http://arxiv.org/abs/1510.04895

25. Pieper, A., Schubert, G., Wellein, G., Fehske, H.: Effects of disorder and contacts on transport
through graphene nanoribbons. Phys. Rev. B 88, 195409 (2013)

26. Pieper, A., Fehske, H.: Topological insulators in random potentials. Phys. Rev. B 93, 035123
(2016)

27. Polizzi, E.: Density-matrix-based algorithm for solving eigenvalue problems. Phys. Rev. B 79,
115112 (2009)

28. Röhrig-Zöllner, M., Thies, J., Kreutzer, M., Alvermann, A., Pieper, A., Basermann, A., Hager,
G., Wellein, G., Fehske, H.: Performance of block Jacobi-Davidson eigensolvers. In: Poster
at 2014 ACM/IEEE International Conference on High Performance Computing Networking,
Storage and Analysis (2014)

29. Röhrig-Zöllner, M., Thies, J., Kreutzer, M., Alvermann, A., Pieper, A., Basermann, A., Hager,
G., Wellein, G., Fehske, H.: Increasing the performance of the Jacobi–Davidson method by
blocking. SIAM J. Sci. Comput. 37(6), C697–C722 (2015)

30. Rupp, K., Rudolf, F., Weinbub, J.: ViennaCL – a high level linear algebra library for GPUs and
multi-core CPUs. In: International Workshop on GPUs and Scientific Applications, pp. 51–56
(2010)

31. Stengel, H., Treibig, J., Hager, G., Wellein, G.: Quantifying performance bottlenecks of stencil
computations using the execution-cache-memory model. In: Proceedings of the 29th ACM
International Conference on Supercomputing (ICS ’15), pp. 207–216. ACM, New York (2015)

32. Thies, J., Galgon, M., Shahzad, F., Alvermann, A., Kreutzer, M., Pieper, A., Röhrig-Zöllner,
M., Basermann, A., Fehske, H., Hager, G., Lang, B., Wellein, G.: Towards an exascale
enabled sparse solver repository. In: Proceedings of SPPEXA Symposium. Lecture Notes in
Computational Science and Engineering. Springer (2016)

33. TOP500 Supercomputer Sites. http://www.top500.org. Accessed Feb 2016
34. Treibig, J., Hager, G., Wellein, G.: LIKWID: A lightweight performance-oriented tool suite

for x86 multicore environments. In: Proceedings of the 2010 39th International Conference
on Parallel Processing Workshops (ICPPW ’10), pp. 207–216. IEEE Computer Society,
Washington, DC (2010)

35. Treibig, J., Hager, G., Wellein, G.: likwid-bench: An extensible microbenchmarking platform
for x86 multicore compute nodes. In: Brunst, H., Müller, M.S., Nagel, W.E., Resch, M.M.
(eds.) Tools for High Performance Computing 2011, pp. 27–36. Springer, Berlin/Heidelberg
(2012)

36. Weiße, A., Wellein, G., Alvermann, A., Fehske, H.: The kernel polynomial method. Rev. Mod.
Phys. 78, 275–306 (2006)

https://github.com/RRZE-HPC/likwid/
https://github.com/RRZE-HPC/likwid/
http://icl.cs.utk.edu/magma/
http://arxiv.org/abs/1510.04895
http://www.top500.org

	Performance Engineering and Energy Efficiency of Building Blocks for Large, Sparse Eigenvalue Computations on Heterogeneous Supercomputers
	1 Introduction
	2 Contribution
	3 Holistic Performance Engineering Driving Energy Efficiency on the Example of the Kernel Polynomial Method (KPM)
	3.1 Performance Engineering for KPM
	3.1.1 Sparse Matrix Data Format
	3.1.2 Kernel Fusion and Blocking

	3.2 Single-Socket Performance and Energy Analysis
	3.2.1 Multi-Core Energy Modeling
	3.2.2 Measurements

	4 An Overview of GHOST
	5 GHOST Applications
	5.1 Density of States Computations Using KPM-DOS
	5.2 Inner Eigenvalue Computation with Chebyshev Filter Diagonalization (ChebFD)
	5.3 Block Jacobi-Davidson QR Method

	6 Summary and Outlook
	References

