
Towards an Exascale Enabled Sparse Solver
Repository

Jonas Thies, Martin Galgon, Faisal Shahzad, Andreas Alvermann,
Moritz Kreutzer, Andreas Pieper, Melven Röhrig-Zöllner, Achim Basermann,
Holger Fehske, Georg Hager, Bruno Lang, and Gerhard Wellein

Abstract As we approach the exascale computing era, disruptive changes in the
software landscape are required to tackle the challenges posed by manycore CPUs
and accelerators. We discuss the development of a new ‘exascale enabled’ sparse
solver repository (the ESSR) that addresses these challenges—from fundamental
design considerations and development processes to actual implementations of some
prototypical iterative schemes for computing eigenvalues of sparse matrices. Key
features of the ESSR include holistic performance engineering, tight integration
between software layers and mechanisms to mitigate hardware failures.

1 Introduction

It is widely accepted that the step from peta- to exascale is qualitatively different
from previous advances in high performance computing and therefore poses urgent
questions. Considering applications that need these vast computing resources, which
algorithms expose such massive parallelism? What will the next generations of
supercomputers look like, and how can we write sustainable yet efficient software

J. Thies (�) • M. Röhrig-Zöllner • A. Basermann
Simulation and Software Technology, German Aerospace Center (DLR), Köln, Germany
e-mail: Jonas.Thies@DLR.de

M. Galgon • B. Lang
School of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany

A. Alvermann • A. Pieper • H. Fehske
Institute of Physics, University of Greifswald, Greifswald, Germany

M. Kreutzer • F. Shahzad • G. Hager • G. Wellein
Erlangen Regional Computing Center, Friedrich-Alexander-University Erlangen-Nuremberg,
Erlangen, Germany

© Springer International Publishing Switzerland 2016
H.-J. Bungartz et al. (eds.), Software for Exascale Computing – SPPEXA
2013-2015, Lecture Notes in Computational Science and Engineering 113,
DOI 10.1007/978-3-319-40528-5_13

295

mailto:Jonas.Thies@DLR.de

296 J. Thies et al.

for them? The ESSEX project1 has developed the ‘Exascale enabled Sparse Solver
Repository’ (ESSR) over the past three years, and in this paper we want to share
our experiences and summarize our results in order to contribute to answering
these questions. Besides reviewing the ESSEX project, the paper contributes a
thorough presentation of a software architecture for iterative sparse solver libraries
on heterogeneous supercomputers that overcomes some of the shortcomings of
existing packages on the road to exascale.

The applications we study come from quantum physics and material science,
and are directly or indirectly related to solving the Schrödinger equation. The
Hamiltonian of the systems studied can be represented as a (very) large and sparse
matrix, and the numerical task is to solve sparse eigenvalue problems in various
flavors. The software we develop is intended as a blueprint for other applications of
sparse linear algebra.

In the next few years, we expect no radical change in the architecture of
supercomputers, so that a scaled up version of current petascale systems is used as
target architecture for the ESSR. That is, a distributed memory cluster of (possibly
heterogeneous) nodes. On the other hand, node-level programming will become
much more challenging because of the strong increase in node level parallelism
and complexity.2 Due to the increasing node count, we do anticipate a much shorter
mean time to failure (MTTF) on the full system scale, which has to be addressed for
large simulations using substantial parts of an exascale system.

A key challenge in the efficient implementation of sparse matrix algorithms is
the ‘bandwidth bottleneck’, the fact that in most modern architectures the amount of
data that can be loaded per floating point operation is continually decreasing. To hide
this gap, cache systems of increasing complexity and non-uniform cache/memory
hierarchies are used. Another issue is the relative increase of the latency of
global reduction/synchronization operations, which are central to many numerical
schemes. In the ESSR we address these problems using block algorithms with
tailored kernels (see also [27]) and communication hiding.

Three overarching principles guide the design of the ESSR: disruptive changes
of data structures for node-level efficiency, holistic performance engineering to
avoid accumulation of losses on various hardware or software levels, and user-level
fault tolerance schemes to keep the overhead for guaranteeing stable runs as low as
possible.

The various layers of the ESSR (application, algorithms and building blocks)
were co-developed ‘from scratch’ within the past three years. This rapid process
was only possible with a comprehensive software engineering approach, which we
will describe in this paper. We use the term ‘repository’ rather than ‘library’ because
of the young age of our effort. In the future, the ESSR components will be integrated

1Equipping Sparse Solvers for the Exascale, http://blogs.fau.de/essex, funded by the priority
program “Software for Exascale Computing” (SPPEXA) of the German Research Foundation
(DFG)
2see, e.g., https://www.olcf.ornl.gov/summit/

http://blogs.fau.de/essex
https://www.olcf.ornl.gov/summit/

Towards an Exascale Enabled Sparse Solver Repository 297

to form a complete software stack for extreme scale sparse eigenvalue computations
and applications.

Related work A large number of decisions has to be made when designing basic
linear algebra data structures such as classes for sparse matrices, (block) vectors or
dense matrices. On the other hand, iterative algorithms may remain largely oblivious
of these implementation details (e.g. the storage scheme for sparse matrices, the
parallelization techniques used). In the past, iterative solver libraries were therefore
often based on reverse communication interfaces (RCI, see, e.g., (P)ARPACK [30]
or FEAST [32]), or simple callback functions that allowed the user only to provide
the result of a matrix–vector product and possibly a preconditioning operation (as
in PRIMME [42]). In such approaches, the user is bound to the parallelization
technique prescribed by the solver library (i.e. pure MPI in the examples above),
and the solver library can not exploit techniques like kernel fusion or overlapping of
communication and computation across operations. Another library implementing
sparse eigenvalue solvers is SLEPc [17]. Here the user has to adapt to the data
structures of the larger software framework PETSc [3].

A more flexible approach is the concept of an interface layer in the Trilinos
library Anasazi [2]. Solvers in this C++ library are templated on scalar data type
and the ‘multi-vector’ and operator types. For each kernel library providing these
objects, an ‘adapter’ has to be written. Apart from the operator application (which
may wrap a sparse matrix–vector product), the kernel library implements a multi-
vector class with certain functionality. For an overview of Trilinos, see [18, 19].
Our own approach is to use an interface layer which is slightly more extensive
than the one in Anasazi, but puts less constraints on the underlying data structures
(see Sect. 3.4).

The predicted range of MTTF for exascale machines (between hours and min-
utes [5]) necessitates the inclusion of fault tolerance capabilities in our applications,
as they fall in the category of long running large jobs. The program can face various
failures during its run, e.g. hardware faults, soft errors, Byzantine failures, software
bugs, etc. [21]. According to [8], a large fraction of failures can be attributed to CPU
and memory related issues which eventually lead to complete process failures. Such
failures define the fault tolerance scope in this work.

Document structure We start out by describing the basic software architecture
of the ESSR in Sect. 2, and a process that allows the concurrent development of
sparse solvers and the building blocks they need to achieve optimal performance.
Section 3 gives an overview of the software components available in the ESSR.
In Sect. 4, three classes of algorithms studied in the ESSEX project are briefly
discussed. The objective here is neither to present new algorithmic features or
performance results, nor to study any particular application. Instead, we want to
summarize the optimization techniques and implementation details we identified
while developing these solvers. The fault tolerance capabilities explored in our
applications are described in Sect. 5. Section 6 summarizes the paper and gives an
outlook on future developments surrounding the ESSR.

298 J. Thies et al.

2 ESSR Architecture and Development Process

It is a substantial effort to implement a scalable sparse solver library ‘from scratch’.
In this section we describe the architecture and development cycle of a set of tightly
integrated software layers, that together form the ‘Exascale enabled Sparse Solver
Repository’, ESSR. The actual implementation in terms of software packages is
detailed further in Sect. 3.

2.1 Software Architecture

The ESSR consists of the following main parts, depicted in Fig. 1: an application
layer, the computational core and a vertical integration pillar. An optional precondi-
tioner can be used for better convergence. A final part is an extensive test suite, not
shown here.

The computational core (or kernel library) has the task of providing highly
optimized implementations of the kernels required by the algorithms and applica-
tions we study. It hides implementation details such as SIMD instructions, NUMA
aware memory management and MPI communication from the other layers. It is
a ‘component’ in the sense that it could be replaced by another implementation if
the software is ported to radically different hardware, or if new applications with
different requirements come up. The basic data structures it provides are classes for
sparse matrices (sparseMats), tall and very skinny matrices (or ‘multi-vectors’,
mVecs) and small and dense matrices (sdMats).

application
vertical integration

algorithms

preconditionerspreconditioners

computational corecomputational core

«abstraction»

eigenproblem

setup/apply

sparseMat mVec sdMat

solver templates

FT strategies

algo core

«interface»
kernel interface ho

lis
ti
c
pe
rf
or
m
an

ce
en
gi
ne
er
in
g

C wrapper

adapter

Fig. 1 ESSR software architecture

Towards an Exascale Enabled Sparse Solver Repository 299

The vertical integration pillar is based on a clear interface to the computational
core, subsequently referred to as ‘kernel interface’. It defines the basic data
structures and operations that the computational core has to provide. The ‘algo core’
layer implements common functionality useful for various high level algorithms.
Examples include block orthogonalization, evaluating matrix polynomials and
extracting Ritz values from a subspace. On top of the kernel interface and core
functionality, iterative algorithms are implemented. Fault tolerance strategies are
built into algorithms, and common concepts here are again implemented in the
algorithmic core layer. The vertical integration pillar is designed to enable holistic
performance engineering, as will be discussed below.

The application layer defines an eigenvalue problem and uses an algorithm to
solve it. To set up the problem and pre-/postprocess the results, it may either use the
simplified kernel interface or the full functionality of the computational core library.
While the vertical pillar is connected to the computational core only via a clear
interface, the degree to which an application can use another kernel library depends
on its implementation and need for specific preconditioners and pre-/postprocessing.
Simple applications that only need matrix/vector construction (or I/O) and standard
operations can stay independent of the underlying implementation by using the
kernel interface as the lowest level.

Preconditioners may be used to accelerate the solution of linear systems arising in
an eigenvalue computation. These may either be algebraic schemes using the data
structures of the kernel library, or ‘physics-based’ techniques that exploit specific
knowledge of the problem at hand, like a mesh or spectral information. Third-party
or own preconditioning software can easily be incorporated because the interface
requires only two functions for setting up and applying the preconditioner.

Tightly connected to the vertical pillar is an extensive test framework (cf.
Sect. 3.6), with a continuous integration process to ensure software quality. The
largest number of tests targets the computational core, through the kernel interface.
The algorithmic core is tested using synthetic cases (integration tests), and system
tests (numerical test cases for the algorithm layer) are provided by matrix collec-
tions/generators and the application layer.

2.2 Concurrent Development of all Layers

The introduction of the kernel interface enables the use of established libraries while
developing/implementing iterative methods. The core layers can thus be developed
in parallel to the algorithms layer. The kernels required are defined dynamically
during the development process and implemented in a test-driven process in the
computational core, see Fig. 2. In a similar workflow, common functionality used
in several solvers is identified and abstracted into the ‘algo core’ layer, where
a numerically robust and fully optimized implementation is brought forth while
algorithm development continues at a higher level. An example is the development

300 J. Thies et al.

Algorithms

Comp. Core

implement
template

missing
kernels

add
unit tests

optimize
numerics

new algorithm

add
robust
kernels

implement
optimized
version

evaluate
overall

performance

application
established kernel library
optimized kernel library

Fig. 2 Test-driven co-development of optimized algorithms in the ESSR

of a communication optimal and robust block orthogonalization scheme while
implementing block Jacobi-Davidson (Sect. 4.3) based on a simple yet robust
(iterated) modified Gram-Schmidt process.

2.3 Integration of Performance Engineering

While developing an iterative solver, all performance critical operations are iden-
tified and added to the kernel interface. As the number of relevant kernels is
moderate, a combination of performance models and dedicated benchmarks can
be used to ensure their near optimal performance. Many of these operations (such
as the sparse matrix-vector multiplication, spMVM, or operations on mVecs), are
bounded by the main memory bandwidth, such that the roofline model [49] gives a
good indication of the quality of the implementation. To understand the performance
of a complete algorithm, code instrumentation for performance analysis tools is
used. This may reveal, e.g., overhead of thread synchronization or effects of non-
uniform memory access (NUMA) which may not occur in isolated benchmarks.
More details on how this concept is implemented can be found in Sect. 3.6.

Our primary focus here is node-level performance. The changes in CPU architec-
ture are currently more dramatic than those concerning node interconnection, and
any losses at the node level scale with the number of nodes in a supercomputer.

2.4 Fault Tolerance Strategy

The strategy followed in the ESSR to achieve fault tolerance w.r.t. hardware failures
can be classified as an application-level checkpoint/restart (C/R) method. In this
approach, algorithm-specific knowledge is exploited to store the minimum amount

Towards an Exascale Enabled Sparse Solver Repository 301

of data needed for restarting the computation. A highly optimized implementation
of this approach (using e.g. asynchronous checkpointing and neighbor-level
checkpoints) promises a low overhead for our long running iterative schemes
on many nodes.

Due to the early development stage of fault tolerant communication libraries [29],
our strategy is to evaluate various technical solutions in simple use cases before
condensing them into a common feature of the ESSR solvers and applications in the
‘algo core’ layer. Section 5 gives an overview of our work in this area.

3 ESSR Software Landscape

The conceptual design discussed in the previous section is implemented in a
collection of compatible software packages, which are publicly accessible under
a BSD open source license.3 Before discussing the software structure further, we
will comment on the target computer architecture for the software.

3.1 Hardware and Execution Models Supported

Exascale computers are not available to date, and a competitive ‘race of flops’
is going on to develop this new generation of supercomputers. Based on the
developments in the TOP500 list [45] over the past few years, we decided to develop
software targeting machines that consist of many nodes with distributed memory. A
node features several multi- or manycore CPUs with non uniform access to caches
and main memory, and ‘accelerator’ hardware, e.g. multiple GPUs. At the lowest
level, data parallelism is exploited by the hardware through SIMD/SIMT like tech-
niques, compelling choices in data structures and low level implementation. Typical
sparse matrix algorithms will continue to be memory-bound on these devices.

In this environment we employ the following execution model. Numerical
algorithms are implemented as a sequence of function calls, executed transparently
on a parallel heterogeneous machine (SPMD model). A distributed memory com-
munication protocol (e.g. MPI) is used between processes running on complete
nodes or parts of nodes of the cluster. Within a function we allow arbitrary
multithreading techniques for flexible node utilization. The execution of functions
may be interleaved using ‘tasks’ which use only a part of the resources available
to the process. Data transfers between host CPU and accelerator devices must be
handled explicitly by the computational algorithm between function calls where
necessary (the underlying kernels do not ‘know’ if the CPU or device memory is up
to date).

3see http://bitbucket.org/essex

http://bitbucket.org/essex

302 J. Thies et al.

3.2 ESSR Toolkits and Functionality

The ESSR is implemented in a number of co-developed software packages, also
called toolkits. These toolkits do not necessarily implement one part of the architec-
ture (Fig. 1) each. Rather, each partner in the ESSEX project has the responsibility
for one of the toolkits, whereas the responsibility for the conceptual ESSR parts
may be shared among several project partners. In the future, the repository will
evolve into a set of libraries providing state-of-the-art, highly scalable and fault
tolerant eigensolvers. This may lead to a redistribution of functionality according to
the architecture depicted in Fig. 1.

The four toolkits are briefly characterized as follows:

• ESSEX-Physics, a quantum physics toolkit defining applications that we want
to solve using the ESSR. It provides scalable sparse matrices from real-world
applications and polynomial eigensolvers (see Sects. 3.3 and 4.1).

• GHOST (General, Hybrid and Optimized Sparse Toolkit) implements basic
building blocks with a focus on optimal performance on heterogeneous super-
computers. This design goal is achieved by consequent application of perfor-
mance engineering techniques. GHOST implements the ‘computational core’ of
the ESSR in single or double precision, and in real or complex arithmetic [27, 28].

• PHIST (Pipelined Hybrid-parallel Iterative Solver Toolkit) implements the verti-
cal integration pillar of Fig. 1, and adapters for several kernel libraries. It also
hosts the test framework, and contributes Jacobi-Davidson type eigensolvers
and Krylov methods for linear systems to the algorithms layer. To provide a
more diverse spectrum of methods, we also included adapters for GHOST to
the Trilinos libraries Anasazi and Belos.

• BEAST (Beyond fEAST) extends the algorithms layer of the ESSR by innovative
projection-based eigensolvers which take up the idea of the contour integration-
based FEAST method [32] (see Sect. 4.2).

We will now describe some of the features of the ESSR, with references to the
toolkit where they can be found. The eigensolvers are described in more detail in
Sect. 4.

3.3 Applications

Following the overall philosophy of the SPPEXA priority program,4 our develop-
ment of the ESSR components is closely guided by—but not restricted to—the
intended application range in quantum physics and chemistry. Three different types
of eigenvalue problems arise for the large sparse symmetric (or Hermitian) matrices

4see http://www.sppexa.de/

http://www.sppexa.de/

Towards an Exascale Enabled Sparse Solver Repository 303

derived from the Schrödinger equation. The study of equilibrium properties, e.g.,
of the electronic states in a certain material, requires computation of either a few
extremal eigenvalues (of the order 10–100) or many interior eigenvalues (100–1000)
with the Jacobi-Davidson algorithm or BEAST, respectively. On the other hand,
effectively all the eigenvalues contribute to the dynamic properties of highly excited
or driven systems out of equilibrium, and expansion techniques such as the kernel
polynomial method (KPM) and Chebyshev time propagation (ChebTP) come into
play. These algorithms and their implementation are briefly discussed in Sect. 4.
Thus, our target applications require solution of the entire range of large sparse
symmetric eigenvalue problems.

Similarly, a variety of matrices occur in the applications: while stencil- and
band-like matrices are characteristic for graphene and topological insulators, the
tensor structure of quantum mechanical Hilbert space leads to intricate sparsity
patterns with long thin subdiagonals or scattered small subblocks for correlated
many-particle quantum systems. Also, spectral properties of the matrices differ
widely, which allows for algorithmic developments and thorough testing without
losing contact to the real application. For example, the appearance of a pseudo-
gap in the density of states for topological insulators can be exploited for interior
eigenvalue computations with polynomial filter functions [31]. Scalable matrix
generation routines are included in the ESSEX-Physics library for correlated many-
particle systems and new topological materials, all of which are research problems
of current interest.

3.4 Kernel Interface

The algorithms summarized in Sect. 4 can be implemented with the three basic data
structures introduced in Sect. 2, sparseMats, mVecs and sdMats. To maintain
flexibility, we added a fourth, an abstract linear operator type (linearOp), which
may be used to provide, e.g., preconditioning techniques or implement matrix-free
methods. Inspired by the Petra object model employed by Trilinos [18], we also
abstracted data distribution into a map object and inter-process communication into
a comm object. Another Petra concept that is useful when implementing iterative
solvers is a ‘view’ of (part of) an mVec or sdMat. A view is a light-weight object
that only has meta data and provides (read and/or write) access to the elements of the
‘viewed’ object without copying them. Thus it is, e.g., possible to apply an operator
or sparse matrix to selected columns of an mVec.

As mentioned in Sect. 1, the Anasazi interface layer resolves the problems of
earlier techniques by allowing the sparse matrix and block vector implementations
to be co-designed with matching parallelization techniques and data layouts. We
adapted this idea to our needs, in PHIST, with the following main differences:

C interface Having to provide a C++ adapter may be a hassle for e.g. Fortran
programmers. We restrict ourselves to four scalar data types (ST), single or double,
real or complex, which can be implemented optionally. For each ST, a set of plain

304 J. Thies et al.

C functions has to be provided, which accept objects as void pointers. Errors
and flags are passed via the last (int*) argument, similar to the MPI interface.
This minimalistic interface allows maximum flexibility for users of PHIST and
providers of kernel libraries alike. The lack of type safety introduced by passing
around objects as void* is alleviated by the test framework discussed in Sect. 3.6.

sdMat We require the kernel library to provide this object to increase flexibility.
For instance, an sdMat may be replicated on host CPU and GPU, or it may be
stored in higher precision to increase the numerical stability of reduction operations.

View concepts Allowing custom sdMats, we also require views of contiguous
rows and columns in an sdMat. On the other hand, we only require views of
contiguous and increasing columns of an mVec. This makes it easier to implement
mVecs in row-major ordering for better performance [36]. Strided memory access
leads to a significant performance penalty in that case, and restricting the interface
therefore gives more uniform performance of the view objects supported.

Explicit data transfers for accelerators For compute platforms that have both a
host processor and one or more accelerators, we support the data parallel execution
model implemented in GHOST [28]. At least one MPI process is used for each
component of a heterogeneous node, and a ‘GPU process’ has a management thread
running on the host CPU. Special kernel interface functions exist to transfer the data
of sdMats between host and device.

3.5 Computational Core

The mathematical simplicity of the objects and functions required by the kernel
interface is misleading. Let us consider the operation C D VTW; C 2 Rm�k; V 2
Rn�m; W 2 Rn�k. If this operation is implemented using OpenMP inside each
MPI process and Intel(R) AVX SIMD instructions, the data in the objects must be
contiguous, correctly aligned and padded, which may not be the case if V; W and/or
C are views of some parts of larger objects. The reduction operation must produce
consistent results on all MPI processes, and if accelerators like GPUs are involved,
data transfers must be managed explicitly. The constraints on data layout also hold
for efficient GPU processing. All of these complexities are hidden in the ESSR
library GHOST [28]. Automatically generated kernels are selected dynamically
depending on data alignment, block size and CPU type. Shared memory parallelism
on CPUs and the Intel(R) Xeon Phi is implemented using OpenMP, and Nvidia
GPUs are supported by providing optimized CUDA kernels.

Another important component of GHOST is a lightweight, general purpose
tasking mechanism that plays well within the standard data parallel execution
model of ‘MPI+X’. It is used in the ESSR for overlapping communication with
computation, asynchronous checkpointing, etc. The PHIST library provides macros
to simplify the use of this tool when implementing an algorithm.

Towards an Exascale Enabled Sparse Solver Repository 305

Apart from GHOST, PHIST currently has adapters for the Trilinos libraries
Epetra and Tpetra. Builtin Fortran/C99 kernels make PHIST self-contained in
principle and are used for performance engineered prototypes of functionality not
yet available in GHOST.

3.6 Verifying Software Correctness and Performance

Correctness tests The number of possible execution paths in GHOST is huge,
because it uses automatically generated high-end kernels for fixed block sizes,
allows mixing of row- and column-major dense matrices and real and complex
arithmetic, etc. In order to keep the effort of testing the building blocks in ESSEX at
a reasonable level, we therefore restrict ourselves to testing via the kernel interface.

The test framework in PHIST is based on Google Test,5 with modifications to
ensure correct behavior in a hybrid parallel setting with MPI+X. These modifica-
tions include broadcasting test errors to all MPI processes and assertions to verify
that certain data is identical on all processes. The main point here is to decide what
type of errors the tests should be able to detect, and under which conditions they
should work correctly. For example, some communication errors with MPI cannot
be detected by the test framework as it relies on MPI itself. Here one may run the
tests in simplified settings (single/multiple thread(s), single/multiple MPI rank(s),
GPU only etc.) to test each layer of parallelism separately. Various tools can support
this kind of testing, e.g., the thread and address sanitizer included in recent versions
of GCC,6 the MPI checker MUST 7 or CUDA-MEMCHECK.8

Tests are automatically generated from single source files for different block
sizes, vector lengths, and data types, and for views and standard objects where
appropriate. They are executed in nightly builds for different configurations, which
leads to a total of currently about 80,000 tests for each kernel library, compiler and
MPI version tested. We use the continuous integration tool Jenkins9 to obtain an
overview of the results. Comparison with the comparatively stable Epetra and Tpetra
implementations increases the confidence in the correctness of the tests themselves.

Performance testing Our adapters for the kernel interface and the functions of the
core and algorithmic layers are instrumented to provide timing information and/or
markers for the Likwid performance monitoring tool [46]. Another option that can
be turned on at compile time is to include a simple performance model for memory
bounded kernels. In this case, a small benchmark of the memory bandwidth is

5https://github.com/google/googletest
6https://github.org/google/sanitizers
7https://doc.itc.rwth-aachen.de/display/CCP/Project+MUST
8http://docs.nvidia.com/cuda/cuda-memcheck/
9https://jenkins-ci.org

https://github.com/google/googletest
https://github.org/google/sanitizers
https://doc.itc.rwth-aachen.de/display/CCP/Project+MUST
http://docs.nvidia.com/cuda/cuda-memcheck/
https://jenkins-ci.org

306 J. Thies et al.

run and the percentage of the roofline [49] performance achieved by each kernel
function is printed at the end of a run.

There are two ‘modes’ of performance testing: one incorporates the actual data
layout in memory and thus helps to verify that the underlying kernel library achieves
the predicted performance for each operation, whether it involves views or not. The
other mode only considers the amount of data. This reveals possible performance
flaws in the design or implementation of algorithms. For example, if the main
operations are performed with a single column view of a row major multi-vector
of block size 2, less than 50 % of the roofline performance may be achieved on
cache-based architectures.

4 Algorithms Implemented in the ESSR

In this section we want to give a broad overview of the algorithms studied in the
ESSEX project, and summarize the lessons learned while developing their highly
optimized implementations in the ESSR. For more details, numerical experiments
and performance results on massively parallel systems, we refer to the publications
cited below.

4.1 Algorithms Based on Chebyshev Polynomials

Algorithms based on the evaluation of polynomial matrix functions are a basic
ESSR component. They are represented by the kernel polynomial method
(KPM) [48] for spectral functions and eigenvalue densities, Chebyshev time
propagation (ChebTP) [44, 47] for matrix exponentials expŒtA�, and Chebyshev
filter diagonalization (ChebFD) [31] for the computation of interior eigenvalues.
The latter is available through the BEAST-P variant, see Sect. 4.2.

In contrast to, e.g., sparse factorizations or preconditioning that require explicit
access to the matrix elements, polynomial algorithms address the matrix in question
only through spMVM. Therefore, they are well-suited for situations where the
former techniques do not work, or where the matrix is not stored explicitly but only
constructed ‘on-the-fly’ in the spMVM routine. While from the mathematical point
of view polynomial algorithms are inferior to algorithms based on rational matrix
functions, they are often the only alternative for extremely large matrices.

The common idea behind KPM, ChebTP, and ChebFD is the expansion of
a function f .z/ D P1

nD0 cnpn.z/ into a series of polynomials pn.z/, especially
the Chebyshev polynomials Tn.z/ which are often the most favorable choice for
numerical algorithms. The algorithms come in two variants: KPM computes the
expansion coefficients cn from scalar products hy; pnŒA�xi in order to (re-)construct
the function f .z/, e.g., the eigenvalue density, while ChebTP and ChebFD use
given coefficients cn to accumulate a result vector y D P

n cnpnŒA�x, either for

Towards an Exascale Enabled Sparse Solver Repository 307

Algorithm 1 Polynomial matrix function evaluation

1 for k D 1 to M do F First two recurrence steps
2 uk D ˛1.AC ˇ1�/xk F spmv()
3 wk D ˛2.AC ˇ2�/uk C �2xk F spmv()
4 xk D c0xk C c1uk C c2wk F axpy & scal (ChebTP, ChebFD)
5 c

.k/
0 D hy; xki, c

.k/
1 D hy; uki, c

.k/
2 D hy; wki F dot or gemm (KPM)

6 for n D 3 to N do F Remaining recurrence steps
7 for k D 1 to M do
8 swap.wk; uk/ F swap pointers
9 wk D ˛n.AC ˇn�/uk C �nwk F spmv()
10 xk D xk C cnwk F axpy (ChebTP, ChebFD)
11 c.k/

n D hy; wki F dot or gemm (KPM)

the matrix exponential y D expŒtA�x (ChebTP) or a subspace projection y D Px
(ChebFD). An important idea from approximation theory that features both in KPM
and ChebFD is the use of so-called kernel polynomials to improve convergence of
the expansion [22, 31, 48].

To achieve high execution speed with minimal memory requirements, the
polynomials pn.z/ are computed from a two term recurrence

xnC1 D ˛n.AC ˇn�/xn C �nxn�1 (1)

for the vectors xn D pnŒA�x, which gives the algorithmic core in Algorithm 1 of
KPM, ChebTP, and ChebFD. Depending on which operations are used in lines 4/5
and 10/11, it serves two different purposes: replace xk by f ŒA�xk (lines 4,10), or
compute moments fc.k/

n g (lines 5,11). Algorithm 1 computes the polynomials pnŒA�xk

for several vectors x1; : : : ; xM simultaneously, as required in KPM and ChebFD. In
addition to spMVM it uses only BLAS-1 vector operations within the two loops
over k (vector index) and n (polynomial degree). Owing to this simplicity, the algo-
rithmic core allows for effective performance engineering through straightforward
optimizations such as loop-fusion. A particularly rewarding step is the combination
of the individual spMVMs for k D 1; : : : ; M into spMMVMs on block vectors,
which improves cache utilization due to less erratic memory access patterns. Row-
major storage of mVecs (as implemented in GHOST) is the key to reaping the
full benefits of this optimization [25, 31]. With such node-level optimizations one
can achieve decoupling of the algorithmic core performance from main memory
bandwidth on modern CPU systems. Then, the overall performance depends only
on the distributed sp(M)MVMs, i.e., is bounded by the inter-node communication
bandwidth and latency.

Notice that Algorithm 1 has no internal synchronization points, because neither
the dot products in lines 5/11 nor the vectors accumulated in lines 4/10 are used in
the following iteration steps. Global synchronization can be delayed until after the
execution of the entire algorithmic core, and thus does not affect scalability.

308 J. Thies et al.

Apart from KPM, Algorithm 1 is normally executed repeatedly. In ChebTP
intermediate computations between different executions usually consist of a few
xDOT operations, and can be delegated to separate tasks. The results are not needed
in the next iterations, and (global) synchronization still is not required. In ChebFD,
however, vectors have to be orthogonalized between subsequent executions of the
algorithmic core. We use communication-avoiding techniques such as TSQR [6] or
SVQB [43] to mitigate the ensuing adverse effects on performance.

The potential of the ESSR implementations of KPM, ChebTP, and ChebFD
was demonstrated in a series of papers [1, 25, 31]. With the fully heterogeneous
CPU-GPU implementation of KPM [25] we computed the density of states of a
matrix with dimension D D 6:5 � 109 on 1024 hybrid nodes of the Piz Daint
supercomputer.10 Performance engineering resulted in a speedup of 3–5 at the single
node level [1]. Recently, these computations were extended to 4096 nodes (D D
1010) and achieved 0.5 Pflop/s sustained performance [26], which corresponds to
11 % of LINPACK efficiency. With the ChebFD implementation we could compute
the 148 innermost eigenvalues of a matrix with dimension D D 109, using 512 nodes
of SuperMUC11 at 40 Tflop/s sustained performance [31]. With the full SuperMUC
phase 2 we will be able to obtain inner eigenvalues for matrix dimensions 1010, at
an expected sustained performance level of 250 Tflop/s.

The only remaining bottleneck for our polynomial algorithms is the perfor-
mance of the distributed sp(M)MVMs. In many quantum physics applications
(see Sect. 3.3) the inter-node communication volume grows strongly with matrix
dimension, and reduction of communication is the most crucial issue for scalability.
For stencil type matrices, techniques such as octree ordering are used [36]. For
more complex sparsity patterns, GHOST allows sparse matrix repartitioning by PT-
Scotch [34]. Future versions of the ESSR will include scalable matrix reordering
techniques tailored to the application matrices.

4.2 Beyond FEAST: Projection Based Methods

Consider the (generalized) eigenvalue problem AX D �BX. FEAST [32] is a
subspace iteration method to compute all eigenvalues inside a user-defined interval
I�, and their corresponding eigenvectors. In each step, a size-m search space Y is
projected approximately onto the desired invariant subspace, and a Rayleigh-Ritz
procedure is used to compute approximate eigenpairs. The computed eigenvectors
serve as the new refined search space and the scheme is iterated until convergence.
The projection is achieved by (numerical) integration of the resolvent .zB � A/�1B
over a contour in the complex plane that encloses I�, but no other eigenvalues of
.A; B/; see [32] for more details and [33] for recent variants. The ESSEX project

10http://www.cscs.ch/computers/pizdaint/index.html
11https://www.lrz.de/services/compute/supermuc/

http://www.cscs.ch/computers/piz daint/index.html
https://www.lrz.de/services/compute/supermuc/

Towards an Exascale Enabled Sparse Solver Repository 309

Algorithm 2 Basic BEAST projection-based eigensolver
Input: Interval I�, Matrix pair A; B 2 CN�N

Output: Om eigenpairs .X; �/ in I�

1 Estimate Qm � Om, choose random Y 2 CN�m of rank m > Qm
2 while not Qm pairs converged do
3 Compute U D PY with suitable projector P D PI� .A; B/

4 Compute Rayleigh quotients AU D U�AU and BU D U�BU
5 Update estimate Qm of Om and adjust m > Qm
6 Solve EVP AUW D BUW�

7 X UW
8 Orthogonalize X against locked vectors and lock newly converged vectors
9 Y BX

has contributed to improving FEAST in two ways: by proposing techniques for
solving or avoiding the linear systems that arise, and by improving robustness and
performance of the algorithmic scheme.

Linear systems Our intended use of the FEAST adaptations in BEAST is comput-
ing up to 1 000 interior eigenpairs of very large and sparse Hermitian matrices. This
use case is not well-supported by other FEAST implementations as they typically
rely on direct sparse solvers for the linear systems that arise. We use two strategies
to overcome this problem: (i) a robust and scalable iterative solver for the linear
systems in contour integration-based BEAST (BEAST-C, [12]), and (ii) use of
polynomial approximation as an alternative to contour integration (BEAST-P, [13]).
A rough layout of algorithmic key steps in BEAST is presented in Algorithm 2;
see [13] for a more detailed formulation.

The linear systems arising in BEAST-C have the form .zB � A/X D F, with
a possibly large number of right-hand sides F. The complex shifts z get very
close to the spectrum, making these systems very ill-conditioned. For interior
eigenvalue computations, the system matrix also becomes completely indefinite.
For these reasons, standard preconditioned iterative solvers typically fail in this
context [12, 23]. In [12] we demonstrated that an accelerated parallel row-projection
method called CARP-CG [15] is well-suited for highly indefinite systems arising in
this context, and particularly apt at handling small diagonal elements, which are
common in our applications. We also proposed a hybrid parallel implementation of
the method, which is available as a prototype in the PHIST builtin kernels.

Matrix inversion can be avoided altogether if the projector can be acquired
by means other than numerical integration or rational approximation. A com-
mon choice is spectral filtering using Chebyshev polynomials via the ChebFD
scheme [31], see Sect. 4.1, in particular for the discussion of kernel functions for
reducing Gibbs oscillations [23, 48]. This is implemented in the BEAST-P variant,
available through PHIST and GHOST.

General improvements The size of the search space is crucial for the convergence
of the method [23, 24, 31, 32]. In BEAST we compute a suitable initial guess
of the number of eigenpairs in the target interval by integrating the density of

310 J. Thies et al.

states obtained by the KPM (cf. Sect. 4.1). The most recent version of the FEAST
library uses a similar approach [7]. As iteration progresses, the search space
size is controlled using singular value decomposition [11, 13, 23], that gives a
more accurate estimation and consequentially a smaller search space. This lowers
memory usage, which may be preferable for very large problems. A more generous
search space size can be chosen to reduce the impact of the polynomial degree on
convergence speed. The SVD is also used for other purposes like detecting empty
intervals or undersized search spaces [10, 23].

Furthermore, a locking technique is implemented in BEAST. By excluding
converged eigenpairs from the search space—at the cost of orthogonalizing the
remaining vectors in each iteration—it is possible to reduce the cost of later
iterations where only few eigenpairs have not yet converged [10, 13, 23].

The most influential parameters for the cost of an iteration in BEAST are the
polynomial degree in BEAST-P and residual accuracy for the iterative linear solver
in BEAST-C, respectively. These two parameters have different semantics for the
progress of the method, though, and need separate consideration.

To minimize the overall work, BEAST-P finds a (problem-dependent) polyno-
mial degree p that, in one BEAST iteration, achieves comparably large residual drop
with respect to the number of spMVMs required to evaluate the polynomial [13].
It is then adjusted dynamically by inspecting the residual reduction versus p.
This removes the necessity of an initial guess for a suitable degree and makes
early iterations cheap since the optimal degree is approached from below. In
BEAST-C, we reduce the target residual of the iterative linear solver [13] in early
iterations. In later iterations, a higher accuracy is required to achieve a good overall
approximation.

Future releases of BEAST will include extension of the method to multiple
adjacent intervals (which requires careful orthogonalization and is currently in the
testing stage), and the use of single-precision solves in early iterations. BEAST was
successfully tested with matrices from graphene and topological insulator modeling
of size up to 109, typically computing few hundred interior eigenpairs, using the
BEAST-P variant with GHOST back end.

4.3 Block Jacobi-Davidson QR

The Jacobi-Davidson method [9] is a popular algorithm for computing a few
eigenpairs of a large sparse matrix. It can be seen as a Rayleigh-Ritz procedure
with subspace acceleration and deflation. Depending on some implementation
details, such as the inner product used and the way eigenvalue approximations are
extracted, it may be used for Hermitian and non-Hermitian, standard or generalized
eigenproblems, and to find eigenpairs at the border or inside of the spectrum. The
Jacobi-Davidson method has several attractive features: it exhibits locally cubic
(quadratic) convergence for Hermitian (general) eigenvalue problems, and is very
robust w.r.t. approximate solution of the linear systems that occur in each iteration. It

Towards an Exascale Enabled Sparse Solver Repository 311

also allows integrating preconditioning techniques, and the deflation of eigenvalues
near the shift make the linear systems much more well-behaved than in the case of
FEAST. For an overview of the Jacobi-Davidson method, see [20].

In [35, 36] we presented the implementation of a block Jacobi-Davidson QR
(BJDQR) method which uses block operations to increase the arithmetic intensity
and reduce the number of synchronization points (i.e. mitigate the latency of global
reduction operations). Use cases for this ESSR solver include the computation of a
moderate number of extremal eigenpairs of large, sparse, symmetric or nonsymmet-
ric matrices. BJDQR is a subspace algorithm: in every iteration the search space V
is extended by nb new vectors, wj, which are obtained by approximately solving a
set of correction equations (2), and orthogonalized against all previous directions.
The solution of the sparse linear systems (2) is done iteratively.

.I � QQ QQ�/.A � �iI/.I � QQ QQ�/�qi � �.AQqi � QQQri/; i D 1 : : : nb : (2)

The successful implementation of this method in PHIST goes hand-in-hand with the
development of highly optimized building blocks in GHOST. The basic operations
required are spMMVM (Yj AXj) and the dense matrix–matrix products Y D
X � C and C D XHY, where X and Y denote mVecs and C an sdMat. For the
full optimization, we added several custom kernels, including the ‘in place’ variant
XW;1Wk D X � C; X 2 Cn�m; C 2 Cm�k and an spMMVM with varying shifts per
column, Yj D AXj C �jXj.

Two main observations guided the implementation of this algorithm:

1. row-major storage of mVecs leads to much better performance of both the
spMMVM, see also [16], and the dense kernels;

2. accessing single columns in an mVec in row-major storage is disproportionally
more expensive than in column-major storage because unnecessary data is loaded
into the cache.

To avoid access to single vectors, ‘blocked’ implementations of the GMRES and
MINRES solvers for the correction equation are used. These schemes solve k
linear systems simultaneously with separate Krylov spaces, bundling inner products
and spMVMs. The second important phase, orthogonalization of W against V , is
performed using communication optimal algorithms like TSQR [6] or SVQB [43].

The final performance critical component for Jacobi-Davidson is a precondition-
ing step used to accelerate the inner solver. Preconditioning techniques typically
depend strongly on details of the sparse matrix storage format. As we do not want
to impose a particular format on the kernel library that provides the basic operations,
PHIST views the preconditioner as an abstract operator (linearOp). This struct
contains a pointer to a data object and an apply function, which the application
can use to implement e.g. a sparse approximate inverse, an incomplete factorization
or a multigrid cycle. The only preconditioned iteration implemented directly in
PHIST is CARP-CG, used in the BEAST-C algorithm in ESSEX (Sect. 4.2). This
method could also be used in the context of BJDQR, but this combination is not yet
implemented.

312 J. Thies et al.

It is well known that the block variant of JDQR increases the total number of
operations (measured for instance in the number of spMVMs). The ESSEX results
presented in [36] demonstrated for the first time that this increase is more than
compensated by the performance gains in the basic operations, so that an overall
speedup of about 20 % can be expected for a wide range of problems and problem
sizes. The paper also shows that the only way to achieve this is by consequent
performance engineering on all levels. On upcoming hardware, one can expect
the benefits of the block variant over the single vector JDQR to grow because
of the increasing gap between memory bandwidth and flop rate. Furthermore, the
reduction in the number of synchronization points will increase this advantage on
large scale systems. We will present results on the heterogeneous execution of this
solver on large CPU/GPU clusters in the near future.

5 Fault Tolerance

This section describes our development and evaluation of strategies for efficient
checkpointing and restarting of iterative eigenvalue solvers. The former can be done
either by storing critical data on a parallel file system (PFS) or on a neighboring
node. The latter depends highly on the availability of a fault tolerant communication
library, and two options have been evaluated here.

Asynchronous checkpointing via dedicated threads We use the term
‘asynchronous checkpointing’ for application-level checkpointing where a
dedicated thread is used to transfer the checkpoint data to the PFS while
the application performs its computations. The benefits of this approach over
synchronous PFS-level checkpointing have been demonstrated as proof of concept
in [41]. In a first step, an asynchronous copy of the critical data is made in an
application- (or algorithm-)specific checkpoint object. The task concept available in
GHOST [28] is then used for asynchronously writing the backup file to a global file
system. Critical data in the context of eigensolvers may, for instance, be a basis for
the (nearly) converged eigenspace. We have implemented and tested this strategy
for KPM, ChebTP, ChebFD, and Lanczos solvers. The detailed analysis of this
approach for the Lanczos algorithm is presented in [39] where we used dedicated
OpenMP-threads for asynchronous writing.

Node-level checkpointing using SCR A more scalable approach has been eval-
uated using the Scalable Checkpoint-Restart (SCR) library [37], which provides
node-level checkpoint/restart mechanisms. Beside the local node-level checkpoints,
SCR also provides the functionality to make partner-level and XOR-encoded
checkpoints. In addition, occasional PFS-level checkpoints can be made to enable
recovery from any catastrophic failures. This strategy introduces very little overhead
to the application and is demonstrated in detail along with its comparison with
asynchronous checkpointing in [39, 40]. Within the ESSR, we have equipped KPM,
ChebTP, and Lanczos algorithms with this checkpointing strategy.

Towards an Exascale Enabled Sparse Solver Repository 313

Automatic Fault Recovery The automatic fault recovery (AFR) concept is to
enable the application to ‘heal itself’ after a failure. The basic building block of
the concept is a fault-tolerant (FT) communication library. As an FT MPI imple-
mentation was not (yet) available, we used the GASPI communication layer [14] to
evaluate the concept in a conjugate gradient (CG) solver [38].

As a next step, we evaluated a recent prototype of FT MPI—‘User-Level
Failure Mitigation’ or ULFM [4]—in the context of the KPM with automatic fault
recovery. In this implementation, we combined the AFR technique with node-level
checkpointing using SCR. The failed processes are replaced by newly spawned
ones which take over the identity (i.e., rank) of the failed processes in a rebuilt
communicator. All processes then read a consistent copy of the checkpoint from the
local or neighbor’s memory and resume the computation. Experimental results on
this approach are currently being prepared for publication.

6 Summary and Outlook

We have discussed the development of a new software repository for extreme scale
sparse eigenvalue computations on heterogeneous hardware. One key challenge of
the project was to co-design several interdependent software layers ‘from scratch’.
We described a simple layered software architecture and a flexible test-driven
development process which enabled this. The scalability challenge is addressed by
holistic performance engineering and redesigning algorithms for better data locality
and communication avoidance. Techniques for mitigating hardware failure were
investigated and implemented in prototypical iterative methods.

While this report focused on the software engineering process and algorithmic
advancements, we have submitted a second report which demonstrates the paral-
lelization strategy as well as hardware and energy efficiency of our basic building
block library GHOST, see [27].

In order to achieve scalability beyond today’s petascale computers, we are
planning to investigate (among other) scalable communication reducing orderings
for our application matrices, communication hiding using the tasking mechanism
in our GHOST library, and scalable preconditioners in GHOST for accelerating
BEAST-C and Jacobi-Davidson, for instance based on the prototype of CARP-CG
in the PHIST builtin kernel library. Future applications will include non-Hermitian
matrices and generalized eigenproblems, which requires extensions to some of the
algorithms. We are also planning to further integrate our efforts and improve the
software structure and documentation to bring forth an ESSL (Exascale Sparse
Solver Library).

Acknowledgements This work was supported by the German Research Foundation (DFG)
through the Priority Program 1648 “Software for Exascale Computing” under project ESSEX.
We would like to thank Michael Meinel (DLR Simulation and Software Technology, software
engineering group) for helpful comments on the manuscript.

314 J. Thies et al.

References

1. Alvermann, A., Basermann, A., Fehske, H., Galgon, M., Hager, G., Kreutzer, M., Krämer, L.,
Lang, B., Pieper, A., Röhrig-Zöllner, M., Shahzad, F., Thies, J., Wellein, G.: ESSEX: equipping
sparse solvers for exascale. In: Lopes, L., et al. (eds.) Euro-Par 2014: Parallel Processing
Workshops. Lecture Notes in Computer Science, vol. 8806, pp. 577–588. Springer, Cham
(2014). http://dx.doi.org/10.1007/978-3-319-14313-2_49

2. Baker, C.G., Hetmaniuk, U.L., Lehoucq, R.B., Thornquist, H.K.: Anasazi software for the
numerical solution of large-scale eigenvalue problems. ACM Trans. Math. Softw. 36(3), 1–23
(2009). http://doi.acm.org/10.1145/1527286.1527287

3. Balay, S., Abhyankar, S., Adams, M.F., Brown, J., Brune, P., Buschelman, K., Dalcin, L.,
Eijkhout, V., Gropp, W.D., Kaushik, D., Knepley, M.G., McInnes, L.C., Rupp, K., Smith, B.F.,
Zampini, S., Zhang, H.: PETSc Web page (2015). http://www.mcs.anl.gov/petsc

4. Bland, W., Bouteiller, A., Herault, T., Hursey, J., Bosilca, G., Dongarra, J.: An evaluation of
user-level failure mitigation support in MPI. In: Träff, J.L., Benkner, S., Dongarra, J. (eds.)
Recent Advances in the Message Passing Interface. Lecture Notes in Computer Science,
vol. 7490, pp. 193–203. Springer, Berlin/Heidelberg (2012)

5. Daly, J. et al.: Inter-Agency Workshop on HPC Resilience at Extreme Scale. Tech. rep. (Feb
2012)

6. Demmel, J., Grigori, L., Hoemmen, M., Langou, J.: Communication-optimal parallel and
sequential QR and LU factorizations. SIAM J. Sci. Comput. 34(1), A206–A239 (2012)

7. Di Napoli, E., Polizzi, E., Saad, Y.: Efficient estimation of eigenvalue counts in an interval
(2013). Preprint (arXiv:1308.4275), http://arxiv.org/abs/1308.4275

8. El-Sayed, N., Schroeder, B.: Reading between the lines of failure logs: understanding how HPC
systems fail. In: Proceedings of the 2013 43rd Annual IEEE-IFIP International Conference
on Dependable Systems and Networks (DSN ’13), pp. 1–12. IEEE Computer Society,
Washington, DC (2013)

9. Fokkema, D.R., Sleijpen, G.L.G., van der Vorst, H.A.: Jacobi–Davidson style QR and QZ
algorithms for the reduction of matrix pencils. SIAM J. Sci. Comput. 20(1), 94–125 (1998)

10. Galgon, M., Krämer, L., Lang, B.: Counting eigenvalues and improving the integration in the
FEAST algorithm (2012). Preprint BUW-IMACM 12/22, available from http://www.imacm.
uni-wuppertal.de

11. Galgon, M., Krämer, L., Lang, B., Alvermann, A., Fehske, H., Pieper, A.: Improving robustness
of the FEAST algorithm and solving eigenvalue problems from graphene nanoribbons. Proc.
Appl. Math. Mech. 14(1), 821–822 (2014)

12. Galgon, M., Krämer, L., Thies, J., Basermann, A., Lang, B.: On the parallel iterative solution
of linear systems arising in the FEAST algorithm for computing inner eigenvalues. J. Parallel
Comput. 49, 153–163 (2015)

13. Galgon, M., Krämer, L., Lang, B.: Adaptive choice of projectors in projection based eigen-
solvers (2015), submitted. Available from http://www.imacm.uni-wuppertal.de/

14. GASPI project website: http://www.gaspi.de/en/project.html
15. Gordon, D., Gordon, R.: CARP-CG: A robust and efficient parallel solver for linear systems,

applied to strongly convection dominated PDEs. J. Parallel Comput. 36(9), 495–515 (2010)
16. Gropp, W.D., Kaushik, D.K., Keyes, D.E., Smith, B.F.: Towards realistic performance bounds

for implicit CFD codes. In: Ecer, A., et al. (eds.) Proceedings of Parallel CFD’99, pp. 233–240.
Elesevier, New York (1999)

17. Hernandez, V., Roman, J.E., Vidal, V.: SLEPc: A scalable and flexible toolkit for the solution
of eigenvalue problems. ACM Trans. Math. Softw. 31(3), 351–362 (2005)

18. Heroux, M.A., Bartlett, R.A., Howle, V.E., Hoekstra, R.J., Hu, J.J., Kolda, T.G., Lehoucq,
R.B., Long, K.R., Pawlowski, R.P., Phipps, E.T., Salinger, A.G., Thornquist, H.K., Tuminaro,
R.S., Willenbring, J.M., Williams, A., Stanley, K.S.: An overview of the Trilinos project. ACM
Trans. Math. Softw. 31(3), 397–423 (2005), http://doi.acm.org/10.1145/1089014.1089021

http://dx.doi.org/10.1007/978-3-319-14313-2_49
http://doi.acm.org/10.1145/1527286.1527287
http://www.mcs.anl.gov/petsc
http://arxiv.org/abs/1308.4275
http://www.imacm.uni-wuppertal.de
http://www.imacm.uni-wuppertal.de
http://www.imacm.uni-wuppertal.de/
http://www.gaspi.de/en/project.html
http://doi.acm.org/10.1145/1089014.1089021

Towards an Exascale Enabled Sparse Solver Repository 315

19. Heroux, M.A., Willenbring, J.M.: A new overview of the Trilinos project. Sci. Program. 20(2),
83–88 (2012)

20. Hochstenbach, M.E., Notay, Y.: The Jacobi-Davidson method. GAMM-Mitteilungen 29(2),
368–382 (2006). http://mntek3.ulb.ac.be/pub/docs/reports/pdf/jdgamm.pdf

21. Hursey, J.: Coordinated checkpoint/restart process fault tolerance for MPI applications on HPC
systems. Ph.D. thesis, Indiana University, Bloomington (2010)

22. Jackson, D.: On approximation by trigonometric sums and polynomials. Trans. Am. Math. Soc.
13, 491–515 (1912)

23. Krämer, L.: Integration based solvers for standard and generalized Hermitian eigenvalue
problems. Ph.D. thesis, Bergische Universität Wuppertal (2014). http://nbn-resolving.de/urn/
resolver.pl?urn=urn:nbn:de:hbz:468-20140701-112141-6

24. Krämer, L., Di Napoli, E., Galgon, M., Lang, B., Bientinesi, P.: Dissecting the FEAST
algorithm for generalized eigenproblems. J. Comput. Appl. Math. 244, 1–9 (2013)

25. Kreutzer, M., Hager, G., Wellein, G., Pieper, A., Alvermann, A., Fehske, H.: Performance
engineering of the kernel polynomial method on large-scale CPU-GPU systems. In: Parallel
and Distributed Processing Symposium (IPDPS), 2015 IEEE International, pp. 417–426
(2015). http://arXiv.org/abs/1410.5242

26. Kreutzer, M., Pieper, A., Alvermann, A., Fehske, H., Hager, G., Wellein, G., Bishop, A.R.:
Efficient large-scale sparse eigenvalue computations on heterogeneous hardware. In: Poster at
the 2015 ACM/IEEE International Conference for High Performance Computing, Networking,
Storage and Analysis (2015). http://sc15.supercomputing.org/sites/all/themes/SC15images/
tech_poster/tech_poster_pages/post205.html.

27. Kreutzer, M., Thies, J., Pieper, A., Alvermann, A., Galgon, M., Röhrig-Zöllner, M., Shahzad,
F., Basermann, A., Bishop, A., Fehske, H., Hager, G., Lang, B., Wellein, G.: Performance
engineering and energy efficiency of building blocks for large, sparse eigenvalue computations
on heterogeneous supercomputers. In: Bungartz, H.-J., et al. (eds.) Software for Exascale
Computing – SPPEXA 2013–2015. Lecture Notes in Computational Science and Engineering,
vol. 113. Springer (2016)

28. Kreutzer, M., Thies, J., Röhrig-Zöllner, M., Pieper, A., Shahzad, F., Galgon, M., Basermann,
A., Fehske, H., Hager, G., Wellein, G.: GHOST: building blocks for high performance sparse
linear algebra on heterogeneous systems (2015). Preprint (arXiv:1507.08101), http://arxiv.org/
abs/1507.08101

29. Laguna, I., et al.: Evaluating user-level fault tolerance for MPI applications. In: Proceedings of
the 21st European MPI Users’ Group Meeting (EuroMPI/ASIA ’14), pp. 57:57–57:62. ACM,
New York (2014)

30. Lehoucq, R.B., Yang, C.C., Sorensen, D.C.: ARPACK users’ guide: solution of large-scale
eigenvalue problems with implicitly restarted Arnoldi methods. SIAM, Philadelphia (1998).
http://opac.inria.fr/record=b1104502

31. Pieper, A., Kreutzer, M., Galgon, M., Alvermann, A., Fehske, H., Hager, G., Lang, B.,
Wellein, G.: High-performance implementation of Chebyshev filter diagonalization for interior
eigenvalue computations (2015), submitted. Preprint (arXiv:1510.04895)

32. Polizzi, E.: A density matrix-based algorithm for solving eigenvalue problems. Phys. Rev. B
79, 115112 (2009)

33. Polizzi, E., Kestyn, J.: High-performance numerical library for solving eigenvalue problems:
FEAST eigenvalue solver v3.0 user guide (2015). http://arxiv.org/abs/1203.4031

34. (PT-)SCOTCH project website. http://www.labri.fr/perso/pelegrin/scotch/
35. Röhrig-Zöllner, M., Thies, J., Kreutzer, M., Alvermann, A., Pieper, A., Basermann, A., Hager,

G., Wellein, G., Fehske, H.: Performance of block Jacobi-Davidson eigensolvers. In: Poster
at 2014 ACM/IEEE International Conference on High Performance Computing Networking,
Storage and Analysis (2014)

36. Röhrig-Zöllner, M., Thies, J., Kreutzer, M., Alvermann, A., Pieper, A., Basermann, A., Hager,
G., Wellein, G., Fehske, H.: Increasing the performance of the Jacobi-Davidson method by
blocking. SIAM J. Sci. Comput. 37(6), C697–C722 (2015). http://elib.dlr.de/89980/

http://mntek3.ulb.ac.be/pub/docs/reports/pdf/jdgamm.pdf
http://nbn-resolving.de/urn/resolver.pl?urn=urn:nbn:de:hbz:468-20140701-112141-6
http://nbn-resolving.de/urn/resolver.pl?urn=urn:nbn:de:hbz:468-20140701-112141-6
http://arXiv.org/abs/1410.5242
http://sc15.supercomputing.org/sites/all/themes/SC15images/tech_poster/tech_poster_pages/post205.html
http://sc15.supercomputing.org/sites/all/themes/SC15images/tech_poster/tech_poster_pages/post205.html
http://arxiv.org/abs/1507.08101
http://arxiv.org/abs/1507.08101
http://opac.inria.fr/record=b1104502
http://arxiv.org/abs/1203.4031
http://www.labri.fr/perso/pelegrin/scotch/
http://elib.dlr.de/89980/

316 J. Thies et al.

37. Sato, K. et al.: Design and modeling of a non-blocking checkpointing system. In: Proceedings
of the Conference on High Performance Computing, Networking, Storage and Analysis,
pp. 19:1–19:10. IEEE Computer Society Press, Los Alamitos (2012)

38. Shahzad, F., Kreutzer, M., Zeiser, T., Machado, R., Pieper, A., Hager, G., Wellein, G.: Building
a fault tolerant application using the GASPI communication layer. In: Proceedings of the 1st
International Workshop on Fault Tolerant Systems (FTS 2015), in conjunction with IEEE
Cluster 2015, pp. 580–587 (2015)

39. Shahzad, F., Wittmann, M., Kreutzer, M., Zeiser, T., Hager, G., Wellein, G.: A sur-
vey of checkpoint/restart techniques on distributed memory systems. Parallel Process.
Lett. 23(04), 1340011–1–1340011–20 (2013). http://www.worldscientific.com/doi/abs/10.
1142/S0129626413400112

40. Shahzad, F., Wittmann, M., Zeiser, T., Hager, G., Wellein, G.: An evaluation of different I/O
techniques for checkpoint/restart. In: Proceedings of the 2013 IEEE International Parallel and
Distributed Processing Symposium (IPDPS), pp. 1708–1716. IEEE Computer Society (2013).
http://dx.doi.org/10.1109/IPDPSW.2013.145

41. Shahzad, F., Wittmann, M., Zeiser, T., Wellein, G.: Asynchronous checkpointing by dedicated
checkpoint threads. In: Proceedings of the 19th European conference on Recent Advances in
the Message Passing Interface (EuroMPI’12), pp. 289–290. Springer, Berlin/Heidelberg (2012)

42. Stathopoulos, A., McCombs, J.R.: PRIMME: preconditioned iterative multimethod
eigensolver–methods and software description. ACM Trans. Math. Softw. 37(2), 1–30 (2010)

43. Stathopoulos, A., Wu, K.: A block orthogonalization procedure with constant synchronization
requirements. SIAM J. Sci. Comput. 23(6), 2165–2182 (2002)

44. Tal-Ezer, H., Kosloff, R.: An accurate and efficient scheme for propagating the time dependent
Schrödinger equation. J. Chem. Phys. 81, 3967 (1984)

45. TOP500 Supercomputer Sites. http://www.top500.org, accessed: June 2015
46. Treibig, J., Hager, G., Wellein, G.: LIKWID: A lightweight performance-oriented tool suite

for x86 multicore environments. In: Proceedings of the 2010 39th International Conference
on Parallel Processing Workshops (ICPPW ’10), pp. 207–216. IEEE Computer Society,
Washington, DC (2010). http://dx.doi.org/10.1109/ICPPW.2010.38

47. Weiße, A., Fehske, H.: Chebyshev expansion techniques. In: Fehske, H., Schneider, R., Weiße,
A. (eds.) Computational Many-Particle Physics. Lecture Notes Physics, vol. 739, pp. 545–577.
Springer, Berlin/Heidelberg (2008)

48. Weiße, A., Wellein, G., Alvermann, A., Fehske, H.: The kernel polynomial method. Rev. Mod.
Phys. 78, 275–306 (2006). http://dx.doi.org/10.1103/RevModPhys.78.275

49. Williams, S., Waterman, A., Patterson, D.: Roofline: an insightful visual performance model
for multicore architectures. Commun. ACM 52(4), 65–76 (2009). http://doi.acm.org/10.1145/
1498765.1498785

http://www.worldscientific.com/doi/abs/10.1142/S0129626413400112
http://www.worldscientific.com/doi/abs/10.1142/S0129626413400112
http://dx.doi.org/10.1109/IPDPSW.2013.145
http://www.top500.org
http://dx.doi.org/10.1109/ICPPW.2010.38
http://dx.doi.org/10.1103/RevModPhys.78.275
http://doi.acm.org/10.1145/1498765.1498785
http://doi.acm.org/10.1145/1498765.1498785

	Towards an Exascale Enabled Sparse Solver Repository
	1 Introduction
	2 ESSR Architecture and Development Process
	2.1 Software Architecture
	2.2 Concurrent Development of all Layers
	2.3 Integration of Performance Engineering
	2.4 Fault Tolerance Strategy

	3 ESSR Software Landscape
	3.1 Hardware and Execution Models Supported
	3.2 ESSR Toolkits and Functionality
	3.3 Applications
	3.4 Kernel Interface
	3.5 Computational Core
	3.6 Verifying Software Correctness and Performance

	4 Algorithms Implemented in the ESSR
	4.1 Algorithms Based on Chebyshev Polynomials
	4.2 Beyond FEAST: Projection Based Methods
	4.3 Block Jacobi-Davidson QR

	5 Fault Tolerance
	6 Summary and Outlook
	References

