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Abstract We present advances concerning efficient finite element assembly and
linear solvers on current and upcoming HPC architectures obtained in the frame
of the EXA-DUNE project, part of the DFG priority program 1648 Software for
Exascale Computing (SPPEXA). In this project, we aim at the development of both
flexible and efficient hardware-aware software components for the solution of PDEs
based on the DUNE platform and the FEAST library. In this contribution, we focus
on node-level performance and accelerator integration, which will complement the
proven MPI-level scalability of the framework. The higher-level aspects of the EXA-
DUNE project, in particular multiscale methods and uncertainty quantification, are
detailed in the companion paper (Bastian et al., Advances concerning multiscale
methods and uncertainty quantification in EXA-DUNE. In: Proceedings of the
SPPEXA Symposium, 2016).

P. Bastian • S. Müthing (�)
Interdisciplinary Center for Scientific Computing, Heidelberg University, Heidelberg, Germany
e-mail: peter.bastian@iwr.uni-heidelberg.de; steffen.muething@iwr.uni-heidelberg.de

C. Engwer • J. Fahlke • R. Milk • M. Ohlberger
Institute for Computational and Applied Mathematics, University of Münster, Münster, Germany
e-mail: christian.engwer@wwu.de; rene.milk@wwu.de; mario.ohlberger@wwu.de

D. Göddeke
Institute of Applied Analysis and Numerical Simulation, University of Stuttgart, Stuttgart,
Germany
e-mail: dominik.goeddeke@mathematik.uni-stuttgart.de

M. Geveler • D. Ribbrock • S. Turek
Institute of Applied Mathematics, TU Dortmund, Dortmund, Germany
e-mail: markus.geveler@math.tu-dortmund.de; dirk.ribbrock@math.tu-dortmund.de;
stefan.turek@math.tu-dortmund.de

O. Iliev • J. Mohring
Fraunhofer Institute for Industrial Mathematics ITWM, Kaiserslautern, Germany
e-mail: oleg.iliev@itwm.fraunhofer.de; jan.mohring@itwm.fraunhofer.de

O. Ippisch
Institut für Mathematik, TU Clausthal-Zellerfeld, Clausthal-Zellerfeld, Germany
e-mail: olaf.ippisch@tu-clausthal.de

© Springer International Publishing Switzerland 2016
H.-J. Bungartz et al. (eds.), Software for Exascale Computing – SPPEXA
2013-2015, Lecture Notes in Computational Science and Engineering 113,
DOI 10.1007/978-3-319-40528-5_1

3

mailto:peter.bastian@iwr.uni-heidelberg.de
mailto:steffen.muething@iwr.uni-heidelberg.de
mailto:christian.engwer@wwu.de
mailto:rene.milk@wwu.de
mailto:mario.ohlberger@wwu.de
mailto:dominik.goeddeke@mathematik.uni-stuttgart.de
mailto:markus.geveler@math.tu-dortmund.de
mailto:dirk.ribbrock@math.tu-dortmund.de
mailto:stefan.turek@math.tu-dortmund.de
mailto:oleg.iliev@itwm.fraunhofer.de
mailto:jan.mohring@itwm.fraunhofer.de
mailto:olaf.ippisch@tu-clausthal.de


4 P. Bastian et al.

1 The EXA-DUNE Project

Partial differential equations (PDEs) – often parameterized or stochastic – lie at
the heart of many models for processes from science and engineering. Despite
ever-increasing computational capacities, many of these problems are still only
solvable with severe simplifications, in particular when additional requirements
like uncertainty quantification, parameter estimation or optimization in engineering
applications come into play.

Within the EXA-DUNE1 project we pursue three different routes to make
progress towards exascale: (i) we develop new computational algorithms and
implementations for solving PDEs that are highly suitable to better exploit the
performance offered by prospective exascale hardware, (ii) we provide domain-
specific abstractions that allow mathematicians and application scientists to exploit
(exascale) hardware with reasonable effort in terms of programmers’ time (a metric
that we consider highly important) and (iii) we showcase our methodology to solve
complex application problems of flow in porous media.

Software development, in the scope of our work for the numerical solution of a
wide range of PDE problems, faces contradictory challenges. On the one hand, users
and developers prefer flexibility and generality, on the other hand, the continuously
changing hardware landscape requires algorithmic adaptation and specialization to
be able to exploit a large fraction of peak performance.

A framework approach for entire application domains rather than distinct
problem instances facilitates code reuse and thus substantially reduces development
time. In contrast to the more conventional approach of developing in a ‘bottom-
up’ fashion starting with only a limited set of problems and solution methods
(likely a single problem/method), frameworks are designed from the beginning
with flexibility and general applicability in mind so that new physics and new
mathematical methods can be incorporated more easily. In a software framework the
generic code of the framework is extended by the user to provide application specific
code instead of just calling functions from a library. Template meta-programming
in C++ supports this extension step in a very efficient way, performing the fusion
of framework and user code at compile time which reduces granularity effects and
enables a much wider range of optimizations by the compiler. In this project we
strive to redesign components of the DUNE framework [1, 2] in such a way that
hardware-specific adaptations based on the experience acquired within the FEAST
project [18] can be exploited in a transparent way without affecting user code.

Future exascale systems are characterized by a massive increase in node-level
parallelism, heterogeneity and non-uniform access to memory. Current examples
include nodes with multiple conventional CPU cores arranged in different sockets.
GPUs require much more fine-grained parallelism, and Intel’s Xeon Phi design
shares similarities with both these extremes. One important common feature of all

1http://www.sppexa.de/general-information/projects.html#EXADUNE

http://www.sppexa.de/general-information/projects.html#EXADUNE
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these architectures is that reasonable performance can only be achieved by explicitly
using their (wide-) SIMD capabilities. The situation becomes more complicated as
different programming models, APIs and language extensions are needed, which
lack performance portability. Instead, different data structures and memory layouts
are often required for different architectures. In addition, it is no longer possible to
view the available off-chip DRAM memory within one node as globally shared in
terms of performance. Accelerators are typically equipped with dedicated memory,
which improves accelerator-local latency and bandwidth substantially, but at the
same time suffers from a (relatively) slow connection to the host. Due to NUMA
(non-uniform memory access) effects, a similar (albeit less dramatic in absolute
numbers) imbalance can already be observed on multi-socket multi-core CPU
systems. There is common agreement in the community that the existing MPI-
only programming model has reached its limits. The most prominent successor will
likely be ‘MPI+X’, so that MPI can still be used for coarse-grained communication,
while some kind of shared memory abstraction is used within MPI processes at
the UMA level. The upcoming second generation of Xeon Phi (Knight’s Landing)
will be available both as a traditional accelerator and as a standalone, bootable
CPU, enabling new HPC architecture designs where a whole node with accelerator-
like properties can function as a standalone component within a cluster. Combined
with the ISA convergence between standard CPUs and the new Xeon Phi, this
will allow for a common code base that only has to be parameterized for the
different performance characteristics (powerful versus simplistic cores and the much
higher level of intra-node parallelism of the Xeon Phi) with a high potential of
vastly improved developer productivity. At the same time, Xeon Phi processors
will contain special on-package RAM, bringing the highly segmented memory
architecture of accelerator cards one step closer to general purpose CPUs. Similarly,
NVIDIA has announced the inclusion of general purpose ARM cores in upcoming
generations of their GPGPUs.

Our work within the EXA-DUNE project currently targets pilot applications
in the field of porous media flow. These problems are characterized by coupled
elliptic/parabolic-hyperbolic PDEs with strongly varying coefficients and highly
anisotropic meshes. The elliptic part mandates robust solvers and thus does not lend
itself to the current trend in HPC towards matrix-free methods with their beneficial
properties in terms of memory bandwidth and/or Flops/degree of freedom (DOF)
ratio; typical matrix-free techniques like stencil-based geometric multigrid are not
suited to those types of problems. For that reason, we aim at algebraic multigrid
(AMG) preconditioners known to work well in this context, and work towards
further improving their scalability and (hardware) performance. Discontinuous
Galerkin (DG) methods are employed to increase data locality and arithmetic
intensity. Matrix-free techniques are investigated for the hyperbolic/parabolic parts.

In this paper we report on the current state of the lower-level components of
the EXA-DUNE project, while the more application-oriented parts will be presented
in a separate article in these proceedings [3]. Message passing parallelism is well
established in DUNE (as documented by the inclusion of DUNE’s solver library in
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the High-Q-Club2), and we thus concentrate on core/node level performance. After
a short introduction to our UMA node concept in Sect. 2.1, the general structure
comprises two major parts: Sect. 3 focuses on problem assembly and matrix-free
solvers, in particular thread-parallel assembly (Sect. 3.1) and medium to high order
DG schemes (Sect. 3.2), while Sect. 4 is concerned with linear algebra, where we
show the integration of a modern, cross-platform matrix format (Sect. 4.1) as well
as hardware-oriented preconditioners for the CUDA architecture (Sect. 4.2).

2 Hybrid Parallelism in DUNE

In the following, we introduce the ‘virtual UMA node’ concept at the heart of our
hybrid parallelization strategy, and ongoing current steps to incorporate this concept
into the assembly and solver stages of our framework.

2.1 UMA Concept

Current and upcoming HPC systems are characterized by two trends which greatly
increase the complexity of efficient node-level programming: (i) a massive increase
in the degree of parallelism restricts the amount of memory and bandwidth available
to each compute unit, and (ii) the node architecture becomes increasingly hetero-
geneous. Consequently, on modern multi-socket nodes the memory performance
depends on the location of the memory in relation to the compute core (NUMA).
The problem becomes even more pronounced in the presence of accelerators like
Xeon Phi or GPUs, for which memory accesses might have to traverse the PCIe bus,
severely limiting bandwidth and latency. In order to demonstrate the performance
implications of this design, we consider the relative runtime of an iterative linear
solver (Krylov-DG), as shown in Table 1: an identical problem is solved with
different mappings to MPI processes and threads, on a representative 4-socket
server with AMD Opteron 6172 12-core processors and 128 GB RAM. On this
architecture, a UMA domain comprises half a socket (6 cores), and thus, (explicit
or implicit) multi-threading beyond 6 cores actually yields slowdowns. Note that all
different configurations in this benchmark use all available cores; they only differ
in how many MPI ranks (UMA domains) they allocate. This experiment validates
our design decision to regard heterogeneous nodes as a collection of ‘virtual
UMA nodes’ on the MPI level: internal uniform memory access characteristics
are exploited by shared memory parallelism, while communication between UMA
domains is handled via (classical/existing) message passing.

2http://www.fz-juelich.de/ias/jsc/EN/Expertise/High-Q-Club/_node.html

http://www.fz-juelich.de/ias/jsc/EN/Expertise/High-Q-Club/_node.html
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Table 1 Poisson problem on the unit cube, discretized by the DG-SIPG method, timings for 100
Krylov iterations. Comparison of different MPI/shared memory mappings for varying polynomial
degree p of the DG discretization and mesh width h. Timings tM=T and speedups for varying
numbers of MPI processes M and threads per process T

p h�1 t48=1Œs� t8=6Œs�
t48=1

t8=6
t4=12Œs�

t48=1

t4=12
t1=48Œs�

t48=1

t1=48

1 256 645:1 600:2 1:07 1483:3 0:43 2491:7 0:26

2 128 999:5 785:7 1:27 1320:7 0:76 2619:0 0:38

3 64 709:6 502:9 1:41 1237:2 0:57 1958:2 0:36

3 Assembly

As discussed before, we distinguish between three different layers of concurrency.
Below the classical MPI level, we introduce thread parallelization as a new layer
of parallelism on top of the existing DUNE grid interface. The number of threads is
governed by the level of concurrency within the current UMA node, as explained
above.

The grid loop is distributed among the threads, which allows for parallel
assembly of a finite element operator or a residual vector. In order to achieve good
performance within an individual thread, two major problems need to be solved: (i)
as the majority of operations during finite element assembly are memory bandwidth
bound, a naive approach to multithreading will not perform very well and achieve
only minor speedups. (ii) Vectorization (SIMD, ILP) is required to fully exploit
the hardware of modern processors or many core systems. Even in memory bound
contexts, this is important as it reduces the number of load and store instructions.
Due to the much more complicated and problem-specific kernels that occur as
part of problem assembly, a user-friendly integration of vectorization into assembly
frameworks poses a much more difficult problem compared to linear algebra, where
the number of kernels is much smaller.

Finally, these building blocks need to be optimized with regard to additional
constraints like memory alignment and optimal cache utilization.

We believe that locally structured data is the key to achieve both of these goals.
We follow two approaches to introduce local structure to a globally unstructured
discretization:

1. Low order methods: we employ a structured refinement on top of an unstructured
parallel mesh. The structured refinement is computed on the fly and leads to a
well defined sparse local structure, i.e., band matrices.

2. Higher order methods: higher order DG methods lead to block structured data
structures and access patterns, which allow for high computational efficiency.
We pair these types of methods with a sum factorized assembly algorithm to
achieve a competitive effort per DOF.

While both of these methods yield computational benefits, they are still very
different, and while the higher amount of structure in a medium or high order DG
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method might yield a higher computational efficiency, these methods also require a
solution with more regularity than a low order method to achieve good convergence,
making the right choice of method strongly dependent on the problem at hand.

3.1 Thread Parallel Assembly

Thread parallel assembly mainly consists of thread parallel grid sweeps and
concurrent writes to the residual vector or stiffness matrix. We identify two design
decisions with a significant performance impact:

(A) Partitioning: an existing set of grid cells – with unknown ordering – has to be
split into subsets for the different threads.

(B) Access Conflicts: each thread works on its own set of cells, but shares some
DOFs with other threads, requiring a strategy to avoid those write conflicts.

In order to describe subsets of cells in an implementation agnostic manner,
we introduce the concept of EntitySets. They encapsulate an iterator range,
describing a set of grid objects, in this case a set of grid cells and provide a map
from grid entities into a (globally) consecutive index range for data storage.

For a given mesh T .˝/ we consider three different strategies, where the first two
are directly based on the induced linear ordering of all mesh cells e 2 T .˝/. In [7]
we presented performance tests to evaluate the different partitioning strategies.

strided: for P threads, each thread p iterates over the whole set of cells e 2 T .˝/,
but stops only at cells where e mod P D p holds.

ranged: T is split into consecutive iterator ranges of the size jT j=P, using
iterators over T to define the entry points.

general: general partitions, like those obtained from graph partitioning libraries
like METIS or SCOTCH need to store copies of all cells in the EntitySet.
This is the most flexible approach, but typically creates non-contiguous per-
thread subsets of the EntitySet, which in turn leads to less cache-efficient
memory access patterns.

To avoid write conflicts we consider three different strategies:

entity-wise locks are expected to give very good performance, at the cost of
additional memory requirements.

batched write uses a global lock, but the frequency of locking attempts is reduced.
Updates are collected in a temporary buffer and the lock is acquired when the
buffer is full.

coloring avoids write conflicts totally, but requires a particular partitioning
scheme.

The experiments performed in [7] indicate that ranged partitioning with entity-
wise locking and coloring can be implemented with a low overhead in the thread
parallelization layer and show good performance on classic multi-core CPUs and
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on modern many-core systems alike. In our test the performance gain from coloring
was negligible (cf. Sect. 3.3), but the code complexity increased considerably,
leading us to settle on the ranged partitioning strategy for the rest of this paper.

3.2 Higher Order DG Methods

As explained in the introduction, we focus on porous media applications to
demonstrate the overall viability of our approach to extreme scale computing within
our project and we initially consider the prototypical problem of density driven flow
in a three-dimensional domain ˝ D .0; 1/3 given by an elliptic equation for pressure
p.x; y; z; t/ coupled to a parabolic equation for concentration c.x; y; z; t/:

� r � .rp � c1z/ D 0 ; (1)

@tc � r �
�

.rp � c1z/cC 1

Ra
rc

�
D 0 : (2)

This system serves as a model for the dissolution of a CO2 phase in brine, where the
unstable flow behavior leads to enhanced dissolution. The system is formulated in
non-dimensional form with the Raleigh number Ra as the only governing parameter.
For further details, we refer to [4], where we introduce the problem in a more
detailed fashion and describe our decoupled solution approach based on an operator
splitting for the pressure and the concentration parts. In the following, we focus on
the performance characteristics of the DG scheme used for the discretization of the
transport equation and (optionally, instead of a finite volume scheme) the pressure
equation.

DG methods are popular in the porous media flow community due to their
local mass conservation properties, the ability to handle full diffusion tensors
and unstructured, nonconforming meshes as well as the simple implementation of
upwinding for convection dominated flows.

Due to the large computational effort per DOF, an efficient implementation of DG
methods of intermediate and high order is crucial. In many situations it is possible
to exploit the tensor product structure of the polynomial basis functions and the
quadrature rules on cuboid elements by using sum factorization techniques. At each
element the following three steps are performed: (i) evaluate the finite element
function and gradient at quadrature points, (ii) evaluate PDE coefficients and
geometric transformation at quadrature points, and (iii) evaluate the bilinear form for
all test functions. The computational complexity of steps (i) and (iii) is reduced from
O.k2d/, k � 1 being the polynomial degree and d the space dimension, to O.dkdC1/

with the sum factorization technique, see [14, 15]. This can be implemented with
matrix–matrix products, albeit with small matrix dimensions. For the face terms, the
complexity is reduced from O.k2d�1/ to O.3dkd/. For practical polynomial degrees,
k � 10, the face terms dominate the overall computation time, resulting in the time
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Fig. 1 Performance of the sum factorized DG assembly: GFlop/s rates for a matrix-free operator
application (left), time per DOF for matrix-based and matrix-free operator application as well as
matrix assembly (middle), relative overhead per DOF when weakly scaling from 1 to 16 cores
(right)

per degree of freedom (DOF) to be independent of the polynomial degree. This can
be seen in the second plot in Fig. 1, where the time per DOF for the matrix-free
operator is almost constant starting from k D 3.

Our implementation of the DG scheme is based on exploiting the matrix–matrix
product structure of the sum factorization kernels. We initially relied on compiler
auto-vectorizers for the vectorization, but as can be seen in the results published
in [4], this did not yield acceptable performance. We have thus reimplemented the
kernels with explicit vectorization; for this purpose, we rely on the small external
header library VCL [9] which provides thin wrappers around x86-64 intrinsics.
In order to further improve and stabilize the performance of these kernels across
different discretization orders k, we exploit the fact that our equation requires
both the solution itself as well as its gradient, yielding a total of 4 scalar values
per quadrature point, which fits perfectly with the 4-wide double precision SIMD
registers of current CPUs, eliminating the need for complicated and costly data
padding and or setup/tail loops. This scheme can be extended to wider architectures
like AVX512 and GPUs by blocking multiple quadrature points together.

In the following, we present some results obtained with our new CPU imple-
mentation of this sum factorized DG scheme. For these benchmarks, we evaluate
a stationary general convection diffusion reaction equation on the 3D unit cube.
As many models assume the equation parameters to be constant within a single
grid cell, our code has a special fast path that avoids parameter evaluation at each
quadrature point, reducing the number of evaluations per cell from O.kd/ to 1.

We performed our measurements on one CPU of a server with dual Xeon E5-
2698v3 (Haswell-EP at 2.3 GHz, 16 cores, 32 hyper-threads, AVX2/FMA3, AVX
clock 1.9 GHz, configured without TurboBoost and Cluster on Die, theoretical
peak 486.4 GFlop/s) and 128 GB DDR4 DRAM at 2.13 GHz. All benchmarks
were performed using thread pinning by first distributing hardware threads across
the available cores before employing hyper-threading (if applicable). The same
platform was used for all subsequent CPU benchmarks described in this paper
except for Sect. 4.2. We investigated the scalability of our code within this UMA
node according to our parallelization concept laid out in the introduction by means
of a weak scalability study.
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Figure 1 shows the overall GFlop/s rate achieved on all 16 cores during a
complete matrix-free operator application for different polynomial degrees as well
as the time required for these applications in relation to a matrix multiplication.
As can be seen, the code already outperforms the matrix-based version for k D 2,
without taking into account the large overhead of initial matrix assembly, which
also becomes a severely limiting factor for the possible per-core problem sizes at
larger core counts and higher discretization orders (for k D 7, we were only able
to allocate 110,592 DOFs per core in order to stay within the available 4 GB RAM,
which is already above average when considering current HPC systems). As can
be seen, the larger amount of work per quadrature point in case of non-constant
parameters directly translates into higher GFlop/s rates.

Finally, the third plot of Fig. 1 demonstrates the better scalability of the matrix-
free scheme: it shows the relative overhead per DOF after weakly scaling to different
numbers of active cores compared to the time per DOF required when running
on a single core. While the computationally bound matrix-free scheme achieves
almost perfect scalability, the matrix multiplication starts to saturate the 4 memory
controllers of the CPU at between 4 and 8 active cores, causing a performance
breakdown.

In order to gain further insight into the relative performance of the different
assembly components, we instrumented our code to record separate timings and
operation counts for the three parts of the sum factorized algorithm: calculation
of the solutions at the quadrature points, per-quadrature point operations and the
folding of the per-point integral arguments into the test function integrals. As can
be seen in Fig. 2, the sum factorized kernels achieve very good GFlop/s rates due to
their highly structured nature, especially for the 3D volume terms. In comparison,
the face terms are slightly slower, which is due to both the lower dimension (less
work per datum) and the additional work related to isolating the normal direction
(the normal direction needs to be treated as the first/last direction in the sum
factorization kernels, requiring an additional permutation step in most cases). While
this step can be folded into the matrix multiplication, it creates a more complicated
memory access pattern, reducing the available memory bandwidth due to less
efficient prefetching, which is difficult to overcome as it involves scalar accesses
spread over multiple cache lines. The lower amount of work also makes the face
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Fig. 2 GFlop/s rates for different parts of the sum factorized assembly. Rates are shown for a
single core, benchmark was run with all 16 cores active
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integrals more sensitive to the problem size, the residual calculation in particular
hitting local performance peaks for k D 3 and k D 7, which translates into either 4
or 8 quadrature points per direction, exactly filling the 4-wide SIMD registers of the
processor.

The calculations at the quadrature points do not achieve the same efficiency as the
sum factorization, which is to be expected as they possess a more complex structure
with e.g. parameter evaluations and (in the case of the face terms) branching due to
the upwinding in the DG scheme. In order to improve performance in this area, we
are currently investigating vectorization across multiple quadrature points.

3.3 Low Order Lagrange Methods

In contrast to the spectral DG methods, low order conforming methods have several
major drawbacks regarding the possible performance:

(i) The memory layout is much less favorable – assembly is performed cell wise,
but the DOFs are attached to vertices (and edges etc. for polynomial degrees
>1), leading to scattered memory accesses. Moreover, vertex DOFs are shared
between multiple cells, increasing the size of access halos and the probability
of write conflicts compared to DG.

(ii) The algorithmic intensity is very low and performance thus memory bandwidth
bound rather than compute bound. While structured meshes allow to calculate
a lot of information on-the-fly, reducing the amount of expensive memory
transfers and increasing computational intensity, many real world applications
do require unstructured meshes to correctly model complex geometries or for
adaptive computations. We limit the costs of these unstructured meshes by
combining globally unstructured coarse meshes with several levels of locally
structured refinement on each cell to recover a minimum amount of local
structure.

In the DUNE-PDELAB interface, users of the library must implement a local
operator that contains the cell- and face-based integration kernels for the global
operator. Vectorization has to be added at the innermost level to these kernels,
i.e., at the level of cell operations, which is user code that has to be rewritten
for every new problem. In order to lessen this implementation burden on the
user, our framework vectorizes the kernels over several mesh cells and replaces
the data type of the local residual vector with a special data type representing a
whole SIMD vector. In C++ this can be done generically by using vectorization
libraries, e. g. Vc[12] or VCL[9], and generic programming techniques. With
this approach, the scalar code written by the user is automatically vectorized,
evaluating the kernel for multiple elements simultaneously. The approach is
not completely transparent, as the user will have to e.g. adapt code containing
conditional branches, but the majority of user code can stay unchanged and will
afterwards work for the scalar and the vectorized case alike.
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Table 2 Matrix-based assembly performance: Poisson problem, Q1 elements, assembly of Jaco-
bian. Left: Xeon E5-2698v3 (cf. Sect. 3.2). Right: Xeon PHI 5110P (Knights Corner, 60 cores, 240
hyper-threads, peak 1011 GFlop/s)

SIMD Lanes Threads Runtime GFlop/s %peak

None 1 1 38:626 s 3:01 0:6

None 1 16 2:455 s 47:28 9:7

None 1 32 3:426 s 33:88 7:0

AVX 4 1 16:570 s 4:95 1:0

AVX 4 16 1:126 s 72:85 15:0

AVX 4 32 2:271 s 36:12 7:4

SIMD Lanes Threads Runtime GFlop/s %peak

None 1 1 43:641 s 0:17 0:02

None 1 60 2:974 s 2:44 0:24

None 1 120 1:376 s 5:27 0:52

Vect. 8 1 12:403 s 0:58 0:06

Vect. 8 60 1:474 s 4:92 0:49

Vect. 8 120 1:104 s 6:57 0:65

Table 3 Matrix-free assembly performance: Poisson problem, Q1 elements, 10 iterations of a
matrix-free CG. Left: Xeon E5-2698v3 (cf. Sect. 3.2). Right: Xeon PHI 5110P

SIMD Lanes Thread Runtime GFlop/s %peak

None 1 1 56:19 s 0:10 0:02

None 1 16 6:84 s 0:82 0:17

None 1 32 6:13 s 0:91 0:19

AVX 4 1 44:55 s 0:09 0:02

AVX 4 16 6:12 s 0:64 0:13

AVX 4 32 5:50 s 0:72 0:15

SIMD Lanes Threads Runtime GFlop/s %peak

None 1 1 139:61 s 0:12 0:01

None 1 60 14:74 s 1:09 0:11

None 1 120 10:50 s 1:53 0:15

Vect. 8 1 61:23 s 0:26 0:03

Vect. 8 60 12:47 s 1:29 0:13

Vect. 8 120 9:22 s 1:75 0:17

To evaluate the potential of vectorized assembly on structured (sub-)meshes, we
present initial tests results in Table 2. The first test problem uses a conforming
FEM Q1 discretization. We measure the time to assemble a global stiffness matrix
using numerical differentiation. Three levels of sub-refinement are applied and
vectorization is employed across neighboring subelements. For the Xeon Phi, we
include timings for 1, 60 and 120 threads. Here, the most real-world configuration
involves 120 threads, as each of the 60 cores requires at least two threads to
achieve full utilization. We do not include measurements for 180/240 threads, as
our kernels saturate the cores at two threads per core and additional threads fail to
provide further speedups. On the CPU we obtain a significant portion of the peak
performance, in particular for low numbers of threads with less memory bandwidth
pressure.

These results get worse if we switch to operations with lower algorithmic
intensity or to many-core systems like the Xeon Phi 5110P. This is illustrated in the
second example, where we consider the same problem but use a matrix free operator
within an unpreconditioned CG solver, see Table 3. For such low order methods we
expect this operation to be totally memory bound. In this case our benchmarks only
show a very small speedup. This is in part due to bad SIMD utilization (cf. the
single core results), but also due to the unstructured memory accesses, which are
even more problematic on Xeon Phi due to its in-order architecture that precludes
efficient latency hiding apart from its round-robin scheduling to multiple hardware
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threads per core; as a result, we are currently not able to leverage the performance
potential of its wider SIMD architecture.

The scattered data issues can be reduced by employing special data structures for
the mesh representation and the local stiffness matrix. Regarding the algorithmic
intensity we expect a combination with strong smoothers, see Sect. 4.2, to improve
the overall performance.

We will now discuss our modifications to the original data layout and data
structures within PDELab aimed at making the data more streaming friendly. As
general unstructured meshes are not suited for streaming and vectorization, we
introduce a new layer, which we refer to as a patch. A patch represents a subset
of an unstructured mesh with a local structured refinement, which is constructed on
the fly and only used during assembly, which allows for a data layout which is well
suited to accelerator units.

Each patch consists of a set of macro elements, made up of a number of elements
extracted from the initial, unstructured mesh. We restrict ourselves to one type of
macro element (i.e. either simplex or hypercube) per patch. In mixed type meshes
a higher-level abstraction layer is expected to group the elements accordingly. This
enables us to vectorize assembly across multiple macro elements of the patch. The
macro elements are sub-refined on the fly in a structured way to a given level.
For vectorized assembly, all lanes deal with corresponding subelements of different
macro elements at the same time.

In the host mesh, a DOF may be associated with mesh entities of
codimension > 0, which might form part of multiple patches. Thus, care must
be taken to avoid data races when writing to global data structures. We circumvent
this problem on the level of patches by provisioning memory for shared DOFs per
patch macro element, enabling us to optimize the per-patch memory layout for
vectorized access. Figure 3 illustrates the mapping of DOFs between global and
per-patch storage. When preparing the assembly of a residual on a patch, the DOFs
in the global coefficients vector are copied to a dedicated per-patch vector, and
after the per-patch assembly we then need to accumulate the assembled data back
into the layout imposed by the host mesh. While doing so we need to accumulate
partial data for shared DOFs, taking care not to introduce races. The same issues
and solution apply to Jacobian assembly.

This design trades increased data size for better access patterns, which creates
its own set of trade-offs. In the case of the vertex coordinates used to describe the
patch this should not have a big impact, because we apply virtual sub-refinement
and the amount of storage for vertex coordinates should be much less than the
amount of storage used for coefficient vectors and Jacobian matrices. In the case
of coefficient vectors and Jacobian matrices we benefit not only from the improved
access patterns, but also from the isolation of the per-patch data from the global
state, reducing the need for locking or similar schemes to the patch setup/teardown
layer.

The underlying DUNE interfaces, in particular the unstructured mesh, do not
know about the virtual refinement. To allow reuse of existing components, we
further provide a particular shape function implementation, which describes a
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Fig. 3 Vectorized assembly for low order Lagrange discretization. Looping through consecutive
elements in parallel and computing the local contributions for each local DOF. Each macro element
is refined into 4 sub-cells and has 9 entries in the patch coefficients vector. Consecutive macro-cells
are stored interleaved as vectors of doubles. This allows for fully automatic vectorization

refined Q1 basis. This basis is used to encapsulate the additional intricacies of the
virtual refinement layer and allows for re-use of existing DUNE components for
visualization etc.

4 Linear Algebra

As laid out in the beginning, we are convinced that the problems from our domain of
interest (porous media) will require a mix of matrix-free and matrix-based methods
to be solved efficiently. The linear algebra part of these calculations will typically
be memory bound, which makes it attractive to support moving these parts to
accelerators and exploit their high memory bandwidth. In the following, we present
some of our efforts in this direction.

4.1 Efficient Matrix Format for Higher Order DG

Designing efficient implementations and realizations of solvers effectively boils
down to (i) a suitable choice of data structures for sparse matrix–vector multiply,
and (ii) numerical components of the solver, i.e., preconditioners.

DUNE’s initial matrix format, (block) compressed row storage, is ill-suited for
modern hardware and SIMD, as there is no way to efficiently and generally expose
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a block structure that fits the size of the SIMD units. We have thus extended the
SELL-C-� matrix format introduced in [13] which is a tuned variant of the sorted
ELL format known from GPUs, to be able to efficiently handle block structures [16].

As we mostly focus on solvers for DG discretizations, which lend themselves to
block-structured matrices, this is a valid and generalizable decision. The standard
approach of requiring matrix block sizes that are multiples of the SIMD size is not
applicable in our case because the matrix block size is a direct consequence of the
chosen discretization. In order to support arbitrary block sizes, we interleave the
data from N matrix blocks given a SIMD unit of size N, an approach introduced
in [6]. This allows us to easily vectorize existing scalar algorithms by having them
operate on multiple blocks in parallel, an approach that works as long as there are no
data-dependent branches in the original algorithm. Sparse linear algebra is typically
memory bandwidth bound, and thus, the main advantage of the block format is the
reduced number of column block indices that need to be stored (as only a single
index is required per block). With growing block size, this bandwidth advantage
quickly approaches 50 % of the overall required bandwidth.

So far, we have implemented the SELL-C-� building blocks (vectors, matri-
ces), and a (block) Jacobi preconditioner which fully inverts the corresponding
subsystem; for all target architectures (CPU, MIC, CUDA). Moreover, there is an
implementation of the blocked version for multi-threaded CPUs and MICs. While
the GPU version is implemented as a set of CUDA kernels, we have not used
any intrinsics for the standard CPU and the MIC – instead we rely on the auto-
vectorization features of modern compilers without performance penalty [16]. Due
to the abstract interfaces in our solver packages, all other components like the
iterative solvers can work with the new data format without any changes. Finally,
a new backend for our high-level PDE discretization package enables a direct
assembly into the new containers, avoiding the overhead of a separate conversion
step. Consequently, users can transparently benefit from our improvements through
a simple C++ typedef.

We demonstrate the benefits of our approach for a linear system generated by a
3D stationary diffusion problem on the unit cube with unit permeability, discretized
using a weighted SIPG DG scheme [8]. Timings of 100 iterations of a CG solver
using a (block) Jacobi preconditioner on a Xeon E5-2698v3 (cf. Sect. 3.2, no
hyperthreading), on a NVIDIA Tesla C2070 for the GPU measurements and on
an Intel Xeon Phi 7120P, are presented in Fig. 4, normalized per iteration and DOF.

As can be seen, switching from MPI to threading affords moderate improvements
due to the better surface-to-volume ratio of the threading approach, but we cannot
expect very large gains because the required memory bandwidth is essentially
identical. Accordingly, switching to the blocked SELL-C-� format consistently
yields good improvements due to the lower number of column indices that need
to be loaded, an effect that becomes more pronounced as the polynomial degree
grows due to larger matrix block sizes. Finally, the GPU and the MIC provide a
further speedup of 2.5–5 as is to be expected given the relative theoretical peak
memory bandwidth figures of the respective architectures, demonstrating that our
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Fig. 4 Normalized execution time of the (block) Jacobi preconditioned CG solver for polynomial
degrees p D 1; 2; 3 (left to right) of the DG discretization. The multithreaded (MT) and MIC
versions use a SIMD block size of 8. The Tesla GPU versions use a SIMD block size of 32.
Missing data points indicate insufficient memory

code manages to attain a constant fraction of the theoretically available memory
bandwidth across all target architectures.

4.2 GPU Accelerated Preconditioners and Strong Smoothers

The promising results from enhancing the sparse matrix–vector multiply (SpMV)
and therefore the whole DUNE-ISTL in DUNE by using the SELL-c-� and BELL-
c-� storage formats lead to the idea of using this kernel in the linear solver more
heavily by employing sparse approximate inverse preconditioners. Preconditioning
with approximate inverses means direct application of a M � A�1 that is, left-
multiplying with a preassembled (sparse) preconditioner that approximates the
inverse of the matrix A when solving Ax D b. One potent representative of this
family of preconditioners is the Sparse Approximate Inverse (SPAI) Algorithm
initially proposed by Grote and Huckle [11] and recently applied very successfully
in smoothers for Finite Element Multigrid solvers on the GPU within the FEAST
software family [10]. The SPAI algorithm can briefly be described as follows:

k I �MSPAIA k2F D
nX

kD1

k eT
k �mT

k A k22 D
nX

kD1

k ATmk � ek k22

where ek is the k-th unit-vector and mk is the k-th column of MSPAI. Therefore it
follows that for n columns of M we solve n independent and small least-squares
optimization problems to construct M D Œm1; m2; : : : mn�:

min
mk
k ATmk � ek k2; k D 1; : : : n :

The resulting MSPAI can then typically be used to accelerate a Richardson Iteration,

xkC1  xk C !MSPAI.b � Axk/
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which can be employed as a stronger smoother in a multigrid scheme, or alter-
natively be applied directly without the cost of the additional defect correction.
Typical variants of the SPAI procedure restrict the fill-in within the assembly to
the main diagonal (SPAI(0)) or to the non-zero pattern of the system matrix A
(SPAI(1)). It has been reported that SPAI(0) has approximately the same smoothing
properties as an optimally damped Jacobi, while SPAI(1) can be compared to
Gauß-Seidel [5]. In this paper, we use SPAI(1) in our benchmarks. However,
stronger preconditioning based on such techniques needs discussion, in particular
with regard to performance relative to simple preconditioning such as Jacobi.
Although both kernels (!MJACd and Md with the former representing a component-
wise vector multiply and the latter an SpMV with the approximate inverse) are
generally memory bound, the computational complexity of the SPAI preconditioner
application depends on the sparsity pattern of MSPAI and the memory access patterns
imposed by the sparse matrix storage on the respective hardware. The Jacobi
preconditioner comes at significantly lower cost and can be executed many times
before reaching the computational cost of a single SPAI application. In addition,
the performance gain through higher global convergence rates offered by SPAI
must amortize the assembly of MSPAI, which is still an open problem especially
considering GPU acceleration (also being addressed within EXA-DUNE but not
yet covered by this paper). On the other hand, with SPAI offering a numerical
quality similar to Gauß-Seidel there is justified hope that in combination with well-
optimized SpMV kernels based on the SELL-c-� and BELL-c-� storage formats
a better overall solver performance can be achieved (also compared to even harder
to parallelize alternatives such as ILU). In addition, the effectiveness for the Jacobi
preconditioning depends on a good choice of !, while SPAI is more robust in this
regard.

In order to show that the SPAI preconditioner can be beneficial, we compare the
overall performance of a Conjugate Gradient solver, preconditioned with SPAI(1)
and Jacobi (with different values for !) respectively. Here, we adapt an existing
example program from DUNE-PDELAB that solves a stationary diffusion problem:

r � .Kru/ D f in ˝ � R3

u D g on � D @˝

with f D .6 � 4jxj2/ exp.�jxj2/ and g D exp.�jxj2/, discretized with the same
SIPG DG scheme [8] already used in Sect. 4.1. We restrict our experiments to the
unit cube ˝ D .0; 1/3 and unit permeability K D 1.

From the construction kit that comes with a fast SpMV on the GPU and
a kernel to preassemble the global SPAI matrix in DUNE-ISTL, three types of
preconditioners are directly made possible: a standard scalar Jacobi preconditioner,

S!
JAC W xkC1  xk C !MJAC.b� Axk/; k D 1; : : : ; K (3)
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with MJAC as defined above and a fixed number of iterations K (note, that this is in
order to describe how the preconditioner is applied to a vector x in the PCG solver
and that this iteration solves a defect correction already and thus here, b is the global
defect). In addition, we can also precompute the exact inverse of each logical DG
block in the system matrix, making good use of the BELL storage by switching to a
block Jacobi preconditioner:

SBJAC W xkC1  xk CMBJAC.b� Axk/; k D 1; : : : ; K (4)

with MBJAC D P
i RT

i A�1
i Ri being the exact DG-block-inverse, precomputed by a

LU decomposition (using cuBLAS on the GPU). Third, a direct application of the
SPAI(1) matrix to the defect can be employed:

SSPAI W x MSPAIx (5)

with MSPAI as defined above. We use both the SELL-c-� and BELL-c-� storage
formats in this case.

We perform all benchmarks on the GPU and the CPU: here, we make use of a
Maxwell GPU in a NVIDIA GTX 980 Ti consumer card with roughly 340 GB/s
theoretical memory bandwidth. The Maxwell architecture of the 980 Ti is the same
as in the (at the time of writing this paper) most recent iteration of the Tesla compute
cards, the Tesla M40. For comparison, we use a 4-core Haswell CPU (Core i5
4690K) with 3.5 GHz (turbo: 3.9 GHz) and roughly 26 GB/s theoretical memory
bandwidth.

First, we demonstrate the sensitivity of Jacobi preconditioning to damping in
order to identify fair comparison configurations for the damping-free competitors
Block-Jacobi and SPAI. Figure 5 shows the variation of the solver iterations
depending on the damping parameter !. We sample the parameter space in steps of

Fig. 5 Dependence of the Jacobi preconditioning on damping parameter
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0:1 between 0 and 1. The measurements clearly show a ‘sweet spot’ around 0:6 and
a worst case (expectedly) in the undamped case. Therefore, we employ ! D 0:6 as
an example of good damping and ! D 1:0 as a bad damping coefficient. In addition,
we consider a ‘median’ case of ! D 0:8 in all following benchmarks. Note that in
reality, ! is unknown prior to the solver run and has a huge impact on the overall
performance which can be seen in the factor of more than 3 between the number of
solver iterations for ‘good’ and ‘bad’ choices. In contrast to ! having an impact on
the numerical quality of the preconditioner S!

JAC only and not on its computational
cost, the parameter K is somewhat more complicated to take into account in the
performance modelling process: here, a larger value for K produces a numerical
benefit, but also increases computational cost due to the additional defect correction
with each additional iteration. In many cases, the numerical benefit of increasing K
does not amortize the additional cost beyond a certain value Kopt, as can be seen
in Fig. 6 for the Jacobi preconditioner and ! D 0:5. For the benchmark problem at
hand, it is always beneficial to perform only 2 iterations. Note that this behavior also
depends on the damping parameter and more importantly, that K is also unknown
a priori. This makes both ! and K subject to autotuning in preconditioners that
try to solve an unknown correction equation, which is also a research topic of the
upcoming EXA-DUNE phase two.

Figures 7 and 8 show the timing results and numbers of iterations for first and
second order DG discretizations and the preconditioners defined by Eqs. 3 (with
different parameters for !) through 5, where for the latter we employed both the
SELL and BELL (labeled BSPAI) matrix storage techniques.

The first thing to notice here is that for the p D 1 case, the SPAI and
BSPAI variants cannot beat the inexact Block-Jacobi solves, due to a better overall
convergence behavior of the latter, although they come close (within 5 %). However,
the assembly must be considered more expensive for both SPAI versions of M
(see below). For higher order Finite Elements, the SPAI and especially the BSPAI
preconditioning can beat the best (Block-) Jacobi ones concerning overall solver
wall clock time by generating a speedup of 1.5, which leaves up to 50 % of
the solution time to amortize a pre-assembly of the sparse approximate inverse.
Comparing the SELL-c-� performance and the improved BELL variant thereof it
becomes clear that the latter’s block awareness makes SPAI successful: using SELL,

Fig. 6 K-Dependence of the Jacobi preconditioning. Left: Number of iterations. Right: Solver wall
clock time
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Fig. 7 Iteration count and wall clock times (logscale/logscale) of the PCG solver with different
preconditioners for the benchmark problem using a first order DG discretization

Fig. 8 Iteration count and wall clock times (logscale/logscale) of the PCG solver with different
preconditioners for the benchmark problem using a second order DG discretization

SPAI is again only as good as Block-Jacobi. On the GPU, the solver performs
9.5 times better concerning wall clock time with the scalar SELL storage and
7.5 times with the BELL variant where in the former, the Haswell CPU can play
out its sophisticated caches due to blocking. Here, the GPU cannot exploit the
complete block structure due to the mapping of each row to one thread. Thus each
thread can only exploit one row of each DG block. Both speedups are within good
accordance of the factor between the theoretical memory bandwith of the respective
architectures and a memory bound kernel.

Altogether, this shows that even for simple problems, the SPAI technique can
be used to accelerate Krylov subspace solvers within DUNE especially for higher
order Finite Elements. However, it must be stated that the overall feasibility of such
Approximate Inverse techniques relies on being able to amortize the assembly time
by means of faster application times of the preconditioner. In light of this, we are
currently developing a GPU-based SPAI assembly based on fast QR decompositions
with householder transforms on each column, which can be batched for execution
similar to [17]. Also, SPAI(�) (with more complex sparsity patterns for M) is being
examined. Exploring the smoothing capabilities of SPAI-preconditioned iterations
within DUNE’s AMG schemes on the GPU is also currently under examination and
expected to be finished within the remaining first phase of the EXA-DUNE project.
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5 Outlook

The results presented in this contribution highlight some of the efforts of the first
2.5 years of the EXA-DUNE project. While these tools were developed mostly
independently during that time, we intend to use the remaining 6 months of the
project to integrate these tools into an initial demonstrator based on a porous media
application. This demonstrator will combine the improved assembly performance
and the faster linear algebra with a two-level preconditioner based on a matrix-free
smoother for the DG level and an AMG-based subspace correction on a low order
subspace, which we intend to combine with the multilevel methods and uncertainty
quantification developed in parallel and detailed in [3].
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