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Abstract We provide new general kernel selection rules thanks to penalized least-
squares criteria. We derive optimal oracle inequalities using adequate concentration
tools. We also investigate the problem of minimal penalty as described in Birgé and
Massart (2007, Probab. Theory Relat. Fields, 138(1–2):33–73).
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1 Introduction

Concentration inequalities are central in the analysis of adaptive nonparametric
statistics. They lead to sharp penalized criteria for model selection [20], to select
bandwidths and even approximation kernels for Parzen’s estimators in high dimen-
sion [17], to aggregate estimators [24] and to properly calibrate thresholds [9].

In the present work, we are interested in the selection of a general kernel
estimator based on a least-squares density estimation approach. The problem has
been considered in L1-loss by Devroye and Lugosi [8]. Other methods combining
log-likelihood and roughness/smoothness penalties have also been proposed in [10–
12]. However these estimators are usually quite difficult to compute in practice.
We propose here to minimize penalized least-squares criteria and obtain from them
more easily computable estimators. Sharp concentration inequalities for U-statistics
[1, 16, 18] control the variance term of the kernel estimators, whose asymptotic
behavior has been precisely described, for instance in [7, 21, 22]. We derive from
these bounds (see Proposition 4.1) a penalization method to select a kernel which
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satisfies an asymptotically optimal oracle inequality, i.e. with leading constant
asymptotically equal to 1.

In the spirit of [14], we use an extended definition of kernels that allows to
deal simultaneously with classical collections of estimators as projection estimators,
weighted projection estimators, or Parzen’s estimators. This method can be used for
example to select an optimal model in model selection (in accordance with [20])
or to select an optimal bandwidth together with an optimal approximation kernel
among a finite collection of Parzen’s estimators. In this sense, our method deals,
in particular, with the same problem as that of Goldenshluger and Lepski [17] and
we establish in this framework that a leading constant 1 in the oracle inequality is
indeed possible.

Another main consequence of concentration inequalities is to prove the existence
of a minimal level of penalty, under which no oracle inequalities can hold. Birgé and
Massart shed light on this phenomenon in a Gaussian setting for model selection [5].
Moreover in this setting, they prove that the optimal penalty is twice the minimal
one. In addition, there is a sharp phase transition in the dimension of the selected
models leading to an estimate of the optimal penalty in their case (which is known
up to a multiplicative constant). Indeed, starting from the idea that in many models
the optimal penalty is twice the minimal one (this is the slope heuristic), Arlot and
Massart [3] propose to detect the minimal penalty by the phase transition and to
apply the “�2” rule (this is the slope algorithm). They prove that this algorithm
works at least in some regression settings.

In the present work, we also show that minimal penalties exist in the density
estimation setting. In particular, we exhibit a sharp “phase transition” of the behavior
of the selected estimator around this minimal penalty. The analysis of this last result
is not standard however. First, the “slope heuristic” of [5] only holds in particular
cases as the selection of projection estimators, see also [19]. As in the selection of a
linear estimator in a regression setting [2], the heuristic can sometimes be corrected:
for example for the selection of a bandwidth when the approximation kernel is
fixed. In general since there is no simple relation between the minimal penalty and
the optimal one, the slope algorithm of [3] shall only be used with care for kernel
selection. Surprisingly our work reveals that the minimal penalty can be negative.
In this case, minimizing an unpenalized criterion leads to oracle estimators. To our
knowledge, such phenomenon has only been noticed previously in a very particular
classification setting [13]. We illustrate all of these different behaviors by means of
a simulation study.

In Sect. 2, after fixing the main notation, providing some examples and defining
the framework, we explain our goal, describe what we mean by an oracle inequality
and state the exponential inequalities that we shall need. Then we derive optimal
penalties in Sect. 3 and study the problem of minimal penalties in Sect. 4. All
of these results are illustrated for our three main examples : projection kernels,
approximation kernels and weighted projection kernels. In Sect. 5, some simulations
are performed in the approximation kernel case. The main proofs are detailed in
Sect. 6 and technical results are discussed in the appendix.
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2 Kernel Selection for Least-Squares Density Estimation

2.1 Setting

Let X; Y; X1; : : : ; Xn denote i.i.d. random variables taking values in the measurable
space .X;X ; �/, with common distribution P. Assume P has density s with respect
to � and s is uniformly bounded. Hence, s belongs to L2, where, for any p � 1,

Lp WD
�

t W X ! R; s.t. ktkp
p WD

Z
jtjp d� < 1

�
:

Moreover, k�k D k�k2 and h�; �i denote respectively the L2-norm and the
associated inner product and k�k1 is the supremum norm. We systematically use x_
y and x ^y for max.x; y/ and min.x; y/ respectively, and denote jAj the cardinality of
the set A. Recall that xC D x_0 and, for any y 2 R

C, byc D supfn 2 N s.t. n � yg.
Let fk gk2K denote a collection of symmetric functions k W X2 ! R indexed by

some given finite set K such that

sup
x2X

Z
X

k.x; y/2d�.y/ _ sup
.x;y/2X2

jk.x; y/j < 1 :

A function k satisfying these assumptions is called a kernel, in the sequel. A kernel
k is associated with an estimator Osk of s defined for any x 2 X by

Osk.x/ WD 1

n

nX
iD1

k.Xi; x/ :

Our aim is to select a “good” OsOk in the family fOsk; k 2 Kg. Our results are expressed
in terms of a constant � � 1 such that for all k 2 K,

sup
x2X

Z
X

k.x; y/2d�.y/ _ sup
.x;y/2X2

jk.x; y/j � �n : (2.1)

This condition plays the same role as
R jk.x; y/js.y/d�.y/ < 1, the milder

condition used in [8] when working with L1-losses. Before describing the method,
let us give three examples of such estimators that are used for density estimation,
and see how they can naturally be associated to some kernels. Section A of the
appendix gives the computations leading to the corresponding �’s.

Example 1 (Projection Estimators) Projection estimators are among the most clas-
sical density estimators. Given a linear subspace S � L2, the projection estimator
on S is defined by

OsS D arg min
t2S

(
ktk2 � 2

n

nX
iD1

t.Xi/

)
:
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Let S be a family of linear subspaces S of L2. For any S 2 S, let .'`/`2IS denote an
orthonormal basis of S. The projection estimator OsS can be computed and is equal to

OsS D
X
`2IS

 
1

n

nX
iD1

'`.Xi/

!
'` :

It is therefore easy to see that it is the estimator associated to the projection kernel
kS defined for any x and y in X by

kS.x; y/ WD
X
`2IS

'`.x/'`.y/ :

Notice that kS actually depends on the basis .'`/`2IS even if OsS does not. In the
sequel, we always assume that some orthonormal basis .'`/`2IS is given with S.
Given a finite collection S of linear subspaces of L2, one can choose the following
constant � in (2.1) for the collection .kS/S2S

� D 1 _ 1

n
sup
S2S

sup
f 2S;kf kD1

k f k2
1 : (2.2)

Example 2 (Parzen’s Estimators) Given a bounded symmetric integrable function
K W R ! R such that

R
R

K.u/du D 1 and a bandwidth h > 0, the Parzen estimator
is defined by

8x 2 R; OsK;h.x/ D 1

nh

nX
iD1

K

�
x � Xi

h

�
:

It can also naturally be seen as a kernel estimator, associated to the function kK;h

defined for any x and y in R by

kK;h.x; y/ WD 1

h
K
� x � y

h

�
:

We shall call the function kK;h an approximation or Parzen kernel.
Given a finite collection of pairs .K; h/ 2 H, one can choose � D 1 in (2.1) if,

h � kKk1 kKk1

n
for any .K; h/ 2 H : (2.3)

Example 3 (Weighted Projection Estimators) Let .'i/iD1;:::;p denote an orthonormal
system in L2 and let w D .wi/iD1;:::;p denote real numbers in Œ0; 1�. The associated
weighted kernel projection estimator of s is defined by

Osw D
pX

iD1

wi

0
@ 1

n

nX
jD1

'i.Xj/

1
A 'i :
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These estimators are used to derive very sharp adaptive results. In particular,
Pinsker’s estimators are weighted kernel projection estimators (see for example
[23]). When w 2 f0; 1gp, we recover a classical projection estimator. A weighted
projection estimator is associated to the weighted projection kernel defined for any
x and y in X by

kw.x; y/ WD
pX

iD1

wi'i.x/'i.y/ :

Given any finite collection W of weights, one can choose in (2.1)

� D 1 _
 

1

n
sup
x2X

pX
iD1

'i.x/2

!
: (2.4)

2.2 Oracle Inequalities and Penalized Criterion

The goal is to estimate s in the best possible way using a finite collection of kernel
estimators .Osk/k2K. In other words, the purpose is to select among .Osk/k2K an esti-
mator OsOk from the data such that

��OsOk � s
��2

is as close as possible to infk2K kOsk � sk2.
More precisely our aim is to select Ok such that, with high probability,

��OsOk � s
��2 � Cn inf

k2K kOsk � sk2 C Rn ; (2.5)

where Cn � 1 is the leading constant and Rn > 0 is usually a remaining term. In
this case, OsOk is said to satisfy an oracle inequality, as long as Rn is small compared
to infk2K kOsk � sk2 and Cn is a bounded sequence. This means that the selected
estimator does as well as the best estimator in the family up to some multiplicative
constant. The best case one can expect is to get Cn close to 1. This is why, when
Cn !n!1 1, the corresponding oracle inequality is called asymptotically optimal.
To do so, we study minimizers of penalized least-squares criteria. Note that in our
three examples choosing Ok 2 K amounts to choosing the smoothing parameter, that
is respectively to choosingbS 2 S, .bK; Oh/ 2 H or Ow 2 W .

Let Pn denote the empirical measure, that is, for any real valued function t,

Pn.t/ WD 1

n

nX
iD1

t.Xi/ :

For any t 2 L2, let also P.t/ WD R
X

t.x/s.x/d�.x/ :

The least-squares contrast is defined, for any t 2 L2, by

�.t/ WD ktk2 � 2t :
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Then for any given function pen W K ! R, the least-squares penalized criterion is
defined by

Cpen.k/ WD Pn�.Osk/ C pen.k/ : (2.6)

Finally the selected Ok 2 K is given by any minimizer of Cpen.k/, that is,

Ok 2 arg min
k2K

˚Cpen.k/
	

: (2.7)

As P�.t/ D kt � sk2 � ksk2, it is equivalent to minimize kOsk � sk2 or P�.Osk/. As
our goal is to select OsOk satisfying an oracle inequality, an ideal penalty penid should
satisfy Cpenid

.k/ D P�.Osk/, i.e. criterion (2.6) with

penid.k/ WD .P � Pn/�.Osk/ D 2.Pn � P/.Osk/ :

To identify the main quantities of interest, let us introduce some notation and
develop penid.k/. For all k 2 K, let

sk.x/ WD
Z
X

k.y; x/s.y/d�.y/ D E Œk.X; x/ � ; 8x 2 X ;

and

Uk WD
nX

i¤jD1



k.Xi; Xj/ � sk.Xi/ � sk.Xj/ C E Œk.X; Y/ �

�
:

Because those quantities are fundamental in the sequel, let us also define ‚k.x/ D
Ak.x; x/ where for .x; y/ 2 X

2

Ak.x; y/ WD
Z
X

k.x; z/k.z; y/d�.z/ : (2.8)

Denoting

for all x 2 X; �k.x/ D k.x; x/ ;

the ideal penalty is then equal to

penid.k/ D 2.Pn � P/.Osk � sk/ C 2.Pn � P/sk

D 2

�
P�k � Psk

n
C .Pn � P/�k

n
C Uk

n2
C
�

1 � 2

n

�
.Pn � P/sk

�
: (2.9)
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The main point is that by using concentration inequalities, we obtain:

penid.k/ ' 2

�
P�k � Psk

n

�
:

The term Psk=n depends on s which is unknown. Fortunately, it can be easily
controlled as detailed in the sequel. Therefore one can hope that the choice

pen.k/ D 2
P�k

n

is convenient. In general, this choice still depends on the unknown density s but it
can be easily estimated in a data-driven way by

pen.k/ D 2
Pn�k

n
:

The goal of Sect. 3 is to prove this heuristic and to show that 2P�k=n and 2Pn�k=n
are optimal choices for the penalty, that is, they lead to an asymptotically optimal
oracle inequality.

2.3 Concentration Tools

To derive sharp oracle inequalities, we only need two fundamental concentration
tools, namely a weak Bernstein’s inequality and the concentration bounds for
degenerate U-statistics of order two. We cite them here under their most suitable
form for our purpose.

A Weak Bernstein’s Inequality

Proposition 2.1 For any bounded real valued function f and any X1; : : : ; Xn i.i.d.
with distribution P, for any u > 0,

Pr .Pn � P/f �
s

2P . f 2 / u

n
C k f k1 u

3n
� exp.�u/ :

The proof is straightforward and can be derived from either Bennett’s or Bernstein’s
inequality [6].

Concentration of Degenerate U-Statistics of Order 2

Proposition 2.2 Let X; X1; : : : Xn be i.i.d. random variables defined on a Polish
space X equipped with its Borel �-algebra and let



fi;j
�

1�i6Dj�n
denote bounded
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real valued symmetric measurable functions defined on X
2, such that for any i 6D j,

fi;j D fj;i and

8 i; j s.t. 1 � i ¤ j � n; E
�

fi;j.x; X/

 D 0 for a.e. x in X : (2.10)

Let U be the following totally degenerate U-statistic of order 2,

U D
X

1�i¤j�n

fi;j.Xi; Xj/ :

Let A be an upper bound of
ˇ̌
fi;j.x; y/

ˇ̌
for any i; j; x; y and

B2 D max

0
@ sup

i;x2X

i�1X
jD1

E
�

fi;j.x; Xj/
2


; sup

j;t2X

nX
iDjC1

E
�

fi;j.Xi; t/2


1
A

C2 D
X

1�i¤j�n

E
�

fi;j.Xi; Xj/
2



D D sup
.a;b/2A

E

2
4 X

1�i<j�n

fi;j.Xi; Xj/ai.Xi/bj.Xj/

3
5 ;

where A D
8<
: .a; b/; s.t. E

"
n�1X
iD1

ai.Xi/
2

#
� 1; E

2
4 nX

jD2

bj.Xj/
2

3
5 � 1

9=
; :

Then there exists some absolute constant � > 0 such that for any u > 0, with
probability larger than 1 � 2:7e�u,

U � �


C

p
u C Du C Bu3=2 C Au2

�
:

The present result is a simplification of Theorem 3.4.8 in [15], which provides
explicit constants for any variables defined on a Polish space. It is mainly inspired
by Houdré and Reynaud-Bouret [18], where the result therein has been stated only
for real variables. This inequality actually dates back to Giné et al. [16]. This result
has been further generalized by Adamczak to U-statistics of any order [1], though
the constants are not explicit.

3 Optimal Penalties for Kernel Selection

The main aim of this section is to show that 2P�k=n is a theoretical optimal penalty
for kernel selection, which means that if pen.k/ is close to 2P�k=n, the selected
kernel Ok satisfies an asymptotically optimal oracle inequality.
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3.1 Main Assumptions

To express our results in a simple form, a positive constant ‡ is assumed to control,
for any k and k0 in K, all the following quantities.

.�.1 C ksk1/ / _ sup
k2K

kskk2 � ‡ ; (3.11)

P


�2

k

� � ‡nP‚k ; (3.12)

ksk � sk0k1 � ‡ _ p
‡n ksk � sk0k ; (3.13)

E
�

Ak.X; Y/2

 � ‡P‚k ; (3.14)

sup
x2X

E
�

Ak.X; x/2

 � ‡n ; (3.15)

v2
k WD sup

t2Bk

Pt2 � ‡ _
p

‡P‚k ; (3.16)

where Bk is the set of functions t that can be written t.x/ D R
a.z/k.z; x/d�.z/ for

some a 2 L2 with kak � 1.
These assumptions may seem very intricate. They are actually fulfilled by our

three main examples under very mild conditions (see Sect. 3.3).

3.2 The Optimal Penalty Theorem

In the sequel, � denotes a positive absolute constant whose value may change from
line to line and if there are indices such as �	 , it means that this is a positive function
of 	 and only 	 whose value may change from line to line.

Theorem 3.1 If Assumptions (3.11)–(3.16) hold, then, for any x � 1, with
probability larger than 1 � �jKj2e�x, for any 	 2 .0; 1/, any minimizer Ok of the
penalized criterion (2.6) satisfies the following inequality

8k 2 K; .1 � 4	/
��s � OsOk

��2 � .1 C 4	/ ks � Oskk2 C
�

pen.k/ � 2
P�k

n

�

�
�

pen
� Ok
�

� 2
P�Ok

n

�
C �‡x2

	n
: (3.17)

Assume moreover that there exists C > 0, ı0 � ı > 0 and r � 0 such that for any
x � 1, with probability larger than 1 � Ce�x, for any k 2 K,

.ı � 1/
P‚k

n
� �r

‡x2

n
� pen.k/ � 2P�k

n
� .ı0 � 1/

P‚k

n
C �r

‡x2

n
: (3.18)
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Then for all 	 2 .0; 1/ and all x � 1, the following holds with probability at least
1 � �.C C jKj2/e�x,

.ı ^ 1/ � 5	

.ı0 _ 1/ C .4 C ı0/	
��s � OsOk

��2 � inf
k2K ks � Oskk2 C �

�
r C 1

	3

�
‡x2

n
:

Let us make some remarks.

• First, this is an oracle inequality (see (2.5)) with leading constant Cn and
remaining term Rn given by

Cn D .ı0 _ 1/ C .4 C ı0/	
.ı ^ 1/ � 5	

and Rn D �Cn.r C 	�3/
‡x2

n
;

as long as

– 	 is small enough for Cn to be positive,
– x is large enough for the probability to be large and
– n is large enough for Rn to be negligible.

Typically, r; ı; ı0; 	 and ‡ are bounded w.r.t. n and x has to be of the order of
log.jKj _ n/ for the remainder to be negligible. In particular, K may grow with n
as long as (i) log.jKj _ n/2 remains negligible with respect to n and (ii) ‡ does
not depend on n.

• If pen.k/ D 2P�k=n, that is if ı D ı0 D 1 and r D C D 0 in (3.18), the estimator
OsOk satisfies an asymptotically optimal oracle inequality i.e. Cn !n!1 1 since 	

can be chosen as close to 0 as desired. Take for instance, 	 D .log n/�1.
• In general P�k depends on the unknown s and this last penalty cannot be used in

practice. Fortunately, its empirical counterpart pen.k/ D 2Pn�k=n satisfies (3.18)
with ı D 1 � 	 , ı0 D 1 C 	 , r D 1=	 and C D 2jKj for any 	 2 .0; 1/ and
in particular 	 D .log n/�1 (see (6.34) in Proposition B.1). Hence, the estimator
OsOk selected with this choice of penalty also satisfies an asymptotically optimal
oracle inequality, by the same argument.

• Finally, we only get an oracle inequality when ı > 0, that is when pen.k/ is larger
than .2P�k � P‚k/=n up to some residual term. We discuss the necessity of this
condition in Sect. 4.

3.3 Main Examples

This section shows that Theorem 3.1 can be applied in the examples. In addition, it
provides the computation of 2P�k=n in some specific cases of special interest.

Example 1 (Continued)
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Proposition 3.2 Let fkS; S 2 S g be a collection of projection kernels. Assump-
tions (3.11), (3.12), (3.14), (3.15) and (3.16) hold for any ‡ � �.1 Cksk1/, where
� is given by (2.2). In addition, Assumption (3.13) is satisfied under either of the
following classical assumptions (see [20, Chap. 7]):

8S; S0 2 S; either S � S0 or S0 � S ; (3.19)

or

8S 2 S; kskSk1 � ‡

2
: (3.20)

These particular projection kernels satisfy for all .x; y/ 2 X
2

AkS.x; y/ D
Z
X

kS.x; z/kS.y; z/d�.z/

D
X

.i;j/2I2
S

'i.x/'j.y/

Z
X

'i.z/'j.z/d�.z/ D kS.x; y/ :

In particular, ‚kS D �kS D P
i2IS

'2
i and 2P�kS � P‚kS D P�kS .

Moreover, it appears that the function ‚kS is constant in some linear spaces S
of interest (see [19] for more details). Let us mention one particular case studied
further on in the sequel. Suppose S is a collection of regular histogram spaces S on
X, that is, any S 2 S is a space of piecewise constant functions on a partition IS

of X such that �.i/ D 1=DS for any i in IS. Assumption (3.20) is satisfied for this
collection as soon as ‡ � 2 ksk1. The family .'i/i2IS , where 'i D p

DS1i is an
orthonormal basis of S and

�kS D
X
i2IS

'2
i D DS :

Hence, P�kS D DS and 2DS=n can actually be used as a penalty to ensure that the
selected estimator satisfies an asymptotically optimal oracle inequality. Moreover,
in this example it is actually necessary to choose a penalty larger than DS=n to get
an oracle inequality (see [19] or Sect. 4 for more details).

Example 2 (Continued)

Proposition 3.3 Let fkK;h; .K; h/ 2 H g be a collection of approximation kernels.
Assumptions (3.11)–(3.16) hold with � D 1, for any

‡ � max
K

� jK.0/j
kKk2

_
�

1 C 2 ksk1 kKk2
1

��
;

as soon as (2.3) is satisfied.
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These approximation kernels satisfy, for all x 2 R,

�kK;h.x/ D kK;h.x; x/ D K.0/

h
;

‚kK;h.x/ D AkK;h.x; x/ D 1

h2

Z
R

K
� x � y

h

�2

dy D kKk2

h
:

Therefore, the optimal penalty 2P�kK;h=n D 2K.0/=.nh/ can be computed in
practice and yields an asymptotically optimal selection criterion. Surprisingly, the
lower bound 2P�kK;h=n � P‚kK;h=n D .2K.0/ � kKk2/=.nh/ can be negative if
kKk2 > 2K.0/ and even if K(0) > 0, which is usually the case for Parzen kernels. In
this case, a minimizer of (2.6) satisfies an oracle inequality, even if this criterion is
not penalized. This remarkable fact is illustrated in the simulation study in Sect. 5.

Example 3 (Continued)

Proposition 3.4 Let fkw; w 2 W g be a collection of weighted projection kernels.
Assumption (3.11) is valid for ‡ � �.1 C ksk1/, where � is given by (2.4).
Moreover (3.11) and (2.1) imply (3.12)–(3.16).

For these weighted projection kernels, for all x 2 X

�kw.x/ D
pX

iD1

wi'i.x/2; hence P�kw D
pX

iD1

wiP'2
i and

‚kw.x/ D
pX

i;jD1

wiwj'i'j

Z
X

'i.x/'j.x/d�.x/ D
pX

iD1

w2
i 'i.x/2 � �kw.x/ :

In this case, the optimal penalty 2P�kw=n has to be estimated in general. However,
in the following example it can still be directly computed.

Let X D Œ0; 1�, let � be the Lebesgue measure. Let '0 � 1 and, for any j � 1,

'2j�1.x/ D p
2 cos.2
jx/; '2j.x/ D p

2 sin.2
jx/ :

Consider some odd p and a family of weights W D fwi; i D 0; : : : ; pg such that,
for any w 2 W and any i D 1; : : : ; p=2; w2i�1 D w2i D �i. In this case, the values
of the functions of interest do not depend on x

�kw D w0 C
p=2X
jD1

�j; ‚kw D w2
0 C

p=2X
jD1

�2
j :

In particular, this family includes Pinsker’s and Tikhonov’s weights.
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4 Minimal Penalties for Kernel Selection

The purpose of this section is to see whether the lower bound penmin.k/ WD .2P�k �
P‚k/=n is sharp in Theorem 3.1. To do so we first need the following result which
links ks � Oskk to deterministic quantities, thanks to concentration tools.

4.1 Bias-Variance Decomposition with High Probability

Proposition 4.1 Assume fk gk2K is a finite collection of kernels satisfying Assump-
tions (3.11)–(3.16). For all x > 1, for all � in .0; 1�, with probability larger than
1 � �jKje�x

ksk � Oskk2 � .1 C �/
P‚k

n
C �‡x2

�n
;

P‚k

n
� .1 C �/ ksk � Oskk2 C �‡x2

�n
:

Moreover, for all x > 1 and for all � in .0; 1/, with probability larger than 1 �
�jKje�x, for all k 2 K, each of the following inequalities hold

ks � Oskk2 � .1 C �/

�
ks � skk2 C P‚k

n

�
C �‡x2

�3n
;

ks � skk2 C P‚k

n
� .1 C �/ ks � Oskk2 C �‡x2

�3n
:

This means that not only in expectation but also with high probability can the term
ks � Oskk2 be decomposed in a bias term ks � skk2 and a “variance” term P‚k=n. The
bias term measures the capacity of the kernel k to approximate s whereas P‚k=n is
the price to pay for replacing sk by its empirical version Osk. In this sense, P‚k=n
measures the complexity of the kernel k in a way which is completely adapted to
our problem of density estimation. Even if it does not seem like a natural measure
of complexity at first glance, note that in the previous examples, it is indeed always
linked to a natural complexity. When dealing with regular histograms defined on
Œ0; 1�, P‚kS is the dimension of the considered space S, whereas for approximation
kernels P‚kK;h is proportional to the inverse of the considered bandwidth h.
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4.2 Some General Results About the Minimal Penalty

In this section, we assume that we are in the asymptotic regime where the number
of observations n ! 1. In particular, the asymptotic notations refers to this regime.

From now on, the family K D Kn may depend on n as long as both � and
‡ remain absolute constants that do not depend on it. Indeed, on the previous
examples, this seems a reasonable regime. Since Kn now depends on n, our selected
Ok D Okn also depends on n.

To prove that the lower bound penmin.k/ is sharp, we need to show that the
estimator chosen by minimizing (2.6) with a penalty smaller than penmin does not
satisfy an oracle inequality. This is only possible if the ks � Oskk2’s are not of the
same order and if they are larger than the remaining term �.r C 	�3/‡x2=n. From
an asymptotic point of view, we rewrite this thanks to Proposition 4.1 as for all
n � 1, there exist k0;n and k1;n in Kn such that

��s � sk1;n

��2C P‚k1;n

n
	��s � sk0;n

��2C P‚k0;n

n
	�

�
r C 1

	3

�
‡x2

n
; (4.21)

where an 	 bn means that bn=an !n!1 0. More explicitly, denoting by o.1/ a
sequence only depending on n and tending to 0 as n tends to infinity and whose
value may change from line to line, one assumes that there exists cs and cR positive
constants such that for all n � 1, there exist k0;n and k1;n in Kn such that

��s � sk0;n

��2 C P‚k0;n

n
� cs o.1/

���s � sk1;n

��2 C P‚k1;n

n

�
(4.22)

.log.jKnj _ n//3

n
� cR o.1/

���s � sk0;n

��2 C P‚k0;n

n

�
: (4.23)

We put a log-cube factor in the remaining term to allow some choices of 	 D
	n !n!1 0 and r D rn !n!1 C1.

But (4.22) and (4.23) (or (4.21)) are not sufficient. Indeed, the following result
explains what happens when the bias terms are always the leading terms.

Corollary 4.2 Let .Kn/n�1 be a sequence of finite collections of kernels k satisfying
Assumptions (3.11)–(3.16) for a positive constant ‡ independent of n and such that

1

n
D cb o.1/ inf

k2Kn

ks � skk2

P‚k
; (4.24)

for some positive constant cb.
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Assume that there exist real numbers of any sign ı0 � ı and a sequence .rn/n�1

of nonnegative real numbers such that, for all n � 1, with probability larger than
1 � �=n2, for all k 2 Kn,

ı
P‚k

n
� �ı;ı0 ;‡

rn log.n _ jKnj/2

n

� pen.k/ � 2P�k � P‚k

n
� ı0 P‚k

n
C �ı;ı0 ;‡

rn log.n _ jKnj/2

n
:

Then, with probability larger than 1 � �=n2,

���s � OsOkn

���2 �

.1 C �ı;ı0 ;‡;cb o.1// inf
k2Kn

ks � Oskk2 C �ı;ı0 ;‡ . rn C log n /
log.n _ jKnj/2

n
:

The proof easily follows by taking 	 D .log n/�1 in (3.17), � D 2 for instance
in Proposition 4.1 and by using Assumption (4.24) and the bounds on pen.k/.
This result shows that the estimator OsOkn

satisfies an asymptotically optimal oracle
inequality when condition (4.24) holds, whatever the values of ı and ı0 even when
they are negative. This proves that the lower bound penmin is not sharp in this case.

Therefore, we have to assume that at least one bias ks � skk2 is negligible with
respect to P‚k=n. Actually, to conclude, we assume that this happens for k1;n

in (4.21).

Theorem 4.3 Let .Kn/n�1 be a sequence of finite collections of kernels satisfying
Assumptions (3.11)–(3.16), with ‡ not depending on n. Each Kn is also assumed to
satisfy (4.22) and (4.23) with a kernel k1;n 2 Kn in (4.22) such that

��s � sk1;n

��2 � c o.1/
P‚k1;n

n
; (4.25)

for some fixed positive constant c. Suppose that there exist ı � ı0 > 0 and a
sequence .rn/n�1 of nonnegative real numbers such that rn � � log.jKnj _ n/ and
such that for all n � 1, with probability larger than 1 � �n�2, for all k 2 Kn,

2P�k � P‚k

n
� ı

P‚k

n
� �ı;ı0 ;‡

rn log.jKnj _ n/2

n
� pen.k/

� 2P�k � P‚k

n
� ı0 P‚k

n
C �ı;ı0 ;‡

rn log.jKnj _ n/2

n
: (4.26)
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Then, with probability larger than 1 � �=n2, the following holds

P‚Okn
�
�

ı0

ı
C �ı;ı0 ;‡;c;cs;cR o.1/

�
P‚k1;n and (4.27)

���s � OsOkn

���2 �
�

ı0

ı
C �ı;ı0 ;‡;c;cs;cR o.1/

���s � Osk1;n

��2

	 ��s � Osk0;n

��2 � inf
k2Kn

ks � Oskk2
: (4.28)

By (4.28), under the conditions of Theorem 4.3, the estimator OsOkn
cannot satisfy

an oracle inequality, hence, the lower bound .2P�k � P‚k/=n in Theorem 3.1 is
sharp. This shows that .2P�k � P‚k/=n is a minimal penalty in the sense of [5] for
kernel selection. When

pen.k/ D 2P�k � P‚k

n
C �

P‚k

n
;

the complexity P‚Okn
presents a sharp phase transition when � becomes positive.

Indeed, when � < 0 it follows from (4.27) that the complexity P‚Okn
is asymptoti-

cally larger than P‚k1;n. But on the other hand, as a consequence of Theorem 3.1,
when � > 0, this complexity becomes smaller than

��n inf
k2Kn

�
ks � skk2 C P‚k

n

�
� ��

�
n
��s � sk0;n

��2 C P‚k0;n

�


 ��

�
n
��s � sk1;n

��2 C P‚k1;n

�
� ��P‚k1;n :

4.3 Examples

Example 1 (Continued) Let S D Sn be the collection of spaces of regular
histograms on Œ0; 1� with dimensions f1; : : : ; n g and let OS D OSn be the selected
space thanks to the penalized criterion. Recall that, for any S 2 Sn, the orthonormal
basis is defined by 'i D p

DS1i and P‚kS D DS. Assume that s is ˛-Hölderian, with
˛ 2 .0; 1� with ˛-Hölderian norm L. It is well known (see for instance Section 1.3.3.
of [4]) that the bias is bounded above by

ks � skS k2 � �LD�2˛
S :

In particular, if DS1 D n,

��s � skS1

��2 � �Ln�2˛ 
 1 D DS1

n
D P‚kS1

n
:
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Thus, (4.25) holds for kernel kS1 . Moreover, if DS0 D bp
nc,

.log.n _ jSnj/3

n

 ��s � skS0

��2 C DS0

n
� �L

�
1

n˛
C 1p

n

�


 ��s � skS1

��2 C DS1

n
:

Hence, (4.21) holds with k0;n D kS0 and k1;n D kS1 . Therefore, Theorem 4.3 and
Theorem 3.1 apply in this example. If pen.kS/ D .1�ı/DS=n, the dimension DkbSn

�
�ın and OskbSn

is not consistent and does not satisfy an oracle inequality. On the other

hand, if pen.kS/ D .1 C ı/DS=n,

DbSn
� �L;ı



n1�˛ C p

n
� 
 DS1 D n

and OskbSn
satisfies an oracle inequality which implies that, with probability larger

than 1 � �=n2,

���s � OskbSn

���2 � �˛;L;ın�2˛=.2˛C1/ ;

by taking DS ' n1=.2˛C1/: It achieves the minimax rate of convergence over the
class of ˛-Hölderian functions.

From Theorem 3.1, the penalty pen.kS/ D 2DS=n provides an estimator OskbSn
that

achieves an asymptotically optimal oracle inequality. Therefore the optimal penalty
is equal to 2 times the minimal one. In particular, the slope heuristics of [5] holds in
this example, as already noticed in [19].

Finally to illustrate Corollary 4.2, let us take s.x/ D 2x and the collection
of regular histograms with dimension in f1; : : : ; bnˇcg, with ˇ < 1=3. Simple
calculations show that

ks � skS k2

DS
� �D�3

S � �n�3ˇ 	 n�1:

Hence (4.24) applies and the penalized estimator with penalty pen.kS/ ' ı DS
n

always satisfies an oracle inequality even if ı D 0 or ı < 0. This was actually
expected since it is likely to choose the largest dimension which is also the oracle
choice in this case.

Example 2 (Continued) Let K be a fixed function, let H D Hn denote the following
grid of bandwidths

H D
� kKk1 kKk1

i
= i D 1; : : : ; n

�
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and let Oh D Ohn be the selected bandwidth. Assume as before that s is a density on
Œ0; 1� that belongs to the Nikol’ski class N .˛; L/ with ˛ 2 .0; 1� and L > 0. By
Proposition 1.5 in [25], if K satisfies

R juj˛ jK.u/j du < 1
��s � skK;h

��2 � �˛;K;Lh2˛ :

In particular, when h1 D kKk1 kKk1 =n,

��s � skK;h1

��2 � �˛;K;Ln�2˛ 
 P‚kK;h1

n
D kKk2

kKk1 kKk1

:

On the other hand, for h0 D kKk1 kKk1 =
�p

n
˘

,

.log n _ jHnj/2

n

 ��s � skK;h0

��2 C P‚kK;h0

n

� �K;˛;L

�
1

n˛
C 1p

n

�

 ��s � skK;h1

��2 C P‚kK;h1

n
:

Hence, (4.21) and (4.25) hold with kernels k0;n D kK;h0 and k1;n D kK;h1 . Therefore,
Theorems 4.3 and 3.1 apply in this example. If for some ı > 0 we set pen.kK;h/ D
.2K.0/ � kKk2 � ı kKk2/=.nh/, then Ohn � �ı;Kn�1 and OskK;Ohn

is not consistent and
does not satisfy an oracle inequality. On the other hand, if pen.kK;h/ D .2K.0/ �
kKk2 C ı kKk2/=.nh/, then

Ohn � �ı;K;L



n1�˛ C p
n
��1 	 �ı;K;Ln�1 ;

and OsK;k
Ohn

satisfies an oracle inequality which implies that, with probability larger

than 1 � �=n2,

���s � OskK;Ohn

���2 � �˛;K;L;ın�2˛=.2˛C1/ ;

for h D kKk1 kKk1 =
�

n1=.2˛C1/
˘ 2 H: In particular it achieves the minimax rate

of convergence over the class N .˛; L/. Finally, if pen.kK;h/ D 2K.0/=.nh/, OskK;Ohn
achieves an asymptotically optimal oracle inequality, thanks to Theorem 3.1.

The minimal penalty is therefore

penmin.kK;h/ D 2K.0/ � kKk2

nh
:
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In this case, the optimal penalty penopt.kK;h/ D 2K.0/=.nh/ derived from Theo-

rem 3.1 is not twice the minimal one, but one still has, if 2K.0/ ¤ kKk2,

penopt.kK;h/ D 2K.0/

2K.0/ � kKk2
penmin.kK;h/ ;

even if they can be of opposite sign depending on K. This type of nontrivial
relationship between optimal and minimal penalty has already been underlined in
[2] in regression framework for selecting linear estimators.

Note that if one allows two kernel functions K1 and K2 in the family of kernels
such that 2K1.0/ ¤ kK1k2, 2K2.0/ ¤ kK2k2 and

2K1.0/

2K1.0/ � kK1k2
¤ 2K2.0/

2K2.0/ � kK2k2
;

then there is no absolute constant multiplicative factor linking the minimal penalty
and the optimal one.

5 Small Simulation Study

In this section we illustrate on simulated data Theorems 3.1 and 4.3. We focus on
approximation kernels only, since projection kernels have been already discussed in
[19].

We observe an n D 100 i.i.d. sample of standard gaussian distribution. For a
fixed parameter a � 0 we consider the family of kernels

kKa;h.x; y/ D 1

h
Ka

� x � y

h

�
with h 2 H D

�
1

2i
; i D 1; : : : ; 50

�
;

where for x 2 R; Ka.x/ D 1

2
p

2


�
e� .x�a/2

2 C e� .xCa/2

2

�
:

In particular the kernel estimator with a D 0 is the classical Gaussian kernel
estimator. Moreover

Ka.0/ D 1p
2


exp

�
�a2

2

�
and kKak2 D 1 C e�a2

4
p



:

Thus, depending on the value of a, the minimal penalty .2Ka.0/�kKak2/=.nh/ may
be negative. We study the behavior of the penalized criterion

Cpen .kKa;h / D Pn�.OskKa ;h/ C pen.kKa;h/
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with penalties of the form

pen .kKa;h / D 2Ka.0/ � kKak2

nh
C �

kKak2

nh
; (5.29)

for different values of � (� D �1; 0; 1) and a (a D 0; 1:5; 2; 3). On Fig. 1 are
represented the selected estimates by the optimal penalty 2Ka.0/=.nh/ for the
different values of a and on Fig. 2 one sees the evolution of the different penalized
criteria as a function of 1=h. The contrast curves for a D 0 are classical on
Fig. 2. Without penalization, the criterion decreases and leads to the selection of
the smallest bandwidth. At the minimal penalty, the curve is flat and at the optimal
penalty one selects a meaningful bandwidth as shown on Fig. 1.
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Fig. 1 Selected approximation kernel estimators when the penalty is the optimal one, i.e.
2Ka.0/=.nh/
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�
as a function of 1=h, which is

proportional to the complexity P‚kKa ;h
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Fig. 3 Behavior of 1=Oh, which is proportional to the complexity P‚kKa ;h , for the estimator selected
by the criterion whose penalty is given by (5.29), as a function of �

When a > 0, despite the choice of those unusual kernels, the reconstructions on
Fig. 1 for the optimal penalty are also meaningful. However when a D 2 or a D 3,
the criterion with minimal penalty is smaller than the unpenalized criterion, meaning
that minimizing the latter criterion leads by Theorem 3.1 to an oracle inequality. In
our simulation, when a D 3, the curves for the optimal criterion and the unpenalized
one are so close that the same estimator is selected by both methods.

Finally Fig. 3 shows that there is indeed in all cases a sharp phase transition
around � D 0 i.e. at the minimal penalty for the complexity of the selected estimate.

6 Proofs

6.1 Proof of Theorem 3.1

The starting point to prove the oracle inequality is to notice that any minimizer Ok of
Cpen satisfies

��s � OsOk
��2 � ks � Oskk2 C .pen.k/ � penid.k/ / �

�
pen

� Ok
�

� penid

� Ok
��

:
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Using the expression of the ideal penalty (2.9) we find

��s � OsOk
��2 � ks � Oskk2 C

�
pen.k/ � 2

P�k

n

�
�
�

pen
� Ok
�

� 2
P�Ok

n

�

C 2
P.sk � sOk/

n
C 2

�
1 � 2

n

�
.Pn � P/.sOk � sk/

C 2
.Pn � P/.�Ok � �k/

n
C 2

UOk � Uk

n2
: (6.30)

By Proposition B.1 (see the appendix), for all x > 1, for all 	 in .0; 1/, with
probability larger than 1 � .7:4jKj C 2jKj2/e�x,

��s � OsOk
��2 � ks � Oskk2 C

�
pen.k/ � 2

P�k

n

�
�
�

pen
� Ok
�

� 2
P�Ok

n

�

C 	
��s � sOk

��2 C 	 ks � skk2 C � ‡

	n

C
�

1 � 2

n

�
	
��s � sOk

��2 C
�

1 � 2

n

�
	 ks � skk2 C �‡x2

	n

C 	
P‚k

n
C 	

P‚Ok
n

C �‡x

	n
C 	

P‚k

n
C 	

P‚Ok
n

C �‡x2

	n

Hence

��s � OsOk
��2 � ks � Oskk2 C

�
pen.k/ � 2

P�k

n

�
�
�

pen
� Ok
�

� 2
P�Ok

n

�

C 2	

���s � sOk
��2 C P‚Ok

n

�
C 2	

�
ks � skk2 C P‚k

n

�
C �‡x2

	n
:

This bound holds using (3.11)–(3.13) only. Now by Proposition 4.1 applied with
� D 1, we have for all x > 1, for all 	 2 .0; 1/, with probability larger than
1 � .16:8jKj C 2jKj2/e�x,

��s � OsOk
��2 � ks � Oskk2 C

�
pen.k/ � 2

P�k

n

�
�
�

pen
� Ok
�

� 2
P�Ok

n

�

C 4	
��s � OsOk

��2 C 4	 ks � Oskk2 C �‡x2

	n
:

This gives the first part of the theorem.
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For the second part, by the condition (3.18) on the penalty, we find for all x > 1,
for all 	 in .0; 1/, with probability larger than 1 � .C C 16:8jKj C 2jKj2/e�x,

.1 � 4	/
��s � OsOk

��2 �

.1 C 4	/ ks � Oskk2 C .ı0 � 1/C
P‚k

n
C .1 � ı/C

P‚Ok
n

C �
�

r C 1

	

�
‡x2

n
:

By Proposition 4.1 applied with � D 	 , we have with probability larger than 1 �
.C C 26:2jKj C 2jKj2/e�x,

.1 � 4	/
��s � OsOk

��2 � .1 C 4	/ ks � Oskk2 C .ı0 � 1/C.1 C 	/ks � Oskk2

C .1 � ı/C.1 C 	/
��s � OsOk

��2 C �
�

r C 1

	3

�
‡x2

n
;

that is

. .ı ^ 1/ � 	.4 C .1 � ı/C/ /
��s � OsOk

��2

� 

.ı0 _ 1/ C 	.4 C .ı0 � 1/C/

� ks � Oskk2 C �
�

r C 1

	3

�
‡x2

n
:

Hence, because 1 � Œ.ı0 _ 1/ C .4 C .ı0 � 1/C/	� � .ı0 _ 1/ C .4 C ı0/	 , we obtain
the desired result.

6.2 Proof of Proposition 4.1

First, let us denote for all x 2 X

FA;k.x/ WD E ŒAk.X; x/ � ; 
k.x/ WD
Z

.k.y; x/ � sk.y/ /2 d�.y/ ;

and

UA;k WD
nX

i¤jD1



Ak.Xi; Xj/ � FA;k.Xi/ � FA;k.Xj/ C E ŒAk.X; Y/ �

�
:

Some easy computations then provide the following useful equality

ksk � Oskk2 D 1

n
Pn
k C 1

n2
UA;k :



448 M. Lerasle et al.

We need only treat the terms on the right-hand side, thanks to the probability tools
of Sect. 2.3. Applying Proposition 2.1, we get, for any x � 1, with probability larger
than 1 � 2 jKj e�x,

j.Pn � P/
kj �
r

2x

n
P
2

k C k
kk1 x

3n
:

One can then check the following link between 
k and ‚k

P
k D
Z

.k.y; x/ � sk.x/ /2 s.y/d�.x/d�.y/ D P‚k � kskk2 :

Next, by (2.1) and (3.11)

k
kk1 D sup
y2X

Z
.k.y; x/ � E Œk.X; x/ � /2 d�.x/

� 4 sup
y2X

Z
k.y; x/2d�.x/ � 4‡n :

In particular, since 
k � 0,

P
2
k � k
kk1 P
k � 4‡nP‚k :

It follows from these computations and from (3.11) that there exists an absolute
constant � such that, for any x � 1, with probability larger than 1 � 2 jKj e�x, for
any 	 2 .0; 1/,

jPn
k � P‚kj � 	P‚k C �‡x

	
:

We now need to control the term UA;k. From Proposition 2.2, for any x � 1, with
probability larger than 1 � 5:4 jKj e�x,

jUA;kj
n2

� �
n2



C

p
x C Dx C Bx3=2 C Ax2

�
:

By (2.1), (3.11) and Cauchy-Schwarz inequality,

A D 4 sup
.x;y/2X2

Z
k.x; z/k.y; z/d�.z/ � 4 sup

x2X

Z
k.x; z/2d�.z/ � 4‡n :

In addition, by (3.15), B2 � 16 supx2X E
�

Ak.X; x/2

 � 16‡n :
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Moreover, applying the Assumption (3.14),

C2 �
nX

i¤jD1

E
�

Ak.Xi; Xj/
2

 D n2

E
�

Ak.X; Y/2

 � n2‡P‚k :

Finally, applying the Cauchy-Schwarz inequality and proceeding as for C2, the
quantity used to define D can be bounded above as follows:

E

2
4 n�1X

iD1

nX
jDiC1

ai.Xi/bj.Xj/Ak.Xi; Xj/

3
5 � n

p
E ŒAk.X; Y/2 � � n

p
‡P‚k :

Hence for any x � 1, with probability larger than 1 � 5:4 jKj e�x,

for any 	 2 .0; 1/;
jUA;kj

n2
� 	

P‚k

n
C �‡x2

	n
:

Therefore, for all 	 2 .0; 1/,
ˇ̌
ˇ̌kOsk � skk2 � P‚k

n

ˇ̌
ˇ̌ � 2	

P‚k

n
C �‡x2

	n
;

and the first part of the result follows by choosing 	 D �=2. Concerning the two
remaining inequalities appearing in the proposition, we begin by developing the
loss. For all k 2 K

kOsk � sk2 D kOsk � skk2 C ksk � sk2 C 2hOsk � sk; sk � si :

Then, for all x 2 X

FA;k.x/ � sk.x/ D
Z

s.y/

Z
k.x; z/k.z; y/d�.z/d�.y/ �

Z
s.z/k.z; x/d�.z/

D
Z �Z

s.y/k.z; y/d�.y/ � s.z/

�
k.x; z/d�.z/

D
Z

. sk.z/ � s.z/ / k.z; x/d�.z/ :

Moreover, since PFA;k D kskk2, we find

hOsk � sk; sk � si D
Z

. Osk.x/ . sk.x/ � s.x/ / / d�.x/ C E Œ sk.X/ � � kskk2

D 1

n

nX
iD1

Z
.k.x; Xi/ .sk.x/ � s.x/ / / d�.x/ C P.sk � FA;k/
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D 1

n

nX
iD1

.FA;k.Xi/ � sk.Xi/ / C P.sk � FA;k/

D .Pn � P/.FA;k � sk/ :

This expression motivates us to apply again Proposition 2.1 to this term. We find
by (2.1), (3.11) and Cauchy-Schwarz inequality

sup
x2X

jFA;k.x/ � sk.x/j � ks � skk sup
x2X

Z js.z/ � sk.z/j
ks � skk k.x; z/d�.z/

� ks � skk
s

sup
x2X

Z
k.x; z/2d�.z/ � ks � skk

p
‡n :

Moreover,

P .FA;k � sk /2 � ks � skk2 P

�Z js.z/ � sk.z/j
ks � skk k.:; z/d�.z/

�2

� ks � skk2 v2
k :

Thus by (3.16), for any 	; u > 0,
s

2P .FA;k � sk /2 x

n
� 	 ks � skk2 C



‡ _ p

‡P‚k
�

x

2	n

� 	 ks � skk2 C ‡x

	n
_
�

u

	

P‚k

n
C ‡x2

16	un

�
:

Hence, for any 	 2 .0; 1/ and x � 1, taking u D 	2

s
2P .FA;k � sk /2 x

n
� 	

�
ks � skk2 C P‚k

n

�
C �‡x2

	3n
:

By Proposition 2.1, for all 	 in .0; 1/ , for all x > 0 with probability larger than
1 � 2jKje�x,

2 jhOsk � sk; sk � sij � 2

s
2P .FA;k � sk /2 x

n
C 2 ks � skk

p
‡n

x

3n

� 3	

�
ks � skk2 C P‚k

n

�
C �‡x2

	3n
:
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Putting together all of the above, one concludes that for all 	 in .0; 1/, for all x > 1,
with probability larger than 1 � 9:4jKje�x

kOsk � sk2 � ksk � sk2 � 3	 ks � skk2 C .1 C 4	/
P‚k

n
C �‡x2

	3n

and

kOsk � sk2 � ksk � sk2 � �3	

�
ks � skk2 C P‚k

n

�
C .1 � 	/

P‚k

n
� �‡x2

	3n
:

Choosing, 	 D �=4 leads to the second part of the result.

6.3 Proof of Theorem 4.3

It follows from (3.17) (applied with 	 D �.log n/�1 and x D � log.n _ jKnj/) and
Assumption (4.26) that with probability larger than 1��n�2 we have for any k 2 K
and any n � 2

���OsOkn
� s
���2 �

�
1 C �

log n

�
kOsk � sk2 � .1 C ı0/

�
1 C �

log n

�
P‚k

n

C .1 C ı/

�
1 C �

log n

�
P‚Okn

n
C �ı;ı0 ;‡

log.jKnj _ n/3

n
: (6.31)

Applying this inequality with k D k1;n and using Proposition 4.1 with � D
�.log n/�1=3 and x D � log.jKnj _ n/ as a lower bound for

���OsOkn
� s
���2

and as an

upper bound for
��Osk1;n � s

��2
, we obtain asymptotically that with probability larger

than 1 � �n�2,

� ı.1 C �ı o.1//
P‚Okn

n
� .1 C o.1//

��sk1;n � s
��2 � ı0.1 C �ı0 o.1//

P‚k1;n

n

C �ı;ı0 ;‡

log.jKnj _ n/3

n
:

By Assumption (4.25),
��sk1;n � s

��2 � c o.1/
P‚k1;n

n and by (4.22),

. log.jKnj _ n//3

n
� cRcs o.1/

P‚k1;n

n
:
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This gives (4.27). In addition, starting with the event where (6.31) holds and using
Proposition 4.1, we also have with probability larger than 1 � �n�2,

���OsOkn
� s
���2 �

�
1 C �

log n

���Osk1;n � s
��2 � .1 C ı0/

P‚k1;n

n

C .1 C ı/ .1 C o.1//
���OsOkn

� s
���2 C �ı;ı0 ;‡

log.jKnj _ n/3

n
:

Since
��Osk1;n � s

��2 ' P‚k1;n
n , this leads to

.�ı C �ı o.1//
��OsOk � s

��2 �

� .ı0 C �ı0 ;c o.1//
��Osk1;n � s

��2 C �ı;ı0 ;‡

log.jKnj _ n/3

n
:

This leads to (4.28) by (4.21).
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Appendix 1: Proofs for the Examples

Computation of the Constant � for the Three Examples

We have to show for each family fk gk2K (see (2.8) and (2.1)) that there exists a
constant � � 1 such that for all k 2 K

sup
x2X

j‚k.x/j � �n; and sup
.x;y/2X2

jk.x; y/j � �n :

Example 1 (Projection Kernels) First, notice that from Cauchy-Schwarz inequality
we have for all .x; y/ 2 X

2 jkS.x; y/j � p
�kS .x/�kS .y/ and by orthonormality, for

any .x; x0/ 2 X
2,

AkS.x; x0/ D
X

.i;j/2I2
S

'i.x/'j.x
0/
Z
X

'i.y/'j.y/d�.y/ D kS.x; x0/ :

In particular, for any x 2 X, ‚kS.x/ D �kS .x/. Hence, projection kernels satisfy (2.1)
for � D 1 _ n�1 supS2S k�kS k1. We conclude by writing

k�kSk1 D sup
x2X

X
i2IS

'i.x/2 D sup
.ai/i2I s.t.P

i2IS
a2

i D1

sup
x2X

0
@X

i2IS

ai'i.x/

1
A

2

:
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For f 2 S we have k f k2 D P
i2Ih f ; 'ii2. Hence with ai D h f ; 'ii,

k�kS k1 D sup
f 2S;k f kD1

k f k2
1 :

Example 2 (Approximation Kernels) First, sup.x;y/2X2 jkK;h.x; y/j � kKk1 =h: Sec-
ond, since K 2 L1

‚kK;h.x/ D 1

h2

Z
X

K
� x � y

h

�2

dy D kKk2

h
� kKk1 kKk1

h
:

Now K 2 L1 and
R

K.u/du D 1 implies kKk1 � 1, hence (2.1) holds with � D 1 if
one assumes that h � kKk1kKk1=n.

Example 3 (Weighted Projection Kernels) For all x 2 X

‚kw.x/ D
pX

i;jD1

wi'i.x/wj'j.x/

Z
X

'i.y/'j.y/d�.y/ D
pX

iD1

w2
i 'i.x/2 :

From Cauchy-Schwarz inequality, for any .x; y/ 2 X
2,

jkw.x; y/j � p
‚kw.x/‚kw.y/ :

We thus find that kw verifies (2.1) with � � 1 _ n�1 supw2W k‚kwk1. Since wi � 1

we find the announced result which is independent of W .

Proof of Proposition 3.2

Since kskS k2 � ksk2 � ksk1, we find that (3.11) only requires ‡ � �.1 C ksk1/.
Assumption (3.12) holds: this follows from ‡ � � and

E
�
�kS .X/2


 � k�kS k1 P�kS � �nP‚kS :

Now for proving Assumption (3.14), we write

E
�

AkS.X; Y/2

 D E

�
kS.X; Y/2


 D
Z
X

E
�

kS.X; x/2



s.x/d�.x/

� ksk1
X

.i;j/2I2
S

E
�
'i.X/'j.X/


 Z
X

'i.x/'j.x/d�.x/

D ksk1 P‚kS � ‡P‚kS :
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In the same way, Assumption (3.15) follows from ksk1 � � ‡ . Suppose (3.19)
holds with S D S C S0 so that the basis .'i/i2I of S0 is included in the one .'i/i2J
of S. Since k�kS k1 � �n we have

skS .x/ � skS0
.x/ D

X
j2J nI



P'j

�
'j.x/ �

s X
j2J nI



P'j

�2 X
j2J nI

'j.x/2

� ��skS � skS0

�� k�kS k1=2
1 � ��skS � skS0

��p
�n :

Hence, (3.13) holds in this case. Assuming (3.20) implies that (3.13) holds since

��skS � skS0

��1 � kskSk1 C ��skS0

��1 � ‡ :

Finally for (3.16), for any a 2 L2,

Z
X

a.x/kS.x; y/d�.x/ D
X
i2I

ha; 'ii'i.y/ D …S.a/ :

is the orthogonal projection of a onto S. Therefore, BkS is the unit ball in S for the
L2-norm and, for any t 2 BkS , E

�
t.X/2


 � ksk1 ktk2 � ksk1 :

Proof of Proposition 3.3

First, since kKk1 � 1

��skK;h

��2 D
Z
X

�Z
X

s.y/
1

h
K
� x � y

h

�
dy

�2

dx

D
Z
X

�Z
X

s.x C hz/K . z / dz

�2

dx

� kKk2
1

Z
X

�Z
X

s.x C hz/
jK . z /j
kKk1

dz

�2

dx

� kKk2
1

Z
X2

s.x C hz/2 jK . z /j
kKk1

dxdz � ksk1kKk2
1 :

Hence, Assumption (3.11) holds if ‡ � 1 C ksk1 kKk2
1. Now, we have

P
�

�2
kK;h

�
D K.0/2

h2
D P‚kK;h

K.0/2

kKk2 h
� nP‚kK;h

K.0/2

kKk2 kKk1 kKk1

;
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so it is sufficient to have ‡ � jK.0/j= kKk2 (since jK.0/j � kKk1) to ensure (3.12).
Moreover, for any h 2 H and any x 2 X,

skK;h.x/ D
Z
X

s.y/
1

h
K
� x � y

h

�
dy D

Z
X

s.x C zh/K.z/dz � ksk1 kKk1 :

Therefore, Assumption (3.13) holds for ‡ � 2 ksk1 kKk1. Then on one hand

ˇ̌
AkK;h.x; y/

ˇ̌ � 1

h2

Z
X

ˇ̌
ˇK � x � z

h

�
K
� y � z

h

�ˇ̌ˇ dz

� 1

h

Z
X

ˇ̌̌
K
� x � y

h
� u

�
K .u /

ˇ̌̌
du

� kKk2

h
^ kKk1 kKk1

h
� P‚kK;h ^ n :

And on the other hand

E
� ˇ̌

AkK;h.X; x/
ˇ̌ 
 � 1

h

Z
X2

ˇ̌
ˇK � x � y

h
� u

�
K .u /

ˇ̌
ˇ du s.y/dy

D
Z
X2

jK .v / K .u /j s.x C h.v � u//dudv � ksk1 kKk2
1 :

Therefore,

sup
x2X

E
�

AkK;h.X; x/2

 � sup

.x;y/2X2

ˇ̌
AkK;h.x; y/

ˇ̌
sup
x2X

E
� ˇ̌

AkK;h.X; x/
ˇ̌ 


� 

P‚kK;h ^ n

� ksk1 kKk2
1 ;

and E
�

AkK;h.X; Y/2

 � supx2X E

�
AkK;h.X; x/2


 � ksk1kKk2
1P‚kK;h : Hence

Assumption (3.14) and (3.15) hold when ‡ � ksk1 kKk2
1. Finally let us prove

that Assumption (3.16) is satisfied. Let t 2 BkK;h and a 2 L2 be such that kak D 1

and t.y/ D R
X

a.x/ 1
h K

 x�y

h

�
dx for all y 2 X. Then the following follows from

Cauchy-Schwarz inequality

t.y/ � 1

h

sZ
X

a.x/2dx

sZ
X

K
� x � y

h

�2

dx � kKkp
h

:

Thus for any t 2 BkK;h

Pt2 � ktk1 hjtj ; si � kKkp
h

ksk D ksk
q

P‚kK;h �
q

‡P‚kK;h :
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We conclude that all the assumptions hold if

‡ �
�

jK.0/j= kKk2
�

_
�

1 C 2 ksk1 kKk2
1

�
:

Proof of Proposition 3.4

Let us define for convenience ˆ.x/ WD Pp
iD1 'i.x/2, so � � 1_n�1 kˆk1. Then we

have for these kernels: ˆ.x/ � �kw.x/ � ‚kw.x/ for all x 2 X. Moreover, denoting
by …s the orthogonal projection of s onto the linear span of .'i/iD1;:::;p,

kskwk2 D
pX

iD1

w2
i .P'i /

2 � k…sk2 � ksk2 � ksk1 :

Assumption (3.11) holds for this family if ‡ � �.1 C ksk1/. We prove in what
follows that all the remaining assumptions are valid using only (2.1) and (3.11).

First, it follows from Cauchy-Schwarz inequality that, for any x 2 X, �kw.x/2 �
ˆ.x/‚kw.x/. Assumption (3.12) is then automatically satisfied from the definition
of �

E
�
�kw.X/2


 � kˆk1 P‚kw � �nP‚kw :

Now let w and w0 be any two vectors in Œ0; 1�p, we have

skw D
pX

iD1

wi.P'i/'i; skw � skw0
D

pX
iD1

.wi � w0
i/ .P'i / 'i :

Hence
��skw � skw0

��2 D Pp
iD1.wi � w0

i/
2 .P'i /

2 and, by Cauchy-Schwarz inequality,
for any x 2 X,

ˇ̌
skw.x/ � skw0

.x/
ˇ̌ � ��skw � skw0

��pˆ.x/ � ��skw � skw0

��p
�n :

Assumption (3.13) follows using (3.11). Concerning Assumptions (3.14) and (3.15),
let us first notice that by orthonormality, for any .x; x0/ 2 X

2,

Akw.x; x0/ D
pX

iD1

w2
i 'i.x/'i.x

0/ :
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Therefore, Assumption (3.15) holds since

E
�

Akw.X; x/2

 D

Z
X

 
pX

iD1

w2
i 'i.y/'i.x/

!2

s.y/d�.y/

� ksk1
X

1�i;j�p

w2
i w2

j 'i.x/'j.x/

Z
X

'i.y/'j.y/d�.y/

D ksk1
pX

iD1

w4
i 'i.x/2 � ksk1 ˆ.x/ � ksk1 �n :

Assumption (3.14) also holds from similar computations:

E
�

Akw.X; Y/2

 D

Z
X

E

2
4
 

pX
iD1

w2
i 'i.X/'i.x/

!2
3
5 s.x/d�.x/

� ksk1
X

1�i;j�p

w2
i w2

j E
�
'i.X/'j.X/


 Z
X

'i.x/'j.x/d�.x/

� ksk1 P‚kw :

We finish with the proof of (3.16). Let us prove that Bkw D Ekw , where

Ekw D
(

t D
pX

iD1

witi'i; s.t.
pX

iD1

t2i � 1

)
:

First, notice that any t 2 Bkw can be written

Z
X

a.x/kw.x; y/d�.x/ D
pX

iD1

wiha; 'ii'i.y/ :

Then, consider some t 2 Ekw . By definition, there exists a collection .ti/iD1;:::;p such
that t D Pp

iD1 witi'i, and
Pp

iD1 t2i � 1. If a D Pp
iD1 ti'i, kak2 D Pp

iD1 t2i � 1 and
ha; 'ii D ti, hence t 2 Bkw . Conversely, for t 2 Bkw , there exists some function a 2
L2 such that kak2 � 1, and t D Pp

iD1 wiha; 'ii'i. Since .'i/iD1;:::;p is an orthonormal
system, one can take a D Pp

iD1ha; 'ii'i. With ti D ha; 'ii, we find kak2 D Pp
iD1 t2i

and t 2 Ekw . For any t 2 Bkw D Ekw , ktk2 D Pp
iD1 w2

i t2i � Pp
iD1 t2i � 1. Hence

Pt2 � ksk1 ktk2 � ksk1 :



458 M. Lerasle et al.

Appendix 2: Concentration of the Residual Terms

The following proposition gathers the concentration bounds of the remaining terms
appearing in (6.30).

Proposition B.1 Let fk gk2K denote a finite collection of kernels satisfying (2.1)
and suppose that Assumptions (3.11)–(3.13) hold. Then

8	 2 .0; 1/; 2
P.sOk � sk/

n
� 	

��s � sOk
��2 C 	 ks � skk2 C 2‡

	n
: (6.32)

For any x � 1, with probability larger than 1 � 2 jKj2 e�x, for any .k; k0/ 2 K2, for
any 	 2 .0; 1/,

j2.Pn � P/.sk � sk0/j � 	
�

ks � sk0k2 C ks � skk2
�

C �‡x2

	n
: (6.33)

For any x � 1, with probability larger than 1 � 2 jKj e�x, for any k 2 K,

8	 2 .0; 1/; j2.Pn � P/�kj � 	P‚k C �‡x

	
: (6.34)

For any x � 1, with probability larger than 1 � 5:4 jKj e�x, for any k 2 K,

8	 2 .0; 1/;
2 jUkj

n2
� 	

P‚k

n
C �‡x2

	n
: (6.35)

Proof First for (6.32), notice that, by (3.13), for any 	 2 .0; 1/

2
P.sOk � sk/

n
� 2

��sOk � sk

��1
n

� 2

n

�
‡ _

�
	

4
n
��sk � sOk

��2 C ‡

	

��

� 	

2

��sk � sOk
��2 C 2‡

	n
� 	

��s � sOk
��2 C 	 ks � skk2 C 2‡

	n
:

Then, by Proposition 2.1, with probability larger than 1 � jKj2 e�x,

for any .k; k0/ 2 K2; .Pn � P/.sk � sk0/ �
s

2P .sk � sk0 /2 x

n
C ksk � sk0k1 x

3n
:

Since by (3.11) P . sk � sk0 /2 � ksk1 ksk � sk0k2 � ‡ ksk � sk0k2 ;

s
2P .sk � sk0 /2 x

n
� 	

4
ksk � sk0k2 C 2‡x

	n
:
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Moreover, by (3.13) ksk�sk0k
1

x

3n � 	
4

ksk � sk0k2 C �‡x2

	n : Hence, for x � 1, with

probability larger than 1 � jKj2 e�x

.Pn � P/.sk � sk0/ � 	

2
ksk � sk0k2 C �‡x2

	n

� 	
�

ks � sk0k2 C ks � skk2
�

C �‡x2

	n
;

which gives (6.33). Now, using again Proposition 2.1, with probability larger than
1 � jKj e�x, for any k 2 K,

.Pn � P/�k �
s

2P .�k /2 x

n
C k�kk1 x

3n
:

By (2.1) and (3.11), for any k 2 K, k�kk1 � sup.x;y/2X2 jk.x; y/j � �n � ‡n :

Concerning (6.34), we get by (3.12), P�2
k � ‡nP‚k, hence, for any x � 1 we have

with probability larger than 1 � jKj e�x

.Pn � P/�k � 	P‚k C
�

1

3
C 1

2	

�
‡x :

For (6.35), we apply Proposition 2.2 to obtain with probability larger than 1 �
2:7 jKj e�x, for any k 2 K,

Uk

n2
� �

n2



C

p
x C Dx C Bx3=2 C Ax2

�
;

where A; B; C; D are defined accordingly to Proposition 2.2. Let us evaluate all these
terms. First, A � 4 sup.x;y/2X2 jk.x; y/j � 4‡n by (2.1) and (3.11). Next, C2 �
�n2

E
�

k.X; Y/2

 � �n2 ksk1 P‚k � �n2‡P‚k :

Using (2.1), we find B2 � 4n supx2X
R

k.x; y/2s.y/d�.y/ � 4n ksk1 � :

By (3.11), we consequently have B2 � 4‡n. Finally, using Cauchy-Schwarz
inequality and proceeding as for C2,

E

2
4 n�1X

iD1

nX
jDiC1

ai.Xi/bj.Xj/k.Xi; Xj/

3
5 � n

p
E Œk.X; Y/2 � � n

p
‡P‚k :

Hence, D � n
p

‡P‚k which gives (6.35).
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