
Hans-Joachim Bungartz
Philipp Neumann
Wolfgang E. Nagel Editors

Software for
Exascale Computing –
SPPEXA 2013-2015

Editorial Board
T. J. Barth

M. Griebel
D. E. Keyes

R. M. Nieminen
D. Roose

T. Schlick

113

Lecture Notes
in Computational Science
and Engineering

113

Editors:

Timothy J. Barth
Michael Griebel
David E. Keyes
Risto M. Nieminen
Dirk Roose
Tamar Schlick

More information about this series at http://www.springer.com/series/3527

http://www.springer.com/series/3527

Hans-Joachim Bungartz • Philipp Neumann •
Wolfgang E. Nagel
Editors

Software for Exascale
Computing –
SPPEXA 2013-2015

123

Editors
Hans-Joachim Bungartz
Philipp Neumann
Institut fRur Informatik
Technische UniversitRat MRunchen
Garching
Germany

Wolfgang E. Nagel
Technische UniversitRat Dresden
Dresden
Germany

ISSN 1439-7358 ISSN 2197-7100 (electronic)
Lecture Notes in Computational Science and Engineering
ISBN 978-3-319-40526-1 ISBN 978-3-319-40528-5 (eBook)
DOI 10.1007/978-3-319-40528-5

Library of Congress Control Number: 2016951949

Mathematics Subject Classification (2010): 65-XX, 68-XX, 70-XX, 76-XX, 85-XX, 86-XX, 92-XX

© Springer International Publishing Switzerland 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, express or implied, with respect to the material contained herein or for any
errors or omissions that may have been made.

Cover illustration: Cover figure by courtesy of iStock.com/nadla

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG Switzerland

Preface

One of the grand challenges with respect to current developments in high-
performance computing (HPC) lies in exploiting the upcoming exascale systems,
i.e. systems with 1018 floating point operations per second and beyond. Moore’s law
has proven to be astonishingly robust so far. However, these days, the respective
progress can no longer be obtained via faster chips or higher clock rates, but only via
a massive use of parallelism and by increasingly complex ways how this parallelism
is arranged in the large systems.

Extreme-scale supercomputers will be made of heterogeneous hardware and
will comprise millions of cores. This entails several challenges and adds new
and severe requirements to large-scale (simulation) software, including efficient
programming techniques for such kinds of hardware, fault-tolerance mechanisms
to compensate the failure of single compute nodes or cores, or efficient algorithms
able to cope with this massive amount of parallelism on heterogeneous systems. Col-
laborative, international, and multidisciplinary research efforts of mathematicians,
computer scientists, application developers, and domain-specific research scientists
are mandatory to prepare current research software for the upcoming exascale era on
the one hand and to develop new approaches to exascale programming and software
required by various disciplines on the other hand.

Globally, HPC is given utmost attention due to its scientific and economic rele-
vance. Although recent initiatives also comprise simulation software, computational
algorithms, and the complete underlying software stack, the primary focus, often,
is still on the “race for the exascale systems”, i.e. more on the racks than on the
brains. Complementing related initiatives in other countries, the German Research
Foundation (DFG) decided in 2011 to launch a strategic priority programme in that
direction, i.e. a priority programme initiated by its Senate Committee on Strategic
Planning and financed via special funds – the Priority Program 1648 “Software for
Exascale Computing” (SPPEXA). After the standard reviewing process in 2012, 13
interdisciplinary consortia with, overall, more than 40 institutions involved started
their research beginning of 2013. Each consortium addresses relevant issues in
at least two of SPPEXA’s six research domains: (1) computational algorithms,
(2) system software, (3) application software, (4) data management and exploration,
(5) programming, and (6) software tools.

v

vi Preface

At the end of the first of two 3-year funding phases, SPPEXA held a 3-day
international symposium at Leibniz Supercomputing Centre and at the Department
of Informatics of Technical University of Munich in Garching, Germany. The
conference was structured in 3 invited plenary talks and 14 minisymposia – 1
organized by each of the 13 consortia of the first funding phase, plus 1 presenting
the 4 new consortia which enter SPPEXA in the second phase.

An overview of the project outcomes and particular research findings from
within SPPEXA have been collected in this book. Further contributions are made
by other internationally recognized research groups who have participated in the
SPPEXA Symposium. Due to the wide range of SPPEXA research related to
exascale software and computing, the book at hand covers various topics. These
include (but are definitely not limited to):

• novel algorithms for complex problems from science and engineering, such as
scalable multigrid implementations or algorithms for high-dimensional prob-
lems,

• programming approaches for heterogeneous hardware devices,
• developments of exascale-enabling software systems, programming approaches,

and tools,
• exascale-relevant applications from engineering; biology/chemistry, such as

molecular dynamics; astrophysics; multiscale material science; or multi-physics
problems,

• performance engineering, performance analysis, and performance prediction
approaches,

• the preparation of existing PDE-frameworks for the upcoming exascale age.

As always, many people helped to make SPPEXA, the SPPEXA Symposium in
January 2016, and this LNCSE volume a great success. First of all, we want to thank
DFG, and in particular Dr. Marcus Wilms, for shaping and providing the frame for
SPPEXA. It was not an easy path, since it was the first time that DFG put a strategic
priority programme into life and since, for phase two having started in 2016, it was
the first time that DFG and its partner agencies JST (Japan) and ANR (France)
joined forces to allow for bi- and tri-national projects within a priority programme.
However, SPPEXA’s journey has been and is a rewarding endeavour. We further
thank all helping hands who supported SPPEXA so far in terms of organizing and
hosting events such as workshops, doctoral retreats, minisymposia, gender work-
shops, annual plenary meetings, and so forth. Moreover, concerning the preparation
of this volume, we are grateful to Dr. Martin Peters and Mrs. Than-Ha Le Thi
from Springer for their support – as in previous cases, it was again a pleasure to
collaborate. Finally, we thank Michael Rippl for his support in compiling this book.

Looking forward to the second phase of SPPEXA with curiosity and high
expectations.

Garching, Germany Hans-Joachim Bungartz
Garching, Germany Philipp Neumann
Dresden, Germany Wolfgang E. Nagel

Contents

Part I EXA-DUNE: Flexible PDE Solvers, Numerical
Methods, and Applications

Hardware-Based Efficiency Advances in the EXA-DUNE Project 3
Peter Bastian, Christian Engwer, Jorrit Fahlke, Markus Geveler,
Dominik Göddeke, Oleg Iliev, Olaf Ippisch, René Milk,
Jan Mohring, Steffen Müthing, Mario Ohlberger, Dirk Ribbrock,
and Stefan Turek

Advances Concerning Multiscale Methods and Uncertainty
Quantification in EXA-DUNE . 25
Peter Bastian, Christian Engwer, Jorrit Fahlke, Markus Geveler,
Dominik Göddeke, Oleg Iliev, Olaf Ippisch, René Milk,
Jan Mohring, Steffen Müthing, Mario Ohlberger, Dirk Ribbrock,
and Stefan Turek

Part II ExaStencils: Advanced Stencil-Code Engineering

Systems of Partial Differential Equations in ExaSlang . 47
Christian Schmitt, Sebastian Kuckuk, Frank Hannig, Jürgen Teich,
Harald Köstler, Ulrich Rüde, and Christian Lengauer

Performance Prediction of Multigrid-Solver Configurations 69
Alexander Grebhahn, Norbert Siegmund, Harald Köstler,
and Sven Apel

Part III EXASTEEL: Bridging Scales for Multiphase Steels

One-Way and Fully-Coupled FE2 Methods for Heterogeneous
Elasticity and Plasticity Problems: Parallel Scalability
and an Application to Thermo-Elastoplasticity of Dual-Phase Steels 91
Daniel Balzani, Ashutosh Gandhi, Axel Klawonn, Martin Lanser,
Oliver Rheinbach, and Jörg Schröder

vii

viii Contents

Scalability of Classical Algebraic Multigrid for Elasticity
to Half a Million Parallel Tasks . 113
Allison H. Baker, Axel Klawonn, Tzanio Kolev, Martin Lanser,
Oliver Rheinbach, and Ulrike Meier Yang

Part IV EXAHD: An Exa-Scalable Two-Level Sparse
Grid Approach for Higher-Dimensional Problems
in Plasma Physics and Beyond

Recent Developments in the Theory and Application
of the Sparse Grid Combination Technique . 143
Markus Hegland, Brendan Harding, Christoph Kowitz,
Dirk Pflüger, and Peter Strazdins

Scalable Algorithms for the Solution of Higher-Dimensional PDEs 165
Mario Heene and Dirk Pflüger

Handling Silent Data Corruption with the Sparse Grid
Combination Technique . 187
Alfredo Parra Hinojosa, Brendan Harding, Markus Hegland,
and Hans-Joachim Bungartz

Part V TERRA-NEO: Integrated Co-Design of an Exascale
Earth Mantle Modeling Framework

Hybrid Parallel Multigrid Methods for Geodynamical Simulations 211
Simon Bauer, Hans-Peter Bunge, Daniel Drzisga, Björn Gmeiner,
Markus Huber, Lorenz John, Marcus Mohr, Ulrich Rüde,
Holger Stengel, Christian Waluga, Jens Weismüller,
Gerhard Wellein, Markus Wittmann, and Barbara Wohlmuth

Part VI ExaFSA: Exascale Simulation
of Fluid–Structure–Acoustics Interactions

Partitioned Fluid–Structure–Acoustics Interaction
on Distributed Data: Coupling via preCICE . 239
Hans-Joachim Bungartz, Florian Lindner, Miriam Mehl,
Klaudius Scheufele, Alexander Shukaev, and Benjamin Uekermann

Partitioned Fluid–Structure–Acoustics Interaction
on Distributed Data: Numerical Results and Visualization 267
David Blom, Thomas Ertl, Oliver Fernandes, Steffen Frey,
Harald Klimach, Verena Krupp, Miriam Mehl, Sabine Roller,
Dörte C. Sternel, Benjamin Uekermann, Tilo Winter,
and Alexander van Zuijlen

Contents ix

Part VII ESSEX: Equipping Sparse Solvers for Exascale

Towards an Exascale Enabled Sparse Solver Repository . 295
Jonas Thies, Martin Galgon, Faisal Shahzad, Andreas Alvermann,
Moritz Kreutzer, Andreas Pieper, Melven Röhrig-Zöllner,
Achim Basermann, Holger Fehske, Georg Hager, Bruno Lang,
and Gerhard Wellein

Performance Engineering and Energy Efficiency of Building
Blocks for Large, Sparse Eigenvalue Computations
on Heterogeneous Supercomputers . 317
Moritz Kreutzer, Jonas Thies, Andreas Pieper, Andreas Alvermann,
Martin Galgon, Melven Röhrig-Zöllner, Faisal Shahzad,
Achim Basermann, Alan R. Bishop, Holger Fehske, Georg Hager,
Bruno Lang, and Gerhard Wellein

Part VIII DASH: Hierarchical Arrays for Efficient
and Productive Data-Intensive Exascale
Computing

Expressing and Exploiting Multi-Dimensional Locality in DASH 341
Tobias Fuchs and Karl Fürlinger

Tool Support for Developing DASH Applications . 361
Denis Hünich, Andreas Knüpfer, Sebastian Oeste, Karl Fürlinger,
and Tobias Fuchs

Part IX EXAMAG: Exascale Simulations of the Evolution
of the Universe Including Magnetic Fields

Simulating Turbulence Using the Astrophysical Discontinuous
Galerkin Code TENET . 381
Andreas Bauer, Kevin Schaal, Volker Springel,
Praveen Chandrashekar, Rüdiger Pakmor,
and Christian Klingenberg

Part X FFMK: A Fast and Fault-TolerantMicrokernel-Based
System for Exascale Computing

FFMK: A Fast and Fault-Tolerant Microkernel-Based System
for Exascale Computing . 405
Carsten Weinhold, Adam Lackorzynski, Jan Bierbaum,
Martin Küttler, Maksym Planeta, Hermann Härtig, Amnon Shiloh,
Ely Levy, Tal Ben-Nun, Amnon Barak, Thomas Steinke,
Thorsten Schütt, Jan Fajerski, Alexander Reinefeld,
Matthias Lieber, and Wolfgang E. Nagel

x Contents

Fast In-Memory Checkpointing with POSIX API for Legacy
Exascale-Applications . 427
Jan Fajerski, Matthias Noack, Alexander Reinefeld,
Florian Schintke, Torsten Schütt, and Thomas Steinke

Part XI CATWALK: A Quick Development Path
for Performance Models

Automatic Performance Modeling of HPC Applications . 445
Felix Wolf, Christian Bischof, Alexandru Calotoiu,
Torsten Hoefler, Christian Iwainsky, Grzegorz Kwasniewski,
Bernd Mohr, Sergei Shudler, Alexandre Strube, Andreas Vogel,
and Gabriel Wittum

Automated Performance Modeling of the UG4 Simulation Framework . . . 467
Andreas Vogel, Alexandru Calotoiu, Arne Nägel, Sebastian Reiter,
Alexandre Strube, Gabriel Wittum, and Felix Wolf

Part XII GROMEX: Unified Long-Range Electrostatics
and Dynamic Protonation for Realistic
Biomolecular Simulations on the Exascale

Accelerating an FMM-Based Coulomb Solver with GPUs 485
Alberto Garcia Garcia, Andreas Beckmann, and Ivo Kabadshow

Part XIII ExaSolvers: Extreme Scale Solvers for Coupled
Problems

Space and Time Parallel Multigrid for Optimization
and Uncertainty Quantification in PDE Simulations . 507
Lars Grasedyck, Christian Löbbert, Gabriel Wittum, Arne Nägel,
Volker Schulz, Martin Siebenborn, Rolf Krause, Pietro Benedusi,
Uwe Küster, and Björn Dick

Part XIV Further Contributions

Domain Overlap for Iterative Sparse Triangular Solves on GPUs 527
Hartwig Anzt, Edmond Chow, Daniel B. Szyld, and Jack Dongarra

Asynchronous OpenCL/MPI Numerical Simulations
of Conservation Laws . 547
Philippe Helluy, Thomas Strub, Michel Massaro,
and Malcolm Roberts

Part I
EXA-DUNE: Flexible PDE Solvers,

Numerical Methods, and Applications

Hardware-Based Efficiency Advances
in the EXA-DUNE Project

Peter Bastian, Christian Engwer, Jorrit Fahlke, Markus Geveler, Dominik
Göddeke, Oleg Iliev, Olaf Ippisch, René Milk, Jan Mohring, Steffen Müthing,
Mario Ohlberger, Dirk Ribbrock, and Stefan Turek

Abstract We present advances concerning efficient finite element assembly and
linear solvers on current and upcoming HPC architectures obtained in the frame
of the EXA-DUNE project, part of the DFG priority program 1648 Software for
Exascale Computing (SPPEXA). In this project, we aim at the development of both
flexible and efficient hardware-aware software components for the solution of PDEs
based on the DUNE platform and the FEAST library. In this contribution, we focus
on node-level performance and accelerator integration, which will complement the
proven MPI-level scalability of the framework. The higher-level aspects of the EXA-
DUNE project, in particular multiscale methods and uncertainty quantification, are
detailed in the companion paper (Bastian et al., Advances concerning multiscale
methods and uncertainty quantification in EXA-DUNE. In: Proceedings of the
SPPEXA Symposium, 2016).

P. Bastian • S. Müthing (�)
Interdisciplinary Center for Scientific Computing, Heidelberg University, Heidelberg, Germany
e-mail: peter.bastian@iwr.uni-heidelberg.de; steffen.muething@iwr.uni-heidelberg.de

C. Engwer • J. Fahlke • R. Milk • M. Ohlberger
Institute for Computational and Applied Mathematics, University of Münster, Münster, Germany
e-mail: christian.engwer@wwu.de; rene.milk@wwu.de; mario.ohlberger@wwu.de

D. Göddeke
Institute of Applied Analysis and Numerical Simulation, University of Stuttgart, Stuttgart,
Germany
e-mail: dominik.goeddeke@mathematik.uni-stuttgart.de

M. Geveler • D. Ribbrock • S. Turek
Institute of Applied Mathematics, TU Dortmund, Dortmund, Germany
e-mail: markus.geveler@math.tu-dortmund.de; dirk.ribbrock@math.tu-dortmund.de;
stefan.turek@math.tu-dortmund.de

O. Iliev • J. Mohring
Fraunhofer Institute for Industrial Mathematics ITWM, Kaiserslautern, Germany
e-mail: oleg.iliev@itwm.fraunhofer.de; jan.mohring@itwm.fraunhofer.de

O. Ippisch
Institut für Mathematik, TU Clausthal-Zellerfeld, Clausthal-Zellerfeld, Germany
e-mail: olaf.ippisch@tu-clausthal.de

© Springer International Publishing Switzerland 2016
H.-J. Bungartz et al. (eds.), Software for Exascale Computing – SPPEXA
2013-2015, Lecture Notes in Computational Science and Engineering 113,
DOI 10.1007/978-3-319-40528-5_1

3

mailto:peter.bastian@iwr.uni-heidelberg.de
mailto:steffen.muething@iwr.uni-heidelberg.de
mailto:christian.engwer@wwu.de
mailto:rene.milk@wwu.de
mailto:mario.ohlberger@wwu.de
mailto:dominik.goeddeke@mathematik.uni-stuttgart.de
mailto:markus.geveler@math.tu-dortmund.de
mailto:dirk.ribbrock@math.tu-dortmund.de
mailto:stefan.turek@math.tu-dortmund.de
mailto:oleg.iliev@itwm.fraunhofer.de
mailto:jan.mohring@itwm.fraunhofer.de
mailto:olaf.ippisch@tu-clausthal.de

4 P. Bastian et al.

1 The EXA-DUNE Project

Partial differential equations (PDEs) – often parameterized or stochastic – lie at
the heart of many models for processes from science and engineering. Despite
ever-increasing computational capacities, many of these problems are still only
solvable with severe simplifications, in particular when additional requirements
like uncertainty quantification, parameter estimation or optimization in engineering
applications come into play.

Within the EXA-DUNE1 project we pursue three different routes to make
progress towards exascale: (i) we develop new computational algorithms and
implementations for solving PDEs that are highly suitable to better exploit the
performance offered by prospective exascale hardware, (ii) we provide domain-
specific abstractions that allow mathematicians and application scientists to exploit
(exascale) hardware with reasonable effort in terms of programmers’ time (a metric
that we consider highly important) and (iii) we showcase our methodology to solve
complex application problems of flow in porous media.

Software development, in the scope of our work for the numerical solution of a
wide range of PDE problems, faces contradictory challenges. On the one hand, users
and developers prefer flexibility and generality, on the other hand, the continuously
changing hardware landscape requires algorithmic adaptation and specialization to
be able to exploit a large fraction of peak performance.

A framework approach for entire application domains rather than distinct
problem instances facilitates code reuse and thus substantially reduces development
time. In contrast to the more conventional approach of developing in a ‘bottom-
up’ fashion starting with only a limited set of problems and solution methods
(likely a single problem/method), frameworks are designed from the beginning
with flexibility and general applicability in mind so that new physics and new
mathematical methods can be incorporated more easily. In a software framework the
generic code of the framework is extended by the user to provide application specific
code instead of just calling functions from a library. Template meta-programming
in C++ supports this extension step in a very efficient way, performing the fusion
of framework and user code at compile time which reduces granularity effects and
enables a much wider range of optimizations by the compiler. In this project we
strive to redesign components of the DUNE framework [1, 2] in such a way that
hardware-specific adaptations based on the experience acquired within the FEAST
project [18] can be exploited in a transparent way without affecting user code.

Future exascale systems are characterized by a massive increase in node-level
parallelism, heterogeneity and non-uniform access to memory. Current examples
include nodes with multiple conventional CPU cores arranged in different sockets.
GPUs require much more fine-grained parallelism, and Intel’s Xeon Phi design
shares similarities with both these extremes. One important common feature of all

1http://www.sppexa.de/general-information/projects.html#EXADUNE

http://www.sppexa.de/general-information/projects.html#EXADUNE

Hardware-Based Efficiency Advances in the EXA-DUNE Project 5

these architectures is that reasonable performance can only be achieved by explicitly
using their (wide-) SIMD capabilities. The situation becomes more complicated as
different programming models, APIs and language extensions are needed, which
lack performance portability. Instead, different data structures and memory layouts
are often required for different architectures. In addition, it is no longer possible to
view the available off-chip DRAM memory within one node as globally shared in
terms of performance. Accelerators are typically equipped with dedicated memory,
which improves accelerator-local latency and bandwidth substantially, but at the
same time suffers from a (relatively) slow connection to the host. Due to NUMA
(non-uniform memory access) effects, a similar (albeit less dramatic in absolute
numbers) imbalance can already be observed on multi-socket multi-core CPU
systems. There is common agreement in the community that the existing MPI-
only programming model has reached its limits. The most prominent successor will
likely be ‘MPI+X’, so that MPI can still be used for coarse-grained communication,
while some kind of shared memory abstraction is used within MPI processes at
the UMA level. The upcoming second generation of Xeon Phi (Knight’s Landing)
will be available both as a traditional accelerator and as a standalone, bootable
CPU, enabling new HPC architecture designs where a whole node with accelerator-
like properties can function as a standalone component within a cluster. Combined
with the ISA convergence between standard CPUs and the new Xeon Phi, this
will allow for a common code base that only has to be parameterized for the
different performance characteristics (powerful versus simplistic cores and the much
higher level of intra-node parallelism of the Xeon Phi) with a high potential of
vastly improved developer productivity. At the same time, Xeon Phi processors
will contain special on-package RAM, bringing the highly segmented memory
architecture of accelerator cards one step closer to general purpose CPUs. Similarly,
NVIDIA has announced the inclusion of general purpose ARM cores in upcoming
generations of their GPGPUs.

Our work within the EXA-DUNE project currently targets pilot applications
in the field of porous media flow. These problems are characterized by coupled
elliptic/parabolic-hyperbolic PDEs with strongly varying coefficients and highly
anisotropic meshes. The elliptic part mandates robust solvers and thus does not lend
itself to the current trend in HPC towards matrix-free methods with their beneficial
properties in terms of memory bandwidth and/or Flops/degree of freedom (DOF)
ratio; typical matrix-free techniques like stencil-based geometric multigrid are not
suited to those types of problems. For that reason, we aim at algebraic multigrid
(AMG) preconditioners known to work well in this context, and work towards
further improving their scalability and (hardware) performance. Discontinuous
Galerkin (DG) methods are employed to increase data locality and arithmetic
intensity. Matrix-free techniques are investigated for the hyperbolic/parabolic parts.

In this paper we report on the current state of the lower-level components of
the EXA-DUNE project, while the more application-oriented parts will be presented
in a separate article in these proceedings [3]. Message passing parallelism is well
established in DUNE (as documented by the inclusion of DUNE’s solver library in

6 P. Bastian et al.

the High-Q-Club2), and we thus concentrate on core/node level performance. After
a short introduction to our UMA node concept in Sect. 2.1, the general structure
comprises two major parts: Sect. 3 focuses on problem assembly and matrix-free
solvers, in particular thread-parallel assembly (Sect. 3.1) and medium to high order
DG schemes (Sect. 3.2), while Sect. 4 is concerned with linear algebra, where we
show the integration of a modern, cross-platform matrix format (Sect. 4.1) as well
as hardware-oriented preconditioners for the CUDA architecture (Sect. 4.2).

2 Hybrid Parallelism in DUNE

In the following, we introduce the ‘virtual UMA node’ concept at the heart of our
hybrid parallelization strategy, and ongoing current steps to incorporate this concept
into the assembly and solver stages of our framework.

2.1 UMA Concept

Current and upcoming HPC systems are characterized by two trends which greatly
increase the complexity of efficient node-level programming: (i) a massive increase
in the degree of parallelism restricts the amount of memory and bandwidth available
to each compute unit, and (ii) the node architecture becomes increasingly hetero-
geneous. Consequently, on modern multi-socket nodes the memory performance
depends on the location of the memory in relation to the compute core (NUMA).
The problem becomes even more pronounced in the presence of accelerators like
Xeon Phi or GPUs, for which memory accesses might have to traverse the PCIe bus,
severely limiting bandwidth and latency. In order to demonstrate the performance
implications of this design, we consider the relative runtime of an iterative linear
solver (Krylov-DG), as shown in Table 1: an identical problem is solved with
different mappings to MPI processes and threads, on a representative 4-socket
server with AMD Opteron 6172 12-core processors and 128 GB RAM. On this
architecture, a UMA domain comprises half a socket (6 cores), and thus, (explicit
or implicit) multi-threading beyond 6 cores actually yields slowdowns. Note that all
different configurations in this benchmark use all available cores; they only differ
in how many MPI ranks (UMA domains) they allocate. This experiment validates
our design decision to regard heterogeneous nodes as a collection of ‘virtual
UMA nodes’ on the MPI level: internal uniform memory access characteristics
are exploited by shared memory parallelism, while communication between UMA
domains is handled via (classical/existing) message passing.

2http://www.fz-juelich.de/ias/jsc/EN/Expertise/High-Q-Club/_node.html

http://www.fz-juelich.de/ias/jsc/EN/Expertise/High-Q-Club/_node.html

Hardware-Based Efficiency Advances in the EXA-DUNE Project 7

Table 1 Poisson problem on the unit cube, discretized by the DG-SIPG method, timings for 100
Krylov iterations. Comparison of different MPI/shared memory mappings for varying polynomial
degree p of the DG discretization and mesh width h. Timings tM=T and speedups for varying
numbers of MPI processes M and threads per process T

p h�1 t48=1Œs� t8=6Œs�
t48=1
t8=6

t4=12Œs�
t48=1
t4=12

t1=48Œs�
t48=1
t1=48

1 256 645:1 600:2 1:07 1483:3 0:43 2491:7 0:26

2 128 999:5 785:7 1:27 1320:7 0:76 2619:0 0:38

3 64 709:6 502:9 1:41 1237:2 0:57 1958:2 0:36

3 Assembly

As discussed before, we distinguish between three different layers of concurrency.
Below the classical MPI level, we introduce thread parallelization as a new layer
of parallelism on top of the existing DUNE grid interface. The number of threads is
governed by the level of concurrency within the current UMA node, as explained
above.

The grid loop is distributed among the threads, which allows for parallel
assembly of a finite element operator or a residual vector. In order to achieve good
performance within an individual thread, two major problems need to be solved: (i)
as the majority of operations during finite element assembly are memory bandwidth
bound, a naive approach to multithreading will not perform very well and achieve
only minor speedups. (ii) Vectorization (SIMD, ILP) is required to fully exploit
the hardware of modern processors or many core systems. Even in memory bound
contexts, this is important as it reduces the number of load and store instructions.
Due to the much more complicated and problem-specific kernels that occur as
part of problem assembly, a user-friendly integration of vectorization into assembly
frameworks poses a much more difficult problem compared to linear algebra, where
the number of kernels is much smaller.

Finally, these building blocks need to be optimized with regard to additional
constraints like memory alignment and optimal cache utilization.

We believe that locally structured data is the key to achieve both of these goals.
We follow two approaches to introduce local structure to a globally unstructured
discretization:

1. Low order methods: we employ a structured refinement on top of an unstructured
parallel mesh. The structured refinement is computed on the fly and leads to a
well defined sparse local structure, i.e., band matrices.

2. Higher order methods: higher order DG methods lead to block structured data
structures and access patterns, which allow for high computational efficiency.
We pair these types of methods with a sum factorized assembly algorithm to
achieve a competitive effort per DOF.

While both of these methods yield computational benefits, they are still very
different, and while the higher amount of structure in a medium or high order DG

8 P. Bastian et al.

method might yield a higher computational efficiency, these methods also require a
solution with more regularity than a low order method to achieve good convergence,
making the right choice of method strongly dependent on the problem at hand.

3.1 Thread Parallel Assembly

Thread parallel assembly mainly consists of thread parallel grid sweeps and
concurrent writes to the residual vector or stiffness matrix. We identify two design
decisions with a significant performance impact:

(A) Partitioning: an existing set of grid cells – with unknown ordering – has to be
split into subsets for the different threads.

(B) Access Conflicts: each thread works on its own set of cells, but shares some
DOFs with other threads, requiring a strategy to avoid those write conflicts.

In order to describe subsets of cells in an implementation agnostic manner,
we introduce the concept of EntitySets. They encapsulate an iterator range,
describing a set of grid objects, in this case a set of grid cells and provide a map
from grid entities into a (globally) consecutive index range for data storage.

For a given mesh T .˝/we consider three different strategies, where the first two
are directly based on the induced linear ordering of all mesh cells e 2 T .˝/. In [7]
we presented performance tests to evaluate the different partitioning strategies.

strided: for P threads, each thread p iterates over the whole set of cells e 2 T .˝/,
but stops only at cells where emodP D p holds.

ranged: T is split into consecutive iterator ranges of the size jT j=P, using
iterators over T to define the entry points.

general: general partitions, like those obtained from graph partitioning libraries
like METIS or SCOTCH need to store copies of all cells in the EntitySet.
This is the most flexible approach, but typically creates non-contiguous per-
thread subsets of the EntitySet, which in turn leads to less cache-efficient
memory access patterns.

To avoid write conflicts we consider three different strategies:

entity-wise locks are expected to give very good performance, at the cost of
additional memory requirements.

batched write uses a global lock, but the frequency of locking attempts is reduced.
Updates are collected in a temporary buffer and the lock is acquired when the
buffer is full.

coloring avoids write conflicts totally, but requires a particular partitioning
scheme.

The experiments performed in [7] indicate that ranged partitioning with entity-
wise locking and coloring can be implemented with a low overhead in the thread
parallelization layer and show good performance on classic multi-core CPUs and

Hardware-Based Efficiency Advances in the EXA-DUNE Project 9

on modern many-core systems alike. In our test the performance gain from coloring
was negligible (cf. Sect. 3.3), but the code complexity increased considerably,
leading us to settle on the ranged partitioning strategy for the rest of this paper.

3.2 Higher Order DG Methods

As explained in the introduction, we focus on porous media applications to
demonstrate the overall viability of our approach to extreme scale computing within
our project and we initially consider the prototypical problem of density driven flow
in a three-dimensional domain˝ D .0; 1/3 given by an elliptic equation for pressure
p.x; y; z; t/ coupled to a parabolic equation for concentration c.x; y; z; t/:

� r � .rp � c1z/ D 0 ; (1)

@tc � r �
�
.rp � c1z/cC 1

Ra
rc
�
D 0 : (2)

This system serves as a model for the dissolution of a CO2 phase in brine, where the
unstable flow behavior leads to enhanced dissolution. The system is formulated in
non-dimensional form with the Raleigh number Ra as the only governing parameter.
For further details, we refer to [4], where we introduce the problem in a more
detailed fashion and describe our decoupled solution approach based on an operator
splitting for the pressure and the concentration parts. In the following, we focus on
the performance characteristics of the DG scheme used for the discretization of the
transport equation and (optionally, instead of a finite volume scheme) the pressure
equation.

DG methods are popular in the porous media flow community due to their
local mass conservation properties, the ability to handle full diffusion tensors
and unstructured, nonconforming meshes as well as the simple implementation of
upwinding for convection dominated flows.

Due to the large computational effort per DOF, an efficient implementation of DG
methods of intermediate and high order is crucial. In many situations it is possible
to exploit the tensor product structure of the polynomial basis functions and the
quadrature rules on cuboid elements by using sum factorization techniques. At each
element the following three steps are performed: (i) evaluate the finite element
function and gradient at quadrature points, (ii) evaluate PDE coefficients and
geometric transformation at quadrature points, and (iii) evaluate the bilinear form for
all test functions. The computational complexity of steps (i) and (iii) is reduced from
O.k2d/, k � 1 being the polynomial degree and d the space dimension, to O.dkdC1/
with the sum factorization technique, see [14, 15]. This can be implemented with
matrix–matrix products, albeit with small matrix dimensions. For the face terms, the
complexity is reduced from O.k2d�1/ to O.3dkd/. For practical polynomial degrees,
k � 10, the face terms dominate the overall computation time, resulting in the time

10 P. Bastian et al.

1 2 3 4 5 6 7

polynomial degree k

0

50

100

150

200

G
F
lo
p
/s

variable coefficients
constant coefficients

1 2 3 4 5 6 7

polynomial degree k

10−8

10−7

10−6

10−5

10−4

10−3

ti
m
e
p
er

D
O
F
[s
]

matbased operator
matfree operator
matrix assembly

1 2 4 8 16

number of cores

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

ti
m
e
p
er

D
O
F

ti
m
e
p
er

D
O
F
(1

co
re
)

k = 1 matrix-based
k = 1 matrix-free
k = 2 matrix-based
k = 2 matrix-free
k = 7 matrix-based
k = 7 matrix-free

Fig. 1 Performance of the sum factorized DG assembly: GFlop/s rates for a matrix-free operator
application (left), time per DOF for matrix-based and matrix-free operator application as well as
matrix assembly (middle), relative overhead per DOF when weakly scaling from 1 to 16 cores
(right)

per degree of freedom (DOF) to be independent of the polynomial degree. This can
be seen in the second plot in Fig. 1, where the time per DOF for the matrix-free
operator is almost constant starting from k D 3.

Our implementation of the DG scheme is based on exploiting the matrix–matrix
product structure of the sum factorization kernels. We initially relied on compiler
auto-vectorizers for the vectorization, but as can be seen in the results published
in [4], this did not yield acceptable performance. We have thus reimplemented the
kernels with explicit vectorization; for this purpose, we rely on the small external
header library VCL [9] which provides thin wrappers around x86-64 intrinsics.
In order to further improve and stabilize the performance of these kernels across
different discretization orders k, we exploit the fact that our equation requires
both the solution itself as well as its gradient, yielding a total of 4 scalar values
per quadrature point, which fits perfectly with the 4-wide double precision SIMD
registers of current CPUs, eliminating the need for complicated and costly data
padding and or setup/tail loops. This scheme can be extended to wider architectures
like AVX512 and GPUs by blocking multiple quadrature points together.

In the following, we present some results obtained with our new CPU imple-
mentation of this sum factorized DG scheme. For these benchmarks, we evaluate
a stationary general convection diffusion reaction equation on the 3D unit cube.
As many models assume the equation parameters to be constant within a single
grid cell, our code has a special fast path that avoids parameter evaluation at each
quadrature point, reducing the number of evaluations per cell from O.kd/ to 1.

We performed our measurements on one CPU of a server with dual Xeon E5-
2698v3 (Haswell-EP at 2.3 GHz, 16 cores, 32 hyper-threads, AVX2/FMA3, AVX
clock 1.9 GHz, configured without TurboBoost and Cluster on Die, theoretical
peak 486.4 GFlop/s) and 128 GB DDR4 DRAM at 2.13 GHz. All benchmarks
were performed using thread pinning by first distributing hardware threads across
the available cores before employing hyper-threading (if applicable). The same
platform was used for all subsequent CPU benchmarks described in this paper
except for Sect. 4.2. We investigated the scalability of our code within this UMA
node according to our parallelization concept laid out in the introduction by means
of a weak scalability study.

Hardware-Based Efficiency Advances in the EXA-DUNE Project 11

Figure 1 shows the overall GFlop/s rate achieved on all 16 cores during a
complete matrix-free operator application for different polynomial degrees as well
as the time required for these applications in relation to a matrix multiplication.
As can be seen, the code already outperforms the matrix-based version for k D 2,
without taking into account the large overhead of initial matrix assembly, which
also becomes a severely limiting factor for the possible per-core problem sizes at
larger core counts and higher discretization orders (for k D 7, we were only able
to allocate 110,592 DOFs per core in order to stay within the available 4 GB RAM,
which is already above average when considering current HPC systems). As can
be seen, the larger amount of work per quadrature point in case of non-constant
parameters directly translates into higher GFlop/s rates.

Finally, the third plot of Fig. 1 demonstrates the better scalability of the matrix-
free scheme: it shows the relative overhead per DOF after weakly scaling to different
numbers of active cores compared to the time per DOF required when running
on a single core. While the computationally bound matrix-free scheme achieves
almost perfect scalability, the matrix multiplication starts to saturate the 4 memory
controllers of the CPU at between 4 and 8 active cores, causing a performance
breakdown.

In order to gain further insight into the relative performance of the different
assembly components, we instrumented our code to record separate timings and
operation counts for the three parts of the sum factorized algorithm: calculation
of the solutions at the quadrature points, per-quadrature point operations and the
folding of the per-point integral arguments into the test function integrals. As can
be seen in Fig. 2, the sum factorized kernels achieve very good GFlop/s rates due to
their highly structured nature, especially for the 3D volume terms. In comparison,
the face terms are slightly slower, which is due to both the lower dimension (less
work per datum) and the additional work related to isolating the normal direction
(the normal direction needs to be treated as the first/last direction in the sum
factorization kernels, requiring an additional permutation step in most cases). While
this step can be folded into the matrix multiplication, it creates a more complicated
memory access pattern, reducing the available memory bandwidth due to less
efficient prefetching, which is difficult to overcome as it involves scalar accesses
spread over multiple cache lines. The lower amount of work also makes the face

1 2 3 4 5 6 7

polynomial degree k

0

5

10

15

20

G
F
lo
p
/s

Volume integral, variable coefficients

solution
quadrature
residual

1 2 3 4 5 6 7

polynomial degree k

0

5

10

15

20

G
F
lo
p
/s

Volume integral, constant coefficients

solution
quadrature
residual

1 2 3 4 5 6 7

polynomial degree k

0

5

10

15

20

G
F
lo
p
/s

Face integral, variable coefficients

solution
quadrature
residual

1 2 3 4 5 6 7

polynomial degree k

0

5

10

15

20

G
F
lo
p
/s

Face integral, constant coefficients

solution
quadrature
residual

Fig. 2 GFlop/s rates for different parts of the sum factorized assembly. Rates are shown for a
single core, benchmark was run with all 16 cores active

12 P. Bastian et al.

integrals more sensitive to the problem size, the residual calculation in particular
hitting local performance peaks for k D 3 and k D 7, which translates into either 4
or 8 quadrature points per direction, exactly filling the 4-wide SIMD registers of the
processor.

The calculations at the quadrature points do not achieve the same efficiency as the
sum factorization, which is to be expected as they possess a more complex structure
with e.g. parameter evaluations and (in the case of the face terms) branching due to
the upwinding in the DG scheme. In order to improve performance in this area, we
are currently investigating vectorization across multiple quadrature points.

3.3 Low Order Lagrange Methods

In contrast to the spectral DG methods, low order conforming methods have several
major drawbacks regarding the possible performance:

(i) The memory layout is much less favorable – assembly is performed cell wise,
but the DOFs are attached to vertices (and edges etc. for polynomial degrees
>1), leading to scattered memory accesses. Moreover, vertex DOFs are shared
between multiple cells, increasing the size of access halos and the probability
of write conflicts compared to DG.

(ii) The algorithmic intensity is very low and performance thus memory bandwidth
bound rather than compute bound. While structured meshes allow to calculate
a lot of information on-the-fly, reducing the amount of expensive memory
transfers and increasing computational intensity, many real world applications
do require unstructured meshes to correctly model complex geometries or for
adaptive computations. We limit the costs of these unstructured meshes by
combining globally unstructured coarse meshes with several levels of locally
structured refinement on each cell to recover a minimum amount of local
structure.

In the DUNE-PDELAB interface, users of the library must implement a local
operator that contains the cell- and face-based integration kernels for the global
operator. Vectorization has to be added at the innermost level to these kernels,
i.e., at the level of cell operations, which is user code that has to be rewritten
for every new problem. In order to lessen this implementation burden on the
user, our framework vectorizes the kernels over several mesh cells and replaces
the data type of the local residual vector with a special data type representing a
whole SIMD vector. In C++ this can be done generically by using vectorization
libraries, e. g. Vc[12] or VCL[9], and generic programming techniques. With
this approach, the scalar code written by the user is automatically vectorized,
evaluating the kernel for multiple elements simultaneously. The approach is
not completely transparent, as the user will have to e.g. adapt code containing
conditional branches, but the majority of user code can stay unchanged and will
afterwards work for the scalar and the vectorized case alike.

Hardware-Based Efficiency Advances in the EXA-DUNE Project 13

Table 2 Matrix-based assembly performance: Poisson problem, Q1 elements, assembly of Jaco-
bian. Left: Xeon E5-2698v3 (cf. Sect. 3.2). Right: Xeon PHI 5110P (Knights Corner, 60 cores, 240
hyper-threads, peak 1011 GFlop/s)

SIMD Lanes Threads Runtime GFlop/s %peak

None 1 1 38:626 s 3:01 0:6

None 1 16 2:455 s 47:28 9:7

None 1 32 3:426 s 33:88 7:0

AVX 4 1 16:570 s 4:95 1:0

AVX 4 16 1:126 s 72:85 15:0

AVX 4 32 2:271 s 36:12 7:4

SIMD Lanes Threads Runtime GFlop/s %peak

None 1 1 43:641 s 0:17 0:02

None 1 60 2:974 s 2:44 0:24

None 1 120 1:376 s 5:27 0:52

Vect. 8 1 12:403 s 0:58 0:06

Vect. 8 60 1:474 s 4:92 0:49

Vect. 8 120 1:104 s 6:57 0:65

Table 3 Matrix-free assembly performance: Poisson problem, Q1 elements, 10 iterations of a
matrix-free CG. Left: Xeon E5-2698v3 (cf. Sect. 3.2). Right: Xeon PHI 5110P

SIMD Lanes Thread Runtime GFlop/s %peak

None 1 1 56:19 s 0:10 0:02

None 1 16 6:84 s 0:82 0:17

None 1 32 6:13 s 0:91 0:19

AVX 4 1 44:55 s 0:09 0:02

AVX 4 16 6:12 s 0:64 0:13

AVX 4 32 5:50 s 0:72 0:15

SIMD Lanes Threads Runtime GFlop/s %peak

None 1 1 139:61 s 0:12 0:01

None 1 60 14:74 s 1:09 0:11

None 1 120 10:50 s 1:53 0:15

Vect. 8 1 61:23 s 0:26 0:03

Vect. 8 60 12:47 s 1:29 0:13

Vect. 8 120 9:22 s 1:75 0:17

To evaluate the potential of vectorized assembly on structured (sub-)meshes, we
present initial tests results in Table 2. The first test problem uses a conforming
FEM Q1 discretization. We measure the time to assemble a global stiffness matrix
using numerical differentiation. Three levels of sub-refinement are applied and
vectorization is employed across neighboring subelements. For the Xeon Phi, we
include timings for 1, 60 and 120 threads. Here, the most real-world configuration
involves 120 threads, as each of the 60 cores requires at least two threads to
achieve full utilization. We do not include measurements for 180/240 threads, as
our kernels saturate the cores at two threads per core and additional threads fail to
provide further speedups. On the CPU we obtain a significant portion of the peak
performance, in particular for low numbers of threads with less memory bandwidth
pressure.

These results get worse if we switch to operations with lower algorithmic
intensity or to many-core systems like the Xeon Phi 5110P. This is illustrated in the
second example, where we consider the same problem but use a matrix free operator
within an unpreconditioned CG solver, see Table 3. For such low order methods we
expect this operation to be totally memory bound. In this case our benchmarks only
show a very small speedup. This is in part due to bad SIMD utilization (cf. the
single core results), but also due to the unstructured memory accesses, which are
even more problematic on Xeon Phi due to its in-order architecture that precludes
efficient latency hiding apart from its round-robin scheduling to multiple hardware

14 P. Bastian et al.

threads per core; as a result, we are currently not able to leverage the performance
potential of its wider SIMD architecture.

The scattered data issues can be reduced by employing special data structures for
the mesh representation and the local stiffness matrix. Regarding the algorithmic
intensity we expect a combination with strong smoothers, see Sect. 4.2, to improve
the overall performance.

We will now discuss our modifications to the original data layout and data
structures within PDELab aimed at making the data more streaming friendly. As
general unstructured meshes are not suited for streaming and vectorization, we
introduce a new layer, which we refer to as a patch. A patch represents a subset
of an unstructured mesh with a local structured refinement, which is constructed on
the fly and only used during assembly, which allows for a data layout which is well
suited to accelerator units.

Each patch consists of a set of macro elements, made up of a number of elements
extracted from the initial, unstructured mesh. We restrict ourselves to one type of
macro element (i.e. either simplex or hypercube) per patch. In mixed type meshes
a higher-level abstraction layer is expected to group the elements accordingly. This
enables us to vectorize assembly across multiple macro elements of the patch. The
macro elements are sub-refined on the fly in a structured way to a given level.
For vectorized assembly, all lanes deal with corresponding subelements of different
macro elements at the same time.

In the host mesh, a DOF may be associated with mesh entities of
codimension > 0, which might form part of multiple patches. Thus, care must
be taken to avoid data races when writing to global data structures. We circumvent
this problem on the level of patches by provisioning memory for shared DOFs per
patch macro element, enabling us to optimize the per-patch memory layout for
vectorized access. Figure 3 illustrates the mapping of DOFs between global and
per-patch storage. When preparing the assembly of a residual on a patch, the DOFs
in the global coefficients vector are copied to a dedicated per-patch vector, and
after the per-patch assembly we then need to accumulate the assembled data back
into the layout imposed by the host mesh. While doing so we need to accumulate
partial data for shared DOFs, taking care not to introduce races. The same issues
and solution apply to Jacobian assembly.

This design trades increased data size for better access patterns, which creates
its own set of trade-offs. In the case of the vertex coordinates used to describe the
patch this should not have a big impact, because we apply virtual sub-refinement
and the amount of storage for vertex coordinates should be much less than the
amount of storage used for coefficient vectors and Jacobian matrices. In the case
of coefficient vectors and Jacobian matrices we benefit not only from the improved
access patterns, but also from the isolation of the per-patch data from the global
state, reducing the need for locking or similar schemes to the patch setup/teardown
layer.

The underlying DUNE interfaces, in particular the unstructured mesh, do not
know about the virtual refinement. To allow reuse of existing components, we
further provide a particular shape function implementation, which describes a

Hardware-Based Efficiency Advances in the EXA-DUNE Project 15

Fig. 3 Vectorized assembly for low order Lagrange discretization. Looping through consecutive
elements in parallel and computing the local contributions for each local DOF. Each macro element
is refined into 4 sub-cells and has 9 entries in the patch coefficients vector. Consecutive macro-cells
are stored interleaved as vectors of doubles. This allows for fully automatic vectorization

refined Q1 basis. This basis is used to encapsulate the additional intricacies of the
virtual refinement layer and allows for re-use of existing DUNE components for
visualization etc.

4 Linear Algebra

As laid out in the beginning, we are convinced that the problems from our domain of
interest (porous media) will require a mix of matrix-free and matrix-based methods
to be solved efficiently. The linear algebra part of these calculations will typically
be memory bound, which makes it attractive to support moving these parts to
accelerators and exploit their high memory bandwidth. In the following, we present
some of our efforts in this direction.

4.1 Efficient Matrix Format for Higher Order DG

Designing efficient implementations and realizations of solvers effectively boils
down to (i) a suitable choice of data structures for sparse matrix–vector multiply,
and (ii) numerical components of the solver, i.e., preconditioners.

DUNE’s initial matrix format, (block) compressed row storage, is ill-suited for
modern hardware and SIMD, as there is no way to efficiently and generally expose

16 P. Bastian et al.

a block structure that fits the size of the SIMD units. We have thus extended the
SELL-C-� matrix format introduced in [13] which is a tuned variant of the sorted
ELL format known from GPUs, to be able to efficiently handle block structures [16].

As we mostly focus on solvers for DG discretizations, which lend themselves to
block-structured matrices, this is a valid and generalizable decision. The standard
approach of requiring matrix block sizes that are multiples of the SIMD size is not
applicable in our case because the matrix block size is a direct consequence of the
chosen discretization. In order to support arbitrary block sizes, we interleave the
data from N matrix blocks given a SIMD unit of size N, an approach introduced
in [6]. This allows us to easily vectorize existing scalar algorithms by having them
operate on multiple blocks in parallel, an approach that works as long as there are no
data-dependent branches in the original algorithm. Sparse linear algebra is typically
memory bandwidth bound, and thus, the main advantage of the block format is the
reduced number of column block indices that need to be stored (as only a single
index is required per block). With growing block size, this bandwidth advantage
quickly approaches 50 % of the overall required bandwidth.

So far, we have implemented the SELL-C-� building blocks (vectors, matri-
ces), and a (block) Jacobi preconditioner which fully inverts the corresponding
subsystem; for all target architectures (CPU, MIC, CUDA). Moreover, there is an
implementation of the blocked version for multi-threaded CPUs and MICs. While
the GPU version is implemented as a set of CUDA kernels, we have not used
any intrinsics for the standard CPU and the MIC – instead we rely on the auto-
vectorization features of modern compilers without performance penalty [16]. Due
to the abstract interfaces in our solver packages, all other components like the
iterative solvers can work with the new data format without any changes. Finally,
a new backend for our high-level PDE discretization package enables a direct
assembly into the new containers, avoiding the overhead of a separate conversion
step. Consequently, users can transparently benefit from our improvements through
a simple C++ typedef.

We demonstrate the benefits of our approach for a linear system generated by a
3D stationary diffusion problem on the unit cube with unit permeability, discretized
using a weighted SIPG DG scheme [8]. Timings of 100 iterations of a CG solver
using a (block) Jacobi preconditioner on a Xeon E5-2698v3 (cf. Sect. 3.2, no
hyperthreading), on a NVIDIA Tesla C2070 for the GPU measurements and on
an Intel Xeon Phi 7120P, are presented in Fig. 4, normalized per iteration and DOF.

As can be seen, switching from MPI to threading affords moderate improvements
due to the better surface-to-volume ratio of the threading approach, but we cannot
expect very large gains because the required memory bandwidth is essentially
identical. Accordingly, switching to the blocked SELL-C-� format consistently
yields good improvements due to the lower number of column indices that need
to be loaded, an effect that becomes more pronounced as the polynomial degree
grows due to larger matrix block sizes. Finally, the GPU and the MIC provide a
further speedup of 2.5–5 as is to be expected given the relative theoretical peak
memory bandwidth figures of the respective architectures, demonstrating that our

Hardware-Based Efficiency Advances in the EXA-DUNE Project 17

 0

 100

 200

 300

 400

 500

 600

 0 1 2 3 4 5 6 7 8

T
im

e
pe

r
D

O
F

 a
nd

 C
G

 it
er

at
io

n
(n

s)

DOFs / 1e6

MPI
MT

MT blocked

Tesla
MIC blocked

Tesla blocked

 0

 500

 1000

 1500

 2000

 2500

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

T
im

e
pe

r
D

O
F

 a
nd

 C
G

 it
er

at
io

n
(n

s)

DOFs / 1e6

MPI
MT

MT blocked

Tesla
MIC blocked

Tesla blocked

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

T
im

e
pe

r
D

O
F

 a
nd

 C
G

 it
er

at
io

n
(n

s)

DOFs / 1e6

MPI
MT

MT blocked

Tesla
MIC blocked

Tesla blocked

Fig. 4 Normalized execution time of the (block) Jacobi preconditioned CG solver for polynomial
degrees p D 1; 2; 3 (left to right) of the DG discretization. The multithreaded (MT) and MIC
versions use a SIMD block size of 8. The Tesla GPU versions use a SIMD block size of 32.
Missing data points indicate insufficient memory

code manages to attain a constant fraction of the theoretically available memory
bandwidth across all target architectures.

4.2 GPU Accelerated Preconditioners and Strong Smoothers

The promising results from enhancing the sparse matrix–vector multiply (SpMV)
and therefore the whole DUNE-ISTL in DUNE by using the SELL-c-� and BELL-
c-� storage formats lead to the idea of using this kernel in the linear solver more
heavily by employing sparse approximate inverse preconditioners. Preconditioning
with approximate inverses means direct application of a M � A�1 that is, left-
multiplying with a preassembled (sparse) preconditioner that approximates the
inverse of the matrix A when solving Ax D b. One potent representative of this
family of preconditioners is the Sparse Approximate Inverse (SPAI) Algorithm
initially proposed by Grote and Huckle [11] and recently applied very successfully
in smoothers for Finite Element Multigrid solvers on the GPU within the FEAST
software family [10]. The SPAI algorithm can briefly be described as follows:

k I �MSPAIA k2F D
nX

kD1
k eT

k �mT
k A k22 D

nX
kD1
k ATmk � ek k22

where ek is the k-th unit-vector and mk is the k-th column of MSPAI. Therefore it
follows that for n columns of M we solve n independent and small least-squares
optimization problems to construct M D Œm1;m2; : : :mn�:

min
mk
k ATmk � ek k2; k D 1; : : : n :

The resulting MSPAI can then typically be used to accelerate a Richardson Iteration,

xkC1 xk C !MSPAI.b � Axk/

18 P. Bastian et al.

which can be employed as a stronger smoother in a multigrid scheme, or alter-
natively be applied directly without the cost of the additional defect correction.
Typical variants of the SPAI procedure restrict the fill-in within the assembly to
the main diagonal (SPAI(0)) or to the non-zero pattern of the system matrix A
(SPAI(1)). It has been reported that SPAI(0) has approximately the same smoothing
properties as an optimally damped Jacobi, while SPAI(1) can be compared to
Gauß-Seidel [5]. In this paper, we use SPAI(1) in our benchmarks. However,
stronger preconditioning based on such techniques needs discussion, in particular
with regard to performance relative to simple preconditioning such as Jacobi.
Although both kernels (!MJACd and Md with the former representing a component-
wise vector multiply and the latter an SpMV with the approximate inverse) are
generally memory bound, the computational complexity of the SPAI preconditioner
application depends on the sparsity pattern of MSPAI and the memory access patterns
imposed by the sparse matrix storage on the respective hardware. The Jacobi
preconditioner comes at significantly lower cost and can be executed many times
before reaching the computational cost of a single SPAI application. In addition,
the performance gain through higher global convergence rates offered by SPAI
must amortize the assembly of MSPAI, which is still an open problem especially
considering GPU acceleration (also being addressed within EXA-DUNE but not
yet covered by this paper). On the other hand, with SPAI offering a numerical
quality similar to Gauß-Seidel there is justified hope that in combination with well-
optimized SpMV kernels based on the SELL-c-� and BELL-c-� storage formats
a better overall solver performance can be achieved (also compared to even harder
to parallelize alternatives such as ILU). In addition, the effectiveness for the Jacobi
preconditioning depends on a good choice of !, while SPAI is more robust in this
regard.

In order to show that the SPAI preconditioner can be beneficial, we compare the
overall performance of a Conjugate Gradient solver, preconditioned with SPAI(1)
and Jacobi (with different values for !) respectively. Here, we adapt an existing
example program from DUNE-PDELAB that solves a stationary diffusion problem:

r � .Kru/ D f in ˝ � R3

u D g on � D @˝

with f D .6 � 4jxj2/ exp.�jxj2/ and g D exp.�jxj2/, discretized with the same
SIPG DG scheme [8] already used in Sect. 4.1. We restrict our experiments to the
unit cube˝ D .0; 1/3 and unit permeability K D 1.

From the construction kit that comes with a fast SpMV on the GPU and
a kernel to preassemble the global SPAI matrix in DUNE-ISTL, three types of
preconditioners are directly made possible: a standard scalar Jacobi preconditioner,

S!JAC W xkC1 xk C !MJAC.b� Axk/; k D 1; : : : ;K (3)

Hardware-Based Efficiency Advances in the EXA-DUNE Project 19

with MJAC as defined above and a fixed number of iterations K (note, that this is in
order to describe how the preconditioner is applied to a vector x in the PCG solver
and that this iteration solves a defect correction already and thus here, b is the global
defect). In addition, we can also precompute the exact inverse of each logical DG
block in the system matrix, making good use of the BELL storage by switching to a
block Jacobi preconditioner:

SBJAC W xkC1 xk CMBJAC.b� Axk/; k D 1; : : : ;K (4)

with MBJAC D P
i R

T
i A
�1
i Ri being the exact DG-block-inverse, precomputed by a

LU decomposition (using cuBLAS on the GPU). Third, a direct application of the
SPAI(1) matrix to the defect can be employed:

SSPAI W x MSPAIx (5)

with MSPAI as defined above. We use both the SELL-c-� and BELL-c-� storage
formats in this case.

We perform all benchmarks on the GPU and the CPU: here, we make use of a
Maxwell GPU in a NVIDIA GTX 980 Ti consumer card with roughly 340 GB/s
theoretical memory bandwidth. The Maxwell architecture of the 980 Ti is the same
as in the (at the time of writing this paper) most recent iteration of the Tesla compute
cards, the Tesla M40. For comparison, we use a 4-core Haswell CPU (Core i5
4690K) with 3.5 GHz (turbo: 3.9 GHz) and roughly 26 GB/s theoretical memory
bandwidth.

First, we demonstrate the sensitivity of Jacobi preconditioning to damping in
order to identify fair comparison configurations for the damping-free competitors
Block-Jacobi and SPAI. Figure 5 shows the variation of the solver iterations
depending on the damping parameter !. We sample the parameter space in steps of

Fig. 5 Dependence of the Jacobi preconditioning on damping parameter

20 P. Bastian et al.

0:1 between 0 and 1. The measurements clearly show a ‘sweet spot’ around 0:6 and
a worst case (expectedly) in the undamped case. Therefore, we employ ! D 0:6 as
an example of good damping and ! D 1:0 as a bad damping coefficient. In addition,
we consider a ‘median’ case of ! D 0:8 in all following benchmarks. Note that in
reality, ! is unknown prior to the solver run and has a huge impact on the overall
performance which can be seen in the factor of more than 3 between the number of
solver iterations for ‘good’ and ‘bad’ choices. In contrast to ! having an impact on
the numerical quality of the preconditioner S!JAC only and not on its computational
cost, the parameter K is somewhat more complicated to take into account in the
performance modelling process: here, a larger value for K produces a numerical
benefit, but also increases computational cost due to the additional defect correction
with each additional iteration. In many cases, the numerical benefit of increasing K
does not amortize the additional cost beyond a certain value Kopt, as can be seen
in Fig. 6 for the Jacobi preconditioner and ! D 0:5. For the benchmark problem at
hand, it is always beneficial to perform only 2 iterations. Note that this behavior also
depends on the damping parameter and more importantly, that K is also unknown
a priori. This makes both ! and K subject to autotuning in preconditioners that
try to solve an unknown correction equation, which is also a research topic of the
upcoming EXA-DUNE phase two.

Figures 7 and 8 show the timing results and numbers of iterations for first and
second order DG discretizations and the preconditioners defined by Eqs. 3 (with
different parameters for !) through 5, where for the latter we employed both the
SELL and BELL (labeled BSPAI) matrix storage techniques.

The first thing to notice here is that for the p D 1 case, the SPAI and
BSPAI variants cannot beat the inexact Block-Jacobi solves, due to a better overall
convergence behavior of the latter, although they come close (within 5 %). However,
the assembly must be considered more expensive for both SPAI versions of M
(see below). For higher order Finite Elements, the SPAI and especially the BSPAI
preconditioning can beat the best (Block-) Jacobi ones concerning overall solver
wall clock time by generating a speedup of 1.5, which leaves up to 50 % of
the solution time to amortize a pre-assembly of the sparse approximate inverse.
Comparing the SELL-c-� performance and the improved BELL variant thereof it
becomes clear that the latter’s block awareness makes SPAI successful: using SELL,

Fig. 6 K-Dependence of the Jacobi preconditioning. Left: Number of iterations. Right: Solver wall
clock time

Hardware-Based Efficiency Advances in the EXA-DUNE Project 21

Fig. 7 Iteration count and wall clock times (logscale/logscale) of the PCG solver with different
preconditioners for the benchmark problem using a first order DG discretization

Fig. 8 Iteration count and wall clock times (logscale/logscale) of the PCG solver with different
preconditioners for the benchmark problem using a second order DG discretization

SPAI is again only as good as Block-Jacobi. On the GPU, the solver performs
9.5 times better concerning wall clock time with the scalar SELL storage and
7.5 times with the BELL variant where in the former, the Haswell CPU can play
out its sophisticated caches due to blocking. Here, the GPU cannot exploit the
complete block structure due to the mapping of each row to one thread. Thus each
thread can only exploit one row of each DG block. Both speedups are within good
accordance of the factor between the theoretical memory bandwith of the respective
architectures and a memory bound kernel.

Altogether, this shows that even for simple problems, the SPAI technique can
be used to accelerate Krylov subspace solvers within DUNE especially for higher
order Finite Elements. However, it must be stated that the overall feasibility of such
Approximate Inverse techniques relies on being able to amortize the assembly time
by means of faster application times of the preconditioner. In light of this, we are
currently developing a GPU-based SPAI assembly based on fast QR decompositions
with householder transforms on each column, which can be batched for execution
similar to [17]. Also, SPAI(�) (with more complex sparsity patterns for M) is being
examined. Exploring the smoothing capabilities of SPAI-preconditioned iterations
within DUNE’s AMG schemes on the GPU is also currently under examination and
expected to be finished within the remaining first phase of the EXA-DUNE project.

22 P. Bastian et al.

5 Outlook

The results presented in this contribution highlight some of the efforts of the first
2.5 years of the EXA-DUNE project. While these tools were developed mostly
independently during that time, we intend to use the remaining 6 months of the
project to integrate these tools into an initial demonstrator based on a porous media
application. This demonstrator will combine the improved assembly performance
and the faster linear algebra with a two-level preconditioner based on a matrix-free
smoother for the DG level and an AMG-based subspace correction on a low order
subspace, which we intend to combine with the multilevel methods and uncertainty
quantification developed in parallel and detailed in [3].

Acknowledgements This research was funded by the DFG SPP 1648 Software for Exascale
Computing.

References

1. Bastian, P., Blatt, M., Dedner, A., Engwer, C., Klöfkorn, R., Kornhuber, R., Ohlberger, M.,
Sander, O.: A generic grid interface for parallel and adaptive scientific computing. Part II:
implementation and tests in DUNE. Computing 82(2–3), 121–138 (2008)

2. Bastian, P., Blatt, M., Dedner, A., Engwer, C., Klöfkorn, R., Ohlberger, M., Sander, O.: A
generic grid interface for parallel and adaptive scientific computing. Part I: abstract framework.
Computing 82(2–3), 103–119 (2008)

3. Bastian, P., Engwer, C., Fahlke, J., Geveler, M., Göddeke, D., Iliev, O., Ippisch, O., Milk,
R., Mohring, J., Müthing, S., Ohlberger, M., Ribbrock, D., Turek, S.: Advances concerning
multiscale methods and uncertainty quantification in EXA-DUNE. In: Proceedings of the
SPPEXA Symposium 2016. Lecture Notes in Computational Science and Engineering.
Springer (2016)

4. Bastian, P., Engwer, C., Göddeke, D., Iliev, O., Ippisch, O., Ohlberger, M., Turek, S., Fahlke,
J., Kaulmann, S., Müthing, S., Ribbrock, D.: EXA-DUNE: flexible PDE solvers, numerical
methods and applications. In: Lopes, L., et al. (eds.) Euro-Par 2014: Parallel Processing
Workshops. Euro-Par 2014 International Workshops, Porto, 25–26 Aug 2014, Revised Selected
Papers, Part II. Lecture Notes in Computer Science, vol. 8806, pp. 530–541. Springer (2014)

5. Bröker, O., Grote, M.J.: Sparse approximate inverse smoothers for geometric and algebraic
multigrid. Appl. Numer. Math. 41(1), 61–80 (2002)

6. Choi, J., Singh, A., Vuduc, R.: Model-driven autotuning of sparse matrix-vector multiply on
GPUs. In: Principles and Practice of Parallel Programming, pp. 115–126. ACM, New York
(2010)

7. Engwer, C., Fahlke, J.: Scalable hybrid parallelization strategies for the DUNE grid interface.
In: Numerical Mathematics and Advanced Applications: Proceedings of ENUMATH 2013.
Lecture Notes in Computational Science and Engineering, vol. 103, pp. 583–590. Springer
(2014)

8. Ern, A., Stephansen, A., Zunino, P.: A discontinuous Galerkin method with weighted averages
for advection-diffusion equations with locally small and anisotropic diffusivity. IMA J. Numer.
Anal. 29(2), 235–256 (2009)

9. Fog, A.: VCL vector class library, http://www.agner.org/optimize

http://www.agner.org/optimize

Hardware-Based Efficiency Advances in the EXA-DUNE Project 23

10. Geveler, M., Ribbrock, D., Göddeke, D., Zajac, P., Turek, S.: Towards a complete FEM-based
simulation toolkit on GPUs: unstructured grid finite element geometric multigrid solvers with
strong smoothers based on sparse approximate inverses. Comput. Fluids 80, 327–332 (2013)

11. Grote, M.J., Huckle, T.: Parallel preconditioning with sparse approximate inverses. SIAM J.
Sci. Comput. 18, 838–853 (1996)

12. Kretz, M., Lindenstruth, V.: Vc: A C++ library for explicit vectorization. Softw. Pract. Exp.
42(11), 1409–1430 (2012)

13. Kreutzer, M., Hager, G., Wellein, G., Fehske, H., Bishop, A.R.: A unified sparse matrix data
format for modern processors with wide SIMD units. SIAM J. Sci. Comput. 36(5), C401–C423
(2014)

14. Kronbichler, M., Kormann, K.: A generic interface for parallel cell-based finite element
operator application. Comput. Fluids 63, 135–147 (2012)

15. Melenk, J.M., Gerdes, K., Schwab, C.: Fully discrete hp-finite elements: fast quadrature.
Comput. Methods Appl. Mech. Eng. 190(32–33), 4339–4364 (2001)

16. Müthing, S., Ribbrock, D., Göddeke, D.: Integrating multi-threading and accelerators into
DUNE-ISTL. In: Numerical Mathematics and Advanced Applications: Proceedings of ENU-
MATH 2013. Lecture Notes in Computational Science and Engineering, vol. 103, pp. 601–609.
Springer (2014)

17. Sawyer, W., Vanini, C., Fourestey, G., Popescu, R.: SPAI preconditioners for HPC applications.
PAMM 12(1), 651–652 (2012)

18. Turek, S., Göddeke, D., Becker, C., Buijssen, S., Wobker, S.: FEAST – realisation of hardware-
oriented numerics for HPC simulations with finite elements. Concurr. Comput.: Pract. Exp.
22(6), 2247–2265 (2010)

Advances Concerning Multiscale Methods
and Uncertainty Quantification in EXA-DUNE

Peter Bastian, Christian Engwer, Jorrit Fahlke, Markus Geveler,
Dominik Göddeke, Oleg Iliev, Olaf Ippisch, René Milk, Jan Mohring,
Steffen Müthing, Mario Ohlberger, Dirk Ribbrock, and Stefan Turek

Abstract In this contribution we present advances concerning efficient parallel
multiscale methods and uncertainty quantification that have been obtained in
the frame of the DFG priority program 1648 Software for Exascale Comput-
ing (SPPEXA) within the funded project EXA-DUNE. This project aims at the
development of flexible but nevertheless hardware-specific software components
and scalable high-level algorithms for the solution of partial differential equations
based on the DUNE platform. While the development of hardware-based concepts
and software components is detailed in the companion paper (Bastian et al.,
Hardware-based efficiency advances in the EXA-DUNE project. In: Proceedings
of the SPPEXA Symposium 2016, Munich, 25–27 Jan 2016), we focus here
on the development of scalable multiscale methods in the context of uncertainty

P. Bastian • S. Müthing
Interdisciplinary Center for Scientific Computing, Heidelberg University,
Heidelberg, Germany
e-mail: peter.bastian@iwr.uni-heidelberg.de; steffen.muething@iwr.uni-heidelberg.de

C. Engwer • J. Fahlke • R. Milk (�) • M. Ohlberger
Institute for Computational and Applied Mathematics, University of Münster,
Münster, Germany
e-mail: christian.engwer@wwu.de; rene.milk@wwu.de; mario.ohlberger@wwu.de

D. Göddeke
Institute of Applied Analysis and Numerical Simulation, University of Stuttgart,
Stuttgart, Germany
e-mail: dominik.goeddeke@mathematik.uni-stuttgart.de

M. Geveler • D. Ribbrock • S. Turek
Institute for Applied Mathematics, TU Dortmund, Dortmund, Germany
e-mail: markus.geveler@math.tu-dortmund.de; dirk.ribbrock@math.tu-dortmund.de;
stefan.turek@math.tu-dortmund.de

O. Iliev • J. Mohring
Fraunhofer Institute for Industrial Mathematics ITWM, Kaiserslautern, Germany
e-mail: oleg.iliev@itwm.fraunhofer.de; jan.mohring@itwm.fraunhofer.de

O. Ippisch
Institut für Mathematik, TU Clausthal-Zellerfeld, Clausthal-Zellerfeld, Germany
e-mail: olaf.ippisch@tu-clausthal.de

© Springer International Publishing Switzerland 2016
H.-J. Bungartz et al. (eds.), Software for Exascale Computing – SPPEXA
2013-2015, Lecture Notes in Computational Science and Engineering 113,
DOI 10.1007/978-3-319-40528-5_2

25

mailto:peter.bastian@iwr.uni-heidelberg.de
mailto:steffen.muething@iwr.uni-heidelberg.de
mailto:christian.engwer@wwu.de
mailto:rene.milk@wwu.de
mailto:mario.ohlberger@wwu.de
mailto:dominik.goeddeke@mathematik.uni-stuttgart.de
mailto:markus.geveler@math.tu-dortmund.de
mailto:dirk.ribbrock@math.tu-dortmund.de
mailto:stefan.turek@math.tu-dortmund.de
mailto:oleg.iliev@itwm.fraunhofer.de
mailto:jan.mohring@itwm.fraunhofer.de
mailto:olaf.ippisch@tu-clausthal.de

26 P. Bastian et al.

quantification. Such problems add additional layers of coarse grained parallelism,
as the underlying problems require the solution of many local or global partial
differential equations in parallel that are only weakly coupled.

1 Introduction

Many physical, chemical, biological or technical processes can be described by
means of partial differential equations. Due to nonlinear dynamics, interacting
processes on different scales, and possible parametric or stochastic dependencies,
an analysis and prediction of the complex behavior is often only possible by solving
the underlying partial differential equations numerically on large scale parallel
computing hardware. In spite of the increasing computational capacities plenty of
such problems are still only solvable – if at all – with severe simplifications. This
is in particular true if not only single forward problems are considered, but beyond
that uncertainty quantification, parameter estimation or optimization in engineering
applications are investigated. It has been proven that modern algorithmic approaches
such as higher order adaptive modeling combined with efficient software design
for highly parallel environments outperforms the pure gain of increasing compute
power.1 Hence, there is a need for algorithmic improvement, both concerning a
reduction of the overall computational complexity and concerning parallel scala-
bility of algorithms in order to exploit the computational resources of nowadays
heterogeneous massively parallel architectures in an optimal manner.

Adaptive modeling, adaptive grid refinement, model reduction, multiscale meth-
ods and parallelization are important methods to increase the efficiency of numerical
schemes. In the frame of the DFG priority program SPPEXA, the funded project
EXA-DUNE [7] aims at the development of flexible but nevertheless hardware-
specific software components and scalable high-level algorithms for the solution of
partial differential equations based on the DUNE platform [3, 4] which uses state-
of-the-art programming techniques to achieve great flexibility and high efficiency to
the advantage of a steadily growing user-community.

While the development of hardware-based concepts and software components is
detailed in [6], we focus here on the development of scalable multiscale methods
in the context of uncertainty quantification which adds additional layers of coarse
grained parallelism, as the underlying problems require the solution of many local
or global partial differential equations in parallel that are only weakly coupled or
not coupled at all (see [29] for preliminary results in this direction).

Our software concept for the efficient implementation of numerical multiscale
methods in a parameterized setting is based on the general model reduction frame-
work for multiscale problems that we recently presented in [33]. The framework
covers a large class of numerical multiscale approaches based on an additive

1http://bits.blogs.nytimes.com/2011/03/07/software-progress-beats-moores-law/

http://bits.blogs.nytimes.com/2011/03/07/software-progress-beats-moores-law/

Advances Concerning Multiscale Methods and UQ in EXA-DUNE 27

splitting of function spaces into macroscopic and fine scale contributions combined
with a tensor decomposition of function spaces in the context of multi query
applications.

Numerical multiscale methods make use of a possible separation of scales in
the underlying problem. The approximation spaces for the macroscopic and the
fine scale are usually defined a priori. Typically piecewise polynomial functions are
chosen on a relatively coarse and on a fine partition of the computational domain.
Based on such discrete function spaces, an additive decomposition of the fine scale
space into coarse parts and fine scale corrections is the basis for the derivation of
large classes of numerical multiscale methods. A variety of numerical multiscale
methods can be recovered by appropriate selection of such decomposed trial and test
functions, the specific localizations of the function space for the fine scale correctors
and the corresponding localized corrector operators. For a detailed derivation of the
multiscale finite element method [14, 22], the variational multiscale method [24, 31],
and the heterogeneous multiscale method [13], [19, 20, 32] in such a framework we
refer to the expositions in [25] and [21].

Algorithmically, multiscale methods lead to a decomposition of the solution
process into a large number of independent local so called cell problems and a global
coarse problem associated with the solution of the macro scale. As the cell problems
can be based on virtual locally structured meshes (only minimal memory needed)
and do not need communication between each other, these methods have a high
level of asynchronicity which can be realized very efficiently on accelerator cards
or GPUs. The remaining global coarse problem still may be of large size and can be
treated e.g., by applying AMG-type solvers.

Complex multiscale and multiphysics applications are naturally related to uncer-
tainty quantification and stochastic modeling, as input data is often only given
stochastically. Particular competing numerical methods for such problems are
stochastic Galerkin/collocation methods on the one hand and Monte Carlo/Quasi-
Monte Carlo methods on the other hand. While the first class of methods results
in very high dimensional deterministic problems, in the second class of approaches
usually very large numbers of deterministic problems have to be solved for suitable
realizations of the stochastic input. Here we focus on multi-level Monte Carlo
(MLMC) which was first introduced in [18] for high-dimensional or infinite-
dimensional integration, was then used for stochastic ODEs [17] and has recently
been applied successfully to PDEs with stochastic coefficients [2, 10, 15, 35]. The
main idea of multi-level Monte Carlo is to consider the quantity of interest at
different accuracy levels. At each level a different number of samples is used to
compute the expected value of this quantity. In particular, very few samples are
used at the finest level where the computation for each realization is expensive,
while more samples are used at the coarsest level which is inexpensive to compute.
By selecting the number of realizations at each level carefully one can thus decrease
the computational costs enormously.

The article is organized as follows. In Sect. 2, the considered multiscale finite ele-
ment method is introduced and pure MPI, as well as hybrid MPI/SMP parallelization
concepts are discussed. The concept for an efficient parallel implementation of

28 P. Bastian et al.

multi-level Monte Carlo methods is given in Sect. 3. Finally, results of numerical
experiments are detailed in Sect. 4.

2 Numerical Multiscale Methods: A Case of Generality

Our software concept for the efficient implementation of numerical multiscale
methods in a parameterized setting is based on the general model reduction
framework for multiscale problems, recently presented in [33]. The framework
consists of classical numerical multiscale approaches based on an additive splitting
of function spaces into macroscopic and fine scale contributions combined with a
tensor decomposition of function spaces in the context of multi query applications.
In detail, let U;V denote suitable function spaces over a domain˝ � Rd and let us
look at solutions u�� 2 U of parameterized variational problems of the form

R��Œu
�
��.v/ D 0 8v 2 V (1)

with an � and �-dependent mapping R�� W U ! V 0 where � denotes a parameter that
indicates the multiscale character of the problem, and � W ˝ ! Rp; p 2 N denotes
a vector of parameter functions that do not depend on �.

Numerical multiscale methods make use of a possible separation of scales in
the underlying problem. The macroscopic scale is defined by a priori chosen
macroscopic approximation spaces UH � U;VH � V , typically chosen as piecewise
polynomial functions on a uniform coarse partition TH of ˝ . The fine scale in the
multiscale problem is usually defined by a priori chosen microscopic approximation
spaces Uh � U;Vh � V , also typically chosen as piecewise polynomial functions
on a uniform fine partition Th of˝ . For suitable choices of polynomial degrees and
meshes the spaces should satisfy UH � Uh � U, and VH � Vh � V , respectively.
In this setting, let us denote with �UH W U ! UH , �VH W V ! VH projections into
the coarse spaces. We then define fine parts of Uh, or Vh through

Uf ;h WD fuh 2 Uh W �UH .uh/ D 0g ;Vf ;h WD fvh 2 Vh W �VH .vh/ D 0g :

The discrete solution u��;h 2 Uh is then defined through its decomposition u��;h D
uH C uf ;h 2 UH ˚ Uf ;h, satisfying

R��ŒuH C uf ;h�.vH/ D 0 8vH 2 VH ; (2)

R��ŒuH C uf ;h�.vf ;h/ D 0 8vf ;h 2 Vf ;h : (3)

In a further step, a localization of the fine scale correction uf ;h is obtained.
Thus, let a coarse partition TH of ˝ and macroscopic discrete function spaces
UH.TH/;VH.TH/ be given, e.g., by choosing globally continuous, piecewise poly-
nomial finite element spaces on TH . Furthermore, we choose quadrature rules
.!T;q; xT;q/

Q
qD1 for T 2 TH and associate with each quadrature point xT;q a local

Advances Concerning Multiscale Methods and UQ in EXA-DUNE 29

function space Uı
f ;xT;q

which might for example be given as

Uı
f ;xT;q WD fuf ;xT;q D uf ;hjYı .xT;q/ W uf ;h 2 Uf ;h/g

where Yı.xT;q/ is an appropriate discrete ı-environment of xT;q that can be decom-
posed with elements from the fine mesh Th. Local function spaces Vıf ;xT;q are defined
analogously.

Next, we define local corrector operators QxT;q W UH ! Uı
f ;xT;q

through an
appropriate localization of (3), e.g.,

R��ŒuH C QxT;q.uH/�.vf ;xT;q/ D 0 8vf ;xT;q 2 Vıf ;xT;q : (4)

A corresponding local reconstruction operator RxT;q is then given as

RxT;q.uH/ D uH C QxT;q.uH/ (5)

and we obtain the overall method using numerical quadrature in the coarse scale
Eq. (2) and by replacing uH C uf ;h in (2) by the localized reconstruction RxT;q.uH/.

Depending on the choice of trail and test functions, and on the choice of specific
localizations of the function space for the fine scale correctors and by choosing cor-
responding localized corrector operators a variety of numerical multiscale methods
can be recovered. For a detailed derivation of the multiscale finite element method,
the variational multiscale method, and the heterogeneous multiscale method in such
a framework we refer to the expositions in [25] and [21].

Concerning the structure of the solution spaces and the resulting discrete
approximation schemes, for all numerical multiscale methods that fit into the above
framework the global solution is decomposed into local solutions on merely struc-
tured sub-refinements of coarse grid blocks, and block-wise sparse global solutions.
Hence, the general mathematical concept gives rise to the development of a unified
interface based software framework for an efficient parallel implementation of such
schemes.

As a particular realization within this concept we are considering here the
multiscale finite element method (MsFEM) (see [14] for an overview) which we
now detail, following the exposition in [22].

2.1 The Multiscale Finite Element Method for Multiscale
Elliptic Equations

For simplicity, we will consider now the heterogeneous diffusion model problem:

find u� 2 VH1.˝/ W
Z
˝

A�ru� � r˚ D
Z
˝

f˚ 8˚ 2 VH1.˝/ : (6)

30 P. Bastian et al.

Here,˝ � Rn, n 2 N>0 denotes a domain with a polygonal boundary and we define

VH1.˝/ WD VC1.˝/
k�kH1.˝/

. Furthermore, we assume that A� 2 .L1.˝//n�n and
f 2 L2.˝/. For A�, we also suppose ellipticity, i.e. there exists some ˛ 2 R>0 with

A�.x/� � � � ˛j�j2 8� 2 Rn and for a.e. x 2 ˝ :

We note that the parameter � does not have a particular value nor does it converge to
zero, it just indicates that a certain quantity (such as A� or u�) exhibits microscopic
features.

In order to formulate the method in a general way, we let TH denote a regular
partition of ˝ with elements T and Th a nested refinement of TH . Let UH WD
S10.TH/ � Uh WD S10.Th/ � VH1.˝/; denote associated piecewise linear finite
element spaces. We assume that Uh is sufficiently accurate, i.e. we have a condition
infvh2Uh ku� � vhkH1.˝/ � TOL. Furthermore, we define VUh.!/ WD Uh \ VH1.!/ for
! � ˝ . By A�h we denote a suitable approximation of A�.

Definition 1 (Admissible environment) For T 2 TH, we call U.T/ an admissible
environment of T, if it is connected, if T � U.T/ � ˝ and if it is the union of
elements of Th, i.e.

U.T/ D
[

S2T �

h

S; where T �h � Th :

Admissible environments will be used for oversampling. In particular T is an
admissible environment of itself.

Now, we state the MsFEM in Petrov-Galerkin formulation with oversampling.
The typical construction of an explicit multiscale finite element basis is already
indirectly incorporated in the method. Also note that for U.T/ D T we obtain the
MsFEM without oversampling.

Definition 2 Let UH D fU.T/j T 2 THg denote a set of admissible environments
of elements of TH . We call R�

h.uH/ 2 Uh � VH1.˝/ the MsFEM-approximation of
u�, if uH 2 UH solves:

X
T2TH

Z
T
A�hrR�

h.uH/ � r˚H D
Z
˝

f˚H 8˚H 2 UH : (7)

For˚H 2 UH, the reconstructionR�
h.˚H/ is defined byR�

h.˚H/jT WD QQ�h.˚H/C˚H ,
where QQ�h.˚H/ is obtained in the following way: first we solve for Q�h;T.˚H/ 2
VUh.U.T// with

Z
U.T/

A�h
�r˚H CrQ�h;T.˚H/

� � r	h D 0 8	h 2 VUh.U.T//; 8T 2 TH : (8)

Advances Concerning Multiscale Methods and UQ in EXA-DUNE 31

Since we are interested in a globally continuous approximation, i.e. R�
h.uH/ 2 Uh �

VH1.˝/, we still need a conforming projection PH;h which maps the discontinuous
parts Q�h;T.˚H/jT to an element of Uh. Therefore, if

PH;h W f	h 2 L2.˝/j 	h 2 Uh.T/ 8T 2 THg �! Uh

denotes such a projection, we define

QQ�h.˚H/ WD PH;h.
X
T2TH

TQ
�
h;T.˚H//

with indicator function
T .

PH;h might be for instance constructed by using a local average on the edges of
T, i.e.

QQ�h.˚H/.x/ D PH;h.
X
T2TH

TQ
�
h;T.˚H// WD 1

]TH.x/

X
T2TH .x/

Q�h;T.˚H/.x/ ; (9)

where we defined TH.x/ WD fT 2 THj x 2 Tg. For a more detailed discussion and
analysis of this method we refer to [22].

2.2 Implementation and Parallelization

Parallelization of the MsFEM algorithm can yield two major benefits. The first
is to increase the amount of available memory, and thereby the ability to solve
ever larger problems in higher grid resolutions. The other benefit is minimizing
time-to-solution for a given problem with fixed resolution. Our implementation
of the general framework for multiscale methods (DUNE-MULTISCALE, [26]) is
continually improving effort since the inception of the EXA-DUNE project and
is built using the DUNE Generic Discretization Toolbox (DUNE-GDT, [34]) and
DUNE-STUFF [28]. The implementation also relies on the DUNE Core Modules
(-common, -geometry, -localfunctions, -grid) [5] and DUNE-PDELAB [1]. All of
these modules are available as free and open source software and individually
licensed under the GNU General Public License version 2 (GPLv2) or the BSD
2-Clause License (BSD2).

We will now describe our parallelization approach on an abstract compute
cluster. This cluster shall consist of a set of N processors P D fP0; : : : ;PNg,
which we will assume as being interconnected over some reasonable fast interface
(e.g., Infiniband). Each processor will run its own instance of our code, with
communication between processors provided by an implementation of the Message-
Passing Interface Standard (MPI [30], e.g., OpenMPI) and abstracted for our use by
dune-grid.

32 P. Bastian et al.

Fig. 1 Non-overlapping macro grid distribution of TH for P D P0; � � � ;P3 and fine scale sub-
structure (left). Overlapping macro grid distribution of TH for P D P0; � � � ;P3 (right)

The fundamental idea to distribute work across P is akin to domain decom-
position. Given a coarse partition TH of ˝ dune-grid internally distributes subsets
TH;Pi � TH to each Pi. This distribution is called non-overlapping if

TN
iD0TH;Pi D

; (Fig. 1). Since we are interested in globally continuous solutions in UH however,
we require an overlapping distribution where cells can be present on multiple
Pi. Consequently we will call Ii � TH;Pi the set of inner elements, if for all
TH 2 Ii) TH … Ij for all i; j with i ¤ j. Programmatically Ii and TH;Pi both are
provided to us by dune-grid as instances of the Dune::GridView interface. Let
us note that for P D fP0g our parallel implementation degrades to serial execution
within the same code path, without the need for special casing, and that the current
implementation is based on cubical grids on both coarse and fine scale.

The next step in the multiscale algorithm is to solve the cell corrector
problems (8) from Definition 2 for all U.TH/;TH 2 Ii, over which we
iterate sequentially using the Dune::Stuff::Grid::Walker facility. For
each TH we create a new structured Dune::YaspGrid to cover U.TH/.
Next we need to obtain Q�h;T.˚H/ for all J coarse scale basis function.
After discretization this actually means assembling only one linear system
matrix and J different right hand sides. The assembly is delegated to the
Dune::GDT::SystemAssembler which is fed the appropriate elliptic
operator GDT::Operators::EllipticCG and corresponding right hand
side functionals GDT::LocalFunctional::Codim0Integral. The
SystemAssembler, a class derived from Stuff::Grid::Walker, is
designed to stack cell-local operations of any number of input functors, allowing us
to complete all assembly in one single sweep over the grid.

Since our cell problems usually only contain up to about one hundred thou-
sand elements it is especially efficient for us to factorize the assembled system
matrix once and then backsolve for all right hand sides. For this we employ
the UMFPACK[11] direct solver from the SuiteSparse library2 and its abstrac-
tion through DUNE-ISTL [8] and DUNE-STUFF respectively. We now apply the

2http://faculty.cse.tamu.edu/davis/suitesparse.html

http://faculty.cse.tamu.edu/davis/suitesparse.html

Advances Concerning Multiscale Methods and UQ in EXA-DUNE 33

projections PH;h to get QQ�h.˚H/ and with that discretize Eq. (8), which yields a
linear system in the standard way. Since this is a system with degrees of freedom
(DoF) distributed across all Pi we need to select an appropriate iterative solver.
Here we use the implementation of the bi-conjugate gradient stabilized method
(BiCGSTAB) in DUNE-ISTL, preconditioned by an Algebraic Multigrid (AMG)
solver3 with symmetric successive overrelaxation (SSOR) smoothing or using an
Incomplete LU-decomposition with thresholding (ILUT) as preconditioner. The
necessary communication and cross-process DoF mapping pattern necessary for
the BiCGSTAB we get from DUNE-PDELAB. For a detailed explanation and
analysis of the distributed solver we refer to [9]. We note that the application of
the linear system solver is the only step in our algorithm that requires a non-trivial
communication.

2.3 Hybrid MPI/SMP Implementation

In contrast to the simplified cluster setup proposed in Sect. 2.2 modern compute
servers contain multi-core processors, with the core count still trending up. Compar-
ing the November 20104 and 20155 editions of the Top 500 © list of supercomputer
sites we see an immense rise of systems using processors with six or more cores
from 19% to 96:8%. It is evidently clear to us that efficiently using modern hardware
means exploiting this thread-level, shared-memory parallelism (SMP) in addition to
the message passing parallelism between processors. Employing a multithreading
approach allows us to maximize CPU utilization by dynamically load balancing
work items inside one CPU without expensive memory transfer or cross-node
communication. Compared with the pure MPI case, we are effectively reducing the
communication/overlap region of the coarse grid in a scenario with a fixed number
of available cores. This also slightly reduces memory usage. Within EXA-DUNE we
decided to use Intel’s Thread Building Blocks (TBB) library as our multithreading
abstraction.

Therefore, let us now consider a modified abstract compute cluster that is
comprised of a set of processors P , but now each Pi has an associated set of cores
CPi D fCj

Pi
g and a set of, hardware or software, threads tCj D ftkCj

g. For simplicity,
we assume here that j D k across P . The most obvious place for us to utilize SMP
is solving the cell corrector problems. These are truly locally solvable in the sense
of data independence with respect to neighboring coarse cells. The idea of working
on more than one cell problem in parallel comes naturally. We utilize extensions
to the dune-grid module made within EXA-DUNE, presented in [16], that allow
us to partition a given GridView into, amongst other options, connected ranges

3Dune::Amg::AMG, dune-istl/dune/istl/paamg/amg.hh
4http://www.top500.org/lists/2010/11/highlights/
5http://www.top500.org/lists/2015/11/highlights/

dune-istl/dune/istl/paamg/amg.hh
http://www.top500.org/lists/2010/11/highlights/
http://www.top500.org/lists/2015/11/highlights/

34 P. Bastian et al.

Fig. 2 Hybrid macro grid
distribution with two cores
per rank and fine scale
sub-structure of Uh;T for
U.T/ D T

of cells. We have modified the Stuff::Grid::Walker accordingly to address
these partitions such that multiple threads may each iterate over one such range at a
time (Fig. 2), managed by TBB.

Without extra effort we gain thread parallel assembly of the coarse scale
system, since the GDT::SystemAssembler is derived from Stuff::Grid::
Walker. Only the application of the projections, which however have negligible
share in algorithm complexity and run time, and the coarse linear system solve have
yet to benefit from thread parallelism.

3 The Multi-level Monte-Carlo Method

MsFEM is an efficient numerical scheme for solving problems with data varying
on both, microscopic and macroscopic level. Usually, this kind of problems do not
show up in a fully determined way, but we can only guess the statistical distribution
of the underlying data. For instance, consider fluid flow through a given sector
of the ground. The complete permeability field is inaccessible, but assuming a
certain type of covariance function, we can at least determine its parameters from
a limited number of measurements. This means, however, that interesting aggregate
quantities, e.g., the total flux through the sector, can also be characterized only by
a stochastical distribution. In order to find moments of this distribution we have to
integrate the aggregate quantity with respect to the probability density of the random
parameters.

This kind of uncertainty quantification (UQ) is usually performed by Monte
Carlo methods (MC) as the dimension of the parameter space is too high to be
addressed by alternative approaches such as stochastic Galerkin schemes. Note that
UQ multiplies the effort for solving a single PDE by the combinations of random
parameters required to make some stochastic integrals converge. As solutions
for different parameters can be found independently, UQ turns out to be one of
the applications which do both, really require and benefit most from exascale
computing.

Advances Concerning Multiscale Methods and UQ in EXA-DUNE 35

0 0.1 0.2 0.3
0

2000

4000

6000

8000

10000

12000

14000

correlation length

co
m

pu
ta

tio
n

tim
e

[s
]

MC
MLMC

102 103
10−2

10−1

100

101

102

number of processors

tim
e

pe
r p

er
m

ea
bi

lit
y

fie
ld

 [s
]

218 cells
221 cells
224 cells
227 cells

(b)(a)

Fig. 3 Evaluation of MLMC and scaling of FFTW3. (a) MLMC versus MC. (b) Scaling of
FFTW3

Unfortunately, standard MC methods are characterized by slow convergence
rates. The multi-level Monte Carlo method (MLMC) is intended to attenuate this
drawback [10, 15, 17]. The basic idea is to split the expected value of the aggregate
quantity into two parts: the expected result of an inaccurate but fast method and the
expected difference with respect to an accurate but slow solver. If the results of the
fast method vary heavily for different random data, while fast and slow schemes give
similar results when applied to the same data, then MLMC becomes considerably
more efficient than standard MC. This is illustrated in Fig. 3a. It refers to the total
flux through a unit cube the permeability of which is randomly distributed with some
correlation length �, cf. [29] for details. The higher the correlation length the more
volatile is the total flux, while the deviation of coarse and fine solutions remains the
same. As expected, the benefit of MLMC increases with �.

In the above situation the two empirical mean values of coarse result and
difference can be made equally accurate (similar variance) using many coarse
samples, which are cheap, and only a few expensive differences of fine and coarse
results. Note that MLMC can also be used to compute higher statistical moments
and may comprise more levels.

3.1 Principle

Before explaining our parallel MLMC-module we have to repeat the basic principle
of MLMC and introduce some notation.

Let ! be a random field characterizing different instances of the problem class.
Assume we have L C 1 different numerical methods available to approximate the
aggregate quantity Q.!/ by values Ql.!/, l D 0; : : : ;L. Let the methods be ordered

36 P. Bastian et al.

by increasing accuracy and cost. Then we can rewrite Q.!/ as telescoping sum:

Q.!/ D Q0.!/„ƒ‚…
Y0.!/

CQ1.!/ �Q0.!/„ ƒ‚ …
Y1.!/

C � � � C QL.!/ �QL�1.!/„ ƒ‚ …
YL.!/

CQ.!/ �QL.!/„ ƒ‚ …
ZL.!/

:

Let w be an n-dimensional vector of random fields !i distributed like !. Then

Yln.w/ WD 1
n

Pn
iD1Yl.!i/ satisfies E ŒYln� D E ŒYl� ; Var ŒYln� D 1

nVar ŒYl� :

Given nl realizations on level l we can construct the following estimator of E ŒQ�:

OQ �w0: : :wL
� D

LX
lD0

Ylnl
�
wl
�

with E
�
Q � OQ� D E ŒZL� ; Var

� OQ� D
LX

lD0
1
nl

Var ŒYl� :

Let method L be chosen so accurate that jE ŒZL�j � ". Our goal is to have

E
�� OQ�E ŒQ�

�2�DVar
� OQ�C�E� OQ�Q��2� 2 "2 following from

LX
lD0

1
nl

Var ŒYl� D "2 :
(10)

This condition may be achieved by different combinations of numbers nl and we
choose the one with minimal CPU time. Let vl D Var ŒYl�, tl the mean time
computing difference Yl once, and T D PL

lD0 nl tl the total time computing OQ.
Minimizing T under constraint (10) and turning to integers gives

nl D ceil
h
˛
p
vl=tl

i
with Lagrangian multiplier ˛ D 1

"2

PL
lD0
p
vl tl : (11)

In practice, the nl are computed based on empirical estimates of tl and vl.

3.2 Implementation

Multi-level Monte Carlo is quite a general framework for variance reduction within
uncertainty quantification. In order to keep this generality, we have added a MLMC-
module to DUNE [27] which does not depend on certain geometries, discretizations
or solvers. The module simply expects classes providing the aggregate quantity
computed by a coarse solver and classes providing the difference of results by
two methods of increasing accuracy for the same set of random coefficients. The
hierarchy of solvers may be related to different levels of grid refinement or different
orders of a Karhunen-Loève expansion of a permeability field, for instance. But
comparing completely different solution algorithms is permitted as well: in Sect. 4
we employ a one-step MsFEM-solver on the coarse level and standard FEM as fine
solver. While a first version of the algorithms has shortly been sketched in [29] we
now illustrate the present version in full detail.

Advances Concerning Multiscale Methods and UQ in EXA-DUNE 37

Implementing our parallel MLMC framework we had to answer two main
questions: how many processors pl are used per sample on a given level and how can
we minimize communication estimating mean times and variances? If the solvers
scaled perfectly we could solve only one problem at a time using all cores in parallel.
In this situation we could avoid any communication for estimating variances. In
practice, however, there is an optimal number of processors pl minimizing the
product of pl and the solution time tl for a single problem on level l. Testing the
MLMC-module we considered single phase flow through a cube. In this application
the limiting factor is parallel creation of the random permeability field [29]. The
underlying algorithm, circulant embedding, which is both fast and accurate, requires
libraries on fast Fourier transform. Unfortunately, even the best library available,
FFTW3, does not even scale monotonously, cf. Fig. 3b.

The second problem is estimating mean times and variances with a minimal
communication overhead. This is done by an outer loop i over a few breaks, e.g.,
nb D 3, and an inner loop over the levels. Here, Yl are computed many times
in parallel by groups of pl processors until time Ti

l when statistical moments are
exchanged between groups. At the beginning of a new outer loop we compute
optimal nl as in Eq. (11) and new stopping times as Ti

l D
�
nl � n0l

�
tl
pl
p

i
nb

, where
n0l denotes the number of samples on level l created so far and p is the total number
of processors.

Why do we feed the processor groups with stopping times rather than sample
numbers? Processors may differ in performance and solution times may depend on
the random data. Therefore, synchronizing the groups by sample numbers leads to
undesired idle time.

Figure 4 illustrates the algorithm underlying our MLMC-module for a very
simple setting with 8 processors and two levels.

1. Find the optimal number of processors per coarse sample problem (here 1).
2. Find the optimal number of processors per fine sample problem (here 4).
3. Compute the times T11 and T12 of the first two interrupts.
4. Coarse problems are run repeatedly on groups of one core without any commu-

nication until T11 is reached.
5. Local moments (actual runtime, number of samples, sum of results, sum of

squared results) are sent to master and combined to global moments of coarse
results.

6. Fine problems are run repeatedly on groups of four cores without any communi-
cation until T12 is reached.

7. Local moments of fine results are sent to the master and combined to global
moments. New interrupt times T21 and T22 are computed from updated variances
and estimated times per sample. The times are distributed to the groups and new
independent runs are started.

8. The last pair of runs is prepared in the same way.
9. Procedure stops when sum of empirical variances is smaller than squared

tolerance.

38 P. Bastian et al.

cores

time

T 1
1 T 2

1 T 3
1 T 3

2T 2
2T 1

2

1 2 3 4 5 6 7 8 9

Fig. 4 Implemented multi-level Monte Carlo procedure

Up to now, only processor numbers equal to powers of 2 are supported. As
illustrated in Fig. 7 the MLMC-module scales almost perfectly when applied to
stationary porous media flow with random permeability as discussed above.

4 Numerical Experiments

To evaluate our MsFEM implementation we consider the following elliptic multi-
scale benchmark problem.

Definition 3 (Testcase setup) ˝ D Œ0; 1�3, with boundary conditions u.x/ D 0

on @˝nx3 2 f0; 1g and Neumann-zero elsewhere. With diffusion A� and source f �

given as:

A�.x1; x2; x3/ WD 1
8�2

0
@2

�
2C cos

�
2� x1

�

��
0 0

0 1C 1
2

cos
�
2� x1

�

�
0

0 0 0

1
A

f �.x/ WD � r � .A� .x/rv�.x//
v�.x1; x2; x3/ WD sin.2�x1/ sin.2�x2/

C �
2

cos.2�x1/ cos.2�x2/ sin
�
2� x1

�

�
:

Advances Concerning Multiscale Methods and UQ in EXA-DUNE 39

28 29 210 211 212 213

Cores

20

21

22

23

24

25

26

S
p
e
e
d
u
p

Overall

Coarse solve

Local assembly + solve

Coarse assembly

Ideal

Fig. 5 Pure MPI MsFEM, 643 coarse cells, 83 fine cells per coarse cell

For the purely MPI parallel case (Fig. 5) we ran our code on the SuperMUC
Petascale System (Phase 2) of the Leibniz Supercomputing Centre (LRZ). The
compute nodes there each contain two Intel Xeon E5-2697 v3 (Haswell) processors
with fourteen cores each and 64GB of RAM. The uniformly refined, structured
coarse grid TH was created with 643 D 262;144 cubes, whereas the cell problems
were solved on grids with 83 D 512 cubes. As the coarse scale linear solver we
selected the ILUT preconditioned BiCGSTAB variant, for the local problems we
always use the direct sparse solver UMFPACK. We began our strong scaling test with
256 MPI ranks on 10 nodes, with one core assigned to each rank, and continued up
to 8192 MPI ranks on 293 nodes, which is eight times as many cores used as in
previous results published in [7]. This means that the baseline presents 1024 coarse
cells per rank, while only 32 cells per rank remain at 8192, which explains the rather
poor scaling behavior of the BiCGSTAB. The overall scaling is diminished by this,
as the remaining major parts of the algorithm scale near the linear ideal.

The hybrid SMP/MPI strong scaling (Fig. 6) test we performed on the CHEOPS
infrastructure of the RRZK in Cologne with nodes holding two Intel Xeon X5650
(Westmere) processors with six cores each and 24GB RAM. Since we have fewer
total processors available here, we change the grid setup to 83 cells on the coarse
grid and 323 cells in each local corrector problem’s grid. In this case we spawn one
MPI rank per processor and let TBB launch up to six threads per rank. We begin the
speedup test with 16 ranks and continue up till 128 ranks, meaning we scale from
using 96 cores to 786. The observed overall scaling of 7.83 is very close to the ideal
scaling of 8. This is expected since the local problems are of higer dimensionality
and the coarse cell per rank ratio is more favorable.

Testing the MLMC-module with respect to flexibility and parallel scaling we
get by with a simple model problem: stationary single phase flow through a unit

40 P. Bastian et al.

27 28 29

Cores

2−1

20

21

22

23

24

S
p
e
e
d
u
p

Overall

Coarse solve

Local assembly + solve

Coarse assembly

Ideal

Fig. 6 Hybrid MPI/SMP MsFEM, 83 coarse cells, 323 fine cells per coarse cell

cube with random permeability field and a constant pressure difference between
left and right end faces. The aggregate quantity is the total flux through the cube,
which is proportional to an effective constant permeability. Permeability fields are
characterized by the following type of correlation function [23]:

E Œlog .k .x; �// log .k .y; �//� D �2 exp .�kx � yk2 =�/ ; x; y 2 Œ0; 1�d ; (12)

where k.x; !/ is the permeability at position x for a vector ! of independent
normally distributed random variables the number of which equals the number of
cells in the discretization. As Karhunen-Loève expansions do not decay rapidly
enough for our applications we use a parallel version of the circulant embedding
algorithm [12], which is exact down to grid size, still fast, and also works for
non-factoring covariance functions as in (12). It is based on the observation that
a wide class of random permeability fields may be represented as superposition of
Fourier basis functions with scaled independent normally distributed coefficients,
where the scaling incorporates the correlation function. 3D permeability fields with
up to 134 million cells and random variables have been computed on up to 1024
processors, cf. Fig. 3b.

In order to demonstrate flexibility, we have applied both, a three level scheme
with FEM-solvers using different mesh refinements (Q1-elements, AMG) and a two
level scheme with MsFEM as coarse solver and standard FEM as fine solver. The
three level scheme uses 1, 4, and 32 processors per realization and grid sizes of 2�5,
2�6, and 2�7, respectively. The results illustrated in Fig. 7 have been generated for
� D 1:0, � D 0:2, and tolerances " D 0:03 for the 2-level-scheme and " D 0:005

for the 3-level scheme.

Advances Concerning Multiscale Methods and UQ in EXA-DUNE 41

0 500 1000

2

4

6

8

number of processors

sp
ee

du
p

ideal
actual

0 500 1000
90

95

100

105

110

number of processors

st
ro

ng
 s

ca
lin

g
ef

fic
ie

nc
y

[%
]

(a) (b)

Fig. 7 Scaling of a 2-level MsFEM/FEM and a 3-level FEM MLMC. (a) 2-level, MsFEM/FEM.
(b) 3-level, variable mesh size

5 Conclusion

In this contribution we introduced a software design for efficient parallelization of
multiscale methods and their usage in parallel multi-level Monte Carlo methods.
For the multiscale finite element method we have shown promising scaling behavior
of our implementation, both in pure distributed MPI mode and in hybrid SMP/MPI
mode. Furthermore, we demonstrated that our MLMC framework allows combining
different kinds of algorithms per level, in particular our MsFEM implementation as
a coarse solver.

Acknowledgements This research was funded by the DFG SPP 1648 ‘Software for Exascale
Computing’ under contracts IL 55/2-1, and OH 98/5-1. The authors gratefully acknowledge the
Gauss Centre for Supercomputing e.V. (www.gauss-centre.eu) for funding this project by providing
computing time on the GCS Supercomputer SuperMUC at Leibniz Supercomputing Centre (LRZ,
www.lrz.de). We also gratefully acknowledge compute time provided by the RRZK Cologne, with
funding from the DFG, on the CHEOPS HPC system under project name “Scalable, Hybrid-
Parallel Multiscale Methods using DUNE”.

References

1. DUNE pdelab. https://www.dune-project.org/pdelab/ (Nov 2015)
2. Barth, A., Schwab, C., Zollinger, N.: Multi-level Monte Carlo finite element method for elliptic

PDEs with stochastic coefficients. Numer. Math. 119(1), 123–161 (2011)
3. Bastian, P., Blatt, M., Dedner, A., Engwer, C., Klöfkorn, R., Kornhuber, R., Ohlberger, M.,

Sander, O.: A generic grid interface for parallel and adaptive scientific computing. Part II:
implementation and tests in DUNE. Computing 82(2–3), 121–138 (2008)

4. Bastian, P., Blatt, M., Dedner, A., Engwer, C., Klöfkorn, R., Ohlberger, M., Sander, O.: A
generic grid interface for parallel and adaptive scientific computing. Part I: abstract framework.
Computing 82(2–3), 103–119 (2008)

www.gauss-centre.eu
www.lrz.de
https://www.dune-project.org/pdelab/

42 P. Bastian et al.

5. Bastian, P., Blatt, M., Dedner, A., Engwer, C., Fahlke, J., Gräser, C., Klöfkorn, R., Nolte, M.,
Ohlberger, M., Sander, O.: DUNE Web page. http://www.dune-project.org (2011)

6. Bastian, P., Engwer, C., Fahlke, J., Geveler, M., Göddeke, D., Iliev, O., Ippisch, O., Milk, R.,
Mohring, J., Müthing, S., Ohlberger, M., Ribbrock, D., Turek, S.: Hardware-based efficiency
advances in the EXA-DUNE project. In: Proceedings of the SPPEXA Symposium 2016. Lecture
Notes in Computational Science and Engineering. Springer (2016)

7. Bastian, P., Engwer, C., Göddeke, D., Iliev, O., Ippisch, O., Ohlberger, M., Turek, S., Fahlke,
J., Kaulmann, S., Müthing, S., Ribbrock, D.: Exa-dune: flexible PDE solvers, numerical
methods and applications. In: Euro-Par 2014: Parallel Processing Workshops. Euro-Par 2014
International Workshops, Porto, 25–26 Aug 2014, Revised Selected Papers, Part II. Lecture
Notes in Computer Science, vol. 8806, pp. 530–541. Springer (2014)

8. Blatt, M., Bastian, P.: The iterative solver template library. In: Kagstrom, B., Elmroth,
E., Dongarra, J., Waśniewski, J. (eds.) Applied Parallel Computing. State of the Art in
Scientific Computing. Lecture Notes in Computer Science, vol. 4699, pp. 666–675. Springer,
Berlin/Heidelberg (2007)

9. Blatt, M., Bastian, P.: On the generic parallelisation of iterative solvers for the finite element
method. Int. J. Comput. Sci. Eng. 4(1), 56–69 (2008)

10. Cliffe, K., Giles, M., Scheichl, R., Teckentrup, A.L.: Multilevel Monte Carlo methods and
applications to elliptic PDEs with random coefficients. Comput. Vis. Sci. 14(1), 3–15 (2011)

11. Davis, T.A.: Algorithm 832: Umfpack v4.3 – an unsymmetric-pattern multifrontal method.
ACM Trans. Math. Softw. 30(2), 196–199 (2004)

12. Dietrich, C., Newsam, G.N.: Fast and exact simulation of stationary Gaussian processes
through circulant embedding of the covariance matrix. SIAM J. Sci. Comput. 18(4), 1088–
1107 (1997)

13. Engquist, W.E.B.: The heterogeneous multiscale methods. Commun. Math. Sci. 1(1), 87–132
(2003)

14. Efendiev, Y., Hou, T.Y.: Multiscale Finite Element Methods: Theory and Applications. Surveys
and Tutorials in the Applied Mathematical Sciences, vol. 4. Springer, New York (2009)

15. Efendiev, Y., Iliev, O., Kronsbein, C.: Multilevel monte carlo methods using ensemble level
mixed MsFEM for two-phase flow and transport simulations. Comput. Geosci. 17(5), 833–850
(2013)

16. Engwer, C., Fahlke, J.: Scalable hybrid parallelization strategies for the dune grid interface.
In: Numerical Mathematics and Advanced Applications: Proceedings of ENUMATH 2013.
Lecture Notes in Computational Science and Engineering, vol. 103, pp. 583–590. Springer
(2014)

17. Giles, M.B.: Multilevel Monte Carlo path simulation. Oper. Res. 56(3), 607–617 (2008)
18. Heinrich, S.: Multilevel Monte Carlo methods. In: Margenov, S., Wasniewski, J., Yalamov,

P. (eds.) Large-Scale Scientific Computing 2001 (LSSC 2001). Lecture Notes in Computer
Science, vol. 2179, pp. 58–67. Springer (2001)

19. Henning, P., Ohlberger, M.: The heterogeneous multiscale finite element method for elliptic
homogenization problems in perforated domains. Numer. Math. 113(4), 601–629 (2009)

20. Henning, P., Ohlberger, M.: The heterogeneous multiscale finite element method for advection-
diffusion problems with rapidly oscillating coefficients and large expected drift. Netw. Heterog.
Media 5(4), 711–744 (2010)

21. Henning, P., Ohlberger, M.: A Newton-scheme framework for multiscale methods for nonlinear
elliptic homogenization problems. In: Proceedings of Algoritmy 2012, Conference on Scien-
tific Computing, Vysoke Tatry, Podbanske, 9–14 Sept 2012, pp. 65–74. Slovak University of
Technology in Bratislava, Publishing House of STU (2012)

22. Henning, P., Ohlberger, M., Schweizer, B.: An adaptive multiscale finite element method.
Multiscale Model. Sim. 12(3), 1078–1107 (2014)

23. Hoeksema, R.J., Kitanidis, P.K.: Analysis of the spatial structure of properties of selected
aquifers. Water Resour. Res. 21(4), 563–572 (1985)

http://www.dune-project.org

Advances Concerning Multiscale Methods and UQ in EXA-DUNE 43

24. Hughes, T.J.R.: Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann formula-
tion, subgrid scale models, bubbles and the origins of stabilized methods. Comput. Methods
Appl. Mech. Eng. 127(1–4), 387–401 (1995)

25. Målqvist, A.: Multiscale methods for elliptic problems. Multiscale Model. Simul. 9(3), 1064–
1086 (2011)

26. Milk, R., Kaulmann, S.: DUNE multiscale. http://dx.doi.org/10.5281/zenodo.34416 (Nov 2015)
27. Milk, R., Mohring, J.: DUNE mlmc. http://dx.doi.org/10.5281/zenodo.34412 (Nov 2015)
28. Milk, R., Schindler, F.: DUNE stuff. http://dx.doi.org/10.5281/zenodo.34409 (Nov 2015)
29. Mohring, J., Milk, R., Ngo, A., Klein, O., Iliev, O., Ohlberger, M., Bastian, P.: Uncertainty

quantification for porous media flow using multilevel Monte Carlo. In: Large-Scale Scientific
Computing. Lecture Notes in Computer Science, vol. 9374, pp. 145–152. Springer (2015)

30. MPI Forum: MPI: A Message-Passing Interface Standard. Version 3.1 (Nov 2015). Available
at: http://www.mpi-forum.org (June 2015)

31. Nordbotten, J.M., Bjørstad, P.E.: On the relationship between the multiscale finite-volume
method and domain decomposition preconditioners. Comput. Geosci. 12(3), 367–376 (2008)

32. Ohlberger, M.: A posteriori error estimates for the heterogeneous multiscale finite element
method for elliptic homogenization problems. Multiscale Model. Simul. 4(1), 88–114 (2005)

33. Ohlberger, M.: Error control based model reduction for multiscale problems. In: Proceedings
of Algoritmy 2012, Conference on Scientific Computing, Vysoke Tatry, Podbanske, 9–14 Sept
2012, pp. 1–10. Slovak University of Technology in Bratislava, Publishing House of STU
(2012)

34. Schindler, F., Milk, R.: DUNE generic discretization toolbox. http://dx.doi.org/10.5281/zenodo.
34414 (Nov 2015)

35. Teckentrup, A., Scheichl, R., Giles, M., Ullmann, E.: Further analysis of multilevel monte carlo
methods for elliptic PDEs with random coefficients. Numer. Math. 125(3), 569–600 (2013)

http://dx.doi.org/10.5281/zenodo.34416
http://dx.doi.org/10.5281/zenodo.34412
http://dx.doi.org/10.5281/zenodo.34409
http://www.mpi-forum.org
http://dx.doi.org/10.5281/zenodo.34414
http://dx.doi.org/10.5281/zenodo.34414

Part II
ExaStencils: Advanced Stencil-Code

Engineering

Systems of Partial Differential Equations
in ExaSlang

Christian Schmitt, Sebastian Kuckuk, Frank Hannig, Jürgen Teich,
Harald Köstler, Ulrich Rüde, and Christian Lengauer

Abstract As HPC systems are becoming increasingly heterogeneous and diverse,
writing software that attains maximum performance and scalability while remaining
portable as well as easily composable is getting more and more challenging.
Additionally, code that has been aggressively optimized for certain execution
platforms is usually not easily portable to others without either losing a great share
of performance or investing many hours by re-applying optimizations. One possible
remedy is to exploit the potential given by technologies such as domain-specific
languages (DSLs) that provide appropriate abstractions and allow the application
of technologies like automatic code generation and auto-tuning. In the domain of
geometric multigrid solvers, project ExaStencils follows this road by aiming at
providing highly optimized and scalable numerical solvers, specifically tuned for
a given application and target platform. Here, we introduce its DSL ExaSlang with
data types for local vectors to support computations that use point-local vectors and
matrices. These data types allow an intuitive modeling of many physical problems
represented by systems of partial differential equations (PDEs), e.g., the simulation
of flows that include vector-valued velocities.

1 Introduction

The solution of PDEs is a part of many problems that arise in science and
engineering. Often, a PDE cannot be solved analytically but must be solved
numerically. As a consequence, the first step towards a solution is to discretize
the equation, which results in a system of (linear) equations. However, depending
on the size of the problem and the targeted numerical accuracy, the systems can
grow quite large and result in the need for large clusters or supercomputers. These

C. Schmitt (�) • S. Kuckuk • F. Hannig • J. Teich • H. Köstler • U. Rüde
Department of Computer Science, Friedrich-Alexander University Erlangen-Nürnberg,
Erlangen, Germany
e-mail: christian.j.schmitt@fau.de

C. Lengauer
Faculty of Informatics and Mathematics, University of Passau, Passau, Germany

© Springer International Publishing Switzerland 2016
H.-J. Bungartz et al. (eds.), Software for Exascale Computing – SPPEXA
2013-2015, Lecture Notes in Computational Science and Engineering 113,
DOI 10.1007/978-3-319-40528-5_3

47

mailto:christian.j.schmitt@fau.de

48 C. Schmitt et al.

execution platforms are increasingly heterogeneous for reasons such as performance
and energy efficiency. Today, a compute cluster consists of hundreds of nodes, where
each node may contain multiple CPU cores—sometimes even of different type—and
one or more accelerators, e.g., a GPU or some other manycore accelerator such as
the Xeon Phi.

A common approach to enabling performance portability for a variety of
platforms is the separation of algorithm and implementation via a domain-specific
language (DSL). In a DSL, domain experts can specify an algorithm to solve
a certain problem without having to pay attention to implementation details.
Instead, they can rely on the DSL compiler to generate a program with good—or
even near optimal—performance. Usually, the execution of hand-written program
code is faster than that of automatically generated code. However, rather than
putting hardware and optimization knowledge individually into each application’s
implementation in isolation, in the DSL approach, all these efforts are put into
the compiler and, consequently, every program benefits. Thus, for a new execution
platform, only the compiler must be adapted, not individual application programs.
This enhances performance portability.

In contrast, library-based approaches require updates of the library to make use
of new technologies. This may potentially break backward compatibility and incur
changes to the application program which often lead to laborious re-programming
efforts. Often, a new technology comes with a new programming paradigm which
is not easily captured using a library that was developed with a previous technology
and paradigm in mind.

An additional advantage of DSLs is that users can be more productive by
composing a new algorithm much more quickly, since it requires only a short
specification. Yet another advantage of generative approaches is the ability to
validate models. By providing language elements with corresponding constraints,
a great number of invalid models become non-specifiable. Furthermore, since the
DSL compiler has some knowledge about the application domain and works at a
much higher level of abstraction, it can perform semantic validations, avoiding the
generation of invalid programs and helping end-users in the correction of errors.

2 Multigrid Methods

In this section, we give a short introduction to multigrid methods. For a more in-
depth review, we refer to the respective literature [6, 23].

In scientific computing, multigrid methods are a popular choice for the solution
of large systems of linear equations that stem from the discretization of PDEs. The
basic multigrid method cycle is shown in Algorithm 1. Here, by modifying the
parameter � that controls the number of recursive calls, one can choose between
the V-cycle (� D 1), and the W-cycle (� D 2). There exist additional cycle types
that provide higher convergence rates for certain problems [23].

Systems of Partial Differential Equations in ExaSlang 49

Algorithm 1 Recursive multigrid algorithm to solve

u.kC 1/h D MGh

�
u.k/h ;Ah; fh; �; 1; 2

	
if coarsest level then

solve Ahuh D fh exactly or by many smoothing iterations
else
Nu.k/h D S

1
h

�
u.k/h ;Ah; fh

	
F pre-smoothing

rh D fh � Ah Nu.k/h F compute residual
rH D Rrh F restrict residual
for j D 1 to � do

e
.j/
H D MGH

�
e
.j�1/
H ;AH ; rH ; �; 1; 2

	
F recursion

eh D Pe.�/H F interpolate error

Qu.k/h D Nu.k/h C eh F coarse grid correction

u.kC1/
h D S

2
h

�
Qu.k/h ;Ah; fh

	
F post-smoothing

In the pre- and post-smoothing steps, high-frequency components of the error
are damped by smoothers such as the Jacobi or the Gauss-Seidel method. In
Algorithm 1, 1 and 2 denote the number of smoothing steps that are applied. Low-
frequency components are transformed to high-frequency components by restricting
them to a coarser level, making them good targets for smoothers once again.

At the coarsest level, the small number of unknowns makes a direct solution
for the remaining unknowns feasible. In the special case of a single unknown, the
single smoother iteration corresponds to solving the problem directly. When moving
to large-scale clusters, parallel efficiency can be potentially improved by stopping
at a few unknowns per compute node and relying on specialized coarse grid solvers
such as the conjugate gradient (CG) and generalized minimal residual (GMRES)
methods.

3 The ExaStencils Approach

ExaStencils1 [9] is a basic research project focused on a single application domain:
geometric multigrid. The implementation of large simulations involving a great
diversity of different mathematical models or complex work flows is out of Exa-
Stencils’ scope. The project’s goal is to explore how to obtain optimal performance
on highly heterogeneous HPC clusters automatically. By employing a DSL for the
specification of algorithms and, therefore, separating it from the implementation,
we are able to operate on different levels of abstraction that we traverse during code
generation. As a consequence, we can apply appropriate optimizations in every code
refinement step, i.e., algorithmic optimizations, parallelization and communication

1http://www.exastencils.org/

http://www.exastencils.org/

50 C. Schmitt et al.

optimizations down to low-level optimizations, resulting in a holistic optimization
process. One key element in this optimization chain, working mainly at the algo-
rithmic level, is local Fourier analysis (LFA) [2, 25] to obtain a-priori convergence
predictions of iterative schemes. This helps to select adequate solver components—
if not specified by the user—and to fine-tune numerical parameters. Another central
feature of the ExaStencils approach is software product line (SPL) technology [21],
which treats an application program not as an individual but as a member of a family
with commonalities and variabilities. Based on machine learning from previous
code-generation and benchmark runs, this supports the automatic selection of the
optimization strategy that is most effective for the given combination of algorithm
and target hardware. Embedded into the ExaStencils compiler, the techniques of
LFA and SPL are sources of domain knowledge that is available at compile time.

4 The ExaStencils DSL ExaSlang

When creating a new programming language—especially a DSL—it is of utmost
importance to pay attention to the user’s experience. A language that is very complex
will not be used by novices, whereas a very abstract language will not be used
by experts. For our DSL ExaSlang—short for ExaStencils language—we identified
three categories of users: domain experts, mathematicians, and computer scientists.

Each category of users focuses on a different aspect of the work flow resulting
in the numerical solver software, starting with the system of equations to be solved.
Whereas the domain expert cares about the underlying problem, and to some extent,
about the discretization, the mathematician focuses on the discretization and compo-
nents of the multigrid-based solver implementation. Finally, the computer scientist
is mainly interested in the numerical solver implementation, e.g., parallelization and
communication strategies.

The following subsections highlight a number of concepts and features of
ExaSlang. A more detailed description can be found elsewhere [18].

4.1 Multi-layered Approach

As pictured in Fig. 1, ExaSlang consists of four layers that address the needs of
the different user groups introduced previously. We call them ExaSlang 1–4; higher
numbers offer less abstraction and more language features.

In ExaSlang 1, the problem is defined in the form of an energy functional to
be minimized or a partial differential equation to be solved, with a corresponding
computational domain and boundary definitions. In any case, this is a continuous
description of the problem. We propose this layer for use by scientists and engineers
that have little or no experience in programming. The problem specification might
be on paper or also in LATEX or the like.

Systems of Partial Differential Equations in ExaSlang 51

abstract

problem

formulation

concrete

solver

implementation

Layer 1:
Continuous Domain & Continuous Model

Layer 2:
Discrete Domain & Discrete Model

Layer 3:
Algorithmic Components & Parameters

Layer 4:
Complete Program Specification

Ta
rg
e
t
P
la
tfo

rm
D
e
s
c
rip

tio
n

Fig. 1 Multi-layered approach of ExaSlang [18]

In ExaSlang 2, details of the discretization of the problem are specified. We
deem this layer suitable for more advanced scientists and engineers as well as
mathematicians.

In ExaSlang 3, algorithmic components, settings and parameters are modeled.
Since they build on the discretized problem specified in ExaSlang 2, this is the first
layer at which the multigrid method is discernible. At this layer, it is possible to
define smoothers and to select the multigrid cycle. Computations are specified with
respect to the complete computational domain. Since this is already a very advanced
layer in terms of algorithm and discretization details, we see mainly mathematicians
and computer scientists working here.

In ExaSlang 4, the most concrete language layer, user-relevant parts of the
parallelization become visible. Data structures can be adapted for data exchange
and communication patterns can be specified via simple statements. We classify
this layer as semi-explicitly parallel and see only computer scientists using it. A
detailed description of its key elements is given in the next subsection. Note that,
even though this is the least abstract layer, it is still quite a bit more abstract than the
solver implementation generated in, e.g., C++.

Orthogonal to the functional program description is the target platform descrip-
tion language (TPDL), which specifies not only the hardware components of the
target system such as CPUs, memory hierarchies, accelerators, and the cluster
topology, but also available software such as compilers or MPI implementations.

Unavailable to the user and, thus, not illustrated in Fig. 1 is what we call the
intermediate representation (IR). It forms a bridge between the code in ExaSlang 4
and the target code in, e.g., C++ and contains elements of both. This is the stage at
which most of the compiler-internal transformations take place, i.e., parallelization
efforts such as domain partitioning, and high-level and low-level optimizations such
as polyhedral optimizations and vectorization. Finally, the IR is transformed to
target source code, e.g., in C++, that is written to disk and available for the user
to transfer to the designated hardware to compile and run.

52 C. Schmitt et al.

4.2 Overview of ExaSlang 4

As explained in Sect. 4.1, ExaSlang 4 is the least abstract layer of ExaSlang and
has been extended to host the data types for local vectors that form a crucial part of
ExaSlang 3. This section highlights a number of keywords and data types. A more
thorough overview of ExaSlang 4 is available elsewhere [18].

4.2.1 Stencils

Stencils are crucial for the application domain and approach of project ExaStencils.
They are declared by specifying the offset from the grid point that is at the
center of the stencil and a corresponding coefficient. Coefficients may be any
numeric expression, including global variables and constants, binary expressions
and function calls. Since access is via offsets, the declarations of coefficients do not
need to be ordered. Furthermore, unused coefficients, which would have a value of
0, can be omitted. An example declaration using constant coefficients is provided in
Listing 1.

1 Stencil Laplace@all {
2 [0, 0, 0] => 6.0
3 [1, 0, 0] => -1.0
4 [-1, 0, 0] => -1.0
5 [0, 1, 0] => -1.0
6 [0, -1, 0] => -1.0
7 [0, 0, 1] => -1.0
8 [0, 0, -1] => -1.0
9 }

Listing 1 Example 3D stencil declaration

4.2.2 Fields and Layouts

From the mathematical point of view, fields are vectors that arise, for example, in
the discretization of functions. Therefore, a field may form the right-hand side of
a partial differential equation, the unknown to be solved, or represent any other
value that is important to the algorithm, such as the residual. As such, different
boundary conditions can be specified. Currently, Neumann, Dirichlet, and no special
treatment are supported. Values of fields may either be specified by the users via
constants or expressions, or calculated as part of the program. Multiple copies of
the same fields can be created easily via our slotting mechanism that works similarly
to a ring buffer and can be used for intuitive specifications of Jacobi-type updates
and time-stepping schemes. To define a field, a layout is mandatory. It specifies
a data type and location of the discretized values in the grid, e.g., grid nodes or
cells, and communication properties such as the number of ghost layers. In case the

Systems of Partial Differential Equations in ExaSlang 53

special field declaration external Field is detected, data exchange functions are
generated for linked fields. They can be used to interface generated solvers as part
of larger projects.

4.2.3 Data Types, Variables, and Values

As a statically-typed language, ExaSlang 4 provides a number of data types which
are grouped into three categories. The first category are simple data types, which
consist of Real for floating-point values, Integer for whole numbers, String for the
definition of character sequences, and Boolean for use in conditional control flow
statements. Additionally, the Unit type is used to declare functions that do not return
any value. The second category are aggregate data types, a combination of simple
data types, namely for complex numbers and the new data types for local vectors and
matrices which are introduced in Sect. 6. Finally, there are algorithmic data types
that stem from the domain of numerical calculations. Apart from the aforementioned
data types stencil, field and layout, the domain type belongs to this category and is
used to specify the size and shape of the computational domain.

Note that variables and values using algorithmic data types can only be declared
globally. Other data types can also be declared locally, i.e., inside functions bodies or
nested local scopes such as conditional branch bodies or loop bodies. Additionally,
to keep variable content in sync across program instances running on distributed-
memory parallel systems, they can be declared as part of a special global declaration
block.

The syntax of variable and constant declarations is similar to that of Scala, with
the keywords Variable and Value or, in short, Var and Val. Followed by the user-
specified name, both definitions require specification of the data type, which can be
of either simple or aggregate. Optionally for variables—mandatory for values—an
initial value is specified via the assignment operator.

4.2.4 Control Flow

Functions can take an arbitrary number of parameters of simple or aggregate types
and return exactly one value of a simple or aggregate type, or nothing. In the latter
case, the return type is Unit. If the compiler detects a function with the signature
Function Application() : Unit, a C++ function main() is generated and the
compilation process is switched to the generation of a standalone program. A lot of
the ExaSlang 4 syntax is like Scala, but there are additional features. In ExaSlang 4,
functions are introduced with the keyword Function, or shorter, Func. An example
declaration, which additionally uses the concept of level specifications presented
later, is depicted in Listing 2.

The syntax and semantics of conditionals in ExaSlang 4 corresponds to Scala.
An important concept in ExaSlang 4 are loops, which are available in two

main types: temporal (i.e., sequential in time) and spatial (i.e., parallel across the

54 C. Schmitt et al.

Fig. 2 Example partitioning of the computational domain into 4 blocks (green) of 6 fragments
(brown) each, with 16 data values (blue) per fragment

computational domain). The temporal loop has the keyword repeat and comes
as a post-test loop (repeat until <condition>) or a counting loop (repeat
<integer> times). Spatial loops iterate across the computational domain. Since
ExaSlang 4 is explicitly parallel, a loop over <field> can be nested inside a loop

over fragments loop. Fragments are entities that arise during domain partitioning.
Fragments aggregate to blocks, which in turn form the computational domain. This
hierarchy is depicted in Fig. 2, where the computational domain is divided into four
blocks, each consisting of six fragments. Each fragment consists of 16 data values
at chosen discretization locations. The reasoning behind this strategy is to connect
primitives with different parallelization concepts such as distributed- and shared-
memory parallelism. One example is to map blocks to MPI ranks and fragments to
OpenMP threads.

4.2.5 Level Specifications

Function, as well as layout, field, stencil, variable and value declarations can be
postfixed by an @ symbol, followed by one or more integers or keywords. We call
them level specifications, as they bind a certain program entity to one or several
specific multigrid levels. This feature is unique to ExaSlang 4. A common usage
example is to end the multigrid recursion at the coarsest level, as depicted in
Listing 2. Level specifications support a number of keywords that are mapped to
discrete levels during code generation. To write ExaSlang 4 programs without the
explicit definition of the multigrid cycle size—and, thus, enable the application
of domain knowledge at compile time—aliases such as coarsest and finest

can reference bottom and top levels of the multigrid algorithm. For declarations,
the keyword all marks an element to be available at all multigrid levels. Inside
a function, relative addressing is possible by specifying coarser and finer, or
by specifying simple expressions. Here, decreasing level numbers corresponds to
decreasing (coarsening) the grid size, with 0 being the coarsest level if not defined
otherwise by the compiler’s domain knowledge. Structures at the current multigrid
level are referenced by current. Level specifications are resolved at compile time.
Thus, general specifications such as all are overridden by more specific ones. For
example, line 5 of Listing 2 could also be declared as Function VCycle@all, since
the definition at the coarsest level would be overridden by the definition on line 1.

Systems of Partial Differential Equations in ExaSlang 55

1 Function VCycle@coarsest () : Unit {
2 // solve on coarsest grid
3 }
4

5 Function VCycle@((coarsest + 1) to finest) () : Unit {
6 // standard V-cycle
7 }

Listing 2 Specifying direct solving on the coarsest multigrid level to exit recursion using level
specifications

5 Code Generation

Our transformation and code generation framework, which forms the basis for
all transformations that drive the compilation process towards the various target
platforms, is written in Scala [13, 19]. Because of its flexible object-functional
nature, we deem Scala a suitable language for the implementation of DSLs and
corresponding compilers. Scala features the powerful technique of pattern matching
that is used to identify object instances based on types or values at run time, making
it easy and elegant to find and replace parts of the program during the compilation
process.

Since ExaStencils is meant to support high-performance computing, our target
platforms include clusters and supercomputers such as SuperMUC, TSUBAME
and JUQUEEN. We used especially the latter to validate our scaling efforts [18].
However, while scalability is one thing, run-time performance is what users are
interested in. Thus, during code generation, a number of high-level optimizations
based on polyhedral transformations are applied [8], such as loop tiling to enable
parallelization. Another optimization is the increase of data locality by tiling and
modifying the schedule of loops. Additionally, low-level optimizations such as
CPU-specific vectorization have been implemented. Furthermore, we demonstrated
that our compilation framework and code generation approach is flexible enough to
generate specialized hardware designs from the abstract algorithm description given
in ExaSlang 4 [20].

6 Data Types for Systems of Partial Differential Equations

This section highlights the advantages of local vectors and matrices for systems of
PDEs and sketches their usage in ExaSlang 3 and ExaSlang 4.

56 C. Schmitt et al.

1 Layout flowLayout < ColumnVector<Real, 3>, Node> @all {
2 ghostLayers = [0, 0, 0]
3 duplicateLayers = [1, 1, 1]
4 }
5 Field Flow < global, flowLayout, Neumann >[2]@all

Listing 3 Definition of layout and field of vectors with Neumann boundary conditions

6.1 Motivation

Systems of PDEs can always be expressed in ExaSlang 4 by splitting up components
since, this way, only scalar data types are required. However, to implement
computations of coupled components, data structures require multiple scalar values
per point. We call such data types vectors or matrices, respectively, and have just
recently incorporated them in ExaSlang 4, as a preparation step for code specified
in ExaSlang 3.

One added benefit of specialized data types for the specification of systems of
PDEs is the much increased readability of the source code—for us, of ExaSlang 4
code. Especially for domain experts, who should not have to be experts in
programming, they correspond to a more natural representation of the mathematical
problem which will help when checking or modifying ExaSlang 3 and 4 code that
has been generated from more abstract layers of ExaSlang, i.e., ExaSlang 2.

6.2 The ExaSlang Data Types

In ExaSlang 4, the new data types Vector and Matrix belong to the category
of aggregate data types and can be given a fixed dimensionality. Additionally, a
ColumnVector (short: CVector) can be specified to explicitly set the vector type
when the direction cannot be derived from assigned values. The element types of
these aggregated data types can be simple numeric data types, i.e., integers, reals or
complex numbers. As is the case for other declarations in ExaSlang 4, it is possible
to use a short-hand notation by specifying the designated inner data type, followed
by the corresponding number of elements in each direction. An example is shown
in Listing 4, where lines 1 and 2 are equivalent.

Anonymous constant vectors default to row vectors. The suffix T transposes
vector and matrix expression, thus defines the second vector to be a column vector
expression in line 3 of Listing 4.

As part of the optimization process, the ExaStencils compiler applies transfor-
mations such as constant propagation and folding also to expressions containing
vectors and matrices. Beside the standard operators such as addition, subtraction
and multiplication that consider the vector and matrix data types in a mathematical
sense, there are element-wise operators. Example calculations are depicted in List-
ing 4, for both vector-wise and element-wise operators. Of course, vector and matrix

Systems of Partial Differential Equations in ExaSlang 57

1 Var a : Matrix<Real, 3, 3> = { {1,2,3}, {4,5,6}, {7,8,9} }
2 Var b : Real<3, 3> = { {1,2,3}, {4,5,6}, {7,8,9} }
3 Var c : Real = {1,2,3} * {1,2,3}T
4 Var d : Vector<Real, 3>
5 print("Matrix scaling: ", 7 * b)
6 print("Vector addition: ", {1,2,3} + {3,4,5})
7 print("Matrix multiplication: ", b * {{1,2}, {3,4}, {5,6}})
8 print("Vector mult.: ", {1,2,3}T * {1,2,3}) // yields a 3x3

matrix
9 print("Element-wise mult.: ", {1,2,3} .* {1,2,3}) // yields

{1,4,9}

Listing 4 Example declarations and calculations using vectors and matrices

entries do not need to be constant, but can be any valid expression evaluating to a
numeric value.

7 Modifications to the Code Generator

In ExaSlang 4, the dimensionality of a field equals the dimensionality of the
problem. That is, fields may have up to three dimensions. However, with our new
data types, each grid point in the field may have a non-zero dimensionality as well.
At present we work with vectors and 2D matrices, but our implementation can also
handle higher dimensionalities.

In order to support the new data types in the generated C++ code, one could
simply store multiple scalar values inside a structure to represent a local vector (or
matrix) at a certain grid point, such that a field becomes an array of structures.
However, arrays of structures potentially introduce run-time overhead caused, for
one, by the dynamic memory management applied to instances of the structure and,
for another, because custom compilers like for CUDA and OpenCL generate inferior
target code if they can handle arrays of structures at all. Also, high-level synthesis
(HLS) tools, which emit hardware descriptions for FPGAs, provide limited or no
support for arrays of structures.

To overcome these limitations and to enable optimizations such as tiling a
field for parallelization or, for hybrid target platforms, distribution across different
devices, we linearize fields and the structures in them. This exposes the size
and memory layout of a field and provides the possibility to modify them. The
dimensionality of the array that represents a field with non-scalar grid points is the
sum of the dimensionality of the field and that of the structure at the grid points. For
example, a three-dimensional field of 2 � 2 matrices becomes a five-dimensional
array. At each grid point, one matrix consisting of four scalar values is stored,
resulting in a total of 4 � n � m values for a field of size n � m. Each value has
five coordinates as depicted in Fig. 3: the di denote the coordinates of the grid point,
the ci those of the structure at the grid point.

During code generation, special care is necessary for non-scalar variables that
appear on both sides of an assignment involving a multiplication such as A D AB

58 C. Schmitt et al.

d0 d1 d2 c0 c1

Fig. 3 Access to one element of three-dimensional matrix field consists of the index to field’s grid
point (di) and of the matrix element (ci)

with A and B being matrices or vectors of appropriate shape. The assignment is
refined to two separate assignments: first, the operation is applied and the result is
saved into a temporary variable (A0 D AB), then the original variable is reassigned
(A D A0). This guarantees that no intermediate result is used to calculate subsequent
vector or matrix entries while, at the same time, resulting in code that can be
vectorized easily.

8 Example Application

To demonstrate the application of the new data types, we choose the calculation of
the optical flow detection. In contrast to solving the incompressible Navier-Stokes
equations, it does not need specialized smoothers and also exhibits acceptable
convergence rates when solved without the use of systems of PDEs, making it an
excellent example to compare code sizes of the two approaches. The optical flow
approximates the apparent motion of patterns such as edges, surfaces or objects in a
sequence of images, e.g., two still images taken by a camera or a video stream. Note
that this approximation does not need to necessarily describe the physical motion;
the actual motion of an object is not always reflected in intensity changes in the
images. To be more precise, we actually calculate the displacement field between
two images.

8.1 Theoretical Background

Among the numerous approaches to approximate the optical flow, we opt for a
multigrid-based algorithm [7].

Our goal is to approximate the 2D motion field .u; v/ between two images that
are part of an image sequence I. An image point I.x; y; t/ has, aside from the two
spatial coordinates x and y, a temporal coordinate t. As an example, a certain value
of t can correspond to one frame of a video stream. We assume that a moving object
does not change in intensity in time, i.e., we neglect changes in illumination. We
call this the constant brightness assumption, which can be written as follows:

dI
dt D 0 : (1)

Systems of Partial Differential Equations in ExaSlang 59

For small movements, i.e., for small time differences between two images, the
movement of an intensity value at a pixel .x; y; t/ can be described by:

I.x; y; t/ D I.xC dx; yC dy; tC dt/ : (2)

Taylor expansion of this term around .x; y; t/ and reordering results in:

@I
@x

dx
dt C @I

@y
dy
dt C @I

@t � 0 : (3)

We now can define the partial image derivatives Ix WD @I
@x , Iy WD @I

@y , It WD @I
@t , the

spatio-temporal gradient r� I WD
�
Ix; Iy; It

�T
and the optical flow vector .u; v/ WD�

dx
dt ;

dy
dt

	
.

After more transformation steps, we end up with a two-dimensional system of
PDEs:

�˛�uC Ix.IxuC Iyv/ D� IxIt (4)

�˛�v C Iy.IxuC Iyv/ D� IyIt : (5)

After discretization using finite differences (FD) for constant coefficient opera-
tors and image derivatives and finite volumes (FV) for variable operators, we obtain
the following linear system:

0
BBBBBBB@

˛ C
0
@ �1
�1 4 �1
�1

1
AC I2x IxIy

IxIy ˛ C
0
@ �1
�1 4 �1
�1

1
AC I2y

1
CCCCCCCA

�
u
v

�
D
��IxIt
�IyIt

�
: (6)

For simplification purposes, we disregard the time gradient It and fix it to 1. After
more transformations, we obtain the following 5-point stencil to use in our iterative
scheme:

0
BBBBBBB@

��1
�1
�

��1
�1
�

4˛ C I2x IxIy
IxIy 4˛ C I2y

! ��1
�1
�

��1
�1
�

1
CCCCCCCA
: (7)

An extension in 3D space to detect the optical flow of volumes is trivial and
omitted here because of space constraints.

60 C. Schmitt et al.

1 Stencil SmootherStencil@all {
2 [0, 0] => { { 4.0 * alpha + GradX@current * GradX@current,
3 GradX@current * GradY@current },
4 { GradX@current * GradY@current,
5 4.0 * alpha + GradY@current * GradY@current

} }
6 [1, 0] => { { -1.0, 0.0 }, { 0.0, -1.0 } }
7 [-1, 0] => { { -1.0, 0.0 }, { 0.0, -1.0 } }
8 [0, 1] => { { -1.0, 0.0 }, { 0.0, -1.0 } }
9 [0,-1] => { { -1.0, 0.0 }, { 0.0, -1.0 } }

10 }

Listing 5 Declaration of the smoothing stencil for the optical flow in 2D

1 Function Smoother@all () : Unit {
2 loop over Flow@current {
3 Flow[next]@current = Flow[active]@current + (
4 (inverse (diag (SmootherStencil@current))) *
5 (RHS@current -
6 SmootherStencil@current * Flow[active]@current)
7)
8 }
9 advance Flow@current

10 }

Listing 6 Smoother definition using slots for the flow field

8.2 Mapping to ExaSlang 4

Mapping the introduced algorithm to ExaSlang 4 is straight-forward thanks to the
new local vector data types. In Listing 5, code corresponding to (7) is depicted. Here,
we first defined the central coefficient, followed by the four directly neighboring
values with offsets ˙1 in x and y direction. Each stencil coefficient consists of two
components, as our system of PDEs is to be solved for the velocities in x and y
direction of the image.

The smoother function using the previously introduced stencil is shown in
Listing 6. As we will also use the smoother for coarse-grid solution, it has been
defined for all multigrid levels using @all. For the computations, we loop over the
flow field, calculating values based on the active field slot and writing them into the
next slot. After calculations are done, we set the next field slot to be active using
advance. Effectively, both slots are swapped, as only two slots have been defined.

Note the function calls inverse(diag(SmootherStencil@current)) which
are used to invert the 2 � 2 matrix that is the central stencil element without further
user intervention.

In Listing 7, the ExaSlang 4 implementation of a V(3,3)-cycle is depicted. This
corresponds to Algorithm 1 with parameters � D 1 and 1 D 2 D 3. The function
has been defined for all multigrid levels except the coarsest one, with a separate
function declaration a few lines below for the coarsest level. This function exits

Systems of Partial Differential Equations in ExaSlang 61

1 Function VCycle@((coarsest + 1) to finest) () : Unit {
2 repeat 3 times {
3 Smoother@current()
4 }
5 UpResidual@current()
6 Restriction@current()
7 SetSolution@coarser(0)
8 VCycle@coarser()
9 Correction@current()

10 repeat 3 times {
11 Smoother@current()
12 }
13 }
14

15 Function VCycle@coarsest () : Unit {
16 Smoother@current()
17 }

Listing 7 V(3,3)-cycle function in ExaSlang 4

the multigrid recursion by omitting the recursive call. As highlighted previously, it
calls the smoother once to solve the system of PDEs on the coarsest grid.

In our optical flow implementation, application of stencils on coarser grids works
by coarsening the gradient fields using full weighting restriction. Then, the discrete
stencil is composed based on the coefficients—including level-dependent accesses
to fields—specified by the user.

One big advantage of the local vector data types is that many existing multigrid
component implementations can be re-used. For example, in this application no
changes are needed for inter-grid operators such as restriction and prolongation,
as they are based on scaling or adding values at discretization points regardless of
whether these are represented by scalars or local vectors. During code generation,
our framework detects the underlying data type the operators are working on and
emits corresponding code. Consequently, it is very easy to adapt existing solver
implementations to the new data types: Most often, only field layout definitions and
stencils computing components of the system of PDEs need to be changed.

8.3 Results

In Fig. 4, the resulting flow field for the standard example of a rotating sphere is
depicted. Fig. 5 shows the optical flow of a driving car. Because the scene has not
been filmed using a fixed camera, there is also a movement of the background. In
both result plots, a number of vectors has been omitted to improve clearness and
reduce file size.

62 C. Schmitt et al.

Fig. 4 Optical flow of rotating sphere

Fig. 5 Optical flow of an image sequence showing a driving car

Figure 6 shows the code sizes in lines of code for a few optical flow imple-
mentations, among them the implementation yielding the depicted flow fields. Both
serial and parallel version have been generated from the exact same ExaSlang file.
OpenMP has been used as the underlying parallelization technology. For both 2D
cases, using local vectors instead of computing each component separately reduces
the ExaSlang 4 program sizes by around 16 %. In 3D, stencils are larger and a third
component must be computed, so with the use of the new data types, the savings
increase to around 28 %. Consequently, the generated C++ source is smaller, since
fewer loops are generated. However, expressions involving the new data types are
not yet being optimized by our code generation framework. For the driving car test
case, the average time per V(3,3)-cycle using Jacobi smoothers on an Intel i7-3770
increases from 31.6 ms to 36.3 ms with the new data types, due to slightly higher
efforts at run time and optimization steps still missing. For two OpenMP threads
using the new data types, average time decreases to 18.9 ms. As memory bandwidth
seems to be already saturated, adding more threads does not yield further speedup.
Input images are 512 � 512 pixels large, which results in a V-cycle consisting of
nine levels, each with three pre- and post-smoothing steps. For the solution on the
coarsest grid consisting of one unknown, another smoother iteration is applied. As
our focus is on the introduction of the new data types and their advantages with

Systems of Partial Differential Equations in ExaSlang 63

3D RBGS

3D Jacobi

2D RBGS

2D Jacobi

7,236

7,074

6,249

6,114

6,904

6,751

5,944

5,818

303

297

247

242

12,965

12,506

8,168

7,898

12,188

11,756

7,710

7,458

423

408

298

288

ExaSlang 4 (scalar) C++ (serial, scalar) C++ (parallel, scalar)

ExaSlang 4 (vector) C++ (serial, vector) C++ (parallel, vector)

Fig. 6 Comparison of code sizes in lines of code LoC of user-specified ExaSlang 4 and generated
code for different implementations of optical flow detection using a V(3,3)-cycle with Jacobi
resp. red-black Gauss-Seidel (RBGS) smoothers and direct solution on the coarsest grid level (one
unknown) by a single smoother iteration

respect to modeling of algorithms, we deliberately postpone the dissemination and
discussion of further performance results.

9 Related Work

In previous work, the benefits of domain-specific optimization have been demon-
strated in various domains. The project closest in spirit to ExaStencils has been
SPIRAL [14], a widely recognized framework for the generation of hard- and
software implementations of digital signal processing algorithms (linear trans-
formations, such as FIR filtering, FFT, and DCT). It takes a description in a
domain-specific language and applies domain-specific transformations and auto-
tuning techniques to optimize run-time performance specifically for a given target
hardware platform. Since it operates at the level of linear algebra, it directly supports
vectors and matrices.

64 C. Schmitt et al.

Many languages and corresponding compilers have been customized for the
domain of stencil computations. Examples include Liszt [4], which adds abstractions
to Java to ease stencil computations for unstructured problems, and Pochoir [22],
which offers a divide-and-conquer skeleton on top of the parallel C extension Cilk to
make stencil computations cache-oblivious. PATUS [3] uses auto-tuning techniques
to improve performance. Other than ExaStencils, they support only vectors of fixed
lengths, operate at a lower level of abstraction and do not provide language support
for multigrid methods.

SDSLc [17] is a compiler for the Stencil DSL (SDSL), a language that is
embedded in C, C++ and MATLAB, and used to express stencil expressions.
Given such input, the SDSL compiler can emit shared-memory parallel CPU
code and CUDA code for NVIDIA GPUs. Furthermore, it can generate FPGAs-
based hardware descriptions by emitting code for a C-based HLS tool. During
code generation, SDSLc applies a number of high-level optimizations, such as
data layout transformations and tiling, based on polyhedral transformations, to
enable low-level optimizations such as vectorization. In contrast to ExaStencils,
automatic distributed-memory parallelization is not supported. Furthermore, SDSL
is an embedded DSL without features specific to multigrid algorithms.

Mint [24] and STELLA (STEncil Loop LAnguage) [5] are DSLs embedded in C,
respectively C++, and consider stencil codes on structured grids. Mint’s source-to-
source compiler transforms special annotations to high-performance CUDA code,
whereas STELLA supports additionally OpenMP for parallel CPU execution. At
present, neither offers distributed-memory parallelization.

In the past, several approaches to the generation of low-level stencil code from
abstract descriptions have been pursued. However, to the best of our knowledge,
most do not target multigrid methods for exascale machines.

Julia [1] centers around the multiple dispatch concept to enable distributed
parallel execution. It builds on a just-in-time (JIT) compiler and can also be used to
write stencil codes in a notation similar to Matlab. It works at a level of abstraction
lower than ExaStencils.

HIPAcc [11] is a DSL for the domain of image processing and generates
OpenCL and CUDA from a kernel specification embedded into C++. It provides
explicit support for image pyramids, which are data structures for multi-resolution
techniques that bear a great resemblance to multigrid methods [12]. However, it
supports only fixed length vectors of size four and only supports 2D data structures.
Furthermore, it does not consider distributed-memory parallelization such as MPI.

The finite element method library FEniCS [10] provides a Python-embedded
DSL, called Unified Form Language (UFL), with support of vector data types.
Multigrid support is available via PETSc, which provides shared-memory and
distributed-memory parallelization via Pthreads and MPI, as well as support for
GPU accelerators. The ExaStencils approach and domain-specific language aim at
another class of users and provide a much more abstract level of programming.

PyOP2 [16] uses Python as the host language. It targets mesh-based simulation
codes over unstructured meshes and uses FEniCS to generate kernel code for
different multicore CPUs and GPUs. Furthermore, it employs run-time compilation

Systems of Partial Differential Equations in ExaSlang 65

and scheduling. FireDrake [15] is another Python-based DSL employing FEniCS’
UFL and uses PyOP2 for parallel execution. While PyOP2 supports vector data
types, it does not feature the extensive, domain-specific, automatic optimizations
that are the goals of project ExaStencils.

10 Future Work

In future work, we will embed the data types introduced here in our code generator’s
optimization process in order to reach the same performance as existing code.
For example, the polyhedral optimization stages must be aware of the sizes of
data of these types when calculating calculation schedules. Consequently, low-level
optimizations, especially data pre-fetching and vectorization transformations, must
be adapted.

Additionally, we will showcase more applications using the new local vector and
matrix data types. One application domain that will benefit greatly is that of solvers
for coupled problems occurring, e.g., in computational fluid dynamics such as the
incompressible Navier-Stokes equations. Here, the components of a vector field
can be used to express unknowns for various physical quantities such as velocity
components, pressure and temperature. The vector and matrix data types will greatly
simplify the way in which such problems, and their solvers, can be expressed.
Furthermore, not solving for each component separately but for the coupled system
in one go allows for increased numerical stability and faster convergence. Of
course, this may require the specification of specialized coarsening and interpolation
strategies for unknowns and stencils. Moreover, specialized smoothers, such as
Vanka-type ones, are crucial for optimal results.

11 Conclusions

We reviewed ExaSlang 4, the most concrete layer of project ExaStencils’ hierarchi-
cal DSL for the specification of geometric multigrid solvers. To ease description of
solvers for systems of PDEs, we introduced new data types that represent vector
and matrices. The benefits of these data types, such as increased programmer
productivity and cleaner code, were illustrated by evaluating program sizes of an
example application computing the optical flow.

The new data types are also a big step towards an implementation of ExaSlang 3,
since functionality that is available at the more abstract ExaSlang layers must be
available at the more concrete layers as well. Furthermore, they expand the applica-
tion domain of project ExaStencils, e.g., towards computational fluid dynamics.

66 C. Schmitt et al.

Acknowledgements This work is supported by the German Research Foundation (DFG), as
part of Priority Program 1648 “Software for Exascale Computing” in project under contracts TE
163/17-1, RU 422/15-1 and LE 912/15-1.

References

1. Bezanson, J., Karpinski, S., Shah, V.B., Edelman, A.: Julia: a fast dynamic language for
technical computing. CoRR (2012). arXiv:1209.5145

2. Brandt, A.: Rigorous quantitative analysis of multigrid, I: constant coefficients two-level cycle
with L2-norm. SIAM J. Numer. Anal. 31(6), 1695–1730 (1994)

3. Christen, M., Schenk, O., Burkhart, H.: PATUS: A code generation and autotuning framework
for parallel iterative stencil computations on modern microarchitectures. In: Proceedings of
IEEE International Parallel & Distributed Processing Symposium (IPDPS). pp. 676–687. IEEE
(2011)

4. DeVito, Z., Joubert, N., Palaciosy, F., Oakleyz, S., Medinaz, M., Barrientos, M., Elsenz, E.,
Hamz, F., Aiken, A., Duraisamy, K., Darvez, E., Alonso, J., Hanrahan, P.: Liszt: A domain
specific language for building portable mesh-based PDE solvers. In: Proceedings of the
Conference on High Performance Computing Networking, Storage and Analysis (SC). ACM
(2011), paper 9, 12pp.

5. Gysi, T., Osuna, C., Fuhrer, O., Bianco, M., Schulthess, T.C.: STELLA: a domain-specific
tool for structured grid methods in weather and climate models. In: Proceedings of the
International Conference for High Performance Computing, Networking, Storage and Analysis
(SC), pp. 41:1–41:12. ACM (2015)

6. Hackbusch, W.: Multi-Grid Methods and Applications. Springer, Berlin/New York (1985)
7. Köstler, H.: A multigrid framework for variational approaches in medical image processing and

computer vision. Ph.D. thesis, Friedrich-Alexander University of Erlangen-Nürnberg (2008)
8. Kronawitter, S., Lengauer, C.: Optimizations applied by the ExaStencils code generator.

Technical Report, MIP-1502, Faculty of Informatics and Mathematics, University of Passau
(2015)

9. Lengauer, C., Apel, S., Bolten, M., Größlinger, A., Hannig, F., Köstler, H., Rüde, U., Teich,
J., Grebhahn, A., Kronawitter, S., Kuckuk, S., Rittich, H., Schmitt, C.: ExaStencils: advanced
stencil-code engineering. In: Euro-Par 2014: Parallel Processing Workshops. Lecture Notes in
Computer Science, vol. 8806, pp. 553–564. Springer (2014)

10. Logg, A., Mardal, K.A., Wells, G.N. (eds.): Automated Solution of Differential Equations by
the Finite Element Method. Lecture Notes in Computational Science and Engineering, vol. 84.
Springer, Berlin/New York (2012)

11. Membarth, R., Reiche, O., Hannig, F., Teich, J., Körner, M., Eckert, W.: HIPAcc: a domain-
specific language and compiler for image processing. IEEE T. Parall. Distr. (2015), early view,
14 pages. doi:10.1109/TPDS.2015.2394802

12. Membarth, R., Reiche, O., Schmitt, C., Hannig, F., Teich, J., Stürmer, M., Köstler, H.: Towards
a performance-portable description of geometric multigrid algorithms using a domain-specific
language. J. Parallel Distrib. Comput. 74(12), 3191–3201 (2014)

13. Odersky, M., Spoon, L., Venners, B.: Programming in Scala, 2nd edn. Artima, Walnut Creek
(2011)

14. Püschel, M., Franchetti, F., Voronenko, Y.: SPIRAL. In: Padua, D.A., et al. (eds.) Encyclopedia
of Parallel Computing, pp. 1920–1933. Springer (2011)

15. Rathgeber, F., Ham, D.A., Mitchell, L., Lange, M., Luporini, F., McRae, A.T.T., Bercea, G.T.,
Markall, G.R., Kelly, P.H.J.: Firedrake: automating the finite element method by composing
abstractions. CoRR (2015). arXiv:1501.01809

16. Rathgeber, F., Markall, G.R., Mitchell, L., Loriant, N., Ham, D.A., Bertolli, C., Kelly, P.H.:
PyOP2: A high-level framework for performance-portable simulations on unstructured meshes.

Systems of Partial Differential Equations in ExaSlang 67

In: Proceedings of the 2nd International Workshop on Domain-Specific Languages and High-
Level Frameworks for High Performance Computing (WOLFHPC), pp. 1116–1123. IEEE
Computer Society (2012)

17. Rawat, P., Kong, M., Henretty, T., Holewinski, J., Stock, K., Pouchet, L.N., Ramanujam, J.,
Rountev, A., Sadayappan, P.: SDSLc: A multi-target domain-specific compiler for stencil com-
putations. In: Proceedings of the 5th International Workshop on Domain-Specific Languages
and High-Level Frameworks for High Performance Computing (WOLFHPC). pp. 6:1–6:10.
ACM (2015)

18. Schmitt, C., Kuckuk, S., Hannig, F., Köstler, H., Teich, J.: ExaSlang: A Domain-Specific
Language for Highly Scalable Multigrid Solvers. In: Proceedings of the 4th International
Workshop on Domain-Specific Languages and High-Level Frameworks for High Performance
Computing (WOLFHPC), pp. 42–51. ACM (2014)

19. Schmitt, C., Kuckuk, S., Köstler, H., Hannig, F., Teich, J.: An evaluation of domain-specific
language technologies for code generation. In: Proceedings of the International Conference
on Computational Science and its Applications (ICCSA), pp. 18–26. IEEE Computer Society
(2014)

20. Schmitt, C., Schmid, M., Hannig, F., Teich, J., Kuckuk, S., Köstler, H.: Generation of
multigrid-based numerical solvers for FPGA accelerators. In: Größlinger, A., Köstler, H. (eds.)
Proceedings of the 2nd International Workshop on High-Performance Stencil Computations
(HiStencils), pp. 9–15 (2015)

21. Siegmund, N., Grebhahn, A., Apel, S., Kästner, C.: Performance-influence models for highly
configurable systems. In: Proceedings of the European Software Engineering Conference
and ACM SIGSOFT Symposium on the Foundations of Software Engineering (ESEC/FSE),
pp. 284–294. ACM (2015)

22. Tang, Y., Chowdhury, R.A., Kuszmaul, B.C., Luk, C.K., Leiserson, C.E.: The Pochoir
stencil compiler. In: Proceedings of the ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA), pp. 117–128. ACM (2011)

23. Trottenberg, U., Oosterlee, C.W., Schüller, A.: Multigrid. Academic, San Diego (2001)
24. Unat, D., Cai, X., Baden, S.B.: Mint: Realizing CUDA performance in 3D stencil methods

with annotated C. In: Proceedings of the International Conference on Supercomputing (ISC),
pp. 214–224. ACM (2011)

25. Wienands, R., Joppich, W.: Practical Fourier Analysis for Multigrid Methods. Chapman
Hall/CRC Press, Boca Raton (2005)

Performance Prediction of Multigrid-Solver
Configurations

Alexander Grebhahn, Norbert Siegmund, Harald Köstler, and Sven Apel

Abstract Geometric multigrid solvers are among the most efficient methods for
solving partial differential equations. To optimize performance, developers have to
select an appropriate combination of algorithms for the hardware and problem at
hand. Since a manual configuration of a multigrid solver is tedious and does not
scale for a large number of different hardware platforms, we have been developing
a code generator that automatically generates a multigrid-solver configuration
tailored to a given problem. However, identifying a performance-optimal solver
configuration is typically a non-trivial task, because there is a large number
of configuration options from which developers can choose. As a solution, we
present a machine-learning approach that allows developers to make predictions
of the performance of solver configurations, based on quantifying the influence of
individual configuration options and interactions between them. As our preliminary
results on three configurable multigrid solvers were encouraging, we focus on a
larger, non-tivial case-study in this work. Furthermore, we discuss and demonstrate
how to integrate domain knowledge in our machine-learning approach to improve
accuracy and scalability and to explore how the performance models we learn can
help developers and domain experts in understanding their system.

1 Introduction

Many real-world and scientific problems can be modeled using partial differential
equations (PDEs). After performing an adequate approximation using a discretiza-
tion based on finite differences, volumes, or elements, it is possible to use multigrid
methods to solve the resulting symmetric, positive definite system matrices. Since

A. Grebhahn (�) • N. Siegmund • S. Apel
University of Passau, Passau, Germany
e-mail: Alexander.Grebhahn@uni-passau.de; Norbert.Siegmund@uni-passau.de;
apel@uni-passau.de

H. Köstler
Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
e-mail: harald.koestler@fau.de

© Springer International Publishing Switzerland 2016
H.-J. Bungartz et al. (eds.), Software for Exascale Computing – SPPEXA
2013-2015, Lecture Notes in Computational Science and Engineering 113,
DOI 10.1007/978-3-319-40528-5_4

69

mailto:Alexander.Grebhahn@uni-passau.de
mailto:Norbert.Siegmund@uni-passau.de
mailto:apel@uni-passau.de
mailto:harald.koestler@fau.de

70 A. Grebhahn et al.

their development in the 1970s, it has been proved that multigrid methods are among
the most effective iterative algorithms to solve discretized PDEs [3, 7, 27, 28]. This is
because of their runtime complexity being in the order of the number of unknowns.

Before applying a given multigrid implementation on a specific hardware,
it is often unavoidable to re-implement parts of a system to achieve optimal
performance. This process results in considerable maintenance costs and program
errors. In many different areas, it has been shown that domain-specific program
transformation and generation can be used to overcome this challenge [15, 20]. In
our project ExaStencils [13], we follow this idea by developing a code generator that
automatically generates multigrid code tailored to a given hardware platform, based
on a domain-specific specification in the language ExaSlang [22]. Internally, the
code generator uses program transformations in a stepwise refinement process, as
proposed by Wirth et al. [29]. During this process, different choices need to be made,
each leading to unique multigrid code. These choices include, for example, the
selection of a specific smoother or the number of pre-smoothing and post-smoothing
steps to be performed in a single iteration. Since these components of the multigrid
system have a strong influence on the performance of the overall system [27], they
have to be chosen carefully. However, this is a non-trivial task, because developers
and users often lack knowledge about how their choices influence the performance.
Worse, the influence of a choice might also depend on other decisions. We call
choices that have to be made during this process configuration options and a valid
selection of options a configuration, which gives rise to a variant of the system. In
this light, we see the code generator as a configurable system that can be used in a
black-box manner to tune its parameters to generate performance-optimal code for
a specific hardware.

To identify the optimal variant arising from such a refinement process, auto-
tuning or machine-learning techniques, such as genetic algorithms [1, 26], neuronal
networks [14], or random forests [9] can be used. Although many of these tech-
niques can identify optimal variants, they fail to make the influences of individual
configuration options on the performance explicit. That is, they do not provide
a comprehensible model that allows developers to reason about the performance
influences of individual options and their interactions. For the same reason, it is
hardly possible to integrate existing domain knowledge (e.g., that two ore more
options interact with each other) in the tuning or learning process, prohibiting
further optimizations.

To give domain experts the possibility of integrating and validating their knowl-
edge, we employ a unique combination of forward feature selection and multivariate
regression [24]. Based on the resulting performance-influence model, it is possible
to predict the performance of all variants of a system and to determine the influence
of the individual configuration options and their interactions on performance. To
learn a performance-influence model, we first select and measure a set of variants of
the system in question using structured sampling strategies (see Sect. 3.1), because
the selection of a suitable set of variants is essential for model accuracy. In prior
work, we already demonstrated that such an approach can be used to identify
the influence of configuration options and their interactions on the performance,
independent of the application domain and programming language [24]. There, we

Performance Prediction of Multigrid-Solver Configurations 71

considered 6 configurable systems, including the Java garbage collector, the Single
Assignment C compiler (SAC1), the video encoder x264, and three customizable
multigrid systems implemented for different purposes. For the multigrid systems,
we are able to predict performance with an accuracy of 90 %, on average, and, for
all systems, with an accuracy of 86 %, on average.

In this paper, we focus on the integration of domain knowledge into our approach
and present first results on predicting performance of multigrid variants generated
by our ExaStencils code generator [13]. To increase prediction accuracy of our
approach and to reduce the number of measurements, domain knowledge is a
valuable source of information, which can be integrated in the sampling and the
learning procedure of our machine-learning algorithm. However, if the domain
knowledge does not hold for an application, its integration might have negative
effects on the prediction accuracy of our approach. To this end, we demonstrate the
benefits and also the risks of exploiting this knowledge by means of our configurable
multigrid system. Using this knowledge, we were able to reduce the number of
measurements from 162 to 39 by increasing the prediction error by less than 1 %.
Based on the results, we are able to see the existence of interactions between
different smoothers and different coarse-grid solvers provided by the configurable
multigrid system we use in the experiments. Additionally, we performed first
experiments on predicting performance of multigrid solver variants generated by
our ExaStencils code generator. There, we were able to predict performance of the
variants with a median accuracy of 83 %.

In summary, our contributions are the following:

• We discuss which kind of domain knowledge can be used to tune the sampling
and the learning process of our machine-learning algorithm and describe how it
can be integrated.

• We demonstrate the benefits and the risks of integrating domain knowledge in
our approach on a real-world multigrid system.

• We present how our approach can be used to test, whether domain knowledge
holds for an application.

• We learn a performance-influence model to predict performance of different
multigrid-solver variants generated by the ExaStencils code generator.

2 Configurable Multigrid Solvers and the ExaStencils Code
Generator

A multigrid solver is an iterative algorithm working on a hierarchy of grids.
In general, one iteration of the algorithm, which is also called a cycle, works
as follows: First, the algorithm starts at the finest level, which arises from the

1http://www.sac-home.org/

http://www.sac-home.org/

72 A. Grebhahn et al.

coarse-grid solver

pre-smoothing post-smoothing

pre-smoothing post-smoothing

pre-smoothing post-smoothing

Fig. 1 The basic structure of a V-cycle iteration of a multigrid algorithm

discretization of the equation. The algorithm uses a smoother to transform high-
frequency errors to lower-frequency errors in a predefined number of pre-smoothing
steps. Subsequently, the residual is computed and restricted to a coarser grid. This
process is performed recursively until the coarsest grid is reached. On this grid, the
equation is solved using a coarse-grid solver, and the solution is propagated back to a
finer level. In this propagation process, the error is again smoothed with a number of
post-smoothing steps. Subsequently, the solution is recursively propagated to finer
levels. This process is repeated until a given convergence is reached. In Fig. 1, we
give an overview of the structure of this process by means of the example of a V-
cycle, who describes in which order the different levels have to be visited. Beside
the V-cycle, there are also other cycle types, such as the W-cycle. Although the
process is relatively simple, it can be parametrized, using a large number of different
algorithms, which again have a large number of parameters (i.e., configuration
options). For example, there exists a whole array of different smoothers, such as
the Jacobi smoother or the Gauss-Seidel smoother. Additionally, it is possible to
use many code optimization strategies on a code representing this process, such
as loop unrolling, temporal blocking, [17] and parallelization, to achieve optimal
performance.

To take advantage of the variability in multigrid algorithms, we developed a code
generator in our project ExaStencils2 that aims at generating code that is tailored to a
specific problem and a specific hardware platform. To give different groups of users
(e.g., application scientists or computation scientists), the possibility of working
with the code generator efficiently, the ExaSlang language—the input language of
the generator—offers four layers of abstraction [22].

2http://exastencils.org/

http://exastencils.org/

Performance Prediction of Multigrid-Solver Configurations 73

The generator transforms a domain-specific specification of a problem in a
stepwise manner to produce optimized C++ code. During this refinement process,
several choices have to be made, all having an effect on the performance of the
generated code. Overall, we have about 100 choices in our generator, ranging
from the selection of the number of nodes used in the implementation, over the
selection of a smoother, the selection of the number of levels of the multigrid system,
to choosing optimization strategies, such as temporal blocking or loop unrolling.
However, the optimal combination of these options highly depends on the problem
and the underlying hardware, which complicates the task of identifying the optimal
set of options.

3 Performance Prediction

To predict the performance of the variants of a configurable system, we use a
machine-learning approach that learns an empirical model based on measuring a
sample of variants. The resulting model describes the influence of the individual
configuration options on performance. To learn such a performance-influence
model, we first select and measure a sample set of variants and use them as input for
our learning procedure. Although using all variants during learning would lead to the
best results regarding accuracy, this is infeasible for highly-configurable systems,
because the number of variants grows exponentially with the number of options.
Hence, we select only a subset of variants for learning based on structured sampling
approaches (Sect. 3.1). Based on this sample set, we learn a performance-influence
model in a stepwise manner, to identify the most relevant configuration options
first (Sect. 3.2). To speed up the performance of our approach and to reduce the
number of measurements, we exploit domain knowledge about some characteristics
of influences of configuration options on performance (Sect. 3.3).

3.1 Sampling

When selecting a sample set of variants for learning, we have to consider binary and
numeric configuration options. Because of the different value domains of the two
kinds of options, it is necessary to handle them differently during sampling [24]. To
this end, we apply different structured sampling strategies to select a representative
sample set of configurations. For binary options, we apply sampling heuristics from
the software-product-line domain, which have been developed to detect individual
influences and interactions between options [25]. For numeric options, we draw on
the established theory of experimental designs [16]. After sampling the binary and
numeric configuration spaces, we compute the Cartesian product of the two sets
of partial configurations, to create a set of variants used as input for the learning
process.

74 A. Grebhahn et al.

3.1.1 Binary Sampling Heuristics

For binary configuration options, we use two different sampling heuristics.
The Option-wise heuristic (OW) aims at identifying the influences of all individ-

ual configuration options on a non-functional property (i.e., performance), for all
variants of a configurable system. To this end, it selects one configuration for each
binary option. In each of these configurations, all options are disabled and only the
one being considered is enabled. Additionally, we select a configuration with no
option enabled. Based on these configurations, we can identify the influence of the
individual options. This heuristic requires a linear number of configurations with
respect to the number of binary options.

The Pair-wise heuristic (PW) aims at identifying interactions between pairs
of configuration options. To this end, one configuration for each pair of options
is selected. In each of these configurations, the options being considered are
enabled and all other options are disabled. The number of selected configurations is
quadratic with the number of options.

3.1.2 Experimental Designs

Sampling in the presence of numeric options is a widely researched area, known
under the umbrella of experimental designs [16]. Although a large number of
different designs have been proposed, we focus only on two designs in this work. In
prior work, we systematically compared different designs and found the Plackett-
Burmann design to perform best in our setting [24].

The Plackett-Burman Design (PBD) was developed for configuration spaces
in which the strength of interactions compared to individual influences can be
neglected [18]. However, it is still possible to identify relevant interactions between
options. In contrast to other designs, where the number of configurations grows
quickly with the number of options considered, the PBD defines specific seeds
that define the number of configurations that are selected. A seed also defines how
many different values of the numeric options are considered during sampling. In
Fig. 2, we give an example for the configurations that are selected using a PBD

Fig. 2 Plackett-Burman
Design for 8 configuration
options using a seed defining
that 9 configurations are
selected and 3 values of the
options are considered in the
sampling

0 1 2 2 0 2 1 1

options

0 1 2 2 0 2 1
0 1 2 2 0 2

0 1 2 2 0

0 1 2
0 1 2 2

0 1
0

1
1 1
2 1 1

2 0 2 1 1
0 2 1 1

2 2 0 2 1 1
1 2 2 0 2 11

00 0 0 0 0 0 0

co
nf

ig
ur

at
io

ns

Mapping
0 -> minimal value
1 -> center value
2 -> maximal value

Performance Prediction of Multigrid-Solver Configurations 75

with a seed defining that 9 configurations are selected and 3 different values of the
options are considered. Each line of the table defines the values of options in a
single configuration. In the first line, we see the original seed, which is shifted to
the right in each subsequent configuration. Internally, we map the values 0, 1, and
2, used in the seed, to the minimal, center, and maximal, value of the corresponding
numeric option. Beside the presented seed, other seeds are defined, which consider,
for example, five or seven different values of the options and a larger number of
configurations.

It is also possible to use a Random Design (RD) selecting a defined number of
configurations randomly distributed over the whole value domain. This is possible
because the value domains of the options as well as constraints between the options
are known. Since this design is very simple and often effective, it is often used in
literature [2, 4].

3.2 Performance-Influence Models

To describe the influences of configuration options and their interactions on the
performance, we learn a performance-influence model ˘ [24]. Mathematically, ˘
is a mapping from a configuration c 2 C to its performance in R. The different
influences of the options and their interactions are described by individual terms
�i of a model. In the following, we give a simplified example of a performance-
influence model consisting of four terms:

�1‚…„ƒ
86 C

�2‚ …„ ƒ
27 	 pre-smoothingC

�3‚ …„ ƒ
323 	GaussSeidel 	 pre-smoothing�

�4‚ …„ ƒ
1:8 	 cgsAmg

Based on the model, the options pre-smoothing, GaussSeidel, and cgsAmg have
an influence on performance, where option pre-smoothing has an independent
influence (�2), but also interacts with the GaussSeidel option (�3). Additionally,
we can see a general runtime that can not be dedicated to a specific option described
through term �1. To predict the performance of a configuration, we compute the
sum of the influences represented by the terms. During the generation of the model,
we consider and model only the relevant influences on the performance to keep
the model as simple as possible. To consider only these relevant influences, we use
a unique combination of forward feature selection and multivariate regression to
learn performance-influence models in an iterative manner.

The basic idea of our machine-learning approach is to start with an empty model
and to expand it with those terms that increase the prediction accuracy at most
(forward feature selection). In Algorithm 1, we show the basic structure of the
learning algorithm. We start the learning process with an empty model, which does
not consider the influence of any configuration option (Line 3). Then, we create a set
of candidate models, where each model covers the terms of the original model (i.e.,
the model from the previous round) and one additional term that is not covered in

76 A. Grebhahn et al.

Algorithm 1 Forward feature selection
1: Data: measurements, options
2: Result: model
3: model = ;, error =1
4: repeat
5: lastError = error
6: bestModel = ?
7: candidates = generateCandidates(model, options)
8: for each candidate in candidates do
9: refinedModel = learnFunction(candidate, measurements)

10: modelError = computeError(refinedModel, measurements)
11: if modelError < error then
12: error = modelError, bestModel = candidate
13: if bestCandidate ¤ ? then
14: model = bestModel
15: until .lastError � error < margin/_ .error < threshold/
16: return learnFunction(model, measurements)

the original model (Line 7). This term considers either an individual influence or an
interaction. In more detail, for each term in the original model, we generate a set of
candidate terms, where each of the candidate terms covers the options of the term of
the original model and one additional option. So, terms covering interactions with
three options are created, if the model contains a term with two options.

To identify the most promising candidate model, we use multivariate regression
on the sampled configurations to determine the coefficients of all terms of the
model (Line 9). The coefficients describe the influence of terms on the performance
variation in the set of system variants. After adding one term to the model, we
have to recompute the coefficients of all terms of a model to correctly determine
the influence of the options of the terms. Then, we predict the performance of
configurations using the candidates and compare the predicted and the measured
performance. Based on the prediction error of the candidates, we select the most
accurate model and use it as the basis for the next iteration of the learning algorithm.
To consider only relevant interactions, we probe only for existence of interactions
where, at least, one option has an individual influence or contributes to an interaction
with a smaller degree. We iteratively expand this model until predefined thresholds
are reached or until no candidate model further increases accuracy.

3.3 Integration of Domain Knowledge

In what follows, we discuss which kinds of domain knowledge can be integrated in
our machine-learning approach to, (1) minimize the number of configurations used
during the learning process, to (2) minimize runtime of the learning process without
causing a loss of prediction accuracy, and to (3) increase prediction accuracy of the
model.

Performance Prediction of Multigrid-Solver Configurations 77

3.3.1 Shrinking the Configuration Space

Domain knowledge can be helpful to reduce the size of the configuration space
to search for the optimal variant. For example, it is not necessary to consider all
configuration options if it is known that some of them do not have an influence
on the performance of the system. These options can be ignored during sampling
and the subsequent learning process without loss of accuracy. Additionally, it is not
necessary to consider the whole value domain of numeric options. If we know that
the optimal performance can be achieved by setting only a subset of the values in
the whole range, we can simply modify the option’s value range.

3.3.2 Domain Knowledge on Interactions

It is also useful to exploit domain knowledge about the existence and absence of
interactions between options in our machine-learning algorithm. First, if two or
more configuration options do not interact with each other, the sampling strategies
can be modified to reduce the number of measurements. For example, to identify
whether there is an interaction between two binary options, it is necessary to
measure one configuration with both options enabled. If it is known that an
interaction does not exist, it is possible to omit the corresponding configuration
during the sampling process, without losing accuracy in the learned model. During
the generation of the candidate models, it is also possible to use this knowledge
to reject candidates that consider this interaction. Second, if it is known that two
or more options interact with each other, configurations that cover this interaction
should be selected during the sampling. This is of special importance when a large
number of options interact with each other. Based on the sampling strategy used, it
is not possible to identify such interactions. To support this, Siegmund et al. pro-
posed further heuristics aiming at identifying these higher-order interactions [23].
However, these heuristics require a large number of configurations when applying
them on many configuration options. For this reason, they should be used only if it
is known that higher-order interactions exist. Additionally, knowledge on existing
interactions can be integrated in the learning process. This way, it is possible to start
the learning process with a model considering all of these interactions instead of
starting with an empty model.

3.3.3 Independent Sampling Strategies and Independent Models

So far, we considered only a single sampling strategy for all configuration options of
one kind (e.g., the PBD for numeric option or the PW heuristic for binary options).
However, it is also possible to use different sampling strategies for different sets of
options, if there are, for example, two or more independent groups of options with no
interactions between them. For instance, it is possible to use the PBD with a specific
seed for one set of numeric options and a PBD with another seed, and a completely

78 A. Grebhahn et al.

different design for another set of options. During sampling of one group of options,
it is necessary to not modify the values of options of other groups. This is similar
to group-based sampling [21]. Based on the multiple sets of options, we can learn
different models and combine these models subsequently to a single model. This
combination is possible because of the additive structure of performance-influence
models.

3.3.4 Integration of Analytical Models

Based on theoretical knowledge about the performance behavior of parts of an
algorithm, it is possible to create an analytical model. Although the creation process
of such a model is error prone, it has been shown that it is possible to perform
accurate predictions using this kind of models [8, 10].

In our setting, analytical models can simply be used as a starting point to learn
more accurate and more complex models. This can also be done if only a subset
of all options is considered in the analytical model. Additionally, the selection of
the sampling strategy should be adapted to be able to learn the coefficients for
the analytical model correctly. However, it might not be possible to use existing
experimental designs, because the designs assume that the influence of an option
can be described with a function of a small polynominal degree. So, the sampling
strategy should be selected carefully and combined with other sampling strategies,
if necessary.

3.3.5 Models for Disjoint Parts of a System

Rather learning a model to describe the influence of all options on the whole runtime
of an application, it is also possible to learn a set of models for disjoint parts (e.g.,
one model for the initialization and one model for the computation) of a system, if
the execution time of one part does not have an influence on the execution time
of another part. With this set of local models, it might be possible to perform
more accurate predictions compared to using a single global model. This is because
interactions with a small influence on the overall performance, but strong influences
on the performance of a part of the system, can be better identified. However,
learning different models leads to some drawbacks regarding the performance of
the learning process, because candidates considering the same influences are used
to predict performance variations of different parts of the system and thus have to
be tested several times.

Performance Prediction of Multigrid-Solver Configurations 79

4 Evaluation

In our evaluation, we focus on three research questions:

RQ1 Can we observe significant benefits in terms of reducing the number of
sampled configurations if we integrate domain knowledge in the sampling
and learning process of our machine-learning algorithm?

RQ2 Are we able to predict the runtime of multigrid-solver variants generated by
our code generator with an accuracy comparable to comparable experiments
without using domain knowledge?

RQ3 Is it beneficial to learn a set of local models compared to learning a global
model to predict the runtime of multigrid variants produced by our code
generator?

4.1 Leveraging Domain Knowledge

To demonstrate the usefulness of integrating domain knowledge in our machine-
learning approach and to answer RQ1, we performed a number of experiments based
on the customizable multigrid system HSMGP, which solves a finite differences
discretization of the Poisson’s equation. HSMGP was developed for testing various
algorithms and data structures on high-performance computing systems, such as
JuQueen at the Jülich Supercomputing Centre, Germany [12]. We use HSMGP
because of its simplicity and because we are familiar with the system. In our
experiments, we consider a configuration space with six different smoothers, three
different coarse-grid solvers, and a variable number of pre-smoothing and post-
smoothing steps. We also performed weak scaling experiments from 64 to 4096
nodes, where we see the number of nodes used by a variant as a further configuration
option of the system. A more detailed description of the configuration space of the
system is given elsewhere [5].

4.1.1 Experimental Setup

In the experiments, we focus on predicting the time needed to perform a single
V-cycle iteration. In advance to our experiments, we performed an exhaustive
search and measured all variants of the configuration space, to be able to determine
prediction accuracy of unseen variants. The experiment consists of three phases.
First, we select a set of configurations based on domain knowledge and the struc-
tured sampling strategies. Then, we use our machine-learning approach, to learn a
performance-influence model. Last, we predict the performance of all variants of
the system using the identified influences and compute prediction accuracy.

80 A. Grebhahn et al.

To demonstrate the usefulness of incorporating domain knowledge, we state the
following assumptions on the influences of the configuration options, based on
domain knowledge:

(1) The runtime of the coarse-grid solver is not affected by the selection of the
smoother and the number of pre-smoothing and post-smoothing steps.

(2) One pre-smoothing sweep needs the same amount of time as one post-
smoothing sweep.

Based on assumption 1, there are no interactions between the coarse-grid solver
and the smoothers and the pre-smoothing and post-smoothing steps. So, it is not
necessary to sample configurations to identify whether such an interaction exists.
Additionally, it is not necessary to generate candidate models during learning,
covering such an interaction. Thus, we can reduce the number of measurements
and improve performance of the learning algorithm.

We can assume 2 because we perform the same operations in one pre-smoothing
and one post-smoothing sweep on the same grid. Hence, it is possible to infer
the influence of a post-smoothing sweep based on the identified influence of a
pre-smoothing sweep. This allows us to ignore the post-smoothing option during
sampling and learning entirely. However, during sampling, configurations have to
be selected with no runtime caused by the post-smoothing steps. For that reason, we
select configurations with zero post-smoothing steps.

We apply an iterative sampling process, considering a small number of options
first and learn models for these options. Consecutively, we sample the other
configuration options and learn models for them. This way, we first generate a model
considering the different smoothers and the number of pre-smoothing and post-
smoothing steps. Later, we generate models considering the coarse-grid solvers and
the influence of the number of cores, and we combine these models. For assumption
2, we omit the post-smoothing steps and infer the influence of these options based
on the identified influence of pre-smoothing.

Additionally, we learn a model based on a selection of the PW heuristic in
combination with the PBD using a seed defining that 9 configurations are selected
considering 3 values of the options and a model based on 50 randomly selected
configurations.

4.1.2 Results and Discussion

In Table 1, we present our results using the different sampling strategies. In each
row of the table, we present the number of configurations selected during sampling
and the prediction accuracy of the learned performance-influence model. When
making assumption 1, 69 configurations are used for learning. If assumptions 1 and
2 are used during sampling, 39 configurations are selected. In both experiments,
we achieve the same median prediction error rate of 2.1 %. If we instead apply
the PW heuristic, which also considers interactions between the different binary
options, in combination with the PBD, we have a median prediction error of 1.4 %.

Performance Prediction of Multigrid-Solver Configurations 81

Table 1 Experimental results on using domain knowledge. Heuristic: different sampling strate-
gies, jej: number of measurements required for the heuristic, jCj: number of configuration of the
configuration space, Error-rate dist.: error-rate distribution, � : median error rate

Heuristic jej / jCj Error-rate distribution � (%)

Assumption 1 69 / 3456
l l lllll llll ll ll ll ll ll lllll ll llllll l llll l ll llll l lll lllll l ll l lll lll llll l ll ll ll ll l ll l lll lll lllll lll ll l ll ll lll lll ll ll ll lll ll ll l ll l lll l lll lll llllll lll ll lll ll llll llll ll lllll l lll lll ll llll ll l ll lll lll l ll lll llll l lllll ll llll ll

2:1

Assumption 1 and 2 39 / 3456
l l lllll lll lll ll ll ll ll ll ll ll ll l ll l lllll l lll ll l lll llll lllll lll l ll l ll ll lllll llll l ll l ll ll lll ll lll l lll ll lll llll l ll llll lll l lll lll ll ll lll lll l llll l ll llll l llll lll lll lll l lll ll lll ll ll lll l lll l ll lllll ll l ll lll ll ll llll ll l ll lll lll l lll lll ll lll l llll l llll ll lll

2:1

PW, PDB(9,3) 162 / 3456
l lllllll lll lllllllll ll lllll lllll l lll lll ll llll l llll l llll ll l lll l lllll lllll ll l llll lll lllll lllllllllll llll llll llll ll l lll lll lllll lll llll ll llll lllllll llll

1:4

Random 50 / 3456 11:7

0 5 10 15 20 25

However, to learn such an accurate model, we have to measure 162 configurations.
For comparison, if we select a set of 50 randomly distributed configurations, we
achieve a median error rate of 11.7 %

These results show that the use of domain knowledge during the sampling
process can lead to a drastic reduction of the number of configurations needed for
learning. However, we also observe a loss of prediction accuracy of the model,
if the knowledge does not completely hold, as in the case of assumption 1. The
analysis why assumption 1 does not hold reveals that there is an interaction between
the coarse-grid solver and the smoother performing the pre-smoothing and post-
smoothing steps. This is because we apply the coarse-grid solver until the error on
the coarsest grid is reduced by a certain factor. Thus, smoothers, such as Jacobi
and Gauss-Seidel, have different convergence properties, which has an influence on
the error of the input. This has an influence on the runtime, because when starting
with a larger error it can be reduced by a larger factor in the first iterations of the
coarse-grid solver.

As result, for RQ1, we can state that an integration of domain knowledge in
the sampling and learning process has significant benefits as long as the domain
knowledge holds for the system. For the two assumtions, we can state that
assumption 2 holds for the system, while assumption 1 does not hold. We can also
see that selection of configurations completely randomly does not lead to a high
prediction accuracy.

4.2 Code Generator

In the second experiment, we aim at answering RQ2 and RQ3. To this end, we
try to identify the influence of 20 configuration options (out of approximately
100) on the performance of the generated variants using the ExaStencils code
generator [13]. During the manual pre-selection process, we selected options from
different transformation steps, all having a strong influence on the performance
of the resulting code. For this purpose, we consider various options, such as the

82 A. Grebhahn et al.

Table 2 Configuration options of the ExaStencils code generator that we consider in our
experiments after performing a manual pre-selection, grouped in hardware-specific, multigrid-
specific parameters, and optimization options

Hardware-specific

• Ranks per node
• Use fragment loops for each operation
• # of OMP-threats x direction
• Tile size x direction

• # of nodes
• Use custom MPI data types
• # of OMP-threats y direction
• Dimension for ratio offset

Multigrid-specific

• Smoother
• # pre-smoothing steps
• Use slots for Jacobi

• Recursive cycle calls
• # post-smoothing steps
• Min level

Optimizations

• Optimize number of finest levels
• Use address pre-calculation
• Loop unrolling

• Parallelize loop over dimensions
• Vectorize
• Loop unrolling interleave

selection of a smoother and cycle type, but also optimization strategies, such as
vectorization and loop unrolling [11]. In Table 2, we give an overview of the
configuration options we consider in our experiment. The remaining options are
set to their default value.

4.2.1 Experimental Setup

After defining the configuration space, we apply the OW and PW heuristics on the
set of binary options and PBD on the numeric options to select configurations used
during the learning process. Beside this set of configurations, we also select a set
of random variants and measured their performance to predict the performance of
configurations not used during the learning process.

During code generation, we included code in the variants to measure the runtime
of different components of a single cycle iteration independently. That gave us the
possibility to learn models representing the performance behavior of specific parts of
a cycle iteration. This way, we are able to learn models, for example, for the residual
update, for the restriction, and for the time needed to perform pre-smoothing and
post-smoothing. After combining these models, it is possible to predict the whole
execution time needed for a single iteration of a given variant.

To answer RQ2 and RQ3, we learn two different kinds of models. First, we
learn a global model describing the influence of all options on the performance of a
multigrid iteration. Second, we learn a set of local models to identify the influence
of the options on smaller parts of the system. After learning these local models, we
combine them and predict the runtime of an iteration.

Performance Prediction of Multigrid-Solver Configurations 83

We performed all measurements on JuQueen at the Jülich Supercomputing
Centre, Germany. We considered a variable number of nodes from 16 to 64, because
of the high number of configurations we measured. In each of the configurations, we
measured the time for solving Poisson’s equation in 2D with constant coefficients.

4.2.2 Results and Discussion

In Table 3, we present the prediction results of using the different performance-
influence models. In each row of the table, we present the error distribution of the
model when predicting the runtime of the variants and the median error rate. If we
learn a global model, we can predict all measured configurations (configurations
used for learning and unseen configurations) with a median error rate of 19.5 %.
This means that we can predict runtime with an accuracy of 80 %. If we instead
learn a set of local models, and combine them afterwards, we are able to predict
performance with a median error rate of 16.2 %.

So, we can state that we are able to identify most of the relevant influences on
the performance. Furthermore, learning a set of local models has benefits compared
to learning a global model, which answers RQ3. Nevertheless, we have a median
error rate of more than 15 % in both cases, which indicates that some relevant
influences have not been detected or cannot be modeled using our approach, or that
we overfitted the model. To learn whether we overfitted the model, we predict only
the performance of the configurations used during the learning process with the set
of local models. For these configurations, we got a median error rate of 16.5 %. This
indicates that we do not overfit the model.

To conclude, we can predict the performance of the different variants with
an accuracy of more than 83 %. But, we were not able to identify all existing
influences. Regarding RQ2, we can state that we are able predict performance of the
variants generated by our code generator with an accuracy comparable to previous
experiments on other configurable systems. Regarding RQ3, we can conclude that
learning a set of local models is more beneficial than learning a global model.

Table 3 Experimental results of predicting performance of multigrid solvers generated by the
ExaStencils code generator using a global model or a set of local models. jej: number of
measurements required for the heuristic, jCj: number of all measured configurations, Error-rate
distribution: error-rate distribution, � : median error rate

Heuristic jej / jCj Error-rate distribution � (%)

Global model 8131 / 10445 19:5

Local models 8131 / 10445 16:2

0 5 10 15 20

84 A. Grebhahn et al.

4.3 Threats to Validity

In our experiments, we considered only a subset of the existing experimental
designs. There might be other designs that can lead to more accurate predictions.
However, we selected the design leading to the most accurate results in previous
case studies.

Furthermore, we considered only a subset of the configuration options of the
code generator in our experiments. Based on prior knowledge, we selected options
having a considerable influence on the performance of a multigrid solver. Moreover,
we also selected hardware-specific options and optimization options.

Although, the prediction accuracy for the two systems are very different, the
results are in line with the results of previous work [24]. The differences in accuracy
come in line with the different complexity of the systems. While HSMGP has only
a limited number of variants and a small number of configuration options, the code
generator has an infinite number of variants and a high number of options that
interact with each other. In the earlier work, we could also see that for complex
systems, such as the Java garbage collector or in our case, the code generator, we
are able only to predict performance with an accuracy of more than 70 %.

Regarding the generality of the integration of domain knowledge in our machine-
learning approach, we can state, that it is possible to integrate domain knowledge
also in the prediction process for other systems. This is, because it is easy possible
to modify the sampling strategies and to enrich the learning process with domain
knowledge.

Last, in both experiments, we only predict the time needed for one multigrid-
cycle iteration. However, the time to solution can be computed using our approach
in combination with local Fourier analysis [27].

5 Related Work

Program generation in combination with an integrated domain-specific optimization
process is used in many different domains. Often, standard machine-learning
approaches, such as evolutionary algorithms [26] and neural networks [14], are used
to identify the performance-optimal variant of a specific system. Although many
of these approaches can predict performance accurately, they are intransparent in
describing the influence of options on the performance explicitly.

Agakov et al. [1] aim at identifying the optimal sequence of source-to-source
transformations of iterative compiler optimizations to generate performance-optimal
code. They use Markov models and Independent identically distributed models to
support random search and genetic algorithms in identifying promising configu-
rations. In their models, they quantify the probability of a transformation leading
to a good performance. Using the Markov models, they are able to consider the
influence of small sequences of transformations on performance, which is equal

Performance Prediction of Multigrid-Solver Configurations 85

to an interaction between different options. However, they have to model each
interaction explicitly before generating the model. Furthermore, it is not possible
to model the influence of numeric options on the performance without discretizing
the numeric option to a set of binary options. Finally, it is not possible to infer the
absolute influence of an option based on the probability of this option leading to a
code with good performance.

Another famous example for domain-specific optimization is SPIRAL [19, 20].
It generates implementations of signal-processing algorithms, such as FFTs, based
on a domain-specific description. To identify optimal implementations for a specific
hardware, they use a feedback-loop mechanism where previous runs are used to
guide the search. To this end, they use a set of different machine-learning algorithms,
such as hill climbing and evolutionary search algorithms. In contrast to us, they are
interested only in the optimal configuration. Thus, they guide the search to sampling
only areas with promising configurations, whereas we try to identify the influences
of all options.

Ganapathi et al. use statistical machine learning to identify performance optimal
stencil computations [4]. After selecting a random set of configurations, they use
kernel canonical correlation analysis to identify the correlation between the per-
formance and the different parameters. To identify the optimal configuration, they
perform a nearest-neighbor search around the projection space of the performance-
optimal configuration of the training set. Using properties of the projection space, it
might be possible to get information about the influence of different options on the
performance.

Random forests are another supervised learning technique that is often used. For
example, Jain et al. use random forests to predict performance of an application
using communication data [9]. As input for the learning procedure, they use
properties of the implementations, such as the average number of bytes per link or
the maximal dilation of a communication. To improve prediction accuracy, they also
combine the different metrics to consider interactions among them. Guo et al. [6]
use Classification and Regression Trees to identify the influence of configuration
options on the performance of the system. In contrast to our approach, they focus
only on binary options and do not consider interactions between options. In general,
approaches based on a random forest or regression tree, cannot easily quantify the
influence of individual configuration options.

6 Conclusion and Future Work

Multigrid solvers are the most efficient methods for solving discretized partial
differential equations. However, to achieve a good performance, multigrid imple-
mentations have to be tailored by the means of configuration options to the
characteristics of the given hardware platform and the problem at hand. Identifying
the optimal configuration, is a non-trivial task, because the influence of the options
on the performance of the solver is not known and options might also interact with

86 A. Grebhahn et al.

each other. To identify the influence of the configuration options and interactions
on performance, we use a combination of forward feature selection and multivariate
regression. We tailored our approach such that the learned performance-influence
models are easy to read and understand and that we can incorporate domain
knowledge to fasten learning and improve accuracy of the models. To this end,
we discuss and present how domain knowledge can be integrated in the approach
and present first results how the domain knowledge effects prediction accuracy and
measurement overhead. Here, we showed experiments with one system, where we
were able to reduce the number of configurations used in our approach from 162
to 39 while increasing the mean prediction error by less then 1 %. Moreover, we
also demonstrated that the whole approach can be used to predict performance
of different variants generated by our ExaStencils code generator with a median
prediction error of 16.2 %.

In future work, we will create a common interface for our approach to give
users the possibility to easily integrate their domain knowledge in the sampling
and the learning procedure. Additionally, based on our results in predicting the
performance of different multigrid solvers created by our code generator, we see
that it is necessary to consider more complex interactions between options to predict
performance with a high accuracy. However, the additional candidates caused by
considering complex interactions can substantially increase the search space for
finding optimal performance-influence models. As result, it is necessary to identify
heuristics that describe whether these candidates have to be considered. Last, we
will focus on a combination of our approach with local Fourier analysis to predict
performance of a whole multigrid solver variant.

Acknowledgements We thank the Jülich Supercomputing Center for providing access to the
supercomputer JUQUEEN. This work is supported by the German Research Foundation (DFG),
as part of the Priority Program 1648 “Software for Exascale Computing”, under the contract RU
422/15-1 and AP 206/7-1. Sven Apel’s work is also supported by the DFG under the contracts AP
206/4-1 and AP 206/6-1.

References

1. Agakov, F., Bonilla, E., Cavazos, J., Franke, B., Fursin, G., O’Boyle, M.F.P., Thomson, J.,
Toussaint, M., Williams, C.K.I.: Using machine learning to focus iterative optimization. In:
Proceedings of the International Symposium on Code Generation and Optimization (CGO),
Manhattan, pp. 295–305. IEEE (2006)

2. Bergstra, J., Pinto, N., Cox, D.: Machine learning for predictive auto-tuning with boosted
regression trees. In: Proceedings of the Innovative Parallel Computing (InPar), San Jose,
pp. 1–9. IEEE (2012)

3. Brandt, A.: Multi-level adaptive solutions to boundary-value problems. Math. Comput.
31(138), 333–390 (1977)

4. Ganapathi, A., Datta, K., Fox, A., Patterson, D.: A case for machine learning to optimize
multicore performance. In: Proceedings of the USENIX Conference on Hot Topics in
Parallelism (HotPar), Berkeley, pp. 1–6. USENIX Association (2009)

Performance Prediction of Multigrid-Solver Configurations 87

5. Grebhahn, A., Kuckuk, S., Schmitt, C., Köstler, H., Siegmund, N., Apel, S., Hannig, F., Teich,
J.: Experiments on optimizing the performance of stencil codes with SPL conqueror. Parallel
Process. Lett. 24(3), 19 (2014). Article 1441001

6. Guo, J., Czarnecki, K., Apel, S., Siegmund, N., Wasowski, A.: Variability-aware performance
prediction: a statistical learning approach. In: Proceedings of the IEEE/ACM International
Conference on Automated Software Engineering (ASE), Palo Alto, pp. 301–311. IEEE (2013)

7. Hackbusch, W.: Multi-grid Methods and Applications. Springer, Berlin (2003)
8. Ipek, E., de Supinski, B.R., Schulz, M., McKee, S.A.: An approach to performance prediction

for parallel applications. In: Euro-Par 2005 Parallel Processing, Lisboa, pp. 196–205. Springer
(2005)

9. Jain, N., Bhatele, A., Robson, M.P., Gamblin, T., Kale, L.V.: Predicting application per-
formance using supervised learning on communication features. In: Proceedings of the
International Conference on High Performance Computing, Networking, Storage and Analysis
(SC), Denver, pp. 95:1–95:12. ACM (2013)

10. Kerbyson, D.J., Alme, H.J., Hoisie, A., Petrini, F., Wasserman, H.J., Gittings, M.: Predictive
performance and scalability modeling of a large-scale application. In: Proceedings of the
ACM/IEEE Conference on Supercomputing (SC), Denver, pp. 37–48. ACM (2001)

11. Kronawitter, S., Lengauer, C.: Optimizations Applied by the ExaStencils Code Generator.
Technical report MIP-1502, Faculty of Informatics and Mathematics, p. 10. University of
Passau (2015)

12. Kuckuk, S., Gmeiner, B., Köstler, H., Rüde, U.: A generic prototype to benchmark algorithms
and data structures for hierarchical hybrid grids. In: Parallel Computing: Accelerating Compu-
tational Science and Engineering (CSE), pp. 813–822. IOS Press (2013)

13. Lengauer, C., Apel, S., Bolten, M., Größlinger, A., Hannig, F., Köstler, H., Rüde, U., Teich,
J., Grebhahn, A., Kronawitter, S., Kuckuk, S., Rittich, H., Schmitt, C.: ExaStencils: advanced
stencil-code engineering. In: Euro-Par 2014: Parallel Processing Workshops, Part II. Lecture
Notes in Computer Science, Porto, vol. 8806, pp. 553–564. Springer (2014)

14. Magni, A., Dubach, C., O’Boyle, M.: Automatic optimization of thread-coarsening for
graphics processors. In: Proceedings of the International Conference on Parallel Architectures
and Compilation (PACT), Alberta, pp. 455–466. ACM (2014)

15. Membarth, R., Reiche, O., Hannig, F., Teich, J., Korner, M., Eckert, W.: Hipacc: a domain-
specific language and compiler for image processing. IEEE Trans. Parallel Distrib. Syst.
PP(99), 1–1 (2015)

16. Montgomery, D.C.: Design and Analysis of Experiments. Wiley, New York/Chichester (2006)
17. Nguyen, A., Satish, N., Chhugani, J., Kim, C., Dubey, P.: 3.5-d blocking optimization for

stencil computations on modern cpus and gpus. In: Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis (SC), New Orleans,
pp. 1–13. IEEE (2010)

18. Plackett, R.L., Burman, J.P.: The design of optimum multifactorial experiments. Biometrika
33(4), 305–325 (1946)

19. Püschel, M., Franchetti, F., Voronenko, Y.: Spiral. In: Encyclopedia of Parallel Computing,
pp. 1920–1933. Springer (2011)

20. Püschel, M., Moura, J.M.F., Singer, B., Xiong, J., Johnson, J., Padua, D., Veloso, M., Johnson,
R.W.: Spiral: a generator for platform-adapted libraries of signal processing algorithms. J. High
Perform. Comput. Appl. 18, 21–45 (2004)

21. Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., Saisana, M.,
Tarantola, S.: Global Sensitivity Analysis. The Primer. Wiley, New York/Chichester (2008)

22. Schmitt, C., Kuckuk, S., Hannig, F., Köstler, H., Teich, J.: Exaslang: a domain-specific
language for highly scalable multigrid solvers. In: Proceedings of the International Workshop
on Domain-Specific Languages and High-Level Frameworks for High Performance Computing
(WOLFHPC), New Orleans, pp. 42–51. IEEE (2014)

23. Siegmund, N.: Measuring and predicting non-functional properties of customizable programs.
Dissertation, University of Magdeburg (2012)

88 A. Grebhahn et al.

24. Siegmund, N., Grebhahn, A., Apel, S., Kästner, C.: Performance-influence models for highly
configurable systems. In: Proceedings of the European Software Engineering Conference and
the ACM SIGSOFT Symposium on the Foundations of Software Engineering (ESEC/FSE),
Bergamo, pp. 284–294. ACM (2015)

25. Siegmund, N., Kolesnikov, S.S., Kästner, C., Apel, S., Batory, D., Rosenmüller, M., Saake,
G.: Predicting performance via automated feature-interaction detection. In: Proceedings of the
International Conference on Software Engineering (ICSE), Zürich, pp. 167–177. IEEE (2012)

26. Simon, D.: Evolutionary optimization algorithms. Wiley, New York/Chichester (2013)
27. Trottenberg, U., Oosterlee, C.W., Schüller, A.: Multigrid. Academic Press, Orlando (2001)
28. Wesseling, P.: An Introduction to Multigrid Methods. Wiley, New York/Chichester (1992)
29. Wirth, N.: Program development by stepwise refinement. Commun. ACM 14(4), 221–227

(1971)

Part III
EXASTEEL: Bridging Scales

for Multiphase Steels

One-Way and Fully-Coupled FE2 Methods
for Heterogeneous Elasticity and Plasticity
Problems: Parallel Scalability
and an Application to Thermo-Elastoplasticity
of Dual-Phase Steels

Daniel Balzani, Ashutosh Gandhi, Axel Klawonn, Martin Lanser,
Oliver Rheinbach, and Jörg Schröder

Abstract In this paper, aspects of the two-scale simulation of dual-phase steels
are considered. First, we present two-scale simulations applying a top-down one-
way coupling to a full thermo-elastoplastic model in order to study the emerging
temperature field. We find that, for our purposes, the consideration of thermo-
mechanics at the microscale is not necessary. Second, we present highly parallel
fully-coupled two-scale FE2 simulations, now neglecting temperature, using up to
458;752 cores of the JUQUEEN supercomputer at Forschungszentrum Jülich. The
strong and weak parallel scalability results obtained for heterogeneous nonlinear
hyperelasticity exemplify the massively parallel potential of the FE2 multiscale
method.

D. Balzani (�) • A. Gandhi (�)
Faculty of Civil Engineering, Institute of Mechanics and Shell Structures, TU Dresden, Dresden,
Germany
e-mail: daniel.balzani@tu-dresden.de; ashutosh.gandhi@tu-dresden.de

A. Klawonn (�) • M. Lanser (�)
Mathematisches Institut, Universität zu Köln, Köln, Germany
e-mail: axel.klawonn@uni-koeln.de; martin.lanser@uni-koeln.de

O. Rheinbach (�)
Institut für Numerische Mathematik und Optimierung, Technische Universität Bergakademie
Freiberg, Freiberg, Germany
e-mail: oliver.rheinbach@math.tu-freiberg.de

J. Schröder (�)
Faculty of Engineering, Department of Civil Engineering, Institute of Mechanics, Universität
Duisburg-Essen, Essen, Germany
e-mail: j.schroeder@uni-due.de

© Springer International Publishing Switzerland 2016
H.-J. Bungartz et al. (eds.), Software for Exascale Computing – SPPEXA
2013-2015, Lecture Notes in Computational Science and Engineering 113,
DOI 10.1007/978-3-319-40528-5_5

91

mailto:daniel.balzani@tu-dresden.de
mailto:ashutosh.gandhi@tu-dresden.de
mailto:axel.klawonn@uni-koeln.de
mailto:martin.lanser@uni-koeln.de
mailto:oliver.rheinbach@math.tu-freiberg.de
mailto:j.schroeder@uni-due.de

92 D. Balzani et al.

1 Introduction

Advanced High Strength Steels (AHSS) provide a good combination of both,
strength and formability and are therefore applied extensively in the automotive
industry, especially in the crash relevant parts of the vehicle. One such AHSS
which is widely employed is dual-phase (DP) steel. The excellent macroscopic
behavior of this steel is a result of the inherent micro-heterogeneity and complex
interactions between the ferritic and martensitic phases in the microstructure. The
microstructural phases are affected by both, mechanical and thermal loads. The
modeling of such steels poses a challenge because capturing all the mentioned
effects leads to rather complex phenomenological models, which may still be valid
for a limited number of loading scenarios.

A more promising modeling approach is the application of multiscale methods.
The current contribution proposes a two-scale strategy to analyze the forming
process of a DP steel sheet. In this context, the predictions of the overall mechanical
response of phenomenological and multiscale-based approaches are compared. We
also study the impact of considering pure mechanics versus thermo-mechanics at
the microstructure on the quality of the results with view to a predictive mechanical
response and the computational effort. Our scale-coupling approach for the two-
scale computation of maximal stresses in largely deformed dual-phase steel sheets
can be seen as a two-scale FE2 approach with one-way coupling which consists of
two steps. First, a single-scale macroscopic simulation of the deformed steel sheet
based on a phenomenological material model representing the macroscopic material
behavior is performed. Then, the macroscopic deformation gradient is stored at all
Gauß points for each iterated load step. On the basis of macroscopic distributions
of plastic strains or stresses, critical regions are identified. Second, microscopic
boundary value problems are solved for all Gauß points within the critical regions.
Here, the macroscopic deformation gradients are used to define the microscopic
deformation-driven boundary conditions. In order to enable a higher efficiency of
the scheme we propose to only compute the thermo-mechanical problem at the
macroscale. Based on the temperature at each macroscopic Gauß point, we focus on
a purely mechanical microscopic boundary value problem, where the temperature-
dependent material parameters are updated in each load step according to the
macroscopic temperature.

Compared to the high computational cost of the fully-coupled thermo-
mechanical FE2 scheme considering the temperature field at the macro- and
microscale, the proposed method is clearly computationally cheaper. Furthermore,
an estimator for the quality of the phenomenological macroscopic material model
in the critical macroscopic region is obtained by comparing it to the homogenized
material response from the microscopic computations. For the simulations including
the temperature field we have made use of computing resources in Essen as well as
of the CHEOPS cluster in Cologne.

One-Way and Fully-Coupled FE2 Methods for Heterogeneous Elasticity and Plasticity 93

The parallel scalability results for nonlinear hyperelasticity problems presented
in this paper were obtained on the JUQUEEN supercomputer [30] at Forschungszen-
trum Jülich and make use of the FE2TI software package. The FE2TI package is a
parallel implementation of the fully coupled FE2 approach using FETI-DP (Finite
Element Tearing and Interconnecting—Dual Primal) methods to solve the problems
on the microscopic scale. The FE2TI package has qualified for the High-Q-Club1

membership in 2015, and its parallel performance has previously been reported
in [19, 20]. JUQUEEN is a 28,672 node 6-petaflops Blue Gene/Q system at Jülich
Supercomputing Center (JSC, Germany), with a total number of 458;752 processor
cores and a power consumption of 2.3 MW. It runs Linux and is ranked 11th on
the TOP500 list of the world’s fastest supercomputers of November 2015. It uses a
Power BQC 16C 1.6 GHz processor with 16 cores and 16 GB memory per node.

The paper is organized in various sections. The material model and a numerical
differentiation scheme based on complex step derivative approximation (CSDA) that
has been used in the implementation of numerical examples of the one-way coupling
FE2 method are briefly discussed in Sect. 2. A short summary of the general FE2

multiscale method and the one-way scale-coupling strategy introduced here to study
the DP steel sheet response is given in Sect. 3. The details regarding the numerical
example and the results obtained with the various strategies are then illustrated in
Sect. 4. In Sect. 5 the parallel implementation of the FE2 method is described, weak
parallel scalability for production runs up to the complete JUQUEEN are presented,
and strong parallel scalability results for up to 131;072 cores are reported. Finally,
the conclusion is presented in Sect. 6.

2 Thermodynamic and ContinuumMechanical Framework

We now present the thermo-elastoplastic framework used in our one-way scale-
coupling method. Thermo-mechanics at finite strains are governed by the balance
equation of linear momentum and energy. In this section, we only recapitulate the
main results of the formulation in the reference configuration, given as

� Div F S� f D 0 ; (1)

S � 1
2
PCC �0r � Div q0 � �0. P‰ C P��/ D 0 ; (2)

and refer the interested reader to [15] for a detailed derivation of these equations
and the corresponding weak forms required for the finite element implementation.
In equation (2), the Legendre transformation � D U � �� has been performed,
where � , U, � and � denote the Helmholtz free energy, the specific internal energy,
the specific entropy and the temperature, respectively, cf. [33] and [28]. S denotes

1http://www.fz-juelich.de/ias/jsc/EN/Expertise/High-Q-Club/FE2TI/_node.html

http://www.fz-juelich.de/ias/jsc/EN/Expertise/High-Q-Club/FE2TI/_node.html

94 D. Balzani et al.

the second Piola-Kirchoff stress tensor, C D FTF represents the right Cauchy
Green deformation tensor, F D Grad' is the deformation gradient and ' defines
the nonlinear deformation map, which maps points X of the undeformed reference
configuration B0 onto points x of the deformed (actual) configuration. Note that a
simple dot notation is used in S � PC to express the full contraction of S and PC. q0
is the heat flux through the body in the reference configuration, which is related to
the Cauchy heat flux q D �k�grad� by q0 D JF�1q. Herein, k� is the isotropic
heat conduction coefficient and J is the determinant of F. The operators Grad.
/
and grad.
/ denote the gradient with respect to coordinates in the reference and
actual configuration. Also, f, r and �0 are the body force vector, internal heat source
and the reference density of the body, respectively. Applying the standard Galerkin
method, the weak forms of these balance equations can be derived, see e.g. [34]
or [28]. Herein, approximations for the displacements in the sense of isoparametric
finite elements are inserted. Thus the system to be solved can be written as

Gu D Gint
u �Gext

u �
neleX
eD1
.ıdeu/

T
�
re;int

u � re;ext
u

� D 0 ; (3)

G� D Gint
� � Gext

� �
neleX
eD1
.ıde� /

T
h
re;int
� � re;ext

�

i
D 0 ; (4)

where ‘G’ denotes the weak forms, while the elemental residuals and degree of
freedom vectors are introduced as re and de respectively. Here, the subscripts ‘u’
and ‘�’ represent the mechanical and thermal contributions, respectively, and nele is
the number of elements.

2.1 Incorporation of Thermo-mechanics

Since advanced high strength steels are fundamentally thermo-mechanical in nature,
the study presented here employs a thermo-elastoplastic material model, as estab-
lished in [33] and [28]. The main features of the implementation are briefly
described in this section. The deformation gradient is multiplicatively decomposed
into an elastic (Fe) and a plastic part (Fp) such that F D FeFp. The isotropic free
energy function, incorporating isotropic hardening, takes the form� D �.be; �; ˛/,
where be D FeFeT and ˛ represent the left Cauchy-Green deformation tensor
and the equivalent plastic strain, respectively. The internal dissipation consists of
a mechanical and a thermal contribution, Dint D Dmech C Dtherm. The expressions
for these are obtained using the principle of maximum dissipation, the evolution
equations for the internal variables be; ˛ and the Kuhn-Tucker optimality conditions.
For a von Mises type limit surface, the mechanical part reduces to Dmech D
�

q
2
3
y.�/, where � is the consistency parameter and y.�/ the temperature dependent

initial yield stress. Exploiting the entropy inequality and Gauß-theorem in (1)

One-Way and Fully-Coupled FE2 Methods for Heterogeneous Elasticity and Plasticity 95

and (2) leads upon discretization to the detailed form of the elemental residual
vectors

re;int
u D

nenX
ID1

Z
Be
0

.BI
u/

TS dV ; (5)

re;int
� D

nenX
ID1

Z
Be
0

�
.BI

� /
Tq0 CNI�0�@

2
���
P� C NI�0�@

2
�˛� P̨

CNI�0�@
2
�be� � Pbe C NI�

q
2
3
y.�/

	
dV :

(6)

Here, Bu and B� matrices hold the derivatives of the shape functions with respect to
spatial coordinates, cf. [4], the (P
) represents the material time derivative of (
) and
nen is the number of nodes per element. Note that in the current work we use an
additively decoupled, isotropic free energy function with a mechanical part � e

vol C
� e

iso C � p, a thermo-mechanical coupling part � c and thermal part �� , i.e. � D
� e.be/C � p.˛/C � c.be; �/C ��.�/, with the individual parts

� e
vol D �

�0

�
1
2
.J2 � 1/� lnJ

�
;

� e
iso D �

2�0

�
trbe.detbe/�1=3 � 3� ;

� p D 1
2�0

H ˛2 ;

� c D � 3
�0
˛t .� � �0/ @J� e

vol ;

�� D ��0 c
�
� ln �

�0
� � C �0

	
:

(7)

For the yield stress y.�/, a linearly decreasing function in terms of the temperature
is considered. Here, H is the linear isotropic hardening modulus for plasticity.
The external residual vectors in Eqs. (3) and (4) are obtained on discretizing the
external parts of the weak form consisting of the traction vectors and the surface
heat fluxes for mechanical and thermal contributions respectively, cf. [34]. These are
not discussed here for conciseness of the text; for further details on the algorithmic
treatment of thermoplasticity see [28].

2.2 Implementation Using a Complex Step Derivative
Approximation

Two widely used numerical differentiation schemes, namely the finite difference
method (FD) and the Complex Step Derivative Approximation (CSDA) approach,
have been employed to evaluate the stiffness matrix in nonlinear finite element
simulations; cf. [22, 25]. Another successful approach is Automatic Differentiation
(AD) and, interestingly, relations of CSDA to the forward mode of AD have been
pointed out [13]. All these approaches eliminate the need to compute analytical

96 D. Balzani et al.

linearizations of the weak forms, which is especially useful in the early development
stage of elaborate material models. However, the FD approach leads to round-
off errors for small step sizes. The CSDA based strategy overcomes this issue by
applying perturbations (of size h) along the imaginary axis of the complex number
(cf. [31]) and thus permits the choice of perturbations at the order of the machine
precision. Thus, although the method is a (second order) approximation, as with
AD, local quadratic convergence can be expected. The implementation of CSDA
is simple, especially if a Fortran FD implementation is already available, since
Fortran and Fortran libraries have handled complex numbers consistently for a long
time. The computational cost, however, is typically larger than for the forward mode
of AD.

Our implementation of CSDA was extended also to nonlinear thermo-mechanical
problems, where again quadratic convergence rates were obtained; see [4]. A brief
summary of this method is presented here. Considering conservative loading and
the functional dependencies of the residuals, i.e., re;int

u WD re;int
u .deu;d

e
� / and re;int

� WD
re;int
� .deu;d

e
� /, the linearized increments are obtained by differentiating re;int

u and re;int
�

with respect to both deu and de� and can be written as

�Gint;h
u �

neleX
eD1
.ıdeu/

T
�
keuu�d

e
u C keu� �d

e
�

�
; (8)

�Gint;h
� �

neleX
eD1
.ıde� /

T
�
ke�u�d

e
u C ke�� �d

e
�

�
: (9)

Now the CSDA scheme can be used to evaluate the stiffness matrix contributions.
The approximations of the k-th column vectors Qkeuu.k/ and Qke�u.k/ in keuu and ke�u,

respectively, and of the j-th column vectors Qkeu�. j/ and Qke��. j/ in keu� and ke�� ,
respectively, are given by

Qkeuu.k/ WD
@re;int

u

@
˚
deu

k

�
=
h
reu.d

e
u C ih Qdeu.k/;de� /

i
h

;

Qkeu�. j/ WD
@re;int

u

@
˚
de�

j

�
=
h
reu.d

e
u;d

e
� C ih Qde�. j//

i
h

;

Qke�u.k/ WD
@re;int
�

@
˚
deu

k

�
=
h
re� .d

e
u C ih Qdeu.k/;de� /

i
h

;

Qke��. j/ WD
@re;int
�

@
˚
de�

j

�
=
h
re� .d

e
u;d

e
� C ih Qde�. j//

i
h

;

(10)

where the indices k 2 Œ1; tdofu� and j 2 Œ1; tdof� � on the left hand side of
the equations represent the column index. On the right hand side these indices

One-Way and Fully-Coupled FE2 Methods for Heterogeneous Elasticity and Plasticity 97

correspond to the individual perturbation vectors Qde whose components with indices
m 2 Œ1; tdofu� and q 2 Œ1; tdof� �, respectively, are defined as

fQdeu.k/gm D ı.k/m and fQde�. j/gq D ı. j/q : (11)

Herein, the Kronecker symbol is defined as ıab D 1 for a D b and ıab D 0

otherwise. tdofu and tdof� are the total mechanical and thermal elemental degrees of
freedoms, respectively, and = is the imaginary operator.

3 Framework for Direct-Micro-Macro Computations

The direct micro-macro approach for computation of material behavior of micro-
heterogeneous materials has been well-developed in the last 15 years, see e.g. [9–
12, 23, 24, 29], see also [27]. For sake of completeness, in the following subsection
this method is briefly recapitulated. Thereafter in Sect. 3.2, we discuss the multiscale
treatment proposed here to model DP steel sheet behavior.

3.1 General Approach

The general FE2 concept involves solving a microscopic boundary value problem
at each macroscopic integration point during the solution of the macroscopic
boundary value problem. These nested problems are defined on representative
volume elements (RVEs) that describe the complex geometry of the microstructure
adequately. Appropriate boundary conditions are applied to these in terms of, e.g.,
the deformation gradients at the macroscopic integration point. After solving the
microscopic problem, suitable volume averages of microscopic stresses P and
microscopic tangent moduli A are computed and returned back to the macroscopic
integration point, which replaces the evaluation of a classical phenomenological
macroscopic material law.

These averages are computed as

P D 1

V

Z
B0

P dV and A D 1

V

Z
B0

A dV � 1

V
LTK�1L ; L D

Z
B0

BTAdV :

(12)

Here, P, A represent the macroscopic first Piola-Kirchhoff stresses and the macro-
scopic material tangent moduli. The global stiffness matrix and the spatial deriva-
tives of the shape functions of the microscopic boundary value problem are denoted
by K and B, respectively. This procedure eliminates the need of a phenomenological
law at the macroscale. Furthermore, certain effects like anisotropy, and its evolution
as well as kinematic hardening are automatically included through the solution of
the micro-problem due to its heterogeneity.

98 D. Balzani et al.

Algorithm 1 Algorithmic description of the FE2TI approach. Overlined letters
denote macroscopic quantities. This algorithm consists of the classical FE2 scheme
using (ir)FETI-DP for solving the microscopic boundary value problems. We
consider all macroscopic as well as microscopic Newton iterations as converged,
if the l2-norm of the Newton update is smaller than 1e� 6. The GMRES iteration in
our FETI-DP methods is stopped, if a relative residual reduction of 1e�8 is reached.
This pseudocode is taken from [20]

Repeat until convergence of the Newton iteration:

1. Apply boundary conditions to RVE (representative volume element) based on macro-
scopic deformation gradient: Enforce x D FX on the boundary of the microscopic
problem @B in the case of Dirichlet constraints.

2. Solve one microscopic nonlinear implicit boundary value problem for each macroscopic
Gauß point using Newton-Krylov-(ir)FETI-DP or related methods.

3. Compute and return macroscopic stresses as volumetric average of microscopic stresses
Ph:

P
h D 1

V

X
T2�

Z
T
PhdV :

4. Compute and return macroscopic tangent moduli as average over microscopic tangent
moduli Ah:

A
h D 1

V

 X
T2�

Z
T
Ah dV

!
� 1

V
LT .K/�1 L :

5. Assemble tangent matrix and right hand side of the linearized macroscopic boundary

value problem using P
h

and A
h
.

6. Solve linearized macroscopic boundary value problem.
7. Update macroscopic deformation gradient F.

Note that, because of the two-scale procedure, the Newton linearization of the
FE2 method was not straight forward but rather a significant step in the development
of the method. In our fully coupled FE2 simulations, we use a consistent Newton
linearization and thus can expect locally quadratic convergence of the fully coupled
two-scale method, i.e., of the outermost loop in Algorithm 1.

For a brief description of the algorithm and an efficient parallel implementation,
see also Sect. 5.1 and Algorithm 1.

3.2 Approaches for Multiphase-Steel Incorporating
Thermo-mechanics

Two-scale analysis is performed to study the influence of macroscopic deformation
on the microscopic mechanical fields to obtain more realistic simulations of sheet

One-Way and Fully-Coupled FE2 Methods for Heterogeneous Elasticity and Plasticity 99

metal forming processes. For efficiency reasons, here, we focus on a one-way scale-
coupling scheme, using efficient parallel algorithms to solve complex microscopic
boundary value problems of DP steel microstructures. For that purpose we first
perform a thermo-mechanical simulation of the macroscopic sheet metal forming
process using a phenomenological thermo-elastoplastic material model at finite
strains, as described in Sect. 2, which would be used in engineering practice. Then,
in order to obtain more information of those mechanical fields at the microscale
which are important for failure initialization analysis, the macroscopic regime with
high plastic strains is identified. Only there, additional microscopic boundary value
problems are solved which are driven by the macroscopic deformation gradients and
temperatures computed at the macroscopic integration points. In detail, regarding
the displacements, linear displacement boundary conditions are applied to the real
DP steel microstructures and periodic boundary conditions are considered when
using statistically similar RVEs (Representative Volume Elements) in the sense
of [5]. The microstructure consists of two phases—ferrite as the matrix phase and
martensite as the inclusion phase.

With respect to the temperature, we focus on different approaches: (i) the
temperature calculated at the macroscopic integration point is applied to the
boundary of the microscopic boundary value problem, where thermo-mechanics are
considered and the temperature is free to evolve, and (ii) the microscopic thermal
fluctuations are considered to be small due to small deviations of thermo-mechanical
parameters for ferrite and martensite. Therefore, only mechanical boundary value
problems taking into account temperature-dependent yield stresses are considered
at the microscale. The latter approach enables more efficient computations since the
temperature is not a degree of freedom in the microscopic calculations anymore.
Simulations based on such one-way scale-couplings have two important advantages
compared with purely macroscopic computations: first, they provide valuable
information regarding those microscopic mechanical fields in the macroscopic
domains where failure is expected to initialize. Second, an estimation of the quality
of the macroscopic material model is obtained by comparing to the more accurate
micro-macro computation.

4 Numerical Examples for the One-Way FE2 Coupling

In the analysis performed here, we consider at the macroscale the extension of a
DP steel sheet containing a regular arrangement of holes. The dimensions of the
sheet and the diameter of the holes are 140 � 140 � 6mm and 20 mm, respectively.
A displacement of 10 mm is applied in X-direction at the outer surface of the
sheet such that the metal sheet is extended up to 14.28 % nominal strain. The time
considered for this deformation is 10 s. Due to the symmetry of the problem, we
only simulate 1/8th of the plate, see Fig. 1a, and incorporate appropriate symmetry
conditions. The plate is discretized with 10-noded tetrahedral finite elements.
As a phenomenological description at the macroscale, we consider the thermo-

100 D. Balzani et al.

Fig. 1 (a) 1=8th geometry of the plate with tetrahedral finite element mesh, macroscopic (b)
von Mises stress, (c) equivalent plastic strain and (d) temperature distributions in the deformed
configuration of the sheet metal after applying full extension at the macro-level

mechanical formulation of [28], which was implemented using the new CSDA
scheme. The initial yield stress as well as the linear hardening modulus were
adjusted to yield curves calculated as volumetric averages of purely mechanical
micro-macro computations of uni-axial tension tests. The hardening modulus was
chosen such that the model response matches this yield curve at approximately 30 %
strain. In the micro-macro computations the same thermo-mechanical framework
was used as in the macroscopic computations. The resulting distributions of stress,
equivalent plastic strains and temperature are as shown in Fig. 1b–d, respectively.
As can be seen, the fluctuation of temperature is rather small although rather large
plastic strains are obtained. However, in particular for the detection of necking, the
incorporation of even small temperature deviations may be essential, cf. the findings
in [28]. In Fig. 1a the eighth of the complete sheet metal considered for computation
is depicted. Additionally, the outline of a subregion is marked which is considered
as most critical for failure initialization since here the largest macroscopic stresses

One-Way and Fully-Coupled FE2 Methods for Heterogeneous Elasticity and Plasticity 101

Fig. 2 (a) Undeformed SSRVE structure for evaluation of the microscopic problem at the point of
interest indicated by the bullet and (b) deformed configuration of the SSRVE at full load

are found. This subregion is therefore considered as the most relevant regime, and
detailed micro-macro computations are performed, here. For this purpose, there the
deformation gradient and the temperature at each macroscopic integration point
is stored for every load step in order to be applied in subsequent microscopic
computations.

In order to analyze the influence of the two approaches (i) and (ii) we focus
on statistically similar RVEs (SSRVEs) which were computed for DP steel in [5];
cf. Fig. 2a. For the analysis, we consider a macroscopic integration point within the
critical region, where its position is marked by the bullet in Fig. 1a. The hardening
modulus for the pure ferrite and the pure martensite is chosen such that the model
response corresponds to the experimental yield stress in uni-axial tension at 10 %
strains. The distributions of von Mises stresses and equivalent plastic strains as
a result of the thermo-mechanical computations associated with approach (i) are
depicted in Fig. 3. They indicate a higher development of stresses and negligible
plastic strains in the martensitic inclusions. The ferritic matrix phase shows lower
stresses and higher plastic strains are accumulated here due to the lower yield stress
as compared to the martensite.

For the purely mechanical microscopic computation the temperature-dependent
initial yield stress y is taken into account such that y D h!.� � �0/C y0 � Qy0i C Qy0,
where the Macauley brackets h.
/i D 1

2
Œj.
/j C .
/� ensure a limiting yield

stress Qy0. Herein, � , �0 and ! are the current temperature, the room temperature
and a thermal softening parameter; y0 denotes the initial yield stress at room
temperature. When comparing the stresses and plastic strains resulting from the
purely mechanical computation where the temperature-dependent yield behavior is
incorporated (approach (ii)), see Fig. 4, we obtain quite similar distributions at the
microscale. This is also observed for the macroscopic values: the macroscopic von

102 D. Balzani et al.

Fig. 3 (a) Von Mises stresses and (b) equivalent plastic strain distributions at full macroscopic
deformation for the thermo-mechanical microstructure computations according to approach (i).
The SSRVE, see Fig. 2b, has been clipped to visualize the interior

Fig. 4 (a) Von Mises stresses and (b) equivalent plastic strain distributions over the SSRVE at full
macroscopic deformation for the purely mechanical calculations according to approach (ii). The
SSRVE, see Fig. 2b, has been clipped to visualize the interior

Mises stress is computed from the volume averaged Cauchy stress and takes a value
of 1050.4 MPa, whereas for the thermo-mechanical computation it is 1009.85 MPa.

Now, we compare the results of the micro-macro computations with the response
of the purely macroscopic phenomenological model. Therefore, the macroscopic
von Mises stress versus nominal extension at the bullet point in the sheet metal is
plotted in Fig. 5a. As can be seen, the difference between the purely macroscopic
computation and the micro-macro computation is rather large, compared to the
difference between the two approaches (i) and (ii). Furthermore, Fig. 5b shows
the temperature distribution at the microscale as a result of approach (i). A quite
small fluctuation even below 1 K is observed. This indicates that the consideration
of thermo-mechanics at the microscale is not necessarily required. In Fig. 5a also
the response of a purely mechanical micro-macro computation is plotted, where not
even the temperature dependency of the yield stress is taken into account. A small
deviation from the computation including temperature-dependent yield stresses
is observed. However, the incorporation of temperature-dependent evolving yield
stresses may be important in order to accurately represent a potential necking at the
microscale, cf. [28]. Therefore, in the following, the model based on approach (ii) is
used to perform parallel micro-macro simulations of the entire critical region as seen
in Fig. 1a which consists of 468 microscopic boundary value problems associated
with the macroscopic integration points. We consider realistic microstructures with

One-Way and Fully-Coupled FE2 Methods for Heterogeneous Elasticity and Plasticity 103

Fig. 5 (a) Comparison of the macroscopic von Mises stress vs. nominal strain curves resulting
from the macroscopic phenomenological law and from the micro-macro computations and (b)
bi-sectional view of the temperature distribution at the microscale as a result of approach (i)

Fig. 6 (a) Von Mises stresses in the critical region after applying the full extension obtained
from averaging the stress distributions from the microscopic boundary value problems with the
(c) realistic microstructure; (b) von Mises stresses in the deformed configuration of one exemplary
microscopic boundary value problem corresponding to the macroscopic integration point P marked
with the black dot in Fig. 6a

206;763 degrees of freedom each, see Fig. 6c. For an efficient and fast solution we
decomposed the microstructure in eight cubical subdomains and used a Newton-
Krylov FETI-DP approach. All microscopic computations have been performed
on eight cores of the CHEOPS cluster at the RRZK in Cologne. In Fig. 6b we
present the von Mises stresses in the deformed configuration of one exemplary
microscopic problem and in Fig. 6b the von Mises stresses in the complete critical
region of the macroscopic problem. The von Mises stresses in the integration
points of the macroscopic problem are obtained from a suitable volumetric average
over the microscopic quantities. When comparing the results with the purely
macroscopic computations shown in Fig. 1a, the qualitative distribution of the
stresses looks similar. The quantitative results differ however more than 30%, which
shows the necessity to analyze scale-coupled computations. In addition to a more
reliable prediction of stresses at the macroscale, microscopic stress distributions
are available building the basis for failure initialization analysis. We additionally
provide a brief summary of the RVE computations performed on CHEOPS and
using FETI-DP for the solution of all linear systems; see Table 1.

104 D. Balzani et al.

Table 1 RVEs using the J2 plasticity material model in 3D. For the three dimensional micro
structure; see Fig. 6c. Average Newton It. denotes the number of Newton iterations per RVE,
summed up over all macroscopic load steps and averaged over all RVEs

Realistic RVEs with thermo-plasticity and realistic microstructure

#RVEs D.o.f. FETI-DP Average Total

per RVE subdomains Newton It. core� h

per RVE

468 206,763 8 2113 9.28 h � 8 � 468

5 FE2TI: A Parallel Implementation of the Fully Coupled
FE2 Approach

The FE2TI software is a parallel implementation of the (fully coupled) FE2

method using FETI-DP domain decomposition methods to solve the microscopic
boundary value problems. We have reported on the software package and its
parallel performance previously [19, 20]. In the current paper, for the first time, we
provide weak scalability results for large production runs with parallel I/O on the
complete machine. We also investigate the strong scalability of the FE2TI software,
which has not been done before. For a detailed description of FETI-DP methods,
see [8, 16–18].

5.1 Implementation Remarks

FE2TI is implemented using PETSc 3.5.2 [3], MPI, and hybrid MPI/OpenMP. Fur-
thermore, we make use of the software libraries MUMPS [1, 2], UMFPACK [6], and
PARDISO [26] as sequential (or parallel) direct solvers for subdomain problems.
We also make use of inexact FETI-DP variants using BoomerAMG [14] from
the hypre [7] package as a preconditioner of the FETI-DP coarse problem. On
Blue Gene/Q, the software environment is compiled using the IBM XL C/C++
compilers using auto vectorization. When using UMFPACK as a direct solver for
the subproblems, a large portion of the computing time is spent inside IBM’s
ESSL library, which implements efficient auto vectorization. In the computations
presented here, we use piecewise linear brick elements (Q1) for all finite element
discretizations. In our FE2TI implementation, an MPI_Comm_split is used to
create subcommunicators for the computations on the RVEs (Representative Volume
Elements). On Blue Gene/Q supercomputers, we use the environment variable

PAMID_COLLECTIVES_MEMORY_OPTIMIZED=1

to enable an efficient communicator split even for a large number of cores.

One-Way and Fully-Coupled FE2 Methods for Heterogeneous Elasticity and Plasticity 105

Each RVE is assigned to exactly one of the MPI subcommunicators, and the
computations in 1. to 4. in Algorithm 1 can be carried out independently on
each subcommunicator. This includes several parallel (inexact reduced) FETI-
DP [17] setups and solves. Communication in between the several communicators
is only necessary for the assembly of the linearized macroscopic problem (see
5. in Algorithm 1) and the update of the macroscopic variables (see 7. in Algo-
rithm 1). The macroscopic solve (see 6. in Algorithm 1) is performed on each
MPI rank redundantly, using a sparse direct solver. This is feasible due to the
small macroscopic problem size. To assemble and solve the macroscopic problem
on each MPI rank, the consistent tangent moduli and the averaged stresses in the
macroscopic Gauß points have to be communicated to all ranks. Therefore, we have
implemented a gather operation in two steps. First, the tangent moduli and stresses
are averaged and collected on the master ranks of each RVE subcommunicator.
This corresponds to an MPI_Reduce operation on each subcommunicator. In a
second step, an MPI_Gather operation collects the data from the master ranks of
the subcommunicators in the global master rank. This avoids a global all-to-all
communication and only includes one MPI rank per RVE. Finally, we broadcast
all tangent moduli and stresses from the global master rank to all MPI ranks. For
some more details on the FE2TI implementation, see [19, 20].

A highly efficient parallel I/O strategy is also provided in the FE2TI package,
based on HDF5 [32]. All data, as stresses and displacements on the RVEs, is written
to one single parallel file, currently once every four macroscopic load steps. For a
production run on the complete JUQUEEN, we have measured an I/O time of less
than 2% of the total runtime.

In all computations presented in this section, we consider two different Neo-
Hooke materials. Note that for the results in this section, we do not use a CSDA
approximation but rather the exact tangent. We have inclusions of stiff material (E D
2100, D 0:3) in softer matrix material (E D 210, D 0:3) and consider a realistic
microstructure depicted in [20, Fig. 1]. The strain energy density function of the
Neo-Hooke material W [15, 34] is given by

W.u/ D �

2

�
tr.FTF/ � 3� � �ln .J/ C �

2
ln2 .J/

with the Lamé constants � D E
.1C/.1�2/ ; � D E

2.1C/ and the deformation gradient
F.x/ WD r'.x/; here, '.x/ D x C u.x/ denotes the deformation and u.x/ the
displacement of x.

5.2 Production Runs on the JUQUEEN Supercomputer

First, we present three different production runs of different problem sizes in
Table 2. Here, as a macroscopic problem, we discretize a thin plate with a
rectangular hole with 8, 32, and finally 224 finite elements. This corresponds to a

106 D. Balzani et al.

full simulation of 64, 256, and finally 1792 RVEs in the corresponding macroscopic
Gauß integration points. In 40–41 load steps, we apply a deformation of the plate of
approximately 8%. A visualization of the results of the largest production run has
been previously reported on in [20, Fig. 1]. Considering only a few macroscopic
load steps and disabling I/O, e.g., for checkpointing, we have already shown
nearly optimal weak scalability for the FE2TI package [19, 20]. Here, for the first
time, we present weak scalability for the production runs using full I/O (using
HDF5 [32]), many load steps, an unstructured mesh on the macroscale, and a
realistic microstructure from dual phase steel.

In our multiscale approach, the size of the RVE must be determined such that
it is representative of the microstructure (sufficient size) and that it must capture
all important features of the microstructure (sufficient resolution). Once the type
of discretization is chosen, the number of degrees of freedom for the RVE is
thus fixed. Here, each RVE has 823;875 degrees of freedom. In our computation,
a problem on an RVE is then solved iteratively and in parallel, using 512 MPI
ranks running on 256 cores, by a FETI-DP domain decomposition method using
512 subdomains. This choice results in an appropriate workload for each core.
Therefore, the largest multiscale production run on the complete JUQUEEN at
Forschungszentrum Jülich (917;504 MPI ranks on 458;752 cores) makes use of a
total number of 1;476;384;000 degrees of freedom (of course representing a much
larger full scale problem).

Neglecting the fact that we use slightly different dimensions for the macroscopic
plate in the three different production runs, this set of production runs can also
be viewed as a weak parallel scaling test. In addition to the total time to solution,
we have also reported on the average runtime for the solution of a nonlinear RVE
problem in Table 2. Here, we have a slight increase in the runtime of approximately
10% when scaling from 1 to 28 racks. This is partially due to a small increase
in I/O time and also slightly higher numbers of GMRES iterations in the FETI-
DP solver, probably due to the larger and more complicated macroscopic problem.
Nevertheless, for a complete production run including parallel I/O, these scalability
results are satisfying. In Table 2, we also provide timings for the macroscopic solve.
Since the macroscopic problem is currently solved redundantly on each core, this
phase of the method does not scale. But even for the largest production run, the cost

Table 2 Complete FE2 production runs using the FE2TI software; realistic microstructure in the
RVEs; nonlinear elasticity model; 32 MPI ranks per node. Avg. RVE Solve denotes the average
runtime to solve the nonlinear microscopic boundary value problems; Avg. Macro Solve denotes
the average runtime of a direct solve on the macroscale

JUQUEEN—Complete FE2 runs for elasticity

#Racks #MPI ranks #RVEs #Load steps Time (s) Avg. RVE solve (s) Avg. macro solve (s)

1 32;768 64RVEs 41LS 16;899 101.13 0:06

4 131;072 256RVEs 41LS 17;733 105.95 0:22

28 917;504 1792RVEs 40LS 18;587 112.48 1:54

One-Way and Fully-Coupled FE2 Methods for Heterogeneous Elasticity and Plasticity 107

for the macroscopic problem is currently negligible, i.e., it contributes less than 1%
to the total runtime.

5.3 Strong Scalability on JUQUEEN

For the first time, we also present strong scalability results for the FE2TI software
for a nonlinear model problem; see Table 3. Let us first describe the model problem
used here. On the macroscale, we use the geometry and discretization of the second
largest production run presented before in Table 2. Thus we have 256 microscopic
boundary value problems (RVEs). In contrast to the previous production runs, we
now consider smaller RVEs with 107K degrees of freedom each. Each RVE has
one stiff, spherical inclusion and is decomposed into 512 FETI-DP subdomains.
The subdomains are thus quite small, only consisting of 375 degrees of freedom.
Let us note that this setup avoids memory problems on the smallest partition (1024
MPI ranks). Let us remark that we always use 32 MPI ranks per BlueGene/Q node
and thus less than 512 MByte are available per rank. This setup was found to be
most efficient in [19, 20].

In our strong scaling test, we simulate one macroscopic load step which
converges in three Newton steps. In 222 of the 256 RVE problems, 9 microscopic
Newton steps are necessary for convergence during the complete macroscopic load
step. For the remaining 34 Gauß points only 8 microscopic Newton steps are

Table 3 Strong scaling of FE2 using the FE2TI software; nonlinear elasticity model; 32 MPI ranks
per node. Macroscopic problem with 256 Gauß integration points; in each macroscopic integration
point an RVE with 107K degrees of freedom is solved using 512 FETI-DP subdomains. Simulation
of one macroscopic load step. Time to Solution denotes the total time needed for one FE2 load step;
Eff. denotes the parallel efficiency, where the total time to solution on 1 024 ranks is chosen as
a baseline; Speedup denotes the speedup compared to the runtime on 1 024 cores; Avg. FETI-DP
Setup Time denotes the average runtime necessary for a FETI-DP setup for one linearized system
on an RVE; Avg. Ass. Time denotes the average runtime of the assembly of one linearized system
on an RVE; Avg. Solve Time denotes the average iteration time to solve one linearized system on
an RVE; all averages consider all linearized systems occurring in all microscopic Newton steps

Strong scaling on JUQUEEN

Time Avg. FETI-DP Avg. Avg.

MPI ranks to solution (s) Eff. (%) Speedup setup time (s) ass. time (s) solve time (s)

1024 1568:9 100 1:00 14:98 44:29 21:08

2048 822:0 95 1:91 6:97 22:13 11:54

4968 431:7 91 3:63 3:51 11:07 5:65

8192 225:0 87 6:97 1:85 5:54 3:05

16;384 138:7 71 11:39 1:04 2:77 2:32

32;768 90:0 54 17:42 0:61 1:38 1:43

65;536 40:4 61 38:81 0:39 0:69 0:67

131;072 35:6 34 44:10 0:29 0:35 0:65

108 D. Balzani et al.

performed. This means, depending on the RVE, we perform 11 or 12 FETI-DP
setups including problem assembly, while 35 or 36 FETI-DP solves are necessary.
Let us recall that we have to perform one FETI-DP setup and solve per microscopic
Newton step. Additionally, after convergence on the microscale, we have to compute
the consistent tangent moduli (see 4. in Algorithm 1). Therefore, for each of the
three macroscopic Newton steps, one further FETI-DP setup and nine FETI-DP
solves with different right hand sides are necessary. This sums up to the mentioned
number of FETI-DP setups and solves on each microstructure. In average, we have
44.8 GMRES iterations for each FETI-DP solve. Let us remark that we consider all
macroscopic as well as microscopic Newton iterations as converged, if the l2-norm
of the Newton update is smaller than 1e� 6.

Since the lion’s share of the runtime of the FE2TI package is spent in the
assembly of the microscopic problems and in FETI-DP, the strong scalability is
dominated by three phases: the problem assembly on the RVEs, the FETI-DP setup,
and the FETI-DP solve; see also [21] for a detailed discussion on the strong scaling
behavior of (ir)FETI-DP methods. Therefore, we provide detailed timings for those
three phases in Table 3. We obtain, as it can be expected, perfect scalability for
the assembly phase and also convincing results for the FETI-DP setup phase. The
FETI-DP solution phase scales well up to 65K ranks. Scaling further up to 131K
ranks the additional benefit is small. These results are also depicted in Fig. 7. All in
all, this leads to a satisfying strong scaling behavior of the complete FE2TI package
from 1K up to 65K ranks with 61% parallel efficiency and a speedup of 38.8; see
also Fig. 8. Let us finally remark that the FE2TI package can thus solve 256 times 36
linear systems with 107K degrees of freedom in approximately 40 s on 65K MPI
ranks and 32K BlueGene/Q cores.

Fig. 7 Strong scalability of
the FE2TI software. Figure
corresponds to data from
Table 3. Scalability of the
different phases of the RVE
solver FETI-DP

One-Way and Fully-Coupled FE2 Methods for Heterogeneous Elasticity and Plasticity 109

Fig. 8 Strong scalability of
the FE2TI software. Figure
corresponds to data from
Table 3. Top: Total time to
solution. Bottom: Speedup

6 Conclusion

We have presented two steps towards the realistic two-scale simulation of dual-
phase steel. First, we have discussed our isotropic, thermodynamically-consistent,
thermo-elastoplastic material model, based on [28], to be employed in the multiscale
simulation of dual-phase steel sheets. A numerical differentiation scheme, which
relies on the complex step derivative approximation approach, was used to compute
the tangent stiffness matrices in the thermo-mechanical simulations. It allows to
obtain locally quadratic convergence of Newton’s method. Within this setting, a one-
way coupling scheme is utilized to increase the efficiency in the multiscale analysis
of the steel sheet subjected to inhomogeneous deformations. The multiscale analysis
presented here indicates that the higher level of information involved in the micro-
level computation leads to a more accurate assessment of critical states during the
forming process. The resulting mechanical field distributions help to identify areas
in the microstructure geometry where concentrations of stress or strains may lead to
initialization of failure. This information is not accessible by purely phenomeno-
logical material models and limits their predictive capabilities. Additionally, the
comparison between various approaches at the micro-level show that, for DP steels,
where the thermal properties of the phases are almost identical, for the considered
nominal strain rates (PN" � 10�2 s�1), the thermo-mechanical consideration does not
yield significantly different response than the purely mechanical one. Thus, for cases

110 D. Balzani et al.

similar to the one presented here, considering only mechanics at the microscale can
reduce computational effort substantially without significant loss of accuracy.

Second, we have presented the FE2TI software package for the two-scale
simulation of steel. The package allows one-way coupling, as described above, as
well as two-way, two-scale coupling using the FE2 approach. We have discussed
weak scalability for up to 458;752 cores for the fully coupled FE2 production
runs using full I/O, many load steps, an unstructured mesh on the macroscale,
and a realistic microstructure from dual phase steel. As a result of the previous
considerations, in these computations, we could neglect temperature effects. We
have also presented strong scalability results for the FE2TI software using up to
131 072 cores of the JUQUEEN supercomputer.

Acknowledgements This work was supported by the German Research Foundation (DFG)
through the Priority Program 1648 “Software for Exascale Computing” (SPPEXA), projects BA
2823/8-1, KL 2094/4-1, RH 122/2-1, and SCHR 570/19-1.

The authors gratefully acknowledge the Gauss Centre for Supercomputing (GCS) for providing
computing time through the John von Neumann Institute for Computing (NIC) on the GCS share of
the supercomputer JUQUEEN [30] at Jülich Supercomputing Centre (JSC). GCS is the alliance of
the three national supercomputing centres HLRS (Universität Stuttgart), JSC (Forschungszentrum
Jülich), and LRZ (Bayerische Akademie der Wissenschaften), funded by the German Federal
Ministry of Education and Research (BMBF) and the German State Ministries for Research of
Baden-Württemberg (MWK), Bayern (StMWFK) and Nordrhein-Westfalen (MIWF).

The use of CHEOPS at Universität zu Köln and of the High Performance Cluster at
Technische Universität Bergakademie Freiberg are also gratefully acknowledged. Furthermore, the
authors D. Balzani and A. Gandhi appreciate S. Prüger for helpful scientific discussions.

References

1. Amestoy, P.R., Duff, I.S., Koster, J., L’Excellent, J.Y.: A fully asynchronous multifrontal solver
using distributed dynamic scheduling. SIAM J. Matrix Anal. Appl. 23(1), 15–41 (2001)

2. Amestoy, P.R., Guermouche, A., L’Excellent, J.Y., Pralet, S.: Hybrid scheduling for the parallel
solution of linear systems. Parallel Comput. 32(2), 136–156 (2006)

3. Balay, S., Brown, J., Buschelman, K., Gropp, W.D., Kaushik, D., Knepley, M.G., McInnes,
L.C., Smith, B.F., Zhang, H.: PETSc Web page. http://www.mcs.anl.gov/petsc (2014)

4. Balzani, D., Gandhi, A., Tanaka, M., Schröder, J.: Numerical calculation of thermo-mechanical
problems at large strains based on complex step derivative approximation of tangent stiffness
matrices. Comput. Mech. 55, 861–871 (2015)

5. Balzani, D., Scheunemann, L., Brands, D., Schröder, J.: Construction of two- and three-
dimensional statistically similar RVEs for coupled micro-macro simulations. Comput. Mech.
54, 1269–1284 (2014)

6. Davis, T.A.: Direct Methods for Sparse Linear Systems. SIAM, Philadelphia (2006)
7. Falgout, R.D., Jones, J.E., Yang, U.M.: The design and implementation of hypre, a library of

parallel high performance preconditioners. In: Bruaset, A.M., Bjorstad, P., Tveito, A. (eds.)
Numerical Solution of Partial Differential Equations on Parallel Computers. Lecture Notes in
Computational Science and Engineering, vol. 51, pp. 267–294. Springer, Berlin (2006). http://
dx.doi.org/10.1007/3-540-31619-1_8

http://www.mcs.anl.gov/petsc
http://dx.doi.org/10.1007/3-540-31619-1_8
http://dx.doi.org/10.1007/3-540-31619-1_8

One-Way and Fully-Coupled FE2 Methods for Heterogeneous Elasticity and Plasticity 111

8. Farhat, C., Lesoinne, M., LeTallec, P., Pierson, K., Rixen, D.: FETI-DP: a dual-primal unified
FETI method – part I: a faster alternative to the two-level FETI method. Int. J. Numer. Methods
Eng. 50, 1523–1544 (2001)

9. Feyel, F., Chaboche, J.: Fe2 multiscale approach for modelling the elastoviscoplastic behaviour
of long fibre SiC/Ti composite materials. Comput. Methods Appl. Mech. Eng. 183, 309–330
(2000)

10. Fish, J., Shek, K.: Finite deformation plasticity for composite structures: computational models
and adaptive strategies. Comput. Methods Appl. Mech. Eng. 172, 145–174 (1999)

11. Geers, M., Kouznetsova, V., Brekelmans, W.: Multi-scale first-order and second-order com-
putational homogenization of microstructures towards continua. Int. J. Multiscale Comput. 1,
371–386 (2003)

12. Golanski, D., Terada, K., Kikuchi, N.: Macro and micro scale modeling of thermal residual
stresses in metal matrix composite surface layers by the homogenization method. Comput.
Mech. 19, 188–201 (1997)

13. Griewank, A., Walther, A.: Evaluating Derivatives. Society for Industrial and Applied Mathe-
matics, 2nd edn. (2008). http://epubs.siam.org/doi/abs/10.1137/1.9780898717761

14. Henson, V.E., Yang, U.M.: BoomerAMG: a parallel algebraic multigrid solver and precondi-
tioner. Appl. Numer. Math. 41, 155–177 (2002)

15. Holzapfel, G.A.: Nonlinear Solid Mechanics. A Continuum Approach for Engineering. John
Wiley and Sons, Chichester (2000). http://opac.inria.fr/record=b1132727

16. Klawonn, A., Rheinbach, O.: Robust FETI-DP methods for heterogeneous three dimensional
elasticity problems. Comput. Methods Appl. Mech. Eng. 196(8), 1400–1414 (2007)

17. Klawonn, A., Rheinbach, O.: Highly scalable parallel domain decomposition methods with an
application to biomechanics. ZAMM Z. Angew. Math. Mech. 90(1), 5–32 (2010). http://dx.
doi.org/10.1002/zamm.200900329

18. Klawonn, A., Widlund, O.B.: Dual-primal FETI methods for linear elasticity. Commun. Pure
Appl. Math. 59(11), 1523–1572 (2006)

19. Klawonn, A., Lanser, M., Rheinbach, O.: EXASTEEL – computational scale bridging using a
FE2TI approach with ex_nl/FE2 . Technical report FZJ-JSC-IB-2015-01, Jülich Supercomput-
ing Center, Germany (2015). https://juser.fz-juelich.de/record/188191/files/FZJ-2015-01645.
pdf. In: Frings, Brian J.N. Wylie (eds.) JUQUEEN Extreme Scaling Workshop 2015. Dirk
Brömmel and Wolfgang

20. Klawonn, A., Lanser, M., Rheinbach, O.: FE2TI: Computational Scale Bridging for Dual-
Phase Steels (2015). Accepted for publication to the proceedings of the 16th ParCo Conference,
Edinburgh. To be published in Advances in Parallel Computing

21. Klawonn, A., Lanser, M., Rheinbach, O.: Towards extremely scalable nonlinear domain
decomposition methods for elliptic partial differential equations. SIAM J. Sci. Comput. 37(6),
C667–C696 (2015)

22. Miehe, C.: Numerical computation of algorithmic (consistent) tangent moduli in large-strain
computational inelasticity. Comput. Methods Appl. Mech. Eng. 134, 223–240 (1996)

23. Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity.
simulation of texture development in polycrystalline materials. Comput. Methods Appl. Mech.
Eng. 171, 387–418 (1999)

24. Moulinec, H., Suquet, P.: A numerical method for computing the overall response of nonlinear
composites with complex microstructure. Comput. Methods Appl. Mech. Eng. 157, 69–94
(1998)

25. Pérez-Foguet, A., Rodríguez-Ferran, A., Huerta, A.: Numerical differentiation for local and
global tangent operators in computational plasticity. Comput. Methods Appl. Mech. Eng. 189,
277–296 (2000)

26. Schenk, O., Gärtner, K.: Two-level dynamic scheduling in PARDISO: improved scalability on
shared memory multiprocessing systems. Parallel Comput. 28(2), 187–197 (2002)

27. Schröder, J.: A numerical two-scale homogenization scheme: the FE2-method. In: J. Schröder,
K. Hackl (eds.) Plasticity and Beyond – Microstructures, Crystal-Plasticity and Phase Transi-
tions. CISM Lecture Notes 550. Springer, Wien (2013)

http://epubs.siam.org/doi/abs/10.1137/1.9780898717761
http://opac.inria.fr/record=b1132727
http://dx.doi.org/10.1002/zamm.200900329
http://dx.doi.org/10.1002/zamm.200900329
https://juser.fz-juelich.de/record/188191/files/FZJ-2015-01645.pdf
https://juser.fz-juelich.de/record/188191/files/FZJ-2015-01645.pdf

112 D. Balzani et al.

28. Simo, J., Miehe, C.: Associative coupled thermoplasticity at finite strains: formulations,
numerical analysis and implementation. Comput. Methods Appl. Mech. Eng. 98, 41–104
(1992)

29. Smit, R., Brekelmans, W., Meijer, H.: Prediction of the mechanical behavior of nonlinear
heterogeneous systems by multi-level finite element modeling. Comput. Methods Appl. Mech.
Eng. 155, 181–192 (1998)

30. Stephan, M., Docter, J.: JUQUEEN: IBM Blue Gene/Qr Supercomputer System at the Jülich
Supercomputing Centre. JLSRF 1, A1. http://dx.doi.org/10.17815/jlsrf-1-18 (2015)

31. Tanaka, M., Fujikawa, M., Balzani, D., Schröder, J.: Robust numerical calculation of tangent
moduli at finite strains based on complex-step derivative approximation and its application to
localization analysis. Comput. Methods Appl. Mech. Eng. 269, 454–470 (2014)

32. The HDF Group: Hierarchical Data Format, version 5. http://www.hdfgroup.org/HDF5/ (1997-
NNNN)

33. Wriggers, P., Miehe, C., Kleiber, M., Simo, J.: On the coupled thermomechanical treatment of
necking problems via finite element methods. Int. J. Numer. Methods Eng. 33, 869–883 (1992)

34. Zienkiewicz, O.C., Taylor, R.L.: The Finite Element Method for Solid and Structural Mechan-
ics. Elsevier, Oxford (2005)

http://dx.doi.org/10.17815/jlsrf-1-18
http://www.hdfgroup.org/HDF5/

Scalability of Classical Algebraic Multigrid
for Elasticity to Half a Million Parallel Tasks

Allison H. Baker, Axel Klawonn, Tzanio Kolev, Martin Lanser,
Oliver Rheinbach, and Ulrike Meier Yang

Abstract The parallel performance of several classical Algebraic Multigrid (AMG)
methods applied to linear elasticity problems is investigated. These methods include
standard AMG approaches for systems of partial differential equations such as the
unknown and hybrid approaches, as well as the more recent global matrix (GM) and
local neighborhood (LN) approaches, which incorporate rigid body modes (RBMs)
into the AMG interpolation operator. Numerical experiments are presented for both
two- and three-dimensional elasticity problems on up to 131,072 cores (and 262,144
MPI processes) on the Vulcan supercomputer (LLNL, USA) and up to 262,144
cores (and 524,288 MPI processes) on the JUQUEEN supercomputer (JSC, Jülich,
Germany). It is demonstrated that incorporating all RBMs into the interpolation
leads generally to faster convergence and improved scalability.

1 Introduction

Classical Algebraic Multigrid (AMG) methods were originally designed for scalar
partial differential equations (PDEs) and usually assume that the nullspace of the
operator is one-dimensional and constant. This assumption does not hold for many
systems of PDEs. For elasticity problems in particular, the nullspace consists of
three (in 2D) or six (in 3D) rigid body modes (RBMs), which comprise translations

A.H. Baker (�)
National Center for Atmospheric Research, Boulder, CO, USA
e-mail: abaker@ucar.edu

A. Klawonn (�) • M. Lanser (�)
Mathematisches Institut, Universität zu Köln, Köln, Germany
e-mail: axel.klawonn@uni-koeln.de; martin.lanser@uni-koeln.de

T. Kolev (�) • U.M. Yang (�)
Lawrence Livermore National Laboratory, Livermore, CA, USA
e-mail: tzanio@llnl.gov; umyang@llnl.gov

O. Rheinbach (�)
Institut für Numerische Mathematik und Optimierung, Technische Universität Bergakademie
Freiberg, Freiberg, Germany
e-mail: oliver.rheinbach@math.tu-freiberg.de

© Springer International Publishing Switzerland 2016
H.-J. Bungartz et al. (eds.), Software for Exascale Computing – SPPEXA
2013-2015, Lecture Notes in Computational Science and Engineering 113,
DOI 10.1007/978-3-319-40528-5_6

113

mailto:abaker@ucar.edu
mailto:axel.klawonn@uni-koeln.de
mailto:martin.lanser@uni-koeln.de
mailto:tzanio@llnl.gov
mailto:umyang@llnl.gov
mailto:oliver.rheinbach@math.tu-freiberg.de

114 A.H. Baker et al.

and rotations. Classical AMG methods, including standard approaches modified to
handle systems of PDEs, e.g., the unknown approach [23], interpolate translations
but not rotations. This limitation will typically result in a loss of optimality and
scalability for these approaches when applied to systems problems.

Different approaches to handle linear elasticity problems with AMG methods
have been suggested in the last decades, e.g., smoothed aggregation [7, 27],
unsmoothed aggregation [3, 4, 8, 19–21], AMGe [6], element-free AMGe [15], local
optimization problems to incorporate the RBMs in the interpolation [13], or the
global matrix (GM) and local neighborhood (LN) approaches [2].

In this paper, we provide a brief overview of AMG methods and AMG for
systems in Sects. 2 and 3. In Sects. 4 and 5, we describe the GM and LN approaches,
which were first introduced in [2]. These two approaches explicitly incorporate
given smooth error vectors into the AMG interpolation in order to handle the
correction of these error components in the coarse grid correction. We note that the
descriptions of the AMG methods and interpolations in this paper are based on both
[2] (which only considered sequential AMG) and on Chap. 4 of the dissertation [18].
In Sect. 6, we compare the performance of AMG approaches for systems of PDEs
and show that the GM and LN approaches can improve convergence and scalability
for elasticity problems. The parallel numerical results on up to half a million MPI
processes presented in Sect. 6 are new and have not been published elsewhere (as
[2] contained only serial results for small problems).

2 Algebraic Multigrid

We first give a brief overview of AMG. Consider the linear system Au D f , which is
often generated from the discretization of a scalar PDE. We denote with ui the i-th
entry of u. As in geometric multigrid, one needs to define a hierarchy of coarser grids
or levels, adequate smoothers or relaxation schemes for each level and restriction,
and interpolation operators to move between levels. However, unlike geometric
multigrid, algebraic multigrid methods are applied to the linear system without any
geometrical or mesh-related information.

Because grid information is not given, one needs to use the linear system to
define a “grid”. The variables ui are now the grid points and the non-zero entries aij
of matrix A define the connections between the grid points. Because not all variables
are equally important, one defines the concept of strong dependence. For a threshold
0 < � � 1, a variable ui strongly depends on the variable uj if

� aij � � max
k¤i

.�aik/ : (1)

To determine the coarse-grid variables, which are a subset of the variables ui, one
first eliminates all connections that do not fulfill (1). Then one applies a coarsening
algorithm to the remaining “grid”. For brevity, we do not describe any coarsening

Parallel Scalability of AMG Variants for Elasticity to Half a Million Parallel Tasks 115

algorithms here, but note that descriptions of several common coarsening strategies
and an investigation of their parallel performance can be found in [28] (e.g., Ruge-
Stüben [23, 25], HMIS [11] and Falgout [16]).

In AMG, errors are reduced by two separate operations: the smoothing or
relaxation steps and the coarse grid correction. For an optimal AMG method,
the coarse grid correction and the relaxation strategy must be chosen carefully to
complement each other. While simple pointwise relaxation methods such as Jacobi
or Gauß-Seidel rapidly reduce errors in the directions of eigenvectors associated
with large eigenvalues, the reduction in directions of eigenvectors associated with
small eigenvalues is less optimal; see [6] for details. Errors that are poorly reduced
by the smoothing steps are referred to as smooth errors. More precisely, algebraic
smooth errors can be characterized by Ae � 0, where e is an eigenvector associated
with a small eigenvalue. For an effective AMG method, the smooth error must be
reduced by the coarse grid correction. Therefore, an interpolation operator P needs
to be defined in such a way that the smooth errors are approximately in the range
of P [6]. For additional details on interpolation operators, we refer the reader to
various publications, e.g. [12, 23, 25, 26, 29]. The restriction operator R is often
defined to be the transposed operator PT , so that in the case of a symmetric positive
definite matrix A, the coarse grid operator RAP is also symmetric positive definite.
After interpolation, restriction, and coarse grid operators have been defined and a
relaxation strategy has been determined, the solve phase can be performed.

For simplicity, consider the two-level case with one fine grid and one coarse grid.
For an approximate solution u and the exact solution u� of the system Au� D f on
the fine grid, we have the relationship Ae D r, where e WD u� � u is the error
vector and r WD f �Au is the residual. One AMG cycle to correct (or update) u is as
follows:

(1) Smooth 1 times on: Au D f
(2) Compute the residual: r D f � Au
(3) Solve on the coarse grid: RAPec D Rr
(4) Correct u: u D uC Pec
(5) Smooth 2 times on: Au D f :

T obtain a full multi-level AMG V-cycle, one needs to apply this algorithm
recursively, as depicted in Fig. 1. For more details on classical AMG methods, see,
e.g., [23, 25].

3 Algebraic Multigrid for Systems of PDEs

We now consider a linear system of equationsAu D f derived from the discretization
of a system of PDEs with p scalar functions or unknowns. Now, each variable or
degree of freedom (dof) of the linear system describes one physical quantity in

116 A.H. Baker et al.

Fig. 1 One AMG V-cycle. Smoothing on the fine grid ! Restricting to the coarsest grid !
Solving on coarsest grid! Interpolating to the finest grid (Figure from [18])

a grid point or node. For example, in linear or nonlinear elasticity, we have one
dof describing one spatial direction in each node. For simplicity, we restrict our
presentation here to the two-dimensional case and consider an elasticity problem
with two unknowns, x and y, representing the two spatial directions. A detailed
three-dimensional description can be found in [2].

For algebraic multigrid methods, the two common approaches to treating systems
of PDEs such as Au D f are the unknown approach (U-AMG) and the nodal
approach, e.g., [1, 10, 14, 22, 23, 25]. While U-AMG completely separates the
different physical quantities, the nodal approach considers all unknowns belonging
to the same node at once and thus acts on a nodal basis.

We first take a brief look at the U-AMG. Here, we assume an unknown-related
ordering of the system matrix (i.e., first all dofs related to the unknown x followed
by those associated with y):

A D
�
Axx Axy

Ayx Ayy

�
: (2)

One now applies classical AMG coarsening and interpolation strategies to the
different variables separately, i.e., only to the diagonal blocks Axx and Ayy. Note
that this strategy ignores couplings between unknowns x and y, which are contained

Parallel Scalability of AMG Variants for Elasticity to Half a Million Parallel Tasks 117

in Axy and Ayx, and leads to an AMG interpolation matrix P that has the diagonal
block structure

P D
�
Px 0

0 Py

�
: (3)

In general, U-AMG is often used to handle systems of PDEs and is quite effective
for problems with weak coupling between the different unknowns. Of course,
performance also strongly depends on the general quality of the chosen coarsening,
interpolation, and smoothing techniques for the diagonal blocks Axx and Ayy.

We now describe the nodal approach, which is often a more effective approach
for problems with a stronger coupling between the different physical quantities.
If we block all unknowns that share the same node and consider a node-related
ordering, then the system matrix A can be written as

A D

2
6664
A11 A12 � � � A1N
A21 A22 � � � A2N
:::

:::
: : :

:::

AN1 AN2 : : : ANN

3
7775 ; (4)

where the 2 � 2 blocks Aij connect nodes i and j. Note that if we define N as the
number of nodes or grid points, then A is a N � N block matrix. With the nodal
approach, we consider strong dependence between two nodes i and j, instead of
between two variables. Therefore, we now have to compare block entries, such as Aji

or Ajj. This comparison typically involves an appropriate norm such as the Frobenius
norm jj � jjF or the row-sum norm jj � jj1. Applying the norm to the blocks of the
system matrix A results in a condensed N � N matrix with scalar entries

C D

2
6664
c11 c12 � � � c1N
c21 c22 � � � c2N
:::

:::
: : :

:::

cN1 cN2 : : : cNN

3
7775 WD

2
6664
jjA11jj jjA12jj � � � jjA1N jj
jjA21jj jjA22jj � � � jjA2N jj
:::

:::
: : :

:::

jjAN1jj jjAN2jj : : : jjANN jj

3
7775 : (5)

The definition of strong dependence in Eq. (1) is based on A or C being an M-matrix,
i.e., a matrix whose off-diagonal elements have the opposite sign of the diagonal
elements. Therefore, we change the diagonal elements cii of C to cii D �jjAiijj or

cii D �
NX

jD1;j¤i

jjAijjj: (6)

This approach as well as additional options for defining C are further discussed
in [10]. In our experiments, we found the latter approach (i.e., the row-sum norm) to
give better convergence, and we are using Eq. (6) in the numerical results presented

118 A.H. Baker et al.

in Sect. 6. The AMG coarse grids are now obtained by applying classical AMG
coarsening techniques to the condensed matrix C. In the nodal coarsening approach,
all unknowns on one grid point share the same set of coarse grids. Note the contrast
with the unknown approach, which can result in completely different coarse meshes
for each unknown. The interpolation matrix in the nodal approach can be obtained
by applying scalar AMG interpolation techniques to the blocks (e.g., [14]). Another
option, used in our experiments in Sect. 6, is to combine nodal coarsening with
unknown-based interpolation. We call this approach the hybrid approach (H-AMG).

4 The Global Matrix Approach

As mentioned in Sect. 2, smooth error vectors should be in the range of the
interpolation operator. In the case of linear elasticity, the nullspace of the matrix
A consists of the rigid body modes (RBMs), i.e., all rotations and translations
of the domain. Since classical AMG interpolation P already interpolates constant
vectors exactly, we only have to take care of rotations (i.e., in two dimensions,
the single rotation s.x; y/ WD Œ y;�x�). A possible approach to incorporate an
exact interpolation of smooth error vectors in the AMG interpolation is, as already
mentioned, the global matrix (GM) approach, introduced in [2]. The following
description is restricted to two levels. A generalization to the multilevel-case can
be found in [2].

The GM approach is based on the idea of augmenting a given global AMG
interpolation matrix P with several matrices Qj. Each matrix Qj is chosen to exactly
interpolate a specified smooth error vector sj. We designate the rotation s WD Œ y;�x�
in two dimensions as the smooth error vector. We define sC as the restriction of s
onto the coarse grid and define a new interpolation matrix QP by augmenting P:

eP WD ŒP Q�; such that s 2 range.eP/ : (7)

There are several possibilities to define a matrix Q fulfilling Eq. (7) and also retain
the sparsity of P. We will consider both variants suggested in [2]. For Variant 1 or
GM1 we defineeP such that

eP
�
0

1

�
D s ; (8)

whereas for Variant 2 or GM2,eP is defined such that

eP
�
sC
1

�
D s : (9)

Parallel Scalability of AMG Variants for Elasticity to Half a Million Parallel Tasks 119

For GM1, the coefficients Qij of Q, where i is the index of a fine grid point and j the
index of a coarse grid point, are then defined as

Qij WD Pij

� siP
k2Ci

Pik

	
; (10)

where Ci is the set of coarse points in the direct neighborhood of i, i.e., the indices
of the columns with non-zero entries in row i of the interpolation P. For GM2, the
entries Qij, are given by

Qij WD Pij

� si
.
P
k2Ci

Pik/
� .sC/j

	
: (11)

The unknown-based GM interpolation in two dimensions can then be written as

eP D
�
Px 0 Qx

0 Py Qy

�
;

where Qx and Qy can be computed independently and have the same sparsity as Px

and Py. Note that this leads to a coarse grid space with a larger number of degrees of
freedom than the coarse grid space generated by the unknown-based or the hybrid
approach. The increase in degrees of freedom is even further exacerbated in three
dimensions, where one needs to add three rigid body modes. So, while we expect
improved convergence, the new method is potentially significantly more expensive,
and the increased complexities could prevent better performance. Therefore, to
mitigate the increase in complexities, we also truncate the Q matrices (see also our
numerical results in Sect. 6). Truncation of Q needs to be done independently from
truncation of P, because P-truncation is normalized to interpolate constants whereas
the truncated Q matrices need to interpolate the rotations. When truncating Q to QQ,
we adjust the weights of QQ so that the row sums of QQ equal those of Q.

Interestingly enough, the application of both variants beyond the first level leads
to very different algorithms. GM1 needs to only interpolate constants after the
first level, whereas GM2 needs to continue to interpolate coarser versions of the
rigid body modes, thus requiring the storage of coarse grid versions of the rigid
body modes as well as additional computations. More details are available in [2].
However, note that GM2 leads to coefficients of similar size, which is not the case
for GM1. It is therefore much more difficult to effectively truncate the Q matrices
generated in GM1. This difficulty will become evident in Sect. 6.

120 A.H. Baker et al.

5 The Local Neighborhood Approach

We now consider an approach where the rigid body modes are incorporated locally.
Because exact local interpolation leads to exact global interpolation, this approach
should work at least as well as the global matrix approach. This approach requires
looking at interpolation from a different angle. Assume that the error at the fine
points, eF , is interpolated by the error at the coarse points, eC, such that

eF D WFCeC : (12)

Let QC be the set of new coarse points that have been introduced by adding new
degrees of freedom to the coarse nodes. Further, s is a rigid body mode, sC is s at the
original coarse grid points, and sF is s at the fine grid points. The idea for the local
neighborhood approach is then to exactly interpolate the rigid body mode using an
extension operator

eF D WFCeC CWF QCe QC s:t: sF D WFCsC CWF QCs QC ; (13)

where s QC D 1 at the new degrees of freedom in QC. The LN interpolation matrix
needs to be defined by harmonic extension based on the local extension QWFC D
ŒWFC;WF QC�. Let Ds be the matrix with diagonal s. Because WFC interpolates
constants, the following definition, which is similar to GM2, satisfies Eq. (13):

WF QC D ŒDF
s WFC �WFCD

C
s � : (14)

To allow for an arbitrary interpolation matrix P, the implementation of this
approach performs a preprocessing step (cf. “iterative weight refinement” [9]) that
results in NP where

NPij D � 1
aii

�
aij C

X
k2Fi

aikwkj

	
; (15)

where Fi is the fine neighborhood of point i and

wkj D PkjP
n2Ci

Pkn
: (16)

Now that NP is based on harmonic extension,Q can be determined using the following
formula

Qij D � 1
aii

X
k2Fi

aikwkj.sk � sj/ : (17)

Parallel Scalability of AMG Variants for Elasticity to Half a Million Parallel Tasks 121

For k rigid body modes s1; : : : ; sk, the new LN interpolation operator is given by

QP D Œ NP Q1 : : : Qk � : (18)

Note that this approach assumes that As D 0. However, the unknown-based
interpolation is not generated from A, but from the block diagonal matrix AD with
block diagonals Axx and Ayy in 2D (as well as Azz in 3D). In this situation it is
important to modify Eq. (17) by incorporating the non-zero residual. We refer to [2]
for further details. In addition, like GM2, the LN approach requires the generation
of Q on all coarse levels.

6 Numerical Results

In this section, we present numerical results that compare the performance of the
previously described AMG approaches. AMG is here used as a preconditioner to
either GMRES or CG. The parallel experiments were conducted on the Vulcan
supercomputer (LLNL), except for those presented in Table 6, which were computed
on the JUQUEEN supercomputer (JSC) [24]. JUQUEEN and Vulcan were ranked
11th and 12th respectively on the TOP500 list of the world’s fastest supercomputers
of November 2015. JUQUEEN is a 28,672 node 6 Petaflop Blue Gene/Q system at
Jülich Supercomputing Center (JSC, Germany), with a total number of 458;752
processor cores. Vulcan is a 24;576 node 5 Petaflop Blue Gene/Q production
system at Lawrence Livermore National Laboratory (USA) with a total number of
393;216 processor cores. Both Blue Gene/Q systems use a Power BQC 16C 1.6 GHz
processor with 16 cores and 16 GB memory per node.

We use BoomerAMG [16], the unstructured algebraic multigrid solver in hypre
version 2.10.0b [17], which now provides an efficient parallel implementation of
the GM and the LN approaches. In hypre version 2.10.0b, the user now simply
has to provide the smooth error vectors on the fine grid in addition to the linear
system. In our case, we provide the rotations sj, one in 2D, three in 3D. In order to
make efficient use of the hardware threads for the 3D results in Tables 3 and 6, we
use oversubscription with 2 MPI ranks for each core of the Power BQC processor.
Note that no parallel results are given in [2], as a parallel implementation was not
available at that time. To ensure a fair comparison of the different methods, we
chose an AMG setup such that all components have shown the potential to scale up
to large scales. In particular, for all methods, we use HMIS coarsening, introduced
in [11], the extended+i interpolation method described in [12, 29] and symmetric
SOR/Jacobi smoothing in a V(1,1)-cycle.

We consider the compressible linear elasticity problem

�2� div.�.u// � �grad.div.u// D f ;

122 A.H. Baker et al.

where u is the unknown displacement and �.u/ is the strain. The parameters are
� D E

.1C/.1�2/ ; � D E
2.1C/ (cf. [5]), where the Young modulus is E D 210, and

we vary the Poisson ratio between 0:3 and 0:49.
More detailed descriptions of the various model problems in two and three

dimensions are given in subsequent subsections. The finite element assembly is
performed in PETSc, and we also use PETSc’s GMRES/CG implementation. In
all tables we use the abbreviations U-AMG for the unknown approach, H-AMG for
the hybrid approach with the nodal coarsening strategy in Eq. (6) and the row-sum
norm, andH-AMG-GM1/GM2/LN for the interpolation approaches GM1, GM2, and
LN, respectively. Cop denotes the operator complexity, which is defined as the sum
of the non-zeros of all matrices Ai on all levels divided by the number of non-zeros
of the original matrix A. Operator complexity is an indication of memory usage and
the number of flops per iteration and also affects setup times. In order to reduce
Cop, we truncate P to at most Pmax non-zero elements per row and use a truncation
factor of Q-th (absolute threshold) to truncate Q. In the tables, we mark the fastest
time (for the sum of setup and solve) as well as the lowest number of iterations
in bold face. As a baseline for our weak scalability tests, in order to avoid cache
effects, we use the smallest problem which still makes use of at least a single full
node.

6.1 Results in Two Dimensions

If a Dirichlet boundary condition is applied to a large portion of the boundary,
standard nodal or unknown approaches are known to perform well, and we do not
expect any additional benefit from the GM or LN approach. Therefore, we consider
an elasticity problem on a rectangular domain Œ0; 8� � Œ0; 1� in 2D, fixed on one of
the short sides. A volume force orthogonal to the longer sides is applied. We refer
to this problem as 2D beam, and a solution for a linear elastic material is presented
in Fig. 2. We use piecewise quadratic finite elements on triangles in all experiments
in two dimensions, and, by reordering the unknowns, we ensure that each MPI rank
holds a portion of the beam of favorable shape, i.e., close to a square. We present
weak scalability results for the 2D beam in Tables 1 and 2, comparing the unknown

Fig. 2 Solution of the 2D beam considering linear elasticity with E D 210 and D 0:3. The
color represents the norm of the displacement

Parallel Scalability of AMG Variants for Elasticity to Half a Million Parallel Tasks 123

T
ab

le
1

W
ea

k
sc

al
ab

il
it

y
of

th
e
2D

be
am

pr
ob

le
m

w
it

h
E
D

2
1
0

an
d

D

0
:3

;
it

er
at

iv
e

so
lv

er
:

pr
ec

on
di

ti
on

ed
G

M
R

E
S;

st
op

pi
ng

to
le

ra
nc

e
fo

r
th

e
re

la
tiv

e
re

si
du

al
:

1e
-8

;
qu

ad
ra

ti
c

tr
ia

ng
ul

ar
fin

it
e

el
em

en
ts

;
P
re
co
nd
it
io
ne
r

de
no

te
s

th
e

A
M

G
ap

pr
oa

ch
(o

ne
V

-c
yc

le
);
P
m
ax
/Q

-t
h

de
no

te
s

th
e

tr
un

ca
ti

on
of

th
e

in
te

rp
ol

at
io

n
op

er
at

or
s

fo
r
P

(m
ax

no
n-

ze
ro

s
pe

r
ro

w
)

an
d
Q

(a
bs

ol
ut

e
th

re
sh

ol
d)

;
It
.

de
no

te
s

th
e

nu
m

be
r

of
G

M
R

E
S

it
er

at
io

ns
an

d
(C
op
)

th
e

op
er

at
or

co
m

pl
ex

it
y;

Ti
m
e
G
M
R
E
S

de
no

te
s

th
e

ru
nt

im
e

of
th

e
A

M
G

-G
M

R
E

S
so

lv
e

ph
as

e;
Ti
m
e
B
oo
m
er
Se
tu
p

de
no

te
s

th
e

ti
m

e
sp

en
ti

n
th

e
B

oo
m

er
A

M
G

se
tu

p;
Se
tu
p

+
So
lv
e

de
no

te
s

th
e

to
ta

ls
ol

ut
io

n
ti

m
e

sp
en

ti
n

th
e

A
M

G
se

tu
p

(B
oo

m
er

Se
tu

p)
an

d
th

e
A

M
G

-G
M

R
E

S
(T

im
e

G
M

R
E

S)
so

lv
e.

T
he

fa
st

es
t

va
ri

an
ti

s
m

ar
ke

d
in

bo
ld

fa
ce

#M
PI

ra
nk

s
T

im
e

T
im

e
T

im
e

(=
#C

or
es

)
Pr

ob
le

m
si

ze
Pr

ec
on

di
tio

ne
r

Pm
ax

/Q
-t

h
It

.(
C

op
)

G
M

R
E

S
(s

)
B

oo
m

er
Se

tu
p

(s
)

Se
tu

p
+

So
lv

e
(s

)

32
6
4
3
;6
0
2

U
-A

M
G

–
/–

23
(2

.4
)

4
:5

1
:1

5
:6

H
-A

M
G

–
/–

21
(2

.5
)

4
:0

1
:7

5
:7

H
-A

M
G

-G
M

2
–

/0
.0

1
15

(2
.5

)
2
:9

2
:2

5:
1

12
8

2
;5
6
7
;2
0
2

U
-A

M
G

–
/–

26
(2

.3
)

5
:3

1
:1

6
:4

H
-A

M
G

–
/–

23
(2

.3
)

4
:4

1
:7

6
:1

H
-A

M
G

-G
M

2
–

/0
.0

1
15

(2
.4

)
3
:0

2
:3

5:
3

51
2

1
0
;2
5
4
;4
0
2

U
-A

M
G

–
/–

29
(2

.2
)

6
:0

1
:3

7
:3

H
-A

M
G

–
/–

25
(2

.2
)

4
:8

1
:9

6
:7

H
-A

M
G

-G
M

2
–

/0
.0

1
16

(2
.3

)
3
:2

2
:3

5:
5

20
48

4
0
;9
8
8
;8
0
2

U
-A

M
G

–
/–

48
(2

.2
)

1
0
:2

1
:4

1
1
:6

H
-A

M
G

–
/–

26
(2

.2
)

5
:1

1
:9

7
:0

H
-A

M
G

-G
M

2
–

/0
.0

1
18

(2
.2

)
3
:6

2
:4

6:
0

81
92

1
6
3
;8
9
7
;6
0
2

U
-A

M
G

–
/–

51
(2

.2
)

1
1
:0

1
:6

1
2
:6

H
-A

M
G

–
/–

26
(2

.2
)

5
:1

2
:0

7
:1

H
-A

M
G

-G
M

2
–

/0
.0

1
18

(2
.2

)
3
:6

2
:5

6:
1

32
,7

68
6
5
5
;4
7
5
;2
0
2

U
-A

M
G

–
/–

54
(2

.2
)

1
1
:9

1
:8

1
3
:7

H
-A

M
G

–
/–

30
(2

.2
)

5
:9

2
:0

7
:9

H
-A

M
G

-G
M

2
–

/0
.0

1
19

(2
.2

)
3
:8

2
:5

6:
3

13
1,

07
2

2
;6
2
1
;6
7
0
;4
0
2

U
-A

M
G

–
/–

59
(2

.2
)

1
3
:4

2
:0

1
5
:4

H
-A

M
G

–
/–

29
(2

.2
)

5
:8

2
:1

7
:9

H
-A

M
G

-G
M

2
–

/0
.0

1
20

(2
.2

)
4
:1

2
:7

6:
8

124 A.H. Baker et al.

T
ab

le
2

Sa
m

e
pr

ob
le

m
se

tu
p

an
d

no
ta

ti
on

as
in

Ta
bl

e
1,

bu
tl

ar
ge

r
pr

ob
le

m
si

ze
s

#M
PI

ra
nk

s
T

im
e

T
im

e
T

im
e

(=
#C

or
es

)
Pr

ob
le

m
si

ze
Pr

ec
on

di
ti

on
er

Pm
ax

/Q
-t

h
It

.(
C

op
)

G
M

R
E

S
(s

)
B

oo
m

er
Se

tu
p

(s
)

Se
tu

p
+

So
lv

e
(s

)

32
1
;6
4
4
;1
6
2

U
-A

M
G

–
/–

24
(2

.4
)

1
7
:5

3
:1

2
0
:6

H
-A

M
G

–
/–

23
(2

.5
)

1
8
:5

4
:3

2
2
:8

H
-A

M
G

-G
M

2
–

/0
.0

1
14

(2
.5

)
1
2
:5

5
:4

17
:9

12
8

6
;5
6
5
;1
2
2

U
-A

M
G

–
/–

28
(2

.3
)

2
0
:4

3
:1

2
3
:5

H
-A

M
G

–
/–

24
(2

.3
)

1
9
:9

4
:4

2
4
:3

H
-A

M
G

-G
M

2
–

/0
.0

1
16

(2
.3

)
1
4
:0

5
:5

19
:5

51
2

2
6
;2
3
7
;4
4
2

U
-A

M
G

–
/–

44
(2

.2
)

3
2
:8

3
:1

3
5
:9

H
-A

M
G

–
/–

26
(2

.2
)

2
1
:8

4
:5

2
6
:3

H
-A

M
G

-G
M

2
–

/0
.0

1
17

(2
.3

)
1
5
:2

5
:6

20
:8

20
48

1
0
4
;9
0
3
;6
8
2

U
-A

M
G

–
/–

51
(2

.2
)

3
8
:0

3
:3

4
1
:3

H
-A

M
G

–
/–

26
(2

.2
)

2
1
:9

4
:6

2
6
:5

H
-A

M
G

-G
M

2
–

/0
.0

1
18

(2
.3

)
1
6
:2

5
:7

21
:9

81
92

4
1
9
;5
2
2
;5
6
2

U
-A

M
G

–
/–

54
(2

.2
)

4
0
:8

3
:5

4
4
:3

H
-A

M
G

–
/–

27
(2

.2
)

2
3
:1

4
:6

2
7
:7

H
-A

M
G

-G
M

2
–

/0
.0

1
18

(2
.2

)
1
6
:4

5
:8

22
:2

32
,7

68
1
;6
7
7
;9
0
5
;9
2
2

U
-A

M
G

–
/–

58
(2

.2
)

4
3
:9

3
:7

4
7
:6

H
-A

M
G

–
/–

30
(2

.2
)

2
5
:4

4
:8

3
0
:2

H
-A

M
G

-G
M

2
–

/0
.0

1
19

(2
.2

)
1
7
:2

6
:0

23
:3

13
1,

07
2

6
;7
1
1
;2
5
5
;0
4
2

U
-A

M
G

–
/–

83
(2

.2
)

6
3
:6

3
:9

6
7
:5

H
-A

M
G

–
/–

52
(2

.2
)

4
4
:7

4
:9

4
9
:6

H
-A

M
G

-G
M

2
–

/0
.0

1
21

(2
.2

)
1
9
:1

6
:2

25
:3

Parallel Scalability of AMG Variants for Elasticity to Half a Million Parallel Tasks 125

approach U-AMG, the hybrid approach H-AMG, and, representing the interpolation
approaches, the GM2 approach. The GM1 and LN approaches performed similarly
to or worse than GM2 here, but are included in a more detailed discussion on the
results in three dimensions, where differences between the approaches are more
interesting.

In the weak scaling results in Table 1, the number of GMRES iterations for
the unknown approach increases from 23 to 59 iterations, resulting in a noticeable
increase in the iteration time as well. However, both the hybrid and GM2 approaches
achieve good weak scalability. Comparing the hybrid and the GM2 approaches,
the AMG setup times are slightly higher with the GM2 approach. This increased
computational cost is expected due to the exact interpolation of the rotation. Since
iteration counts and thus the iteration times are lower, the GM2 approach is always
the fastest approach in this comparison.

Table 2 also contains weak scaling results for the 2D beam, but the problem
sizes are approximately 2.6 times larger per core. Results are similar to the results
in Table 1, but here, for the largest problem with 6:7 billion degrees of freedom,
the hybrid approach needs 52 compared to only 21 GMRES iterations for the GM2
approach. This improvement leads to a much faster convergence for GM2; see also
Fig. 3 for a visualization.

We can conclude that with our settings, all three approaches work well for
smaller problems. For larger problems (and larger numbers of cores), the GM2
approach remains scalable whereas U-AMG and H-AMG experience an increase
in the number of iterations. The setup cost for the GM2 approach is slightly higher,

Fig. 3 Weak scalability of total solution time for the two-dimensional beam with D 0:3 and
E D 210; cf. Table 2

126 A.H. Baker et al.

compared to the other two approaches, but the setup time is scalable and amortized
in the iteration phase; see also Fig. 3.

6.2 Results in Three Dimensions

Now we present results for several three-dimensional domains. In particular, we
first investigate weak scalability for a 3D beam problem. We also investigate the
effect of a higher Poisson ratio on the 3D beam, showing scalability results and
presenting a small study that increases . Second, we examine doubling the beam
length. And for a third model problem, we consider a heterogeneous material with
different boundary condition, called the 3D cuboid.

6.2.1 3D Beam Problem

Similar to the 2D beam, the 3D beam problem is defined on the domain Œ0; 8� �
Œ0; 1�� Œ0; 1� for D 0:3, D 0:45 and D 0:49. First, we present weak scalability
results in Table 3 for the 3D beam with D 0:3 for all approaches. For the 262K
MPI ranks case, we also include a larger problem to show the effect of increasing
problem size on performance at large scale.

From the results in Table 3 (see also Figs. 4 and 5), we conclude that for smaller
problems, a set of parameters can be found for all approaches such that the results
are satisfactory with respect to the numbers of iterations and the solution times.
However, for the larger problems (e.g., 262K MPI ranks), the AMG approaches
adapted specifically for elasticity, i.e., GM1, GM2, and LN, result in smaller
numbers of CG iterations. Note that in the case of the GM1 approach, the low
numbers of iterations come at the expense of high complexities because GM1
suffers from the lack of a suitable truncation strategy. As a result, the H-AMG
approach is actually faster than GM1. The GM2 and LN approaches achieve the
fastest overall total times (with a slight advantage for the LN approach) due to their
low iteration counts and acceptable complexities. These considerations also hold
when viewing the results for 262K MPI ranks and the increased problem size of 6.3
billion unknowns in Table 3.

Now we increase the Poisson ratio to D 0:45 for the 3D beam. The results
in Table 4 (see also Figs. 6 and 7) show that all approaches suffer from a higher
number of iterations compared to the case of D 0:3. The GM2 and LN approaches
remain superior as a result of combining low numbers of iterations with acceptable
complexities. For U-AMG and H-AMG, depending on the choice of parameters,
either the numbers of iterations are high or the complexities increase substantially.
The times are visualized in Figs. 6 and 7. Since GM1 with Pmax=3 requires too
much memory, we use it here with Pmax=2. Note that GM1 fails for the largest
problem considered.

Parallel Scalability of AMG Variants for Elasticity to Half a Million Parallel Tasks 127

T
ab

le
3

W
ea

k
sc

al
ab

il
it

y
of

th
e
3D

be
am

pr
ob

le
m

w
it

h
E
D
2
1
0

an
d

D
0
:3

;
it

er
at

iv
e

so
lv

er
:

pr
ec

on
di

ti
on

ed
C

G
;

st
op

pi
ng

to
le

ra
nc

e
fo

r
th

e
re

la
tiv

e
re

si
du

al
:

1e
-6

;
li

ne
ar

te
tr

ah
ed

ra
l

fin
it

e
el

em
en

ts
;

2
M

PI
ra

nk
s

pe
r

B
lu

e
G

en
e/

Q
co

re
ar

e
us

ed
;
P
re
co
nd
it
io
ne
r

de
no

te
s

th
e

A
M

G
ap

pr
oa

ch
(o

ne
V

-c
yc

le
);

P
m
ax
/Q

-t
h

de
no

te
s

th
e

tr
un

ca
ti

on
of

th
e

in
te

rp
ol

at
io

n
op

er
at

or
s

fo
r
P

(m
ax

no
n-

ze
ro

s
pe

r
ro

w
)

an
d
Q

(a
bs

ol
ut

e
th

re
sh

ol
d)

;
It
.

de
no

te
s

th
e

nu
m

be
r

of
C

G
it

er
at

io
ns

an
d
(C
op
)

th
e

op
er

at
or

co
m

pl
ex

it
y;

Ti
m
e
C
G

de
no

te
s

th
e

ru
nt

im
e

of
th

e
A

M
G

-C
G

so
lv

e
ph

as
e;

Ti
m
e
B
oo
m
er
Se
tu
p

de
no

te
s

th
e

ti
m

e
sp

en
t

in
th

e
B

oo
m

er
A

M
G

se
tu

p;
Se
tu
p
+
So
lv
e

de
no

te
s

th
e

to
ta

ls
ol

ut
io

n
ti

m
e

sp
en

ti
n

th
e

A
M

G
se

tu
p

an
d

th
e

A
M

G
-C

G
so

lv
e

#M
PI

ra
nk

s
T

im
e

T
im

e
T

im
e

(D
2
�#

C
or

es
)

Pr
ob

le
m

si
ze

Pr
ec

on
di

ti
on

er
Pm

ax
/Q

-t
h

It
.(

C
op

)
C

G
(s

)
B

oo
m

er
Se

tu
p

(s
)

Se
tu

p
+

So
lv

e
(s

)

64
8
3
9
;6
1
9

U
-A

M
G

2
/–

88
(2

.7
6)

2
3
:5
0

2
:4
2

2
5
:9
2

U
-A

M
G

3
/–

58
(2

.9
4)

1
5
:3
0

3
:1
9

2
8
:4
9

U
-A

M
G

4
/–

44
(3

.1
4)

1
2
:2
5

4
:6
4

1
6
:8
9

H
-A

M
G

3
/–

58
(2

.4
2)

1
2
:1
1

3
:4
4

1
5
:5
5

H
-A

M
G

4
/–

50
(2

.8
3)

1
1
:6
4

5
:3
1

1
6
:9
5

H
-A

M
G

-G
M

1
2

/0
.0

5
52

(2
.8

2)
1
2
:1
9

5
:2
5

1
7
:4
4

H
-A

M
G

-G
M

1
3

/0
.0

5
37

(3
.6

1)
1
0
:3
4

9
:1
8

1
9
:5
2

H
-A

M
G

-G
M

2
3

/0
.0

5
47

(2
.4

5)
1
0
:0
6

4
:5
4

14
:6
0

H
-A

M
G

-L
N

3
/0

.0
5

48
(2

.4
4)

1
0
:2
6

4
:7
5

1
5
:0
1

51
2

6
5
0
2
;2
7
5

U
-A

M
G

2
/–

11
8

(2
.8

1)
3
6
:2
7

3
:7
7

4
0
:0
4

U
-A

M
G

3
/–

73
(3

.0
2)

2
3
:8
5

5
:2
1

2
9
:0
6

U
-A

M
G

4
/–

54
(3

.2
3)

1
7
:4
8

6
:5
2

2
4
:0
0

H
-A

M
G

3
/–

70
(2

.4
5)

1
5
:2
2

4
:3
5

1
9
:5
7

H
-A

M
G

4
/–

59
(2

.8
7)

1
4
:3
4

6
:3
9

2
0
:7
3

H
-A

M
G

-G
M

1
2

/0
.0

5
71

(2
.8

4)
1
8
:2
4

7
:1
7

2
5
:4
1

H
-A

M
G

-G
M

1
3

/0
.0

5
44

(3
.6

6)
1
2
:8
1

1
2
:3
7

2
5
:1
8

H
-A

M
G

-G
M

2
3

/0
.0

5
55

(2
.4

7)
1
2
:3
5

5
:0
9

17
:4
4

H
-A

M
G

-L
N

3
/0

.0
5

57
(2

.4
6)

1
2
:7
7

5
:2
9

1
8
:0
6

(c
on

ti
nu

ed
)

128 A.H. Baker et al.

T
ab

le
3

(c
on

ti
nu

ed
)

#M
PI

ra
nk

s
T

im
e

T
im

e
T

im
e

(D
2
�#

C
or

es
)

Pr
ob

le
m

si
ze

Pr
ec

on
di

ti
on

er
Pm

ax
/Q

-t
h

It
.(

C
op

)
C

G
(s

)
B

oo
m

er
Se

tu
p

(s
)

Se
tu

p
+

So
lv

e
(s

)

40
96

5
1
;1
7
1
;0
7
5

U
-A

M
G

2
/–

14
9

(2
.8

6)
5
0
:6
4

5
:1
2

5
5
:7
6

U
-A

M
G

3
/–

89
(3

.0
9)

3
3
:1
6

7
:1
4

4
0
:3
0

U
-A

M
G

4
/–

67
(3

.3
2)

2
5
:2
1

8
:7
6

3
3
:9
7

H
-A

M
G

3
/–

86
(2

.4
7)

1
9
:3
4

5
:0
8

2
4
:4
2

H
-A

M
G

4
/–

67
(2

.8
9)

1
6
:9
8

7
:3
9

2
4
:3
7

H
-A

M
G

-G
M

1
2

/0
.0

5
78

(2
.8

4)
2
0
:4
8

8
:2
5

2
8
:7
3

H
-A

M
G

-G
M

1
3

/0
.0

5
47

(3
.6

9)
1
4
:0
5

1
4
:5
0

2
8
:5
5

H
-A

M
G

-G
M

2
3

/0
.0

5
68

(2
.4

8)
1
5
:8
3

6
:1
8

2
2
:0
1

H
-A

M
G

-L
N

3
/0

.0
5

67
(2

.4
8)

1
5
:4
8

6
:3
8

21
:8
6

32
,7

86
4
0
6
;0
0
3
;2
0
3

U
-A

M
G

2
/–

18
9

(2
.8

9)
7
0
:9
4

8
:7
3

7
9
:6
7

U
-A

M
G

3
/–

11
2

(3
.1

3)
4
9
:7
3

1
2
:9
0

6
2
:6
3

U
-A

M
G

4
/–

86
(3

.3
6)

4
0
:6
9

1
5
:3
6

5
6
:0
5

H
-A

M
G

3
/–

95
(2

.4
7)

2
1
:9
7

6
:7
2

2
8
:6
9

H
-A

M
G

4
/–

87
(2

.9
0)

2
2
:9
5

8
:9
8

3
1
:9
3

H
-A

M
G

-G
M

1
2

/0
.0

5
10

0
(2

.8
4)

2
6
:8
2

8
:8
9

3
5
:7
1

H
-A

M
G

-G
M

1
3

/0
.0

5
64

(3
.7

0)
1
9
:5
4

1
5
:8
6

3
5
:4
0

H
-A

M
G

-G
M

2
3

/0
.0

5
81

(2
.4

8)
1
9
:5
3

7
:3
6

2
6
:8
9

H
-A

M
G

-L
N

3
/0

.0
5

74
(2

.4
8)

1
7
:7
8

7
:6
0

25
:3
8

Parallel Scalability of AMG Variants for Elasticity to Half a Million Parallel Tasks 129

26
2,

14
4

3
;2
3
4
;6
1
0
;1
7
9

U
-A

M
G

2
/–

23
2

(2
.9

0)
9
5
:9
5

1
5
:3
6

1
1
1
:3
1

U
-A

M
G

3
/–

13
5

(3
.1

5)
7
3
:2
6

2
7
:7
8

1
0
1
:0
4

U
-A

M
G

4
/–

10
1

(3
.4

9)
6
7
:1
6

3
8
:3
5

1
0
5
:5
1

H
-A

M
G

3
/–

12
4

(2
.4

8)
2
9
:6
4

8
:5
3

3
8
:1
7

H
-A

M
G

4
/–

10
6

(2
.9

0)
2
9
:3
3

9
:6
8

3
9
:0
1

H
-A

M
G

-G
M

1
2

/0
.0

5
13

8
(2

.8
4)

3
7
:8
1

8
:7
0

4
6
:5
1

H
-A

M
G

-G
M

1
3

/0
.0

5
73

(3
.7

0)
2
2
:9
9

2
1
:3
9

4
4
:3
8

H
-A

M
G

-G
M

2
3

/0
.0

5
94

(2
.4

8)
2
3
:8
4

1
1
:0
1

3
4
:8
5

H
-A

M
G

-L
N

3
/0

.0
5

84
(2

.4
8)

2
1
:2
2

1
1
:2
1

32
:4
3

In
cr
ea
se
d
pr
ob

le
m

si
ze

26
2,

14
4

6
;3
1
2
;3
6
4
;8
0
3

U
-A

M
G

3
/–

14
3

(3
.1

0)
1
1
8
:7
2

s
3
6
:9
4

s
1
5
5
:6
6

s

H
-A

M
G

3
/–

13
4

(2
.5

2)
6
2
:4
8

s
1
3
:7
6

s
7
6
:2
4

s

H
-A

M
G

-G
M

2
3

/0
.0

5
10

2
(2

.5
3)

4
8
:6
4

s
1
6
:8
9

s
6
5
:5
3

s

H
-A

M
G

-L
N

3
/0

.0
5

88
(2

.5
3)

4
1
:7
6

s
1
6
:8
9

s
58
:6
5
s

130 A.H. Baker et al.

Fig. 4 Weak scalability of the BoomerAMG Setup (left) and the time spent in the AMG-CG solve
phase (right) for the three-dimensional beam with D 0:3 and E D 210; cf. Table 3

Fig. 5 Weak scalability of total solution time for the three-dimensional beam with D 0:3 and
E D 210; cf. Table 3

Next, in Table 5, the effect of the Poisson ratio on the different AMG approaches
is studied. We see that H-AMG does not converge within the limit of 1000 iterations
for D 0:49. For the other approaches, the convergence rate suffers from an
increasing value of towards almost incompressibility. This deterioration is also
the case for the AMG approaches which are especially adapted for (compressible)
elasticity problems, i.e., GM1, GM2, and LN, but which are based on H-AMG. For
 D 0:49, U-AMG, while exhibiting the highest Cop, is the fastest variant in terms
of total time.

Parallel Scalability of AMG Variants for Elasticity to Half a Million Parallel Tasks 131

T
ab

le
4

Sa
m

e
pr

ob
le

m
se

tu
p

an
d

no
ta

ti
on

as
in

Ta
bl

e
3,

bu
t

la
rg

er
pr

ob
le

m
si

ze
s,

D
0
:4
5
.

O
n
3
2

K
M

PI
ra

nk
s

H
-A

M
G

-G
M

1
hi

ts
th

e
m

ax
im

al
it

er
at

io
n

nu
m

be
r

of
1
0
0
0

(m
ar

ke
d

w
it

h
m
ax

It
.)

#M
PI

ra
nk

s
T

im
e

T
im

e
T

im
e

(=
2�

#C
or

es
)

Pr
ob

le
m

si
ze

Pr
ec

on
di

ti
on

er
Pm

ax
/Q

-t
h

It
.(

C
op

)
C

G
(s

)
B

oo
m

er
Se

tu
p

(s
)

Se
tu

p
+

So
lv

e
(s

)

64
1
;6
1
8
;8
0
3

U
-A

M
G

2
/–

98
(3

.1
8)

5
6
:7
5

6
:1
0

6
2
:8
5

U
-A

M
G

3
/–

69
(3

.5
2)

4
3
:1
2

9
:0
9

5
2
:2
1

U
-A

M
G

4
/–

54
(3

.8
4)

3
5
:8
6

1
2
:1
5

4
8
:0
1

H
-A

M
G

3
/–

15
1

(2
.5

5)
6
5
:2
7

8
:5
2

7
3
:7
9

H
-A

M
G

4
/–

80
(2

.9
7)

3
8
:6
7

1
1
:8
6

5
0
:5
3

H
-A

M
G

-G
M

1
2

/0
.0

1
77

(3
.0

7)
3
8
:0
1

1
1
:0
8

4
9
:0
9

H
-A

M
G

-G
M

2
3

/0
.0

1
64

(3
.0

7)
3
1
:9
4

1
3
:5
2

4
5
:4
6

H
-A

M
G

-G
M

2
3

/0
.0

5
72

(2
.5

6)
3
1
:7
8

9
:5
2

4
1
:3
0

H
-A

M
G

-L
N

3
/0

.0
5

69
(2

.5
6)

3
0
:4
5

1
0
:0
7

40
:5
2

51
2

1
2
;6
1
6
;8
0
3

U
-A

M
G

2
/–

12
8

(3
.2

6)
7
8
:8
0

9
:1
1

8
7
:9
1

U
-A

M
G

3
/–

85
(3

.5
9)

5
6
:5
4

1
5
:1
0

7
1
:6
4

U
-A

M
G

4
/–

65
(3

.9
4)

4
6
:6
0

2
0
:5
8

6
7
:1
8

H
-A

M
G

3
/–

23
2

(2
.5

7)
1
0
3
:7
0

9
:8
0

1
1
3
:5
0

H
-A

M
G

4
/–

10
4

(2
.9

9)
5
1
:6
0

1
4
:1
6

6
5
:7
6

H
-A

M
G

-G
M

1
2

/0
.0

1
96

(3
.1

0)
4
8
:7
2

1
5
:3
8

6
4
:1
0

H
-A

M
G

-G
M

2
3

/0
.0

1
71

(2
.6

6)
3
3
:2
9

1
4
:6
2

47
:9
1

H
-A

M
G

-G
M

2
3

/0
.0

5
96

(2
.5

8)
4
3
:7
6

1
1
:4
5

5
5
:2
1

H
-A

M
G

-L
N

3
/0

.0
5

89
(2

.5
8)

4
0
:5
2

1
1
:9
9

5
2
:5
1

(c
on

ti
nu

ed
)

132 A.H. Baker et al.

T
ab

le
4

(c
on

ti
nu

ed
)

#M
PI

ra
nk

s
T

im
e

T
im

e
T

im
e

(=
2�

#C
or

es
)

Pr
ob

le
m

si
ze

Pr
ec

on
di

ti
on

er
Pm

ax
/Q

-t
h

It
.(

C
op

)
C

G
(s

)
B

oo
m

er
Se

tu
p

(s
)

Se
tu

p
+

So
lv

e
(s

)

40
96

9
9
;6
1
4
;4
0
3

U
-A

M
G

2
/–

14
1

(3
.3

0)
9
5
:0
4

1
3
:1
3

1
0
8
:1
7

U
-A

M
G

3
/–

10
6

(3
.6

4)
7
9
:8
7

2
1
:7
0

1
0
1
:5
7

U
-A

M
G

4
/–

85
(4

.0
0)

6
8
:9
0

2
7
:3
3

9
6
:2
3

H
-A

M
G

3
/–

37
5

(2
.5

8)
1
7
4
:5
4

1
1
:5
7

1
8
6
:1
1

H
-A

M
G

4
/–

18
4

(3
.0

1)
9
5
:4
6

1
6
:3
2

1
1
1
:7
8

H
-A

M
G

-G
M

1
2

/0
.0

1
11

5
(3

.1
2)

5
9
:8
9

1
7
:5
8

7
7
:4
7

H
-A

M
G

-G
M

2
3

/0
.0

1
90

(2
.6

0)
4
2
:9
7

1
5
:8
1

58
:7
8

H
-A

M
G

-G
M

2
3

/0
.0

5
12

5
(2

.5
9)

5
8
:9
3

1
3
:5
8

7
2
:5
2

H
-A

M
G

-L
N

3
/0

.0
5

10
9

(2
.5

8)
5
1
:1
5

1
3
:8
0

6
4
:9
5

32
,7

68
7
9
1
;6
6
4
;0
0
3

U
-A

M
G

2
/–

20
2

(3
.3

1)
1
4
6
:3
1

2
3
:4
1

1
6
9
:7
2

U
-A

M
G

3
/–

12
8

(3
.6

5)
1
2
4
:3
7

4
8
:1
8

1
7
2
:5
5

U
-A

M
G

4
/–

10
2

(4
.0

2)
1
1
4
:0
2

5
4
:9
8

1
6
9
:0
0

H
-A

M
G

3
/–

69
2

(2
.5

8)
3
4
0
:7
5

1
4
:4
4

3
5
5
:1
9

H
-A

M
G

4
/–

32
0

(3
.0

1)
1
7
4
:9
4

1
9
:2
6

1
9
5
:2
2

H
-A

M
G

-G
M

1
2

/0
.0

1
m

ax
It

.
–

–
–

H
-A

M
G

-G
M

2
3

/0
.0

1
12

4
(2

.5
9)

6
1
:9
1

1
9
:1
5

8
1
:0
6

H
-A

M
G

-G
M

2
3

/0
.0

5
14

6
(2

.5
9)

7
2
:6
7

1
7
:0
8

8
9
:7
5

H
-A

M
G

-L
N

3
/0

.0
5

11
8

(2
.5

8)
5
7
:2
4

1
6
:1
9

73
:4
3

Parallel Scalability of AMG Variants for Elasticity to Half a Million Parallel Tasks 133

Fig. 6 Weak scalability of the BoomerAMG Setup (left) and the time spent in the AMG-CG solve
phase (right) for the three-dimensional beam with D 0:45 and E D 210; cf. Table 4

Fig. 7 Weak scalability of total solution time for the three-dimensional beam with D 0:45 and
E D 210; cf. Table 4

6.2.2 3D Beam Problem with Double Length

For D 0:3, we examine the effect of doubling the length of the 3D beam such that
the domain is Œ0; 16� � Œ0; 1� � Œ0; 1�. Table 6 lists the results obtained for the 3D
beam with double the length, using up to 16 of the total 28 racks of the JUQUEEN
supercomputer. Again, these experiments show the clear advantage of the GM2
and LN approaches for this problem over the standard methods. The largest three
dimensional problem with approximately 13 billion unknowns is solved in less than
81 s using the LN approach. Here, the solve phase time of LN is twice as fast as that
of the fastest standard approach H-AMG.

134 A.H. Baker et al.

T
ab

le
5

Sa
m

e
pr

ob
le

m
se

tu
p

an
d

no
ta

ti
on

as
in

Ta
bl

e
3.

In
ve

st
ig

at
io

n
of

th
e

ef
fe

ct
of

an
in

cr
ea

si
ng

;
Se
tu
p
+
So
lv
e

de
no

te
s

th
e

to
ta

l
so

lu
ti

on
ti

m
e

sp
en

t
in

th
e

A
M

G
se

tu
p

an
d

th
e

A
M

G
-C

G
so

lv
e;

H
-A

M
G

hi
ts

th
e

m
ax

im
al

it
er

at
io

n
nu

m
be

r
of
1
0
0
0

(m
ar

ke
d

w
it

h
m
ax

It
.)

51
2

M
PI

ra
nk

s,
12

,6
16

,8
03

do
fs

D
0
:3

D
0
:4
5

D
0
:4
9

Pr
ec

on
di

ti
on

er
Pm

ax
/Q

-t
h

It
.(

C
op

)
Se

tu
p

+
So

lv
e

(s
)

It
.(

C
op

)
Se

tu
p

+
So

lv
e

(s
)

It
.(

C
op

)
Se

tu
p

+
So

lv
e

(s
)

U
-A

M
G

2
/–

12
8

(2
.7

9)
7
6
:6
1

12
8

(3
.2

6)
8
7
:9
1

12
5

(3
.6

0)
1
0
2
:9
4

U
-A

M
G

3
/–

79
(2

.9
8)

5
3
:6
9

85
(3

.5
9)

7
1
:6
4

89
(3

.8
1)

8
5
:3
9

U
-A

M
G

4
/–

57
(3

.2
1)

5
6
:1
6

65
(3

.9
4)

6
7
:1
8

72
(3

.8
9)

79
:1
0

H
-A

M
G

3
/–

76
(2

.5
0)

4
1
:4
7

23
2

(2
.5

7)
1
1
3
:5
0

m
ax

It
.

�
H

-A
M

G
4

/–
59

(2
.9

4)
4
1
:2
4

10
4

(2
.9

9)
6
5
:7
6

m
ax

It
.

�
H

-A
M

G
-G

M
1

2
/0

.0
1

56
(2

.8
8)

3
9
:7
4

96
(3

.1
0)

6
4
:1
0

18
9

(3
.4

9)
1
2
7
:0
5

H
-A

M
G

-G
M

2
3

/0
.0

1
49

(2
.5

9)
3
4
:0
7

71
(2

.6
6)

47
:9
1

15
9

(2
.7

9)
9
9
:2
5

H
-A

M
G

-L
N

3
/0

.0
1

47
(2

.5
4)

32
:3
4

79
(2

.6
2)

5
0
:0
6

19
6

(2
.7

1)
1
1
0
:8
5

Parallel Scalability of AMG Variants for Elasticity to Half a Million Parallel Tasks 135

T
ab

le
6

W
ea

k
sc

al
ab

il
it

y
of

th
e

la
rg

er
Œ0
;1
6
��
Œ0
;1
��
Œ0
;1
�
3D

be
am

pr
ob

le
m

w
it

h
E
D
2
1
0

an
d

D
0
:3

.S
am

e
no

ta
ti

on
as

in
Ta

bl
e

3.
C

om
pu

ta
ti

on
s

ca
rr

ie
d

ou
to

n
JU

Q
U

E
E

N
B

lu
eG

en
e/

Q
at

Jü
li

ch
Su

pe
rc

om
pu

ti
ng

C
en

tr
e

(J
SC

)

#M
PI

ra
nk

s
T

im
e

T
im

e
T

im
e

(=
2�

#C
or

es
)

Pr
ob

le
m

si
ze

Pr
ec

on
di

tio
ne

r
Pm

ax
/Q

-t
h

It
.(

C
op

)
C

G
(s

)
B

oo
m

er
Se

tu
p

(s
)

Se
tu

p
+

So
lv

e
(s

)

16
4
2
4
;6
8
3

U
-A

M
G

3
/–

96
(2

.8
3)

3
5
:1
8

3:
83

3
9
:0
1

H
-A

M
G

3
/–

92
(2

.4
9)

2
7
:3
9

4
:7
3

3
2
:1
2

H
-A

M
G

-G
M

2
3

/0
.0

1
55

(3
.5

0)
2
1
:6
3

1
1
:3
8

3
3
:0
1

H
-A

M
G

-L
N

3
/0

.0
1

56
(3

.1
4)

20
:1
9

9
:2
2

29
:4
1

12
8

3
;2
3
2
;5
6
3

U
-A

M
G

3
/–

11
8

(2
.9

3)
6
4
:4
9

6:
05

7
0
:5
4

H
-A

M
G

3
/–

11
7

(2
.4

8)
4
9
:8
8

6
:7
1

5
6
:5
9

H
-A

M
G

-G
M

2
3

/0
.0

1
84

(3
.0

4)
4
1
:6
6

1
2
:0
4

4
3
:7
0

H
-A

M
G

-L
N

3
/0

.0
1

65
(2

.6
8)

29
:6
8

1
0
:2
3

39
:9
1

10
24

2
5
;2
1
3
;9
2
3

U
-A

M
G

3
/–

14
5

(2
.9

9)
8
2
:5
5

8
:7
9

9
1
:3
4

H
-A

M
G

3
/–

13
8

(2
.5

0)
5
9
:9
4

8:
57

6
8
:5
1

H
-A

M
G

-G
M

2
3

/0
.0

1
86

(2
.5

9)
3
8
:8
8

1
2
:1
2

5
1
:0
0

H
-A

M
G

-L
N

3
/0

.0
1

80
(2

.5
4)

35
:7
7

1
1
:4
1

47
:1
8

81
92

1
9
9
;1
5
1
;0
4
3

U
-A

M
G

3
/–

18
8

(3
.0

4)
1
1
3
:4
2

1
0
:6
1

1
2
4
:0
3

H
-A

M
G

3
/–

16
0

(2
.5

1)
7
0
:7
6

9:
01

7
9
:7
7

H
-A

M
G

-G
M

2
3

/0
.0

1
10

8
(2

.5
3)

4
8
:9
4

1
1
:8
2

6
0
:7
6

H
-A

M
G

-L
N

3
/0

.0
1

10
3

(2
.5

2)
46
:6
4

1
1
:9
4

58
:5
8

65
,5

36
1
;5
8
3
;0
1
8
;8
8
3

U
-A

M
G

3
/–

22
5

(3
.1

1)
1
5
7
:3
4

1
9
:8
4

1
7
7
:1
8

H
-A

M
G

3
/–

19
5

(2
.5

2)
8
9
:0
1

11
:3
2

1
0
0
:3
3

H
-A

M
G

-G
M

2
3

/0
.0

1
12

0
(2

.5
3)

5
5
:6
3

1
4
:8
0

7
0
:4
3

H
-A

M
G

-L
N

3
/0

.0
1

11
5

(2
.5

3)
53
:2
9

1
4
:8
6

68
:1
5

52
4,

28
8

1
2
;6
2
3
;4
9
6
;9
6
3

U
-A

M
G

3
/–

27
0

(3
.0

6)
2
2
9
:4
0

3
9
:1
8

2
6
8
:5
8

H
-A

M
G

3
/–

25
3

(2
.5

2)
1
1
8
:3
8

13
:3
4

1
3
1
:7
2

H
-A

M
G

-G
M

2
3

/0
.0

1
14

4
(2

.5
3)

6
8
:5
6

1
8
:1
7

8
6
:7
3

H
-A

M
G

-L
N

3
/0

.0
1

13
1

(2
.5

3)
62
:5
2

1
8
:1
1

80
:6
3

136 A.H. Baker et al.

6.2.3 3D Cuboid Problem

Finally, we consider a 3D cuboid problem. The cuboid has the same form and size
as the original 3D beam, but is fixed on the two opposite sides with x D 0 and x D 8.
We then compress the cuboid to 95% of its length. Note that for the 3D cuboid, we
have a core material with E D 210 and D 0:45 in the part of the cuboid where
0:25 < y < 0:75 and 0:25 < z < 0:75. Here .x; y; z/ denotes the coordinates in the
undeformed reference configuration of the cuboid. In the remaining hull, we have
E D 210 and D 0:3.

The results for the 3D cuboid problem in Table 7 show that the AMG approaches
benefit from the larger Dirichlet boundary as compared to the 3D beam. However,
the GM2 and LN approaches show the best numerical scalability, i.e., the numbers
of iterations only increase from 29 to 44 for GM2 and from 24 to 39 for LN when
scaling weakly from 64 to 262 K MPI ranks. For this problem, the H-AMG approach
remains competitive as well for the largest number of ranks with regard to total times
as a result of its low setup time.

6.3 Parallel Problem Assembly and Reordering Process

Although the focus of this paper is on the parallel performance of AMG for
linear elasticity problems, we also comment on the parallel problem assembly
and setup, presenting timing results in Table 8. In order to assemble the global
elasticity problems in two and three dimensions, we first decompose the domain
into nonoverlapping parts of equal size, one for each MPI rank. We then assemble
local stiffness matrices corresponding to these local parts. These computations
are completely local to the ranks and thus perfectly scalable. The local assembly
process is denoted as Local Asm. in Table 8. To assemble the local stiffness
matrices to one global and parallel stiffness matrix, some global communication is
necessary. This global assembly process is denoted as Global Asm. in Table 8. This
process scales fine up to 32K ranks. Scaling further, the amount of communication
and synchronization slows the global assembly down. A classical lexicographical
ordering of the global indices is often not optimal for the convergence, especially
using hybrid approaches, and we therefore reorder the indices. After the reordering
process, each rank holds a portion of the global stiffness matrix which has a
shape close to a square in two dimensions and a cube in three dimensions. The
implementation of the index reordering step is very fast (see Table 8) but makes use
of the same communication patterns as the global assembly process leading to the
same deterioration on more than 32K cores.

Parallel Scalability of AMG Variants for Elasticity to Half a Million Parallel Tasks 137

T
ab

le
7

W
ea

k
sc

al
ab

il
it

y
re

su
lt

s
fo

r
th

e
3D

cu
bo
id

pr
ob

le
m

;n
ot

at
io

n
as

in
Ta

bl
e

3

#M
PI

ra
nk

s
T

im
e

T
im

e
T

im
e

(=
2�

#C
or

es
)

Pr
ob

le
m

si
ze

Pr
ec

on
di

tio
ne

r
Pm

ax
/Q

-t
h

It
.(

C
op

)
C

G
(s

)
B

oo
m

er
Se

tu
p

(s
)

Se
tu

p
+

So
lv

e
(s

)

64
1
;6
1
8
;8
0
3

U
-A

M
G

2
/–

49
(2

.7
3)

2
5
:5
0

4
:5
3

3
0
:0
3

U
-A

M
G

3
/–

34
(2

.9
5)

1
8
:7
6

6
:9
3

2
5
:6
9

H
-A

M
G

3
/–

34
(2

.4
8)

1
4
:5
7

7
:6
7

2
2
:2
4

H
-A

M
G

-G
M

2
3

/0
.0

1
29

(3
.0

4)
1
4
:5
1

1
2
:8
1

2
7
:3
2

H
-A

M
G

-L
N

3
/0

.0
1

24
(2

.6
8)

1
1
:0
9

1
0
:8
6

21
:9
5

51
2

1
2
;6
1
6
;8
0
3

U
-A

M
G

2
/–

65
(2

.7
9)

3
5
:8
3

6
:2
4

4
2
:0
7

U
-A

M
G

3
/–

43
(2

.9
8)

2
4
:7
7

8
:5
7

3
3
:3
4

H
-A

M
G

3
/–

41
(2

.5
0)

1
8
:0
6

8
:3
3

2
6
:3
9

H
-A

M
G

-G
M

2
3

/0
.0

1
31

(2
.5

9)
1
4
:2
5

1
1
:8
3

2
6
:0
8

H
-A

M
G

-L
N

3
/0

.0
1

23
(2

.5
5)

1
0
:5
7

1
1
:2
5

21
:8
3

40
96

9
9
;6
1
4
;4
0
3

U
-A

M
G

2
/–

84
(2

.8
4)

4
9
:7
6

8
:0
6

5
7
:8
2

U
-A

M
G

3
/–

53
(3

.0
4)

3
2
:0
2

1
0
:7
5

4
2
:7
7

H
-A

M
G

3
/–

45
(2

.5
1)

2
0
:1
8

9
:2
3

2
9
:4
1

H
-A

M
G

-G
M

2
3

/0
.0

1
33

(2
.5

3)
1
5
:3
2

1
2
:2
8

2
7
:6
0

H
-A

M
G

-L
N

3
/0

.0
1

31
(2

.5
3)

1
4
:3
4

1
2
:3
0

26
:6
4

32
,7

68
7
9
1
;6
6
4
;0
0
3

U
-A

M
G

2
/–

10
2

(2
.8

7)
6
4
:1
1

1
1
:8
3

7
5
:9
4

U
-A

M
G

3
/–

63
(3

.0
9)

4
3
:8
3

1
8
:3
1

6
2
:1
4

H
-A

M
G

3
/–

49
(2

.5
2)

2
2
:5
8

1
0
:0
1

3
2
:5
9

H
-A

M
G

-G
M

2
3

/0
.0

1
38

(2
.5

3)
1
7
:9
0

1
3
:5
8

3
1
:4
8

H
-A

M
G

-L
N

3
/0

.0
1

34
(2

.5
3)

1
6
:0
3

1
4
:0
5

30
:0
8

26
2,

14
4

6
;3
1
2
;3
6
4
;8
0
3

U
-A

M
G

2
/–

12
6

(2
.8

6)
8
1
:2
6

1
7
:5
1

9
8
:7
7

U
-A

M
G

3
/–

73
(3

.1
0)

6
0
:9
8

3
7
:9
9

9
8
:9
7

H
-A

M
G

3
/–

64
(2

.5
2)

3
0
:1
5

1
2
:6
0

4
2
:7
5

H
-A

M
G

-G
M

2
3

/0
.0

1
44

(2
.5

3)
2
1
:2
0

1
7
:8
5

3
9
:0
5

H
-A

M
G

-L
N

3
/0

.0
1

39
(2

.5
3)

1
8
:8
4

1
7
:8
3

36
:6
7

138 A.H. Baker et al.

Table 8 Presentation of problem assembly and setup timings, which are independent of the chosen
AMG preconditioner. Values are averages over the measured values in all runs presented in Table 3.
The total runtime of the complete 3D beam application can be obtained by adding these three times
to the time Setup + Solve from Table 3

#MPI ranks Problem size Local Asm. (s) Global Asm. (s) Reorder (s)

64 839;619 19:10 0:81 0:67

512 6;502;275 19:14 0:86 0:84

4096 51;171;075 19:14 0:93 0:77

32,786 406;003;203 19:05 1:44 1:57

262,144 3;234;610;179 19:03 8:82 9:35

7 Conclusions

We investigated the performance of hypre’s AMG variants for elasticity for several
2D and 3D linear elasticity problems with varying Poisson ratios . We compared
the unknown and hybrid approaches, which use prolongation operators that only
interpolate the translations, with three approaches, GM1, GM2 and LN, that are
based on the hybrid approach and also incorporate the rotations. In all cases, GM1,
GM2 and LN showed improved convergence over the hybrid approach when using
the same truncation for P. For D 0:3, all hybrid approaches scaled better than
the unknown approach, and the GM2 and LN approaches were overall faster for
very large problems. For the largest problem in three dimensions with 14 billion
unknowns and using the largest number of processes considered, i.e., 524;288
processes, the LN approach was 40 % faster than the standard approaches. For
 D 0:45, GM2 and LN clearly scale better than the other approaches and are
more than twice as fast on 32;768 processes with better complexities and five times
as fast as the hybrid approach with the same operator complexity.

We also found that the unknown approach was more robust with regard to an
increase in than the other approaches, solving the problem with D 0:49 faster
than any of the other approaches, but generally needed larger complexities. While
the hybrid approach did not converge within 1000 iterations for D 0:49, GM1,
GM2 and LN were able to solve the problem in less than 200 iterations.

Overall, our study shows that the inclusion of the rigid body modes into AMG
interpolation operators is generally beneficial, especially at large scale. We conclude
that, for elasticity problems, using enhancements of the interpolation, parallel AMG
methods are able to scale to the largest supercomputers currently available.

Acknowledgements This work was supported in part by the German Research Foundation (DFG)
through the Priority Program 1648 “Software for Exascale Computing” (SPPEXA) under KL
2094/4-1 and RH 122/2-1. The authors also gratefully acknowledge the use of the Vulcan
supercomputer at Lawrence Livermore National Laboratory. Partial support for this work was
provided through Scientific Discovery through Advanced Computing (SciDAC) program funded
by U.S. Department of Energy, Office of Science, Advanced Scientific Computing Research
(and Basic Energy Sciences/Biological and Environmental Research/High Energy Physics/Fusion

Parallel Scalability of AMG Variants for Elasticity to Half a Million Parallel Tasks 139

Energy Sciences/Nuclear Physics). This work was performed under the auspices of the U.S.
Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-
07NA27344. The authors gratefully acknowledge the Gauss Centre for Supercomputing (GCS) for
providing computing time through the John von Neumann Institute for Computing (NIC) on the
GCS share of the supercomputer JUQUEEN [24] at Jülich Supercomputing Centre (JSC). GCS
is the alliance of the three national supercomputing centres HLRS (Universität Stuttgart), JSC
(Forschungszentrum Jülich), and LRZ (Bayerische Akademie der Wissenschaften), funded by the
German Federal Ministry of Education and Research (BMBF) and the German State Ministries for
Research of Baden-Württemberg (MWK), Bayern (StMWFK) and Nordrhein-Westfalen (MIWF).

References

1. Augustin, C.M., Neic, A., Liebmann, M., Prassl, A.J., Niederer, S.A., Haase, G., Plank, G.:
Anatomically accurate high resolution modeling of human whole heart electromechanics: a
strongly scalable algebraic multigrid solver method for nonlinear deformation. J. Comput.
Phys. 305, 622–646 (2016)

2. Baker, A.H., Kolev, T.V., Yang, U.M.: Improving algebraic multigrid interpolation operators
for linear elasticity problems. Numer. Linear Algebra Appl. 17(2–3), 495–517 (2010). http://
dx.doi.org/10.1002/nla.688

3. Blatt, M., Ippisch, O., Bastian, P.: A massively parallel algebraic multigrid preconditioner
based on aggregation for elliptic problems with heterogeneous coefficients. arXiv preprint
arXiv:1209.0960 (2013)

4. Braess, D.: Towards algebraic multigrid for elliptic problems of second order. Computing
55(4), 379–393 (1995). http://dx.doi.org/10.1007/BF02238488

5. Braess, D.: Finite Elemente, vol. 4. Springer, Berlin (2007)
6. Brezina, M., Cleary, A.J., Falgout, R.D., Jones, J.E., Manteufel, T.A., McCormick, S.F., Ruge,

J.W.: Algebraic multigrid based on element interpolation (AMGe). SIAM J. Sci. Comput. 22,
1570–1592 (2000). Also LLNL technical report UCRL-JC-131752

7. Brezina, M., Tong, C., Becker, R.: Parallel algebraic multigrid methods for structural mechan-
ics. SIAM J. Sci. Comput. 27(5), 1534–1554 (2006)

8. Bulgakov, V.E.: Multi-level iterative technique and aggregation concept with semi-analytical
preconditioning for solving boundary value problems. Commun. Numer. Methods Eng. 9(8),
649–657 (1993). http://dx.doi.org/10.1002/cnm.1640090804

9. Cleary, A.J., Falgout, R.D., Henson, V.E., Jones, J.E., Manteuffel, T.A., McCormick, S.F.,
Miranda, G.N., Ruge, J.W.: Robustness and scalability of algebraic multigrid. SIAM J. Sci.
Comput. 21, 1886–1908 (2000)

10. Clees, T.: AMG Strategies for ODE Systems with Applications in Industrial Semiconductor
Simulation. Shaker Verlag GmbH, Germany (2005)

11. De Sterck, H., Yang, U.M., Heys, J.J.: Reducing complexity in parallel algebraic multigrid
preconditioners. SIAM J. Matrix Anal. Appl. 27(4), 1019–1039 (2006). http://dx.doi.org/10.
1137/040615729

12. De Sterck, H., Falgout, R.D., Nolting, J.W., Yang, U.M.: Distance-two interpolation for parallel
algebraic multigrid. Numer. Linear Algebra Appl. 15, 115–139 (2008)

13. Dohrmann, C.R.: Interpolation operators for algebraic multigrid by local optimization. SIAM
J. Sci. Comput. 29(5), 2045–2058 (electronic) (2007). http://dx.doi.org/10.1137/06066103X

14. Griebel, M., Oeltz, D., Schweitzer, A.: An algebraic multigrid for linear elasticity. J. Sci.
Comput. 25(2), 385–407 (2003)

15. Henson, V.E., Vassilevski, P.S.: Element-free AMGe: general algorithms for computing
interpolation weights in AMG. SIAM J. Sci. Comput. 23(2), 629–650 (electronic) (2001).
http://dx.doi.org/10.1137/S1064827500372997. copper Mountain Conference (2000)

http://dx.doi.org/10.1002/nla.688
http://dx.doi.org/10.1002/nla.688
http://dx.doi.org/10.1007/BF02238488
http://dx.doi.org/10.1002/cnm.1640090804
http://dx.doi.org/10.1137/040615729
http://dx.doi.org/10.1137/040615729
http://dx.doi.org/10.1137/06066103X
http://dx.doi.org/10.1137/S1064827500372997

140 A.H. Baker et al.

16. Henson, V.E., Yang, U.M.: BoomerAMG: a parallel algebraic multigrid solver and precondi-
tioner. Appl. Numer. Math. 41, 155–177 (2002)

17. hypre: High performance preconditioners. http://www.llnl.gov/CASC/hypre/
18. Lanser, M.: Nonlinear FETI-DP and BDDC Methods. Ph.D. thesis, Universität zu Köln (2015)
19. Muresan, A.C., Notay, Y.: Analysis of aggregation-based multigrid. SIAM J. Sci. Comput. 30,

1082–1103 (2008)
20. Notay, Y.: An aggregation-based algebraic multigrid method. Electron. Trans. Numer. Anal.

37, 123–146 (2010)
21. Notay, Y., Napov, A.: Algebraic analysis of aggregation-based multigrid. Numer. Linear

Algebra Appl. 18, 539–564 (2011)
22. Ruge, J.W.: AMG for problems of elasticity. Appl. Math. Comput. 19, 293–309 (1986)
23. Ruge, J.W., Stüben, K.: Algebraic multigrid (AMG). In: McCormick, S.F. (ed.) Multigrid

Methods. Frontiers in Applied Mathematics, vol. 3, pp. 73–130. SIAM, Philadelphia (1987)
24. Stephan, M., Docter, J.: JUQUEEN: IBM blue gene/Qrsupercomputer system at the Jülich

Supercomputing Centre. JLSRF 1, A1 (2015). http://dx.doi.org/10.17815/jlsrf-1-18
25. Stüben, K.: An introduction to algebraic multigrid. In: Multigrid, pp. 413–532. Academic

Press, London/San Diego (2001). also available as GMD Report 70, November 1999
26. Trottenberg, U., Oosterlee, C.W., Schüller, A.: Multigrid. Academic Press, London/San Diego

(2001)
27. Vaněk, P., Mandel, J., Brezina, M.: Algebraic multigrid by smooth aggregation for second and

fourth order elliptic problems. Computing 56, 179–196 (1996)
28. Yang, U.M.: Parallel algebraic multigrid methods – high performance preconditioners. In:

Bruaset, A., Tveito, A. (eds.) Numerical Solutions of Partial Differential Equations on Parallel
Computers. Lecture Notes in Computational Science and Engineering, pp. 209–236. Springer,
Berlin (2006)

29. Yang, U.M.: On long-range interpolation operators for aggressive coarsening. Numer. Linear
Algebra Appl. 17, 453–472 (2010)

http://www.llnl.gov/CASC/hypre/
http://dx.doi.org/10.17815/jlsrf-1-18

Part IV
EXAHD: An Exa-Scalable Two-Level

Sparse Grid Approach
for Higher-Dimensional Problems

in Plasma Physics and Beyond

Recent Developments in the Theory
and Application of the Sparse Grid Combination
Technique

Markus Hegland, Brendan Harding, Christoph Kowitz, Dirk Pflüger,
and Peter Strazdins

Abstract Substantial modifications of both the choice of the grids, the combination
coefficients, the parallel data structures and the algorithms used for the combination
technique lead to numerical methods which are scalable. This is demonstrated by
the provision of error and complexity bounds and in performance studies based on a
state of the art code for the solution of the gyrokinetic equations of plasma physics.
The key ideas for a new fault-tolerant combination technique are mentioned. New
algorithms for both initial- and eigenvalue problems have been developed and are
shown to have good performance.

1 Introduction

The solution of moderate- to high-dimensional PDEs (larger than four dimensions)
comes with a high demand for computational power. This is due to the curse of
dimensionality, which manifests itself by the fact that very large computational grids
are required even for moderate accuracy. In fact, the grid sizes are an exponential
function of the dimension of the problem. Regular grids are thus not feasible
even when future exascale systems are to be utilized. Fortunately, hierarchical

M. Hegland (�) • B. Harding
Mathematical Sciences Institute, The Australian National University, Canberra, Australia
e-mail: markus.hegland@anu.edu.au;brendan.harding@anu.edu.au

C. Kowitz
Chair of Scientific Computing, Technische Universität München, Munich, Germany
e-mail: kowitz@in.tum.de

D. Pflüger
Institute for Parallel and Distributed Systems, University of Stuttgart, Stuttgart, Germany
e-mail: dirk.pflueger@ipvs.uni-stuttgart.de

P. Strazdins
Engineering and Computer Science, The Australian National University, Canberra, Australia
e-mail: peter.strazdins@anu.edu.au

© Springer International Publishing Switzerland 2016
H.-J. Bungartz et al. (eds.), Software for Exascale Computing – SPPEXA
2013-2015, Lecture Notes in Computational Science and Engineering 113,
DOI 10.1007/978-3-319-40528-5_7

143

mailto:markus.hegland@anu.edu.au
mailto:brendan.harding@anu.edu.au
mailto:kowitz@in.tum.de
mailto:dirk.pflueger@ipvs.uni-stuttgart.de
mailto:peter.strazdins@anu.edu.au

144 M. Hegland et al.

discretization schemes come to the rescue. So-called sparse grids [53] mitigate the
curse of dimensionality to a large extent.

Nonetheless, the need for HPC resources remains. The aim of two recent
projects, one (EXAHD) within the German priority program “Software for exascale
computing” and one supported through an Australian Linkage grant and Fujitsu
Laboratories of Europe, has been to study the sparse grid combination technique
for the solution of moderate-dimensional PDEs which arise in plasma physics for
the simulation of hot fusion plasmas. The combination technique is well-suited for
such large-scale simulations on future exascale systems, as it adds a second level
of parallelism which admits scalability. Furthermore, its hierarchical principle can
be used to support algorithm-based fault tolerance [38, 46]. In this work, we focus
on recent developments with respect to the theory and application of the underlying
methodology, the sparse grid combination technique.

The sparse grid combination technique utilizes numerical solutions u.�/ of
partial differential equations computed for selected values of the parameter vector
� which controls the underlying grids. As the name suggests, the method then
proceeds by computing a linear combination of the component solutions u.�/:

uI D
X
�2I

c� u.�/ : (1)

Computationally, the combination technique thus consists of a reduction oper-
ation which evaluates the linear combination of the computationally independent
components u.�/. A similar structure is commonly found in data analytic problems
and is exploited by the Map Reduce method. Since the inception of the combination
technique, parallel algorithms were studied which made use of the computational
structure [15, 18, 19]. The current work is based on the same principles as these
earlier works, see [2, 24, 25, 28, 31, 32, 38–40, 48].

The combination technique computes a sparse grid approximation without
having to implement complex sparse grid data structures. The result is a proper
sparse grid function. In the case of the interpolation problem one typically obtains
the exact sparse grid interpolant but for other problems (like finite element solutions)
one obtains an approximating sparse grid function. Mathematically, the combination
technique is an extrapolation method, and the accuracy is established using error
expansions, see [5, 44, 45]. However, specific error expansions are only known for
simple cases. Some recent work on errors of the sparse grid combination technique
can be found in [16, 20, 21, 47]. The scarcity of theoretical results, however,
did not stop its popularity in applications. Examples include partial differential
equations in fluid dynamics, the advection and advection-diffusion equation, the
Schrödinger equation, financial mathematics, and machine learning, see, e.g., [8–
13, 17, 41, 51]. However, as the combination technique is an extrapolation method,
it is inherently unstable and large errors may occur if the error expansions do not
hold. This is further discussed in [30] where also a stabilized approach, the so-called
Opticom method, is analyzed. Several new applications based on this stabilized

Theory and Application of the Combination Technique 145

approach are discussed in [1, 7, 23, 26, 35, 51, 52]. Other non-standard combination
approximations are considered in [4, 35, 37, 43].

The main application considered in the following deals with the solution of the
gyrokinetic equations by the software code GENE [14]. These equations are an
approximation for the case of a small Larmor-radius of the Vlasov equations for
densities fs of plasmas,

@fs
@t
C v � @fs

@x
C qs

ms
.EC v � B/ � @fs

@v
D 0 : (2)

The densities are distribution functions over the state space and E and B are the
electrostatic and electromagnetic fields (both external and induced by the plasma),
v is the velocity and x the location. The fields E and B are then the solution of the
Maxwell equations for the charge and current densities defined by

�.x; t/ D
X
s

qs

Z
fs.x; v; t/ dv; and j.x; t/ D

X
s

qs

Z
fs.x; v; t/vdv : (3)

While the state space has 6 dimensions (3 space and 3 velocity), the gyrokinetic
equations reduce this to 5 dimensions. The index s numbers the different species
(ions and electrons). The numerical scheme uses both finite differences and spectral
approximations. As complex Fourier transforms are used, the densities fs are
complex.

In Sect. 2 a general combination technique suitable for our application is
discussed. In this section the set I occurring in the combination formula (1)
uniquely determines the combination coefficients c� in that formula. Some parallel
algorithms and data structures supporting the sparse grid combination technique are
presented in Sect. 3. In order to stabilize the combination technique, the combination
coefficients need to be modified and even chosen dependent on the solution. This is
covered in Sect. 4. An important application area relates to eigenvalue problems in
Sect. 5, where we cover challenges and algorithms for this problem.

2 A Class of Combination Techniques

Here we call a combination technique a method which is obtained by substituting
some of the hierarchical surpluses by zero. This includes the traditional sparse grid
combination technique [19], the truncated combination technique [4], dimension
adaptive variants [10, 29] and even some of the fault tolerant methods [24]. The
motivation for this larger class is that often the basic error splitting assumption—
which can be viewed as an assumption about the surplus—does not hold in these
cases. We will now formally define this combination technique.

We assume that we have at our disposition a computer code which is able to
produce approximations of some real or complex number, some vector or some

146 M. Hegland et al.

function. We denote the quantity of interest by u and assume that the space of all
possible u is a Euclidean vector space (including the numbers) or a Hilbert space
of functions. The computer codes are assumed to compute a very special class of
approximations u.�/ which in some way are associated with regular d-dimensional
grids with step size hi D 2��i in the i-th coordinate. For simplicity we will assume
that in principle our code can compute u.�/ for any � 2 Nd

0. Furthermore, u.�/ 2
V.�/ where the spaces V.�/ � V are hierarchical, such that V.˛/ � V.ˇ/ when
˛ � ˇ (i.e. where ˛i � ˇi for all i D 1; : : : d). For example, if V D R then so are all
V.�/ D R. Another example is the space of functions with bounded (in L2) mixed
derivatives V D H1

mix

�
Œ0; 1�d

�
. In this case one may choose V.�/ to be appropriate

spaces of multilinear functions.
The quantities of interest include solutions of partial differential equations,

minima of convex functionals and eigenvalues and eigenfunctions of differential
operators. They may also be functions or functionals of solutions of partial
differential equations. They may be moments of some particle densities which
themselves are solutions to some Kolmogorov, Vlasov, or Boltzmann equations.
The computer codes may be based on finite difference and finite element solvers,
least squares and Ritz solvers but could also just be interpolants or projections. In
all these cases, the combination technique is a method which combines multiple
approximations u.�/ to get more accurate approximations. Of course the way how
the underlying u.�/ are computed will have some impact on the final combination
approximation.

The combination technique is fundamentally tied to the concept of the hierarchi-
cal surplus [53] which was used to introduce the sparse grids. However, there is a
subtle difference between the surplus used to define the sparse grids and the one
at the foundation of the combination technique. The surplus used for sparse grids
is based on the representation of functions as a series of multiples of hierarchical
basis functions. In contrast, the combination technique is based on a more general
decomposition. It is obtained from the following result which follows from two
lemmas in chapter 4 of [22].

Proposition 1 (Hierarchical surplus) Let V.�/ be linear spaces with � 2 Nd
0 such

that V.˛/ � V.ˇ/ if ˛ � ˇ and let u.�/ 2 V.�/. Then there exist w.˛/ 2 V.˛/
such that

X
˛��

w.˛/ D u.�/ : (4)

Moreover, the w.�/ are uniquely determined and one has

w.˛/ D
X
�2B.˛/

.�1/j˛�� j u.�/ (5)

where B.˛/ D f� � 0 j ˛ � 1 � � � ˛g and 1 D .1; : : : ; 1/ 2 Nd.

Theory and Application of the Combination Technique 147

The set of � is countable and the proposition is proved by induction over this set.
Note that the equations are cumulative sums and the solution is given in the form
of a finite difference. For the case of d D 2 and � � .2; 2/ one gets the following
system of equations:

2
66666666666664

u.2; 2/
u.1; 2/
u.2; 1/
u.0; 2/
u.1; 1/
u.2; 0/
u.0; 1/
u.1; 0/
u.0; 0/

3
77777777777775

D

2
66666666666664

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1

1 1 1 1

1 1 1

1 1

1 1

1

3
77777777777775

2
66666666666664

w.2; 2/
w.1; 2/
w.2; 1/
w.0; 2/
w.1; 1/
w.2; 0/
w.0; 1/
w.1; 0/
w.0; 0/

3
77777777777775

: (6)

Note that all the components of the right hand side and the solution are elements
of linear spaces. The vector of w.˛/ is for the example:

2
66666666666664

w.2; 2/
w.1; 2/
w.2; 1/
w.0; 2/
w.1; 1/
w.2; 0/
w.0; 1/
w.1; 0/
w.0; 0/

3
77777777777775

D

2
66666666666664

C1 �1 �1 C1
C1 �1 �1 C1
C1 �1 �1 C1
C1 �1
C1 �1 �1 C1
C1 �1
C1 �1
C1 �1
C1

3
77777777777775

2
66666666666664

u.2; 2/
u.1; 2/
u.2; 1/
u.0; 2/
u.1; 1/
u.2; 0/
u.0; 1/
u.1; 0/
u.0; 0/

3
77777777777775

: (7)

For any set of indices I � Nd
0 we now define the combination technique as any

method delivering the approximation

uI D
X
˛2I

w.˛/ : (8)

In practice, the approximation uI is computed directly from the u.�/. The
combination formula is directly obtained from Proposition 1 and one has

Proposition 2 Let uI D P
˛2I w.˛/ where w.˛/ is the hierarchical surplus for the

approximations u.�/. Then there exists a subset I0 of the smallest downset which
contains the set I and some coefficients c� 2 Z for � 2 I0 such that

uI D
X
�2I0

c� u.�/ : (9)

148 M. Hegland et al.

Furthermore, one has

c� D
X
˛2C.�/

.�1/j��˛j
I.˛/ (10)

where C.�/ D f˛ j � � ˛ � � C 1g and where
I.˛/ is the characteristic function
of I.

The proof of this result is a direct application of Proposition 1, see also [22]. For
the example d D 2 and n D 2 one gets

uCn D u.0; 2/C u.1; 1/C u.2; 0/� u.0; 1/� u.1; 0/ : (11)

Note the coefficients c� D 1 for the finest grids, c� D �1 for some grids
which are slightly coarser and c� D 0 for all the other grids. There are both
positive and negative coefficients. Indeed, the results above can also be shown to
be a consequence of the inclusion-exclusion principle. One can show that if 0 2 I
then

P
�2I c� D 1.

An implementation of the combination technique will thus compute a linear
combination of a potentially large number of component solutions u.�/. One thus
requires two steps, first the independent computation of the components u.�/ and
then the reduction to the combination uI . Thus the computations require a collection
of computational clusters which are loosely connected. This is a great advantage
on HPC systems as the need for global communication is significantly reduced to a
loose coupling.

Many variants of the combination technique are obtained using the technique
introduced above. They differ by their choice of the summation set I. The classical
combination technique utilizes

I D f˛ j j˛j � nC d � 1g : (12)

Many variants are subsets of this set. This includes the truncated sparse grids [3,
4] defined by

I D# f˛ j j˛j � nC d � 1; ˛ � ˇg (13)

where # is the operator producing the smallest downset containing the operand.
Basically the same class is considered in [49] (there called partial sparse grids):

I D# f˛ j j˛j � nC jˇj � 1; ˛ � ˇg (14)

for some ˇ � 1. Sparse grids with faults [24] include sets of the form

I D f˛ j j˛j � nC d � 1; ˛ ¤ ˇg (15)

Theory and Application of the Combination Technique 149

for some ˇ with jˇj D n. Finally, one may consider the two-scale combination with

I D
d[

kD1
f˛ j ˛ � n01C nkekg (16)

where ek is the standard k-th basis vector in Rd. This has been considered in [3] for
the case of n0 D nk D n. Another popular choice is

I D f˛ j j supp˛j � kg : (17)

This corresponds to a truncated ANOVA-type decomposition. An alternative
ANOVA decomposition is obtained by choosing ˇ.k/ with j suppˇ.k/j D k and
setting

I D
d[

kD1
f˛ j ˛ � ˇ.k/g : (18)

The sets I are usually downsets, i.e., such that ˇ 2 I if there exists an ˛ 2 I
such that ˇ � ˛. Note that any downset I especially contains the zero vector. The
corresponding vector space V.0/ typically contains the set of constant functions.

We will now consider errors. First we reconsider the error of the u.�/. In terms
of the surpluses, one has from the surplus decomposition of u.�/ that

e.�/ D u � u.�/ D
X
˛ 6��

w.˛/ : (19)

Let Is.�/ D f˛ j ˛s > �sg: Then one has

f˛ 6� �g D
d[

sD1
Is.�/ (20)

as any ˛ which is not less or equal to � contains at least one element ˛s > �s. We
now define

I.� I �/ D
\
s2�

Is.�/ (21)

for any non-empty subset � � f1; : : : ; dg. A direct application of the inclusion-
exclusion principle then leads to the error splitting

e.�/ D
X

;¤��f1;:::;dg
.�1/j� j�1z.�; �/ (22)

150 M. Hegland et al.

where

z.�; �/ D
X

˛2I.� I�/
w.˛/ : (23)

This is an ANOVA decomposition of the approximation error of u.�/. From this
one gets the result

Proposition 3 Let uI DP�2I0 c� u.�/ and the combination coefficients c� be such
that

P
�2I c� D 1. Then

u � uI D
X

;¤��f1;:::;dg
.�1/j� j�1

X
�2I0

c� z.�; �/ : (24)

Proof This follows from the discussion above and because 0 2 I one has

u � uI D
X
�2I0

c� e.�/ : (25)

ut
An important point to note here is that this error formula does hold for any

coefficients c� , not just the ones defined by the general combination technique. This
thus leads to a different way to choose the combination coefficients which results in
a small error. We will further discuss such choices in the next section. Note that for
the general combination technique the coefficients are uniquely determined by the
set I. In this case one has a complete description of the error using the hierarchical
surplus

eI D
X
˛ 62I

w.˛/ : (26)

In summary, we have now two strategies to design a combination approximation:
one may choose either

• the set I which contains all the w.˛/ which are larger than some threshold
• or the combination coefficients such that the sums

P
˛2I.�;�/ c� z.�; �/ are small.

One approach is to select the w.˛/ adaptively, based on their size so that

I D f˛ j kw.˛/k � �g : (27)

Such an approach is sometimes called dimension adaptive to distinguish it from the
spatially adaptive approach where grids are refined locally. One may be interested
in finding an approximation for some u.�/, for example, for � D .n; : : : ; n/. In this

Theory and Application of the Combination Technique 151

case one considers

I D f˛ � � j kw.˛/k � �g (28)

and one has the following error bound:

Proposition 4 Let I D f˛ � � j kw.˛/k � �g and u.�/ � uI be the error of the
combination approximation based on the set I relative to u.�/. Then one has the
bound

ku.�/� uIk �
dY

iD1
.�i C 1/ � : (29)

The result is a simple application of the triangle inequality and the fact that

jIj D
dY

iD1
.�i C 1/ : (30)

In particular, one has if all �i D n:

ku.�/� uIk � .nC 1/d� : (31)

While this bound is very simple, it is asymptotically (in n and d) tight due to the
concentration of measure. Note also, that a similar bound for the spatially adaptive
method is not available. An important point to note is that this error bound holds
always, independently of how good the surplus is at approximating the exact result.
For � D .n; : : : ; n/ one can combine the estimate of Proposition 4 with a bound on
u � u.�/ to obtain

ku � uIk � ku � u.�/k C ku.�/ � uIk � K 4�n C .nC 1/d� : (32)

One can then choose n which minimizes this for a given � by balancing the two
terms. Conversely, for a given n the corresponding � is given by �n D .nC1/�dK4�n.
In Fig. 1 we plot �n=K against ku�uIk=K for several different d to demonstrate how
the error changes with the threshold.

While the combination approximation is the sum of the surpluses w.˛/ over all
˛ 2 I, the result only depends on a small number of u.�/ close to the maximal
elements of I. In particular, any errors of the values u.˛/ for small ˛ have no effect
for approximations based on larger ˛. Thus when doing an adaptive approximation,
the earlier errors are forgotten.

Finally, if one has a model for the hierarchical surplus, for example, if it is of the
form

kw.˛/k � 4�j˛jy.˛/ (33)

152 M. Hegland et al.

Fig. 1 Scaled error against
threshold

for some bounded y.˛/ then one can get specific error bounds for the combination
technique, in particular the well-known bounds for the classical sparse grid tech-
nique. In this case one gets kw.˛/k � K4�j˛j if one chooses j˛j � n as for the
classical combination technique. One can show that the terms in the error formula
for the components u.�/ satisfy

kz.�; �/k �
�
4

3

�d

4�
P

j�j

sD1.��sC1/K : (34)

3 Algorithms and Data Structures

In this section we consider the parallel implementation of the combination technique
for partial differential equation solvers. For large-scale simulations, for example as
being the final target for the EXAHD project in the second phase, even a single
component grid (together with the data structures to solve the underlying PDE on
it) will not fit into the memory of a single node any more. Furthermore, the storage
of a full grid representation of a sparse grid will exceed the predicted RAM of a
whole exascale machine. Furthermore, the communication overhead across a whole
HPC systems’ network cannot be neglected. In this section we will assume that the
component grids u.�/ are implemented as distributed regular grids. In a first stage
we consider the case where the combined solution uI is also a distributed regular
grid. Later we will then discuss distributed sparse grid data structures.

The combination technique is a reduction operation combining the components
according to Eq. (1). This reduction is based on the sum u0 u0Ccu of a component
u (we omit the parameters � for simplicity) to the resulting combination u0 (or uI).
Assume that the u and u0 are distributed over P and P0 processors, respectively.

The direct SGCT algorithm involves for each of the component processes sending
all its points of u to the respective combination process. This is denoted as the

Theory and Application of the Combination Technique 153

Fig. 2 Gather and scatter steps

gather stage. In a second stage, the combination processes then first interpolates
the gathered points to the combination grid u before adding them. In a third stage,
the scatter stage, the data on each combination process is sampled and the samples
sent to the corresponding component processes, see Fig. 2.

In the direct SGCT algorithm, the components and combination are represented
by the function values on the grid points or coefficients of the nodal basis. We have
also considered a hierarchical SGCT algorithm which is based on the coefficients
of the hierarchical basis which leads to a hierarchical surplus representation. When
the direct SGCT algorithm is applied to these hierarchical surpluses there is no need
for interpolation, and the sizes of the corresponding surplus vectors are exactly the
same for both the components and the combination. However, for performance,
it is necessary to coalesce the combination of surpluses as described in [49].
As the largest surpluses only occur for one component they do not need to be
communicated. Despite the savings in the hierarchical algorithm, we found that
the direct algorithm is always faster than the hierarchical, and it scales better with
both n, d and the number of processes (cores). This does however require that
the representation of the combined grid u0 is sparse, as is described below. We
also found that the formation of the hierarchical surpluses (and its inverse) took a
relatively small amount of time, and concluded that, even when the data is originally
stored in hierarchical form, it is faster to dehierarchize it, apply the direct algorithm
and hierarchize it again [49].

New adapted algorithms and implementations have been developed with optimal
communication overhead, see Fig. 3 (left) and the corresponding paper in this
proceedings [27]. The gather–scatter steps described above have to be invoked
multiple times for the solution of time-dependent PDEs. (We found that for
eigenvalue problems it is often sufficient to call the gather–scatter only once,
see the Sect. 5.) In any case, the gather–scatter step is the only remaining global
communication of the combination technique and thus has to be examined well. In
previous work [31] we have thus analyzed communication schemes required for the
combination step in the framework of BSP-models and developed new algorithmic
variants with communication that is optimal up to constant factors. This way, the
overall makespan volume, the maximal communicated volume, can be drastically
reduced with a slightly increased number of messages that have to be sent.

154 M. Hegland et al.

Fig. 3 Distributed hierarchical combination with optimal communication overhead (left) and run-
time results on Hazel Hen (right) for different sizes of process groups (local parallelism with
nprocs processors). The results measure only the communication (local C global) and distributed
hierarchization, not the computation. The saturation for large numbers of component grids is due
to the logarithmic scaling of the global reduce step for large numbers of process groups and up to
180,224 processors in total. In comparison, the time for a single time step with GENE for a process
group size of 4096 is shown, see [27] in this proceedings for further details

A distributed sparse grid data structure is described in [49]. The index set I for
this case is a variant of a truncated sparse grid set, see Eq. (14). Recall that the sparse
grid points are obtained by taking the union of all the component grid points. As the
number of sparse grid points is much less than the number of full grid points it
makes sense to compute only the combinations for the sparse grid points. A sparse
grid data structure has been developed which is similar to the CSR data structure
used for sparse matrices. In this case one stores both information about the value u
at the grid point and the location of the grid point. Due to the regularity of the sparse
grid this can be done efficiently.

With optimal communication, distributed data structures and corresponding
algorithms, excellent scaling can be obtained for large numbers of process groups
as shown in Fig. 3 (right) on Hazel Hen, which includes local algorithmic work to
hierarchize, local communication and global communication. See the corresponding
paper in this proceedings [27].

4 Modified Combination Coefficients

Here we consider approximations which are based on a vector .u.�//�2I of
numerical results. It has been seen, however, that the standard way to choose the
combination coefficients is not optimal and may lead to large errors. In fact one
may interpret the truncated combination technique as a variant where some of the

Theory and Application of the Combination Technique 155

coefficients have been chosen to be zero and the rest adapted. In the following we
provide a more radical approach to choosing the coefficients c� . An advantage of
this approach is that it does not depend so much on properties of the index set I, in
fact, this set does not even need to be a downset.

A first method was considered in [30, 52] for convex optimization problems.
Here, let the component approximations be

u.�/ D argminfJ.v/ j v 2 V.�/g : (35)

Then the Opticom method, a Ritz approximation over the span of given u.�/
computes

uO D argmin

8<
:J.v/ j v D

X
�2I

c� u.�/

9=
; : (36)

Computationally the Opticom method consists of the determination of minimiza-
tion of a convex function P.c/ of jIj variables of the form

˚.c/ D J

0
@X
�2I

c� u.�/

1
A (37)

to get the combination coefficients. Once they have been determined, the approxi-
mation uO is then computed as in the Sects. 2 and 3. By design, one has J.uO/ �
J.u.�// for all � 2 I. If I gives rise to a combination approximation uC then
one also has J.uO/ � J.uC/. A whole family of other convex functions ˚.c/
for the combination coefficients were considered in [30]. Using properties of the
Bregman divergence, one can derive error bounds and quasi-optimality criteria for
the Opticom method, see [52].

A similar approach was suggested for the determination of combination coeffi-
cients for faulty sets I. Let I be any set and I0 be the smallest downset which contains
I. Then let the w.˛/ be the surpluses computed from the set of all u.�/ for � 2 I
and ˛ 2 I0. Finally, let the regular combination technique be defined as

uR D
X
˛2I0

w.˛/ (38)

and let for any c� a combination technique be

uC D
X
�2I

c�u.�/ : (39)

156 M. Hegland et al.

Then the difference between the new combination technique and the regular
combination technique is

uC � uR D
X
�2I

c� u.�/�
X
˛2I0

w.˛/

D
X
�2I

c�
X
˛��

w.˛/ �
X
˛2I0

w.˛/

D
X
˛2I0

w.˛/

0
@ X
�2I.˛/

c� � 1
1
A

(40)

where I.˛/ D f� 2 I j � � ˛g. Using the triangle inequality one obtains

kuC � uRk � ˚.c/ (41)

with

˚.c/ D
X
˛2I0

�.˛/

ˇ̌̌
ˇ̌
ˇ
X
�2I.˛/

c� � 1
ˇ̌̌
ˇ̌
ˇ ; (42)

where � is such that kw.˛/k � �.˛/. Minimizing the ˚.c/ thus seems to lead to
a good choice of combination coefficients, and this is confirmed by experiments
as well [22]. The resulting combination technique forms the basis for a new fault-
tolerant approach which has been discussed in [24].

5 Computing Eigenvalues and Eigenvectors

Here we consider the eigenvalue problem in V where one would like to compute
complex eigenvalues � and the corresponding eigenvectors u such that

L u D �u ; (43)

where L is a given linear operator defined on V . We assume we have a code which
computes approximations �.�/ 2 C and u�.�/ 2 V.�/ of the eigenvalues � and the
corresponding eigenvectors u. We have chosen to discuss the eigenvalue problem
separately as it does exhibit particular challenges which do not appear for initial and
boundary value problems.

Consider now the determination of the eigenvalues �. Note that one typically
has a large number of eigenvalues for any given operator L. First one needs to
decide which eigenvalue to compute. For example, if one is interested in stability of
a system, one would like to determine the eigenvalue with the largest real part. It is

Theory and Application of the Combination Technique 157

possible to use the general combination technique, however, one needs to make sure
that the (non-zero) combination coefficients c� used are such that the eigenvectors
of L.�/ contain approximations of the eigenvector u which is of interest. However,
computing the surplus .˛/ for the eigenvalues �.�/ and including all the ones
which satisfy j.˛/j � � for some � would be a good way to make sure that we
get a good result. Furthermore, the error bound given in Sect. 2 does hold here. As
any surplus .˛/ does only depend on the values �.�/ for � close to ˛ any earlier
�.�/ with a large error will not influence the final result. Practical computations
confirmed the effectiveness of this approach, see [34]. If one knows which spaces
V.�/ produce reasonable approximations for the eigenvector corresponding to some
eigenvalue � then one can define a set I.�/ containing only those � . Combinations
over I.�/ will then provide good approximations of �. (However, as stated above,
the combination technique is asymptotically stable against wrong or non-existing
eigenvectors.)

Computing the eigenvectors faces the same problem one has for computing the
eigenvalues. In addition, however, one has an extra challenge as the eigenvectors
are only determined up to some complex factor. In particular, if one uses the
eigenvectors u.�/ to compute the surplus functions w.˛/ one may get very wrong
results. One way to deal with this is to first normalize the eigenvectors. For this
one needs a functional s 2 V�. One then replaces the u.�/ by u.�/=hs; u.�/i when
computing the surplus, i.e., one solves the surplus equations

X
˛��

w.˛/ D u.�/

hs; u.�/i (44)

and computes the combination approximation as

uI D
X
�2I

c�
u.�/

hs; u.�/i : (45)

In practice, this did give good results and it appears reasonable that bounds on
the so computed surplus provide a foundation for the error analysis. In any case the
error bound of the adaptive method holds. Actually, this bound even holds when
the eigenvectors are not normalized. The advantage of the normalization is really
that the number of surpluses to include are much smaller—i.e. a computational
advantage. Practical experiments also confirmed this. It remains to be shown that
error splitting assumptions are typically invariant under the scaling done above.

5.1 An Opticom Approach for Solving the Eigenvalue Problem

An approach to solving the eigenvalue problem which does not require scaling has
been proposed and investigated by Kowitz and collaborators [34, 36]. The approach

158 M. Hegland et al.

is based on a minimization problem which determines combination coefficients in a
similar manner as the opticom method in Sect. 3. It is assumed that I is given and the
u.�/ for � 2 I have been computed and solve L.�/u.�/ D �.�/u.�/. Let the matrix
G D Œu.�/��2I and the vector c D Œc� �T�2I , then the combination approximation for
the eigenvector can be written as the matrix-vector product

Gc D
X
�2I

c� u.�/ : (46)

This eigenvalue problem can be solved by computing

.c; �/ D argminc;� kLGc � �Gck (47)

with the normal equations

.LG � �G/�.LG � �G/c D 0 (48)

for the solution of c. Osborne et al. [33, 42] solved this by considering the problem

�
K.�/ t
s� 0

��
c
ˇ

�
D
�
0

1

�
(49)

with K.�/ D .LG��G/�.LG��G/. Here � is a parameter. One obtains the solution

ˇ.�/ D �hs�; K.�/�1ti�1 (50)

for which one then uses Newton’s method to solve ˇ.�/ D 0 with respect to �. With
ˇ.�/ D 0 it follows that K.�/c D 0 and hs�; ci D 1. Thus one obtains a normalized
solution of the nonlinear eigenvalue problem (i.e., where � occurs in a nonlinear
way in K.�/).

Another approach for obtaining the least squares solution is its interpretation as
an overdetermined eigenvalue problem. Das et al. [6] developed an algorithm based
on the QZ decomposition which allows the computation of the eigenvalue and the
eigenvector in O.mn/ complexity, where n D jIj and m D jVj.

The approaches have both been investigated for a simple test problem (see left
of Fig. 4) and for large eigenvalue computations with GENE (see right of Fig. 4).
The combination approximations (though computed serially here) can be usually
obtained faster than the full grid approximations. Note that the run-times here
have been obtained in a prototypical implementation before the development of
the scalable algorithms described in Sect. 3. For large problems, the combination
approximation can be expected to be even significantly faster as the combination
technique exhibits a better parallel scalability than the full grid solution. For further
details, see [34, 36].

Theory and Application of the Combination Technique 159

−4 −2 0 2 4

−5

0

5

0

10

20

103 104

103

104

t(c)

t t(ref)

t(c)

Fig. 4 The convergence of the Newton iteration towards the root of ˇ.�/ for the simple test
problem (left) and the time for obtaining the combination approximation t.c/ compared to the time
to compute an eigenpair on a full grid of similar accuracy t.ref/ for linear GENE computations
(right)

5.2 Iterative Refinement and Iterative Methods

Besides the adaptation of the combination coefficients, the combination technique
for eigenvalue problems can also be improved by refining the u.�/ iteratively.
Based on the iterative refinement procedure introduced by Wilkinson [50], the
approximation of the eigenvalue �I and the corresponding eigenvector uI can be
improved towards � and u with corrections�� and �u by

u D uI C�u � D �I C�� : (51)

Putting this into 0 D Lu � �u, the corrections can be obtained by solving

0 D LuI � �IuI ���uI C L�u � �I�u; (52)

where the quadratic term ���u is neglected. This system is underdetermined. An
additional scaling condition hs�; �ui D 0 with s 2 V ensures that the correction�u
does not change the magnitude of uI . Solving the linear system

�
L � �II uI

s� 0

��
�u
��

�
D
�
�IuI � LuI

0

�
; (53)

we obtain the corrections �� and �u. The linear operator L has a large rank
and its inversion is generally infeasible for high-dimensional settings. Nevertheless
computing a single matrix vector product LuI is feasible, so that the right-hand side
is easily computed. In the framework of the combination technique the corrections
�u and �� are computed on each subspace V.�/. Therefore, the residual r D
Lu � �u and the initial combination approximation uI are projected on V.�/
using suitable prolongation operators [18]. The corrections �u.�/ and ��.�/ are

160 M. Hegland et al.

computed on each subspace V.�/ by solving

�
L.�/ � �I I uI.�/

s�.�/ 0

��
�u.�/
��.�/

�
D
��r.�/

0

�
: (54)

Here, the significantly smaller rank of L.�/ allows the solution of the linear system
with feasible effort. The corrections from each subspace V.�/ are then combined
using the standard combination coefficients c� by

�uI D
X
�2I

c��uI.�/ ��I D
X
�2I

c���I.�/ : (55)

After adding the correction to uI and �I , the process can be repeated up to marginal
��I and�uI .

Instead of using the standard combination coefficients c� , we can also adapt the
combination coefficients in order to minimize the residual r. The minimizer

.�u; ��/ D argminc kr � �IuI C L�uI � �I�uI ���IuIk (56)

is then the best combination of the corrections. Both approaches have been tested
for the Poisson problem as well as GENE simulations. For details see [34].

6 Conclusions

Early work on the combination technique revealed that it leads to a suitable method
for the solution of simple boundary value problems on computing clusters. The
work presented here demonstrated, that if combined with strongly scalable solvers
for the components, one can develop an approach which is suitable for exascale
architectures. This was investigated for the plasma physics code GENE which was
used to solve initial and eigenvalue problems and stationary solutions. In addition to
the 2 levels of parallelism exhibited by the combination technique, the flexibility of
the choice of the combination coefficients led to a totally new approach to algorithm-
based fault tolerance which further enhanced the scalability of the approach.

Acknowledgements The work presented here reviews some results of a German-Australian
collaboration going over several years which was supported by grants from the German DFG
(SPP-1648 SPPEXA: EXAHD) and the Australian ARC (LP110200410), contributions by Fujitsu
Laboratories of Europe (FLE) and involved researchers from the ANU, FLE, TUM, and the
Universities of Stuttgart and Bonn. Contributors to this research included Stephen Roberts, Jay
Larson, Moshin Ali, Ross Nobes, James Southern, Nick Wilson, Hans-Joachim Bungartz, Valeriy
Khakhutskyy, Alfredo Hinojosa, Mario Heene, Michael Griebel, Jochen Garcke, Rico Jacob, Philip
Hupp, Yuan Fang, Matthias Wong, Vivien Challis and several others.

Theory and Application of the Combination Technique 161

References

1. Ali, M.M., Southern, J., Strazdins, P.E., Harding, B.: Application level fault recovery: Using
fault-tolerant open MPI in a PDE solver. In: 2014 IEEE International Parallel & Distributed
Processing Symposium Workshops, Phoenix, 19–23 May 2014, pp. 1169–1178. IEEE (2014)

2. Ali, M.M., Strazdins, P.E., Harding, B., Hegland, M., Larson, J.W.: A fault-tolerant gyrokinetic
plasma application using the sparse grid combination technique. In: Proceedings of the
2015 International Conference on High Performance Computing & Simulation (HPCS 2015),
pp. 499–507. IEEE, Amsterdam (2015). Outstanding paper award

3. Benk, J., Bungartz, H.J., Nagy, A.E., Schraufstetter, S.: Variants of the combination technique
for multi-dimensional option pricing. In: Günther, M., Bartel, A., Brunk, M., Schöps, S.,
Striebel, M. (eds.) Progress in Industrial Mathematics at ECMI 2010, pp. 231–237. Springer,
Berlin/Heidelberg (2010)

4. Benk, J., Pflüger, D.: Hybrid parallel solutions of the Black-Scholes PDE with the truncated
combination technique. In: Smari, W.W., Zeljkovic, V. (eds.) 2012 International Conference
on High Performance Computing & Simulation, HPCS 2012, Madrid, 2–6 July 2012, pp. 678–
683. IEEE (2012)

5. Bungartz, H.J., Griebel, M., Rüde, U.: Extrapolation, combination, and sparse grid techniques
for elliptic boundary value problems. Comput. Method. Appl. M. 116(1–4), 243–252 (1994)

6. Das, S., Neumaier, A.: Solving overdetermined eigenvalue problems. SIAM J. Sci. Comput.
35(2), 541–560 (2013)

7. Fang, Y.: One dimensional combination technique and its implementation. ANZIAM J.
Electron. Suppl. 52(C), C644–C660 (2010)

8. Franz, S., Liu, F., Roos, H.G., Stynes, M., Zhou, A.: The combination technique for a two-
dimensional convection-diffusion problem with exponential layers. Appl. Math. 54(3), 203–
223 (2009)

9. Garcke, J.: Regression with the optimised combination technique. In: Proceedings of the 23rd
International Conference on Machine Learning (ICML 2006), vol. 2006, pp. 321–328. ACM,
New York (2006)

10. Garcke, J.: A dimension adaptive sparse grid combination technique for machine learning.
ANZIAM J. 48(C), C725–C740 (2007)

11. Garcke, J., Griebel, M.: On the computation of the eigenproblems of hydrogen and helium
in strong magnetic and electric fields with the sparse grid combination technique. J. Comput.
Phys. 165(2), 694–716 (2000)

12. Garcke, J., Hegland, M.: Fitting multidimensional data using gradient penalties and com-
bination techniques. In: Modeling, Simulation and Optimization of Complex Processes,
pp. 235–248. Springer, Berlin (2008)

13. Garcke, J., Hegland, M.: Fitting multidimensional data using gradient penalties and the sparse
grid combination technique. Computing 84(1–2), 1–25 (2009)

14. Gene Development Team: GENE. http://www.genecode.org/
15. Griebel, M.: The combination technique for the sparse grid solution of PDEs on multiprocessor

machines. Parallel Process. Lett. 2, 61–70 (1992)
16. Griebel, M., Harbrecht, H.: On the convergence of the combination technique. Lect. Notes

Comput. Sci. 97, 55–74 (2014)
17. Griebel, M., Thurner, V.: The efficient solution of fluid dynamics problems by the combination

technique. Int. J. Numer. Method. H. 5(3), 251–269 (1995)
18. Griebel, M., Huber, W., Rüde, U., Störtkuhl, T.: The combination technique for parallel sparse-

grid-preconditioning or -solution of PDEs on workstation networks. In: Bougé, L., Cosnard,
M., Robert, Y., Trystram, D.(eds.) Parallel Processing: CONPAR 92 – VAPP V, Lecture Notes
in Computer Science. vol. 634, pp. 217–228. Springer, Berlin/Heidelberg/London (1992).
Proceedings of the Second Joint International Conference on Vector and Parallel Processing,
Lyon, 1–4 Sept 1992

http://www.genecode.org/

162 M. Hegland et al.

19. Griebel, M., Schneider, M., Zenger, C.: A combination technique for the solution of sparse
grid problems. In: Iterative Methods in Linear Algebra (Brussels, 1991), pp. 263–281. North-
Holland, Amsterdam (1992)

20. Harding, B.: Adaptive sparse grids and extrapolation techniques. In: Proceedings of Sparse
Grids and Applications 2014. Lecture Notes in Computational Science and Engineering,
vol. 109, pp. 79–102. Springer, New York (2015)

21. Harding, B.: Combination technique coefficients via error splittings. ANZIAM J. 56, C355–
C368 (2016). (Online)

22. Harding, B.: Fault tolerant computation of hyperbolic PDEs with the sparse grid combination
technique. Ph.D. thesis, The Australian National University (2016)

23. Harding, B., Hegland, M.: A robust combination technique. ANZIAM J. Electron. Suppl.
54(C), C394–C411 (2012)

24. Harding, B., Hegland, M.: A parallel fault tolerant combination technique. Adv. Parallel
Comput. 25, 584–592 (2014)

25. Harding, B., Hegland, M.: Robust solutions to PDEs with multiple grids. In: Garcke, J., Pflüger,
D. (eds.) Sparse Grids and Applications, Munich 2012. Lecture Notes in Computer Science.
vol. 97, pp. 171–193. Springer, Cham (2014)

26. Harding, B., Hegland, M., Larson, J.W., Southern, J.: Fault tolerant computation with the sparse
grid combination technique. SIAM J. Sci. Comput. 37(3), C331–C353 (2015)

27. Heene, M., Pflüger, D.: Scalable algorithms for the solution of higher-dimensional PDEs.
In: Proceedings of SPPEXA Symposium 2016. Lecture Notes in Computational Science and
Engineering. Springer, Berlin/Heidelberg (2016)

28. Heene, M., Kowitz, C., Pflüger, D.: Load balancing for massively parallel computations with
the sparse grid combination technique. In: Bader, M., Bungartz, H.J., Bode, A., Gerndt, M.,
Joubert, G.R. (eds.) Parallel Computing: Accelerating Computational Science and Engineering
(CSE). pp. 574–583. IOS Press, Amsterdam (2014)

29. Hegland, M.: Adaptive sparse grids. In: Burrage, K., Sidje, R.B. (eds.) Proceedings of 10th
Computational Techniques and Applications Conference CTAC-2001, vol. 44, pp. C335–C353
(2003)

30. Hegland, M., Garcke, J., Challis, V.: The combination technique and some generalisations.
Linear Algebra Appl. 420(2–3), 249–275 (2007)

31. Hupp, P., Jacob, R., Heene, M., Pflüger, D., Hegland, M.: Global communication schemes for
the sparse grid combination technique. Adv. Parallel Comput. 25, 564–573 (2014)

32. Hupp, P., Heene, M., Jacob, R., Pflüger, D.: Global communication schemes for the numerical
solution of high-dimensional PDEs. Parallel Comput. 52, 78–105 (2016)

33. Jennings, L.S., Osborne, M.: Generalized eigenvalue problems for rectangular matrices. IMA
J. Appl. Math. 20(4), 443–458 (1977)

34. Kowitz, C.: Applying the sparse grid combination technique in Linear Gyrokinetics. Ph.D.
thesis, Technische Universität München (2016)

35. Kowitz, C., Hegland, M.: The sparse grid combination technique for computing eigenvalues in
linear gyrokinetics. Procedia Comput. Sci. 18, 449–458 (2013). 2013 International Conference
on Computational Science

36. Kowitz, C., Hegland, M.: An opticom method for computing eigenpairs. In: Garcke, J., Pflüger,
D. (eds.) Sparse Grids and Applications, Munich 2012 SE – 10. Lecture Notes in Computer
Science. vol. 97, pp. 239–253. Springer, Cham (2014)

37. Kowitz, C., Pflüger, D., Jenko, F., Hegland, M.: The combination technique for the initial value
problem in linear gyrokinetics. Lecture Notes in Computer Science, vol. 88, pp. 205–222.
Springer, Heidelberg (2013)

38. Larson, J.W., Hegland, M., Harding, B., Roberts, S., Stals, L., Rendell, A., Strazdins, P., Ali,
M.M., Kowitz, C., Nobes, R., Southern, J., Wilson, N., Li, M., Oishi, Y.: Fault-tolerant grid-
based solvers: Combining concepts from sparse grids and mapreduce. Procedia Comput. Sci.
18, 130–139 (2013). 2013 International Conference on Computational Science

39. Larson, J.W., Strazdins, P.E., Hegland, M., Harding, B., Roberts, S.G., Stals, L., Rendell,
A.P., Ali, M.M., Southern, J.: Managing complexity in the parallel sparse grid combination

Theory and Application of the Combination Technique 163

technique. In: Bader, M., Bode, A., Bungartz, H.J., Gerndt, M., Joubert, G.R., Peters, F.J. (eds.)
PARCO. Advances in Parallel Computing, vol. 25, pp. 593–602. IOS Press, Amsterdam (2013)

40. Larson, J., Strazdins, P., Hegland, M., Harding, B., Roberts, S., Stals, L., Rendell, A., Ali,
M., Southern, J.: Managing complexity in the parallel sparse grid combination technique. Adv.
Parallel Comput. 25, 593–602 (2014)

41. Lastdrager, B., Koren, B., Verwer, J.: The sparse-grid combination technique applied to time-
dependent advection problems. In: Multigrid Methods, VI (Gent, 1999). Lecture Notes of
Computer Science & Engineering, vol. 14, pp. 143–149. Springer, Berlin (2000)

42. Osborne, M.R.: A new method for the solution of eigenvalue problems. Comput. J. 7(3), 228–
232 (1964)

43. Parra Hinojosa, A., Kowitz, C., Heene, M., Pflüger, D., Bungartz, H.J.: Towards a fault-tolerant,
scalable implementation of GENE. In: Recent Trends in Computation Engineering – CE2014.
Lecture Notes in Computer Science, vol. 105, pp. 47–65. Springer, Cham (2015)

44. Pflaum, C.: Convergence of the combination technique for second-order elliptic differential
equations. SIAM J. Numer. Anal. 34(6), 2431–2455 (1997)

45. Pflaum, C., Zhou, A.: Error analysis of the combination technique. Numer. Math. 84(2), 327–
350 (1999)

46. Pflüger, D., Bungartz, H.J., Griebel, M., Jenko, F., Dannert, T., Heene, M., Kowitz, C.,
Parra Hinojosa, A., Zaspel, P.: EXAHD: An exa-scalable two-level sparse grid approach
for higher-dimensional problems in plasma physics and beyond. In: Euro-Par 2014: Parallel
Processing Workshops, Porto. Lecture Notes in Computer Science, vol. 8806, pp. 565–576.
Springer, Cham (2014)

47. Reisinger, C.: Analysis of linear difference schemes in the sparse grid combination technique.
IMA J. Numer. Anal. 33(2), 544–581 (2013)

48. Strazdins, P.E., Ali, M.M., Harding, B.: Highly scalable algorithms for the sparse grid
combination technique. In: IPDPS Workshops, Hyderabad, pp. 941–950. IEEE (2015)

49. Strazdins, P.E., Ali, M.M., Harding, B.: The design and analysis of two highly scalable sparse
grid combination algorithms (2015, under review)

50. Wilkinson, J.H.: Rounding Errors in Algebraic Processes. Her Majesty’s Stationery Office,
London (1963)

51. Wong, M., Hegland, M.: Maximum a posteriori density estimation and the sparse grid
combination technique. ANZIAM J. Electron. Suppl. 54(C), C508–C522 (2012)

52. Wong, M., Hegland, M.: Opticom and the iterative combination technique for convex minimi-
sation. Lect. Notes Comput. Sci. 97, 317–336 (2014)

53. Zenger, C.: Sparse grids. In: Hackbusch, W. (ed.) Parallel Algorithms for Partial Differential
Equations. Notes on Numerical Fluid Mechanics, vol. 31, pp. 241–251. Vieweg, Braunschweig
(1991)

Scalable Algorithms for the Solution
of Higher-Dimensional PDEs

Mario Heene and Dirk Pflüger

Abstract The solution of higher-dimensional problems, such as the simulation
of plasma turbulence in a fusion device as described by the five-dimensional
gyrokinetic equations, is a grand challenge for current and future high-performance
computing. The sparse grid combination technique is a promising approach to the
solution of these problems on large-scale distributed memory systems. The com-
bination technique numerically decomposes a single large problem into multiple
moderately-sized partial problems that can be computed in parallel, independently
and asynchronously of each other. The ability to efficiently combine the individual
partial solutions to a common sparse grid solution is a key to the overall performance
of such large-scale computations. In this work, we present new algorithms for the
recombination of distributed component grids and demonstrate their scalability to
180;225 cores on the supercomputer Hazel Hen.

1 Introduction

The solution of higher-dimensional problems, especially higher-dimensional partial
differential equations (PDEs) that require the joint discretization of more than the
usual three spatial dimensions plus time, is one of the grand challenges in current
and future high-performance computing (HPC). Resolving the simulation domain
as fine as required by the physical problem is in many cases not feasible due
to the exponential growth of the number of unknowns—the so-called curse of
dimensionality. A resolution of, for example, 1000 grid points in each dimension
would result in 1015 grid points in five dimensions. Note that this is not an
exaggerated example: simulations of physical phenomena as e.g. a turbulent flow
require the resolution of length scales that can span many orders of magnitude, from
meters to less than millimeters.

This can be observed in the simulation of plasma turbulence in a fusion reactor
with the code GENE [9], which solves the five-dimensional gyrokinetic equations.

M. Heene (�) • D. Pflüger
Institute for Parallel and Distributed Systems, University of Stuttgart, Universitätsstr. 38,
70569 Stuttgart, Germany
e-mail: mario.heene@ipvs.uni-stuttgart.de; dirk.pflueger@ipvs.uni-stuttgart.de

© Springer International Publishing Switzerland 2016
H.-J. Bungartz et al. (eds.), Software for Exascale Computing – SPPEXA
2013-2015, Lecture Notes in Computational Science and Engineering 113,
DOI 10.1007/978-3-319-40528-5_8

165

mailto:mario.heene@ipvs.uni-stuttgart.de
mailto:dirk.pflueger@ipvs.uni-stuttgart.de

166 M. Heene and D. Pflüger

With classical discretization techniques the resolutions necessary for physically
accurate turbulence simulations of a large fusion device, such as the world’s flagship
fusion experiment ITER, quickly hit the computational borders even on today’s
largest HPC systems.

Sparse grids are a hierarchical approach to mitigate the curse of dimensionality
to a large extent by drastically reducing the number of unknowns, while preserving a
similar accuracy as classical discretization techniques that work on regular grids [4].
However, due to their recursive and hierarchical structure and the resulting global
coupling of basis functions, the direct sparse grid approach is not feasible for large-
scale distributed-memory parallelization.

A scalable approach to solve higher-dimensional problems is the sparse grid
combination technique [11]. It is based on an extrapolation scheme and decom-
poses a single large problem (i.e. discretized with a fine resolution) into multiple
moderately-sized problems that have coarse and anisotropic resolutions. This
introduces a second level of parallelism, enabling one to compute the partial
problems in parallel, independently and asynchronously of each other. This breaks
the demand for full global communication and synchronization, which is expected
to be one of the limiting factors with classical discretization techniques to achieve
scalability on future exascale systems. Furthermore, by mitigating the curse of
dimensionality, it offers the means to tackle problem sizes that would be out of scope
for the classical discretization approaches. This allows us to significantly push the
computational limits of plasma turbulence simulations and other higher-dimensional
problems and is the driving motivation for our project EXAHD [21]. Additionally,
we investigate novel approaches to enable fault-tolerance on the algorithmic level
based on the combination technique [19, 20], which is a key issue in ongoing
exascale research [5].

We are currently preparing our combination technique software framework to
handle large-scale global computations with GENE. The key part that had been
missing until now were efficient and scalable algorithms for the recombination of
distributed component grids, which we present in this work. We present experiments
that demonstrate the scalability of our algorithms on up to 180,225 cores on
Germany’s Tier-0/1 supercomputer Hazel Hen. In order to get meaningful results,
we used the problem sizes for our scaling experiments that we aim to use for
our future large-scale production runs. The experiments not only demonstrate the
scalability of our recombination algorithm, but also that it would even be fast enough
to be applied after each GENE time step, if this was necessary.

1.1 Sparse Grid Combination Technique

The sparse grid combination technique [4, 11] computes the sparse grid approxima-
tion of a function f by a linear combination of component solutions fl. Each fl is an
approximation of f that has been computed on a coarse and anisotropic Cartesian
component grid ˝l. In our case f is the solution of the gyrokinetic equations,

Scalable Algorithms for the Solution of Higher-Dimensional PDEs 167

a higher-dimensional PDE, and the corresponding approximation fl is the result
of a simulation with the application code GENE (see Sect. 1.2) computed on the
grid˝l. In general this can be any kind of function which fulfills certain smoothness
conditions.

The discretization of each d-dimensional component grid ˝l is defined by the
level vector l D .l1; � � � ; ld/T , which determines the uniform mesh width 2�li in
dimension i. The number of grid points of a component grid is j˝lj DQd

iD1.2li˙1/
(C1 if the grid has boundary points in dimension i and �1 if not).

In order to retrieve a sparse grid approximation f .c/n � f one can combine the
partial solutions fl.x/ as

f .c/n .x/ D
X
l2I

clfl.x/ ; (1)

where cl are the combination coefficients and I is the set of level vectors used for
the combination. n denotes the maximum discretization level in each dimension.
It also defines the discretization of the corresponding full grid solution fn on ˝n.
Figure 1 shows a two-dimensional example.

There exist different approaches to determine the combination coefficients cl and
the index set I [14, 15]. Usually,

f .c/n .x/ D
d�1X
qD0
.�1/q

�
d � 1
q

� X
l2In;q

fl.x/ (2)

is referred to as the classical combination technique with the index set [11]

In;q D fl 2 Nd W jlj1 D jlminj1 C c � q W n � l � lming ; (3)

Fig. 1 The classical combination technique with n D .4; 4/ and lmin D .1; 1/. Seven component
grids are combined to obtain a sparse grid approximation (on the grid˝.c/

.4;4/) to the full grid solution
on the grid ˝.4;4/

168 M. Heene and D. Pflüger

Fig. 2 Concept of recombination. On each component grid, the PDE is solved for a certain time
interval �t. Then the component grids are combined in the sparse grid space, and the combined
solution is set as the new initial value for each component grid for the computation of the next time
interval

where lmin D n � c � e, c 2 N0 s.th. lmin � e specifies a minimal resolution level
in each direction, e D .1; : : : ; 1/T and l � j if li � ji 8i. The computational effort
(with respect to the number of unknowns) decreases from O.2nd/ for the full grid
solution fn on ˝n to O.dn � 1/ partial solutions of size O.2n/. If f fulfills certain
smoothness conditions, the approximation quality is only deteriorated from O.2�2n/
for fn to O.2�2nnd�1/ for f .c/n . The minimum level lmin has been introduced in order
to exclude component grids from the combination. In some cases, if the resolution
of a component grid is too coarse this could lead to numerically unstable or even
physically meaningless results.

In case of time-dependent initial value computations, as we have them in GENE,
advancing the combined solution f .c/n .t/ in time requires to recombine the compo-
nent solutions every few time steps. This is necessary to guarantee convergence
and stability of the combined solution. Recombination means to combine the
component solutions fl.ti/ according to Eq. (1) and to set the corresponding sparse
grid solution f .c/n .ti/ as the new initial value for each component grid. After that,
the independent computations are continued until the next recombination point tiC1,
where ti D t0C i�t as illustrated in Fig. 2 (t0 is the time of a given initial value f .t0/
and the corresponding approximation fl.t0/).

This does not necessarily mean that all component grids must be computed with
the same time step size �t. If it is desirable to use individual time step sizes for
the component grids, or even adaptive time stepping, �t can be understood as the
time interval in-between two recombination steps. If the component grids are not
recombined, or if the recombination interval is too long, the component solutions
could diverge. This would then destroy the combined solution. Even in cases where
this is not an issue, it might be desirable to compute the combined solution every
few time steps in order to trace certain physical properties of the solution field
over time. Being the only remaining step that involves global communication, an
efficient implementation is crucial for the overall performance of computations with
the combination technique.

The function space Vl of a component grid is spanned by classical nodal basis
functions (e.g. piece-wise linear). Vl can be uniquely decomposed into hierarchical

Scalable Algorithms for the Solution of Higher-Dimensional PDEs 169

Fig. 3 Component grids of the combination technique (left) with lmin D .1; 1/ and nD .4; 4/, the
corresponding sparse grid (middle) and its hierarchical increment spaces (right). The hierarchical
increment spaces, as well as the corresponding grid points in the sparse grid, of the component grid
with l D .2; 3/ are marked in green

increment spaces Wl0 (also called hierarchical subspaces in the following) where
Vl D ˚l0�lWl0 . We refer to the operation of decomposing a component grid
into its hierarchical subspaces as hierarchization and the inverse operation as
dehierarchization. The sparse grid which corresponds to a particular combination
is a union of the hierarchical subspaces of the component grids that contribute to
the combination. Figure 3 shows the component grids of the combination technique
with n D .4; 4/ and the corresponding sparse grid. The component grids can be
combined according to Eq. (1) in the function space of the sparse grid by adding up
the hierarchical subspaces of the component grids. This is explained in detail in [17].

The naive way to perform the recombination would be to interpolate each partial
solution onto the full grid ˝n and to obtain the combined solution by adding up
grid point by grid point weighted with the corresponding combination coefficient.
However, for the large-scale computations with GENE that we aim for, this is not
feasible. The size of the full grid would be so large that even storing it would be out
of scope. The only efficient (or even feasible) way is to recombine the component
grids in the corresponding sparse grid space. For large-scale setups, where the
component grids are distributed onto several thousand processes, an efficient and
scalable implementation of the recombination is crucial for the overall performance,
because this is the only remaining step that requires global communication.
In [16, 17] we already have presented and analyzed different algorithms for the
recombination when a component grid is stored on a single node. In this work we
present new, scalable algorithms for the recombination step with component grids
that are distributed over a large number of nodes on an HPC system.

1.2 Large Scale Plasma Turbulence Simulations with GENE

A limiting factor for the generation of clean sustainable energy from plasma fusion
reactors are microinstabilities that arise during the fusion process [8]. Simulation
codes like GENE play an important role in understanding the mechanisms of the

170 M. Heene and D. Pflüger

resulting anomalous transport phenomena. The combination technique has already
been successfully applied to eigenvalue computations in GENE [18]. It has also
been used to study fault tolerance on the algorithmic level [2, 19].

The 5-dimensional gyrokinetic equation describes the dynamics of hot plasmas,
which is given by

@fs
@t
C

v

k

b0 C B0
B�

0k

.vE
 C v
rB0 C vc/

!
�
�
rfs C 1

msvk

�
q NE1 � �r

�
B0 C NB1k

�� @fs
@v

k

�
D 0 ;

(4)
where fs � fs.x; vk; �I t/ is (5+1)-dimensional due to the gyrokinetic approximation
(see [3, 6] for a thorough description of the model and an explanation of all
identifiers) and s denotes the species (electron, ion, etc.). If we consider gs (the
perturbation of fs with respect to the Maxwellian background distribution) instead
of fs, Eq. (4) can be written as a sum of a (nonsymmetric) linear and a nonlinear
operator, namely

@g

@t
D L Œg�CN Œg� ; (5)

where g is a vector including all species in gs.
There are different simulation modes in GENE to solve (4). Local (or flux-tube)

simulations treat the x and y coordinates in a pseudo-spectral way, and background
quantities like density or temperature (and their gradients) are kept constant in the
simulation domain. The simulation domain is essentially only parallelized in four
dimensions, because no domain decomposition is used in the radial direction. In
global runs, only the y direction is treated in a spectral way, and all 5 dimensions are
parallelized, with background quantities varying radially according to given profiles.

Additionally, GENE handles three main physical scenarios: multiscale problems
(local mode, typical grids of size 1024� 512� 24� 48� 16 .x; y; z; vjj; �/ with two
species), stellarator problems (local mode, typical grids of size 128�64�512�64�
16 with two species), and global simulations (expected grid size 8192 � 64 � 32 �
128�64 or higher, with up to 4 species). Especially for the global simulations, there
exist certain scenarios that require such high resolutions that they are too expensive
to compute on current machines.

GENE makes use of highly sophisticated domain decomposition schemes that
allow it to scale very well on massively parallel systems. To name an extreme exam-
ple: the largest run performed so far was carried out on the JUGENE supercomputer
in Jülich using up to 262k cores [7]. Thus, GENE is able to efficiently exploit the
first fine level of parallelism. By adding a second level of parallelization with the
combination technique we can ensure the scalability of GENE on future machines
and make it possible to compute problem sizes that would otherwise be out of scope
on current machines.

Scalable Algorithms for the Solution of Higher-Dimensional PDEs 171

2 Software Framework for Large-Scale Computations
with the Combination Technique

We are developing a general software framework for large-scale computations with
the combination technique as a part of our sparse grid library SGCC [1]. In
order to distribute the component grids over the available compute resources, the
framework implements the manager–worker pattern. A similar concept has already
been successfully used for the combination technique in [10]. The available compute
resources, in form of MPI processes, are arranged in process groups, except one
process, which is the dedicated manager process. In the framework the computation
of and access to the component grids is abstracted by so-called compute tasks. The
manager distributes these tasks to the process groups. This is illustrated in Fig. 4.
The actual application code is then executed by all processes of a process group in
order to compute the task. Note that this concept implements the two-level paral-
lelism of the combination technique. Apart from the recombination step, there is no
communication between the process groups and the process groups can compute the
tasks independently and asynchronously of each other. The communication effort
between the manager and the dedicated master process of each process group to
orchestrate the compute tasks can be neglected. It only consists of very few small
messages that are necessary to coordinate the process groups.

Our framework uses a Task class (see Fig. 5) as an abstract and flexible interface
that can be conveniently adapted to the application code. This class hides the
application’s implementation details from the framework. A task is specified by
the level vector l and the combination coefficient cl. The Task base class already
contains all the necessary functionalities which are independent of the actual
application code. Only a few absolutely necessary functions have to be provided
by the user in a derived class.

The run method takes care of everything that is necessary to start the applica-
tion in the process group with a discretization compatible with the combination
technique and specified by l. Furthermore, the specialization of the Task class

Fig. 4 The manager–worker pattern used by the software framework. The manager distributes
compute tasks over the process groups. In each process group a dedicated master process is
responsible for the communication with the manager and the coordination of the group. In the
example, each process group consists of three nodes with four processes each.

172 M. Heene and D. Pflüger

1 class Task {
2

3 public:
4 inline const LevelVector& getLevelVector() const;
5

6 inline real getCoeff() const;
7

8 virtual void run(CommunicatorType& lcomm) = 0;
9

10 virtual
11 DistributedFullGrid<DataType>& getDistributedFullGrid() = 0;
12 };

Fig. 5 The essential functions of the task interface (the actual file contains more functions). Only
run and getDistributedFullGrid have to be implemented in the derived class by the user

has to provide access to the application data, i.e., the actual component grid
corresponding to the task by the method getDistributedFullGrid. Many parallel
applications in science and engineering, like GENE, typically use MPI paral-
lelization and computational grids that are distributed onto a large numbers of
processes of an HPC system. Such a distributed component grid is represented
by the class DistributedFullGrid. This is a parallel version of the combination-
technique component grids as introduced in Sect. 1.1. Since our component grids
have a regular Cartesian structure, they are parallelized by arranging the processes
on a Cartesian grid as well. It is defined by the d-dimensional level-vector l and a
d-dimensional parallelization vector p which specifies the number of processes in
each dimension. Furthermore, information about the actual domain decomposition
must be provided.

The actual way in which the underlying component grid of the application is
accessed depends on the application. In the best case, the application code can
directly work with our data structure. This is the most efficient way, because no
additional data transformations are necessary for the recombination step. However,
this is not possible for most application codes, because they use their own data
structures. In this case, the interface has to make sure that the application data is
converted into the format of DistributedFullGrid. If access to the application’s data
at runtime is not possible (which might be the case for some proprietary codes) it
would even be possible to read in the data from a file. Although this would be the
most inefficient way and we doubt it would be feasible for large-scale problems,
we mention this option to emphasize that the users of our framework have maximal
flexibility on how to provide access to their application.

Furthermore, a custom load model tailored to the application can be specified by
the user, which can be used to improve the assignment of tasks to the process groups
with respect to load balancing. In [13] we have presented a load model for GENE. If
such a model is not available, the standard model would estimate the cost of a task
based on the number of grid points of the corresponding component grid.

Scalable Algorithms for the Solution of Higher-Dimensional PDEs 173

3 Scalable Algorithms for the Combination Step
with Distributed Component Grids

The recombination step is the only step of the combination technique which requires
global communication between the process groups. Especially for time-dependent
simulations, such as the initial value problems in GENE, which require a high
number of recombination steps (in the worst case after each time step), an efficient
and scalable implementation of this step is crucial for the overall performance and
the feasibility of the combination technique. Efficient and scalable in this context
means that the time for the recombination must not consume more than a reasonable
fraction of the overall run time and that this fraction must not scale worse than the
run time of the application. In our context we refer to global communication as
the communication between processes of different process groups, whereas local
communication happens between processes which belong to the same process
group. As indicated in Sect. 2, we neglect communication between the process
groups and the manager process, because no data is transferred apart from very
few small messages that are necessary for the coordination of the process groups.

In [16, 17] we presented a detailed analysis of different communication strategies
for the recombination step with component grids that exist on a single node. Note,
however, that any approach which is based on gathering a distributed component
grid on a single node cannot scale for large problem sizes. On the one hand, such
approaches limit the problem size to the main memory of a single node. On the other
hand, the network bandwidth of a node is limited and the time to gather a distributed
grid on a single node does not decrease with increasing number of processes.

Figure 6 shows the substeps of the distributed recombination. The starting point
are multiple process groups which hold one or more component grids each. Each
component grid is distributed over all processes in a group. First, each process
group transfers all its component grids from the nodal basis representation into
the hierarchical basis of the sparse grid by distributed hierarchization. Then, the
hierarchical coefficients of each component grid are multiplied by the combination
coefficient and added to a temporary distributed sparse grid data structure. Note that
each component grid only contributes to a subset of the hierarchical subspaces in
the sparse grid. The component grid visualized in Fig. 6 has discretization level
l D .3; 2/. Hence, it only contributes to the hierarchical subspaces Wl0 with
l0 � .3; 2/. In the following we will refer to the operation of adding up (and
multiplying with the combination coefficient) all the component grids in the sparse
grid data structure as reduction. The reduce operation is done in a local and a
global substep. First, each process group has to locally reduce its component grids.
Then, the individual distributed sparse grids of the process groups are globally
reduced to the combined solution, which now exists on each process group in
the distributed sparse grid. As a next step, for each component grid the relevant
hierarchical coefficients are extracted from the combined solution. This operation
happens inside each process group, and it is the inverse of the local reduction. We
refer to it as scatter operation. Afterwards, the combined solution is available on

174 M. Heene and D. Pflüger

Fig. 6 The recombination step. Each component grid is hierarchized and then added to a
temporary distributed sparse grid. After the distributed sparse grids in each process group have
been globally reduced to the combined solution, the hierarchical coefficients of each component
grid are extracted and the component grid is brought back into the nodal basis representation by
dehierarchization

each component grid in the hierarchical basis and is transferred back into the nodal
basis by dehierarchization. In the following sections we will discuss the substeps of
the distributed recombination step in detail.

3.1 Distributed Hierarchization/Dehierarchization

In [12], we presented a new, scalable distributed hierarchization algorithm to
efficiently hierarchize large, distributed component grids. In the following, we sum-
marize this work. Figure 7 shows a component grid distributed onto eight different
MPI processes. The corresponding dependency graph for the hierarchization in x2-
direction illustrates that exchange of data between the processes is necessary. Our
algorithm follows the uni-directional principle which means that we hierarchize the
d dimensions of the component grid one after the other. The hierarchization in each
dimension consists of two steps:

1. Each process determines from the dependency graph the values it has to
exchange with other processes. The dependency graph can be deduced from the
discretization and the domain partitioning and is known to each process without
additional communication.

Scalable Algorithms for the Solution of Higher-Dimensional PDEs 175

Fig. 7 Left: Component grid distributed over eight processes and the corresponding dependency
graph for the hierarchization of the x2 direction. Right: Distributed hierarchization with remote
data from the local view of one process

2. The data is exchanged using non-blocking MPI calls. Each process stores the
received remote data in the form of .d � 1/-dimensional grids.

After the communication step, each process locally performs the hierarchization.
The local subgrid is traversed with one-dimensional poles (see Fig. 7). If during
the update of each point we would need to determine whether its dependencies are
contained in the local or in the remote data, we would obtain bad performance due
to branching and address calculations. In order to avoid this, we copy the local and
the remote data to a temporary 1-d array which has the full global size of the current
dimension. We then perform the hierarchization of the current pole in the temporary
array using an efficient 1-d hierarchization kernel. Afterwards, the updated values
are copied back to the subgrid. For reasonable problem sizes the maximum global
size per dimension is not much more than a few thousand grid points. So, the
temporary array will easily fit into the cache, even for very large grids. The poles
traverse the local subgrid and the remote data in a cache-optimal order. Thus, no
additional main memory transfers are required. With this approach we can achieve
high single core performance due to cache optimal access patterns. Furthermore,
only the absolutely necessary data is exchanged in the communication step.

Figure 8 shows strong and weak scaling results for 5-dimensional component
grids of different sizes. The experiments were performed from 32 to 32,768
cores on the supercomputer Hornet. The grid sizes used for the strong scaling
experiments would correspond to the sizes of component grids of very large
GENE simulations. The largest grid used for the weak scaling experiments had
a total size of 36 TByte distributed over 32,768 cores. The experiments show
that our distributed hierarchization algorithm scales very well. More detailed
information on the distributed hierarchization experiments can be found in [12].

176 M. Heene and D. Pflüger

101 102 103 104 105

#processes

10−3

10−2

10−1

100

101

102
ti
m
e
[s
]

4.7GB
9.2GB
18GB
36GB
72GB

101 102 103 104 105

#processes

10−2

10−1

100

101

102

75MB
150MB
300MB
600MB
1200MB

Fig. 8 Strong (left) and weak (right) scaling results for the distributed hierarchization of 5-
dimensional grids with different grid sizes. For strong scaling the numbers denote the total grid
size. For weak scaling the numbers denote the size of the (roughly) constant local portion of the
grid for each process

There, also further issues such as different dimensionalities and anisotropic dis-
cretizations or anisotropic domain decompositions of the component grids are
investigated.

3.2 Local Reduction/Scatter of Component Grids Inside the
Process Group

For the local reduction step inside the process group we use two variants of a
distributed sparse grid. In the first variant, the hierarchical subspaces are distributed
over the processes of the group, so that each subspace is assigned to exactly
one process. In the second variant, each hierarchical subspace is geometrically
decomposed in the same way as the distributed component grids. Each process
stores its part of the domain of each hierarchical subspace. Unlike the first variant,
no communication between the processes is required for the local reduction step.
However, this variant can only be applied if all component grids on the different
process groups have exactly the same geometrical domain partitioning.

In the following we will present the two variants of the distributed sparse grid
and discuss their advantages and disadvantages for the local reduction step. Note
that the scatter step, where the hierarchical coefficients of the component grids are
extracted from the combined solution, is just the inverse operation of the reduction
step. Thus, we will only discuss the reduction here.

3.2.1 Variant 1: General Reduction of Distributed Component Grids

In the first variant of the distributed sparse grid, each hierarchical subspace is stored
on exactly one process. A sensible rule to assign the hierarchical subspaces to the
processes would be to distribute them such that a balanced number of grid points

Scalable Algorithms for the Solution of Higher-Dimensional PDEs 177

is achieved. This is important for the global reduction step, which has minimal cost
when the number of grid points on each process in a process group is equal. We
use a straightforward way to assign the subspaces to the processes: first we sort
the subspaces by size in descending order. Then we assign the subspaces to the
computed nodes in a round-robin fashion. As a last step, we distribute the subspaces
to the processes of each node in the same way. A balanced distribution over the
compute nodes is more important than over the processes, because the processes on
each node share main memory and network bandwidth. In this way, if the number of
hierarchical subspaces is large enough (several thousands or ten thousands in higher
dimensions), a balanced distribution can easily be achieved.

The advantage of this sparse grid variant is that it is general. It can be
conveniently used for the local reduction step to add up distributed component grids
that have different parallelization. Futhermore, with this variant the global reduction
step can easily be extended to process groups of different sizes. Adding a distributed
component grid to a distributed sparse grid means adding up the coefficients of
each hierarchical subspace common to both the component grid and the sparse
grid. The grid points of each hierarchical subspace in the distributed full grid are
geometrically distributed over the processes of the process group. Hence, to add
them to the corresponding subspace in the distributed sparse grid, they have to be
gathered on the process to which the subspace is assigned. This is illustrated in
Fig. 9 (left). The communication overhead that comes with these additional gather
operations is the major disadvantage of this sparse grid variant.

In the following, we will analyze the communication costs that incur when
a distributed component grid is added to a distributed sparse grid. These costs
resemble the costs to (almost) completely redistribute the grid points of the
distributed full grid: we start with a distributed full grid which has N=m grid
points per process (N grid points distributed over m processes) and we end up
with a distributed sparse grid which has N=m grid points per process. In a simple

Fig. 9 Each hierarchical subspace of the distributed sparse grid is stored on exactly one process.
Gathering the hierarchical subspaces yields the shown communication pattern (right). Each of
the m processes contains N=m grid points of the distributed full grid (of total size N) and of the
distributed sparse grid. Each process sends a D N=m2 grid points to m� 1 other processes

178 M. Heene and D. Pflüger

communication model, which only considers the number of grid points to be sent,
this means each process sends N=m2 grid points to .m � 1/ other processes (see
Fig. 9). Thus, in total each process has to send (and receive)

N

m2
.m � 1/ D N

m
� N

m2
� N

m
(6)

grid points, which is approximately N=m for large m. Hence, the amount of data
to be transferred by each process (or node) scales with the number of processes.
However, on an actual system the time to send a message to another process does
not only depend on the size, but is bounded from below by a constant latency.
A common model for the message time is t D tlat C K=B, with latency tlat,
message size K and bandwidth B. The message latency impedes the scalability of
the redistribution step: with increasing m the size of the messages becomes so small
that the time to send the message is dominated by the latency. But the number of
messages increases with m.

We have implemented this redistribution operation: first, each process locally
collects all the data that it has to send to the other processes in a send buffer for each
process. Likewise, a receive buffer is created for each of the processes. Then, non-
blocking MPI_Isend and MPI_Irecv calls are used to transfer the data. In theory,
this allows the system to optimize the order of the messages, so that an optimal
bandwidth usage can be achieved. Afterwards, the received values have to be copied
(or added) to the right place in the underlying data structures. Figure 10 shows the
communication time (neglecting any local operations) for a large component grid.
We can observe a small decrease in run time from 512 to 1024 processes. But after
this point, the run time increases almost linearly. We tried different measures to
reduce the number of messages at the price of higher communicated data volume
by using collective operations like MPI_Reduce, but could not observe a significant
reduction in communication time.

512 1024 2048 4096

#processes

4
5
6
7
8
9

10
11

ru
nt

im
e
[s
]

local reduce, variant 1

Fig. 10 Communication time being necessary to add a component with l D .10; 4; 6; 6; 6/ to a
distributed sparse grid of variant 1 for different numbers of processes

Scalable Algorithms for the Solution of Higher-Dimensional PDEs 179

3.2.2 Variant 2: Communication-Free Local Reduction of Uniformly
Parallelized Component Grids

For the special case where all the component grids share the same domain
decomposition, this variant of the distributed sparse grid can be used to add up the
distributed full grids in the local reduction operation without any communication.
Here, each hierarchical subspace of the distributed sparse grid is geometrically
decomposed and distributed over the processes in the same way as the component
grids (see Fig. 11 (left)). The assignment of a grid point to a process depends on
its coordinate in the simulation domain. This assignment is equal for the distributed
sparse grid and for the distributed full grid. This is visualized for a one-dimensional
example in Fig. 11 (right): although the component grids have different numbers of
grid points, grid points with the same coordinates are always assigned to the same
process. This is due to the nested structure of the component grids.

Compared to variant 1 this has the advantage that no redistribution of the
hierarchical coefficients is necessary and therefore no data has to be exchanged
between processes. When a distributed full grid is added to the distributed sparse
grid, each process adds the hierarchical coefficients of its local part of the distributed
full grid to its local part of the distributed sparse grid. With a balanced number
of grid points per process N=m in the distributed full grid, the time for the local
reduction scales with m. The major drawback of this approach is that it works only
for the special case of uniformly parallelized component grids. However, uniformly
parallelized component grids might not be possible for all applications. In this case
only variant 1 remains. Also, the chosen parallelization might not be the optimal
one for all component grids. For applications where both variants are possible, we
face a trade-off between the computation time for the component grids, and the
time for the local reduction step. This will heavily depend on the frequency of the

Fig. 11 Left: Each process stores for each hierarchical subspace only its local part of the domain.
Right: One-dimensional component grids of different levels distributed over four processes. Grid
points with the same coordinates are always on the same process due to the geometrical domain
decomposition (and due to the nested structure of the component grids)

180 M. Heene and D. Pflüger

recombination step. If the recombination has to be done after each time step, variant
2 probably is the better choice. If the combination has to be done only once in the
end or at least rather rarely, variant 1 might be more desirable.

3.3 Global Reduction of the Combination Solution

In this work we will discuss the global reduction step for process groups with
equal numbers of processes. For a well-scaling application like GENE this is a
sensible assumption, because it reduces the complexity of the global reduction.
However, for applications with worse scaling behavior, in terms of overall efficiency
it might be advantageous to use process groups of different sizes, especially when
the recombination step is performed only rarely. However, a detailed discussion of
the distributed recombination step for process groups with different sizes is out of
scope for this work.

The global reduction step is basically identical for both variants of the distributed
sparse grid: An MPI_Allreduce operation is performed by all the processes which
have the same position (the same local rank) in the process group (see Fig. 12).
These are the processes which store the same coefficients of the distributed sparse
grid in each process group. The algorithm to do this is rather simple: first, an
MPI communicator is created, which contains all processes which have the same
local rank in all process groups. This communicator only has to be created once
and can then be reused for subsequent recombination steps. Second, each process
copies its local partition of the distributed sparse grid into a buffer. The order of
coefficients in the buffer is equal on all processes. It can happen that a particular
hierarchical subspace does not exist in a process group. In this case corresponding
entries in the buffer are filled up with zeros. This procedure is identical for both
variants of the distributed sparse grid. Then, each process copies its local partition
of the distributed sparse grid into a buffer. The order of coefficients in the buffer is
equal on all processes. Next, an MPI_Allreduce operation is executed on the buffer.

Fig. 12 Communication graph of the global reduction step. The example shows six process
groups. Each process group consists of three nodes with 4 processes each

Scalable Algorithms for the Solution of Higher-Dimensional PDEs 181

In a last step, each process extracts the coefficients from the buffer and copies them
back to its local part of the distributed sparse grid. Now, the combined solution is
available in the distributed sparse grid of each process group.

In the following we will analyze the cost of the global reduction step. For m
processes per process group, the global reduction step is m-way parallel. It consists
of m MPI_Allreduce operations that can be performed in parallel and individually
of each other. We can estimate the time for each MPI_Allreduce by

tar D 2tl log.ngroups/C 2NSG=m

B=M
log.ngroups/ : (7)

Here, tl is the message latency, ngroups is the number of process groups and NSG=m
the size of the buffer (the size of the local part of the distributed sparse grid per
process). Since M processes per node share the node’s network bandwidth B, the
effective bandwidth per process is B=M. Thus, the global reduction scales with
the process group size, but increases logarithmically with the number of process
groups. However, for our large scale experiments with GENE, there will be several
thousand processes per process group, but one or two orders of magnitude less
process groups. We have already used the same model in [17] to analyze the costs
of the recombination step for non-distributed component grids. It is based on the
assumption that MPI_Allreduce is performed in a reduce and a broadcast step using
binomial trees. Although this does not necessarily hold for actual implementations
[22], it would only change the communication model by a constant factor.

4 Results

We investigated the scalability of our distributed combination algorithm on up to
180;225 (out of 185,088) cores of Germany’s Tier-0/1 supercomputer Hazel Hen
(rank 8 on the Top500 list of November 2015). It consists of 7712 dual-socket nodes,
which have 24 cores of Intel Xeon E5-2680 v3 (Haswell) and 128 GByte of main
memory.

We chose the problem size in the range that we aim to use for future large-
scale experiments with GENE, n D .14; 6; 6; 8; 7/ and lmin D .9; 4; 4; 6; 4/. This
results in 182 component grids. The 76 largest component grids have between
74 and 83 GByte (complex-valued numbers). Our experiments correspond to the
recombination of one species. The time for the recombination, as well as the com-
putation time of GENE, multiplies with the number of species. We used a distributed
sparse grid of variant 2 and equal parallelization for each component grid. Directly
computing a global GENE simulation with the chosen n with GENE would result in
a resolution of 16384�64�64�256�128. This problem would be 32 times larger
than what GENE users already consider to be infeasible (compare the numbers in
Sect. 1.2). We used process groups of size nprocs D 1024, 2048, 4096 and 8192.
The number of process groups ngroups ranges between 1 and 128 (only powers of
two were used). Furthermore, 22, 44, 88, and 176 process groups were used for the
largest experiments with 180;225 processes (one process for the manager). We were

182 M. Heene and D. Pflüger

not able to perform the experiments with less than 4096 cores, because the necessary
memory to store the component grids exceeded the nodes’ main memory.

Figure 13 shows the individual times for the hierarchization, the local reduction
and the global reduction. Furthermore, it shows the total time of hierarchization,
local reduction and global reduction. We do not present results for the scatter

104 105

total #processes

100

101

102

ru
nt

im
e
[s
]

hierarchization
nprocs 1024
nprocs 2048
nprocs 4096
nprocs 8192

104 105

total #processes

10−2

10−1

100
local reduction

nprocs 1024
nprocs 2048
nprocs 4096
nprocs 8192

4096 8192 16384 32768 65536 180224
total #processes

10−1

100

101

ru
nt

im
e
[s
]

global reduction

nprocs 1024
nprocs 2048
nprocs 4096
nprocs 8192

4096 8192 16384 32768 65536 180224
total #processes

100

101

102

103

ru
nt

im
e
[s
]

hierarchization + loc. reduction + glob. reduction

nprocs 1024
nprocs 2048
nprocs 4096
nprocs 8192
GENE 1 time step

Fig. 13 Timings for the individual steps of the distributed recombination step for different sizes of
the process groups. The last plot (bottom) shows the total time of hierarchization, local reduction
and global reduction. We also included a rough estimate of the computation time for one time step
of GENE with process groups of size 4096

Scalable Algorithms for the Solution of Higher-Dimensional PDEs 183

step and dehierarchization here, because they behave so similar to their inverse
counterparts, reduction and hierarchization, that this would not bring any further
insight. The run times presented are the average times per process group. For
hierachization and local reduction they are the accumulated times of all component
grids assigned to the process group. The abscissa of the plots presents the total
number of processes used: ngroups � nprocs (the manager process is neglected).

The hierarchization scales well with the total number of processes. However,
we can observe a small increase in run time when larger process groups are used.
The distributed hierarchization consists of two steps, a communication step and a
computation step. The time for the latter one does only depend on the number of
grid points per process. Thus it scales perfectly with the total number of processes.
The time for the commmunication step scales as well (see Fig. 7), but not perfectly.
This explains the small increase in run time when larger process groups are used.

The local reduction perfectly scales with the total number of processes. Since
it does not require any communication between the processes, the run time only
depends on the number of grid points per process. The number of grid points per
process halves when the size of the process group doubles. Likewise, when twice as
much process groups are used, the number of component grids per group will halve,
and thus the number of grid points per process.

The time for the global reduction increases with the number of process groups.
Even though we cannot see a strict logarithmic increase of the run time with
the number of process groups here, as predicted by Eq. (7), this formula is still
sensible as a rough guide. As already discussed in [17], actual implementations
of MPI_Allreduce might use other algorithms than binomial trees. Also, the actual
network bandwidth between two distinct compute nodes depends on many factors,
like their position in the network topology and the current overall load on the
network. Furthermore, we did not observe a worse than logarithmic increase in run
time. For example, with nprocs 1024 the run time increased from 4 process groups
(4096 processes) to 176 process groups (180,224 processes) by a factor of 2:2,
whereas log.176/= log.4/ � 3:7. The run time decreases for larger process groups,
because with less grid points per process the message size for the MPI_Allreduce
decreases. The strong increase from one to two process groups for nprocs 4096
and nprocs 8192 comes from the fact that if only one process group is used,
MPI_Allreduce essentially is a no-op and so no actual communication happens.

The total time for hierarchization, local reduction and global reduction scales
until it is dominated by the time for the global reduction. For small total process
counts, the time for the hierarchization dominates. The time for the local reduction
is so small in comparison to the time for the hierarchization that it can be neglected.
Strong scalability by adding more and more process groups can only be achieved
until the point when the global reduction time dominates. This point, and thus the
strong scalability limit of the recombination step, can be shifted to higher process
counts by using larger process groups. However, enlarging the process groups is
only sensible until the application’s scalability limit is reached.

In Fig. 13 we included a rough estimate of the average time per process group
to advance the GENE simulation on each component grid by one time step.

184 M. Heene and D. Pflüger

It corresponds to the computation time per species on process groups of size 4096.
For the largest component grids it was not possible to use less than 4096 processes
per species, because of main memory limitations. Note that GENE computations
use a lot more main memory than what is necessary to store the computational grid.
Therefore, for our future experiments we will rather use 8192 or 16384 processes
per species for such large component grids. However, a meaningful investigation
of the scalability of the global reduction step requires a large enough number of
process groups. Thus, we also chose smaller process groups in our experiments. We
did not measure all the individual times for all 182 component grids, but instead
we measured one component grid of each of the five different grid sizes that we
used for the combination as specified by jlj1, cf. Eq. (1). We estimated the total
time under the assumption that all component grids with the same level-sum have
the same run time. In general this is not true, because the run time does not only
depend on the size of the component grids, but it is also significantly influenced
by the actual discretization and parallelization [13]. However, for the purpose of
presenting a rough guide how the run time of the actual GENE computations relates
to the time of the recombination step, these numbers are accurate enough.

So far it is not yet clear whether it is necessary to recombine the component grids
after each time step, or if it would be sufficient to recombine only every 10 or even
every 100 time steps. This depends on the application and problem at hand, and
investigating it for the different GENE operation modes will be part of our future
research. However, the results show that the run time for the new and optimized
recombination algorithms is now below the computation time for one time step.
So even recombining after each time step would be feasible. Furthermore, this is
just a first implementation of the recombination step and there is still optimization
potential for all substeps. For the distributed hierarchization it is possible to further
reduce the communication effort and to speed up the local computations (see [12]).
For the global communication an improved algorithm based on the communication
patterns presented in [17] can be used.

5 Conclusion and Future Work

In this work we presented new, scalable algorithms to recombine the distributed
component grids. We provide a detailed analysis of the individual steps of the
recombination, hierarchization, local reduction and global reduction. Additionally,
we present experimental results that show the scalability of a first implementation
of the distributed recombination on up to 180,225 cores on the supercomputerHazel
Hen. The experiments demonstrate that our recombination algorithms lead to highly
parallel and scalable implementations of the remaining global communication
for the solution of higher-dimensional PDEs with the sparse grid combination
technique. It would even be possible to recombine the partial solutions very
frequently if required.

Scalable Algorithms for the Solution of Higher-Dimensional PDEs 185

As a next step we plan to perform actual GENE simulations in order to investigate
the effect of the recombination (length of the recombination interval) on the error
of the combined solution (compared to a the full grid solution or to experimental
results, if available). At the time of writing this was not possible, because a parallel
algorithm for the adaption of GENE’s boundary conditions (which has to be done
after each recombination) was not yet realized in our software framework.

We did not perform the large scaling experiments with distributed sparse grids
of variant 1, because a scalable implementation for the local reduction/scatter of
component grids with non-uniform domain decomposition does not exist yet. The
reasons are discussed in Sect. 3.2. Although for many applications this is not a
severe restriction, in order to improve the generality of our method, finding a
better algorithm for the reduction of component grids with non-uniform domain
decomposition will be a topic of future work.

Acknowledgements This work was supported by the German Research Foundation (DFG)
through the Priority Program 1648 “Software for Exascale Computing” (SPPEXA).

References

1. SGCC library, http://sgpp.sparsegrids.org/
2. Ali, M.M., Strazdins, P.E., Harding, B., Hegland, M., Larson, J.W.: A fault-tolerant gyrokinetic

plasma application using the sparse grid combination technique. In: International Conference
on High Performance Computing & Simulation (HPCS), Amsterdam, pp. 499–507. IEEE
(2015)

3. Brizard, A., Hahm, T.: Foundations of nonlinear gyrokinetic theory. Rev. Mod. Phys. 79, 421–
468 (2007)

4. Bungartz, H.J., Griebel, M.: Sparse grids. Acta Numer. 13, 147–269 (2004)
5. Cappello, F., Geist, A., Gropp, W., Kale, S., Kramer, B., Snir, M.: Toward exascale resilience:

2014 update. Supercomput. Front. Innov. 1(1), 5–28 (2014)
6. Dannert, T.: Gyrokinetische Simulation von Plasmaturbulenz mit gefangenen Teilchen und

elektromagnetischen Effekten. Ph.D. thesis, Technische Universität München (2004)
7. Dannert, T., Görler, T., Jenko, F., Merz, F.: Jülich blue gene/p extreme scaling workshop 2009.

Technical report, Jülich Supercomputing Center (2010)
8. Doyle, E.J., Kamada, Y., Osborne, T.H., et al.: Chapter 2: plasma confinement and transport.

Nucl. Fusion 47(6), S18 (2007)
9. Görler, T., Lapillonne, X., Brunner, S., Dannert, T., Jenko, F., Merz, F., Told, D.: The global

version of the gyrokinetic turbulence code GENE. J. Comput. Phys. 230(18), 7053–7071
(2011)

10. Griebel, M., Huber, W., Rüde, U., Störtkuhl, T.: The combination technique for parallel sparse-
grid-preconditioning or -solution of PDEs on workstation networks. In: Parallel Processing:
CONPAR 92 VAPP V. LNCS, vol. 634. Springer, Berlin/New York (1992)

11. Griebel, M., Schneider, M., Zenger, C.: A combination technique for the solution of sparse grid
problems. In: de Groen, P., Beauwens, R. (eds.) Iterative Methods in Linear Algebra. IMACS,
pp. 263–281. Elsevier/North Holland (1992)

12. Heene, M., Pflüger, D.: Efficient and scalable distributed-memory hierarchization algorithms
for the sparse grid combination technique. In: Parallel Computing: On the Road to Exascale.
Advances in Parallel Computing, vol. 27. IOS Press, Amsterdam (2016)

http://sgpp.sparsegrids.org/

186 M. Heene and D. Pflüger

13. Heene, M., Kowitz, C., Pflüger, D.: Load balancing for massively parallel computations with
the sparse grid combination technique. In: Parallel Computing: Accelerating Computational
Science and Engineering (CSE). Advances in Parallel Computing, vol. 25, pp. 574–583. IOS
Press, Amsterdam (2014)

14. Hegland, M., Garcke, J., Challis, V.: The combination technique and some generalisations.
Linear Algebra Appl. 420(2–3), 249–275 (2007)

15. Hegland, M., Harding, B., Kowitz, C., Pflüger, D., Strazdins, P.: Recent developments in
the theory and application of the sparse grid combination technique. In: Proceedings of
the SPPEXA Symposium 2016, Garching. Lecture Notes in Computational Science and
Engineering. Springer (2016)

16. Hupp, P., Jacob, R., Heene, M., et al.: Global communication schemes for the sparse grid
combination technique. Par. Comput.: Accel. Comput. Sci. Eng. 25, pp. 564–573 (2014)

17. Hupp, P., Heene, M., Jacob, R., Pflüger, D.: Global communication schemes for the numerical
solution of high-dimensional {PDEs}. Parallel Comput. 52, 78–105 (2016)

18. Kowitz, C., Hegland, M.: The sparse grid combination technique for computing eigenvalues
in linear gyrokinetics. Procedia Comput. Sci. 18(0), 449–458 (2013). 2013 International
Conference on Computational Science

19. Parra Hinojosa, A., Kowitz, C., Heene, M., Pflüger, D., Bungartz, H.J.: Towards a fault-tolerant,
scalable implementation of GENE. In: Proceedings of ICCE 2014, Nara. Lecture Notes in
Computational Science and Engineering. Springer (2015)

20. Parra Hinojosa, A., Harding, B., Hegland, M., Bungartz, H.J.: Handling silent data corruption
with the sparse grid combination technique. In: Proceedings of the SPPEXA Symposium 2016,
Garching. Lecture Notes in Computational Science and Engineering. Springer (2016)

21. Pflüger, D., Bungartz, H.J., Griebel, M., Jenko, F., et al.: EXAHD: an exa-scalable two-level
sparse grid approach for higher-dimensional problems in plasma physics and beyond. In: Euro-
Par 2014: parallel processing workshops, Porto. Lecture Notes in Computer Science, vol. 8806,
pp. 565–576. Springer International Publishing (2014)

22. Thakur, R., Rabenseifner, R., Gropp, W.: Optimization of collective communication operations
in MPICH. Int. J. High Perform. C. 19, 49–66 (2005)

Handling Silent Data Corruption
with the Sparse Grid Combination Technique

Alfredo Parra Hinojosa, Brendan Harding, Markus Hegland,
and Hans-Joachim Bungartz

Abstract We describe two algorithms to detect and filter silent data corruption
(SDC) when solving time-dependent PDEs with the Sparse Grid Combination
Technique (SGCT). The SGCT solves a PDE on many regular full grids of
different resolutions, which are then combined to obtain a high quality solution.
The algorithm can be parallelized and run on large HPC systems. We investigate
silent data corruption and show that the SGCT can be used with minor modifications
to filter corrupted data and obtain good results. We apply sanity checks before
combining the solution fields to make sure that the data is not corrupted. These
sanity checks are derived from well-known error bounds of the classical theory of
the SGCT and do not rely on checksums or data replication. We apply our algorithms
on a 2D advection equation and discuss the main advantages and drawbacks.

1 Introduction

Faults in high-end computing systems are now considered the norm rather than the
exception [13]. The more complex these systems become, and the larger the number
of components they have, the higher the frequency at which faults occur. Following
the terminology in [33], a fault is simply the cause of an error. Errors, in turn, are
categorized into three groups: (1) detected and corrected by hardware (DCE), (2)
detected but uncorrectable errors (DUE), and (3) silent errors (SE). If an error leads
to system failure, it is called masked; otherwise it is unmasked. We say that a system
failed if there is a deviation from the correct service of a system function [2].

The field of fault tolerance explores ways to avoid system failures when faults
occur. Different strategies can be followed depending on the type of fault. For
example, one might be interested in tolerating the failure of single MPI processes,

A. Parra Hinojosa (�) • H.-J. Bungartz
Technische Universität München, München, Germany
e-mail: hinojosa@in.tum.de; bungartz@in.tum.de

B. Harding • M. Hegland
Mathematical Sciences Institute, The Australian National University, Canberra, ACT, Australia
e-mail: brendan.harding@anu.edu.au; markus.hegland@anu.edu.au

© Springer International Publishing Switzerland 2016
H.-J. Bungartz et al. (eds.), Software for Exascale Computing – SPPEXA
2013-2015, Lecture Notes in Computational Science and Engineering 113,
DOI 10.1007/978-3-319-40528-5_9

187

mailto:hinojosa@in.tum.de
mailto:bungartz@in.tum.de
mailto:brendan.harding@anu.edu.au
mailto:markus.hegland@anu.edu.au

188 A. Parra Hinojosa et al.

since one process failure can cause the whole application to crash, and new parallel
libraries have been developed to handle these issues [5]. Another option is to use
Checkpoint/Restart (C/R) algorithms, where the state of the simulation is stored to
memory and retrieved in case of failure. The simulation is then restarted from the
last complete checkpoint. Alternatively, developers could make replicas of certain
critical processes as backups in case one of them fails [12].

These algorithms are usually applied when errors trigger a signal and thus can be
easily detected. But we might run into problems if the errors don’t trigger any signal.
This is the case for silent data corruption (SDC), a common type of unmasked silent
errors. SDC arises mainly in the form of undetected errors in arithmetic operations
(most prominently as bit flips) and memory corruption [33]. Although SDC is
expected to occur less often than detectable errors (such as hardware failure), one
single occurrence of SDC could lead to entirely incorrect results [10]. The frequency
at which silent errors occur has not been quantified rigorously, but evidence suggests
that they occur frequently enough to be taken seriously [33].

Previous research has focused on algorithms that deal with detectable errors
when using the SGCT [20]. We now want to understand the effect of SDC on
the SGCT when solving PDEs. Elliott et al. [11] have outlined a methodology
to model and simulate SDC, and they have described guidelines to design SDC-
resilient algorithms. We adopt their recommendations in this paper, and we now
briefly describe their main ideas.

1.1 Understanding Silent Data Corruption

Many algorithm designers start by assuming that SDC will occur exclusively in the
form of bit flips. For this reason, they have chosen to simulate SDC by randomly
injecting bit flips into an existing application, and then attempting to detect and
correct wrong data. But this can only tell us how the application behaves in average,
and one might fail to simulate the worst-case scenarios. Additionally, the exact
causes of SDC in existing and future parallel systems are still poorly understood.
For this reason we should avoid making assumptions about the exact causes of SDC.
This lack of certainty does not mean that we should not attempt to simulate SDC
(and, if possible, overcome it). On the contrary, by making no assumptions about
the exact origins and types of SDC, we can focus on what really matters in terms
of algorithm design: numerical errors. A robust algorithm should be able to handle
numerical errors of arbitrary magnitude in the data without any knowledge of the
specific sources of the error. In this way, the problem can be posed purely in terms
of numerical analysis and error bounds.

But how does one actually design robust algorithms? There are several things
to keep in mind. For instance, it is important to determine in which parts of
the algorithm we cannot afford faults to occur, and in which parts we can relax
this condition. This is called selective reliability [6]. It is also useful to identify
invariants in a numerical algorithm. Energy conservation is a typical example, as

Handling Silent Data Corruption with the Sparse Grid Combination Technique 189

well as requiring a set of vectors to remain orthogonal. These invariants can be good
places to start when searching for anomalous data. Furthermore, algorithm experts
should try to develop cheap sanity checks to bound or exclude wrong results. Our
research is largely based on this last recommendation. Finally, SDC can cause the
control flow of the algorithm to deviate from its normal behavior. Although it is
difficult to predict what this would mean for a specific application code, one can
still turn to selective reliability to make sure that vulnerable sections of the code
are dealt with properly by specifying conditions of correctness. We do not address
problems in control flow explicitly in this work, but we do mention briefly how our
algorithms could encompass this type of faults.

Many authors opt for a much more elaborate (and expensive) methodology
based on checksums. (See [33], Sect. 5.4.2 for an extensive list of examples.)
Implementing checksums even for a simple algorithm can prove a very difficult
task. A good example is the self-healing, fault-tolerant preconditioned CG algorithm
described in [8]. To perform the checksums, the authors require local diskless
checkpointing, additional checkpoint processes, and a fault-tolerant MPI implemen-
tation. The programming effort and computational costs are substantial. In many
cases checksums cannot be applied at all. Data replication can be sometimes useful
(see [9]), but it also comes at a cost. These experiences motivate the search for new
algorithmic, numerics-based solutions.

1.2 Statement of the Problem

We now want to translate these ideas into an SDC-resilient version of the Sparse
Grid Combination Technique (SGCT) algorithm, which we describe in detail in the
next section. The SGCT is a powerful algorithm that has been used to solve a wide
variety of problems, from option pricing [31] and machine learning [14] to plasma
physics [28] and quantum mechanics [16]. Our focus will be high-dimensional,
time-dependent PDEs. Full grids with high discretization resolution are usually too
computationally expensive, especially in higher dimensions. The SGCT solves the
original PDE on different coarse, anisotropic full grids. Their coarseness makes
them computationally cheap. The solutions on these coarse grids are then combined
properly to approximate the full grid solution in an extrapolation-like manner. (We
will see in Sect. 2.1 what it means to combine grids of different resolutions.) Our
main concern is the following: the solution on one (or more) of the coarse grids
might be wrong due to SDC, which can cause the final combined solution to
be wrong as well. We therefore want to implement cheap sanity checks to make
sure that wrong solutions are filtered and not considered for the combination. In a
sense, the fact that the SGCT solves the same PDE on different grids means that it
inherently shows data replication, and it is precisely this fact that we will exploit.
But before continuing our discussion of SDC we take a small detour to recall the
theory of sparse grids, and we describe the SGCT in detail.

190 A. Parra Hinojosa et al.

2 Basics of Sparse Grids

Let us first introduce some notation. To discretize the unit interval Œ0; 1� we use a
one-dimensional grid ˝l with 2l � 1 inner points and one point on each boundary
(2lC 1 points in total). This grid has mesh size hl WD 2�l and grid points xl;j WD j � hl
for 0 � j � 2l, with l 2 N D f1; 2; : : :g.

In d dimensions we use underlined letters to denote multi-indices, l D
.l1; : : : ; ld/ 2 Nd, and we discretize the d-unit cube using a d-dimensional full
grid,˝l WD ˝l1 � � � � �˝ld . This grid has mesh sizes

hl WD .hl1 ; : : : ; hld / WD 2�l (1)

and grid points

xl;j WD .xl1;j1 ; : : : ; xld ;jd / WD j � hl for 0 � j � 2l : (2)

Comparisons between multi-indices are done componentwise: two multi-indices i
and j satisfy i � j if ik � jk for all k 2 f1; : : : ; dg. (The same applies for similar
operators.) We will also use discrete lp-norms j � jp for multi-indices. For example,
jlj1 WD l1 C � � � C ld. Additionally, the operation i ^ j denotes the componentwise
minimum of i and j, i.e., i^ j WD .minfi1; j1g; : : : ;minfid; jdg/. Finally, if I is a set
of multi-indices, we define the downset of I as I# WD fl 2 Nd W 9k 2 I s.t. l �
kg. The downset I# includes all multi-indices smaller or equal to all multi-indices
in I .

Suppose u.x/ 2 V � C.Œ0; 1�d/ is the exact solution of a d-dimensional PDE.
A numerical approximation of u will be denoted ui.x/ 2 Vi � V , where Vi DNd

kD1 Vik is the space of piecewise d-linear functions defined on a grid˝i [15],

Vi WD spanf	i;j W 0 � j � 2ig : (3)

The d-dimensional hat functions 	i;j are the tensor product of one-dimensional hat
functions,

	i;j.x/ WD
dY

kD1
	ik;jk .xk/ ; (4)

with

	i;j.x/ WD max.1 � j2ix � jj; 0/ : (5)

As a result, the interpolation of ui.x/ on grid ˝i can be written as

ui.x/ D
X

0�j�2i
ui;j	i;j.x/ : (6)

The coefficients ui;j 2 R are simply the height of the hat functions 	i;j (see Fig. 1,
left). We call (6) the nodal representation of ui.x/, and ui;j are the nodal coefficients.

Handling Silent Data Corruption with the Sparse Grid Combination Technique 191

Fig. 1 Two different bases to interpolate a one-dimensional function using discretization level
i D 3. Left: nodal representation. We store the values of ui;j, which correspond to the height of

the nodal hat functions. Right: hierarchical basis. We store the hierarchical coefficients ˛.i/l;j , which
represent the increments w.r.t. the previous level l � 1. Their magnitude decreases as the level l
increases

Apart from Vi we will also consider hierarchical spaces Wl defined as

Wl WD span
˚
	l;j.x/ W j 2 Il

; (7)

where the index set Il is given by

Il WD
˚
j W 1 � jk � 2lk � 1; jk odd, 1 � k � d

: (8)

A hierarchical space Wi can be defined as the space of all functions ui 2 Vi such
that ui is zero on all grid points in the set

S
l<i˝l [20]. The space W1 is treated

separately, since it is endowed with two additional basis functions 	0;0 and 	0;1 to
include the boundary conditions, as illustrated in Fig. 1.1 Using hierarchical spaces
allows us to decompose a space Vi as

Vi D
M
l�i

Wl : (9)

Equations (7), (8), and (9) tell us that each ui 2 Vi can be written alternatively as

ui.x/ D
X
l�i

hl.x/; hl.x/ 2 Wl (10)

D
X
l�i

X
j2Il

˛
.i/
l;j 	l;j.x/ : (11)

1For a detailed discussion on the boundary treatment, see [30].

192 A. Parra Hinojosa et al.

This is the hierarchical representation of ui.x/, and ˛.i/l;j 2 R are the hierarchical
coefficients or hierarchical surpluses. This decomposition is illustrated for a 1D
function in Fig. 1 (right). The hierarchical coefficients can be directly obtained
from the values of ui at the corresponding grid points. In one dimension, they are
calculated as

˛
.i/
l;j D ui.xl;j/� 1

2
.ui.xl;j�1/C ui.xl;jC1//

D �� 1
2

1 � 1
2

�
l;j
ui.xl;j/ :

(12)

This operation is called hierarchization, and can be extended to d dimensions
using the one-dimensional stencil above,

˛
.i/
l;j D

dY

kD1

�� 1
2

1 � 1
2

�
lk ;jk

!
ui.xl;j/ : (13)

This is simply a transformation from the nodal to the hierarchical basis. The inverse
operation (calculating the nodal coefficients from the hierarchical coefficients) is
called dehierarchization.

If we discretize a problem on a uniform d-dimensional full grid ˝n (with mesh
size hn D 2�n in every dimension), this grid will have O.h�dn / D O.2nd/ grid points.
This exponential dependence on n and d makes running algorithms on such grids
infeasible, a fact commonly referred to as the curse of dimensionality. Sparse grids
aim to alleviate the curse of dimensionality via a hierarchical approach [7, 15]. The
classical sparse grid space Vs

n � Vn is defined as

Vs
n WD

M
jlj1�nCd�1

Wl ; (14)

which we have illustrated in Fig. 2 for d D 2 and n D 4. A sparse grid has
O.h�1n .log h�1n /d�1/ points, which represents a dramatic reduction from the O.h�dn /

WWW(111WW ,1)

WWW(1WW ,2)

WWWWWWW(4((WWWW ,3)

WWW(2WW ,2) WWW(3WW ,2)

WWWWW(2WW ,4))) WWWWW(3(3(3WW ,4)44

WWW(1WW ,3) WWW(3WW ,3)

WWW(3(3(3WW ,1)11

WWWWWWWWWWWWW(4((44WWWWWW ,4)4444))

WWW(2WW ,1)))

WWWWWWW(4WW ,2)

WWW(2WW ,3)))

Fig. 2 A sparse grid of level 4 and the hierarchical subspaces that compose it

Handling Silent Data Corruption with the Sparse Grid Combination Technique 193

discretization points required by a full grid of the same level n. However, for
functions whose mixed second derivatives are bounded, the interpolation error on
a sparse grid is in O.h2n.log h�1n /d�1/, only slightly larger than on a full grid, which
is in O.h2n/ [30].

2.1 The Sparse Grid Combination Technique

Sparse grids allow us to reduce the number of degrees of freedom in a discrete
problem without sacrificing much in terms of accuracy. However, it is in general
difficult to discretize a problem on a sparse grid. Luckily, there exists a variant of
sparse grids, the Sparse Grid Combination Technique (SGCT)[17, 18], which can
overcome this problem. We illustrate the SGCT using a simple time-dependent PDE,
the linear advection equation in two dimensions plus time given by

@u

@t
C cx

@u

@x
C cy

@u

@y
D 0 ; (15)

in the unit square .x; y/ 2 Œ0; 1�2 with initial condition u.x; y; t D 0/ D
sin.2�x/ sin.2�y/ and periodic boundary conditions in x and y. The velocities cx
and cy are real positive constants. The analytical solution of (15) is u.x; y; t/ D
sin.2�.x � cxt// sin.2�.y � cyt//.

Suppose we use an explicit discretization scheme in time, such as Lax-
Wendroff [34]. In Fig. 3 (left) we have plotted the solution of (15) at time t D 0:5

with cx D cy D 0:5 using the Lax-Wendroff scheme on a grid ˝n of discretization
level n D .4; 4/ (i.e. with .24 C 1/ � .24 C 1/ points). On the right, we have done
the same but on five coarser grids of different discretization level, each of which
has four times fewer discretization points than the grid ˝.4;4/. The idea behind the
SGCT is to combine those five grids with weights C1 and �1 (as indicated in the

VVVVV(1VV ,2)22 VVVVVVVV(33333VV ,2)22))

VVVVVVV(1VV ,3)33 VVVVVVVVVVVVV(33333VV ,3)33))))

VVVVVVV(4444444VVVVVV ,1)1111))))VVVVV(33333VV ,1)11))VVV(222VV ,1)11

VVVVVVVVVVV(22222VV ,4)4444

VVVVVV(222VV ,3)33

VVVVVVVVVVV(1VV ,4)4444

VVVVVVVVVVVVVVVVVVVVVVV(4444444VVVVVVVV ,3)3333))))))

VVVVV(222VV ,2)22 VVVVVVVVVVVVVVV(4444444VVVVVV ,2)2222))))

VVVVVVVVVVVVVVVVVVVVV(333333333VV ,4)4444))))))

VVV(1VV ,1)11

= ≈ =
VVVVV(1VV ,2)22

VVVVVVV(1VV ,3)33

VVVVVVV(4444444VVVVVV ,1)1111))))VVVVV(33333VV ,1)11))

VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV(4444444444444VVVVVVVVVVVV ,4)44444444))))))))))

VVV(222VV ,1)11

VVVVVVVVVVV(1VV ,4)4444

VVVVVVVVVVVVVVVVVVVVVVV(4444444VVVVVVVV ,3)3333))))))

VVVVV(222VV ,2)22

VVVVVVVVVVVVVVVVVVVVV(333333333VV ,4)4444))))))

VVV(1VV ,1)11

Fig. 3 A classical SGCT to solve the 2D advection equation using n D .4; 4/ and � D 2 (imin D
.2; 2/). The combination of the five resulting grids results in a sparse grid approximation of the full
grid ˝.4;4/

194 A. Parra Hinojosa et al.

figure) to obtain an approximation of the solution on grid˝.4;4/. The union of these
grids results in a sparse grid, depicted on the middle right.

The grids are usually combined either using interpolation or hierarchization. The
former means that each combination grid is interpolated to the full grid space (in
our example, ˝.4;4/) and the grids are combined together in this space. The latter
requires us to transform each solution into the hierarchical basis (using Eq. (13)),
after which the hierarchical coefficients ˛.i/l;j can be added directly in the sparse grid
space [23, 25].

We can now write down the classical definition of the SGCT. We approximate
the full grid solution un by a function u.c/n as follows:

un � u.c/n D
X
i2I

ciui : (16)

The weights ci 2 R are called combination coefficients, and each ui is a numerical
approximation of u on a coarse, anisotropic full grid˝i. We call the ui combination
solutions, the grids ˝i combination grids, u.c/n the combined solution, and its
corresponding grid ˝.c/

n the combined grid (which is a sparse grid). I is a set of
multi-indices.

The approximation quality of the combined solution (16) strongly depends on
the coefficients ci and the set I , since only certain choices yield reasonable results.
One such choice is the classical combination technique given by

u.c/n D
d�1X
qD0
.�1/q

�
d � 1
q

�

„ ƒ‚ …
Dci

X
i2In;q;�

ui : (17)

Here, the index set In;q;� is defined as

In;q;� WD fi 2 Nd W jij1 D jiminj1 C � � q and imin D n� � � 1 > 0g ; (18)

where � 2 N, and imin specifies a minimal resolution level in each dimension. The
classical combination technique depicted in Fig. 3 was generated by choosing n D
.4; 4/ and � D 2 (imin D .2; 2/), giving the combination

u.c/n D u.2;4/ C u.3;3/ C u.4;2/ � u.2;3/ � u.3;2/ :

For a general combination of the form (16), the combination coefficients can be
calculated as

ci D
X

i�j�iC1

.�1/jj�ij
I .j/ ; (19)

where
I is the indicator function of set I [19].

Handling Silent Data Corruption with the Sparse Grid Combination Technique 195

The main advantage of the SGCT is that it approximates a full grid solution
very well by using a combination of solutions on coarse anisotropic grids. The
combination of these grids results in a sparse grid, but we avoid discretizing
our problem directly on the sparse grid, which is cumbersome and requires
complex data structures. However, by using the combination technique we have
an extra storage overhead compared to a single sparse grid, since there is some
data redundancy among the combination grids. The storage requirements of the
combination technique are of order O.d.log h�1n /d�1/ � O.h�1n / [30]. This data
redundancy is the key feature of the SGCT that will allow us to deal with data
corruption.

Finally, it is important to mention that the combination coefficients ci and the
index set I can be chosen in various different ways, and the resulting combinations
vary in approximation quality. This is the underlying idea behind dimension-
adaptive sparse grids [24], and their construction is inherently fault tolerant.

3 The SGCT in Parallel and Fault Tolerance
with the Combination Technique

The SGCT offers two levels of parallelism. First, since we solve the same PDE on
different grids, each solver call is independent of the rest. Second, on each grid
one can use domain decomposition (or other parallelization techniques). But if the
PDE is time-dependent we have to combine the solutions every certain number
of time steps to avoid divergence, which requires communication. The fraction of
time spent in the solver and in the communication steps depends on how often one
combines the grids. If the PDE is not time-dependent we combine only once at the
end. Algorithm 2 summarizes the main components of a parallel implementation of
the classical SGCT. It can be implemented using a master/slave scheme. The master
distributes the work and coordinates the combination of the grids. The slaves solve
the PDE on the different grids and communicate the results to the master. Most of

Algorithm 2 Classical SGCT in Parallel
1: input: A function SOLVER; maximum resolution n; parameter � ; time steps per combination Nt

2: output: Combined solution u
.c/
n

3: Generate index set In;q;� F Eq. (18)
4: Calculate combination coefficients ci F Eq. (19)
5: for i 2 In;q;� do
6: ui u.x; t D 0/ F Set initial conditions by sampling
7: while not converged do
8: for i 2 In;q;� do in parallel
9: ui SOLVER(ui ,Nt) F Solve the PDE on grid ˝i (Nt time steps)

10: ui HIERARCHIZE(ui) F Transform to hier. basis, Eq. (13)
11: u

.c/
n REDUCE(ci ui) F Combined solution (in the hier. basis)

12: u
.c/
n DEHIERARCHIZE(u.c/n) F Transform back to nodal basis

13: for i 2 In;q;� do

14: ui SCATTER(u.c/n) F Sample each ui from new u.c/n

196 A. Parra Hinojosa et al.

the time and computational resources are spent on the calls to the actual PDE solver,
line 9.

We are currently working on a massively parallel implementation of the
SGCT [22]. It is a C++ framework that can call existing PDE solvers (e.g.
DUNE [3]) and apply the SGCT around them. To develop such an environment,
three major issues have to be carefully taken into consideration:

1. Load balancing. The work load (calculating all combination solutions ui, line 9)
has to be distributed properly among the computing nodes. The time to solution
of each ui depends on the number of unknowns and the anisotropy of each grid
˝i. This problem has been studied in [21].

2. Communication. After performing Nt time steps, the different ui have to be
combined, which requires communication (line 11). The combined solution u.c/n

is used as initial condition for the next Nt time steps for all combination solutions
ui (line 14), and this also requires communication. Efficient communication
patterns for the SGCT have been studied in detail in [26]. The problem of
determining how often the grids should be combined is still under investigation,
since the frequency depends on the specific PDE.

3. Fault tolerance. In light of increasing hardware and software faults, the Fault
Tolerant Combination Technique (FTCT) has been developed [20]. It has been
applied to plasma physics simulations and proved to scale well when hard faults
occur [1, 29]. This is the area where our group contributes to the C++ framework.

All three points raise interesting algorithmic questions, but since the third plays a
central role in our discussion of SDC, we should add a few words about it. In Fig. 4
(left) we depict a classical SGCT with n D .5; 5/ and � D 3 (imin D .2; 2/). Suppose
the system encounters a fault during the call to solver. As a result, one or more
combination solutions ui will be lost. In Fig. 4 (left) we have assumed that solution
u.4;3/ has been lost due to a fault. Instead of recomputing this lost solution, the FTCT
attempts to find alternative ways of combining the successfully calculated solutions,
excluding the solutions lost due to faults. The possible alternative combinations are
almost as good as the original combination. In Fig. 4 (right) we see an alternative
combination that excludes solution u.4;3/, using instead solution u.3;2/. But notice
that u.3;2/ was not part of the original set of solutions. The main idea of the FTCT
is to compute some extra solutions beforehand (such as u.3;2/) and use them only
in case of faults. This results in a small extra overhead, but it has been shown to
scale [20]. In the original SGCT we solve the PDE on grids˝i with index i 2 In;q;�

for q D 0; : : : ; d� 1, Eq. (17). The FTCT extends this set to include the indices that
result from setting q D d; dC1. We call this set I ext

n;q;� . The combination coefficients
ci that correspond to these extra solutions are set to zero if no faults occur and can
become nonzero if faults occur.

Handling Silent Data Corruption with the Sparse Grid Combination Technique 197

Fig. 4 Example of FTCT with n D .5; 5/ and � D 3. The original index set I.5;5/;q;3 is extended
with the additional sets I.5;5/;2;3 D f.2; 3/; .3; 2/g and I.5;5/;3;3 D f.2; 2/g, and the additional
solutions are used only in case of faults

3.1 SDC and the Combination Technique

If SDC occurs at some stage of Algorithm 2, it is most likely to happen during
the call to the solver, line 9, which is where most time is spent. This means that
the solver could return a wrong answer, and this would taint the combined solution
u.c/n during the combination (reduce) step in line 11. Since the combination step is a
linear operation, the error introduced in the combined solution would be of the same
magnitude of the affected combination solution. Additionally, if the convergence
criterion in line 7 has not been met, the scatter step would propagate the spurious
data to all other combination solutions, potentially ruining the whole simulation.

To simulate an occurrence of SDC we follow an approach similar to [10]. Let us
first assume that SDC only affects one combination solution ui, and that only one of
its values ui.xi;j/ is altered in one of the following ways:

1. Qui.xi;j/ D ui.xi;j/ � 10C5 (very large)2

2. Qui.xi;j/ D ui.xi;j/ � 10�0:5 (slightly smaller)
3. Qui.xi;j/ D ui.xi;j/ � 10�300 (very small)

This fault injection is performed only once throughout the simulation,3 at a given
time step. Altering only one value of one combination solution is a worst-case
scenario, since a solution with many wrong values should be easier to detect. If the
wrong solution is not detected, the wrong data would propagate to other grids during

2The authors in [10] use a factor of 10C150 to cover all possible orders of magnitude, but we choose
10C5 simply to keep the axes of our error plots visible. The results are equally valid for 10C150.
3The assumption that SDC occurs only once in the simulation is explained in [10].

198 A. Parra Hinojosa et al.

the scatter step. In our tests we also simulated additive errors of various magnitudes,
as well as random noise, and the results did not offer new insights. We thus focus
on multiplicative errors in what follows.

If we want to make sure that all ui have been computed correctly, we should
introduce sanity checks before the combination step (between lines 10 and 11).
These checks should not be problem-dependent, since the function solver could
call any arbitrary code. Although it is not possible in general to know if a
given combination solution ui is correct, we have many of them (typically tens or
hundreds), each with a different discretization resolution. We can therefore use this
redundant information to determine if one or more solutions have been affected by
SDC. We know that all ui should look similar, since they are all solutions of the same
PDE. The question is how similar? Or equivalently, how different can we expect an
arbitrary pair of combination solutions (say us and ut) to be from each other? If two
solutions look somehow different we can ask if such a difference falls within what
is theoretically expected or not. The theory of the SGCT provides a possible answer
to this question.

Early studies of the SGCT show that convergence can be guaranteed if each ui
satisfies the error splitting assumption (ESA) [18], which for arbitrary dimensions
can be written as [19]

u � ui D
dX

kD1

X
fe1;:::;ekg�f1;:::;dg

Ce1;:::;ek.x; hie1 ; : : : ; hiek /h
p
ie1
� � � hpiek ; (20)

where p 2 N and each function Ce1;:::;ek.x; hie1 ; : : : ; hiek / depends on the coordinates
x and on the different mesh sizes hi. Additionally, for each fe1; : : : ; ekg � f1; : : : ; dg
one has jCe1;:::;ek .x; hie1 ; : : : ; hiek /j � �e1;:::;ek .x/, and all �e1;:::;ek are bounded by
�e1;:::;ek.x/ � �.x/. Equation (20) is a pointwise relation, i.e. it must hold for all
points x independently, which can be seen by the explicit dependence of each
function Ce1;:::;ek on x.

In one dimension (d D 1), the ESA is simply

u � ui D C1.x1; hi/h
p
i ; jC1.x1; hi/j � �1.x1/ : (21)

From (12) it follows that the hierarchical coefficients also satisfy the ESA

˛l;j � ˛.i/l;j D D1.xl;j; hi/h
p
i ; jD1.xl;j; hi/j � 2�1.xl;j/ ; (22)

where ˛l;j is the exact hierarchical coefficient at point xl;j.
Similarly, in two dimensions we have

u � ui D C1.x1; x2; hi1 /h
p
i1
C C2.x1; x2; hi2 /h

p
i2
C C1;2.x1; x2; hi1 ; hi2 /h

p
i1
hpi2 : (23)

Handling Silent Data Corruption with the Sparse Grid Combination Technique 199

There are univariate contributions from each dimension and a cross term that
depends on both dimensions. Analogously, for the hierarchical coefficients we have

˛l;j � ˛.i/l;j D D1.xl;j; hi1 /h
p
i1
C D2.xl;j; hi2 /h

p
i2
C D1;2.xl;j; hi1 ; hi2 /h

p
i1
hpi2 ; (24)

with jD1j � 4�1.xl;j/, jD2j � 4�2.xl;j/, and jD1;2j � 4�1;2.xl;j/. This follows
from (13).

Now suppose we take two arbitrary combination solutions us and ut in two
dimensions. If these two solutions satisfy the ESA it is straightforward to show
that the difference of their corresponding hierarchical coefficients satisfies

˛
.t/
l;j � ˛.s/l;j D D1.xl;j; ht1 /h

p
t1 C D2.xl;j; ht2 /h

p
t2 C D1;2.xl;j; ht1 ; ht2 /h

p
t1h

p
t2

� D1.xl;j; hs1/h
p
s1
�D2.xl;j; hs2/h

p
s2
� D1;2.xl;j; hs1 ; hs2 /h

p
s1
hps2 :

(25)

Clearly, this equation holds only for the hierarchical spaces common to both grids
˝s and ˝t, i.e. for all Wl with .1; 1/ � l � s ^ t. Equation (25) tells us that
the difference between the hierarchical coefficients of two combination solutions
depends mainly on two things: (1) how coarse or fine the grids are, and (2) the
distance jt � sj1, which tells us whether grids˝s and ˝t have similar discretization
resolutions. The former can be observed by the explicit dependence on ht and hs,
dominated by the univariate terms. The latter means that if two grids have similar
discretizations, the terms in (25) will tend to cancel each other out. Equation (25) is
(pointwise) bounded by

ˇ
.s;t/
l;j WD j˛.t/l;j �˛.s/l;j j � 4 ��.xl;j/ � .hpt1Chps1Chpt2Chps2Chpt1h

p
t2Chps1h

p
s2/; l � s^ t :

(26)

This result can help us to detect SDC, as we soon show.
Our goal is to implement Algorithm 3. A sanity check is done before the

combination step (line 11). This is where we attempt to detect and filter wrong

Algorithm 3 FTCT with sanity checks for SDC
1: input: A function SOLVER; maximum resolution n; parameter � ; time steps per combination Nt

2: output: Combined solution u
.c/
n

3: Generate extended index set I ext
n;q;�

4: Calculate combination coefficients ci F Eq. (19)
5: for i 2I ext

n;q;� do in parallel
6: ui u.x; t D 0/ F Set initial conditions by sampling
7: while not converged do
8: for i 2I ext

n;q;� do in parallel
9: ui SOLVER(ui ,Nt) F Solve the PDE on grid ˝i (Nt time steps)

10: ui HIERARCHIZE(ui) F Transform to hier. basis, Eq. (13)
11: fisdcg SDCSANITYCHECK({ui }) F Check for SDC in all ui
12: if fisdcg not empty then F Did SDC affect any ui?
13: fcig COMPUTENEWCOEFFS(fisdc g) F Update combination coeffs.
14: u

.c/
n REDUCE(ci ui) F Combined solution (in the hier. basis)

15: u
.c/
n DEHIERARCHIZE(u.c/n) F Transform back to nodal basis

16: for i 2I ext
n;q;� do

17: ui SCATTER(u.c/n) F Sample each ui from new u
.c/
n

200 A. Parra Hinojosa et al.

combination solutions, based on (26). If we are able to detect whether one or more
combination solutions are wrong, we can apply the FTCT, treating wrong solutions
in the same way as when hard faults occur, finding a new combination of solutions
that excludes them, see Fig. 4. We now describe two possible implementations of
the function sdcSanityCheck.

3.2 Sanity Check 1: Filtering SDC via Comparison
of Pairs of Solutions

The first possible implementation of a simple sanity check is to apply (26) directly:
we compare pairs of solutions us and ut in their hierarchical basis and make sure that
the bound (26) is fulfilled. If one of the solutions is wrong due to SDC, the quantity
ˇ
.s;t/
l;j will be large and the bound might not be fulfilled, indicating that something is

wrong. Unfortunately, the constant �.xl;j/ in the bound is in fact a function of space
and is problem-dependent. This means that it has to be approximated somehow at
all points xl;j, which is not trivial. It is only possible to estimate it once the solutions
ui have been calculated, but this is done assuming that all ui have been computed
correctly. Of course, this assumption does not hold if SDC can occur.

Despite these disadvantages, it is still possible to use bound (26) to detect and
filter SDC. First, note that the function �.xl;j/ decays exponentially with increasing
level l. This is due to the fact that the hierarchical coefficients ˛l;j themselves decay
exponentially with l (see Fig. 1, right). For a simple interpolation problem they
behave as [7]

j˛l;jj � 2�d �
�
2

3

�d=2

� 2�.3=2/�jlj1 � D2.ujsupp 	l;j/

L2
; (27)

with D2.u/ WD @4u
@x21@x

2
2

. We can account for this exponential decay by normalizing the

quantity ˇ.s;t/l;j as follows:

Ǒ.s;t/
l;j WD

j˛.t/l;j � ˛.s/l;j j
min

n
j˛.t/l;j j; j˛.s/l;j j

o for all l � s ^ t; 0 � j � 2l : (28)

If no SDC occurs, j˛.s/l;j j and j˛.t/l;j j should be very similar, so it does not matter which
of the two we use for the normalization. But if SDC occurs and their difference is
large, dividing by the smaller one will amplify this difference. We can then take the
largest Ǒ.s;t/l;j over all grid points xl;j,

Ǒ.s;t/ WD max
l�s^t max

j2Il

Ǒ.s;t/
l;j : (29)

Handling Silent Data Corruption with the Sparse Grid Combination Technique 201

Algorithm 4 Sanity check via comparison of solutions
1: input: The set of all combination solutions {ui} (in the hierarchical basis)
2: output: The set of indices corresponding to the solutions affected by SDC,
3: fisdcg
4: function SDCSANITYCHECK({ui })
5: for all pairs .us; ut/ with s; t 2I ext

n;q;� do

6: Compute Ǒ.s;t/ F Eq. (29)
7: if Ǒ.s;t/ too large then
8: Mark pair .s; t/ as corrupted
9: From list of corrupted pairs .s; t/, determine corrupted grids fisdcg

10:
11: Returnfisdcg

Pair Ǒ.s;t/
(7, 9) (7, 8) 8.71e+04
(7, 8) (9, 7) 4.95e+04
(8, 7) (7, 7) 2.50e-02
(7, 9) (8, 8) 3.67e-02
(7, 7) (8, 8) 4.91e-02
(8, 7) (8, 8) 2.50e-02
(7, 9) (8, 7) 6.03e-02
(7, 9) (7, 7) 3.76e-02
(9, 7) (7, 7) 3.76e-02
(9, 7) (8, 8) 3.67e-02
(7, 8) (7, 7) 5.01e+04
(8, 7) (7, 8) 4.97e+04
(8, 7) (9, 7) 1.24e-02
(7, 9) (9, 7) 7.24e-02
(7, 8) (8, 8) 8.68e+04

This quantity simply gives us the largest (normalized) difference between two
combination solutions in the hierarchical basis, and it does not decay exponentially
in l. Our goal is to keep track of this quantity, expecting it to be small for all pairs
of combination solutions. If this is not the case for a specific pair .us; ut/ we can
conclude that one solution (or both) was not computed correctly during the call to
the function solver.

Algorithm 4 summarizes this possible implementation of the function sdc-
SanityCheck. The table on the right illustrates what the function generates
for a simple implementation of a 2D FTCT. We solved once again the advection
equation (15) for t D 0:25 and 129 time steps, with cx D cy D 0:5. The FTCT
parameters used where n D .9; 9/ and � D 2, which results in six combination
grids. We injected SDC of small magnitude (case 2 from the previous section) into
one of the combination grids at the very last time step. The table shows a list of all
pairs .s; t/ and the calculated value of Ǒ.s;t/. Some pairs have unusually large values
of Ǒ.s;t/, shown in boldface. It should be evident that solution u.7;8/ has been affected
by SDC, being the only one appearing in all five pairs marked as corrupted.

There remains one unanswered question: which values of Ǒ.s;t/ should be
considered and marked as “too large” (lines 7 and 8)? We discussed that it is difficult
to calculate a specific value for the upper bound (26), since �.xl;j/ is problem-
dependent. But we might not need to. We simply need to recognize that some values
of Ǒ.s;t/ are disproportionately large compared to the rest. The values highlighted in
the table are indeed clear outliers, and the wrong solution can be identified. The idea
of detecting outliers leads us to our second implementation of sdcSanityCheck.

202 A. Parra Hinojosa et al.

3.3 Sanity Check 2: Filtering SDC via Outlier Detection

So far we have used two facts about the combination technique to be able to deal
with SDC. First, although we cannot tell in general if one single combination
solution has been computed correctly, we know that all combination solutions
should look somewhat similar. And second, this similarity can be measured, and
the difference between two solutions cannot be arbitrarily large, since it is bounded.

Consider the value of the combined solution u.c/n at an arbitrary grid point xl;j of

the combined grid˝.c/
n . This value, u.c/n .xl;j/, is obtained from the combination of the

different solutions ui that include that grid point (with the appropriate combination
coefficients). For every grid point xl;j there is always at least one combination
solution ui that includes it, and at most jI j such grids. For example, all combination
grids ui include the grid points with l D 1 (x1;j, corresponding to subspace W1). In
other words, we have jI j solutions of the PDE at the grid points x1;j. Let’s call
Nl D 1; : : : ; jI j the number of combination solutions ui that contain the grid points
xl;j. We expect the different versions of a point u.c/n .xl;j/ to be similar, but with slight
variations. This variance is given by

VarŒu.c/n .xl;j/� D
1

Nl

X
l0	l

�
ul0.xl;j/� EŒu.c/n .xl;j/�

�2
; l; l0 2 I ; (30)

since a grid point xl;j can be found in all combination solutions ul0 with l0 � l (see

Eq. (9)). The mean value of u.c/n .xl;j/ over all combination solutions is defined as

EŒu.c/n .xl;j/� D
1

Nl

X
l0	l

ul0.xl;j/ : (31)

Since we have been working in the hierarchical basis, the variance of the value at
point xl;j in this basis is given by

VarŒ˛.c/n .xl;j/� D
1

Nl

X
l0	l

�
˛
.l0/
l;j � EŒ˛.c/n .xl;j/�

	2
: (32)

This quantity is in fact bounded, due to (26), by

VarŒ˛.c/n .xl;j/� D
1

2N2l

X
s	l

X
t	l

�
˛
.s/
l;j � ˛.t/l;j

	2

� 8 � �2.xl;j/
N2l

X
s	l

X
t	l
t¤s

g2.hps ; h
p
t / ; (33)

with g.hps ; h
p
t / WD hpt1 C hps1 C hpt2 C hps2 C hpt1h

p
t2 C hps1h

p
s2 .

Handling Silent Data Corruption with the Sparse Grid Combination Technique 203

Equation (33) tells us that if we observe how the solution of our PDE at point
xl;j varies among the different combination solutions, the variance will not be
arbitrarily large. This gives us a second way to perform a sanity check to filter
SDC, summarized in Algorithm 5. Using the fact that the variance of each point
is bounded, we can apply existing algorithms from robust statistics to find outliers
among the different versions of each point. The algorithms used are described in
Sect. 4.1. This allows us to filter solutions with unusually large variation and we can
be certain that the rest of the solutions has been computed correctly. Just as we did in
the first implementation of sdcSanityCheck, we do not need to find a value for
the upper bound of the variance (33), but simply to detect unusually large variations.

There is one special case to consider. What happens for subspaces Wl for which
we only have one version of the solution (Nl D 1)? These are the grid points found
in the highest hierarchical subspaces (largest l). In the very unfortunate case where
one of these values is wrong and the fault does not propagate to neighboring points,
we have no other values with which to compare it and thus it cannot be filtered
with this approach (nor with the previous). A possible way to detect such errors
can be deduced from the fact that the hierarchical coefficients should decrease
exponentially in magnitude with increasing level l (Eq. (27)). This means that the
coefficients on the highest hierarchical subspace should be very small compared to
the rest. We verified this exponential decay for our advection problem as well as for
the more complex plasma simulation code GENE [27]. One can try to verify that the
hierarchical coefficients at the highest level are smaller than those at a lower level,
say, m levels lower,

j˛.l/l;j j < j˛.l/l�m�ek;jj : (34)

The direction ek should be chosen preferably to be the most finely discretized one
(i.e. that for which lk is largest, which will be large in exascale simulations). For
our experiments, m D 3 worked well. This check could return false positives if
lower coefficients are small, so more robust checks could be useful. Note, however,
that this check is not even necessary for the combination solutions with the finest
discretization, since the combination step would not propagate the fault to other
combination solutions. This further reduces the significance of this special case.

Algorithm 5 Sanity check via outlier detection
1: input: The set of all combination solutions {ui} (in the hierarchical basis)
2: output: The set of indices corresponding to the solutions affected by SDC, fisdcg
3: function SDCSANITYCHECK({ui })
4: for all grid points xl;j in ˝.c/

n do in parallel

5: ˛Œl0 � GATHER(˛.l
0 /

l;j) for all l0 	 l
6: if any OUTLIER_TEST(˛Œl0 �) then
7: Add outlier l0 to set of corrupted indices fisdcg
8: return fisdcg

204 A. Parra Hinojosa et al.

4 Numerical Tests

4.1 Experimental Setup

We implemented Algorithm 3 with both types of sanity checks (Algorithms 4 and 5)
in Python for our 2D advection equation (15) with cx D cy D 1. Despite this being a
toy problem, the algorithms presented are general enough to be applied to any PDE
solver for which the SGCT converges. In other words, if a PDE can be solved using
the SGCT, our sanity checks are guaranteed to work, thanks to the error splitting
assumption (20). The function solver is a Lax-Wendroff solver, which has order
two in space and time. For the FTCT we use a maximum resolution n D .9; 9/

and � D 3 (giving imin D .6; 6/). This results in a classical index set In;q;� with 7
elements and an extended set I ext

n;q;� with 10 elements. We calculate the solution at
time t D 0:5 using 512 total time steps for all combination solutions, which ensures
that the CFL condition is met. We combine the solutions twice during the simulation
(reduce step), once at the middle (after 256 time steps) and at the end (after 512
time steps).

For this discussion we use only the second version of the function sdcSanity-
Check (detecting outliers), since we found it to be more robust and to have more
potential for parallelization. In particular, the gather step can be combined with
the reduce step, so we would only need to communicate once instead of twice.
And second, this gather+reduce step can be performed efficiently using the
algorithm Subspace Reduce [26] with small modifications.

All simulations presented here were carried out serially. To detect if any

of the hierarchical coefficients ˛.l
0/

l;j is an outlier, we used the Python library
statsmodels [32], specifically, the function outlier_test from the module
linear_model. As of version 0.7.0 the function implements seven outlier
detection methods, all of which performed very similarly. For our tests we chose
method=’fdr_by’ which is based on a false discovery rate (FDR) method
described in [4]. We consider a grid to be affected by SDC if at least one of its
values is detected as an outlier.

4.2 Results

In Fig. 5 we have plotted six sets of simulation results. Each set has an iteration
number (from 0 to 511) on the x-axis, which represents the time step in the function
solver at which SDC was injected. This means that each of the six plots shows
512 different simulations. On the y-axis we have plotted the L2 relative error of
the combined solution u.c/n with respect to the exact solution at the end of each
simulation. The three rows of plots show the different magnitudes of the SDC (105,
10�0:5, and 10�300). For all simulations, the wrong value was injected into the same
combination solution, u.7;8/. (Choosing different solutions made no difference in the

Handling Silent Data Corruption with the Sparse Grid Combination Technique 205

0 100 200 300 400 500
10−5
10−4
10−3
10−2
10−1
100
101
102
103
104
105
106

ũi(xl1,j1, xl2,j2) = ui(xl1,j1, xl2,j2) × 105

0 100 200 300 400 500
10−5

10−4

10−3

10−2

10−1

100

101

ũi(xl1,j1, xl2,j2) = ui(xl1,j1, xl2,j2) × 10−0.5

0 100 200 300 400 500

Timestep where fault occurs, lowest hierarchical subspace

10−5

10−4

10−3

10−2

10−1

100

101

ũi(xl1,j1, xl2,j2) = ui(xl1,j1, xl2,j2) × 10−300

0 100 200 300 400 500
10−5
10−4
10−3
10−2
10−1
100
101
102
103
104
105
106

ũi(xl1,j1, xl2,j2) = ui(xl1,j1, xl2,j2) × 105

0 100 200 300 400 500
10−5

10−4

10−3

10−2

10−1

100

101

ũi(xl1,j1, xl2,j2) = ui(xl1,j1, xl2,j2) × 10−0.5

0 100 200 300 400 500

Timestep where fault occurs, highest hierarchical subspace

10−5

10−4

10−3

10−2

10−1

100

101

ũi(xl1,j1, xl2,j2) = ui(xl1,j1, xl2,j2) × 10−300

Full Grid CT, no SDC CT, with SDC CT, recovered

Fig. 5 L2 relative error of the FTCT when SDC of various magnitudes are injected into one
combination solution

results.) Finally, the plots on the left differ from those on the right by the choice
of the grid point where SDC was injected. Recall that each combination solution ui
is transformed to the hierarchical basis after the call to the solver (line 10). If the
solver returns a ui with wrong values, the hierarchization step can propagate these
wrong values to various degrees depending on which grid point(s) were affected. For
the three plots on the left we injected SDC on the lowest hierarchical level (more
precisely, in the middle of the domain), whereas for the plots on the right, the wrong
value was inserted on one point of the highest hierarchical level (right next to the
middle of the domain).

The blue line on each plot is the error of the full grid solution u.9;9/; the green

dotted line is the error of the combined solution u.c/n when no SDC is injected; each
red dot represents the error of the combined solution when SDC has been injected
and not filtered; and the blue crosses are the error of the combined solution after
detecting and filtering the wrong solution (u.7;8/) and combining the rest of the grids
with different coefficients.

As discussed earlier, the error of the combined solution is proportional to the
error of the wrong combination solution. In all but one of the 6 � 512 D 3072

simulations the wrong solution was detected and filtered. This was the case when
SDC of magnitude 10�0:5 was injected on the lowest hierarchical subspace during
the last iteration, because the value of the solution of the PDE at that point is very
close to zero. (Recall that the exact solution is a product of sine functions, so it
is equal to zero at various points.) This is also true during (roughly) the first and
last ten iterations, and from the plots we can see that the outlier detection method
as we applied it is too sensitive. Even when SDC is barely noticeable (thus not
affecting the quality of the combined solution), it is still detected, and the recovered

206 A. Parra Hinojosa et al.

solution (blue crosses) can actually be slightly worse than the solution with SDC
(red circles). This is actually not too bad, since the error of the recovered combined
solution is always very close to that of the unaffected combined solution, and we
consider it a very unlikely worst-case scenario. This no longer happens if the value
affected by SDC is not originally very close to zero. Some fine-tuning can be done to
make the outlier detection method less sensitive. (Outlier detection functions usually
involve a sensitivity parameter that can be varied.)

Whether SDC affects a point on the lowest hierarchical subspace or the highest
makes almost no difference, but this is problem-dependent. In a different experi-
ment, we added a constant to the initial field so that the solution is nowhere close
to zero. This resulted in a higher error when SDC was injected in a low hierarchical
subspace. One can also see that faults occurring in early iterations result in a larger
error at the end. (Notice the small step in the blue crosses at iteration 256.)

There were some simulation scenarios where the wrong combination solution
was not properly filtered, or when correct combination solutions were wrongly
filtered. This happened when the minimum resolution of the SGCT (imin) was too
small. For our problem, the choice imin � .5; 5/ was large enough for the outlier
detection algorithms to work properly. As long imin is chosen large enough, both the
SGCT and the sanity checks work as expected.

Finally, if SDC causes alterations in the control flow of the program, two
scenarios are possible (assuming once again that the fault occurs when calling the
solver): either the solver returns a wrong solution or does not return at all. The first
case can be treated by our algorithms. The second case can either translate into a
hard fault (i.e., an error signal is produced—and this can be dealt with) or cause the
solver to hang indefinitely. We plan to investigate this last scenario in the future.

Despite these fine-tuning issues, our approach offers several advantages over
existing techniques. We do not implement any complicated checksum schemes;
there is no checkpointing involved at any memory level; and there is no need to
replicate MPI processes nor data. We simply make use of the existing redundancy
in the SGCT to either calculate a norm or to look for outliers. These two algorithms
are inexpensive and should not be difficult to implement in parallel. We plan to
investigate robust, parallel implementations in future work, as well as to carry out
further experiments.

5 Conclusions

The SGCT and its fault tolerant version, the FTCT, offer an inherent type of
data redundancy that can be exploited to detect SDC. Assuming that one or
more combination solutions can be affected by SDC of arbitrary magnitude, one
can perform sanity checks before combining the results. The sanity checks work
even in the worst-case scenario where only one value in one field is affected
by a factor of arbitrary magnitude. These recovery algorithms do not require
checkpointing. Existing outlier detection techniques from robust statistics can be

Handling Silent Data Corruption with the Sparse Grid Combination Technique 207

directly incorporated into the FTCT, which requires only minimal modifications.
Only some fine-tuning is required to minimize false positives or negatives, but
this algorithmic approach avoids the drawbacks of the alternative techniques. We
plan to demonstrate the applicability of these algorithms in massively large parallel
simulations in the near future.

Acknowledgements This work was supported in part by the German Research Foundation (DFG)
through the Priority Programme 1648 “Software for Exascale Computing” (SPPEXA). We thank
the reviewers for their valuable comments. A. Parra Hinojosa thanks the TUM Graduate School
for financing his stay at ANU Canberra, and acknowledges the additional support of CONACYT,
Mexico.

References

1. Ali, M.M., Strazdins, P.E., Harding, B., Hegland, M., Larson, J.W.: A fault-tolerant gyrokinetic
plasma application using the sparse grid combination technique. In: Proceedings of the
2015 International Conference on High Performance Computing & Simulation (HPCS 2015),
pp. 499–507. IEEE, Amsterdam (2015)

2. Avižienis, A., Laprie, J.C., Randell, B., Landwehr, C.: Basic concepts and taxonomy of
dependable and secure computing. IEEE Trans. Dependable Secure Comput. 1(1), 11–33
(2004)

3. Bastian, P., Blatt, M., Dedner, A., Engwer, C., Klöfkorn, R., Ohlberger, M., Sander, O.: A
generic grid interface for parallel and adaptive scientific computing. Part I: abstract framework.
Computing 82(2–3), 103–119 (2008)

4. Benjamini, Y., Yekutieli, D.: The control of the false discovery rate in multiple testing under
dependency. Ann. Stat. 29(4), 1165–1188 (2001)

5. Bland, W., Bouteiller, A., Herault, T., Bosilca, G., Dongarra, J.J.: Post-failure recovery of MPI
communication capability: design and rationale. Int. J. High Perform. Comput. Appl. 27(3),
244–254 (2013)

6. Bridges, P.G., Ferreira, K.B., Heroux, M.A., Hoemmen, M.: Fault-tolerant linear solvers via
selective reliability. Preprint arXiv:1206.1390 (2012)

7. Bungartz, H.J., Griebel, M.: Sparse grids. Acta Numer. 13, 147–269 (2004)
8. Chen, Z., Dongarra, J.: Highly scalable self-healing algorithms for high performance scientific

computing. IEEE Trans. Comput. 58(11), 1512–1524 (2009)
9. van Dam, H.J.J., Vishnu, A., De Jong, W.A.: A case for soft error detection and correction in

computational chemistry. J. Chem. Theory Comput. 9(9), 3995–4005 (2013)
10. Elliott, J., Hoemmen, M., Mueller, F.: Evaluating the impact of SDC on the GMRES iterative

solver. In: 2014 IEEE 28th International Parallel and Distributed Processing Symposium,
pp. 1193–1202. IEEE (2014)

11. Elliott, J., Hoemmen, M., Mueller, F.: Resilience in numerical methods: a position on fault
models and methodologies. Preprint arXiv:1401.3013 (2014)

12. Ferreira, K., Stearley, J., Laros III, J.H., Oldfield, R., Pedretti, K., Brightwell, R., Riesen, R.,
Bridges, P.G., Arnold, D.: Evaluating the viability of process replication reliability for exascale
systems. In: Proceedings of 2011 International Conference for High Performance Computing,
Networking, Storage and Analysis, p. 44. ACM (2011)

13. Fiala, D., Mueller, F., Engelmann, C., Riesen, R., Ferreira, K., Brightwell, R.: Detection
and correction of silent data corruption for large-scale high-performance computing. In:
Proceedings of the International Conference on High Performance Computing, Networking,
Storage and Analysis, p. 78. IEEE Computer Society Press (2012)

208 A. Parra Hinojosa et al.

14. Garcke, J.: A dimension adaptive sparse grid combination technique for machine learning.
ANZIAM J. 48, 725–740 (2007)

15. Garcke, J.: Sparse grids in a nutshell. In: Garcke, J., Griebel, M. (eds.) Sparse Grids and
Applications. Lecture Notes in Computational Science and Engineering, pp. 57–80. Springer,
Berlin/Heidelberg (2013)

16. Garcke, J., Griebel, M.: On the computation of the eigenproblems of hydrogen and helium
in strong magnetic and electric fields with the sparse grid combination technique. J. Comput.
Phys. 165(2), 694–716 (2000)

17. Griebel, M.: The combination technique for the sparse grid solution of PDE’s on multiproces-
sor machines. Parallel Process. Lett. 2, 61–70 (1992)

18. Griebel, M., Schneider, M., Zenger, C.: A combination technique for the solution of sparse
grid problems. In: Iterative Methods in Linear Algebra, pp. 263–281. IMACS, Elsevier, North
Holland (1992)

19. Harding, B.: Adaptive sparse grids and extrapolation techniques. In: Sparse Grids and
Applications. Lecture Notes in Computational Science and Engineering, pp. 79–102. Springer,
Cham (2015)

20. Harding, B., Hegland, M., Larson, J., Southern, J.: Fault tolerant computation with the sparse
grid combination technique. SIAM J. Sci. Comput. 37(3), C331–C353 (2015)

21. Heene, M., Kowitz, C., Pflüger, D.: Load balancing for massively parallel computations with
the sparse grid combination technique. In: PARCO, pp. 574–583. IOS Press, Garching (2013)

22. Heene, M., Pflüger, D.: Scalable algorithms for the solution of higher-dimensional PDEs.
In: Proceedings of the SPPEXA Symposium. Lecture Notes in Computational Science and
Engineering. Springer, Garching (2016)

23. Heene, M., Pflüger, D.: Efficient and scalable distributed-memory hierarchization algorithms
for the sparse grid combination technique. In: Parallel Computing: On the Road to Exascale,
Advances in Parallel Computing, vol. 27, pp. 339–348. IOS Press, Garching (2016)

24. Hegland, M.: Adaptive sparse grids. ANZIAM J. 44, C335–C353 (2003)
25. Hupp, P.: Performance of unidirectional hierarchization for component grids virtually maxi-

mized. Procedia Comput. Sci. 29, 2272–2283 (2014)
26. Hupp, P., Jacob, R., Heene, M., Pflüger, D., Hegland, M.: Global communication schemes for

the sparse grid combination technique. Adv. Parallel Comput. 25, 564–573 (2013). IOS Press
27. Jenko, F., Dorland, W., Kotschenreuther, M., Rogers, B.N.: Electron temperature gradient

driven turbulence. Phys. Plasmas 7(5), 1904–1910 (2000). http://www.genecode.org/
28. Kowitz, C., Hegland, M.: The sparse grid combination technique for computing eigenvalues in

linear gyrokinetics. Procedia Comput. Sci. 18, 449–458 (2013)
29. Parra Hinojosa, A., Kowitz, C., Heene, M., Pflüger, D., Bungartz, H.J.: Towards a fault-tolerant,

scalable implementation of gene. In: Recent Trends in Computational Engineering – CE2014.
Lecture Notes in Computational Science and Engineering, vol. 105, pp. 47–65. Springer, Cham
(2015)

30. Pflüger, D.: Spatially Adaptive Sparse Grids for High-Dimensional Problems. Verlag Dr. Hut,
München (2010)

31. Reisinger, C., Wittum, G.: Efficient hierarchical approximation of high-dimensional option
pricing problems. SIAM J. Sci. Comput. 29(1), 440–458 (2007)

32. Seabold, S., Perktold, J.: Statsmodels: econometric and statistical modeling with python. In:
Proceedings of the 9th Python in Science Conference, pp. 57–61 (2010). http://statsmodels.
sourceforge.net/

33. Snir, M., Wisniewski, R.W., Abraham, J.A., Adve, S.V., Bagchi, S., Balaji, P., Belak, J., Bose,
P., Cappello, F., Carlson, B., et al.: Addressing failures in exascale computing. Int. J. High
Perform. Comput. Appl. 28, 129–173 (2014)

34. Winter, H.: Numerical advection schemes in two dimensions (2011). www.lancs.ac.uk/~
winterh/advectionCS.pdf

http://www.genecode.org/
http://statsmodels.sourceforge.net/
http://statsmodels.sourceforge.net/
www.lancs.ac.uk/~winterh/advectionCS.pdf
www.lancs.ac.uk/~winterh/advectionCS.pdf

Part V
TERRA-NEO: Integrated Co-Design

of an Exascale Earth Mantle Modeling
Framework

Hybrid Parallel Multigrid Methods
for Geodynamical Simulations

Simon Bauer, Hans-Peter Bunge, Daniel Drzisga, Björn Gmeiner,
Markus Huber, Lorenz John, Marcus Mohr, Ulrich Rüde, Holger Stengel,
Christian Waluga, Jens Weismüller, Gerhard Wellein, Markus Wittmann,
and Barbara Wohlmuth

Abstract Even on modern supercomputer architectures, Earth mantle simulations
are so compute intensive that they are considered grand challenge applications. The
dominating roadblocks in this branch of Geophysics are model complexity and
uncertainty in parameters and data, e.g., rheology and seismically imaged mantle
heterogeneity, as well as the enormous space and time scales that must be resolved
in the computational models. This article reports on a massively parallel all-at-once
multigrid solver for the Stokes system as it arises in mantle convection models.
The solver employs the hierarchical hybrid grids framework and demonstrates
that a system with coupled velocity components and with more than a trillion
(1:7 � 1012) degrees of freedom can be solved in about 1,000 s using 40,960 compute
cores of JUQUEEN. The simulation framework is used to investigate the influence
of asthenosphere thickness and viscosity on upper mantle velocities in a static
scenario. Additionally, results for a time-dependent simulation with a time-variable
temperature-dependent viscosity model are presented.

S. Bauer • H.-P. Bunge • M. Mohr • J. Weismüller
Department of Earth and Environmental Sciences, Ludwig-Maximilians-Universität München,
München, Germany
e-mail: simon.bauer@lmu.de

D. Drzisga • M. Huber • L. John (�) • C. Waluga • B. Wohlmuth
Institute for Numerical Mathematics, Technische Universität München, München, Germany
e-mail: john@ma.tum.de

B. Gmeiner • U. Rüde
Department of Computer Science 10, Friedrich-Alexander-University Erlangen-Nuremberg,
Erlangen, Germany

H. Stengel • G. Wellein • M. Wittmann
Erlangen Regional Computing Center (RRZE), Friedrich-Alexander-University
Erlangen-Nuremberg, Erlangen, Germany

© Springer International Publishing Switzerland 2016
H.-J. Bungartz et al. (eds.), Software for Exascale Computing – SPPEXA
2013-2015, Lecture Notes in Computational Science and Engineering 113,
DOI 10.1007/978-3-319-40528-5_10

211

mailto:simon.bauer@lmu.de
mailto:john@ma.tum.de

212 S. Bauer et al.

1 Introduction

The surface of our planet is shaped by processes deep beneath our feet. For a better
understanding of these physical phenomena, simulations with high resolution are
essential. The solid Earth’s mantle extends from some tens of kilometers below the
surface down to the core-mantle boundary at about 3,490 km depth. On geologic
time scales, the mantle behaves like a highly viscous convecting fluid with one
complete overturn taking about 100 million years [14]. It is this motion that is
finally responsible for plate tectonics, mountain and ocean building, volcanism, and
the accumulation of stresses leading to earthquakes. Convection itself is driven by
internal heating, resulting from the decay of radioactive rocks in the mantle, by heat
flux from the Earth’s core, and by secular cooling. Due to the enormous length scales
advection predominates heat transport through the planet over heat conduction.

The governing equations for mantle convection are formulations for the balance
of forces and the conservation of mass and energy. While the general structure of
convection within the mantle is relatively well understood, see e.g. [13, 44, 53, 61],
a rich spectrum of physics is compatible with these equations and many details
of the physical processes are poorly known [36]. Major unresolved questions
include the potential thermo-chemical nature of the convection currents (essentially
a statement on the buoyancy forces) [20, 52], appropriate rheological parameters
and the importance of lateral viscosity variation [51]. In fact, a better understanding
of the processes of convection inside the Earth belongs to the 10 Grand Research
Questions in the Earth Sciences identified in [18].

Due to the extreme conditions of the deep Earth and the large time scales
involved, answering these questions is mostly outside the scope of laboratory
experiments. Instead, further progress in geodynamics relies on extracting answers
from the geologic record through a careful assimilation of observations into models
by means of fluid dynamics inverse simulations [12]. There are three aspects making
the inversion feasible: the strongly advective nature of the heat transport, mentioned
above, the availability of terminal conditions from seismic tomography [24, 45],
which provides present day temperatures and densities inside the mantle, and the
availability of boundary conditions, i.e. surface velocity fields for the past 130
million years, from paleomagnetic reconstructions [40, 48].

Clearly, the geological and geophysical observations used for mantle convection
simulations are subject to numerous sources of uncertainties, as e.g. in the context
of the aforementioned buoyancy term, and we expect stochastic models to become
of significant importance also in this area [43]. Both extensions require multiple
evaluations of a forward problem, be it within an outer loop for an inverse problem,
or a stochastic solution algorithm, e.g., a multi-level Monte Carlo method in the case
of uncertainty quantification. Consequently, fast time stepping is essential. This in
turn requires very fast and robust solution techniques for the stationary problem.

However, Earth’s parameter regime dictates a resolution for real-world simu-
lations of the mantle on the order of at least 10 km. Therefore, high resolution
simulations and parallel solver performance have traditionally been a focus of

Hybrid Parallel Multigrid Methods for Geodynamical Simulations 213

research in this area and remain to be, see e.g. [3, 11, 19, 41, 46, 54, 62]. On the
discretization side, while alternative approaches are sometimes employed, the finite
element method is typically the method of choice, due to its flexibility with respect
to geometry and parameter representation. Adaptive techniques and high-order finite
elements are being investigated, see e.g. [1, 15, 16, 46, 50]. Note, however, that these
techniques come at a price, e.g., in case of adaptivity dynamical data structures
are required, which can lead to significant additional computational costs, parallel
overhead, and extensive additional memory traffic.

Our objective in this paper is to present an approach, based on low-order
elements, the regular refinement of a coarse (potentially) unstructured base mesh
and a matrix-free implementation, discuss its performance and scalability and
demonstrate the applicability for geodynamical simulations. In doing so, we mostly
focus on the stationary (static) problem, which is a Stokes type problem, see Sect. 2.
It constitutes the computationally most demanding part of any mantle convection
model. The article summarizes selected results obtained in [28–30, 58] and extends
these by scaling results for the massive parallel case, fault tolerant algorithms and
geophysical simulations with real data. Additionally, results for a time-dependent
geodynamical simulation will also be given.

Our approach is based on the hierarchical hybrid grids framework (HHG)
[6, 28, 29, 59]. HHG presents a compromise between structured and unstructured
grids. The former is essential, as it is well known that harvesting the full potential
of current generation supercomputers is not feasible with completely unstructured
grids. HHG exploits the flexibility of finite elements and capitalizes on the parallel
efficiency of geometric multigrid methods. The HHG package was originally
designed as a multigrid library for elliptic problems, and its excellent efficiency
was demonstrated for scalar equations in [5, 6]. Meanwhile it was extended to the
Stokes systems, see [27–30, 38] for details. HHG provides excellent scalability on
current state-of-the-art supercomputers. By using all-at-once Uzawa-type multigrid
methods, it is possible to solve more than a trillion (1012) unknowns in a few minutes
compute time. This corresponds to a spatial resolution of approximately 1 km.

This paper is structured as follows: In Sect. 2, we discuss geodynamical modeling
aspects, state the governing equations and discuss suitable non-dimensionalization.
In Sect. 3, we introduce a stabilized finite element discretization, present an all-
at-once multigrid method based on a Uzawa smoother and recall the idea of the
hierarchical hybrid grids framework. Scalability and parallel performance will be
addressed in Sect. 4. We complete the paper by presenting selected geodynamical
simulations. In Sect. 5, the question of flow-velocities in the asthenosphere is
addressed using our code for real-world data of plate velocities and mantle
temperatures, and in Sect. 6 we give results for a time-dependent simulation.

214 S. Bauer et al.

2 Geodynamical Modeling

A general mathematical description of mantle convection can be derived from the
principles of conservation of momentum, mass and energy. It is common practice to
neglect inertial terms and the Coriolis force due to their relative insignificance. For
a detailed explanation and justification see, e.g., [44]. Doing so one arrives at

� div � D �g in ˝ ; (1)

@t�C div.�u/ D 0 in ˝ ; (2)

@t.�e/C div.�eu/C divq � H � � W P" D 0 in ˝ : (3)

The meaning of the different symbols is detailed in Table 1.
One can reformulate (1)–(2) in terms of the primary quantities velocity u and

pressure p employing the coupling of stress and strain rate tensor and their relation
to pressure and velocity

� D 2 P".u/� pI ; P".u/ D 1

2

�ruC .ru/> � : (4)

We point out that the dynamic viscosity depends on temperature, pressure/depth
and velocity. However, the precise variations of with these quantities belongs to
the big open questions of geodynamics. The energy equation (3) is typically re-cast
in terms of the temperature �

cp�@t� � ˛�@tpC cp�u � r� � ˛�u � rpC div.�r�/ �H � � W P" D 0 (5)

and the system is closed by adding an equation of state relating density to pressure
and temperature � D � . p;T/. The precise details of the latter vary between models
as the composition and mineralogical behavior of the mantle is also an open research
problem.

Density can be split into two contributions � D �refC�var. Here �ref is a so called
background density that is derived from the time-constant hydrostatic pressure. The
term �var then represents the density variations resulting from thermal expansion
that drives the convection. The latter, however, are very small compared to �ref

and allows to consider their effects only in the buoyancy term of the momentum

Table 1 Physical quantities and their representing symbols

� Density u Velocity p Pressure

g Gravitational acceleration Dynamic viscosity � Cauchy stress tensor

P" Rate of strain tensor � Temperature e Internal energy

q Heat flux per unit area H Heat production rate ˛ Thermal expansivity

cp Specific heat capacity � Heat conductivity

Hybrid Parallel Multigrid Methods for Geodynamical Simulations 215

equation (1) and to neglect them in the continuity equation (2). This results in the so
called anelastic approximation div.�refu/ D 0, which is similar to the Boussinesq
approximation, but takes into account that the background density increases by a
factor of about two from the top to the bottom of the mantle, see, e.g., [21].

Treatment of div.�refu/ D 0 introduces an additional complexity that we will not
consider in the current paper. Note, however, that it is possible to reformulate the
problem, based on geophysical arguments as divu D �ˇ�g � u with compressibility
ˇ, for details see, e.g., [17]. In both cases the anelastic approximation adds a grad-
div term to the stress tensor (4). For purpose of this article we will always assume
an incompressible flow field, which results in the Stokes system

� div � D �g in ˝ ;

divu D 0 in ˝ :
(6)

Firstly, we will consider the static problem (6) and in Sect. 6 we additionally couple
it with a simplified version of the temperature equation (3).

The problem is posed on a domain ˝ � R3 representing the Earth’s mantle. It
is common practice to employ a thick spherical shell centered around the origin.
Its boundary � D @˝ consists of two mutually separate parts, namely the surface,
denoted here by �srf, and the core-mantle boundary, denoted by �cmb. On these two
surfaces appropriate boundary conditions for u and � must be specified to obtain a
well-posed problem. By default temperature boundary conditions are of Dirichlet
type, while velocity boundary conditions always include a no-outflow constraint,
i.e. a vanishing radial component.

The tangential velocity components can then either be given, e.g., in the form
of (measured) plate velocities, or the no-outflow condition is combined with the
constraint of vanishing tangential shear stress � n � t D 0 resulting in a free-slip
condition. Here n denotes the outward normal vector on the boundary and t the
tangential vector. The free-slip condition is commonly associated with �cmb, as the
Earth’s outer core is liquid, consisting mostly of molten iron.

For our simulations, we prefer to non-dimensionalize the governing equa-
tions (6). We describe the procedure for a simple equation of state model, which
links density and temperature via a linear thermal expansion

� � �0 D �˛ �0 � ;

where ˛ denotes the coefficient of thermal diffusion and �0 D �srf D const, with
typical values of ˛ D 2 � 10�5 K�1 and �0 D 3:3 � 103 kg/m3. We then introduce the
new variables

U D u
U�
; eP D p

P�
; X D x

X�
; T D �

T�
:

Choosing X� D 6:371 � 106 m (Earth radius) results in a spherical shell ˝ with unit
outer radius rmax D 1 and an inner radius of rmin D 0:55 for the scaled core-mantle

216 S. Bauer et al.

boundary. U� D 1 cm/a is a value suitable for Earth mantle simulations. For the
temperature we select T� D Tmax such that T 2 .0; 1/.

Finally we set M� D max D 1022 Pa s, which results from our viscos-
ity model detailed in Sect. 5. With this, we introduce then the scaled pressure
P D P�X�=.U�M�/eP. Multiplying the momentum equation with .M�/�1, which
constitutes a scaling for the viscosity and using a gravity constant of 10 m/s2, we
obtain

� div
�
2

M�
P".U/

	
CrP D .X�/2˛�0T�cg

M�U�
T

x
kxk D RT

x
kxk

with a value of R D 34;965.
For ease of notation, we revert to lowercase letters again, which now represent

the non-dimensional quantities. The generalized Stokes equations (6) then read

� div .2.�; x/ P".u//Crp D f in ˝ ;

divu D 0 in ˝ ;
(7)

with right-hand side f D R � x kxk�1 and additional boundary conditions.
The analysis of the Stokes system is well understood. Thus, we do not dwell on

it here, but refer the reader for instance to [10, 26].

3 Discretization and Hybrid Parallel Multigrid Methods

In the following we present the finite element discretization and fast solution
techniques based on hybrid parallel multigrid methods.

3.1 Finite Element Discretization

The basic idea of hierarchical hybrid grids (HHG) is to subdivide the computational
domain into a conforming tetrahedral initial mesh T�2 with possibly unstructured
and anisotropic elements. This initial grid is decomposed into different primitive
types (vertices, edges, faces and volumes). A hierarchy of grids T :D fT`; ` D
0; 1; : : : ;Lg is constructed by successive uniform refinement, conforming to the
array-based data structures used in the HHG implementation, cf. [6, 28] for
details. The coarse grid T0 is a two times refined initial grid, which guarantees
that each primitive type owns at least one interior node. We point out that this
uniform refinement strategy guarantees that all our meshes satisfy a uniform shape-
regularity.

Hybrid Parallel Multigrid Methods for Geodynamical Simulations 217

For simplicity, we describe the discretization for the case of homogeneous
Dirichlet boundary conditions. We use linear, conforming finite elements, i.e., for a
given mesh T` 2 T , ` 2 N0, we define the function space of piecewise linear and
globally continuous functions by

S1`.˝/ :D fv 2 C .˝/ W vjT 2 P1.T/; 8 T 2 T`g :

The conforming finite element spaces for velocity and pressure are then given by

V` D ŒS1`.˝/\ H1
0.˝/�

3; Q` D S1`.˝/\ L20.˝/ ; (8)

where L20.˝/ :D fq 2 L2.˝/ W hq; 1i˝ D 0g and h�; �i˝ denotes the inner product
in L2.˝/. Since the above finite element pair (8) does not satisfy a uniform inf–
sup condition, we need to stabilize the method. Here, we consider the standard
PSPG stabilization, see, e.g., [9]. This leads to the following discrete variational
formulation of the Stokes system (6). Find .u`; p`/ 2 V` � Q` such that

a.u`; v`/C b.v`; p`/ D f .v`/ 8 v` 2 V` ;

b.u`; q`/� c`.q`; p`/ D g`.q`/ 8 q` 2 Q` ;
(9)

where the bilinear and linear forms are given by

a.u; v/ :D 2hD.u/;D.v/i˝ ; b.u; q/ :D �hdivu; qi˝ ; f .v/ :D hf; vi˝ ;

for all u; v 2 H1
0.˝/

3, q 2 L20.˝/. Furthermore, the level-dependent stabilization
terms c`.�; �/ and g`.�/ are given by

c`.q`; p`/ :D
X
T2T`

ıT h
2
T hrp`;rq`iT and g`.q`/ :D �

X
T2T`

ıT h
2
T hf;rq`iT ;

with hT D .
R
T dx/

1=3. The stabilization parameter ıT > 0 has to be chosen carefully
to avoid unwanted effects due to over-stabilization, we fix ıT D 1=12 which is a
good choice in practice, see, e.g., [22].

Let us denote by n`;u D dimV` and n`;p D dimQ` for ` D 0; : : : ;L the
number of degrees of freedom for velocity and pressure, respectively. Then, the
isomorphisms u` $ u 2 Rn`;u and p` $ p 2 Rn`;p are satisfied, and the algebraic
form of the variational formulation (9) reads as

K

�
u
p

�
:D
�
A B>
B �C

��
u
p

�
D
�
f
g

�
; (10)

with the system matrix K 2 R.n`;uCn`;p/�.n`;uCn`;p/. Note, the matrix A 2 Rn`;u�n`;u
consists of a 3 � 3 block structure.

218 S. Bauer et al.

Remark 1 The correct treatment of free-slip boundary in the context of curved
boundaries is more involved than for boundaries aligned to an axis, see, e.g., [23, 56]
and more recently [55]. We implement a vanishing tangential stress by the condition
.I � nn>/ � .u; p/ n D 0 in a point-wise fashion. This approach requires the normal
vector in a node on the free-slip boundary, where it is particularly important to
construct the normals in such a way that they are not interfering with the mass
conservation, see, e.g., [23]. Such a global mass conservative definition of the
normal vector is given for the node xi by

ni :D khr'i; 1i˝k�12 hr'i; 1i˝ ; (11)

where 'i denotes the scalar basis function which corresponds to the i-th node on the
boundary. Note, the integral has to be understood component wise and can be easily
computed by a local stencil application of B> onto the vector 1.

3.2 Multigrid Solvers and the HHG Framework

For the numerical solution of the saddle point problem (10) several possibilities are
available, such as a pressure Schur complement CG algorithm, a preconditioned
MINRES method or an all-at-once multigrid method using Uzawa-type smoothers,
see [28] for details and comparisons. In the given setting, the all-at-once multigrid
method using Uzawa-type smoothers for saddle point system is more efficient with
respect to time-to-solution and memory consumption. Furthermore, the inexact
Uzawa smoother has the advantage that it can be implemented with the existing
communication routines in HHG. This is different from the distributed smoothers
proposed in [7, 8] that require a more complex parallel communication pattern.
Uzawa-type multigrid methods for the Stokes system have been successfully
applied, see, e.g., [2, 25, 47, 63]. Thus we shall choose this solution approach.

Let us briefly recall the idea of the Uzawa smoother, which is based on a
preconditioned Richardson iteration. In the .kC 1/th-iteration, we solve the system

� OA 0

B � OS
��

ukC1 � uk
pkC1 � pk

�
D
�
f
g

�
�K

�
uk
pk

�
;

for .ukC1;pkC1/>, where OA and OS denote preconditioners for A and the Schur-
complement S :D BA�1B> C C, respectively. The application of the preconditioner
results in the algorithm of the inexact Uzawa method, where we smooth the velocity
part in a first step and in a second step the pressure, i.e.

ukC1 D uk C OA�1i .f � Aiuk � B>pk/ ;

pkC1 D pk C OS�1i .BukC1 � Cpk � g/ :
(12)

For the convergence analysis of these methods, see, e.g., [25, 47, 63].

Hybrid Parallel Multigrid Methods for Geodynamical Simulations 219

The HHG framework is a carefully designed and implemented high performance
finite element geometric multigrid software framework [5, 6]. It combines the
flexibility of unstructured finite element meshes with the performance advantage of
structured grids in a block-structured approach. The grid is organized into primitive
types according to the original input grid structure: vertices, edges, faces, and
volumes. These primitives become container data structures for the nodal values
of the refined mesh. We exploit this data structure in all multigrid operations such
as smoothing, prolongation, restriction, and residual calculation. Each of these
subroutines operates locally on the primitive itself. The dependencies between
primitives are updated by ghost layer exchanges in an ordering from the vertex
primitives via the edges and faces to the volume primitives. Communication is
applied only in one way, i.e., copying of data is always handled by the primitive
of higher geometrical order, see Fig. 1 for an illustration in 2D. This design
decision imposes a natural ordering of a block Gauss-Seidel iteration based on the
primitive classes. To facilitate the parallelization and reduce the communication,
the primitives within each class are decoupled resulting in a block Jacobi structure.
Finally, we are free to specify the smoother acting on the nodes of each primitive.

For the Uzawa multigrid method (12), we consider for the velocity part OA
a pseudo-symmetric hybrid block Gauss-Seidel smoother, which consists of the
sequential execution of a so-called forward hybrid Gauss-Seidel and backward
hybrid Gauss-Seidel, which reverses the ordering within each primitive but not
the ordering in the primitive hierarchy. For the pressure, we consider a forward
hybrid Gauss-Seidel smoother, applied to the stabilization matrix C, with under-
relaxation ! D 0:3. These smoothers are then applied within a variable V.3; 3/
cycle, where two additional smoothing steps are applied on each coarser level. As
a stopping criterion we consider the relative reduction " D 10�8 of the error of the
residual with respect to the Euclidean norm. Further, as a coarse grid solver simple

Co
m
m
un

ic
at
io
n

for each vertex do

 apply operation to vertex

update vertex primary dependencies

for each edge do

 copy from vertex interior

 apply operation to edge

 copy to vertex halo

update edge primary dependencies

for each element do

 copy from edge/vertex interiors

 apply operation to element

 copy to edge/vertex halos

update secondary dependencies

Parallel Com
putation

1

2
3
4

5

1

3
processor i processor j

gh
os

t e
dg

e

ghost vertex

4

5

Fig. 1 Illustration of the communication structure in HHG

220 S. Bauer et al.

preconditioned MINRES iterations are employed. For a more detailed description
of the HHG framework and the smoother, see [5, 6].

4 Scalability and Performance of the Multigrid Method

In the following we present results for the Uzawa-type multigrid method using
the HHG framework and briefly discuss the concept of parallel textbook multigrid
efficiency (parTME) and node performance.

4.1 Operator Counts

To demonstrate the efficiency of the Uzawa-type multigrid method (UMG), we
study the number of operator evaluations nop.�/ for the solver of the individual
blocks (A, B and C) of the linear system (10). Here, we sum the number of
operator evaluations of all levels of the multigrid hierarchy and take into account
that coarsening reduces the evaluation cost by a factor 1=8. We compare the UMG
to the Schur complement CG algorithm (SCG), where we use as a preconditioner for
the Schur complement CC BA�1B> the lumped mass matrix M. As a test problem
we consider the unit cube with 8 uniform refinement levels, which correspond to
6:6 � 107 degrees of freedom and consider a relative residual of 10�8 as a stopping
criterion. We refer to [28] for a more detailed description and further results.

In Fig. 2, we present the number of operator counts in percent for the SCG and
the UMG method. The SCG solver case is set as reference case, where the sum of
the evaluations of all blocks, A, B, C and M corresponds to 100 %. The percentages
are shown with respect to this total sum. We observe that the UMG method requires

SCG UMG

nop(A)

nop(B)

nop(C)

nop(M)

83.0%

12.9%
2.2%
1.9%

23.3%24.8%

4.1%

Fig. 2 Operator counts for the individual blocks for the SCG and UMG method in percents where
100 % corresponds to the total number of operator counts for the SCG

Hybrid Parallel Multigrid Methods for Geodynamical Simulations 221

only half of the total number of operator evaluations in comparison to the SCG
algorithm. This is also reflected within the time-to-solution of the UMG.

4.2 Scalability

In the following, we present numerical examples, illustrating the robustness and
scalability of the Uzawa-type multigrid solver. For simplicity we consider the
homogeneous Dirichlet boundary value problem. As a computational domain, we
consider the spherical shell

˝ D fx 2 R3 W 0:55 < kxk2 < 1g :

We present weak scaling results, where the initial mesh T�2 consists of 240
tetrahedra for the case of 5 nodes and 80 threads on 80 compute cores, cf. Table 3.
This mesh is constructed using an icosahedron to provide an initial approximation of
the sphere, see e.g. [19, 41], where we subdivide each resulting spherical prismatoid
into three tetrahedra. The same approach is used for all other experiments below
that employ a spherical shell. We consider 16 compute cores per node (one thread
per core) and assign 3 tetrahedra of the initial mesh per compute core. The coarse
grid T0 is a twice refined initial grid, where in one uniform refinement step
each tetrahedron is decomposed into 8 new ones. Thus, the number of degrees of
freedoms grows approximately from 103 to 106, when we perform a weak scaling
experiment starting on the coarse grid T0.

The right-hand side f D 0 and a constant viscosity D 1 are considered. Due
to the constant viscosity it is also possible to use the simplification of the Stokes
equations using Laplace-operators. In the following numeral experiments, we shall
compare this formulation with the generalized form that employs the P"-operator. For
the initial guess x0 D .u0;p0/>, we distinguish between velocity and pressure part.
Here, u0 is a random vector with values in Œ0; 1�, while the initial random pressure p0
is scaled by h�1, i.e., with values in Œ0; h�1�. This is important in order to represent
a less regular pressure, since the velocity is generally considered as a H1.˝/ and the
pressure as a L2.˝/ function. Numerical examples are performed on JUQUEEN1

(Jülich Supercomputing Center, Germany). We present weak scaling results for up
to 40;960 compute cores (threads) and more than 1012 degrees of freedom (DoFs).
The finest computational level is obtained by an 8 times refined initial mesh. The
fragment of JUQUEEN employed in this experiment is less than a tenth of the
full machine and provides about 40 TByte of memory. Note here that storing the
solution vector with 1:7 � 1012 unknowns in double precision floating point values
requires alone already 13:6TByte of memory. We point out that any conventional

1listed top 9 of the TOP500 list, Nov. 2015.

222 S. Bauer et al.

Table 2 Weak scaling results for the UMG method with the Laplace-operator formulation

Nodes Threads DoFs Iter Time Time w.c.g. Time c.g. in %

5 80 2:7 � 109 10 685:88 678:77 1:04

40 640 2:1 � 1010 10 703:69 686:24 2:48

320 5,120 1:2 � 1011 10 741:86 709:88 4:31

2;560 40,960 1:7 � 1012 9 720:24 671:63 6:75

Table 3 Weak scaling results for the UMG method with the P"-operator formulation

Nodes Threads DoFs Iter Time Time w.c.g. Time c.g. in %

5 80 2:7 � 109 10 1;134:28 1;120:85 1:18

40 640 2:1 � 1010 9 1;054:24 1;028:69 2:42

320 5,120 1:2 � 1011 8 974:95 936:89 3:90

2;560 40,960 1:7 � 1012 8 1;037:00 958:59 7:56

FE technique that is based on assembling and storing the stiffness matrix would
inevitably consume at least one order of magnitude more memory.

In Table 2, we present scaling results for the Laplace-operator formulation, see
also [28], in form of iteration numbers (iter), time-to-solution (time) in seconds,
time-to-solution without the time on the coarse grid (time w.c.g.) and the time in
% spent on the coarse grid (time c.g. in %). We observe excellent scalability of
the multigrid method. We point out that the coarse grid solver in these examples
considered as a stand-alone solver lacks optimal complexity. However, even for the
largest example with more than 1012 DoFs it still requires less than 10 % of the
overall time.

In Table 3, we extend our previous study by considering the same set-up for the
P"-operator formulation. Again, excellent scalability of the algorithm is achieved and
also in this case the time spent on the coarse grid is less than 10 %.

Compared by the overall time the Laplace-operator formulation is approximately
a factor of 1:4 faster than the P"-operator formulation.

4.3 Fault Tolerance

Let us now turn towards another aspect of algorithm design important in the context
of HPC which is fault-tolerance. On current supercomputing systems and also in
the future era of exa-scale computing, highly scalable implementations will execute
up to billions of parallel threads on millions of compute nodes. In this scenario,
it may become essential that fault tolerance is also supported algorithmically, i.e.
the algorithms themselves are made tolerant against errors and are augmented with
intelligent and adaptive strategies to detect and to compensate for faults. Commonly
used redundancy approaches, such as global check-pointing, may here become too
costly, due to the high memory and energy consumption. In [37] an algorithmic

Hybrid Parallel Multigrid Methods for Geodynamical Simulations 223

Table 4 CA results for an elliptic model equation using �s D 5

nF 1 2 3 4 5 6

(DD) 0:33 0:00 0:00 0:08 0:17 0:17

(DN) 0:33 0:00 0:00 0:00 0:08 0:17

alternative is suggested. In particular, it is found that data lost due to a hard fault of a
core or node can be compensated for by solving local recovery problems using local
multigrid cycles. This local recovery can benefit from a special acceleration. The
recovery from one or multiple faults becomes especially efficient, when the global
solution process is suitably decoupled from the recovery, but is itself continued
asynchronously in parallel. Several variants of fault tolerant multigrid strategies
are proposed and compared in [37]. To quantify a possible performance loss, we
introduce a relative Cycle Advantage (CA) parameter � defined as

� WD kfaulty � kfree

kF
; (13)

where kfaulty is the number of multigrid iterations required in the case of a faulty
execution with a fault occurring after kF cycles, and kfree stands for the number of
multigrid iterations required in the case of a fault-free execution. Intuitively, we
expect that � 2 Œ0; 1�, and the smaller � is the more effective is the recovery. Both
our strategies, a Dirichlet–Dirichlet (DD) and a Dirichlet–Neumann (DN) approach,
are based on a tearing and interconnecting idea. During nF multigrid cycles the
faulty and the healthy domain are separated and asynchronous sub-jobs take place.
For (DD), we perform nF multigrid cycles on the healthy domain with Dirichlet data
at the interface to the faulty domain while for (DN), Neumann data are specified.
In both cases, we run nF�s local multigrid cycles with Dirichlet data on the faulty
domain. After nF global steps both sub-jobs are interconnected.

In Table 4 we present the CA results for an elliptic model equation. A standard
V(2,1) multigrid scheme with a hybrid Gauss-Seidel smoother is applied, and the
injected fault occurs after kF D 12 iterations. As we can see, the (DN) approach
is more robust with respect to the choice of nF compared to the (DD) scheme. But
both schemes can fully compensate the fault and achieve � D 0.

4.4 Performance

Scalability is a necessary but no sufficient condition for a fast solver. On modern
architectures, the real-life performance is increasingly determined by the intra-
node and intra-core performance. Therefore it is essential that the algorithms and
their implementation also exploit the available instruction level parallelism and the
respective CPU micro-architecture in the best way possible. Here, we develop a
concept to quantify the efficiency for parallel multigrid algorithms based on Achi

224 S. Bauer et al.

Brandt’s notion of textbook multigrid efficiency (TME) as in [30]. We recall that
the classical definition of TME requires that a PDE is solved with an effort that is at
most the cost of ten operator evaluations. Such an operator evaluation is defined to
be the elementary work unit (WU). Thus, TME means that computing the solution of
a linear system (resulting from the discretization of the PDE) should cost no more
than performing ten sparse matrix vector multiplications with the corresponding
system matrix. In [30] this is elaborated in terms of scalar equations with constant
and varying coefficients as well as linear systems with saddle-point structure.

The new step of our analysis consists in an extension of this idea to a parallel,
architecture-aware setting. To this end we have developed a new characterization of
a work unit (WU) that uses systematic performance modeling techniques. The goal
of this WU characterization is to provide a simple but realistic criterion for which
performance can at best be delivered for the problem class and the architecture
that are under consideration. As a first step, the smoother kernel is executed on a
single socket and is benchmarked. As in classical system analysis, we assume that
the performance is limited by a critical resource and that identifying the critical
resource is an essential aspect in understanding and analyzing the performance.
In many cases, a good starting point will be the roofline model [60] that states
that either the floating point throughput or the main memory bandwidth constitute
the critical resource for numerical kernels. Since the roofline model does not take
the data transfer through the cache hierarchy into account, the more sophisticated
execution-cache-memory (ECM) model [33] is applied in [30].

Let us illustrate the essence of this analysis on the basis of HHG, where the
smoother kernel must apply a 15-point stencil on a structured mesh. Since this
has a low floating point intensity, one may expect that the critical resource is not
the floating point throughput, but rather memory bandwidth. Against conventional
wisdom, however, the ECM analysis in [30] and summarized here in Fig. 3 shows
that the critical resource is more complex. The red-black stride-2 access to memory
by the special Gauss-Seidel smoother and the tetrahedral (though structured)
memory layout require complex memory operations before each core can employ
SIMD vectorization. These memory access- and arrangement operations are found
to be the critical limit to the smoother intra-core performance. The evaluation of
measured against analytically predicted performance on a socket of the architecture,
as displayed in Fig. 3 shows that the code has in fact been optimized to reach the
performance limit that is dictated by the given micro-architecture. The measured
performance values lie consistently between the upper and lower limits as they are
predicted by the ECM model.

Having such a quantitative characterization of the critical resource is the first
essential ingredient of the parallel TME analysis. For the new parallel TME
analysis it is fundamental that an optimal implementation of the application specific
smoother kernel has been found, since this becomes the basis to assess the
algorithmic performance together with the parallel overhead in the second step of
the parallel TME analysis.

We note here that in practice identifying the optimal smoother kernel is rarely
reached in one single step. A given kernel will often still permit optimizations. It

Hybrid Parallel Multigrid Methods for Geodynamical Simulations 225

1 2 3 4 5 6 7 8

cores

0

400

800

1200

1600
pe

rf
or

m
an

ce
 [M

Lu
ps

/s
]

constant coefficients ECM model
constant coefficients measured
variable coefficients ECM model
variable coefficients measured

Fig. 3 Sandy Bridge (SNB) single-chip performance scaling of the stencil smoothers on a
tetrahedral grid with 257 grid points along each edge of a volume primitive. Measured data and
ECM prediction ranges are shown

is quite common that the performance of an initial smoother kernel is hampered
by unfavorable data structures and memory layouts (such as a structure of arrays
versus an array of structures), or by an unsatisfactory vectorization, or by other
suboptimal code structures, including suboptimal compiler optimizations. Many
yet unoptimized codes will initially underperform by orders of magnitude. We
emphasize here that the novel parallel TME paradigm requires that all these node-
and core-level inefficiencies are carefully accounted for, documented, and wherever
possible removed, until the point is reached when the fundamental architectural
limitations with respect to the given application have been identified. However,
note here that this detailed and labor intensive work is in our analysis focused only
on the smoother of the multigrid algorithm (and thus a simple single algorithmic
component) and that here yet only intra-node parallelism must be accounted for.

For the next step of this analysis, the ideal aggregate smoother performance for
the full parallel system is computed. This figure then forms the basis against which
the measured run time of the solver can be put in relation. To be more precise we
define a parallel textbook efficiency factor

EParTME.N;U/ D T.N;U/

TWU.N;U/
;

which relates T.N;U/, the time to solve a problem with N unknowns on a computer
with U processor cores, to the idealized time TWU.N;U/ required for one work
unit. The rationale behind this is the same line of thought as in a classical TME

226 S. Bauer et al.

Table 5 TME factors for different problem sizes and discretizations

Setting/Measure ETME ESerTME ENodeTME EParTME1 EParTME2

Grid points – 2 � 106 3 � 107 9 � 109 2 � 1011
Processor cores U – 1 16 4,096 16,384

(CC) – FMG(2,2) 6.5 15 22 26 22

(VC) – FMG(2,2) 6.5 11 13 15 13

(SF) – FMG(2,1) 31 64 100 118 –

analysis, except that the abstract work unit is now replaced by an idealized, hardware
dependent performance figure that represents how many smoothing steps the given
computer can ideally execute in one time unit. The parallel TME factor, thus,
accounts for the overall efficiency achieved by the multigrid algorithm and its
parallel implementation. This new TME figure therefore incorporates all overheads,
both algorithmic as well as those stemming from parallelization, communication,
and synchronization.

In Table 5 we reproduce from [30] typical values as they are obtained in the
parallel TME analysis for HHG when using full multigrid. The row denoted by (CC)
refers to the case of a constant coefficient scalar problem, (VC) to the situation with
variable coefficients when the local stencils are assembled on the fly. (SF) finally
refers to the pressure correction Stokes solver using 4 CG cycles with a V(2,1)
multigrid solver. The column ETME presents the classical TME factor as defined by
Brandt. ESerTME and ENodeTME refer to the single core and node (i.e. using 16 cores)
performance, respectively. EParTME1 then presents the new efficiency factor in the
case of a parallel execution with 256 nodes (D 4096 cores) and EParTME2 drives this
up to using 16,384 cores which is sufficient to handle a discretization with 2 � 1011
grid points.

5 Application to the Earth’s Upper Mantle

As an example for an application of HHG to an actual problem of mantle convection,
we turn our attention to the question of the thickness of the asthenosphere. The latter
is a mechanically weak layer in the uppermost mantle, but its depth and viscosity
remain debated. From observations of the Earth’s response to the melting of ice
sheets, we know, however, that depth and viscosity are closely coupled via the
relation

a / d3a ; (14)

with a viscosity of a D 1021 Pa s in the asthenosphere, ranging down to a depth of
da D 1;000 km. This is the so called Haskell constraint, see [35, 39].

Hybrid Parallel Multigrid Methods for Geodynamical Simulations 227

At the same time, recent geological observations hint at high velocities in the
Earth’s upper mantle [34, 42, 57], giving rise to the thought that the common
assumption of an asthenosphere with a thickness of 660 km might not necessarily
be true. To assess the implications of a thinner and less viscous asthenosphere,
we consider the model (7). For the viscosity, we set up four scenarios with
asthenospheric depths of da 2 f1000; 660; 410; 200gkm according to

 D
8<
:
1022 Pa s for jxj < rsrf � da

a D 1021
�

da
da;ref

	3
Pa s for jxj � rsrf � da;

(15)

as suggested by [59] and motivated from the Haskell constraint. Here, da;ref D
1000 km is the reference radius for the viscosity jump at the upper-lower mantle
transition, rsrf the radius of the Earth and da 2 Œra;ref; rsrf/ the key parameter we
will vary for our different simulation runs. The scenario with 1000km will serve as
our reference case, whereas the 660 and 410 km scenarios are chosen because they
correspond to the main seismic reflector depths. In addition, the 200 km case serves
to demonstrate the possibility of a very thin and fast layer. This corresponds to the
setup by [59], where the same viscosity profiles were used. However, we replace
their synthetic buoyancy term and boundary conditions with indirect observations
from the Earth as follows: we impose inhomogeneous Dirichlet conditions at the
outer boundary to represent the movement of the tectonic plates, with velocities
as given by [40]. Tangential stresses are set to zero at the inner boundary, since the
outer core below the Earth’s mantle is liquid. In addition, we prohibit in- and outflow
at all boundaries. This yields

u D uplt on �srf ; (16)

� n � t D 0 on �cmb ; (17)

u � n D 0 on �cmb [�srf ; (18)

where uplt m/s represents the plate velocities, and n, t the boundaries’ normal,
tangential vectors. In Fig. 4 we show the corresponding velocity field uplt.

The forcing term f is derived directly from the buoyancy .��g/, i.e. the product
of a density field � kg/m3 and the gravitational acceleration within the mantle gm/s2,
which we prescribe as a vector of magnitude 10m/s2 pointing towards the origin (the
center of the Earth). The density � is obtained from a tomographic model of seismic
wave speeds within the Earth [32], converted to densities with the mineralogic
model of [49].

As an example, the resulting velocity field for the 660 km and the 410 km
scenarios are visualized in Fig. 5. Well visible are the increased velocities in the
asthenosphere compared to the lower mantle, especially below the Eastern Pacific.
Also clearly visible are strong upwellings below the Icelandic hotspot.

We now compare our simulation results to a theoretical prediction. If we
approximate the asthenosphere as a two-dimensional, plane channel, driven by

228 S. Bauer et al.

Fig. 4 Velocity field uplt cm/a, derived from the movement of the tectonic plates, and imposed as
upper boundary velocity

Fig. 5 Velocity magnitudes for an assumed asthenospheric depth of 660 km (left) and 410 km
(right), normalized to the corresponding largest value. Visualized is a slice through the Earth’s
mantle together with the corresponding flow lines

pressure gradients alone, we can apply a Poiseuille flow model, which states that
the average velocity scales as

Ou / d2a
a
rp : (19)

Note that the pressure p is linear for this particular case and thus its gradient is
constant. This gives for the average velocity Oua in the upper mantle compared to the
reference upper mantle

Oua
Oua;ref

D a;ref d2a
a d2a;ref

: (20)

Hybrid Parallel Multigrid Methods for Geodynamical Simulations 229

0

1

2

3

4

5

6

 200 410 660 1000

1250 145 34.8 10

As
th

en
os

ph
er

e
ve

lo
ci

ty
 [-

]
(n

or
m

al
iz

ed
 to

 1
00

0
km

 s
ce

na
rio

)

Channel thickness [km]

Viscosity ratio (lower/upper mantle) [-]

Poiseuille
Simulation

Fig. 6 Averaged flow velocities in the asthenosphere relative to the 1000 km reference scenario.
Shown are simulation results (red) and the theoretical prediction by a Poiseuille flow law (blue).
Upper and lower axis are tied together via (14)

Using (14), this can then be simplified to

Oua
Oua;ref

D da;ref

da
: (21)

We point out that this model is free of any fitting parameters. The corresponding
curve is plotted in Fig. 6 together with the resulting average velocities from the
simulations.

We observe a very good correspondence between the Poiseuille flow model
and the simulations, with deviations that are consistently smaller than 2:3%. In
the synthetic setting with a buoyancy based on a spherical harmonic heterogeneity
of degree two and without a additional driving force at the boundary in [59], the
Poiseuille model underestimated the resulting velocities by up to 25%. Since the
moving plates add a Couette-component to the flow, it is quite surprising that we
obtain even better agreement with the Poiseuille model in the realistic setup.

In Fig. 5, it can clearly be seen that even in the 660 km scenario, the velocities in
the asthenosphere can exceed plate velocities even under the fast plates, i.e. in the
Eastern Pacific under the Nazca plate. This is a clear indication that motion in the
asthenosphere is not solely driven by the tectonic plates (Couette flow), but that at
least some Poiseuille component is present.

Since the scaling of the buoyancy, as derived from tomography, is uncertain to
about a factor of two [4], we might overestimate the velocities by a factor of two.
However, since the average velocities in the asthenosphere in the different scenarios
vary by a factor of five, a factor of two in the buoyancy should not significantly alter
our interpretation, at least not for the very thin channels.

230 S. Bauer et al.

6 Simulations of the Coupled Problem

In this section, we present numerical simulation results for a thermal convection
problem which is an incompressible simplification of the non-isothermal system
(1), (2), and (3). As in Sect. 5 we consider the spherical shell domain˝ D fx 2 R3 W
0:55 < jjxjj2 < 1g, but this time we solve the following system of non-dimensional
balance equations which extends (7) by an additional transport equation:

� div .2.�; x/ P".u//Crp D f in ˝ ;

divu D 0 in ˝ ;

@t� C div.�u � �r�/ D 0; in ˝ :

(22)

We recall that the right hand side is given by f D R � x kxk�1 and we impose
Dirichlet boundary conditions for the velocity. Moreover, we set R D 107 and the
viscosity model is temperature-dependent and given by D e1=2�� , where � 2 Œ0; 1�
denotes the scaled temperature which is initialized with an interpolation between
the surface temperature (� D 0) and core-mantle boundary temperature .� D 1/.
To trigger the formation of thermal plume patterns we add small perturbations using
spherical harmonic functions.

The system of non-linear equations is solved in an explicit time stepping fashion,
which has the advantage that the problem decouples into a Stokes problem of the
form (7), and a scalar transport equation, that in this case is integrated by a strongly
stability preserving Runge-Kutta scheme of second order. To reduce the amount
of implicit solves of the instantaneous Stokes subproblem, we employ a splitting
approach which is detailed in [58], leaving us with one implicit saddle-point solve
and two applications of the convection–diffusion operator per time step. Thus, the
most time-consuming part of the coupled solver is again the Stokes problem for
which we discussed efficient solver strategies in Sect. 3.

However, besides the performance aspect, the above type of equations comes
with an additional challenge: For such non-linear bidirectional couplings between
incompressible flow- and transport-type equations it is crucial to avoid spurious
compressibility effects in the energy equation which can lead to unphysical
temperature solutions, which in turn have an effect on the buoyant forcing terms
and the viscosity [58]. Since these unphysical effects typically amplify over time it
is of uttermost importance to preserve mass-conservation, especially in long-term
simulations. We thus employ a recently developed technique to enforce a mass-
conservative coupling, using equal-order linear elements for the Stokes part and a
finite volume method with local flux-corrections for the transport part [31, 58]. This
combination has the advantage that it can be implemented in a matrix-free fashion,
using the collocated nodal data structures in the HHG framework.

In Fig. 7 we depict the characteristic plume-structures of the temperature iso-
surfaces for two different time steps of a typical test run on what can today be
considered a mid-sized department cluster. The machine, which is operated by the

Hybrid Parallel Multigrid Methods for Geodynamical Simulations 231

Fig. 7 Isosurfaces for � D 0:4 colored by the velocity magnitude after 7000 time steps (left) and
10,500 time steps (right)

Institute for System Simulation at FAU Erlangen, consists of 8 compute nodes
connected by a QDR Infiniband network. Each node is equipped with 4 Intel Xeon
E7-4830 CPUs (8 cores each) and 256 GB RAM. The computational mesh is again
an icosahedral sphere mesh consisting of roughly a hundred million (94,371,840)
tetrahedra, and the discretization of the above model problem consists of 77,824,950
degrees of freedom per time step. In this experiment, we solve the coupled problem
for 11,500 time steps, where we employ the SCG algorithm for the Stokes part. For
the initial solve we conduct 20 SCG iterations and in every subsequent solve, we
apply 8 SCG steps, where we approximate the inverse of the viscous operator by a
V.3; 3/ cycle. The SCG method is preconditioned by a lumped mass matrix which
is scaled by the reciprocal viscosity, and we restart the method every 4 iterations
due to the inexactness of the Krylov space which is built up with respect to the
approximate Schur-complement.

7 Conclusion

In this article we presented an approach, currently under development, for a new
framework for mantle convection simulation models suitable for the upcoming
exa-scale era. Our approach is based on the hierarchical hybrid grids (HHG) idea
and uses low-order finite elements. We demonstrated that models with global
resolutions of about 1 km, corresponding to more than a trillion (1:7 � 1012) degrees
of freedom, can be solved in about 1000 s, even on today’s top architectures. This is
accomplished by combining the lightweightedness of the HHG structure, its sophis-
ticated matrix-free, highly-optimized implementation, as demonstrated by our ECM
analysis, with modern multigrid algorithms. Using our mass-conservative coupling
shows that stable transient simulations for low-order elements are possible. We also
reported on our work on fault-tolerant algorithms which addresses another crucial
aspect of future systems. The suitability of the approach for mantle convection

232 S. Bauer et al.

modelling was proven by extending our study of flow in the asthenosphere from
synthetic models to one using real-world data.

Acknowledgements This work was supported (in part) by the German Research Foundation
(DFG) through the Priority Programme 1648 “Software for Exascale Computing” (SPPEXA) and
grant WO 671/11-1. The authors gratefully acknowledge the Gauss Centre for Supercomputing
(GCS) for providing computing time through the John von Neumann Institute for Computing (NIC)
on the GCS share of the supercomputer JUQUEEN at Jülich Supercomputing Centre (JSC).

References

1. Bangerth, W., Burstedde, C., Heister, T., Kronbichler, M.: Algorithms and data structures for
massively parallel generic adaptive finite element codes. ACM Trans. Math. Soft. 38(2), 14:1–
14:28 (2011)

2. Bank, R.E., Welfert, B.D., Yserentant, H.: A class of iterative methods for solving saddle point
problems. Numer. Math. 56(7), 645–666 (1990)

3. Baumgardner, J.R.: Three-dimensional treatment of convective flow in the Earth’s mantle. J.
Stat. Phys. 39(5/6), 501–511 (1985)

4. Becker, T.W., Boschi, L.: A comparison of tomographic and geodynamic mantle models.
Geochem. Geophy. Geosy. 3, 1525–2027 (2002)

5. Bergen, B., Gradl, T., Rüde, U., Hülsemann, F.: A massively parallel multigrid method for
finite elements. Comput. Sci. Eng. 8(6), 56–62 (2006)

6. Bergen, B., Wellein, G., Hülsemann, F., Rüde, U.: Hierarchical hybrid grids: achieving
TERAFLOP performance on large scale finite element simulations. Int. J. Parallel Emergent
Distrib. Syst. 22(4), 311–329 (2007)

7. Brandt, A.: Guide to multigrid development. In: Multigrid methods, pp. 220–312. Springer,
Berlin/Heidelberg (1982). Republished as: Multigrid Techniques: 1984 guide with applications
to fluid dynamics, revised edition, SIAM, 2011

8. Brandt, A., Dinar, N.: Multigrid solutions to elliptic flow problems. In: Numerical methods for
partial differential equations (Proc. Adv. Sem., Math. Res. Center, Univ. Wisconsin, Madison,
Wis., 1978), Publ. Math. Res. Center Univ. Wisconsin, vol. 42, pp. 53–147. Academic Press,
New York/London (1979)

9. Brezzi, F., Douglas, Jr., J.: Stabilized mixed methods for the Stokes problem. Numer. Math.
53(1–2), 225–235 (1988)

10. Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer, New York (1991)
11. Bunge, H.P., Baumgardner, J.R.: Mantle convection modeling on parallel virtual machines.

Comput. Phys. 9(2), 207–215 (1995)
12. Bunge, H.P., Hagelberg, C.R., Travis, B.J.: Mantle circulation models with variational data

assimilation: inferring past mantle flow and structure from plate motion histories and seismic
tomography. Geophys. J. Int. 152(2), 280–301 (2003). http://www.geophysik.uni-muenchen.
de/Members/bunge/download/adjoint-paper.pdf

13. Bunge, H.P., Richards, M.A., Baumgardner, J.R.: A sensitivity study of three-dimensional
spherical mantle convection at 108 Rayleigh number: effects of depth-dependent viscosity,
heating mode, and an endothermic phase change. J. Geophys. Res. 102, 11991–12007 (1997)

14. Bunge, H.P., Richards, M., Lithgow-Bertelloni, C., Baumgardner, J.R., Grand, S., Romanow-
icz, B.: Time scales and heterogeneous structure in geodynamic earth models. Science 280,
91–95 (1998). http://www.geophysik.uni-muenchen.de/~bunge/downloads/gemlab.pdf

15. Burstedde, C., Stadler, G., Alisic, L., Wilcox, L.C., Tan, E., Gurnis, M., Ghattas, O.: Large-
scale adaptive mantle convection simulation. Geophys. J. Internat. 192(3), 889–906 (2013)

http://www.geophysik.uni-muenchen.de/Members/bunge/download/adjoint-paper.pdf
http://www.geophysik.uni-muenchen.de/Members/bunge/download/adjoint-paper.pdf
http://www.geophysik.uni-muenchen.de/~bunge/downloads/gemlab.pdf

Hybrid Parallel Multigrid Methods for Geodynamical Simulations 233

16. Burstedde, C., Wilcox, L.C., Ghattas, O.: p4est: Scalable algorithms for parallel adaptive
mesh refinement on forests of octrees. SIAM J. Sci. Comp. 33(3), 1103–1133 (2011)

17. CIG – Computational Infrastructure for Geodynamics: ASPECT: Advanced Solver for Prob-
lems in Earth’s ConvecTion, User Manual (2015), version 1.3

18. Council, N.R.: Origin and Evolution of Earth: Research Questions for a Changing Planet. The
National Academies Press, Washington, DC (2008). http://www.nap.edu/catalog/12161/origin-
and-evolution-of-earth-research-questions-for-a-changing

19. Davies, D.R., Davies, J.H., Bollada, P.C., Hassan, O., Morgan, K., Nithiarasu, P.: A hierarchical
mesh refinement technique for global 3-D spherical mantle convection modelling. Geosci.
Model Dev. 6(4), 1095–1107 (2013)

20. Davies, D.R., Goes, S., Davies, J.H., Schuberth, B.S.A., Bunge, H.P., Ritsema, J.: Reconciling
dynamic and seismic models of Earth’s lower mantle: the dominant role of thermal heterogene-
ity. Earth Planet. Sci. Lett. 353–354(1), 253–269 (2012)

21. Dziewonski, A.M., Anderson, D.L.: Preliminary reference Earth model. Phys. Earth Plan. Int.
25, 297–356 (1981)

22. Elman, H.C., Silvester, D.J., Wathen, A.J.: Finite Elements and Fast Iterative Solvers: With
Applications in Incompressible Fluid Dynamics. Oxford University Press, New York (2005)

23. Engelman, M.S., Sani, R.L., Gresho, P.M.: The implementation of normal and/or tangential
boundary conditions in finite element codes for incompressible fluid flow. Int. J. Numer.
Methods Fluids 2(3), 225–238 (1982)

24. Fichtner, A., Kennett, B.L.N., Igel, H., Bunge, H.P.: Full seismic waveform tomography for
upper-mantle structure in the Australasian region using adjoint methods. Geophys. J. Int.
179(3), 1703–1725 (2009)

25. Gaspar, F.J., Notay, Y., Oosterlee, C.W., Rodrigo, C.: A simple and efficient segregated
smoother for the discrete Stokes equations. SIAM J. Sci. Comput. 36(3), A1187–A1206 (2014)

26. Girault, V., Raviart, P.A.: Finite Element Methods for Navier-Stokes Equations. Springer,
New York (1986)

27. Gmeiner, B., Huber, M., John, L., Rüde, U., Waluga, C., Wohlmuth, B.: Massively parallel
large scale stokes flow simulation. In: Binder, K., Müller, M., Kremer, M., Schnurpfeil, A.
(eds.) NIC Symposium 2016. Schriften des Forschungszentrums Jülich, NIC Series, vol. 48,
pp. 333–341. ISBN:978-3-95806-109-5

28. Gmeiner, B., Huber, M., John, L., Rüde, U., Wohlmuth, B.: A quantitative performance analysis
for Stokes solvers at the extreme scale (submitted, arXiv:1511.02134)

29. Gmeiner, B., Rüde, U., Stengel, H., Waluga, C., Wohlmuth, B.: Performance and scalability of
hierarchical hybrid multigrid solvers for stokes systems. SIAM J. Sci. Comput. 37(2), C143–
C168 (2015)

30. Gmeiner, B., Rüde, U., Stengel, H., Waluga, C., Wohlmuth, B.: Towards textbook efficiency
for parallel multigrid. Numer. Math. Theory Methods Appl. 8, 22–46 (2015)

31. Gmeiner, B., Waluga, C., Wohlmuth, B.: Local mass-corrections for continuous pressure
approximations of incompressible flow. SIAM J. Numer. Anal. 52(6), 2931–2956 (2014)

32. Grand, S.P., van der Hilst, R.D., Widiyantoro, S.: Global seismic tomography: a snapshot of
convection in the earth. GSA Today 7, 1–7 (1997)

33. Hager, G., Treibig, J., Habich, J., Wellein, G.: Exploring performance and power properties of
modern multi-core chips via simple machine models. Concurr. Comput. 28, 1–2 (2014)

34. Hartley, R.A., Roberts, G.G., White, N., Richardson, C.: Transient convective uplift of an
ancient buried landscape. Nat. Geosci. 4, 562–565 (2011)

35. Haskell, N.A.: The motion of a fluid under a surface load. Physics 6, 265–269 (1935)
36. Höink, T., Lenardic, A.: Three-dimensional mantle convection simulations with a low-viscosity

asthenosphere and the relationship between heat flow and the horizontal length scale of
convection. Geophys. Res. Lett. 35, L10304 (2008)

37. Huber, M., Gmeiner, B., Rüde, U., Wohlmuth, B.: Resilience for multigrid software at the
extreme scale (preprint, arXiv:1506.06185)

38. Huber, M., John, L., Pustejovska, P., Rüde, U., Waluga, C., Wohlmuth, B.: Solution Techniques
for the Stokes System: a priori and a posteriori modifications, resilient algorithms. In
Proceedings of the ICIAM, Beijing (2015). arXiv:151105759

http://www.nap.edu/catalog/12161/origin-and-evolution-of-earth-research-questions-for-a-changing
http://www.nap.edu/catalog/12161/origin-and-evolution-of-earth-research-questions-for-a-changing

234 S. Bauer et al.

39. Mitrovica, J.X.: Haskell [1935] revisited. J. Geophys. Res. 101, 555–569 (1996)
40. Müller, R.D., Sdrolias, M., Gaina, C., Roest, W.R.: Age, spreading rates, and spreading

asymmetry of the world’s ocean crust. Geochem. Geophy. Geosy. 9, 1525–2027 (2008)
41. Oeser, J., Bunge, H.P., Mohr, M.: Cluster Design in the Earth Sciences: TETHYS. In: Gerndt,

M., Kranzlmüller, D. (eds.) High Performance Computing and Communications – Second
International Conference, HPCC 2006, Munich. Lecture Notes in Computer Science, vol. 4208,
pp. 31–40. Springer (2006). http://www.springerlink.com/content/l18628n708k11127

42. Parnell-Turner, R., White, N., Henstock, T., Murton, B., Maclennan, J., Jones, S.M.: A
continuous 55 million year record of transient mantle plume activity beneath Iceland. Nat.
Geosci. 7, 914–919 (2014)

43. Resovsky, J., Trampert, J.: Using probabilistic seismic tomography to test mantle velocity–
density relationships. Earth Planet. Sci. Lett. 215(1), 121–134 (2003)

44. Ricard, Y.: Physics of mantle convection. In: Schubert, G. (ed.) Treatise on Geophysics, vol. 7.
Elsevier, Amsterdam (2007)

45. Ritsema, J., von Heijst, H.J., Woodhouse, J.H.: Global transition zone tomography. J. Geophys.
Res. 109, B02302 (2004)

46. Rudi, J., Malossi, A.C.I., Isaac, T., Stadler, G., Gurnis, M., Staar, P.W.J., Ineichen, Y., Bekas,
C., Curioni, A., Ghattas, O.: An Extreme-scale Implicit Solver for Complex PDEs: Highly
Heterogeneous Flow in Earth’s Mantle. In: Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis (SC ’15), pp. 5:1–5:12.
ACM, New York (2015). http://doi.acm.org/10.1145/2807591.2807675

47. Schöberl, J., Zulehner, W.: On Schwarz-type smoothers for saddle point problems. Numer.
Math. 95(2), 377–399 (2003)

48. Seton, M., Müller, R.D., Zahirovic, S., Gaina, C., Torsvik, T.H., Shephard, G., Talsma,
A., Gurnis, M., Turner, M., Maus, S., Chandler, M.: Global continental and ocean basin
reconstructions since 200 ma. Earth-Sci. Rev. 113, 212–270 (2012)

49. Stixrude, L., Lithgow-Bertelloni, C.: Thermodynamics of mantle minerals – I. Physical
properties. Geophys. J. Int. 162, 610–632 (2005)

50. Sundar, H., Stadler, G., Biros, G.: Comparison of multigrid algorithms for high-order continu-
ous finite element discretizations. Numer. Linear Algebra Appl. 22(4), 664–680 (2015)

51. Tackley, P.J.: Effects of strongly variable viscosity on three-dimensional compressible convec-
tion in planetary mantles. J. Geophys. Res. 101, 3311–3332 (1996)

52. Tackley, P.J.: Mantle convection and plate tectonics: toward an integrated physical and
chemical theory. Science 16, 2002–2007 (2000)

53. Tackley, P.J., Stevenson, D.J., Glatzmaier, G.A., Schubert, G.: Effects of multiple phase
transitions in a three-dimensional spherical model of convection in earth’s mantle. J. Geophys.
Res. 99(B8), 15877–15901 (1994)

54. Tan, E., Choi, E., Thoutireddy, P., Gurnis, M., Aivazis, M.: GeoFramework: coupling multiple
models of mantle convection within a computational framework. Geochem. Geophy. Geosy.
7(6), Q06001 (2006)

55. Urquiza, J.M., Garon, A., Farinas, M.I.: Weak imposition of the slip boundary condition on
curved boundaries for Stokes flow. J. Comput. Phys. 256, 748–767 (2014)

56. Verfürth, R.: Finite element approximation of incompressible Navier-Stokes equations with
slip boundary condition. Numer. Math. 50(6), 697–721 (1987)

57. Vogt, P.R.: Asthenosphere motion recorded by the ocean floor south of Iceland. Earth
Planet. Sci. Lett. 13, 153–160 (1971), http://www.sciencedirect.com/science/article/pii/
0012821X7190118X

58. Waluga, C., Wohlmuth, B., Rüde, U.: Mass-corrections for the conservative coupling of flow
and transport on collocated meshes. J. Comp. Phys. 305, 319–332 (2016)

59. Weismüller, J., Gmeiner, B., Ghelichkhan, S., Huber, M., John, L., Wohlmuth, B., Rüde,
U., Bunge, H.P.: Fast asthenosphere motion in high-resolution global mantle flow models.
Geophys. Res. Lett. 42(18), 7429–7435 (2015)

http://www.springerlink.com/content/l18628n708k11127
http://doi.acm.org/10.1145/2807591.2807675
http://www.sciencedirect.com/science/article/pii/0012821X7190118X
http://www.sciencedirect.com/science/article/pii/0012821X7190118X

Hybrid Parallel Multigrid Methods for Geodynamical Simulations 235

60. Williams, S.W., Waterman, A., Patterson, D.A.: Roofline: an insightful visual performance
model for floating-point programs and multicore architectures. Tech. Rep. UCB/EECS-2008-
134, EECS Department, University of California, Berkeley (Oct 2008)

61. Zhong, S., McNamara, A., Tan, E., Moresi, L., Gurnis, M.: A benchmark study on mantle
convection in a 3-D spherical shell using CitcomS. Geochem. Geophy. Geosy. 9, Q10017
(2008)

62. Zhong, S., Zuber, M.T., Moresi, L., Gurnis, M.: The role of temperature-dependent viscosity
and surface plates in spherical shell models of mantle convection. J. Geophys. Res. 105(B5),
11063–11082 (2000)

63. Zulehner, W.: Analysis of iterative methods for saddle point problems: a unified approach.
Math. Comput. 71(238), 479–505 (2002)

Part VI
ExaFSA: Exascale Simulation

of Fluid–Structure–Acoustics Interactions

Partitioned Fluid–Structure–Acoustics
Interaction on Distributed Data: Coupling
via preCICE

Hans-Joachim Bungartz, Florian Lindner, Miriam Mehl, Klaudius Scheufele,
Alexander Shukaev, and Benjamin Uekermann

Abstract One of the great prospects of exascale computing is to simulate chal-
lenging highly complex multi-physics scenarios with different length and time
scales. A modular approach re-using existing software for the single-physics model
parts has great advantages regarding flexibility and software development costs.
At the same time, it poses challenges in terms of numerical stability and parallel
scalability. The coupling library preCICE provides communication, data mapping,
and coupling numerics for surface-coupled multi-physics applications in a highly
modular way. We recapitulate the numerical methods but focus particularly on their
parallel implementation. The numerical results for an artificial coupling interface
show a very small runtime of the coupling compared to typical solver runtimes and a
good parallel scalability on a number of cores corresponding to a massively parallel
simulation for an actual, coupled simulation. Further results for actual application
scenarios from the field of fluid–structure–acoustic interactions are presented in the
next chapter.

1 Introduction

The upcoming exascale era will allow the simulation of a new range of multi-
physics simulations that are unfeasible with current compute resources. These
simulations promise breakthrough insights in climate simulation, human body
simulation, and many engineering problems [10]. To succeed in setting up a multi-
physics simulation environment in an acceptable time, we have to face the challenge
of reducing the complexity of the involved software and the involved numerical

H.-J. Bungartz • A. Shukaev • B. Uekermann (�)
Scientific Computing in Computer Science, Technical University of Munich, München, Germany
e-mail: bungartz@in.tum.de; uekerman@in.tum.de

F. Lindner • M. Mehl • K. Scheufele
Institute for Parallel and Distributed Systems, University of Stuttgart, Stuttgart, Germany
e-mail: florian.lindner@ipvs.uni-stuttgart.de; miriam.mehl@ipvs.uni-stuttgart.de;
klaudius.scheufele@ipvs.uni-stuttgart.de

© Springer International Publishing Switzerland 2016
H.-J. Bungartz et al. (eds.), Software for Exascale Computing – SPPEXA
2013-2015, Lecture Notes in Computational Science and Engineering 113,
DOI 10.1007/978-3-319-40528-5_11

239

mailto:bungartz@in.tum.de
mailto:uekerman@in.tum.de
mailto:florian.lindner@ipvs.uni-stuttgart.de
mailto:miriam.mehl@ipvs.uni-stuttgart.de
mailto:klaudius.scheufele@ipvs.uni-stuttgart.de

240 H.-J. Bungartz et al.

methods of such simulations. At the same time, we have to exploit the potential of
massively parallel exascale computers fully to achieve the required accuracy by a
combination of an accurate multi-physics model with the correspondingly high grid
resolutions. In addition, the computational requirements are further increased due to
multi-scale effects, instabilities, and complex and changing computational domain
geometries.

By breaking up multi-physics simulation into single-physics problems and their
coupling, we can benefit from decades of experience in every single-physics
discipline. This approach is called the partitioned approach in contrast to the
monolithic approach that considers the complete multi-physics model as a single
large system and, thus, discretizes and solves it as such. The monolithic approach
allows the developers to fully adapt the solver software to the underlying numerical
discretization, the layout of data structures, and the linear and nonlinear system
solvers in an optimal way for the given multi-physics model. However, this
requires a costly and time-consuming new implementation of a solver for the
specific combination of physical phenomena. Therefore, many simulation tools use
a partitioning of the coupled model into single-physics parts at various levels starting
from the preconditioning of the (non-)linear solvers, over the matrix assembly and
time stepping up to the simulation software itself. The advantages of the partitioned
approach come at the price of possible instabilities due to a too loose numerical
coupling of the model parts. Also, the partitioned simulation environment is not
trivial to parallelize in an efficient way. We focus on the case where we bring the
partitioning to its limits by using black-box solvers for the involved single-physics
model parts. This means that our solvers are accessible only via their interfaces
for input and output values. This allows to include legacy codes and to study the
coupling independent from the details of the numerical approach of each single-
physics field.

Still, sub-iterating over all single-physics fields allows to recover the monolithic
solution. A coupling software has to cover three building blocks to cope with this
situation. Each of them has to work efficiently with distributed data: communication
of data between separate executables, interpolation methods between non-matching
meshes, and efficient solvers for fixed-point equations derived from coupling
conditions. The open-source1 coupling library preCICE2 offers methods for all three
building blocks while allowing for a minimally invasive integration into existing
single-physics codes [5, 9]. The library focuses on surface-coupled problems,
which differ from volume-coupling in terms of parallel communication layouts and
memory requirements. For a comparison of preCICE to other coupling software,
the reader is referred to [5]. In this chapter, we describe how we realized the three
building blocks on distributed data and analyze their efficiency. In the next chapter
(Partitioned Fluid-Structure-Acoustics Interaction on Distributed Data: Numerical
Results and Visualization), we study fluid–structure–acoustic interactions as an

1preCICE is licensed under LGPL3.
2www.precice.org

www.precice.org

Fluid–Structure–Acoustics Interaction on Distributed Data 241

example of a complex surface-coupled multi-physics problem. In this chapter,
Sect. 2 describes the algorithmic approach and its realization on distributed data
for each of the three building blocks. Sect. 3 presents scalability results for each part
as well as the overall coupling using an artificial test case. This chapter concludes
in Sect. 4.

2 Coupling Building Blocks on Distributed Data

In this section, we present the methodological and algorithmic realization of the
three main building blocks of partitioned black-box coupling that have to be
available to glue together different solvers at the coupling surface: (1) commu-
nication between processes of several separate parallel solvers, (2) data mapping
between non-matching meshes, and (3) iterative solvers for the interface fixed-point
equations. We briefly recapitulate the theoretical background for each of them,
but mainly focus on the efficient parallelization of the work by time step. The
initialization phase is not the current focus of optimization. Longer setup times can
be tolerated for a high number of time steps. Future work will, however, focus on
the initialization as well. Please also compare the remarks in Sect. 4.

We restrict the description to two coupled solvers A and B, which we refer to
as bi-coupling. However, all components can be generalized to coupled simulations
with more than two solvers (cf. [6]). Both solvers are parallel solvers using their
own domain/mesh partitioning. This partitioning of both participants implies also a
partitioning of their surface meshes at the coupling interface, cf. Fig. 1. Without loss
of generality, we assume that the ranks of the respective processes are 0; : : : ; pA � 1
for solver A and 0; : : : ; pB � 1 for solver B. We have

pA�1[
iD0

� i
A D �A;

pB�1[
iD0

� i
B D �B ;

Fig. 1 Schematic example
for two two-dimensional
solvers A and B both using
domain partitioning with
some, but not all of their
partitions involved in the
coupling at the common
surface (coupling surface)

coupling surface

solver A

solver B

242 H.-J. Bungartz et al.

for the respective coupling surface partitions � i
A and � i

B of the solvers and the
realizations �A and �B of the complete coupling surface in the solvers. In addition,
we assume that rank 0 of each solver runs in master mode, all others in slave mode.
At the current state, we assume static partitioning of the coupling surface in both
solvers. This is true if both solvers use Lagrangian or Arbitrary Lagrangian Eulerian
(ALE) mesh concepts and no re-meshing or dynamical load balancing. In Eulerian
meshes, the coupling surface, however, can move relative to the computational
mesh. Thus, we get a dynamical partitioning of the coupling surface in this case
even for an overall static partitioning.

We present the details of the communication between the surface partitions of
solver A and B in Sect. 2.1, the data mapping methods between the non-matching
meshes at the coupling surface in Sect. 2.2, and the iterative methods solving the
interface equation in Sect. 2.3.

2.1 Communication of Distributed Data

In order to define an overall communication between participants A and B, commu-
nication relations between the processes of the participants have to be established.
The communication requirements are closely connected to the data mapping (see
Sect. 2.2). The data mapping is executed by the processes of one of the solvers.
Without loss of generality, we assume, that this is solver A. Accordingly, the surface
mesh �B is copied from B to A and re-partitioned at A. This copy operation and the
re-partitioning are the first part of the communication initialization and described
in Sect. 2.1.1, whereas the second part comprises the setup of the point-to-point
communication relations between solver processes (see Sect. 2.1.2).

2.1.1 Surface Mesh Re-Partitioning

We treat surface meshes as unstructured point clouds, which can optionally also hold
connectivity information as for example edges or triangles. Partitions of meshes
are not necessarily disjoint. The mesh copy and re-partitioning consists of five
algorithmic steps:

I The master rank of B gathers �B from all ranks of B.
II �B is communicated from the master rank of B to the master rank of A.

III The master rank of A broadcasts �B to all ranks of A.
IV Each rank of A filters �B according to its partition of �A and the defined

mappings between both meshes.
V Each rank of A sends a feedback on the filtering to the master rank of A.

Figure 2 visualizes these five steps. After the re-partitioning, the master rank of A
holds two partitioning descriptions of�B. As the re-partitioning builds on the storage

Fluid–Structure–Acoustics Interaction on Distributed Data 243

Fig. 2 Step wise description of the copy and mesh re-partitioning in the initialization phase of the
inter-solver communication: coupling mesh �B is send from participant A to B at initialization and
re-partitioned there. Participant A and B run on three respectively four processors. The user defines
the local partitioning of �A on A, marked in black, and the local partitioning of �B on B, marked
in blue. The re-partitioning constructs the partitioning of �B on A, marked in green

of the complete coupling mesh at a single rank, we rely on the minimal storage
requirements of a surface coupling. This, still, contradicts exascale computing
paradigms, and can, therefore, be substituted at a later software development step in
a modular way without interfering with the implementation of the data mapping or
the equation coupling.

2.1.2 Point-to-Point Communication

After the mesh re-partitioning described above, participants A and B play the
role of the acceptor and the requestor of the communication, respectively. This is
consistent with the classic nomenclature of, for example, MPI ports: the acceptor
publishes connection information while the requestor pulls for such information. In
our implementation in preCICE, the M:N communication between A and B builds
upon multiple 1:N communications, which mark the kernel of our communication
(cf. Fig. 3). The 1:N communications are implemented either with TCP/IP based on

244 H.-J. Bungartz et al.

Fig. 3 Example of an M:N
communication between
participant A (on three
processors) and participant B
(on five processors). The
communication layout
consists of three 1:N
communications,
distinguished by different
colors. The individual
connections at one rank of
participant B (here e.g. rank
2) never cause a deadlock,
independent of their order

Boost.Asio3 or with MPI-2.0 ports. The preCICE user can choose between both
implementations at runtime. This allows to flexibly adapt to software or machine
requirements. The acceptor (of the kernel communication) runs hereby from one
processor in a server-like way, while the requestor runs on N processors in a
client-like way. We use asynchronous communication for all kernel communications
to avoid deadlocks resulting from the ordering of multiple 1:N communication
channels at one processor. We tested an alternative realization based on OpenMP
threads, but asynchronous communication appeared to be more reliable over a
broad range of MPI implementations due to thread-safety guarantee inconsistencies,
though more involved to establish.

The initialization of the communication works as follows: after the mesh
re-partitioning, the master ranks of both participants hold a description of the
partitioning of �B, i.e., all coupling surface mesh points and the corresponding
processes in solver A or solver B, respectively. Both descriptions are exchanged
and broadcast to all slaves afterwards. Finally, every rank of both solvers extracts
which vertices it has to communicate with whom. Every rank of A accepts one 1:N
communication as a server, where the N clients correspond to its communication
partners among the ranks of solver B. Every rank of B requests multiple 1:N
communications as a client (cf. Fig. 3). Note that this approach avoids any deadlocks
though the accept/request of every kernel communication is blocking and every
rank of B requests its communication channels sequentially and in an arbitrary
order. A 1:1 kernel communication would not allow for such a simple, but elegant
initialization. While the complete initialization still relies on global operations, the
communication itself, once established, is completely local and needs no global
synchronization. Furthermore, asynchronous communication results in a substantial
efficiency boost. The point-to-point communication was realized as part of the
master thesis of Alexander Shukaev [14].

3www.boost.org

www.boost.org

Fluid–Structure–Acoustics Interaction on Distributed Data 245

2.2 Interpolation Methods on Distributed Data

The mapping of data between the two non-matching surface meshes of solver A
and solver B is a prerequisite for any coupling scheme. The type of mapping
has to be chosen carefully in order to ensure the required accuracy and to fulfill
physical conservation laws. Currently, preCICE provides two standard interpolation
methods: projection-based mapping and radial basis function mapping [4]. Both
types work in a pure black-box setting, meaning that no discretization details of the
underlying single-physics solvers are needed. Let UA 2 RNA and UB 2 RNB denote
the values that we want to map, located at the nodes of �A and �B. An interpolation
from �B to �A is a linear mapping and, thus, can be written as

UA D HABUB ;

with the mapping matrix HAB 2 RNA�NB . A mapping is called consistent if the entries
of every row sum up to one [3]:

NBX
jD1

HAB
ij D 1 8i D 1 : : :NA :

This guarantees the exact mapping of constant functions. Consistent mappings are
usually applied to values such as positions, fluxes, or densities [3]. If the entries of
every column sum up to one, a mapping is called conservative:

NAX
iD1

HAB
ij D 1 8j D 1 : : :NB :

This guarantees the conservation of the sum of values and is usually applied to
integral values such as forces. Obviously, every consistent mapping from �A to �B

implies a conservative mapping in the reverse direction by simply transposing the
coupling matrix HBA D .HAB/T . Thus, we restrict our considerations in this work
to consistent mappings without loss of generality. In preCICE, consistent mappings
are always realized from �B to �A, i.e., from the re-partitioned mesh to the local
mesh. This simplifies the parallelization drastically. This often does not impose a
constraint as, typically, one of the two mappings between the solvers is required to
be consistent whereas the other one has to be conservative. Thus, we can always
postulate that the consistent mapping is from �B to �A whereas the conservative
mapping transports surface data from �A to �B if we choose the roles of solver A
and solver B accordingly. Figure 4 visualizes this concept. In case that we need two
consistent or two conservative mappings, both meshes have to be communicated to
the partner solver and re-partitioned.

246 H.-J. Bungartz et al.

Fig. 4 Valid mapping combinations. preCICE only allows consistent mappings from a re-
partitioned mesh to a local mesh and conservative mappings in the reverse direction (left).
Changing such a conservative mapping to a consistent one, requires the computation of the
mapping on the other participant (right). Now, both meshes need to be re-partitioned. Re-
partitioned meshes are marked in blue

B

A

B

A

nearest neighbour mapping nearest projection mapping

Fig. 5 Schematic view of the two projection-based mapping methods provided by preCICE in a
simple two-dimensional case: the nearest neighbor mapping and the nearest projection mapping.
Both mappings are displayed in their consistent variant. Arrows point in data transfer direction

2.2.1 Projection-Based Interpolation

Depending on whether participant B provides connectivity information for the mesh
at its surface �B, simple projection-based interpolation can be realized as a nearest
neighbor (NN) or a nearest projection (NP) mapping.

Algorithmic Building Blocks of Projection-Based Interpolation The NN map-
ping simply looks for the closest neighbor of a �A vertex among the vertices on
�B and copies the respective value. This is only a first order accurate method, but
can be very useful to handle matching meshes (with non-matching partitions). The
NP mapping looks for the closest neighboring element of a �A vertex among the
surface elements in �B and computes the projection point of the �A vertex on the �B

element (for example a triangle or a quad element). This is followed by a (bi-)linear
interpolation from the element’s vertices to the projection point. This interpolated
value is then copied to the �A vertex. If the mesh element size of �B is significantly
larger than the orthogonal distance between both meshes, this results in a second
order accurate method. Figure 5 schematically shows the principles of both NN and
NP in a very simple two-dimensional setting.

Fluid–Structure–Acoustics Interaction on Distributed Data 247

Realization of Projection-Based Interpolation on Distributed Data The realiza-
tion of such projection methods on distributed data is almost trivial. The filter step
of the re-partitioning of �B has to be realized such that each rank of A chooses all
vertices or elements from �B that are the result of a projection or nearest neighbor
search for a vertex from �A. We realize this by a bounding box filter, followed by
the computation of a preliminary mapping. There can be vertices or elements of �B

associated to several vertices and, thus, potentially several ranks of �A (compare
Fig. 5). This is not an issue, however, for our consistent mapping since mapping
data from one vertex or element of �B to several vertices of �A does not destroy
the consistency. For the backward mapping from �A to �B, using the transpose of
the consistent mapping to achieve a conservative mapping, we have to accumulate
mapping results on vertices of �B from all ranks of �A that contribute. During
the actual computation of the mapping, no communication between ranks of A is
needed.

2.2.2 Radial Basis Function (RBF) Interpolation

To map a variable from �B to �A, radial basis function interpolation builds up
a global interpolant on �B, which is then evaluated on �A. As a basis, we use
radially symmetric basis functions centered at the vertices of �B. To ensure the
exact interpolation of constant and linear functions, this basis is enriched with a
global first order polynomial. In literature (compare e.g. [16]), various types of
radial basis functions, with local or global support, are studied. Different approaches
to parallelization of the algorithm have been discussed by [7] and [20]. Table 1 lists
the classical choices, which are also implemented in preCICE.

The interpolant s W R3 ! R, thus, reads

s.x/ D
NBX
iD1

�i � '.kx � xik/C q.x/ ;

with the radial basis functions ' centered at the vertices xi of �B and the global
linear function q.x/ D ˇ0 C ˇ1x1 C ˇ2x2 C ˇ3x3 (three-dimensional case).

Algorithmic Building Blocks of the RBF Interpolation We aim for coefficients
�i 2 R and ˇi 2 R that fulfill the interpolation condition

s.xi/ D vBi 8i D 1 : : :NB ; (1)

with vBi denoting the respective variable value at vertex xi on �B. In addition, we
introduce the polynomial condition

NBX
iD1

�i � p.xi/ D 0 ;

248 H.-J. Bungartz et al.

for every polynomial p of degree less or equal than q. This regularizes the
underdetermined system (1). In matrix notation, we get:

0
BBB@
0 QT

Q P

1
CCCA

„ ƒ‚ …
C

0
BBB@
ˇ

�

1
CCCA

„ƒ‚…
p

D

0
BBB@
0

!

1
CCCA ; (2)

where P 2 RNB�NB ;Pi;j D '
�kxi � xjk2

�
and where the ith row of Q 2 RNB�4

looks like .1 xi;1 xi;2 xi;3/. Once, we have resolved this system, we can evaluate the
interpolant at the vertices of �A:

vAj D s.yj/ D
NBX
iD1

�i'.kyj � xik2/C q.yj/ 8j D 1 : : :NA ; (3)

where yj denotes vertex j on �A.

Realization of the RBF Interpolation on Distributed Data To solve the system
(2), we use PETSc [2]. We decompose C row-wise among the ranks of A to
distribute the compute effort. Since the basis functions often decay quickly to zero
or are restricted to a local carrier, we use a sparse format to save C. The row-
wise decomposition gives the master rank of solver A the first block of rows of
C. Those rows contain the matrix QT . These master rows are dense independent

Table 1 Types of radial basis functions implemented in preCICE for data mapping between non-
matching meshes. a is the so-called shape-parameter, kxk the Euclidian distance of the evaluation
point from the origin/center of the basis function. For basis functions with local support, the support
radius is given by r, i.e., 	.kxk/ D 0 for kxk > r and � D kxk=r denotes the normalized distance
from the origin/center

' Support

Gaussian exp
�
� .akxk/2

	
Global

Multiquadrics
p
a2 C kxk2 Global

Inverse multiquadrics 1=
p
aC kxk2 Global

Thin plate splines kxk2 log .kxk/ Global

Volume splines kxk Global

Compact thin plate splines C2 1� 30�2 � 10�3 C 45�4 � 6�5 � 60�3 log � Local

Compact polynomial C0 .1� �/2 Local

Compact polynomial C6 .1� �/8.32�3 C 25�2 C 8� C 1/ Local

Fluid–Structure–Acoustics Interaction on Distributed Data 249

on whether we use radial basis functions with local or global support. During each
mapping step, C is solved in a distributed manner using the PETSc GMRES solver.
Afterwards, the complete solution vector p is broadcast, such that every rank can
compute (3) for its part of �A.

Matrix C has to be assembled only once at initialization if the solvers use
Lagrangian or Arbitrarily Lagrangian Eulerian (ALE) meshes and we perform the
mapping based on the positions of vertices in the reference domain instead of the
physical domain. In this case, only the right-hand side of (2), i.e., the variable
values at the vertices of �B change after each mapping step. This leaves room
for improvement as C could be factorized at initialization, only, and a potentially
expensive preconditioner would pay off. Also, we currently start every GMRES
iteration from zero. Restarting from the last solution, should result in a further
speed-up. A last non-optimal part of the current preCICE implementation of the
RBF mapping stems from the fact that we do not filter �B on each rank of A during
the re-partitioning of �B in case of an RBF mapping, such that every rank of A has
access to the complete mesh. For RBFs with global support, this is optimal, but for
a local support, each rank of solver A only needs to store those vertices on �B whose
basis functions are non-zero at its own vertices of �A. Exploiting this should reduce
the memory requirements drastically.

2.3 Fixed-Point Acceleration Methods on Distributed Data

Interface coupling is numerically realized via fixed-point equations at the coupling
surface. In case the respective fixed-point equation is fulfilled, the coupling con-
ditions are fulfilled as well and thus, the partitioned solution for the respective
time step is equivalent to the solution of the monolithic system. We illustrate
this using the example of fluid–structure interactions. Here, we have two coupling
conditions at the interface between fluid and structure: the kinematic conditions
(equality of velocities and displacements) and the dynamics conditions (equality
of forces). This allows us to formulate various fixed-point equations depending
on, e.g., the execution order of the two solvers. The standard approach is the so-
called sequential or staggered coupling where interface velocities/displacements
are used as an input for the flow solver which computes the respective forces
exerted by the fluid on the structure. These forces are used in a second step as
an input to the subsequent structure solver instance that calculates a new iterate
for the velocities/displacements. If this iterative process reaches a fixed-point,
i.e., velocities/displacements reach a converged state, we fulfill both coupling
conditions. An alternative, parallel, fixed-point equation is based on using both
velocities/displacements and forces as an input vector for the parallel execution of
flow and structure solver yielding new forces and velocities/displacements as an
output. Figure 6 schematically shows the iteration concept for these two approaches
in a general setting with two arbitrary solvers A and B. Whereas the serial coupling

250 H.-J. Bungartz et al.

A
v1

v1 v2
B

A

B

v1

v2

v2

v1

parallel iterationserial iteration

Fig. 6 Schematic illustration of two coupling iteration types with two involved solvers A and B
and the respective input and output variables v1 and v2

is the standard approach, we favor the parallel coupling as only this allows for an
efficient hardware usage in parallel simulations (see [17]).

In practice, the pure fixed-point iteration often needs to be accelerated in order
to achieve convergence or a reasonable convergence speed for physically strongly
coupled fields. The range of such acceleration methods yields from constant and
dynamic under-relaxation to a more sophisticated and very powerful class of
acceleration methods, the so-called quasi-Newton methods. As all these can be
applied to any type of fixed-point interface equation, we use the generic fixed-point
equation

H.x/ D x , R.x/ WD H.x/� x D 0 (4)

in the following description of the methods implemented in preCICE. We start with a
short recapitulation of the serial algorithms before presenting the respective parallel
algorithms in more detail.

2.3.1 Theory of Robust Quasi-Newton Fixed-Point Acceleration

The simple fixed-point iteration or its variant with under-relaxation

xkC1 D xk C ! � H.xk/ with ! 2 Œ0I 1�

are trivial to implement both in the serial and in the parallel case if the required
communication and data mapping functionalities are given as described in Sects. 2.1
and 2.2. We, thus, do not present algorithmical details for these methods but restrict
our description to the more sophisticated quasi-Newton methods.

The quasi-Newton methods we consider accelerate the fixed-point iteration by a
subsequent Newton step:

xkC1 D H.xk/„ƒ‚…
DW Qxk

�J�1QR . H.xk/ � xk„ ƒ‚ …
D Qxk�H�1.Qxk/

/ (5)

with QR WD I � H�1 mapping the Picard iterate Qx to the residual rk WD R.xk/ D
QR.Qxk/ D H.xk/�xk. As the Jacobian of R is not accessible for a black box approach,

Fluid–Structure–Acoustics Interaction on Distributed Data 251

the task is to find a good approximation OJ�1QR;k of the inverse Jacobian J�1QR;k. This can
be done in several ways that are all based on the secant equation

bJ�1QR;kVk D Wk (6)

with the matrices Vk and Wk being composed of differences of input-output data
throughout the coupling iterations within the current time step:

Wk D
�
�Qxk; �Qxk�1; � � � ; �Qx1� ; with �Qxi D Qxi � Qxi�1 ;

Vk D
�
�rk; �rk�1; � � � ; �r1� ; with �ri D R.xi/ � R.xi�1/ :

preCICE provides quasi-Newton methods based on the following two approaches to
regularize the under-determined system (6) based on different norm-minimization
conditions forbJ�1QR;k.Qxk/: the classical interface quasi-Newton (ILS) approach (see
[1, 11, 18]) uses the approximate with the minimal Frobenius norm, i. e.,

kbJ�1QR;kkF ! min : (7)

The resulting Jacobian estimatebJ�1QR;k D Wk.VT
k Vk/

�1VT
k is however not computed

explicitly but instead, the update formula

xkC1 D H.xk/�Wk .V
T
k Vk/

�1VT
k r

k„ ƒ‚ …
DW˛k

is used, where the vector ˛ is computed solving the least-squares optimization
problem kVk˛k C rkk2 ! min : The convergence properties can in some cases
be greatly improved by incorporating information from previous time steps in the
matrices Vk and Wk.

The multi-vector quasi-Newton (IMVJ) approach (see [11]) can be seen as
generalized Broyden method as it minimizes the distance between bJ�1QR;k and the

approximatebJ�1;.N/QR from the previous time step:

kbJ�1QR;k �bJ�1;.N/QR kF ! min : (8)

This results in the Jacobian estimate

bJ�1QR;k DbJ�1;.N/QR C
�
Wk �bJ�1;.N/QR Vk

	
.VT

k Vk/
�1VT

k : (9)

Using this method, we have to compute and store the full Jacobian bJ�1QR;k which
increases the computational cost and the storage requirements remarkably. Though,

252 H.-J. Bungartz et al.

due to the implicit use of information from past time steps via the norm minimiza-
tion condition, there is no need to retain old time steps explicitly in the secant
equation (6).

2.3.2 Implementational Aspects of Quasi-Newton Coupling Iterations

Algorithmic Building Blocks The primary kernel of our quasi-Newton variants
is the computation of the pseudo-inverse .VT

k Vk/
�1VT

k of Vk (IMVJ) or the vector
˛ D .VT

k Vk/
�1VT

k r
k (ILS). It is easy to show that finding .VT

k Vk/
�1VT

k y for a given
vector y is equivalent to solving the unconstrained least-squares minimization

find z 2 Rn with z D argminNz2RnkV Nz � yk2 : (10)

As we use a suitable implementation of the QR-decomposition of Vk, this is not only
better conditioned than the calculation of .VT

k Vk/
�1, but also particularly efficient as

we solve successive similar least-squares problems where Vk only grows by one
column in each iteration. More specifically, economy sized QR-factorization turned
out to be a good choice due to a good trade off between efficiency and accuracy (see
[8, 19]). From the decomposition Vk D QR, we get z from solving the quadratic
system

bRz D bQTy (11)

via backward substitution.bR 2 Rm�m denotes the first m rows of R andbQ contains
the first m columns of Q (if Vk 2 Rn�m). For the ILS approach, we calculate z D
˛ D .VT

k Vk/
�1VT

k r
k using the right-hand side y WD rk, while, for the IMVJ method,

we have to compute the columns of the matrix Zk D .VT
k Vk/

�1VT
k via solving (10)

for all unit vectors y D ei 2 Rn; i D 1; : : : ; n.
The matrix Vk D Œ�rk;Vk�1.1 W m � 1/� is updated in each iteration by adding a

column with the most recent information at the beginning and possibly dropping
one column at the end to maintain the size m of a given sliding window or to
avoid linear dependencies between the columns of Vk. In case of insertColumn,
we correspondingly update the QR-factorization executing first a modified Gram-
Schmidt orthogonalization of the new column v against the previous columns inbQ followed by Given rotations eliminating the newly created sub-diagonal entries
in bR. For deleteColumn, the matrix bR after deletion of column v is still upper
triangular. See Algorithm 6 for both operations.

The backward substitution based on the QR-factorization delivers the vector ˛ 2
Rm (for ILS) or the pseudo-inverseZk D .VT

k Vk/
�1VT

k of Vk (for IMVJ), respectively.
For the update of xk to xkC1, we additionally need a matrix–vector multiplication
Wk˛ for the ILS method, several matrix–matrix products for the computation of
.Wk � J�1;.N/QR Vk/Zk as well as a larger matrix–vector productbJ�1QR;krk.

Fluid–Structure–Acoustics Interaction on Distributed Data 253

Algorithm 6 Pseudo code for the routines insertColumn and deleteColumn
that represent the updated QR-factorization

= v

r

=0 V

R

V Q

R

Q^

^ ^

^

insertColumn
Input: bQ 2 Rn�m;bR 2 Rm�m; v WD
�rk 2 Rn

Output:bQ 2 Rn�mC1;bR 2 RmC1�mC1

for j D 1 to m do
r.j/ hbQ.W; j/; vi
v v � r.j/ �bQ.W; j/

r.mC 1/ kvk2bQ.W;mC 1/ v=r.mC1/

bRD
"
r;

 bR
0

!#

choose Given rotations Gi;j s. t.bR G1;2 � � �Gm;mC1bR is up. triangularbQ bQGm;mC1 � � �G1;2 orthonormal

deleteColumn
input:bQ 2 Rn�m;bR 2 Rm�m

output:bQ 2 Rn�m�1;bR 2 Rm�1�m�1

bR bR.1 W m� 1; 1 W m� 1/

Updated QR-Factorization on Distributed Data In order to make the QR-facto-
rization as our first main algorithmic building block feasible for the execution on
parallel systems with distributed data, a communication avoiding QR-factorization
based on the deleteColumn and insertColumn operations described above
is used. For p processors, bQ is decomposed into row-blocks corresponding to the
interface data belonging to the respective surface partition. Thus, each process holds
n=p rows in the ideally balanced case (see Fig. 7, left). As the number of columns m
is very small (typically m n), a copy of the matrixbR is held on each processor.
With this distribution of data, the only communication between processors required
for inserting a column is incurred by the dot-products hbQ.W; j/;�rki and k�rkk2.
The local contributions of the dot-product are summed up in a reduce step and
afterwards, the results are broadcast to all processors. The transformation using
Givens rotations to restore a proper QR-factorization is fully local, i.e., no inter-
process communication is involved. This is due to the fact thatbR exists redundantly
on each processor and every update operation onbQ solely requires information from
other elements in bQ in the respective row.

If we consider the runtime on a parallel machine with p processors, we get the
following estimates: the orthogonalization of the new column for insertColumn

254 H.-J. Bungartz et al.

Fig. 7 Decomposition and
storage distribution of data of
the matricesbQ 2 Rn�m (left)
and Zk 2 Rm�n (right). The
matrices V and W are
distributed analogously tobQ

m

m

requires m dot-products of length n resulting in a parallel runtime of

O.mn=p/C O.m log p/ :

The m2=2 Givens Rotations required in insertColumn each include the calcu-
lation of two dot-products of length m for the coefficients of the rotation (locally
at each processor without communication), adding two columns of Q of length n,
and adding two rows of bR of length m. The columns of Q are added in parallel
according to the row-blocks stored in the processors. Thus, we get a total runtime
for the Givens rotations of

O.m2n=p/C O.m3/ :

Backward Substitution on Distributed Data The next step after computing the
QR-factorization is solving the quadratic system (11). This comprises computingbQTy and the actual backward substitution. Since bQ is available in a distributed form
in row-blocks, each processor computes an additive contribution to bQTy (runtime
O.mn=p/). All contributions are summed up in a reduce step and redistributed to
all processors via broadcast (runtime O.m log p/) that each solve the small system
(11) based on their copy of bR (runtime O.m2/). The theoretical runtime, thus,
accumulates to

O.mn=p/C O.m log p/C O.m2/

for the ILS method. For the IMVJ method, we have to do this for all unit vectors,
i.e., y D ej; j D 1; : : : ; n. Here, each processor can handle those n=p unit vectors that
are associated to its row-block of bQ. The matrix–vector products bQTej correspond
to simply choosing column j from bQT , for which no communication is required.
Accordingly, each processor also only solves its n=p equations bRzj D bQTej. Thus,
the matrix Zk is distributed among processors in column-blocks as depicted in Fig. 7
(right) and we get a total parallel runtime of

O.nm2=p/ :

Matrix–Vector ProductWk˛ on Distributed Data Analogue to bQ, the matrix Wk

is distributed to the processors in row-blocks. Thus, each processor can calculate

Fluid–Structure–Acoustics Interaction on Distributed Data 255

its n=p entries of Wk˛ in O.nm=p/ runtime without communicating with the other
processes.

Matrix–Matrix Products inbJ�1;.N/

QR C
�
Wk �bJ�1;.N/

QR Vk

�
Zk on Distributed Data

The realization of the IMVJ on distributed data is more complex due to its explicit
computation of the Jacobian matrix and the resulting matrix multiplications. In
particular, we are given two full matrix multiplications that need to be realized
efficiently on distributed data, namely bJ�1;.N/QR Vk and eWkZk with eWk D Wk �
bJ�1;.N/QR Vk.

On a machine with distributed data, the Jacobian matrix is distributed as column-
blocks of size n � n=p, Vk as line-blocks of size n=p � m. The first multiplicationbJ�1;.N/QR Vk can thus be done by multiplying the local matrix-blocksbJ�1;.N/QR jp �Vjp and
sum up the p sub-results via a reduce operation (see Fig. 8). The overall result needs
to be scattered to the sub-processes, i. e., each processor receives its corresponding
block of rows. The costs for this product are, thus,

O.n2m=p/C O.nm log p/ :

The second multiplication eWk � Zk is more involved as each processor needs
information, i.e., the corresponding sub-block of eWk from all other processors. This
is solved by using a cyclic communication principle among the involved processors.
In each cycle, each processor computes locally the product of the currently available
block of eWk with Zk and, afterwards, hands over its block of eWk to the next
processor. After p cycles the matrix–matrix product is readily available and the
sub-blocks of the result are completely available at the processors where they are
supposed to be stored. Hence, no costly re-distribution has to be done. A schematic
representation of the matrix-blocks and cyclic communication and computation
is given in Fig. 8 on the right and in Fig. 9 for three processors pA–pC. The left
part illustrates the communication and computation of certain matrix blocks with
respect to time, while the right part shows the storage location of the respecting
blocks in the distributed matrix. It is clearly visible that all the matrix entries within
one processor are also computed locally. In order to interlace computation and
communication we use asynchronous send and receive operations for the matrix
blocks eWk. Each matrix-block has a complexity of O.m�n=p�n=p/. The total runtime

Fig. 8 Schematic view of the block-partitioned matrices and the parallel implementation of their
products for the IMVJ quasi-Newton method

256 H.-J. Bungartz et al.

Fig. 9 Schematic representation of the cyclic communication and computation paradigm for the
realization of the matrix multiplication eWkZk with eWk 2 Rn�m; Zk 2 Rm�n on distributed data.
The left side shows the aspects of communication of needed matrix blocks and computation of
sub-results with respect to time. The right side gives the storage location of the computed blocks
within the distributed n� n matrix

of this matrix–matrix product, meaning for all p blocks, thus, is

O.n2m=p/ :

Matrix–Vector Product bJ�1QR;krk As displayed in Fig. 8, bJ�1QR;k is available on the

processors in column-blocks that correspond exactly to the row-blocks of rk such
that each processor can calculate its additive contribution to all entries of the
matrix–vector product without communication to other processors in O.n2=p/ time.
Afterwards, the complete result has to be accumulated in a reduce step and its row-
blocks have to be scattered to the responsible processors. This sums to a parallel
runtime of

O.n2=p/C O.n log p/ :

Table 2 summarizes the parallel runtimes of all algorithmic building blocks of
the ILS and the IMVJ quasi-Newton method and gives the complexities of the total
parallel runtimes of both methods, as well.

Remark: The matrixbJ�1QR;k has a rank that is substantially smaller than n. This can
be exploited to reduce the storage requirements and the computational costs of the
IMVJ method. This is subject of ongoing research.

3 Scalability Study

In this section, we present a scalability study based on an artificial testcase, which
allows to evaluate the performance and scalability of the interface numerics and
communication isolated from solver runs. In an actual multi-physics simulation,
the runtime of the interface numerics should be insignificant compared to the
runtime of the involved solvers as the interface has a lower dimensionality than

Fluid–Structure–Acoustics Interaction on Distributed Data 257

Table 2 Overview of the parallel runtime complexities of the algorithmic building blocks of one
iteration of the ILS and the IMVJ quasi-Newton approach

ILS IMVJ

QR-factorization O
�

m2n
p

	
C O

�
m3
�C O .m log p/ O

�
m2n
p

	
C O

�
m3
�C O .m log p/

˛ D .VT
k Vk/

�1VT
k r

k O
�

mn
p

	
C O.m log p/C O.m2/ —

Zk D .VT
k Vk/

�1VT
k — O.nm2=p/

Wk˛ O
�

mn
p

	
—

bJ�1;.N/
QR

C .Wk �bJ�1;.N/
QR

Vk/Zk — O.n2m=p/C O.nm log p/

bJ�1
QR;k
rk — O.n2=p/C O.n log p/

Total O
�

m2n
p

	
C O

�
m3
�C O .m log p/ O.n2m=p/C O.m3/C O.nm log p/

the solver domains. To ensure this, we have to check that no interface computation
becomes a severe bottleneck over a varying number of cores. Please note that, in
our artificial test case, the number of cores only refers to the number of cores
involved at the coupling surface such that the core count of the complete multi-
physics corresponding to these interface cores is much higher. Scalability results for
a complete fluid–structure–acoustic scenario realized with preCICE as a coupling
tool are presented in the next book chapter.

3.1 Testcase Description

To isolate the coupling functionalities from solver effects, we developed a minimal
coupling participant DummySolver. It does not solve any equations but only
generates artificial values at the coupling surface that can then be used as input to
preCICE. Thus, DummySolver produces only minimal computational load itself.
It generates an equidistant Cartesian mesh of arbitrary size as coupling mesh. The
mesh is linearized according to a linewise ordering and decomposed among the
different processes by splitting the linear representation into partitions of similar
size (cf. Fig. 10). In contrast to real-world solvers, we only generate nodes in a
two-dimensional plane instead of a two-dimensional manifold in the full three-
dimensional space.

For all experiments we use geometrically identical meshes emulating the surfaces
of solver A and B. We have n D On2 unknowns at the coupling interface. The length
and width of the coupling interface is fixed to X D Y D 10 resulting in a grid
resolution of 10=On in x- and y-direction. We show scaling results for different mesh

258 H.-J. Bungartz et al.

Fig. 10 DummySolver
decomposition of a 7� 7
mesh into three partitions.
Arrows indicate the linewise
ordering of the mesh vertices

Y

X

Y/n̂

X/n̂

resolutions and different choices for all three building blocks in three test series:

(1) strong scaling for n D 5122 D 262;144 unknowns on p D 128; � � � ; 2048
processors,4

(2) strong scaling for n D 1282 D 16;384 unknowns on p D 16; � � � ; 128
processors,

(3) runtime complexity for n D 162; � � � ; 1282 unknowns on p D 32 processors.

For all algorithmic building blocks, we measure both the initialization phase at the
beginning of the simulation and the work-per-time-step. For the latter, we average
over 10 time steps and 5 inner coupling iterations. Furthermore, we average the
initialization of the communication over 3 runs as connection information is passed
via files, resulting in some runtime uncertainty. Table 3 summarizes the ingredients
for both phases and all three building blocks—communication, data mapping, and
fixed-point equation solver. Both quasi-Newton schemes, ILS and IMVJ, do not
reuse columns from old time steps. As radial basis functions, we use compact thin-
plate splines with a support radius of twice the size of the grid resolution. We
solve the RBF system up to a relative residual measure of 10�5. All experiments
were conducted on the thin nodes partition of SuperMUC, Leibniz Supercomputing
Center in Garching (Sandy Bridge architecture with Xeon E5-2680 8C processors).
Nodes comprise of 16 cores and are interconnected with an Infiniband FDR10.5

4We always refer to the number of processors per participant.
5For more details: https://www.lrz.de/services/compute/supermuc/systemdescription/.

https://www.lrz.de/services/compute/supermuc/systemdescription/

Fluid–Structure–Acoustics Interaction on Distributed Data 259

T
ab

le
3

Su
m

m
ar

y
an

d
ab

br
ev

ia
ti

on
s

fo
r

th
e

al
go

ri
th

m
ic

st
ep

s
of

al
lt

hr
ee

bu
il

di
ng

bl
oc

ks
—

co
m

m
un

ic
at

io
n,

da
ta

m
ap

pi
ng

,fi
xe

d-
po

in
t

eq
ua

ti
on

so
lv

er
—

an
d

se
pa

ra
te

ly
th

e
m

es
h

re
-p

ar
ti

ti
on

,s
pl

it
up

in
in
it
ia
li
za
ti
on

an
d

in
w
or
k-
pe
r-
ti
m
e-
st
ep

In
it
ia
li
za
ti
on

W
or
k-
pe
r-
ti
m
es
te
p

M
es
h
re
-p
ar
ti
ti
on

(c
f.

Se
ct

.2
.1

.1
)

-
G

at
he

r
co

up
li

ng
m

es
h

(I
)

-
C

om
m

un
ic

at
e

co
up

li
ng

m
es

h
(I

I)

-
B

ro
ad

ca
st

co
up

li
ng

m
es

h
(I

II
)

-
Fi

lt
er

co
up

li
ng

m
es

h
(I

V
)

-
Fe

ed
ba

ck
co

up
li

ng
m

es
h

(V
)

C
om

m
un

ic
at
io
n

(c
f.

Se
ct

.2
.1

.2
)

-
B

ro
ad

ca
st

ve
rt

ex
di

st
ri

bu
ti

on
-

Po
in

t-
to

-p
oi

nt
co

m
.o

f
da

ta

-
Fi

lt
er

ve
rt

ex
di

st
ri

bu
ti

on

-
E

st
ab

li
sh

al
l1

:N
ke

rn
el

co
m

.

D
at
a
m
ap

pi
ng

(c
f.

Se
ct

.2
.1

)
-

pr
oj

.-
m

ap
.:

co
m

pu
te

w
ei

gh
ts

(N
N

)
-

pr
oj

.-
m

ap
.:

co
py

da
ta

(N
N

)

-
R

B
F:

as
se

m
bl

e
m

ap
pi

ng
-

R
B

F:
so

lv
e

m
ap

pi
ng

sy
st

em

F
ix
ed
-p
oi
nt

eq
ua

ti
on

so
lv
er

(c
f.

Se
ct

.2
.3

.2
)

-
IL

S
&

IM
V

J:
se

tu
p

da
ta

st
ru

ct
ur

es
-

IL
S

&
IM

V
J:

Q
R

-d
ec

om
po

si
ti

on

-
IM

V
J:

es
ta

bl
is

h
cy

cl
ic

co
m

.
-

IL
S

&
IM

V
J:

ba
ck

su
bs

ti
tu

ti
on

-
IM

V
J1

:e JD
e WZ

-
IM

V
J2

:
e WD

.W
�

J p
re
v
V
/

-
IM

V
J3

:�
x
D

J.
�r
/

260 H.-J. Bungartz et al.

3.2 Strong Scaling for n D 5122 D 262;144

For a total number of 262;144 unknowns at the coupling interface, we perform a
strong scaling test series for the IQN-ILS method as well as for the communication,
the mesh re-partition process and the nearest neighbor mapping. The IMVJ fixed-
point acceleration method and the RBF-mapping are excluded due to large storage
requirements.6 Figure 11 shows the initialization timings. Despite the gather-scatter
methodology, the mesh re-partition still remains in an acceptable range, in total
around one second for 2048 processors. For such a number of processors the
setup of the point-to-point communication, however, becomes increasingly costly.
This is due to the file system access we use to exchange connection information.
Substituting this by some proper publishing technique should simplify this step.
The setup of the ILS fixed-point equation solver as well as the computation of the
nearest neighbor mapping is almost negligible.

Figure 12 shows the work-per-timestep timings. The nearest neighbor mapping
as well as the point-to-point communication are insignificant. The ILS fixed-point
acceleration appears to be cheap as well, and might therefore remain a non-
dominating and hence non-critical part in an overall multi-physics coupling. This
confirms the findings of [12]. The time consumption of ILS stays rather constant
over a varying number of processors. This is due to the low overall computational
complexity of the method. The increase for p D 2048 processors is due to the small
message size and the growing communication overhead. Further tests with an even
larger N and, therefore, a better load to communication ratio show a nearly linear
scaling. First tests with the IMVJ method pointed out various technical obstacles.

I II III IV V com ILS NN

Ti
m

e
[m

s]

10 0

10 1

10 2

10 3

10 4

10 5

p=128
p=256
p=512
p=1024
p=2048

Fig. 11 Timings for the initialization of test series (1), n D 5122, and all building blocks. Sizes
under 1 ms are suppressed. Table 3 lists the corresponding abbreviations

6Optimizations of the memory requirements of IMVJ and RBF are possible and work in progress.

Fluid–Structure–Acoustics Interaction on Distributed Data 261

Fig. 12 Timings for the
work-per-timestep of test
series (1), n D 5122 , and all
building blocks. The
nearest-neighbor mapping
showed timings below
0.01 ms for all runs

com ILS NN

Ti
m

e
[m

s]

1

2

3

4

5

6

7

8

9

10
p=128
p=256
p=512
p=1024
p=2048

The cyclic communication runs into a well-known bug concerning the MPI Ports
implementation on SuperMUC for more than 128 connections (Intel and IBM MPI).
Building up the cyclic communication on TCP sockets allows to reach beyond
128 processors, but shows a rather poor performance. In the long run, we plan to
directly reuse or duplicate the MPI communicator of the solver participant, though
this leads to a software dependence of preCICE on MPI and, thus, to possible
incompatibilities with commercial closed-source software. Furthermore, IMVJ is
limited by its large storage consumption. We currently work on a subspace tracking
method that exploits the low rank characteristics of the Jacobian.

3.3 Strong Scaling for n D 1282 D 16;384

For a clean comparison of the two IQN methods ILS and IMVJ as well of the RBF
mapping to the NN mapping, we study a further strong scaling series, but with an
only moderate number of unknowns, n D 16;384. To rule out inter-dependencies,
we compare both IQN approaches for a fixed setting, using only NN mappings,
while we compare RBF to NN for a fixed setting with ILS only. Figure 13 shows
the initialization timings for all configurations. The mesh re-partition remains at a
low cost due to the small mesh sizes. Establishing the point-to-point communication
as well as the cyclic communication for IMVJ comes at a certain cost, but appears
tolerable as it is clearly below 1 s. The cyclic communication setup also explains
the difference between ILS and IMVJ. For the sake of readability, we suppressed
the RBF matrix assembly time in the graphs. It scales nearly quadratically with the
inverse of the number of processors (due to the scaling of the number of matrix
block entries), from 7:4 � 105ms for 16 processors to 1:9 � 104 ms for 128 processors,
but is, in general, too large. This is most probably due to the non-optimal usage of
PETSc sparse matrices and is subject of upcoming optimization efforts.

262 H.-J. Bungartz et al.

I II III IV V com ILS IMVJ NN

Ti
m

e
[m

s]

10 0

10 1

10 2

p=16
p=32
p=64
p=128

Fig. 13 Timings for the initialization of test series (2), n D 1282 , and all building blocks.
Times below 1 ms are suppressed. RBF timings are not shown for sake of readability. They read:
741,350 ms (p D 16), 251,928 ms (p D 32), 74,690 ms (p D 64), and 19,061 ms (p D 128).
Table 3 lists the corresponding abbreviations

com ILS IMVJ IMVJ1 IMVJ2 IMVJ3 NN RBF

Ti
m

e
[m

s]

10 -1

10 0

10 1

10 2

10 3
p=16
p=32
p=64
p=128

Fig. 14 Timings for the work-per-timestep of test series (2), n D 1282 , and all building blocks.
The nearest-neighbor mapping showed timings below 0.1 ms for all runs

Figure 14 shows the work-per-timestep. As expected, the point-to-point commu-
nication remains negligible. IMVJ comes with an approximately 100 times higher
computational effort than ILS due to the higher complexity as well as the increased
communication and memory requirements. Please note, that this difference is still
subject to optimization as mentioned above and that it might be negligible for a
costly solver. In such a situation, the numerics of the fixed-point equation solvers,
meaning the number of necessary solver executions until termination, dominates
and might render IMVJ favorable over ILS for certain cases. The RBF timings
show a speed-up from 32 to 64 processors, but a worse performance for 128

Fluid–Structure–Acoustics Interaction on Distributed Data 263

processors, probably due to the small problem size. While the overall execution
time is tolerable for some applications, it is surely not optimal and as well subject
of current optimization efforts.

3.4 Varying Problem Size n D 162; � � � ; 1282

For further insight, we finally study the runtime complexity depending on the
number of unknowns at the interface for a fixed number of processors, p D 32.
Figure 15 shows the initialization timings. The mesh re-partition rises, in general,
with the number of unknowns, though the results appear to be dominated by
memory latency due the rather small problem sizes. As expected, the setup of the
point-to-point as well as the cyclic communication is almost independent from the
problem size. The RBF matrix assembly explodes with the problem sizes, due the
aforementioned reasons.

Figure 16, finally, lists the work-per-timestep for test series (3). The point-
to-point communication, IQN and the nearest neighbor mapping show almost no
dependence on the small problem size. Contrary, IMVJ grows significantly due the
higher computational effort as well as the higher memory requirements. The RBF
mapping also shows a reasonable complexity, despite the general high costs.

I II III IV V com ILS IMVJ NN RBF

Ti
m

e
[m

s]

10 0

10 1

10 2

10 3

n=16x16
n=32x32
n=64x64
n=128x128

Fig. 15 Timings for the initialization of test series (3), p D 32, and all building blocks. Sizes
under 1ms are suppressed. For sake of readability the logarithmic scale is not adjusted to the last
RBF value (251,928 ms). Table 3 lists the corresponding abbreviations

264 H.-J. Bungartz et al.

com ILS IMVJ IMVJ1 IMVJ2 IMVJ3 NN RBF

Ti
m

e
[m

s]

10 -1

10 0

10 1

10 2

10 3
n=16x16
n=32x32
n=64x64
n=128x128

Fig. 16 Timings for the work-per-timestep of test series (3), p D 32, and all building blocks. The
nearest-neighbor mapping showed timings below 0.1 ms for all runs

4 Conclusions

With this contribution, we could show that we can provide a scalable imple-
mentation of all basic coupling components required for a black-box partitioned
simulation of surface-coupled multi-physics simulations. We scaled a pure interface
testcase isolating the coupling from solvers for up to 2048 processes of SuperMUC
at the Leibniz Supercomputing Center. In an actual coupled simulation this cor-
responds to 2048 nodes of each participant at the coupling surface and, thus, a
far higher total number of processes. Depending on the scenario, this should be
sufficient for peta-scale simulations (cf. [14] for simulations with up to 32,000
processes). For exascale simulations, further improvements and optimizations are
necessary. Already at the initialization phase, we have to avoid the gather and
broadcast of the complete surface meshes in the re-partitioning step by using
suitable bounding boxes (possibly in a hierarchical manner), e.g., by the rendezvous
algorithm [13], used by [15]. This at the same time also eliminates the memory
limitation due to the fact that we currently store the complete mesh at one processor.
Also the point-to-point communication shall be constructed directly from local
information without a broadcast of vertex distributions. Another bottleneck is the
publishing of connection information for the 1:N kernel communication that limits
the number of cores in its file-based implementation. In terms of complexity of
the actual numerical components, we have to reduce the storage and computational
requirements for matrix assembly, matrix multiplication, and matrix storage in the
RBF data mapping and the IMVJ interface quasi-Newton approach. Hereby, low-
rank properties as well as matrix sparsity have to be fully exploited.

Fluid–Structure–Acoustics Interaction on Distributed Data 265

Summarizing the current state and ideas for further improvements, we can state
that massively parallel and robust partitioned black-box simulations of surface
coupled scenarios are possible. preCICE offers already a good basis for the complete
set of required functionalities and will be further improved in current and future
work.

Acknowledgements The financial support of the priority program 1648 Software for Exascale
Computing (www.sppexa.de) of the German Research Foundation and of the Institute for
Advanced Study (www.tum-ias.de) of the Technical University of Munich as well as provided
computing time on the SuperMUC at the Leibniz Supercomputing Centre, are thankfully acknowl-
edged.

References

1. Anderson, D.G.: Iterative procedures for nonlinear integral equations. J. ACM 12(4), 547–560
(1965)

2. Balay, S., Abhyankar, S., Adams, M.F., Brown, J., Brune, P., Buschelman, K., Dalcin, L.,
Eijkhout, V., Gropp, W.D., Kaushik, D., Knepley, M.G., McInnes, L.C., Rupp, K., Smith, B.F.,
Zampini, S., Zhang, H.: PETSc users manual. Tech. Rep. ANL-95/11 - Revision 3.6, Argonne
National Laboratory (2015). http://www.mcs.anl.gov/petsc

3. de Boer, A., van Zuijlen, A., Bijl, H.: Comparison of conservative and consistent approaches
for the coupling of non-matching meshes. Comput. Method. Appl. Mech. Eng. 197(49–50),
4284–4297 (2008).

4. Buhmann, M.: Radial basis functions. Acta Numer. 9(January 2000), 1–38 (2000)
5. Bungartz, H.J., Lindner, F., Gatzhammer, B., Mehl, M., Scheufele, K., Shukaev, A., Ueker-

mann, B.: preCICE – a fully parallel library for multi-physics surface coupling. Comput. Fliuds
(2016)

6. Bungartz, H.J., Lindner, F., Mehl, M., Uekermann, B.: A plug-and-play coupling approach for
parallel multi-field simulations. Comput. Mech. 55(6), 1119–1129 (2015)

7. Deparis, S., Forti, D., Quarteroni, A.: A rescaled localized radial basis function interpolation on
non-cartesian and nonconforming grids. SIAM J. Sci. Comput. 36(6), A2745–A2762 (2014).
http://dx.doi.org/10.1137/130947179

8. Fang, H.R., Saad, Y.: Two classes of multisecant methods for nonlinear acceleration. Numer.
Linear Algebra 16, 197–221 (2008)

9. Gatzhammer, B.: Efficient and flexible partitioned simulation of fluid-structure interactions.
Phd thesis, Technische Universität München (2014)

10. Keyes, D., McInnes, L.C., Woodward, C.S., Gropp, W., Myra, E., Pernice, M., Bell, J., Brown,
J., Clo, A., Connors, J., Constantinescu, E., Estep, D., Evans, K., Farhat, C., Hakim, A.,
Hammond, G., Hansen, G., Hill, J., Isaac, T., Jiao, X., Jordan, K., Kaushik, D., Kaxiras, E.,
Koniges, A., Lee, K., Lott, A., Lu, Q., Magerlein, J., Maxwell, R., McCourt, M., Mehl, M.,
Pawloski, R., Randles, A., Reynolds, D., Riviere, B., Rüde, U., Scheibe, T., Shadid, J., Sheehan,
B., Shephard, M., Siegel, A., Smith, B., Tang, X., Wilson, C., Wohlmuth, B.: Multiphysics
simulations: challenges and opportunities. Int. J. High Perform. Comput. Appl. 27(1), 4–83
(2012)

11. Lindner, F., Mehl, M., Scheufele, K., Uekermann, B.: A comparison of various quasi-
Newton schemes for partitioned fluid-structure interaction. In: Proceedings of 6th International
Conference on Computational Methods for Coupled Problems in Science and Engineering,
Venice, pp. 1–12 (2015)

www.sppexa.de
www.tum-ias.de
http://www.mcs.anl.gov/petsc
http://dx.doi.org/10.1137/130947179

266 H.-J. Bungartz et al.

12. Loffeld, J., Woodward, C.: Considerations and the implementation and use of Anderson
acceleration on parallel computers. In: Advances in the Mathematical Sciences: Research from
the 2015 Association for Women in Mathematics Symposium. AWM Springer Series (2016)

13. Plimpton, S.J., Hendrickson, B., Stewart, J.R.: A parallel rendezvous algorithm for interpola-
tion between multiple grids. J. Parallel Distrib. Comput. 64(2), 266–276 (2004)

14. Shukaev, A.K.: A fully parallel process-to-process intercommunication technique for preCICE.
Master’s thesis, Institut für Informatik, Technische Universität München (2015)

15. Slattery, S., Wilson, P., Pawlowski, R.: The data transfer kit: a geometric rendezvous-based tool
for multiphysics data transfer. In: International Conference on Mathematics & Computational
Methods Applied to Nuclear Science & Engineering (M&C 2013), pp. 5–9 (2013)

16. Smith, M.J., Cesnik, C.E.S., Hodges, D.H.: Evaluation of algorithms suitable for data transfer
between noncontiguous meshes. J. Aerospace Eng. 13(2), 52–58 (2000)

17. Uekermann, B., Bungartz, H.J., Gatzhammer, B., Mehl, M.: A parallel, black-box coupling
for fluid-structure interaction. In: Idelsohn, S., Papadrakakis, M., Schrefler, B. (eds.) Compu-
tational Methods for Coupled Problems in Science and Engineering, COUPLED PROBLEMS
2013. Stanta Eulalia, Ibiza (2013). http://congress.cimne.com/coupled2013/proceedings/full/
p559.pdf

18. Vierendeels, J., Degroote, J., Annerel, S., Haelterman, R.: Stability issues in partitioned FSI
calculations. In: Bungartz, H.J., Mehl, M., Schäfer, M. (eds.) Fluid Structure Interaction II.
Lecture Notes in Computational Science and Engineering, pp. 83–102. Springer, Berlin/Hei-
delberg (2010). http://link.springer.com/chapter/10.1007/978-3-642-14206-2_4

19. Walker, H.F., Ni, P.: Anderson acceleration for fixed-point iterations. SIAM J. Numer. Anal.
49(4), 1715–1735 (Aug 2011). http://dx.doi.org/10.1137/10078356X

20. Yokota, R., Barba, L.A., Knepley, M.G.: PetRBF – a parallel O(N) algorithm for radial
basis function interpolation with Gaussians. Comput. Method. Appl. Mech. Eng. 199(25–28),
1793–1804 (2010).

http://congress.cimne.com/coupled2013/proceedings/full/p559.pdf
http://congress.cimne.com/coupled2013/proceedings/full/p559.pdf
http://springerlink.bibliotecabuap.elogim.com/chapter/10.1007/978-3-642-14206-2_4
http://dx.doi.org/10.1137/10078356X

Partitioned Fluid–Structure–Acoustics
Interaction on Distributed Data: Numerical
Results and Visualization

David Blom, Thomas Ertl, Oliver Fernandes, Steffen Frey, Harald Klimach,
Verena Krupp, Miriam Mehl, Sabine Roller, Dörte C. Sternel,
Benjamin Uekermann, Tilo Winter, and Alexander van Zuijlen

Abstract We present a coupled simulation approach for fluid–structure–acoustic
interactions (FSAI) as an example for strongly surface coupled multi-physics
problems. In addition to the multi-physics character, FSAI feature multi-scale
properties as a further challenge. In our partitioned approach, the problem is
split into spatially separated subdomains interacting via coupling surfaces. Within
each subdomain, scalable, single-physics solvers are used to solve the respective
equation systems. The surface coupling between them is realized with the scalable

D. Blom • A. van Zuijlen
Aerospace Engineering, Delft University of Technology, Delft, The Netherlands
e-mail: d.s.blom@tudelft.nl; A.H.vanZuijlen@tudelft.nl

B. Uekermann
Scientific Computing in Computer Science, Technical University of Munich,
München, Germany
e-mail: uekerman@in.tum.de

H. Klimach • V. Krupp (�) • S. Roller
Simulation Techniques and Scientific Computing, University of Siegen, Siegen, Germany
e-mail: harald.klimach@uni-siegen.de; verena.krupp@uni-siegen.de; sabine.roller@uni-siegen.de

M. Mehl
Institute for Parallel and Distributed Systems, University of Stuttgart, Stuttgart, Germany
e-mail: miriam.mehl@ipvs.uni-stuttgart.de

T. Ertl • O. Fernandes • S. Frey
VISUS, University of Stuttgart, Stuttgart, Germany
e-mail: thomas.ertl@visus.uni-stuttgart.de; oliver.fernandes@visus.uni-stuttgart.de;
steffen.frey@visus.uni-stuttgart.de

D.C. Sternel
Institut for Scientific Computing, TU Darmstadt, Darmstadt, Germany
e-mail: doerte.sternel@hpc-Hessen.de

T. Winter
Institute of Numerical Methods in Mechanical Engineering, TU Darmstadt,
Darmstadt, Germany,
e-mail: winter@fnb.tu-darmstadt.de

© Springer International Publishing Switzerland 2016
H.-J. Bungartz et al. (eds.), Software for Exascale Computing – SPPEXA
2013-2015, Lecture Notes in Computational Science and Engineering 113,
DOI 10.1007/978-3-319-40528-5_12

267

mailto:d.s.blom@tudelft.nl
mailto:A.H.vanZuijlen@tudelft.nl
mailto:uekerman@in.tum.de
mailto:harald.klimach@uni-siegen.de
mailto:verena.krupp@uni-siegen.de
mailto:sabine.roller@uni-siegen.de
mailto:miriam.mehl@ipvs.uni-stuttgart.de
mailto:thomas.ertl@visus.uni-stuttgart.de
mailto:oliver.fernandes@visus.uni-stuttgart.de
mailto:steffen.frey@visus.uni-stuttgart.de
mailto:doerte.sternel@hpc-Hessen.de
mailto:winter@fnb.tu-darmstadt.de

268 D. Blom et al.

open-source coupling tool preCICE described in the “Partitioned Fluid–Structure–
Acoustics Interaction on Distributed Data: Coupling via preCICE”. We show how
this approach enables the use of existing solvers and present the overall scaling
behavior for a three-dimensional test case with a bending tower generating acoustic
waves. We run this simulation with different solvers demonstrating the performance
of various solvers and the flexibility of the partitioned approach with the coupling
tool preCICE. An efficient and scalable in-situ visualization reducing the amount of
data in place at the simulation processors before sending them over the network or
to a file system completes the simulation environment.

1 Introduction

The handling of fluid–structure–acoustics interactions (FSAI) in detailed, direct
simulations is challenging and became feasible only recently on large scale com-
puting systems. FSAI induces not only multiple physical domains but, at the
same time, also different length and time scales. The possibility to consider
the interaction of all those aspects in a single simulation enables us to gain a
better understanding of the physical system and, thereby, to make more accurate
predictions in engineering design processes. This can, for example, help to reduce
the noise emission of technical devices such as aircraft, fans or wind turbines. Wind
turbines are of increasing importance. While generating electricity, noise is emitted
(due to complex rotor–wind–interaction). With their increasing size and growing
number, limiting their noise emission becomes necessary. The multi-scale nature
of the FSA interactions can be nicely seen in this example. Noise is generated
in the boundary layers and resulting vortices at the moving geometry at a length
scale in the order of centimeters. This whole turbine at the scale of meters while
the noise emission is of relevance in a range of hundreds of meters up to a few
kilometers. Simulating the entire domain while resolving the smallest turbulent
scales and resolving the boundary layer adequately would require approximately
1018 degrees if freedom. This is out of reach for current systems.

Though tremendous computational power is available nowadays, such a simu-
lation is still too demanding. In addition, acceptable software development times
are possible only if we re-use existing scalable software based on decades of
experience in each single-physics discipline. Therefore, we employ a partitioned
coupling approach, i.e., we split the physical space into smaller domains, each
covering a so-called single-physics subdomain. Within each of these subdomains,
the specific physics are solved with a locally adapted resolution. The interaction
between the subdomains is realized by exchanging data and applying suitable
iterative solvers at the common surface. This coupled approach allows for adapted
numerical methods and resolutions in each of the domains according to the physical
requirements. By the adaptation of the numerical approximation in the individual
domains, the computation of the complete interaction between fluid mechanics,
structural mechanics, and acoustic wave propagation becomes feasible.

As the coupling mechanism needs to deal with various types of solvers and does
not know or need to know anything about their internal numerical and technical

Partitioned FSA Interaction on Distributed Data: Numerical Results and Visualization 269

details, this approach is also referred to as black-box coupling. A suitable tool to
realize such a coupling in a parallel and scalable way is the open-source coupling
library preCICE.1 It handles without the data exchange, interpolations between non-
matching meshes of adjacent domains, and iterative solvers for the coupling surface
equations. As solvers, we use FEAP [17] or OpenFOAM2 for structural mechanics,
FASTEST [6] or OpenFOAM for the simulation of acoustic fluids, and Ateles3 for
the acoustic far field [1].

Naturally, this approach raises new numerical challenges such as stability issues
due to the partitioned coupling and data interpolations between non-matching
meshes. In addition, also the performance and scalability of the coupled black-box
setup is a non-trivial task. The coupling library preCICE and the contributions to
highly parallel partitioned coupling are described in “Partitioned Fluid–Structure–
Acoustics Interaction on Distributed Data: Coupling via preCICE”. In this chapter,
we describe a real world application including not only the two-dimensional surface
coupling, but the efficiency of the overall three-dimensional simulation. Section 2
presents the individual solvers and the solved equation systems. The two coupling
strategies for fluid–structure interaction and fluid–acoustic interaction are described
in Sect. 3. Section 4 deals with the visualization of the application with a focus on
in-situ visualization and the developed data handling strategy. This is followed by a
discussion of numerical results and scaling data for a three-dimensional testcase in
Sect. 5.

2 Description of the Individual Solvers

In this section, we briefly present the physical background including the govern-
ing equations for each single-physics discipline. We then continue with a short
description of the solvers for each part including the deployed numerical methods.
The physical regimes we simulate are in the field of classical mechanics. We are
interested in the motion of fluids and elastic structures. Acoustic waves are a special
case of fluid motion, where small disturbances of the pressure in a compressible
medium are considered.

The collection of solvers we use is a combination of inhouse solvers and open-
source software. The focus is on testing the methodologies of the inhouse solvers
in a complex coupled simulation environment on the one hand and to check the
black-box parallel coupling concept of preCICE on the other hand. The solvers use
sophisticated techniques that make them particularly suited for high performance
simulations. For example, the flow and acoustic solver Ateles uses octree grids
and high order Discontinuous Galerkin (DG) discretizations that are both known
to perform well on massively parallel computers and model version of DG is

1http://www.precice.org
2http://www.openfoam.org/
3University of Siegen, STS

http://www.precice.org
http://www.openfoam.org/

270 D. Blom et al.

predestined for solving linear problem efficiently. FASTEST implements an internal
volume coupling between an incompressible flow and an acoustic perturbation in
order to be able to efficiently use space and time adaptivity corresponding to the
different spatial and temporal scale of flow and acoustics. OpenFOAM and Feap are
widely used open-source solvers, an important class of solvers that preCICE should
be able to handle. In addition, they are used extensively in real-world applications
in two of the authors’ groups.

Whereas the splitting into an elastic structure subdomain and a fluid subdomain
in an application scenario is obvious, the division between flow and acoustics
is more involved: because acoustics is the phenomenon of travelling pressure
waves in fluids, it is ultimately governed by the compressible fluid dynamics
equations. However, only small perturbations in an otherwise constant fluid state are
considered. Moreover, the resolution of all relevant scales for turbulent flows in a
low Mach number regime with the speed of sound would be prohibitively expensive.
Therefore, we suggest a domain splitting into acoustic near field and acoustic far
field. The near field is the domain where acoustic pressure waves are generated by
the fluid flow and, thus, coincides with the flow domain. The far field neglects the
flow and takes into account only the acoustic pressure waves.

For the near field, we use two different approaches: the first approach uses the
fully compressible fluid dynamics equations (using OpenFOAM), the second one
is based on a splitting as, for example, proposed by Hardin and Pope [9]. They
suggest (for comparably small flow velocities) to use an incompressible method for
the calculation of the flow field, from which the acoustic sources can be deduced by
the time derivative of the pressure. These sources can then be fed into an acoustic
solver, which calculates the propagation of the acoustic waves. We have realized
both approaches with the following setups:

(a) compressible flow (OpenFOAM)! acoustic far field (Ateles)
(b) incompressible flow (FASTEST) ! acoustic near field (FASTEST)
! acoustic far field (Ateles)

The arrows define the direction of interaction. In the following, we summarize
first the governing fluid dynamics equations and the two solvers OpenFOAM
(compressible) and FASTEST (incompressible), followed by a section on the
acoustic equations both in the near field (used for approach (a)) and in the far field
(used in approach (a) and (b)). Afterwards, the mechanics of elastic structures and
the respective solvers OpenFOAM and FEAP are recapitulated.

2.1 Fluid Dynamics in the Acoustic Near Field

Fluid flow is governed by the compressible Navier-Stokes equations. These equa-
tions are the conservation of mass

@� f

@t
Cr � �� f v

� D 0 ; (1)

Partitioned FSA Interaction on Distributed Data: Numerical Results and Visualization 271

the balance of momentum

� f

�
@v f

@t
C �r � v f

�
v f

�
D �rpf C � f

�
�v f C 1

3
r.r � v f /

�
C B ; (2)

and the balance of energy

@� f e

@t
Cr � �v f

�
� f eC pf

�� D 0 : (3)

In these equations, v f denotes the velocity field, pf the pressure field, � f the density,
 the kinematic viscosity, B an external force, and e the energy. The assumption of
an ideal gas yields a relation between the pressure pf and the energy e:

pf D � f R T D .� � 1/
�
e � �

fv f � v f

2

�
:

R is the ideal gas constant, T the temperature, and � the isentropic coefficient. For
an incompressible flow, the density is assumed to be constant and the conservation
of mass in Eq. (1) is reduced to

r � v f D 0 : (4)

Equation (3) become redundant in this case and (2) is reduced to

@v f

@t
C .r � v f /v f D �rpf C �v f C B : (5)

2.1.1 OpenFOAM: Compressible Flow Solver

We use the foam-extend-3.1 package4 for compressible flow simulations. It is a fork
of the well known OpenFOAM package.5

foam-extend-3.1 uses second order finite volume discretization in space and
a second order backward differencing time integration scheme. To solve the
Navier-Stokes equations at all speeds, a coupled pressure-based algorithm [4, 5]
is employed. Hence, the continuity and momentum equations are solved in a
fully coupled implicit manner and, thereafter, the energy equation is solved in a
segregated manner.

4http://www.extend-project.de/
5http://www.openfoam.org/

http://www.extend-project.de/
http://www.openfoam.org/

272 D. Blom et al.

2.1.2 FASTEST: Incompressible Flow Solver

FASTEST [6] is a fully conservative finite volume code which is second order
accurate in space and time. The block structured, boundary adjusted grid with free
topology enables the use of an efficient algorithm and the application to moderately
complex geometries.

2.2 Acoustic Wave Propagation

Acoustics can be considered as small perturbations of the flow field. We split the
state variables of the flow into a background state denoted by the subscript 0 and the
acoustic perturbations denoted by the superscript a, accordingly. For the density, we
get � f D �0 C �a, for the velocity vf D v0 C va and for the pressure p D p0 C pa.
Non-linear effects can be neglected for the acoustic perturbations �a; va, and pa.
This leads to the linearized Euler equations given by the linearized equation for the
conservation of mass

@�a

@t
Cr � .v0 �a C �0 va/ D 0 ; (6)

the conservation of the velocity perturbation (neglecting friction)

@va

@t
Cr �

�
v0v

a C 1

�0
pa
�
D 0 (7)

and the conservation of the pressure perturbation

@pa

@t
Cr � .v0pa C � p0 va/ D q : (8)

The background variables �0,v0, p0 are constant variables which define the flow

properties as the speed of sound c D
q

�p0
�0

, with which the acoustic perturbations

are then transported through the far field. q denotes a source term, which generates
the acoustic perturbations.

2.2.1 FASTEST: Acoustic Near Field

In FASTEST, the acoustic solver calculates the wave propagation in the acoustics
near field in an integrated way (volume coupling) based on the incompressible
background flow equations [11]. This integrated solver is based on the approach
of Hardin and Pope [9] with the modifications of Shen and Sørensen [15, 16], which

lead to a set of linearized Euler Eqs. (6), (7), and (8) with source term q D � @p0
@t

Partitioned FSA Interaction on Distributed Data: Numerical Results and Visualization 273

(in this case p0 is the incompressible pressure which is time variant) generating the
acoustic perturbation in the near field. Considering this method, the state variables
�0; v0, and p0 are the incompressible flow variables.

To solve the linearized Euler equations, a finite volume scheme together with
a dimensional splitting approach [18] is employed. For time stepping, an explicit
Euler time discretization scheme is used. The flux computation is realized with a
high resolution scheme that combines an exact Riemann solver and a Lax-Wendroff
scheme with a suitable flux limiter. The details of the method are described in [11].
The internal coupling between the flow field and the acoustic perturbations is
described in Sect. 3.2.

2.2.2 Ateles: Acoustic Far Field

The far field acoustic solver Ateles propagates acoustic waves solving (6), (7),
and (8) based on boundary information provided at the coupling surface between
acoustic near field and acoustic far field. For the far field, the source term q D 0,
since acoustic waves are only propagation and not generated. The flow properties
p0,v0,v0 need to be given similar to the acoustic near field.

Ateles uses a modal high order Discontinuous Galerkin discretization as part of
the APES framework [14]. The Discontinuous Galerkin (DG) method is based on
a polynomial representation within each element and the flux calculation between
elements [10]. Ateles allows for an arbitrary choice of the polynomial degree in the
spatial representation and thus, an arbitrarily high order in space. This allows for a
perfect tailoring to the physics and the computer architecture.

A high order approximation provides a low numerical dissipation and dispersion
and a high accuracy with only few degrees of freedom. For nonlinear systems,
high order implies increased computational costs, but for our linear system a
modal scheme keeps the computational effort per degree of freedom constant
over increased spatial orders and solves them efficiently. Such a discretization is,
therefore, ideally suited for the simulation of the acoustic domain. The APES [14]
framework, in which the solver is included, is designed such to take advantage of
massively parallel systems.

2.3 Structural Dynamics

The configuration of the structure domain is described by the displacement us.
An elastic and compressible structure is assumed. The governing equation in a
Lagrangian description, i.e. with respect to the initial reference state � s, is given
by the balance of momentum

�s
@2us

@t2
D r � �J� sF�T

�C �sg in ˝s ; (9)

274 D. Blom et al.

where the deformation gradient tensorF is defined as F D ICrus, and the Jacobian
J is the determinant of the deformation gradient tensor F. Applying the constitutive
law for the St. Venant-Kirchhoff material, the Cauchy stress tensor � s becomes

� s D 1

J
F .�s .trE/ IC 2�sE/FT (10)

with the Young’s modulus E D 1
2

�
FTF � I

�
, the relation of the shear modulus �s,

and the Poisson’s ratio given in [3].

2.3.1 OpenFOAM: Finite Volume Structure Solver

To facilitate implementation, the structure solver which is implemented within the
foam-extend-3.1 framework, is used in combination with the compressible flow
solver. Here, a finite volume discretization is used. The reader is referred to Cardiff
et al. [3] for further details on the solid mechanics solver.

2.3.2 FEAP: Finite Element Structure Solver

In FSA simulations with FASTEST, the finite element code FEAP [17] is used. The
spatial discretization is based on bilinear enhanced solid elements, and the time
discretization scheme is the Newmark-Beta scheme [13].

3 Coupling

In this section, we describe the coupling between our three involved fields—fluid
flow, elastic structure deformation, and acoustic wave propagation. As already
mentioned above, this includes three coupling interfaces:

1. a surface coupling between structure and acoustic fluid (near field),
2. a surface coupling between acoustic fluid (near field) and acoustic wave propa-

gation (far field),
3. a volume coupling between background flow and acoustic perturbations (near

field).

The latter is realized in a monolithic way in our setup using the compressible
flow solver in OpenFOAM and a software-internal volume coupling in the setup
with FASTEST, respectively. For the two surface couplings, in the first step we
assume that the interaction between near field and far field is unidirectional which
is a feasible assumption also used in traditional approaches like [12] or [9]. An
advantage in using a coupling library is that the interaction can be easily expanded
to be bidirectional. Accordingly, a strong implicit coupling is used only at the

Partitioned FSA Interaction on Distributed Data: Numerical Results and Visualization 275

F F F F

S S S S

C

iterations time step i

F F F F

S S S S

C

iterations time step i+1

C C C C CCC

A A

Fig. 1 Overview of the execution of the fluid–structure–acoustics simulations. Multiple calls to
the fluid and solid solvers are performed, since an implicit coupling is applied for the fluid–
structure interaction problem. A good load balancing can be achieved with the proper number
of CPU cores for the acoustic domain. F: fluid, S: solid, A: acoustics, C: coupling

surface between the elastic structure and the near field whereas the acoustic far
field simulation is executed only once per time step based on the current time step’s
data at the surface between near and far field. See Fig. 1 for an illustration. Thus,
the fluid and structure solvers are executed multiple times per time step, while the
acoustic far field solver is called only once per time step. An optimal load balancing
can be obtained by choosing an appropriate number of CPU cores for each partition
such that solving the acoustic domain takes approximately the same computational
time as all fluid–structure iterations together. Each solver is considered to be black-
box. Hence, only input and output information is accessible for the coupling. In the
following, we describe the realization of the three coupling connections.

3.1 Coupling the Elastic Structure with the Acoustic Fluid

At the surface between the elastic structure and the acoustic fluid, structural dis-
placements/velocities and forces exerted by the fluid on the structure are exchanged
between the two involved solvers. The displacements/velocities are the input of the
flow solver and the output of the structure solver, whereas the forces are the output of
the flow solver and the input for the structure solver (Dirichlet-Neumann coupling).
Therefore, we can shortly write the actions of the fluid solver Ff and the structure
solver Fs at the coupling surface as at each time step the response of the fluid solver
Ff is defined as

y D Ff .x/ and x D Fs .y/ ; (11)

where x denotes the displacement of the fluid–structure interface, and y denotes the
force acting on the fluid–structure interface.

With this given, we can enforce the balance of stresses and the kinematic
boundary conditions

� fn D � sn and v f D vs

276 D. Blom et al.

for the stress tensors � f and � s at the surface between structure and fluid � f s with
the unit normal vector n by solving the staggered or the parallel fixed-point equation

x D Fs ı Ff .x/ or

�
x
y

�
D
�
0 Fs

Ff 0

��
x
y

�
: (12)

The motivation for these fixed-point equations, a further alternative and more
details are described in [19]. The coupling tool preCICE provides several robust and
efficient acceleration methods for the respective fixed-point iterations. Details are
given in “Partitioned Fluid–Structure–Acoustics Interaction on Distributed Data–
Coupling via preCICE”.

3.2 Coupling the Acoustic Near Field with the Far Field

As already introduced, the primitive variables (pressure, density, velocity) at the
interface between near field and far field are transferred (via the coupling tool
preCICE) from near to far field once per time step. This yields a unidirectional
coupling as shown above in Fig. 1.

To avoid non-physical oscillations induced by the coupling, the data mapping
at the coupling interface is crucial. OpenFOAM uses an unstructured mesh in the
fluid domain allowing for a geometry-adapted mesh even for complex geometries.
A mesh deformation technique is used to interpolate the displacement of the fluid–
structure interface into the complete flow field. In the acoustic far field, a structured
octree mesh is used with a high order DG discretization. Thus, the exchange points
at the coupling interface are non-equidistant quadrature points. Hence, coupling the
finite volume OpenFOAM solver with this discontinuous Galerkin solver leads to
non-matching meshes at the interface and an interpolation method is required to
transfer the density, velocities and pressure from one solver to the other. We use
a radial basis function interpolation or nearest neighbor projection (described in
the chapter “Partitioned Fluid–Structure–Acoustics Interaction on Distributed Data–
Coupling via preCICE”) in order to reduce the introduced numerical errors due to
the partitioning as far as possible.

Coupling the implicit second order backward difference time integration scheme
used by OpenFOAM for the compressible flow with an explicit second or fourth
order Runge Kutta scheme used by Ateles for the acoustic far field reduces the
overall accuracy to first order in time. Thus, better combinations of time stepping
schemes and more sophisticated coupling patterns in time are work in progress. In
addition, applying explicit coupling poses time step restrictions for both solvers in
order to achieve a stable integration in the acoustic field.

Partitioned FSA Interaction on Distributed Data: Numerical Results and Visualization 277

3.3 Coupling the Incompressible Flow with Acoustic
Perturbations

As the kinetic energy of the acoustic perturbations is much smaller than the kinetic
energy of the flow, there is only a coupling from the flow field to the acoustics
field. Thus not from the acoustic field to the flow field. The acoustic sources s.pa/
are computed as the time derivative @p0

@t of the incompressible flow pressure and
transferred to the acoustic mesh.

Crucial aspects for the splitting approach are the coupling in time and the choice
of time step sizes and mesh resolutions. Acoustics with an underlying “slow” flow
velocity in a low Mach range, is a multi-scale problem in time as the flow velocity
of an incompressible flow–with a maximum of Ma D 0:3–is much smaller than
the speed of sound c. Using an explicit time discretization scheme for the acoustic
equation, its CFL condition limits the time step size �t by

�t <
�x

c
(13)

depending on the spatial mesh resolution �x. The flow solver with its slower
velocity allows for larger time steps. Because the computation of the flow field is by
far more expensive than the calculation of the acoustic perturbations, the numbers of
flow solver time steps should be as small as possible. Two methods decoupling the
time steps for the incompressible flow and the acoustic perturbations are available
for the integrated flow–acoustics solver:

1. Sub-cycling: N D �ta=�tf acoustic time steps are carried out within one flow
time step and the acoustic sources are only updated after every Nth acoustic time
step.

2. Adapting spatial mesh resolutions: the infrastructure of the geometric multigrid
can be easily used for the restriction to a hierarchical coarsened spatial mesh for
the acoustic perturbations leading correspondingly to a larger time step according
to the CFL condition.

A combination of both leads to a substantial saving in computational time [11].

4 Visualization

In this section, we briefly discuss the visualization developed for the large scale
simulation of fluid–structure–acoustic interactions. To reduce the communication
and IO bottlenecks typical for massively parallel simulations, we employ an
algorithm running in-situ: during the runtime of the simulation, a solver code calls
visualization routines to process the data currently available. It resumes simulation
calculations when the visualization routine call returns presented in Sect. 4.1. This

278 D. Blom et al.

concept is realized by a customized in-situ visualization architecture (Sect. 4.2). It
employs an intermediate volume representation that reduces the amount of data
but still maintains possibilities for user interaction (Sect. 4.3). We finally discuss
in Sect. 4.4 how this representation is generated, stored and utilized for interactive
exploration in the context of our in-situ architecture.

4.1 In-Situ Visualization

In our approach, the pressure data of the flow field determined after a full time
step are used to generate an intermediate, view-dependent representation of the
scalar field. Re-arranging and appropriately quantizing the new representation
with the goal to raise statistical redundancy in the data, allows for an additional
efficient compression of the pressure volume data by a lossless encoding scheme.
Since no internode communication is necessary for this (all visualization steps
are performed utilizing data available locally to a process), the network load is
significantly reduced by only sending the efficiently compressed representation
to a front-end node (instead of the full volume data). This enables an interactive
volume visualization. The reduced representation additionally facilitates storing
the amounts of data produced by an exascale simulation. A secondary goal is
minimization of the impact of in-situ visualization calculations, as not to interfere
with the ongoing simulation. Note that the acoustic domain is not yet considered in
the integrated fluid–structure visualization.

4.2 Simulation–Visualization Setup

Figure 2 gives an overview on the integration of the visualization calculations into
the solver. While the simulation step continuously generates new pressure data, visu-
alization transform converts these volume data into an intermediate visualization
representation of reduced size without or with only minimally compromising output
quality. The reduced representation generated on each node is then sent to a front-
end node which merges all the received data, from which visualization render finally
generates an image. In the following, we shortly describe the basic ingredients of all
these steps.

Simulation The simulation setup used for testing purposes is the bending tower
case as described in Sect. 5.1, running a fluid–structure simulation with OpenFOAM
components for the fluid and the structure solver (omitting the far field acoustics).
In each time step, the simulation yields a three-dimensional scalar field for the
pressure, representing a time-dependent unstructured mesh. At this point, the
visualization algorithm is executed on these data.

Partitioned FSA Interaction on Distributed Data: Numerical Results and Visualization 279

visualization front-end

simulation-visualization node

visualization
transform

library
call

simulation

simulation-visualization node

simulation

si
m

u
la

ti
o

n
 s

et
u

p

vis. transform

visualization
render

ne
tw

or
k

tr
an

sf
er

Fig. 2 The figure shows the embedding of the visualization into the simulation. The data gets
transformed into an intermediate representation before being compressed by the TVDI algorithm
on all simulation nodes. After being transferred and gathered on the front-end, the data from each
node then gets reassembled and can be interactively explored

Visualization transform In transform, we generate an intermediate visualization
representation with a direct interface to the solver. In particular, simulation results
are not duplicated in memory, but the solver’s own data object and access routines
are employed for maximum performance and minimal resource strain. The core
idea of visualization transform is to reduce the data set by partially already pre-
processing the data as required by the chosen visualization method, yet not fully
aggregating data to the final image in order to still maintain some flexibility. In the
variant of the algorithm presented here, we employ a view-dependent representation
that basically consists of volume rendered images in which the rays of a raycasting
algorithm have not been fully composited to yield one resulting pixel color. Instead,
while traversing the volume to gather samples, so-called segments are generated
along the ray. For a detailed explanation on this intermediate representation, see
Sect. 4.3.

Visualization render The visualization representation generated on each node
is transferred to the front-end node where images are rendered, whereas certain
parameters can be varied interactively. In the case of the algorithm presented here,
the user can modify the selected time steps and arbitrary camera parameters. Only
the transfer function used to determine a color from the scalar value is fixed.

4.3 Intermediate Representation: Volumetric Depth Images

Volumetric depth images (VDIs) are a condensed representation for classified
volume data, providing high quality and reducing both render time and data size
considerably. Instead of only saving one color value for each view ray as in standard
images, VDIs store a set of so-called segments, each consisting of a geometry
(depth range) with composited color and opacity. This compact representation
is independent from the representation of the original data and can quickly be

280 D. Blom et al.

Color

Start End
Color

Start End

VDI merge

a) b)

c)

Fig. 3 VDI generation. (a) Raycasting is performed on pressure data. (b) Similar colors are
merged to segments. (c) The list data structure is constructed

generated by a slight modification of existing raycaster codes. VDIs can be rendered
efficiently at high quality with arbitrary camera configurations [8].

VDIs are generated during volumetric raycasting from a certain camera config-
uration by partitioning the samples along view rays according to similarity of the
composited color, providing the additional possibility to skip ‘empty’ regions (see
Fig. 3). These partitions are then stored as lists of so-called segments containing
the bounding depth pair and respective accumulated color and opacity value. This
reduces the amount of data in several ways: similar colors get merged and need to
be stored only once per segment (as opposed to in every cell sampled). Domain
knowledge can already be employed to limit data acquisition to an intuitively
choosable camera frustum. Note that the raycasting is only performed on the data
available to the process; no internode communication is performed.

4.4 Visualization Transform and Render

TVDI generation During the visualization transform stage, a VDI is generated
by sampling the pressure data along viewing rays, which in turn are determined
by a camera position, a view target and a size for the resulting “image” (i.e., the
number of rays) chosen by the user. For each of these rays, the algorithm needs
to traverse the time-dependent unstructured mesh of the simulation, generating the
VDI as explained in Sect. 4.3.

Once the raycaster has completed its calculations, the newly obtained VDI data
from the current time step are compared to the last step for all segments in a
given ray. Considering that flow data typically vary rather smoothly over time,
the segments stored in the current and the previous time steps will show a high
degree of similarity, which can be exploited for compression. The so-called TVDI
(time-clustered VDI) algorithm clusters the segments of a given ray over time by
calculating the changes of VDI segments from the previous time step to the current.
If similarity in color (a user-defined color space metric is employed) is determined,

Partitioned FSA Interaction on Distributed Data: Numerical Results and Visualization 281

the segments get sorted into a so called region, in which all segments have the same
color determined by the initial segment.

Exploiting the coherency between time steps mentioned before, the change in the
segment geometry (starting/ending value) will be small between consecutive time
steps and even constant over a few time steps, since flow pressure data typically
vary approximately linear over a short time.

The changes in the geometry can be easily stored with minimal overhead
(neighbor counts, for details see [7]) and are sufficient to reconstruct all segments at
all time steps. Once a user-defined time step interval is reached, the current regions
constructed in a given simulation node are sent over the network to the front-end
node. An obvious gain is that the color for a time region only needs to be sent and
stored once for all associated segments. Assuming that the geometry changes are
constant (over a short time) and now have an optimal memory layout, we enable a
lossless entropy encoder6 to achieve a better compression, minimizing network load
during data transfer.

Rendering (visualization render) On the front-end node, the regions con-
structed in the previous step are gathered, and the individual VDI representations for
each time step are reconstructed. This is done by incrementally adding the changes
stored for each segment to the previously constructed ones, with the first one having
been stored as an absolute value. Each segment also gets assigned the regions color.
The regions gathered from different processes are all incorporated into the same VDI
data structure, giving a complete representation of each of the time steps within an
output interval. Using the VDIs segment data and the origin and direction of the
ray the segment was constructed from, a small frustum is constructed. Viewed from
the origin of the constructing ray, the front and back square of this frustum exactly
cover the pixel associated with the ray. The position of these frustum caps along the
ray is just the front/end position stored in the segment as is the color. This is done
for all segments in all rays, filling the space with these proxy geometry frustums. A
second raycast, now taken from an arbitrary viewpoint, can then be run on this proxy
geometry, exploiting the hardware acceleration associated with geometry than can
be triangulated. Note that VDIs provide renderings identical to those of the original
data when rendered from the view used for their generation, but provide high-quality
approximations also for deviating views. The error in color stems from merging
several similar segments across time, averaging their color. This error can be easily
controlled by a user-defined threshold, trading quality versus compression rate.

5 The Three-Dimensional Bending Tower Testcase

In this section we present the physical and numerical results of our approach applied
to a scenario involving all three discussed phenomena and their interaction. We have
a look at the scalability of the coupled setup and the resulting solutions.

6http://bzip.org/

http://bzip.org/

282 D. Blom et al.

5.1 Testcase Description

To investigate the suitability of our approach with the coupling by preCICE and
the different solvers for each domain, we use a bending tower as an example.
The setup resembles for example the tower of a wind turbine, is fairly simple to
understand, and includes three-dimensional effects. The tower is modeled with an
elastic material and deforms according to the pressure forces by the surrounding
fluid flow. Our computational setup is shown in Fig. 4. In the acoustic far field
domain, only the propagation of the acoustic values is simulated, in the fluid domain
the flow together with the acoustic perturbation as described in the previous sections.
An overview to the physical parameters for each domain is given in Table 1 along
with the initial conditions.

As already described shortly in Sect. 2, we apply two different sets of black-box
solvers, the comparison of them is work in progress. In set a, OpenFOAM is used for
the structure and for the acoustic fluid, which is considered compressible. For both
regions, a finite volume discretization (2nd order) with a backward differencing time
discretization (2nd order) is chosen. The structure is discretized with 4; 500 control
volumes (CV), and the flow region with 3;095;500 CVs. For set b, the structural
deflection is simulated with the finite element code FEAP, and the flow region
with the finite volume flow solver FASTEST including the integrated finite volume
approach for the acoustics perturbations (see Sect. 2). All discretization schemes
are 2nd order accurate. For a first comparison, the numbers of elements and control

Fig. 4 Setup of our testcase scenario. (a) Domain description for a small near field acoustic fluid
domain including the bending tower (blue) and a 4-fold larger acoustic far field domain on top.
(b) Sketch of the mesh resolution in each domain, showing a matching (fluid–structure) and a non-
matching (near field–far field) coupling interface. For production run, the structure is discretized
with 3;600, the acoustic fluid domain in the near field with approximately 12:5 million control
volumes and the acoustic domain in the far field with approximately 6 million elements of seventh
order

Partitioned FSA Interaction on Distributed Data: Numerical Results and Visualization 283

Table 1 Overview of numerical set up for each domain in the three-dimensional bending tower
testcase

Domain Structure Fluid Acoustics

Material parameters E D 1:4 � 106 � N
m2

�
� D 1:4 � = 1.4

 D 0:4 D 0:01
h
m2

s

i
c = 11.8

�
m
s

�

� D 1000
h

kg
m3

i
R = 1

h
m2

v2K

i
R = 1

h
m2

v2K

i

T = 100 ŒK�

p0 D 100
�

N
m2

�
�0 D 1

h
kg
m3

i

v0 D Œ2:3; 0; 0�
�
m
s

�
Initial condition us D Œ0; 0; 0� Œm� pf D 100

�
N
m2

�
pa D 0

�
N
m

�
� f D 1

h
kg
m3

i
�a D 0

h
kg
m3

i

v f D Œ2:3; 0; 0�
�
m
s

�
va D Œ0; 0; 0�

�
m
s

�
B = 0 ŒN�

T = 100 ŒK�

volumes are chosen similar to those in set a. The pure acoustic domain in the far
field is simulated with the acoustic solver Ateles in the APES framework.

As described in Sect. 3, a bi-directional implicit coupling is used for the fluid–
structure interaction based on a Dirichlet-Neumann coupling. For the near field–far
field interaction, we do one-way explicit coupling and the primitive flow variables
density �, velocity v and pressure p are sent from OpenFOAM to Ateles via preCICE
at the surface of the near field domain.

The derivative terms of the governing equations for the fluid domain are dis-
cretized using standard Gaussian finite volume integration, with linear interpolation
from the cell centres to the cell faces. The same approach is used for the solid
domain.

A relative tolerance of 1:0 � 10�5 is set as a convergence criterion for the fluid–
structure interface fixed-point equation including deviations both in displacement
of the fluid–structure interface and the stresses acting on the interface. When
convergence is reached for both variables, the data of the fluid–acoustics interface
are communicated via preCICE to the acoustic domain and the next time step
starts.

All simulations for the scaling results are done with set a on the IBM DataPlex
machine SuperMUC at the Leibniz Computing Centre (LRZ) in Munich.

284 D. Blom et al.

5.2 Numerical Results

A snapshot of a complete fluid–structure–acoustic interaction simulation, calculated
with set a, is given in Fig. 5. The displacement of the tower structure is monitored
at the center point at the top of the tower, as shown in Fig. 6. The displacement
in x-direction is shown with respect to the initial condition. A periodic motion
is observed for the simulated time span. Further damping of the motion of the
console is expected until a steady state situation is reached. The differences between
set a and set b are caused by the use of periodic boundary conditions in main
flow direction in set a and the use of inflow velocity and zero gradient boundary
conditions in set b. Figure 7 and 8 show the pressure, density, acoustics pressure,
and acoustics density at the monitoring points A (Œ3:2; 0:7; 0:0�), B (Œ3:2; 0:0; 0:8�)
and C (Œ3:2; 0:0; 1:0�) for both sets. The results of set a and set b are quantitatively
in the same range. However, the pressure of the incompressible FASTEST solution
is shifted, as for an incompressible flow solver, the absolute pressure level is not
uniquely defined. Here, the acoustic pressure pa has to be added to the pressure to
get the same values as for the compressible OpenFOAM solution.

5.3 Scaling Results

Figure 9 shows the results for a strong scaling study of the fluid–structure–acoustics
interaction testcase with set a. For this measurement, the fluid comprises 1:5million
cells, the solid domain consists of 2304 cells, and the acoustics mesh has 6144

Fig. 5 Visualization of the pressure contours and Q-criterion of the velocity for the fluid flow of
the three-dimensional bending tower testcase

Partitioned FSA Interaction on Distributed Data: Numerical Results and Visualization 285

(b)(a)

Fig. 6 Displacement of the center point of bending tower in x-direction—comparison of the
results obtained for set a (a) and set b (b). (a) OpenFOAM setup. (b) FASTEST setup

(b)(a)

Fig. 7 Pressure and density at the monitoring points A, B and C for set a with OpenFOAM. (a)
Pressure. (b) Density

(a) (b) (c)

Fig. 8 Pressure, acoustic pressure and acoustic density at the monitoring points A, B and C for
set b with FASTEST. (a) Pressure. (b) Acoustic pressure. (c) Acoustic density

286 D. Blom et al.

Fig. 9 Strong scaling for the fluid–structure–acoustics interaction set a. The number of CPU cores
for the solid and acoustics domain is kept constant at two. The number of CPU cores for the flow
simulation in the near field is increased

elements. The timings of the separate participants, of the initialization and the total
timing are shown in the bar plot. While the number of CPU cores for the solid
and acoustics domain is kept constant, the number of CPU cores for the fluid
domain is increased from 16 to 2048. The fluid solver shows good performance
for up to 512 MPI ranks. The initialization step of preCICE scales well for up
to 64 cores. It includes the initialization of interpolation matrices between the
different participants and the initialization of the socket connections which becomes
more expensive when the number of ranks increases. However, the total runtime
of the preCICE initialization is negligible compared to the total runtime of the
simulation such that the bottleneck in this case is the scalability of the OpenFOAM
compressible flow solver.

Figure 10 shows the results for a weak scaling study for set a. All domains are
uniformly refined in each direction resulting in a factor eight increase in the number
of degrees of freedom with each refinement step. Each CPU core used for the fluid
domain holds approximately 25;000 control volumes and each CPU core used for
the solid domain has 300 control volumes. The acoustics mesh is decomposed into
770 cells per core. It is important to note the poor performance of the initialization
step of preCICE. The initialization does not scale linearly with the number of
degrees of freedom on the fluid–structure and fluid–acoustics interface, and results
in a bottleneck when increasing the domain size even further. The reduction of
this complexity is work in progress. First ideas how to do this are presented in
“Partitioned Fluid–Structure–Acoustics Interaction on Distributed Data: Coupling
via preCICE”.

Figures 9 and 10 show not optimal scaling behaviour. It is a three field coupling
which includes different components. Each individual component has its advantages
and disadvantages. Thus with OpenFOAM it is straightforward to implement a

Partitioned FSA Interaction on Distributed Data: Numerical Results and Visualization 287

Fig. 10 Weak scaling for the fluid–structure–acoustics interaction set a. The number of degrees
of freedom of each domain is increased proportional to the number of CPU cores

fluid–structure–acoustics interaction setup, but scalability is an issue. Other fluid
solvers like Ateles, which is also capable of solving the governing flow equations,
show better scaling results when coupled with preCICE [2], but does not yet include
FSI. In such a complex setup, the disadvantages of one participant carry over to the
complete fluid–structure–acoustics interaction simulation.

5.4 Visualization

To examine the performance of the visualization algorithm, several timing and
data size measurements were taken. To judge the scalability, both a weak and a
strong scaling test were performed for the bending tower testcase. For all tested
configurations the compression ratio of the original data with lossless compressed
TVDI was around 10:1. During the strong scaling test, high processor counts yielded
a reduced compression of around 7:1. This is due to the extremely homogeneous
data as can be seen in Fig. 11. The algorithm produces some minor overhead data
for each process. If the data within a process are very similar (e.g., if there is only
one large region), the overhead exceeds the gain by compression, and is noticeable
in the reduced compression ratio.

The second measurement series took the total runtime of the visualization
library call during the simulation. For all configurations, the relative runtime of the
visualization relative to the simulation runtime was smaller than 1 %, and therefore
achieved the goal of not impacting simulation calculations noticeably. The results
presented in Table 2 show a strong scaling test (times) performed with a problem
size of approximately 1:5 million cells. The weak scaling performance is shown in
the last column denoted by timew, using an appropriately resolved domain, ranging
from 200;000 to 1:5 million cells.

288 D. Blom et al.

Fig. 11 Volume rendering of the pressure field in the near field flow regime of the pressure field
in the bending tower test case. The left image shows an early time step of the pressure field from
the generating view, with a transfer function covering the whole pressure range. The right image
shows the same scenario from a rotated perspective, which adequately represents the data

Table 2 Total time and compression ratio of the complete visualization algorithm per process and
time step, averaged across all processes. The index s refers to strong scaling, w to the weak scaling
test

procs times (ms) timew (ms) Ratios
128 1291 271 10:2

256 691 280 10:4

512 402 312 10:5

1024 291 291 7:3

Judging from the measurements in Table 2, the calculation speed scales very well
with the process count given a fixed problem size. However, for high process counts,
a lot of unnecessary precomputations are done to traverse the data quickly during the
raycast. If the raycasted domain contains too few cells, establishing the accelerating
data structures costs more time than it saves and scaling diminishes.

As is to be expected, the timing stays nearly constant for the weak scaling
test. This is not surprising considering the algorithm works exclusively on locally
available data and does not employ any kind of internode communication. The
variance still visible in the calculations time can be attributed to rather large
fluctuations in storage access times. Note that averaging times across processes
is admissible since the domain decomposition done by OpenFOAM yields evenly
sized subdomains.

6 Conclusion and Outlook

We have shown the setup and numerical as well as scaling results for a complex
fluid–structure–acoustics interaction testcase in a three-dimensional domain. Our
partitioned simulation approach in combination with an efficient in-situ visualiza-
tion has been proven to be highly flexible, efficient and scalable on parallel computer
architectures.

Partitioned FSA Interaction on Distributed Data: Numerical Results and Visualization 289

Using a scalable coupling tool working on distributed data, presented in “Par-
titioned Fluid–Structure–Acoustics Interaction on Distributed Data: Coupling via
preCICE”, gives the benefits to efficiently reuse existing software which is adapted
to the different physics (here OpenFOAM for structure and compressible flow,
FEAP for structure, FASTEST for incompressible flow and acoustic near field,
Ateles for acoustic far field). Using a monolithic approach is not feasible as
resolving the small scales in a large domain would be highly demanding in terms
of wall clock time, memory and efficiency. Exploiting appropriate methods for each
physical discipline, e.g. higher order methods for the acoustic far field, facilitates
such large scale simulations nowadays on supercomputers. Applying a static load-
balancing based on heuristics, computational resources are used efficiently and
the total time to solution is decreased. Certainly, in such a complex setup which
consists of several participants, a bottleneck of one participant overshadows the
whole simulation. Hence, e.g. point-to-point communication between parallel solver
processes in the coupling tool described is indispensable. Further reductions of the
complexity of numerical and initialization steps are work in progress such that also
complex fixed-point acceleration methods and sophisticated data mapping become
scalable on massively parallel architectures.

The comparison of results for simulations using different black-box solvers in
terms of physical results, as well as in terms of compute time and scalability of the
framework, has to be done next. For validation of the results, also experimental data
shall be used.

The algorithm for the presented in-situ visualization features an easily adjustable
and intuitive trade-off between image quality and runtime on a node level basis.
The amount of rays used to perform the raycasting can be adjusted for each process
individually. In addition, time intervals for off-loading a set of time regions can
be of different length. This behavior can be exploited to further optimize the load
balancing of the overall simulation: nodes known to have a high computational load
from the simulation, as for example nodes at the coupling boundary, can run a low
quality version of the algorithm, while internal nodes run the full quality variant.
This way, idle processes can be avoided in favor of a higher accuracy and/or better
compression. The current implementation would also allow for an adaptive quality
adjustment, e.g., based on the idle time remaining during the last step.

Although we showed only the very simple example of a bending tower, the
whole simulation framework comprising the solvers, the coupling tool and the
visualization is prepared for more complex simulations such as wind turbines
or fans. To actually realize such scenarios with realistic results, however, further
numerical tests for easier cases have to be done. Applications with large geometry
changes such as a rotating wind turbine in addition require either a different grid
approach in the flow solver (Eulerian instead of ALE) or the introduction of a second
mesh for the acoustic fluid domain that rotates with the turbine and is coupled
to a surrounding fixed grid. A qualitative phenomenon that can be important in
real-world scenarios where noise propagation in the acoustic far field includes the
sound reflection at obstacles is the coupling of the acoustic far field back to the
acoustic flow domain. We currently only consider a one-way coupling here. For

290 D. Blom et al.

the two-way coupling, preCICE provides a suite of coupling methods (as used for
the fluid–structure interface). However, the correct modeling of coupling conditions
for a two-way coupling still needs to be done. Summarizing, we can state that our
simulation environment provides the technical components for even very complex
simulations. The exact setup, however, has not yet been defined and modeled for
all cases. The advantage over monolithic approaches that obviously offer more
possibilities to taylor the methods for a specific application, is the high flexibility
and generality of our approach.

Acknowledgements The financial support of the priority program 1648 Software for Exas-
cale Computing (www.sppexa.de) of the German Research Foundation and of the Institute
for Advanced Study (www.tum-ias.de) of the Technical University of Munich is thankfully
acknowledged.

References

1. Blom, D.S., Krupp, V., van Zuijlen, A.H., Klimach, H., Roller, S., Bijl, H.: On parallel
scalability aspects of strongly coupled partitioned fluid-structure-acoustics interaction. In: VI
International Conference on Computational Methods for Coupled Problems in Science and
Engineering – COUPLED PROBLEMS 2015 (2015)

2. Bungartz, H.J., Klimach, H., Krupp, V., Lindner, F., Mehl, M., Roller, S., Uekermann, B.:
Fluid-acoustics interaction on massively parallel systems. In: Mehl, M., Bischoff, M., Schäfer,
M. (eds.) International Workshop on Computational Engineering CE 2014. Lecture Notes in
Computational Science and Engineering, pp. 151–165. Springer, Heidelberg/Berlin (2015)

3. Cardiff, P., Karač, A., Ivanković, A.: A large strain finite volume method for orthotropic bodies
with general material orientations. Comput. Method. Appl. Mech. Eng. 268, 318–335 (2014)

4. Darwish, M., Moukalled, F.: A fully coupled Navier-Stokes solver for fluid flow at all speeds.
Numer. Heat Tr A.-Appl. 65(5), 410–444 (2014)

5. Darwish, M., Sraj, I., Moukalled, F.: A coupled finite volume solver for the solution of
incompressible flows on unstructured grids. J. Comput. Phys. 228(1), 180–201 (2009)

6. FASTEST-Manual: Fachgebiet für Numerische Berechnungsverfahren im Maschinenbau,
Technische Universität Darmstadt, 1st edn. (2005)

7. Fernandes, O., Frey, S., Sadlo, F., Ertl, T.: Space-time volumetric depth images for in-
situ visualization. In: Proceedings of IEEE 4th Symposium on Large Data Analysis and
Visualization (LDAV), pp. 59–65 (2014)

8. Frey, S., Sadlo, F., Ertl, T.: Explorable volumetric depth images from raycasting. In: Proceed-
ings of the Conference on Graphics, Patterns and Images, pp. 123–130 (2013)

9. Hardin, J., Pope, D.: An acoustic/viscous splitting technique for computational aeroacoustics.
Theor. Comput. Fluid Dyn. 6, 323–340 (1994)

10. Hesthaven, J.S., Warburton, T.: Nodal Discontinuous Galerkin Methods: Algorithms, Analysis,
and Applications, 1 edn. Springer, New York (2007)

11. Kornhaas, M., Schäfer, M., Sternel, D.: Efficient numerical simulation of aeroacoustics for
low mach number flows interacting with structures. Comput. Mech. 55(6), 1143–1154 (2015).
http://dx.doi.org/10.1007/s00466-014-1114-1

12. Lighthill, M.: On sound generated aerodynamically. I. General theory. Proc. R. Soc. A 211,
564–587 (1952)

13. Newmark, N.M.: A method of computation for structural dynamics. J. Eng. Mech. Div.-Asce.
85(7), 67–94 (1959)

www.sppexa.de
www.tum-ias.de
http://dx.doi.org/10.1007/s00466-014-1114-1

Partitioned FSA Interaction on Distributed Data: Numerical Results and Visualization 291

14. Roller, S., Bernsdorf, J., Klimach, H., Hasert, M., Harlacher, D., Cakircali, M., Zimny, S.,
Masilamani, K., Didinger, L., Zudrop, J.: An adaptable simulation framework based on
a linearized octree. In: Resch, M., Wang, X., Bez, W., Focht, E., Kobayashi, H., Roller,
S. (eds.) High Performance Computing on Vector Systems 2011, pp. 93–105. Springer,
Berlin/Heidelberg (2012)

15. Shen, W.Z., Sørensen, J.N.: Aeroacoustic modelling of low-speed flows. Theor. Comput. Fluid
Dyn. 13, 271–289 (1999)

16. Shen, W., Sørensen, J.: Comment on the aeroacoustic formulation of Hardin and Pope. AIAA
J. 37(1), 141–143 (1999)

17. Taylor, R.L.: FEAP – A Finite Element Analysis Program – Version 7.5 User Manual.
University of California (2003). citeseer.ist.psu.edu/taylor03feap.html

18. Toro, E.F.: Riemann Solvers and Numerical Methods for Fluid Dynamics, 2 edn. Springer,
Berlin/Heidelberg (1999)

19. Uekermann, B., Bungartz, H.J., Gatzhammer, B., Mehl, M.: A parallel, black-box coupling
for fluid-structure interaction. In: Idelsohn, S., Papadrakakis, M., Schrefler, B. (eds.) Compu-
tational Methods for Coupled Problems in Science and Engineering, COUPLED PROBLEMS
2013. Stanta Eulalia, Ibiza (2013). http://congress.cimne.com/coupled2013/proceedings/full/
p559.pdf

citeseer.ist.psu.edu/taylor03feap.html
http://congress.cimne.com/coupled2013/proceedings/full/p559.pdf
http://congress.cimne.com/coupled2013/proceedings/full/p559.pdf

Part VII
ESSEX: Equipping Sparse Solvers

for Exascale

Towards an Exascale Enabled Sparse Solver
Repository

Jonas Thies, Martin Galgon, Faisal Shahzad, Andreas Alvermann,
Moritz Kreutzer, Andreas Pieper, Melven Röhrig-Zöllner, Achim Basermann,
Holger Fehske, Georg Hager, Bruno Lang, and GerhardWellein

Abstract As we approach the exascale computing era, disruptive changes in the
software landscape are required to tackle the challenges posed by manycore CPUs
and accelerators. We discuss the development of a new ‘exascale enabled’ sparse
solver repository (the ESSR) that addresses these challenges—from fundamental
design considerations and development processes to actual implementations of some
prototypical iterative schemes for computing eigenvalues of sparse matrices. Key
features of the ESSR include holistic performance engineering, tight integration
between software layers and mechanisms to mitigate hardware failures.

1 Introduction

It is widely accepted that the step from peta- to exascale is qualitatively different
from previous advances in high performance computing and therefore poses urgent
questions. Considering applications that need these vast computing resources, which
algorithms expose such massive parallelism? What will the next generations of
supercomputers look like, and how can we write sustainable yet efficient software

J. Thies (�) • M. Röhrig-Zöllner • A. Basermann
Simulation and Software Technology, German Aerospace Center (DLR), Köln, Germany
e-mail: Jonas.Thies@DLR.de

M. Galgon • B. Lang
School of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany

A. Alvermann • A. Pieper • H. Fehske
Institute of Physics, University of Greifswald, Greifswald, Germany

M. Kreutzer • F. Shahzad • G. Hager • G. Wellein
Erlangen Regional Computing Center, Friedrich-Alexander-University Erlangen-Nuremberg,
Erlangen, Germany

© Springer International Publishing Switzerland 2016
H.-J. Bungartz et al. (eds.), Software for Exascale Computing – SPPEXA
2013-2015, Lecture Notes in Computational Science and Engineering 113,
DOI 10.1007/978-3-319-40528-5_13

295

mailto:Jonas.Thies@DLR.de

296 J. Thies et al.

for them? The ESSEX project1 has developed the ‘Exascale enabled Sparse Solver
Repository’ (ESSR) over the past three years, and in this paper we want to share
our experiences and summarize our results in order to contribute to answering
these questions. Besides reviewing the ESSEX project, the paper contributes a
thorough presentation of a software architecture for iterative sparse solver libraries
on heterogeneous supercomputers that overcomes some of the shortcomings of
existing packages on the road to exascale.

The applications we study come from quantum physics and material science,
and are directly or indirectly related to solving the Schrödinger equation. The
Hamiltonian of the systems studied can be represented as a (very) large and sparse
matrix, and the numerical task is to solve sparse eigenvalue problems in various
flavors. The software we develop is intended as a blueprint for other applications of
sparse linear algebra.

In the next few years, we expect no radical change in the architecture of
supercomputers, so that a scaled up version of current petascale systems is used as
target architecture for the ESSR. That is, a distributed memory cluster of (possibly
heterogeneous) nodes. On the other hand, node-level programming will become
much more challenging because of the strong increase in node level parallelism
and complexity.2 Due to the increasing node count, we do anticipate a much shorter
mean time to failure (MTTF) on the full system scale, which has to be addressed for
large simulations using substantial parts of an exascale system.

A key challenge in the efficient implementation of sparse matrix algorithms is
the ‘bandwidth bottleneck’, the fact that in most modern architectures the amount of
data that can be loaded per floating point operation is continually decreasing. To hide
this gap, cache systems of increasing complexity and non-uniform cache/memory
hierarchies are used. Another issue is the relative increase of the latency of
global reduction/synchronization operations, which are central to many numerical
schemes. In the ESSR we address these problems using block algorithms with
tailored kernels (see also [27]) and communication hiding.

Three overarching principles guide the design of the ESSR: disruptive changes
of data structures for node-level efficiency, holistic performance engineering to
avoid accumulation of losses on various hardware or software levels, and user-level
fault tolerance schemes to keep the overhead for guaranteeing stable runs as low as
possible.

The various layers of the ESSR (application, algorithms and building blocks)
were co-developed ‘from scratch’ within the past three years. This rapid process
was only possible with a comprehensive software engineering approach, which we
will describe in this paper. We use the term ‘repository’ rather than ‘library’ because
of the young age of our effort. In the future, the ESSR components will be integrated

1Equipping Sparse Solvers for the Exascale, http://blogs.fau.de/essex, funded by the priority
program “Software for Exascale Computing” (SPPEXA) of the German Research Foundation
(DFG)
2see, e.g., https://www.olcf.ornl.gov/summit/

http://blogs.fau.de/essex
https://www.olcf.ornl.gov/summit/

Towards an Exascale Enabled Sparse Solver Repository 297

to form a complete software stack for extreme scale sparse eigenvalue computations
and applications.

Related work A large number of decisions has to be made when designing basic
linear algebra data structures such as classes for sparse matrices, (block) vectors or
dense matrices. On the other hand, iterative algorithms may remain largely oblivious
of these implementation details (e.g. the storage scheme for sparse matrices, the
parallelization techniques used). In the past, iterative solver libraries were therefore
often based on reverse communication interfaces (RCI, see, e.g., (P)ARPACK [30]
or FEAST [32]), or simple callback functions that allowed the user only to provide
the result of a matrix–vector product and possibly a preconditioning operation (as
in PRIMME [42]). In such approaches, the user is bound to the parallelization
technique prescribed by the solver library (i.e. pure MPI in the examples above),
and the solver library can not exploit techniques like kernel fusion or overlapping of
communication and computation across operations. Another library implementing
sparse eigenvalue solvers is SLEPc [17]. Here the user has to adapt to the data
structures of the larger software framework PETSc [3].

A more flexible approach is the concept of an interface layer in the Trilinos
library Anasazi [2]. Solvers in this C++ library are templated on scalar data type
and the ‘multi-vector’ and operator types. For each kernel library providing these
objects, an ‘adapter’ has to be written. Apart from the operator application (which
may wrap a sparse matrix–vector product), the kernel library implements a multi-
vector class with certain functionality. For an overview of Trilinos, see [18, 19].
Our own approach is to use an interface layer which is slightly more extensive
than the one in Anasazi, but puts less constraints on the underlying data structures
(see Sect. 3.4).

The predicted range of MTTF for exascale machines (between hours and min-
utes [5]) necessitates the inclusion of fault tolerance capabilities in our applications,
as they fall in the category of long running large jobs. The program can face various
failures during its run, e.g. hardware faults, soft errors, Byzantine failures, software
bugs, etc. [21]. According to [8], a large fraction of failures can be attributed to CPU
and memory related issues which eventually lead to complete process failures. Such
failures define the fault tolerance scope in this work.

Document structure We start out by describing the basic software architecture
of the ESSR in Sect. 2, and a process that allows the concurrent development of
sparse solvers and the building blocks they need to achieve optimal performance.
Section 3 gives an overview of the software components available in the ESSR.
In Sect. 4, three classes of algorithms studied in the ESSEX project are briefly
discussed. The objective here is neither to present new algorithmic features or
performance results, nor to study any particular application. Instead, we want to
summarize the optimization techniques and implementation details we identified
while developing these solvers. The fault tolerance capabilities explored in our
applications are described in Sect. 5. Section 6 summarizes the paper and gives an
outlook on future developments surrounding the ESSR.

298 J. Thies et al.

2 ESSR Architecture and Development Process

It is a substantial effort to implement a scalable sparse solver library ‘from scratch’.
In this section we describe the architecture and development cycle of a set of tightly
integrated software layers, that together form the ‘Exascale enabled Sparse Solver
Repository’, ESSR. The actual implementation in terms of software packages is
detailed further in Sect. 3.

2.1 Software Architecture

The ESSR consists of the following main parts, depicted in Fig. 1: an application
layer, the computational core and a vertical integration pillar. An optional precondi-
tioner can be used for better convergence. A final part is an extensive test suite, not
shown here.

The computational core (or kernel library) has the task of providing highly
optimized implementations of the kernels required by the algorithms and applica-
tions we study. It hides implementation details such as SIMD instructions, NUMA
aware memory management and MPI communication from the other layers. It is
a ‘component’ in the sense that it could be replaced by another implementation if
the software is ported to radically different hardware, or if new applications with
different requirements come up. The basic data structures it provides are classes for
sparse matrices (sparseMats), tall and very skinny matrices (or ‘multi-vectors’,
mVecs) and small and dense matrices (sdMats).

application
vertical integration

algorithms

preconditionerspreconditioners

computational corecomputational core

«abstraction»

eigenproblem

setup/apply

sparseMat mVec sdMat

solver templates

FT strategies

algo core

«interface»
kernel interface ho

lis
ti
c
pe
rf
or
m
an

ce
en
gi
ne
er
in
g

C wrapper

adapter

Fig. 1 ESSR software architecture

Towards an Exascale Enabled Sparse Solver Repository 299

The vertical integration pillar is based on a clear interface to the computational
core, subsequently referred to as ‘kernel interface’. It defines the basic data
structures and operations that the computational core has to provide. The ‘algo core’
layer implements common functionality useful for various high level algorithms.
Examples include block orthogonalization, evaluating matrix polynomials and
extracting Ritz values from a subspace. On top of the kernel interface and core
functionality, iterative algorithms are implemented. Fault tolerance strategies are
built into algorithms, and common concepts here are again implemented in the
algorithmic core layer. The vertical integration pillar is designed to enable holistic
performance engineering, as will be discussed below.

The application layer defines an eigenvalue problem and uses an algorithm to
solve it. To set up the problem and pre-/postprocess the results, it may either use the
simplified kernel interface or the full functionality of the computational core library.
While the vertical pillar is connected to the computational core only via a clear
interface, the degree to which an application can use another kernel library depends
on its implementation and need for specific preconditioners and pre-/postprocessing.
Simple applications that only need matrix/vector construction (or I/O) and standard
operations can stay independent of the underlying implementation by using the
kernel interface as the lowest level.

Preconditioners may be used to accelerate the solution of linear systems arising in
an eigenvalue computation. These may either be algebraic schemes using the data
structures of the kernel library, or ‘physics-based’ techniques that exploit specific
knowledge of the problem at hand, like a mesh or spectral information. Third-party
or own preconditioning software can easily be incorporated because the interface
requires only two functions for setting up and applying the preconditioner.

Tightly connected to the vertical pillar is an extensive test framework (cf.
Sect. 3.6), with a continuous integration process to ensure software quality. The
largest number of tests targets the computational core, through the kernel interface.
The algorithmic core is tested using synthetic cases (integration tests), and system
tests (numerical test cases for the algorithm layer) are provided by matrix collec-
tions/generators and the application layer.

2.2 Concurrent Development of all Layers

The introduction of the kernel interface enables the use of established libraries while
developing/implementing iterative methods. The core layers can thus be developed
in parallel to the algorithms layer. The kernels required are defined dynamically
during the development process and implemented in a test-driven process in the
computational core, see Fig. 2. In a similar workflow, common functionality used
in several solvers is identified and abstracted into the ‘algo core’ layer, where
a numerically robust and fully optimized implementation is brought forth while
algorithm development continues at a higher level. An example is the development

300 J. Thies et al.

Algorithms

Comp. Core

implement
template

missing
kernels

add
unit tests

optimize
numerics

new algorithm

add
robust
kernels

implement
optimized
version

evaluate
overall

performance

application
established kernel library
optimized kernel library

Fig. 2 Test-driven co-development of optimized algorithms in the ESSR

of a communication optimal and robust block orthogonalization scheme while
implementing block Jacobi-Davidson (Sect. 4.3) based on a simple yet robust
(iterated) modified Gram-Schmidt process.

2.3 Integration of Performance Engineering

While developing an iterative solver, all performance critical operations are iden-
tified and added to the kernel interface. As the number of relevant kernels is
moderate, a combination of performance models and dedicated benchmarks can
be used to ensure their near optimal performance. Many of these operations (such
as the sparse matrix-vector multiplication, spMVM, or operations on mVecs), are
bounded by the main memory bandwidth, such that the roofline model [49] gives a
good indication of the quality of the implementation. To understand the performance
of a complete algorithm, code instrumentation for performance analysis tools is
used. This may reveal, e.g., overhead of thread synchronization or effects of non-
uniform memory access (NUMA) which may not occur in isolated benchmarks.
More details on how this concept is implemented can be found in Sect. 3.6.

Our primary focus here is node-level performance. The changes in CPU architec-
ture are currently more dramatic than those concerning node interconnection, and
any losses at the node level scale with the number of nodes in a supercomputer.

2.4 Fault Tolerance Strategy

The strategy followed in the ESSR to achieve fault tolerance w.r.t. hardware failures
can be classified as an application-level checkpoint/restart (C/R) method. In this
approach, algorithm-specific knowledge is exploited to store the minimum amount

Towards an Exascale Enabled Sparse Solver Repository 301

of data needed for restarting the computation. A highly optimized implementation
of this approach (using e.g. asynchronous checkpointing and neighbor-level
checkpoints) promises a low overhead for our long running iterative schemes
on many nodes.

Due to the early development stage of fault tolerant communication libraries [29],
our strategy is to evaluate various technical solutions in simple use cases before
condensing them into a common feature of the ESSR solvers and applications in the
‘algo core’ layer. Section 5 gives an overview of our work in this area.

3 ESSR Software Landscape

The conceptual design discussed in the previous section is implemented in a
collection of compatible software packages, which are publicly accessible under
a BSD open source license.3 Before discussing the software structure further, we
will comment on the target computer architecture for the software.

3.1 Hardware and Execution Models Supported

Exascale computers are not available to date, and a competitive ‘race of flops’
is going on to develop this new generation of supercomputers. Based on the
developments in the TOP500 list [45] over the past few years, we decided to develop
software targeting machines that consist of many nodes with distributed memory. A
node features several multi- or manycore CPUs with non uniform access to caches
and main memory, and ‘accelerator’ hardware, e.g. multiple GPUs. At the lowest
level, data parallelism is exploited by the hardware through SIMD/SIMT like tech-
niques, compelling choices in data structures and low level implementation. Typical
sparse matrix algorithms will continue to be memory-bound on these devices.

In this environment we employ the following execution model. Numerical
algorithms are implemented as a sequence of function calls, executed transparently
on a parallel heterogeneous machine (SPMD model). A distributed memory com-
munication protocol (e.g. MPI) is used between processes running on complete
nodes or parts of nodes of the cluster. Within a function we allow arbitrary
multithreading techniques for flexible node utilization. The execution of functions
may be interleaved using ‘tasks’ which use only a part of the resources available
to the process. Data transfers between host CPU and accelerator devices must be
handled explicitly by the computational algorithm between function calls where
necessary (the underlying kernels do not ‘know’ if the CPU or device memory is up
to date).

3see http://bitbucket.org/essex

http://bitbucket.org/essex

302 J. Thies et al.

3.2 ESSR Toolkits and Functionality

The ESSR is implemented in a number of co-developed software packages, also
called toolkits. These toolkits do not necessarily implement one part of the architec-
ture (Fig. 1) each. Rather, each partner in the ESSEX project has the responsibility
for one of the toolkits, whereas the responsibility for the conceptual ESSR parts
may be shared among several project partners. In the future, the repository will
evolve into a set of libraries providing state-of-the-art, highly scalable and fault
tolerant eigensolvers. This may lead to a redistribution of functionality according to
the architecture depicted in Fig. 1.

The four toolkits are briefly characterized as follows:

• ESSEX-Physics, a quantum physics toolkit defining applications that we want
to solve using the ESSR. It provides scalable sparse matrices from real-world
applications and polynomial eigensolvers (see Sects. 3.3 and 4.1).

• GHOST (General, Hybrid and Optimized Sparse Toolkit) implements basic
building blocks with a focus on optimal performance on heterogeneous super-
computers. This design goal is achieved by consequent application of perfor-
mance engineering techniques. GHOST implements the ‘computational core’ of
the ESSR in single or double precision, and in real or complex arithmetic [27, 28].

• PHIST (Pipelined Hybrid-parallel Iterative Solver Toolkit) implements the verti-
cal integration pillar of Fig. 1, and adapters for several kernel libraries. It also
hosts the test framework, and contributes Jacobi-Davidson type eigensolvers
and Krylov methods for linear systems to the algorithms layer. To provide a
more diverse spectrum of methods, we also included adapters for GHOST to
the Trilinos libraries Anasazi and Belos.

• BEAST (Beyond fEAST) extends the algorithms layer of the ESSR by innovative
projection-based eigensolvers which take up the idea of the contour integration-
based FEAST method [32] (see Sect. 4.2).

We will now describe some of the features of the ESSR, with references to the
toolkit where they can be found. The eigensolvers are described in more detail in
Sect. 4.

3.3 Applications

Following the overall philosophy of the SPPEXA priority program,4 our develop-
ment of the ESSR components is closely guided by—but not restricted to—the
intended application range in quantum physics and chemistry. Three different types
of eigenvalue problems arise for the large sparse symmetric (or Hermitian) matrices

4see http://www.sppexa.de/

http://www.sppexa.de/

Towards an Exascale Enabled Sparse Solver Repository 303

derived from the Schrödinger equation. The study of equilibrium properties, e.g.,
of the electronic states in a certain material, requires computation of either a few
extremal eigenvalues (of the order 10–100) or many interior eigenvalues (100–1000)
with the Jacobi-Davidson algorithm or BEAST, respectively. On the other hand,
effectively all the eigenvalues contribute to the dynamic properties of highly excited
or driven systems out of equilibrium, and expansion techniques such as the kernel
polynomial method (KPM) and Chebyshev time propagation (ChebTP) come into
play. These algorithms and their implementation are briefly discussed in Sect. 4.
Thus, our target applications require solution of the entire range of large sparse
symmetric eigenvalue problems.

Similarly, a variety of matrices occur in the applications: while stencil- and
band-like matrices are characteristic for graphene and topological insulators, the
tensor structure of quantum mechanical Hilbert space leads to intricate sparsity
patterns with long thin subdiagonals or scattered small subblocks for correlated
many-particle quantum systems. Also, spectral properties of the matrices differ
widely, which allows for algorithmic developments and thorough testing without
losing contact to the real application. For example, the appearance of a pseudo-
gap in the density of states for topological insulators can be exploited for interior
eigenvalue computations with polynomial filter functions [31]. Scalable matrix
generation routines are included in the ESSEX-Physics library for correlated many-
particle systems and new topological materials, all of which are research problems
of current interest.

3.4 Kernel Interface

The algorithms summarized in Sect. 4 can be implemented with the three basic data
structures introduced in Sect. 2, sparseMats, mVecs and sdMats. To maintain
flexibility, we added a fourth, an abstract linear operator type (linearOp), which
may be used to provide, e.g., preconditioning techniques or implement matrix-free
methods. Inspired by the Petra object model employed by Trilinos [18], we also
abstracted data distribution into a map object and inter-process communication into
a comm object. Another Petra concept that is useful when implementing iterative
solvers is a ‘view’ of (part of) an mVec or sdMat. A view is a light-weight object
that only has meta data and provides (read and/or write) access to the elements of the
‘viewed’ object without copying them. Thus it is, e.g., possible to apply an operator
or sparse matrix to selected columns of an mVec.

As mentioned in Sect. 1, the Anasazi interface layer resolves the problems of
earlier techniques by allowing the sparse matrix and block vector implementations
to be co-designed with matching parallelization techniques and data layouts. We
adapted this idea to our needs, in PHIST, with the following main differences:

C interface Having to provide a C++ adapter may be a hassle for e.g. Fortran
programmers. We restrict ourselves to four scalar data types (ST), single or double,
real or complex, which can be implemented optionally. For each ST, a set of plain

304 J. Thies et al.

C functions has to be provided, which accept objects as void pointers. Errors
and flags are passed via the last (int*) argument, similar to the MPI interface.
This minimalistic interface allows maximum flexibility for users of PHIST and
providers of kernel libraries alike. The lack of type safety introduced by passing
around objects as void* is alleviated by the test framework discussed in Sect. 3.6.

sdMat We require the kernel library to provide this object to increase flexibility.
For instance, an sdMat may be replicated on host CPU and GPU, or it may be
stored in higher precision to increase the numerical stability of reduction operations.

View concepts Allowing custom sdMats, we also require views of contiguous
rows and columns in an sdMat. On the other hand, we only require views of
contiguous and increasing columns of an mVec. This makes it easier to implement
mVecs in row-major ordering for better performance [36]. Strided memory access
leads to a significant performance penalty in that case, and restricting the interface
therefore gives more uniform performance of the view objects supported.

Explicit data transfers for accelerators For compute platforms that have both a
host processor and one or more accelerators, we support the data parallel execution
model implemented in GHOST [28]. At least one MPI process is used for each
component of a heterogeneous node, and a ‘GPU process’ has a management thread
running on the host CPU. Special kernel interface functions exist to transfer the data
of sdMats between host and device.

3.5 Computational Core

The mathematical simplicity of the objects and functions required by the kernel
interface is misleading. Let us consider the operation C D VTW;C 2 Rm�k;V 2
Rn�m;W 2 Rn�k. If this operation is implemented using OpenMP inside each
MPI process and Intel(R) AVX SIMD instructions, the data in the objects must be
contiguous, correctly aligned and padded, which may not be the case if V;W and/or
C are views of some parts of larger objects. The reduction operation must produce
consistent results on all MPI processes, and if accelerators like GPUs are involved,
data transfers must be managed explicitly. The constraints on data layout also hold
for efficient GPU processing. All of these complexities are hidden in the ESSR
library GHOST [28]. Automatically generated kernels are selected dynamically
depending on data alignment, block size and CPU type. Shared memory parallelism
on CPUs and the Intel(R) Xeon Phi is implemented using OpenMP, and Nvidia
GPUs are supported by providing optimized CUDA kernels.

Another important component of GHOST is a lightweight, general purpose
tasking mechanism that plays well within the standard data parallel execution
model of ‘MPI+X’. It is used in the ESSR for overlapping communication with
computation, asynchronous checkpointing, etc. The PHIST library provides macros
to simplify the use of this tool when implementing an algorithm.

Towards an Exascale Enabled Sparse Solver Repository 305

Apart from GHOST, PHIST currently has adapters for the Trilinos libraries
Epetra and Tpetra. Builtin Fortran/C99 kernels make PHIST self-contained in
principle and are used for performance engineered prototypes of functionality not
yet available in GHOST.

3.6 Verifying Software Correctness and Performance

Correctness tests The number of possible execution paths in GHOST is huge,
because it uses automatically generated high-end kernels for fixed block sizes,
allows mixing of row- and column-major dense matrices and real and complex
arithmetic, etc. In order to keep the effort of testing the building blocks in ESSEX at
a reasonable level, we therefore restrict ourselves to testing via the kernel interface.

The test framework in PHIST is based on Google Test,5 with modifications to
ensure correct behavior in a hybrid parallel setting with MPI+X. These modifica-
tions include broadcasting test errors to all MPI processes and assertions to verify
that certain data is identical on all processes. The main point here is to decide what
type of errors the tests should be able to detect, and under which conditions they
should work correctly. For example, some communication errors with MPI cannot
be detected by the test framework as it relies on MPI itself. Here one may run the
tests in simplified settings (single/multiple thread(s), single/multiple MPI rank(s),
GPU only etc.) to test each layer of parallelism separately. Various tools can support
this kind of testing, e.g., the thread and address sanitizer included in recent versions
of GCC,6 the MPI checker MUST 7 or CUDA-MEMCHECK.8

Tests are automatically generated from single source files for different block
sizes, vector lengths, and data types, and for views and standard objects where
appropriate. They are executed in nightly builds for different configurations, which
leads to a total of currently about 80,000 tests for each kernel library, compiler and
MPI version tested. We use the continuous integration tool Jenkins9 to obtain an
overview of the results. Comparison with the comparatively stable Epetra and Tpetra
implementations increases the confidence in the correctness of the tests themselves.

Performance testing Our adapters for the kernel interface and the functions of the
core and algorithmic layers are instrumented to provide timing information and/or
markers for the Likwid performance monitoring tool [46]. Another option that can
be turned on at compile time is to include a simple performance model for memory
bounded kernels. In this case, a small benchmark of the memory bandwidth is

5https://github.com/google/googletest
6https://github.org/google/sanitizers
7https://doc.itc.rwth-aachen.de/display/CCP/Project+MUST
8http://docs.nvidia.com/cuda/cuda-memcheck/
9https://jenkins-ci.org

https://github.com/google/googletest
https://github.org/google/sanitizers
https://doc.itc.rwth-aachen.de/display/CCP/Project+MUST
http://docs.nvidia.com/cuda/cuda-memcheck/
https://jenkins-ci.org

306 J. Thies et al.

run and the percentage of the roofline [49] performance achieved by each kernel
function is printed at the end of a run.

There are two ‘modes’ of performance testing: one incorporates the actual data
layout in memory and thus helps to verify that the underlying kernel library achieves
the predicted performance for each operation, whether it involves views or not. The
other mode only considers the amount of data. This reveals possible performance
flaws in the design or implementation of algorithms. For example, if the main
operations are performed with a single column view of a row major multi-vector
of block size 2, less than 50 % of the roofline performance may be achieved on
cache-based architectures.

4 Algorithms Implemented in the ESSR

In this section we want to give a broad overview of the algorithms studied in the
ESSEX project, and summarize the lessons learned while developing their highly
optimized implementations in the ESSR. For more details, numerical experiments
and performance results on massively parallel systems, we refer to the publications
cited below.

4.1 Algorithms Based on Chebyshev Polynomials

Algorithms based on the evaluation of polynomial matrix functions are a basic
ESSR component. They are represented by the kernel polynomial method
(KPM) [48] for spectral functions and eigenvalue densities, Chebyshev time
propagation (ChebTP) [44, 47] for matrix exponentials expŒtA�, and Chebyshev
filter diagonalization (ChebFD) [31] for the computation of interior eigenvalues.
The latter is available through the BEAST-P variant, see Sect. 4.2.

In contrast to, e.g., sparse factorizations or preconditioning that require explicit
access to the matrix elements, polynomial algorithms address the matrix in question
only through spMVM. Therefore, they are well-suited for situations where the
former techniques do not work, or where the matrix is not stored explicitly but only
constructed ‘on-the-fly’ in the spMVM routine. While from the mathematical point
of view polynomial algorithms are inferior to algorithms based on rational matrix
functions, they are often the only alternative for extremely large matrices.

The common idea behind KPM, ChebTP, and ChebFD is the expansion of
a function f .z/ D P1

nD0 cnpn.z/ into a series of polynomials pn.z/, especially
the Chebyshev polynomials Tn.z/ which are often the most favorable choice for
numerical algorithms. The algorithms come in two variants: KPM computes the
expansion coefficients cn from scalar products hy; pnŒA�xi in order to (re-)construct
the function f .z/, e.g., the eigenvalue density, while ChebTP and ChebFD use
given coefficients cn to accumulate a result vector y D P

n cnpnŒA�x, either for

Towards an Exascale Enabled Sparse Solver Repository 307

Algorithm 1 Polynomial matrix function evaluation

1 for k D 1 to M do F First two recurrence steps
2 uk D ˛1.AC ˇ1�/xk F spmv()
3 wk D ˛2.AC ˇ2�/uk C �2xk F spmv()
4 xk D c0xk C c1uk C c2wk F axpy & scal (ChebTP, ChebFD)
5 c

.k/
0 D hy; xki, c.k/1 D hy; uki, c.k/2 D hy;wki F dot or gemm (KPM)

6 for n D 3 to N do F Remaining recurrence steps
7 for k D 1 to M do
8 swap.wk; uk/ F swap pointers
9 wk D ˛n.AC ˇn�/uk C �nwk F spmv()

10 xk D xk C cnwk F axpy (ChebTP, ChebFD)
11 c.k/n D hy;wki F dot or gemm (KPM)

the matrix exponential y D expŒtA�x (ChebTP) or a subspace projection y D Px
(ChebFD). An important idea from approximation theory that features both in KPM
and ChebFD is the use of so-called kernel polynomials to improve convergence of
the expansion [22, 31, 48].

To achieve high execution speed with minimal memory requirements, the
polynomials pn.z/ are computed from a two term recurrence

xnC1 D ˛n.AC ˇn�/xn C �nxn�1 (1)

for the vectors xn D pnŒA�x, which gives the algorithmic core in Algorithm 1 of
KPM, ChebTP, and ChebFD. Depending on which operations are used in lines 4/5
and 10/11, it serves two different purposes: replace xk by f ŒA�xk (lines 4,10), or
compute moments fc.k/n g (lines 5,11). Algorithm 1 computes the polynomials pnŒA�xk
for several vectors x1; : : : ; xM simultaneously, as required in KPM and ChebFD. In
addition to spMVM it uses only BLAS-1 vector operations within the two loops
over k (vector index) and n (polynomial degree). Owing to this simplicity, the algo-
rithmic core allows for effective performance engineering through straightforward
optimizations such as loop-fusion. A particularly rewarding step is the combination
of the individual spMVMs for k D 1; : : : ;M into spMMVMs on block vectors,
which improves cache utilization due to less erratic memory access patterns. Row-
major storage of mVecs (as implemented in GHOST) is the key to reaping the
full benefits of this optimization [25, 31]. With such node-level optimizations one
can achieve decoupling of the algorithmic core performance from main memory
bandwidth on modern CPU systems. Then, the overall performance depends only
on the distributed sp(M)MVMs, i.e., is bounded by the inter-node communication
bandwidth and latency.

Notice that Algorithm 1 has no internal synchronization points, because neither
the dot products in lines 5/11 nor the vectors accumulated in lines 4/10 are used in
the following iteration steps. Global synchronization can be delayed until after the
execution of the entire algorithmic core, and thus does not affect scalability.

308 J. Thies et al.

Apart from KPM, Algorithm 1 is normally executed repeatedly. In ChebTP
intermediate computations between different executions usually consist of a few
xDOT operations, and can be delegated to separate tasks. The results are not needed
in the next iterations, and (global) synchronization still is not required. In ChebFD,
however, vectors have to be orthogonalized between subsequent executions of the
algorithmic core. We use communication-avoiding techniques such as TSQR [6] or
SVQB [43] to mitigate the ensuing adverse effects on performance.

The potential of the ESSR implementations of KPM, ChebTP, and ChebFD
was demonstrated in a series of papers [1, 25, 31]. With the fully heterogeneous
CPU-GPU implementation of KPM [25] we computed the density of states of a
matrix with dimension D D 6:5 � 109 on 1024 hybrid nodes of the Piz Daint
supercomputer.10 Performance engineering resulted in a speedup of 3–5 at the single
node level [1]. Recently, these computations were extended to 4096 nodes (D D
1010) and achieved 0.5 Pflop/s sustained performance [26], which corresponds to
11% of LINPACK efficiency. With the ChebFD implementation we could compute
the 148 innermost eigenvalues of a matrix with dimensionD D 109, using 512 nodes
of SuperMUC11 at 40 Tflop/s sustained performance [31]. With the full SuperMUC
phase 2 we will be able to obtain inner eigenvalues for matrix dimensions 1010, at
an expected sustained performance level of 250 Tflop/s.

The only remaining bottleneck for our polynomial algorithms is the perfor-
mance of the distributed sp(M)MVMs. In many quantum physics applications
(see Sect. 3.3) the inter-node communication volume grows strongly with matrix
dimension, and reduction of communication is the most crucial issue for scalability.
For stencil type matrices, techniques such as octree ordering are used [36]. For
more complex sparsity patterns, GHOST allows sparse matrix repartitioning by PT-
Scotch [34]. Future versions of the ESSR will include scalable matrix reordering
techniques tailored to the application matrices.

4.2 Beyond FEAST: Projection Based Methods

Consider the (generalized) eigenvalue problem AX D �BX. FEAST [32] is a
subspace iteration method to compute all eigenvalues inside a user-defined interval
I�, and their corresponding eigenvectors. In each step, a size-m search space Y is
projected approximately onto the desired invariant subspace, and a Rayleigh-Ritz
procedure is used to compute approximate eigenpairs. The computed eigenvectors
serve as the new refined search space and the scheme is iterated until convergence.
The projection is achieved by (numerical) integration of the resolvent .zB � A/�1B
over a contour in the complex plane that encloses I�, but no other eigenvalues of
.A;B/; see [32] for more details and [33] for recent variants. The ESSEX project

10http://www.cscs.ch/computers/pizdaint/index.html
11https://www.lrz.de/services/compute/supermuc/

http://www.cscs.ch/computers/piz daint/index.html
https://www.lrz.de/services/compute/supermuc/

Towards an Exascale Enabled Sparse Solver Repository 309

Algorithm 2 Basic BEAST projection-based eigensolver
Input: Interval I�, Matrix pair A;B 2 CN�N

Output: Om eigenpairs .X; �/ in I�
1 Estimate Qm
 Om, choose random Y 2 CN�m of rank m > Qm
2 while not Qm pairs converged do
3 Compute U D PY with suitable projector P D PI� .A;B/
4 Compute Rayleigh quotients AU D U�AU and BU D U�BU
5 Update estimate Qm of Om and adjust m > Qm
6 Solve EVP AUW D BUW�
7 X UW
8 Orthogonalize X against locked vectors and lock newly converged vectors
9 Y BX

has contributed to improving FEAST in two ways: by proposing techniques for
solving or avoiding the linear systems that arise, and by improving robustness and
performance of the algorithmic scheme.

Linear systems Our intended use of the FEAST adaptations in BEAST is comput-
ing up to 1 000 interior eigenpairs of very large and sparse Hermitian matrices. This
use case is not well-supported by other FEAST implementations as they typically
rely on direct sparse solvers for the linear systems that arise. We use two strategies
to overcome this problem: (i) a robust and scalable iterative solver for the linear
systems in contour integration-based BEAST (BEAST-C, [12]), and (ii) use of
polynomial approximation as an alternative to contour integration (BEAST-P, [13]).
A rough layout of algorithmic key steps in BEAST is presented in Algorithm 2;
see [13] for a more detailed formulation.

The linear systems arising in BEAST-C have the form .zB � A/X D F, with
a possibly large number of right-hand sides F. The complex shifts z get very
close to the spectrum, making these systems very ill-conditioned. For interior
eigenvalue computations, the system matrix also becomes completely indefinite.
For these reasons, standard preconditioned iterative solvers typically fail in this
context [12, 23]. In [12] we demonstrated that an accelerated parallel row-projection
method called CARP-CG [15] is well-suited for highly indefinite systems arising in
this context, and particularly apt at handling small diagonal elements, which are
common in our applications. We also proposed a hybrid parallel implementation of
the method, which is available as a prototype in the PHIST builtin kernels.

Matrix inversion can be avoided altogether if the projector can be acquired
by means other than numerical integration or rational approximation. A com-
mon choice is spectral filtering using Chebyshev polynomials via the ChebFD
scheme [31], see Sect. 4.1, in particular for the discussion of kernel functions for
reducing Gibbs oscillations [23, 48]. This is implemented in the BEAST-P variant,
available through PHIST and GHOST.

General improvements The size of the search space is crucial for the convergence
of the method [23, 24, 31, 32]. In BEAST we compute a suitable initial guess
of the number of eigenpairs in the target interval by integrating the density of

310 J. Thies et al.

states obtained by the KPM (cf. Sect. 4.1). The most recent version of the FEAST
library uses a similar approach [7]. As iteration progresses, the search space
size is controlled using singular value decomposition [11, 13, 23], that gives a
more accurate estimation and consequentially a smaller search space. This lowers
memory usage, which may be preferable for very large problems. A more generous
search space size can be chosen to reduce the impact of the polynomial degree on
convergence speed. The SVD is also used for other purposes like detecting empty
intervals or undersized search spaces [10, 23].

Furthermore, a locking technique is implemented in BEAST. By excluding
converged eigenpairs from the search space—at the cost of orthogonalizing the
remaining vectors in each iteration—it is possible to reduce the cost of later
iterations where only few eigenpairs have not yet converged [10, 13, 23].

The most influential parameters for the cost of an iteration in BEAST are the
polynomial degree in BEAST-P and residual accuracy for the iterative linear solver
in BEAST-C, respectively. These two parameters have different semantics for the
progress of the method, though, and need separate consideration.

To minimize the overall work, BEAST-P finds a (problem-dependent) polyno-
mial degree p that, in one BEAST iteration, achieves comparably large residual drop
with respect to the number of spMVMs required to evaluate the polynomial [13].
It is then adjusted dynamically by inspecting the residual reduction versus p.
This removes the necessity of an initial guess for a suitable degree and makes
early iterations cheap since the optimal degree is approached from below. In
BEAST-C, we reduce the target residual of the iterative linear solver [13] in early
iterations. In later iterations, a higher accuracy is required to achieve a good overall
approximation.

Future releases of BEAST will include extension of the method to multiple
adjacent intervals (which requires careful orthogonalization and is currently in the
testing stage), and the use of single-precision solves in early iterations. BEAST was
successfully tested with matrices from graphene and topological insulator modeling
of size up to 109, typically computing few hundred interior eigenpairs, using the
BEAST-P variant with GHOST back end.

4.3 Block Jacobi-Davidson QR

The Jacobi-Davidson method [9] is a popular algorithm for computing a few
eigenpairs of a large sparse matrix. It can be seen as a Rayleigh-Ritz procedure
with subspace acceleration and deflation. Depending on some implementation
details, such as the inner product used and the way eigenvalue approximations are
extracted, it may be used for Hermitian and non-Hermitian, standard or generalized
eigenproblems, and to find eigenpairs at the border or inside of the spectrum. The
Jacobi-Davidson method has several attractive features: it exhibits locally cubic
(quadratic) convergence for Hermitian (general) eigenvalue problems, and is very
robust w.r.t. approximate solution of the linear systems that occur in each iteration. It

Towards an Exascale Enabled Sparse Solver Repository 311

also allows integrating preconditioning techniques, and the deflation of eigenvalues
near the shift make the linear systems much more well-behaved than in the case of
FEAST. For an overview of the Jacobi-Davidson method, see [20].

In [35, 36] we presented the implementation of a block Jacobi-Davidson QR
(BJDQR) method which uses block operations to increase the arithmetic intensity
and reduce the number of synchronization points (i.e. mitigate the latency of global
reduction operations). Use cases for this ESSR solver include the computation of a
moderate number of extremal eigenpairs of large, sparse, symmetric or nonsymmet-
ric matrices. BJDQR is a subspace algorithm: in every iteration the search space V
is extended by nb new vectors, wj, which are obtained by approximately solving a
set of correction equations (2), and orthogonalized against all previous directions.
The solution of the sparse linear systems (2) is done iteratively.

.I � QQ QQ�/.A � �iI/.I � QQ QQ�/�qi � �.AQqi � QQQri/; i D 1 : : : nb : (2)

The successful implementation of this method in PHIST goes hand-in-hand with the
development of highly optimized building blocks in GHOST. The basic operations
required are spMMVM (Yj AXj) and the dense matrix–matrix products Y D
X � C and C D XHY, where X and Y denote mVecs and C an sdMat. For the
full optimization, we added several custom kernels, including the ‘in place’ variant
XW;1Wk D X � C;X 2 Cn�m;C 2 Cm�k and an spMMVM with varying shifts per
column, Yj D AXj C �jXj.

Two main observations guided the implementation of this algorithm:

1. row-major storage of mVecs leads to much better performance of both the
spMMVM, see also [16], and the dense kernels;

2. accessing single columns in an mVec in row-major storage is disproportionally
more expensive than in column-major storage because unnecessary data is loaded
into the cache.

To avoid access to single vectors, ‘blocked’ implementations of the GMRES and
MINRES solvers for the correction equation are used. These schemes solve k
linear systems simultaneously with separate Krylov spaces, bundling inner products
and spMVMs. The second important phase, orthogonalization of W against V , is
performed using communication optimal algorithms like TSQR [6] or SVQB [43].

The final performance critical component for Jacobi-Davidson is a precondition-
ing step used to accelerate the inner solver. Preconditioning techniques typically
depend strongly on details of the sparse matrix storage format. As we do not want
to impose a particular format on the kernel library that provides the basic operations,
PHIST views the preconditioner as an abstract operator (linearOp). This struct
contains a pointer to a data object and an apply function, which the application
can use to implement e.g. a sparse approximate inverse, an incomplete factorization
or a multigrid cycle. The only preconditioned iteration implemented directly in
PHIST is CARP-CG, used in the BEAST-C algorithm in ESSEX (Sect. 4.2). This
method could also be used in the context of BJDQR, but this combination is not yet
implemented.

312 J. Thies et al.

It is well known that the block variant of JDQR increases the total number of
operations (measured for instance in the number of spMVMs). The ESSEX results
presented in [36] demonstrated for the first time that this increase is more than
compensated by the performance gains in the basic operations, so that an overall
speedup of about 20% can be expected for a wide range of problems and problem
sizes. The paper also shows that the only way to achieve this is by consequent
performance engineering on all levels. On upcoming hardware, one can expect
the benefits of the block variant over the single vector JDQR to grow because
of the increasing gap between memory bandwidth and flop rate. Furthermore, the
reduction in the number of synchronization points will increase this advantage on
large scale systems. We will present results on the heterogeneous execution of this
solver on large CPU/GPU clusters in the near future.

5 Fault Tolerance

This section describes our development and evaluation of strategies for efficient
checkpointing and restarting of iterative eigenvalue solvers. The former can be done
either by storing critical data on a parallel file system (PFS) or on a neighboring
node. The latter depends highly on the availability of a fault tolerant communication
library, and two options have been evaluated here.

Asynchronous checkpointing via dedicated threads We use the term
‘asynchronous checkpointing’ for application-level checkpointing where a
dedicated thread is used to transfer the checkpoint data to the PFS while
the application performs its computations. The benefits of this approach over
synchronous PFS-level checkpointing have been demonstrated as proof of concept
in [41]. In a first step, an asynchronous copy of the critical data is made in an
application- (or algorithm-)specific checkpoint object. The task concept available in
GHOST [28] is then used for asynchronously writing the backup file to a global file
system. Critical data in the context of eigensolvers may, for instance, be a basis for
the (nearly) converged eigenspace. We have implemented and tested this strategy
for KPM, ChebTP, ChebFD, and Lanczos solvers. The detailed analysis of this
approach for the Lanczos algorithm is presented in [39] where we used dedicated
OpenMP-threads for asynchronous writing.

Node-level checkpointing using SCR A more scalable approach has been eval-
uated using the Scalable Checkpoint-Restart (SCR) library [37], which provides
node-level checkpoint/restart mechanisms. Beside the local node-level checkpoints,
SCR also provides the functionality to make partner-level and XOR-encoded
checkpoints. In addition, occasional PFS-level checkpoints can be made to enable
recovery from any catastrophic failures. This strategy introduces very little overhead
to the application and is demonstrated in detail along with its comparison with
asynchronous checkpointing in [39, 40]. Within the ESSR, we have equipped KPM,
ChebTP, and Lanczos algorithms with this checkpointing strategy.

Towards an Exascale Enabled Sparse Solver Repository 313

Automatic Fault Recovery The automatic fault recovery (AFR) concept is to
enable the application to ‘heal itself’ after a failure. The basic building block of
the concept is a fault-tolerant (FT) communication library. As an FT MPI imple-
mentation was not (yet) available, we used the GASPI communication layer [14] to
evaluate the concept in a conjugate gradient (CG) solver [38].

As a next step, we evaluated a recent prototype of FT MPI—‘User-Level
Failure Mitigation’ or ULFM [4]—in the context of the KPM with automatic fault
recovery. In this implementation, we combined the AFR technique with node-level
checkpointing using SCR. The failed processes are replaced by newly spawned
ones which take over the identity (i.e., rank) of the failed processes in a rebuilt
communicator. All processes then read a consistent copy of the checkpoint from the
local or neighbor’s memory and resume the computation. Experimental results on
this approach are currently being prepared for publication.

6 Summary and Outlook

We have discussed the development of a new software repository for extreme scale
sparse eigenvalue computations on heterogeneous hardware. One key challenge of
the project was to co-design several interdependent software layers ‘from scratch’.
We described a simple layered software architecture and a flexible test-driven
development process which enabled this. The scalability challenge is addressed by
holistic performance engineering and redesigning algorithms for better data locality
and communication avoidance. Techniques for mitigating hardware failure were
investigated and implemented in prototypical iterative methods.

While this report focused on the software engineering process and algorithmic
advancements, we have submitted a second report which demonstrates the paral-
lelization strategy as well as hardware and energy efficiency of our basic building
block library GHOST, see [27].

In order to achieve scalability beyond today’s petascale computers, we are
planning to investigate (among other) scalable communication reducing orderings
for our application matrices, communication hiding using the tasking mechanism
in our GHOST library, and scalable preconditioners in GHOST for accelerating
BEAST-C and Jacobi-Davidson, for instance based on the prototype of CARP-CG
in the PHIST builtin kernel library. Future applications will include non-Hermitian
matrices and generalized eigenproblems, which requires extensions to some of the
algorithms. We are also planning to further integrate our efforts and improve the
software structure and documentation to bring forth an ESSL (Exascale Sparse
Solver Library).

Acknowledgements This work was supported by the German Research Foundation (DFG)
through the Priority Program 1648 “Software for Exascale Computing” under project ESSEX.
We would like to thank Michael Meinel (DLR Simulation and Software Technology, software
engineering group) for helpful comments on the manuscript.

314 J. Thies et al.

References

1. Alvermann, A., Basermann, A., Fehske, H., Galgon, M., Hager, G., Kreutzer, M., Krämer, L.,
Lang, B., Pieper, A., Röhrig-Zöllner, M., Shahzad, F., Thies, J., Wellein, G.: ESSEX: equipping
sparse solvers for exascale. In: Lopes, L., et al. (eds.) Euro-Par 2014: Parallel Processing
Workshops. Lecture Notes in Computer Science, vol. 8806, pp. 577–588. Springer, Cham
(2014). http://dx.doi.org/10.1007/978-3-319-14313-2_49

2. Baker, C.G., Hetmaniuk, U.L., Lehoucq, R.B., Thornquist, H.K.: Anasazi software for the
numerical solution of large-scale eigenvalue problems. ACM Trans. Math. Softw. 36(3), 1–23
(2009). http://doi.acm.org/10.1145/1527286.1527287

3. Balay, S., Abhyankar, S., Adams, M.F., Brown, J., Brune, P., Buschelman, K., Dalcin, L.,
Eijkhout, V., Gropp, W.D., Kaushik, D., Knepley, M.G., McInnes, L.C., Rupp, K., Smith, B.F.,
Zampini, S., Zhang, H.: PETSc Web page (2015). http://www.mcs.anl.gov/petsc

4. Bland, W., Bouteiller, A., Herault, T., Hursey, J., Bosilca, G., Dongarra, J.: An evaluation of
user-level failure mitigation support in MPI. In: Träff, J.L., Benkner, S., Dongarra, J. (eds.)
Recent Advances in the Message Passing Interface. Lecture Notes in Computer Science,
vol. 7490, pp. 193–203. Springer, Berlin/Heidelberg (2012)

5. Daly, J. et al.: Inter-Agency Workshop on HPC Resilience at Extreme Scale. Tech. rep. (Feb
2012)

6. Demmel, J., Grigori, L., Hoemmen, M., Langou, J.: Communication-optimal parallel and
sequential QR and LU factorizations. SIAM J. Sci. Comput. 34(1), A206–A239 (2012)

7. Di Napoli, E., Polizzi, E., Saad, Y.: Efficient estimation of eigenvalue counts in an interval
(2013). Preprint (arXiv:1308.4275), http://arxiv.org/abs/1308.4275

8. El-Sayed, N., Schroeder, B.: Reading between the lines of failure logs: understanding how HPC
systems fail. In: Proceedings of the 2013 43rd Annual IEEE-IFIP International Conference
on Dependable Systems and Networks (DSN ’13), pp. 1–12. IEEE Computer Society,
Washington, DC (2013)

9. Fokkema, D.R., Sleijpen, G.L.G., van der Vorst, H.A.: Jacobi–Davidson style QR and QZ
algorithms for the reduction of matrix pencils. SIAM J. Sci. Comput. 20(1), 94–125 (1998)

10. Galgon, M., Krämer, L., Lang, B.: Counting eigenvalues and improving the integration in the
FEAST algorithm (2012). Preprint BUW-IMACM 12/22, available from http://www.imacm.
uni-wuppertal.de

11. Galgon, M., Krämer, L., Lang, B., Alvermann, A., Fehske, H., Pieper, A.: Improving robustness
of the FEAST algorithm and solving eigenvalue problems from graphene nanoribbons. Proc.
Appl. Math. Mech. 14(1), 821–822 (2014)

12. Galgon, M., Krämer, L., Thies, J., Basermann, A., Lang, B.: On the parallel iterative solution
of linear systems arising in the FEAST algorithm for computing inner eigenvalues. J. Parallel
Comput. 49, 153–163 (2015)

13. Galgon, M., Krämer, L., Lang, B.: Adaptive choice of projectors in projection based eigen-
solvers (2015), submitted. Available from http://www.imacm.uni-wuppertal.de/

14. GASPI project website: http://www.gaspi.de/en/project.html
15. Gordon, D., Gordon, R.: CARP-CG: A robust and efficient parallel solver for linear systems,

applied to strongly convection dominated PDEs. J. Parallel Comput. 36(9), 495–515 (2010)
16. Gropp, W.D., Kaushik, D.K., Keyes, D.E., Smith, B.F.: Towards realistic performance bounds

for implicit CFD codes. In: Ecer, A., et al. (eds.) Proceedings of Parallel CFD’99, pp. 233–240.
Elesevier, New York (1999)

17. Hernandez, V., Roman, J.E., Vidal, V.: SLEPc: A scalable and flexible toolkit for the solution
of eigenvalue problems. ACM Trans. Math. Softw. 31(3), 351–362 (2005)

18. Heroux, M.A., Bartlett, R.A., Howle, V.E., Hoekstra, R.J., Hu, J.J., Kolda, T.G., Lehoucq,
R.B., Long, K.R., Pawlowski, R.P., Phipps, E.T., Salinger, A.G., Thornquist, H.K., Tuminaro,
R.S., Willenbring, J.M., Williams, A., Stanley, K.S.: An overview of the Trilinos project. ACM
Trans. Math. Softw. 31(3), 397–423 (2005), http://doi.acm.org/10.1145/1089014.1089021

http://dx.doi.org/10.1007/978-3-319-14313-2_49
http://doi.acm.org/10.1145/1527286.1527287
http://www.mcs.anl.gov/petsc
http://arxiv.org/abs/1308.4275
http://www.imacm.uni-wuppertal.de
http://www.imacm.uni-wuppertal.de
http://www.imacm.uni-wuppertal.de/
http://www.gaspi.de/en/project.html
http://doi.acm.org/10.1145/1089014.1089021

Towards an Exascale Enabled Sparse Solver Repository 315

19. Heroux, M.A., Willenbring, J.M.: A new overview of the Trilinos project. Sci. Program. 20(2),
83–88 (2012)

20. Hochstenbach, M.E., Notay, Y.: The Jacobi-Davidson method. GAMM-Mitteilungen 29(2),
368–382 (2006). http://mntek3.ulb.ac.be/pub/docs/reports/pdf/jdgamm.pdf

21. Hursey, J.: Coordinated checkpoint/restart process fault tolerance for MPI applications on HPC
systems. Ph.D. thesis, Indiana University, Bloomington (2010)

22. Jackson, D.: On approximation by trigonometric sums and polynomials. Trans. Am. Math. Soc.
13, 491–515 (1912)

23. Krämer, L.: Integration based solvers for standard and generalized Hermitian eigenvalue
problems. Ph.D. thesis, Bergische Universität Wuppertal (2014). http://nbn-resolving.de/urn/
resolver.pl?urn=urn:nbn:de:hbz:468-20140701-112141-6

24. Krämer, L., Di Napoli, E., Galgon, M., Lang, B., Bientinesi, P.: Dissecting the FEAST
algorithm for generalized eigenproblems. J. Comput. Appl. Math. 244, 1–9 (2013)

25. Kreutzer, M., Hager, G., Wellein, G., Pieper, A., Alvermann, A., Fehske, H.: Performance
engineering of the kernel polynomial method on large-scale CPU-GPU systems. In: Parallel
and Distributed Processing Symposium (IPDPS), 2015 IEEE International, pp. 417–426
(2015). http://arXiv.org/abs/1410.5242

26. Kreutzer, M., Pieper, A., Alvermann, A., Fehske, H., Hager, G., Wellein, G., Bishop, A.R.:
Efficient large-scale sparse eigenvalue computations on heterogeneous hardware. In: Poster at
the 2015 ACM/IEEE International Conference for High Performance Computing, Networking,
Storage and Analysis (2015). http://sc15.supercomputing.org/sites/all/themes/SC15images/
tech_poster/tech_poster_pages/post205.html.

27. Kreutzer, M., Thies, J., Pieper, A., Alvermann, A., Galgon, M., Röhrig-Zöllner, M., Shahzad,
F., Basermann, A., Bishop, A., Fehske, H., Hager, G., Lang, B., Wellein, G.: Performance
engineering and energy efficiency of building blocks for large, sparse eigenvalue computations
on heterogeneous supercomputers. In: Bungartz, H.-J., et al. (eds.) Software for Exascale
Computing – SPPEXA 2013–2015. Lecture Notes in Computational Science and Engineering,
vol. 113. Springer (2016)

28. Kreutzer, M., Thies, J., Röhrig-Zöllner, M., Pieper, A., Shahzad, F., Galgon, M., Basermann,
A., Fehske, H., Hager, G., Wellein, G.: GHOST: building blocks for high performance sparse
linear algebra on heterogeneous systems (2015). Preprint (arXiv:1507.08101), http://arxiv.org/
abs/1507.08101

29. Laguna, I., et al.: Evaluating user-level fault tolerance for MPI applications. In: Proceedings of
the 21st European MPI Users’ Group Meeting (EuroMPI/ASIA ’14), pp. 57:57–57:62. ACM,
New York (2014)

30. Lehoucq, R.B., Yang, C.C., Sorensen, D.C.: ARPACK users’ guide: solution of large-scale
eigenvalue problems with implicitly restarted Arnoldi methods. SIAM, Philadelphia (1998).
http://opac.inria.fr/record=b1104502

31. Pieper, A., Kreutzer, M., Galgon, M., Alvermann, A., Fehske, H., Hager, G., Lang, B.,
Wellein, G.: High-performance implementation of Chebyshev filter diagonalization for interior
eigenvalue computations (2015), submitted. Preprint (arXiv:1510.04895)

32. Polizzi, E.: A density matrix-based algorithm for solving eigenvalue problems. Phys. Rev. B
79, 115112 (2009)

33. Polizzi, E., Kestyn, J.: High-performance numerical library for solving eigenvalue problems:
FEAST eigenvalue solver v3.0 user guide (2015). http://arxiv.org/abs/1203.4031

34. (PT-)SCOTCH project website. http://www.labri.fr/perso/pelegrin/scotch/
35. Röhrig-Zöllner, M., Thies, J., Kreutzer, M., Alvermann, A., Pieper, A., Basermann, A., Hager,

G., Wellein, G., Fehske, H.: Performance of block Jacobi-Davidson eigensolvers. In: Poster
at 2014 ACM/IEEE International Conference on High Performance Computing Networking,
Storage and Analysis (2014)

36. Röhrig-Zöllner, M., Thies, J., Kreutzer, M., Alvermann, A., Pieper, A., Basermann, A., Hager,
G., Wellein, G., Fehske, H.: Increasing the performance of the Jacobi-Davidson method by
blocking. SIAM J. Sci. Comput. 37(6), C697–C722 (2015). http://elib.dlr.de/89980/

http://mntek3.ulb.ac.be/pub/docs/reports/pdf/jdgamm.pdf
http://nbn-resolving.de/urn/resolver.pl?urn=urn:nbn:de:hbz:468-20140701-112141-6
http://nbn-resolving.de/urn/resolver.pl?urn=urn:nbn:de:hbz:468-20140701-112141-6
http://arXiv.org/abs/1410.5242
http://sc15.supercomputing.org/sites/all/themes/SC15images/tech_poster/tech_poster_pages/post205.html
http://sc15.supercomputing.org/sites/all/themes/SC15images/tech_poster/tech_poster_pages/post205.html
http://arxiv.org/abs/1507.08101
http://arxiv.org/abs/1507.08101
http://opac.inria.fr/record=b1104502
http://arxiv.org/abs/1203.4031
http://www.labri.fr/perso/pelegrin/scotch/
http://elib.dlr.de/89980/

316 J. Thies et al.

37. Sato, K. et al.: Design and modeling of a non-blocking checkpointing system. In: Proceedings
of the Conference on High Performance Computing, Networking, Storage and Analysis,
pp. 19:1–19:10. IEEE Computer Society Press, Los Alamitos (2012)

38. Shahzad, F., Kreutzer, M., Zeiser, T., Machado, R., Pieper, A., Hager, G., Wellein, G.: Building
a fault tolerant application using the GASPI communication layer. In: Proceedings of the 1st
International Workshop on Fault Tolerant Systems (FTS 2015), in conjunction with IEEE
Cluster 2015, pp. 580–587 (2015)

39. Shahzad, F., Wittmann, M., Kreutzer, M., Zeiser, T., Hager, G., Wellein, G.: A sur-
vey of checkpoint/restart techniques on distributed memory systems. Parallel Process.
Lett. 23(04), 1340011–1–1340011–20 (2013). http://www.worldscientific.com/doi/abs/10.
1142/S0129626413400112

40. Shahzad, F., Wittmann, M., Zeiser, T., Hager, G., Wellein, G.: An evaluation of different I/O
techniques for checkpoint/restart. In: Proceedings of the 2013 IEEE International Parallel and
Distributed Processing Symposium (IPDPS), pp. 1708–1716. IEEE Computer Society (2013).
http://dx.doi.org/10.1109/IPDPSW.2013.145

41. Shahzad, F., Wittmann, M., Zeiser, T., Wellein, G.: Asynchronous checkpointing by dedicated
checkpoint threads. In: Proceedings of the 19th European conference on Recent Advances in
the Message Passing Interface (EuroMPI’12), pp. 289–290. Springer, Berlin/Heidelberg (2012)

42. Stathopoulos, A., McCombs, J.R.: PRIMME: preconditioned iterative multimethod
eigensolver–methods and software description. ACM Trans. Math. Softw. 37(2), 1–30 (2010)

43. Stathopoulos, A., Wu, K.: A block orthogonalization procedure with constant synchronization
requirements. SIAM J. Sci. Comput. 23(6), 2165–2182 (2002)

44. Tal-Ezer, H., Kosloff, R.: An accurate and efficient scheme for propagating the time dependent
Schrödinger equation. J. Chem. Phys. 81, 3967 (1984)

45. TOP500 Supercomputer Sites. http://www.top500.org, accessed: June 2015
46. Treibig, J., Hager, G., Wellein, G.: LIKWID: A lightweight performance-oriented tool suite

for x86 multicore environments. In: Proceedings of the 2010 39th International Conference
on Parallel Processing Workshops (ICPPW ’10), pp. 207–216. IEEE Computer Society,
Washington, DC (2010). http://dx.doi.org/10.1109/ICPPW.2010.38

47. Weiße, A., Fehske, H.: Chebyshev expansion techniques. In: Fehske, H., Schneider, R., Weiße,
A. (eds.) Computational Many-Particle Physics. Lecture Notes Physics, vol. 739, pp. 545–577.
Springer, Berlin/Heidelberg (2008)

48. Weiße, A., Wellein, G., Alvermann, A., Fehske, H.: The kernel polynomial method. Rev. Mod.
Phys. 78, 275–306 (2006). http://dx.doi.org/10.1103/RevModPhys.78.275

49. Williams, S., Waterman, A., Patterson, D.: Roofline: an insightful visual performance model
for multicore architectures. Commun. ACM 52(4), 65–76 (2009). http://doi.acm.org/10.1145/
1498765.1498785

http://www.worldscientific.com/doi/abs/10.1142/S0129626413400112
http://www.worldscientific.com/doi/abs/10.1142/S0129626413400112
http://dx.doi.org/10.1109/IPDPSW.2013.145
http://www.top500.org
http://dx.doi.org/10.1109/ICPPW.2010.38
http://dx.doi.org/10.1103/RevModPhys.78.275
http://doi.acm.org/10.1145/1498765.1498785
http://doi.acm.org/10.1145/1498765.1498785

Performance Engineering and Energy Efficiency
of Building Blocks for Large, Sparse Eigenvalue
Computations on Heterogeneous
Supercomputers

Moritz Kreutzer, Jonas Thies, Andreas Pieper, Andreas Alvermann,
Martin Galgon, Melven Röhrig-Zöllner, Faisal Shahzad, Achim Basermann,
Alan R. Bishop, Holger Fehske, Georg Hager, Bruno Lang,
and Gerhard Wellein

Abstract Numerous challenges have to be mastered as applications in scientific
computing are being developed for post-petascale parallel systems. While ample
parallelism is usually available in the numerical problems at hand, the efficient use
of supercomputer resources requires not only good scalability but also a verifiably
effective use of resources on the core, the processor, and the accelerator level.
Furthermore, power dissipation and energy consumption are becoming further
optimization targets besides time-to-solution. Performance Engineering (PE) is the
pivotal strategy for developing effective parallel code on all levels of modern
architectures. In this paper we report on the development and use of low-level

M. Kreutzer (�) • F. Shahzad • G. Hager • G. Wellein
Erlangen Regional Computing Center, Friedrich-Alxander-University Erlangen-Nuremberg,
Erlangen, Germany
e-mail: moritz.kreutzer@fau.de; faisal.shahzad@fau.de; georg.hager@fau.de;
gerhard.wellein@fau.de

A. Alvermann • A. Pieper • H. Fehske
Institute of Physics, Ernst-Moritz-Arndt-Universität Greifswald, Greifswald, Germany
e-mail: alvermann@physik.uni-greifswald.de; pieper@physik.uni-greifswald.de;
fehske@physik.uni-greifswald.de

M. Galgon • B. Lang
Bergische Universität Wuppertal, Wuppertal, Germany
e-mail: galgon@math.uni-wuppertal.de; lang@math.uni-wuppertal.de

J. Thies • M. Röhrig-Zöllner • A. Basermann
German Aerospace Center (DLR), Simulation and Software Technology, Köln, Germany
e-mail: jonas.thies@dlr.de; melven.roehrig-zoellner@dlr.de; achim.basermann@dlr.de

A.R. Bishop
Theory, Simulation and Computation Directorate, Los Alamos National Laboratory, Los Alamos,
NM, USA
e-mail: arb@lanl.gov

© Springer International Publishing Switzerland 2016
H.-J. Bungartz et al. (eds.), Software for Exascale Computing – SPPEXA
2013-2015, Lecture Notes in Computational Science and Engineering 113,
DOI 10.1007/978-3-319-40528-5_14

317

mailto:moritz.kreutzer@fau.de
mailto:faisal.shahzad@fau.de
mailto:georg.hager@fau.de
mailto:gerhard.wellein@fau.de
mailto:alvermann@physik.uni-greifswald.de
mailto:pieper@physik.uni-greifswald.de
mailto:fehske@physik.uni-greifswald.de
mailto:galgon@math.uni-wuppertal.de
mailto:lang@math.uni-wuppertal.de
mailto:jonas.thies@dlr.de
mailto:melven.roehrig-zoellner@dlr.de
mailto:achim.basermann@dlr.de
mailto:arb@lanl.gov

318 M. Kreutzer et al.

parallel building blocks in the GHOST library (“General, Hybrid, and Optimized
Sparse Toolkit”). We demonstrate the use of PE in optimizing a density of states
computation using the Kernel Polynomial Method, and show that reduction of
runtime and reduction of energy are literally the same goal in this case. We also
give a brief overview of the capabilities of GHOST and the applications in which it
is being used successfully.

1 Introduction

The supercomputer architecture landscape has encountered dramatic changes in
the past decade. Heterogeneous architectures hosting different compute devices
(CPU, GPGPU, and Intel Xeon Phi) and systems running 105 cores or more are
dominating the Top500 top ten [33] since the year 2013. Since then, however,
turnover in the top ten has slowed down considerably. A new impetus is expected
by the “Collaboration of Oak Ridge, Argonne, and Livermore” (CORAL)1 with
multi-100 Pflop/s systems to be installed around 2018. These systems may feature
high levels of thread parallelism and multiple compute devices at the node-level,
and will exploit massive data parallelism through SIMD/SIMT features at the core
level. The SUMMIT2 and Aurora3 architectures are instructive examples. State-
of-the-art interconnect technologies will be used to build clusters comprising 103

to 105 compute nodes. While the former will be of heterogeneous nature with
IBM Power9 CPUs and Nvidia Volta GPUs in each node, the latter is projected
to be built of homogeneous Intel Xeon Phi manycore processors. Although two
different approaches towards exascale computing are pursued here, commonalities
like increasing SIMD parallelism and deep memory hierarchies can be determined
and should be regarded when it comes to software development for the exascale era.

The hardware architecture of the CORAL systems, which are part of the DOE
Exascale Computing Project, can be considered blueprints for the systems to be
deployed on the way to exascale computing and thus define the landscape for
the development of hardware-/energy-efficient, scalable, and sustainable software
as well as numerical algorithms. Additional constraints are set by the continu-
ously increasing power consumption and the expectation that mean-time-to-failure
(MTTF) will steadily decrease. It is obvious that long-standing simulation software
needs to be completely re-designed or new codes need to be written from scratch.
The project “Equipping Sparse Solvers for Exascale” (ESSEX),4 funded by the
Priority Program “Software for Exascale Computing” (SPPEXA) of the German

1http://www.energy.gov/downloads/fact-sheet-collaboration-oak-ridge-argonne-and-livermore-
coral
2https://www.olcf.ornl.gov/summit/
3https://www.alcf.anl.gov/articles/introducing-aurora
4http://blogs.fau.de/essex

http://www.energy.gov/downloads/fact-sheet-collaboration-oak-ridge-argonne-and-livermore-coral
http://www.energy.gov/downloads/fact-sheet-collaboration-oak-ridge-argonne-and-livermore-coral
https://www.olcf.ornl.gov/summit/
https://www.alcf.anl.gov/articles/introducing-aurora
http://blogs.fau.de/essex

Performance Engineering for Sparse Building Blocks 319

Fig. 1 Basic ESSEX project
organization: the classic
boundaries of application,
algorithms, and basic building
blocks tightly interact via a
holistic performance
engineering process

P
re

co
n

d
it

io
n

er
s

E
n

er
g

y
E

ff
ic

ie
n

cy

Algorithms

Applications

Building Blocks

F
au

lt
 T

o
le

ra
n

ce

Holistic Performance Engineering

Research Foundation (DFG) is such an endeavor in the field of sparse eigenvalue
solvers.

The ESSEX project addresses the above challenges in a joint software co-
design effort involving all three fundamental layers of software development in
computational science and engineering: basic building blocks, algorithms, and
applications. Energy efficiency and fault tolerance (FT) form vertical pillars forcing
a strong interaction between the horizontal activities (see Fig. 1 for overall project
organization). The overarching goal of all activities is minimal time-to-solution.
Thus, the project is embedded in a structured holistic Performance Engineering
(PE) process that detects performance bottlenecks and guides optimization and
parallelization strategies across all activities.

In the first funding period (2013–2015) the ESSEX project has developed the
“Exascale enabled Sparse Solver Repository” (ESSR), which is accessible under a
BSD open source license.5

The application layer has contributed various scalable matrix generation routines
for relevant quantum physics problems and has used the ESSR components to
advance research in the fields of graphene structures [8, 22, 23, 25] and topological
materials [26].

In the algorithms layer various classic, application-specific and novel eigen-
solvers have been implemented and reformulated in view of the holistic PE process.
A comprehensive survey on the activities in the algorithms layer (including FT) is
presented in [32]. There we also report on the software engineering process to allow
for concurrent development of software in all three layers.

Work performed in the basic building block layer, which drives the holistic PE
process, is presented in this report.

5https://bitbucket.org/essex

https://bitbucket.org/essex

320 M. Kreutzer et al.

2 Contribution

The building block layer in ESSEX is responsible for providing an easy to use but
still efficient infrastructure library (GHOST), which allows exploiting optimization
potential throughout all software layers. GHOST is an elaborate parallelization
framework based on the “MPI+X”6 model, capable of mastering the challenges of
complex node topologies (including ccNUMA awareness and node-level resource
management) and providing efficient data structures and tailored kernels. In partic-
ular the impact of data structures on heterogeneous performance is still underrated
in many projects. On top of GHOST we have defined an interface layer that can
be used by algorithms and application developers for flexible software development
(see [32]).

In this work we illustrate selected accomplishments, which are representative for
the full project. We briefly present a SIMD/SIMT-friendly sparse matrix data layout,
which has been proposed by ESSEX and gives high performance across all available
HPC compute devices. As a sample application we choose the Kernel Polynomial
Method (KPM), which will first be used to revisit our model-driven PE process.
Then we demonstrate for the first time the impact of PE on improving the energy
efficiency on the single socket level for the KPM. Using a coupled performance
and energy model, we validate these findings qualitatively and can conclude that
the achieved performance improvements for KPM directly correlate with energy
savings.

Then we present a brief overview of the GHOST library and give an overview of
selected solvers that use GHOST in ESSEX. We finally demonstrate that sustained
petascale performance on a large CPU-GPGPU cluster is accessible for our very
challenging problem class of sparse linear algebra.

3 Holistic Performance Engineering Driving Energy
Efficiency on the Example of the Kernel Polynomial
Method (KPM)

The KPM [36] is well established in quantum physics and chemistry. It is used
for determining the eigenvalue density (KPM-DOS) and spectral properties of
sparse matrices, exposing high optimization potential and the feasibility of petascale
implementations. In the following study the KPM is applied to a relevant problem
of quantum physics: the determination of electronic structure properties of a three-
dimensional topological insulator.

6The term “MPI+X” denotes the combination of the Message Passing Interface (MPI) and a node-
level programming model.

Performance Engineering for Sparse Building Blocks 321

3.1 Performance Engineering for KPM

The naive version of the KPM as depicted in Algorithm 1 builds on several
BLAS [17] level 1 routines and the Sparse BLAS [7] level 2 spmv (Sparse matrix–
vector multiplication) kernel. The computational intensities of all involved kernels
for the topological insulator application are summarized in Table 1. To classify
the behavior of a kernel on a compute architecture it is useful to correlate the
computational intensity with the machine balance which is the flops/byte ratio of
a machine for data from main memory or, in other words, the ratio between peak
performance and peak memory bandwidth. It turns out that for each kernel in Table 1
the computational intensity is smaller than the machine balance of any relevant HPC
architecture. Even very bandwidth-oriented vector architectures like the NEC SX-
ACE with a theoretical machine balance of 1 byte/flop, fail to deliver enough data
per cycle from main memory to keep the floating point units busy. This discrepancy
only gets more severe on standard multicore CPUs or GPGPUs.

The relative share of data volume assuming minimum data traffic for each kernel
can also be seen in Table 1. As all kernels are strongly bound to main memory
bandwidth, we can directly translate the relative data volume shares to relative
runtime shares if we assume optimal implementations of all kernels and no excess
data transfers. Hence, the spmv is the dominating operation in the naive KPM-
DOS solver. This, together with the fact that BLAS level 1 routines offer only very
limited performance optimization potential, necessitates a detailed examination of
this kernel.

Algorithm 1 Naive version of the KPM-DOS algorithm with corresponding BLAS
level 1 function calls
for r D 0 to R� 1 do
jvi jrand()i
Initialization steps and computation of �0; �1
for mD 1 to M=2 do

swap.jwi; jvi/ F Not done explicitly
jui Hjvi F spmv()
jui jui � bjvi F axpy()
jwi �jwi F scal()
jwi jwi C 2ajui F axpy()
�2m hvjvi F nrm2()
�2mC1 hwjvi F dot()

Table 1 Maximum computational intensities Imax in flops/byte and approximate minimum relative
share of overall data volume in the solver for each kernel and the full naive KPM-DOS
implementation (Algorithm 1) for the topological insulators application

Kernel spmv axpy scal nrm2 dot KPM

Imax 0:317 0:167 0:188 0:250 0:250 0.295

Vmin,rel (%) 59:6 22:0 7:3 3:7 7:3 100

322 M. Kreutzer et al.

3.1.1 Sparse Matrix Data Format

Not only KPM-DOS but also many other sparse linear algebra algorithms are dom-
inated by SpMV. This gave rise to intense research dealing with the performance
of this operation. A common finding is that SpMV performance strongly depends
on the sparse matrix data format. In the past there was an implicit agreement
that an optimal choice of sparse matrix data format strongly depends on the
compute architecture used. Obviously, this poses obstacles especially in the advent
of heterogeneous machines we are facing today. This led to several efforts trying to
either identify data formats that yield good performance on all relevant architectures
or to alter the de facto standard format on CPUs (Compressed Sparse Row, or
CSR) to enable high performance CSR SpMV kernels also on throughput-oriented
architectures. The latter approach resulted in the development of ACSR [1], CSR-
Adaptive [5, 9], and CSR5 [19]. The former approach was pursued by ESSEX,
e.g., in [13] and led to the proposition of SELL-C-� as a “catch-all” sparse matrix
storage format for the heterogeneous computing era. Although re-balancing the
sparse matrix between heterogeneous devices at runtime is not in the scope of this
work, it probably is a wise decision in view of the future to choose an architecture-
independent storage format if it does not diminish the performance of CPU-only
runs. In ESSEX we decided for the SELL-C-� storage format, which we will explain
briefly in the following. Moreover, our preference of SELL-C-� over CSR will be
justified.

SELL-C-� is a generalization of the Sliced ELLPACK [21] format. The sparse
matrix is cut into chunks where each chunk contains C matrix rows, with C being
a multiple of the architecture’s SIMD width. Within a chunk, all rows are padded
with zeros up to the length of the longest row. Matrix values and according column
indices are stored along jagged diagonals and chunk after chunk. To avoid excessive
zero padding, it may be helpful to sort � successive matrix rows (� > C) by
their number of non-zeros before chunk assembly. In this case, also the column
indices of matrix entries have to be permuted accordingly. Figure 2 demonstrates
the assembly of a SELL-C-� matrix from an example matrix. In contrast to CSR,
SIMD processing is achieved along jagged diagonals of the matrix instead of rows.
This enables effective vectorized processing for short rows (comparable to or shorter
than the SIMD width), and it enhances the vectorization efficiency of longer rows
compared to CSR due to the absence of a reduction operation.

Typically, even non-vectorized code yields optimal performance for bandwidth-
bound kernels on a full multi-core CPU socket. However, a higher degree of
vectorization usually comes with higher energy efficiency. Hence, we used SELL-C-
� for our experiments. Even if no performance gain over CSR can be expected on a
full socket, we will demonstrate in Sect. 3.2 that SELL-C-� turns out to be beneficial
in terms of energy consumption. Due to the regular structure of the topological
insulator system matrix, no row sorting has to be applied, i.e., � D 1. The chunk
height C was set to 32. While it is usually a good practice to choose C as small
as possible (which would be C=4 in this case, cf. [13]) to avoid a loss of chunk
occupancy in the SELL-C-� matrix, we do not expect such problems for the present

Performance Engineering for Sparse Building Blocks 323

Fig. 2 SELL-C-� matrix construction where the SELL-2-4 matrix (b) is created from the source
matrix (a), which includes row permutation according to (c), and yields the final SELL-C-� data
structure for this matrix as shown in (d)

Algorithm 2 Enhanced version of the KPM-DOS algorithm using the augmented
SpMV kernel, which covers all operations chained by ‘&’
for r D 0 to R� 1 do
jvi jrand()i
Initialization and computation of �0; �1
for mD 1 to M=2 do

swap.jwi; jvi/
jwi D 2a.H � b1/jvi � jwi & �2m D hvjvi & �2mC1 D hwjvi

test case due to the regularity of the system matrix. Hence, we opted for a larger
C which turned out to be slightly more efficient due to a larger degree of loop
unrolling.

3.1.2 Kernel Fusion and Blocking

The naive KPM-DOS implementation is strongly memory-bound as described in the
introduction to Sect. 3.1. Thus, the most obvious way to achieve higher performance
is to decrease the amount of data traffic.

As previously described in [15], a simple and valid way to do this is to fuse
all involved kernels into a single tailored KPM-DOS kernel. Algorithm 2 shows
the KPM-DOS algorithm with all operations fused into a single kernel. Taking
the algorithmic optimization one step further, we can eliminate the outer loop by
combining all random initial states into a block of vectors and operate on vector
blocks in the fused kernel. The resulting fully optimized (i.e., fused and blocked)

324 M. Kreutzer et al.

Algorithm 3 Fully optimized version of the KPM-DOS algorithm combining kernel
fusion (see Algorithm 2) and vector blocking; each � is a vector of R column-wise
dot products of two block vectors
jVi :D jvi0::R�1 F Assemble vector blocks
jWi :D jwi0::R�1

jVi jrand()i
Initialization and computation of �0; �1
for m D 1 to M=2 do

swap.jWi; jVi/
jWi D 2a.H � b1/jVi � jWi & �2mŒW�D hVjVi & �2mC1ŒW�D hWjVi

kernel can be seen in Algorithm 3. Each of the proposed optimization steps increases
the computational intensity of the KPM-DOS solver:

Imax D 69

234

flops

byte
� 0:295 flops

byte
kernel fusion &��������!
vector blocking

69

.130=RC 24/
flops

byte
(1)

�

8̂
<̂
ˆ̂:
0:448

flops
byte R D 1 (no blocking)

2:459
flops
byte R D 32 (this work)

2:875
flops
byte R!1 :

(2)

Eventually, the fully optimized solver is decoupled from main memory bandwidth
on the Intel Ivy Bridge architecture as we have demonstrated in [15].

3.2 Single-Socket Performance and Energy Analysis

3.2.1 Multi-Core Energy Modeling

The usefulness of analytic models that describe the runtime and power dissipation
of programs and the systems they run on is obvious. Even if such models are often
over-simplified, they can still predict and explain many important properties of
hardware–software interaction. Bandwidth-based upper performance limits on the
CPU level have been successfully used for decades [4, 12], but modeling power
dissipation is more intricate. In [10] we have introduced a phenomenological power
and energy consumption model from which useful guidelines for the energy-optimal
operating point of a code (number of active cores, clock speed) could be derived.
In the following we briefly review the model and its predictions as far as they are
relevant for the application case of KPM.

The model takes a high-level view of energy consumption. It is assumed that the
CPU chip dissipates a constant baseline power W0, which is defined as the power at
zero (extrapolated) clock speed. W0 also contains contributions from cores in idle or
deep sleep state, and it may also comprise other system components whose power

Performance Engineering for Sparse Building Blocks 325

dissipation is roughly constant. Every active core, i.e., when executing instructions,
contributes additional dynamic power, which depends on the clock speed f . The
power dissipation at n active cores is assumed as

W D W0 C
�
W1f CW2 f

2
�
n : (3)

There is no cubic term in f since measurements on current multi-core CPUs show
that the dynamic power is at most quadratic in f . The exact dependance on f is
parameterized by W1 and W2. This is a consequence of the automatic adaptation of
supply voltage to clock speed as imposed by the processor or the OS kernel [6].
Power- and energy-to-solution are connected by the program’s runtime, which is
work divided by performance. If F is the amount of work (e.g., in flops) we assume
the following model for the runtime:

T.n; f / D F

min .nP0. f /;Pmax/
; (4)

where P0 is the single-core (i.e., sequential) performance and Pmax is the maximum
performance as given by a bandwidth-based limit (e.g., as given by the product of
arithmetic intensity and memory bandwidth if the memory interface is a potential
bottleneck). Assuming linear scalability up to a saturation point is justified on
current multi-core designs if no other scaling impediments apply. In general P0 will
depend strongly on the clock speed since the serial execution time is dominated by
intra-cache data transfers or in-core execution on modern CPUs with deep cache
hierarchies. This is clearly described by our ECM performance model [31]. The
energy-to-solution is thus

E.n; f / D F � W0 C
�
W1f CW2f 2

�
n

min .nP0. f /;Pmax/
: (5)

There are several immediate conclusions that can be drawn from this model [10].
Here we restrict ourselves to the case of a fixed clock speed f . Then,

• if the performance saturates at some number of cores ns, this is the number of
active cores to use for minimal energy-to-solution.

• If the performance is linear in n one must use all cores for minimal energy-to-
solution.

• Energy-to-solution is inversely proportional to performance, regardless of
whether the latter is saturated or not.

We consider the last of these conclusions to be the most important one, since
runtime (i.e., inverse performance) is the only factor in which energy is linear.
This underlines that performance optimization is the pivotal strategy in energy
reduction.

326 M. Kreutzer et al.

3.2.2 Measurements

In order to provide maximum insight into the connections between performance and
energy in a multi-core chip we use what we call a Z-plot, combining performance in
Gflop/s on the x axis with energy-to-solution in J on the y axis (see Fig. 3). One set
of data points represents measurements for solving a fixed problem with a varying
number of active cores on the chip. In a Z-plot, horizontal lines are “energy iso-
lines,” vertical lines are “performance iso-lines,” and hyperbolas are “power iso-
lines” (doubling performance, i.e., cutting the runtime in half, also halves energy).
If a program shows saturating performance with respect to the number of cores,
the curve bends upward at the saturation point, indicating that more resources (thus
more power) are used without a performance gain, leading to growing energy-to-
solution. For scalable programs the curve is expected to stay flat or keep falling if the
power model described in Sect. 3.2.1 holds. The Z-plot has the further advantage that
lines of constant energy-delay product (energy-to-solution multiplied by program
runtime, EDP) are straight lines through the origin. This is convenient when EDP is
used as an alternative target metric instead of plain energy.

All measurements shown in this section were performed on one node (actually a
single socket with ten cores) of the “Emmy” cluster at RRZE, comprising Intel Ivy
Bridge (Xeon E5-2660v2; “IVB”) CPUs with 2.2 GHz base clock speed and 32 GB
of RAM per socket. The clock frequency was set to 2.2 GHz, i.e., “Turbo Mode” was
disabled. Energy measurements were done via the likwid-perfctr tool from
the LIKWID tool suite [18, 34], leveraging Intel’s on-chip RAPL infrastructure. No

0 10 20 30 40 50 60

Performance [GFlop/s]

0

2000

4000

6000

8000

10000

E
ne

rg
y

to
 s

ol
ut

io
n

[J
]

naive SMT1
naive SMT2
augmented SMT1
augmented SMT2
blocked SMT1
blocked SMT2

1.5x

1.45x

2.9x

3.1x

1612 14 18 20

4000

5000

6000

Fig. 3 Single-socket performance and energy Z-plot of naive (squares), augmented (circles), and
blocked (triangles) versions on IVB, comparing one thread per core (filled) vs. two threads (open)
using SELL-32-1. (Inset: enlarged region of saturation for naive and blocked versions with absolute
upper performance limit)

Performance Engineering for Sparse Building Blocks 327

significant variation in energy or performance was observed over multiple runs on
the socket.

In Figure 3 we show package-level energy and performance data for the naive
implementation of KPM (Algorithm 1) and the augmented and blocked versions
(Algorithms 2 and 3) on one IVB socket at a fixed baseline frequency of 2.2 GHz.
As expected from their low computational intensities (see Table 1 and Sect. 3.1.2),
the naive and augmented variants show strong performance saturation at about 5
and 6 cores, respectively. The augmented kernel requires more cores for saturation
since it performs more work per byte transferred from main memory. In the inset
we show the bandwidth-based performance limits calculated by multiplying the
maximum achievable memory bandwidth on the chip (45 GB/s) with the respective
computational intensity. The measured saturated performance is only 6–7 % below
this limit in both cases. Note that the maximum bandwidth was obtained using a
read-only benchmark (likwid-bench load [35]) but the kernels do not exhibit
pure load characteristics. Depending on the fraction of stored vs. loaded data,
the maximum bandwidth delivered to the IVB chip can drop by more than 10 %.
The blocked variant does not suffer from a memory bandwidth bottleneck on this
processor and thus profits from all cores on the chip. As opposed to the naive and
blocked versions, it also shows a significant speedup of 12 % when using both
hardware threads per core (SMT2).

The energy-to-solution data in the figure was measured on the CPU package
level, i.e., ignoring the rest of the system such as RAM, I/O, disks, etc. On the
other hand, the particular IVB processor used for the benchmarks shows a low
dynamic power compared to chips with higher clock speeds. As a consequence,
performance improvements by algorithmic or implementation changes translate into
almost proportional energy savings. This is demonstrated by the dashed lines in
Fig. 3: Comparing full sockets, the naive version is 1.5� slower and takes 1.45�
more energy than the augmented version. The blocked version is 3.1� faster and
takes 2.9� less energy than the augmented version. This correspondence becomes
only more accurate when adding the full baseline power contributions from all
system components. Note that a further 20 % of package-level energy can be saved
with the naive and blocked versions by choosing the minimum number of cores that
ensures saturation.

The influence of SMT is minor in the saturating cases, which is expected since
SMT cannot improve performance in the presence of a strong memory bottleneck.
The 12 % performance boost for the blocked version comes with negligible energy
savings. We must conclude that executing code on both hardware threads increases
the power dissipation, which is also seen by the slight energy increase for SMT2 in
the saturated case.

A performance-energy comparison of the SELL-1-1 (a.k.a. CSR) matrix storage
format with SELL-32-1 is shown in Fig. 4 for all code versions. The energy
advantage of SELL-32-1 in the saturating case is mainly due to the higher single-
core performance and accordingly smaller number of required cores to reach the
saturation point, leading to package-level energy savings of 8 % and 13 % for the
naive and augmented kernels, respectively. We attribute the slight difference in

328 M. Kreutzer et al.

0 10 20 30 40 50 60

Performance [GFlop/s]

0

2000

4000

6000

8000

10000
E

ne
rg

y
to

 s
ol

ut
io

n
[J

]

naive SELL-1-1
naive SELL-32-1
augmented SELL-1-1
augmented SELL-32-1
blocked SELL-1-1
blocked SELL-32-1

12 14 16 18 20

4000

5000

6000

1.08x

1.13x

Fig. 4 Single-socket performance and energy Z-plot for the same kernel versions as in Fig. 3 but
comparing the SELL-1-1 (CSR) matrix format (filled symbols) with SELL-32-1 (open symbols) at
two threads per core

saturated performance to the different right-hand side data access patterns in the
SpMV. The blocked variant shows no advantage (even a slight slowdown) for the
SIMD-friendly data layout, which is expected since the access to the matrix data is
negligible.

The conclusion from the socket-level performance and energy analysis is that
optimization by performance engineering translates, to lowest order, into equivalent
energy savings. Overall, the performance ratio between the fastest variant (blocked,
with two threads per core) and the lowest (full-socket CSR-based naive implemen-
tation) is 5.1, at an energy reduction of 4.5�. At least on the Intel Ivy Bridge system
studied here we expect similar findings for other algorithms investigated in the
ESSEX project.

A comprehensive analysis of the power dissipation and energy behavior of the
studied code variants and the changes for multi-socket and highly parallel runs is
beyond the scope of this paper and will be published elsewhere.

4 An Overview of GHOST

The GHOST (General, Hybrid, and Optimized Sparse Toolkit) library summarizes
the effort put into computational building blocks in the ESSEX project. A detailed
description can be found in [16]. GHOST, a “physics” package containing several
scalable sparse matrices, and a range of example applications are available for

Performance Engineering for Sparse Building Blocks 329

download.7 GHOST features high performance building blocks for sparse linear
algebra. It builds on the “MPI+X” programming paradigm where “X” can be one of
either OpenMP+SIMD or CUDA. The development process of GHOST is closely
accompanied by analytic performance modeling, which guarantees compute kernels
with optimal performance where possible.

There are several software libraries available that offer some sort of hetero-
geneous execution capabilities. MAGMA [20], ViennaCL [30], PETSc [3], and
Trilinos [11] are arguably the most prominent approaches, all of which have their
strengths and weaknesses. PETSc and Trilinos are similar to GHOST as they also
build on “MPI+X”. MAGMA and ViennaCL, on the other hand, provide shared
memory building blocks for different architectures but do not expose any distributed
memory capabilities themselves. The most fundamental difference between GHOST
and the aforementioned libraries is the possibility of data-parallel heterogeneous
execution in GHOST (see below). GHOST has been designed from scratch with
heterogeneous architecture in mind. This has to be viewed in contrast to the sub-
sequent addition of heterogeneous computing features to originally homogeneous
libraries such as, e.g., PETSc, for which a disclaimer says:8 “WARNING: Using
GPUs effectively is difficult! You must be dedicated and willing to get into the guts
of GPU usage if you are serious about using GPUs.”

GHOST is not intended to be a rival of the mentioned libraries, but rather a
promising supplement and novel approach. Due to its young age, it certainly falls
behind in terms of robustness and maturity. While other solutions focus on broad
applicability, which often comes with sacrificing some performance, achieving
optimal efficiency for selected applications without losing sight of possible broader
applicability is clearly the main target of GHOST development. Within the ESSEX
effort, we supply mechanisms to use GHOST in higher level software frameworks
using the PHIST library [32]. To give an example, in [16] we have demonstrated
the feasibility and performance gain of using PHIST to leverage GHOST for a
Krylov-Schur algorithm as implemented in the Trilinos package Anasazi [2]. In
the following we will briefly summarize the most important features of GHOST and
how they influence the ESSEX effort.

A unique feature of GHOST is the capability of data-parallel execution across
heterogeneous devices. MPI ranks can be assigned to arbitrary combinations of
heterogeneous compute devices, as depicted in Fig. 5. A sparse system matrix is the
central data structure in GHOST, and it is distributed row-wise among MPI ranks. In
order to reflect heterogeneous systems in an efficient manner, the amount of matrix
rows per rank can be arbitrarily set at runtime. Section 5.1 demonstrates possible
performance gains due to this feature.

On top of “MPI+X”, GHOST exposes the possibility for affinity-aware task-
level parallelism. Users can create tasks, which are defined as arbitrary callback
functions. OpenMP parallelism can be used inside those tasks and GHOST will take

7https://bitbucket.org/essex/
8http://www.mcs.anl.gov/petsc/features/gpus.html, accessed 02-16-2016

https://bitbucket.org/essex/
http://www.mcs.anl.gov/petsc/features/gpus.html

330 M. Kreutzer et al.

Fig. 5 Heterogeneous compute node and sensible process placement as suggested by GHOST
(Figure taken from [16]). (a) Heterogeneous node. (b) Process placement

1 2 3 4 5 6 7 8 9 10

Number of cores

0

4

8

12

16

20

Pe
rf

or
m

an
ce

 (
G

fl
op

/s
)

SELL-4-128 (AVX intrinsics)
SELL-4-128 (plain C)
CRS (plain C)

Fig. 6 Intra-socket performance on a single CPU showing the impact of vectorization on SpMV
performance for different storage formats (Figure taken from [16])

care of thread affinity and resource management. This feature can be used, e.g., for
communication hiding, asynchronous I/O, or checkpointing. In future work we plan
to implement asynchronous preconditioning techniques based on this mechanism.

GHOST uses the SELL-C-� sparse matrix storage format as previously described
in Sect. 3.1.1. Note that this does not imply exclusion of CSR, since CSR is just a
special case of SELL-C-� with C=1 and �=1. Selected kernels are implemented
using compiler intrinsics to ensure efficient vectorization. This turned out to be a
requirement for optimal performance of rather complex, compute-intensive kernels.
However, vectorization may also pay off for kernels with lower computational
intensity. Figure 6 backs up the findings of Sect. 3.2.2 in this regard. Not only
the superior vectorization potential of SELL-C-� over CSR, but also a manually

Performance Engineering for Sparse Building Blocks 331

Fig. 7 The impact of
hard-coded loop length on the
SpMMV performance with
increasing block vector width
on a single CPU (Figure
taken from [16])

1 2 3 4 5 6 7 8

Block vector width

0

10

20

30

40

50

60

Pe
rf

or
m

an
ce

 (
G

fl
op

/s
)

Hard-coded block vector width
Runtime block vector width

vectorized implementation of the SELL-C-� SpMV kernel yields a highly energy-
efficient SpMV kernel.

Vector blocking, i.e., processing several dense vectors at once, is usually a
highly appropriate optimization technique in sparse linear algebra due to the often
bandwidth-limited nature of sparse matrix algorithms. GHOST addresses this by
supporting efficient block vector operations for row- and column-major storage.

Block vector operations often lead to short loops due to a small number of vectors
(i.e., in the order of tens) in a block. As short loops are often accompanied by
performance penalties, it is possible to define a list of small dimensions at GHOST
compile time. Block vector kernels will be automatically generated according to
this list. This mechanism is used not only for block vectors, but also for the chunk
height C in the SELL-C-� sparse matrix format. Figure 7 illustrates the performance
benefit observed due to generated block vector kernels for the sparse matrix multiple
vector multiplication (SpMMV).

Another way to improve the computational intensity of sparse linear algebra
algorithms is kernel fusion. In this regard, specialized kernels like the KPM-
DOS operator are implemented in close collaboration with experts from the
application domain. The specialization grade, i.e., the number and combination
of fused operations, of those kernels can be gradually increased, which makes
them potentially useful for applications beyond the ESSEX scope. In this regard
it should be noted that kernel fusion, while certainly being a promising optimization
approach, diminishes the potential for efficient task-parallel execution. This fact
promotes the use of kernel fusion together with data parallelism as used in GHOST.

Among others, the described features enable very high performance on
modern, heterogeneous supercomputers as demonstrated in our previous work
[14, 15, 24, 29].

332 M. Kreutzer et al.

5 GHOST Applications

In the course of the ESSEX project the GHOST library has been used by several
numerical schemes (developed and implemented in the computational algorithms
layer) to enable large-scale (heterogeneous) computations for quantum physics
scenarios defined by the application layer. Here we summarize selected (already
published) application scenarios to demonstrate the capability, the state, and
the broad applicability of the GHOST library. We have added measurements,
where appropriate, to demonstrate the performance sustainability of the GHOST
framework over several processor generations. Moreover these measurements also
provide an impression of the rather moderate technological improvements on the
hardware level during the ESSEX project period. In particular we focus on a node-
level comparison of a Cray XC30 system, which hosts one Nvidia K20X GPGPU
and one Intel Xeon E5-2670 “Sandy Bridge” (SNB) processor in each node, with a
recent CPU compute node comprising two Intel Xeon E5-2695v3 “Haswell” (HSW)
CPUs. While the Cray XC30 system (Piz Daint at CSCS Lugano) has entered the
Top500 top ten list at the start of the ESSEX project and is still ranked as #7
(November 2015), Intel Haswell-based systems showed up first in the top ten in
2015.

5.1 Density of States Computations Using KPM-DOS

The basic algorithm (KPM-DOS) used in ESSEX to compute the density of
states of large sparse matrices has been introduced in Sect. 3.1. In reference [15]
we have presented the PE process and implementation details to enable fully
heterogeneous (CPU+GPGPU) KPM-DOS computations and could achieve high
node-level performance up to 1024 nodes in weak scaling scenarios. Since then we
have extended our runs to up to 4096 nodes (which is approximately 80% of Piz
Daint) to achieve 0.5 Pflop/s of sustained performance when computing the DOS of
a topological insulator model Hamiltonian (see Fig. 8). The corresponding matrix
has a dimension of 3� 1010 and is extremely sparse with an average of 13 non-zero
entries per row. On the node-level the optimizations described earlier have led to
significant performance gains for both devices as shown in Fig. 9, and we expect
similar energy efficiency improvements on the Cray XC30 system as demonstrated
above. Note that during the optimization steps the performance bottleneck on the
GPGPU changed from main memory saturation to the dot product. Extending the
discussion to latest CPU hardware, we find the Haswell-based system being only
15% ahead of the Cray XC30 node.

Performance Engineering for Sparse Building Blocks 333

Fig. 8 Strong and weak
scaling performance results
for different geometries for
the topological insulator test
case on Piz Daint
(measurements up to 1024
nodes have been presented
in [15])

1 64 256 1024 4096164

Number of heterogeneous nodes

0.1

1

10

100

P
er

fo
rm

an
ce

 in
 T

flo
p/

s

100% Parallel Efficiency
Square, Weak Scaling
Bar, Weak Scaling
Square, Strong Scaling

Fig. 9 Impact of
optimization steps described
in Sect. 3.1 on the node-level
performance of Piz Daint
(single device and
heterogeneous) and a
CPU-only node containing
two HSW processors (Piz
Daint numbers are taken
from [15])

Vanilla Kernel
Fusion

Kernel F.+
Blocking

0

20

40

60

80

100

120

140

160

P
er

fo
rm

an
ce

 in
 G

flo
p/

s

1xSNB
1xK20X
Node: SNB+K20X
Node: 2x HSW

5.2 Inner Eigenvalue Computation with Chebyshev Filter
Diagonalization (ChebFD)

Applying Chebyshev polynomials as a filter in an iterative subspace scheme allows
for the computation of inner eigenpairs of large sparse matrices. The attractive fea-
ture of this well-known procedure is the close relation between the filter polynomial
and the KPM-DOS scheme. Replacing the norm computation (nrm2) and the dot
product in Algorithm 1 by a vector addition (axpy) yields the polynomial filter in
our ChebFD scheme. For a more detailed description of ChebFD (which is also part
of our BEAST-P solver), and the relation to KPM-DOS we refer to the report on
the ESSEX solver repository [32] and to [24]. In ChebFD the polynomial filter is
applied to a subspace of vectors and also optimization stage 2 (see Algorithm 3)
can be applied. As compared to the KPM-DOS kernel, the lower computational

334 M. Kreutzer et al.

Fig. 10 Performance of
KPM-DOS kernel and
polynomial filter for the
topological insulator matrix
on the Nvidia K20m GPGPU,
a single SNB, and 2 HSW
sockets (the latter two only
for block vector width
R D 32)

1 2 4 8 16 32

Block vector size R

0

20

40

60

80

100

120

140

P
er

fo
rm

an
ce

 in
 G

flo
p/

s

KPM-DOS
ChebFD: Polynomial Filter

2x HSW

1x SNB

Fig. 11 Performance on a
single IVB socket of tall and
skinny matrix–matrix
multiplication X V �W
with double complex data
type, where X is R � R, V is
R �D, W is D� R and
DD 107

8 16 24 32 40 48 56 64

Block vector size R

0

20

40

60

80

100

120

140

160

180

200

P
er

fo
rm

an
ce

 in
 G

flo
p/

s

Roofline limit
GHOST
ATLAS
Intel MKL

intensity of the filter kernel reduces performance on the CPU architectures, while the
GPGPU benefits from the lack of reduction operations moving its bottleneck back to
data transfer (see Fig. 10). It is also evident that the Cray XC30 node (K20X+SNB)
outperforms the Intel Haswell node (2� HSW) on this kernel.

As a second part ChebFD requires a subspace orthogonalization step, which
basically leads to matrix–matrix multiplications involving “tall and skinny” matri-
ces. The performance of widely used BLAS level 3 multi-threaded libraries such
as Intel MKL or ATLAS are often not competitive in the relevant parameter
space addressed by ESSEX applications as can be seen in Fig. 11. Up to a block
vector size of approximately 50 they may miss the upper performance bound
imposed by the memory bandwidth and the arithmetic peak performance by a large
margin. Hence, GHOST provides optimized kernels for these application scenarios
achieving typically 80 % of the maximum attainable performance (see Fig. 11). Note

Performance Engineering for Sparse Building Blocks 335

that automatic kernel generation with compile time defined small dimensions as
described in Sect. 4 also works for “tall and skinny” GEMM operations.

The corresponding cuBLAS calls show similar characteristics and thus ESSEX
is currently preparing hand-optimized GPGPU kernels for “tall and skinny” dense
matrix operations as well.

With the current ChebFD implementation we have computed 148 innermost
eigenvalues of a topological insulator matrix (matrix dimension 109) on 512 Intel
Xeon nodes on the second phase of SuperMUC9 within 10 h (see [24] for details).
Using all of the 3072 nodes we will be able to compute the relevant inner eigenvalues
for a topological insulator matrix dimension of 1010 at a sustained performance of
approximately 250 Tflop/s on that machine.

ChebFD is similar to the recent FEAST algorithm [27]. In FEAST the accel-
eration is not done with a matrix polynomial but by a contour integration of the
resolvent, thus involving the solution of linear systems. FEAST can be faster if
a very efficient (e.g., direct) solver is available for the ill-conditioned and highly
indefinite linear systems and if high-degree polynomials must be employed in
ChebFD. In other situations, ChebFD may be superior due to the high-performance
kernels. ChebFD is limited to standard eigenvalue problems, whereas FEAST also
can address generalized problems.

5.3 Block Jacobi-Davidson QR Method

The popular Jacobi-Davidson method has been chosen in ESSEX to compute a few
low eigenpairs of large sparse matrices. A block variant (BJDQR) was implemented
which operates on dense blocks of vectors and thus increases the computational
intensity (similar to optimization stage 2 in Fig. 3) and decreases the amount of
synchronization points (see [29] and our report on the ESSEX solver repository [32]
for details).

The most time consuming operations in this algorithm are the SpMMV and
various tall-skinny matrix–matrix products for a limited number of block sizes (e.g.
2,4 and 8). The implementation was tuned to make the best possible use of the
highly optimized GHOST kernels (see Fig. 11), and in particular block vectors in
row-major storage.

As soon as all optimized CUDA “tall and skinny” GEMM kernels are imple-
mented in GHOST, BJDQR will also be available for fully heterogeneous com-
putations. For a more detailed analysis of performance and numerical efficiency
of our BJDQR solver we refer to [28, 29], where it was shown that GHOST
delivers near optimal performance on an IVB system and is clearly superior to other
implementations.

9https://www.lrz.de/services/compute/supermuc/systemdescription/

https://www.lrz.de/services/compute/supermuc/systemdescription/

336 M. Kreutzer et al.

6 Summary and Outlook

We have given an overview of the building block layer in the ESSEX project, specif-
ically the GHOST library. Using several examples of applications within the project
(Kernel Polynomial Method [KPM], Chebyshev filter diagonalization [ChebFD],
block Jacobi-Davidson QR [BJDQR]) we have shown that GHOST can address
the challenges of heterogeneous, highly parallel architectures with its consistent
“MPI+X” approach. GHOST implements the highly successful SELL-C-� sparse
matrix format, which contains several other popular formats such as CSR as special
cases. We have demonstrated our model-driven Performance Engineering approach
using the example of a KPM-DOS application, showing that improvements in the
kernel implementation (including the choice of a SIMD-friendly data layout, loop
fusion, and blocking) lead not only to the expected performance improvements but
also to proportional savings in energy-to-solution on the CPU level, both validated
using appropriate performance and power models. For KPM we have also shown
the scalability on up to 4096 nodes on the Piz Daint supercomputer, delivering
a sustained performance of 0.5 Pflop/s and 87% heterogeneous parallel efficiency
on the node-level (CPU+GPGPU). The algorithmically more challenging ChebFD
implementation benefited from the optimized tall skinny matrix multiplications in
GHOST, which reach substantially higher (in fact, near-light speed, i.e., close to
the roofline limit) socket-level performance than the vendor library (MKL) for
small to medium block vector sizes. Finally, guided by the same PE approach as
in the other cases we could improve the performance of our BJDQR implemen-
tation to yield a 3� speedup compared with the Trilinos building block library
Tpetra.

The first three years of research into sparse building blocks have already yielded
effective ways of Performance Engineering, based on analytic models and insight
into hardware-software interaction. Beyond the continued implementation and
optimization of tailored kernels for the algorithmic and application-centric parts
of the ESSEX project, we will in the future place more emphasis on optimized
(problem-aware) matrix storage schemes, high-precision reduction operations with
automatic error control, and on more advanced modeling and validation approaches.
We have also just barely scratched the surface of the energy dissipation properties
of our algorithms; more in-depth analysis is in order to develop a more detailed
understanding of power dissipation on heterogeneous hardware.

Acknowledgements The research reported here was funded by Deutsche Forschungsgemein-
schaft via the priority program 1648 “Software for Exascale Computing” (SPPEXA). The authors
gratefully acknowledge support by the Gauss Centre for Supercomputing e.V. (GCS) for providing
computing time on their SuperMUC system at Leibniz Supercomputing Centre through project
pr84pi, and by the CSCS Lugano for providing access to their Piz Daint supercomputer. Work at
Los Alamos is performed under the auspices of the USDOE.

Performance Engineering for Sparse Building Blocks 337

References

1. Ashari, A., Sedaghati, N., Eisenlohr, J., Parthasarathy, S., Sadayappan, P.: Fast sparse matrix-
vector multiplication on GPUs for graph applications. In: Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis (SC ’14),
pp. 781–792. IEEE Press, Piscataway (2014)

2. Baker, C.G., Hetmaniuk, U.L., Lehoucq, R.B., Thornquist, H.K.: Anasazi software for the
numerical solution of large-scale eigenvalue problems. ACM Trans. Math. Softw. 36(3), 13:1–
13:23 (2009)

3. Balay, S., Abhyankar, S., Adams, M.F., Brown, J., Brune, P., Buschelman, K., Dalcin, L.,
Eijkhout, V., Gropp, W.D., Kaushik, D., Knepley, M.G., McInnes, L.C., Rupp, K., Smith, B.F.,
Zampini, S., Zhang, H.: PETSc Web page (2015). http://www.mcs.anl.gov/petsc

4. Callahan, D., Cocke, J., Kennedy, K.: Estimating interlock and improving balance for pipelined
architectures. J. Parallel Distrib. Commun. 5(4), 334–358 (1988)

5. Daga, M., Greathouse, J.L.: Structural agnostic spmv: Adapting csr-adaptive for irregular
matrices. In: 2015 IEEE 22nd International Conference on High Performance Computing
(HiPC), pp. 64–74 (2015)

6. De Vogeleer, K., Memmi, G., Jouvelot, P., Coelho, F.: The energy/frequency convexity rule:
modeling and experimental validation on mobile devices. In: Wyrzykowski, R., Dongarra, J.,
Karczewski, K., Waśniewski, J. (eds.) Parallel Processing and Applied Mathematics. Lecture
Notes in Computer Science, vol. 8384, pp. 793–803. Springer, Berlin/Heidelberg (2014)

7. Duff, I.S., Heroux, M.A., Pozo, R.: An overview of the sparse basic linear algebra subpro-
grams: the new standard from the BLAS technical forum. ACM Trans. Math. Softw. 28(2),
239–267 (2002)

8. Fehske, H., Hager, G., Pieper, A.: Electron confinement in graphene with gate-defined quantum
dots. Phys. Status Solidi 252(8), 1868–1871 (2015)

9. Greathouse, J.L., Daga, M.: Efficient sparse matrix-vector multiplication on GPUs using the
CSR storage format. In: Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, pp. 769–780 (SC ’14). IEEE Press, Piscataway
(2014)

10. Hager, G., Treibig, J., Habich, J., Wellein, G.: Exploring performance and power properties of
modern multi-core chips via simple machine models. Concurr. Comput. 28(2), 189–210 (2014)

11. Heroux, M.A., Bartlett, R.A., Howle, V.E., Hoekstra, R.J., Hu, J.J., Kolda, T.G., Lehoucq,
R.B., Long, K.R., Pawlowski, R.P., Phipps, E.T., Salinger, A.G., Thornquist, H.K., Tuminaro,
R.S., Willenbring, J.M., Williams, A., Stanley, K.S.: An overview of the Trilinos project. ACM
Trans. Math. Softw. 31(3), 397–423 (2005)

12. Hockney, R.W., Curington, I.J.: f1=2: A parameter to characterize memory and communication
bottlenecks. Parallel Comput. 10(3), 277–286 (1989)

13. Kreutzer, M., Hager, G., Wellein, G., Fehske, H., Bishop, A.R.: A unified sparse matrix data
format for efficient general sparse matrix-vector multiplication on modern processors with
wide SIMD units. SIAM J. Sci. Comput. 36(5), C401–C423 (2014)

14. Kreutzer, M., Pieper, A., Alvermann, A., Fehske, H., Hager, G., Wellein, G., Bishop, A.R.:
Efficient large-scale sparse eigenvalue computations on heterogeneous hardware. In: Poster
at 2015 ACM/IEEE International Conference on High Performance Computing Networking,
Storage and Analysis (SC ’15) (2015)

15. Kreutzer, M., Pieper, A., Hager, G., Alvermann, A., Wellein, G., Fehske, H.: Performance
engineering of the kernel polynomial method on large-scale CPU-GPU systems. In: 29th IEEE
International Parallel & Distributed Processing Symposium (IEEE IPDPS 2015), Hyderabad
(2015)

16. Kreutzer, M., Thies, J., Röhrig-Zöllner, M., Pieper, A., Shahzad, F., Galgon, M., Basermann,
A., Fehske, H., Hager, G., Wellein, G.: GHOST: building blocks for high performance sparse
linear algebra on heterogeneous systems (2015), preprint. http://arxiv.org/abs/1507.08101

http://www.mcs.anl.gov/petsc
http://arxiv.org/abs/1507.08101

338 M. Kreutzer et al.

17. Lawson, C.L., Hanson, R.J., Kincaid, D.R., Krogh, F.T.: Basic linear algebra subprograms for
Fortran usage. ACM Trans. Math. Softw. 5(3), 308–323 (1979)

18. LIKWID: Performance monitoring and benchmarking suite. https://github.com/RRZE-HPC/
likwid/. Accessed Feb 2016

19. Liu, W., Vinter, B.: CSR5: An efficient storage format for cross-platform sparse matrix-
vector multiplication. In: Proceedings of the 29th ACM on International Conference on
Supercomputing (ICS ’15), pp. 339–350. ACM, New York (2015)

20. MAGMA: Matrix algebra on GPU and multicore architectures. http://icl.cs.utk.edu/magma/.
Accessed Feb 2016

21. Monakov, A., Lokhmotov, A., Avetisyan, A.: Automatically tuning sparse matrix-vector
multiplication for GPU architectures. In: Patt, Y., Foglia, P., Duesterwald, E., Faraboschi, P.,
Martorell, X. (eds.) High Performance Embedded Architectures and Compilers. Lecture Notes
in Computer Science, vol. 5952, pp. 111–125. Springer, Berlin/Heidelberg (2010)

22. Pieper, A., Heinisch, R.L., Fehske, H.: Electron dynamics in graphene with gate-defined
quantum dots. EPL 104(4), 47010 (2013)

23. Pieper, A., Heinisch, R.L., Wellein, G., Fehske, H.: Dot-bound and dispersive states in
graphene quantum dot superlattices. Phys. Rev. B 89, 165121 (2014)

24. Pieper, A., Kreutzer, M., Galgon, M., Alvermann, A., Fehske, H., Hager, G., Lang, B.,
Wellein, G.: High-performance implementation of Chebyshev filter diagonalization for interior
eigenvalue computations (2015), preprint. http://arxiv.org/abs/1510.04895

25. Pieper, A., Schubert, G., Wellein, G., Fehske, H.: Effects of disorder and contacts on transport
through graphene nanoribbons. Phys. Rev. B 88, 195409 (2013)

26. Pieper, A., Fehske, H.: Topological insulators in random potentials. Phys. Rev. B 93, 035123
(2016)

27. Polizzi, E.: Density-matrix-based algorithm for solving eigenvalue problems. Phys. Rev. B 79,
115112 (2009)

28. Röhrig-Zöllner, M., Thies, J., Kreutzer, M., Alvermann, A., Pieper, A., Basermann, A., Hager,
G., Wellein, G., Fehske, H.: Performance of block Jacobi-Davidson eigensolvers. In: Poster
at 2014 ACM/IEEE International Conference on High Performance Computing Networking,
Storage and Analysis (2014)

29. Röhrig-Zöllner, M., Thies, J., Kreutzer, M., Alvermann, A., Pieper, A., Basermann, A., Hager,
G., Wellein, G., Fehske, H.: Increasing the performance of the Jacobi–Davidson method by
blocking. SIAM J. Sci. Comput. 37(6), C697–C722 (2015)

30. Rupp, K., Rudolf, F., Weinbub, J.: ViennaCL – a high level linear algebra library for GPUs and
multi-core CPUs. In: International Workshop on GPUs and Scientific Applications, pp. 51–56
(2010)

31. Stengel, H., Treibig, J., Hager, G., Wellein, G.: Quantifying performance bottlenecks of stencil
computations using the execution-cache-memory model. In: Proceedings of the 29th ACM
International Conference on Supercomputing (ICS ’15), pp. 207–216. ACM, New York (2015)

32. Thies, J., Galgon, M., Shahzad, F., Alvermann, A., Kreutzer, M., Pieper, A., Röhrig-Zöllner,
M., Basermann, A., Fehske, H., Hager, G., Lang, B., Wellein, G.: Towards an exascale
enabled sparse solver repository. In: Proceedings of SPPEXA Symposium. Lecture Notes in
Computational Science and Engineering. Springer (2016)

33. TOP500 Supercomputer Sites. http://www.top500.org. Accessed Feb 2016
34. Treibig, J., Hager, G., Wellein, G.: LIKWID: A lightweight performance-oriented tool suite

for x86 multicore environments. In: Proceedings of the 2010 39th International Conference
on Parallel Processing Workshops (ICPPW ’10), pp. 207–216. IEEE Computer Society,
Washington, DC (2010)

35. Treibig, J., Hager, G., Wellein, G.: likwid-bench: An extensible microbenchmarking platform
for x86 multicore compute nodes. In: Brunst, H., Müller, M.S., Nagel, W.E., Resch, M.M.
(eds.) Tools for High Performance Computing 2011, pp. 27–36. Springer, Berlin/Heidelberg
(2012)

36. Weiße, A., Wellein, G., Alvermann, A., Fehske, H.: The kernel polynomial method. Rev. Mod.
Phys. 78, 275–306 (2006)

https://github.com/RRZE-HPC/likwid/
https://github.com/RRZE-HPC/likwid/
http://icl.cs.utk.edu/magma/
http://arxiv.org/abs/1510.04895
http://www.top500.org

Part VIII
DASH: Hierarchical Arrays for Efficient
and Productive Data-Intensive Exascale

Computing

Expressing and Exploiting Multi-Dimensional
Locality in DASH

Tobias Fuchs and Karl Fürlinger

Abstract DASH is a realization of the PGAS (partitioned global address space)
programming model in the form of a C++ template library. It provides a multi-
dimensional array abstraction which is typically used as an underlying container for
stencil- and dense matrix operations. Efficiency of operations on a distributed multi-
dimensional array highly depends on the distribution of its elements to processes
and the communication strategy used to propagate values between them. Locality
can only be improved by employing an optimal distribution that is specific to the
implementation of the algorithm, run-time parameters such as node topology, and
numerous additional aspects. Application developers do not know these implications
which also might change in future releases of DASH. In the following, we identify
fundamental properties of distribution patterns that are prevalent in existing HPC
applications. We describe a classification scheme of multi-dimensional distribu-
tions based on these properties and demonstrate how distribution patterns can be
optimized for locality and communication avoidance automatically and, to a great
extent, at compile-time.

1 Introduction

For exascale systems the cost of accessing data is expected to be the dominant
factor in terms of execution time as well as energy consumption [3]. To minimize
data movement, applications have to consider initial placement and optimize both
vertical data movement in the memory hierarchy and horizontal data movement
between processing units. Programming systems for exascale must therefore shift
from a compute-centric to a more data-centric focus and give application developers
fine-grained control over data locality.

On an algorithmic level, many scientific applications are naturally expressed
in multi-dimensional domains that arise from discretization of time and space.

T. Fuchs (�) • K. Fürlinger
MNM-Team, Computer Science Department, Ludwig-Maximilians-Universität (LMU) München,
München, Germany
e-mail: tobias.fuchs@nm.ifi.lmu.de; karl.fuerlinger@nm.ifi.lmu.de

© Springer International Publishing Switzerland 2016
H.-J. Bungartz et al. (eds.), Software for Exascale Computing – SPPEXA
2013-2015, Lecture Notes in Computational Science and Engineering 113,
DOI 10.1007/978-3-319-40528-5_15

341

mailto:tobias.fuchs@nm.ifi.lmu.de
mailto:karl.fuerlinger@nm.ifi.lmu.de

342 T. Fuchs and K. Fürlinger

However, few programming systems support developers in expressing and
exploiting data locality in multiple dimensions beyond the most simple one-
dimensional distributions. In this paper we present a framework that enables HPC
application developers to express constraints on data distribution that are suitable to
exploit locality in multi-dimensional arrays.

The DASH library [10] provides numerous variants of data distribution schemes.
Their implementations are encapsulated in well-defined concept definitions and
are therefore semantically interchangeable. However, no single distribution scheme
is suited for every usage scenario. In operations on shared multi-dimensional
containers, locality can only be maintained by choosing an optimal distribution.
This choice depends on:

• the algorithm executed on the shared container, in particular its communication
pattern and memory access scheme,

• run-time parameters such as the extents of the shared container, the number of
processes and their network topology,

• numerous additional aspects such as CPU architecture and memory topology.

The responsibility to specify a data distribution that achieves high locality and
communication avoidance lies with the application developers. These, however, are
not aware of implementation-specific implications: a specific distribution might be
balanced, but blocks might not fit into a cache line, inadvertently impairing hardware
locality.

As a solution, we present a mechanism to find a concrete distribution variant
among all available candidate implementations that satisfies a set of properties. In
effect, programmers do not need to specify a distribution type and its configuration
explicitly. They can rely on the decision of the DASH library and focus only on
aspects of data distribution that are relevant in the scenario at hand.

For this, we first identify and categorize fundamental properties of distribution
schemes that are prevalent in algorithms in related work and existing HPC applica-
tions. With DASH as a reference implementation, we demonstrate how optimized
data distributions can then be determined automatically and, to a great extent, at
compile-time.

From a software engineering perspective, we explain how our methodology
follows best practices known from established C++ libraries and thus ensures that
user applications are not only robust against, but even benefit from future changes
in DASH.

The remainder of this paper is structured as follows: the following section
introduces fundamental concepts of PGAS and locality in the context of DASH.
A classification of data distribution properties is presented in Sect. 3. In Sect. 4,
we show how this system of properties allows to exploit locality in DASH in
different scenarios. Using the use case of SUMMA as an example, the presented
methods are evaluated for performance as well as flexibility against the established
implementations from Intel MKL and ScaLAPACK. Publications and tools related
to this work are discussed in Sect. 6. Finally, Sect. 7 gives a conclusion and an
outlook on future work where the DASH library’s pattern traits framework is
extended to sparse, irregular, and hierarchical distributions.

Expressing and Exploiting Multi-Dimensional Locality in DASH 343

2 Background

This section gives a brief introduction to the Partitioned Global Address Space
approach considering locality and data distribution. We then present concepts in
the DASH library used to express process topology, data distribution and iteration
spaces. The following sections build upon these concepts and present new mecha-
nisms to exploit locality automatically using generic programming techniques.

2.1 PGAS and Multi-dimensional Locality

Conceptually, the Partitioned Global Address Space (PGAS) paradigm unifies
memory of individual, networked nodes into a virtual global memory space. In
effect, PGAS languages create a shared namespace for local and remote variables.
This, however, does not affect physical ownership. A single variable is only located
in a specific node’s memory and local access is more efficient than remote access
from other nodes. This is expected to matter more and more even within single
(NUMA) nodes in the near future [3]. As locality directly affects performance and
scalability, programmers need full control over data placement. Then, however, they
are facing overwhelmingly complex implications of data distribution on locality.

This complexity increases exponentially with the number of data dimensions.
Calculating a rectangular intersection might be manageable for up to three dimen-
sions, but locality is hard to maintain in higher dimensions, especially for irregular
distributions.

2.2 DASH Concepts

Expressing data locality in a Partitioned Global Address Space language builds upon
fundamental concepts of process topology and data distribution. In the following, we
describe these concepts as they are used in the context of DASH.

2.2.1 Topology: Teams and Units

In DASH terminology, a unit refers to any logical component in a distributed mem-
ory topology that supports processing and storage. Conventional PGAS approaches
offer only the differentiation between local and global data and distinguish between
private, shared-local, and shared-remote memory. DASH extends this model by a
more fine-grained differentiation that corresponds to hierarchical machine models
as units are organized in hierarchical teams. For example, a team at the top level
could group processing nodes into individual teams, each again consisting of units
referencing single CPU cores.

344 T. Fuchs and K. Fürlinger

2.2.2 Data Distribution: Patterns

Data distributions in general implement a two-level mapping:

1. From index to process (node- or process mapping)
2. From process to local memory offset (local order or layout)

Index sets separate the logical index space as seen by the user from physical
layout in memory space. This distinction and the mapping between index domains
is usually transparent to the programmer.

Process mapping can also be understood as distribution, arrangement in local
memory is also referred to as layout e.g. in Chapel [5].

In DASH, data decomposition is based on index mappings provided by different
implementations of the DASH Pattern concept. Listing 1 shows the instantiation
of a rectangular pattern, specifying the Cartesian index domain and partitioning
scheme. Patterns partition a global index set into blocks that are then mapped to
units. Consequently, indices are mapped to processes indirectly in two stages: from
index to block (partitioning) and from block to unit (mapping). Figure 1 illustrates a
pattern’s index mapping as sequential steps in the distribution of a two-dimensional
array. While the name and the illustrated example might suggest otherwise, blocks
are not necessarily rectangular.

In summary, the DASH pattern concept defines semantics in the following
categories:

Distribution Well-defined distribution of indices to units,
depending on properties in the subordinate categories:

Partitioning Grouping indices into blocks
Mapping Distributing blocks to units in a team

Layout Arrangement of blocks and block elements in local memory
Indexing Operations related to index sets for iterating data

elements in global and local scope

Layout semantics specify the arrangement of values in local memory and, in effect,
their order. Indexing semantics also include index set operations like slicing and
intersection but do not affect physical data distribution.

Fig. 1 Example of partitioning, mapping, and layout in the distribution of a dense, two-
dimensional array

Expressing and Exploiting Multi-Dimensional Locality in DASH 345

We define distribution semantics of a pattern type depending on the following set
of operations:

local.iG/ 7! .u; iL/ Index iG to unit u and local offset iL

global.u; iL/ 7! iG Unit u and local offset iL to global index iG

unit.iG/ 7! u Index iG to unit u

local_block.iG/ 7! .u; iLB/ Index iG to unit u and local block index iLB

global_block.iG/ 7! iGB Index iG to global block index iGB

with n-dimensional indices iG, iL as coordinates in the global/local Cartesian
element space and iGB, iLB as coordinates in the global/local Cartesian block space.
Instead of a Cartesian point, an index may also be declared as a point’s offset in
linearized memory order.

1 // Brief notation:
2 TilePattern<2> pattern(global_extent_x, global_extent_y,
3 TILED(tilesize_x), TILED(tilesize_y));
4 // Equivalent full notation:
5 TilePattern<2, dash::default_index_t, ROW_MAJOR>
6 pattern(DistributionSpec<2>(
7 TILED(tilesize_x), TILED(tilesize_y),
8 SizeSpec<2, dash::default_size_t>(
9 global_extent_x, global_extent_y),

10 TeamSpec<1>(
11 Team::All()));

Listing 1 Explicit instantiation of DASH patterns

DASH containers use patterns to provide uniform notations based on view proxy
types to express index domain mappings. User-defined data distribution schemes
can be easily incorporated in DASH applications as containers and algorithms
accept any type that implements the Pattern concept.

Listing 2 illustrates the intuitive usage of user-defined pattern types and the
local and block view accessors that are part of the DASH container concept.
View proxy objects use a referenced container’s pattern to map between its index
domains but do not contain any elements themselves. They can be arbitrarily
chained to refine an index space in consecutive steps, as in the last line of Listing 2:
the expression array.local.block(1) addresses the second block in the
array’s local memory space.

In effect, patterns specify local iteration order similar to the partitioning of
iteration spaces e.g. in RAJA [11]. Proxy types implement all methods of their
delegate container type and thus also provide begin and end iterators that specify
the iteration space within the view’s mapped domain. DASH iterators provide an
intuitive notation of ranges in virtual global memory that are well-defined with

346 T. Fuchs and K. Fürlinger

respect to distance and iteration order, even in multi-dimensional and irregular index
domains.

1 CustomPattern pattern;
2 dash::Array<double> a(size, pattern);
3 double g_first = a[0] // First value in global memory,
4 // corresponds to a.begin()
5 double l_first = a.local[0]; // First value in local memory,
6 // corresponds to a.local.begin()
7 dash::copy(a.block(0).begin(), // Copy first block in
8 a.block(0).end(), // global memory to second
9 a.local.block(1).begin()); // block in local memory

Listing 2 Views on DASH containers

3 Classification of Pattern Properties

While terms like blocked, cyclic and block-cyclic are commonly understood, the
terminology of distribution types is inconsistent in related work, or varies in
semantics. Typically, distributions are restricted to specific constraints that are not
applicable in the general case for convenience.

Instead of a strict taxonomy enumerating the full spectrum of all imaginable
distribution semantics, a systematic description of pattern properties is more
practicable to abstract semantics from concrete implementations. The classification
presented in this section allows to specify distribution patterns by categorized,
unordered sets of properties. It is, of course, incomplete, but can be easily extended.
We identify properties that can be fulfilled by data distributions and then group these
properties into orthogonal categories which correspond to the separate functional
aspects of the pattern concept described in Sect. 2.2.2: partitioning, unit mapping,
and memory layout. This categorization also complies with the terminology and
conceptual findings in related work [16].

DASH pattern semantics are specified by a configuration of properties in these
dimensions:

Global � Partitioning �Mapping„ ƒ‚ …
Distribution

�Layout

Details on a selection of single properties in all categories are discussed in the
remainder of this section.

3.1 Partitioning Properties

Partitioning refers to the methodology used to subdivide a global index set into
disjoint blocks in an arbitrary number of logical dimensions. If not specified
otherwise by other constraints, indices are mapped into rectangular blocks. A

Expressing and Exploiting Multi-Dimensional Locality in DASH 347

partitioning is regular if it only creates blocks with identical extents and balanced
if all block have identical size.

rectangular Block extents are constant in every single dimension,
e.g. every row has identical size.

minimal Minimal number of blocks in every dimension, i.e. at
most one block for every unit.

regular All blocks have identical extents.
balanced All blocks have identical size (number of elements).
multi-dimensional Data is partitioned in at least two dimensions.
cache-aligned Block sizes are a multiple of cache line size.

Note that with the classification, these properties are mostly independent: rectan-
gular partitionings may produce blocks with varying extents, balanced partitionings
are not necessarily rectangular, and so on. For example, partitioning a matrix into
triangular blocks could satisfy the regular and balanced partitioning properties. The
fine-grained nature of property definitions allows many possible combinations that
form an expressive and concise vocabulary to express pattern semantics.

3.2 Mapping Properties

Well-defined mapping properties exist that have been formulated to define multipar-
titionings, a family of distribution schemes supporting parallelization of line sweep
computations over multi-dimensional arrays.

The first and most restrictive multipartitioning has been defined based on the
diagonal property [15]. In a multipartitioning, each process owns exactly one tile in
each hyperplane of a partitioning so that all processors are active in every step of a
line-sweep computation along any array dimension as illustrated in Fig. 2.

General multipartitionings are a more flexible variant that allows to assign more
than one block to a process in a partitioned hyperplane. The generalized definition

Fig. 2 Combinations of mapping properties. Numbers in blocks indicate the unit rank owning the
block

348 T. Fuchs and K. Fürlinger

subdivides the original diagonal property into the balanced and neighbor mapping
properties [7] described below. This definition is more relaxed but still preserves the
benefits for line-sweep parallelization.

balanced The number of assigned blocks is identical for every unit.
neighbor A block’s adjacent blocks in any one direction along a

dimension are all owned by some other processor.
shifted Units are mapped to blocks in diagonal chains in at

least one hyperplane.
diagonal Units are mapped to blocks in diagonal chains in all

hyperplanes.
cyclic Blocks are assigned to processes like dealt from a deck of

cards in every hyperplane, starting from first unit.
multiple At least two blocks are mapped to every unit.

The constraints defined for multipartitionings are overly strict for some algorithms
and can be further relaxed to a subset of its properties. For example, a pipelined
optimization of the SUMMA algorithm requires a diagonal shift mapping [14, 18]
that satisfies the diagonal property but is not required to be balanced. Therefore, the
diagonal property in our classification does not imply a balanced mapping, deviating
from its original definition.

3.3 Layout Properties

Layout properties describe how values are arranged in a unit’s physical memory
and, consequently, their order of traversal. Perhaps the most crucial property is
storage order which is either row- or column-major. If not specified, DASH assumes
row-major order as known from C. The list of properties can also be extended to
give hints to allocation routines on the physical memory topology of units such as
NUMA or CUDA.

row-major Row major storage order, used by default.
col-major Column-major storage order.
blocked Elements are contiguous in local memory within a single

block.
canonical All local indices are mapped to a single logical index

domain.
linear Local element order corresponds to a logical linearization

within single blocks (tiled) or within entire local memory
(canonical).

Expressing and Exploiting Multi-Dimensional Locality in DASH 349

Fig. 3 Morton order memory layout of block elements

While patterns assign indices to units in logical blocks, they do not necessarily
preserve the block structure in local index sets. After process mapping, a pattern’s
layout scheme may arrange indices mapped to a unit in an arbitrary way in physical
memory. In canonical layouts, the local storage order corresponds to the logical
global iteration order. Blocked layouts preserve the block structure locally such
that values within a block are contiguous in memory, but in arbitrary order. The
additional linear property also preserves the logical linearized order of elements
within single blocks. For example, Morton order memory layout as shown in Fig. 3
satisfies the blocked property, as elements within a block are contiguous in memory,
but does not grant the linear property.

3.4 Global Properties

The Global category is usually only needed to give hints on characteristics of the
distributed value domain such as the sparse property to indicate the distribution of
sparse data.

dense Distributed data domain is dense.
sparse Distributed data domain is sparse.
balanced The same number of values is mapped to every unit after

partitioning and mapping.

It also contains properties that emerge from a combination of the independent
partitioning and layout properties and cannot be derived from either category
separately. The global balanced distribution property, for example, guarantees the
same number of local elements at every unit. This is trivially fulfilled for balanced
partitioning and balanced mapping where the same number of blocks b of identical
size s is mapped to every unit. However, it could also be achieved in a combination
of unbalanced partitioning and unbalanced mapping, e.g. when assigning b blocks
of size s and b=2 blocks of size 2s.

350 T. Fuchs and K. Fürlinger

4 Exploiting Locality with Pattern Traits

The classification system presented in the last section allows to describe distribution
pattern semantics using properties instead of a taxonomy of types that are associated
with concrete implementations. In the following, we introduce pattern traits, a
collection of mechanisms in DASH that utilize distribution properties to exploit
data locality automatically.

As a technical prerequisite for these mechanisms, every pattern type is anno-
tated with tag type definitions that declare which properties are satisfied by its
implementation. This enables meta-programming based on the patterns’ distribution
properties as type definitions are evaluated at compile-time. Using tags to annotate
type invariants is a common method in generic C++ programming and prevalent in
the STL and the Boost library.1

1 template <dim_t NDim, ...>
2 class ThePattern {
3 public:
4 typedef mapping_properties<
5 mapping_tag::diagonal,
6 mapping_tag::cyclic >
7 mapping_tags;
8 ...
9 };

Listing 3 Property tags in a pattern type definition

4.1 Deducing Distribution Patterns from Constraints

In a common use case, programmers intend to allocate data in distributed global
memory with the use for a specific algorithm in mind. They would then have to
decide for a specific distribution type, carefully evaluating all available options for
optimal data locality in the algorithm’s memory access pattern.

To alleviate this process, DASH allows to automatically create a concrete pattern
instance that satisfies a set of constraints. The function make_pattern returns a
pattern instance from a given set of properties and run-time parameters. The actual
type of the returned pattern instance is resolved at compile-time and never explicitly
appears in client code by relying on automatic type deduction.

1http://www.boost.org/community/generic_programming.html

http://www.boost.org/community/generic_programming.html

Expressing and Exploiting Multi-Dimensional Locality in DASH 351

1 static const dash::dim_t NumDataDim = 2;
2 static const dash::dim_t NumTeamDim = 2;
3 // Topology of processes, here: 16x8 process grid
4 TeamSpec<NumTeamDim> teamspec(16, 8);
5 // Cartesian extents of container:
6 SizeSpec<NumDataDim> sizespec(extent_x, extent_y);
7 // Create instance of pattern type deduced from
8 // constraints at compile-time:
9 auto pattern =

10 dash::make_pattern<
11 partitioning_properties<
12 partitioning_tag::balanced >,
13 mapping_properties<
14 mapping_tag::balanced, mapping_tag::diagonal >,
15 layout_properties<
16 layout_tag::blocked >
17 >(sizespec, teamspec);

Listing 4 Deduction of an optimal distribution

To achieve compile-time deduction of its return type, make_pattern employs the
Generic Abstract Factory design pattern [2]. Different from an Abstract Factory that
returns a polymorphic object specializing a known base type, a Generic Abstract
Factory returns an arbitrary type, giving more flexibility and no longer requiring
inheritance at the same time.

Pattern constraints are passed as template parameters grouped by prop-
erty categories as shown in Listing 4. Data extents and unit topology
are passed as run-time arguments. Their respective dimensionality (Num-
DataDim, NumTeamDim), however, can be deduced from the argument types at
compile-time. Figure 4 illustrates the logical model of this process involving
two stages: a type generator that resolves a pattern type from given constraints
and argument types at compile-time and an object generator that instantiates the
resolved type depending on constraints and run-time parameters.

Fig. 4 Type deduction and pattern instantiation in dash::make_pattern

352 T. Fuchs and K. Fürlinger

Every property that is not specified as a constraint is a degree of freedom
in type selection. Evaluations of the GUPS benchmark show that arithmetic for
dereferencing global indices is a significant performance bottleneck apart from
locality effects. Therefore, when more than one pattern type satisfies the constraints,
the implementation with the least complex index calculation is preferred.

The automatic deduction also is designed to prevent inefficient configurations.
For example, pattern types that pre-generate block coordinates to simplify index
calculation are inefficient and memory-intensive for a large number of blocks. They
are therefore disregarded if the blocking factor in any dimension is small.

4.2 Deducing Distribution Patterns for a Specific Use Case

With the ability to create distribution patterns from constraints, developers still have
to know which constraints to choose for a specific algorithm. Therefore, we offer
shorthands for constraints of every algorithm provided in DASH that can be passed
to make_pattern instead of single property constraints.

1 dash::TeamSpec<2> teamspec(16, 8);
2 dash::SizeSpec<2> sizespec(1024, 1024);
3 // Create pattern instance optimized for SUMMA:
4 auto pattern = dash::make_pattern<
5 dash::summa_pattern_traits
6 >(sizepec, teamspec);
7 // Create matrix instances using the pattern:
8 dash::Matrix<2, int> matrix_a(sizespec, pattern);
9 dash::Matrix<2, int> matrix_b(sizespec, pattern);

10 \ldots
11 auto matrix_c = dash::summa(matrix_a, matrix_b)

Listing 5 Deduction of a matching distribution pattern for a given use-case

4.3 Checking Distribution Constraints

An implementer of an algorithm on shared containers might want to ensure that
their distribution fits the algorithm’s communication strategy and memory access
scheme.

The traits type pattern_constraints allows querying constraint attributes
of a concrete pattern type at compile-time. If the pattern type satisfies all requested
properties, the attribute satisfied is expanded to true. Listing 6 shows its
usage in a static assertion that would yield a compilation error if the object
pattern implements an invalid distribution scheme.

Expressing and Exploiting Multi-Dimensional Locality in DASH 353

1 // Compile-time constraints check:
2 static_assert(
3 dash::pattern_contraints<
4 decltype(pattern),
5 partitioning_properties< ... >,
6 mapping_properties< ... >,
7 layout_properties< ... >
8 >::satisfied::value
9);

10 // Run-time constraints check:
11 if (dash::check_pattern_contraints<
12 partitioning_properties< ... >,
13 mapping_properties< ... >,
14 indexing_properties< ... >
15 >(pattern)) {
16 // Object ’pattern’ satisfies constraints
17 }

Listing 6 Checking distribution constraints at compile-time and run-time

Some constraints depend on parameters that are unknown at compile-time, such as
data extents or unit topology in the current team.

The function check_pattern_constraints allows checking a given
pattern object against a set of constraints at run-time. Apart from error handling,
it can also be used to implement alternative paths for different distribution schemes.

4.4 Deducing Suitable Algorithm Variants

When combining different applications in a work flow or working with legacy code,
container data might be preallocated. As any redistribution is usually expensive, the
data distribution scheme is invariant and a matching algorithm variant is to be found.

We previously explained how to resolve a distribution scheme that is the
best match for a known specific algorithm implementation. Pattern traits and
generic programming techniques available in C++11 also allow to solve the inverse
problem: finding an algorithm variant that is suited for a given distribution.
For this, DASH provides adapter functions that switch between an algorithm’s
implementation variants depending on the distribution type of its arguments. In
Listing 7, three matrices are declared using an instance of dash::TilePattern
that corresponds to the known distribution of their preallocated data. In compilation,
dash::multiply expands to an implementation of matrix–matrix multiplication
that best matches the distribution properties of its arguments, like dash::summa
in this case.

354 T. Fuchs and K. Fürlinger

1 typedef dash::TilePattern<2, ROW_MAJOR> TiledPattern;
2 typedef dash::Matrix<2, int, TiledPattern> TiledMatrix;
3 TiledPattern pattern(global_extent_x, global_extent_y,
4 TILE(tilesize_x), TILE(tilesize_y));
5 TiledMatrix At(pattern);
6 TiledMatrix Bt(pattern);
7 TiledMatrix Ct(pattern);
8 ...
9 // Use adapter to resolve algorithm suited for TiledPattern:

10 dash::multiply(At, Bt, Ct); // --> dash::summa(At, Bt, Ct);

Listing 7 Deduction of an algorithm variant for a given distribution

5 Performance Evaluation

We choose dense matrix–matrix multiplication (DGEMM) as a use case for
evaluation as it represents a concise example that allows to demonstrate how slight
changes in domain decomposition drastically affect performance even in highly
optimized implementations.

In principle, the matrix–matrix multiplication implemented in DASH realizes
a conventional blocked matrix multiplication similar to a variant of the SUMMA
algorithm presented in [14]. For the calculation C D A�B, matrices A, B and C are
distributed using a blocked partitioning. Following the owner computes principle,
every unit then computes the multiplication result

Cij D Aik � Bkj D
K�1X
kD0

AikBkj

for all sub-matrices in C that are local to the unit.
Figure 5 illustrates the first two multiplication steps for a square matrix for sim-

plicity, but the SUMMA algorithm also allows rectangular matrices and unbalanced
partitioning.

We compare strong scaling capabilities on a single processing node against
DGEMM provided by multi-threaded Intel MKL and PLASMA [1]. Performance
of distributed matrix multiplication is evaluated against ScaLAPACK [8] for an
increasing number of processing nodes.

Ideal tile sizes for PLASMA and ScaLAPACK had to be obtained in a large series
of tests for every variation of number of cores and matrix size. As PLASMA does
not optimize for NUMA systems, we also tried different configurations of numactl
as suggested in the official documentation of PLASMA.

For the DASH implementation, data distribution is resolved automatically using
the make_pattern mechanism as described in Sect. 4.2.

Expressing and Exploiting Multi-Dimensional Locality in DASH 355

Fig. 5 Domain decomposition and first two block matrix multiplications in the SUMMA imple-
mentation. Numbers in blocks indicate the unit mapped to the block

5.1 Eperimental Setup

To substantiate the transferability of the presented results, we execute benchmarks
on the supercomputing systems SuperMUC and Cori which differ in hardware
specifications and application environments.

SuperMUC phase 22 incorporates an Infiniband fat tree topology interconnect
with 28 cores per processing node. We evaluated performance for both Intel MPI
and IBM MPI.

Cori phase 13 is a Cray system with 32 cores per node in an Aries dragonfly
topology interconnect. As an installation of PLASMA is not available, we evaluate
performance of DASH and Intel MKL.

5.2 Results

We only consider the best results from MKL, PLASMA and ScaLAPACK to provide
a fair comparison to the best of our abilities.

In summary, the DASH implementation consistently outperformed the tested
variants of DGEMM and PDGEMM on distributed and shared memory scenarios
in all configurations (Fig. 6, 7, 8).

More important than performance in single scenarios, overall analysis of results
in single-node scenarios confirms that DASH in general achieved predictable
scalability using automatic data distributions. This is most evident when comparing
results on Cori presented in Fig. 7: the DASH implementation maintained consistent
scalability while performance of Intel MKL dropped when the number of processes
was not a power of two, a good example of a system-dependent implication that is
commonly unknown to programmers.

2https://www.lrz.de/services/compute/supermuc/systemdescription/
3http://www.nersc.gov/users/computational-systems/cori/cori-phase-i/

https://www.lrz.de/services/compute/supermuc/systemdescription/
http://www.nersc.gov/users/computational-systems/cori/cori-phase-i/

356 T. Fuchs and K. Fürlinger

3360 x 3360 Matrix 10080 x 10080 Matrix 33600 x 33600 Matrix

0.0
0.2
0.4
0.6
0.8
1.0

4 8 12 16 20 24 28 4 8 12 16 20 24 28 4 8 12 16 20 24 28

Number of Cores

T
F

LO
P

/s
Strong scaling of DGEMM, single node on SuperMUC, Intel MPI

3360 x 3360 Matrix 10080 x 10080 Matrix 33600 x 33600 Matrix

0.0
0.2
0.4
0.6
0.8
1.0

282420161284 282420161284 282420161284

Number of Cores

T
F

LO
P

/s

Implementation DASH MKL PLASMA

Strong scaling of DGEMM, single node on SuperMUC, IBM MPI

Fig. 6 Strong scaling of matrix multiplication on single node on SuperMUC phase 2, Intel MPI
and IBM MPI, with 4 to 28 cores for increasing matrix size

3360 x 3360 Matrix 10080 x 10080 Matrix 33600 x 33600 Matrix

0.0
0.2
0.4
0.6
0.8
1.0

32282420161284 32282420161284 32282420161284

Number of Cores

T
F

LO
P

/s

Implementation DASH MKL

Strong scaling of DGEMM, single node on Cori, Cray MPICH

Fig. 7 Strong scaling of matrix multiplication on single node on Cori phase 1, Cray MPICH, with
4 to 32 cores for increasing matrix size

6 Related Work

Various aspects of data decomposition have been examined in related work that
influenced the design of pattern traits in DASH.

The Kokkos framework [9] is specifically designed for portable multi-
dimensional locality. It implements compile-time deduction of data layout
depending on memory architecture and also specifies distribution traits roughly
resembling some of the property categories introduced in this work. However,
Kokkos targets intra-node locality focusing on CUDA- and OpenMP backends

Expressing and Exploiting Multi-Dimensional Locality in DASH 357

1. Intel MPI 2. IBM MPI

0
10
20
30
40
50

4 8 16 32 64 128 4 8 16 32 64 128

Nodes (x28 cores)

T
F

LO
P

/s

Implementation DASH ScaLAPACK

Strong scaling analysis of DGEMM, multi−node

Fig. 8 Strong scaling of dash::summa and PDGEMM (ScaLAPACK) on SuperMUC phase 2 for
IBM MPI and Intel MPI for matrix size 57344 � 57344

and does not define concepts for process mapping. It is therefore not applicable
to the PGAS language model where explicit distinction between local and remote
ownership is required.

UPC++ implements a PGAS language model and, similar to the array concept in
DASH, offers local views for distributed arrays for rectangular index domains [12].
However, UPC++ does not provide a general view concept and no abstraction of
distribution properties as described in this work.

Chapel’s Domain Maps is an elegant framework that allows to specify and
incorporate user-defined mappings [5] and also supports irregular domains. The
fundamental concepts of domain decomposition in DASH are comparable to DMaps
in Chapel with dense and strided regions like previously defined in ZPL [6]. Chapel
does not provide automatic deduction of distribution schemes, however, and no
classification of distribution properties is defined.

Finally, the benefits of hierarchical data decomposition are investigated in recent
research such as TiDA, which employs hierarchical tiling as a general abstraction
for data locality [17]. The Hitmap library achieves automatic deduction of data
decomposition for hierarchical, regular tiles [4] at compile-time.

7 Conclusion and Future Work

We constructed a general categorization of distribution schemes based on well-
defined properties. In a broad spectrum of different real-world scenarios, we then
discussed how mechanisms in DASH utilize this property system to exploit data
locality automatically.

In this, we demonstrated the expressiveness of generic programming techniques
in modern C++ and their benefits for constrained optimization.

358 T. Fuchs and K. Fürlinger

Automatic deduction greatly simplifies the incorporation of new pattern types
such that new distribution schemes can be employed in experiments with minimal
effort. In addition, a system of well-defined properties forms a concise and
precise vocabulary to express semantics of data distribution, significantly improving
testability of data placement.

We will continue our work on flexible data layout mappings and explore concepts
to further support hierarchical locality. We are presently in the process of separating
the functional aspects of DASH patterns (partitioning, mapping and layout) into
separate policy types to simplify pattern type generators. In addition, the pattern
traits framework will be extended by soft constraints to express preferable but non-
mandatory properties.

The next steps will be to implement various irregular and sparse distributions
that can be easily combined with view specifiers in DASH to support the existing
unified sparse matrix storage format provided by SELL-C-� [13]. We also intend to
incorporate hierarchical tiling schemes as proposed in TiDA [17]. The next release
of DASH including these features will be available in the second quarter of 2016.

Acknowledgements We gratefully acknowledge funding by the German Research Foundation
(DFG) through the German Priority Program 1648 Software for Exascale Computing (SPPEXA).

References

1. Agullo, E., Demmel, J., Dongarra, J., Hadri, B., Kurzak, J., Langou, J., Ltaief, H., Luszczek,
P., Tomov, S.: Numerical linear algebra on emerging architectures: The plasma and magma
projects. J. Phys.: Conf. Ser. 180, 012037 (2009). IOP Publishing

2. Alexandrescu, A.: Modern C++ Design: Generic Programming and Design Patterns Applied.
Addison-Wesley, Boston (2001)

3. Ang, J.A., Barrett, R.F., Benner, R.E., Burke, D., Chan, C., Cook, J., Donofrio, D., Hammond,
S.D., Hemmert, K.S., Kelly, S.M., Le, H., Leung, V.J., Resnick, D.R., Rodrigues, A.F., Shalf, J.,
Stark, D., Unat, D., Wright, N.J.: Abstract machine models and proxy architectures for exascale
computing. In: Proceedings of the 1st International Workshop on Hardware-Software Co-
design for High Performance Computing (Co-HPC ’14), pp. 25–32. IEEE Press, Piscataway
(2014)

4. de Blas Cartón, C., Gonzalez-Escribano, A., Llanos, D.R.: Effortless and efficient distributed
data-partitioning in linear algebra. In: 2010 12th IEEE International Conference on High
Performance Computing and Communications (HPCC), pp. 89–97. IEEE (2010)

5. Chamberlain, B.L., Choi, S.E., Deitz, S.J., Iten, D., Litvinov, V.: Authoring user-defined
domain maps in Chapel. In: CUG 2011 (2011)

6. Chamberlain, B.L., Choi, S.E., Lewis, E.C., Lin, C., Snyder, L., Weathersby, W.D.: ZPL: A
machine independent programming language for parallel computers. IEEE Trans. Softw. Eng.
26(3), 197–211 (2000)

7. Chavarría-Miranda, D.G., Darte, A., Fowler, R., Mellor-Crummey, J.M.: Generalized multi-
partitioning for multi-dimensional arrays. In: Proceedings of the 16th International Parallel
and Distributed Processing Symposium. p. 164. IEEE Computer Society (2002)

8. Choi, J., Demmel, J., Dhillon, I., Dongarra, J., Ostrouchov, S., Petitet, A., Stanley, K., Walker,
D., Whaley, R.C.: ScaLAPACK: A portable linear algebra library for distributed memory
computers – Design issues and performance. In: Applied Parallel Computing Computations

Expressing and Exploiting Multi-Dimensional Locality in DASH 359

in Physics, Chemistry and Engineering Science, pp. 95–106. Springer (1995)
9. Edwards, H.C., Sunderland, D., Porter, V., Amsler, C., Mish, S.: Manycore performance-

portability: Kokkos multidimensional array library. Sci. Program. 20(2), 89–114 (2012)
10. Fürlinger, K., Glass, C., Knüpfer, A., Tao, J., Hünich, D., Idrees, K., Maiterth, M., Mhedeb,

Y., Zhou, H.: DASH: Data structures and algorithms with support for hierarchical locality. In:
Euro-Par 2014 Workshops (Porto, Portugal). Lecture Notes in Computer Science, pp. 542–552.
Springer (2014)

11. Hornung, R., Keasler, J.: The RAJA portability layer: overview and status. Tech. rep., Lawrence
Livermore National Laboratory (LLNL), Livermore (2014)

12. Kamil, A., Zheng, Y., Yelick, K.: A local-view array library for partitioned global address
space C++ programs. In: Proceedings of ACM SIGPLAN International Workshop on Libraries,
Languages, and Compilers for Array Programming, p. 26. ACM (2014)

13. Kreutzer, M., Hager, G., Wellein, G., Fehske, H., Bishop, A.R.: A unified sparse matrix data
format for efficient general sparse matrix-vector multiplication on modern processors with
wide SIMD units. SIAM J. Sci. Comput. 36(5), C401–C423 (2014)

14. Krishnan, M., Nieplocha, J.: SRUMMA: a matrix multiplication algorithm suitable for clusters
and scalable shared memory systems. In: Proceedings of 18th International Parallel and
Distributed Processing Symposium 2004, p. 70. IEEE (2004)

15. Naik, N.H., Naik, V.K., Nicoules, M.: Parallelization of a class of implicit finite difference
schemes in computational fluid dynamics. Int. J. High Speed Comput. 5(01), 1–50 (1993)

16. Tate, A., Kamil, A., Dubey, A., Größlinger, A., Chamberlain, B., Goglin, B., Edwards, C.,
Newburn, C.J., Padua, D., Unat, D., et al.: Programming abstractions for data locality. Research
report, PADAL Workshop 2014, April 28–29, Swiss National Supercomputing Center (CSCS),
Lugano (Nov 2014)

17. Unat, D., Chan, C., Zhang, W., Bell, J., Shalf, J.: Tiling as a durable abstraction for parallelism
and data locality. In: Workshop on Domain-Specific Languages and High-Level Frameworks
for High Performance Computing (2013)

18. Van De Geijn, R.A., Watts, J.: SUMMA: Scalable universal matrix multiplication algorithm.
Concurr. Comput. 9(4), 255–274 (1997)

Tool Support for Developing DASH Applications

Denis Hünich, Andreas Knüpfer, Sebastian Oeste, Karl Fürlinger,
and Tobias Fuchs

Abstract DASH is a new parallel programming model for HPC which is imple-
mented as a C++ template library on top of a runtime library implementing various
PGAS (Partitioned Global Address Space) substrates. DASH’s goal is to be an
easy to use and efficient way to parallel programming with C++. Supporting
software tools is an important part of the DASH project, especially debugging
and performance monitoring. Debugging is particularly necessary when adopting
a new parallelization model, while performance assessment is crucial in High
Performance Computing applications by nature. Tools are fundamental for a
programming ecosystem and we are convinced that providing tools early brings
multiple advantages, benefiting application developers using DASH as well as
developers of the DASH library itself. This work, first briefly introduces DASH and
the underlying runtime system, existing debugger and performance analysis tools.
We then demonstrate the specific debugging and performance monitoring extensions
for DASH in exemplary use cases and discuss an early assessment of the results.

1 Introduction

Developer tools are indispensable to develop complex and large applications. The
broad spectrum of existing tools ranges from simple autocompletion in IDEs1 to
sophisticated suites for debugging or performance analysis. While no prior expe-
rience is needed to use autocompletion, debugging an application is significantly
more demanding and requires a certain degree of expertise.

1IDE—Integrated Development Environment.

D. Hünich (�) • A. Knüpfer • S. Oeste
TU Dresden, Dresden, Germany
e-mail: denis.huenich@tu-dresden.de; andreas.knuepfer@tu-dresden.de;
sebastian.oeste@tu-dresden.de

K. Fürlinger • T. Fuchs
LMU München, München, Germany
e-mail: karl.fuerlinger@nm.ifi.lmu.de; tobias.fuchs@nm.ifi.lmu.de

© Springer International Publishing Switzerland 2016
H.-J. Bungartz et al. (eds.), Software for Exascale Computing – SPPEXA
2013-2015, Lecture Notes in Computational Science and Engineering 113,
DOI 10.1007/978-3-319-40528-5_16

361

mailto:denis.huenich@tu-dresden.de
mailto:andreas.knuepfer@tu-dresden.de
mailto:sebastian.oeste@tu-dresden.de
mailto:karl.fuerlinger@nm.ifi.lmu.de
mailto:tobias.fuchs@nm.ifi.lmu.de

362 D. Hünich et al.

HPC tools for debugging and performance analysis are of high relevance in
particular. Unlike tools for conventional application development, HPC tools are
required to maintain an arbitrary number of process states. A debugger for parallel
applications has to manage all control streams (e.g. processes) and eventually their
communication, for example.

Likewise, performance analysis tools have to collect metrics like the time spent in
a function, the number of function invocations, or the communication time between
processes. All these information have to be collected for every process, preferably
without changing the program’s behavior.

The acceptance for new libraries like DASH can be increased by providing tool
support. The use and extension of existing tools has two significant benefits. First,
users don’t need to learn to use new tools. Second, the library developers make
use of the experience of the tool developers and don’t have to redevelop an already
existing tool.

In DASH, we follow this approach and provide dedicated support to third-party
solutions such as the GDB debugger [12], Score-P [22] and PAPI [5]. This paper
describes the extensions and the challenges to incorporate these tools in the DASH
template library and the DASH runtime (DART).

The remainder of this paper is structured as follows: publications and tools
related to this work are presented in Sect. 2. Section 3 briefly introduces the DASH
library and the underlying runtime. Challenges occurring when debugging parallel
applications are discussed in Sect. 4. The following Sect. 5 explains extensions
for Score-P and the DASH library to instrument and trace DART and DASH
applications. A specific profiling application for the MPI backend is presented in
Sect. 6. Section 7 describes the integration of the PAPI library in DASH. Finally,
Sect. 8 concludes the work and looks out on the future work.

2 Related Work

2.1 DASH

The concept of the DASH library and the DART API is explained in detail in [13].
An MPI3 DART implementation can be found in [33].

Besides DASH, other PGAS approaches exist. UPC [30] and Co-array For-
tran [25] extend C and Fortran with the PGAS concept. Other PGAS languages
are Chapel [7], Fortress [3] and X10 [8]. All three projects were funded from the
“DARPA High Productivity Computing Systems”.

GASPI [17] and OpenSHMEM [27] are an effort to create a standardized API
for PGAS programming. UPC++ [32] and Co-array C++ [20] extended C++ with
PGAS. STAPL [6] implements a C++ template library that shares several concepts
with DASH like local view on data and the representation of distributed containers
but does not seem to target classic HPC applications.

Tool Support for Developing DASH Applications 363

2.2 Debugging

We decided to extend the debugger GDB [12] because it is a widely used open
source debugger for sequential applications. LLDB [31] is also an alternative, but
not as prevalent as GDB. Existing debuggers for parallel applications like Eclipse
Parallel Tools [2], PGDB [10], Totalview [28] or DDT [4] are limited to MPI,
OpenMP, CUDA, etc. and don’t support the DASH library. Totalview and DDT
support the most libraries but are proprietary and therefore, not the first choice for
dedicated support in an open source project like DASH.

2.3 Performance Analysis

The Score-P2 measurement system is a performance analysis software for parallel
programs. Because performance analysis and optimization is important for a
successful utilization of HPC resources, many tools for analyzing parallel programs
are available. Some of them rely on sophisticated profiling techniques e.g. TAU [29]
and HPC-Toolkit [1], others use event tracing.

Score-P is a joint effort of RWTH Aachen, ZIH TU Dresden, Jülich Super-
computing Centre, TU München, and GNS Braunschweig. Score-P can record
a wide range of parallel subsystems such as MPI, OpenMP, SHMEM, CUDA
and PThreads. Auxiliary instrumentation through compiler instrumentation and
manual user-defined instrumentation are supported while sampling based recording
is planned for future releases. Furthermore, Score-P can utilize CPU performance
counters, provided by the PAPI, to identify bottlenecks and enables performance
analysis based on event tracing (OTF2 [11] trace format) or profiling (CUBE for-
mat). Post mortem, tools like Vampir [21] or Scalasca [15] support the performance
analysis by visualizing the traces and profiles. With Periscope [16] it is possible to
make an online analysis.

3 Overview DASH

The main goal of the DASH project is the development of a C++ template library
for distributed data structures that provides a convenient parallel programming
model. DASH is divided into four layers (Fig. 1). The DASH runtime (DART)
implements different communication substrates like MPI [23] and provides a
uniform interface to the upper DASH C++ template library. This library provides
containers for distributed data structures (e.g. arrays) which can be used similar

2www.score-p.org

www.score-p.org

364 D. Hünich et al.

DASH Run me

DASH C++ Template Library

DASH Applica on Toolsand
Interfac es

Hardware: Network, Processor,
Memory, Storage

One-sided Communica on
Substrate

MPI GASnet GASPIARMCI

DASH C++ Template Library

DASH Applica on Toolsand
Interfac es--

Component of DASH

Fig. 1 The layered structure of the DASH project

to the containers of the C++ STL.3 Furthermore, these containers can be used
with algorithms provided by the C++ STL. The user application is located on top
of the DASH template library, thus it is independent from any changes made in
DART or the communication substrate. Additionally the application benefits from
performance optimizations in DART. The tools and interface layer is connected
to all aforementioned layers and supports the developers of each layer. Be it
debugging (Sect. 4), performance analysis (Sect. 5), implementing/optimizing the
MPI implementation in DART (Sect. 6), or getting direct support within the DASH
template library for PAPI counters (Sect. 7).

In the following we briefly explain the DART and the DASH template library,
more detailed information can be found in [13].

3.1 DART: The DASH Runtime

As mentioned before, DART abstracts the low-level communication libraries from
the DASH template library. The DART API is written in plain C and sufficiently
general enough to use any low-level communication substrate. Processes are called
units in DART/DASH to be independent from other terms like threads, ranks or
images. These units are all part of at least one team.

Units communicate directly with one-sided communication or collective com-
munication operations. Blocking and non-blocking communication are provided as
well as synchronization mechanisms.

Besides the communication, the DART API manages the distributed global
memory which can be allocated symmetrically and team aligned or locally with
global accessibility. The former allocates the same amount of storage for every

3STL—Standard Template Library.

Tool Support for Developing DASH Applications 365

unit that is part of the team. So, globally the memory looks like one big block,
but locally each unit manages only a part of it. The latter allocates memory locally
but is accessible from other units.

For now, DART supports MPI and GASPI [17] as communication substrate.
Furthermore, a System V shared memory implementation for testing purposes and
a prototype for GPGPUs exist.

3.2 DASH: Distributed C++ Template Library

The DASH template library is written in C++ which allows efficient PGAS [26]
semantics. PGAS approaches often use local- and global-views on data. While in the
global-view it is not directly clear whether the data is accessed remotely or locally.
The local-view is limited to local data accesses only which need no communication,
thus, they are much faster than remote accesses. The distributed data containers in
the DASH template library use the local-/global-views and combine it with the C++
STL iterator concept. So, it is possible to iterate over local data only, all data, or
only a part of it(mixture of global and local data accesses). Listing 1 demonstrates
the construction of an 1D-array (line 2), a global iteration over all elements (lines 9–
12) and local data accesses with the C++ STL function fill (line 20). This example
shows a small set of possibilities to access the data elements of a container. To
combine the distributed data structure concept with the C++ STL concepts, new
functionality had to be added. In Sect. 5.2 we explain why C++ container, like our
DASH container, are quite difficult to trace for performance analysis.

1 // allocates an array over all units
2 dash::array<double> my_array(100000, nodeteam);
3
4 // gets the unit’s id
5 int myid = nodeteam.myID();
6
7 // The unit with id 0 iterates over all array elements and
8 // assigns them to the value 1
9 if(myid == 0){

10 for(auto it = my_array.begin(); it != my_array.end(); ++it)
11 *it = 1;
12 }
13
14 // blocks all units until every unit reached this routine
15 my_array.barrier();
16
17 // every unit fills its part of the array with its unit id
18 // lbegin() returns the beginning of the local memory while
19 // lend() returns the ending
20 std::fill(my_array.lbegin(), my_array.lend(), myid);

Listing 1 DASH array container used with global-view and local-view semantics

366 D. Hünich et al.

4 Debugging DASH Applications

To conveniently debug parallel DASH applications, it is necessary to interrupt the
parallel start up, provide a useful output for DASH data structures, and get access to
all data elements (local and remote) of a DASH container.

We decided to extend the widely used and extensible debugger GDB because no
debugger fulfilled all requirements. GDB doesn’t support debugging multiprocess
applications but allows to attach to existing processes remotely. The initialization
process of DASH was modified to interrupt the start up and, in debugging mode,
traps the master process in an infinite loop while all other processes are waiting in a
barrier. Now, the user can attach GDB instances to all interesting DASH processes
and, for instance, set breakpoints. To continue debugging, the master process has to
be released from the infinite loop.

The concept of pretty-printers, provided by newer versions of the GDB, supports
the modification of the data structure output, printed in the debugging process.
We used this extension and defined pretty-printers for all DASH containers and
added them to the GDB environment. The following example shows the difference
between the default (Listing 2) and the pretty printed (Listing 3) output for a DASH
1-D array. The pretty printed version is obviously more helpful for most users,
because it provides more specific information.

It is necessary to get access to all data elements, local and global ones, to get
the shown pretty printed output. Therefore, we added, only in debugging mode, new
methods to the DASH containers which enabled GDB to access all data elements.

More detailed information, concerning the start up process and made modifica-
tions, can be found in [18].

$1 = (dash::Array<int, dash::PatternBlocked> &) @0x7fff6018f370:
{m_team = @0x619ea0, m_size = 20, m_pattern = {<std::
__shared_ptr<dash::Pattern, (__gnu_cxx::_Lock_policy)2>> = {
_M_ptr = 0xac2de0, _M_refcount = {

_M_pi = 0xac2dd0}}, <No data fields>}, m_ptr = {<std::
__shared_ptr<dash::GlobPtr<int>, (__gnu_cxx::
_Lock_policy)2>> = {_M_ptr = 0xab1310, _M_refcount =
{_M_pi = 0xab1300}}, <No data fields>},

m_acc = {<std::__shared_ptr<dash::MemAccess<int>, (__gnu_cxx::
_Lock_policy)2>> = {_M_ptr = 0xac2e50, _M_refcount = {_M_pi
= 0xac2e40}}, <No data fields>}}

Listing 2 Standard GDB output for a DASH 1-D array

$1 = Dash::Array<int, dash::PatternBlocked> with 20 elements -
Team with dart id 0 and position 0 - dart global pointer: std
::shared_ptr (count 1, weak 0) 0xab1310 = {1, 1, 1, 1, 1, 2,
2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4}

Listing 3 Pretty printed GDB output for a DASH one-dimensional array

Tool Support for Developing DASH Applications 367

5 Using Score-P to Analyze DASH and DART

Performance analysis distinguishes between data acquisition and data presentation.
Data acquisition describes techniques to get performance data during a program
execution, such as Sampling, or Instrumentation. Data presentation deals with the
visualization of the acquired data. This section explains two performance data
presentation techniques (profiling, and tracing) and techniques used to support
DASH/DART in Score-P.

Profiling A profile presents the performance data in summarized aggregations of
performance metrics. These metrics can be the number of function invocations or
the inclusive/exclusive time spent in a code region, e.g. function, or loop body. The
simplest form of a profile provides information about all functions, the program
spent the majority of time (flat profile), but no caller context. A profile can also
offer information about program execution based on a call path which results in a
call path profile. It is even possible to split the program execution into phases and
create profile records of each phase (phase profile). Performance data for a profile
can be gathered from instrumented regions or even from sample based data [19].

Tracing Tracing stores performance information in event traces during the program
execution. All interesting events are hold in memory and flushed, process dependent,
to disk. These flushes (buffer-flush-event [24]) only happen if not enough memory
is available, or the program is finished. When the program finished, the separated
event streams will be unified.

Performance data are stored in special trace formats, such as OTF2 [11] and are
produced by instrumentation, or sample based data. They contain information about
where, when, and what kind of event is recorded. Typical events can be simple
enters or leaves of subroutines, or communication calls (e.g. MPI Point-to-Point
communication). In contrast to profiling, tracing records time stamps for the events
to later reconstruct the program behavior. Event tracing provides a great level of
detail of a program’s performance, but with the cost of a lot disk space and buffer-
flush-events for large and long running applications.

5.1 DART

The DART function calls can be automatically instrumented by the Score-P adapter,
using library wrapping. Library wrapping is a technique to link function calls
to alternative functions instead of calling the original function. The alternative
function can record the enter event; call the original library function and forward
the parameters; record the leave event; and return the result of the original function
to the caller. This approach needs the symbols of all interesting library functions the
application is linked against. Library wrapping is a widely used and a well known
concept for automatically instrumented libraries [9].

368 D. Hünich et al.

Fig. 2 Vampir screenshot. On the left a time frame of the recorded events for 8 processes is shown.
The accumulated exclusive time of all measured functions is located top right and the function call
graph at the bottom right

We extended Score-P with a specialized adapter, wrapping all defined functions
of the DART API. Besides the adapter, the build system of Score-P and DART
specific parameters were added. Now, Score-P records DART API functions which
can be visualized in tools like Vampir.

DART API functions are independent from the implemented communication
substrates.The recording of DART API only, supports especially the development
process of the different DART implementations because it allows a comparison of
the runtime/behavior of DART functions using different implementations, or even
the native communication substrate.

The Vampir screenshot in Fig. 2 shows an instrumented application with 8
processes. Yellow events symbolize DART events and red ones MPI events. The
call tree (on the bottom right) displays all recorded DART functions and the used
MPI functions. The inclusive and exclusive time is given behind the function name.
The graph on top shows the runtime of each recorded function. On the left, the
timeline for all process in the chosen time frame is plotted and visualizes all events
ordered by their time stamp.

5.2 DASH

DASH is a C++ template library, implemented as header only which means, all
template declarations and definitions are located in the same header file. This is
necessary because the compiler has to know both. The actual type of the template is
first known when the user includes the header, containing the template definition,
into the application source code. Further, symbol names of C++ functions and
methods appear mangled in an object file. A mangled name encodes additional
information of the symbol, for instance, type information of: the parameters,

Tool Support for Developing DASH Applications 369

templates, namespaces, and classes. Symbols of the DASH library are not entirely
determined before compilation of the actual template calls. In the library file, header
only symbols do not exist. So, it is not possible to guess which symbols will actually
appear in the application. For this kind of libraries the library wrapping approach,
mentioned in Sect. 5.1, doesn’t work.

Another approach to instrument the DASH library is the automatic compiler
instrumentation. The compiler includes Score-P measurement function calls before
and after each function call. But real C++ applications tend to have an enormous
amount of small function calls (e.g. operators) which results in recording many
events. Another drawback is the instrumentation of all functions or methods of
other used libraries, such as internal functions of the STL. Internals of the STL
with all the constructor calls and overloaded operators are probably not of interest
for analysis of an application, but are recorded and increase: the number of events,
the overhead in execution time, and the memory used to store the events. The Score-
P measurement system provides function filter to reduce the overhead, but this costs
the user maintenance and extra effort.

Fortunately, Score-P offers a user API to instrument the source code manually.
This API generally provides a set of preprocessor directives (macros) which can be
inserted at the beginning of a function or method. Expanded, a macro creates a new
object on the stack to generate an enter event at construction time; when the function
leaves, this object is destructed and triggers a leave event. Instrumenting every single
function this way results in a similar behavior as the compiler instrumentation, in
terms of runtime overhead and memory footprint. To avoid this, we used a level
based approach for the instrumentation. According to the architecture of the DASH
library the instrumentation is portioned into the following three levels:

• CONTAINER_LEVEL instrumentation
• PATTERN_LEVEL instrumentation
• ALL_LEVEL instrumentation

CONTAINER_LEVEL is the lightest level of instrumentation, only public meth-
ods of the DASH container classes are recorded. This level can show performance-
critical methods of the DASH containers. PATTERN_LEVEL extends the container
level with all methods of the DASH pattern classes and delivers additional informa-
tion for the data distribution. Figure 3 shows Vampir’s function summary plot for
an instrumented DASH application with PATTERN_LEVEL instrumentation. All
DASH functions and methods will be recorded with the level ALL_LEVEL.

The instrumentation and the concrete level can be enabled with the compiler
flags -DDASH_SCOREP and -D<LEVELNAME>_LEVEL=true. If no level is set
the default level is CONTAINER_LEVEL (only when instrumentation is enabled).

The used disk space of the produced traces for the different instrumentation
levels are shown in Table 1. NO_DASH represents DART and MPI functions only
(no DASH functions were recorded) while COMPILER recorded all functions
(automatic compiler instrumentation). Table 1 shows, that the instrumentation of
the DASH container functions already increased the trace sizes by about 10GB.

370 D. Hünich et al.

Fig. 3 Vampir screenshot. Accumulated exclusive time per function for all functions recorded
with PATTERN_LEVEL

Table 1 Comparison of the used disk space for different instrumentation levels. Measured was
a 2-D heat equation running on two nodes (each 4 cores) with a problem size of 64 � 64. The
columns describe the different instrumentation levels. NO DASH means only MPI and DART calls
are recorded. COMPILER used automatic compiler instrumentation

NO DASH CONTAINER_LEVEL PATTERN_LEVEL ALL_LEVEL COMPILER

6GB 16GB 22GB 61GB 304GB

Table 2 Comparison of the runtime for a 2-D heat equation running on two nodes (each 4 cores)
with a problem size of 64� 64. The columns describe the different instrumentation levels. PLAIN
represents the runtime for a no instrumentation, NO DASH means only DART and MPI calls were
recorded, and COMPILER is the automatic compiler instrumentation

PLAIN NO DASH CONTAINER_LEVEL PATTERN_LEVEL ALL_LEVEL COMPILER

9:5 s 30:6 s 59:2 s 79:6 s 188:6 s 868:9 s

Recording all DASH functions used 61GB which is 10 times more than NO_DASH.
However, compared to COMPILER, ALL_LEVEL uses significantly less disk space.

Additionally to the traces’ sizes, we compared the runtimes of the instrumen-
tation levels (Table 2). Therefore, we measured the whole application execution
time which includes initialization and finalization of DASH.4 The reason for the
enormous difference of factor 3 between PLAIN and NO DASH is the tracing of
DART and MPI events in NO DASH. This and the large number of iterations,
cause the big runtime overhead. The difference between CONTAINER_LEVEL
and PATTERN_LEVEL is quite acceptable, considering the higher degree of
information. Table 2 also shows that the highest instrumentation level of DASH

4The unification process of Score-P was not included in the runtime measurements.

Tool Support for Developing DASH Applications 371

(ALL_LEVEL) produced significantly less overhead than the automatic compiler
instrumentation (COMPILER).

Nevertheless, our approach has two drawbacks. First, using manual instrumen-
tation macros in constexpr5 is not possible. Second, the __func__ macro
only provides the function/method name but no namespace and class information
for manual instrumented functions. For future work some modern introspection
techniques could be of interest, to improve the quality of the information of our
manual instrumentation.

6 MPI Profiling

As an additional option for lightweight profiling on the MPI level we extended and
adapted IPM [14]. IPM is a low-overhead performance profiling tool that provides a
high-level overview of application activity and allows for an attribution of execution
time to various event sources. IPM keeps its performance data in a hashtable
and uses both the hash key and the hash value to store performance data. Upon
encountering a relevant application event, a hash key is formed using a numeric
event ID and context information. The hash values consist of first-order statistics of
the events and their duration.

To work with DASH, IPM was extended to support MPI-3 one-sided operations.
A total of 38 functions from the MPI-3 RMA (remote memory access) API were
added to the event coverage of IPM. These functions deal with the setup of one-sided
communication operations (window creation), the actual communication operations
(put and get) as well as synchronization operations (flush, flush local). The event
context information also captured by IPM consists of the size of data transfers
(where appropriate, i.e., MPI_Put, MPI_Get, MPI_Accumulate, and similar)
and communication and synchronization partner ranks (i.e., the origin or target ranks
for the operation). For each monitored application event, a lookup is performed in
the hashtable and the associated statistical data is updated. Per default IPM records
the number of invocations for each (event, context) pair as well as the minimum,
maximum and sum of all event durations encountered.

It is possible to extend the default context information for application events by
including a callsite and a region identifier. The callsite ID is automatically generated
by IPM by keeping track of the callstack for each invocation of an MPI operation
and this allows the differentiation of MPI calls from different calling contexts
(e.g., subroutines). Region identifiers can serve the same purpose, but are manually
managed by the application developer, for example to differentiate phases of an
application (e.g., initialization, main iteration loop, result analysis).

Data is kept in per-process local hashtables by IPM and on program termination
all hashtables are merged at the master rank and application performance reports are
generated. In its most basic form, this is an application performance report banner

5C++ specifier for a constant expression.

372 D. Hünich et al.

##IPMv2.0.3##
#
command : ./gups.ipm
start : Thu Nov 26 11:42:23 2015 host : vbox
stop : Thu Nov 26 11:42:25 2015 wallclock : 1.77
mpi_tasks : 4 on 1 nodes %comm : 84.34

00.0:ces/polfg81.0:)BG(mem#
#
: [total] <avg> min max
wallclock : 7.02 1.76 1.74 1.77
MPI : 5.92 1.48 1.45 1.49
%wall :

37.5899.1853.48:IPM#
#calls :
MPI : 405674 101418 96298 116780
mem (GB) : 0.18 0.04 0.04 0.04
#
[time] [count] <%wall>

02.724686319.1hsulf_niW_IPM#
71.424686307.1tiaW_IPM#
50.328226.1reirraB_IPM#

MPI_Comm_group 0.15 73728 2.10
...
###

Fig. 4 Example IPM banner output showing high level metrics such as the total time spent in MPI
operations and individual contributing MPI calls

sorted index

0 10 20 30 40

tim
e

in
 s

ec
on

ds

0

0.5

1

1.5

2

2.5

MPI_Wait
MPI_Barrier
MPI_Rget
MPI_Win_flush
MPI_Allgather
MPI_Bcast
MPI_Win_create
MPI_Comm_rank
MPI_Comm_group
MPI_Win_unlock_all
MPI_Group_size
MPI_Win_create_dynamic
MPI_Win_free
MPI_Comm_size
MPI_Put
MPI_Win_detach
MPI_Win_attach
MPI_Get_address

MPI_Rank

0 5 10 15 20 25 30 35 40 45

M
PI

_R
an

k

0

5

10

15

20

25

30

35

40

45

Fig. 5 Example performance profiling displays generated by IPM. Time spent in MPI calls, sorted
by total MPI time across ranks (left) communication topology map (right)

written to stdout immediately after program termination. An example IPM report
with full detail is shown in Fig. 4. Evidently this program (a simple communications
benchmark) spent most of its time in communication and synchronization routines.
More detailed data is recorded by IPM in an XML based performance data file
suitable for archival. A parser reads the report file and generates a HTML profiling
report that can be viewed using a web browser. The HTML profiling report includes
displays such as a communication topology heatmap (the amount of data or time
spent for communication between any pair of processes) and a breakdown of time
spent in communication routines by transfer size. Examples for these displays are
shown in Fig. 5.

The detail level of data collection and output can be specified in IPM by using
environment variables. IPM_REPORT specifies the amount of information to be

Tool Support for Developing DASH Applications 373

included in the banner output upon program termination (the available settings
are none, terse, and full). The environment variable IPM_LOG specifies the
amount of data to be included in the XML profiling log. The setting full means
that all information, included in the hash table, are available in the XML file,
whereas terse means that only summaries are available.

7 PAPI Support in DASH

Modern microprocessors provide registers that count the occurrence of events
related to performance metrics. Hardware performance counters allow to query
clock cycles and the occurrence of more specific events like cache misses. Their
usage and semantics vary between processor architectures, however, as they usually
can only be accessed using assembly instructions.

The PAPI (Performance API) project [5] specifies a standard application pro-
gramming interface that allows portable access to hardware performance counters
and has evolved to a de-facto standard in performance evaluation. The DASH library
provides dedicated support of PAPI: its usage can be specified in build configuration
and performance-related concepts have been designed with PAPI in mind.

Application developers using DASH can call PAPI functions directly. However,
the DASH developer toolkit also provides its own interface for performance counters
that switches to native fallback implementations for several architectures and
platforms if PAPI is not available on a system. Typically, the DASH performance
interface just acts as a light-weight wrapper of PAPI functions with a more
convenient, intuitive interface.

As an example, we demonstrate the use of the DASH Timer class and discuss
available fallback implementations.

7.1 The DASH Timer Class

Time measurements allow to derive the most conventional metrics for application
performance tuning, such as latency and throughput. In this, time can be measured
in clock-based and counter-based domains.

Clock-based time measurements refer to wall-clock time and are provided by
the operating system. Functions like clock_gettime are reasonably convenient
for end users and have standardized semantics. Their accuracy and precision
depend on the operating system’s implementation, however. To address a common
misconception, note that a timestamp’s resolution only represents its unit of measure
but does not imply precision: a timestamp with 1 ns resolution might only grant 1
ms precision or less. Therefore, two consecutive timestamps might have identical
values if both measurements fall into the same time sampling interval.

374 D. Hünich et al.

Counter-based time measurements require low-level interaction with hardware in
client code. Dedicated counters in hardware like RTDSC achieve optimal accuracy
and precision at instruction-level and return monotonic counter values. As an
advantage, consecutive counter-based time measurements are guaranteed to yield
different values. Machine instructions and semantics of counter registers are specific
for each CPU architecture and tedious to use for end users, however. At the time of
this writing, no standardized interface exists to access hardware counters; efforts like
PerfCtr and Perfmon have not been accepted as parts of vanilla Linux. In addition,
counter values can only be related to pseudo wall-clock time via frequency scaling,
i.e. when dividing by a hypothetical constant CPU clock frequency.

The DASH Timer class represents a unified, concise interface for both clock-
and counter-based measurements. In both cases, elapsed time between two mea-
surements is automatically transformed to wall-clock time, applying frequency
scaling when needed. Developers can still access raw timestamp values directly.
Listing 4 shows how the scaling frequency for counter-based timers in DASH can
be configured explicitly. Instances of the DASH Timer are then initialized for either
clock- or counter-based measurement.

We apply the RAII scheme in the Timer class to provide convenient usage: in the
constructor, a class member is initialized with the current timestamp. Elapsed time
since creation of a Timer object can then be resolved without maintaining a start
timestamp manually as shown in Listing 5.

1 dash::Timer<dash::Timer::Counter>::Calibrate(
2 2560.0 // bogo-MIPS
3);

Listing 4 Configuring the DASH Timer

1 // Create timer based on time stamp counter:
2 dash::Timer<dash::Timer::Counter> timer_ct;
3 // Create timer based on wall-clock time:
4 dash::Timer<dash::Timer::Clock> timer_ck;
5 // Operation to measure:
6 do_work();
7 // Get timestamp of construction of the timer:
8 auto timestamp_start = timer_ct.start();
9 // Get current timestamp based on time stamp counter:

10 auto timestamp_end = timer_ct.now();
11 // Get the time in nanoseconds elapsed since construction
12 // of the timer instance. Counter value in timestamp is
13 // converted to real-time domain using frequency scaling:
14 double elapsed_ns = timer_ct.elapsed();
15 // same as:
16 double elapsed_ns = timer_ct.elapsed_since(
17 timer_ct.start());

Listing 5 Usage of the DASH Timer class

Tool Support for Developing DASH Applications 375

7.2 Fallback Timer Implementations

Accuracy and precision of time measurements are tedious to verify and optimize for
a specific architecture. PAPI implements stable time measurements for a wide range
of platforms based on hardware counters like RTDSC.

The DASH developer toolkit includes own implementations to access time stamp
counter registers and the operating system’s time functions like clock_gettime
on Unix. Therefore, DASH applications do not depend on the PAPI library for
reliable time measurements, but it can still be easily integrated in an existing
application as both variants are accessed using the same interface.

If DASH is configured without PAPI support, the use of fallback implementations
is defined at compile time. The decision for a concrete fallback variant depends on
system architecture, operating system, and available functions and flags in the linked
C standard library. Clock-based timestamps are then typically obtained from the
Linux function clock_gettime using the most precise mode available on the
system. For counter-based timestamps, specific assembly instructions read values
from counter registers like RDTSC on x86 architectures or PCCNT on ARM32.

8 Conclusion and Future Work

This paper described the current tool infrastructure of the DASH project. To under-
stand what DASH is about, the project was briefly introduced and main components
were explained. Then the debugging support for DASH, especially the challenges
of controlling many processes and the use of new pretty-printers, were described.
Following this, we explained the differences between profiling and tracing to
demonstrate our developed extensions for the DASH/DART support in the Score-P
measurement environment. The need to use different approaches to support DASH/-
DART were discussed afterwards. Especially, the necessity for different instrumen-
tation levels (recording only a few or all functions) in the DASH template library
were demonstrated. At the end, we presented a profiling tool for MPI (supporting
especially DART-MPI developers) and how PAPI counters are integrated in DASH.

The next step will be a performance monitoring environment for monitoring
memory accesses in DASH containers which especially helps DASH/DART devel-
opers to verify distribution patterns and to evaluate the memory access behavior of
implemented DART communication libraries. The monitoring environment can also
be used to analyze and optimize existing patterns and algorithms using them.

Acknowledgements The DASH concept and its current implementation have been developed
in the DFG project “Hierarchical Arrays for Efficient and Productive Data-Intensive Exascale
Computing” funded under the German Priority Programme 1648 “Software for Exascale
Computing” (SPPEXA).6

6See http://www.sppexa.de and http://www.dfg.de/foerderung/info_wissenschaft/info_wissens
chaft_14_57/index.html

http://www.sppexa.de
http://www.dfg.de/foerderung/info_wissenschaft/info_wissenschaft_14_57/index.html

376 D. Hünich et al.

References

1. Adhianto, L., Banerjee, S., Fagan, M., Krentel, M., Marin, G., Mellor-Crummey, J., Tallent,
N.R.: HPCToolkit: Tools for performance analysis of optimized parallel programs. Concurr.
Comput.: Pract. Exper. 22(6), 685–701 (2010)

2. Alameda, J., Spear, W., Overbey, J.L., Huck, K., Watson, G.R., Tibbitts, B.: The eclipse
parallel tools platform: toward an integrated development environment for XSEDE resources.
In: Proceedings of the 1st Conference of the Extreme Science and Engineering Discovery
Environment: Bridging from the eXtreme to the Campus and Beyond (XSEDE ’12), pp. 48:1–
48:8. ACM, New York (2012). http://doi.acm.org/10.1145/2335755.2335845

3. Allen, E., Chase, D., Hallett, J., Luchangco, V., Maessen, J.-W., Ryu, S., Steele Jr, G.L., Tobin-
Hochstadt, S., Dias, J., Eastlund, C., et al.: The fortress language specification. Sun Microsyst.
139, 140 (2005)

4. Allinea DDT: The global standard for high-impact debugging on clusters and supercomputers
(2015). http://www.allinea.com/products/ddt Online; Accessed 12 Jan 2015

5. Browne, S., Dongarra, J., Garner, N., Ho, G., Mucci, P.: A portable programming interface
for performance evaluation on modern processors. Int. J. High Perform. Comput. Appl. 14(3),
189–204 (2000)

6. Buss, A., Papadopoulos, I., Pearce, O., Smith, T., Tanase, G., Thomas, N., Xu, X., Bianco, M.,
Amato, N.M., Rauchwerger, L., et al.: STAPL: standard template adaptive parallel library. In:
Proceedings of the 3rd Annual Haifa Experimental Systems Conference, p. 14. ACM (2010)

7. Chamberlain, B.L., Callahan, D., Zima, H.P.: Parallel programmability and the Chapel
language. Int. J. High Perform. Comput. Appl. 21, 291–312 (2007)

8. Charles, P., Grothoff, C., Saraswat, V., Donawa, C., Kielstra, A., Ebcioglu, K., Von Praun, C.,
Sarkar, V.: X10: an object-oriented approach to non-uniform cluster computing. ACM Sigplan
Notices 40(10), 519–538 (2005)

9. Dietrich, R., Ilsche, T., Juckeland, G.: Non-intrusive performance analysis of parallel hardware
accelerated applications on hybrid architectures. In: 2010 39th International Conference on
Parallel Processing Workshops (ICPPW), pp. 135–143. IEEE (2010)

10. Dryden, N.: PGDB: A debugger for MPI applications. In: Proceedings of the 2014 Annual
Conference on Extreme Science and Engineering Discovery Environment (XSEDE ’14), pp.
44:1–44:7. ACM, New York (2014). http://doi.acm.org/10.1145/2616498.2616535

11. Eschweiler, D., Wagner, M., Geimer, M., Knüpfer, A., Nagel, W.E., Wolf, F.: Open Trace
Format 2: The next generation of scalable trace formats and support libraries. In: Applications,
Tools and Techniques on the Road to Exascale Computing. Advances in Parallel Computing,
vol. 22, pp. 481–490. IOS Press (2012)

12. Free Software Foundation, Inc.: GDB: The GNU Project Debugger. http://www.gnu.org/
software/gdb/ (2014). Online; Accessed 01 Nov 2015

13. Fürlinger, K., Glass, C., Gracia, J., Knüpfer, A., Tao, J., Hünich, D., Idrees, K., Maiterth, M.,
Mhedheb, Y., Zhou, H.: DASH: data structures and algorithms with support for hierarchical
locality. In: Lopes, L., Žilinskas, J., Costan, A., Cascella, R., Kecskemeti, G., Jeannot, E.,
Cannataro, M., Ricci, L., Benkner, S., Petit, S., Scarano, V., Gracia, J., Hunold, S., Scott,
S., Lankes, S., Lengauer, C., Carretero, J., Breitbart, J., Alexander, M. (eds.) Euro-Par 2014:
Parallel Processing Workshops. Lecture Notes in Computer Science, vol. 8806, pp. 542–552.
Springer, Cham (2014). http://dx.doi.org/10.1007/978-3-319-14313-2_46

14. Fürlinger, K., Wright, N.J., Skinner, D.: Performance analysis and workload characterization
with IPM. In: Proceedings of the 3rd International Workshop on Parallel Tools for High
Performance Computing, pp. 31–38. Springer, Dresden (2010)

15. Geimer, M., Wolf, F., Wylie, B.J., Ábrahám, E., Becker, D., Mohr, B.: The Scalasca perfor-
mance toolset architecture. Concurr. Comput.: Pract. Exper. 22(6), 702–719 (2010)

16. Gerndt, M., Ott, M.: Automatic performance analysis with periscope. Concurr. Comput.: Pract.
Exper. 22(6), 736–748 (2010)

http://doi.acm.org/10.1145/2335755.2335845
http://www.allinea.com/products/ddt
http://doi.acm.org/10.1145/2616498.2616535
http://www.gnu.org/software/gdb/
http://www.gnu.org/software/gdb/
http://dx.doi.org/10.1007/978-3-319-14313-2_46

Tool Support for Developing DASH Applications 377

17. Grünewald, D., Simmendinger, C.: The GASPI API specification and its implementation GPI
2.0. In: 7th International Conference on PGAS Programming Models, vol. 243 (2013)

18. Hünich, D., Knüpfer, A., Gracia, J.: Providing parallel debugging for DASH distributed data
structures with GDB. Procedia Comput. Sci. 51, 1383–1392 (2015). http://www.sciencedirect.
com/science/article/pii/S1877050915011539. International Conference on Computational Sci-
ence, ICCS 2015 Computational Science at the Gates of Nature

19. Ilsche, T., Schuchart, J., Schöne, R., Hackenberg, D.: Combining instrumentation and sampling
for trace-based application performance analysis. In: Proceedings of the 8th International
Parallel Tools Workshop, pp. 123–136. Springer (2014)

20. Johnson, T.A.: Coarray C++. In: 7th International Conference on PGAS Programming Models,
Edinburgh (2013)

21. Knüpfer, A., Brunst, H., Doleschal, J., Jurenz, M., Lieber, M., Mickler, H., Müller, M.S., Nagel,
W.E.: The Vampir performance analysis tool-set. In: Tools for High Performance Computing,
pp. 139–155. Springer, Berlin/Heidelberg (2008)

22. an Mey, D., Biersdorf, S., Bischof, C., Diethelm, K., Eschweiler, D., Gerndt, M., Knüpfer,
A., Lorenz, D., Malony, A., Nagel, W.E., et al.: Score-P: a unified performance measurement
system for petascale applications. In: Competence in High Performance Computing 2010, pp.
85–97. Springer, Berlin/Heidelberg (2012)

23. MPI Forum: MPI: A Message-Passing Interface Standard. Version 3.0 (2012). Available at:
http://www.mpi-forum.org (Sept 2012)

24. Müller, M.S., Knüpfer, A., Jurenz, M., Lieber, M., Brunst, H., Mix, H., Nagel, W.E.:
Developing scalable applications with Vampir, VampirServer and VampirTrace. In: Parallel
Computing: Architectures, Algorithms and Applications. Advances in Parallel Computing, vol.
18, pp. 637–644. John von Neumann Institute for Computing, Jülich (2007)

25. Numrich, R.W., Reid, J.: Co-array Fortran for parallel programming. SIGPLAN Fortran Forum
17(2), 1–31 (1998)

26. Partitioned Global Address Space (2014). [Online] http://www.pgas.org
27. Poole, S.W., Hernandez, O., Kuehn, J.A., Shipman, G.M., Curtis, A., Feind, K.: OpenSHMEM

- toward a unified RMA model. In: Padua, D. (ed.) Encyclopedia of Parallel Computing, pp.
1379–1391. Springer US (2011)

28. Rogue Wave Software, I.: TotalView debugger: faster fault isolation, improved memory
optimization, and dynamic visualization for your high performance computing apps (2015).
http://www.roguewave.com/products-services/totalview, [Online; Accessed 12 Jan 2015]

29. Shende, S.S., Malony, A.D.: The TAU parallel performance system. Int. J. High Perform
Comput. Appl. 20(2), 287–311 (2006)

30. UPC Consortium: UPC language specifications, v1.2. Tech Report LBNL-59208, Lawrence
Berkeley National Lab (2005). http://www.gwu.edu/~upc/publications/LBNL-59208.pdf

31. at the University of Illinois at Urbana-Champaign, C.S.D.: The LLDB Debugger (2015). http://
www.gnu.org/software/gdb/, [Online; Accessed 12 Jan 2015]

32. Zheng, Y., Kamil, A., Driscoll, M.B., Shan, H., Yelick, K.: UPC++: A PGAS extension for
C++. In: 28th IEEE International Parallel & Distributed Processing Symposium, pp. 1105–
1114. IEEE (2014)

33. Zhou, H., Mhedheb, Y., Idrees, K., Glass, C.W., Gracia, J., Fürlinger, K.: DART-MPI: An MPI-
based Implementation of a PGAS Runtime System. In: Proceedings of the 8th International
Conference on Partitioned Global Address Space Programming Models (PGAS ’14), pp. 3:1–
3:11. ACM, New York (2014). http://doi.acm.org/10.1145/2676870.2676875

http://www.sciencedirect.com/science/article/pii/S1877050915011539
http://www.sciencedirect.com/science/article/pii/S1877050915011539
http://www.mpi-forum.org
http://www.pgas.org
http://www.roguewave.com/products-services/totalview
http://www.gwu.edu/~upc/publications/LBNL-59208.pdf
http://www.gnu.org/software/gdb/
http://www.gnu.org/software/gdb/
http://doi.acm.org/10.1145/2676870.2676875

Part IX
EXAMAG: Exascale Simulations

of the Evolution of the Universe Including
Magnetic Fields

Simulating Turbulence Using the Astrophysical
Discontinuous Galerkin Code TENET

Andreas Bauer, Kevin Schaal, Volker Springel, Praveen Chandrashekar,
Rüdiger Pakmor, and Christian Klingenberg

Abstract In astrophysics, the two main methods traditionally in use for solving the
Euler equations of ideal fluid dynamics are smoothed particle hydrodynamics and
finite volume discretization on a stationary mesh. However, the goal to efficiently
make use of future exascale machines with their ever higher degree of parallel
concurrency motivates the search for more efficient and more accurate techniques
for computing hydrodynamics. Discontinuous Galerkin (DG) methods represent a
promising class of methods in this regard, as they can be straightforwardly extended
to arbitrarily high order while requiring only small stencils. Especially for applica-
tions involving comparatively smooth problems, higher-order approaches promise
significant gains in computational speed for reaching a desired target accuracy. Here,
we introduce our new astrophysical DG code TENET designed for applications in
cosmology, and discuss our first results for 3D simulations of subsonic turbulence.
We show that our new DG implementation provides accurate results for subsonic
turbulence, at considerably reduced computational cost compared with traditional
finite volume methods. In particular, we find that DG needs about 1.8 times fewer
degrees of freedom to achieve the same accuracy and at the same time is more than
1.5 times faster, confirming its substantial promise for astrophysical applications.

A. Bauer • R. Pakmor
Heidelberg Institute for Theoretical Studies, Heidelberg, Germany
e-mail: andreas.bauer@h-its.org; ruediger.pakmor@h-its.org

K. Schaal • V. Springel (�)
Heidelberg Institute for Theoretical Studies, Heidelberg, Germany

Astronomisches Recheninstitut, Zentrum für Astronomie der Universität Heidelberg,
Heidelberg, Germany
e-mail: kevin.schaal@h-its.org; volker.springel@h-its.org

P. Chandrashekar
TIFR Centre for Applicable Mathematics, Bengaluru, India
e-mail: praveen@tifrbng.res.in

C. Klingenberg
Institut für Mathematik, Universität Würzburg, Würzburg, Germany
e-mail: klingenberg@mathematik.uni-wuerzburg.de

© Springer International Publishing Switzerland 2016
H.-J. Bungartz et al. (eds.), Software for Exascale Computing – SPPEXA
2013-2015, Lecture Notes in Computational Science and Engineering 113,
DOI 10.1007/978-3-319-40528-5_17

381

mailto:andreas.bauer@h-its.org
mailto:ruediger.pakmor@h-its.org
mailto:kevin.schaal@h-its.org
mailto:volker.springel@h-its.org
mailto:praveen@tifrbng.res.in
mailto:klingenberg@mathematik.uni-wuerzburg.de

382 A. Bauer et al.

1 Introduction

Turbulent flows are ubiquitous in astrophysical systems. For example, supersonic
turbulence in the interstellar medium is thought to play a key role in regulating star
formation [19, 20]. In cosmic structure formation, turbulence occurs in accretion
flows onto halos and contributes to the pressure support in clusters of galaxies
[28] and helps in distributing and mixing heavy elements into the primordial gas.
Also, turbulence plays a crucial role in creating an effective viscosity and mediating
angular momentum transport in gaseous accretion flows around supermassive black
holes.

Numerical simulations of astrophysical turbulence require an accurate treatment
of the Euler equations. Traditionally, finite volume schemes have been used in
astrophysics for high accuracy simulations of hydrodynamics. They are mostly
based on simple linear data reconstruction resulting in second-order accurate
schemes. In principle, these finite volume schemes can also be extended to high
order, with the next higher order method using parabolic data reconstruction, as
implemented in piecewise parabolic schemes [9]. While a linear reconstruction
needs only the direct neighbors of each cell, a further layer is required for the
parabolic reconstruction. In general, with the increase of the order of the finite
volume scheme, the required stencil grows as well. Especially in a parallelized code,
this affects the scalability, as the ghost region around the local domain has to grow
as well for a deeper stencil, resulting in larger data exchanges among different MPI
processes and higher memory overhead.

An interesting and still comparatively new alternative are so-called discontinuous
Galerkin (DG) methods. They rely on a representation of the solution through an
expansion into basis functions at the subcell level, removing the reconstruction
necessary in high-order finite volume schemes. Such DG methods were first
introduced by [25], and later extended to non-linear problems [3, 5–8]. Successful
applications have so far been mostly reported for engineering problems [4, 15], but
they have very recently also been considered for astrophysical problems [21, 30].
DG methods only need information about their direct neighbors, independent of the
order of the scheme. Furthermore, the computational workload is not only spent on
computing fluxes between cells, but has a significant internal contribution from each
cell as well. The latter part is much easier to parallelize in a hybrid parallelization
code. Additionally, DG provides a systematic and transparent framework to derive
discretized equations up to an arbitrarily high convergence order. These features
make DG methods a compelling approach for future exascale machines. Building
higher order methods with a classical finite volume approach is rather contrived in
comparison, which is an important factor in explaining why mostly second and third
order finite volume methods are used in practice.

As shown in [2], subsonic turbulence can pose a hard problem for some of the
simulation methods used in computational astrophysics. Standard SPH in particular
struggles to reproduce results as accurate as finite volume codes, and a far higher
computational effort would be required to obtain an equally large inertial range as

Simulating Turbulence Using the Astrophysical Discontinuous Galerkin Code TENET 383

obtained with a finite volume method, a situation that has only been moderately
improved by many enhancements proposed for SPH in recent years [1, 17, 18, 22,
24, 29]. In this work, we explore instead how well the DG methods implemented
in our new astrophysical simulation code TENET [26] perform for simulations of
subsonic turbulence. In this problem, the discontinuities between adjacent cells are
expected to be small and the subcell representation within a cell can reach high
accuracy. This makes subsonic turbulence a very interesting first application of our
new DG implementation.

In the following, we outline the equations and main ideas behind DG and
introduce our implementation. We will first describe how the solution is represented
using a set of basis functions. Then, we explain how initial conditions can be derived
and how they are evolved forward in time. Next, we examine how well our newly
developed DG methods behave in simulating turbulent flows. In particular, we test
whether an improvement in accuracy and computational efficiency compared with
standard second-order finite volume methods is indeed realized.

2 Discontinuous Galerkin Methods

Galerkin methods form a large class of methods for converting continuous differen-
tial equations into sets of discrete differential equations [13]. Instead of describing
the solution with averaged quantities q within each cell, in DG the solution
is represented by an expansion into basis functions, which are often chosen as
polynomials of degree k. This polynomial representation is continuous inside a
cell, but discontinuous across cells, hence the name discontinuous Galerkin method.
Inside a cell K, the state is described by a function qK.x; t/. This function is only
defined on the volume of cell K. In the following, we will use qK to refer to the
polynomial representation of the state inside cell K.

The polynomials of degree k form a vector space, and the state qK within a cell
can be represented using weights wK

l , where l denotes the component of the weight
vector. Each wl contains an entry for each of the five conserved hydrodynamic
quantities. Using a set of suitable orthogonal basis functions 	K

l .x/, the state in a
cell can be expressed as

qK .x; t/ D
N.k/X
lD1

wK
l .t/	

K
l .x/ : (1)

Note how the time and space dependence on the right hand side is split up into two
functions. This will provide the key ingredient for discretizing the continuous partial
differential equations into a set of coupled ordinary differential equations.

The vector space of all polynomials up to degree k has the dimension N.k/. The
l-th component of the vector can be obtained through a projection of the state q onto

384 A. Bauer et al.

the l-th basis function:

wK
l .t/ D

1

jKj
Z
K
q.x; t/	K

l .x/ dV ; (2)

with jKj being the volume of cell K and wK
l D .w�;l;wp;l;we;l/ being the l-

th component of the weight vector of the density, momentum density and total
energy density. The integrals can be either solved analytically or numerically using
Gauss quadrature rules. By wi;l we refer to a single component of the l-th weight
vector, i.e. w0;0 and w0;1 are the zeroth and first weights of the density field, which
correspond to the mean density and a quantity proportional to the gradient inside a
cell, respectively. If polynomial basis functions of degree k are used, a numerical
scheme with spatial order p D k C 1 is achieved. However, near discontinuities
such as shock waves, the convergence order breaks down to first order accuracy.
A set of test problems demonstrating the claimed convergence properties of our
implementation can be found in [26].

2.1 Basis Functions

We discretize the computational domain with a Cartesian grid and adopt a classical
modal DG scheme, in which the solution is given as a linear combinations of
orthonormal basis functions 	K

l . For the latter we use tensor products of Legendre
polynomials. The cell extensions are rescaled such that they span the interval from
�1 to 1 in each dimension. The transformation is given by

� D 2

�xK
�
x � xK

�
; (3)

with xK being the centre of cell K.
The full set of basis functions can be written as

f	l.�/gN.k/lD1 D
˚ QPu.�1/ QPv.�2/ QPw.�3/ju; v;w 2 N0 ^ uC v C w � k

; (4)

where QPu are scaled Legendre polynomials of degree u. The sum of the degrees
of the individual basis functions has to be equal or smaller than the degree k of
the DG scheme. Thus, the vector space of all polynomials up to degree k has the
dimensionality

N.k/ D
kX

uD0

k�uX
vD0

k�u�vX
wD0

1 D 1

6
.kC 1/.kC 2/.kC 3/ : (5)

Simulating Turbulence Using the Astrophysical Discontinuous Galerkin Code TENET 385

2.2 Initial Conditions

To obtain the initial conditions, we have to find weight vectors wK
l at t D 0

corresponding to the initial conditions q.x; 0/. The polynomial representation of
a scalar quantity described by the weight vector is

qKi .x; 0/ D
N.k/X
lD1

wK
i;l.0/	

K
l .x/ : (6)

The difference between the prescribed actual initial condition and the polynomial
representation should be minimal, which can be achieved by varying the weight
vectors wK

l in each cell for each hydrodynamical component i individually:

min
fwK

i;l.0/gl

Z
K

�
qKi .x; 0/� qi.x; 0/

�2
dV : (7)

Thus, the l-th component of the initial weights wK
l is given by

wK
l .0/ D

1

jKj
Z
K
q.x; 0/	K

l .x/ dV : (8)

Transformed into the � coordinate system, the equation becomes

wK
l .0/ D

1

8

Z
Œ�1;1�3

q.�; 0/	l.�/ d� : (9)

In principle, the integral can be computed analytically for known analytical initial
conditions. Alternatively, it can be computed numerically using a Gauss quadrature
rule:

wK
l .0/ Š

1

8

.kC1/3X
qD1

q.xq; 0/	l.�q/!q ; (10)

using .k C 1/3 sampling points xq and corresponding quadrature weights !q. With
k C 1 integration points polynomials of degree � 2k C 1 are integrated exactly
by the Gauss quadrature rule. Therefore, the projection integral is exact for initial
conditions in the form of polynomials of degree � k.

386 A. Bauer et al.

2.3 Time Evolution Equations

The solution is discretized using time-dependent weight vectors wK
l .t/. The time

evolution equations for these weights can be derived from the Euler equation,

@q
@t
C

3X
˛D1

@F˛.q/
@x˛

D 0 : (11)

To obtain an evolution equation for the l-th weight, the Euler equation is multiplied
with 	l and integrated over the volume of cell K,

d

dt

Z
K
qK	K

l dV �
3X

˛D1

Z
K

@F˛.q/
@x˛

	K
l dV D 0 : (12)

Integrating the second term by parts and applying Gauss’s theorem leads to a volume
integral over the interior of the cell and a surface integral with surface normal
vector n:

d

dt

Z
K
qK	K

l dV �
3X

˛D1

Z
K
F˛
@	K

l

@x˛
dV C

3X
˛D1

Z
@K

F˛	K
l n˛ dA D 0 : (13)

We will now discuss the three terms in turn, starting with the first one. Inserting
the definition of qK and using the orthogonality relation of the basis functions
simplifies this term to the time derivative of the l-th weight:

d

dt

Z
K
qK	K

l dV D jKjdw
K
l

dt
: (14)

We transform the next term into the �-coordinate system. The term involves a
volume integral, which is solved using a Gauss quadrature rule:

3X
˛D1

Z
K
F˛
�
qK .x; t/

� @	K
l .x/
@x˛

dV

D
�
�xK

�2
4

3X
˛D1

Z
Œ�1;1�3

F˛
�
qK .�; t/

� @	l.�/
@�˛

d�

Š
�
�xK

�2
4

3X
˛D1

.kC1/3X
qD1

F˛
�
qK
�
�q; t

�� @	l
@�˛

ˇ̌̌
ˇ
�q

!q : (15)

Simulating Turbulence Using the Astrophysical Discontinuous Galerkin Code TENET 387

The flux vector F˛ can be easily evaluated at the .kC1/3 quadrature points �q using
the polynomial representation qK.�q; t/. An analytical expression can be obtained
for the derivatives of the basis functions.

Finally, the last term is a surface integral over the cell boundary. Again, we
transform the equation into the �-coordinate system and apply a Gauss quadrature
rule to compute the integral:

3X
˛D1

Z
@K

F˛	K
l .x/n˛ dA

D
�
�xK

�2
4

Z
@Œ�1;1�3

F
�
qKL .�; t/;q

K
R .�; t/

�
	l.�/n˛ dA0

Š
�
�xK

�2
4

X
a2@Œ�1;1�3

.kC1/2X
qD1

F
�
qKL .�a;q; t/;q

K
R .�a;q; t/

�
	l.�q/!a;q : (16)

Each of the interface elements a is sampled using .kC1/2 quadrature points �a;q. The
numerical flux F between the discontinuous states at both sides of the interface qKL
and qKR is computed using an exact or approximative HLLC Riemann solver. Note
that only this term couples the individual cells with each other.

Equations (15) and (16) can be combined into a function RK
l

�
w1; : : : ;wN.k/

�
.

Combining this with Eq. (14) gives the following system of coupled ordinary
differential equations for the weight vectors wK

l :

dwK
l

dt
CRK

l

�
w1; : : : ;wN.k/

� D 0 : (17)

We integrate Eq. (17) with an explicit strong stability preserving (SSP) Runge-Kutta
scheme [16]. We define y D �w1; : : : ;wN.k/

�
and thus we have to solve

dy
dt
C R.y/ D 0 : (18)

A third order SSP Runge-Kutta scheme used in our implementation is given by

y.0/ D yn (19)

y.1/ D y.0/ ��tnR.y.0// (20)

y.2/ D 3

4
y.0/ C 1

4

�
y.1/ ��tnR.y.1//� (21)

y.3/ D 1

3
y.0/ C 2

3

�
y.2/ ��tnR.y.2//� (22)

ynC1 D y.3/ (23)

388 A. Bauer et al.

with initial value yn, final value ynC1, intermediate states y.0/; y.1/; y.2/, and time
step size �tn.

2.4 Time Step Calculation

The time step has to fulfill the following Courant criterium [6]:

�tK D C

2kC 1
� jvK1 j C cK

�xK1
C jv

K
2 j C cK

�xK2
C jv

K
3 j C cK

�xK3

��1
; (24)

with Courant factor C, components of the mean velocity vKi in cell K and sound
speed cK . The minimum over all cells is determined and taken as the global
maximum allowed time step. Note the .2k C 1/�1 dependence of the time step,
which leads to a reduction of the time step for high order schemes.

2.5 Positivity Limiter

Higher order methods usually require some form of limiting to remain stable.
However there is no universal solution to this problem and the optimum choice
of such a limiter is in general problem dependent. For our set of turbulence
simulations we have decided to limit the solution as little as possible and adopt
only a positivity limiter. This choice may lead to some oscillations in the solution,
however, it achieves the most accurate result in terms of error measurements. We
explicitly verified this for the case of shock tube test problems. At all times, the
density �, pressure P and energy e should remain positive throughout the entire
computational domain. However, the higher order polynomial approximation could
violate this physical constraint in some parts of the solution. This in turn can produce
a numerical stability problem for the DG solver if the positivity is violated at a
quadrature point inside the cell or an interface. To avoid this problem, we use a so-
called positivity limiter [14, 31]. By applying this limiter at the beginning of each
Runge-Kutta stage, it is guaranteed that the density and pressure values entering the
flux calculation are positive, as well as the mean cell values at the end of each RK
stage. In addition, a strong stability preserving Runge-Kutta scheme and a positivity
preserving Riemann solver is needed to guarantee positivity.

The set of points where positivity is enforced has to include the cell interfaces,
because fluxes are computed there as well. A possible choice of integration points,
which include the integration edges, are the Gauss-Lobatto-Legendre (GLL) points.
In the following, we will be using tensorial products of GLL and Gauss points,
where one coordinate is chosen from the set of GLL points and the remaining two

Simulating Turbulence Using the Astrophysical Discontinuous Galerkin Code TENET 389

are taken from the set of Gauss points:

Sx D f. O�r; �s; �t/ W 1 � r � m; 1 � s � kC 1; 1 � t � kC 1g ; (25)

Sy D f.�r; O�s; �t/ W 1 � r � kC 1; 1 � s � m; 1 � t � kC 1g ;
Sz D f.�r; �s; O�t/ W 1 � r � kC 1; 1 � s � kC 1; 1 � t � mg : (26)

The full set of integration points is S D Sx[Sy[Sz, which includes all points where
fluxes are evaluated in the integration step.

First, the minimum density at all points in the set S is computed:

�Kmin D min
�2S �

K.�/ : (27)

We define a reduction factor �K1 as

�K1 D min

� ˇ̌ˇ̌ N�K � �
N�K � �Kmin

ˇ̌
ˇ̌ ; 1

�
; (28)

with the mean density in the cell N�K (the 0-th density weight) and the minimum
target density �. All high order weights of the density are reduced by this factor

wK
j;1 �K1 w

K
j;1; j D 2; : : : ;N.k/ : (29)

To guarantee a positive pressure P, a similar approach is taken:

�K2 D min
�2S �

K.�/ ; (30)

with

�K.�/ D
(
1 if PK.�/ � �
�� such that P.qK.�/C ��.qK.�/� NqK// D � : (31)

The equation for � can not be solved analytically and has to be solved numerically.
To this end we employ a Newton-Raphson method. Now, the higher order weights
of all quantities are reduced by �2

wK
j;i �K2 w

K
j;i; j D 2; : : : ;N.k/; i D 1; : : : ; 5 : (32)

Additionally the time step has to be modified slightly to

�tK D C min

�
1

2kC 1;
Ow1
2

�� jvK1 j C cK

�xK1
C jv

K
2 j C cK

�xK2
C jv

K
3 j C cK

�xK3

��1
;

(33)

390 A. Bauer et al.

with the first GLL weight Ow1. For a second order DG scheme the first weight is
Ow1 D 1, and Ow1 D 1=3 for a third and fourth order method.

3 Turbulence Simulations

We shall consider an effectively isothermal gas in which we drive subsonic
turbulence through an external force field on large scales. The imposed isothermality
prevents the buildup of internal energy and pressure through the turbulent cascade
over time. Technically, we simulate an ideal gas but reset slight deviations from
isothermality back to the imposed temperature level after every time step, allowing
us to directly measure the dissipated internal energy.

We consider a 3D simulation domain of size L D 1. In the following, we will
compare runs with a finite volume scheme and runs using our new DG hydro solver
on a fixed Cartesian mesh. In the case of DG simulations we vary the resolution as
well as the convergence order of the code. A summary of all of our runs is given in
Table 1.

Note that we always state the convergence order, i.e. O D k C 1 instead of k for
our DG runs. At a fixed convergence order of 3, we vary the resolution from 323 up
to 2563, and at a fixed resolution of 1283 we change the convergence order from 1

up to 4. This allows us to assess the impact of both parameters against each other.
The number of basis functions is N.0/ D 1 for a first order method, N.1/ D 4 for a
second order method, N.2/ D 10 for a third order, and N.3/ D 20 for a fourth order
method. In Table 1 we also state the approximate number of degrees of freedom per
dimension to better compare the impact of increasing the order versus increasing
the resolution level. We compare against a second order MUSCL type finite volume
method, using an exact Riemann solver.

Table 1 Summary of the turbulence simulations discussed in this article. The X in the name is
a placeholder for the resolution level. As a reference solution we consider ordinary finite volume
simulations with up to 5123 resolution elements. In case of DG, we vary the resolution from 323

up to 2563 for the third order code, as well as the convergence order from 1 up to 4 at a resolution
of 1283 cells. To better assess the impact of a higher order method, we state the number of degrees
of freedom per cell per dimension. The number of degrees of freedom per cell are 1; 4; 10 and 20
(from 1 order up to 4 order) in the case of DG

Overview over our turbulence simulations

Label Numerical method Conv. order O Resolution .d:o:f:=cell/1=3

FV_X_1 Finite volume 1 323 . . . 5123 1

FV_X_2 Finite volume 2 323 . . . 5123 1

DG_X_1 Discontinuous Galerkin 1 1283 1

DG_X_2 Discontinuous Galerkin 2 1283 1:59

DG_X_3 Discontinuous Galerkin 3 323 : : : 2563 2:15

DG_X_4 Discontinuous Galerkin 4 1283 2:71

Simulating Turbulence Using the Astrophysical Discontinuous Galerkin Code TENET 391

3.1 Turbulence Driving

We use the same driving method as in [2], which is based on [10–12, 27] and [23].
We generate a turbulent acceleration field in Fourier space containing power in a
small range of modes between kmin D 6:27 and kmax D 12:57. The amplitude of the
modes is described by a paraboloid centered around .kminCkmax/=2. The phases are
drawn from an Ornstein-Uhlenbeck (OU) process. This random process is given by

� t D f � t��t C �
p
.1 � f 2/ zn ; (34)

with random variable zn and decay factor f , given by f D exp.��t=ts/, with
correlation length ts. The phases are updated after a time interval of �t. The
variance of the process is set by � . The expected mean value of the sequence
is zero, h� ti D 0, and the correlations between random numbers over time are
h� t � tC�ti D �2f . This guarantees a smooth, but frequent change of the turbulent
driving field.

We want a purely solenoidal driving field, because we are interested in smooth
subsonic turbulence in this study. A compressive part would only excite sound
waves, which would eventually steepen to shocks if the driving is strong enough.
These compressive modes are filtered out through a Helmholtz decomposition in
Fourier space:

Oa.k/i D
�
ıij � kikj

jkj2
�

Oa0.k/j : (35)

The acceleration field is incorporated as an external source term in the DG
equations. The formalism is similar to adding an external gravitational field. We
need to compute the following DG integrals for aKl :

aKl .t/ D
Z
K
a.x; t/	K

l .x/ dV

DjKj
8

Z
Œ�1;1�3

a.�; t/	l.�/ d�

ŠjKj
8

.kC1/3X
qD1

a.�q; t/	l.�q/!q ; (36)

thus we have to evaluate the driving field for .k C 1/3 inner quadrature points �

for each Runge-Kutta stage. An additional evaluation at the cell center is required
to compute the allowed time step size. A corresponding term is used to update the
energy equation as well. The evaluation is done with a discrete Fourier sum over the
few non-zero modes of the driving field. If the update frequency of the driving field
is smaller than the typical time step size, storing the acceleration field for each inner

392 A. Bauer et al.

quadrature point can speed up the computations. In case of the finite volume runs,
we add the driving field through two half step kick operators at the beginning and
end of a time step, like for ordinary gravity.

The overall amplitude of the acceleration field is rescaled such that a given Mach
number is reached. Our target Mach number is M � 0:2. The decay time scale
is chosen as half the eddy turnover time scale, ts D 1

2
L

M c D 2:5 in our case. The
acceleration field is updated 10 times per decay time scale, �t D 0:1ts D 0:25.

3.2 Dissipation Measurement

We use an adiabatic index of � D 1:01 instead of the isothermal index � D 1. The
slight deviation from � D 1 allows us to measure the dissipated energy while the
dynamics of the fluid is essentially isothermal. After each time step, the expected
specific internal energy is computed as

� D c2

� � 1
���1

�
��1
0

; (37)

with sound speed c and reference density �0 D 1. This specific internal energy is
enforced at all quadrature points within a cell. Thus, the weights associated with
the total energy density using the kinetic momentum and density field have to be
adjusted:

wK
e;l.t/ D

Z
K

�
1

2

p.x; t/2

�.x; t/
C �.x; t/�.x; t/

�
	K
l .x/ dV

DjKj
8

Z
Œ�1;1�3

�
1

2

p.�; t/2

�.�; t/
C �.�; t/�.�; t/

�
	l.�/ d�

ŠjKj
8

.kC1/3X
qD1

1

2

p.�q; t/2

�.�q; t/
C �.�q; t/�.�q; t/

!
	l.�q/!q : (38)

Afterwards, the average internal energy density in the cell can be recomputed as

�� D wK
e;0 �

1

2

wK
p;0
2

wK
�;0

: (39)

The dissipated energy is given by the difference between the average internal energy
before and after adjusting the weights of the total energy density. Afterwards the
positivity limiter is applied to guarantee non-negative values in our DG simulations.

Simulating Turbulence Using the Astrophysical Discontinuous Galerkin Code TENET 393

3.3 Power Spectrum Measurement

The power spectrum of a scalar or vector field w.x/ is proportional to the Fourier
transformed of the two point correlation function:

Cw.l/ D hw.xC l/w.x/ix : (40)

Thus

Ew.k/ D .2�/3=2F .Cw.l// D
Z
V
Cw.l/ exp.�ikl/ d3l (41)

D j Ow.k/j2 ; (42)

where Ow is the Fourier transform of w.1 Here, we are only interested in the 1D power
spectrum, thus we average Ew.k/ over spherical shells:

Ew.k/ D 4�k2hEw.k/i ; (43)

where k D jkj. The overall normalization of the Fourier transformation is chosen
such that the integral over the power spectrum is equivalent to the total energy:

�2 D
Z

w.x/ dx D
Z

Ew.k/ dk D 1

.2�/3N3

N�1X
i;j;kD0

j Owijkj2 ; (44)

with Owijk being the discrete Fourier transformation of the discretized continuous
field w. Usually we show kE.k/ instead of E.k/ directly in log-log plots. This means
a horizontal line in a log-log plot represents equal energy per decade and makes
interpreting the area under a curve easier.

4 Results

In Fig. 1 we show a first visual overview of our simulation results at a resolution
of 1283 cells. The panels show the state at the final output time t D 30 for the
magnitude of the velocity and the density in a thin slice through the middle of
the box. Each cell is subsampled four times for this plot using the full subcell
information present for each DG or finite volume cell. In the case of the finite
volume scheme, we used the estimated gradients in subsampling the cells.

1We are using the convention of normalizing the Fourier transform symmetrically with .2�/�3=2.

394 A. Bauer et al.

FV 128 2 DG 128 2 DG 128 3 DG 128 4

FV 128 2 DG 128 2 DG 128 3 DG 128 4
0.0

0.2

0.4

0.6

0.8

1.0

|v|

0.96

0.98

1.00

1.02

1.04

ρ

Fig. 1 Thin slices through the density and velocity field at t D 30. We compare the finite volume
simulations against DG simulations of order 2 up to 4. Already 2nd order DG shows features which
are finer than in the 2nd order finite volume run. The higher moments available in 3rd and 4th order
DG allow a representation of finer features without increasing the spatial resolution. The thin lines
of zero velocity are much more pronounced in case of DG than in the finite volume case

The finite volume and DG results are similar at second order accuracy. However,
already the second order DG run visually shows more small scale structure than the
finite volume run. By increasing the order of accuracy and therefore allowing for
more degrees of freedom within a cell, DG is able to represent considerably more
structure at the same number of cells. Interestingly, the velocity field has regions of
(almost) zero velocity. These thin stripes can be well represented in DG. The finite
volume run shows the same features, but they are not as pronounced. Additionally,
Fig. 2 shows a thin density slice for our highest resolution DG run DG_256_3. The
high resolution and third order accuracy allows for more small scale details than in
any other of our simulations.

4.1 Mach Number Evolution

All of our runs with a convergence order larger or equal to second order reach an
average Mach number of M � 0:21 after t D 12. The detailed history of the
Mach number varies a bit from run to run. The differences between the different
DG runs and finite volume runs are however insignificant. The same holds true
for the other runs not shown in Fig. 3. Interestingly, both, the first order finite
volume and DG runs fall substantially behind and can only reach a steady state
Mach number of about M � 0:17. The low numerical accuracy leads to a too
high numerical dissipation rate in this case, preventing a fully established turbulent
cascade. A similar problem was found in [2] for simulations with standard SPH
even at comparatively high resolution, caused by a high numerical viscosity the
noisy character of SPH.

Simulating Turbulence Using the Astrophysical Discontinuous Galerkin Code TENET 395

DG 256 3

0.96

0.98

1.00

1.02

1.04

ρ

Fig. 2 A thin slice through the middle of our best resolved DG simulation at third order showing
the density field. The field uses the subcell information given by the high order DG weights. Every
cell is subsampled four times

0 5 10 15 20 25 30
t

0.00

0.05

0.10

0.15

0.20

0.25

rm
s

FV 128 1
FV 128 2
DG 128 1
DG 128 2
DG 128 3
DG 128 4

Fig. 3 Time evolution of the root mean square Mach number M . The runs with a higher than
first order convergence order agree well with each other and establish a Mach number of about
M � 0:2 at t D 12 in the quasi-stationary phase. However, the first order finite volume and DG
runs do not manage to reach the same Mach number and fall substantially short of achieving a
comparable kinetic energy throughout the entire run time

396 A. Bauer et al.

0 5 10 15 20 25 30
t

0.00

0.05

0.10

0.15

E
in
j,
E
di
ss

FV 128 2 dis
FV 128 2 inj
DG 128 2 dis
DG 128 2 inj

DG 128 3 dis
DG 128 3 inj
DG 128 4 dis
DG 128 4 inj

Fig. 4 The dashed lines show the injected energy, while the solid lines give the dissipated energy
over time. Dissipation becomes only relevant after an initial start-up phase. Thereafter, a quasi-
stationary state is established

4.2 Injected and Dissipated Energy

The globally injected and dissipated energy in our turbulence simulations is shown
in Fig. 4 as a function of time. The rate of energy injection through the driving forces
stays almost constant over time. At around t D 12, the variations start to increase
slightly. At this point the fluctuations between individual runs start to grow as well.
Initially, the dissipation is negligible, but at around t D 8 dissipation suddenly kicks
in at a high rate, and then quickly transitions to a lower level at around t D 12,
where a quasi stationary state is reached that persists until the end of our runs. The
difference between both curves—the kinetic energy—remains rather constant after
t D 12. Thus, in the following we only use outputs after t D 12 for our analysis.

4.3 Velocity Power Spectra

In Figs. 5 and 6, we show velocity power spectra of our runs. First, we focus on a
resolution study of our third order DG and second order finite volume simulations in
Fig. 5. In case of the finite volume runs, we show the power spectra up to the Nyquist
frequency kn D 2�N=2L, with N being the number of cells per dimension. For our
DG runs we show the full power spectrum instead, obtained from the grid used in
the Fourier transformation up to kg D 2�4N=2L D 4kn. The finite volume runs have
a second peak not shown here at modes above kn, induced by noise resulting from

Simulating Turbulence Using the Astrophysical Discontinuous Galerkin Code TENET 397

101 102 103

k

10−5

10−4

10−3

10−2

10−1

kE
v(
k)

FV 128 2
FV 256 2
FV 512 2
DG 032 3
DG 064 3
DG 128 3
DG 256 3

Fig. 5 Comparison of the velocity power spectra of our second order finite volume runs against
our third order DG runs. Interestingly, the spectra of the DG runs match with the ones obtained from
the finite volume runs at a quarter of the resolution. Thus, DG obtains similar results using only
about half as many degrees of freedom per dimension as finite volume schemes. For comparison,
the grey line shows the k�5=3 Kolmogorov scaling

101 102 103

k

10−5

10−4

10−3

10−2

10−1

kE
v(
k)

FV 128 2
DG 128 2
DG 128 3
DG 128 4

Fig. 6 Velocity power spectrum for our DG runs at different convergence order at a resolution of
1283 cells. Already second order DG shows a large inertial range and a dissipation bottleneck at
small scales. For comparison, the grey line shows the k�5=3 Kolmogorov scaling

the discontinuities across cell boundaries. The third and higher order DG methods
show a still declining power spectrum at kn and only at even higher modes close to
kg start to show a noise induced rise. This is due to the available subcell information
encoded in the DG weights.

398 A. Bauer et al.

All runs show an inertial range at scales smaller than the driving range on large
scales. The inertial range is followed by a numerical dissipation bottleneck. This
bottleneck is similar to the experimentally observed physical bottleneck effect, but
appears to be somewhat stronger. The energy transferred to smaller scales can not
be dissipated fast enough at the resolution scale and piles up there before it is
eventually transformed to heat. The bottleneck feature moves to ever smaller scales
as the numerical resolution is increased. Especially our highest resolution DG run
DG_256_3 shows a quite large inertial range. However, the slope of the inertial
range is measured slightly steeper than the expected k�5=3 Kolmogorov scaling. We
think a Mach number of M � 0:21 and the associated density fluctuations are
maybe already too high for a purely Kolmogorov-like turbulence cascade, which is
only expected for incompressible gas.

Interestingly, the power spectra of our finite volume runs match those of our
third order DG simulations, except that the finite volume scheme requires four times
higher spatial resolution per dimension. Considering the 10 degrees of freedom per
cell for third order DG, the effective number of degrees of freedom is still lower
by a factor of 6:4 in the case of DG, which corresponds to a factor of 1:86 per
dimension. This underlines the power of higher order numerical methods, especially
if comparatively smooth problems such as subsonic turbulence are studied.

In Fig. 6 we compare the impact of the numerical convergence order on the
power spectrum of our DG runs. As a comparison we include a second order finite
volume run as well. All simulations have a numerical resolution of 1283. Already
the second order DG method shows a more extended inertial range than the second
order finite volume run. But the second order DG method already uses four degrees
of freedom per cell. Increasing the convergence order alone improves the inertial
range considerably. The change in going from second to third order is a bit larger
than the change from third to fourth order.

4.4 Density PDFs

In Fig. 7, we show the probability density function (PDF) of the density field for
some of our runs. The PDF is averaged from t D 12 up to t D 30 and subsampled
43 times for each cell. We take the estimated density gradients into account for
the finite volume runs. The finite volume run shows the smallest range of realized
density values at the sampling points. Slightly more sampling points pile up at
the extreme density values. This is due to the slope limited gradients used here,
preventing more extreme density values. The DG runs show a more extended range
of density values, with the range increasing with convergence order, because the
higher order polynomial representations allow for a more detailed structure with
more extrema within a cell. If only the mean values within the cells are considered,
the PDFs are all rather similar to each other and not so different from the finite
volume run shown.

Simulating Turbulence Using the Astrophysical Discontinuous Galerkin Code TENET 399

0.7 0.8 0.9 1.0 1.1
ρ

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

101

PD
F(

ρ)

FV 128 2
DG 128 2
DG 128 3
DG 128 4

Fig. 7 The density PDF for our runs at a resolution of 1283 cells. The PDF is obtained by
subsampling each cell 43 times. In the finite volume case, we take the estimated density gradients
into account. For DG, we use the full polynomial information present in each cell. The shaded area
represents the standard deviation over time. Interestingly, finite volume schemes show a sharp drop
off at the low and high density ends which is absent in this form in the DG calculations

5 Discussion

We presented the ideas and equations behind a new implementation of discontinues
Galerkin hydrodynamics that we realized in the astrophysical simulation code
TENET [26]. Unlike traditional finite volume schemes, DG uses subcell expansion
into a set of basis functions, which leads to internal flux calculations in addition to
surface integrals that are solved by a Riemann solver. Importantly, the reconstruction
step needed in finite volume schemes is obsolete in DG. Instead, the coefficients of
the expansion are evolved independently, and no information is ‘thrown away’ at the
end of a time step, unlike done by the implicit averaging in finite volume schemes at
the end of every step. This offers the prospect of a higher computational efficiency,
especially at higher order where correspondingly more information is retained from
step to step. Such higher order can be relatively easily achieved in DG approaches.
Furthermore, stencils only involve direct neighbors in DG, even for higher order,
thereby making parallelization on distributed memory systems comparatively easy
and efficient.

These advantages clearly make DG methods an interesting approach for dis-
cretizing the Euler equations. However, at shocks, the standard method may fall
back to first order accuracy unless sophisticated limiters are used. If the problem
at hand is dominated by shocks and discontinuities, this might be a drawback.
Ultimately, only detailed application tests, like we have carried out here, can decide
which method proves better in practice.

400 A. Bauer et al.

In this regard, an important question for comparing numerical methods is their
computational efficiency for a given accuracy, or conversely, what is the best
numerical accuracy which can be obtained for a given invested total runtime.
Obtaining a fair comparison based on the run time of a code can be complicated in
general. For example, for the runs analyzed in this study, different numbers of CPUs
had to be used, as the memory requirements change by several orders of magnitude
between our smallest and largest runs. The comparison may be further influenced
by the fact that both hydro solver implementations investigated here are optimized
to different degrees (with much more tuning already done for the finite volume
method), which can distort simple comparisons of the run times. Nevertheless, we
opted to give a straightforward comparison of the total CPU time used as a first
rough indicator of the efficiency of our DG method compared to a corresponding
finite volume scheme. We note however that our new DG code is less optimized
thus far compared with the finite volume module, so we expect that there is certainly
room for further improving the performance ratio in favor of DG.

We performed our simulations running in parallel on up to 4096 cores on
SUPERMUC. In part thanks to the homogeneous Cartesian mesh used in these
calculations, our code showed excellent strong parallel scaling. We note that this
is far harder to achieve when the adaptive mesh refinement (AMR) option present
in TENET is activated.

We have generally found that the DG results for subsonic turbulence are as good
as the finite volume ones, but only need slightly more than half as many degrees
of freedom for comparable accuracy. Both the finite volume method at second
order accuracy and the DG scheme at third order accuracy show very good weak
scaling when increasing the resolution for the range of resolutions studied here. If
we compare the run time for roughly equal turbulence power spectra, we find that
the DG_032_3 run is about 1:14 times faster than the corresponding FV_128_2 run.
This performance ratio increases if we improve the resolutions: The DG_064_3 is
already 1:34 times faster than the FV_256_2 run. The DG_128_3 run is 1:53 times
faster than the FV_512_2 run, which comes close to the factor 1:86 more degrees
of freedom needed in the finite volume run to achieve the same accuracy. Thus, DG
does not only need fewer degrees of freedom to obtain the same accuracy but also
considerably less run time. This combination makes DG a very interesting method
for solving the Euler equations.

Besides improving computational efficiency, DG has even more to offer. In
particular, it can manifestly conserve angular momentum in smooth parts of the
flow, unlike traditional finite volume methods. In addition, the divB D 0 constraint
of ideal magnetohydrodynamics (MHD) can be enforced at the level of the basis
function expansion, opening up new possibilities to robustly implement MHD [21].
Combined with its computational speed, this reinforces the high potential of DG
as an attractive approach for future exascale application codes in astrophysics,
potentially replacing the traditional finite volume scheme that are still in widespread
use today.

Simulating Turbulence Using the Astrophysical Discontinuous Galerkin Code TENET 401

Acknowledgements We thank Gero Schnücke, Juan-Pablo Gallego, Johannes Löbbert, Federico
Marinacci, Christoph Pfrommer, and Christian Arnold for very helpful discussions. The authors
gratefully acknowledge the support of the Klaus Tschira Foundation. We acknowledge financial
support through subproject EXAMAG of the Priority Program 1648 ‘SPPEXA’ of the German
Research Foundation, and through the European Research Council through ERC-StG grant
EXAGAL-308037. KS and AB acknowledge support by the IMPRS for Astronomy and Cosmic
Physics at the Heidelberg University. PC was supported by the AIRBUS Group Corporate
Foundation Chair in Mathematics of Complex Systems established in TIFR/ICTS, Bangalore.

References

1. Abel, T.: rpSPH: a novel smoothed particle hydrodynamics algorithm. MNRAS 413, 271–285
(2011)

2. Bauer, A., Springel, V.: Subsonic turbulence in smoothed particle hydrodynamics and moving-
mesh simulations. MNRAS 423, 2558–2578 (2012)

3. Cockburn, B., Hou, S., Shu, C.W.: The Runge-Kutta local projection discontinuous Galerkin
finite element method for conservation laws. IV. The multidimensional case. Math. Comput.
54, 545–581 (1990)

4. Cockburn, B., Karniadakis, G., Shu, C.: Discontinuous Galerkin Methods: Theory, Compu-
tation and Applications. Lecture Notes in Computational Science and Engineering. Springer,
Berlin/Heidelberg (2011)

5. Cockburn, B., Lin, S.Y., Shu, C.W.: TVB Runge Kutta local projection discontinuous Galerkin
finite element method for conservation laws III: one-dimensional systems. J. Comput. Phys.
84, 90–113 (1989)

6. Cockburn, B., Shu, C.W.: TVB Runge-Kutta local projection discontinuous Galerkin finite
element method for conservation laws. II. General framework. Math. Comput. 52(186), 411–
435 (1989)

7. Cockburn, B., Shu, C.W.: The Runge-Kutta local projection P1-discontinuous-Galerkin finite
element method for scalar conservation laws. RAIRO-Modélisation mathématique et analyse
numérique 25(3), 337–361 (1991)

8. Cockburn, B., Shu, C.W.: The Runge-Kutta discontinuous Galerkin method for conservation
laws V. Multidimensional systems. J. Comput. Phys. 141, 199–224 (1998)

9. Colella, P., Woodward, P.R.: The piecewise parabolic method (PPM) for gas-dynamical
simulations. J. Comput. Phys. 54, 174–201 (1984)

10. Federrath, C., Klessen, R.S., Schmidt, W.: The density probability distribution in compressible
isothermal turbulence: solenoidal versus compressive forcing. ApJ 688, L79–L82 (2008)

11. Federrath, C., Klessen, R.S., Schmidt, W.: The fractal density structure in supersonic isother-
mal turbulence: solenoidal versus compressive energy injection. ApJ 692, 364–374 (2009)

12. Federrath, C., Roman-Duval, J., Klessen, R.S., Schmidt, W., Mac Low, M.M.: Comparing the
statistics of interstellar turbulence in simulations and observations. A&A 512, A81 (2010)

13. Galerkin, B.G.: On electrical circuits for the approximate solution of the laplace equation.
Vestnik Inzh. 19, 897–908 (1915)

14. Gallego-Valencia, P., Klingenberg, C., Chandrashekar, P.: On limiting for higher order
discontinuous Galerkin methods for 2D Euler equations. Bull. Braz. Math. Soc. 47(1), 335–345
(2016)

15. Gallego-Valencia, J.P., Löbbert, J., Müthing, S., Bastian, P., Klingenberg, C., Xia, Y.: Imple-
menting a discontinuous Galerkin method for the compressible, inviscid Euler equations in the
dune framework. PAMM 14(1), 953–954 (2014)

16. Gottlieb, S., Shu, C.W., Tadmor, E.: Strong stability-preserving high-order time discretization
methods. SIAM Rev. 43(1), 89–112 (2001)

402 A. Bauer et al.

17. Heß, S., Springel, V.: Particle hydrodynamics with tessellation techniques. MNRAS 406,
2289–2311 (2010)

18. Hopkins, P.F.: A general class of Lagrangian smoothed particle hydrodynamics methods and
implications for fluid mixing problems. MNRAS 428, 2840–2856 (2013)

19. Klessen, R.S., Heitsch, F., Mac Low, M.M.: Gravitational collapse in turbulent molecular
clouds. I. Gasdynamical turbulence. ApJ 535, 887–906 (2000)

20. Mac Low, M.M., Klessen, R.S.: Control of star formation by supersonic turbulence. Rev. Mod.
Phys. 76, 125–194 (2004)

21. Mocz, P., Vogelsberger, M., Sijacki, D., Pakmor, R., Hernquist, L.: A discontinuous Galerkin
method for solving the fluid and magnetohydrodynamic equations in astrophysical simulations.
MNRAS 437, 397–414 (2014)

22. Price, D.J.: Modelling discontinuities and Kelvin Helmholtz instabilities in SPH. J. Comput.
Phys. 227, 10040–10057 (2008)

23. Price, D.J., Federrath, C.: A comparison between grid and particle methods on the statistics of
driven, supersonic, isothermal turbulence. MNRAS 406, 1659–1674 (2010)

24. Read, J.I., Hayfield, T., Agertz, O.: Resolving mixing in smoothed particle hydrodynamics.
MNRAS 405, 1513–1530 (2010)

25. Reed, W.H., Hill, T.R.: Triangularmesh methods for the neutron transport equation. Los
Alamos Report LA-UR-73-479 (1973)

26. Schaal, K., Bauer, A., Chandrashekar, P., Pakmor, R., Klingenberg, C., Springel, V.: Astro-
physical hydrodynamics with a high-order discontinuous Galerkin scheme and adaptive mesh
refinement. MNRAS 453, 4278–4300 (2015)

27. Schmidt, W., Hillebrandt, W., Niemeyer, J.C.: Numerical dissipation and the bottleneck effect
in simulations of compressible isotropic turbulence. Comput. Fluids 35(4), 353–371 (2006)

28. Schuecker, P., Finoguenov, A., Miniati, F., Böhringer, H., Briel, U.G.: Probing turbulence in
the Coma galaxy cluster. A&A 426, 387–397 (2004)

29. Wadsley, J.W., Veeravalli, G., Couchman, H.M.P.: On the treatment of entropy mixing in
numerical cosmology. MNRAS 387, 427–438 (2008)

30. Zanotti, O., Fambri, F., Dumbser, M.: Solving the relativistic magnetohydrodynamics equa-
tions with ADER discontinuous Galerkin methods, a posteriori subcell limiting and adaptive
mesh refinement. MNRAS 452, 3010–3029 (2015)

31. Zhang, X., Shu, C.W.: On positivity-preserving high order discontinuous Galerkin schemes for
compressible Euler equations on rectangular meshes. J. Comput. Phys. 229, 8918–8934 (2010)

Part X
FFMK: A Fast and Fault-Tolerant

Microkernel-Based System for Exascale
Computing

FFMK: A Fast and Fault-Tolerant
Microkernel-Based System for Exascale
Computing

Carsten Weinhold, Adam Lackorzynski, Jan Bierbaum, Martin Küttler,
Maksym Planeta, Hermann Härtig, Amnon Shiloh, Ely Levy, Tal Ben-Nun,
Amnon Barak, Thomas Steinke, Thorsten Schütt, Jan Fajerski, Alexander
Reinefeld, Matthias Lieber, and Wolfgang E. Nagel

Abstract In this paper we describe the hardware and application-inherent chal-
lenges that future exascale systems pose to high-performance computing (HPC)
and propose a system architecture that addresses them. This architecture is based
on proven building blocks and few principles: (1) a fast light-weight kernel that
is supported by a virtualized Linux for tasks that are not performance critical,
(2) decentralized load and health management using fault-tolerant gossip-based
information dissemination, (3) a maximally-parallel checkpoint store for cheap
checkpoint/restart in the presence of frequent component failures, and (4) a runtime
that enables applications to interact with the underlying system platform through
new interfaces. The paper discusses the vision behind FFMK and the current state
of a prototype implementation of the system, which is based on a microkernel and
an adapted MPI runtime.

C. Weinhold (�) • A. Lackorzynski • J. Bierbaum • M. Küttler • M. Planeta • H. Härtig
Department of Computer Science, TU Dresden, Dresden, Germany
e-mail: carsten.weinhold@tu-dresden.de

A. Shiloh • E. Levy • T. Ben-Nun • A. Barak
Department of Computer Science, The Hebrew University of Jerusalem, Jerusalem, Israel
e-mail: amnon@cs.huji.ac.il

T. Steinke • T. Schütt • J. Fajerski • A. Reinefeld
Zuse Institute Berlin, Berlin, Germany
e-mail: ar@zib.de

M. Lieber • W.E. Nagel
Center for Information Services and HPC, TU Dresden, Dresden, Germany
e-mail: wolfgang.nagel@tu-dresden.de

© Springer International Publishing Switzerland 2016
H.-J. Bungartz et al. (eds.), Software for Exascale Computing – SPPEXA
2013-2015, Lecture Notes in Computational Science and Engineering 113,
DOI 10.1007/978-3-319-40528-5_18

405

mailto:carsten.weinhold@tu-dresden.de
mailto:amnon@cs.huji.ac.il
mailto:ar@zib.de
mailto:wolfgang.nagel@tu-dresden.de

406 C. Weinhold et al.

1 Exascale Challenges

Many reports and research papers, e.g. [12, 14, 19, 25], highlight the role of systems
software in future exascale computing systems. It will gain importance in man-
aging dynamic applications on heterogeneous, massively parallel, and unreliable
platforms—a burden that cannot be the responsibility of application developers
alone anymore, but has to shift to the operating system and runtime (OS/R). The
starting point for the design of FFMK is the expectation that these major challenges
have to be addressed by systems software for exascale systems:

Dynamic Applications Current high-end HPC systems are tailored towards
extremely well-tuned applications. Tuning of these applications often includes
significant load balancing efforts [11, 23, 38]. We believe a major part of this
effort will have to shift from programmers to OS/Rs because of the complexity and
dynamics of future applications. Additionally, exascale applications will need
to expose more fine-grained parallelism, leading to new challenges in thread
management. A number of runtime systems already addresses these challenges,
notably Charm++ [1] and X10 [26]. We further believe that an exascale operating
system must accommodate elastic application partitions that extend and shrink
during their runtime. Still, the commonly used batch schedulers assume fixed
size partitioning of hardware resources and networks. FFMK plans to provide
interfaces for the cooperation between applications and their runtime to coordinate
application-level balancing with overall system management.

Increasing Heterogeneity of Hardware Many current high-end HPC systems
consist of compute nodes with at most two types of computing elements, a general
purpose CPU (like x86) and an accelerator (like GPGPUs). These elements are
assumed and selected to perform very regularly. We assume future hardware will
have less regular performance due to fabrication tolerances and thermal concerns.
This will add to the unbalanced execution of applications. We also assume that not
all compute elements can be active at all time (dark silicon). In addition we assume
that other types of computing elements can be expected, for example FPGAs. We
believe that systems software can be adapted to such hardware more easily, if the
lowest level of software is a small light-weight kernel (LWK) instead of a large and
complex system like the Linux kernel.

Higher Fault Rates The sheer size of exascale computers with an unprecedented
number of components will have significant impact on the failure-in-time rate for
applications. Some OS/Rs already address this concern by enabling incremental
and application-specific checkpoint/recovery and by using on-node memory to
store checkpoint data. We believe a systems software design for exascale machines
must contain a coordinated approach across system layers. For example, runtime
checkpointing routines should be able to make use of memory management
mechanisms at the OS level to support asynchronous checkpoints.

FFMK: A Fast and Fault-Tolerant Microkernel-Based System for Exascale Computing 407

Deeper Memory Hierarchies We expect more types of memory that differ in
aspects like persistence, energy requirements, fault tolerance, and speed. Important
examples are on-node non-volatile memory (phase-change memory, flash, etc.)
and stacked DRAM. A highly-efficient checkpoint store requires an integrated
architecture that makes optimal use of these different types of memory.

Energy Constraints We understand, that provision and running cost of energy
will become a—if not the—dominating cost and feasibility factor. To address this
problem, we postulate that systems software should be based on an energy model
of the complete system. The model should enable a design where each resource
management decision can be controlled based on energy/utility functions for
resources. For example, an on-node scheduler may choose between running one core
at higher speed than others to balance execution times of compute processes. The
scheduler’s decision should be based on knowledge about which option provides the
required cycles at the lowest energy and automatically-inferred predictions of how
much time and memory certain computations (e.g., time steps) require.

2 FFMK Architecture Overview

We believe that a systems software design for exascale machines that addresses
the challenges described above must be based on a coordinated approach across
all layers, including applications. The platform architecture as shown in Fig. 1 uses
an L4 microkernel [24] as the light-weight kernel (LWK) that runs on each node.

MPI Library

Decision Making

Checkpointing

Gossip

Compute Cores Service Cores

L4Linux

L4 microkernel

MPI

gniroti no
M

Monitor Communication Checkpointing

Application

...

Service OS

Proxies

Global Platform Management

Runtime ...
...

Fig. 1 FFMK software architecture. Compute processes with performance-critical parts of (MPI)
runtime and communication driver execute directly on L4 microkernel; non-critical functionality
split out into proxy processes on Linux, which also hosts global platform management

408 C. Weinhold et al.

All cores are controlled by this minimal common foundation; the microkernel itself
is supported by few extra services that provide higher-level OS functionality such
as memory management (not shown in the figure). Additionally, an instance of a
service OS is running on top of it, but only on a few dedicated cores we refer to as
“service cores”. In our case the system is a full-featured virtualized Linux.

Applications Applications on the system are started by the service OS and can
use any functionality offered by it, including device drivers, such as for InfiniBand
and network, as well as libraries and programming environments such as MPI. To
exercise execution control over the HPC applications, the applications are decoupled
from the service OS and run independently on the LWK. Any requests of the
application to the service OS, such as system calls, are forwarded and handled.

Dynamic PlatformManagement In the presence of frequent component failures,
hardware heterogeneity, and dynamic demands, applications can no longer assume
that compute resources are assigned statically. Instead, load and health monitoring
is part of the node OS and the platform as a whole is managed by a load distribution
service. The necessary monitoring and decision making is done at three levels: (1)
on each multi-core node, (2) per application/partition among nodes, and (3) based
on a global view of a master management node.

Node-local thread schedulers take care of (1); scalable gossip algorithms dis-
seminate information required to handle (2) and (3). Using gossip, the nodes build
up a distributed, inherently fault tolerant, and scalable bulletin board that provides
information on the status of the system. Nodes have partial knowledge of the whole
system: they know about only a subset of the other nodes, but enough of them in
order to make decisions on how to balance load and how to react to failures in a
decentralized way. Through new interfaces, applications can pass hints to the local
management component, such that it can better predict resource demands and thus
help decision making. The global view over all nodes is available to a master node,
which receives gossip messages from some nodes. It makes global decisions such
as where to put processes of a newly started application.

Fault Tolerance To handle hardware faults, a fast checkpointing module takes
intermediate state from applications and distributes and stores it redundantly in
various types of memory across several nodes. However, we also envision node-
local fault tolerance mechanisms (e.g., replication, micro-reboots) and interfaces to
let applications communicate their fault tolerance requirements to the FFMK OS/R.

3 Microkernel-Based Node OS

We have chosen the L4Re microkernel system as basis for node-local OS function-
ality. For a detailed description of L4, we refer to [24]. In this document, we restrict
ourselves to a short intro.

FFMK: A Fast and Fault-Tolerant Microkernel-Based System for Exascale Computing 409

L4 Microkernel L4 had been designed for extensibility rather than as a minimized
Unix. As such, it provides few basic abstractions: address spaces, threads, and inter-
process communication (IPC). Key ingredient to enabling extensibility is a design
that enables both IPC and unblocking of threads to be fast. The IPC mechanism is
not only used to transmit ordinary data but also grant access rights to resources,
such as capabilities and memory, to other address spaces. On L4, policies are
implemented in user-level components. One example is memory management where
so-called “pagers” manage the virtual address space of applications and implement
any required policy. The microkernel itself only provides the mechanism to grant
memory pages.

The fast and simple IPC mechanism enables us to build a componentized FFMK-
OS that can achieve high performance. An important feature in this context is that
the L4 kernel maps hardware interrupts to IPC messages. As a result, IPC messages
can directly wake currently blocked application processes with low latency not only
when required input is computed by another process on the same node, but also
by processes running on other nodes when messages arrive over the HPC system’s
interconnect.

Virtualized Linux Our system also runs Linux as a service OS on each node
to provide and reuse functionality that is not performance critical such as system
initialization. We chose L4Linux, a modified Linux kernel that runs in a virtual
machine on the microkernel; it is binary compatible to standard Linux and therefore
capable of running unmodified Linux applications.

On the FFMK platform, HPC applications are ordinary Linux programs, too.
They are loaded by the service OS and they can use all functionality offered by
it, including device drivers and Linux-based runtime environments such as MPI.
However, the underlying L4 microkernel is better suited, when applications perform
their most “critical” work, which in the context of HPC and exascale systems means
“critical to performance”. For example, the microkernel can switch context faster
than Linux and it provides much better control over what activities run on which
core. The latter property is essential to let applications execute undisturbed from the
various management and housekeeping tasks that a commodity OS performs in the
background.

Decoupled Thread Execution To isolate HPC applications from such “noise”,
the FFMK OS allows their threads to be decoupled from the service OS and
run undisturbed on dedicated compute cores. This novel mechanism leverages the
tight integration of the paravirtualized commodity kernel and the L4 microkernel.
L4Linux uses different L4 address spaces for the Linux kernel and each application
process running on top of it. To virtualize CPU cores, it uses a vCPU execution
model [20]. Such a vCPU is a special variant of an L4 thread. The Linux scheduler
maps all Linux threads to one or more vCPUs, which then migrate between address
spaces as they execute either kernel code during Linux system calls or user code
of any of the Linux processes. However, since each process on top of L4Linux is
backed by its own L4 address space, the code and data contained in it are accessible
from all cores in the system, not just those assigned to the service OS.

410 C. Weinhold et al.

Fig. 2 Split execution model: the paravirtualized L4Linux kernel supports handing off thread
execution of Linux programs to the underlying L4 microkernel, such that they can perform
computations free of “OS noise” on cores controlled by the L4 microkernel. Decoupled threads
are moved back temporarily to a service core assigned to Linux, whenever the program performs a
Linux system call

To decouple a thread of a user process from unpredictable Linux behavior,
L4Linux creates an additional L4 host thread to execute the application’s code.
Whenever the application is executing on the host thread, the corresponding Linux
thread is detached from the scheduler of the service OS. Since this host thread is put
on a separate compute core, which is controlled by L4 directly, it can thus execute
in parallel to vCPUs of the service Linux (see Fig. 2). Thus, a noise-sensitive HPC
application can run undisturbed and will not be subject to scheduling decisions of
Linux, nor will it be interrupted by incoming interrupts.

Decoupled Linux programs can still perform Linux system calls. When doing
so, the host thread causes an exception that is forwarded to L4Linux, which then
reactivates the decoupled Linux thread and performs the requested operation in its
context. Returning from the system call causes the thread to be decoupled again.

Device Access A key advantage of the decoupling mechanism apart from noise
reduction is that it fits naturally into high-performance I/O stacks. For example,
the InfiniBand driver stack consists of a Linux kernel driver and several user-space
libraries (libibverbs and libmlx5 in the case of recent Mellanox InfiniBand
cards). These libraries contain the functionality that is on the performance-critical
paths, which is why the user-space driver in libmlx5 has direct access to I/O
memory of the host-channel adapter (HCA) without having to call the kernel. Most
of the management tasks (e.g., creating queue pairs, registering memory regions) are
implemented in the kernel module; the user-space libraries communicate with the
in-kernel driver, which is accessible through the system call forwarding as described
in the preceding paragraph.

FFMK: A Fast and Fault-Tolerant Microkernel-Based System for Exascale Computing 411

FFMK Node OS The previously described components and mechanisms form the
basis of the FFMK node OS. It also hosts a decentralized platform management
service which will be described in the next sections.

4 Dynamic Platform Management

FFMK addresses applications with varying resource demands and hardware plat-
forms with variable resource availability (e.g. due to thermal limits or hardware
faults). Although the FFMK OS/R is currently limited to node-local scheduling,
we envision the full-featured version to dynamically optimize the usage of the
application’s resources by rebalancing its workload, optimizing network usage,
and reacting to changing demands when its elastic partition shrinks or expands.
Elastic partitions enable the FFMK platform to allocate resources to an application
dynamically during the lifetime of the application (see Fig. 3b, c). The main task of
the dynamic platform management is to continuously optimize the utilization of the
system by means of an economic model. This economic model will include various

Fig. 3 Dynamic platform management. (a) Multicore nodes are organized in colonies. (b) Elastic
applications partitions can expand and shrink. (c) Partitions can span mutliple colonies and expand
to new colonies. (d) A redundant set of master nodes monitors and controls the system

412 C. Weinhold et al.

aspects such as throughput and energy efficiency, fairness among applications,
resiliency, and quality of service. However, its details are still subject to research.

The dynamic platform management consists of two basic components: mon-
itoring and decision making. To achieve the scalability and resilience required
for exascale systems, we decided to use gossip algorithms for all cross-node
information dissemination of the monitoring component (see Sect. 4.2) and make
decisions decentralized where possible (see Sect. 4.3).

4.1 Application Model

To support dynamic management of applications on our platform, we require an
application model that is more flexible than the coarse-grained and static division
of work that common MPI implementations impose. In our model, the decom-
position of an application’s workload is decoupled from the number execution
units. The units of decomposition are migratable tasks that communicate with
each other (see Fig. 4). For example, a core may run multiple tasks (one after
each other) by preempting at blocking communication calls—a principle called
overdecomposition [1]. At an abstract level, tasks are units which generate load for
different hardware resources (e.g. cores, caches, memory, and network bandwidth)
and the OS/R can map them to the hardware in order to optimize the application’s
performance. There are several reasons why we think this approach makes sense:

• Applications can be decomposed mostly independent from the number of nodes
the program uses, which allows sizing the tasks according to the cache size or
application-specific data structures.

• If the resource consumption of tasks varies among the tasks and over runtime,
the OS/R is able to map and remap tasks intelligently to balance resource usage.
This means that the OS/R, and not the application developer, is responsible for
load balancing.

• The OS/R shrinks and expands applications to optimize global throughput.
• The OS/R is able to reduce communication costs by doing a communication-

aware (re)mapping of tasks to nodes.

Fig. 4 Applications are
decomposed into tasks.
Multiple tasks are mapped to
a node and can be migrated
by the OS/R to expand/shrink
the application’s partition, to
load balance the application,
and to optimize
communication

FFMK: A Fast and Fault-Tolerant Microkernel-Based System for Exascale Computing 413

• Tasks waiting for a message are not scheduled to a core (i.e. busy waiting is
avoided). This allows other tasks to run and to overlap communication with
computation. Additionally, the OS/R is able to prioritize tasks that other tasks
wait for.

• The OS/R may place tasks of different applications on the same node. Co-
locating applications with different resource demands may increase the system
utilization and throughput [42].

If, for example, bandwidth is the limiting resource on a node, the OS/R may
increase the bandwidth available to the tasks by running fewer of them concurrently
and migrating some of the tasks to another node. Additionally, the OS/R may either
turn off unneeded cores (to reduce energy consumption) or co-locate bandwidth-
insensitive tasks, possibly belonging to another application.

4.2 Monitoring and Gossip-Based Information Dissemination

To be capable of dynamic platform management, the system needs to collect status
information about available resources of the nodes and their usage. The status
information should contain:

• Current load on the node (cores, caches, memory, memory and network band-
width)

• Maximum load the node can carry (i.e. available resources, may vary due to faults
and thermal limits)

• Communication partners of the tasks running on that node.

The OS/R will use online monitoring (e.g. based on hardware counters) to gather
the information on each node. We currently disseminate across node boundaries
only information describing the overall resource state of a node. If that turns out to
be too coarse-grained, we consider adding information about resource demands of
individual tasks. Additionally, applications may pass hints to the runtime that enable
a better prediction of future application behavior. The collected and disseminated
information is the basis for making decisions as mentioned in the previous section.

Randomized Gossip As briefly introduced in Sect. 2, we will use randomized
gossip algorithms to disseminate the resource information and build up the dis-
tributed bulletin board. In randomized gossip algorithms each node periodically
sends messages with the latest information about other nodes to randomly selected
nodes. Received information is merged with the local bulletin board by selecting the
newest entry for each node. Thus, each node accumulates local information about
the other nodes over time.

We have shown that these algorithms are resilient and they scale to exascale-
size systems [5]. Scalability is achieved by dividing the system into colonies, each
containing in the order of 1000 nodes. The colonies should consist of topologically
nearby nodes, see Fig. 3. For the time being we assume that colonies are fixed and

414 C. Weinhold et al.

independent of the elastic application partitions. We run the gossip algorithm within
each colony independently such that each node knows the status of all other nodes
in the same colony; the colonies form the lower level of a gossip hierarchy.

Hierarchical Gossip One level above the colonies, a set of redundant master nodes
maintains the global view on all nodes. The masters receive gossip messages from
random nodes of each colony to obtain a complete picture of the resource usage and
availability of the system. For decentralized decisions concerning multiple colonies
(e.g. load balancing of a multi-colony application), the masters additionally send
gossip messages with summary information about all colonies back to some colony
nodes, which then disseminate it within the colony.

Quality of Information and Overhead Recent results of our research have shown
the scalability and resiliency of the randomized gossip algorithms [5]. They work
well even when some nodes fail, without the need for any recovery protocol,
which is an advantage over tree-based approaches [2]. We developed formal
expressions for approximating the average age (i.e., quality of information) of the
local information at each node and the information collected by the master. These
results closely match the results of simulations and measurements on up to 8192
nodes of a Blue Gene/Q system, as shown in Fig. 5.

We also investigated the overhead of gossip algorithms on the performance of
HPC applications sharing network and compute resources [22]. The measurement
results for two applications running concurrently to gossip with large information
records per node (1024 bytes) are shown in Fig. 6. Sending gossip messages at
an interval of 256 ms and above does not cause noticeable overhead, except for
extremely communication-intensive codes like MPI-FFT (fast fourier transform).

 0 5 10 15 20

 2

 4

 6

 8

10

2048 Nodes

Relative age of
master’s information

M
ax

im
um

 a
ge

 o
f

go
ss

ip
 m

es
sa

ge
s

 0 10 20 30 40

8192 Nodes

Relative age of
master’s information

Approximation
Simulation
Measurement

Fig. 5 Average age of the master’s information using different age thresholds for gossip message
entries (sending only newest information). The age is given relative to the interval of gossip
messages. Approximations, simulations, and measurements on Blue Gene/Q match very well

FFMK: A Fast and Fault-Tolerant Microkernel-Based System for Exascale Computing 415

 0 10 20 30 40 50

Without Gossip

Interval = 1024 ms

Interval = 256 ms

Interval = 64 ms

Interval = 16 ms

Interval = 8 ms

COSMO−SPECS+FD4
runtime seconds

 37.3 s

 37.3 s

 37.3 s

 37.5 s

 37.9 s

 38.2 s

 4.8 s

 4.8 s

 4.9 s

 5.0 s

 5.3 s

 5.6 s

 0 10 20 30 40 50

MPI−FFT
runtime seconds

 27.8 s

 28.0 s

 28.5 s

 29.9 s

 35.2 s

 42.2 s

 24.0 s

 24.2 s

 24.7 s

 26.1 s

 31.4 s

 38.4 s

Fig. 6 Runtime overhead of gossip on two benchmark applications on 8192 Blue Gene/Q nodes
when varying the interval of gossip messages. The inner red part indicates the MPI portion

4.3 Decision Making

Deciding on how to optimize system utilization is performed at three levels:
within each node, decentralized between nodes for each application partition, and
centralized at the master nodes. Each level is responsible for a part of the dynamic
management of applications as outlined in Sect. 4.1. In the following, we explain
the three levels top–down.

• Whole system: the master nodes optimize elastic partitions (i.e., shrinking
and expanding them), multi-application resource assignment, placement of new
partitions, and handling of failures. The master assigns nodes to partitions, but
does not care about the mapping of individual tasks to nodes.

• Per application partition: gossiping nodes perform decentralized load balanc-
ing and communication optimization by migrating tasks within the partition.
We will focus on scalable, distributed algorithms that act on small node
neighborships or pairs of nodes. Depending on the application behavior, different
algorithms will be considered (e.g., Diffusion-based [13], MOSIX [3]). Addi-
tionally, partition optimization decisions from the master are realized on the task
level, e.g. decide which tasks to migrate to new nodes of an expanded partition.

• Within each node: the scheduler of the node OS assigns tasks to cores, taking
into account data dependencies and arrival of messages from the network. It also
performs dynamic frequency scaling and decides on which execution units to
power up (dark silicon).

The FFMK OS makes load management decisions using local knowledge that
each node acquired through monitoring and gossip-based information dissemination
as described in Sect. 4.2. This information is always about the past, which is not
always a good forecast of future behavior of highly dynamic workloads. Therefore,
we plan to use techniques to predict resource consumption, like those employed
by ATLAS [33]. ATLAS is an auto-training look-ahead scheduler that correlates
observed behavior (e.g., execution times, cache misses) and application-provided

416 C. Weinhold et al.

information (“metrics”) about the next chunk of work to be executed. Applications
pass these metrics to the OS to help it make more accurate predictions of future
behavior. If, for example, an HPC application’s workload in the next time step
depends on the number of particles in a grid cell, then this metric (the number of
particles) can be used by ATLAS to predict the required compute time to complete
the time step; it does so by inferring this information from observed correlation
of previous (metric, execution time) pairs. We expect—and hear from application
developers—that providing such metrics can be done with little effort. Additionally,
applications may inform the OS/R about future workload changes, such that the
platform management is able to proactively adapt resource allocations.

5 MPI Runtime

The FFMK architecture is designed such that it can support different runtimes on
the LWK at the same time, such as MPI, X10 or Charm++. Due to limited resources
and because MPI is the foundation of the vast majority of applications, we focus on
dynamizing this traditional HPC runtime such that the FFMK OS can perform load
balancing at the OS/R level.

5.1 MPI and Load Balancing

Load balancing applications for exascale HPC systems is a major challenge [14,
25]. For example, in the case of MPI-based applications, each of the participating
MPI processes is usually mapped to its own core. If a few MPI processes reach a
synchronization point later than the others, the majority of cores become effectively
idle, thereby wasting resources. Unfortunately, load imbalances are typical for many
important classes of applications, including atmospheric simulations [41], particle
simulations [38], and fluid dynamics [17].

LoadBalancing by Overdecomposition As explained in the previous sections, the
common approach for tackling these load balancing issues is to (1) overdecompose
by splitting the problem into more parts (i.e., tasks) than cores available, (2) assign
the parts to cores, and (3) adapt this mapping dynamically during runtime so as
to minimize both imbalance and communication costs. Typically, this method of
dynamic load balancing is implemented at the application and library level [23,
38], because MPI implementations do not provide any built-in load management
mechanism. This means that the mapping of MPI processes to cores remains static
and the application itself is responsible for redistributing workload among ranks to
maintain the balance. Even though this approach proved very effective in reducing
imbalances and thereby improving performance, it is most often tailored to a specific
application or problem domain and cannot be applied to arbitrary workloads easily.
Thus, developers are forced to “reinvent the wheel” over and over again.

FFMK: A Fast and Fault-Tolerant Microkernel-Based System for Exascale Computing 417

Adaptive MPI (AMPI) To save developer effort, one could overdecompose at
the level of MPI ranks by just creating more ranks than cores available. AMPI
[1] is an example of an MPI implementation that does exactly this. It is based
on Charm++ [18] and maps each MPI rank to a “chare”, which is the Charm++
equivalent of a task. This approach enables the underlying Charm++ runtime system
to perform load balancing and migration of MPI ranks transparently. However,
chares are not OS-level processes, but C++ objects encapsulating all code and data.
Thus, MPI ranks in AMPI share the same address space of a single Charm++
runtime process on each node. Therefore, most MPI applications have to be
modified to work on top of AMPI, because global variables are disallowed. Also,
multithreaded MPI ranks cannot be supported, because chares are single threaded
entities.

5.2 OS/R Support for Oversubscription

Adaptive MPI’s compatibility limitations can be overcome by actually creating more
MPI compute processes—and thereby more threads—which are subject to a system-
level load balancer.

Requirements Analysis The advantage of MPI overdecomposition is that it
enables automatic load balancing for MPI applications without having to modify
their code. However, it comes at the cost of additional management and commu-
nication overhead due to the increased number of ranks. Furthermore, current MPI
implementations cause any process that waits for a message transfer to complete
to occupy a core, because polling is used. Such busy waiting causes unacceptable
overhead in combination with oversubscription, because it effectively prevents
overlapping computation and communication. In order for process-level oversub-
scription to work, waiting must be performed in a blocking fashion instead and the
additional overhead must be kept at a minimum to allow for real performance gains.
Thus, the OS/R has to provide light-weight message and thread management that
allows for fast unblocking of a rank once a message for this rank arrives. Ideally,
the system also takes communication dependencies into account when making
scheduling decisions: it should prioritize those communication partners that other
processes are waiting for so as to keep message latency low.

Preliminary Study To assess the potential of this approach, we conducted a
preliminary study where we used MVAPICH2 [29] for oversubscribed runs of the
weather simulation code COSMO-SPECS+FD4 [23] and the atomistic simulation
CP2K [30]. Both are prone to load imbalances.1 We used a small FDR InfiniBand
test cluster with four nodes that ran a standard GNU/Linux system, since Linux

1COSMO-SPECS+FD4 has an internal load balancer, which we disabled in the experiments
described here.

418 C. Weinhold et al.

Fig. 7 Preliminary oversubscription study with the applications CP2K and COSMO-SPECS+FD4
using MVAPICH2 on a 16-core/4-node InfiniBand test cluster

kernels preinstalled on HPC systems are typically tuned to not migrate processes
between cores. MVAPICH2 does not only support native InfiniBand as a commu-
nication back-end but also allows for blocking communication, where the library
will block in the kernel until a new message arrives instead of actively polling for
messages.

We found that blocking causes only a small overhead compared to busy waiting,
as shown in Fig. 7 for the two applications: the purple bars show the runtime
when using polling (traditional MPI behavior), the orange bars below show the
same benchmark with blocking enabled. However, the results also indicate that
overdecomposition and oversubscription of MPI processes can indeed improve
performance. Compared to the configurations at the top of the diagrams, which show
the total runtime with one MPI process per core (i.e., oversubscription factor of 1),
we can see significant improvements in those runs where we oversubscribed the
cores by a factor of up to 16 times. The workload remained the same in all cases;
we just increased the number of MPI ranks working on the problem.

The MPI library was configured to block in the kernel when waiting for mes-
sages; no busy waiting was performed in MPI routines. This allows the scheduler
of the Linux OS to migrate threads among cores in order to utilize all cores equally,
thereby overlapping wait times with computations in other MPI processes.

For comparison, we also give the runtime of COSMO-SPECS+FD4 with its
internal load balancer enabled (green bar labeled “balanced”). We can see that OS-
level oversubscription still does not achieve the same performance, but it gets within
7 % at 4� oversubscription. The improvement in the oversubscribed configuration is
achieved with no effort from the developer’s side; in contrast, several person years
went into COSMO-SPECS+FD4’s load balancer.

More results of oversubscription experiments, also showing the benefit of
multiple applications sharing the same nodes, are described in a tech report [37].

FFMK: A Fast and Fault-Tolerant Microkernel-Based System for Exascale Computing 419

6 Migration

The FFMK prototype does not support inter-node process migration yet. It can
only balance load within each node, where the OS scheduler migrates threads
among cores. Nevertheless, we regard migration as the “swiss army knife” of an
exascale OS/R: this mechanism can be used to (1) further improve load balancing,
for (2) proactive fault tolerance as described in Sect. 7, and (3) as a tool for achieving
better energy efficiency.

The Case for Migration Migration of MPI processes within a single node is
taken care of by the local scheduler of the node OS. However, this approach to
load balancing is no longer optimal, if the total amount of work per node varies
within the application partition (i.e., the processes on some nodes take longer than
on others). An example of this situation is shown for CP2K in Fig. 8. It visualizes
how much time each of the 1024 MPI ranks spent doing useful computation in each
time step. Green indicates a high computation/communication ratio, whereas yellow
and red areas of the heatmap show that most of the time is spent in MPI waiting for
communication to finish.

To reduce the load imbalance, nodes hosting “green” processes need to migrate
some MPI ranks to nodes that are mostly red and yellow. Fortunately, our analysis
of CP2K and other applications such as COSMO-SPECS+FD4 revealed that the

0

200

400

600

800

1000

0 10 20 30 40 50

R
an

k
N
u
m
b
er

Timestep

0

0.2

0.4

0.6

0.8

1

C
al
cu
la
ti
on

/T
ot
al

T
im

e

Fig. 8 Load imbalances in CP2K. Colors show computation vs communication ratio of each MPI
process (Y axis) per time step (X axis). Yellow and red indicate short computation time vs long
waiting for other MPI ranks; a small number of overloaded processes delay all others, because
they need significantly longer to compute their chunk of work in a time step (green areas)

420 C. Weinhold et al.

load caused by each process changes rather slowly, if at all. This observation is
encouraging, because inter-node migration takes much more time than migrating a
thread within the same node, but can be performed less frequently.

Migration Obstacles Inter-node migration is complicated due to the static nature
of communication back-ends such as InfiniBand and MPI itself. For the benefit of
performance, implementations are designed such that after an initial setup phase,
modifications to the partners involved in a communication are not easily possible.
The RDMA-based job migration scheme [31] by Ouyang et. al. addresses this
problem by tearing down all communication endpoints prior to migration and re-
establishes them when the application resumes. The approach [4] taken by Barak
et al. only works with TCP/IP-based communication. Despite these research efforts
and others in the area [36], migration has never been integrated into production MPI
libraries, even though the MPI standard [28] does not prohibit this feature.

Checkpoint-Migrate-Restart Given that transparent inter-node migration is hard
with state-of-the-art communication stacks, and since it is needed only infrequently,
we consider a simpler solution to the load-balancing problem that is based on
coordinated checkpoint/restart (C/R): to migrate individual MPI processes, we
(1) checkpoint at a convenient time (e.g., after completing a time step) the current
state of the whole application, (2) terminate all processes, and then (3) restart
them, but with certain processes assigned to previously underloaded nodes. The
new placement of “migrated” processes is determined based on system monitoring
and decision making as described in Sects. 4.2 and 4.3, respectively.

Checkpoint/Restart Approach The efficacy of the approach relies on the ability
of the system to perform checkpoint/restart with very low overhead. A key metric
to optimize is the amount of data that needs to be checkpointed and/or sent over the
network. Compared to system-level C/R solutions such as BLCR [8], application-
assisted checkpointing usually produces much smaller state. The reason is that they
serialize just the internal state that is needed to restart, but not the contents of
entire address spaces. Application-specific C/R support is common in HPC codes.
There are also frameworks such as SCR [27] that support multi-level checkpointing,
where data is stored in memory before it is transferred to persistent storage in the
background. On the other hand, support for BLCR-like system-level solutions has
been deprecated recently, or removed entirely from major MPI implementations. We
therefore focus on application-assisted checkpoint/restart as the process-migration
mechanism in the FFMK OS, but system-level C/R would work, too.

Furthermore, earlier work by Ouyang et al. [31] found that the restart phase
takes by far the longest time in this migration scheme. We can confirm that
re-initialization after restarting is still a major factor, but also one that leaves
room for optimizations. For example, we found that, in MVAPICH2, MPI_Init
spends several hundred milliseconds to obtain topology information about the
local node using the hwloc library. Older versions of the MPI library also called
initialization routines of the InfiniBand driver stack multiple time. This overhead

FFMK: A Fast and Fault-Tolerant Microkernel-Based System for Exascale Computing 421

can be eliminated by caching results or removing any redundant function calls; we
submitted patches that fix the latter performance issue to the MVAPICH2 authors.

Finally, to achieve the level of performance for C/R to be usable as a migration
mechanism, we employ in-memory checkpointing to make serialized application
state accessible from any node where processes are migrated to. The next section on
fault tolerance techniques covers requirements for a suitable checkpoint store.

7 Fault Tolerance

The HPC research community expects that the total number of individual com-
ponents in exascale machines will grow dramatically. It is already becoming
increasingly common to add more levels of node-local memory (e.g., SSDs), and
heterogeneous architectures using accelerators are state of the art. This increased
complexity and the expectation of higher failure rates for individual components and
the whole system require a much more sophisticated approach to fault tolerance. In
the following paragraphs, we give an overview of the key techniques and how they
fit into the FFMK architecture.

Protecting Applications: Checkpoint/Restart The state-of-the-art mechanism to
protect applications from crashes and other fail-stop errors is to make their execution
state recoverable using checkpoint/restart (C/R) [10, 34]. FFMK aims at integrating
a high-performance C/R system that utilizes the distributed storage built into all
nodes of an exascale system, instead of relying on a traditional parallel file system
that is connected to the supercomputer via a small number of I/O nodes. The general
approach has been shown to scale extremely well with the number of nodes, for
example in work by Rajachandrasekar et al. [32].

The FFMK project implements scalable C/R based on XtreemFS [40]. Due to
space constraints, we do not discuss this distributed file system in detail, but give
only a brief summary: XtreemFS supports storing erasure-coded file contents (e.g.,
checkpointed application state) in local memory of (potentially all) nodes of an HPC
system. Erasure coding ensures that data is still accessible even if multiple nodes
fail; at the same time, it minimizes both the network bandwidth required to transmit
checkpoint data over the network and the amount of on-node storage that is required.

Proactive Fault Handling The FFMK OS’ automatic load management and
migration support (see Sect. 6) can also be used for proactive fault tolerance
similar to [36]. By migrating all processes away from a node that is about to
fail, the system can keep applications running without having to restart them
from a checkpoint. To this end, FFMK leverages the hardware monitoring and
information dissemination support described in Sect. 4.2: if a node observes critical
CPU temperatures or correctable bit flips in a failing memory bank, it can initiate
migration of all local processes to another node. We also consider partial node
failures, where, for example, a single core becomes unreliable, but all other cores
continue working properly. In both cases, the system may temporarily oversubscribe

422 C. Weinhold et al.

healthy resources (other nodes or unaffected local cores) by migrating processes. We
consider any slowdowns caused by such “emergency evacuations” a special case of
load imbalance, which can be resolved either by the FFMK load balancing system
or by assigning replacement nodes to the application.

Resilient Gossip Algorithms At the system level, however, the FFMK OS relies
on fault-tolerant algorithms. The most important ones are the randomized gossip
algorithms, which are used to propagate information about the health of each
node. Furthermore, they indirectly allow the system to identify nodes that stopped
responding (e.g., due to an unexpected crash or network failures). The algorithms
themselves are inherently fault-tolerant and they provide good quality of informa-
tion even when some of the participating nodes failed; details of the theoretical
foundations and simulation are discussed in [5].

The overview on fault tolerance concludes the presentation of the FFMK
architecture. In the next section, we discuss related work.

8 Related Work

There exist several other projects that build operating systems for future HPC
systems. In the following, we will characterize the projects from our point of view
and emphasize the differences.

Argo and Hobbes The first two OSes, Hobbes [9] and Argo [6], are based on
a general architecture similar to ours. They include a node OS as basis, global
platform management, and an intermediate runtime providing a light weight thread
abstraction. To our knowledge, the global management in both cases is based on
MRNet [2], a fault-tolerant tree management structure, whereas FFMK uses gossip
algorithms [5] for their inherent fault tolerance properties. The Argo consortium
includes the research group behind Charm++ [18] to provide a versatile load balanc-
ing and resource management together with a light weight thread-like abstraction.
The philosophy behind Charm++ is similar to our task-based application model.
Argo uses Linux as the basis of their node OS. Hobbes is based on a newly built
microkernel named Kitten [21]. In contrast to L4, Kitten’s interface resembles the
Unix interface, but is cut down and tailored towards enabling Linux applications to
run directly on the microkernel. As does FFMK, Hobbes also relies on virtualization
technology to support Linux applications that require features not provided by the
microkernel; system calls not supported by Kitten are forwarded to Linux.

mOS The mOS project [39] at Intel is also based on a light-weight kernel (LWK)
that runs colocated with a fully-fledged Linux. System calls that are not supported
by the LWK are forwarded to the Linux kernel. However, in contrast to the FFMK
platform, the mOS LWK controls only compute cores, whereas the L4 microkernel
of our OS platform is in control of all cores.

FFMK: A Fast and Fault-Tolerant Microkernel-Based System for Exascale Computing 423

Manycore OS Riken’s OS [35] developed under Yukata Ishikawa also is a hybrid
system. To the best of our knowledge, the main difference compared to FFMK is
the fact that the microkernel can run on accelerators such as Xeon Phi, but remains
under control of a Linux. The system pioneered splitting the InfiniBand driver stack,
such that processes running on the accelerators can reuse the functionality hosted
on Linux by way of communication between Linux and the microkernel.

9 Summary and Future Work

State of the Union In this paper, we described the challenges that future HPC
systems pose to system and application developers. Based on these challenges, we
motivated an architecture for an exascale operating system and runtime (OS/R):
the microkernel-based FFMK OS. We described the current state of our prototype
implementation, which, at the time of this writing, is capable of running unmod-
ified MPI applications. The implementation of the node OS consists of an L4
microkernel, which is supported by a virtualized Linux kernel that we use as a
service OS. While our gossip algorithms are well-studied and found to be suitable,
the decision making algorithms that build on top are not yet implemented; gobal
platform management is therefore not part of the prototype. However, the node OS
has been successfully tested on a 112-node InfiniBand cluster across 1,344 Intel
Xeon cores.

Future Work Our short-term agenda focuses on evaluating process-level overde-
composition and oversubscription of MPI applications (see Sect. 5). Furthermore,
our work on the “decoupled thread” execution model presented in Sect. 3 is currently
under peer review. The FFMK project is funded for three more years, during which
we plan to finalize and integrate those building blocks of the architecture that are not
yet complete. This includes especially the checkpoint/restart layer and cross-node
migration support.

A key area of future work in the long term is research into novel interfaces
between applications and the OS/R. We already have experience with sched-
ulers [33] that can make better decisions based on application-provided hints about
future behavior. We also investigated “programming hints” for optimizing memory
accesses in GPU-based applications [7]. Application-level hints seem also promis-
ing for fault tolerance: HPC application developers [15] are already researching
fault-tolerant versions of the core algorithms used in their HPC codes. Such codes
may be able to handle node failures without restarting from a checkpoint, provided
that the application can inform the OS/R about its fault tolerance requirements
through a suitable interface.

424 C. Weinhold et al.

Acknowledgements This research and the work presented in this paper is supported by the
German priority program 1648 “Software for Exascale Computing” via the research project
FFMK [16]. We also thank the cluster of excellence “Center for Advancing Electronics Dresden”
(cfaed). The authors acknowledge the Jülich Supercomputing Centre, the Gauss Centre for
Supercomputing, and the John von Neumann Institute for Computing for providing compute time
on the JUQUEEN supercomputer.

References

1. Acun, B., Gupta, A., Jain, N., Langer, A., Menon, H., Mikida, E., Ni, X., Robson, M., Sun, Y.,
Totoni, E., Wesolowski, L., Kale, L.: Parallel programming with migratable objects: Charm++
in practice. In: Proceedings of the Supercomputing 2014, Leipzig, pp. 647–658. IEEE (2014)

2. Arnold, D.C., Miller, B.P.: Scalable failure recovery for high-performance data aggregation.
In: Proceedings of the IPDPS 2010, Atlanta, pp. 1–11. IEEE (2010)

3. Barak, A., Guday, S., Wheeler, R.: The MOSIX Distributed Operating System: Load Balancing
for UNIX. Lecture Notes in Computer Science, vol. 672. Springer, Berlin/New York (1993)

4. Barak, A., Margolin, A., Shiloh, A.: Automatic resource-centric process migration for MPI. In:
Proceedings of the EuroMPI 2012. Lecture Notes in Computer Science, vol. 7490, pp. 163–
172. Springer, Berlin/New York (2012)

5. Barak, A., Drezner, Z., Levy, E., Lieber, M., Shiloh, A.: Resilient gossip algorithms for
collecting online management information in exascale clusters. Concurr. Comput. Pract. Exper.
27(17), 4797–4818 (2015)

6. Beckman, P., et al.: Argo: an exascale operating system. http://www.argo-osr.org/. Accessed
20 Nov 2015

7. Ben-Nun, T., Levy, E., Barak, A., Rubin, E.: Memory access patterns: the missing piece of the
multi-GPU puzzle. In: Proceedings of the Supercomputing 2015, Newport Beach, pp. 19:1–
19:12. ACM (2015)

8. Berkeley Lab Checkpoint/Restart. http://ftg.lbl.gov/checkpoint. Accessed 20 Nov 2015
9. Brightwell, R., Oldfield, R., Maccabe, A.B., Bernholdt, D.E.: Hobbes: composition and

virtualization as the foundations of an extreme-scale OS/R. In: Proceedings of the ROSS’13,
pp. 2:1–2:8. ACM (2013)

10. Bronevetsky, G., Marques, D., Pingali, K., Stodghill, P.: Automated application-level check-
pointing of MPI programs. ACM Sigplan Not. 38(10), 84–94 (2003)

11. Burstedde, C., Ghattas, O., Gurnis, M., Isaac, T., Stadler, G., Warburton, T., Wilcox, L.:
Extreme-scale AMR. In: Proceedings of the Supercomputing 2010, Tsukuba, pp. 1–12. ACM
(2010)

12. Cappello, F., Geist, A., Gropp, W., Kale, S., Kramer, B., Snir, M.: Toward exascale resilience:
2014 update. Supercomput. Front. Innov. 1(1), 5–28 (2014)

13. Corradi, A., Leonardi, L., Zambonelli, F.: Diffusive load-balancing policies for dynamic
applications. IEEE Concurr. 7(1), 22–31 (1999)

14. Dongarra, J., et al.: The international exascale software project roadmap. Int. J. High Speed
Comput. 25(1), 3–60 (2011)

15. EXAHD – An Exa-Scalable Two-Level Sparse Grid Approach for Higher-Dimensional
Problems in Plasma Physics and Beyond. http://ipvs.informatik.uni-stuttgart.de/SGS/EXAHD/
index.php. Accessed 29 Nov 2015

16. FFMK Website. http://ffmk.tudos.org. Accessed 20 Nov 2015
17. Harlacher, D.F., Klimach, H., Roller, S., Siebert, C., Wolf, F.: Dynamic load balancing for

unstructured meshes on space-filling curves. In: Proceedings of the IPDPSW 2012, pp. 1661–
1669. IEEE (2012)

http://www.argo-osr.org/
http://ftg.lbl.gov/checkpoint
http://ipvs.informatik.uni-stuttgart.de/SGS/EXAHD/index.php
http://ipvs.informatik.uni-stuttgart.de/SGS/EXAHD/index.php
http://ffmk.tudos.org

FFMK: A Fast and Fault-Tolerant Microkernel-Based System for Exascale Computing 425

18. Kale, L.V., Zheng, G.: Charm++ and AMPI: adaptive runtime strategies via migratable
objects. In: Parashar, M., Li, X. (eds.) Advanced Computational Infrastructures for Parallel
and Distributed Adaptive Applications, chap. 13, pp. 265–282. Wiley, Hoboken (2009)

19. Kogge, P., Shalf, J.: Exascale computing trends: adjusting to the “New Normal” for computer
architecture. Comput. Sci. Eng. 15(6), 16–26 (2013)

20. Lackorzynski, A., Warg, A., Peter, M.: Generic virtualization with virtual processors. In:
Proceedings of the 12th Real-Time Linux Workshop, Nairobi (2010)

21. Lange, J., Pedretti, K., Hudson, T., Dinda, P., Cui, Z., Xia, L., Bridges, P., Gocke, A., Jaconette,
S., Levenhagen, M., Brightwell, R.: Palacios and Kitten: new high performance operating
systems for scalable virtualized and native supercomputing. In: Proceedings of the IPDPS
2010, Atlanta, pp. 1–12. IEEE (2010)

22. Levy, E., Barak, A., Shiloh, A., Lieber, M., Weinhold, C., Härtig, H.: Overhead of a
decentralized gossip algorithm on the performance of HPC applications. In: Proceedings of
the ROSS’14, Munich, pp. 10:1–10:7. ACM (2014)

23. Lieber, M., Grützun, V., Wolke, R., Müller, M.S., Nagel, W.E.: Highly scalable dynamic
load balancing in the atmospheric modeling system COSMO-SPECS+FD4. In: Proceedings
of the PARA 2010. Lecture Notes in Computer Science, vol. 7133, pp. 131–141. Springer,
Berlin/New York (2012)

24. Liedtke, J.: On micro-kernel construction. In: Proceedings of the 15th ACM Symposium on
Operating Systems Principles (SOSP’95), Copper Mountain Resort, pp. 237–250. ACM (1995)

25. Lucas, R., et al.: Top ten exascale research challenges. DOE ASCAC subcommittee report.
http://science.energy.gov/~/media/ascr/ascac/pdf/meetings/20140210/Top10reportFEB14.pdf
(2014). Accessed 20 Nov 2015

26. Milthorpe, J., Ganesh, V., Rendell, A.P., Grove, D.: X10 as a parallel language for scientific
computation: practice and experience. In: Proceedings of the IPDPS 2011, Anchorage,
pp. 1080–1088. IEEE (2011)

27. Moody, A., Bronevetsky, G., Mohror, K., de Supinski, B.: Detailed modeling, design, and
evaluation of a scalable multi-level checkpointing system. Technical report LLNL-TR-440491,
Lawrence Livermore National Laboratory (LLNL) (2010)

28. MPI: A message-passing interface standard, version 3.1. http://www.mpi-forum.org/docs
(2015). Accessed 20 Nov 2015

29. Mvapich: Mpi over infiniband. http://mvapich.cse.ohio-state.edu/. Accessed 20 Nov 2015
30. Open Source Molecular Dynamics. http://www.cp2k.org/. Accessed 20 Nov 2015
31. Ouyang, X., Marcarelli, S., Rajachandrasekar, R., Panda, D.K.: RDMA-based job migration

framework for MPI over Infiniband. In: Proceedings of the IEEE CLUSTER 2010, Heraklion,
pp. 116–125. IEEE (2010)

32. Rajachandrasekar, R., Moody, A., Mohror, K., Panda, D.K.: A 1 PB/s file system to checkpoint
three million MPI tasks. In: Proceedings of the HPDC’13, New York, pp. 143–154. ACM
(2013)

33. Roitzsch, M., Wachtler, S., Härtig, H.: Atlas: look-ahead scheduling using workload metrics.
In: Proceedings of the RTAS 2013, Philadelphia, pp. 1–10. IEEE (2013)

34. Sato, K., Maruyama, N., Mohror, K., Moody, A., Gamblin, T., de Supinski, B.R., Matsuoka,
S.: Design and modeling of a non-blocking checkpointing system. In: Proceedings of the
Supercomputing 2012, Venice, pp. 19:1–19:10. IEEE (2012)

35. Sato, M., Fukazawa, G., Yoshinaga, K., Tsujita, Y., Hori, A., Namiki, M.: A hybrid operating
system for a computing node with multi-core and many-core processors. Int. J. Adv. Comput.
Sci. 3, 368–377 (2013)

36. Wang, C., Mueller, F., Engelmann, C., Scott, S.L.: Proactive process-level live migration and
back migration in HPC environments. J. Par. Distrib. Comput. 72(2), 254–267 (2012)

37. Wende, F., Steinke, T., Reinefeld, A.: The impact of process placement and oversubscription
on application performance: a case study for exascale computing. Technical report 15–05, ZIB
(2015)

http://science.energy.gov/~/media/ascr/ascac/pdf/meetings/20140210/Top10reportFEB14.pdf
http://www.mpi-forum.org/docs
http://mvapich.cse.ohio-state.edu/
http://www.cp2k.org/

426 C. Weinhold et al.

38. Winkel, M., Speck, R., Hübner, H., Arnold, L., Krause, R., Gibbon, P.: A massively parallel,
multi-disciplinary Barnes-Hut tree code for extreme-scale N-body simulations. Comput. Phys.
Commun. 183(4), 880–889 (2012)

39. Wisniewski, R.W., Inglett, T., Keppel, P., Murty, R., Riesen, R.: mOS: an architecture for
extreme-scale operating systems. In: Proceedings of the ROSS’14, Munich, pp. 2:1–2:8. ACM
(2014)

40. XtreemFS – a cloud file system. http://www.xtreemfs.org. Accessed 20 Nov 2015
41. Xue, M., Droegemeier, K.K., Weber, D.: Numerical prediction of high-impact local weather:

a driver for petascale computing. In: Bader, D.A. (ed.) Petascale Computing: Algorithms and
Applications, pp. 103–124. Chapman & Hall/CRC, Boca Raton (2008)

42. Zheng, F., Yu, H., Hantas, C., Wolf, M., Eisenhauer, G., Schwan, K., Abbasi, H., Klasky,
S.: Goldrush: resource efficient in situ scientific data analytics using fine-grained interference
aware execution. In: Proceedings of the Supercomputing 2013, Eugene, pp. 78:1–78:12. ACM
(2013)

http://www.xtreemfs.org

Fast In-Memory Checkpointing with POSIX
API for Legacy Exascale-Applications

Jan Fajerski, Matthias Noack, Alexander Reinefeld, Florian Schintke,
Torsten Schütt, and Thomas Steinke

Abstract Exascale systems will be much more vulnerable to failures than today’s
high-performance computers. We present a scheme that writes erasure-encoded
checkpoints to other nodes’ memory. The rationale is twofold: first, writing to
memory over the interconnect is several orders of magnitude faster than traditional
disk-based checkpointing and second, erasure encoded data is able to survive
component failures. We use a distributed file system with a tmpfs back end and
intercept file accesses with LD_PRELOAD. Using a POSIX file system API, legacy
applications which are prepared for application-level checkpoint/restart, can quickly
materialize their checkpoints via the supercomputer’s interconnect without the need
to change the source code.

Experimental results show that the LD_PRELOAD client yields 69 % better
sequential bandwidth (with striping) than FUSE while still being transparent to
the application. With erasure encoding the performance is 17 % to 49 % worse
than striping because of the additional data handling and encoding effort. Even so,
our results indicate that erasure-encoded memory checkpoint/restart is an effective
means to improve resilience for exascale computing.

1 Introduction

The path towards exascale computing with 1018 operations per second is paved with
many obstacles. Three challenges are being tackled in the DFG project ‘A Fast and
Fault-Tolerant Microkernel-Based System for Exascale Computing’ (FFMK) [21]:
(1) the vulnerability to system failures due to transient and permanent errors, (2) the
performance losses due to workload imbalances in applications running on hundreds
of thousands of cores, and (3) the performance degradation caused by interactions
and noise of the operating system.

J. Fajerski (�) • M. Noack • A. Reinefeld • F. Schintke • T. Schütt • T. Steinke
Zuse Institute Berlin (ZIB), Berlin, Germany
e-mail: fajerski@zib.de; noack@zib.de; reinefeld@zib.de; schintke@zib.de; schuett@zib.de;
steinke@zib.de

© Springer International Publishing Switzerland 2016
H.-J. Bungartz et al. (eds.), Software for Exascale Computing – SPPEXA
2013-2015, Lecture Notes in Computational Science and Engineering 113,
DOI 10.1007/978-3-319-40528-5_19

427

mailto:fajerski@zib.de
mailto:noack@zib.de
mailto:reinefeld@zib.de
mailto:schintke@zib.de
mailto:schuett@zib.de
mailto:steinke@zib.de

428 J. Fajerski et al.

This paper addresses the first challenge, that is, to improve the fault tolerance of
exascale systems. Such systems consist of hundreds of thousands of components,
each designed to be reliable by itself. But running them all together will render
node failures a common event applications have to cope with [4, 7]. Several
mechanisms for improving fault tolerance in HPC have been suggested, like fault-
tolerant communication layers and checkpoint/restart (C/R) techniques.

C/R typically uses fast parallel file systems like Lustre,1 GPFS [17], or Pana-
sas [10] to materialize the checkpoints on disks. Unfortunately, C/R will reach
its limits as the applications’ memory footprint grows faster than the parallel I/O
bandwidth. Writing a checkpoint to disk will make the system processors idle for
a growing fraction of time, which becomes increasingly uneconomic. On a typical
HPC system like the Cray XC40 at ZIB [2] it takes more than half an hour to write
the main memory’s capacity to the parallel Lustre file system.2 Thus, reducing the
time of checkpointing is of vital importance. It does not only improve the efficiency,
but it will become a necessity when the mean time between failure (MTBF) becomes
shorter than the time needed to persist a checkpoint to disk.

2 Related Work

In-memory checkpointing [12] has been known for a long time. Several schemes
like Charm++ [23, 24] and FTI [3, 8] have been successfully deployed. SCR3

implements multi-level checkpointing, where checkpoints are written to different
media like RAM, flash or rotating disks. It uses a simple RAID5 encoding to be
able to cope with additional component failures.

Unfortunately, the mentioned approaches are difficult to apply to legacy appli-
cations. They are either limited to the use of specific object-oriented programming
languages like Charm++ or they require source code modifications to use specific
APIs like the one used by SCR for reading and writing checkpoints. The BLCR [5]
checkpoint framework is able to checkpoint unmodified applications but requires
support from the MPI library, because it can only create a consistent checkpoint of
MPI applications when no messages are in flight.

Our approach, in contrast, is based on POSIX which makes it suitable for
legacy applications, since many applications are prepared to write and read their
checkpoints using POSIX file system operations.

1http://wiki.lustre.org/
2The Cray XC40 ‘Konrad’ is operated at ZIB as part of the North German Supercomputer Alliance.
It comprises 1872 nodes (44.928 cores), Cray Aries network, 120 TB main memory, and a parallel
Lustre file system of 4.5 PB capacity and 52 GB/s bandwidth.
3https://computation.llnl.gov/project/scr/

http://wiki.lustre.org/
https://computation.llnl.gov/project/scr/

Fast In-Memory Checkpointing with POSIX API for Legacy Exascale-Applications 429

3 In-Memory Checkpointing with POSIX API

3.1 Implementation with XtreemFS

We use XtreemFS [19], a scalable distributed file system developed at ZIB, as a
basis for our in-memory checkpointing mechanism. XtreemFS supports POSIX
semantics for file operations while—transparently for the application—providing
fault tolerance via file replication on distributed servers. We modified XtreemFS to
perform I/O operations in-memory rather than on disk. This was possible because
XtreemFS is a user-space file system and is therefore not as tightly integrated into
the operating system kernel as other parallel file systems. Hence, it is well-suited
for providing in-memory checkpointing on top of the L4-microkernel used in the
FFMK project [21].

An instance of XtreemFS comprises three services: the Directory Service (DIR)
is a central registry for all XtreemFS services and is used for service discovery. The
Metadata and Replica Catalog (MRC) stores the directory tree and file metadata,
and it manages user authentication and file access authorization. The Object
Storage Device (OSD) stores the actual file data as objects. Figure 1 illustrates the
architecture of XtreemFS. Clients and servers (MRC, OSD, DIR) are connected via
some network with no specific requirements in terms of security, fault tolerance and

Fig. 1 XtreemFS architecture illustrating the three services (OSD, MRC and DIR) and the
communication patterns between them and a client

430 J. Fajerski et al.

performance. The separation of the metadata management in the MRCs from the
I/O-intensive management of file content in the OSDs is a design principle found
in many object-based file systems [10, 20]. To maximize scalability, metadata and
storage servers are loosely coupled. They have independent life cycles and do not
directly communicate with each other.

OSDs store data in their local directory tree. The underlying file system is only
required to offer a POSIX compliant interface. We configured the OSDs to use the
tmp directories of their respective nodes for data storage. The tmp directory is a
tmpfs file system that exports Linux’ disk caching subsystem as a RAM-based file
system with an overflow option into swap space when the main memory capacity
is exhausted. Thereby, all data sent to an OSD is stored solely in the node’s main
memory.

To create an XtreemFS instance, at least one OSD, MRC and DIR are needed.
Though to make full use of XtreemFS’ fault tolerance and scalability features,
several OSDs should be started on different servers. Once all desired services are
started and a volume is created, it can be mounted on any number of clients. All
clients will see the same file system with the same directory tree. An XtreemFS
volume is mounted through the FUSE kernel module4 to provide a virtual file
system. All operations in this file system are passed to the XtreemFS client library,
which distributes the data to the OSD devices.

3.2 Fault-Tolerance and Efficiency with Erasure Codes

Data replication is a frequently used option in distributed file systems to provide
fault tolerance. However, replication implies storage and communication overhead
compared to the number of tolerated failures. The commonly used 3-way replica-
tion [18, 19] causes a 2=3 overhead of the available raw storage capacity but can only
tolerate one failed replica.

Erasure codes (EC) offer a more space-efficient solution for fault tolerance and
have recently gained a lot of attention [1, 6, 9, 11, 14–16]. EC are a family of error
correction codes that stripe data across k chunks. Every k data words are encoded
to k C m D n words such that the original data words can be recovered from any
subset fs j s 2 P.n/; jsj � kg (cf. Fig. 2). Compared to replication, EC offers the
same or higher fault tolerance at a fraction of the storage overhead.

An EC is considered systematic if it keeps the original k data words in its original
representation. This property is desirable for storage applications since a fault-free
read operation can simply consider the data striped across k objects. They can be
read in parallel and no decoding is necessary.

4FUSE—Filesystem in Userspace allows the creation of a file system without changing Linux
kernel code.

Fast In-Memory Checkpointing with POSIX API for Legacy Exascale-Applications 431

k = 3

object stripe

data device code device

m = 2

Fig. 2 Scheme of a systematic erasure code where data is striped across three devices and two
code words per stripe are stored on two coding devices. Note that the last stripe only contains two
data words

In order to exploit these advantages we implemented generic kCm erasure coding
in XtreemFS using the Jerasure library [13]. The encoding and decoding operation
is implemented in the client library of XtreemFS.

File system operations are passed to the client library which then translates the
request into a number of object requests, that are sent to the OSDs. A read request
is performed optimistically by the client as it tries to read only the necessary data
objects. If all OSDs with the corresponding data objects answer, the replies are
concatenated and returned. If one or more OSDs fail to reply, the client will send
out the necessary requests to OSDs storing coding objects. As soon as at least k out
of n objects per stripe have been received, the data can be decoded and returned.

The implementation of a write operation is more complex. Since the encoding
takes place in the client (i.e. on the client system) it needs a sufficient amount of
data to calculate the coding objects. This establishes two requirements for write
operations: (1) the size of a write operation should be k 	 object_size or a multiple
thereof and (2) a write operation should align with stripes, i.e. the operation’s offset
should be a multiple of k 	 object_size. These two requirements would diminish the
POSIX compliance as POSIX does not put any restrictions on a write operation’s
size or offset.

This problem can be solved by implementing a read-modify-write (rmw) cycle
in the client. When the client library receives a write request that violates the
requirements above, it simply reads the necessary data to fulfill both requirements.
The write request is then padded with the additional data, encoded and sent to the
OSDs for storage. A write to the end of a file can simply be padded with zeros, since
they act as neutral elements in the encoding operation.

However, we decided not to implement a rmw cycle, because we observed that
writing checkpoint data is usually an append operation to the end of a file rather
than updating random file locations. This means that both requirements of our client
side implementation can be satisfied by simply caching write operations until a full
stripe can be encoded and written to the OSDs or the file is closed. In the latter case
the left over data is padded with zeros, encoded and then written to the OSDs.

432 J. Fajerski et al.

At a later stage we will add a server side implementation of erasure coding to
XtreemFS that does not suffer from the described shortcomings and will be fully
POSIX compliant.

4 Deployment on a Supercomputer

4.1 Access to RAM File System

For Linux and Unix systems, there are two client solutions: the FUSE-based client
that allows to mount an XtreemFS volume like any other file system, and the lib-
xtreemfs library for C++ and Java, which allows application developers to directly
integrate XtreemFS support into applications.

Since many HPC systems use a Linux-based operating system, the FUSE-
client of XtreemFS would be a natural choice to use for our C/R system. But for
performance reasons Linux configurations on HPC systems are often optimized
and kernel modules like FUSE are typically disabled. We therefore developed
a third client that intercepts and substitutes calls to the file system with the
LD_PRELOAD mechanism. LD_PRELOAD allows to load libraries that are used to
resolve dynamically linked symbols before other libraries (e.g. libc) are considered.

We implemented a libxtreemfs_preload that can be specified via the environment
variable LD_PRELOAD. It intercepts and substitutes file system calls of an
application. If an intercepted call relates to an XtreemFS volume or file, it is
translated into its corresponding libxtreemfs call, which is similar to what the FUSE
adapter does. Otherwise calls are passed through to the original glibc function,
which would have handled it without the pre-load mechanism in place. Whether or
not XtreemFS should be used is determined via a configurable path prefix, that can
be thought of as a virtual mount point. For example, copying a file to an XtreemFS
volume via FUSE using cp as application would be performed as follows:

$> mount.xtreemfs my.dir.host/myVolume /xtreemfs
$> cp myFile /xtreemfs
$> umount.xtreemfs /xtreemfs

The same operation with the LD_PRELOAD and libxtreemfs_preload instead of
FUSE could be achieved with the following command:

$> XTREEMFS_PRELOAD_OPTIONS="my.dir.host/myVolume /xtreemfs" \
LD_PRELOAD="libxtreemfs_preload.so" \
cp myFile /xtreemfs

This example can be easily generalized into a shell script that wraps cp or other
applications, such that the environment setup is hidden.

Figure 3 shows all three client solutions in comparison. The LD_PRELOAD
client combines the transparency of the FUSE client with the potential performance
benefits of directly using the libxtreemfs. Section 5 provides benchmark results on
the different XtreemFS client solutions.

Fast In-Memory Checkpointing with POSIX API for Legacy Exascale-Applications 433

Application

glibc

FUSE
Kernel Module

FUSE
XtreemFS Adapter

XtreemFS Client
(libxtreemfs)

XtreemFS Services

POSIX API

ke
rn

el
sp

ac
e

ne
tw

or
k

a)
Application

XtreemFS Client
(libxtreemfs)

XtreemFS Services

ne
tw

or
k

Client API

b)
Application

LD PRELOAD
(libxtreemfs preload)

XtreemFS
related?

glibc

XtreemFS Client
(libxtreemfs)

XtreemFS Services

ye
s

no

POSIX API

ne
tw

or
k

. . .

c)

Fig. 3 Three different client solutions for XtreemFS. (a) The application interacts transparently
with XtreemFS via FUSE. (b) The direct use of the client library avoids overhead but is intrusive.
(c) The interception with LD_PRELOAD is non-intrusive and avoids FUSE as a bottleneck

Note that a similar approach is available with the liblustre5 library in the Lustre
parallel file system. Here, data of a Lustre volume can be accessed via LD_PRE-
LOAD without the need of mounting. However, liblustre targets more at portability
than performance.

4.1.1 Issues with LD_PRELOAD

The LD_PRELOAD mechanism is only able to intercept calls to dynamically linked
functions. In most cases this works fine for the low-level file system calls of interest.
However, there are situations where some of the calls are inaccessible. If we wanted,
for instance, to intercept all close() calls made by an application there are two
possible situations: the application either directly calls close() or it uses a higher-
level operation like fclose() which then calls close() indirectly. The second
case is problematic, since both calls are inside glibc and the inner close() call
could have been inlined or statically linked, depending on the glibc-build. If so, it
can not be intercepted by the LD_PRELOAD mechanism. One possible workaround
is to also intercept the higher-level calls, but this would mean re-implementing and
maintaining large parts of the glibc, which is not a good choice. A more practical

5http://wiki.lustre.org/index.php/LibLustre_How-To_Guide

http://wiki.lustre.org/index.php/LibLustre_How-To_Guide

434 J. Fajerski et al.

workaround is to use a simple test-program to detect whether or not all needed calls
can be intercepted, and if not use a specifically built glibc.

4.2 Placement of Services

One important decision is, where to store the erasure encoded checkpoint data so
that it can be later safely retrieved—even under harsh conditions with correlated
component failures. A look into the operators’ machine books at major HPC sites
reveals that single hardware components like memory DIMMs, processors, power
supplies or network interface cards (NIC) fail independently, but they cause larger
parts of the systems to crash. Similarly, software crashes also cause parts of the
system to fail. In all cases the failure unit is typically a single node, which comprises
some CPU sockets with associated ccNUMA memory and a NIC.

On the Cray XC40, the smallest failure unit is a compute blade with four
nodes because they share one Aries NIC and other support hardware. Consequently,
erasure encoded checkpoint data should be distributed over several blades in the
Cray. As shown in another work [22], the latency increases only by a negligible
amount when writing data from one blade to another in the same electrical unit
via the Aries network (Fig. 4). This is also true when using the longer-distance
fiber optics cables between different electrical units (pairs of cabinet). Moreover,
the bandwidths are almost homogeneous across the entire system.

When an application crashed due to a node failure, additional resources are need
to resume the application from a checkpoint. If all resources in the system are fully
utilized, it may be difficult to provide additional nodes for the crashed application.
On exascale systems, however, we expect the cost of reserving a few spare nodes per
job to be negligible. Alternatively, the system provider could provide spare nodes
from job fragmentation. The job will then be restarted with the same number of
nodes but a slightly different job placement. As shown in [22] the cost for different
placements varies only by a few percent.

Fig. 4 Cray XC40 component hierarchy: node, blade, chassis, cabinet, electrical group

Fast In-Memory Checkpointing with POSIX API for Legacy Exascale-Applications 435

4.3 Deployment on a Cray XC40

Jobs on a Cray XC40 may be either run in extreme scalability mode (ESM) or in
cluster compatibility mode (CCM). ESM is designed for scalable high performance
applications. Only a minimal amount of system services are running on the compute
nodes to minimize interference. Applications need to use Cray MPI and to be started
with the command-line tool aprun. After the application finishes, the node-checker
checks the node for errors and cleans up all remaining traces of the previous job. The
ESM mode is not suited for our approach, because we need to run both, XtreemFS
and the application on the same node. Additionally, we need to restart the application
on these nodes and read the checkpoint from XtreemFS resp. the RAM-disk which
is impossible with ESM.

In CCM, the reserved compute nodes can be treated like a traditional cluster.
Standard system services, like an ssh daemon, are available. However, Cray MPI is
not available in CCM. Instead, Cray provides an InfiniBand (IB) verbs emulation on
top of the Aries network. For our experiments, we ran OpenMPI over the IB verbs
emulation.

For a proof of concept we used the parallel quantum chromodynamics code
BQCD.6 It has a built-in checkpoint/restart mechanism. At regular intervals, it writes
a checkpoint of its state to the local disk. In case of a crash, it can be restarted from
these checkpoints.

We used ssh to start the XtreemFS services on the nodes in CCM mode. The
services were distributed as follows: DIR, MRC and one OSD on the first node, and
one OSD on all other nodes. We used the LD_PRELOAD client and OpenMPI to
start BQCD. In this setup BQCD’s snapshots are written to XtreemFS. We manually
killed the BQCD job and successfully restarted it from the memory checkpoint.

5 Experimental Results

First, we evaluate the three XtreemFS client solutions described in Sect. 4.1. In order
to compare the cost of the different data paths depicted in Fig. 3, we performed
micro-benchmarks of the read and write operations to an XtreemFS volume with
each solution. The different XtreemFS services ran on a single node, so there
is no actual network traffic that might pose a bottleneck. A node has two Intel
Xeon E5-2630v3 with 64 GB main memory and runs a Ubuntu 14.04 with a 3.13
kernel. Caching mechanisms of the kernel and FUSE were disabled by using the
direct_io option of FUSE. This ensures that all requests reach the XtreemFS
client and the OSDs, and are not just cached locally, which is especially important

6https://www.rrz.uni-hamburg.de/services/hpc/bqcd.html

https://www.rrz.uni-hamburg.de/services/hpc/bqcd.html

436 J. Fajerski et al.

0

200

400

600

1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 20480 30720

Filesize in MiB

Th
ro

ug
hp

ut
 in

 M
iB

/s

Client
fuse
ld_preload
libxtreemfs

Sequential Read on tmpfs RAM−disk

Fig. 5 Sequential read performance using the three different client approaches (RAM-disk)

for checkpoint data. All result values are averages over multiple runs, the error bars
visualize the standard error.

Figures 5 and 6 show the results for sequential reading and writing, respec-
tively. In both cases, the results match our expectations: libxtreemfs is faster than
LD_PRELOAD which is faster than FUSE. For reading, LD_PRELOAD is between
35 % and 91 % faster than FUSE with an average of 69 %. Compared to libxtreemfs,
it is around 21 % slower on average (between 0.5 % and 29 %). Writing performance
is similar. LD_PRELOAD compared to FUSE is around 74 % faster (between 44 %
and 91 %), and 23 % (between 6 % and 33 %) slower when compared to libxtreemfs.
The results show that the newly developed LD_PRELOAD client approach yields
a better sequential bandwidth than FUSE while still being transparent to the
application. Regardless of performance, LD_PRELOAD is the only solution for
applications that run in an environment where FUSE is not available and where
modifying the application code is not possible.

The absolute throughput values of these micro-benchmarks are limited by the
synchronous access pattern and the use of only a single data stream and a single
client. In a real world scenario, there would be at least one client or data stream (i.e.

Fast In-Memory Checkpointing with POSIX API for Legacy Exascale-Applications 437

0

200

400

600

1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 20480 30720

Filesize in MiB

Th
ro

ug
hp

ut
 in

 M
iB

/s

Client
fuse
ld_preload
libxtreemfs

Sequential Write on tmpfs RAM−disk

Fig. 6 Sequential write performance using the three different client approaches (RAM-disk)

file) per rank or thread, whose throughput would add up to an overall throughput that
would be limited by some physical bound of the underlying hardware (i.e. memory,
disk, or network bandwidth).

In a second experiment we compared the sequential throughput and scaling
characteristics of the existing striping implementation and the client side erasure-
coding solution. We used a distributed XtreemFS setup with 2–13 data OSDs. On
each data OSD runs one IOR7 process that reads/writes 1 GiB of data via the FUSE
interface. MRC and DIR run on a separate machine. All machines have two Intel
Xeon E5-2630v3 and 64 GB main memory, and all machines are interconnected
with 10 Gbit/s. In the erasure-coding experiment, the XtreemFS instance has two
additional OSDs for coding data and thus provides a RAID6-like configuration. All
result values are averages over 10 runs with error bars that visualize the standard
error.

7IOR is a I/O micro benchmark software by NERSC. https://www.nersc.gov/users/computational-
systems/cori/nersc-8-procurement/trinity-nersc-8-rfp/nersc-8-trinity-benchmarks/ior/

https://www.nersc.gov/users/computational-systems/cori/nersc-8-procurement/trinity-nersc-8-rfp/nersc-8-trinity-benchmarks/ior/
https://www.nersc.gov/users/computational-systems/cori/nersc-8-procurement/trinity-nersc-8-rfp/nersc-8-trinity-benchmarks/ior/

438 J. Fajerski et al.

0

1000

2000

3000

4000

2 3 4 5 6 7 8 9 10 11 12 13

Number of Data OSDs

Th
ro

ug
hp

ut
 in

 M
iB

/s

Operation
read
write

Access to striped Volume

Fig. 7 Sequential read/write performance on a striped XtreemFS volume with an increasing
number of OSDs and clients

Figures 7 and 8 show the results for reading and writing to variably sized
XtreemFS instances. Both the striping and erasure-coding configuration exhibit
good scaling characteristics. Compared to the striping configuration, writes to the
erasure coded volume are 17–49 % slower, which reveals the overhead caused by the
additional coding data. This corresponds roughly to the 15 % to 50 % data overhead
the coding induces. For reference, a replicated setup that provides the same level of
fault tolerance would induce a 200 % data overhead. The read operation exhibits a
slowdown between 5 % and 14 % in the erasure-coding configuration.

The results show a performance penalty for using erasure codes in both reading
and writing. For writes this slowdown was to be expected since each write operation
creates a coding data overhead. When the achieved fault tolerance is taken into
consideration the overhead appears insignificant.

Fast In-Memory Checkpointing with POSIX API for Legacy Exascale-Applications 439

0

1000

2000

3000

4000

2 3 4 5 6 7 8 9 10 11 12 13

Number of Data OSDs (+ 2 additional EC OSDs)

Th
ro

ug
hp

ut
 in

 M
iB

/s

Operation
read
write

Access to erasure coded Volume

Fig. 8 Sequential read/write performance on an erasure coded XtreemFS volume with an increas-
ing number of OSDs and clients

6 Summary

Checkpoint/Restart is a viable means to increase failure tolerance on supercom-
puters. We presented results on the implementation of a POSIX based check-
point/restart mechanism. Checkpoints are stored in a RAM based distributed file
system using XtreemFS. For fault tolerance checkpoints are encoded using erasure
codes.

We evaluated our solution on a Cray XC40 with the quantum chromodynam-
ics code BQCD which is already prepared for application-level checkpointing.
XtreemFS provides three different clients: a FUSE based client, LD_PRELOAD
and libxtreemfs. The first requires the FUSE kernel module to be loaded, which is
typically not available on supercomputer environment. The last client, libxtreemfs,
requires the application code to be modified and is therefore also not a good choice.
The LD_PRELOAD client results in performance improvements for sequential
access and extends the number of supported platforms and applications. The new
client implementation transparently bypasses the operating system overhead by
intercepting POSIX file system calls and redirecting them to libxtreemfs.

440 J. Fajerski et al.

Acknowledgements We thank Johannes Dillmann who performed some of the experiments. This
work was supported by the DFG SPPEXA project ‘A Fast and Fault-Tolerant Microkernel-Based
System for Exascale Computing’ (FFMK) and the North German Supercomputer Alliance HLRN.

References

1. Asteris, M., Dimakis, A.G.: Repairable fountain codes. In: 2012 IEEE International Sympo-
sium on Information Theory Proceedings (ISIT), pp. 1752–1756. IEEE (2012)

2. Baumann, W., Laubender, G., Läuter, M., Reinefeld, A., Schimmel, C., Steinke, T., Tuma,
C., Wollny S.: HLRN-III at Zuse Institute Berlin. In: Vetter, J. (ed.) Contemporary High
Performance Computing: From Petascale Toward Exascale, vol. 2, pp. 85–118. Chapman &
Hall/CRC Press (2014)

3. Bautista-Gomez, L., Tsuboi, S., Komatitsch, D., Cappello, F., Maruyama, N., Matsuoka, S.:
FTI: high performance fault tolerance interface for hybrid systems. In: Proceedings of 2011
International Conference for High Performance Computing, Networking, Storage and Analysis
(SC’11), New York, pp. 32:1–32:32. ACM (2011)

4. Cappello, F., Geist, A., Gropp, W., Kale, S., Kramer, B., Snir, M.: Toward exascale resilience:
2014 update. Supercomput. Front. Innov. 1(1), 1–28 (2014)

5. Hargrove, P.H., Duell, J.C.: Berkeley lab checkpoint/restart (BLCR) for Linux clusters. In:
Proceedings of SciDAC 2006, Denver (2006)

6. Huang, C., Simitci, H., Xu, Y., Ogus, A., Calder, B., Gopalan, P., Li, J., Yekhanin, S.: Erasure
coding in Windows Azure storage. In: Presented as Part of the 2012 USENIX Annual Technical
Conference (USENIX ATC 12), Boston, pp. 15–26. ACM (2012)

7. Lucas, R., et al.: Top ten exascale research challenges. Department of Energy ASCAC
subcommittee report (2014)

8. Moody, A., Bronevetsky, G., Mohror, K.K., de Supinski, B.R.: Design, modeling, and
evaluation of a scalable multi-level checkpointing system. In: Proceedings of ACM/IEEE
International Conference for High Performance Computing, Networking, Storage and Analysis
(SC’10), New York. ACM (2010)

9. Mu, S., Chen, K., Wu, Y., Zheng, W.: When Paxos meets erasure code: reduce network and
storage cost in state machine replication. In: Proceedings of the 23rd International Symposium
on High-Performance Parallel and Distributed Computing (HPDC’14), New York, pp. 61–72.
ACM (2014)

10. Nagle, D., Serenyi, D., Matthews, A.: The Panasas activescale storage cluster: delivering
scalable high bandwidth storage. In: Proceedings of the SC’04, Pittsburgh, p. 53. ACM (2004).
http://dl.acm.org/citation.cfm?id=1049998

11. Peter, K., Reinefeld, A.: Consistency and fault tolerance for erasure-coded distributed storage
systems. In: Proceedings of the Fifth International Workshop on Data-Intensive Distributed
Computing Date (DIDC’12), New York, pp. 23–32. ACM (2012)

12. Plank, J., Li, K.: Diskless checkpointing. IEEE Trans. Parallel Distrib. Syst. 9(10), 972–986
(1998)

13. Plank, J.S., Simmerman, S., Schuman, C.D: Jerasure: a library in C facilitating erasure coding
for storage applications. Technical report CS-07-603, University of Tennessee Department of
Electrical Engineering and Computer Science (2007)

14. Rashmi, K.V., Shah, N.B., Gu, D., Kuang, H., Borthakur, D., Ramchandran, K.: A “Hitch-
hiker’s” guide to fast and efficient data reconstruction in erasure-coded data centers. SIG-
COMM Comput. Commun. Rev. 44(4), 331–342 (2014)

15. Rashmi, K.V., Nakkiran, P., Wang, J., Shah, N.B., Ramchandran, K.: Having your cake and
eating it too: jointly optimal erasure codes for I/O, storage, and network-bandwidth. In: 13th
USENIX Conference on File and Storage Technologies (FAST 15), Santa Clara, pp. 81–94.
USENIX Association (2015)

http://dl.acm.org/citation.cfm?id=1049998

Fast In-Memory Checkpointing with POSIX API for Legacy Exascale-Applications 441

16. Sathiamoorthy, M., Asteris, M., Papailiopoulos, D., Dimakis, A.G., Vadali, R., Chen, S.,
Borthakur, D.: XORing elephants: novel erasure codes for big data. Proc. VLDB Endow. 6(5),
325–336 (2013)

17. Schmuck, F., Haskin, R.: GPFS: a shared-disk file system for large computing clusters. In:
Proceedings of the USENIX FAST’02, Monterey. USENIX Association (2002)

18. Shvachko, K., Kuang, H., Radia, S., Chansler, R.: The Hadoop distributed file system. In:
Proceedings of the 2010 IEEE 26th Symposium on Mass Storage Systems and Technologies
(MSST) (MSST’10), Washington, DC, pp. 1–10. IEEE Computer Society (2010)

19. Stender, J., Berlin, M., Reinefeld, A.: XtreemFS – a file system for the cloud. In: Kyriazis,
D., Voulodimos, A., Gogouvitis, S., Varvarigou, T. (eds.) Data Intensive Storage Services for
Cloud Environments. IGI Global (2013)

20. Weil, S.A., Brandt, S.A., Miller, E.L., Long, D.D.E., Maltzahn, C.: Ceph: a scalable, high-
performance distributed file system. In: 7th Symposium on Operating Systems Design and
Implementation (OSDI’06), Seattle, pp. 307–320. ACM (2006)

21. Weinhold, C., Lackorzynski, A., Bierbaum, J., Küttler, M., Planeta, M., Härtig, H., Shiloh, A.,
Levy, E., Ben-Nun, T., Barak, A., Steinke, T., Schütt, T., Fajerski, J., Reinefeld, A., Lieber,
M., Nagel, W.E.: FFMK: a fast and fault-tolerant microkernel-based system for exascale
computing. In: Proceedings of SPPEXA Symposium, Garching. Springer (2016)

22. Wende, F., Steinke, T., Reinefeld, A.: The impact of process placement and oversubscription
on application performance: a case study for exascale computing. In: Exascale Applications
and Software Conference (ESAX-2015), Edinburgh (2015)

23. Zheng, G., Shi, L., Kalé, L.V.: FTC-Charm++: an in-memory checkpoint-based fault tolerant
runtime for Charm++ and MPI. In: 2004 IEEE International Conference on Cluster Computing,
San Diego, pp. 93–103. IEEE (2004)

24. Zheng, G., Ni, X., Kalé, L.V.: A scalable double in-memory checkpoint and restart scheme
towards exascale. In: Proceedings of the 2nd Workshop on Fault-Tolerance for HPC at Extreme
Scale (FTXS), Boston, pp. 1–6. IEEE (2012)

Part XI
CATWALK: A Quick Development Path

for Performance Models

Automatic Performance Modeling
of HPC Applications

Felix Wolf, Christian Bischof, Alexandru Calotoiu, Torsten Hoefler,
Christian Iwainsky, Grzegorz Kwasniewski, Bernd Mohr, Sergei Shudler,
Alexandre Strube, Andreas Vogel, and Gabriel Wittum

Abstract Many existing applications suffer from inherent scalability limitations
that will prevent them from running at exascale. Current tuning practices, which
rely on diagnostic experiments, have drawbacks because (i) they detect scalability
problems relatively late in the development process when major effort has already
been invested into an inadequate solution and (ii) they incur the extra cost of
potentially numerous full-scale experiments. Analytical performance models, in
contrast, allow application developers to address performance issues already during
the design or prototyping phase. Unfortunately, the difficulties of creating such
models combined with the lack of appropriate tool support still render performance
modeling an esoteric discipline mastered only by a relatively small community
of experts. This article summarizes the results of the Catwalk project, which
aimed to create tools that automate key activities of the performance modeling
process, making this powerful methodology accessible to a wider audience of HPC
application developers.

F. Wolf • C. Bischof • A. Calotoiu (�) • C. Iwainsky • S. Shudler
Technische Universität Darmstadt, Darmstadt, Germany
e-mail: wolf@cs.tu-darmstadt.de; christian.bischof@cs.tu-darmstadt.de;
calotoiu@cs.tu-darmstadt.de; christian.iwainsky@sc.tu-darmstadt.de;
shudler@cs.tu-darmstadt.de

T. Hoefler • G. Kwasniewski
ETH Zurich, Zurich, Switzerland
e-mail: htor@inf.ethz.ch; gkwasnie@inf.ethz.ch

B. Mohr • A. Strube
Jülich Supercomputing Center, Juelich, Germany
e-mail: b.mohr@fz-juelich.de; a.strube@fz-juelich.de

A. Vogel • G. Wittum
Goethe Universität Frankfurt, Frankfurt, Germany
e-mail: andreas.vogel@gcsc.uni-frankfurt.de; wittum@gcsc.uni-frankfurt.de

© Springer International Publishing Switzerland 2016
H.-J. Bungartz et al. (eds.), Software for Exascale Computing – SPPEXA
2013-2015, Lecture Notes in Computational Science and Engineering 113,
DOI 10.1007/978-3-319-40528-5_20

445

mailto:wolf@cs.tu-darmstadt.de
mailto:christian.bischof@cs.tu-darmstadt.de
mailto:calotoiu@cs.tu-darmstadt.de
mailto:christian.iwainsky@sc.tu-darmstadt.de
mailto:shudler@cs.tu-darmstadt.de
mailto:htor@inf.ethz.ch
mailto:gkwasnie@inf.ethz.ch
mailto:b.mohr@fz-juelich.de
mailto:a.strube@fz-juelich.de
mailto:andreas.vogel@gcsc.uni-frankfurt.de
mailto:wittum@gcsc.uni-frankfurt.de

446 F. Wolf et al.

1 Motivation

When scaling their codes to larger numbers of processors, many HPC application
developers face the situation that all of a sudden a part of the program starts
consuming an excessive amount of time. Unfortunately, discovering latent scal-
ability bottlenecks through experience is painful and expensive. Removing them
requires not only potentially numerous large-scale experiments to track them down,
prolonged by the scalability issue at hand, but often also major code surgery in
the aftermath. All too often, this happens at a moment when the manpower is
needed elsewhere. This is especially true for applications on the path to exascale,
which have to address numerous technical challenges simultaneously, ranging from
heterogeneous computing to resilience. Since such problems usually emerge at a
later stage of the development process, dependencies between their source and the
rest of the code that have grown over time can make remediation even harder.
One way of finding scalability bottlenecks earlier is through analytical performance
modeling. An analytical scalability model expresses the execution time or other
resources needed to complete the program as a function of the number of processors.
Unfortunately, the laws according to which the resources needed by the code change
as the number of processors increases are often laborious to infer and may also
vary significantly across individual parts of complex modular programs. This is why
analytical performance modeling—in spite of its potential—is rarely used to predict
the scaling behavior before problems manifest themselves. As a consequence, this
technique is still confined to a small community of experts.

If today developers decide to model the scalability of their code, and many shy
away from the effort [19], they first apply both intuition and tests at smaller scales to
identify so-called kernels, which are those parts of the program that are expected to
dominate its performance at larger scales. This step is essential because modeling a
full application with hundreds of modules manually is not feasible. Then they apply
reasoning in a time-consuming process to create analytical models that describe
the scaling behavior of their kernels more precisely. In a way, they have to solve a
chicken-and-egg problem: to find the right kernels, they require a pre-existing notion
of which parts of the program will dominate its behavior at scale—basically a model
of their performance. However, they do not have enough time to develop models for
more than a few pre-selected candidate kernels, inevitably exposing themselves to
the danger of overlooking unscalable code.

This article summarizes the results of the Catwalk project, which set out to
improve this situation. The main goal of Catwalk was to make performance
modeling more attractive for a broader audience of HPC application developers by
providing tools that support key activities of the modeling process in a simpler and
more intuitive way than existing tools.

Automatic Performance Modeling of HPC Applications 447

2 Overview of Contributions

From a functional perspective, the most important goal was to give a good
estimation of relative performance between different parts of a program when scaled
to larger processor configurations. In this way, scalability bottlenecks of applications
can be anticipated at a very early stage long before they become manifest in
actual measurements on the same or on future platforms. From a non-functional
perspective, we strove to maximize flexibility and ease of use. The latter is especially
important—given that a larger fraction of codes is still exclusively developed by
domain scientists as opposed to multidisciplinary teams with dedicated performance
engineers. Our main accomplishments, which are illustrated in Fig. 1, can be
summarized as follows:

• A method to automatically generate scaling models of applications from a
limited set of profile measurements, which allows the quick identification of
scalability bugs even in very complex codes with thousands of functions [10].
The method was integrated into the production-level performance-analysis tool
Scalasca (Fig. 3).

• Numerous application case studies, in which we either confirm earlier studies
with hand-crafted performance models or discover the existence of previ-
ously unknown scalability bottlenecks. This series of studies includes one with
UG4 [40], an unstructured-grid package developed by one of our partners.

I

II

III

Interactive explorer Workflow manager

Automatic

empirical modeling

Scalability

validation

framework

MPI MAFIA

H
O
M
M
E

Ju
S
P
IC

M
P
2
C

N
E
S
T

S
w
ee
p
3
D

X
N
S

O
p
en
M
P

UG4

S
K
iN

C
G

G
M
G

L
A
P
L
A
C
E

LLVM

Compiler-driven

modeling

Mantevo NAS

Fig. 1 Main accomplishments of Catwalk are separated into three tiers: (I) Infrastructure; (II)
Core methods; (III) Application case studies. The core methods we developed include both
an automatic empirical method and compiler-driven methods. The empirical method rests on
infrastructure components developed by project partners, the compiler-driven methods leverage
LLVM, an external open-source compiler infrastructure. The empirical method was later extended
to also allow scalability validation of codes with known theoretical expectations. Both sets of
methods have been successfully applied in a number of application studies. The unstructured-grid
package UG4 (highlighted) is developed by one of the project partners, all other test cases were
external to the project team

448 F. Wolf et al.

• A scalability analysis of several state-of-the-art OpenMP implementations, in
which we highlight scalability limitations in some of them [22].

• A scalability test framework that combines the above method with performance
expectations to systematically validate the scalability of libraries [32]. Using this
framework, we conducted an analysis of several state-of-the-art MPI libraries, in
which we identify scalability issues in some of them.

• A compilation and modeling framework that automatically instruments appli-
cations to generate performance models during program execution [7]. These
automatically generated performance models can be used to quickly assess the
scaling behavior and potential bottlenecks with regard to any input parameter and
the number of processes of a parallel application.

• A fully static analysis technique to derive numbers of loop iterations from
loops with affine loop guards and transfer functions [21]. This method can be
used to limit the performance model search space and increase the accuracy of
performance modeling in general.

In the remainder of the article, we describe the above contributions in more detail,
followed by a review of related work.

3 Automatic Empirical Performance Modeling

The key result of Catwalk is a method to identify scalability bugs. A scalability bug
is a part of the program whose scaling behavior is unintentionally poor, that is, much
worse than expected. As computing hardware moves towards exascale, developers
need early feedback on the scalability of their software design so that they can
adapt it to the requirements of larger problem and machine sizes. Our method
can be applied to both strong scaling and weak scaling applications. In addition
to searching for performance bugs, the models our tool produces also support
projections that can be helpful when applying for the compute time needed to solve
the next larger class of problems. Finally, because we model both execution time
and requirement metrics such as floating-point operations alongside each other, our
results can also assist in software-hardware co-design or help uncover growing wait
states. For a detailed description, the reader may refer to Calotoiu et al. [10]. Note
that although our approach can be easily generalized to cover many programming
models, we initially focused on MPI programs, later also on OpenMP programs.

The input of our tool is a set of performance measurements on different processor
counts f p1; : : : ; pmaxg in the form of parallel profiles. As a rule of thumb, we
use five or six different configurations. The execution of these experiments is
supported by a workflow manager. The output of our tool is a list of program
regions, ranked by their predicted execution time at a chosen target scale or by
their asymptotic execution time. We call these regions kernels because they define
the code granularity at which we generate our models.

Automatic Performance Modeling of HPC Applications 449

Performance

profiles
Performance

profiles
Performance

profiles

Performance

measurements

Statistical

quality control

Model

generation

Model

refinement

Scaling

models
Scaling

models
Scaling

models

Accuracy

saturated?

Performance

extrapolation
Ranking

of kernels
Ranking

of kernels
Ranking

of kernels

Kernel

refinement

Comparison

with user

expectations

Yes

No

Fig. 2 Workflow of scalability-bug detection. Solid boxes represent actions or transformations,
and banners their inputs and outputs. Dashed arrows indicate optional paths taken after user
decisions

Figure 2 gives an overview of the different steps necessary to find scalability
bugs. To ensure a statistically relevant set of performance data, profile measurements
may have to be repeated several times—at least on systems subject to jitter (usually
between three and five times). This is done in the optional statistical quality control
step. Once this is accomplished, we apply regression to obtain a coarse performance
model for every possible program region. These models then undergo an iterative
refinement process until the model quality has reached a saturation point. To arrange
the program regions in a ranked list, we extrapolate the performance either to a
specific target scale pt or to infinity, which means we use the asymptotic behavior as
the basis of our comparison. A scalability bug can be any region with a model worse
than a given threshold, such as anything scaling worse than linearly. Alternatively,
a user can compare the model of a kernel with his own expectations to determine if
the performance is worse than expected. Finally, if the granularity of our program
regions is not sufficient to arrive at an actionable recommendation, performance
measurements, and thus the kernels under investigation, can be further refined via
more detailed instrumentation.

Model Generation When generating performance models, we exploit the obser-
vation that they are usually composed of a finite number n of predefined terms,
involving powers and logarithms of p:

f . p/ D
nX

kD1
ck � pik � logjk2 . p/ : (1)

This representation is, of course, not exhaustive, but works in most practical
scenarios since it is a consequence of how most computer algorithms are designed.
We call it the performance model normal form (PMNF). Moreover, our experience
suggests that neither the sets I; J � Q from which the exponents ik and jk are chosen
nor the number of terms n have to be arbitrarily large or random to achieve a good
fit. Thus, instead of deriving the models through reasoning, we only need to make

450 F. Wolf et al.

reasonable choices for n, I, and J and then simply try all assignment options one
by one. For example, a default we often use is n D 3, I D ˚

0
2
; 1
2
; 2
2
; 3
2
; 4
2
; 5
2
; 6
2

, and

J D f0; 1; 2g. A possible assignment of all ik and jk in a PMNF expression is called
a model hypothesis. Trying all hypotheses one by one means that for each of them
we find coefficients ck with optimal fit. Then we apply cross-validation to select the
hypothesis with the best fit across all candidates. As an alternative to the number of
processes p, our method can also support other model parameters such as the size
of the input problem or other algorithmic parameters—as long as we vary only one
parameter at a time.

Our tool models only behaviors found in the training data. We provide direct
feedback information regarding the number of runs required to ensure statistical
significance of the modeling process itself, but there is no automatic way of
determining at what scale particular behaviors start manifesting themselves. We
expect that our method will be most effective for regular problems with repetitive
behavior, whereas irregular problems with strong and potentially non-deterministic
dynamic effects will require enhancements.

Integration into Scalasca The model generator has been integrated under the
name Extra-P into Scalasca [14], a widely used performance analysis tool set.
Figure 3 shows how the results of the model generator can be interactively explored.
Instead of measured values such as the time spent in a particular call path, the GUI
now annotates each call path with a performance model. The formula represents a
previously selected metric as a function of the number of processes. The user can
select one or more call paths and plot their models on the right. In this way, the user
can visually compare the scalability of different application kernels.

The profiles needed as input for the model generator are created in a series of
performance experiments. To relieve the user from the burden of manually submit-

Fig. 3 Interactive exploration of performance models in Scalasca with Extra-P. The screen shot
shows performance models generated for call paths in UG4, a multigrid framework developed by
one of the partners. The call tree on the left allows the selection of models to be plotted on the
right. The color of the squares in front of each call path highlights the complexity class. The call
path ending in kernel norm has a measured complexity of O.

p
p/

Automatic Performance Modeling of HPC Applications 451

ting large numbers of jobs and collating their results, we use the Jülich Benchmark
Environment (JUBE) [24], a workflow manager developed at Forschungszentrum
Jülich.

The Extra-P performance-modeling tool has been made available online under
an open-source license.1 Users have access not only to the software but also to
documentation material describing both our method and its implementation.2 We
are already in contact with researchers at several organizations, either planing to
use Extra-P (High Performance Computing Center Stuttgart and TU Darmstadt)
or actively using it (Lawrence Livermore National Laboratory and University of
Washington). Moreover, the tool was presented at two conference tutorials, one at
EuroMPI 2015 in Bordeaux, France and one at SC15 in Austin, Texas. Following a
90 min theoretical explanation of the method and the tool, users were able to model
the performance of two example applications, SWEEP3D and BLAST, in a 90 min
practical session. Using previously prepared measurement data, they were able to
generate models for the entire codes, evaluate the results, and understand the scaling
behavior of the two applications. With this knowledge, attendees are able to apply
Extra-P to their own applications, once the required performance measurements
have been gathered. Because Extra-P is compatible with Score-P, an established
infrastructure for performance profiling, even collecting these measurements is
straightforward.

Application Case Studies We analyzed numerous real-world applications from
various fields, including HOMME [13] (climate), JuSPIC [25] (particle in cell),
MILC [3] (quantum chromodynamics), MP2C [35] (soft matter physics and hydro-
dynamics), NEST [15] (brain), Sweep3D [45] (neutron transport), UG4 [39]
(unstructured grids), and XNS [4] (fluid dynamics).

The worst-scaling kernels of our test cases are shown in Table 1. We were able to
identify a scalability issue in codes that are known to have such issues (Sweep3D,
XNS) but did not identify any scalability issue in codes that are known to have none
(MILC, juSPIC, MP2C, NEST). In the cases of Sweep3D and Milc, we were able to
confirm hand-crafted models reported in the literature [20, 43]. Moreover, we were
able to identify two scalability issues in codes that were thought to have only one
(HOMME, UG4). Cases which present potential scalability bottlenecks are marked
with a danger sign in Table 1. In the other cases, the worst scaling kernels are not
deemed likely to become scalability bottlenecks even at extreme scales, due to either
slow growth rates, small coefficients, or a combination of both. Below, we discuss
two applications in more detail and present another case study involving several
state-of-the-art OpenMP runtime systems.

Case Study: UG4 UG4 is a package for unstructured grids developed by Goethe
University Frankfurt, one of the project partners. The first bottleneck we found was
previously unknown and occurs when UG4 defines subcommunicators depending

1 http://www.scalasca.org/software/extra-p/download.html
2http://www.scalasca.org/software/extra-p/documentation.html

http://www.scalasca.org/software/extra-p/download.html
http://www.scalasca.org/software/extra-p/documentation.html

452 F. Wolf et al.

Table 1 Performance modeling case studies summary presenting the worst-scaling kernels for
the analyzed metrics. In a number of cases a class of worst-scaling kernels is found rather than
one specific kernel, indicated in the Kernel(s) column by using the label ‘Multiple’. p denotes the
number of processes and n the problem size. The danger sign indicates behavior likely to become
a bottleneck at larger scales

Scalability

Application Metric Kernel(s) Model bottleneck
Process scaling—weak (avg. across all processes)

HOMME Execution time box_rearrange!MPI_Reduce 10�12 � p3 �

Multiple 10�7 � p2 �

Sweep3D Execution time sweep!MPI_Recv
p
p �

UG4 bytes sent InitLevels!MPI_AllReduce 80 � p �

Execution time CG::norm 10�3 � pp �

Execution time GMG::smooth 10�2 � log p

FLOPs Multiple log p

MILC Execution time g_vecdoublesum!MPI_AllReduce 10�6 � log2 p

FLOPs Multiple 103 � log p

NEST FLOPs Multiple 10�3 � p2
JuSPIC FLOPs Multiple 105 � p
MP2C FLOPs Multiple 10 � log p
Process scaling—strong (sum across all processes)

XNS Execution time ewdgennprm!MPI_Recv 10�2 � p2 �

Problem scaling—#processes constant (avg. across all processes)

MILC FLOPs Multiple 103 � n log n

MP2C FLOPs Multiple 102 � n
JuSPIC FLOPs Multiple 109 � n
NEST FLOPs Multiple 102 � n

on whether a process holds a part of the multigrid hierarchy or not. The second
bottleneck is a known weakness of the CG method, one of the solver options
UG4 provides, whose iteration count increases by a factor of two with each grid
refinement. A detailed discussion of this case study is presented in Vogel et al. [40].

Case Study: HOMME To showcase how our tool helps to find hidden scalability
bugs in a production code for which no performance model was available, we
applied it to HOMME [13], the dynamical core of the Community Atmospheric
Model (CAM) being developed at the National Center for Atmospheric Research.
HOMME, which was designed with scalability in mind, employs spectral element
and discontinuous Galerkin methods on a cubed sphere tiled with quadrilateral
elements.

Table 1 lists two issues discovered in the code. Multiple kernels show a
dependence of p2 (with a small factor). After looking at the number of times any of
the quadratic kernels was invoked at runtime, a metric we also measure and model,

Automatic Performance Modeling of HPC Applications 453

the quadratic growth was found to be the consequence of an increasing number of
iterations inside a particular subroutine. The developers were aware of this issue and
had already developed a temporary solution, involving manual adjustments of their
production code configurations.

In contrast to the previous problem, the cubic growth of the time spent in the
reduce function was previously unknown. The reduction is needed to funnel data to
dedicated I/O processes. The reason why this phenomenon remained unnoticed until
today is that it belongs to the initialization phase of the code that was not assumed
to be performance relevant in larger production runs. While still not yet crippling
in terms of the overall runtime, which is in the order of days for production runs,
the issue already cost more than 1 h in the large-scale experiments we conducted.
The example demonstrates the advantage of modeling the entire application instead
of only selected candidate kernels expected to be time intensive. p3 was the limit
of our search space but we argue that the growth rate presented by the cubic power
already constitutes a significant scalability issue that needs immediate addressing,
and as such trying to categorize severity beyond p3 would offer diminishing
returns.

Figure 4 summarizes our two findings and compares our predictions with actual
measurements. While the quadratically growing iteration count seems to be more
urgent now, the reduce might become the more serious issue in the future.

Processes

Ti
m
e[
s]

T
ra
in
in
g

P
re
d
ic
ti
o
n

MPI_Reduce

vlaplace_sphere_wk

compute_and_apply_rhs

Fig. 4 Runtime of selected kernels in HOMME as a function of the number of processes.
The graph compares predictions (dashed or contiguous lines) to measurements (small tri-
angles, squares, and circles). The vlaplace_sphere_wk kernel is part of the group
which scales quadratically, MPI_Reduce is the initialization issue that grows cubically, while
compute_and_apply_rhs is a representative of the majority of constant computation kernels

454 F. Wolf et al.

Case Study: OpenMP Exascale systems will exhibit much higher degrees of
parallelism not only in terms of the number of nodes but also in terms of the number
of cores per node. OpenMP is a widely used standard for exploiting parallelism on
the level of individual nodes. Here, not only the software must scale to the upcoming
thread counts, but also the supporting OpenMP runtimes must scale. Hence, we
investigated widely-used OpenMP implementations on several hardware-platforms
to determine potential scalability limitations of various OpenMP constructs. Here
we report our findings for an Intel Xeon multi-board system with 128 hardware
threads, called BCS, an Intel Xeon Phi system with 240 threads and an IBM
BlueGene/Q node.

Given the jitter present in our measurements, we only allowed one active term
plus a constant and refrained from modeling behaviors past the leading term.

We ran our tests with the EPCC OpenMP micro-benchmark suite [9], a com-
prehensive collection of benchmarks that covers almost all OpenMP constructs.
We modified the ECPP measurement system to directly interface with our model
generator. Since the EPCC benchmarks do not measure the costs of individual
OpenMP constructs directly, the resulting timings are much more prone to noise. To
measure the costs of OpenMP constructs in isolation, we therefore had to develop
additional benchmarks that allow the time spent in an OpenMP construct to be
measured on a per-thread basis.

In our initial measurements, we observed strongly fluctuating runtimes when
increasing the number of threads. These fluctuations initially prevented a good
model fit.

We then realized that the observable runtimes showed a likely superposition of
multiple behaviors, depending on how many threads were used. Dividing the set of
thread counts into subsets finally enabled us to separate these behaviors and create
stable runtime models for OpenMP constructs.

Table 2 shows the resulting performance models. Note that many models exhibit
quadratic or higher growth rates, which can at some point become a considerable
cost factor, especially if the trend towards fine-grained parallelism continues. For
the sake of brevity, we restrict the detailed discussion to the BCS node. In many
cases, the execution time of OpenMP constructs showed unfavorable growth and
numerous scalability issues with current implementations became apparent. Neither
of the evaluated compilers proved to be the best implementation in all situations.
The Intel compiler showed the best absolute performance and scaling behavior for
most of the metrics in our tests, but it was still surpassed by the PGI compiler
on two occasions. Considering the increasing degree of intra-node parallelism,
OpenMP compilers will have to tackle theses scalability issues in the future. Our
benchmarking method is designed to support this process, as it can be used to
continuously evaluate implementations as their scalability is improved.

Automatic Performance Modeling of HPC Applications 455

T
ab

le
2

R
un

ti
m

e
sc

al
in

g
m

od
el

s
fo

r
en

te
ri

ng
a
p
a
r
a
l
l
e
l

re
gi

on
w

it
h

th
re

ad
cr

ea
ti

on
,
b
a
r
r
i
e
r

,
p
a
r
a
l
l
e
l

f
o
r

w
it

h
di

ff
er

en
t

lo
op

sc
he

du
le

s,
an

d
f
i
r
s
t
p
r
i
v
a
t
e

in
it

ia
li

za
ti

on
.M

od
el

s
ar

e
pr

es
en

te
d

se
pa

ra
te

ly
fo

r
di

ff
er

en
t

su
bs

et
s

of
th

re
ad

co
un

ts
(P

O
2,

O
D

D
,L

IN
E

A
R

,8
X

)
al

li
n

sp
re

ad
co

nfi
gu

ra
tio

n.
M

ea
su

re
m

en
ts

w
it

h
a
�

w
er

e
ge

ne
ra

te
d

us
in

g
E

PC
C

,m
ea

su
re

m
en

ts
w

it
h
?

w
er

e
ge

ne
ra

te
d

us
in

g
ou

r
su

pp
le

m
en

ta
l

be
nc

hm
ar

ks
.

E
ac

h
ro

w
sh

ow
in

g
m

od
el

s
is

fo
ll

ow
ed

by
a

ro
w

w
it

h
th

e
co

rr
es

po
nd

in
g

ad
ju

st
ed

co
ef

fic
ie

nt
of

de
te

rm
in

at
io

n
(O R2

)
as

a
qu

al
it

y
in

di
ca

to
r.

Si
nc

e
w

e
ar

e
on

ly
in

te
re

st
ed

in
th

e
ge

ne
ra

l
sc

al
in

g
tr

en
d,

w
e

sh
ow

on
ly

th
e

le
ad

in
g

te
rm

s
an

d
th

ei
r

co
ef

fic
ie

nt
ro

un
de

d
to

po
w

er
s

of
te

n.
T

he
m

od
el

s
de

sc
ri

be
th

e
gr

ow
th

of
th

e
ru

nt
im

e
in

se
co

nd
s

Pa
ra

lle
l(

op
en

)?
B

ar
ri

er
?

D
yn

am
ic

16
�

St
at

ic
16

�
G

ui
de

d
16

�
Fi

rs
tp

ri
va

te
�

B
C
S
–
G
N
U

PO
2

1
0

�
7
�x1

:2
5

1
0

�
7
�x1

:3
3

lo
g
x

1
0

�
7
�x1

:2
5

lo
g
x

1
0

�
8
�x1

:3
3

lo
g
x

1
0

�
6
�x0

:7
5

lo
g
x

1
0

�
6
�x

O R2
0
:9
9

0
:9
9

0
:9
9

0
:9
8

0
:9
9

0
:9
9

O
D

D
1
0

�
6
�x0

:6
7

1
0

�
5
�x0

:5
1
0

�
5
�x0

:6
7

lo
g
x

1
0

�
8
�x1

:2
5

lo
g
x

1
0

�
5
�x0

:5
lo

g
x

1
0

�
5
�x0

:5
lo

g
x

O R2
0
:9
5

0
:9
3

0
:9
6

0
:9
4

0
:9
3

0
:9
8

B
C
S
–
In
te
l

PO
2

1
0

�
6
�lo

g
x

1
0

�
5
�x0

:2
5

1
0

�
6
�x

1
0

�
6
�lo

g
x

1
0

�
5
�x

1
0

�
6
�lo

g
x

O R2
0
:7
8

0
:9
8

0
:9
9

0
:8
4

0
:9
9

0
:9
4

B
C
S
–
P
G
I

PO
2

1
0

�
6
�x0

:6
7

lo
g
x

1
0

�
6
�lo

g2
x

1
0

�
6
�x1

:2
5

lo
g
x

1
0

�
6
�lo

g
x

1
0

�
6
�x1

:6
7

1
0

�
5
�x0

:6
7

O R2
0
:9
9

0
:9
5

0
:9
9

0
:6
2

0
:9
9

0
:9
9

O
D

D
1
0

�
7
�x

lo
g
x

1
0

�
6
�x0

:5
lo

g
x

1
0

�
7
�x1

:5
lo

g
x

1
0

�
1
1
�x2

:5
1
0

�
6
�x1

:6
7

1
0

�
6
�x0

:5
lo

g
x

O R2
0
:9
7

0
:9
0

0
:9
9

0
:5
0

0
:9
9

0
:8
9

X
eo
nP

hi
–
In
te
l

PO
2

1
0

�
7
�x0

:6
7

1
0

�
6
�x0

:5
1
0

�
5
�x0

:2
5

1
0

�
8
�x1

:5
1
0

�
6
�x

1
0

�
6
�x0

:6
7

O R2
0
:9
7

0
:9
9

0
:6
5

0
:7
5

0
:9
9

0
:9
8

L
IN

E
A

R
1
0

�
7
�x0

:6
7

1
0

�
6
�x0

:5
1
0

�
6
�lo

g
x

1
0

�
9
�x2

:3
3

1
0

�
7
�x

1
0

�
7
�x0

:6
7

O R2
0
:9
5

0
:9
4

0
:5
5

0
:3
0

0
:9
9

0
:9
6

8X
1
0

�
7
�lo

g2
x

1
0

�
6
�lo

g
x

1
0

�
8
�x1

:2
5

lo
g
x

1
0

�
7
�x0

:7
5

lo
g
x

1
0

�
7
�x

1
0

�
7
�lo

g2
x

O R2
0
:9
5

0
:8
6

0
:9
2

0
:7
0

0
:9
9

0
:9
4

B
lu
e
G
en

e/
Q

–
IB

M
X
L

PO
2

1
0

�
7
�x1

:2
5

1
0

�
9
�x1

:3
3

lo
g
x

1
0

�
8
�x2

:3
3

1
0

�
8
�x2

:3
3

1
0

�
8
�x2

1
0

�
7
�x1

:2
5

O R2
0
:9
9

0
:9
9

0
:9
9

0
:9
9

0
:9
9

0
:9
9

456 F. Wolf et al.

4 Scalability Validation Framework

Library developers are confronted with the challenge of comparing the actual
scalability of their code base with their expectations. In cases where the library
encapsulates complex algorithms that are the product of years of research, such
expectations often exist in the form of analytical performance models [12, 37, 41].
However, translating such abstract models into expressions that can be verified in
performance experiments is hard because it requires knowing all constants and
restricts function domains to performance metrics that are effectively measurable
on the target system. If only the asymptotic complexity is known, a very common
case, this is even impossible. And if such a verifiable expression exists, it must
be adapted every time the test platform is replaced and performance metrics and
constants change.

To mitigate this situation, we combined our modeling approach with performance
expectations in a novel scalability test framework [32]. Similar to performance
assertions [38], our framework supports the user in the specification and validation
of performance expectations. However, rather than formulating precise analytical
expressions involving measurable metrics, the user would just provide the asymp-
totic growth rate of the function/metric pair in question, making this a simple but
effective solution for future exascale library development. The goal of our scalability
framework is to provide insights into the scaling behavior of a library with as little
effort as possible. The framework, which is illustrated in Fig. 5, allows the user

Model

generation

Search space

generation
Benchmark

Performance
measurementsScaling model

p

Expectation

+ optional

deviation limit

log p

Divergence model

p/ log p

Comparing

alternatives

Regression

testing
Initial

validation

Fig. 5 Scalability framework overview including use cases

Automatic Performance Modeling of HPC Applications 457

to evaluate whether the observed behavior of libraries corresponds to the expected
behavior. Although the approach relies on automated performance modeling, it
is different from our earlier work in that it assumes that the user provides the
expected model and then constructs the model search space around the provided
expectation. This enables the scalability framework to support models beyond
the PMNF introduced in Eq. (1) in Sect. 3. Use cases include initial validation,
regression testing, and benchmarking to compare implementation and platform
alternatives.

The scalability framework workflow consists of four phases: (i) define expecta-
tions, (ii) design benchmark; (iii) generate scaling models; (iv) validate expecta-
tions. In the last phase, the framework calculates divergence models by dividing
the expected models by the generated ones. A divergence model characterizes how
severe the divergence of the expectation from the observed behavior is. In this
phase, the framework also ranks the generated model as a full match, approximate
match, or no match by checking whether the model falls within previously specified
deviation limits. One of the strongest advantages of the scalability framework is that
we provide a tool-chain that automates large parts of our four-phase workflow and is
ready for immediate use by performance engineers. Because MPI is a fundamental
building block in most HPC applications, we conducted a detailed case study
involving several MPI implementations, which is summarized below.

Case Study: MPI MPI is probably one of the most widely used HPC libraries. It
has clear performance expectations, as well as many commercially mature and well-
tested implementations. Based on these important factors we chose it as our main
case study for the scalability evaluation framework. Following the four phases of the
framework workflow, we started with the definition of the expectations. Our focus
is the runtime of collective operations and memory consumption since they are two
of the major potential scalability obstacles in MPI. We specifically looked at the
runtime of MPI_Barrier, MPI_Bcast, MPI_Reduce, MPI_Allreduce,
MPI_Gather, MPI_Allgather, and MPI_Alltoall. We also mea-
sured the memory overhead of MPI_Comm_create, MPI_Comm_dup,
MPI_Win_create, and MPI_Cart_create, as well as the estimated MPI
memory consumption. To complete the second phase, we designed a benchmark
to measure the runtimes and memory overheads for increasing numbers of MPI
processes. The last two phases were automatic and produced the performance
models along with the divergence models.

We ran the experiments and tested the scalability framework on three machines.
The first one was Juqueen, a Blue Gene/Q machine built by IBM. It is the capability
supercomputer at Forschungszentrum Jülich (FZJ). The second one was Juropa,
which was at the time of the study the capacity machine at FZJ and which is based
on Intel architecture, and the third machine was Piz Daint, an x86-based Cray-XC30
machine at the Swiss National Supercomputing Centre (CSCS). Tables 3 and 4
present the results of the experiments. Each table has the same structure in which
the rows are divided into three compartments corresponding to Juqueen, Juropa,
and Piz Daint results, respectively. Each compartment shows the generated model,

458 F. Wolf et al.

Table 3 Generated (empirical) runtime models of MPI collective operations on Juqueen, Juropa,
and Piz Daint alongside their expected models

Barrier Bcast Reduce Allreduce Gather Allgather Alltoall

Juqueen
Expectation O.log p/ O.log p/ O.log p/ O.log p/ O. p/ O. p/ O.p log p/

Model O.log p/ O.log p/ O.log p/ O.log p/ O. p/ O. p/ O. p/
NR2 0:99 0:86 0:93 0:87 0:99 0:99 0:99

ı. p/ O.1/ O.1/ O.1/ O.1/ O.1/ O.1/ O. 1
logp /

Match X X X X X X

Juropa
Expectation O.log p/ O.log p/ O.log p/ O.log p/ O. p/ O. p/ O.p log p/

Model O.p0:67 log p/ O.pp/ O.pp log p/ O.pp/ O. p/ O. p/ O.p1:25/
NR2 0:99 0:98 0:99 0:99 0:99 0:98 0:99

ı. p/ O.p0:67/ O.
p

p

logp / O.pp/ O.
p

p

logp / O.1/ O.1/ O. p0:25logp /

Match x

 X X

Piz Daint
Expectation O.log p/ O.log p/ O.log p/ O.log p/ O. p/ O. p/ O.p log p/

Model O.p0:33/ O.pp/ O.pp log p/ O.p0:67 log p/ O. p/ O.p1:25/ O.p1:33/
NR2 0:99 0:94 0:94 0:99 0:99 0:99 0:99

ı. p/ O. p0:33logp / O.
p

p

logp / O.pp/ O.p0:67/ O.1/ O.p0:25/ O. p0:33logp /

Match

 x � X

Table 4 Generated (empirical) runtime models of memory overheads on Juqueen, Juropa, and Piz
Daint alongside their expected models. The memory sizes for all the cases, except MPI memory,
are specified in bytes

MPI memory [MB] Comm_create Comm_dup Win_create Cart_create

Juqueen

Expectation O.1/ O. p/ O.1/ O. p/ O. p/
Model 10:7 � 10�3 � log p 2:2 � 105 C 24 � p 2:2 � 105 96 � p 2:2 � 105 C 52 � p
NR2 0:72 1 � 1 0:99

ı. p/ O.log p/ O.1/ O.1/ O.1/ O.1/
Match
 X X X X
Juropa

Expectation O.1/ O. p/ O.1/ O. p/ O. p/
Model 16C 55 � p 264C 28 � p 256 256C 60 � p 356C 24 � p
NR2 1 1 � 1 1

ı. p/ O. p/ O.1/ O.1/ O.1/ O.1/
Match x X X X X
Piz Daint

Expectation O.1/ O. p/ O.1/ O. p/ O. p/
Model 46C 1:35 � log p 3770C 46 � p 3770C 18 � p 3287C 118 � p 2545C 63 � p
NR2 0:23 0:99 0:99 0:99 0:99

ı. p/ O.log p/ O.1/ O. p/ O.1/ O.1/
Match
 X x X X

Automatic Performance Modeling of HPC Applications 459

the adjusted coefficient of determination NR2 (a standard statistical fit factor), the
divergence model ı. p/, and the match classification. A checkmark Xindicates total
match, a � shows that the generated model falls within the deviation limits, and a
solid x represents unquestionable mismatch. On Juqueen, the runtime of collective
operations was generally better than on the other machines, and we found that
almost all of our expectations were met. The same is true for communicator memory
overheads. On Juropa and Piz Daint, on the other hand, there were far greater
discrepancies between expected and observed behavior, which suggest potential
scalability issue. We can highlight three particular issues:

1. MPI memory consumption on Juropa is linear in the number of processes, and
thus prohibitive.

2. Communicator duplication (MPI_Comm_dup) on Piz Daint is linear in the
number of processes, whereas it is constant in other machines.

3. The runtime of MPI_Allreduce on Piz Daint is predicted to be slower than
the combination of MPI_Reduce and MPI_Bcast (marked by a warning sign
next to the match classification).

In conclusion, the MPI case study shows the effectiveness of the scalability
framework, which allows us to identify and pinpoint scalability issues in thought-
to-be-scalable libraries. The use case demonstrates how MPI developers can use our
framework to spot scalability bugs early on, before commencing full-scale tests on
a target supercomputer.

In addition to MPI, we also tested the scalability framework on the MAFIA
(Merging of Adaptive Finite IntervAls) code, a sequential data-mining program
utilizing a collection of key routines. The model parameter in this case was the
cluster dimensionality, thereby providing an example of algorithmic modeling and
with exponential models outside the scope of the PMNF. For further details, please
refer to Shudler et al. [32].

5 Compiler-Driven Performance Modeling

Another possibility is to include the source code into the performance-model
generation. We developed a static technique that can handle affine loop nests and
then added a statically improved dynamic method to model the remainder of the
program. The source-code analysis provides crucial insights—it can find relations
between a program’s kernels, provide analytical execution models, and determine
the influence of input parameters. This information is computed statically and
passed on to the dynamic analyzer, which otherwise either would not be able to
determine such information, or the results would be imprecise or computationally
expensive. We showed that a static analysis is a powerful tool alone [18] and
combined with a dynamic approach increases both precision and performance [6].

460 F. Wolf et al.

Here we present a short summary of our work. The figures and examples are the
same as in the aforementioned papers.

Static Analysis Our static analysis focuses on loop modeling. In scientific appli-
cations, most of the time is spent executing large loop nests [5]. Here, we consider
affine loops. This means that all functions that determine the loop iteration count are
affine with respect to iteration variables and program parameters. Such loops can be
arbitrarily nested in a tree-like structure. This approach provides a precise model
even for non-constant increments (e.g. i=i*2), although Blanc et al. [8] explicitly
exclude such statements.

Some loops cannot be modeled in compile time due to their dynamic nature. The
loop bounds or starting conditions can depend nondeterministically on the input
or on random elements. Those loops are marked as undefined. This information is
propagated in the nesting tree, as it may influence other loops.

We analyze the code using an LLVM pass [27]. We recursively trace the loop
parameters to find their relation with the program input. As an example, the NAS CG
benchmark code contains the following loop: do j=1,lastrow-firstrow+1.
Our tool determines that the expression lastrow�firstrow+1 is equal to the program
parameter row_size D na

nprows .

Hybrid Approach In our tool, we utilize all the information gathered by the
static analysis to aid the dynamic profiler. We create a program model that can be
expressed using an extended performance model normal form (EPMNF):

p D f�ki logl �ki ; k; l 2 R; �i 2 Ig (2)

where I represents the set of program input parameters. The functions p are called
predictors. Our performance model generation technique works by selecting, from
an initial search space of predictors, the ones that most accurately model the
performance of program kernels. This is done in two steps:

1. Construct the initial search space of predictors using the result from the static
analysis.

2. Using runtime profiling information, run an online variant of LASSO regres-
sion [6] to select the most significant predictors and generate the performance
model.

Profiling data is reduced further by a batched model-update technique and by
adaptively changing the measurement frequency. These operations increase the
information gain from a single update. By analyzing the convergence of the model,
we regulate the size and frequency of the collected information.

Evaluation We used our tool to model the NAS [2] and MILC [30] benchmark
suites. Our hybrid technique can improve the accuracy of the performance models
on average by 4.3 %(maximum 10 %) and can reduce the overhead by 25 %
(maximum 65 %) compared to a purely dynamic approach. Chosen insights are
shown in Fig. 6. There, we present the goodness of fit of the generated models for

Automatic Performance Modeling of HPC Applications 461

BT CG EP FT SP

2.5

5.0

7.5

10.0

Benchmarks

%
 Im

pr
ov

em
en

t

BT CG EP FT SP

10.0

7.5

2.5

5.0

gp_quark_prop IS kid_su3_rmd LU MG

1

2

3

4

5

6

Benchmarks

gqp IS ksr LU MG

6

4

5

3

2

1
%

im
pr

ov
em

en
t

Dynamic Hybrid

0.6

0.7

0.8

0.9

0.
05

0.
50

0.
95

0.
05

0.
50

0.
95

p value

PA
R

S

Dynamic Hybrid

0.9

0.8

0.7

0.6

0.05 0.50 0.95 0.05 0.50 0.95

p-value

Dynamic Hybrid

0.
50

0.
95

0.
05

0.
50

0.
95

p value

Dynamic Hybrid

0.9

0.8

0.7

0.6

0.05 0.50 0.95 0.05 0.50 0.95

p-value

P
A

R
S

(a) (b) (c) (d)
%

im
pr

ov
em

en
t

Fig. 6 (a) and (b) Predicted Adjusted R-Square (PARS) improvement of the new hybrid method
over the dynamic approach. (c) and (d) P-value from F-test vs. PARS plot for the previous dynamic
and hybrid approach for benchmarks. gqp and ksr stand for gp_quark_prop and kid_su3_rmd
respectively

selected NAS and MILC kernels. To measure the fit, we use the modified Adjusted
R-squared coefficient (Predicted Adjusted R-squared—PARS [6]). In the plots (a)
and (b), we show the improvement of the PARS coefficient. In (c) and (d) we plot
the p-value from the F-test vs. PARS value. One can see that the number of models
that suffer from the significant lack-of-fit (p-value below 0.05) is greatly reduced,
while the quality of the fit (high PARS value) is increased.

6 Related Work

Performance analysis and prediction of real-world application workloads is
most important in high-performance computing. Performance tools such as
HPCToolkit [1] allow the programmer to observe the performance of real-world
applications at impressive scales but are often limited to observations of the current
configuration and do not provide insight into their behavior when being scaled
further.

Such insights can be obtained with the help of analytical performance models,
which have a long history. Early manual models showed to be very effective in
describing application performance characteristics [26] and understanding complex
behaviors [31]. Hoefler et al. established a simple six-step process to guide the
(manual) creation of analytical performance models [20]. The resulting models
lead to interesting insights into application behavior at scale and on unknown
systems [3]. The six-step process formed the blueprint of our own approach.

Various automated performance modeling methods exist. Tools such as
PALM [36] use extensive and detailed per-function measurements to build structural
performance models of applications. The creation of structural models is also
supported by dedicated languages such as Aspen [34]. These methods are powerful
but require the prior manual annotation of the source code.

Hammer et al. combine static source-code analysis with cache-access simulations
to create ECM and roofline models of steady-state loop kernels [17]. While their

462 F. Wolf et al.

approach uses hardware information gathered on the target machine, it does not
actually run the code but relies on static information instead. Lo et al. create
roofline models for entire applications automatically and attempt to identify the
optimal configuration to run an application on a given system [28]. Extra-P, in
contrast, identifies scalability bugs in individual parts of an application rather than
determining the optimal runtime configuration on a particular system.

Vuduc et al. propose a method of selecting the best implementation for a given
algorithm by automatically generating a large number of candidates for a selected
kernel and then choosing the one offering the best performance according to the
results of an empirical search [42]. Our approach generates performance models for
all kernels in a given application to channel the optimization efforts to where they
will be most effective. Zaparanakus et al. analyze and group loops and repetitions
in applications towards automatically creating performance profiles for sequential
algorithms [46]. Goldsmith et al. use clustering and linear regression analysis to
derive performance model coefficients from empirical measurements [16]. This
approach requires the user to define either a linear or power law expectation for the
performance model unlike the greater freedom offered by the performance model
normal form defined in our approach. Jayakumar et al. predict runtimes of entire
applications automatically using machine-learning approaches [23].

Zhai, Chen, and Zheng extrapolate single-node performance of applications with
a known regular structure to complex parallel machines via simulation [47], but
require the entire memory that would be needed at the target scale to correctly
extrapolate performance. Wu and Müller [44] showed how to predict the communi-
cation behavior of stencil codes at larger scales by extrapolating their traces. While
still requiring an SPMD-style parallel execution paradigm, Extra-P has proven to
work with general OpenMP or MPI codes beyond pure stencil codes.

Carrington et al. introduced a model-based performance prediction framework
for applications on different computers [11]. Marin and Mellor-Crummey utilize
semi-automatically derived performance models to predict performance on different
architectures [29]. Siegmund et al. analyze the interaction of different configuration
options and model how this affects performance of an application as a whole rather
than looking at its individual components [33].

7 Conclusion

Our results confirm that automated performance modeling is feasible and that
automatically generated models are accurate enough to identify scalability bugs.
In fact, in those cases where hand-crafted models existed in the literature we found
our models to be competitive. Obviously, the principles of mass production can also
be exploited for performance models. On the one hand, approximate models are
acceptable as long as the effort to create them is low and they do not mislead the user.
On the other hand, being able to produce many of them helps drastically improve
code coverage, which is as important as model accuracy. Having approximate

Automatic Performance Modeling of HPC Applications 463

models for all parts of the code can be more useful than having a model with 100 %
accuracy for just a tiny portion of the code or no model at all. Finally, after the public
release of the Extra-P software and two conference tutorials where Extra-P was
introduced, we have not only developed this powerful technology on a conceptual
level, but also put it into the hands of HPC application developers for immediate use.

References

1. Adhianto, L., Banerjee, S., Fagan, M.W., Krentel, M.W., Marin, G., Mellor-Crummey, J.,
Tallent, N.R.: HPCToolkit: tools for performance analysis of optimized parallel programs.
Concurr. Comput. Pract. Exper. 22(6), 685–701 (2010)

2. Bailey, D.H., Barszcz, E., Barton, J.T., Browning, D.S., Carter, R.L., Dagum, L., Fatoohi,
R.A., Frederickson, P.O., Lasinski, T.A., Schreiber, R.S., Simon, H.D., Venkatakrishnan,
V., Weeratunga, S.K.: The NAS parallel benchmarks–summary and preliminary results. In:
Proceedings of the 1991 ACM/IEEE Conference on Supercomputing (SC), Albuquerque,
pp. 158–165. ACM (1991)

3. Bauer, G., Gottlieb, S., Hoefler, T.: Performance modeling and comparative analysis of the
MILC lattice QCD application su3_rmd. In: Proceedings of the CCGrid, Ottawa, pp. 652–659.
IEEE (2012)

4. Behr, M., Nicolai, M., Probst, M.: Efficient parallel simulations in support of medical device
design. NIC Ser. 38, 19–26 (2008)

5. Benabderrahmane, M.W., Pouchet, L.N., Cohen, A., Bastoul, C.: The polyhedral model is more
widely applicable than you think. In: Gupta, R. (ed.) Compiler Construction. LNCS, vol. 6011,
pp. 283–303. Springer (2010). http://dx.doi.org/10.1007/978-3-642-11970-5_16

6. Bhattacharyya, A., Kwasniewski, G., Hoefler, T.: Using compiler techniques to improve
automatic performance modeling. In: Accepted at the 24th International Conference on Parallel
Architectures and Compilation (PACT’15), San Francisco. ACM (2015)

7. Bhattacharyya, A., Hoefler, T.: PEMOGEN: automatic adaptive performance modeling during
program runtime. In: Proceedings of the 23rd International Conference on Parallel Architec-
tures and Compilation Techniques (PACT’14). ACM, Edmonton (2014)

8. Blanc, R., Henzinger, T.A., Hottelier, T., Kovacs, L.: ABC: algebraic bound computation
for loops. In: Clarke, E., Voronkov, A. (eds.) Logic for Programming, Artificial Intelligence,
and Reasoning. LNCS, vol. 6355, pp. 103–118 (2010). http://dx.doi.org/10.1007/978-3-642-
17511-4_7

9. Bull, J.M., O’Neill, D.: A microbenchmark suite for OpenMP 2.0. ACM Comput. Architech.
News 29(5), 41–48 (2001)

10. Calotoiu, A., Hoefler, T., Poke, M., Wolf, F.: Using automated performance modeling to
find scalability bugs in complex codes. In: Proceedings of the ACM/IEEE Conference on
Supercomputing (SC13), Denver, pp. 1–12. ACM (2013)

11. Carrington, L., Snavely, A., Wolter, N.: A performance prediction framework for scientific
applications. Future Gener. Comput. Syst. 22(3), 336–346 (2006). http://dx.doi.org/10.1016/j.
future.2004.11.019

12. Chan, E., Heimlich, M., Purkayastha, A., van de Geijn, R.: Collective communication: theory,
practice, and experience. Concurr. Comput. Pract. Exp. 19(13), 1749–1783 (2007)

13. Dennis, J.M., Edwards, J., Evans, K.J., Guba, O., Lauritzen, P.H., Mirin, A.A., St-Cyr, A.,
Taylor, M.A., Worley, P.H.: CAM-SE: a scalable spectral element dynamical core for the
community atmosphere model. Int. J. High Perform. Comput. 26(1), 74–89 (2012). http://hpc.
sagepub.com/content/26/1/74.abstract

14. Geimer, M., Wolf, F., Wylie, B.J.N., Ábrahám, E., Becker, D., Mohr, B.: The Scalasca
performance toolset architecture. Concurr. Comput. Pract. Exp. 22(6), 702–719 (2010)

http://dx.doi.org/10.1007/978-3-642-11970-5_16
http://dx.doi.org/10.1007/978-3-642-17511-4_7
http://dx.doi.org/10.1007/978-3-642-17511-4_7
http://dx.doi.org/10.1016/j.future.2004.11.019
http://dx.doi.org/10.1016/j.future.2004.11.019
http://hpc.sagepub.com/content/26/1/74.abstract
http://hpc.sagepub.com/content/26/1/74.abstract

464 F. Wolf et al.

15. Gewaltig, M.O., Diesmann, M.: Nest (neural simulation tool). Scholarpedia J. 2(4), 1430
(2007)

16. Goldsmith, S.F., Aiken, A.S., Wilkerson, D.S.: Measuring empirical computational complexity.
In: Proceedings of the 6th Joint Meeting of the European Software Engineering Conference
and the ACM SIGSOFT Symposium on the Foundations of Software Engineering (ESEC-FSE
’07), New York, pp. 395–404. ACM (2007). http://doi.acm.org/10.1145/1287624.1287681

17. Hammer, J., Hager, G., Eitzinger, J., Wellein, G.: Automatic loop kernel analysis and
performance modeling with kerncraft. In: Proceedings of the 6th International Workshop
on Performance Modeling, Benchmarking, and Simulation of High Performance Computing
Systems (PMBS ’15), New York, pp. 4:1–4:11. ACM (2015). http://doi.acm.org/10.1145/
2832087.2832092

18. Hoefler, T., Kwasniewski, G.: Automatic complexity analysis of explicitly parallel programs.
In: Proceedings of the 26th ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA’14), Prague. ACM (2014)

19. Hoefler, T., Snir, M.: Performance engineering: a must for petaflops and beyond. In: Pro-
ceedings of the Workshop on Large-Scale System and Application Performance (LSAP), in
Conjunction with HPDC, San Jose. ACM (2011)

20. Hoefler, T., Gropp, W., Kramer, W., Snir, M.: Performance modeling for systematic perfor-
mance tuning. In: State of the Practice Reports (SC ’11), pp. 6:1–6:12. ACM (2011). http://doi.
acm.org/10.1145/2063348.2063356

21. Hoefler, T., Kwasniewski, G.: Automatic complexity analysis of explicitly parallel programs.
In: Proceedings of the 26th ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA ’14), New York, pp. 226–235. ACM (2014). http://doi.acm.org/10.1145/2612669.
2612685

22. Iwainsky, C., Shudler, S., Calotoiu, A., Strube, A., Knobloch, M., Bischof, C., Wolf, F.:
How many threads will be too many? On the scalability of OpenMP implementations. In:
Proceedings of the 21st Euro-Par Conference, Vienna. LNCS, vol. 9233, pp. 451–463. Springer
(2015)

23. Jayakumar, A., Murali, P., Vadhiyar, S.: Matching application signatures for performance
predictions using a single execution. In: 2015 IEEE International Parallel and Distributed
Processing Symposium (IPDPS), Hyderabad, pp. 1161–1170. IEEE (2015)

24. JuBE – Jülich Benchmarking Environment (2016). http://www.fz-juelich.de/jsc/jube
25. JuSPIC – Jülich Scalable Particle-in-Cell Code (2016). http://www.fz-juelich.de/ias/jsc/EN/

Expertise/High-Q-Club/JuSPIC/_node.html
26. Kerbyson, D.J., Alme, H.J., Hoisie, A., Petrini, F., Wasserman, H.J., Gittings, M.: Predictive

performance and scalability modeling of a large-scale application. In: Proceedings of the
ACM/IEEE Conference on Supercomputing (SC’01), Denver, p. 37. ACM (2001)

27. LLVM home page (2016). http://llvm.org/
28. Lo, Y.J., Williams, S., Van Straalen, B., Ligocki, T.J., Cordery, M.J., Wright, N.J., Hall,

M.W., Oliker, L.: Roofline model toolkit: a practical tool for architectural and program
analysis. In: High Performance Computing Systems. Performance Modeling, Benchmarking,
and Simulation, New Orleans, pp. 129–148. Springer (2014)

29. Marin, G., Mellor-Crummey, J.: Cross-architecture performance predictions for scientific
applications using parameterized models. SIGMETRICS Perform. Eval. Rev. 32(1), 2–13
(2004). http://doi.acm.org/10.1145/1012888.1005691

30. MILC Code Version 7 (2016). http://www.physics.utah.edu/~detar/milc/milc_qcd.html
31. Pllana, S., Brandic, I., Benkner, S.: Performance modeling and prediction of parallel and

distributed computing systems: a survey of the state of the art. In: Proceedings of the 1st
International Conference on Complex, Intelligent and Software Intensive Systems (CISIS),
Vienna, pp. 279–284. IEEE (2007)

32. Shudler, S., Calotoiu, A., Hoefler, T., Strube, A., Wolf, F.: Exascaling your library: will your
implementation meet your expectations? In: Proceedings of the 29th ACM on International
Conference on Supercomputing (ICS ’15), New York, pp. 165–175. ACM (2015). http://doi.
acm.org/10.1145/2751205.2751216

http://doi.acm.org/10.1145/1287624.1287681
http://doi.acm.org/10.1145/2832087.2832092
http://doi.acm.org/10.1145/2832087.2832092
http://doi.acm.org/10.1145/2063348.2063356
http://doi.acm.org/10.1145/2063348.2063356
http://doi.acm.org/10.1145/2612669.2612685
http://doi.acm.org/10.1145/2612669.2612685
http://www.fz-juelich.de/jsc/jube
http://www.fz-juelich.de/ias/jsc/EN/Expertise/High-Q-Club/JuSPIC/_node.html
http://www.fz-juelich.de/ias/jsc/EN/Expertise/High-Q-Club/JuSPIC/_node.html
http://llvm.org/
http://doi.acm.org/10.1145/1012888.1005691
http://www.physics.utah.edu/~detar/milc/milc_qcd.html
http://doi.acm.org/10.1145/2751205.2751216
http://doi.acm.org/10.1145/2751205.2751216

Automatic Performance Modeling of HPC Applications 465

33. Siegmund, N., Grebhahn, A., Apel, S., Kästner, C.: Performance-influence models for highly
configurable systems. In: Proceedings of the 2015-10th Joint Meeting on Foundations of
Software Engineering (ESEC/FSE 2015), New York, pp. 284–294. ACM (2015). http://doi.
acm.org/10.1145/2786805.2786845

34. Spafford, K.L., Vetter, J.S.: Aspen: a domain specific language for performance modeling. In:
Proceedings of the International Conference on High Performance Computing, Networking,
Storage and Analysis (SC ’12), Los Alamitos, pp. 84:1–84:11. IEEE Computer Society Press
(2012). http://dl.acm.org/citation.cfm?id=2388996.2389110

35. Sutmann, G., Westphal, L., Bolten, M.: Particle based simulations of complex systems with
mp2c: hydrodynamics and electrostatics. In: International Conference of Numerical Analysis
and Applied Mathematics 2010 (ICNAAM 2010), Rhodes, vol. 1281, pp. 1768–1772. AIP
Publishing (2010)

36. Tallent, N.R., Hoisie, A.: Palm: easing the burden of analytical performance modeling.
In: Proceedings of the 28th ACM International Conference on Supercomputing (ICS ’14),
NewYork, pp. 221–230. ACM (2014). http://doi.acm.org/10.1145/2597652.2597683

37. Thakur, R., Rabenseifner, R., Gropp, W.: Optimization of collective communication operations
in mpich. Int. J. High Perform. Comput. 19(1), 49–66 (2005)

38. Vetter, J., Worley, P.: Asserting performance expectations. In: Proceedings of the ACM/IEEE
Conference on Supercomputing, Baltimore, pp. 1–13. ACM (2002)

39. Vogel, A., Reiter, S., Rupp, M., Nägel, A., Wittum, G.: UG 4: a novel flexible software system
for simulating PDE based models on high performance computers. Comput. Vis. Sci. 16(4),
165–179 (2013)

40. Vogel, A., Calotoiu, A., Strube, A., Reiter, S., Nägel, A., Wolf, F., Wittum, G.: 10,000
performance models per minute – scalability of the ug4 simulation framework. In: Proceedings
of the 21st Euro-Par Conference, Vienna. LNCS, vol. 9233, pp. 519–531. Springer (2015)

41. Vömel, C.: ScaLAPACK’s MRRR algorithm. ACM T. Math. Softw. 37(1), 1:1–1:35 (2010)
42. Vuduc, R., Demmel, J.W., Bilmes, J.A.: Statistical models for empirical search-based perfor-

mance tuning. Int. J. High Perform. Comput. 18(1), 65–94 (2004). http://dx.doi.org/10.1177/
1094342004041293

43. Wasserman, H., Hoisie, A., Lubeck, O., Lubeck, O.: Performance and scalability analysis of
teraflop-scale parallel architectures using multidimensional wavefront applications. Int. J. High
Perform. Comput. 14, 330–346 (2000)

44. Wu, X., Müller, F.: Scalaextrap: trace-based communication extrapolation for SPMD programs.
ACM T. Lang. Sys. 34(1), 113–122 (2012)

45. Wylie, B.J.N., Geimer, M., Mohr, B., Böhme, D., Szebenyi, Z., Wolf, F.: Large-scale
performance analysis of Sweep3D with the Scalasca toolset. Parallel Process. Lett. 20(4), 397–
414 (2010)

46. Zaparanuks, D., Hauswirth, M.: Algorithmic profiling. Sigplan Not. 47(6), 67–76 (2012).
http://doi.acm.org/10.1145/2345156.2254074

47. Zhai, J., Chen, W., Zheng, W.: Phantom: predicting performance of parallel applications on
large-scale parallel machines using a single node. Sigplan Not. 45(5), 305–314 (2010). http://
doi.acm.org/10.1145/1837853.1693493

http://doi.acm.org/10.1145/2786805.2786845
http://doi.acm.org/10.1145/2786805.2786845
http://dl.acm.org/citation.cfm?id=2388996.2389110
http://doi.acm.org/10.1145/2597652.2597683
http://dx.doi.org/10.1177/1094342004041293
http://dx.doi.org/10.1177/1094342004041293
http://doi.acm.org/10.1145/2345156.2254074
http://doi.acm.org/10.1145/1837853.1693493
http://doi.acm.org/10.1145/1837853.1693493

Automated Performance Modeling
of the UG4 Simulation Framework

Andreas Vogel, Alexandru Calotoiu, Arne Nägel, Sebastian Reiter,
Alexandre Strube, Gabriel Wittum, and Felix Wolf

Abstract Many scientific research questions such as the drug diffusion through
the upper part of the human skin are formulated in terms of partial differential
equations and their solution is numerically addressed using grid based finite element
methods. For detailed and more realistic physical models this computational
task becomes challenging and thus complex numerical codes with good scaling
properties up to millions of computing cores are required. Employing empirical
tests we presented very good scaling properties for the geometric multigrid solver in
Reiter et al. (Comput Vis Sci 16(4):151–164, 2013) using the UG4 framework that is
used to address such problems. In order to further validate the scalability of the code
we applied automated performance modeling to UG4 simulations and presented
how performance bottlenecks can be detected and resolved in Vogel et al. (10,000
performance models per minute—scalability of the UG4 simulation framework. In:
Träff JL, Hunold S, Versaci F (eds) Euro-Par 2015: Parallel processing, theoretical
computer science and general issues, vol 9233. Springer, Springer, Heidelberg,
pp 519–531, 2015). In this paper we provide an overview on the obtained results,
present a more detailed analysis via performance models for the components of the
geometric multigrid solver and comment on how the performance models coincide
with our expectations.

A. Vogel (�) • A. Nägel • S. Reiter • G. Wittum
Goethe Universität Frankfurt, Frankfurt, Germany
e-mail: andreas.vogel@gcsc.uni-frankfurt.de; arne.naegel@gcsc.uni-frankfurt.de;
sebastian.reiter@gcsc.uni-frankfurt.de; wittum@gcsc.uni-frankfurt.de

A. Calotoiu • F. Wolf
Technische Universität Darmstadt, Darmstadt, Germany
e-mail: calotoiu@cs.tu-darmstadt.de; wolf@cs.tu-darmstadt.de

A. Strube
Jülich Supercomputing Center, Germany
e-mail: a.strube@fz-juelich.de

© Springer International Publishing Switzerland 2016
H.-J. Bungartz et al. (eds.), Software for Exascale Computing – SPPEXA
2013-2015, Lecture Notes in Computational Science and Engineering 113,
DOI 10.1007/978-3-319-40528-5_21

467

mailto:andreas.vogel@gcsc.uni-frankfurt.de
mailto:arne.naegel@gcsc.uni-frankfurt.de
mailto:sebastian.reiter@gcsc.uni-frankfurt.de
mailto:wittum@gcsc.uni-frankfurt.de
mailto:calotoiu@cs.tu-darmstadt.de
mailto:wolf@cs.tu-darmstadt.de
mailto:a.strube@fz-juelich.de

468 A. Vogel et al.

1 Introduction

The mathematical description for many important scientific and industrial questions
is given by a formulation in terms of partial differential equations. Numerical sim-
ulations of the modeled systems via finite element and finite volume discretizations
(e.g., [6, 10, 16]) can help to better understand the physical behavior by comparing
with measured data and ideally provide the possibility to predict physical scenarios.
Using detailed computational grids the discretization thereby leads to large sparse
systems of equations and these matrix equations can be resolved using advanced
methods of optimal order—such as the multigrid method (e.g., [6, 15]).

Looking at the variety of applications and the constantly growing computing
resources on modern supercomputers the efficient solution of partial differential
equations is an important challenge and it is advantageous to address the numerous
problems with a common framework. Ideally, the framework should provide
scalable and reusable components that can be applied in all of the fields of interest
and serve as a common base for the construction of applications for concrete
problems. To this end the UG software framework has been developed and a
renewed implementation has been given in the current version 4.0 [35, 37] that pays
special attention to parallel scalability.

In order to validate the scaling properties of the software framework on such
architectures we carried out several scalability studies. Starting with a hand-crafted
analysis we presented close to optimal weak scaling properties of the geometric
multigrid solver in [27]. However, the study focused only on a few coarse-grained
aspects leaving room for potential performance bottlenecks, that are not visible at
current scales due to a small execution constant, but may become dominant at largest
scales due to bad asymptotic behavior. Therefore, in a subsequent study we analyzed
entire UG 4 runs in [38] applying an automated performance modeling approach by
Calotoiu et al. [7] to UG 4 simulations. The modeling approach creates performance
models at a function level granularity and uses few measurement runs at smaller
core counts in order to predict the asymptotic behavior of each code kernel at largest
scales. By detecting bad asymptotic behavior for code kernels in the grid setup phase
we were able to detect and remove a performance bottleneck.

In this paper we focus on more detailed models for the geometric multigrid solver
and explain how the observed performance models meet our expectations. Since the
geometric multigrid solver is one of the crucial aspects for simulation runs in terms
of scalability, we have evaluated in more depth the models for fine-grained kernels
of the employed geometric multigrid solver and compare the observed behavior to
the intended implementation.

The main aspects of this report are:

• Summarize the automated modeling approach and obtained results for its
application to the simulation framework UG 4.

• Provide a detailed analysis for components of the geometric multigrid solver.
• Validation of the scaling behavior for the multigrid solver components.

Automated Performance Modeling of the UG4 Simulation Framework 469

The remainder of this paper is organized as follows. In Sect. 2, the UG 4
simulation environment is presented with focus on the parallelization aspects of the
parallel geometric multigrid (Sect. 2.2) and the skin permeation problem (Sect. 2.3)
used in the subsequent studies. Section 3 outlines the performance modeling
approach. In Sect. 4 we briefly summarize previously obtained analysis results for
entire simulation runs and then present a detailed performance modeling for the
geometric multigrid solver used in a weak scaling study for the skin problem.
Sections 5 and 6 are dedicated to related work and concluding remarks.

2 The UG4 Simulation Framework

As a real world target application code for the performance modeling approach
we will focus on the simulation toolbox UG 4 [37]. The software framework is
written in C++ and uses grid-based methods to numerically address the solution of
partial differential equations via finite element or finite volume methods. With the
main goal to address questions from biology, technology, geology and finance with
one common effort, several components are reused in all types of applications and
thus the performance modeling for those program parts provides insight into the
performance of all these applications. In the following we give a brief overview on
the used numerical methods and especially comment on the parallelization aspects.

2.1 Concepts and Numerical Methods

In order to construct the required geometries the meshing software ProMesh [25, 26]
is used that shares code parts with the UG 4 library. Meshes can be composed of
different element types (e.g., tetrahedron, pyramid, prism and hexahedron in 3d) and
subset assignment is used to distinguish parts of the domain with different physics
or where boundary conditions are to be set. Once loaded in UG 4 meshes are further
processed to create distributed, unstructured, adaptive multigrid hierarchies with
or without hanging nodes. Implemented load-balancing strategies [25] range from
simple but fast bisection algorithms to more advanced strategies including usage
of external algorithms such as ParMetis [22]. In this study, however, we restrict
ourselves to a 3d hexahedral grid hierarchy generated through globally applied
anisotropic refinement (cf. [38]). A study for adaptive hierarchies with hanging
nodes is work in progress and will be considered in a subsequent study.

A flexible and combinable discretization module allows to combine different
kinds of physical problems discretized by finite element and finite volume methods
(e.g., [6, 10, 16]) and boundary conditions in a modular way to build a new physical
problem selecting from basic building blocks [36, 37]. As algebraic structures for the
discretized solutions and associated matrices, block vectors and a CSR (compressed
sparse row) matrix implementation are provided. For the parallel solution of such

470 A. Vogel et al.

matrix equations several solvers are implemented, including Krylov methods such
as CG and BiCGStab and preconditioners such as Jacobi, Gauss-Seidel, incomplete
LU factorization, ILUT and block versions of these types (e.g., [28]). In addition,
a strong focus is on multigrid methods (e.g. [15]) and geometric and algebraic
multigrid approaches [17, 27].

The parallelization for the usage on massively parallel computing clusters with
hundred thousands of cores is achieved using MPI. The separate library called PCL
(parallel communication layer, [27]) builds on top of MPI and is used to ease
the graph-based parallelization. Both, the parallelization of the computing grid—
assigning a part of the multigrid hierarchy to each process—and of the algebraic
structures are programmed based on the PCL. By storing parallel copies on each
process in a well-defined order in interface containers identification is performed in
an efficient way [25, 27, 37], and global IDs are dispensable.

In order to hide parallelization aspects and ease the usage for beginners the
scripting language Lua [18] is used as end-user interface. A flexible plugin system
allows to add additional functionality if required.

2.2 Parallel Hierarchical Geometric Multigrid

The multigrid method [16] is used to solve large sparse systems of equations that
arise typically by the discretization of some partial differential equation. We briefly
recap the idea of the algorithm and our modifications and implementation [27] for
the parallel version. Given the linear equation system ALxL D bL on the finest grid
level L, the desired solution xL is computed iteratively: starting with some arbitrary
initial guess xL, in every iteration the defect dL D bL � ALxL is used to compute a
multigrid correction cL D ML.dL/, where ML is the multigrid operator, that is added
to the approximate solution xL WD xL C cL. In order to compute the correction cL
not only the fine grid matrix AL is used but several auxiliary coarse grid matrices
Al;LB � l � L; are employed, where LB denotes the base level. The multigrid
cycle is then defined in a recursive manner: given a defect dl on a certain level l the
correction is first partly computed via a smoothing operator (e.g. Jacobi iteration).
Then the defect is transferred to the next coarser level, where the algorithm is
applied to the restricted defect dl�1. The thereby computed coarse grid correction
cl�1 is then prolongated to the finer level and added to the correction on level l,
followed by some postsmoothing. Once the algorithm reaches the base level LB,
the correction is computed exactly as cl D A�1l dl by, e.g., using LU factorization.
Algorithm 1 summarizes this procedure.

The matrix equations for complex problems can easily grow beyond the size of
billions of unknowns. In order to solve such problems, massively parallel linear
solvers with optimal complexity have to be used. The multigrid algorithm only
depends linearly on the number of unknowns and therefore good weak scaling
properties are to be expected. As demonstrated in [27] geometric multigrid solvers

Automated Performance Modeling of the UG4 Simulation Framework 471

Algorithm 1 cl D Ml.dl/ [16, 27]
Requirement: dl D bl �Alxl
if l D LB then

Base solver: cl D Al
�1dl

return cl
else

Initialization: d0l WD dl, c0l WD 0

(Pre-)Smoothing for k D 1; : : : ; 1:
c D Sl.dk�1

l /,
dkl D dk�1

l � Alc, ckl D ck�1
l C c

Restriction: dl�1 D PT
l d

1
l

Coarse grid correction: cl�1 DMl�1.dl�1/

Prolongation:
c1C1
l D c1l C Plcl�1,

d1C1
l D d1l � AlPlcl�1

(Post-)Smoothing for k D 1; : : : ; 2:
c D Sl.d

1Ck
l /,

d1C1Ck
l D d1Ck

l �Alc, c1C1Ck
l D c1Ck

l C c
return c1C1C2

l

can exhibit nearly perfect weak scalability when employed in massively parallel
environments with hundred thousands of computing cores.

To this end, the components of the algorithm must be parallelized. The basic idea
is to construct a distributed multigrid hierarchy as follows:

1. Start with a coarse grid on a small number of processes.
2. Refine the grid several times to create additional hierarchy levels.
3. Redistribute the finest level of the hierarchy to a larger set of processes.
4. Repeat at (2) until the desired grid resolution is obtained. At this point all active

processes should contain a part of the finest level of the multigrid hierarchy.

Refining the grid, new levels of the multigrid hierarchy are created and after some
refinements the finest grid level is distributed to a larger set of processes and
communication structures (called vertical interfaces) are established. This process
can be iterated, successively creating a tree structure of processes holding parts of
the hierarchical grid. Figure 1 shows a process hierarchy for a distributed multigrid
hierarchy on four processes (cf. [25, 27]). The communication structures in vertical
direction are used to parallelize the transfer between the grid levels, i.e. to implement
the transfer of data between grid levels at restriction and prolongation phases
within a multigrid cycle. However, if no vertical interface is present the transfer
operators act completely process-locally. For the communication within multigrid
smoothers on each grid level additional horizontal interfaces are required. These
interfaces will be used to compute the level-wise correction in a consistent way. An
illustration for the resulting hierarchy distribution and interfaces is given in Fig. 2
(cf. [25, 27, 36, 38]). In order to compute the required coarse grid matrices, each
process calculates the contribution of the grid part assigned to the process itself.

472 A. Vogel et al.

l=0

l=1

l=2

l=3

P0 P1 P2 P3

Fig. 1 Illustration for a 1d process hierarchy on 4 processes. Ghost elements (red) are sent
during redistribution. Data is communicated between ghosts and actual elements through vertical
interfaces (orange) (cf. [25, 27])

l=0

l=1

l=2

l=3 l=3

l=2
l=1

P0 P1

Fig. 2 Illustration for a 1d parallel multigrid hierarchy distributed onto two processes. Parallel
copies are identified via horizontal (blue) and vertical interfaces (orange) (From [38], cf. also [27])

Thus, the matrices are stored in parallel in an additive fashion and no communication
is required for this setup.

A Jacobi smoother has very good properties regarding scalability, however it may
not be suitable for more complicated problems (e.g. with anisotropic coefficients or
anisotropic grids). To handle this issue for anisotropic problems, we use anisotropic
refinement in order to construct grid hierarchies with isotropic elements from
anisotropic coarse grids: refining only those edges in the computing grid that are
longer than a given threshold, and halving this threshold in each step, the approach
yields a grid hierarchy which contains anisotropic elements on lower levels and
more and more isotropic elements on higher levels. An illustration for a resulting
hierarchy is shown in Fig. 3. The used refinement strategy produces non-adaptive
grids, i.e. meshes that fully cover the physical domain. This eases the load-balancing
compared to adaptive meshes where huge differences in the spatial resolution and
thereby element distribution may occur during refinement and redistribution is
necessary. In this work we focused on the non-adaptive strategy only, however, plan
to report on the adaptive case in future works.

Reconsidering the hierarchical distribution approach described above, lower
levels of the multigrid hierarchy are only contained on a smaller number of
processes. This is well suited for fast parallel smoothing, prolongation and restric-
tion operations thanks to maintaining a good ratio between computation and
communication costs on all levels. A smoothing operation on coarser levels with

Automated Performance Modeling of the UG4 Simulation Framework 473

Fig. 3 Grid hierarchy created
by anisotropic refinement for
the 3d brick-and-mortar
model (in exploded view).
The aspect ratio of the grid
elements improve with every
refinement step

only few inner unknowns would be dominated by the communication and thus the
work is agglomerated to fewer processes resulting in idle processes on coarse levels.
However, the work on finer grid levels is dominating the overall runtime.

2.3 Application: Human Skin Permeation

As an exemplary application from the field of computational pharmacy we focus on
the permeation of substances through the human skin. These simulations consider
the outermost part of the epidermis, called stratum corneum, and are used to estimate
the throughput of chemical exposures. An overview on different descriptions of the
biological and geometric approaches to simulate such a setting can be found in [20]
and the references therein. For this study, we use the same setup as used in [38]: the
transport in two subdomains s 2 fcor; lipg (corneocyte, lipid) is described by the
diffusion equation

@tcs.t; x/ D r � .Dsrcs.t; x// ;
using a subdomain-wise constant diffusion coefficient Ds. We use a 3d brick-and-
mortar model consisting of highly anisotropic hexahedral elements with aspect
ratios as bad as 1=300 in the coarse grid. Employing anisotropic refinements we
construct a grid hierarchy with better and better aspect ratios on finer levels. The
resulting grid hierarchy is displayed in Fig. 3. For a more detailed presentation we
refer to [38].

474 A. Vogel et al.

3 Automated Performance Modeling

The automated modeling approach used to analyze the UG 4 framework has been
presented by Calotoiu et al. in [7, 8]. Here, we give a brief overview on the procedure
and ideas. For further details please refer to [7, 30, 38, 40].

Automated performance modeling is used to empirically determine the asymp-
totic scaling behavior for a large number of fine-grained code kernels. These
scaling models can then be inspected and compared to the expected complexity: a
discrepancy indicates a potential scalability bug that can be addressed and hopefully
removed by the code developers. If no such scalability issues are found this can be
taken as a strong evidence that no unexpected scalability problems are present. In
addition the created models can also be used to predict the resource consumption at
larger core counts if required.

In order to create the models, the simulation framework UG 4 has been
instrumented to measure relevant metrics such as time, bytes sent/received or
floating-point operations in program regions at a function level granularity. Running
simulations at different core counts now offers the opportunity to determine via
cross-validation [24] which choice of parameters in the performance model normal
form (PMNF, [7])

f .p/ D
nX

kD1
ck � pik � log jk

2 .p/;

with ik; jk 2 I; J � Q, best fits the measurements. The approach is applicable to
strong and weak scaling. In this study, however, we have focused on weak scaling
only. In order to account for jitter, several runs for every core count have to be
executed. The required effort for this approach therefore is to run the application a
few times at a few core counts.

For the correct analysis of the multigrid algorithm in weak scaling studies,
a more careful approach than just analyzing the code kernels directly has to be
taken [38]. This is due to the following observation: within a weak scaling study
the problem size has to be increased and for multigrid approaches this leads to
an increase in the number of grid levels. The multigrid algorithm—traversing the
multigrid hierarchy top-down and then again bottom-up, applying smoothers and
level transfers for every level—will thus create a different call tree at different
core counts for multigrid functions due to the varying numbers of grid levels.
However, the performance modeling approach usually assumes the same call tree
for all core counts. Therefore, we preprocess the call tree: only kernels present in
all measurements remain in the modified call tree and measurement data of code
kernels not present in modified call trees is added to the parent kernel. This approach
is not only limited to multigrid settings but may be useful for all codes that use
recursive calls whose invocation count increases within a scaling study.

Automated Performance Modeling of the UG4 Simulation Framework 475

4 Results

The automated performance modeling (Sect. 3) has been applied to entire simulation
runs of the UG 4 simulation framework (Sect. 2) and several aspects of the analysis
have been reported in [38]. In order to analyze and validate the code behavior the
proceeding and reasoning is as follows: we run several simulations at different core
counts p and measure detailed metric information (times, bytes sent) at a function
level granularity. By this, we receive fine grained information for small code kernels.
For all of these kernels and all available metrics we create performance models and
then rank these by their asymptotic behavior with respect to the core count. All code
kernels with constant or only logarithmical dependency are considered optimal.
However, if some code kernel, e.g., in the multigrid method would show a linear
or quadratic dependency, this would not match our performance expectations and
we consider it a scalability bug that has to be addressed and removed. Inspecting
all measured code kernels thus provides us with a fine grained information for
different parts of the simulation code. Given that all code kernels show an optimal
dependency we finally obtain a validation of the expected scaling properties.

Here, we first briefly give an overview on the results presented in [38] and
then show more detailed results focusing on the multigrid kernels and their scaling
properties.

4.1 Analysis for Grid Hierarchy Setup and Solver Comparison

In a first test, we analyzed entire runs in a weak scaling study for the human
skin permeation simulating the steady-state concentration distribution on a three-
dimensional brick-and-mortar skin geometry. A scalability issue has been detected
by the performance modeling that can be explained and resolved [38]: at the
initialization of the multigrid hierarchy an MPI_Allreduce operation for an
array of length p was used to inform each process about its intended communicator
group membership. The resulting p � O.MPI_Allreduce/ dependency has been
addressed by using MPI_Comm_split instead that can be implemented with a
O.log2 p/ [31] behavior. By this, we were able to remove this potential bottleneck
at this stage of code development.

In a second study, we provided a comparison for two different types of solvers:
the geometric multigrid solver has been compared in a weak scaling study to the
unpreconditioned conjugate gradient (CG) method. The unpreconditioned conjugate
gradient method is known to have unpleasant weak-scaling properties due to the
increase by a factor of two for the iteration count resulting in a O.

p
p/ dependency

(see [38] for a detailed theoretical analysis). Due to the created models we confirmed
that the theoretical expectations are met by our implementation of the parallel
solvers.

476 A. Vogel et al.

4.2 Scalability of Code Kernels in the Geometric Multigrid

In this section we give a more detailed view on the code kernels for the geometric
multigrid. For the analysis of the multigrid solver we consider the human skin per-
meation model: we compute the steady-state of the concentration distribution for the
brick-and-mortar model described in Sect. 2.3 and choose the diffusion parameter to
Dcor D 10�3 and Dlip D 1. For the solution of the arising linear system of equations,
the geometric multigrid solver is used. As acceleration an outer conjugate gradient
method is applied. For the smoothing a damped Jacobi is employed with three
smoothing steps. As cycle type the V-cycle is used and as base solver we use a LU
factorization. The stopping criterion for the solver is the reduction of the absolute
residuum to 10�10. The anisotropic refinement as laid out in Sect. 2.2 is used to
enhance the aspect ratios of the hierarchy from level to level. Once satisfactory
ratios are reached, this level is used as base level for the multigrid algorithm.

In Fig. 4 we present the accumulated wallclock times for exemplary coarse-
grain kernels of the multigrid method and provide information on the number
of used cores and the size of the solved matrix system (degrees of freedom).
Please note that the iteration counts are bounded as expected for a multigrid
method. Since the assembling for the matrix is an inherent parallel process without
any communication it can be performed—given an optimal load-balancing—with
constant wall-clock time in the weak scaling. This is confirmed by the generated
performance model. All other shown aspects of the multigrid method show a
logarithmical dependency. This is due to the fact that the number of involved coarse
grid levels L D O.log p/ depends on the number of processes in a weak scaling.
We consider this logarithmical dependency still as optimal since even allreduce
operations implemented in a tree-like fashion will show the same behavior and are
used to check for convergence.

The performance models for several code kernels are shown in Table 1. Please
note that all code kernels in our measurements have shown constant or logarithmical
dependency with respect to the number of processes. Here, we show some selected
kernels in order to give more details on the parallelization aspects of the multigrid
method. For a more detailed description on the mathematical algorithm and
parallelization aspects we refer to Sect. 2 and [27].

The presmoothing is performed in a two step fashion: first, the Jacobi iteration
is applied on process-wise data structures resulting in no data transfer (CG !
GMG ! PreSmooth ! Jacobi ! apply ! step). In a second phase
update information is exchanged between nearest neighbors in order to gain a
consistent update resulting in data transfer (PreSmooth! Jacobi! apply!
AdditiveToConsistent! MPI_Isend). All behaviors are found to depend
logarithmically due to the increase in grid levels that are using this method.

The grid transfer is performed process-wise as well (Restrict ! apply).
No communication is needed unless vertical interfaces are present. The setup
phase (Restrict! init) simply assembles the transfer operators into a matrix
structure on each process and a constant time within a weak scaling is thus observed.

Automated Performance Modeling of the UG4 Simulation Framework 477

(a)

(b)

p L DoF ngmg

16 6 290,421 25

128 7 2,271,049 27

1024 8 17,961,489 29

8192 9 142,869,025 29

65536 10 1,139,670,081 29

Kernel Model for time [s]

GMG Init log p
GMG Cycle log p
Matrix Setup

PreSmoothing log p
Prolongation log p

(d)(c)

Fig. 4 Measured accumulated wallclock times (marks) and models (lines) for the skin 3d problem
(self time and subroutines). (a) (cf. [38]) Initialization of the multigrid solver and time spent in the
multigrid cycle. (b) Times for coarse matrix assembling, smoothing and prolongation. (c) (From
[38]) Number of grid refinements (L), degrees of freedom (DoF) and number of iterations of the
solver (ngmg). (d) Performance models for the kernels shown in the graphs

Finally, we show some kernels for the outer CG iteration. In order to check
for convergence, the norm of a defect vector is computed in each iteration step.
After a nearest neighbor communication in order to change the storage type of the
vector (CG! norm! AdditiveToUnique! MPI_Isend), the norm is first
computed on each process (CG ! norm) and then summed up globally (CG !
norm! allreduce! MPI_Allreduce).

This way our expectations for the code kernels of the multigrid solver are
confirmed and we have strong evidence that only logarithmical complexity with
respect to the core count (or better) occurs.

478 A. Vogel et al.

T
ab

le
1

Sk
in

3d
st

ud
y.

M
od

el
s

fo
r

se
lf

-t
im

e
an

d
by

te
s

se
nt

fo
r

se
le

ct
ed

ke
rn

el
s

of
th

e
ge

om
et

ri
c

m
ul

ti
gr

id
m

et
ho

d
w

it
h

ou
te

r
C

G
it

er
at

io
n.
j1
�

R
2
j,t

he
ab

so
lu

te
di

ff
er

en
ce

be
tw

ee
n
R
2

an
d

th
e

op
ti

m
um

sc
al

ed
by
1
0

�
3
,c

an
be

co
ns

id
er

ed
a

no
rm

al
iz

ed
er

ro
r

K
er

ne
l

T
im

e
B

yt
es

se
nt

M
od

el
j1
�

R
2
j

M
od

el
j1
�

R
2
j

ti
m

e
D

f.
p/
Œm

s�
[1
0

�
3
]

by
te

s
D

f.
p/

[1
0

�
3
]

C
G
!

G
M
G
!

P
r
e
S
m
o
o
t
h
!

J
a
c
o
b
i
!

a
p
p
l
y
!

s
t
e
p

1
8
:9
C
0
:4
�lo

g
p

42
.6

0
0
:0

C
G
!

G
M
G
!

P
r
e
S
m
o
o
t
h
!

J
a
c
o
b
i
!

a
p
p
l
y
!

A
d
d
i
t
i
v
e
T
o
C
o
n
s
i
s
t
e
n
t
!

M
P
I
_
I
s
e
n
d

1
:5
1
C
1
:1
2
�lo

g
p

36
.0

5
:7
7
�10

5
C
0
:9
5
�10

5
�lo

g
p

5
3
:2

C
G
!

G
M
G
!

R
e
s
t
r
i
c
t
!

i
n
i
t

5
1
0

0.
0

0
0
:0

C
G
!

G
M
G
!

R
e
s
t
r
i
c
t
!

a
p
p
l
y

5
1
:0
C
0
:0
5
�lo

g
p

37
8

0
0
:0

C
G
!

n
o
r
m

3
:5
2
C
0
:0
0
2
�lo

g2
p

54
4

0
0
:0

C
G
!

n
o
r
m
!

A
d
d
i
t
i
v
e
T
o
U
n
i
q
u
e
!

M
P
I
_
I
s
e
n
d

0
:5
2
C
0
:4
5
�lo

g
p

38
.9

1
:9
5
�10

5
C
0
:3
4
�10

5
�lo

g
p

4
5
:5

C
G
!

n
o
r
m
!

a
l
l
r
e
d
u
c
e
!

M
P
I
_
A
l
l
r
e
d
u
c
e

1
:6
7
C
0
:9
2
�lo

g2
p

7.
5

O
.M
P
I
_
A
l
l
r
e
d
u
c
e
/

0
:0

Automated Performance Modeling of the UG4 Simulation Framework 479

5 Related Work

Numerous analytical and automated performance modeling approaches have been
proposed and developed. The field ranges from manual models [5, 23], over source-
code annotations [34] to specialized languages [32]. Automated modeling methods
are developed based on machine-learning approaches [19], and via extrapolating
trace measurements in [42] (extrapolating from single-node to parallel architec-
tures), in [41] (predicting communication costs at large core counts) and in [9]
(extrapolating based on a set of canonical functions). The Dimemas simulator
provides tools for performance analysis in message-passing programs [13].

Various frameworks to solve partial differential equations use multigrid methods.
Highly scalable multigrid methods are presented in [4, 14, 29, 33], and [39] for
geometric multigrid, and in [1, 2], and [3] for algebraic multigrid methods. Work
on performance modeling for multigrid can be found in [11, 38] for geometric and
in [12] for algebraic multigrid. For an overview for the numerical treatment of skin
permeation, we refer to [21] and the references therein.

6 Conclusion

The numerical simulation framework UG4 consists of half a million lines of code
and is used to address problems formulated in terms of partial differential equations
employing multigrid methods to solve arising large sparse matrix equations. In
order to analyze, predict and improve the scaling behavior of UG4 we have
conducted a performance modeling at code kernel granularity. Inspecting automated
performance models we validated the scalability of entire simulations and presented
the close to optimal weak scaling properties for the components of the employed
geometric multigrid method that only depend logarithmically on the core count.

Acknowledgements Financial support from the DFG Priority Program 1648 Software for Exas-
cale Computing (SPPEXA) is gratefully acknowledged. The authors also thank the Gauss Centre
for Supercomputing (GCS) for providing computing time on the GCS share of the supercomputer
JUQUEEN at Jülich Supercomputing Centre (JSC).

References

1. Baker, A., Falgout, R., Kolev, T., Yang, U.: Multigrid smoothers for ultra-parallel computing.
SIAM J. Sci. Comput. 33, 2864–2887 (2011)

2. Baker, A.H., Falgout, R.D., Gamblin, T., Kolev, T.V., Schulz, M., Yang, U.M.: Scaling
algebraic multigrid solvers: on the road to exascale. In: Competence in High Performance
Computing 2010, pp. 215–226. Springer, Berlin/New York (2012)

3. Bastian, P., Blatt, M., Scheichl, R.: Algebraic multigrid for discontinuous Galerkin discretiza-
tions of heterogeneous elliptic problems. Numer. Linear Algebra 19(2), 367–388 (2012)

480 A. Vogel et al.

4. Bergen, B., Gradl, T., Rude, U., Hulsemann, F.: A massively parallel multigrid method for
finite elements. Comput. Sci. Eng. 8(6), 56–62 (2006)

5. Boyd, E.L., Azeem, W., Lee, H.H., Shih, T.P., Hung, S.H., Davidson, E.S.: A hierarchical
approach to modeling and improving the performance of scientific applications on the KSR1.
In: Proceedings of the 1994 International Conference on Parallel Processing, St. Charles,
vol. III, pp. 188–192. IEEE (1994)

6. Braess, D.: Finite Elemente. Springer, Berlin (2003)
7. Calotoiu, A., Hoefler, T., Poke, M., Wolf, F.: Using automated performance modeling to

find scalability bugs in complex codes. In: Proceedings of the ACM/IEEE Conference on
Supercomputing (SC13), Denver. ACM (2013)

8. Calotoiu, A., Hoefler, T., Wolf, F.: Mass-producing insightful performance models. In:
Workshop on Modeling & Simulation of Systems and Applications, Seattle, Aug 2014

9. Carrington, L., Laurenzano, M., Tiwari, A.: Characterizing large-scale HPC applications
through trace extrapolation. Parallel Process. Lett. 23(4), 1340008 (2013)

10. Ciarlet, P.G., Lions, J.: Finite Element Methods (Part 1). North-Holland, Amsterdam (1991)
11. Gahvari, H., Gropp, W.: An introductory exascale feasibility study for FFTs and multigrid.

In: International Symposium on Parallel & Distributed Processing (IPDPS), pp. 1–9. IEEE,
Piscataway (2010)

12. Gahvari, H., Baker, A.H., Schulz, M., Yang, U.M., Jordan, K.E., Gropp, W.: Modeling
the performance of an algebraic multigrid cycle on HPC platforms. In: Proceedings of the
International Conference on Supercomputing, pp. 172–181. ACM, New York (2011)

13. Girona, S., Labarta, J., Badia, R.M.: Validation of dimemas communication model for MPI
collective operations. In: Proceedings of the 7th European PVM/MPI Users’ Group Meeting
on Recent Advances in Parallel Virtual Machine and Message Passing Interface, pp. 39–46.
Springer, London (2000). http://dl.acm.org/citation.cfm?id=648137.746640

14. Gmeiner, B., Köstler, H., Stürmer, M., Rüde, U.: Parallel multigrid on hierarchical hybrid grids:
a performance study on current high performance computing clusters. Concurr. Comput.: Pract.
Exp. 26(1), 217–240 (2014)

15. Hackbusch, W.: Multi-grid Methods and Applications, vol. 4. Springer, Berlin/New York
(1985)

16. Hackbusch, W.: Theorie und Numerik elliptischer Differentialgleichungen: mit Beispielen und
Übungsaufgaben. Teubner (1996)

17. Heppner, I., Lampe, M., Nägel, A., Reiter, S., Rupp, M., Vogel, A., Wittum, G.: Software
framework ug4: parallel multigrid on the hermit supercomputer. In: High Performance
Computing in Science and Engineering ’12, pp. 435–449. Springer, Cham (2013)

18. Ierusalimschy, R., De Figueiredo, L.H., Celes Filho, W.: Lua-an extensible extension language.
Softw. Pract. Exp. 26(6), 635–652 (1996)

19. Lee, B.C., Brooks, D.M., de Supinski, B.R., Schulz, M., Singh, K., McKee, S.A.: Methods
of inference and learning for performance modeling of parallel applications. In: Proceedings
of the 12th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming
(PPoPP ’07), pp. 249–258. ACM, New York (2007)

20. Nägel, A., Heisig, M., Wittum, G.: A comparison of two- and three-dimensional models for
the simulation of the permeability of human stratum corneum. Eur. J. Pharm. Biopharm. 72(2),
332–338 (2009)

21. Nägel, A., Heisig, M., Wittum, G.: Detailed modeling of skin penetration—an overview. Adv.
Drug Deliv. Rev. 65(2), 191–207 (2013)

22. ParMetis (Nov 2015), http://glaros.dtc.umn.edu/gkhome/metis/parmetis/overview
23. Petrini, F., Kerbyson, D.J., Pakin, S.: The case of the missing supercomputer performance:

achieving optimal performance on the 8,192 processors of ASCI Q. In: Proceedings of the
ACM/IEEE Conference on Supercomputing (SC’03), pp. 55ff. ACM, New York (2003)

24. Picard, R.R., Cook, R.D.: Cross-validation of regression models. J. Am. Stat. Assoc. 79(387),
575–583 (1984)

25. Reiter, S.: Efficient algorithms and data structures for the realization of adaptive, hierarchical
grids on massively parallel systems. Ph.D. thesis, University of Frankfurt, Germany (2014)

http://dl.acm.org/citation.cfm?id=648137.746640
http://glaros.dtc.umn.edu/gkhome/metis/parmetis/overview

Automated Performance Modeling of the UG4 Simulation Framework 481

26. Reiter, S.: Promesh (Nov 2015), http://wwww.promesh3d.com
27. Reiter, S., Vogel, A., Heppner, I., Rupp, M., Wittum, G.: A massively parallel geometric

multigrid solver on hierarchically distributed grids. Comput. Vis. Sci. 16(4), 151–164 (2013)
28. Saad, Y.: Iterative Methods for Sparse Linear Systems. SIAM, Philadelphia (2003)
29. Sampath, R., Biros, G.: A parallel geometric multigrid method for finite elements on octree

meshes. SIAM J. Sci. Comput. 32, 1361–1392 (2010)
30. Shudler, S., Calotoiu, A., Hoefler, T., Strube, A., Wolf, F.: Exascaling your library: will your

implementation meet your expectations? In: Proceedings of the International Conference on
Supercomputing (ICS), Newport Beach, pp. 1–11. ACM (2015)

31. Siebert, C., Wolf, F.: Parallel sorting with minimal data. In: Recent Advances in the Message
Passing Interface, pp. 170–177. Springer, Berlin/New York (2011)

32. Spafford, K.L., Vetter, J.S.: Aspen: a domain specific language for performance modeling. In:
Proceedings of the International Conference on High Performance Computing, Networking,
Storage and Analysis, SC ’12, pp. 84:1–84:11. IEEE Computer Society Press, Los Alamitos
(2012)

33. Sundar, H., Biros, G., Burstedde, C., Rudi, J., Ghattas, O., Stadler, G.: Parallel geometric-
algebraic multigrid on unstructured forests of octrees. In: Proceedings of the International
Conference on High Performance Computing, Networking, Storage and Analysis, p. 43. IEEE
Computer Society Press, Los Alamitos (2012)

34. Tallent, N.R., Hoisie, A.: Palm: easing the burden of analytical performance modeling. In:
Proceedings of the International Conference on Supercomputing (ICS), pp. 221–230. ACM,
New York (2014)

35. UG4 (Nov 2015), https://github.com/UG4
36. Vogel, A.: Flexible und kombinierbare Implementierung von Finite-Volumen-Verfahren

höherer Ordnung mit Anwendungen für die Konvektions-Diffusions-, Navier-Stokes- und
Nernst-Planck-Gleichungen sowie dichtegetriebene Grundwasserströmung in porösen Medien.
Ph.D. thesis, Universität Frankfurt am Main (2014)

37. Vogel, A., Reiter, S., Rupp, M., Nägel, A., Wittum, G.: UG 4: a novel flexible software system
for simulating PDE based models on high performance computers. Comput. Vis. Sci. 16(4),
165–179 (2013)

38. Vogel, A., Calotoiu, A., Strube, A., Reiter, S., Nägel, A., Wolf, F., Wittum, G.: 10,000
performance models per minute—scalability of the UG4 simulation framework. In: Träff,
J.L., Hunold, S., Versaci, F. (eds.) Euro-Par 2015: Parallel Processing, Theoretical Computer
Science and General Issues, vol. 9233, pp. 519–531. Springer, Heidelberg (2015)

39. Williams, S., Lijewski, M., Almgren, A., Straalen, B.V., Carson, E., Knight, N., Demmel, J.: s-
step Krylov subspace methods as bottom solvers for geometric multigrid. In: 28th International
Parallel and Distributed Processing Symposium, pp. 1149–1158. IEEE, Piscataway (2014)

40. Wolf, F., Bischof, C., Hoefler, T., Mohr, B., Wittum, G., Calotoiu, A., Iwainsky, C., Strube,
A., Vogel, A.: Catwalk: a quick development path for performance models. In: Euro-Par 2014:
Parallel Processing Workshops. Lecture Notes in Computer Science, pp. 589–600. Springer,
Cham (2014)

41. Wu, X., Mueller, F.: ScalaExtrap: trace-based communication extrapolation for SPMD pro-
grams. In: Proceedings of the 16th ACM Symposium on Principles and Practice of Parallel
Programming (PPoPP ’11), pp. 113–122. ACM, New York (2011)

42. Zhai, J., Chen, W., Zheng, W.: Phantom: predicting performance of parallel applications on
large-scale parallel machines using a single node. Sigplan Not. 45(5), 305–314 (2010)

http://wwww.promesh3d.com
https://github.com/{UG}4

Part XII
GROMEX: Unified Long-Range

Electrostatics and Dynamic Protonation
for Realistic Biomolecular Simulations

on the Exascale

Accelerating an FMM-Based Coulomb Solver
with GPUs

Alberto Garcia Garcia, Andreas Beckmann, and Ivo Kabadshow

Abstract The simulation of long-range electrostatic interactions in huge particle
ensembles is a vital issue in current scientific research. The Fast Multipole Method
(FMM) is able to compute those Coulomb interactions with extraordinary speed
and controlled precision. A key part of this method are its shifting operators,
which usually exhibit O. p4/ complexity. Some special rotation-based operators
with O. p3/ complexity can be used instead. However, they are still computationally
expensive. Here we report on the parallelization of those operators that have been
implemented for a GPU cluster to speed up the FMM calculations.

1 Introduction

The simulation of dynamical systems of N particles subject to physical potentials,
such as gravitation or electrostatics, is a crucial issue in scientific research. This
problem is commonly referred as the N-body problem, which has no analytical
solution for N > 3. However, using an iterative numerical approach, the dynamical
behavior of such systems can be simulated. Therefore, the total force exerted on each
particle is computed at discrete time intervals, so that the velocities and positions of
the particles can be updated.

A typical example is the simulation of a system of particles with electric charges
qi. The Coulomb force Fij of a particle j with charge qj acting on a particle i with
charge qi is defined by the following expression:

Fij D qiqj
jrijj3 rij ; (1)

A. Garcia Garcia • A. Beckmann • I. Kabadshow (�)
Jülich Supercomputing Centre (JSC), Forschungszentrum Jülich GmbH, Jülich, Germany
e-mail: a.garcia@fz-juelich.de; a.beckmann@fz-juelich.de; i.kabadshow@fz-juelich.de

© Springer International Publishing Switzerland 2016
H.-J. Bungartz et al. (eds.), Software for Exascale Computing – SPPEXA
2013-2015, Lecture Notes in Computational Science and Engineering 113,
DOI 10.1007/978-3-319-40528-5_22

485

mailto:a.garcia@fz-juelich.de
mailto:a.beckmann@fz-juelich.de
mailto:i.kabadshow@fz-juelich.de

486 A. Garcia Garcia et al.

where rij is the distance vector between particles i and j. Given that, the total force
Fi acting on each particle i can be expressed as the following summation:

Fi D
NX
jD1

qiqj
jrijj3 rij . j ¤ i/ : (2)

As we can observe, calculating the forces acting on each particle has a com-
putational complexity of O.N/ since we have to compute all pairwise interactions
of the current particle with the rest of the system. Therefore, a naive algorithm
for computing all forces Fi exhibits O.N2/ complexity. The update step has a
complexity of O.N/ since computing the velocities from the forces just needs to
iterate once over each particle. The same applies for the position update step. In this
regard, the quadratic complexity may be negligible for a small number of particles,
but interesting and useful simulations often involve huge particle ensembles, so the
simulation will be considerably slowed down to a point in which it is non-viable to
apply this kind of summation method. Fortunately, due to the increasing importance
of N-body simulations for research purposes, fast summation methods have been
developed throughout the latter years [1–3, 5, 7, 8].

In this work, we will focus on the Fast Multipole Method (FMM). The main goal
is to develop a CUDA accelerated implementation of a rotation operator that is used
during the FMM passes to reduce the computational complexity of the typical FMM
mathematical operators, used for shifting and converting the multipole expansions,
from O. p4/ to O. p3/. In contrast to other GPU implementations[13, 16], we focus
our efforts on achieving good performance for a high multipole order (p > 10)
required for MD simulations.

This document is structured as follows: Sect. 2 introduces the FMM, its core
aspects and the role of the M2M operator as well as the functioning of the rotation-
based operators. Section 3 describes the existing CPU/sequential implementation
of the FMM O. p3/ and O. p4/ operators and sets baseline timings for all of
them. Section 4 explains the changes in the application layout and the included
abstraction layers to support the future GPU implementation. Section 5 shows the
implementation details of the GPU-accelerated version using CUDA. In Sect. 6 we
draw conclusions about this work and outline possible future improvements.

2 Theoretical Background

In this section we provide a brief description of the FMM, reviewing its core
aspects and its mathematical foundations. We also briefly describe the role of the
mathematical operators used for shifting. At last, we explain how the application of
rotation-based operators to those expansions is capable to reduce the complexity of
the aforementioned operators from O. p4/ to O. p3/.

Accelerating an FMM-Based Coulomb Solver with GPUs 487

2.1 The FMMWorkflow

The FMM is a fast summation method which is able to provide an approximate
solution to the calculation of forces, potentials or energies within a given precision
goal, namely �E. The FMM developed at JSC is capable of automatically tuning
[4] the FMM parameters for a given energy threshold �E. The method exhibits
linear computational complexity O.N/, resulting from a sophisticated algorithmic
structure. The core aspects of the FMM are: spatial grouping of particles, hierarchi-
cal space subdivision, multipole expansion of the charges and a special interaction
scheme.

The main idea behind the FMM is based on the following intuitive property of the
Coulomb and gravitational potential: the effect of particles close to the observation
point (called target), on the target particle is dominant compared to the effect
produced by remote particles. As opposed to a cutoff scheme, the FMM takes into
account the effects of all particles no matter how remote. Cutoff methods have a
O.N/ complexity, but ignore interactions beyond a cutoff completely.

Consider the particle distribution shown in Fig. 1, for which the remote interac-
tions between two clusters shall be computed: target, with m particles, and source,
with n particles. The FMM is based on the idea that a remote particle from a spatial
cluster will have almost the same influence on the target particle as another one from
the same cluster, given that the inter-cluster distance is large enough. The FMM
therefore groups all particles in the remote cluster into a pseudo-particle. By doing
this, the amount of interactions is effectively reduced to m. This grouping scheme
is also used in reverse, by grouping the target cluster thus requiring n interactions.
When grouping both source and target clusters, the computation reduces to a single
however more complex interaction.

To implement spatial grouping, the simulation space is subdivided to generate
particle groups. The FMM decomposes space recursively in cubic boxes, generating
eight different child boxes from each parent box. This hierarchy of cubes is arranged
in a tree, called octree of depth d. Figure 2 shows an example of this recursive
subdivision visualized in a 2D plane.

(a) (b) (c) (d)

Fig. 1 From left to right: (a) Direct interactions of the particles of one cluster with all particles
in the other cluster. (b) Interaction via source pseudo-particle. (c) Interaction via target pseudo-
particle. (d) Interaction with both source and target pseudo-particles

488 A. Garcia Garcia et al.

Fig. 2 Space subdivision using an octree. From left to right: Trees with depth d D 0, d D 1,
d D 2, and d D 3

Given a certain separation criterion ws, the multipole order p and the depth of the
tree d, the FMM consists of the following steps, called passes:

• Pass 1: Expand charges into spherical multipole moments!lm on the lowest level
for each box, and translate multipole moments !lm of each box up the tree

• Pass 2: Transform remote multipole moments !lm into local moments �lm for
each box on every level

• Pass 3: Translate local moments �lm down the tree towards the leaf nodes
• Pass 4: Compute far field contributions: potentials ˚FF, forces FFF, and energy

EFF on the lowest level
• Pass 5: Compute near field contributions: potentials˚NF, forces FNF, and energy

ENF on the lowest level

This algorithm exhibits a linear computational complexity. Its derivation is
beyond the scope of this work, and can be found in [11]. The first pass is performed
by the P2M operator, which is often considered a preprocessing step, and the M2M
operator, while the second one is done via the M2L operator and the third one
with the L2L operator. This work focuses on the M2M operator. The extension to
the remaining operators M2L and L2L is straightforward and can be implemented
following the same strategies.

2.2 Mathematical Operators

As mentioned in Sect. 2.1, the FMM needs three fundamental mathematical oper-
ators during its workflow, namely M2M, M2L, and L2L. Those operators are
responsible for shifting the multipole expansions up and down the tree levels,
and also to convert remote multipole expansions to local ones at each level. We
will briefly review the first operator to provide the context for the rotation-based
operators, which is described in Sect. 2.3.

Accelerating an FMM-Based Coulomb Solver with GPUs 489

2.2.1 Multipole-to-Multipole (M2M) Operator

The M2M is a vertical operator which shifts the multipole coefficients up to higher
levels of the tree structure. Each box of the 3D tree has eight child boxes in the
next lower level. The M2M operator sums up all the moments of the multipole
expansions of the child boxes at the center of the parent box. This operator is applied
to each level up to the root of the tree. By doing this, each box on every level has
a multipole expansion. This operator is applied in the first pass, and is also known
as A.

From a mathematical perspective, each child multipole expansion!i at the center
ai of that child box i is shifted up to the center aC b of its parent box (see Fig. 3).
Equation (3) shows how the moments !i

jk.ai/ of each child multipole expansion
are shifted by the A operator to produce the moments !i

lm.ai C bi/ of the parent’s
expansion:

!i
lm.ai C bi/ D

lX
jD0

jX
kD�j

Alm
jk .bi/!

i
jk.ai/ : (3)

All the shifted moments of the eight child boxes are finally added up to conform
the multipole expansion at the center of the parent box

!lm.aC b/ D
8X

iD1
!i
lm.ai C bi/ : (4)

a

a+b

y

x

M2M

Fig. 3 The left panel shows the analytical domain of the M2M operator in a 2D tree. The centers
(blue dots) of a sample child box and the parent are shown. The right panel depicts the functioning
of the M2M operator for a 2D system. The operator has O. p4/ complexity

490 A. Garcia Garcia et al.

2.3 Rotation-Based Operators

A set of more efficient operators with O. p3/ computational complexity scaling were
proposed by White and Head-Gordon [15]. The reduced complexity is achieved by
rotating the multipole expansions so that the translations or shifts are performed
along the quantization axis of the boxes (see Fig. 4). This reduces the 3D problem
to a 1D one.

The multipole moments of an expansion with respect to a coordinate system
which has been rotated twice, first by an angle 	 about the z-axis and then by � about
the y-axis, can be expressed as a linear combination of the moments with respect to
the original coordinate system. The rotated multipole expansion (see Fig. 4) can be
expressed as !0lm as shown in Eq. (5):

!0l;m.�; 	/ D
lX

kD�l

p
.l � k/Š.lC k/Šp
.l �m/Š.lC m/Š

dm;kl .�/eik	!l;k : (5)

In the last equation, dm;kl represents Wigner small d-rotation coefficients whose
computation falls beyond the scope of this work. A detailed explanation and
implementation on how to compute them can be found in [9]. The term eik	

represents a factor that is needed for each moment to compute the rotation.
Usually, the operator will compute both terms on the fly, adding a prefactor to
the O. p3/ complexity of this operator. However, that prefactor can be removed by
precomputing and reusing the constants.

Fig. 4 The coordinate system of the box B is rotated to align it along the z0-axis defined by the
quantization direction. The multipole expansion is translated into a multipole expansion around
the center of A. The new multipole expansion is rotated back to the original coordinate system
yielding !000

lm

Accelerating an FMM-Based Coulomb Solver with GPUs 491

3 Existing Implementation

In this section we will describe the existing C++ implementation of the FMM,
which has been implemented within the GROMEX SPPEXA project. This
project addresses the development, implementation, and optimization of a unified
electrostatics algorithm that will account for realistic, dynamic ionization states
(�-dynamics) [6] and at the same time overcome scaling limitations on current
architectures.

We will show benchmarks carried out to determine a baseline for future
optimizations, i.e., the parallel implementation. In addition, this baseline will prove
the effectiveness of the O. p3/ operators.

From an application point of view, the FMM is implemented in a set of
abstraction layers, each on top of another, with different responsibilities. By using a
layered approach, the internal functionality of a layer can be changed and optimized
at any time without having to worry about the other layers. This design provides
flexibility, and it is implemented with the help of templates in the different layers
(see Fig. 5).

As shown in the figure, the implementation is composed of four well distin-
guished layers: (1) the algorithm, (2) data structures, (3) allocator and (4) memory.
The top layer contains the FMM logic itself, i.e., the implementations of the
described passes. Here, we keep the focus on the M2M operator, for which templates
allow us to choose between the O. p4/ or O. p3/ version.

Those implementations need data structures to store the information that is being
processed. In this regard, the algorithm layer leverages to the data structures one.
This layer contains the data types needed for the algorithm, e.g., coefficient matrices
(!), rotation matrices (R), and other simple data structures, including their internal

memory

allocator
<std::allocator>

data
structures

<float/double>
RRR POD

algorithm
<p3/p4>

M2LM2M L2L

Fig. 5 Layout of the existing FMM implementation for CPUs. There are four different abstraction
layers: the algorithm, the data structures, the allocator and the memory. The algorithm layer is
templated to choose between the p3 or p4 operators. The data structures are also templated so that
the underlying data type precision can be chosen. The allocator is templated as well, so that it can
make use of custom or predefined memory allocators

492 A. Garcia Garcia et al.

logic. The templated design allows to choose the precision of the underlying data
types.

The allocator layer enables the data structures to allocate memory for storing
their information. The data structures delegate the memory allocation to an allocator
performing the corresponding calls for allocating and deallocating memory. This
layer is also templated, so any allocator can perform this task.

This existing CPU implementation was tested to establish a set of baseline
performance results. A baseline helps to determine multiple facts: the actual
effectiveness of the reduced complexity operators, the impact of the precomputed
constants, and precision bounds. It will also serve as a starting point to compare the
performance of the GPU implementation.

The benchmarks were carried out on the JUHYDRA cluster at the JSC, featuring
an Intel Xeon E5-2650 CPU. Both versions of the M2M operator,O. p4/ and O. p3/,
were compared. Our benchmarks are focused on this operator since it is the one that
we decided to parallelize on the GPU as a starting point, given the fact that the
optimizations performed over the M2M phase can be easily applied to the M2L and
L2L ones. In addition, it can even be argued that porting the M2M phase to a GPU
implementation is harder than the M2L one, due to less workload and parallelism.
Note that the O. p3/ operators employ some prefactors for the rotation steps. Those
prefactors as well as the Wigner d-matrices are computationally expensive but can
be precomputed to reduce the runtime. We tested both variants of the rotation-based
operators: on the fly and precomputed. The benchmarks were carried out for both
single and double precision floating point datatypes.

As seen in Fig. 6, the M2M O. p3/ on the fly operator is even slower than the
O. p4/ version. However, when all the constants are precomputed the complexity
reduction pays off because most of its prefactor penalty is removed. Nevertheless,
there is still a small prefactor which makes it slower than its O. p4/ counterpart when
the order of poles is small. The single precision plot (Fig. 6 top) shows unexpected
results in the interval for 10–20 multipoles. By taking a closer look, we can point out
a significant runtime increase from multipole order 13 until order 18 for the O. p3/
precomputed operator. The slope of the O. p4/ operator also changes suddenly
after p D 15. This behavior is caused by the limited precision of the float
datatype. When a certain order of poles is requested, underflows in the multipole
representation occur and the numbers fall in the denormalized range of the single
precision type. Because of this, the denormalized exception handling mechanism
of the FPU starts acting, thus increasing the execution time due to additional
function calls. At a certain point, for instance p D 18 in the precomputed operator,
the numbers drop to zero so no additional denormalized exception overhead is
produced. That is the reason why the curve stabilizes after order 18. The float
implementation achieves a 2:5� speedup before denormalization overhead starts at
p D 13.

If we look at the double precision plot (Fig. 6 bottom), the unexpected slope does
not occur since the double representation is able to handle the required precision.
The runtime is reduced by one order of magnitude (13:8� speedup) when using
order 50.

Accelerating an FMM-Based Coulomb Solver with GPUs 493

0 5 10 15 20 25 30 35 40 45 50
10−3

10−2

10−1

100

101

102

cr
os
so
ve
r
p
=
4

2.5×

Multipole Order

R
un
tim

e
(s
)

M2M p3 on the fly

M2M p4 on the fly

M2M p3 precomputed

0 5 10 15 20 25 30 35 40 45 50
10−3

10−2

10−1

100

101

102

cr
os
so
ve
r
p
=
3

13.8×

Multipole Order

R
un
tim

e
(s
)

M2M p3 on the fly

M2M p4 on the fly

M2M p3 precomputed

Fig. 6 Runtimes of a full M2M execution from the lowest level of an FMM tree with tree depth
d D 4 to the highest one, i.e., 4096 M2M operator runs, shifting all boxes into a single one
at the top level. Both M2M variants with O. p4/ and O. p3/ complexity were tested. The O. p3/
operator was tested using non-precomputed constants which were calculated on the fly, and using
those precomputed constants. The upper panel shows the timings using single precision floating
point numbers and the lower panel shows those timings using double precision ones, varying the
multipole order. For single-precision the speedup for the precomputed O. p3/ compared to O. p4/
was 2:5�, for double precision 13:8�. The kinks between multipole order four and six are only
visible on the Sandy Bridge architecture, on Ivy Bridge the kinks are smaller, on Haswell the effect
is not visible

In conclusion, a significant benefit is obtained by using the optimized operators.
However, the complexity reduction implies a more sophisticated implementation
and also a computationally more expensive prefactor, which should therefore be
precomputed. These benchmarks establish a baseline for future improvements.
In the following section, we will discuss the required steps prior to the CUDA-
optimized implementation that will be deployed on a GPU.

494 A. Garcia Garcia et al.

4 Application Layout

Having a performance baseline using the existing CPU implementation, we start the
code transformation into a CUDA-based one that can be deployed on GPU. The
first steps consist of adapting the current application to support computations on the
GPU. For that purpose, we need to allocate the data structures into the GPU memory
so that they can be accessed directly by the CUDA kernels. Since we want to keep
the changes in our codebase to a minimum, we leverage the application layout,
previously described in Sect. 3. Those changes will heavily rely on templates and
additional indirection layers. In this section, we describe the modifications applied
to the aforementioned application layout to support efficient GPU execution.

4.1 Custom Allocator

The data structures need to be moved to GPU memory. This is achieved by explicit
CUDA memory transfer calls whenever those data structures are needed. However,
this approach will clutter the current application code since we need to include
those explicit memory transfer operations in the algorithm layer, sabotaging the
abstraction layer concept described in Sect. 3.

Modern NVIDIA GPUs provide a unified memory model that fits our require-
ments. Since all data structures make use of the allocator abstraction layer, we can
just modify that layer without affecting the rest. In this way, we do not add any
additional logic to the algorithm or the data structures. In addition, the allocator
layer is templated so that we are flexible enough to choose between an allocator for
CPU or GPU memory easily.

In this regard, we developed a custom CUDA managed allocator, which inherits
from the std::allocator class and overrides the allocation and deallocation
methods. It can be plugged in as a template parameter to our allocator abstraction
layer.

In order to ease development, we decided to make use of unified memory
despite its reduced efficiency when compared to other memory transfer operations,
especially when data can be batched. Nevertheless, our current design provides
complete control over the internal memory management mechanisms, so it can be
easily extended to support other memory models or techniques such as overlapping
memory transfers with computation.

4.2 Pool Allocator

The raw CUDA managed allocator has drawbacks if a considerable number of
allocations has to be done. For big problem sizes bad allocations occur due to the
limited amount of memory map areas a process can provide. The Linux kernel value

Accelerating an FMM-Based Coulomb Solver with GPUs 495

vm.max_map_count limited our allocations to 65;536. Since most of our data
structures contain other nested ones, our implementation performs many allocation
calls and for big problem sizes we eventually reach that limit.

There are several ways to solve this problem. In our case, we resorted to
using a pool allocator with a reasonable chunk size to decrease the number of
allocation calls that reach the operating system. This memory management scheme
is integrated in our application as a new abstraction layer between the data structures
and the actual allocator.

The pool allocator allocates chunks of a predefined size and then serves parts
of those chunks to the allocation calls performed by the data structures. The
improvement compared to the previous layout is twofold, (i) it decreases the
execution time since each allocation call has a significant latency penalty, and
(ii) allows to fully utilize the GPU memory without hitting the allocation calls limit.

Thanks to the decoupled design and the templated layers, introducing this middle
level is straightforward. Neither algorithm logic nor data structures code has to be
changed to include a new memory management strategy. We carried out a set of
benchmarks that confirmed that adding this intermediate layer has no performance
impact.

4.3 Merging the CPU and GPU Codebases

The pool allocator enables the application to efficiently deal with big problem sizes.
However, two distinct implementations of the same routines exist for CPU and GPU
architecture. As a result code cannot be reused at the algorithm level and if one
implementation changes, the other has to be changed manually.

CPU kernels for the different operators and the rotation steps take references as
input arguments by design. Additionally these kernels are usually implemented by
a set of nested loops which iterate over all the elements of the coefficient matrix in a
sequential manner. The GPU kernels make use of pointers to those data structures,
and the loop starting points and strides are different since the threads will no
longer iterate sequentially over them but rather choose the data elements to compute
depending on their identifiers or positions in the block/grid.

To merge both implementations into a single codebase, the data structures are
converted from references to pointers for the GPU kernel wrappers or launchers.
The GPU kernels access the corresponding elements of the pointers to the data
structures and call the operator or rotation kernels which make use of references.
These operator and rotation kernels are used by both the CPU and the GPU. Figure 7
shows the final layout of our application with all the aforementioned layers.

496 A. Garcia Garcia et al.

memory unified memory GPUCPU

allocator
std cuda

pool
allocator

data
structures RRRω POD

algorithm M2LM2M L2LCPU &r GPU *p + #macros

Fig. 7 Final application layout after merging the CPU and GPU logic for M2M, M2L, and L2L
operators. The CPU uses references directly and the GPU launchers wrap them as pointers for the
kernels. Also, preprocessor macros allow us to determine the loop starting points and strides, and
specific features depending on the architecture

5 CUDA Implementation

As a starting point for the CUDA-optimized implementation, we focus on the M2M
kernel. As we previously stated in Sect. 3, the optimizations performed over the
M2M phase can be easily reused later for the M2L and L2L ones. Furthermore,
it can even be argued that porting the M2M phase to a GPU implementation is
harder than the M2L one, due to less floating point operations. Hence, an efficient
implementation of M2M automatically enables an even better performance for the
M2L operator, which has a significantly increased workload (see Fig. 8).

Now we will describe the parallelization of the O. p3/ M2M operator, including
both rotation steps, forwards and backwards. We will first focus on how to distribute
the work to expose enough parallelism for the kernel functions to ensure a high GPU
utilization. Then we will take an in-depth look at the different optimization strategies
and CUDA techniques applied to each of the kernels. We will close showing the
results of the accelerated operator and the speedup with respect to the CPU version.

5.1 Exposing Parallelism

A possible way to expose parallelism in a simple manner is to make each thread
compute the whole operator for a single box, i.e., the rotation forward, M2M
operator, and rotation backwards. This naive approach will spawn as many threads
as boxes have to be processed. In the best case scenario we will have .2d/3 boxes in

Accelerating an FMM-Based Coulomb Solver with GPUs 497

0 10 20 30 40 50 60 70 80 90 100

FMM

M2L P2P P2M Forces M2M L2L

Fig. 8 Relative time distribution for the different passes of the FMM. Relative timings obtained
after a full FMM run with 103k particles, d D 4, p D 10 and ws D 1. The CUDA parallelized
versions of the O. p4/ operators [12] were executed on a K40m

m

l

more precision

less precision

al,m+ ibl,m

Multipole moment: ωl,m

or Local moment: μl,m

Fig. 9 Representation of the coefficient matrix datatype with an exemplary number of 15 poles.
As the coefficient matrix grows, the precision increases, so a higher number of poles leads to
more accurate simulations. Both axes are in the range Œ0; p�, this produces a coefficient matrix of
. pC 1/. pC 2/=2 coefficients. The coefficients, which are represented as squares in the picture,
are multipole or local moments depending on the type of the expansion. Each one of them holds a
complex number

the lowest level of the tree. This means that for d D 3 we will launch 512 threads,
and even for d D 4 only 4096 threads will be launched. Even for small block sizes,
the grids will be composed of only a few blocks, preventing us to achieve a high
GPU utilization.

Since there are not enough boxes to be processed, we have to take another
approach to expose more parallelism. Before getting into any more detail, it is worth
taking a look at the main data structure that is processed by the rotation and operator
steps: the coefficient matrix. Figure 9 shows the representation of the coefficient
matrix using only its upper part. It consists of a set of coefficients, representing the
local or multipole moments, which are distributed in a triangular shape along the
horizontal l and the vertical m axes. Each coefficient is represented by a complex
number, and the rotation and operator steps usually iterate over all those coefficients
to apply certain transformations (rotations, shifts, or translations). More parallelism
can be exposed by assigning each warp (group of 32 threads which is the minimum

498 A. Garcia Garcia et al.

b0,0 b1,0 b2,0 b3,0 b4,0 b5,0 b6,0 · · · bp,0

b0,1 b1,1 b2,1 b3,1 b4,1 b5,1 b6,1 · · · bp,1
...

...
...

...
...

...
...

. . .
...

b0,t b1,t b2,t b3,t b4,t b5,t b6,t · · · bp,tg
r
i
d
D
i
m
.
y

gridDim.x

Fig. 10 Grid configuration. Each row is composed by pC 1 blocks b. The grid consists of t rows,
with t being the total number of boxes minus one

≈

w0

w1

w2

w3

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t29 t30 t31

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t29 t30 t31

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t29 t30 t31

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t29 t30 t31

≈
≈

Fig. 11 Block configuration with 32 � 4 threads t. Each block is 32 threads wide and consists of
four warps w of 32 threads each

unit processed in a SIMT fashion by a CUDA-capable device) the task of computing
all the operations required for a certain coefficient.

Accordingly, we created the grid configuration shown in Fig. 10. Each block
row is responsible of a full coefficient matrix. Since each box is represented by
a coefficient matrix, the grid has one row per each box that has to be processed.
Note that by using grid-strided loops [10], we can launch less blocks and distribute
the work accordingly. The block configuration is shown in Fig. 11. Each consists of
four warps of 32 threads thus creating a 32 � 4 2D structure.

Since each row of the grid is responsible of a full coefficient matrix, i.e., the
blockIdx.y determines which coefficient matrix the block processes each block
of the row is assigned to a certain column of the corresponding coefficient matrix.
In other words, the blockIdx.x gets mapped to the l axis as shown in Fig. 12.

Once the blocks are mapped to the coefficient matrix, the next step does the same
with the threads inside those blocks. Since we have groups of 32 threads inside each
block which share the same y position, i.e., each warp has the same threadIdx.y,
we can map the warps to individual coefficients or cells of the assigned column.
This means that the threadIdx.y variable will be mapped to the m dimension of
the coefficient matrix. Figure 13 shows the warp distribution for an arbitrary block.
However, the distribution is not trivial since each column has a different height and
after the fourth column there are more coefficients to process than warps in the
threads.

To overcome this, the warps are reassigned to the remaining coefficients in
a round-robin way. By doing this, warp zero will be always assigned to m 2
f0; 4; 8; : : :g, warp one to m 2 f1; 5; 9; : : :g, warp two to m 2 f2; 6; 10; : : :g and
warp three to m 2 f3; 7; 11; : : :g taking into account the block configuration shown
in Fig. 11. It is important to remark that, even considering that the warps will be

Accelerating an FMM-Based Coulomb Solver with GPUs 499

m

l

b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12 b13 b14 b15

m

l

b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12 b13 b14 b15

Fig. 12 Grid block row distribution. blockIdx.x is mapped to the l dimension of the
corresponding coefficient matrix which is selected by the blockIdx.y, i.e., the y position of
the block in the grid. The left panel shows the block mapping for an exemplary coefficient matrix
with p D 15, so each grid row is composed of 16 blocks. The right panel shows an example of
work assigned to a block. In this case the block b10 with blockIdx.xD 10 will have to compute
all the coefficients of the highlighted column l D 10 of its corresponding coefficient matrix

w0

w1

w2

w3

w0

w1

w2

w3

w0

w1

w2

w3

w0

w1

w2

w3

m

l

b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12 b13 b14 b15

w0

w1

w2

w3

w0

w1

w2

w3

w0

w1

w2

w3

w0

w1

w2

w3

m

l

b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12 b13 b14 b15

Fig. 13 Block warp distribution. Individual elements of the corresponding column of the coeffi-
cient matrix, depending on threadIdx.y, are mapped to warps in a round-robin fashion. The left
panel shows the warp distribution in an exemplary coefficient matrix with p D 15. The right panel
shows an example with the coefficients assigned to the first warp w0 of a block b10 highlighted.
That warp will compute the elements .10; 0/, .10; 4/, and .10; 8/. Although it would be assigned to
the element .10; 12/ too, it will not compute it because it is outside the boundaries of the coefficient
matrix (m > l)

theoretically assigned to a certain m, they will not process that coefficient if it is not
part of the coefficient matrix. Basically, warps will only compute if m � l.

The next step is mapping the threads depending on their threadIdx.x value
which identifies the 32 threads inside each warp. Depending on the step to be
performed (rotation, operator or rotation backwards) different computations will be

500 A. Garcia Garcia et al.

carried out with the coefficient, either by using the elements of the same row or the
ones from the same column.

The process of iterating over the coefficient matrix is implemented by two nested
loops, one for the l dimension and another one for the m one. The computations
carried out for each coefficient are implemented as another nested loop, namely k.
Depending on the aforementioned possibilities, this loop will iterate from k D 1 to
l, from k D m to l, or from k D 1 to m. In the end, individual threads will perform
the work of that inner loop, which means that threadIdx.x gets mapped to k.

With this parallelization scheme, sufficient parallelism is exposed, so that a
low GPU occupancy does not limit the performance. For instance, with d D 3

and p D 15 the GPU will launch 983;040 threads for the previously shown grid
configuration. For d D 4 and p D 15, � 7:9M threads will be launched. For
increasing problem sizes, we might get to a point where we can’t launch all the
blocks we need. However, the mappings are implemented using grid-strided loops,
so we can support any problem size by launching an arbitrary number of blocks and
reusing them in a scalable manner.

Nevertheless, this approach has also some drawbacks. Due to the shape of the
coefficient matrix and the way the m loop is mapped, a workload unbalance is
produced among warps of the same block. Figure 14 shows two examples of warps
with unbalanced load. Ideally, all the warps will perform the same amount of work,
otherwise the early finishers will have to wait for the long running threads to finish
to deallocate their resources. Also, because of the pattern followed by the k loop,

w0

w1

w2

w3

w0

w1

w2

w3

w0

w1

w2

w3

w0

w1

w2

w3

m

l

b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12 b13 b14 b15

3×w0
3×w1
3×w2
2×w3

w0

w1

w2

w3

w0

w1

w2

w3

w0

w1

w2

w3

w0

w1

w2

w3

m

l

b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12 b13 b14 b15

4×w0
4×w1
3×w2
3×w3

Fig. 14 Warp divergence due to different workload among the different warps of the same block.
Blocks get scheduled and some of the warps finish earlier than others so they will be idle waiting
for the others to end their workload. The resources allocated for the early finished warps are wasted
since they will remain allocated until the longest running warp of the same block finishes. The left
panel shows the workload for the different warps of block b10, three warps will compute three
coefficients each but the last warp will only compute two. The right panel shows another example
of divergence in the block b13 since two warps will compute four coefficients each one and the
other two will only calculate three each

Accelerating an FMM-Based Coulomb Solver with GPUs 501

not all the threads execute the same code path, so thread divergence may lead to
performance degradation.

Despite the disadvantages, this strategy provides a starting point to start getting
performance out of the GPU, although it can be improved to avoid the aforemen-
tioned pitfalls.

5.2 Results

We carried out a performance study to determine the improvement achieved by the
CUDA-accelerated implementation. Figure 15 shows the results of that benchmark
for single and double precision representations.

0 5 10 15 20 25 30

10−3

10−2

10−1

100

101

25.0×

cr
os
so
ve
r
p
=
11

Multipole Order

R
un

tim
e
(s
)

CPU (Intel Xeon E5-2650)
CPU (Intel Xeon E5-2650) denorm. are zero
GPU (NVIDIA Tesla K40m)

0 5 10 15 20 25 30

10−3

10−2

10−1

100

101

4.0×

cr
os
so
ve
r
p
=
7

Multipole Order

R
un

tim
e
(s
)

CPU (Intel Xeon E5-2650)
GPU (NVIDIA Tesla K40m)

Fig. 15 Runtimes of full M2M O. p3/ operator execution over the lowest level of an FMM tree
with depth d D 4, i.e., 4096 M2M operator runs, shifting all boxes into a single one at the top
level. Both CPU baseline implementation and GPU-CUDA-accelerated implementation are shown
as a function of multipole order. The upper panel shows the results using single precision floating
point numbers (with and without denormalization handling), the lower panel corresponds to double
precision. All tests were executed on the JUHYDRA cluster at the JSC, the CPU tests ran on an
Intel Xeon E5-2650 while the GPU ones used the NVIDIA Tesla K40m

502 A. Garcia Garcia et al.

For the floating point representation the same problem mentioned in Sect. 3
occurs again: the float datatype is not able to handle the required precision,
leading to exception handling mechanisms of the CPU increasing the execution
time. Currently, GPUs do not support denormalized numbers and truncate to zero
immediately if an underflow occurs. For valid results, with p < 10, no gain is
achieved by using the current GPU implementation.

The double precision benchmarks show that the extended representation is able
to cope with the required precision. The crossover point is located at p D 7, from
there the GPU implementation shows a faster execution time than the CPU one. A
maximum speedup of 4:0� is obtained at the biggest problem size tested, p D 30.

The results confirm that it is possible to improve the performance of the M2M
operator by using a massively parallel device such as a GPU. However, a significant
computational load is required to hide the costs of parallelism. Furthermore, there is
still plenty of room for improvement, further optimizations, and architecture specific
tuning. An in-depth profiling of the aforementioned kernels should provide guidance
for improving the results.

6 Conclusion

In this work, we have shown how the rotation-based M2M operator of the FMM can
be accelerated by executing it on a GPU using CUDA. In addition, we integrated
both the CPU and GPU code into a single codebase using a flexible design, based
on a set of abstraction layers to decouple responsibilities. The starting point was
an existing FMM implementation pipeline with O. p3/ and O. p4/ operators. We
analyzed the implementation by carrying out benchmarks to set a performance
baseline for all the operators. This baseline helped to quantify the performance gain
achieved by using the rotation-based operators.

We enhanced the code to make it able to execute on the CPU or on the GPU in
a transparent manner using CUDA. For this purpose, a set of abstraction layers was
introduced: (1) algorithms, (2) data structures, (3) pool allocator, and (4) memory
allocator. We developed an accelerated version of the rotation-based M2M operator.
The improvements made to that operator can be easily ported to the other ones.
Our benchmarks show that the GPU-accelerated M2M operator runs up to four
times faster than the highly optimized single-core CPU implementation when using
double precision floating point representation.

The highlights of this work can be summarized as follows:

• a flexible application layout with a single codebase for the CPU/GPU implemen-
tation, based on a set of abstraction layers, atop of another:

– an algorithm layer to hold the FMM logic
– a data structures layer containing types, structures and their internal logic
– a pool allocator layer for efficient memory management
– an allocator layer for transparent memory space allocation

Accelerating an FMM-Based Coulomb Solver with GPUs 503

• a CUDA-accelerated version of the rotation-based M2M operator

– flexible and scalable grid-strided loops
– coalesced accesses to the data structures and fast warp reductions using

CUB [14]
– launch bounds to help the compiler optimize kernels
– precomputed factors to save global memory round trips

Here we focused on building the abstraction layout and on accelerating the
rotation-based M2M operator. The acceleration of the remaining operators M2L and
L2L is straightforward since they share the same data representation and building
blocks used for M2M. In addition, all the CUDA kernels can be further optimized
to improve occupancy and reduce divergence. Furthermore, architecture specific
tuning can be applied.

Acknowledgements This work is supported by the German Research Foundation (DFG)
under the priority programme 1648 “Software for Exascale Computing—SPPEXA”, project
“GROMEX”.

References

1. Appel, A.W.: An efficient program for many-body simulation. SIAM J. Sci. Stat. Comput. 6(1),
85–103 (1985)

2. Barnes, J., Hut, P.: A hierarchical O (N log N) force-calculation algorithm. Nature 324, 446–
449 (1986)

3. Brandt, A.: Multi-level adaptive solutions to boundary-value problems. Math. Comput.
31(138), 333–390 (1977)

4. Dachsel, H.: An error-controlled fast multipole method. J. Chem. Phys. 132(11), 244102 (2009)
5. Darden, T., York, D., Pedersen, L.: Particle mesh Ewald: an N log(N) method for Ewald sums

in large systems. J. Chem. Phys. 98(12), 10089–10092 (1993)
6. Donnini, S., Ullmann, R.T., Groenhof, G., Grubmüller, H.: Charge-neutral constant ph

molecular dynamics simulations using a parsimonious proton buffer. J. Chem. Theory Comput.
12(3), 1040–1051 (2016)

7. Eastwood, J.W., Hockney, R.W., Lawrence, D.N.: P3M3DP-the three-dimensional periodic
particle-particle/particle-mesh program. Comput. Phys. Commun. 19(2), 215–261 (1980)

8. Greengard, L., Rokhlin, V.: A fast algorithm for particle simulations. J. Comput. Phys. 73(2),
325–348 (1987)

9. Gumerov, N.A., Duraiswami, R.: Recursive computation of spherical harmonic rotation
coefficients of large degree. CoRR abs/1403.7698 (2014)

10. Harris, M.: CUDA Pro Tip: Write Flexible Kernels with Grid-Stride Loops. http://devblogs.
nvidia.com/parallelforall/cuda-pro-tip-write-flexible-kernels-grid-stride-loops/

11. Kabadshow, I.: Periodic boundary conditions and the error-controlled fast multipole method,
vol. 11. Forschungszentrum Jülich (2012)

12. Kohnke, B., Kabadshow, I.: FMM goes GPU: a smooth trip or a bumpy ride? (2015), GPU
Technology Conference

http://devblogs.nvidia.com/parallelforall/cuda-pro-tip-write-flexible-kernels-grid-stride-loops/
http://devblogs.nvidia.com/parallelforall/cuda-pro-tip-write-flexible-kernels-grid-stride-loops/

504 A. Garcia Garcia et al.

13. Lashuk, I., Chandramowlishwaran, A., Langston, H., Nguyen, T.A., Sampath, R.,
Shringarpure, A., Vuduc, R., Ying, L., Zorin, D., Biros, G.: A massively parallel adaptive fast
multipole method on heterogeneous architectures. Commun. ACM 55(5), 101–109 (2012)

14. Merrill, D.: CUB – collective software primitives (2013), GPU Technology Conference
15. White, C.A., Head-Gordon, M.: Rotating around the quartic angular momentum barrier in fast

multipole method calculations. J. Chem. Phys. 105(12), 5061–5067 (1996)
16. Yokota, R., Barba, L.: Treecode and fast multipole method for N-body simulation with CUDA.

ArXiv e-prints (2010)

Part XIII
ExaSolvers: Extreme Scale Solvers for

Coupled Problems

Space and Time Parallel Multigrid
for Optimization and Uncertainty Quantification
in PDE Simulations

Lars Grasedyck, Christian Löbbert, Gabriel Wittum, Arne Nägel,
Volker Schulz, Martin Siebenborn, Rolf Krause, Pietro Benedusi, Uwe Küster,
and Björn Dick

Abstract In this article we present a complete parallelization approach for sim-
ulations of PDEs with applications in optimization and uncertainty quantification.
The method of choice for linear or nonlinear elliptic or parabolic problems is the
geometric multigrid method since it can achieve optimal (linear) complexity in
terms of degrees of freedom, and it can be combined with adaptive refinement
strategies in order to find the minimal number of degrees of freedom. This optimal
solver is parallelized such that weak and strong scaling is possible for extreme
scale HPC architectures. For the space parallelization of the multigrid method
we use a tree based approach that allows for an adaptive grid refinement and
online load balancing. Parallelization in time is achieved by SDC/ISDC or a space-
time formulation. As an example we consider the permeation through human skin
which serves as a diffusion model problem where aspects of shape optimization,
uncertainty quantification as well as sensitivity to geometry and material parameters
are studied. All methods are developed and tested in the UG4 library.

L. Grasedyck (�) • C. Löbbert
IGPM, RWTH Aachen, Aachen, Germany
e-mail: lgr@igpm.rwth-aachen.de; loebbert@igpm.rwth-aachen.de

G. Wittum • A. Nägel
G-CSC, University of Frankfurt, Frankfurt, Germany
e-mail: wittum@gcsc.uni-frankfurt.de; naegel@gcsc.uni-frankfurt.de

V. Schulz • M. Siebenborn
University of Trier, Trier, Germany
e-mail: volker.schulz@uni-trier.de; siebenborn@uni-trier.de

R. Krause • P. Benedusi
ICS, University of Lugano, Lugano, Germany
e-mail: rolf.krause@usi.ch; pietro.benedusi@usi.ch

U. Küster • B. Dick
HLRS, University of Stuttgart, Stuttgart, Germany
e-mail: dick@hlrs.de; kuester@hlrs.de

© Springer International Publishing Switzerland 2016
H.-J. Bungartz et al. (eds.), Software for Exascale Computing – SPPEXA
2013-2015, Lecture Notes in Computational Science and Engineering 113,
DOI 10.1007/978-3-319-40528-5_23

507

mailto:lgr@igpm.rwth-aachen.de
mailto:loebbert@igpm.rwth-aachen.de
mailto:wittum@gcsc.uni-frankfurt.de
mailto:naegel@gcsc.uni-frankfurt.de
mailto:volker.schulz@uni-trier.de
mailto:siebenborn@uni-trier.de
mailto:rolf.krause@usi.ch
mailto:pietro.benedusi@usi.ch
mailto:dick@hlrs.de
mailto:kuester@hlrs.de

508 L. Grasedyck et al.

1 Introduction

From the very beginning of computing, numerical simulation has been the force
driving the development. Modern solvers for extremely large scale problems require
extreme scalability and low electricity consumption in addition to the properties
solvers are always expected to exhibit—like optimal complexity and robustness.
Naturally, the larger the system becomes, the more crucial is the asymptotic
complexity issue. In this article, in order to get the whole picture, we give a
brief review of recent developments towards optimal parallel scaling for the key
components of numerical simulation. We consider parallelization in space in Sect. 2,
in time in Sect. 4, and with respect to (uncertain) parameters in Sect. 6. These three
approaches are designed to be perfectly compatible with each other and can be
combined in order to multiply the parallel scalability. At the same time they are kept
modular and could in principle also be used in combination with other methods. We
address the optimal choice of CPU frequencies for the components of the multigrid
method in Sect. 3. This serves as a representative first step for the general problem
of finding an energy optimal solver, or respectively energy optimal components.
Finally, in Sect. 5 the whole simulation tool is embedded in a typical optimization
framework.

2 Parallel Adaptive Multigrid

To accommodate parallel adaptive multigrid computation, we developed the simu-
lation system UG [2], which is now available in the fourth version, UG4 [21, 28].
UG4 is a solver for general systems of partial differential equations. It features
hybrid unstructured grids in one, two and three space dimensions, a discretization
toolbox using finite element and finite volume schemes of arbitrary order and
geometric and algebraic multigrid solvers. It allows for adaptive grid refinement.
Furthermore, UG4 features a flexible and self adaptive graphical user interface based
on VRL [13].

In our first test we investigate the scaling properties of the geometric multigrid
method in UG4 by a weak scaling test for the simple 3d-Laplace model problem (cf.
Sect. 5 for strong scaling tests). As can be seen from Table 1 and Fig. 1 we achieve
almost perfect weak scaling.

In our second numerical test we consider the weak scaling efficiency for a slightly
more involved structural mechanics problem, 3d linear elasticity. The results in
Table 2 show the same almost perfect weak scaling.

Adaptivity is a key tool for HPC, the larger the problem becomes, the more
important adaptive grid resolution becomes. This can be seen from the following
numerical test example computed by Arne Nägel, Sebastian Reiter and Andreas
Vogel, see also [29]. To compute diffusion across human skin, we model the main
barrier, i.e. the uppermost skin layer, the stratum corneum. The stratum corneum

Space and Time Parallel Multigrid 509

Table 1 Weak scaling on JUQUEEN. 3d-Laplacian, uniform grid, finite volumes with linear
ansatz functions, geometric multigrid V-cycle, damped Jacobi smoother (1 D 2 D 2). We denote
by p the number of processors, by dofs the number of degrees of freedom, by Niter the number of
multigrid iterations, and by Tass; Tsetup, and Tsolve the elapsed time for the assembly, setup, and
solve, respectively

p L dofs Niter Tass (eff.) Tsetup (eff.) Tsolve (eff.)

64 8 4;198;401 10 4.46 – 2.22 – 3.04 –

256 9 16;785;409 10 4.47 99:6 2.17 102:2 3.08 98:6

1;024 10 67;125;249 10 4.46 99:9 2.32 95:6 3.13 97:0

4;096 11 268;468;225 10 4.40 101:3 2.26 98:3 3.17 95:8

16;384 12 1;073;807;361 10 4.42 100:9 2.38 98:3 3.27 93:0

65;536 13 4;295;098;369 10 4.42 100:9 2.47 89:7 3.40 89:5

262;144 14 17;180;131;329 10 4.47 99:7 2.62 84:9 3.55 85:5

Fig. 1 Weak scaling on JUQUEEN. 3d-Laplacian, uniform grid, finite volumes with linear ansatz
functions, geometric multigrid V-cycle, damped Jacobi smoother (1 D 2 D 2). Plotted is the
elapsed time Tass; Tsetup, and Tsolve for the assembly, setup and solve phase, respectively, for p D
64; : : : ; 262;144 processors (From [21])

consists of dead horn cells, the corneocyctes, which are glued together by lipid
bilayers. As geometry model we use the so-called cuboid model as shown in Fig. 2.
To compute diffusion of a substance across stratum corneum, we use a diffusion
equation with constant diffusivities in the two different materials, corneocytes and
lipids, and add a transmission condition for the interior material boundaries

@c.x; t/
@t

D div .k.x/rc.x; t//

with the diffusivities

k.x/ D
�
klip; x in lipid layer
kcor; otherwise

510 L. Grasedyck et al.

Table 2 Weak scaling on JUQUEEN. 3d linear elasticity, uniform grid, finite volumes with linear
ansatz functions, geometric multigrid V-cycle, damped Jacobi smoother (1 D 2 D 2). Legend as
in Table 1

p L dofs Tass C Tsetup C Tsolve (eff.)

1 3 14;739 7:33 –

8 4 107;811 7:42 98:8

64 5 823;875 7:58 96:8

512 6 6;440;067 7:79 94:2

4;096 7 50;923;779 7:90 92:8

32;768 8 405;017;091 8:08 90:7

262;144 9 3;230;671;875 8:21 89:4

Fig. 2 Cuboid model of
human stratum corneum. The
corneocytes are modeled by
cuboids, measuring
30� 30�m horizontally and
1�m in vertically, the lipid
layer is assumed to be 100 nm
thick

Table 3 Weak scaling on
JUQUEEN, skin problem 3d
cuboid, uniform refinement,
geometric multigrid V-cycle,
damped Jacobi smoother
(1 D 2 D 3, ! D 0:6),
base level 4, base solver LU.
Legend as in Table 1

p L dofs Niter Tass Tsetup Tsolve

16 6 290;421 25 1:76 8:17 20:23

128 7 2;271;049 27 1:77 8:20 22:31

1;024 8 17;961;489 29 1:78 8:45 24:10

8;192 9 142;869;025 29 1:78 8:48 23:35

65;536 10 1;139;670;081 29 1:79 8:59 24:79

and the transmission condition

Kcor=lip � clip.x; t/ jn
�

D ccor.x; t/ jn
C

for the interior material boundaries. The transmission condition describes the so-
called partitioning effect caused by the lipophilicity, respectively hydrophilicity,
of the diffusing substance. The problem here is the extreme anisotropy, which is
combined with the jumping diffusivities of the material. Together, these features
cause an optimal barrier effect as described in [12, 20]. We used this model for a
scaling study with uniform refinement. The results are shown in Table 3. The same
model was used to study the influence of adaptive grid refinement in parallel. To that
end, we did a weak scaling study of this problem with adaptive refinement using a
residual error estimator as refinement criterion and compared this with the uniform
refinement results. Plotting this into one graph, we obtain the results in Fig. 3.

Space and Time Parallel Multigrid 511

Fig. 3 Error reduction per degrees of freedom for uniform and adaptive refinement in parallel
(From [29])

From that we conclude:

• Using the full machine with the adaptive approach, we gain an accuracy
comparable to the one with a computer 512 times as large.

• Adaptivity is a leading method for power saving. To reach the same error with
the adaptive method, you need just 1024 CPUs instead of 65,536 CPUs in the
uniform case or using 65,536 CPUs for the adaptive computation, we would
need a computer 512 times larger, i.e. with 33,554,432 CPUs, to reach the same
accuracy on a uniform grid. This means saving 99.5 % in CPU time and in power
consumption.

3 Empirically Determined Energy Optimal CPU Frequencies

Besides improved scaling properties also energy efficiency poses a challenge that
needs to be tackled in order to enable exascale computing. This is due to rising
energy costs, a limited availability of electric power at many sites as well as
challenges for heat dissipation. From our point of view, increasing energy efficiency
requires approaches on multiple fields. The most important one will be efficient
algorithms as addressed in the previous and following sections. Furthermore,
efficient implementations of these algorithms are required and the resulting codes
need to be executed on energy efficient hardware. Moreover, the CPU’s clock
frequency may be adjusted according to the current load. In this section, we will
give an overview of our approach to do the latter. A detailed description of this
method has already been published in [6]. Hence, we just give a summary here and
refer to the aforementioned document regarding further details.

512 L. Grasedyck et al.

3.1 Approach

Our purpose is to figure out the maximum energy saving potentials and correspond-
ing runtime impacts achievable by adjusting the CPU’s clock frequency. We hence
try to minimize the energy required to solve a given problem. This energy can be
determined by E D R t2

t1
P.t/ dt with P.t/ denoting the present power consumption

of the corresponding code, running from time t1 to t2. According to [4], P can be
approximated by P D CV2.t/f .t/ where C denotes the semiconductor’s capacity
and V.t/ respectively f .t/ denote the time dependent supply voltage as well as clock
frequency of the CPU. Hence, reducing f .t/ and V.t/ by so-called dynamic voltage
and frequency scaling (DVFS), decreases power but may increase the runtime and
therefore energy consumption.1 In phases with intensive memory access, however,
one may observe only a slight increase of runtime because the CPU is anyway forced
to wait on the memory subsystem most of the time. However, predicting memory
access characteristics in complex codes is a challenging task. Thus, it is also hard to
predict the optimal clock frequency and we therefore deploy an empirical approach.
Linux also does this in its standard configuration but clock frequency decisions are
based on an idle time analysis. In contrast to this, we take advantage of knowledge
about potential phase boundaries and adjust the clock frequency immediately to the
optimal value instead of spending time for a runtime analysis first.

In order to do so, we employ preparatory measurements to figure out energy
optimal clock frequencies and utilize them in subsequent production runs. The
overhead induced by this method is negligible if it is possible to determine optimal
frequencies within a single node or timestep and use them within plenty of those.
The core of our approach is to run the entire target code at a fixed clock frequency,
measure the resulting power consumption over time, and repeat this procedure with
all the available frequencies. The resulting energy consumption of a routine can be
determined by integrating the measured power over the routine’s runtime. Since all
routines have been run and profiled at all available frequencies, one can now—per
routine—pick out the optimal ones in terms of energy. Hence, phases with varying
memory access characteristics can be reflected by adapting the clock frequency per
routine to its optimal value.

We emphasize that—while minimizing energy—this method may significantly
increase the runtime. Nevertheless we deploy it because we are interested in the
maximum energy saving potentials and corresponding runtime impacts of DVFS, as
stated above.

1We use the commonly utilized term “energy consumption” despite the fact that electrical energy
is converted to thermal energy.

Space and Time Parallel Multigrid 513

3.2 Implementation Details

In order to implement the aforementioned approach, a measurement method is
required that yields highly reliable and time correlated results. We measure the
actual supply voltage V and current I of the used CPU and its associated memory
modules as close to these components as possible. The current flow I can be
determined according to Ohm’s law as I D VR

R with VR denoting the voltage drop
over a high precision shunt R D 0:01˝ in the CPU’s supply line. Based on these
values, one can calculate the present power consumption by P D VI. The required
measurements are performed by an A/D converter in a separate machine with high
accuracy (�relative < ˙1:5%) and a time resolution of 80�s.

As already mentioned before, integrating P over time yields the energy spent
in a particular routine. The corresponding time interval is determined by calls to
gettimeofday() from within the code to be evaluated. This method requires a
precise synchronization between the real time clocks of the compute node and the
measurement hardware. The Precision Time Protocol (PTP) is employed for this
purpose via a separate ethernet link. By this method, an average time deviation of
about 20�s can be achieved, which is below the time resolution of the used A/D
converter and therefore admissible.

Unfortunately it is not possible to separate the power consumption of distinct
components—especially CPU cores—with the described method. Parallel runs on
multiple cores without tight synchronization and perfect load balancing will hence
blur the measured power consumption. We therefore restrict our method to serial
runs for a start. Parallel runs might nevertheless be regarded in future research.

In order to compensate for OS jitter as well as other transients, five runs of every
test case are evaluated and their median is used in further processing.

Since the time resolution of our measurement system is 80�s, it is not possible to
make reasonable statements on the energy consumption of routines with a runtime in
or below this order of magnitude. We therefore take into account only routines with a
runtime of at least 1ms. Since the used profiler solely provides accumulated times,
tac
n � 1ms is used as the selection criterion, where tac denotes the accumulated

runtimes (including subroutine calls) of all routine calls and n denotes their number.
In analogy to this, optimal clock frequencies are selected based on the average
energy consumption of entire calls (i.e., including subroutine calls) to the respective
routine. These criteria are just one of many possible choices and other ones will be
investigated in future research.

According to [14], the frequency transition latency of current CPUs is substantial.
In case of a rapid series of frequency transition requests it is hence not reasonable to
immediately set the new frequency in the target production runs. As a consequence,
we wait for a period of 10�s after the first request of the series, track further ones,
and serve only the latest. The choice of this value will also be subject to future
research.

514 L. Grasedyck et al.

Unfortunately, the library call used for setting the frequencies2 is blocked until
completion of the transition (which may be a substantial amount of time), although
the CPU can be used in the usual manner during this period. Because of the possibly
large number of frequency transitions, this may decrease the overall performance
and at the same time raise the energy consumption to an extent that may diminish
the benefits of optimal frequency usage. We therefore trigger the actual frequency
transition from within a concurrent helper thread, cf. [6].

3.3 Evaluation

In order to evaluate the described approach, it has been applied to the already
mentioned numerical simulation code UG4. As a representative application, UG4
has been deployed to solve a time dependent convection–diffusion problem using
the vertex centered finite volume method on a two dimensional grid with the
geometric multigrid solver and several combinations of setup parameters, partic-
ularly different smoothers. Every timestep involves several phases with differing
characteristics, i.e., discretization and system assembly (memory-bounded), system
solution (CPU-bounded), as well as output of results (potentially I/O-bounded),
which may be exploited by the approach by means of differing clock frequencies.
The corresponding runs have been executed on an Ivy Bridge compute node, cf. [6]
for technical details.

To quantify the effects of the approach, we compared the resulting runtime and
energy consumption of entire runs to those resulting from Linux’ default clock
frequency management. In our first experimental measurements (cf. [6]) we have
found an average energy saving potential of about 10 %, which was, however,
contrasted by an average runtime penalty of about 19 %. By further investigating
our method since publishing those data, we have found that results are not fully
reproducible in between different runs of the approach. Despite this fact, it still
seems to be possible to reduce the energy requirements by allowing an increased
runtime.

One shortcoming of the approach is the limitation to systems with special
measurement equipment. Hence, it will be important to investigate the precision of
power estimation by means of hardware performance counters with respect to our
approach, in order to use them for the preparatory measurements on conventional
systems.

In future research, we will tackle these problems in order to enable full
reproducibility. We will, moreover, try to reduce the induced runtime penalty and
expand the method to multiple active cores within a socket.

2cpufreq_set_frequency()

Space and Time Parallel Multigrid 515

4 Parallel in Time Multigrid

Firstly we mention an inexact variant of the well known time integrator Spectral
Deferred Correction (SDC); SDC is commonly used as a smoother for multilevel
algorithms in time. The Inexact SDC (ISDC) algorithm can reduce significantly the
computational cost of SDC. In fact in SDC, a full system solution is required for
an implicit, or semi-implicit strategy. On the other hand in ISDC few multigrid V-
cycles are used to get an approximate solution. The effectiveness of this technique
is due to the iterative nature of SDC that provides an accurate initial guess for the
multigrid cycles. This method has been tested on the heat equation (see Table 4) and
Viscous Burgers’ equations in [27].

The natural usage of the ISDC time stepper is in the context of multilevel time-
parallel algorithms, e.g. MLSDC [26] or PFASST [7], based originally on SDC.
Both schemes perform SDC sweeps in a hierarchy of levels and use a FAS correction
term for the spatial representation of the problem on different levels. ISDC can
further improve parallel efficiency of those parallel-in-time methods [16].

Secondly we mention the results in the context of a multigrid space–time
solution method for the Navier-Stokes equations with periodic boundary conditions
in time [3]. The Navier-Stokes equations are discretized in space–time with high
order finite differences on a staggered grid. The discretization leads to a large, ill-
conditioned, non-linear system that has to be solved in parallel. Picard iterations
are used to treat the non-linearity and we design a block Gauss-Seidel smoother
for a space–time multigrid algorithm. A local Fourier analysis is used to analyze
the smoothing property of such a method on a staggered grid. The space–time
domain is fully decomposed resulting in a parallel-in-time method. Convergence
and weak/strong scaling were successfully tested (see Fig. 4).

Table 4 Accumulated
Multigrid V-cycles over all
sweeps to reduce the SDC or
ISDC residual below 5 � 10�8

for different values of the
diffusion coefficient k in the
heat equation and the number
of quadrature nodes M

k M SDC ISDC Savings (%)

1 3 16 12 25

5 23 20 13

7 32 28 13

k M SDC ISDC Savings (%)

10 3 36 20 44

5 61 40 34

7 79 47 41

k M SDC ISDC Savings (%)

100 3 106 52 51

5 150 104 31

7 187 167 11

516 L. Grasedyck et al.

0 5 10 15 20 25 30 35
10−16

10−12

10−8

10−4

100

Picard iteration

E
rr
or

MG cycles = 2
MG cycles = 5
MG cycles = 10

1 2 4 8 16 32 64

20

40

60

Processors

S
p
ee
d
u
p

Fig. 4 Left: convergence of the Picard iteration with different numbers of multigrid cycles per
iteration. Right: strong scaling results with processors equally distributed in space and time

5 Scalable Shape Optimization Methods for Structured
Inverse Modeling in 3D Diffusive Processes

We consider the inverse modeling of the shape of cells in the outermost layer
of the human skin, the so-called stratum corneum. For this purpose we present a
novel algorithm combining mathematical shape optimization and high performance
computing. In order to show the capabilities of this method, we assume that we have
an experiment providing a time-series of data describing the spatial distribution of a
tracer in a skin sample. Based on this information, we aim at identifying the structure
and the parameters matching the experimental results best. The starting point is a
common computational model for the so-called stratum corneum based on tightly
coupled tetrakaidecahedrons. For a review, the reader is referred, e.g., to [17, 18].

From a computational point of view, this means to evaluate the model equations,
compute the defect to the measurements, evaluate sensitivities of this defect with
respect to the shape of the parameter distribution and finally update the shape in
order to minimize the defect. A special focus is on the scalability of the optimization
algorithm for large scale problems. We therefore apply the geometric multigrid
solver UG4 [28].

In this particular application, we are dealing with flows dominated by diffusion.
We thus choose the classical parabolic model equation for the simulation together
with standard finite elements. By c we denote the concentration of the quantity of
interest in the domain˝ D ˝1[˝2 over the time interval Œ0;T�. At the initial time
t D 0, the concentration c is fixed to homogeneously zero in the entire domain and
one at the upper boundary �top. The other boundaries denoted by �out are modeled
such that there is no flux across them. The permeability of the domain˝ is given by
a jumping coefficient k taking two distinct values k1 and k2 in˝1 and˝2. It can thus
be thought of as a homogeneous material with inclusions of different permeability

Space and Time Parallel Multigrid 517

separated by the interior boundary �int. The underlying model is given by

min J.˝/ WD 1

2

MX
iD1

Z
˝

.c.ti/� Nc.ti//2dxC �
Z
�int

1 ds (1a)

s.t.
@c

@t
� div.krc/ D f in ˝ � .0;T� (1b)

c D 1 on �top � .0;T� (1c)

�c� D 0 ;
�

k
@c

@n

�

D 0 on �int � .0;T� (1d)

@c

@n
D 0 on �out � .0;T� (1e)

c D c0 in ˝ � f0g : (1f)

The first term in (1a) tracks the observations and the second term is a perimeter
regularization. Thus, the optimization tends to shapes �int with minimal surface
area. Equations (1d) describe the continuity of the concentration and of the flux
across �int.

The corresponding adjoint equation, which is obtained by deriving the
Lagrangian (cf. [25]) of problem (1a), (1b), (1c), and (1d) with respect to the
state c, then reads as

�@p
@t
� div.krp/ D

(
�.c � Nc/ in ˝ � ft1; : : : ; tMg
0 in ˝ � Œ0;T/ n ft1; : : : ; tMg

(2a)

p2 D k1
@p

@n
; p D 0 in ˝ � fTg (2b)

�p� D 0 ;
�

k
@p

@n

�

D 0 on �int � Œ0;T/ (2c)

p1 D �k1p ; @p

@n
D 0 on �out � Œ0;T/ (2d)

p D 0 on �top � Œ0;T/ : (2e)

In order to derive the derivative with respect to the shape, first the space of
feasible shapes has to be defined. For more details on the connection of shape
calculus and shape manifolds, see [22]. We consider the manifold

Be.S
2;�3/ WD Emb.S2;�3/=Diff.S2/ (3)

of smooth embeddings Emb.S2;�3/ of the unit sphere S2 into �
3. Let b 2

Be.S2;�3/ be a feasible shape, then the tangent space to the manifold in b is given

518 L. Grasedyck et al.

by all smooth deformations in normal direction

TbBe D fh j h D ˛n; ˛ 2 C1.S2;�/g : (4)

Additionally, we need to equip the tangential space with an inner product. Here
we take the so-called Sobolev metric for a constant � > 0 given by

g1 W TbBe � TbBe ! �; .u; v/ 7!
Z
b
h.id � ��b/u; vi ds : (5)

The symbol �b denotes the tangential Laplace or Laplace-Beltrami operator along
b. This inner product determines the representation of the shape gradient which
is then the actual update to the shape in each optimization step. The Sobolev inner
product with the Laplace-Beltrami operator and a proper parameter � ensure smooth
shape deformations such that the optimized shape remains in Be.

The shape derivative in direction of a smooth vector field V W ˝ ! �
3 is

defined as

dJ.˝/ ŒV� WD lim
h!0

J.˝h/� J.˝/

h
(6)

where ˝h D fxC h � V.x/ j x 2 ˝g is perturbed according to V . For the underlying
model equations the shape derivative is derived in [25] and is given by

dJ.˝/ŒV� D
Z
�int

�Z T

0

hV;ni
�

�2k @c
@n
@p

@n
C krcTrp

�

dtC hV;ni��
�
ds

(7)

where � W �int ! � denotes the sum of the principle curvatures of the variable
surface �int.

In most applications, the measurements Nc are not available as a continuous
function. There is rather a set of discrete measurements in space. We thus apply
radial basis functions in order to interpolate Nc to the finite element nodes where c is
given.

The next step is to obtain a descent direction which can be applied as a
deformation to the mesh. On each triangle � � �int we evaluate the quantity

ı0 WD
�

�2k @c
@n
@p

@n
C krcTrp

�

(8)

i.e., the jump of the value in brackets between in two opposing tetrahedra on �int

sharing a common triangle. Rescaling n, we define the vector

g0 WD ı0n: (9)

Space and Time Parallel Multigrid 519

For linear finite elements, both ı0 and gd are piecewise constant on each surface
triangle. Thus, in order to be consistent with the curvature, which is available in
each surface node, we project gd onto a vector gc in the space of piecewise linear
basis functions via the L2 projection, i.e.,

Z
�int

gc v ds D
Z
�int

gd v ds (10)

for all piecewise linear trial functions v on �int. By solving .id� ��b/g D gc with a
discretization of the Laplace-Beltrami operator as derived in [15] we finally obtain
the representation of the shape gradient g.

One optimization iteration can be summarized in the following steps:

1. Evaluate measurements on current grid via radial basis function representation,
2. solve parabolic and its adjoint PDE with geometric multigrid,
3. compute ı0 and integrate over time,
4. L2 projection of piecewise constant gradient to linear basis function space and

add curvature for regularization,
5. solve Laplace-Beltrami equation for the representation of the gradient in the

Sobolev metric,
6. solve linear elasticity equations with g as Dirichlet condition on �int and deform

the mesh.

The algorithm described here is implemented within the software toolbox
UG4 [28]. This software is known to be scalable and features parallel multigrid
solvers [21]. Numerical experiments were conducted on the HERMIT3 supercom-
puter.

The investigation of the scalability is depicted in Fig. 5a–d. The computations
shown are based on a coarse grid with 9923 elements and, due to uniform refine-
ments, a fine grid with 325;156;864 elements on the 5th level. For strong scalability
(cf. Fig. 5a–c), one observes that most timings decrease, when p increases. All
operations not involving any solver, show this decrease. We can explain the
saturation for larger number of cores by the time the coarse grid solver requires,
which is a natural behavior. Also the weak scalability, which can be seen in Fig. 5d,
reflects our expectations. In the decreasing times, for the gradient computation one
clearly sees the difference in the asymptotic behavior of volume cells and surface
cells. A more detailed analysis can be found in [19].

In our future work we will focus especially on two issues of the presented
method. First, due to the incorporation of the shape gradient as a Dirichlet condition
in the mesh deformation, the iterated finite element grids tend to have overlapping
elements. In [23] we present shape metrics which circumvent this issue and
additionally lead to good mesh qualities. Second, the scalability of the presented

3HLRS, Stuttgart, Germany, http://www.hlrs.de/systems/platforms/cray-xe6-hermit/

http://www.hlrs.de/systems/platforms/cray-xe6-hermit/

520 L. Grasedyck et al.

Fig. 5 Scaling of different components of the algorithm in first optimization iteration. (a) Strong
scaling on level 3. (b) Strong scaling on level 4. (c) Strong scaling on level 5. (d) Weak scaling,
increment factor 8 for cells and processors. (e) Legend (From [19])

approach is affected by the necessity to solve PDEs on surfaces only. In [24]
equivalent formulations for (7) using volume formulations are investigated which
overcome the effect on the scalability.

6 Uncertainty Quantification

As a typical parameter-dependent extreme scale problem we consider a PDE
involving diffusion coefficients that are parametrized by p 2 P D Œ0; 1�d,

div .k.x;p/rc.x;p// D f .x;p/; x 2 ˝.p/ C b:c: (11)

and assume that for fixed parameters p 2 P a solution c.x;p/ is computed in parallel
by the UG4 library. The parameters could, e.g., be piecewise diffusion coefficients
in each corneocyte. However, we are not interested in the whole solution c of (11)
itself but rather in a quantity 	 W P ! R, e.g. the integral mean of the solution
c.�;p/ over a subset ˝	 :

	.p/ D 1

j˝	j
Z
˝	

c.x;p/ dx : (12)

Space and Time Parallel Multigrid 521

Since the parameter set P is d-dimensional, even a discretization with 5 parameter
values for each component gives rise to 5d possible combinations, which exceeds
the estimated number of particles in the observable universe already for d � 150

parameters. Therefore, the full tensor cannot be stored or computed, but rather
an extremely data-sparse approximation of it. This approximation is sought in the
hierarchical low rank Tucker format [8, 11].

In [1, 10] we have devised a strategy for parallel sampling of tensors in the
hierarchical Tucker format, i.e. we compute a few of the values 	.p/ and derive all
others from these—based on the assumption that 	.�/ can be approximated in the
data sparse low rank hierarchical Tucker format (cf. [5]). In this context sampling
means that only certain entries of the tensor are required as opposed to intrusive
methods that require us to solve the underlying system of PDEs in the tensor format.
The sampling strategy that we propose is guided by the idea that samples are taken
one after the other and that later samples can be adapted to the already obtained
information of prior samples. This is in contrast to tensor completion strategies [9]
where the samples are taken randomly (perfectly parallelizable) and the tensor is
completed afterwards.

As a result of [10], parallelization of the (adaptive) sampling process is possible
with an almost optimal speedup. Since the method is only a heuristic, it would be
helpful to obtain an a posteriori estimate of the approximation quality. For this, we
require

• a representation of the underlying (discrete) operator A, the right-hand side b,
and the solution c in the hierarchical Tucker format,

• to approximately compute the (discrete) residual r D b � Ac,
• to estimate the accuracy by relating it to the residual.

This, however, is still under development. As a first step into this direction, we have
distributed the hierarchical low rank tensor according to the dimension tree layout
over 2d � 1 nodes (here we use a complete binary tree and consider only powers
of 2 for d). For such a distributed tensor the parallel tensor arithmetic has to be
developed. One key ingredient is the evaluation of the tensor, i.e. extracting a single
entry from the compressed representation. This procedure has been parallelized and
gives the results in Table 5.

Table 5 Parallel weak
scaling of the tensor
evaluation for distributed
tensors. The tensor is of size
100;000d , the number of
processors used is 2d � 1, the
internal rank is k D 500 for
every node in the dimension
tree

d Parallel time (s) Serial time (s) Speedup

4 0:127 0:246 1:9

8 0:261 0:777 3:0

16 0:433 1:880 4:3

32 0:627 4:206 6:7

64 0:882 8:673 9:8

128 0:869 18:82 21:6

256 1:057 38:09 36:0

522 L. Grasedyck et al.

We observe that the parallel speedup is roughly 36 for a tensor in dimension
d D 256with 511 processors. The loss is due the fact that the nodes in the dimension
tree have to be processed sequentially one level after the other (which was expected).
In addition to distributing the data of the tensor over several nodes, we also gain a
considerable speedup.

7 Conclusion

We have presented the development of a parallel multigrid based solver for complex
systems and tasks such as shape optimization or uncertainty quantification within
the unified UG4 software library. The modular parallelization in space, time, and
with respect to parametric dependencies allows us to provide the software for
computing way beyond exascale.

Acknowledgements All ten authors gratefully acknowledge support from the DFG (Deutsche
Forschungsgemeinschaft) within the DFG priority program on software for exascale computing
(SPPEXA), project Exasolvers.

References

1. Ballani, J., Grasedyck, L.: Hierarchical tensor approximation of output quantities of parameter-
dependent PDEs. SIAM/ASA J. Uncertain. Quantif. 3(1), 852–872 (2015)

2. Bastian, P., Wittum, G.: Robustness and adaptivity: the UG concept. In: Hemker, P., Wesseling,
P. (eds.) Multigrid Methods IV, Proceedings of the Fourth European Multigrid Conference.
Birkhäuser, Basel (1994)

3. Benedusi, P., Hupp, D., Arbenz, P., Krause, R.: A parallel multigrid solver for time-periodic
incompressible Navier–Stokes equations in 3d. In: Karasözen, B., Manguoglu, M., Tezer-
Sezgin, M., Göktepe, S., Ugur, Ö. (eds.) Numerical Mathematics and Advanced Applications
– ENUMATH 2015. Springer, Ankara (2016)

4. Corporation, I.: Enhanced Intel R
� SpeedStep R

� Technology for the Intel R
� Pentium R

� M
Processor. White Paper (2004). http://download.intel.com/design/network/papers/30117401.
pdf

5. Dahmen, W., DeVore, R., Grasedyck, L., Süli, E.: Tensor-sparsity of solutions to high-
dimensional elliptic partial differential equations. Found. Comput. Math. 1–62 (2015). http://
dx.doi.org/10.1007/s10208-015-9265-9

6. Dick, B., Vogel, A., Khabi, D., Rupp, M., Küster, U., Wittum, G.: Utilization of empirically
determined energy-optimal CPU-frequencies in a numerical simulation code. Comput. Vis. Sci.
17(2), 89–97 (2015). http://dx.doi.org/10.1007/s00791-015-0251-1

7. Emmett, M., Minion, M.L.: Toward an efficient parallel in time method for partial differential
equations. Commun. Appl. Math. Comput. Sci. 7, 105–132 (2012)

8. Grasedyck, L.: Hierarchical singular value decomposition of tensors. SIAM J. Matrix Anal.
Appl. 31, 2029–2054 (2010)

9. Grasedyck, L., Kluge, M., Krämer, S.: Variants of alternating least squares tensor completion
in the tensor train format. SIAM J. Sci. Comput. 37(5), A2424–A2450 (2015)

http://download.intel.com/design/network/papers/30117401.pdf
http://download.intel.com/design/network/papers/30117401.pdf
http://dx.doi.org/10.1007/s10208-015-9265-9
http://dx.doi.org/10.1007/s10208-015-9265-9
http://dx.doi.org/10.1007/s00791-015-0251-1

Space and Time Parallel Multigrid 523

10. Grasedyck, L., Kriemann, R., Löbbert, C., Nägel, A., Wittum, G., Xylouris, K.: Parallel tensor
sampling in the hierarchical tucker format. Comput. Vis. Sci. 17(2), 67–78 (2015)

11. Hackbusch, W., Kühn, S.: A new scheme for the tensor representation. J. Fourier Anal. Appl.
15(5), 706–722 (2009)

12. Heisig, M., Lieckfeldt, R., Wittum, G., Mazurkevich, G., Lee, G.: Non steady-state descriptions
of drug permeation through stratum corneum. I. The biphasic brick-and-mortar model. Pharm.
Res. 13(3), 421–426 (1996)

13. Hoffer, M., Poliwoda, C., Wittum, G.: Visual reflection library: a framework for declarative gui
programming on the java platform. Comput. Vis. Sci. 16(4), 181–192 (2013)

14. Mazouz, A., Laurent, A., Benoît, P., Jalby, W.: Evaluation of CPU frequency transition latency.
Comput. Sci. 29(3–4), 187–195 (2014). http://dx.doi.org/10.1007/s00450-013-0240-x

15. Meyer, M., Desbrun, M., Schröder, P., Barr, A.H.: Discrete differential-geometry operators for
triangulated 2-manifolds. In: Hege, H.C., Polthier, K. (eds.) Visualization and Mathematics III,
pp. 35–57. Springer, Berlin (2003)

16. Minion, M.L., Speck, R., Bolten, M., Emmett, M., Ruprecht, D.: Interweaving PFASST and
parallel multigrid. SIAM J. Sci. Comput. 37, S244–S263 (2015)

17. Mitragotri, S., Anissimov, Y.G., Bunge, A.L., Frasch, H.F., Guy, R.H., Hadgraft, J., Kasting,
G.B., Lane, M.E., Roberts, M.S.: Mathematical models of skin permeability: an overview. Int.
J. Pharm. 418(1), 115–129 (2011)

18. Naegel, A., Heisig, M., Wittum, G.: Detailed modeling of skin penetration – an overview. Adv.
Drug Delivery Rev. 65(2), 191–207 (2013). http://www.sciencedirect.com/science/article/pii/
S0169409X12003559. Modeling the human skin barrier – towards a better understanding of
dermal absorption

19. Nägel, A., Schulz, V., Siebenborn, M., Wittum, G.: Scalable shape optimization methods for
structured inverse modeling in 3D diffusive processes. Comput. Vis. Sci. 17(2), 79–88 (2015)

20. Nägel, A., Heisig, M., Wittum, G.: A comparison of two- and three-dimensional models for
the simulation of the permeability of human stratum corneum. Eur. J. Pharm. Biopharm. 72(2),
332–338 (2009)

21. Reiter, S., Vogel, A., Heppner, I., Rupp, M., Wittum, G.: A massively parallel geometric
multigrid solver on hierarchically distributed grids. Comput. Vis. Sci. 16(4), 151–164 (2013).
http://dx.doi.org/10.1007/s00791-014-0231-x

22. Schulz, V.: A Riemannian view on shape optimization. Found. Comput. Math. 14, 483–501
(2014)

23. Schulz, V., Siebenborn, M.: Computational comparison of surface metrics for PDE constrained
shape optimization. Comput. Methods Appl. Math. (submitted) (2015). arxiv.org/abs/1509.
08601

24. Schulz, V., Siebenborn, M., Welker, K.: A novel Steklov-Poincaré type metric for efficient PDE
constrained optimization in shape spaces. SIAM J. Optim. (submitted) (2015). arxiv.org/abs/
1506.02244

25. Schulz, V., Siebenborn, M., Welker, K.: Structured inverse modeling in parabolic diffusion
problems. SIAM J. Control Optim. 53(6), 3319–3338 (2015). arXiv.org/abs/1409.3464

26. Speck, R., Ruprecht, D., Emmett, M., Minion, M.L., Bolten, M., Krause, R.: A multi-level
spectral deferred correction method. BIT Numer. Math. 55, 843–867 (2015)

27. Speck, R., Ruprecht, D., Minion, M., Emmett, M., Krause, R.: Inexact spectral deferred
corrections. In: Domain Decomposition Methods in Science and Engineering XXII. Lecture
Notes in Computational Science and Engineering, vol. 104, pp. 127–133. Springer, Cham
(2015)

28. Vogel, A., Reiter, S., Rupp, M., Nägel, A., Wittum, G.: UG4: a novel flexible software system
for simulating PDE based models on high performance computers. Comput. Vis. Sci. 16(4),
165–179 (2013). http://dx.doi.org/10.1007/s00791-014-0232-9

29. Wittum, G.: Editorial: algorithmic requirements for HPC. Comput. Vis. Sci. 17(2), 65–66
(2015)

http://dx.doi.org/10.1007/s00450-013-0240-x
http://www.sciencedirect.com/science/article/pii/S0169409X12003559
http://www.sciencedirect.com/science/article/pii/S0169409X12003559
http://dx.doi.org/10.1007/s00791-014-0231-x
arxiv.org/abs/1509.08601
arxiv.org/abs/1509.08601
arxiv.org/abs/1506.02244
arxiv.org/abs/1506.02244
arXiv.org/abs/1409.3464
http://dx.doi.org/10.1007/s00791-014-0232-9

Part XIV
Further Contributions

Domain Overlap for Iterative Sparse Triangular
Solves on GPUs

Hartwig Anzt, Edmond Chow, Daniel B. Szyld, and Jack Dongarra

Abstract Iterative methods for solving sparse triangular systems are an attractive
alternative to exact forward and backward substitution if an approximation of the
solution is acceptable. On modern hardware, performance benefits are available
as iterative methods allow for better parallelization. In this paper, we investigate
how block-iterative triangular solves can benefit from using overlap. Because the
matrices are triangular, we use “directed” overlap, depending on whether the matrix
is upper or lower triangular. We enhance a GPU implementation of the block-
asynchronous Jacobi method with directed overlap. For GPUs and other cases where
the problem must be overdecomposed, i.e., more subdomains and threads than cores,
there is a preference in processing or scheduling the subdomains in a specific order,
following the dependencies specified by the sparse triangular matrix. For sparse
triangular factors from incomplete factorizations, we demonstrate that moderate
directed overlap with subdomain scheduling can improve convergence and time-
to-solution.

1 Introduction

Sparse triangular solves are an important building block when enhancing Krylov
solvers with an incomplete LU (ILU) preconditioner [28]. Each iteration of the
solver requires the solution of sparse triangular systems involving the incomplete
factors. Exact solves with sparse triangular matrices are difficult to parallelize
due to the inherently sequential nature of forward and backward substitution.

H. Anzt (�) • J. Dongarra
University of Tennessee, Knoxville, TN, USA
e-mail: hanzt@icl.utk.edu; dongarra@icl.utk.edu

E. Chow
Georgia Institute of Technology, Atlanta, GA, USA
e-mail: echow@cc.gatech.edu

D.B. Szyld
Temple University, Philadelphia, PA, USA
e-mail: szyld@temple.edu

© Springer International Publishing Switzerland 2016
H.-J. Bungartz et al. (eds.), Software for Exascale Computing – SPPEXA
2013-2015, Lecture Notes in Computational Science and Engineering 113,
DOI 10.1007/978-3-319-40528-5_24

527

mailto:hanzt@icl.utk.edu
mailto:dongarra@icl.utk.edu
mailto:echow@cc.gatech.edu
mailto:szyld@temple.edu

528 H. Anzt et al.

Level scheduling strategies [28] aim at identifying sets of unknowns that can be
computed in parallel (called “levels”), but these sets are often much smaller than
the parallelism provided by the hardware. Particularly on manycore architectures
like graphics processing units (GPUs), level-scheduling techniques generally fail to
exploit the concurrency provided.

At the same time, the incomplete factorizations are typically only a rough
approximation, and exact solutions with these factors may not be required for
improving the convergence of the Krylov solver. Given this situation, interest has
developed in using “approximate triangular solves” [7]. The concept is to replace
the exact forward and backward substitutions with an iterative method that is
easy to parallelize. Relaxation methods like the Jacobi method provide parallelism
across vector components, and can be an attractive alternative when running ILU-
preconditioned Krylov methods on parallel hardware. For problems where only
a few steps of the iterative method applied to the sparse triangular systems are
sufficient to provide the same preconditioning quality to the outer Krylov method,
the approximate approach can be much faster [14, 15]. A potential drawback of this
strategy, however, is that disregarding the dependencies between the vector compo-
nents can result in slow information propagation. This can, in particular, become
detrimental when using multiple local updates for better cache reuse [6]. In this
paper, we investigate improving the convergence of approximate sparse triangular
solves by using overlap strategies traditionally applied in domain decomposition
methods. Precisely, we enhance a block-iterative method with restricted Schwarz
overlap, and analyze the effect of non-uniform overlap that reflects the information
propagation dependencies. The findings gained are then used to realize overlap in a
GPU implementation of block-asynchronous Jacobi.

The remainder of the paper is structured as follows. Section 2 provides some
background on sparse triangular solves, block-asynchronous Jacobi, and different
types of Schwarz overlap with the goal of setting the larger context for this work.
In Sect. 3, the benefits of restricted additive Schwarz and directed overlap are
investigated for different synchronization strategies, and with specific focus on
sparse triangular systems arising from incomplete factorization preconditioners.
Section 4 gives details about how we realized overlap in the GPU implementation.
In Sect. 5, we analyze the convergence and performance improvements we achieved
by enhancing block-asynchronous Jacobi with restricted overlap. We conclude in
Sect. 6.

2 Background and Related Work

2.1 Sparse Triangular Solves

Due to their performance-critical impact when used in preconditioned Krylov
methods, much attention has been paid to the acceleration of sparse triangular
solves. The traditional approach tries to improve the exact solves. The most common

Domain Overlap for Iterative Sparse Triangular Solves on GPUs 529

strategies are based on level scheduling or multi-color ordering [2, 21–23, 30]. A
more disruptive approach is to use partitioned inverses [1, 27], where the triangular
matrix is written as a product of sparse triangular factors, and each triangular
solve becomes a sequence of sparse matrix vector multiplications. Also, the use
of sparse approximate inverses for the triangular matrices were considered [9, 17].
The solution of the triangular systems is then replaced by the multiplication with
two sparse matrices that are approximating the respective inverses of the triangular
factors. With the increase in parallelism that is available in hardware, iterative
approaches to solving triangular systems become tantalizing, as they provide much
finer grained parallelism. In situations where an approximate solution is acceptable,
which often is the case for incomplete factorization preconditioning, iterative
triangular solves can accelerate the overall solution process significantly, even if
convergence is slightly degraded [7, 14]. With regard to the increased parallelism
expected for future hardware systems, iterative triangular solves are also attractive
from the standpoint of fault-tolerance [8].

2.2 Jacobi Method and Block-Asynchronous Iteration

Classical relaxation methods like Jacobi and Gauss-Seidel use a specific update
order of the vector components, which implies synchronization between the distinct
iterations. The number of components that can be computed in parallel in an
iteration depends on whether the update of a component uses only information
from the previous iteration (Jacobi type) or also information from the current
iteration (Gauss-Seidel type). Using newer information generally results in faster
convergence, which however reduces the parallelism: Gauss-Seidel is inherently
sequential and requires a strict update order; for Jacobi, all components are updated
simultaneously within one iteration [7]. If no specific update order is enforced,
the iteration becomes “chaotic” or “asynchronous” [13, 18]. In this case, each
component update takes the newest available values for the other components. The
asymptotic convergence of asynchronous iterations is guaranteed if the spectral
radius of the positive iteration matrix, �.jMj/, is smaller than unity [18]. This is a
much stronger requirement than needed for Jacobi, however it is always fulfilled
for sparse triangular systems [7, 14]. The fine-grained parallelism and the lack
of synchronization make asynchronous methods attractive for graphics processing
units (GPUs), which themselves operate in an asynchronous-like fashion within one
kernel operation [24]. In particular, the special case where subsets of the iteration
vector are iterated in synchronous Jacobi fashion and asynchronous updates are
used in-between the subsets can efficiently be realized on GPUs [3]. The potential
of this “block-asynchronous Jacobi” on GPU hardware was investigated in [6].
Block asynchronous Jacobi was also considered as smoother for geometric multigrid
methods [5], and evaluated in a mixed-precision iterative refinement framework [4].
In [7], block-asynchronous Jacobi was employed as an iterative solver for sparse
triangular systems arising from incomplete factorization preconditioning. Precisely,

530 H. Anzt et al.

the benefits of replacing exact sparse triangular solves with approximate triangular
solves were demonstrated for an ILU-preconditioned Krylov solver running on
GPUs. This work ties on the findings presented therein by enhancing the block-
asynchronous Jacobi method with overlap strategies.

2.3 Overlapping Domains and Restricted Additive Schwarz

The idea of improving information propagation by overlapping blocks originated
with domain decompositions methods. In these methods, a large domain is split
into subdomains, where local solution approximations are computed. A global
solution is generated by iteratively updating the local parts and communicating
the components of the solutions in the domain intersections. Increasing the size
of these intersections usually accelerates the information propagation [32, 34]. In
the alternating Schwarz method, the subdomains are processed sequentially in a
fixed order. The additive Schwarz method performs subdomains solves in parallel.
To avoid write conflicts in the overlap region, the update of the global solution
must be implemented carefully. One approach that has proven to be very effective
is “Restricted additive Schwarz” (RAS) proposed in [12], where each processor
restricts the writing of the solution to the local subdomain, and discards the part
of the solution in the region that overlaps other subdomains. The convergence
properties of RAS are analyzed in [19]. An initial asynchronous approach for an
additive Schwarz method is presented in [20]. The underlying idea is very similar
to the work presented in this paper, however it starts with a physical domain
decomposition problem and then allows for asynchronism in the update order.
In contrast, the approach we present starts from an arbitrary linear system that
is interpreted as a domain decomposition problem with domain sizes induced by
the GPU thread block size used in the block-asynchronous Jacobi method. Some
theoretical convergence results for asynchronous iterations with overlapping blocks
can also be found in [33].

3 Random-Order Alternating Schwarz

3.1 Domain Overlap Based on Matrix Partitioning

In domain decomposition methods for solving partial differential equations (PDEs),
the subdomains are usually contiguous, physical subdomains of the region over
which a solution is sought. In this work, however, we adopt a black-box-solver
setting, where no details about the physical problem or domain are available.
This is a reasonable premise as many software packages must accommodate this
situation. We note that in this case, incomplete factorization preconditioners are
often employed, as they work well for a large range of problems.

Domain Overlap for Iterative Sparse Triangular Solves on GPUs 531

Uniform overlap Top-down overlap
0

5

10

15

20

25

30

35

0

5

10

15

20

25

30

35

0

5

10

15

20

25

30

35

0

5

10

15

20

25

30

35

Fig. 1 Algebraic Schwarz overlap for a 5-point stencil discretization of the Laplace problem in
2D. The unknowns of the original subdomain are marked as blue squares, the overlap of level one
is derived from the matrix structure and indicated by red circles. The left figure shows uniform
overlap, the right figure shows top-down overlap

For a matrix problem, we call a subdomain the set of unknowns corresponding
to a partition of unknowns (e.g., partitioning of the unknown vector) which may not
correspond to a physical subdomain even if the problem comes from a PDE. Here,
the overlap for the distinct subdomains cannot be derived from the physical domain,
but has to be generated from the dependency graph of the matrix. This strategy was
first proposed in [11]. We use the terminology introduced therein by calling this
kind of overlap “algebraic Schwarz overlap”. Algebraic Schwarz overlap of level 1
is generated by including all unknowns that are distant by one edge to the subdomain
when solving the local problem. Recursively applying this strategy results in overlap
of higher levels: for level o overlap, all unknowns distant by at most o edges are
considered. See Fig. 1 for an illustration of algebraic Schwarz overlap.

In a first experiment, we analyze the effect of overlap for a block-iterative solver.
The target problem is a finite difference discretization of the Laplace problem in 3D.
The discretization uses a 27-point stencil on a 8�8�8 grid, resulting in a symmetric
test matrix where 10,648 edges connect 512 unknowns. The block-iterative method
splits the iteration vector into 47 blocks that we call “subdomains” to be consistent
with domain decomposition terminology. On each subdomain, the local problem is
solved via 2 Jacobi sweeps. Subdomain overlap is generated as algebraic Schwarz
overlap. Restricted Schwarz overlap only updates the components part of the
original subdomain. The motivation for restricting the results also in sequential
subdomain updates is the GPU architecture we target in the experimental part of
the paper. There, multiple subdomains are updated in parallel. All experiments in
this section are based on a MATLAB implementation (release R2014a) running in
double precision.

Figure 2 shows how restricted alternating Schwarz using level 1 overlap improves
the convergence rate when solving the above Laplace problem. Each subdomain
is updated once in a global iteration, and the results are averaged over 100 runs.

532 H. Anzt et al.

Global Iterations
0 5 10 15 20

R
el

at
iv

e
R

es
id

ua
l N

or
m

10-4

10-3

10-2

10-1

100

No Overlap
L-1

Fig. 2 Convergence of the restricted alternating Schwarz using 2 Jacobi sweeps as local solver
on the subdomains applied to the Laplace test problem. The subdomain updates are scheduled in
Gauss-Seidel order (solid lines), or in a random order (dashed lines)

The solid lines are for sequential top-down subdomain scheduling (Gauss-Seidel),
the dashed lines are for a random update order. In the remainder, we call the
latter “random-order restricted alternating Schwarz”. Random subdomain schedul-
ing results in slower average convergence, but the improvement obtained from
restricted Schwarz overlap is of similar quality. We note that extending the original
subdomains with overlap increases the computational cost, as on each subdomain a
larger local problem has to be solved. For this test problem, level 1 overlap increases
the total number of floating point operations for one global sweep by a factor of 6.68.
This issue is not reflected in Fig. 2 showing the convergence with respect to global
iterations. The increase in the computational cost does however typically not reflect
the increase in execution time, as in a parallel setting also the communication plays
an important role. In the end, the interplay between hardware characteristics, the
linear system, and the used decomposition into subdomains determines whether the
time-to-solution benefits from using overlapping subdomains [31].

3.2 Directed Overlap

The purpose of using overlap is to propagate information faster across the local
problems. More overlap usually results in faster convergence. However, it can be
expected that not all the information propagated provides the same convergence
benefits:

1. It can be expected that propagating information in the dependency direction of
the unknowns may provide larger benefit.

Domain Overlap for Iterative Sparse Triangular Solves on GPUs 533

2. For non-parallel subdomain updates, propagating information from subdomains
already updated in the current iteration may provide larger benefit than informa-
tion from the previous iterate.

A non-directed or bidirected dependency graph (structurally symmetric matrix)
makes it impossible to benefit from scheduling the subdomains in dependency order.
For each dependency that is obeyed, the opposite dependency is violated. In this
case, the optimization of the information propagation boils down to propagating
primarily information from subdomains that have already been updated in the
current iteration. For the sequential subdomain scheduling in top-down Gauss-
Seidel order, domain overlap pointing opposite the subdomain scheduling order
propagates information from already updated subdomains. Overlap pointing in
the scheduling direction propagates information of the previous iteration. Hence,
bottom-up overlap may carry “more valuable” information than overlap pointing
top-down. For the remainder of the paper we use the term “directed overlap” if the
original subdomain is extended only in a certain direction:

• “Top-down overlap” means that the original subdomain is extended by unknowns
adjacent in the graph representation of the matrix that have larger indexes, i.e.,
are located closer to the end of the iteration vector.

• “Bottom-up overlap” means that the original subdomain is extended by
unknowns adjacent in the graph representation of the matrix that have smaller
indexes, i.e., are located closer to the top of the iteration vector.

We note, that in case the problem originates from a discretization of a partial
differential equation, the concept of directed overlap does in general not correspond
to a direction in the physical domain. An example where the directed overlap
has a physical representation is a 1-dimensional physical domain in combination
with consecutive numbering of the unknowns. More generally, if a domain in
an n-dimensional space is divided into (possibly overlapping) subdomains with
boundaries which do not intersect each other, consecutive numbering allows for
a physical interpretation. For a visualization of directed overlap, see the right side
of Fig. 1.

The advantage of extending the subdomains only in one direction compared to
uniform overlap is that the computational cost of solving the local problems grows
slower with the overlap levels.

Figure 3 compares the convergence of block-Jacobi using different restricted
Schwarz overlap strategies for a sequential top-down subdomain scheduling. All
overlap strategies result in faster convergence than the overlap-free block-Jacobi.
However, significant difference in the convergence rate can be observed: the top-
down overlap fails to propagate new information, and propagating information from
subdomains not yet updated in the global iteration provides only small convergence
improvement. The uniform overlap treats information from adjacent unknowns
equally, independent of whether the respective subdomain has already been updated
in the current iteration or not. The resulting convergence improvement comes at
a 6.68 times higher computational cost, as elaborated previously. Using directed

534 H. Anzt et al.

Global Iterations
0 5 10 15 20

R
el

at
iv

e
R

es
id

ua
l N

or
m

10-4

10-3

10-2

10-1

100

No Overlap
L-1 Uniform
L-1 Top-Down
L-1 Bottom-Up

Fig. 3 Convergence of the sequential restricted alternating Schwarz using top-down subdomain
scheduling and different overlap strategies. The test matrix is the Laplace problem introduced in
the beginning of the section

overlap pointing bottom-up increases the computational cost only by a factor
3.34. For this test case, the bottom-up overlap provides the same convergence
improvement like the uniform overlap. The lower computational cost makes this
strategy superior. Although disregarding overlap in direction of “old” neighbors
may in general result in a lower convergence rate than uniform overlap, this test
validates the expectation that propagating new information provides higher benefits
when solving a symmetric problem.

For a random update order, it is impossible to define an overlap direction that
propagates information only from already updated subdomains. On average, the
effects of using overlap pointing bottom-up and overlap pointing top-down equalize,
and the resulting convergence rate is lower than when using uniform overlap, see
Fig. 4.

The situation changes as soon as we look into structurally non-symmetric
matrices with a directed dependency graph. While propagating information from
freshly updated subdomains may still be preferred, the dependencies have a much
more important role for convergence. Obviously, these dependencies should also
be considered in the subdomain scheduling. Then, it is possible to choose directed
overlap that benefits twofold: information gets propagated in dependency directions;
and this information comes from subdomains that have already been updated in the
current iteration.

For a non-symmetric matrix, it is impossible to always find a subdomain
update order that obeys all dependencies. A scenario where this is possible,
however, is the solution of sparse triangular systems and sequential component
updates. The resulting algorithm is nothing other than forward and backward

Domain Overlap for Iterative Sparse Triangular Solves on GPUs 535

Global Iterations
0 5 10 15 20

R
el

at
iv

e
R

es
id

ua
l N

or
m

10-4

10-3

10-2

10-1

100

No Overlap
L-1 Uniform
L-1 Top-Down
L-1 Bottom-Up

Fig. 4 Convergence of the sequential random-order restricted alternating Schwarz for different
overlap strategies. The test matrix is the Laplace problem introduced in the beginning of the section

substitution. Subdomains containing multiple unknowns are available if components
are independent and only depend on previously updated components. The strategy
of identifying these subdomains and updating the components in parallel is known
as level scheduling [29]. Unfortunately, the subdomains are often too small to allow
for efficient parallel execution. Also, the components are usually not adjacent in
the iteration vector, which results in expensive memory access patterns. But also
when using subdomains coming from a decomposition of the iteration vector, it
is often possible to identify an overall dependency direction. Some dependencies
might be violated, but aligning the subdomain scheduling to the triangular system’s
dependency direction usually results in faster convergence [7].

In the scenario of random subdomain scheduling, the idea of orienting overlap
opposite the update order fails, but overlap may still be adjusted to the dependency
graph. Bottom-up overlap propagates information in dependency direction for a
lower triangular system, top-down overlap obeys the dependencies for an upper
triangular system.

In Fig. 5, the convergence of the different overlap strategies is compared for a
lower and an upper sparse triangular system. The systems arise as incomplete LU
factorization without fill-in (ILU(0)) for the previously considered Laplace problem.
On each subdomain, two Jacobi sweeps are used to solve the local problem. The
sequential subdomain updates are scheduled in a random order, and the results
are averaged over 100 runs. Despite ignoring the benefits of orienting the overlap
towards already updated subdomains, the convergence of the restricted alternating
Schwarz using directed overlap opposite the dependency direction matches the
convergence of uniform overlap. Propagating information opposite the dependency

536 H. Anzt et al.

Global Iterations

0 5 10 15 20

R
el

at
iv

e
R

es
id

ua
l N

or
m

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

No Overlap
L-1 Uniform
L-1 Top-Down
L-1 Bottom-Up

Global Iterations

0 5 10 15 20

R
el

at
iv

e
R

es
id

ua
l N

or
m

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

No Overlap
L-1 Uniform
L-1 Top-Down
L-1 Bottom-Up

Lx= xUb = b

Fig. 5 Convergence of the sequential random-order restricted alternating Schwarz using 2 Jacobi
sweeps as local solver on the subdomains. The test cases are the sparse triangular systems arising
as incomplete LU factorization without fill-in (ILU(0)) of the Laplacian problem

direction does not provide noticeable benefits compared to the non-overlapping
block-iterative solver.

4 Restricted Overlap on GPUs

We now want to evaluate whether using restricted Schwarz overlap can improve
iterative sparse triangular solves on GPUs. The hardware characteristics however
require some modification of the approach suggested in Sect. 3. On GPUs, operation
execution is realized via a grid of thread blocks, where the distinct thread blocks
apply the same kernel to different data [24]. The distinct thread blocks all have the
same “thread block size”, which is the number of compute threads in one thread
block. Multiple thread blocks can be executed in concurrent fashion. The number
of thread blocks handled in parallel depends on the thread block size, requested
shared memory, and the characteristics of the used GPU hardware. This setting
suggests to assign each thread block to one subdomain. If the subdomain size
matches the thread block size, all the unknowns in a subdomain can be handled
in parallel by the distinct compute threads, which is the desired setting for using
Jacobi sweeps as local solver. For non-overlapping subdomains of equal size, this
mapping works fine. Extending the subdomains with algebraic Schwarz overlap
however becomes difficult, as the overlap for distinct subdomains may differ in
size. Fixing the thread block size to the largest subdomain results in idle threads
assigned to smaller subdomains; smaller thread block sizes fail to realize the Jacobi
sweeps in parallel fashion. An additional challenge comes from the solution of the
local problem being based on local memory. On GPUs, this is the shared memory
of the distinct multiprocessors. Due to the limited size, it is impossible to keep
the complete iteration vector in shared memory, but the unknowns of the local

Domain Overlap for Iterative Sparse Triangular Solves on GPUs 537

problem (original subdomain and overlap) have to be stored in consecutive fashion.
As these components are in general not adjacent in the global iteration vector, an
additional mapping is required. This increases pressure on the memory bandwidth,
the typically performance-limiting instance in this algorithm. Also, the scattered
access to the components of the algebraic Schwarz overlap in the global iteration
vector results in expensive memory reads [24].

Given this background, we relax the mathematical validity of the overlap in favor
of higher execution efficiency. Precisely, replace the algebraic Schwarz overlap with
“block-overlap”. For a given decomposition of the iteration vector, block overlap is
generated by extending the subdomains in size such that the subdomains adjacent in
the iteration vector overlap. Similar to the algebraic Schwarz overlap, unknowns can
be part of multiple subdomains. However, it also is possible that not all components
in a subdomain are connected in the dependency graph. The restricted Schwarz
setting avoids not only write conflicts, but also ensures that structurally disconnected
overlap is not written back to the global iteration vector. Compared to the algebraic
Schwarz overlap, two drawbacks can be identified:

• Block overlap can miss important dependencies if the respective unknowns are
not included in the block-extension of the subdomain.

• Components part of the block overlap but not structurally connected to the
original subdomain increase the cost of the local solver, but do not contribute
to the global approximation.

These handicaps become relevant for matrices with significant entries distant to
the main diagonal. For matrices where most entries are reasonably close to the
diagonal, the higher execution efficiency on GPUs may outweigh the drawbacks.
Sparse triangular systems as they arise in the context of approximate incomplete
factorization preconditioning often have a Reverse Cuthill-McKee (RCM) ordering,
as this ordering helps in producing accurate incomplete factorization precondition-
ers [10, 16]. At the same time, RCM ordering reduces the matrix bandwidth, which
makes block overlap more attractive (more matrix entries captured in the overlap
regions).

To match the thread block size of the non-overlapping block-iterative solver,
we shrink the original subdomains, and fill up the thread block with overlap. We
note that shrinking the original subdomain size and restricting the writes requires a
higher number of subdomains for covering the iteration vector. The corresponding
higher number of thread blocks reflects the increased computational cost when using
block overlap. If subdomains adjacent in the iteration vector are scheduled to the
same multiprocessor, overlapping subdomains allows for temporal and spacial cache
reuse [15]. The data is loaded into the fast multiprocessor memory only once, and
can then be reused for the overlap of an adjacent subdomain. Figure 6 visualizes the
strategy of mapping thread blocks to subdomains for the case of non-overlapping
subdomains (left), and the case of directed bottom-up overlap (right), respectively.
Note that in the latter, the overlap threads of each thread block only read the data for
the local problem (r), but do not write back the local solution to the global iteration
vector.

538 H. Anzt et al.

Fig. 6 Mapping thread blocks to the subdomains in case of non-overlapping subdomains (left)
and bottom-up overlap (right). In the latter case, only the threads at the lower end of each thread
block write back the solution update (r+w), the threads at the upper end only read the data in for
the local problem (r)

On GPUs, multiple thread blocks are executed in concurrent fashion. For large
problems there however exist more subdomains than can be handled in parallel. We
call this case an “overdecomposition”: not all subdomains are updated simultane-
ously, and the update order impacts the convergence of the block-iterative method.
Unfortunately, GPUs generally do not allow insight or modifications to the thread
block execution order. However, backward-engineering experiments reveal that for
the used GPU architecture, the thread blocks are usually scheduled in consecutive
increasing order [15]. For sparse triangular solves, this property can be exploited to
improve the information propagation by numbering the thread blocks in dependency
direction [7]. The fact that this scheduling order cannot be guaranteed gives the
solver a block-asynchronous flavor, and requires to report all experimental results as
average over multiple runs. As the block overlap is mathematically inconsistent with
algebraic Schwarz overlap, we avoid the term “restricted additive Schwarz”, but
refer to the implementation as “block-asynchronous Jacobi with restricted overlap”.

5 Experimental Results

5.1 Test Environment

The experimental results were obtained using a Tesla K40 GPU (Kepler microarchi-
tecture) with a theoretical peak performance of 1,682 GFlop/s (double precision).
The 12 GB of GPU main memory, accessed at a theoretical bandwidth of 288 GB/s,
was sufficiently large to hold all the matrices and all the vectors needed in the
iteration process. Although all operations are handled by the accelerator, we mention

Domain Overlap for Iterative Sparse Triangular Solves on GPUs 539

Table 1 Characteristics of the sparse lower triangular ILU(0) factors employed in the experimen-
tal tests

Matrix Description Size n Nonzeros nz nz=n Condition number

U
FM

C

BCSSTK38 Stiffness matrix, airplane
engine component

8;032 116;774 14:54 6.87e+08

CHP Convective thermal flow
(FEM)

20;082 150;616 7:50 7.90e+05

CONSPH Concentric spheres (FEM) 83;334 1;032;267 12:39 6.81e+06

DC Circuit simulation matrix 116;835 441;781 3:78 6.54e+10

M_T1 Structural problem 97;578 4;269;276 43:74 4.78e+10

STO 3D electro-physical
duodenum model

213;360 1;660;005 7:78 1.38e+07

VEN Unstructured 2D Euler
solver (FEM)

62;424 890;108 14:26 1.85e+07

LAP 3D Laplace problem (27-pt
stencil)

262;144 3;560;572 13:58 9.23e+06

for completeness that the host was being an Intel Xeon E5 processor (Sandy Bridge).
The implementation of all GPU kernels is realized in CUDA [25], version 7.0 [26],
using a thread block size of 256. For non-overlapping subdomains, this thread block
size corresponds to the size of the subdomains; for overlapping subdomains the size
is split into subdomain and overlap. Double precision computations were used.

For the experimental evaluation, we consider solving with the incomplete
factorizations of different test matrices, including all problems tested in [7] to show
the potential of iterative sparse triangular solves. The test matrices are general
sparse matrices from the University of Florida matrix collection (UFMC), and a
finite difference discretization of the 3D Laplace problem with Dirichlet boundary
conditions. For the discretization, a 27pt stencil on a 64 � 64 � 64 mesh is used,
resulting in structurally and numerically symmetric matrix. We consider all matrices
in RCM ordering to reduce the matrix profile, as this increases the effectiveness of
overlapping matrix rows that are nearby, as well as the effectiveness of incomplete
factorizations. Table 1 lists the characteristics of the lower triangular matrices from
the incomplete factors. The sparsity plots of these triangular matrices are shown in
Fig. 7. We report all experimental results as the average over 100 runs to account for
nondeterministic scheduling effects on the GPU in the block-asynchronous Jacobi
solver.

5.2 Sparse Triangular Solves

Figures 8 and 9 show convergence and timing results for the lower sparse triangular
factors coming from incomplete factorizations of the selected UFMC matrices and
the Laplace matrix. The figures on the left side show convergence of the residual
norm with respect to iterations, while the figures on the right side relate the residual
norm to the execution time. The GPU thread block scheduling was set to promote

540 H. Anzt et al.

Fig. 7 Sparsity plots of the sparse lower triangular factors listed in Table 1

top-down subdomain scheduling for information propagation in the dependency
direction. In addition, bottom-up overlaps of different sizes were used, which also
accounts for the dependency direction of lower triangular matrices. The notation
used in the figures relates the size of the overlap to the thread block size, i.e.,
25 % overlap means that each thread block of size 256 contains a subdomain of
size 192 and 64 overlap components. For 25 % overlap, the number of thread blocks
necessary to cover the complete iteration vector increases by one third compared to a
non-overlapping decomposition using a subdomains size of 256. The computational
cost, i.e., the number of thread blocks being scheduled, increases by the same factor.

We first make some overall observations. From Figs. 8 and 9, we observe a range
of behaviors for the different problems. In most of the cases, the use of overlap
improves the convergence rate. The exceptions are the STO and VEN problems, for
which there is very little effect due to overlap, and M_T1 where overlap can actually
make convergence worse. For the problems where overlap improves convergence
rate, there is still the question of whether or not computation time is improved, since
overlap increases the amount of work. The best timings may come from a small or
a moderate amount of overlap (rather than a large amount of overlap), balancing the
extra computational effort with improved convergence rate.

For the CHP problem, a small convergence improvement can be achieved by using
overlap, and this improvement grows, as expected, with the size of the overlap.
However, when considering the GPU execution time, overlap is always worse than
non-overlap for this problem. On the other hand, for the DC problem, overlap can
improve convergence rate significantly. In addition, overlap does not significantly
increase computational cost, as this matrix is very sparse compared to the other test
matrices.

Domain Overlap for Iterative Sparse Triangular Solves on GPUs 541

CHP

Iterations

0 5 10 15 20 25 30 35 40

R
es

id
ua

l N
or

m

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

102

104

No Overlap
3% Overlap
13% Overlap
25% Overlap
50% Overlap

Runtime [s] × 10-3
0 0.5 1 1.5 2 2.5 3 3.5 4

R
es

id
ua

l N
or

m

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

102

104

No Overlap
3% Overlap
13% Overlap
25% Overlap
50% Overlap

DC

Iterations

0 2 4 6 8 10

R
es

id
ua

l N
or

m

10-6

10-4

10-2

100

102

104

106

No Overlap
3% Overlap
13% Overlap
25% Overlap
50% Overlap

Runtime [s]

0 0.2 0.4 0.6 0.8 1

R
es

id
ua

l N
or

m

10-6

10-4

10-2

100

102

104

106

No Overlap
3% Overlap
13% Overlap
25% Overlap
50% Overlap

STO

Iterations

0 5 10 15 20 25 30 35 40

R
es

id
ua

l N
or

m

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

102

104

No Overlap
3% Overlap
13% Overlap
25% Overlap
50% Overlap

Runtime [s]

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04

R
es

id
ua

l N
or

m

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

102

104

No Overlap
3% Overlap
13% Overlap
25% Overlap
50% Overlap

VEN

Iterations

0 10 20 30 40 50 60 70 80 90

R
es

id
ua

l N
or

m

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

102

104

No Overlap
3% Overlap
13% Overlap
25% Overlap
50% Overlap

Runtime [s]

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04

R
es

id
ua

l N
or

m

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

102

104

No Overlap
3% Overlap
13% Overlap
25% Overlap
50% Overlap

Fig. 8 Convergence (left) and residual-performance (right) of the block-asynchronous Jacobi
using 2 Jacobi sweeps as local solver on the subdomains. The test cases are the sparse lower
triangular systems arising as incomplete LU factorization without fill-in (ILU(0)) for the UFMC
problems

542 H. Anzt et al.

BCSSTK38

Iterations

0 5 10 15 20 25 30

R
es

id
ua

l N
or

m

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

102

No Overlap
3% Overlap
13% Overlap
25% Overlap
50% Overlap

Runtime [s]

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016

R
es

id
ua

l N
or

m

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

102

No Overlap
3% Overlap
13% Overlap
25% Overlap
50% Overlap

CONSPH

Iterations

0 5 10 15 20 25 30

R
es

id
ua

l N
or

m

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

102

104

No Overlap
3% Overlap
13% Overlap
25% Overlap
50% Overlap

Runtime [s]

0 0.005 0.01 0.015 0.02

R
es

id
ua

l N
or

m

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

102

104

No Overlap
3% Overlap
13% Overlap
25% Overlap
50% Overlap

M_T1

Iterations

0 10 20 30 40 50

R
es

id
ua

l N
or

m

10-12

10-10

10-8

10-6

10-4

10-2

100

102

104

No Overlap
3% Overlap
13% Overlap
25% Overlap
50% Overlap

Runtime [s]

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

R
es

id
ua

l N
or

m

10-12

10-10

10-8

10-6

10-4

10-2

100

102

104

No Overlap
3% Overlap
13% Overlap
25% Overlap
50% Overlap

LAP

Iterations

0 10 20 30 40 50

R
es

id
ua

l N
or

m

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

102

104

No Overlap
3% Overlap
13% Overlap
25% Overlap
50% Overlap

Runtime [s]

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

R
es

id
ua

l N
or

m

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

102

104

No Overlap
3% Overlap
13% Overlap
25% Overlap
50% Overlap

Fig. 9 Convergence (left) and residual-performance (right) of the block-asynchronous Jacobi
using 2 Jacobi sweeps as local solver on the subdomains. The test cases are the sparse lower
triangular systems arising as incomplete LU factorization without fill-in (ILU(0)) for the UFMC
problems and the LAP problem

Domain Overlap for Iterative Sparse Triangular Solves on GPUs 543

For the STO and VEN problems, overlap makes little or no improvement to
convergence, as already mentioned. The STO matrix is a large matrix compared to
the others, and overlap of adjacent rows in the matrix may introduce few additional
couplings in the dependency direction, i.e., many off-diagonal entries are too far
from the main diagonal for block overlap to include them. For these large matrices,
a decomposition into physical subdomains would be better.

For the BCSSTK38 problem, overlap accelerates the overall solution process. The
best results are achieved for 13 % and 25 % overlap. Overlap is beneficial also for
the CONSPH problem, but the convergence improvement (left side) is not reflected
in the time-to-solution metric. Only moderate overlap (see results for 3 % and 13 %,
respectively) accelerate the solution process. From the figures, we see that for most
problems, 50 % overlap has the worst execution time, but the best execution time is
given by 3–25 % overlap.

The M_T1 problem is an example for which overlap degrades the convergence
rate. For this problem, the matrix has a block structure that is easily captured by
non-overlapping subdomains, but this structure is not well-matched by overlapping
subdomains. Again for this problem, a decomposition into physical subdomains
would be better.

Finally, for the LAP problem, convergence can be improved by using overlap.
Again, the best solver is not the one using the most overlap, but the one using
3 % overlap. This is a typical pattern for block overlap: moderate overlap helps
in faster information propagation, but large overlap includes too many structurally
disconnected components that increase the computational cost, but do not aid in
accelerating convergence.

6 Summary and Future Work

We investigate the potential of enhancing block-iterative methods with restricted
Schwarz overlap. For systems carrying a nonsymmetric dependency structure,
pointing the overlap opposite the dependencies propagates the information in
dependency direction. This improves the convergence rate. We propose a GPU
implementation where we relax the consistency to algebraic Schwarz overlap
in favor of higher execution efficiency. For sparse triangular factors arising as
incomplete LU factors we analyze the convergence and performance benefits
achieved by enhancing block-asynchronous Jacobi with directed overlap of different
size. Depending on the matrix structure, restricted overlap can improve time-to-
solution performance.

In the future, we will look into optimizing the block overlap used in the GPU
implementation to the matrix structure. Adapting the overlap size to the location
of the most significant off-diagonal entries improves convergence at moderate cost
increase. This optimization makes the block overlap more similar to algebraic
Schwarz overlap, and will in particular work for problems with a finite element
origin.

544 H. Anzt et al.

Acknowledgements This material is based upon work supported by the U.S. Department of
Energy Office of Science, Office of Advanced Scientific Computing Research, Applied Mathemat-
ics program under Award Numbers DE-SC-0012538 and DE-SC-0010042. Daniel B. Szyld was
supported in part by the U.S. National Science Foundation under grant DMS-1418882. Support
from NVIDIA is also gratefully acknowledged.

References

1. Alvarado, F.L., Schreiber, R.: Optimal parallel solution of sparse triangular systems. SIAM J.
Sci. Comput. 14, 446–460 (1993)

2. Anderson, E.C., Saad, Y.: Solving sparse triangular systems on parallel computers. Int. J. High
Speed Comput. 1, 73–96 (1989)

3. Anzt, H.: Asynchronous and multiprecision linear solvers – scalable and fault-tolerant
numerics for energy efficient high performance computing. Ph.D. thesis, Karlsruhe Institute
of Technology, Institute for Applied and Numerical Mathematics (2012)

4. Anzt, H., Luszczek, P., Dongarra, J., Heuveline, V.: GPU-accelerated asynchronous error
correction for mixed precision iterative refinement. In: Euro-Par 2012 Parallel Processing.
Lecture Notes in Computer Science, pp. 908–919. Springer, Berlin/New York (2012)

5. Anzt, H., Tomov, S., Gates, M., Dongarra, J., Heuveline, V.: Block-asynchronous multigrid
smoothers for GPU-accelerated systems. In: Ali, H.H., Shi, Y., Khazanchi, D., Lees, M., van
Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds.) ICCS. Procedia Computer Science, vol. 9,
pp. 7–16. Elsevier, Amsterdam (2012)

6. Anzt, H., Tomov, S., Dongarra, J., Heuveline, V.: A block-asynchronous relaxation method for
graphics processing units. J. Parallel Distrib. Comput. 73(12), 1613–1626 (2013)

7. Anzt, H., Chow, E., Dongarra, J.: Iterative sparse triangular solves for preconditioning. In:
Träff, J.L., Hunold, S., Versaci, F. (eds.) Euro-Par 2015: Parallel Processing. Lecture Notes in
Computer Science, vol. 9233, pp. 650–661. Springer, Berlin/Heidelberg (2015)

8. Anzt, H., Dongarra, J., Quintana-Ortí, E.S.: Tuning stationary iterative solvers for fault
resilience. In: Proceedings of the 6th workshop on latest advances in scalable algorithms for
large-scale systems, ScalA’15, pp. 1:1–1:8. ACM, New York (2015)

9. Benzi, M., Tůma, M.: A comparative study of sparse approximate inverse preconditioners.
Appl. Numer. Math. 30, 305–340 (1999)

10. Benzi, M., Szyld, D.B., van Duin, A.: Orderings for incomplete factorization preconditionings
of nonsymmetric problems. SIAM J. Sci. Comput. 20, 1652–1670 (1999)

11. Benzi, M., Frommer, A., Nabben, R., Szyld, D.B.: Algebraic theory of multiplicative Schwarz
methods. Numer. Math. 89, 605–639 (2001)

12. Cai, X.C., Sarkis, M.: A restricted additive Schwarz preconditioner for general sparse linear
systems. SIAM J. Sci. Comput. 21, 792–797 (1999)

13. Chazan, D., Miranker, W.: Chaotic relaxation. Linear Algebra Appl. 2(7), 199–222 (1969)
14. Chow, E., Patel, A.: Fine-grained parallel incomplete LU factorization. SIAM J. Sci. Comput.

37, C169–C193 (2015)
15. Chow, E., Anzt, H., Dongarra, J.: Asynchronous iterative algorithm for computing incomplete

factorizations on GPUs. In: Kunkel, J., Ludwig, T. (eds.) Proceedings of 30th International
Conference, ISC High Performance 2015. Lecture Notes in Computer Science, vol. 9137,
pp. 1–16. Springer, Cham (2015)

16. Duff, I.S., Meurant, G.A.: The effect of ordering on preconditioned conjugate gradients. BIT
29(4), 635–657 (1989)

17. Duin, A.C.N.V.: Scalable parallel preconditioning with the sparse approximate inverse of
triangular matrices. SIAM J. Matrix Anal. Appl. 20, 987–1006 (1996)

18. Frommer, A., Szyld, D.B.: On asynchronous iterations. J. Comput. Appl. Math. 123, 201–216
(2000)

Domain Overlap for Iterative Sparse Triangular Solves on GPUs 545

19. Frommer, A., Szyld, D.B.: An algebraic convergence theory for restricted additive Schwarz
methods using weighted max norms. SIAM J. Numer. Anal. 39, 463–479 (2001)

20. Frommer, A., Schwandt, H., Szyld, D.B.: Asynchronous weighted additive Schwarz methods.
Electron. Trans. Numer. Anal. 5, 48–61 (1997)

21. Hammond, S.W., Schreiber, R.: Efficient ICCG on a shared memory multiprocessor. Int. J.
High Speed Comput. 4, 1–21 (1992)

22. Mayer, J.: Parallel algorithms for solving linear systems with sparse triangular matrices.
Computing 86(4), 291–312 (2009)

23. Naumov, M.: Parallel solution of sparse triangular linear systems in the preconditioned iterative
methods on the GPU. Technical Report, NVR-2011-001, NVIDIA (2011)

24. NVIDIA Corporation: CUDA C best practices guide. http://docs.nvidia.com/cuda/cuda-c-best-
practices-guide/

25. NVIDIA Corporation: NVIDIA CUDA Compute Unified Device Architecture Programming
Guide, 2.3.1 edn. (2009)

26. NVIDIA Corporation: NVIDIA CUDA TOOLKIT V7.0 (2015)
27. Pothen, A., Alvarado, F.: A fast reordering algorithm for parallel sparse triangular solution.

SIAM J. Sci. Stat. Comput. 13, 645–653 (1992)
28. Saad, Y.: Iterative Methods for Sparse Linear Systems. SIAM, Philadelphia (2003)
29. Saad, Y., Zhang, J.: Bilum: block versions of multi-elimination and multi-level ILU precondi-

tioner for general sparse linear systems. SIAM J. Sci. Comput. 20, 2103–2121 (1997)
30. Saltz, J.H.: Aggregation methods for solving sparse triangular systems on multiprocessors.

SIAM J. Sci. Stat. Comput. 11, 123–144 (1990)
31. Shang, Y.: A parallel finite element variational multiscale method based on fully overlapping

domain decomposition for incompressible flows. Numer. Methods Partial Differ. Equ. 31, 856–
875 (2015)

32. Smith, B.F., Bjørstad, P.E., Gropp, W.D.: Domain Decomposition: Parallel Multilevel Methods
for Elliptic Partial Differential Equations. Cambridge University Press, New York (1996)

33. Szyld, D.B.: Different models of parallel asynchronous iterations with overlapping blocks.
Comput. Appl. Math. 17, 101–115 (1998)

34. Toselli, A., Widlund, O.B.: Domain Decomposition Methods – Algorithms and Theory.
Springer Series in Computational Mathematics, vol. 34. Springer, Berlin/Heidelberg (2005)

http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/
http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/

Asynchronous OpenCL/MPI Numerical
Simulations of Conservation Laws

Philippe Helluy, Thomas Strub, Michel Massaro, and Malcolm Roberts

Abstract Hyperbolic conservation laws are important mathematical models for
describing many phenomena in physics or engineering. The Finite Volume (FV)
method and the Discontinuous Galerkin (DG) method are two popular methods
for solving conservation laws on computers. In this paper, we present several FV
and DG numerical simulations that we have realized with the OpenCL and MPI
paradigms. First, we compare two optimized implementations of the FV method
on a regular grid: an OpenCL implementation and a more traditional OpenMP
implementation. We compare the efficiency of the approach on several CPU and
GPU architectures of different brands. Then we present how we have implemented
the DG method in the OpenCL/MPI framework in order to achieve high efficiency.
The implementation relies on a splitting of the DG mesh into subdomains and
subzones. Different kernels are compiled according to the zone properties. In
addition, we rely on the OpenCL asynchronous task graph in order to overlap
OpenCL computations, memory transfers and MPI communications.

1 Introduction

Hyperbolic conservation laws are a particular class of Partial Differential Equations
(PDE) models. They are present in many fields of physics or engineering. It is
thus very important to have efficient software tools for solving such systems. The
unknown of a system of conservation laws is a vector W.x; t/ 2 Rm that depends on
a space variable x D .x1; : : : ; xd/ and time t. The vector W is called the vector of

P. Helluy (�)
IRMA, Université de Strasbourg and Inria Tonus, Strasbourg, France
e-mail: helluy@unistra.fr

T. Strub
AxesSim Illkirch, Illkirch-Graffenstaden, France
e-mail: thomas.strub@axessim.fr

M. Massaro • M. Roberts
IRMA, Université de Strasbourg, Strasbourg, France
e-mail: massaro@math.unistra.fr; roberts@math.unistra.fr

© Springer International Publishing Switzerland 2016
H.-J. Bungartz et al. (eds.), Software for Exascale Computing – SPPEXA
2013-2015, Lecture Notes in Computational Science and Engineering 113,
DOI 10.1007/978-3-319-40528-5_25

547

mailto:helluy@unistra.fr
mailto:thomas.strub@axessim.fr
mailto:massaro@math.unistra.fr
mailto:roberts@math.unistra.fr

548 P. Helluy et al.

conservative variables. In this work we shall consider a space dimension d D 2 or
d D 3. Generally, the space variable x belongs to a bounded domain ˝ � Rd. The
system of conservation reads

@tWC @kFk.W/ D 0 : (1)

In this formula, we use the following notations:

• The partial derivative operators are denoted by

@t D @

@t
; @k D @

@xk
: (2)

• We adopt the Einstein sum-on-repeated-indices convention

@kFk.W/ D
dX

kD1
@kFk.W/ : (3)

• The functions Fk.W/ 2 Rm, k D 1 : : : d, characterize the physical model that we
wish to represent. It is classic to consider a space vector n D .n1 : : : nd/ 2 Rd

and to also define the flux of the system

F.W;n/ D Fk.W/nk : (4)

System (1) is supplemented by an initial condition

W.x; 0/ DW0.x/ ; (5)

at time t D 0, and conditions on the boundary @˝ of ˝ . For example, one can
prescribe the value of W on the boundary

W.x; t/ DWb.x; t/; x 2 @˝ : (6)

Generally, the system (1), (5), (6) admits a unique solution if it satisfies the
hyperbolicity condition: the Jacobian matrix of the flux

rWF.W;n/ (7)

is diagonalizable with real eigenvalues for all values of W and n.
The above mathematical framework is very general. It can be applied to electro-

magnetism, fluid mechanics, multiphase flows, magneto-hydro-dynamics (MHD),
Vlasov plasmas, etc. Let us just give two examples:

1. The Maxwell equations describe the evolution of the electric field E.x; t/ 2
R3 and the magnetic field H.x; t/ 2 R3. The conservative variables are the

Asynchronous OpenCL/MPI Numerical Simulations of Conservation Laws 549

superimposition of these two vectors W D .ET ;HT/T (thus m D 6) and the
Maxwell flux is given by

F.W;n/ D
�
0 �n�
n� 0

�
W: (8)

In Sect. 3 we present numerical results obtained with the Maxwell equations.
2. In fluid mechanics, the Euler equations describe the evolution of a compressible

gas of density �, velocity u D .u1; u2; u3/T and pressure p. The conservative
variables are given here by

W D .�; �uT ; p=.� � 1/C 1=2�u � u/T (9)

and the flux by

F.W;n/ D .�u � n; �u � nuTC (10)

pnT ; f�p=.� � 1/C 1=2�u � ugu � n/T ; (11)

where � > 1 is the polytropic exponent of the gas. The MHD equations are a
generalization of the Euler equations for taking into account magnetic effects
in conductive compressible gas. The MHD system is a complicated system of
conservation laws, with m D 9. It is not the objective of this work to detail the
MHD equations. For this we refer for instance to [12]. In Sect. 2, we present
numerical results obtained with the MHD equations.

Because of their numerous fields of application, many numerical methods have
been developed for the resolution of hyperbolic conservation laws. For instance
the finite volume (FV) and discontinuous Galerkin (DG) method are very popular.
They are easy to program on a standard parallel computer thanks to subdomain
decomposition. However, on new hybrid architectures, the efficient implementation
of those methods is more complex. It appears that there is possibility of optimiza-
tions. In this paper, we explore several numerical experiments that we have made
for solving conservation laws with the FV and DG methods on hybrid computers.
OpenCL and MPI libraries are today available on a wide range of platforms, making
them a good choice for our optimizations. It is classic to rely on OpenCL for local
computations and on MPI for communications between accelerators. In addition,
in our work we will see that it is interesting to also use the OpenCL asynchronous
task graph in order to overlap OpenCL computations, memory transfers and MPI
communications.

In the first part of this paper, we compare a classic OpenMP optimization
of a FV solver to an OpenCL implementation. We show that on a standard
multicore CPU, we obtain comparable speedups between the OpenMP and the
OpenCL implementation. In addition, using several GPU accelerators and MPI

550 P. Helluy et al.

communications between them, we were able to make computations that would be
unattainable with more classic architectures.

Our FV implementation is limited to regular grids. In the second part of the paper,
we thus describe an efficient implementation of the DG algorithm on unstructured
grids. Our implementation relies on several standard optimizations: local memory
prefetching, exploitation of the sparse nature of the tensor basis, and MPI subdo-
main decomposition. Other optimizations are less common: idling work-item for
minimizing cache prefetching and asynchronous MPI/OpenCL communication.

2 Comparison of an OpenCL and an OpenMP Solver on a
Regular Grid

2.1 FV Approximation of Conservation Laws

The FV and DG method construct a discontinuous approximation of the conser-
vative variables W. In the case of the FV method, the approximation is piecewise
constant. In the case of the DG method, the approximation is piecewise polynomial.
It is therefore necessary to extend the definition of the flux F.W;n/ at a discontinuity
of the solution. We consider thus a spatial discontinuity ˙ of W. The discontinuity
is oriented by a normal vector nLR. We use the following convention: the “left” (L)
of ˙ is on the side of �nLR D nRL and the “right” (R) is on the side of nLR. We
denote by WL and WR the values of W on the two sides of ˙ . The numerical flux
is then a function

F.WL;WR;nLR/ : (12)

A common choice is to take the Lax-Friedrichs flux (see for instance [11] and
included references)

F.WL;WR;n/ D F.WL;n/C F.WR;n/
2

� s

2
.WR �WL/ ; (13)

where s is called the numerical viscosity. It is a supremum of all the wave speeds
of the system. For more simplicity, in this section we consider the two-dimensional
case d D 2 and a square domain x D .x1; x2/ 2 ˝ D�0;LŒ��0;LŒ. The space step
of the grid is �x D L=N where N is a positive integer. The grid cells are squares of
size h � h. The cell centers are defined by xi;j D ..i C 1

2
/�x; .j C 1

2
/�x/. We also

consider a time step �t and the times tn D n�t. We look for an approximation Wn
i;j

of W at the cell centers xi;j and at time tn

Wn
i;j 'W.xi;j; tn/ : (14)

Asynchronous OpenCL/MPI Numerical Simulations of Conservation Laws 551

Let �1 and �2 be normal vectors pointing in the x1 and x2 direction, respectively, so
that

�1 D .1; 0/T ; �2 D .0; 1/T : (15)

We adopt a Strang dimensional splitting strategy: for advancing the numerical
solution from time step tn to time step tnC1, we first solve the finite volume
approximation in direction x1

W�i;j �Wn
i;j

�t
C F.Wn

i;j;W
n
iC1;j; �1/� F.Wn

i�1;j;Wn
i;j; �

1/

�x
D 0 ; (16)

and then in direction x2

WnC1
i;j �W�i;j
�t

C F.Wn
i;j;W

n
i;jC1; �2/� F.Wn

i;j�1;Wn
i;j; �

2/

�x
D 0 : (17)

On the boundary cells, we simply replace, in the previous formulas, the missing
values of W by the boundary values (6).

2.2 OpenMP Implementation of the FV Scheme

The chosen numerical scheme is very simple. We apply the FV scheme to the ideal
MHD system with divergence correction. The MHD system models the coupling of
a compressible fluid with a magnetic field. It contains m D 9 conservative variables
and the numerical flux can be a rather complex function. For more details and
bibliography on the MHD equations, we refer to [12].

We have first written a C/OpenMP implementation of the algorithm. It adopts a
tiling strategy in order to avoid cache misses on large grids with sizes bigger than
1024� 1024 points. More details are given in [12]. For later comparison with GPU
computations, we only consider results with single precision. We use the optimized
tiled OpenMP implementation as our reference for comparisons with OpenCL
implementations (see Table 1 where the different implementations are compared).

2.3 OpenCL Implementation of the FV Scheme

2.3.1 OpenCL

It is necessary to adapt our code to new SIMD accelerators, such as GPUs, in order
to decrease computation cost. For this, we have chosen OpenCL [14], which is a
programming framework, similar to CUDA, for driving such accelerators. A feature

552 P. Helluy et al.

Table 1 Comparison of the different implementations of the FV scheme on a structured grid.
Hardware : 2� Intel(R) Xeon(R) E5-2630 (6 cores, 2.3 GHz), AMD Radeon HD 7970, NVidia
K20m. On Intel CPUs hyperthreading was deactivated

Implementation Time Speedup

OpenMP (Intel CPU 12 cores) 717 s 1

OpenCL (Intel CPU 12 cores) 996 s 0:7

OpenCL (NVIDIA K20) 45 s 16

OpenCL (AMD HD7970) 38 s 19

OpenCL + MPI (4 x NVIDIA K20) 12 s 58

of OpenCL is that multicore CPUs are also considered as accelerators. The same
program can thus be run without modification on a CPU or a GPU.

2.3.2 Implementation

For the OpenCL version of our FV algorithm, we organize the data in a .x1; x2/ grid:
each conservative variable is stored in a two-dimensional .i; j/ array. For advancing
from time step tn to time step tnC1:

1. In principle, we associate an OpenCL thread (also called a work-item) to each
cell of the grid and a thread block (also called a work-group) to each row. But
OpenCL drivers generally impose a maximal work-group size. Thus when the
row is too long it is also necessary to split the row and distribute it on several
work-groups.

2. We compute the flux balance in the x1-direction for each cell of each row of the
grid (see formula (16)).

3. We then transpose the grid, which amounts to exchanging the x1 and x2
coordinates. The .i; j/! .j; i/ transposition is performed on the two-dimensional
array of each conservative variable. For ensuring coalescent memory access we
adopt an optimized memory transfer algorithm [15] (see also [13]).

4. We can then compute the flux balance in the x2-direction (17) for each row of
the transposed grid. Because of the previous transposition, memory access is
coalescent.

5. We again transpose the grid.

Let us mention that other strategies are possible. For instance in [13] the authors
describe GPU computations of scalar (m D 1) elastic waves. The algorithm is based
on two-dimensional tiling of the mesh into cache memory and registers in order to
ensure fast memory access. However the tile size is limited by the cache size and
the number of unknowns m in each grid cell. In our case for the MHD system we
have m D 9 and the adaptation of the algorithm given in [13] is inefficient because,
as of today (January 2016), GPU cache sizes are too small.

We have tested this OpenCL implementation in several configurations. See
Table 1. We can run the OpenCL code on a two-CPU SMP computer or GPUs of

Asynchronous OpenCL/MPI Numerical Simulations of Conservation Laws 553

different brands, without modification. In addition, we obtain interesting speedups
on SMP architectures. The OpenCL speedup for CPU accelerator is approxi-
mately 70% of the OpenMP speedup. It remains very good considering that the
transposition algorithm probably deteriorates the memory access efficiency on
CPU architectures. The fact that OpenCL is a possible alternative to OpenMP on
multicore CPU has already been discussed in [16].

On AMD or NVIDIA GPUs, the same version of our code achieves good
performance. If we replace the optimized transposition by a naive unoptimized
transposition algorithm the code runs approximately 10 times slower on GPUs. The
coalescent memory access is thus an essential ingredient of the efficiency.

2.4 OpenCL/MPI FV Solver

We now modify the OpenCL implementation in order to address several GPU
accelerators at the same time. This could theoretically be achieved by creating
several command queues, one for each GPU device. However, as of today, when
GPUs are plugged into different nodes of a supercomputer, the current OpenCL
drivers are not able to drive at the same time GPUs of different nodes. Therefore,
we have decided to rely on the MPI framework for managing the communications
between different GPUs. This strategy is very common (see for instance [1, 4, 7]
and included references).

We split the computational domain˝ into several subdomains in the x1 direction.
An example of splitting with four subdomains is presented on Fig. 1. Then, each
subdomain is associated to one MPI node and each MPI node drives one GPU. For
applying the finite volume algorithm on a subdomain, it is necessary to exchange
two layers of cells between the neighboring subdomains at the beginning of each
time step. The layers are shaded in grey in Fig. 1. On each MPI node, an exchange
thus requires a GPU to CPU memory transfer of the cell layers, a MPI send/recv
communication and a CPU to GPU transfer for retrieving the neighbor layers. The
exchanged cells represent a small amount of the total grid cells, however, the transfer
and communication time represent a non-negligible amount of the computation cost.

In our first OpenCL/MPI implementation, the exchange task is performed in a
synchronous way: we wait for the exchange to be finished before computing the flux
balance in the subdomains. This explains why the speedup between the OpenCL
code and the OpenCL/MPI code with four GPUs is approximately 3.5 (the ideal
speedup would be 4). See Table 1.

Despite the synchronous approach, the OpenCL/MPI FV solver on structured
grid is rather efficient. It has permitted us to perform computations on very fine
grids that would be unreachable with standard parallel computers. For instance, we
have performed two-fluid computations of shock-bubble interaction with grid size
up to 40;000 � 20;000 in [6].

Our FV solver has several drawbacks: the FV method is limited to first or second
order approximation and in some applications, it is important to have access to
higher order schemes; MPI and host/GPU communications take time, so it is also

554 P. Helluy et al.

Fig. 1 Subdomain MPI
decomposition

GPU 0

MPI

Node 0

GPU 1

MPI

Node 1

GPU 2

MPI

Node 2

GPU 3

MPI

Node 3

L

L

important to provide asynchronous implementations for scalability with more MPI
nodes; finally, the previously described approach is limited to structured grids and
we wish also to extend the method to arbitrary geometries.

In the next section we describe a Discontinuous Galerkin (DG) solver that
allows to achieving higher order, addressing general geometries, and overlapping
computations and communications.

3 Asynchronous OpenCL/MPI Discontinuous Galerkin
Solver

We now present the Discontinuous Galerkin Method and explain our software
design for keeping high performance in the GPU implementation.

3.1 The DG Method

3.1.1 Interpolation on Unstructured Hexahedral Meshes

The DG method is a generalization of the FV method. We suppose that dimension
d D 3. We consider a mesh of the computational domain ˝ made of cells Li,

Asynchronous OpenCL/MPI Numerical Simulations of Conservation Laws 555

i D 1 : : :Nc. In a cell L of the mesh, the field is approximated by a linear
combination of basis functions L

j

W.x; t/ DWj
L.t/

L
j .x/; x 2 L: (18)

Each cell L of the mesh is obtained by a geometrical mapping �L that transforms
a reference element OL into L. In theory the shape of the reference element OL may
be arbitrary. A classic choice is to consider tetrahedra [9]. In this work we prefer
hexahedra, as in [5]. Building a tetrahedral mesh of˝ is generally easier. The nodal
basis functions of a hexahedral cell are constructed from tensor products of one-
dimensional functions. The tensor nature of the basis allows many optimizations
of the algorithm that are not possible with tetrahedra. The chosen basis is made of
Lagrange polynomials of order D associated to Gauss-Legendre quadrature points.
This choice is classic and described in details in [8]. In Fig. 2 we have represented
the Gauss-Legendre points for an order D D 2. The volume Gauss points (which are
also the chosen interpolation points) are blue and the face Gauss points are green.
Because we have chosen Gauss-Legendre quadrature, an extrapolation is needed at
face Gauss points for computing surface integrals. This would not be necessary with
Gauss-Lobatto quadrature points.

3.1.2 DG Formulation

The numerical solution satisfies the DG approximation scheme

8L;8i
Z
L
@tW L

i �
Z
L
F.W;W;r L

i /

C
Z
@L
F.WL;WR;nLR/ L

i D 0 : (19)

Fig. 2 Volume and face
Gauss-Legendre points in the
reference cube

556 P. Helluy et al.

Fig. 3 Mesh: notation
conventions

nLR

L R

L

R

Fig. 4 Non-zero values of
the basis functions. The
gradient of the basis function
associated to the red point is
nonzero only on the blue
points

In this formula,

• R denotes the neighbor cells along @L,
• nLR is the unit normal vector on @L oriented from L to R. See Fig. 3,
• F.WL;WR;n/ is the numerical flux, which satisfies F.W;W;n/ D Fk.W/nk.

Inserting expansion (18) into (19) we obtain a system of differential equations
satisfied by the Wj

L.t/. This system of differential equations can be solved numeri-
cally with a standard Runge-Kutta method.

The choice of interpolation we have described in the previous section is well
adapted to the DG formulation. For instance, the nodal basis property ensures
that we have direct access to the values of W at the Gauss points. Consequently
the mass matrix is diagonal. In addition, the computation of the volume termR
L F.W;W;r L

i / does not require to loop on all the volume Gauss points. Indeed,
the gradient of i is nonzero only at the points that are aligned with point i (see
Fig. 4). Finally, for computing the face integrals

Z
@L
F.WL;WR;nLR/ L

i (20)

we have to extrapolate the values of W, which are known on the volume Gauss
points, to the interfacial Gauss points. On tetrahedra, all the volume Gauss points
would be involved in the interpolation. With our nodal hexahedral basis, only the

Asynchronous OpenCL/MPI Numerical Simulations of Conservation Laws 557

volume Gauss points aligned with the considered interfacial Gauss point are needed
(see Fig. 2: for computing W at a green point, we only need to know W at the blue
points aligned with this green point).

In the end, exploiting the tensor basis properties, the DG formulation (19) in a
cell L requires computations of complexity �D4 instead of �D6. For high orders,
this is a huge improvement.

Beyond these useful optimizations that are also applied in sequential implemen-
tations, The DG method presents many advantages: it is possible to have different
orders on different cells, no conformity is required between the cell and mesh
refinement is thus simplified; the computations inside a cell only depend on the
neighboring cells; the stencil is more compact than for high order FV methods, so
memory accesses are well adapted to GPU computations; high order inside a cell
implies a high amount of local computations, this property is well adapted to GPU
computations; and finally, two levels of parallelism can be easily exploited: a coarse
grain parallelism, at the subdomain level, well adapted to MPI algorithms and a fine
grain parallelism, at the level of a single cell, well adapted to OpenCL or OpenMP.

But there are also possible issues that could make an implementation inefficient:
first, we have to take care of memory bandwidth, because unstructured meshes may
imply non coalescent memory access. Moreover, a general DG solver has to manage
many different physical models, boundary conditions, interpolation basis, etc. If the
implementation is not realized with care it is possible to end up with poorly coded
kernels with many barely used variables or branch tests. Such wastage may remain
unseen on standard CPUs with many registers and large cache memory, but is often
catastrophic on GPUs. Finally, as we have already seen, MPI communications imply
very slow GPU to Host and Host to GPU memory transfers. If possible, it is advised
to hide communication latency by an overlapping with computations.

3.2 OpenCL Kernel for a Single GPU

We first wrote optimized OpenCL kernels for computing, on a single cell L, the
terms appearing in the DG formulation (19). After several experiments, we have
found that an efficient strategy is to write a single kernel for computing the @L and
L integration steps.

More precisely we construct a kernel with two steps.
In the first step (“flux step”), we compute the fluxes at the face Gauss points

and store those fluxes in the cache memory of the work-group. The work-items
are distributed on the face Gauss points. In this stage, 6.D C 1/2 work-items are
activated.

After a sync barrier, in the second stage (“collecting step”), we associate a work-
item to each volume Gauss point and we collect the contributions of the other
volume Gauss points coming from the numerical integration. We also collect the
contribution from the face fluxes stored in the first step. In this stage, .D C 1/3

work-items are activated.

558 P. Helluy et al.

We observe that when the order D < 5, which is always the case in our
computations, .D C 1/3 < 6.D C 1/2 and then some work-items are idling in the
collecting step.

We have also tried to split the computation into two kernels, one for the flux step
and one for the collecting step, but it requires saving the fluxes into global memory,
and in the end it appears that the idling work-items method is more efficient.

3.3 Asynchronous MPI/OpenCL Implementation for Several
GPUs

3.3.1 Subdomains and Zones

We have written a generic C++ DG solver called CLAC (“Conservation Laws
Approximation on many Cores”) for solving large problems on general hexahedral
meshes. Practical industrial applications require a lot of memory and computations.
It is thus necessary to address several accelerators in an efficient way.

We describe some features of the CLAC implementation.
First, the physical models are localized in the code: in practice, the user has to

provide the numerical flux plus a few functions for applying boundary conditions,
source terms, etc. With this approach it is possible to apply CLAC to very different
physics: Maxwell equations, compressible fluids, MHD, etc. This approach is
similar to the approach of A. Klöckner in [10].

We also adopt a domain decomposition strategy. The mesh is split into several
domains, each of which is associated to a single MPI node, and each MPI node is
associated to an OpenCL device (CPU or GPU).

In addition to the domain decomposition, in each domain we split the mesh into
zones. We consider volume zones made of hexahedral cells and also interface zones
made of cell faces. The role of a volume zone is to apply the source terms and
the flux balance between cells inside the zone. The interface zones are devoted
to computing the flux balance between cells of different volume zones. When an
interface zone is at the boundary of the computational domain, it is used for applying
boundary conditions. When it is situated at an interface between two domains,
it is also in charge of the MPI communications between the domains. Interface
zones also serve to manage mesh refinements between two volume zones. A simple
example of a mesh with two subdomains, three volume zones and five interface
zones is given in Fig. 5 and a schematic view of the same mesh is represented in
Fig. 6. We observe in this figure that simple non-conformities are allowed between
volume zones (for instance neighboring volume zones 2 and 3 do not have the same
refinement).

Finally, a zone possesses identical elements (same order, same geometry, same
physical model). Thus, different computation kernels are compiled for each zone,
in order to save registers and branch tests. We have observed that this aspect
is very important for achieving high efficiency. For example, it is possible to

Asynchronous OpenCL/MPI Numerical Simulations of Conservation Laws 559

Fig. 5 A simple non conforming mesh

Subdomain 1

Subdomain 2

Volume

zone 1

Volume

zone 2

Volume

zone 3

Interface

zone

Interface

zone

Interface

zone 3

Interface

zone 1

Interface

zone 2

Fig. 6 Schematic view of the simple mesh

simplify the kernel that computes the flux balance at an interface zone between two
volume zones with conforming meshes. At an interface between volume zones with
different refinements, the kernel is more complex, because the Gauss integration
points are not aligned (see Interface zone 3 on Fig. 6). The specialized kernels take
advantage of the Gauss points alignment and store interpolation and geometrical
data in constant arrays or preprocessor macros. The speedup obtained using the
specialized kernels as opposed to the generic kernels is reported in Table 2 for
different interpolation orders.

560 P. Helluy et al.

Table 2 Speedup obtained
with the specialized kernels

Order 0 1 2 3 4

Speedup 1:6 1:8 2:8 3:6 5:5

Table 3 Tasks description Name Attached to Description

Extraction Interface Copy or extrapolate the values
of W from a neighboring volume
zone

Exchange Interface GPU/Host transfers and MPI
communication with an interface
of another domain

Fluxes Interface Compute the fluxes at the Gauss
points of the interface

Sources Volume Compute the internal fluxes and
source terms inside a volume
zone

Boundaries Interface Apply the fluxes of an interface to
a volume zone

Time Volume Apply a step of the Runge-Kutta
time integration to a volume zone

Start Volume Fictitious task: beginning of the
Runge-Kutta substep

End Volume Fictitious task: end of the Runge-
Kutta substep

3.3.2 Task Graph

The zone approach is very useful to express the dependency between the different
tasks of the DG algorithm.

We have identified tasks attached to volume or interface zones that have to be
executed for performing a Runge-Kutta substep with the DG formulation. Those
tasks are detailed in Table 3.

We express the dependencies between the tasks in a graph, and construct a task
graph per subdomain. For instance, we have represented on Fig. 7 the task graph
associated to Subdomain 2 of the simple mesh of Fig. 6. The volume tasks are
represented in blue rectangles, the interface tasks in red ellipses. The interface tasks
that require MPI communication are in red rhombuses.

We observe in these figures that it is possible to perform the exchange tasks
and the internal computations at the same time. It is thus possible to overlap
communications and GPU/Host transfers by computations.

OpenCL contains event objects for describing task dependencies between the
operations sent to command queues. It is also possible to create user events for
describing interactions between the OpenCL command queues and tasks that are
executed outside of a call to the OpenCL library. We have decided to rely only on
the OpenCL event management for constructing the task dependencies.

Asynchronous OpenCL/MPI Numerical Simulations of Conservation Laws 561

Fig. 7 Task graph for subdomain 2

Using asynchronous MPI communication requires calling MPI_Wait before
launching tasks that depend on the completion of communication. We thus face
a practical problem, which is to express the dependency between MPI and OpenCL
operations in a non-blocking way. A possibility would have been to use an OpenCL
“Native Kernel” containing MPI calls. A native kernel is a standard function
compiled and executed on the host side, but that can be inserted into the OpenCL
task graph. As of today, the native kernel feature is not implemented properly in all
the OpenCL drivers. We thus had to adopt another approach in order to circumvent
this difficulty.

Our solution uses the C++ standard thread class. It is also necessary to use
an MPI implementation that provides the MPI_THREAD_MULTIPLE option. For
programming the “Exchange” task, we first create an OpenCL user event. Then we
launch a thread and return from the task. The main program flow is not interrupted
and other operations can be enqueued. Meanwhile, in the thread, we start a blocking
send/recv MPI operation for exchanging data between the boundary interface zones.
Because the communication is launched in a thread, its blocking or non-blocking
nature is not very important. When the communication is finished, we mark the
OpenCL event as completed and exit the thread. The completion of the user event
triggers the beginning of the enqueued tasks that depend on the exchange.

As we will see in the next section, this simple solution offers very good efficiency.

562 P. Helluy et al.

3.4 Efficiency Analysis

In this section we measure the efficiency of the CLAC implementation. Recently
the so-called roofline model has been introduced for analyzing the efficiency
of algorithm implementation on a single accelerator [17]. This model is based
on several hardware parameters. First, we need to know the peak computation
performances of the accelerator. This peak is measured with an algorithm with
high computational intensity and very little memory access. It can be measured
with a program that only requires register access. For instance, for a NVIDIA K20
accelerator, the peak performance is P D 3:5TFLOP/s: Another parameter is the
memory bandwidth B that measures the transfer speed of the global memory. For a
NVIDIA K20 B D 208GB/s:

Not all algorithms are well adapted to GPU computing. Consider an algorithm
(A) in which we count Nops operations (add, multiply, etc.) and Nmem global memory
operations (read or write). In [17], the computational intensity of the algorithm is
defined by

I D Nops

Nmem
: (21)

The maximal attainable performance of one GPU for this algorithm is then given by
the roofline formula:

PA D max.P;B � I/:

We have counted the computational and memory operations of our DG imple-
mentation. The counting method is simply based on source inspection because we
have not been able to find an automatic and reliable tool for evaluating the amount of
floating point and memory operations. We only count memory transfer to the global
memory, floating point and integer operations: we neglected pointer arithmetic and
register accesses. The results are plotted in Fig. 8. We observe that for order 1, the
DG method is limited by the memory bandwidth. For higher orders, the method
is limited by the peak performance of the GPU. The figure confirms that the DG
method is well adapted to GPU architectures. We have also performed this analysis
for the FV method described in Sect. 2. For large grids, the efficiency of the FV
scheme is approximately 20FLOP/B. The FV algorithm is thus also limited by
the peak performance of the GPU. Our implementation of the FV scheme reaches
approximately 800GFLOP/s on a single K20 GPU.

In Table 5, we present the results that we have measured with the asynchronous
MPI/OpenCL implementation with 1, 2, 4 and 8 GPUs. For comparison, we also
give in Table 4 the results of the synchronous execution (we wait that each task
is completed before launching the next one). The computational domain ˝ is a
cube. The chosen model is the Maxwell system (m D 6). The mesh is made of
several subdomains of 903 cells. We perform single precision computations. The

Asynchronous OpenCL/MPI Numerical Simulations of Conservation Laws 563

Fig. 8 Roofline model and DG method. Abscissa: computational intensity I (FLOP/B). Ordinate:
Algorithm performance (TFLOP/s)

Table 4 Weak scaling of the
synchronous MPI/OpenCL
implementation

1 GPU 2 GPUs 4 GPUs 8 GPUs

TFLOP/s 1:01 1:84 3:53 5:07

Speedup 1 1:83 3:53 5:01

Table 5 Weak scaling of the
asynchronous MPI/OpenCL
implementation

1 GPU 2 GPUs 4 GPUs 8 GPUs

TFLOP/s 1:01 1:96 3:78 7:34

Speedup 1 1:94 3:74 7:26

interpolation is of order D D 3. The algorithm requires storing three time steps
of the numerical solution. With these parameters the memory of each K20 board
is almost entirely filled. Indeed the storage of the electromagnetic field on one
subdomain requires approximately 3:4GB.

We observe in Table 5 that the asynchronous implementation is rather efficient
and that the communications are well overlapped by the GPU computations. In
addition, we observe that with CLAC we attain approximately 30% of the roofline
limit. This result is not too bad, because CLAC handles unstructured meshes and
some non-coalescent memory accesses are unavoidable.

564 P. Helluy et al.

Table 6 Additional cost for
5 and 10 PML expressed in
percentage of the total
computation time

Order 0 1 2 3 4

5 layers (%) 7:14 4:29 15:9 16:5 15:0

10 layers (%) 7:95 6:49 19:0 20:6 18:1

3.5 Numerical Results

For finishing this paper, we would like to present numerical results that we have
obtained from a real-world application. The objective is to compute the reflection
of an electromagnetic plane wave with Gaussian profile over an entire aircraft. The
mesh is made of 3;337;875 hexahedrons. We used an order D D 2 approximation
and 8 GPUs (NVIDIA K20). The interior and the exterior of the aircraft are meshed.
In order to approximate the infinite exterior model, we use a Perfectly Matched
Layers (PML) model [3]. The PML model is an extension of the Maxwell model.
The possibility to use different models in different zones is here exploited for
applying the PML model. In a PML zone, the Maxwell equations are coupled with
a system of six ordinary differential equations. This coupling induces an additional
cost reported in Table 6.

4 Conclusions

In this work we have reviewed several methods for solving hyperbolic conservation
laws. Such models are very useful in many fields of physics or engineering.
We have presented a finite volume OpenCL/MPI implementation. We have seen
that coalescent memory access is essential for obtaining good efficiency. The
synchronous MPI communication does not allow an optimal scaling with several
GPUs. However the MPI extension allows addressing computations that would not
fit into a single accelerator.

We have then presented a more sophisticated approach: the Discontinuous
Galerkin method on unstructured hexahedral meshes. We have also written an
OpenCL/MPI implementation of the method. Despite the unstructured mesh and
some non-coalescent memory accesses, we reach 30 % of the peak performance.

In future works we intend to change the description of the mesh geometry in
order to minimize the memory access: we can for instance share a higher order
geometrical transformation � between several cells. We also plan to implement a
local-time stepping algorithm in order to be able to deal with locally refined meshes.
Finally, we would like to describe the task graph in a more abstract manner in
order to distribute the computation more effectively on the available resources. An
interesting tool for performing such distribution could be for instance the StarPU
environment [2].

Asynchronous OpenCL/MPI Numerical Simulations of Conservation Laws 565

Acknowledgements This work has benefited from several supports: from the French Defense
Agency DGA, from the Labex ANR-11-LABX-0055-IRMIA and from the AxesSim company. We
also thank Vincent Loechner for his helpful advice regarding the optimization of the OpenMP
code.

References

1. Aubert, D.: Numerical cosmology powered by GPUs. Proc. Int. Astron. Union 6(S270), 397–
400 (2010)

2. Augonnet, C., Thibault, S., Namyst, R., Wacrenier, P.A.: StarPU: a unified platform for task
scheduling on heterogeneous multicore architectures. Concurr. Comput.: Pract. Exper. 23(2),
187–198 (2011)

3. Berenger, J.P.: A perfectly matched layer for the absorption of electromagnetic waves. J.
Comput. Phys. 114(2), 185–200 (1994)

4. Cabel, T., Charles, J., Lanteri, S.: Multi-GPU acceleration of a DGTD method for modeling
human exposure to electromagnetic waves. Research report, vol. RR-7592, p. 27. INRIA. http://
hal.inria.fr/inria-00583617 (2011)

5. Cohen, G., Ferrieres, X., Pernet, S.: A spatial high-order hexahedral discontinuous Galerkin
method to solve Maxwell’s equations in time domain. J. Comput. Phys. 217(2), 340–363 (2006)

6. Helluy, P., Jung, J.: Interpolated pressure laws in two-fluid simulations and hyperbolicity. In:
Finite Volumes for Complex Applications VII-Methods and Theoretical Aspects: FVCA 7,
Berlin, June 2014, pp. 37–53. Springer, Cham (2014)

7. Helluy, P., Jung, J.: Two-fluid compressible simulations on GPU cluster. ESAIM Proc. Surv.
45, 349–358 (2014)

8. Hesthaven, J.S., Warburton, T.: Nodal Discontinuous Galerkin Methods: Algorithms, Analysis,
and Applications. Texts in Applied Mathematics, vol. 54. Springer, New York (2008)

9. Klöckner, A., Warburton, T., Bridge, J., Hesthaven, J.S.: Nodal discontinuous Galerkin
methods on graphics processors. J. Comput. Phys. 228(21), 7863–7882 (2009). http://dx.doi.
org/10.1016/j.jcp.2009.06.041

10. Kloeckner, A.: Hedge: Hybrid and Easy Discontinuous Galerkin Environment. http://mathema.
tician.de/software/hedge/ (2010)

11. LeVeque, R.J.: Finite volume methods for hyperbolic problems. Cambridge Texts in Applied
Mathematics, vol. 31. Cambridge University Press, Cambridge (2002)

12. Massaro, M., Helluy, P., Loechner, V.: Numerical simulation for the MHD system in 2D using
OpenCL. ESAIM Proc. Surv. 45, 485–492 (2014)

13. Michéa, D., Komatitsch, D.: Accelerating a three-dimensional finite-difference wave propaga-
tion code using GPU graphics cards. Geophys. J. Int. 182(1), 389–402 (2010)

14. OpenCL: The open standard for parallel programming of heterogeneous systems. https://www.
khronos.org/opencl. Accessed 23 Feb 2016

15. Ruetsch, G., Micikevicius, P.: Optimizing matrix transpose in CUDA. Nvidia CUDA SDK
Application Note (2009)

16. Shen, J., Fang, J., Sips, H., Varbanescu, A.L.: Performance gaps between OpenMP and
OpenCL for multi-core CPUs. In: 2012 41st International Conference on Parallel Processing
Workshops (ICPPW), pp. 116–125. IEEE (2012)

17. Williams, S., Waterman, A., Patterson, D.: Roofline: an insightful visual performance model
for multicore architectures. Commun. ACM 52(4), 65–76 (2009)

http://hal.inria.fr/inria-00583617
http://hal.inria.fr/inria-00583617
http://dx.doi.org/10.1016/j.jcp.2009.06.041
http://dx.doi.org/10.1016/j.jcp.2009.06.041
http://mathema.tician.de/software/hedge/
http://mathema.tician.de/software/hedge/
https://www.khronos.org/opencl
https://www.khronos.org/opencl

Editorial Policy

1. Volumes in the following three categories will be published in LNCSE:

i) Research monographs
ii) Tutorials
iii) Conference proceedings

Those considering a book which might be suitable for the series are strongly advised to
contact the publisher or the series editors at an early stage.

2. Categories i) and ii). Tutorials are lecture notes typically arising via summer schools
or similar events, which are used to teach graduate students. These categories will be
emphasized by Lecture Notes in Computational Science and Engineering. Submissions by
interdisciplinary teams of authors are encouraged. The goal is to report new developments
– quickly, informally, and in a way that will make them accessible to non-specialists. In the
evaluation of submissions timeliness of the work is an important criterion. Texts should
be well-rounded, well-written and reasonably self-contained. In most cases the work will
contain results of others as well as those of the author(s). In each case the author(s) should
provide sufficient motivation, examples, and applications. In this respect, Ph.D. theses will
usually be deemed unsuitable for the Lecture Notes series. Proposals for volumes in these
categories should be submitted either to one of the series editors or to Springer-Verlag,
Heidelberg, and will be refereed. A provisional judgement on the acceptability of a project
can be based on partial information about the work: a detailed outline describing the contents
of each chapter, the estimated length, a bibliography, and one or two sample chapters – or
a first draft. A final decision whether to accept will rest on an evaluation of the completed
work which should include

– at least 100 pages of text;
– a table of contents;
– an informative introduction perhaps with some historical remarks which should be

accessible to readers unfamiliar with the topic treated;
– a subject index.

3. Category iii). Conference proceedings will be considered for publication provided that
they are both of exceptional interest and devoted to a single topic. One (or more) expert
participants will act as the scientific editor(s) of the volume. They select the papers which are
suitable for inclusion and have them individually refereed as for a journal. Papers not closely
related to the central topic are to be excluded. Organizers should contact the Editor for CSE
at Springer at the planning stage, see Addresses below.

In exceptional cases some other multi-author-volumes may be considered in this category.

4. Only works in English will be considered. For evaluation purposes, manuscripts may
be submitted in print or electronic form, in the latter case, preferably as pdf- or zipped
ps-files. Authors are requested to use the LaTeX style files available from Springer at http://
www.springer.com/gp/authors-editors/book-authors-editors/manuscript-preparation/5636
(Click on LaTeX Template! monographs or contributed books).

For categories ii) and iii) we strongly recommend that all contributions in a volume be
written in the same LaTeX version, preferably LaTeX2e. Electronic material can be included
if appropriate. Please contact the publisher.

Careful preparation of the manuscripts will help keep production time short besides ensuring
satisfactory appearance of the finished book in print and online.

http://www.springer.com/gp/authors-editors/book-authors-editors/manuscript-preparation/5636

5. The following terms and conditions hold. Categories i), ii) and iii):

Authors receive 50 free copies of their book. No royalty is paid.
Volume editors receive a total of 50 free copies of their volume to be shared with authors, but
no royalties.

Authors and volume editors are entitled to a discount of 33.3 % on the price of Springer books
purchased for their personal use, if ordering directly from Springer.

6. Springer secures the copyright for each volume.

Addresses:

Timothy J. Barth
NASA Ames Research Center
NAS Division
Moffett Field, CA 94035, USA
barth@nas.nasa.gov

Michael Griebel
Institut für Numerische Simulation
der Universität Bonn
Wegelerstr. 6
53115 Bonn, Germany
griebel@ins.uni-bonn.de

David E. Keyes
Mathematical and Computer Sciences
and Engineering
King Abdullah University of Science
and Technology
P.O. Box 55455
Jeddah 21534, Saudi Arabia
david.keyes@kaust.edu.sa

and

Department of Applied Physics
and Applied Mathematics
Columbia University
500 W. 120 th Street
New York, NY 10027, USA
kd2112@columbia.edu

Risto M. Nieminen
Department of Applied Physics
Aalto University School of Science
and Technology
00076 Aalto, Finland
risto.nieminen@aalto.fi

Dirk Roose
Department of Computer Science
Katholieke Universiteit Leuven
Celestijnenlaan 200A
3001 Leuven-Heverlee, Belgium
dirk.roose@cs.kuleuven.be

Tamar Schlick
Department of Chemistry
and Courant Institute
of Mathematical Sciences
New York University
251 Mercer Street
New York, NY 10012, USA
schlick@nyu.edu

Editor for Computational Science
and Engineering at Springer:
Martin Peters
Springer-Verlag
Mathematics Editorial IV
Tiergartenstrasse 17
69121 Heidelberg, Germany
martin.peters@springer.com

Lecture Notes
in Computational Science
and Engineering

1. D. Funaro, Spectral Elements for Transport-Dominated Equations.

2. H.P. Langtangen, Computational Partial Differential Equations. Numerical Methods and Diffpack
Programming.

3. W. Hackbusch, G. Wittum (eds.), Multigrid Methods V.

4. P. Deuflhard, J. Hermans, B. Leimkuhler, A.E. Mark, S. Reich, R.D. Skeel (eds.), Computational
Molecular Dynamics: Challenges, Methods, Ideas.

5. D. Kröner, M. Ohlberger, C. Rohde (eds.), An Introduction to Recent Developments in Theory and
Numerics for Conservation Laws.

6. S. Turek, Efficient Solvers for Incompressible Flow Problems. An Algorithmic and Computational
Approach.

7. R. von Schwerin, Multi Body System SIMulation. Numerical Methods, Algorithms, and Software.

8. H.-J. Bungartz, F. Durst, C. Zenger (eds.), High Performance Scientific and Engineering Comput-
ing.

9. T.J. Barth, H. Deconinck (eds.), High-Order Methods for Computational Physics.

10. H.P. Langtangen, A.M. Bruaset, E. Quak (eds.),Advances in Software Tools for Scientific Comput-
ing.

11. B. Cockburn, G.E. Karniadakis, C.-W. Shu (eds.), Discontinuous Galerkin Methods. Theory,
Computation and Applications.

12. U. van Rienen, Numerical Methods in Computational Electrodynamics. Linear Systems in Practical
Applications.

13. B. Engquist, L. Johnsson, M. Hammill, F. Short (eds.), Simulation and Visualization on the Grid.

14. E. Dick, K. Riemslagh, J. Vierendeels (eds.), Multigrid Methods VI.

15. A. Frommer, T. Lippert, B. Medeke, K. Schilling (eds.), Numerical Challenges in Lattice Quantum
Chromodynamics.

16. J. Lang, Adaptive Multilevel Solution of Nonlinear Parabolic PDE Systems. Theory, Algorithm, and
Applications.

17. B.I. Wohlmuth, Discretization Methods and Iterative Solvers Based on Domain Decomposition.

18. U. van Rienen, M. Günther, D. Hecht (eds.), Scientific Computing in Electrical Engineering.

19. I. Babuška, P.G. Ciarlet, T. Miyoshi (eds.), Mathematical Modeling and Numerical Simulation in
Continuum Mechanics.

20. T.J. Barth, T. Chan, R. Haimes (eds.), Multiscale and Multiresolution Methods. Theory and
Applications.

21. M. Breuer, F. Durst, C. Zenger (eds.), High Performance Scientific and Engineering Computing.

22. K. Urban, Wavelets in Numerical Simulation. Problem Adapted Construction and Applications.

23. L.F. Pavarino, A. Toselli (eds.), Recent Developments in Domain Decomposition Methods.

24. T. Schlick, H.H. Gan (eds.), Computational Methods for Macromolecules: Challenges and
Applications.

25. T.J. Barth, H. Deconinck (eds.), Error Estimation and Adaptive Discretization Methods in
Computational Fluid Dynamics.

26. M. Griebel, M.A. Schweitzer (eds.), Meshfree Methods for Partial Differential Equations.

27. S. Müller, Adaptive Multiscale Schemes for Conservation Laws.

28. C. Carstensen, S. Funken, W. Hackbusch, R.H.W. Hoppe, P. Monk (eds.), Computational
Electromagnetics.

29. M.A. Schweitzer, A Parallel Multilevel Partition of Unity Method for Elliptic Partial Differential
Equations.

30. T. Biegler, O. Ghattas, M. Heinkenschloss, B. van Bloemen Waanders (eds.), Large-Scale PDE-
Constrained Optimization.

31. M. Ainsworth, P. Davies, D. Duncan, P. Martin, B. Rynne (eds.), Topics in Computational Wave
Propagation. Direct and Inverse Problems.

32. H. Emmerich, B. Nestler, M. Schreckenberg (eds.), Interface and Transport Dynamics. Computa-
tional Modelling.

33. H.P. Langtangen, A. Tveito (eds.), Advanced Topics in Computational Partial Differential
Equations. Numerical Methods and Diffpack Programming.

34. V. John, Large Eddy Simulation of Turbulent Incompressible Flows. Analytical and Numerical
Results for a Class of LES Models.

35. E. Bänsch (ed.), Challenges in Scientific Computing - CISC 2002.

36. B.N. Khoromskij, G. Wittum, Numerical Solution of Elliptic Differential Equations by Reduction
to the Interface.

37. A. Iske, Multiresolution Methods in Scattered Data Modelling.

38. S.-I. Niculescu, K. Gu (eds.), Advances in Time-Delay Systems.

39. S. Attinger, P. Koumoutsakos (eds.), Multiscale Modelling and Simulation.

40. R. Kornhuber, R. Hoppe, J. Périaux, O. Pironneau, O. Wildlund, J. Xu (eds.), Domain Decomposi-
tion Methods in Science and Engineering.

41. T. Plewa, T. Linde, V.G. Weirs (eds.), Adaptive Mesh Refinement – Theory and Applications.

42. A. Schmidt, K.G. Siebert, Design of Adaptive Finite Element Software. The Finite Element Toolbox
ALBERTA.

43. M. Griebel, M.A. Schweitzer (eds.), Meshfree Methods for Partial Differential Equations II.

44. B. Engquist, P. Lötstedt, O. Runborg (eds.), Multiscale Methods in Science and Engineering.

45. P. Benner, V. Mehrmann, D.C. Sorensen (eds.), Dimension Reduction of Large-Scale Systems.

46. D. Kressner, Numerical Methods for General and Structured Eigenvalue Problems.

47. A. Boriçi, A. Frommer, B. Joó, A. Kennedy, B. Pendleton (eds.), QCD and Numerical Analysis III.

48. F. Graziani (ed.), Computational Methods in Transport.

49. B. Leimkuhler, C. Chipot, R. Elber, A. Laaksonen, A. Mark, T. Schlick, C. Schütte, R. Skeel (eds.),
New Algorithms for Macromolecular Simulation.

50. M. Bücker, G. Corliss, P. Hovland, U. Naumann, B. Norris (eds.), Automatic Differentiation:
Applications, Theory, and Implementations.

51. A.M. Bruaset, A. Tveito (eds.), Numerical Solution of Partial Differential Equations on Parallel
Computers.

52. K.H. Hoffmann, A. Meyer (eds.), Parallel Algorithms and Cluster Computing.

53. H.-J. Bungartz, M. Schäfer (eds.), Fluid-Structure Interaction.

54. J. Behrens, Adaptive Atmospheric Modeling.

55. O. Widlund, D. Keyes (eds.), Domain Decomposition Methods in Science and Engineering XVI.

56. S. Kassinos, C. Langer, G. Iaccarino, P. Moin (eds.), Complex Effects in Large Eddy Simulations.

57. M. Griebel, M.A Schweitzer (eds.), Meshfree Methods for Partial Differential Equations III.

58. A.N. Gorban, B. Kégl, D.C. Wunsch, A. Zinovyev (eds.), Principal Manifolds for Data Visualiza-
tion and Dimension Reduction.

59. H. Ammari (ed.), Modeling and Computations in Electromagnetics: A Volume Dedicated to Jean-
Claude Nédélec.

60. U. Langer, M. Discacciati, D. Keyes, O. Widlund, W. Zulehner (eds.), Domain Decomposition
Methods in Science and Engineering XVII.

61. T. Mathew, Domain Decomposition Methods for the Numerical Solution of Partial Differential
Equations.

62. F. Graziani (ed.), Computational Methods in Transport: Verification and Validation.

63. M. Bebendorf, Hierarchical Matrices. A Means to Efficiently Solve Elliptic Boundary Value
Problems.

64. C.H. Bischof, H.M. Bücker, P. Hovland, U. Naumann, J. Utke (eds.), Advances in Automatic
Differentiation.

65. M. Griebel, M.A. Schweitzer (eds.), Meshfree Methods for Partial Differential Equations IV.

66. B. Engquist, P. Lötstedt, O. Runborg (eds.), Multiscale Modeling and Simulation in Science.

67. I.H. Tuncer, Ü. Gülcat, D.R. Emerson, K. Matsuno (eds.), Parallel Computational Fluid Dynamics
2007.

68. S. Yip, T. Diaz de la Rubia (eds.), Scientific Modeling and Simulations.

69. A. Hegarty, N. Kopteva, E. O’Riordan, M. Stynes (eds.), BAIL 2008 – Boundary and Interior
Layers.

70. M. Bercovier, M.J. Gander, R. Kornhuber, O. Widlund (eds.), Domain Decomposition Methods in
Science and Engineering XVIII.

71. B. Koren, C. Vuik (eds.), Advanced Computational Methods in Science and Engineering.

72. M. Peters (ed.), Computational Fluid Dynamics for Sport Simulation.

73. H.-J. Bungartz, M. Mehl, M. Schäfer (eds.), Fluid Structure Interaction II - Modelling, Simulation,
Optimization.

74. D. Tromeur-Dervout, G. Brenner, D.R. Emerson, J. Erhel (eds.), Parallel Computational Fluid
Dynamics 2008.

75. A.N. Gorban, D. Roose (eds.), Coping with Complexity: Model Reduction and Data Analysis.

76. J.S. Hesthaven, E.M. Rønquist (eds.), Spectral and High Order Methods for Partial Differential
Equations.

77. M. Holtz, Sparse Grid Quadrature in High Dimensions with Applications in Finance and Insurance.

78. Y. Huang, R. Kornhuber, O.Widlund, J. Xu (eds.), Domain Decomposition Methods in Science and
Engineering XIX.

79. M. Griebel, M.A. Schweitzer (eds.), Meshfree Methods for Partial Differential Equations V.

80. P.H. Lauritzen, C. Jablonowski, M.A. Taylor, R.D. Nair (eds.), Numerical Techniques for Global
Atmospheric Models.

81. C. Clavero, J.L. Gracia, F.J. Lisbona (eds.), BAIL 2010 – Boundary and Interior Layers, Computa-
tional and Asymptotic Methods.

82. B. Engquist, O. Runborg, Y.R. Tsai (eds.), Numerical Analysis and Multiscale Computations.

83. I.G. Graham, T.Y. Hou, O. Lakkis, R. Scheichl (eds.), Numerical Analysis of Multiscale Problems.

84. A. Logg, K.-A. Mardal, G. Wells (eds.), Automated Solution of Differential Equations by the Finite
Element Method.

85. J. Blowey, M. Jensen (eds.), Frontiers in Numerical Analysis - Durham 2010.

86. O. Kolditz, U.-J. Gorke, H. Shao, W. Wang (eds.), Thermo-Hydro-Mechanical-Chemical Processes
in Fractured Porous Media - Benchmarks and Examples.

87. S. Forth, P. Hovland, E. Phipps, J. Utke, A. Walther (eds.), Recent Advances in Algorithmic
Differentiation.

88. J. Garcke, M. Griebel (eds.), Sparse Grids and Applications.

89. M. Griebel, M.A. Schweitzer (eds.), Meshfree Methods for Partial Differential Equations VI.

90. C. Pechstein, Finite and Boundary Element Tearing and Interconnecting Solvers for Multiscale
Problems.

91. R. Bank, M. Holst, O. Widlund, J. Xu (eds.), Domain Decomposition Methods in Science and
Engineering XX.

92. H. Bijl, D. Lucor, S. Mishra, C. Schwab (eds.), Uncertainty Quantification in Computational Fluid
Dynamics.

93. M. Bader, H.-J. Bungartz, T. Weinzierl (eds.), Advanced Computing.

94. M. Ehrhardt, T. Koprucki (eds.), Advanced Mathematical Models and Numerical Techniques for
Multi-Band Effective Mass Approximations.

95. M. Azaïez, H. El Fekih, J.S. Hesthaven (eds.), Spectral and High Order Methods for Partial
Differential Equations ICOSAHOM 2012.

96. F. Graziani, M.P. Desjarlais, R. Redmer, S.B. Trickey (eds.), Frontiers and Challenges in Warm
Dense Matter.

97. J. Garcke, D. Pflüger (eds.), Sparse Grids and Applications – Munich 2012.

98. J. Erhel, M. Gander, L. Halpern, G. Pichot, T. Sassi, O. Widlund (eds.), Domain Decomposition
Methods in Science and Engineering XXI.

99. R. Abgrall, H. Beaugendre, P.M. Congedo, C. Dobrzynski, V. Perrier, M. Ricchiuto (eds.), High
Order Nonlinear Numerical Methods for Evolutionary PDEs - HONOM 2013.

100. M. Griebel, M.A. Schweitzer (eds.), Meshfree Methods for Partial Differential Equations VII.

101. R. Hoppe (ed.), Optimization with PDE Constraints - OPTPDE 2014.

102. S. Dahlke, W. Dahmen, M. Griebel, W. Hackbusch, K. Ritter, R. Schneider, C. Schwab,
H. Yserentant (eds.), Extraction of Quantifiable Information from Complex Systems.

103. A. Abdulle, S. Deparis, D. Kressner, F. Nobile, M. Picasso (eds.), Numerical Mathematics and
Advanced Applications - ENUMATH 2013.

104. T. Dickopf, M.J. Gander, L. Halpern, R. Krause, L.F. Pavarino (eds.), Domain Decomposition
Methods in Science and Engineering XXII.

105. M. Mehl, M. Bischoff, M. Schäfer (eds.), Recent Trends in Computational Engineering - CE2014.
Optimization, Uncertainty, Parallel Algorithms, Coupled and Complex Problems.

106. R.M. Kirby, M. Berzins, J.S. Hesthaven (eds.), Spectral and High Order Methods for Partial
Differential Equations - ICOSAHOM’14.

107. B. Jüttler, B. Simeon (eds.), Isogeometric Analysis and Applications 2014.

108. P. Knobloch (ed.), Boundary and Interior Layers, Computational and Asymptotic Methods – BAIL
2014.

109. J. Garcke, D. Pflüger (eds.), Sparse Grids and Applications – Stuttgart 2014.

110. H. P. Langtangen, Finite Difference Computing with Exponential Decay Models.

111. A. Tveito, G.T. Lines, Computing Characterizations of Drugs for Ion Channels and Receptors
Using Markov Models.

112. B. Karazösen, N, Manguoglu, M. Tezer-Sezgin, S. Göktepe, U. Ömür (eds.), Numerical Mathemat-
ics and Advanced Applications - ENUMATH 2015.

113. H.-J. Bungartz, P. Neumann, W.E. Nagel (eds.), Software for Exascale Computing – SPPEXA 2013-
2015.

For further information on these books please have a look at our mathematics catalogue at the following

URL: www.springer.com/series/3527

www.springer.com/series/3527

Monographs in Computational Science
and Engineering

1. J. Sundnes, G.T. Lines, X. Cai, B.F. Nielsen, K.-A. Mardal, A. Tveito, Computing the Electrical
Activity in the Heart.

For further information on this book, please have a look at our mathematics catalogue at the following

URL: www.springer.com/series/7417

Texts in Computational Science
and Engineering

1. H. P. Langtangen, Computational Partial Differential Equations. Numerical Methods and Diffpack
Programming. 2nd Edition

2. A. Quarteroni, F. Saleri, P. Gervasio, Scientific Computing with MATLAB and Octave. 4th Edition

3. H. P. Langtangen, Python Scripting for Computational Science. 3rd Edition

4. H. Gardner, G. Manduchi, Design Patterns for e-Science.

5. M. Griebel, S. Knapek, G. Zumbusch, Numerical Simulation in Molecular Dynamics.

6. H. P. Langtangen, A Primer on Scientific Programming with Python. 5th Edition

7. A. Tveito, H. P. Langtangen, B. F. Nielsen, X. Cai, Elements of Scientific Computing.

8. B. Gustafsson, Fundamentals of Scientific Computing.

9. M. Bader, Space-Filling Curves.

10. M. Larson, F. Bengzon, The Finite Element Method: Theory, Implementation and Applications.

11. W. Gander, M. Gander, F. Kwok, Scientific Computing: An Introduction using Maple and MATLAB.

12. P. Deuflhard, S. Röblitz, A Guide to Numerical Modelling in Systems Biology.

13. M. H. Holmes, Introduction to Scientific Computing and Data Analysis.

14. S. Linge, H. P. Langtangen, Programming for Computations - A Gentle Introduction to Numerical
Simulations with MATLAB/Octave.

15. S. Linge, H. P. Langtangen, Programming for Computations - A Gentle Introduction to Numerical
Simulations with Python.

For further information on these books please have a look at our mathematics catalogue at the following

URL: www.springer.com/series/5151

www.springer.com/series/7417
www.springer.com/series/5151

	Preface
	Contents
	Part I EXA-DUNE: Flexible PDE Solvers, Numerical Methods, and Applications
	Hardware-Based Efficiency Advances in the Exa-Dune Project
	1 The Exa-Dune Project
	2 Hybrid Parallelism in DUNE
	2.1 UMA Concept

	3 Assembly
	3.1 Thread Parallel Assembly
	3.2 Higher Order DG Methods
	3.3 Low Order Lagrange Methods

	4 Linear Algebra
	4.1 Efficient Matrix Format for Higher Order DG
	4.2 GPU Accelerated Preconditioners and Strong Smoothers

	5 Outlook
	References

	Advances Concerning Multiscale Methods and Uncertainty Quantification in Exa-Dune
	1 Introduction
	2 Numerical Multiscale Methods: A Case of Generality
	2.1 The Multiscale Finite Element Method for Multiscale Elliptic Equations
	2.2 Implementation and Parallelization
	2.3 Hybrid MPI/SMP Implementation

	3 The Multi-level Monte-Carlo Method
	3.1 Principle
	3.2 Implementation

	4 Numerical Experiments
	5 Conclusion
	References

	Part II ExaStencils: Advanced Stencil-Code Engineering
	Systems of Partial Differential Equations in ExaSlang
	1 Introduction
	2 Multigrid Methods
	3 The ExaStencils Approach
	4 The ExaStencils DSL ExaSlang
	4.1 Multi-layered Approach
	4.2 Overview of ExaSlang 4
	4.2.1 Stencils
	4.2.2 Fields and Layouts
	4.2.3 Data Types, Variables, and Values
	4.2.4 Control Flow
	4.2.5 Level Specifications

	5 Code Generation
	6 Data Types for Systems of Partial Differential Equations
	6.1 Motivation
	6.2 The ExaSlang Data Types

	7 Modifications to the Code Generator
	8 Example Application
	8.1 Theoretical Background
	8.2 Mapping to ExaSlang 4
	8.3 Results

	9 Related Work
	10 Future Work
	11 Conclusions
	References

	Performance Prediction of Multigrid-Solver Configurations
	1 Introduction
	2 Configurable Multigrid Solvers and the ExaStencils Code Generator
	3 Performance Prediction
	3.1 Sampling
	3.1.1 Binary Sampling Heuristics
	3.1.2 Experimental Designs

	3.2 Performance-Influence Models
	3.3 Integration of Domain Knowledge
	3.3.1 Shrinking the Configuration Space
	3.3.2 Domain Knowledge on Interactions
	3.3.3 Independent Sampling Strategies and Independent Models
	3.3.4 Integration of Analytical Models
	3.3.5 Models for Disjoint Parts of a System

	4 Evaluation
	4.1 Leveraging Domain Knowledge
	4.1.1 Experimental Setup
	4.1.2 Results and Discussion

	4.2 Code Generator
	4.2.1 Experimental Setup
	4.2.2 Results and Discussion

	4.3 Threats to Validity

	5 Related Work
	6 Conclusion and Future Work
	References

	Part III EXASTEEL: Bridging Scales for Multiphase Steels
	One-Way and Fully-Coupled FE2 Methods for Heterogeneous Elasticity and Plasticity Problems: Parallel Scalability and an Application to Thermo-Elastoplasticity of Dual-Phase Steels
	1 Introduction
	2 Thermodynamic and Continuum Mechanical Framework
	2.1 Incorporation of Thermo-mechanics
	2.2 Implementation Using a Complex Step Derivative Approximation

	3 Framework for Direct-Micro-Macro Computations
	3.1 General Approach
	3.2 Approaches for Multiphase-Steel Incorporating Thermo-mechanics

	4 Numerical Examples for the One-Way FE2 Coupling
	5 FE2TI: A Parallel Implementation of the Fully Coupled FE2 Approach
	5.1 Implementation Remarks
	5.2 Production Runs on the JUQUEEN Supercomputer
	5.3 Strong Scalability on JUQUEEN

	6 Conclusion
	References

	Scalability of Classical Algebraic Multigrid for Elasticity to Half a Million Parallel Tasks
	1 Introduction
	2 Algebraic Multigrid
	3 Algebraic Multigrid for Systems of PDEs
	4 The Global Matrix Approach
	5 The Local Neighborhood Approach
	6 Numerical Results
	6.1 Results in Two Dimensions
	6.2 Results in Three Dimensions
	6.2.1 3D Beam Problem
	6.2.2 3D Beam Problem with Double Length
	6.2.3 3D Cuboid Problem

	6.3 Parallel Problem Assembly and Reordering Process

	7 Conclusions
	References

	Part IV EXAHD: An Exa-Scalable Two-Level Sparse Grid Approach for Higher-Dimensional Problems in Plasma Physics and Beyond
	Recent Developments in the Theory and Application of the Sparse Grid Combination Technique
	1 Introduction
	2 A Class of Combination Techniques
	3 Algorithms and Data Structures
	4 Modified Combination Coefficients
	5 Computing Eigenvalues and Eigenvectors
	5.1 An Opticom Approach for Solving the Eigenvalue Problem
	5.2 Iterative Refinement and Iterative Methods

	6 Conclusions
	References

	Scalable Algorithms for the Solution of Higher-Dimensional PDEs
	1 Introduction
	1.1 Sparse Grid Combination Technique
	1.2 Large Scale Plasma Turbulence Simulations with GENE

	2 Software Framework for Large-Scale Computations with the Combination Technique
	3 Scalable Algorithms for the Combination Step with Distributed Component Grids
	3.1 Distributed Hierarchization/Dehierarchization
	3.2 Local Reduction/Scatter of Component Grids Inside the Process Group
	3.2.1 Variant 1: General Reduction of Distributed Component Grids
	3.2.2 Variant 2: Communication-Free Local Reduction of Uniformly Parallelized Component Grids

	3.3 Global Reduction of the Combination Solution

	4 Results
	5 Conclusion and Future Work
	References

	Handling Silent Data Corruption with the Sparse Grid Combination Technique
	1 Introduction
	1.1 Understanding Silent Data Corruption
	1.2 Statement of the Problem

	2 Basics of Sparse Grids
	2.1 The Sparse Grid Combination Technique

	3 The SGCT in Parallel and Fault Tolerance with the Combination Technique
	3.1 SDC and the Combination Technique
	3.2 Sanity Check 1: Filtering SDC via Comparison of Pairs of Solutions
	3.3 Sanity Check 2: Filtering SDC via Outlier Detection

	4 Numerical Tests
	4.1 Experimental Setup
	4.2 Results

	5 Conclusions
	References

	Part V TERRA-NEO: Integrated Co-Design of an Exascale Earth Mantle Modeling Framework
	Hybrid Parallel Multigrid Methods for Geodynamical Simulations
	1 Introduction
	2 Geodynamical Modeling
	3 Discretization and Hybrid Parallel Multigrid Methods
	3.1 Finite Element Discretization
	3.2 Multigrid Solvers and the HHG Framework

	4 Scalability and Performance of the Multigrid Method
	4.1 Operator Counts
	4.2 Scalability
	4.3 Fault Tolerance
	4.4 Performance

	5 Application to the Earth's Upper Mantle
	6 Simulations of the Coupled Problem
	7 Conclusion
	References

	Part VI ExaFSA: Exascale Simulationof Fluid–Structure–Acoustics Interactions
	Partitioned Fluid–Structure–Acoustics Interaction on Distributed Data: Coupling via preCICE
	1 Introduction
	2 Coupling Building Blocks on Distributed Data
	2.1 Communication of Distributed Data
	2.1.1 Surface Mesh Re-Partitioning
	2.1.2 Point-to-Point Communication

	2.2 Interpolation Methods on Distributed Data
	2.2.1 Projection-Based Interpolation
	2.2.2 Radial Basis Function (RBF) Interpolation

	2.3 Fixed-Point Acceleration Methods on Distributed Data
	2.3.1 Theory of Robust Quasi-Newton Fixed-Point Acceleration
	2.3.2 Implementational Aspects of Quasi-Newton Coupling Iterations

	3 Scalability Study
	3.1 Testcase Description
	3.2 Strong Scaling for n=5122 = 262,144
	3.3 Strong Scaling for n=1282 = 16,384
	3.4 Varying Problem Size n=16,...,128

	4 Conclusions
	References

	Partitioned Fluid–Structure–Acoustics Interaction on Distributed Data: Numerical Results and Visualization
	1 Introduction
	2 Description of the Individual Solvers
	2.1 Fluid Dynamics in the Acoustic Near Field
	2.1.1 OpenFOAM: Compressible Flow Solver
	2.1.2 FASTEST: Incompressible Flow Solver

	2.2 Acoustic Wave Propagation
	2.2.1 FASTEST: Acoustic Near Field
	2.2.2 Ateles: Acoustic Far Field

	2.3 Structural Dynamics
	2.3.1 OpenFOAM: Finite Volume Structure Solver
	2.3.2 FEAP: Finite Element Structure Solver

	3 Coupling
	3.1 Coupling the Elastic Structure with the Acoustic Fluid
	3.2 Coupling the Acoustic Near Field with the Far Field
	3.3 Coupling the Incompressible Flow with Acoustic Perturbations

	4 Visualization
	4.1 In-Situ Visualization
	4.2 Simulation–Visualization Setup
	4.3 Intermediate Representation: Volumetric Depth Images
	4.4 Visualization Transform and Render

	5 The Three-Dimensional Bending Tower Testcase
	5.1 Testcase Description
	5.2 Numerical Results
	5.3 Scaling Results
	5.4 Visualization

	6 Conclusion and Outlook
	References

	Part VII ESSEX: Equipping Sparse Solvers for Exascale
	Towards an Exascale Enabled Sparse Solver Repository
	1 Introduction
	2 ESSR Architecture and Development Process
	2.1 Software Architecture
	2.2 Concurrent Development of all Layers
	2.3 Integration of Performance Engineering
	2.4 Fault Tolerance Strategy

	3 ESSR Software Landscape
	3.1 Hardware and Execution Models Supported
	3.2 ESSR Toolkits and Functionality
	3.3 Applications
	3.4 Kernel Interface
	3.5 Computational Core
	3.6 Verifying Software Correctness and Performance

	4 Algorithms Implemented in the ESSR
	4.1 Algorithms Based on Chebyshev Polynomials
	4.2 Beyond FEAST: Projection Based Methods
	4.3 Block Jacobi-Davidson QR

	5 Fault Tolerance
	6 Summary and Outlook
	References

	Performance Engineering and Energy Efficiency of Building Blocks for Large, Sparse Eigenvalue Computations on Heterogeneous Supercomputers
	1 Introduction
	2 Contribution
	3 Holistic Performance Engineering Driving Energy Efficiency on the Example of the Kernel Polynomial Method (KPM)
	3.1 Performance Engineering for KPM
	3.1.1 Sparse Matrix Data Format
	3.1.2 Kernel Fusion and Blocking

	3.2 Single-Socket Performance and Energy Analysis
	3.2.1 Multi-Core Energy Modeling
	3.2.2 Measurements

	4 An Overview of GHOST
	5 GHOST Applications
	5.1 Density of States Computations Using KPM-DOS
	5.2 Inner Eigenvalue Computation with Chebyshev Filter Diagonalization (ChebFD)
	5.3 Block Jacobi-Davidson QR Method

	6 Summary and Outlook
	References

	Part VIII DASH: Hierarchical Arrays for Efficient and Productive Data-Intensive Exascale Computing
	Expressing and Exploiting Multi-Dimensional Locality in DASH
	1 Introduction
	2 Background
	2.1 PGAS and Multi-dimensional Locality
	2.2 DASH Concepts
	2.2.1 Topology: Teams and Units
	2.2.2 Data Distribution: Patterns

	3 Classification of Pattern Properties
	3.1 Partitioning Properties
	3.2 Mapping Properties
	3.3 Layout Properties
	3.4 Global Properties

	4 Exploiting Locality with Pattern Traits
	4.1 Deducing Distribution Patterns from Constraints
	4.2 Deducing Distribution Patterns for a Specific Use Case
	4.3 Checking Distribution Constraints
	4.4 Deducing Suitable Algorithm Variants

	5 Performance Evaluation
	5.1 Eperimental Setup
	5.2 Results

	6 Related Work
	7 Conclusion and Future Work
	References

	Tool Support for Developing DASH Applications
	1 Introduction
	2 Related Work
	2.1 DASH
	2.2 Debugging
	2.3 Performance Analysis

	3 Overview DASH
	3.1 DART: The DASH Runtime
	3.2 DASH: Distributed C++ Template Library

	4 Debugging DASH Applications
	5 Using Score-P to Analyze DASH and DART
	5.1 DART
	5.2 DASH

	6 MPI Profiling
	7 PAPI Support in DASH
	7.1 The DASH Timer Class
	7.2 Fallback Timer Implementations

	8 Conclusion and Future Work
	References

	Part IX EXAMAG: Exascale Simulations of the Evolution of the Universe Including Magnetic Fields
	Simulating Turbulence Using the Astrophysical Discontinuous Galerkin Code TENET
	1 Introduction
	2 Discontinuous Galerkin Methods
	2.1 Basis Functions
	2.2 Initial Conditions
	2.3 Time Evolution Equations
	2.4 Time Step Calculation
	2.5 Positivity Limiter

	3 Turbulence Simulations
	3.1 Turbulence Driving
	3.2 Dissipation Measurement
	3.3 Power Spectrum Measurement

	4 Results
	4.1 Mach Number Evolution
	4.2 Injected and Dissipated Energy
	4.3 Velocity Power Spectra
	4.4 Density PDFs

	5 Discussion
	References

	Part X FFMK: A Fast and Fault-Tolerant Microkernel-Based System for Exascale Computing
	FFMK: A Fast and Fault-Tolerant Microkernel-Based System for Exascale Computing
	1 Exascale Challenges
	2 FFMK Architecture Overview
	3 Microkernel-Based Node OS
	4 Dynamic Platform Management
	4.1 Application Model
	4.2 Monitoring and Gossip-Based Information Dissemination
	4.3 Decision Making

	5 MPI Runtime
	5.1 MPI and Load Balancing
	5.2 OS/R Support for Oversubscription

	6 Migration
	7 Fault Tolerance
	8 Related Work
	9 Summary and Future Work
	References

	Fast In-Memory Checkpointing with POSIX API for Legacy Exascale-Applications
	1 Introduction
	2 Related Work
	3 In-Memory Checkpointing with POSIX API
	3.1 Implementation with XtreemFS
	3.2 Fault-Tolerance and Efficiency with Erasure Codes

	4 Deployment on a Supercomputer
	4.1 Access to RAM File System
	4.1.1 Issues with LD_PRELOAD

	4.2 Placement of Services
	4.3 Deployment on a Cray XC40

	5 Experimental Results
	6 Summary
	References

	Part XI CATWALK: A Quick Development Path for Performance Models
	Automatic Performance Modeling of HPC Applications
	1 Motivation
	2 Overview of Contributions
	3 Automatic Empirical Performance Modeling
	4 Scalability Validation Framework
	5 Compiler-Driven Performance Modeling
	6 Related Work
	7 Conclusion
	References

	Automated Performance Modeling of the UG4 Simulation Framework
	1 Introduction
	2 The UG4 Simulation Framework
	2.1 Concepts and Numerical Methods
	2.2 Parallel Hierarchical Geometric Multigrid
	2.3 Application: Human Skin Permeation

	3 Automated Performance Modeling
	4 Results
	4.1 Analysis for Grid Hierarchy Setup and Solver Comparison
	4.2 Scalability of Code Kernels in the Geometric Multigrid

	5 Related Work
	6 Conclusion
	References

	Part XII GROMEX: Unified Long-Range Electrostatics and Dynamic Protonation for Realistic Biomolecular Simulations on the Exascale
	Accelerating an FMM-Based Coulomb Solver with GPUs
	1 Introduction
	2 Theoretical Background
	2.1 The FMM Workflow
	2.2 Mathematical Operators
	2.2.1 Multipole-to-Multipole (M2M) Operator

	2.3 Rotation-Based Operators

	3 Existing Implementation
	4 Application Layout
	4.1 Custom Allocator
	4.2 Pool Allocator
	4.3 Merging the CPU and GPU Codebases

	5 CUDA Implementation
	5.1 Exposing Parallelism
	5.2 Results

	6 Conclusion
	References

	Part XIII ExaSolvers: Extreme Scale Solvers for Coupled Problems
	Space and Time Parallel Multigrid for Optimization and Uncertainty Quantification in PDE Simulations
	1 Introduction
	2 Parallel Adaptive Multigrid
	3 Empirically Determined Energy Optimal CPU Frequencies
	3.1 Approach
	3.2 Implementation Details
	3.3 Evaluation

	4 Parallel in Time Multigrid
	5 Scalable Shape Optimization Methods for Structured Inverse Modeling in 3D Diffusive Processes
	6 Uncertainty Quantification
	7 Conclusion
	References

	Part XIV Further Contributions
	Domain Overlap for Iterative Sparse Triangular Solves on GPUs
	1 Introduction
	2 Background and Related Work
	2.1 Sparse Triangular Solves
	2.2 Jacobi Method and Block-Asynchronous Iteration
	2.3 Overlapping Domains and Restricted Additive Schwarz

	3 Random-Order Alternating Schwarz
	3.1 Domain Overlap Based on Matrix Partitioning
	3.2 Directed Overlap

	4 Restricted Overlap on GPUs
	5 Experimental Results
	5.1 Test Environment
	5.2 Sparse Triangular Solves

	6 Summary and Future Work
	References

	Asynchronous OpenCL/MPI Numerical Simulations of Conservation Laws
	1 Introduction
	2 Comparison of an OpenCL and an OpenMP Solver on a Regular Grid
	2.1 FV Approximation of Conservation Laws
	2.2 OpenMP Implementation of the FV Scheme
	2.3 OpenCL Implementation of the FV Scheme
	2.3.1 OpenCL
	2.3.2 Implementation

	2.4 OpenCL/MPI FV Solver

	3 Asynchronous OpenCL/MPI Discontinuous Galerkin Solver
	3.1 The DG Method
	3.1.1 Interpolation on Unstructured Hexahedral Meshes
	3.1.2 DG Formulation

	3.2 OpenCL Kernel for a Single GPU
	3.3 Asynchronous MPI/OpenCL Implementation for Several GPUs
	3.3.1 Subdomains and Zones
	3.3.2 Task Graph

	3.4 Efficiency Analysis
	3.5 Numerical Results

	4 Conclusions
	References

	Editorial Policy
	Lecture Notesin Computational Scienceand Engineering
	Monographs in Computational Scienceand Engineering
	Texts in Computational Scienceand Engineering

