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Abstract An elementary proof is provided of sharp bounds for the varentropy
of random vectors with log-concave densities, as well as for deviations of the
information content from its mean. These bounds significantly improve on the
bounds obtained by Bobkov and Madiman (Ann Probab 39(4):1528–1543, 2011).
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1 Introduction

Consider a random vector Z taking values in Rn, drawn from the standard Gaussian
distribution � , whose density is given by

�.x/ D 1

.2�/
n
2

e� jxj2

2

for each x 2 R
n, where j � j denotes the Euclidean norm. It is well known that

when the dimension n is large, the distribution of Z is highly concentrated around
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the sphere of radius
p
n; that

p
n is the appropriate radius follows by the trivial

observation that EjZj2 D Pn
iD1 EZ

2
i D n. One way to express this concentration

property is by computing the variance of jZj2, which is easy to do using the
independence of the coordinates of Z:

Var.jZj2/ D Var

� nX

iD1

Z2
i

�

D
nX

iD1

Var.Z2
i / D 2n:

In particular, the standard deviation of jZj2 is p
2n, which is much smaller than the

mean n of jZj2 when n is large. Another way to express this concentration property
is through a deviation inequality:

P
� jZj2

n
� 1 > t

�

� exp

�

� n

2
Œt � log.1 C t/�

�

(1.1)

for the upper tail, and a corresponding upper bound on the lower tail. These
inequalities immediately follow from Chernoff’s bound, since jZj2=n is just the
empirical mean of i.i.d. random variables.

It is natural to wonder if, like so many other facts about Gaussian measures, the
above concentration property also has an extension to log-concave measures (or to
some subclass of them). There are two ways one may think about extending the
above concentration property. One is to ask if there is a universal constant C such
that

Var.jXj2/ � Cn;

for every random vector X that has an isotropic, log-concave distribution on R
n.

Here, we say that a distribution on R
n is isotropic if its covariance matrix is

the identity matrix; this assumption ensures that EjXj2 D n, and provides the
normalization needed to make the question meaningful. This question has been
well studied in the literature, and is known as the “thin shell conjecture” in
convex geometry. It is closely related to other famous conjectures: it implies the
hyperplane conjecture of Bourgain [13, 14], is trivially implied by the Kannan-
Lovasz-Simonovits conjecture, and also implies the Kannan-Lovasz-Simonovits
conjecture up to logarithmic terms [12]. The best bounds known to date are those of
Guédon and Milman [18], and assert that

Var.jXj2/ � Cn4=3:

The second way that one may try to extend the above concentration property
from Gaussians to log-concave measures is to first observe that the quantity that
concentrates, namely jZj2, is essentially the logarithm of the Gaussian density
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function. More precisely, since

� log�.x/ D n

2
log.2�/ C jxj2

2
;

the concentration of jZj2 about its mean is equivalent to the concentration of
� log�.Z/ about its mean. Thus one can ask if, for every random vector X that
has a log-concave density f on Rn,

Var.� log f .X// � Cn (1.2)

for some absolute constant C. An affirmative answer to this question was provided
by Bobkov and Madiman [2]. The approach of [2] can be used to obtain bounds
on C, but the bounds so obtained are quite suboptimal (around 1000). Recently
V.H. Nguyen [27] (see also [28]) and Wang [32] independently determined, in
their respective Ph.D. theses, that the sharp constant C in the bound (1.2) is 1.
Soon after this work, simpler proofs of the sharp variance bound were obtained
independently by us (presented in the proof of Theorem 2.3 in this paper) and by
Bolley et al. [7] (see Remark 4.2 in their paper). An advantage of our proof over
the others mentioned is that it is very short and straightforward, and emerges as
a consequence of a more basic log-concavity property (namely Theorem 2.9) of
Lp-norms of log-concave functions, which may be thought of as an analogue for
log-concave functions of a classical inequality of Borell [8] for concave functions.

If we are interested in finer control of the integrability of� log f .X/, we may wish
to consider analogues for general log-concave distributions of the inequality (1.1).
Our second objective in this note is to provide such an analogue (in Theorem 4.1).
A weak version of such a statement was announced in [3] and proved in [2], but
the bounds we provide in this note are much stronger. Our approach has two key
advantages: first, the proof is transparent and completely avoids the use of the
sophisticated Lovasz-Simonovits localization lemma, which is a key ingredient of
the approach in [2]; and second, our bounds on the moment generating function are
sharp, and are attained for example when the distribution under consideration has
i.i.d. exponentially distributed marginals.

While in general exponential deviation inequalities imply variance bounds, the
reverse is not true. Nonetheless, our approach in this note is to first prove the
variance bound (1.2), and then use a general bootstrapping result (Theorem 3.1)
to deduce the exponential deviation inequalities from it. The bootstrapping result
is of independent interest; it relies on a technical condition that turns out to be
automatically satisfied when the distribution in question is log-concave.

Finally we note that many of the results in this note can be extended to the class of
convex measures; partial work in this direction is done by Nguyen [28], and results
with sharp constants are obtained in the forthcoming paper [17].
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2 Optimal Varentropy Bound for Log-Concave Distributions

Before we proceed, we need to fix some definitions and notation.

Definition 2.1 Let a random vector X taking values in R
n have probability density

function f . The information content of X is the random variable Qh.X/ D � log f .X/.
The entropy of X is defined as h.X/ D E.Qh.X//. The varentropy of a random
vector X is defined as V.X/ D Var.Qh.X//.

Note that the entropy and varentropy depend not on the realization of X but
only on its density f , whereas the information content does indeed depend on the
realization of X. For instance, one can write h.X/ D � R

Rn f log f and

V.X/ D Var.log f .X// D
Z

Rn
f .log f /2 �

� Z

Rn
f log f

�2

:

Nonetheless, for reasons of convenience and in keeping with historical convention,
we slightly abuse notation as above.

As observed in [2], the distribution of the difference Qh.X/ � h.X/ is invariant
under any affine transformation of Rn (i.e., Qh.TX/ � h.TX/ D Qh.X/ � h.X/ for all
invertible affine maps T W Rn ! R

n); hence the varentropy V.X/ is affine-invariant
while the entropy h.X/ is not.

Another invariance for both h.X/ and V.X/ follows from the fact that they only
depend on the distribution of log.f .X//, so that they are unchanged if f is modified in
such a way that its sublevel sets keep the same volume. This implies (see, e.g., [25,
Theorem 1.13]) that if f ? is the spherically symmetric, decreasing rearrangement
of f , and X? is distributed according to the density f ?, then h.X/ D h.X?/ and
V.X/ D V.X?/. The rearrangement-invariance of entropy was a key element in the
development of refined entropy power inequalities in [33].

Log-concavity is a natural shape constraint for functions (in particular, prob-
ability density functions) because it generalizes the Gaussian distributions. Fur-
thermore, the class of log-concave distributions is infinite-dimensional, and hence,
comprises a nonparametric model in statistical terms.

Definition 2.2 A function f W Rn ! Œ0; 1/ is log-concave if f can be written as

f .x/ D e�U.x/;

where U W Rn 7! .�1; C1� is a convex function, i.e., U.txC .1 � t/y/ � tU.x/ C
.1 � t/U.y/ for any x, y and 0 < t < 1. When f is a probability density function and
is log-concave, we say that f is a log-concave density.

We can now state the optimal form of the inequality (1.2), first obtained by
Nguyen [27] and Wang [32] as discussed in Sect. 1.
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Theorem 2.3 ([27, 32]) Given a random vector X in R
n with log-concave density

f ,

V.X/ � n

Remark 2.4 The probability bound does not depend on f– it is universal over the
class of log-concave densities.

Remark 2.5 The bound is sharp. Indeed, let X have density f D e�' , with ' W Rn !
Œ0; 1� being positively homogeneous of degree 1, i.e., such that '.tx/ D t'.x/ for
all t > 0 and all x 2 R

n. Then one can check that the random variable Y D '.X/

has a gamma distribution with shape parameter n and scale parameter 1, i.e., it is
distributed according to the density given by

fY.t/ D tn�1e�t

.n � 1/Š
:

Consequently E.Y/ D n and E.Y2/ D n.nC 1/, and therefore V.X/ D Var.Y/ D n.
Particular examples of equality include:

1. The case where '.x/ D Pn
iD1 xi on the cone of points with non-negative

coordinates (which corresponds to X having i.i.d. coordinates with the standard
exponential distribution), and

2. The case where '.x/ D inffr > 0 W x 2 rKg for some compact convex set
K containing the origin (which, by taking K to be a symmetric convex body,
includes all norms on Rn suitably normalized so that e�' is a density).

Remark 2.6 Bolley et al. [7] in fact prove a stronger inequality, namely,

1

V.X/
� 1

n
�

�

E
˚rU.X/ � Hess.U.X//�1rU.X/

�
��1

:

This gives a strict improvement of Theorem 2.3 when the density f D e�U of X is
strictly log-concave, in the sense that Hess.U.X// is, almost surely, strictly positive
definite. As noted by Bolley et al. [7], one may give another alternative proof of
Theorem 2.3 by applying a result of Hargé [19, Theorem 2].

In order to present our proof of Theorem 2.3, we will need some lemmata. The
first one is a straightforward computation that is a special case of a well known fact
about exponential families in statistics, but we write out a proof for completeness.

Lemma 2.7 Let f be any probability density function on R
n such that f 2 L˛.Rn/

for each ˛ > 0, and define

F.˛/ D log
Z

Rn
f ˛:
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Let X˛ be a random variable with density f˛ on Rn, where

f˛ WD f ˛

R
Rn f ˛

:

Then F is infinitely differentiable on .0; 1/, and moreover, for any ˛ > 0,

F00.˛/ D 1

˛2
V.X˛/:

Proof Note that the assumption that f 2 L˛.Rn/ (or equivalently that F.˛/ < 1)
for all ˛ > 0 guarantees that F.˛/ is infinitely differentiable for ˛ > 0 and that we
can freely change the order of taking expectations and differentiation.

Now observe that

F0.˛/ D
R
f ˛ log f
R
f ˛

D
Z

f˛ log f I

if we wish, we may also massage this to write

F0.˛/ D 1

˛
ŒF.˛/ � h.X˛/�: (2.1)

Differentiating again, we get

F00.˛/ D
R
f ˛.log f /2

R
f ˛

�
�R

f ˛ log f
R
f ˛

�2

D
Z

f˛.log f /2 �
� Z

f˛ log f

�2

D VarŒlog f .X˛/� D Var

�
1

˛
flog f˛.X˛/ C F.˛/g

�

D 1

˛2
VarŒlog f˛.X˛/� D V.X˛/

˛2
;

as desired. ut
The following lemma is a standard fact about the so-called perspective function

in convex analysis. The use of this terminology is due to Hiriart-Urruty and
Lemaréchal [20, p. 160] (see [10] for additional discussion), although the notion has
been used without a name in convex analysis for a long time (see, e.g., [30, p. 35]).
Perspective functions have also seen recent use in convex geometry [6, 11, 17]) and
empirical process theory [31]. We give the short proof for completeness.
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Lemma 2.8 If U W Rn ! R [ fC1g is a convex function, then

w.z; ˛/ WD ˛U.z=˛/

is a convex function on Rn � .0; C1/.

Proof First note that by definition, w.az; a˛/ D aw.z; ˛/ for any a > 0 and any
.z; ˛/ 2 R

n � .0; C1/, which implies in particular that

1

˛
w.z; ˛/ D w

�
z

˛
; 1

�

:

Hence

w.�z1 C .1 � �/z2; �˛1 C .1 � �/˛2/

D Œ�˛1 C .1 � �/˛2�U

�
�˛1

z1
˛1

C .1 � �/˛2
z2
˛2

�˛1 C .1 � �/˛2

�

� �˛1U

�
z1

˛1

�

C .1 � �/˛2U

�
z2

˛2

�

D �w.z1; ˛1/ C .1 � �/w.z2; ˛2/;

for any � 2 Œ0; 1�, z1; z2 2 R
n, and ˛1; ˛2 2 .0; 1/. ut

The key observation is the following theorem.

Theorem 2.9 If f is log-concave on Rn, then the function

G.˛/ WD ˛n
Z

f .x/˛dx

is log-concave on .0; C1/.

Proof Write f D e�U , with U convex. Make the change of variable x D z=˛ to get

G.˛/ D
Z

e�˛U.z=˛/dz:

The functionw.z; ˛/ WD ˛U.z=˛/ is convex onRn �.0; C1/ by Lemma 2.8, which
means that the integrand above is log-concave. The log-concavity of G then follows
from Prékopa’s theorem [29], which implies that marginals of log-concave functions
are log-concave. ut
Remark 2.10 An old theorem of Borell [8, Theorem 2] states that if f is concave
on R

n, then Gf .p/ WD .p C 1/ � � � .p C n/
R
f pis log-concave as a function of p 2

.0; 1/. Using this and the fact that a log-concave function is a limit of ˛-concave
functions with ˛ ! 0, one can obtain an alternate, indirect proof of Theorem 2.9.
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One can also similarly obtain an indirect proof of Theorem 2.9 by considering a
limiting version of [4, Theorem VII.2], which expresses a log-concavity property
of .p � 1/ : : : .p � n/

R
��p for any convex function � on R

n, for p > n C 1 (an
improvement of this to the optimal range p > n is described in [6, 17], although this
is not required for this alternate proof of Theorem 2.9).

Proof of Theorem 2.3 Since f is a log-concave density, it necessarily holds that f 2
L˛.Rn/ for every ˛ > 0; in particular, G.˛/ WD ˛n

R
f ˛ is finite and infinitely

differentiable on the domain .0; 1/. By definition,

logG.˛/ D n log˛ C log
Z

f ˛ D n log˛ C F.˛/:

Consequently,

d2

d˛2
ŒlogG.˛/� D � n

˛2
C F00.˛/:

By Theorem 2.9, logG.˛/ is concave, and hence we must have that

� n

˛2
C F00.˛/ � 0

for each ˛ > 0. However, Lemma 2.7 implies that F00.˛/ D V.X˛/=˛2, so that we
obtain the inequality

V.X˛/ � n

˛2
� 0:

For ˛ D 1, this implies that V.X/ � n.

Notice that if f D e�U , where U W Rn ! Œ0; 1� is positively homogeneous of
degree 1, then the same change of variable as in the proof of Theorem 2.9 shows
that

G.˛/ D
Z

e�˛U.z=˛/dz D
Z

e�U.z/dz D
Z

f .z/dz D 1:

Hence the functionG is constant. Then the proof above shows that V.X/ D n, which
establishes the equality case stated in Remark 2.5.

3 A General Bootstrapping Strategy

The purpose of this section is to describe a strategy for obtaining exponential
deviation inequalities when one has uniform control on variances of a family
of random variables. Log-concavity is not an assumption made anywhere in this
section.
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Theorem 3.1 Suppose X � f , where f 2 L˛.Rn/ for each ˛ > 0. Let X˛ � f˛ ,
where

f˛.x/ D f ˛.x/
R
f ˛

:

If K D K.f / WD sup˛>0 V.X˛/, then

E
	
eˇfQh.X/�h.X/g
 � eKr.�ˇ/; ˇ 2 R;

where

r.u/ D
�
u � log.1 C u/ for u > �1

C1 for u � �1 :

Proof Suppose X is a random vector drawn from a density f on R
n, and define, for

each ˛ > 0, F.˛/ D log
R
f ˛ . Set

K D sup
˛>0

V.X˛/ D sup
˛>0

˛2F00.˛/I

the second equality follows from Lemma 2.7. Since f 2 L˛.Rn/ for each ˛ > 0,
F.˛/ is finite and moreover, infinitely differentiable for ˛ > 0, and we can freely
change the order of integration and differentiation when differentiating F.˛/.

From Taylor-Lagrange formula, for every ˛ > 0, one has

F.˛/ D F.1/ C .˛ � 1/F0.1/ C
Z ˛

1

.˛ � u/F00.u/du:

Using that F.1/ D 0, F00.u/ � K=u2 for every u > 0 and the fact that for 0 < ˛ <

u < 1, one has ˛ � u < 0, we get

F.˛/ � .˛ � 1/F0.1/ C K
Z ˛

1

˛ � u

u2
du

D .˛ � 1/F0.1/ C K
h
�˛

u
� log.u/

i˛

1
:

Thus, for ˛ > 0, we have proved that

F.˛/ � .˛ � 1/F0.1/ C K.˛ � 1 � log˛/:

Setting ˇ D 1 � ˛, we have for ˇ < 1 that

eF.1�ˇ/ � e�ˇF0.1/eK.�ˇ�log.1�ˇ//: (3.1)
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Observe that eF.1�ˇ/ D R
f 1�ˇ D EŒf�ˇ.X/� D EŒe�ˇ log f .X/� D E

	
eˇQh.X/



and

e�ˇF0.1/ D eˇh.X/; the latter fact follows from the fact that F0.1/ D �h.X/ as is clear
from the identity (2.1). Hence the inequality (3.1) may be rewritten as

E
	
eˇfQh.X/�h.X/g
 � eKr.�ˇ/; ˇ 2 R: (3.2)

ut
Remark 3.2 We note that the function r.t/ D t � log.1 C t/ for t > �1, (or the
related function h.t/ D t log t � t C 1 for t > 0, which satisfies sh.t=s/ D tr1.s=t/
for r1.u/ D r.u � 1/) appears in many exponential concentration inequalities in the
literature, including Bennett’s inequality [1] (see also [9]), and empirical process
theory [34]. It would be nice to have a clearer understanding of why these functions
appear in so many related contexts even though the specific circumstances vary quite
a bit.

Remark 3.3 Note that the function r is convex on R and has a quadratic behavior in
the neighborhood of 0 (r.u/ �0

u2

2
) and a linear behavior at C1 (r.u/ �1 u).

Corollary 3.4 With the assumptions and notation of Theorem 3.1, we have for any
t > 0 that

PfQh.X/ � h.X/ � tg � exp

�

� Kr

�
t

K

��

PfQh.X/ � h.X/ � �tg � exp

�

� Kr

�

� t

K

��

The proof is classical and often called the Cramér-Chernoff method (see for
example Sect. 2.2 in [9]). It uses the Legendre transform '� of a convex function
' W R ! R [ fC1g defined for y 2 R by

'�.y/ D sup
x

xy � '.x/:

Notice that if min' D '.0/ then for every y > 0, the supremum is reached at a
positive x, that is '�.y/ D supx>0 xy � '.x/: Similarly, for y < 0, the supremum is
reached at a negative x.

Proof The idea is simply to use Markov’s inequality in conjunction with Theo-
rem 3.1, and optimize the resulting bound.

For the lower tail, we have for ˇ > 0 and t > 0,

PŒQh.X/ � h.X/ � �t� � E
�

e�ˇ
�Qh.X/�h.X/

��

e�ˇt

� exp

�

K

�

r.ˇ/ � ˇt

K

��

:
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Thus minimizing on ˇ > 0, and using the remark before the proof, we get

PŒQh.X/ � h.X/ � �t� � exp

�

� K sup
ˇ>0

�
ˇt

K
� r.ˇ/

��

D e�Kr�. t
K /: (3.3)

Let us compute the Legendre transform r� of r. For every t, one has

r�.t/ D sup
u

tu � r.u/ D sup
u>�1

.tu � u C log.1 C u// :

One deduces that r�.t/ D C1 for t � 1. For t < 1, by differentiating, the
supremum is reached at u D t=.1 � t/ and replacing in the definition we get

r�.t/ D �t � log.1 � t/ D r.�t/:

Thus r�.t/ D r.�t/ for all t 2 R. Replacing, in the inequality (3.3), we get the result
for the lower tail.

For the upper tail, we use the same argument: for ˇ > 0 and t > 0,

PŒQh.X/ � h.X/ � t� � E
�

eˇ
�Qh.X/�h.X/

��

e�ˇt

� exp

�

K

�

r.�ˇ/ � ˇt

K

��

:

Thus minimizing on ˇ > 0, we get

PŒQh.X/ � h.X/ � t� � exp

�

� K sup
ˇ>0

�
ˇt

K
� r.�ˇ/

��

: (3.4)

Using the remark before the proof, in the right hand side term appears the Legendre
transform of the function Qr defined by Qr.u/ D r.�u/. Using that r�.t/ D r.�t/ D
Qr.t/, we deduce that .Qr/� D .r�/� D r. Thus the inequality (3.4) gives the result for
the upper tail.

ut

4 Conclusion

The purpose of this section is to combine the results of Sects. 2 and 3 to deduce
sharp bounds for the moment generating function of the information content of
random vectors with log-concave densities. Naturally these yield good bounds on
the deviation probability of the information content Qh.X/ from its mean h.X/ D
EQh.X/. We also take the opportunity to record some other easy consequences.
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Theorem 4.1 Let X be a random vector in R
n with a log-concave density f . For

ˇ < 1,

E
�

eˇŒQh.X/�h.X/�

�

� E
�

eˇŒQh.X�/�h.X�/�

�

;

where X� has density f � D e� Pn
iD1 xi , restricted to the positive quadrant.

Proof Taking K D n in Theorem 3.1 (which we can do in the log-concave setting
because of Theorem 2.3), we obtain:

E
	
eˇfQh.X/�h.X/g
 � enr.�ˇ/; ˇ 2 R:

Some easy computations will show:

E
	
eˇfQh.X�/�h.X�/g
 D enr.�ˇ/; ˇ 2 R:

This concludes the proof.
ut

As for the case of equality of Theorem 2.3, discussed in Remark 2.5, notice that
there is a broader class of densities for which one has equality in Theorem 4.1,
including all those of the form e�kxkK , where K is a symmetric convex body.

Remark 4.2 The assumptionˇ < 1 in Theorem 4.1 is strictly not required; however,
for ˇ � 1, the right side is equal to C1. Indeed, already for ˇ D 1, one sees that
for any random vector X with density f ,

E
	
eQh.X/�h.X/


 D e�h.X/E
�

1

f .X/

�

D e�h.X/

Z

supp(f)
dx

D e�h.X/Voln.supp(f)/;

where supp(f) D fx 2 Rn W f .x/ > 0g is the support of the density f and Voln denotes
Lebesgue measure on R

n. In particular, this quantity for X�, whose support has
infinite Lebesgue measure, is C1.

Remark 4.3 Since

lim
˛!0

2

˛2
E

�

e˛.log f .X/�EŒlog f .X/�/

�

D V.X/;

we can recover Theorem 2.3 from Theorem 4.1.

Taking K D n in Corollary 3.4 (again because of Theorem 2.3), we obtain:
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Corollary 4.4 Let X be a random vector in R
n with a log-concave density f . For

t > 0,

PŒQh.X/ � h.X/ � �nt� � e�nr.�t/;

PŒQh.X/ � h.X/ � nt� � e�nr.t/;

where r.u/ is defined in Theorem 3.1.

The original concentration of information bounds obtained in [2] were subopti-
mal not just in terms of constants but also in the exponent; specifically it was proved
there that

P
�

1

n

ˇ
ˇQh.X/ � h.X/

ˇ
ˇ � t

�

� 2 e�ct
p
n (4.1)

for a universal constant c > 1=16 (and also that a better bound with ct2n in the
exponent holds on a bounded range, say, for t 2 .0; 2�). One key advantage of the
method presented in this paper, apart from its utter simplicity, is the correct linear
dependence of the exponent on dimension. Incidentally, we learnt from a lecture
of Klartag [22] that another proof of (4.1) can be given based on the concentration
property of the eigenvalues of the Hessian of the Brenier map (corresponding to
optimal transportation from one log-concave density to another) that was discovered
by Klartag and Kolesnikov [23]; however, the latter proof shares the suboptimal

p
nt

exponent of [2].
The following inequality is an immediate corollary of Corollary 4.4 since it

merely expresses a bound on the support of the distribution of the information
content.

Corollary 4.5 Let X have a log-concave probability density function f onRn. Then:

h.X/ � � log kfk1 C n:

Proof By Corollary 4.4, almost surely,

log f .X/ � EŒlog f .X/� C n;

since when t � 1, PŒlog f .X/ � EŒlog f .X/� � nt� D 0. Taking the supremum over
all realizable values of X yields

log kfk1 � EŒlog f .X/� C n;

which is equivalent to the desired statement. ut
Corollary 4.5 was first explicitly proved in [4], where several applications of it

are developed, but it is also implicitly contained in earlier work (see, e.g., the proof
of Theorem 7 in [16]).
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An immediate consequence of Corollary 4.5, unmentioned in [4], is a result due
to [15]:

Corollary 4.6 Let X be a random vector in Rn with a log-concave density f . Then

kfk1 � enf .EŒX�/:

Proof By Jensen’s inequality,

log f .EX/ � EŒlog f .X/�:

By Corollary 4.5,

EŒlog f .X/� � log kfk1 � n:

Hence,

log f .EX/ � log kfk1 � n:

Exponentiating concludes the proof. ut
Finally we mention that the main result may also be interpreted as a small ball

inequality for the random variable f .X/. As an illustration, we record a sharp form
of [24, Corollary 2.4] (cf., [21, Corollary 5.1] and [5, Proposition 5.1]).

Corollary 4.7 Let f be a log-concave density on Rn. Then

Pff .X/ � cnkfk1g � 1 �
�

e � c � log
�

1

c

��n

;

where 0 < c < 1
e .

Proof Note that

Pff .X/ � cnkfk1g D Pflog f .X/ � log kfk1 C n log cg
D PfQh.X/ � � log kfk1 � n log cg
� PfQh.X/ � h.X/ � n.1 C log c/g:

using Corollary 4.5 for the last inequality. Applying Corollary 4.4 with t D � log c�
1 yields

Pff .X/ � cnkfk1g � e�nr.�1�log c/:

Elementary algebra concludes the proof. ut
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Such “effective support” results are useful in convex geometry as they can allow
to reduce certain statements about log-concave functions or measures to statements
about convex sets; they thus provide an efficient route to proving functional or
probabilistic analogues of known results in the geometry of convex sets. Instances
where such a strategy is used include [5, 24]. These and other applications of the
concentration of information phenomenon are discussed in [26].
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