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Preface

The High-Dimensional Probability proceedings continue a well-established tradi-
tion which began with the series of eight International Conferences on Probability
in Banach Spaces, starting with Oberwolfach in 1975. An earlier conference on
Gaussian processes with many of the same participants as the 1975 meeting was
held in Strasbourg in 1973. The last Banach space meeting took place in Bowdoin,
Maine, in 1991. It was decided in 1994 that, in order to reflect the widening
audience and interests, the name of this series should be changed to the International
Conference on High-Dimensional Probability.

The present volume is an outgrowth of the Seventh High-Dimensional Prob-
ability Conference (HDP VII) held at the superb Institut d’Etudes Scientifiques
de Cargese (IESC), France, May 26-30, 2014. The scope and the quality of the
contributed papers show very well that high-dimensional probability (HDP) remains
a vibrant and expanding area of mathematical research. Four of the participants of
the first probability on Banach spaces meeting—Dick Dudley, Jim Kuelbs, Jgrgen
Hoffmann-Jgrgensen, and Mike Marcus—have contributed papers to this volume.

HDP deals with a set of ideas and techniques whose origin can largely be traced
back to the theory of Gaussian processes and, in particular, the study of their paths
properties. The original impetus was to characterize boundedness or continuity
via geometric structures associated with random variables in high-dimensional or
infinite-dimensional spaces. More precisely, these are geometric characteristics of
the parameter space, equipped with the metric induced by the covariance structure
of the process, described via metric entropy, majorizing measures and generic
chaining.

This set of ideas and techniques turned out to be particularly fruitful in extending
the classical limit theorems in probability, such as laws of large numbers, laws of
iterated logarithm, and central limit theorems, to the context of Banach spaces and
in the study of empirical processes.
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Similar developments took place in other mathematical subfields such as convex
geometry, asymptotic geometric analysis, additive combinatorics, and random
matrices, to name but a few topics. Moreover, the methods of HDP, and especially
its offshoot, the concentration of measure phenomenon, were found to have a
number of important applications in these areas as well as in statistics, machine
learning theory, and computer science. This breadth is very well illustrated by the
contributions in the present volume.

Most of the papers in this volume were presented at HDP VII. The participants
of this conference are grateful for the support of the Laboratoire Jean Alexandre
Dieudonné of the Université de Nice Sophia-Antipolis, of the school of Mathematics
at the Georgia Institute of Technology, of the CNRS, of the NSF (DMS Grant #
1441883), of the French Agence Nationale de la Recherche (ANR 2011 BSO1 010
01 project Calibration), and of the IESC. The editors also thank Springer-Verlag for
agreeing to publish the proceedings of HDP VII.

The papers in this volume aptly display the methods and breadth of HDP. They
use a variety of techniques in their analysis that should be of interest to advanced
students and researchers. This volume begins with a dedication to the memory of
our close colleague and friend, Evarist Giné-Masdeu. It is followed by a collection
of contributed papers that are organized into four general areas: inequalities and
convexity, limit theorems, stochastic processes, and high-dimensional statistics. To
give an idea of their scope, we briefly describe them by subject area in the order
they appear in this volume.

Dedication to Evarist Giné-Masdeu

* Evarist Giné-Masdeu July 31, 1944—March 15, 2015. This article is made up of
reminiscences of Evarist’s life and work, from many of the people he touched
and influenced.

Inequalities and Convexity

» Stability of Cramer’s Characterization of the Normal Laws in Information
Distances, by S.G. Bobkov, G.P. Chistyakov, and F. Gotze. The authors establish
the stability of Cramer’s theorem, which states that if the convolution of two
distributions is normal, both have to be normal. Stability is studied for probability
measures that have a Gaussian convolution component with small variance.
Quantitative estimates in terms of this variance are derived with respect to the
total variation norm and the entropic distance. Part of the arguments used in
the proof refine Sapogov-type theorems for random variables with finite second
moment.

* V.N. Sudakov’s Work on Expected Suprema of Gaussian Processes, by Richard
M. Dudley. The paper is about two works of V.N. Sudakov on expected suprema
of Gaussian processes. The first was a paper in the Japan-USSR Symposium on
probability in 1973. In it he defined the expected supremum (without absolute
values) of a Gaussian process with mean 0 and showed its usefulness. He gave
an upper bound for it as a constant times a metric entropy integral, without
proof. In 1976 he published the monograph, “Geometric Problems in the Theory
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of Infinite-Dimensional Probability Distributions,” in Russian, translated into
English in 1979. There he proved his inequality stated in 1973. In 1983. G.
Pisier gave another proof. A persistent rumor says that R. Dudley first proved
the inequality, but he disclaims this. He defined the metric entropy integral, as
an equivalent sum in 1967 and then as an integral in 1973, but the expected
supremum does not appear in these papers.

* Optimal Concentration of Information Content for Log-Concave Densities by
Matthieu Fradelizi, Mokshay Madiman, and Liyao Wang. The authors aim
to generalize the fact that a standard Gaussian measure in R" is effectively
concentrated in a thin shell around a sphere of radius «/n. While one possible
generalization of this—the notorious “thin-shell conjecture”—remains open, the
authors demonstrate that another generalization is in fact true: any log-concave
measure in high dimension is effectively concentrated in the annulus between
two nested convex sets. While this fact was qualitatively demonstrated earlier by
Bobkov and Madiman, the current contribution identifies sharp constants in the
concentration inequalities and also provides a short and elegant proof.

* Maximal Inequalities for Dependent Random Variables, by J. Hoffmann-
Jgrgensen. Recall that a maximal inequality is an inequality estimating the
maximum of partial sum of random variables or vectors in terms of the last
sum. In the literature there exist plenty of maximal inequalities for sums of
independent random variables. The present paper deals with dependent random
variables satisfying some weak independence, for instance, maximal inequalities
of the Rademacher-Menchoff type or of the Ottaviani-Levy type or maximal
inequalities for negatively or positively correlated random variables or for
random variables satisfying a Lipschitz mixing condition.

* On the Order of the Central Moments of the Length of the Longest Common
Subsequences in Random Words, by Christian Houdré and Jinyong Ma. The
authors study the order of the central moments of order r of the length of the
longest common subsequences of two independent random words of size n
whose letters are identically distributed and independently drawn from a finite
alphabet. When all but one of the letters are drawn with small probabilities, which
depend on the size of the alphabet, a lower bound of order n'/? is obtained. This
complements a generic upper bound also of order n/?.

e A Weighted Approximation Approach to the Study of the Empirical Wasserstein
Distance, by David M. Mason. The author shows that weighted approximation
technology provides an effective set of tools to study the rate of convergence of
the Wasserstein distance between the cumulative distribution function [c.d.f] and
the empirical c.d.f. A crucial role is played by an exponential inequality for the
weighted approximation to the uniform empirical process.

*  On the Product of Random Variables and Moments of Sums Under Dependence,
by Magda Peligrad. This paper establishes upper and lower bounds for the
moments of products of dependent random vectors in terms of mixing coeffi-
cients. These bounds allow one to compare the maximum term, the characteristic
function, the moment-generating function, and moments of sums of a dependent
vector with the corresponding ones for an independent vector with the same
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marginal distributions. The results show that moments of products and partial
sums of a phi-mixing sequence are close in a certain sense to the corresponding
ones of an independent sequence.

The Expected Norm of a Sum of Independent Random Matrices: An Elementary
Approach, by Joel A. Tropp. Random matrices have become a core tool in
modern statistics, signal processing, numerical analysis, machine learning, and
related areas. Tools from high-dimensional probability can be used to obtain
powerful results that have wide applicability. Tropp’s paper explains an important
inequality for the spectral norm of a sum of independent random matrices. The
result extends the classical inequality of Rosenthal, and the proof is based on
elementary principles.

Fechner’s Distribution and Connections to Skew Brownian Motion, by Jon
A. Wellner. Wellner’s paper investigates two aspects of Fechner’s two-piece
normal distribution: (1) Connections with the mean-median-mode inequality
and (strong) log-concavity (2) Connections with skew and oscillating Brownian
motion processes.

Limit Theorems

Erdos-Rényi-Type Functional Limit Laws for Renewal Processes, by Paul
Deheuvels and Joseph G. Steinebach. The authors discuss functional versions
of the celebrated Erddés-Rényi strong law of large numbers, originally stated
as a local limit theorem for increments of partial sum processes. We work in
the framework of renewal and first-passage-time processes through a duality
argument which turns out to be deeply rooted in the theory of Orlicz spaces.
Limit Theorems for Quantile and Depth Regions for Stochastic Processes, by
James Kuelbs and Joel Zinn. Contours of multidimensional depth functions often
characterize the distribution, so it has become of interest to consider structural
properties and limit theorems for the sample contours. Kuelbs and Zinn continue
this investigation in the context of Tukey-like depth for functional data. In
particular, their results establish convergence of the Hausdorff distance for the
empirical depth and quantile regions.

In Memory of Wenbo V. Li’s Contributions, by Q.M. Shao. Shao’s notes are a
tribute to Wenbo Li for his contributions to probability theory and related fields
and to the probability community. He also discusses several of Wenbo’s open
questions.

Stochastic Processes

Orlicz Integrability of Additive Functionals of Harris Ergodic Markov Chains,
by Radostaw Adamczak and Witold Bednorz. Adamczak and Bednorz consider
integrability properties, expressed in terms of Orlicz functions, for “excursions”
related to additive functionals of Harris Markov chains. Applying the obtained
inequalities together with the regenerative decomposition of the functionals, we
obtain limit theorems and exponential inequalities.
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* Bounds for Stochastic Processes on Product Index Spaces, by Witold Bednorz.
In many questions that concern stochastic processes, the index space of a given
process has a natural product structure. In this paper, we formulate a general
approach to bounding processes of this type. The idea is to use a so-called
majorizing measure argument on one of the marginal index spaces and the
entropy method on the other. We show that many known consequences of
the Bernoulli theorem—complete characterization of sample boundedness for
canonical processes of random signs—can be derived in this way. Moreover we
establish some new consequences of the Bernoulli theorem, and finally we show
the usefulness of our approach by obtaining short solutions to known problems
in the theory of empirical processes.

* Permanental Vectors and Self Decomposability, by Nathalie Eisenbaum. Expo-
nential variables and more generally gamma variables are self-decomposable.
Does this property extend to the class of multivariate gamma distributions? We
consider the subclass of the permanental vectors distributions and show that,
obvious cases excepted, permanental vectors are never self-decomposable.

* Permanental Random Variables, M-Matrices, and M-Permanents, by Michael
B. Marcus and Jay Rosen. Marcus and Rosen continue their study of permanental
processes. These are stochastic processes that generalize processes that are
squares of certain Gaussian processes. Their one-dimensional projections are
gamma distributions, and they are determined by matrices, which, when sym-
metric, are covariance matrices of Gaussian processes. But this class of processes
also includes those that are determined by matrices that are not symmetric.
In their paper, they relate permanental processes determined by nonsymmetric
matrices to those determined by related symmetric matrices.

e Convergence in Law Implies Convergence in Total Variation for Polynomials
in Independent Gaussian, Gamma or Beta Random Variables, by Ivan Nourdin
and Guillaume Poly. Nourdin and Poly consider a sequence of polynomials of
bounded degree evaluated in independent Gaussian, gamma, or beta random
variables. Whenever this sequence converges in law to a nonconstant distribution,
they show that the limit distribution is automatically absolutely continuous (with
respect to the Lebesgue measure) and that the convergence actually takes place
in the total variation topology.

High-Dimensional Statistics

* Perturbation of Linear Forms of Singular Vectors Under Gaussian Noise, by
Vladimir Koltchinskii and Dong Xia. The authors deal with the problem of
estimation of linear forms of singular vectors of an m x n matrix A perturbed by
a Gaussian noise. Concentration inequalities for linear forms of singular vectors
of the perturbed matrix around properly rescaled linear forms of singular vectors
of A are obtained. They imply, in particular, tight concentration bounds for the
perturbed singular vectors in the £.,-norm as well as a bias reduction method in
the problem of estimation of linear forms.
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* Optimal Kernel Selection for Density Estimation, by M. Lerasle, N. Magalhaes,
and P. Reynaud-Bouret. The authors provide new general kernel selection rules
for least-squares density estimation thanks to penalized least-squares criteria.
They derive optimal oracle inequalities using concentration tools and discuss the
general problem of minimal penalty in this framework.

Atlanta, GA, USA Christian Houdré
Newark, DE, USA David M. Mason
Nice, France Patricia Reynaud-Bouret

Knoxville, TN, USA Jan Rosinski



Contents

PartI Inequalities and Convexity

Stability of Cramer’s Characterization of Normal Laws
in Information Distances ..................... 3
Sergey Bobkov, Gennadiy Chistyakov, and Friedrich Gotze

V.N. Sudakov’s Work on Expected Suprema of Gaussian Processes ....... 37
Richard M. Dudley

Optimal Concentration of Information Content for
Log-Concave Densities................ooiiiiiiiiiiiiiiiii i 45
Matthieu Fradelizi, Mokshay Madiman, and Liyao Wang

Maximal Inequalities for Dependent Random Variables .................... 61
Jgrgen Hoffmann-Jgrgensen

On the Order of the Central Moments of the Length
of the Longest Common Subsequences in Random Words.................. 105
Christian Houdré and Jinyong Ma

A Weighted Approximation Approach to the Study
of the Empirical Wasserstein Distance...........................coiine. 137
David M. Mason

On the Product of Random Variables and Moments of Sums
Under Dependence ............. ... 155
Magda Peligrad

The Expected Norm of a Sum of Independent Random
Matrices: An Elementary Approach........................................... 173
Joel A. Tropp

Fechner’s Distribution and Connections to Skew Brownian Motion....... 203
Jon A. Wellner

xi



xii Contents

PartII Limit Theorems

Erdés-Rényi-Type Functional Limit Laws for Renewal Processes ......... 219
Paul Deheuvels and Joseph G. Steinebach

Limit Theorems for Quantile and Depth Regions for Stochastic
PrOCESS S oo 255
James Kuelbs and Joel Zinn

In Memory of Wenbo V. Li’s Contributions................................... 281
Qi-Man Shao
Part IIT Stochastic Processes

Orlicz Integrability of Additive Functionals of Harris Ergodic
Markov Chains .......ooooiiiiii e 295
Radostaw Adamczak and Witold Bednorz

Bounds for Stochastic Processes on Product Index Spaces................... 327
Witold Bednorz
Permanental Vectors and Selfdecomposability ............................... 359

Nathalie Eisenbaum

Permanental Random Variables, M-Matrices and «-Permanents.......... 363
Michael B. Marcus and Jay Rosen

Convergence in Law Implies Convergence in Total Variation

for Polynomials in Independent Gaussian, Gamma or Beta

Random Variables........... ... oo 381
Ivan Nourdin and Guillaume Poly

Part IV High Dimensional Statistics

Perturbation of Linear Forms of Singular Vectors Under
Gaussian NOISe .........oooiii 397
Vladimir Koltchinskii and Dong Xia

Optimal Kernel Selection for Density Estimation ............................ 425
Matthieu Lerasle, Nelo Molter Magalhaes,
and Patricia Reynaud-Bouret



List of Participants

Radostaw Adamczak
Mélisande Albert
Sylvain Arlot
Benjamin Arras
Yannick Baraud
Witold Bednorz
Bernard Bercu
Sergey Bobkov
Stéphane Boucheron
Silouanos Brazitikos
Sébastien Bubeck
Dariusz Buraczewski
Djalil Chafat

Julien Chevallier
Ewa Damek

Yohann de Castro
Victor de la Pefia
Paul Deheuvels
Dainius Dzindzalieta
Peter Eichelsbacher
Nathalie Eisenbaum
Xiequan Fan

José Enrique Figueroa-Lépez
Apostolos Giannopoulos

Nathael Gozlan
Labrini Hioni

Jgrgen Hoffmann-Jgrgensen

Christian Houdré
Vladimir Koltchinskii
Rafal Latata

Mikhail Lifshits

University of Warsaw, Poland
Université de Nice Sophia-Antipolis, France
ENS-Paris, France

Ecole Centrale de Paris, France
Université Nice Sophia Antipolis, France
University of Warsaw, Poland
Université Bordeaux 1, France
University of Minnesota, USA
Université Paris-Diderot, France
University of Athens, Greece
Princeton University, USA

University of Wroclaw, Poland
Université Paris-Dauphine, France
University of Nice, France

University of Wroclaw, Poland
Université Paris Sud, France
Columbia University, USA

Université Paris VI, France

Vilnius University, Lithuania
Ruhr-Universitidt Bochum, Germany
Université Paris VI, France

Tianjin University, China

Purdue University, USA

University of Athens, Greece
Université Paris-Est-Marne-la Vallée, France
University of Athens, Greece

Aarhus University, Denmark

Georgia Institute of Technology, USA
Georgia Institute of Technology, USA
University of Warsaw, Poland

St. Petersburg, Russia

Xiii



Xiv

Karim Lounici
Mokshay Madiman
Philippe Marchal
Eleftherios Markessinis
David Mason

Mario Milman

Nelo Molter Magalhdes
Ivan Nourdin
Krzysztof Oleszkiewicz
Giovanni Peccati
Magda Peligrad

Ionel Popescu

Patricia Reynaud-Bouret
Jay Rosen

Adrien Saumard
Pierre-André Savalle
Qi-Man Shao

Maud Thomas

Joel Tropp

Mark Veraar

Olivier Wintenberger
Pawel Wolff

List of Participants

Georgia Institute of Technology, USA

University of Delaware and Yale University, USA
Université Paris 13, France

University of Athens, Greece

University of Delaware, USA

Florida Atlantic University, USA

Université Pierre et Marie Curie, France

Institut Elie Cartan, France

University of Warsaw, Poland

Luxembourg University, Luxembourg

University of Cincinnati, USA

Georgia Institute of Technology, USA

Université Cote d’Azur, France

The City University of New York, USA
University of Washington, USA

Ecole Centrale Paris, France

The Chinese University of Hong Kong, Hong Kong
Université Paris-Diderot, France

California Institute of Technology, USA

Delft University of Technology, The Netherlands
Université Pierre et Marie Curie-Paris VI, France
University of Warsaw, Poland



Evarist Giné-Masdeu

This volume is dedicated to the memory of our dear friend and colleague, Evarist
Giné-Masdeu, who passed away at age 70 on March 13, 2015. We greatly miss his
supportive and engendering influence on our profession. Many of us in the high-
dimensional probability group have had the pleasure of collaborating with him on
joint publications or were strongly influenced by his ideas and suggestions. Evarist
has contributed profound, lasting, and beautiful results to the areas of probability on
Banach spaces, the empirical process theory, the asymptotic theory of the bootstrap

XV
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and of U-statistics and processes, and the large sample properties of nonparametric
statistics and function estimators. He has, as well, given important service to our
profession as an associate editor for most of the major journals in probability theory
such as Annals of Probability, Journal of Theoretical Probability, Electronic Journal
of Probability, Bernoulli Journal, and Stochastic Processes and Their Applications.

Evarist received his Ph.D. from MIT in 1973 under the direction of Richard
M. Dudley and subsequently held academic positions at Universitat Autonoma
of Barcelona; Universidad de Carabobo, Venezuela; University of California,
Berkeley; Louisiana State University; Texas A&M; and CUNY. His last position was
at the University of Connecticut, where he was serving as chair of the Mathematics
Department, at the time of his death. He guided eight Ph.D. students. One of whom,
the late Miguel Arcones, was a fine productive mathematician and a member of our
high-dimensional Probability group.

More information about Evarist’s distinguished career and accomplishments,
including descriptions of his books and some of his major publications, are given in
his obituary on page 8 of the June/July 2015 issue of the IMS Bulletin.

Here are remembrances by some of Evarist’s many colleagues.

Rudolf Beran

I had the pleasure of meeting Evarist, through his work and sometimes in person, at
intervals over many years. Though he was far more mathematical than I am, not to
mention more charming, our research interests interacted at least twice. In a 1968
paper, I studied certain rotationally invariant tests for uniformity of a distribution on
a sphere. Evarist saw a way, in 1975 work, to develop invariant tests for uniformity
on compact Riemannian manifolds, a major technical advance. It might surprise
some that Evarist’s theoretical work has facilitated the development of statistics as
a tested practical discipline no longer limited to analyzing Euclidean data. I am not
surprised. He was a remarkable scholar with clear insight as well as a gentleman.

Tasio del Barrio

I first met Evarist Giné as a Ph.D. student through his books and papers in
probability on Banach spaces and empirical processes. I had already come to admire
his work in these fields when I had the chance to start joint research with him. It
turned out to be a very rewarding experience. This was not only for his mathematical
talent but also for his kind support in my postdoc years. I feel a great loss of both a
mathematician and a friend.

Victor de la Pefia
From the first moment I met Evarist, I felt the warmth with which he welcomed
others. I met him in College Station during an interview and was fortunate to be able
to interact with him. I took a job at Columbia University in New York but frequently
visited College Station where he was a professor of mathematics. Eventually, Evarist
moved to CUNY, New York. I was fortunate to have him as a role model and in some
sense mentor.

He was a great mathematician with unsurpassed insight into problems. On top of
this, he was great leader and team player. I had the opportunity to join one of his
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multiple teams in the nascent area of U-processes. These statistical processes are
extensions of the sample average and sample variance. The theory and applications
of U-processes have been key tools in the advancement of many important areas.
To cite an example, work in this area is important in assessing the speed at which
information (like movies) is transmitted through the Internet.

I can say without doubt that the work I did under his mentorship helped launch
my career. His advice and support were instrumental in me eventually getting tenure
at Columbia University. In 1999 we published a book summarizing the theory and
applications of U-processes (mainly developed by Evarist and coauthors). Working
on this project, I came to witness his great mathematical power and generosity.

I will always remember Evarist as a dear friend and mentor. The world of
mathematics has lost one of its luminaries but his legacy lives for ever.

Friedrich Gotze

It was at one of the conferences on probability in Banach spaces in the eighties that
I met Evarist for the first time. I was deeply impressed by his mathematical talent
and originality, and at the same time, I found him to be a very modest and likeable
person. In the summer, he used to spend some weeks with Rosalind in Barcelona and
often traveled in Europe, visiting Bielefeld University several times in the nineties.
During his visits, we had very stimulating and fruitful collaborations on tough open
questions concerning inverse problems for self-normalized statistics. Later David
Mason joined our collaboration during his visits in Bielefeld. Sometimes, after
intensive discussions in the office, Evarist needed a break, which often meant that
they continued in front of the building, while he smoked one of his favorite cigars.
We carried on our collaboration in the new millennium, and I warmly remember
Evarist’s and Rosalind’s great hospitality at their home, when I visited them in
Storrs.

I also very much enjoyed exchanging views with him on topics other than
mathematics, in particular, concerning the history and future of the Catalan nation, a
topic in which he engaged himself quite vividly. I learned how deeply he felt about
this issue in 2004, when we met at the Bernoulli World Congress in his hometown
Barcelona. One evening, we went together with our wives and other participants of
the conference for an evening walk in the center to listen to a concert in the famous
cathedral Santa Maria del Mar. We enjoyed the concert in this jewel of Catalan
Gothic architecture and Evarist felt very much at home. After the concert, we went to
a typical Catalan restaurant. But then a waiter spoiled an otherwise perfect evening
by insisting on responding in Spanish only to Evarist’s menu inquiries in Catalan.
Evarist got more upset than I had ever seen him.

It was nice to meet him again at the Cambridge conference in his honor in 2014,
and we even discussed plans for his next visit to Bielefeld, to continue with one of
our long-term projects. But fate decided against it.

With Evarist we have all lost much too early a dear colleague and friend.

Marjorie Hahn
Together Evarist Giné and I were Ph.D. students of Dick Dudley at MIT, and I
have benefited from his friendship and generosity ever since. Let me celebrate his
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life, accomplishments, and impact with a few remarks on the legacy by example he
leaves for all of us.

e Evarist had incredible determination. On several occasions, Evarist reminded
me that his mathematical determination stemmed largely from the following
experience: After avoiding Dick’s office for weeks because of limited progress
on his research problem, Evarist requested a new topic. Dick responded, “If 1
had worked on a problem for that long, I wouldn’t give up.” This motivated
Evarist to try again with more determination than ever, and as a result, he solved
his problem. As Evarist summarized it: “Solving mathematical problems can be
really hard, but the determination to succeed can make a huge difference.”

* Evarist was an ideal collaborator. Having written five papers with Evarist, I can
safely say that he always did more than his share, yet always perceived that he
didn’t do enough. Moreover, he viewed a collaboration as an opportunity for us
to learn from each other, and I surely learned a lot from him.

* Evarist regarded his contributions and his accomplishments with unfailing
humility. Evarist would tell me that he had “a small result that he kind of liked.”
After explaining the result, I’d invariably tell him that his result either seemed
major or should have major implications. Only then would his big well-known
smile emerge as he’d admit that deep down he really liked the result.

* Evarist gave generously of his time to encourage young mathematicians. Due to
Evarist’s breadth of knowledge and skill in talking to and motivating graduate
students, I invited him to be the outside reader on dissertation committees for
at least a half dozen of my Ph.D. students. He took his job seriously, giving the
students excellent feedback that included ideas for future work.

We can honor Evarist and his mathematical legacy the most by following his
example of quiet leadership.

Christian Houdré

Two things come to my mind when thinking of Evarist. First is his generosity, simple
and genuine, which I experienced on many occasions, in particular when he involved
me into the HDP organization. Second is his fierce Catalan nationalism to which I
was definitively very sympathetic with my Québec background. He occasionally
wrote to me in Catalan and I also warmly remember his statistic that one out of
three French people in Perpignan spoke Catalan. (He had arrived to that statistic
after a short trip to Perpignan where although fluent in French, he refused to speak
it since he was in historic Catalonia. If I recall correctly after two failed attempts at
trying to be understood in Catalan, the third trial was the good one.) He was quite
fond of this statistic.

Vladimir Koltchinskii

I met Evarist for the first time at a conference on probability and mathematical
statistics in Vilnius, in 1985. This was one of very few conferences where
probabilists from the West and from the East were able to meet each other before
the fall of the Berlin Wall. I was interested in probability in Banach spaces and
knew some of Evarist’s work. A couple of years earlier, Evarist got interested in
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empirical processes. I started working on the same problems several years earlier,
so this was our main shared interest back then. I remember that around 1983 one of
my colleagues, who was, using Soviet jargon of the time, “viezdnoj” (meaning that
he was allowed to travel to the West), brought me a preprint of a remarkable paper
by Evarist Giné and Joel Zinn that continued some of the work on symmetrization
and random entropy conditions in central limit theorems for empirical processes that
I started in my own earlier papers. In some sense, Evarist and Joel developed these
ideas to perfection. Our conversations with Evarist in 1985 (and also at the First
Bernoulli Congress in Tashkent 1 year later) were mostly about these ideas. At the
same time, Evarist was trying to convince me to visit him at Texas A&M; I declined
the invitation since I was pretty sure that I would not be allowed to leave the country.
However, our life is full of surprises: the Soviet Union, designed to stay for ages, all
of a sudden started crumbling and then collapsing and then ceased to exist, and in
January of 1992, I found myself on a plane heading to New York. Evarist picked me
up at JFK airport and drove me up to Storrs, Connecticut. For anybody who moved
across the Atlantic Ocean and settled in the USA, America starts with something.
For me, the beginning of America was Evarist’s old Mazda. The first meal I had in
the USA was a bar of Hiagen Dazs ice cream that Evarist highly recommended and
bought for us at a gas station on our way to Storrs.

In 1992, I spent one semester at Storrs. I do not recall actively working with
Evarist on any special project during these 4 months, but we had numerous
conversations (on mathematics and far beyond) in Evarist’s office filled with the
smoke of his cigar, and we had numerous dinners together with him and his
wife Rosalind in their apartment or in one of the local restaurants (most often, at
Wilmington Pizza House). In short, I had not found a collaborator in Evarist during
this first visit, but I found a very good friend. It was very easy to become a friend
with Evarist. There was something about his personality that we all have as children
(when we make friends fast), but we are losing this ability as we grow older. His
contagious love of life was seen in his smile and in his genuine interest in many
different things ranging from mathematics to music and arts and also to food, wine,
and good conversation. It is my impression that on March 13, 2015, many people
felt that they lost a friend (even those who met him much later than myself and have
not interacted with him as much as myself).

In the years that followed my first visit to Storrs, we met with Evarist very
frequently: in Storrs, in Boston, in Albuquerque, in Atlanta, in Paris, in Cambridge,
in Oberwolfach, in Seattle, and in his beloved Catalonia. In fact, he stayed in all the
houses or apartments where I lived in the USA. The last time we met was in Boston,
in October 2014. I was giving a talk at MIT. Evarist could not come for the talk, but
he came with Rosalind on Sunday. My wife and I went with them to the Museum of
Fine Arts to see Goya’s exhibition and had lunch together. Nothing was telling me
that it was the last time I would see him.

We always had lengthy conversations about mathematics (most often, in front of
the board) and about almost anything else in life and numerous dinners together,
but we had also worked together for a number of years, which resulted in 7 papers
we published jointly. I really liked Evarist’s attitude toward mathematics: there was
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almost Mozartian mix of seriousness and joyfulness about it. He was extremely
honest about what he was doing, and, being a brilliant and ambitious mathematician,
he never got in a trap of working on something just because it was a “hot topic.” He
probably had a “daimonion” inside of him (as Socrates called it) that prohibited
him from doing this. There have been many things over the past 30 years that were
becoming fashionable all of a sudden and were going out of fashion without leaving
a trace. I remember Evarist hearing some of the talks on these fashionable subjects
and losing his interest after a minute or two. Usually, you would not hear a negative
comment from him about the talk. He would only say with his characteristic smile:
“I know nothing about it.” He actually believed that other people were as honest as
he was and would not do rubbish (even if it sounded like rubbish to him and it was,
indeed, rubbish) and he just “knew nothing about it.”” We do not remember many of
these things now. But we will remember what Evarist did. A number of his results
and the tools he developed in probability in Banach spaces, empirical processes,
and U-statistics are now being used and will be used in probability, statistics, and
beyond. And those of us, who were lucky to know him and work with him, will
always remember his generosity and warmth.

Jim Kuelbs

Evarist was an excellent mathematician, whose work will have a lasting impact on
high-dimensional probability. In addition, he was a very pleasant colleague who
provided a good deal of wisdom and wit about many things whenever we met. It
was my good fortune to interact with him at meetings in Europe and North America
on a fairly regular basis for nearly 40 years, but one occasion stands out for me. It
was not something of great importance, or even mathematical, but we laughed about
it for many years. In fact, the last time was only a few months before his untimely
death, so I hope it will also provide a chuckle for you.

The story starts when Evarist was at IVIC, the Venezuelan Institute of Scientific
Research, and I was visiting there for several weeks. My wife’s mother knew that
one could buy emeralds in Caracas, probably from Columbia, so 1 day Evarist and
I went to look for them. After visits to several shops, we got a tip on an address that
was supposedly a good place for such shopping. When we arrived there, we were
quite surprised as the location was an open-air tabac on a street corner. Nevertheless,
they displayed a few very imperfect green stones, so we asked about emeralds. We
were told these were emeralds, and that could well have been true, but they had no
clarity in their structure. We looked at various stones a bit and were about ready to
give up on our chase, when Evarist asked for clear cuts of emeralds. Well, the guy
reached under the counter and brought out a bunch of newspaper packages, and in
these packages, we found something that was much more special. Eventually we
bought some of these items, and as we walked back to the car, Evarist summarized
the experience exceedingly well by saying: “We bought some very nice emeralds at
a reasonable price, or paid a lot for some green glass.” The stones proved to be real,
and my wife still treasures the things made from them.
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Rafat Latala

I spent the fall semester of 2001 at Storrs and was overwhelmed with the hospitality
of Evarist and his wife Rosalind. They invited me to their home many times, helped
me with my weekly shopping, (I did not have a car then), and took me to Boston
several times, where their daughters lived. We had pizza together on Friday evenings
at their favorite place near Storrs. It was always a pleasure to talk with them, not
only about mathematics, academia, and related issues but also about family, friends,
politics, Catalan and Polish history, culture, and cuisine.

Evarist was a bright, knowledgeable, and modest mathematician, dedicated to his
profession and family. I enjoyed working with him very much. He was very efficient
in writing down the results and stating them in a nice and clean way. I coauthored
two papers with him on U-statistics.

Michel Ledoux

In Cambridge, England, June 2014, a beautiful and cordial conference was orga-
nized to celebrate Evarist’s 70th birthday. At the end of the first day’s sessions, I
went to a pizzeria with Evarist, Rosalind, Joel, Friedrich Gotze, and some others.
Evarist ordered pizza (with no tomato!) and ice cream.

For a moment, I felt as though it was 1986 when I visited Texas A&M University
as a young assistant professor, welcomed by Evarist and his family at their home,
having lunch with him, Mike, and Joel and learning about (nearly measurable!)
empirical processes. I was simply learning how to do mathematics and to be a
mathematician. Between these two moments, Evarist was a piercing beacon of
mathematical vision and a strong and dear friend. He mentioned at the end of
the conference banquet that he never expected such an event. But it had to be and
couldn’t be more deserved. We will all miss him.

Vidyadhar Mandrekar

Prof. Evarist Giné strongly impacted the field of probability on Banach spaces
beginning with his thesis work. Unfortunately, at the time he received his Ph.D.,
it was difficult to get an academic position in the USA, so he moved to Venezuela
for his job. In spite of being isolated, he continued his excellent work. I had a good
opportunity to showcase him at an AMS special session on limit theorems in Banach
spaces (at Columbus). Once researchers saw his ideas, he received job offers in
this country and the rest is history. Since he could then easily interact with fellow
mathematicians, the area benefited tremendously. I had the good fortune of working
with him on two papers. One shows a weakness of general methods in Banach space
not being strong to obtain a Donsker theorem. However, Evarist continued to adapt
Banach space methods to the study of empirical processes with Joel Zinn, which
were very innovative and fundamental with applications to statistics. His death is a
great loss to this area in particular and to mathematics in general.

Michael B. Marcus

Evarist and I wrote 5 papers together between 1981 and 1986. On 2 of them, Joel
Zinn was a coauthor. But more important to me than our mathematical collaboration
was that Evarist and I were friends.
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I had visited Barcelona a few times before I met Evarist but only briefly. I was
very happy when he invited me to give a talk at Universidad Autonoma de Barcelona
in the late spring of 1980. I visited him and Rosalind in their apartment in Barcelona.
My visit to Barcelona was a detour on my way to a conference in St. Flour. Evarist
was going to the conference also so after a few days in Barcelona we drove off in
his car to St. Flour. On the way, we pulled off the highway and drove to a lovely
beach town (I think it was Rossas), parked the car by the harbor, and went for a
long swim. Back in the car, we crossed into France and stopped at a grocery on the
highway near Beziers, for a baguette and some charcuterie. We were having such a
good time. Evarist didn’t recognize this as France. To him, he was still in Catalonia.
He spoke in Catalan to the people who waited on us.

I was somewhat of a romantic revolutionary myself in those days and I thought
that Evarist, this gentlest of men, must dream at night of being in the mountains
organizing an insurgency to free Catalonia from its Spanish occupiers. I was very
moved by a man who was so in love with his country. I learned that he was a farmer’s
son, whose brilliance was noticed by local priests and who made it from San Cugat
to MIT, and he longed to return. He said he would go back when he retired, and I
said you will have grandchildren and you will not want to leave them.

In 1981 Joel Zinn and I went to teach at Texas A&M. A year later Evarist joined
us. We worked together on various questions in probability in Banach spaces. At this
time, Dick Dudley began using the techniques that we had all developed together to
study questions in theoretical mathematical statistics. Joel and Evarist were excited
by this and began their prolific fine work on this topic. I think that Evarist’s work in
theoretical statistics was his best work. So did very many other mathematicians. He
received a lot of credit which was well deserved.

My own work took a different direction. From 1986 on, we had different
mathematical interests but our friendship grew. My wife Jane and I saw Evarist and
Rosalind often. We cooked for each other and drank Catalan wine together. I also
saw Evarist often at the weeklong specialty conferences that we attended, usually
in the spring or summer, usually in a beautiful, exotic location. After a day of talks,
we had dinner together and then would talk with colleagues and drink too much
wine. I often rested a bit after dinner and then went to the lounge. I walked into
the room and looked for Evarist. I would see him. Always with a big smile. Always
welcoming. Always glad to see me. Always my dear friend. I miss him very much.

David M. Mason

I thoroughly enjoyed working with Evarist on knotty problems, especially when we
were narrowing in on a solution. It was like closing in on the pursuit of an elusive
and exotic beast. We published seven joint papers, the most important being our first,
in which, with Friedrich Gotze, we solved a long-standing conjecture concerning the
Student #-statistic being asymptotically standard normal. As his other collaborators,
I will miss the excitement and intense energy of doing mathematics with him. An
extremely talented and dedicated mathematician, as well as a complete gentleman,
has left us too soon.
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On a personal note, I have fond memories of a beautiful Columbus Day 1998
weekend that I spent as a guest of Evarist and Rosalind at their timeshare near
Montpelier, Vermont, during the peak of the fall colors. I especially enjoyed having
a fine meal with them at the nearby New England Culinary Institute. On that same
visit, Evarist and I met up with Dick Dudley and hiked up to the Owl’s Head in
Vermont’s Groton State Forest. I managed to take a striking photo of Evarist at the
rock pausing for a cigar break with the silver blue Kettle Pond in the distance below
surrounded by a dense forest displaying its brilliant red and yellow autumn leaf
cover.

Richard Nickl

I met Evarist in September 2004, when I was in the 2nd year of my Ph.D., at a
summer school in Laredo, Cantabria, Spain, where he was lecturing on empirical
processes. From the mathematical literature I had read by myself in Vienna for my
thesis, I knew that he was one of the most substantial contributors and co-creators
of empirical process theory, and I was excited to be able to meet a great mind like
him in person. His lectures (mostly on Talagrand’s inequalities) were outstanding.
It was unbelievable for me that someone of his distinction would say at some point
during his lecture course that “his most important achievement in empirical process
theory was that he got Talagrand to work in the area”—at that time, when I thought
that mathematics was all about egos and greatness, I could not believe that someone
of his stature would say something obviously nonsensical like that! But it was a
genuine feature of his humility that I always found excessive but that over the years
I learnt was actually at the very heart of his great mathematical talent.

Evarist then was most kind to me as a very junior person, and he supported me
from the very beginning, asking me about my Ph.D. work and encouraging me
to pursue it further and more importantly getting me an invitation to the “high-
dimensional probability” conference in Santa Fe, New Mexico, in 2005, where I met
most of the other greats of the field for the first time. More importantly, of course,
then Evarist invited me to start a postdoc with him in Connecticut, which I did in
2006-2008. We wrote eight papers and one 700-page monograph, and working with
Evarist I can say without doubt was the most impressive period of my life so far as
a mathematician. It transformed me completely. Throughout these years, despite his
seniority, he was most hard working and passionate, and his mathematical sharpness
was as effective as ever (even if, as Evarist said, he was perhaps a bit slower, but the
final results didn’t show this). It is a great privilege, probably the greatest of my
life, that I could work with him over such an intensive period of time and to learn
from one of the “masters” of the subject—which he was in the area of mathematics
that was relevant for the part of theoretical statistics we were working on. I am very
sad that now I cannot really return the favor to equal extent: at least the fact that I
could contribute to the organization of a conference in his honor in Cambridge in
June 2014 forms a small part of saying thank you for everything he has done for
me. This conference, which highlighted his great standing within various fields of
mathematics, made him very happy, and I think all of us who were there were very
happy to see him earn and finally accept the recognition.
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I want to finally mention the many great nonmathematical memories I have with
Evarist and his wife Rosalind: From our first dinner out in Storrs with Rosalind
at Wilmington Pizza to the many great dinners at their place in Storrs, to the
many musical events we have been to together including Mozart’s Figaro at the
Metropolitan Opera in New York, to hear Pollini play in the musical capitals Storrs
and Vienna, to concerts of the Boston Symphony in Boston and Tanglewood, to
my visit of “his” St. Cugat near Barcelona, to the hike on Mount Monadnock with
Evarist and Dick Dudley in October 2007, and to the last time I saw him in person,
having dinner at Legal Seafoods in Cambridge (MA) in September 2014. All these
great memories, mathematical or not, will remain as alive as they are now. They
make it even more impossible for me to believe that someone as energetic, kind,
and passionate as Evarist has left us. He will be so greatly missed.

David Nualart

Evarist Giné was a very kind person and an honest and dedicated professional.
His advice was always very helpful to me. We did our undergraduate studies in
mathematics at the University of Barcelona. He graduated 5 years before me. After
receiving his Ph.D. at the Massachusetts Institute of Technology, he returned to
Barcelona to accept a position at the Universitat Autonoma of Barcelona. That is
when I met Evarist for the first time.

During his years in Barcelona, Evarist was a mentor and inspiration to me and
to the small group of probabilists there. I still remember his series of lectures on
the emerging topic of probabilities on Banach spaces. Those lectures represented a
source of new ideas at the time, and we all enjoyed them very much.

As years passed, we pursued different areas of research. He was interested in
limit theorems with connections to statistics, while I was interested in the analytic
aspects of probability theory.

I would meet Evarist occasionally at meetings and conferences and whenever he
returned to Barcelona in the summer to visit his family in his hometown of Falset.
He used to joke that he considered himself more of a farmer than a city boy.

Mathematics was not Evarist’s only passion. He was very passionate about
Catalonia. He had unconditional love for his country of origin and never hesitated to
express his intense nationalist feelings. He was only slightly less passionate about
his small cigars and baking his own bread, even when he was on the road away from
home.

Evarist’s impact on the field of probability and mathematical statistics was
significant. He produced a long list of influential papers and two basic references.

He was a very good friend and an admired and respected colleague. His death has
been a great loss for the mathematics community and for me. I still cannot believe
that Evarist is no longer among us. He will be missed.

Dragan Radulovic

Evarist once told me, “You are going to make two major decisions in your life:
picking your wife and picking your Ph.D. advisor. So choose wisely.” And I did.
Evarist was a prolific mathematician; he wrote influential books and important
papers and contributed to the field in major ways. Curiously, he did not produce
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many students. I am fortunate to be one of the few. Our student-advisor dynamic
was an unusual one. We had frequent but very short interactions. “Prof. Giné, if 1
have such and such a sequence under these conditions. .. what do you think; does it
converge or not?,” I would ask. And, after just a few seconds, he would reply: “No,
there is a counterexample. Check Mason’s paper in Annals, 84 or 85 I think.” And
that was it. The vast majority of our interactions were conducted in less than 2 min.
This suited him well, for he did not need to spend the time lecturing me and I did
not like to be lectured. So it worked perfectly. All I needed was the guidance and he
was the grandmaster himself.

We would go to the Boston probability seminar, every Tuesday, for 4 years, 2h
by car, each way. That is a lot of hours to be stuck with your advisor. And we seldom
talked mathematics. Instead, we had endless discussions about politics, history,
philosophy, and life in general. And in the process, we became very good friends.
I remember our trip to Montreal, 8 h in the car, without a single dull moment. We
jumped from one topic to another and the time flew just like that. We had different
approaches to mathematics; I liked the big pictures while he was more concerned
with the details. “What technique are you using? What is the trick?,” he would ask.
And all I could offer was a general statement like: “You see all these pieces, how
they fit together, except in this particular case. There must be something interesting
there.” And he would reply: “But what inequality are you going to use?”’

Consequently, we never published a paper together. This is rather unusual for a
student and his advisor, both publishing in the same field. We tried to keep in touch,
but our careers diverged and the time and the distance did their toll. We would meet
only occasionally, on our high-dimensional probability retreats, but even there, it
was obvious that we drifted apart. I missed those endless car rides. So long Prof.
Giné, it is an honor to call myself your student.

Jan Rosinski
I met Evarist for the first time in 1975 at the First International Conference on
Probability in Banach Spaces in Oberwolfach, Germany, which was a precursor
to the high-dimensional probability conference series. I was a graduate student
visiting the West from Soviet-bloc Poland for the first time. Despite plenty of new
information to process and meeting many people whom I previously knew only from
papers, I remember meeting Evarist clearly for his sincere smile, interest in the well-
being of others, ability to listen, and contagious enthusiasm for mathematics.
Several years later, Evarist invited me to visit LSU, Baton Rouge, which
eventually evolved into my permanent stay in the USA. Even though we have not
had an opportunity for joint work, Evarist’s generosity and care extended into his
continuous support of my career, for which I am grateful and deeply indebted. He
was also an excellent mentor and friend. He will be deeply missed.

Hailin Sang

Saturday afternoon, March 14, 2015, I was astonished to read Magda Peligrad’s
email that Evarist had passed away. I could not believe that he had left us so soon.
I had just seen him at the Probability Theory and Statistics in High and Infinite
Dimensions Conference, held in honor of his 70th birthday. He looked fine.
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He was always full of energy. I thought, because of his love of mathematics
and his humor and optimistic attitude toward life, that he would have a long life. I
truly believed that he would witness more success from his postdocs and students,
including me, on his 80th and 90th birthday. But now we can only see his gentle
smile in photographs and recall his lovely Catalan accent in our memory.

Evarist was a very fine mathematician. He published numerous papers in the
major journals in probability and statistics and provided important service to
mathematics journals and societies. He also received the Alumni Award from the
University of Connecticut in 1998.

Evarist was an unconventional instructor. He didn’t bore his audience by simply
following notes and textbooks. He vigorously presented his lectures with logical
arguments. He strived both to provide the simplest possible arguments and to give
the big picture. His lectures were an art performance.

I thank Evarist for teaching me how to do research. Although he was an
easygoing professor, he was very serious in advising and research. He did not
leave holes in any project, even for something intuitively obvious. He did research
rigorously with great integrity. Evarist was not only my research advisor, but he was
an advisor for my life also. He held no prejudice. He would forgive people with a
smile if they did something wrong but not on purpose. I learned a lot from him.

Evarist loved his students as his children. I still remember the sadness and
helplessness in his eyes when he told me that Miguel Arcones passed away.
Although he devoted his whole life to research and was a very successful academic,
he led a simple life. Weather permitting, he rode his bicycle to his office arriving
before 8 o’clock. Then he would work through the whole morning with only a 10-
min coffee break. He usually had some fruit and nuts for lunch and was at the center
of the professors in the math lounge. His colleagues appreciated his humor, as well
as his comments on current events.

I can feel the pain of his family. They lost a wonderful husband, an amazing
father, and a loving grandfather. We lost an excellent mathematician, a life advisor,
and a sincere friend. I have a strong feeling that Evarist will always be with us. May
he rest in peace.

Sasha Tsybakov

Evarist was one of the people whom I liked very much and whom I always
considered as an example. He was obsessed by the beauty of mathematics. He
showed by all his work that statistics is an area of mathematics where difficult
problems exist and can be solved by beautiful tools. Overall, he had a highly esthetic
feeling for mathematics. He was also very demanding about the quality of his work
and was an exceptionally honest scientist. I did not have a joint work with Evarist,
but we have met many times at conferences. Our relations were very warm, which I
think cannot be otherwise with a person like Evarist. His charisma is still there—it
is easy to recall his voice and his smile as if he were alive and to imagine what he
would say in this and that situation. It is a sorrow that he left us so early.
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Sara van de Geer
Dear Evarist,
If we had talked about this, I think I know what you would say.
You would say: “Don’t worry, it is okay.”
You would smile and look at the ground in the way you do.
You would say: “Just go on and live your lives, it is not important.”
But you are taking such a huge place in so many people’s hearts.
You are taking such a huge place in my heart.
We were just colleagues.
I didn’t even know you that well.
But your being there was enough to give a touch of warmth to everything.
You were not just any colleague.
Having known you is a precious gift.
Sara

Jon Wellner

Evarist Giné was a brilliant and creative mathematician. He had a deep understand-
ing of the interactions between probability theory and analysis, especially in the
direction of Banach space theory, and a keen sense of how to formulate sharp
(and beautiful) results with conditions both necessary and sufficient. His persistence
and acuity in formulating sharp theorems, many in collaboration with others, were
remarkable. Evarist’s initial statistical publication concerning tests of uniformity
on compact Riemannian manifolds inspired one of my first independent post Ph.D.
research projects in the late 1970s. Later, in the 1980s and early 1990s, I had the
great pleasure and great fortune of meeting Evarist personally. He became a friend
and colleague through mutual research interests and involvement in the research
meetings on probability in Banach spaces and later high-dimensional probability.
Evarist was unfailingly generous and open in sharing his knowledge and managed to
communicate his excitement and enthusiasm for research to all. I only collaborated
with Evarist on two papers, but we jointly edited several proceedings volumes, and
I queried him frequently about a wide range of questions and problems. I greatly
valued his advice and friendship. I miss him enormously.

Andrei Zaitsev
The news of the death of Evarist Giné came as a shock to me. He died at the height
of his scientific career. I first met Evarist at the University of Bielefeld in the 1990s,
where we were both guests of Friedrich Gotze. I had long been familiar with his
remarkable works. After meeting him, I was surprised to see that on his way to
becoming a world-renowned mathematician, he had remained a modest and pleasant
person. I recall with pleasure going with him mushroom collecting in the woods
around Bielefeld.

We have only one joint paper (together with David Mason). Evarist has long
been at the forefront of modern probability theory. He had much more to give to
mathematics. Sadly, his untimely death prevented this.
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Joel Zinn

Evarist and I were friends. I dearly remember the fun we had working together on
mathematics. Altogether, beginning around 1977, we wrote 25 joint papers over
approximately 25 years. One can imagine that collaborations lasting as long as this
can at times give rise to arguments. But I can not recall any. Over the years, each
time we met, whether to collaborate or not, we met as friends.

I also remember the many kindnesses that Evarist showed me. One that keeps
coming to my mind concerns Evarist’s time at Texas A&M. Evarist and I would
often arrive early to our offices—often with the intention of working on projects.
Evarist liked to smoke a cigar in the morning, but I had allergies which were effected
by the smoke. So, Evarist would come to the office especially early, smoke his cigar,
and blow the smoke out of the window, so that the smoke would not cause me any
problems when I arrived. Sometimes when I arrived at Evarist’s office earlier than
expected, I would see him almost next to the window blowing out the smoke. This
surely must have lessened his pleasure in smoking.

Another concerned the times I visited him at UConn. When I visited, I took a few
days to visit my aunt in New York. Evarist always offered to let me use his car for
the trip to New York, and whenever I visited him at UConn, I stayed with him and
Rosalind. I fondly remember their hospitality and consideration of my peculiarities,
especially their attention to my dietary needs.

Photo Credit The photo of Evarist that shows his inimitable good-natured smile
was taken by his daughter Niria Giné-Nokes in July 2011, while he was on vacation
with his family in his hometown of Falset in his beloved Catalonia.
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Stability of Cramer’s Characterization
of Normal Laws in Information Distances
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Abstract Optimal stability estimates in the class of regularized distributions are
derived for the characterization of normal laws in Cramer’s theorem with respect to
relative entropy and Fisher information distance.
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1 Introduction

If the sum of two independent random variables has a nearly normal distribution,
then both summands have to be nearly normal. This property is called stability,
and it depends on distances used to measure “nearness”. Quantitative forms of this
important theorem by P. Lévy are intensively studied in the literature, and we refer
to [7] for historical discussions and references. Most of the results in this direction
describe stability of Cramer’s characterization of the normal laws for distances
which are closely connected to weak convergence. On the other hand, there is no
stability for strong distances including the total variation and the relative entropy,
even in the case where the summands are equally distributed. (Thus, the answer to
a conjecture from the 1960s by McKean [14] is negative, cf. [4, 5].) Nevertheless,
the stability with respect to the relative entropy can be established for regularized
distributions in the model, where a small independent Gaussian noise is added to the
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summands. Partial results of this kind have been obtained in [7], and in this note we
introduce and develop new technical tools in order to reach optimal lower bounds
for closeness to the class of the normal laws in the sense of relative entropy. Similar
bounds are also obtained for the Fisher information distance.

First let us recall basic definitions and notations. If a random variable (for short—
r.v.) X with finite second moment has a density p, the entropic distance from the
distribution F of X to the normal is defined to be

o0
D00 = 1@ -0 = [~ peotog L2
—00 @a,b(x)
where
Qap(x) = ! eGmYW e R
“ b2 ’ ’

denotes the density of a Gaussian r.v. Z ~ N(a, b*) with the same mean a = EX =
EZ and variance b*> = Var(X) = Var(Z) as for X (a € R, b > 0). Here

hx) = — /_ p(x) log p(x) dx

is the Shannon entropy, which is well-defined and is bounded from above by the
entropy of Z, so that D(X) > 0. The quantity D(X) represents the Kullback-Leibler
distance from F to the family of all normal laws on the line; it is affine invariant,
and so it does not depend on the mean and variance of X.

One of the fundamental properties of the functional % is the entropy power
inequality

N(X 4+ Y) = N(X) + N(Y),

which holds for independent random variables X and Y, where N(X) = '™
denotes the entropy power (cf. e.g. [11, 12]). In particular, if Var(X + Y) = 1, it
yields an upper bound

D(X + Y) < Var(X)D(X) + Var(Y)D(Y), (1.1)

which thus quantifies the closeness to the normal distribution for the sum in terms
of closeness to the normal distribution of the summands. The generalized Kac
problem addresses (1.1) in the opposite direction: How can one bound the entropic
distance D(X + Y) from below in terms of D(X) and D(Y) for sufficiently smooth
distributions?

To this aim, for a small parameter o > 0, we consider regularized r.v.’s

X, =X+o0Z, Y,=Y+0oZ,
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where Z,Z' are independent standard normal r.v.’s, independent of X,Y. The
distributions of X, and Y,, will be called regularized as well. Note that additive white
Gaussian noise is a basic statistical model used in information theory to mimic the
effect of random processes that occur in nature. In particular, the class of regularized
distributions contains a wide class of probability measures on the line which have
important applications in statistical theory.

As a main goal, we prove the following reverse of the upper bound (1.1).

Theorem 1.1 Let X and Y be independent r.v.’s with Var(X + Y) = 1. Given 0 <
0 <1, the regularized rv.’s X, and Y, satisfy

DX, + Y,) > c¢1(0) (6—02(0)/D(Xa) + ¢~ 2(0)/D( Ya)) , (1.2)

0 — .
where c1(0) = e 1°89 gnd c,(0) = co~° with an absolute constant ¢ > 0.

Thus, when D(X, + Y, ) is small, the entropic distances D(X,) and D(Y,) have
to be small, as well. In particular, if X 4 Y is normal, then both X and Y are normal,
so we recover Cramer’s theorem. Moreover, the dependence with respect to the
couple (D(X5), D(Y5)) on the right-hand side of (1.2) can be shown to be essentially
optimal, as stated in Theorem 1.3 below.

Theorem 1.1 remains valid even in extremal cases where D(X) = D(Y) = oo
(for example, when both X and Y have discrete distributions). However, the value
of D(X,) for the regularized r.v.’s X, cannot be arbitrary. Indeed, X, has always

a bounded density p,(x) = #ﬁ Ee 0X?/20% < #ﬁ, so that h(X,) >
1

—log e This implies an upper bound

1 2e
< = log—

1 eVar(Xy)
o2 —2 o?’

D(X(r) = 5 IOg

describing a general possible degradation of the relative entropy for decreasing o.
If D, = D(X, + Y, ) is known to be sufficiently small, say, when D, < cf(o), the
inequality (1.2) provides an additional constraint in terms of D :

D(X,) < 6;-
0¢log(1/Ds)

Let us also note that one may reformulate (1.2) as an upper bound for the entropy
power N(X, + Y, ) in terms of N(X,) and N(Y;). Such relations, especially those of
the linear form

N(X +7Y) < C(NX) + N(Y)), (1.3)

are intensively studied in the literature for various classes of probability distributions
under the name “reverse entropy power inequalities”, cf. e.g. [1-3, 10]. However,
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(1.3) cannot be used as a quantitative version of Cramér’s theorem, since it looses
information about D(X + Y), when D(X) and D(Y) approach zero.

A result similar to Theorem 1.1 also holds for the Fisher information distance,
which may be more naturally written in the standardized form

Ty(X) = B(I(X) — [(Z)) = b / * (P/(x) G

2
G~ ) s

with parameters a and b as before. Here

o= 728

denotes the Fisher information of X, assuming that the density p of X is (locally)
absolutely continuous and has a derivative p’ in the sense of Radon-Nikodym.
Similarly to D, the standardized Fisher information distance is an affine invariant
functional, so that Jy(o + BX) = Ju(X) for all @, 8 € R, B # 0. In many
applications it is used as a strong measure of X being non Gaussian. For example,
J(X) dominates the relative entropy; more precisely, we have

% J4(X) = D(X). (1.4)

This relation may be derived from an isoperimetric inequality for entropies due to
Stam and is often regarded as an information theoretic variant of the logarithmic
Sobolev inequality for the Gaussian measure due to Gross (cf. [6, 9, 16]). Moreover,
Stam established in [16] an analog for the entropy power inequality, m > ﬁ +

I(I—Y), which implies the following counterpart of the inequality (1.1)
Jst(X + Y) E Var(X)JsT(X) + Var( Y)Jsr( Y),
for any independent r.v.’s X and Y with Var(X 4+ Y) = 1. We will show that this

upper bound can be reversed in a full analogy with (1.2).

Theorem 1.2 Under the assumptions of Theorem 1.1,

-]St(Xa + YU) > C3(0) (e_C4(U)/Jst(XJ) + 8_1‘4(‘7)/th( Ya)) , (15)

0 3 — .
where c3(0) = e 129 gnd c4(0) = co~° with an absolute constant ¢ > 0.

Let us also describe in which sense the lower bounds (1.2) and (1.5) may be
viewed as optimal.

Theorem 1.3 For every T > 1, there exist independent identically distributed r.v.’s
X = Xy and Y = Y7 with mean zero and variance one, such that J4(X,) — 0 as
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T — ocofor0<o <1and

D(XU _ YU) < e_C(‘T)/D(Xa) + e_f(a)/D( Ya)’

Jsr XU _ YU) < e_C(‘T)/th(Xa) + e—C(U)/th(Ya)

with some c(0) > 0 depending on o only.

In this note we prove Theorem 1.1 and omit the proof of Theorem 1.2. The proofs
of these theorems are rather similar and differ in technical details only, which can be
found in [8]. The paper is organized as follows. In Sect. 2, we describe preliminary
steps by introducing truncated r.v.’s X* and Y*. Since their characteristic functions
represent entire functions, this reduction of Theorem 1.1 to the case of truncated
r.v.’s allows to invoke powerful methods of complex analysis. In Sect. 3, D(X,) is
estimated in terms of the entropic distance to the normal for the regularized r.v.’s
X7 In Sect. 4, the product of the characteristic functions of X* and Y* is shown to
be close to the normal characteristic function in a disk of large radius depending on
1/D(X5 + Y5). In Sect. 5, we deduce by means of saddle-point methods a special
representation for the density of the r.v.’s X}, which is needed in Sect. 6. Finally in
Sect. 7, based on the resulting bounds for the density of X}, we establish the desired
upper bound for D(X}). In Sect. 8§ we construct an example showing the sharpness
of the estimates of Theorems 1.1 and 1.2.

2 Truncated Random Variables

Turning to Theorem 1.1, let us fix several standard notations. By

o0

(F*G)(x)zf Fr—y)dG(y). xeR.

we denote the convolution of given distribution functions F and G. This operation
will only be used when G = @, is the normal distribution function with mean
zero and a standard deviation & > 0. We omit the index in case b = 1, so that
®p(x) = D(x/b) and @(x) = ; ¢(x/b).

The Kolmogorov (uniform) distance between F and G is denoted by

| FF =G|l = sup| F(x) — G(x)],
x€R

and || F — G||tv denotes the total variation distance. In general, | F — G| < % | F—

G|ltv, while the well-known Pinsker inequality provides an upper bound for the
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total variation in terms of the relative entropy. Namely,

o0
p(x) log I@ dx,
) q(x)
where F and G are assumed to have densities p and g, respectively.
In the required inequality (1.2) of Theorem 1.1, we may assume that X and Y have
mean zero, and that D(X, + Y, ) is small. Thus, from now on our basic hypothesis

may be stated as

nF—Gﬁvfzf

DX, +Y5) <2  (0<e<=<s), 2.1

where ¢ is a sufficiently small absolute constant. By Pinsker’s inequality, this yields
bounds for the total variation and Kolmogorov distances

1
”FU*GG_CDWH§§||FG*G0_¢W||TVS\/E<L (2.2)

where F,; and G, are the distribution functions of X, and Y, respectively. Moreover
without loss of generality, one may assume that

o” = &(loglog(1/e)/ log(1/e))"/> (2.3)

with a sufficiently large absolute constant ¢ > 0. Indeed if (2.3) does not hold, the
statement of the theorem obviously holds.

We shall need some auxiliary assertions about truncated r.v.’s. Let F' and G be the
distribution functions of independent, mean zero r.v.’s X and Y with second moments
EX? = v}, EY? = vZ, such that Var(X + Y) = 1. Put

N =N(s) = V14202 (1 + y/2log(1/¢))

with a fixed parameter 0 < o < 1.
Introduce truncated r.v.’s at level N. Put X* = X in case |[X| < N, X* = O in case
|X| > N, and similarly Y* for Y. Note that

N N

EX* =a = / xdF(x), Var(X*) = of = / K dF(x) — a},
-N —-N
N N

EY*=a, = / xdG(x), Var(Y*) =07 = / ¥ dG(x) — a3.
-N -N

By definition, 07 < v; and 0, < v,. In particular,

2 2 .2 .2
oy +05 Svi+v;, =1
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Denote by F*, G* the distribution functions of the truncated r.v.’s X*, Y*, and
respectively by F¥, G the distribution functions of the regularized r.v.’s X; = X* +
oZand Y} = Y* 4+ 0Z, where Z,Z' are independent standard normal r.v.’s that are
independent of (X, Y).

Lemma 2.1 With some absolute constant C we have
0<1- (0% +0}) <CN*e.
Lemma 2.1 can be deduced from the following observations.
Lemma 2.2 Forany M > 0,
1 —F(M) + F(—M) <2 (1 — Fo(M) + F,(—M))
< 4D s (—(M —2)) + 44/

The same inequalities hold true for G.

Lemma 2.3 With some positive absolute constant C we have
|| F* = Fllrv < CVe, IG* = Gllrv < C/e,
| Fy % Gy = @ jrsaslly < Cv/e.

The proofs of Lemma 2.1 as well as Lemmas 2.2 and 2.3 are similar to those
used for Lemma 3.1 in [7]. For details we refer to [§].

Corollary 2.4 With some absolute constant C, we have

/ x> dF(x) < CN* /e, K d(Fy(x) + F¥(x)) < CN? /e,
|x|>N

|x|>2N

and similarly for G replacing F.

Proof By the definition of truncated random variables,

v} :012+a%+/ x* dF (x), v3 :022+a%+/ x* dG(x),
[x[>N |x|>N

so that, by Lemma 2.1,

/ P d(F(x) + G(x)) <1 — (0} +03) < CN*/e.
|x|>N
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As for the second integral of the corollary, we have

2 _ Nl B
/x|>21vx dFy () = /X|>2Nx [/_oo 0o (x — ) dF(s)} dx

= /00 dF (s) Xy (x — 5) dx

) |x|>2N

IA

Z/N s* dF(s) qog(u)du—f—Z/ll stdF(s)/_oo 05 (1) du

—N lu|>N

N oo
+2 / dF(s) U@y (1) du + 2 / . dF (s) /_ u? @y (1) du.

—N lu|>N

It remains to apply the previous step and use the bound f;o W@y (u)du <

coNe™'/29")_ The same estimate holds for f\x|>2N x2 dF* (x). O

3 Entropic Distance to Normal Laws for Regularized
Random Variables

We keep the same notations as in the previous section and use the relations (2.1)
when needed. In this section we obtain some results about the regularized r.v.’s X,
and X, which also hold for ¥, and Y. Denote by px, and pxzx the (smooth positive)
densities of X, and X, respectively.

Lemma 3.1 With some absolute constant C we have, for all x € R,
| px, (x) — pxs(x)] < Co™"' Ve, 3.1

Proof Write

N
P = [ o= 0aF6)+ [ ot are)

N
pxx(x) = /N 9o (x =) dF(s) + (1 = F(N) + F((=N)—) ¢, (x).

Hence

|y, () — ()] < le—m (1= F(N) + F(—N)).



Stability of Cramer’s Characterization of Normal Laws in Information Distances 11

But, by Lemma 2.2, and recalling the definition of N = N(¢), we have
1 —F(N) 4+ F(=N) < 2(1 = F;(N) + F;(—=N)) < C+/¢

with some absolute constant C. Therefore, | px, (x) — pxx| < Co~' /e, which is the
assertion (3.1). The lemma is proved. |

Lemma 3.2 With some absolute constant C > 0 we have
D(X,) < D(X¥) + Co>N3/e. (3.2)

Proof In general, if a random variable U has density # with finite variance b2, then,
by the very definition,

D(U) = /oo u(x) log u(x) dx+ 10g(27re b%).

—0o0

Hence, D(X,) — D(X) is represented as

00 [} 1 U2 + 02
| pe@ioepsmdc— [ prtogpeds+ 5 log T
oo oo ° 4 2 o; +0?
* px, (x )
- / (px, () — pxs () log px, () dx + / P () log 225
—00 —00 *( )
v? 4 o2
. . 1
Since EX? < 1, necessarily F(—2) + 1 — F(2) < 3> hence
L rreo - pxx(x) < L (3.4)
204/2m T T T 02w
and therefore
llogpxs(x)| < Co>(x* +4), xeR, 3.5)

with some absolute constant C. The same estimate holds for | log px, (x)]|.
Splitting the integration in

o0
I = / (px, (x) — pxs () Tog px, (8) dx = 1y + I
—00

([t e s s
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we now estimate the integrals /; | and /] ;. By Lemma 3.1 and (3.5), we get
il < Co7N*e

with some absolute constant C'. Applying (3.5) together with Corollary 2.4, we also
have

[I12] < 4Co™* (1 — F,(2N) + F,(=2N) + 1 — FX(2N) + FX(-2N))

+ Ccr_z( 2 dF,(x) + / 2 dF:;(x)) < C'o2N> /.
x|>2N |x|>2N
The two bounds yield
|Ii| < C"o N3¢ (3.6)

with some absolute constant C”.
Now consider the integral

o0

X

L= / pxx(x) log Px, (%) dx=D5h1+ D)
—00 Pxx (x)

, (%)
N ( /Ixszzv * /x|>21v ) Px; () log Il:;‘ (ff) dx.

which is non-negative, by Jensen’s inequality. Using log(1 + ¢) < ¢ fort > —1, and
Lemma 3.1, we obtain

X) — * (X
b =/ pxx(x) log (1 L P =P ) ))dx
lxl<2n pxz(x)

< / |px, () — pxe () dx < 4CoIN V.
[x|<2N

It remains to estimate I, ,. We have as before, using (3.5) and Corollary 2.4,

2

4
Jg dx < C'o 7’ N* /e

|| < C/ Pxx(x)
|x|>2N o

with some absolute constant C'. These bounds yield

L < C'072N*/e. (3.7)
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In addition, by Lemma 2.1,

2 2 2 2
vy + o0 vy — 0 _
L <L 1 < Co N> /e

lo
g012+02 - o2

It remains to combine this bound with (3.6) and (3.7) and apply them in (3.3). O

4 Characteristic Functions of Truncated Random Variables

Denote by fx=(¢) and fy=(¢) the characteristic functions of the r.v’s X* and Y*,
respectively. As integrals over finite intervals they admit analytic continuations as
entire functions to the whole complex plane C. These continuations will be denoted

by fix=(¢) and fy=(?), (¢ € C).

Put T = % = g—; (1 + ,/210gé), where 6’ = 4/1 + 202. We may assume that

0 < & < g9, where g is a sufficiently small absolute constant.

Lemma 4.1 Forallt€C, |t| <T,

1 3
5P e Ol e 0] < 517, (4.1)

Proof For all complex ¢,
oo oo AN
[ ema s [eravpw| <[ i «6; - v
—00 —00 —4N

4 / o~ HIm() d( F: " G:)(x) + / o XIm() @0 (x) dx. “4.2)
|x|=4N

[x[=4N
Integrating by parts, we have
N '
/ ETA(F* % GF — ®,0)(x) = "™ (F* % GF — ®,/)(4N)
—4N

AN
— e HN(F* % GF — Do) (—4N) — it (FF % GF — @y (x) e™ dx.
N

In view of the choice of T and N, we obtain, using Lemma 2.3, for all |¢t| < T,

4N
| / M d(FF x GF — @a/)(x)‘ < 2C /e MmOl L 81| /e MO
—4N

< e—(1/2+02) TZ' (4.3)

N =
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The second integral on the right-hand side of (4.2) does not exceed, for |t| < T,

2N
/ d(F* x G*)(s) e ™0 s (x—s)dx

—2N |x|>4N

2N
< / =IO g(F* % G*)(s) - e Mg s (u) du
—2N |u|>2N

vy * oTu—u?/4 1 —(1/2+0?)T?
< e e du < Ee . 4.4)

B \/; 2N/o

The third integral on the right-hand side of (4.2) does not exceed, for |t| < T,

N 2/6 U 4oy
— e %du < —e . 4.5)
T J4N 6

Applying (4.3)—-(4.5) in (4.2), we arrive at the upper bound
Ie—azﬂ/zfx* (t)e—aztz/sz* () — e—(1/2+62)t2|
< %e—(l/2+az)T2 < % Ie—(1/2+02)t2| (4.6)

from which (4.1) follows. ]

The bounds in (4.1) show that the characteristic function fx= (f) does not vanish
in the circle |f| < T. Hence, using results from ([13], pp. 260-266), we conclude
that fx= (f) has a representation

Jx= (1) = expigx= ()},  gx+(0) =0,

where gx=(¢) is analytic on the circle || < T and admits the representation

. 1 1
gx+ (1) = iart — Eofﬁ - 5’2‘”"* (1), 4.7
where
o0
] t\k—2

Ye() = lkck(?) (4.8)

k=3
with real-valued coefficients ¢, such that |c;| < C for some absolute constant C.
In the sequel without loss of generality we assume that a; = 0. An analogous

representation holds for the function fy= (¢).
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5 The Density of the Random Variable X

We shall use the following inversion formula

1 oo
pxx(x) = T / e M P2 () dt, x € R,
—00

for the density pxx (x). By Cauchy’s theorem, one may change the path of integration
in this integral from the real line to any line z = ¢+ iy, ¢ € R, with parameter y € R.
This results in the following representation

pxs(0) = € 2 fiy) - Ip(x,y), x€R. (5.1)
Here
1 o0
Io(x,y) = o= / R(t,x,y)dt, (5.2)
27 J oo
where
R(t,x,y) = fior (£ + iy)e OO0 (i), (5.3)

Let us now describe the choice of the parameter y € R in (5.1). It is well-
known that the function logfy=(iy),y € R, is convex. Therefore, the function
di'y log fx+ (iy) + o2y is strictly monotone and tends to —oo as y — —oo and tends
to co as y — oo. By (4.7) and (4.8), this function is vanishing at zero. Hence, the
equation

d
d_y log fx=(iy) + oty = —x (5.4)

has a unique continuous solution y = y(x) such that y(x) < 0 forx > 0 and y(x) > 0
for x < 0. Here and in the sequel we use the principal branch of log z.

We shall need one representation of y(x) in the interval [—(012 + o7y, (012 +
02)T], where T = /(07 +02)T with a sufficiently small absolute constant ¢’ > 0.
We see that

9 ) = 5 logfe ()~ 0% = (07 + 07N~ ri0) — 2

1
= —(07 + o)t — tyx= (1) — 3 Pk (1). (5.5)
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The functions r| (f) and r,(¢) are analytic in the circle {|t| < T/2} and there, by (4.8),
they may be bounded as follows

I+ ()] < Clt*/T (5.6)

with some absolute constant C. Using (5.5), (5.6) and Rouché’s theorem, we
conclude that the function gx=(¢) is univalent in the circle D = {|f] < T}, and
gx+(D) D 1(0? + o?)D. By the well-known inverse function theorem (see [15],
pp- 159-160), we have

_ 1
qg(*l)(w) = biw + ibyw? —byw® + ..., w e 3 (012 + %D, 6.7
where
1 - e
b, = —— Cde® o g (5.8)
2mi gx+ ()t
le|=47

Using this formula and (5.5) and (5.6), we note that

1

b= ———— 5.9
! o} +o? (5-9)
and that all remaining coefficients b,, b3, ... are real-valued. In addition, by (5.5)
and (5.6),
gx= (1) Gy (1)
- =14q(() and - =1+ q2().
(0% + 02)t (1) 02 + 02 421

where g1 (¢) and ¢, (¢) are analytic functions in D satisfying there |q;(7)| + |g2(?)| <
%. Therefore, for ¢ € D,

73(%)

(012 + 02)n§n+1

1+ q2(8)
(0f + 02)"(1 + qi(§)y et

G (0)

@y~ Y

= (-1y"

where ¢3({) is an analytic function in D such that |g3({)| < 3 - 2". Hence, ¢3({)
admits the representation

o0 k
SO =1+ dity
k=1

1
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with coefficients dy such that |di| < 3 -2". Using this equality, we obtain from (5.8)
that

dn— 3.2"

=————— and |b,| =<
(o7 + o)1t (0?2

. e ——— =2,.... 5.10
=T n (5.10)

n

Now we can conclude from (5.7) and (5.10) that, for |x| < T\/(4|b1]),
Y(x) = —ig\.(ix) = bix — byx® + R(x), where |R(x)| < 48 |by|*|x*/ T}
5.11)

In the sequel we denote by 6 a real-valued quantity such that |6] < 1.
Using (5.11), let us prove:

Lemma 5.1 In the interval |x| < c"Ti/|bi| with a sufficiently small positive
absolute constant c”,

C3b? J C@b? 4

Y+ 5 00 +logfe (5() = 3 b + T+ T 1)
where c is an absolute constant.
Proof From (5.10) and (5.11), it follows that
1 3
§|b1x| <[y = §|b1x|‘ (5.13)

Therefore,

%y(x)zgm('y;’“)')k_z =c(2)i

On the other hand, with the help of (5.10) and (5.11) one can easily deduce the
relation
¥ b,

1 1
=—bx*+ -c3b =
T a0 et oy

3
Y+ 3 07+ 0D + g e

with some absolute constant c. The assertion of the lemma follows immediately
from the two last relations. O

Now, applying Lemma 5.1 to (5.1), we may conclude that in the interval |x| <
Ty /|by|, the density px+ (x) admits the representation

1 1 X2 0
pxz(x) = exp {E bix* + 3 c3by T T21

1 Io(x, () (5.14)

with some absolute constant c.
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As for the values |x| > ¢’T/|b1], in (5.1) we choose y = y(x) = y(c"T;/|b1])
forx > 0and y = y(x) = y(—c"T/|b1|) for x < 0. In this case, by (5.13), we note
that | y| < 3¢”’T;/2, and we have

¥ C P Ay
- log i ‘ A ——E:(—)
‘2 - logfi ()] < b|+2 T =\
| | 3c”T1 /,2T2 20 /3¢ Ty \k—3 Iyl /3 1 7
< — < — |- — < —
=7 2y T2 ;( zr) —2(2|x|+4|x|)—8|yx|'

As a result, for x| > ¢"T;/|b;|, we obtain from (5.1) an upper bound | pxx (x)| <

e 8 1y(Al |Io(x, y(x))|, which with the help of left-hand side of (5.13) yields the
estimate

|pxx )] < e TP L y ()|, x| > T/ |ba ] (5.15)

with some absolute constant ¢ > 0.

6 The Estimate of the Integral Iy(x, y)

In order to study the behavior of the integral /y(x, y), we need some auxiliary results.
We use the letter ¢ to denote absolute constants which may vary from place to place.

Lemma 6.1 Fort,y € [-T/4,T/4] and x € R, we have the relation

log [R(1,x.)| = =y (/2 + r(t.y), (6.1)
where
y(3) = b1+ Yo (i) + 2iy9rg (i) (6.2)
and
lr1(t,y)| < e (? +y)T™*  with some absolute constant c. (6.3)

Proof From the definition of the function R(z, x, y) it follows that
1 1 . . / . 2
tog IR(1x.3)| = 3 (- = ¥res () = 2009 (1))

1
= S O (1 + i) = e (i) — y*) + (Imyrx= (1 + iy) + ity (iy))ty.
(6.4)
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Since, fort,y € [-T/4,T/4] andk = 4,...,

IR+ iy) > = i)
(k—=2)/2

Z ( 1)k+l+l<k Z)ZZI k—2—21 ( 1)k+1 k—2

IA

*k=2/2 1 5
AT/ Y ( . ) < 42(T/2),

=1

we obtain an upper bound, for the same ¢ and y, namely

o0
C P 23Cr?
M iy (9] = 3 A4 i ) ) < 25 69)
k=4

Since, fort,y € [-T/4,T/4] and k =5, ...,

| Im (i (¢ + i) — i (k = 2)1(i)* )|

(k—3)/2
k—2
_1 k-HtZH—l k—3—21
2 (21+ 1)( ) Y

=1

IA

k=372 (0
@/ Y (21 +1) = 81T/,
=1

we have

| Imy (¢ + iy) + ity (iy)]

24C|t)?

=53 Tli_klllm(z (14 )7 =i (k=2) ) ) = —5 ©0

for the same ¢ and y. Applying (6.5) and (6.6) in (6.4), we obtain the assertion of the
lemma. O

Lemma 6.2 For |t| < "T/+/|bi| and | y| < ¢"T/|b1|, we have the estimates

— =y = = (6.7)
and

Ir(t,y)| < 2/ (8|b1]). (6.8)
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Proof Recall that the positive absolute constant ¢” is chosen to be sufficiently small.
Using the following simple bounds

— N2 _ gy ] 69
(7 < - < (C— < .
[V (zy)|_§|ck|(T) <c ;(IM) a6
2]yl | y[\+—3
2|ywx*(zy)|<—2|k|(k 2) (= )
21yl - ¢\
<C—— k—2) < —, (6.10)
r 250 =gy
we easily obtain that
D e = 203 (9] < 7()
— < — — Yx=(iy)| — «(y)| =
Aor] T by T ARV = T
= L e 0] 2050 )] =
< — 4+ [Yx=(y y I = 7
|b1] 4lby|’
and thus (6.7) is proved. The bound (6.8) follows immediately from (6.3). O

Lemma 6.3 Forte [—-T/4,T/4] and x € [—c"T,/|b1|,c"T1/|b1|], we have

i
Imlog R(t,x, y(x) = o £* Y (y(x)) + r2(8,), (6.11)
where
It x)| < c(|t] + | y@D|PT™2  with some absolute constant c. (6.12)

Proof Write, fort,y € [-T/4,T/4] and x € R,

2_ 2
Im Yy« (¢ + iy).

(6.13)

ImlogR(t,y,x) = —tx + bz —ty Ry« (t + iy) —
1

Now we choose in this formula y = y(x), where y(x) is the solution of Eq. (5.4) for
x € [="T1/|b1], " T1/|b1]]. For such x, in view of (5.13), we know that | y(x)| <
T/4. Let us rewrite (5.4) [see as well (5.5)] in the form

1 .
=)+ Y (5(0) + 53 Yie () = =
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Applying this relation in (6.13), we obtain the formula
Imlog R(z, x, y(x)) = —ty(x) (Rhx= (1 + iy(x)) — Y+ (iy(x)))
j 1
5PV (@) = 5 =y @) Iy (¢ + () + in e (9(9)).

In view of (6.5) and (6.6), we can conclude that

Imlog R(1, x, y(x)) = ét?’l//)/(* (iy(x)) + r2(t, %),
where
Ira(t,x)| < 8 C 1P| y(x)|T72 + 8C|t (1 + y()H T < 16 C(|t] + |y )T~

for |t| < T/4 and | y(x)| < T/4. Thus, the lemma is proved. O

Our next step is to estimate the integral Io(x, y(x)). To this aim, we need the
following lemma.

Lemma 6.4 With some absolute constants c the following formula holds

1 1
lo(x,y(x)) = W +ro(x), |x| <"T/|by],
where
lro()] < c(1b1]"? + b1 Py(x)*) T2 (6.14)

Proof For short we write y in place of y(x). Put T, = ¢”"T/+/|b1| and write

oo T
/ RR(t, x,y) dt = Ipy + Ip» = ( / + / )sﬁR(t, x,y) dt.
— -1 |[|ZT2

o0
First consider the integral Ip;. We have
T2

Ior = Io1g —Ioip = / [R(t,x,y)| dt

—_ T2

T 1
— 2/ |R(z, x, y)]| sin’ (5 ImlogR(t, x, y)) dr.

T

By (6.1), we see that

I _MtZ 2 _MtZ (ty
Iy = e 2 Ndt+ e 2 (e" ’y)—l)dt.

b T,
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Using the inequality |e? — 1| < |z|el!, z € C, and applying Lemma 6.1 together
with (6.3), (6.7), (6.8), we have

T
‘/ e s [ el
_T2
T o t2 2
5/ e |71(f y)ldt<C/ e 4‘b1"2—+2y dt
=T T, T
< c|bi|2(|b1] + YT 2. (6.15)

On the other hand

e 2 Ndt= ———— — e 2 " dt, (6.16)
-7, y(y)/2 [t|>T>

/Tl _rp V2 i p

where, by (6.7) and the assumption (2.3),

_rW C _1 2 1 =YW _
/ e dr < e 2VYODT < o)y P2T e <3 <cT™.
[t|=T>

Ty
(6.17)
Therefore in view of (6.15)—(6.17), we deduce
V27 bi|*2(1bi| + y*
Iy = + g (bul + ) (6.18)

Y2 e T?

Now let us turn to the integral Iy; ». By (6.11), we have

1 2
ool = 5 / IR(t.x.y)| (Imlog R(t,x,y))? di
-7,

)
<2 / IR(x9)] ()W () + 12t 0)P) di

-1

By Lemmas 6.1-6.3 and by the estimates (2.3), (6.10), we arrive at the upper bound

c [ 2 +Y _ip
|I()12| < TZ/ t ( 72 + l)e i gy

¢ (bl +y clb|"?
= 7zl (—T2 +1)§—T2 : (6.19)
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It remains to estimate the integral /p,. By (2.3),

o o 02 2
2| < 2/ [R(t,x,y)|dt < 2/ e 2" dt
T T

2

o
<2 / TP dt < co 3T e € < o, (6.20)
T
The assertion of the lemma follows from (6.18)—(6.20). O

Since for |x| > ¢”T,/|bi| we choose y(x) = y(&c"T;/|by]) and since | y(x)| <
¢"T/|b1| for such x, we obtain, using Lemmas 6.1 and 6.2, and the assumption (2.3),
that

1 1
o)l = o [ Raxsans  [ Rees)a

21
1 © 2 1 o222
< — e Yl dt 4 — e 2 dt
27 J_ oo 27 Jyst,
1 1 -2 o213 1
< c(|b1|§ + Ty e—T) Nk (6.21)

with some absolute constant ¢. The bound (6.21) holds for |x| < ¢”"T;/|b1]| as well.
Thus (6.21) is valid for all real x.

Lemma 6.4 and the upper bound (6.21) allow us to control the behavior of the
integral Iy(x, y(x)).

7 End of the Proof of Theorem 1.1

Starting from the hypothesis (2.1), we need to derive a good upper bound for
D(X,), which is equivalent to bounding the relative entropy D(X}), according
to Lemma 3.2. This will be done with the help of the relations (5.14), (5.15),
Lemma 6.4, and (6.21) for the density pyx(x) of the r.v. X. First, let us prove the
following lemma.

Lemma 7.1 For |x| < ¢"Ty/|b1],

pX;‘(x) =C_3
¢ ™ 2T

where with some absolute constant ¢

log ((ble + 3b1y(x)) ),

- C
[F(x)| < ﬁ(b%y(x)2 + |1 + |1 Px*). (7.1)
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Proof By (5.14) and Lemma 6.4, we have, for |x| < ¢""T1/|b1|,

* 1 0b3
log P ® = —c3b} S 21 x
(pl/m(x) 2 T T

— Dogbuly (o) + tog (14 L2 ),

Recalling (6.2) and (4.8), we see that

b1y (y(x)) = 1+ |b1](¥x= (iy(x) + 2iy(x) Yy (iy(x)))
=1+ 3c3|bi|yOT™" + p1(x),

where

0 = 1 3ok - 3y (20)

k=4
It is easy to see that

1
lp1 ()| < 8C|bl|(y(X)) Z-

S. Bobkov et al.

(7.2)

(7.3)

(7.4)

Since B‘LTW(X)' < %, and using |log(1 + u) —u| < u? (|u| < 1/2), we get from (7.3)

that
_ 3cslbi] y(x) b1y(x)\?
log(1b1 y(y(9) = =20 4 b () 7.5)
with some absolute constant ¢c. Now we conclude from (6.7) and (6.14) that
y(y()) bt + y(%)2 1
<clb|— < -
e [ro(x)| < b1 =7
and arrive as before at the upper bound
V()’( ) bi +y()°
[1og (1 + n@)| < elbi| 2 (7.6)
Applying (7.5) and (7.6) to (7.2), we obtain the assertion of the lemma. ]
To estimate the quantity D(X), we represent it as
'T1/1b1|
N+ = (/ +/ )pX;«(x)log P (7.7)
~eiflon] Sl N
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First let us estimate J;, using the letters ¢, C’ to denote absolute positive constants
which may vary from place to place. By Lemma 7.1

L=85,+7
1 = T 1,1 1,2

//Tl
Cc3 [b1]

= 25 |y Pr@((B10)” + 3610 ) + /

//Tl

o P @ dx. (78)
o 1\

111

Using (5.14) and Lemma 6.4, we note that

/ Ty /b1l s "Ti /b1l s
Cpp@di= [ P90 o) ds
—c"Tv/1b1] =Ty /by d
=Jig+J2 +J113

" T1/1b1 1
_ 3
= /_m/wx ¢ i NI

_ 1) eC3bfx3 /QT)+cOb3x* T2 dx

N / "T1 /b1 | 2o ) (eCSb?x3/(2T)+c9bfx4/T2 B 1) dx
"Ti /b1 30353 [ 2T)+cBbS /T2 d
\/ 27t|b1 /—L’T1/|b1| V 1/1b1] (x)e VO(X) X.

It is easy to see that

|e3] 161] | N clbiPxt _ |bilx® !

T
< for |x] < &L, (1.9)
2T 7° 4 1b1]

Using (7.3) and (7.4) and the bound |(1 4+ u)~"/? — 1| < |ul, |u| < L, we get

| (y@)bi) ™2 = 1] < CM;(X)'.
The last estimates and (5.13) lead to

//T

oyl
' Py Vb e dx

\b]
5/2 poo
< clbl / Mol < £ (7.10)
T Jw r

clb
[Ji] < il
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Applying |e* — 1] < |ule!, we have, for |x| < ¢'T/|by],
2
’eC3b?x3/(2T)+c0b?x4/T2 _ 1| < c|b1|3|x|3(i + b1|x|) e\b1|x2/4'
- 2T T2

Therefore, we deduce the estimate

1 bx| ) 1 b2
(= 4+ L) e/ gy < (— ) 7.11
X ( + )e x <c T + 72 ( )

o
J < clb 7/2/
[J112] = clbil gt

By (5.13) and (6.14), we immediately get

1y
c [Tl T clb|*?
[ 113l < ﬁ/_wn I® (16172 + 11 [/? y(x)%) e 211474 g < e (7.12)
[b1]
Hence, by (7.10)—(7.12) and (2.3),
"Ti/|b1 1 | c
3 1
X pxx (x) dx} <c (— + ) < —. (7.13)
In the same way,
T/l b1l | 1612\ _ clbi
xpx (x) dx‘ <c (— + ) < . (7.14)
‘ /; '”Tl/lbll T TZ T

Recalling (5.11), we see that y(x) = byx + cOb?x*/T;. As a result, using (7.13)
and (7.14) and the property Var(X) < 1, we come to the upper bound

[Tl < clbPT7 (7.15)

In order to estimate J; », we employ the inequality (7.1). Recalling (5.14), (6.21)
and (7.9), we then have

c Ty /b1 ) C|b1|3
|12l < = / (B1y ) + [bal® + 151 Px*) v [ba] P4 e < ——-.
T2 J /11| T
(7.16)

Combining (7.15) and (7.16), we arrive at
|| < clbiPT72 (7.17)
Let us estimate J,. From (5.15), (6.21), we have, for all |x| > ¢""T}/|b]|,

pxx (@) < C|by | e W/ < € f]py] =TI < 1. (7.18)
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Here we also used (2.3) and the assumption that 0 < ¢ < g, where g is a
sufficiently small absolute constant. Using (7.18) and (2.3), we easily obtain

ho< - / prs@)logg —(x)d
xl> Ty /I V1/lbil

1. 2n b
= ;log—— pxz (x) dx + 1oil x*px (x) dx
2 7 bil Jiserniimg 2 s/ im]
1 .
< C'VIb| = (log(4m) + |by|x?)e™TH/bil gy
x> 11/Ib1| 2
< C (b1 PPT7" + |by|2T) e /P < o', (7.19)

Thus, we derive from (7.17) and (7.19) the inequality D(X*) < c|b|’T~2.
Recalling (3.2) and Lemma 2.1, we finally conclude that

b1} (Ny3 c Ny? ¢
Do) = e +e(3) Vo= G () VE 2 o
(7.20)

An analogous inequality also holds for the r.v. Y,;, and thus Theorem 1.1 follows
from these estimates.

Remark 7.2 Under the assumptions of Theorem 1.1, a stronger inequality than (1.2)
follows from (7.20). Namely, D(X,; + Y,) may be bounded from below by

emfslog”[exp{ N W> texp { ~ (Var( YU)C)3D( Yo) }]

8 Proof of Theorem 1.3

In order to construct r.v.’s X and Y with the desired properties, we need some
auxiliary results. We use the letters ¢, c’,¢ (with indices or without) to denote
absolute positive constants which may vary from place to place, and 6 may be any
number such that |#| < 1. First we analyze the function v, with Fourier transform

fo(0) = expi—(1 + 02 /2 + i’/ T}, teR.

Lemma 8.1 Ifthe parameter T > 1 is sufficiently large and 0 < o < 2, the function
[fo admits the representation

£ (1) = /_ ety (1) d 8.1)

(o]
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with a real-valued infinitely differentiable function vy (x) which together with its all
derivatives is integrable and satisfies

Vo (x) > 0, for x<(1+02?2T/16; (8.2)

e (¥)] < e~ FoIT32 for x> (1 4+ 02)2T/16. (8.3)
In addition, for |x| < (1 + 0>)>T/16,
¢ e 26Vl < [0 (X)] < ¢ e 4@/, (8.4)

where

y(x) = éT(—(l +0%) + \/(1+02)2—12x/T). (8.5)

The right inequality in (8.4) continues to hold for all x < (1 + 0%)>T/16.

Proof Since f5(f) decays very fast at infinity, the function v, is given according to
the inversion formula by

Vo (%) = % / M () dt, xeR. (8.6)

Clearly, it is infinitely many times differentiable, and all its derivatives are inte-
grable. It remains to prove (8.2)—(8.4). By the Cauchy theorem, one may also write

Ve (x) = &, (iy) % /_ ” e ™R, (t,y)dt, where R,(t,y) = f—a](f (_:y )iy)’
(8.7

for every fixed real y. Here we choose y = y(x) according to the equality in (8.5)
for x < (1 4+ 0%)?> T/16. In this case, it is easy to see that

' 1+ o) 6 3
e MRy (1, y(x)) = eXP{— ( +2G ! (1 * ( j(g)T) + 't_}

Eexp{—@tz—i-i;—i}.

i
T

Note that a(x) > (1 + 6)/2 for x as above.
For a better understanding of the behaviour of the integral in the right-hand side
of (8.7), put
1 o0

[=— e ™R, (t,y)dt
27 J_xo
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and rewrite it in the form

- ~ ~ 1 .
I=5L+1 = —(/ +/ )e_mRa(t,y(x)) dr. (8.8)
27 \ Jj<r1/3 [|>T1/3

Using | cosu — 1 + u?/2| < u*/4! (u € R), we easily obtain the representation

6
I = 1 (1 _ t_) eY0P/2 gy 4 v L/ [2—¢™?/2 gy
21 lt|<T1/3 272 41T4 2 lt]<T1/3

_ 1 ! 15 cl
- V2ra(x) (  2a(x)} T2 + a(x)6T4)

1 6 2
- — 1 — — ) e @™7/2 gy, 8.9
27 Jjg>11/3 ( 2T2) ¢ 89

The absolute value of last integral does not exceed c(T"/ 3a(x)) e @WT /2 The
integral I, admits the same estimate. Therefore, we obtain from (8.8) the relation

i= 1 | 15 ch 210
B \/erot(x)( B 2a(x)3 T? + O{(x)6T4)' (8.10)

Applying (8.10) in (8.7), we deduce for the half-axis x < (1+02)? T/16, the formula

Ve (x) =

1 15 cO
V2ra(x (1  20(x)’ T2 + a(x)® T4
(x)

We conclude immediately from (8.11) that (8.2) holds. To prove (8.3), we use (8.7)
with y = yo = —(1 4+ 0)T/16 and, noting that

) € (iv(x). (8.11)

1+ 02

1 2y2
2 for xzﬂ

+ —_
X
2 16

Yo = T,

we easily deduce the desired estimate

o0
[ve (X)] < e‘“+”2)Tx/32L/ ¢S+ 2/16 gy —(140))T/32
27 J 0o

Finally, to prove (8.4), we apply the formula (8.11). Using the explicit form of
y(x), write

2 3
e}'(X)Xfa (iy(x)) = exp {y(x)x 4 140 yz(x) + Y(;) }
2
= exp {)%(Zx + ! —;0 y(x))} (8.12)
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forx < % T. Note that the function y(x)/x is monotonically decreasing from

Zero to —% (1 4+ 0%)7! and is equal to = —% ( -1+ \/;) (1 + 0%)~" at the point

X = —% T. Using these properties in (8.12), we conclude that in the interval

1+02)2
x| < E20

e 26VDWA/S < Y OTE () < @Y/, (8.13)

where the right-hand side continues to hold for all x < % T. The inequalities
in (8.4) follow immediately from (8.11) and (8.13). O

Now, introduce independent identically distributed r.v.’s U and V with density
1 T/16
PO = oo warpa @, = [ (8.14)
0 —00

where I4 denotes the indicator function of a set A. The density p depends on 7', but
for simplicity we omit this parameter. Note that, by Lemma 8.1, |1 — dy| < T,

Consider the regularized r.v. U, with density p, = p * ¢, which we represent in
the form

Do (X) = dovs (x) —wo(x), where ws(x) = do ((vol(r/16,00)) * ¢5)(X).

The next lemma is elementary, and we omit its proof.

Lemma 8.2 We have

Iwo ()| < @5 (x| + T/16) ™7, x <0,
o (¥)] < e=T", 0 <x<T/16,
Iwe (X)] < e, x> T/16.

Lemma 8.3 For all sufficiently large T > 1 and 0 < o < 2,

D(U,) = 3 n ch
T (T+o)3TE T

Proof Put EU, = a, and Var(U,) = b2. By Lemma 8.2, |a,| + b2 — 1 — 02| <

e=<T* . Write

D(U,) = jl +j2 —‘r—j3 = d()/ vg(x)log Po(x) dx

lx|<c'T Pag by (-x)

- / wo () Tog 229 g 1 / o) log L2 gy (8.15)
lx|<'T Pag by ()C) |x|>c'T Pag by ()C)
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where ¢’ > 0 is a sufficiently small absolute constant. First we find two-sided bounds
on Jq, which are based on some additional information about v, .
Using a Taylor expansion for the function +/1 — u about zero in the interval —% <

u < 3, we easily obtain that, for |x| < (1 4+ 02)>T/16,

6y(x) 12x
=4 [1-——T
(14+0>)T (14+02)2
6x 18x2 108x3 n cOx*
(1+022T (1+02)*T2 (1400573 ' T+’

which leads to the relation

1 +02 ,  y)? x? X3
YOX+ =YW+ T = s T U 09T
9xt cOx’
- . 8.16
2(1 + 02> T? + T3 (8.16)
In addition, it is easy to verify that

6x 18x? cOx®
= (1 +0)(1- - ) 8.17
o) =0+ =G mmr ~ Groy e T P .17

Finally, using (8.16) and (8.17), we conclude from (8.11) that v, is representable as

Vo (x) = g0 ymz(x)e"™
. (1 N 3x 1532 —(1+0%)  cOlx(1 +x2))
N (1+022T 2 (1402472 T3
x3 ox* cOx®
@ () exp { - GTeT  WiTe Rt T } (8.18)
for |x| < (1 +0%)2T/16.
Now, from (8.18) and Lemma 8.2, we obtain a simple bound
[wo (x)/ve(x)] <1/2  for |x| <(T. (8.19)
Therefore we have the relation, using again Lemmas 8.1 and 8.2,
. Vo (x) —cT?
Ji=dy Vo (x) log ————dx + 26 |ws (x)| dx + Be
|x|<c’'T Pa, by (X) [x[<e'T
= / Ve (%) log UJ—(X) dx + e~ (8.20)
Wl<e'T @ Jirer ()
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Let us denote the integral on the right-hand side of (8.20) by J, ;. With the help
of (8.18) it is not difficult to derive the representation

7 / ) h(x)( x3 15x*
= xX)e — —
S N VS 1+023T 2(1+ 02512
3 54x% — 15(1 2 Olx|(1 + x*
n Ll o G i R +x))dx. (8.21)
(1+02)2T 2(1 + 02)4 12 T3

Since ["® — 1 — h(x)| < $h(x)%e"™!, and (pf/m(x)ey’(") < @ yizar() for x| <
c'T, we easily deduce from (8.21) that

j / ( )<3(1 +02)x—x>  54x2 —15(1 4+ 0?)
= X
L1 et Y J1+a2 (I+023T 2(1 + 0212
21(1 + o?)x* — 2x6) p cd 3 n ch
2(1 4+ 02)5 T2 T3 (1+02)312 T3

(8.22)

It remains to estimate the integrals J, and J3. By (8.19) and Lemma 8.2,

5 3
ol [ o l=Tog g, + Tog 5 + 1og (9] ds
x|<c'T
< P < T (8.23)
while by Lemmas 8.1 and 8.2,
~ x2
3] < /| (0o @] + [wo W) (V27bo + 7 + [log(|ve (x) + [wo (V)]) dx
x|>c'T o
< a/ a +x2)e—fT‘xldx+/ (v )] + [Wo )] /2 dx < e,
|x|>c’T

|x|>c’T
(8.24)

The assertion of the lemma follows from (8.22)—(8.24). O
To complete the proof of Theorem 1.3, we need yet another lemma.

Lemma 8.4 For all sufficiently large T > 1 and 0 < 0 < 2, we have

DU, —V,) < e T,
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Proof Putting p, (x) = ps(—x), we have

(Po o))
——dx
¢ Jriron ™

Y frite? (x)
Sl D Y (8.25)
@ SVar(X,—Yy) (x)

DW, —V,) = /_ (Po % o) () log

+ /_ (Po * Po) () log

Note that p, (x) = dyVy (x) — we (x) With U, (x) = V5 (—x), We (X) = ws(—x), and
Do *Po = d(%(vo * Vg ) (X) —do (Vo * We ) () —do (Vo ¥ Wg ) () + (Wo * Wg ) (X). (8.26)

By the very definition of v,, vy * U5 = @m. Since |Var(U, — V) — 2(1 +

0?)| < e_CTz, using Lemma 8.1, we note that the second integral on the right-hand
side of (8.25) does not exceed T, Using Lemmas 8.1 and 8.2, we get

cT?
s

(o % Wo ) (X)] + [(Uo % Wo ) (X)] + [Wo * W (X)] < €™ x| < T, (8.27)

(Vs % o (0)] + | (T % W) ()] + [(wo % W)()| < ™™ x| > 2. (8.28)
It follows from these estimates that

(Po * Do) (x)
¢m(x)

for |x| < ¢/T. Hence, with the help of Lemmas 8.1 and 8.2, we may conclude that

=1+ che= T (8.29)

(po * Po)(x) dx| < e—cTz.
¢ Jairan ™)
A similar integral over the set |x| > ¢’T can be estimated with the help of (8.27)

and (8.28), and here we arrive at the same bound as well. Therefore, the assertion of
the lemma follows from (8.25). ]

I RCRLAtT (8.30)

Introduce the r.v’s X = (U — ap)/bo and Y = (V — ag)/by. Since D(X,) =
D(Upys) and D(Xy — Y5) = D(Upys — Viyo), the statement of Theorem 1.3 for
the entropic distance D immediately follows from Lemmas 8.3 and 8.4. As for the
distance J;, we need to prove corresponding analogs of Lemmas 8.3 and 8.4 for
Ju(Uy) and J(Uy — V), respectively. By the Stam inequality (1.4) and Lemma 8.3,
we see that

Ju(Uy) > c(0) T2 for sufficiently large T > 1, (8.31)
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where c(0) denote positive constants depending on o only. We estimate the quantity
Ju(Us — V;), by using the formula

th(Ua - V(T) /oo - \/ ([7(7 *ﬁa)(x)
Do~ To) _ _ o * Do) (x) log — 2222 gy, 8.32
Nar(Uy) _oo(p * Po) (x) log P mm— e x (8.32)

It is not difficult to conclude from (8.26), using our previous arguments, that
= \// 2"
(ps *Pps)" (x) = do‘/’\/m(x) + Ry (x), (8.33)

where |R, (x)] < c(0)e™"" for |x| < ¢T and |R,(x)| < c(0)e™TH for |x| > &T.
Applying (8.33) in the formula (8.32) and repeating the argument that we used in
the proof of Lemma 8.4, we obtain the desired result, namely

Juy(Uys —Vy) < c(cr)Valr(X(,)e_CT2 for sufficiently large 7 > 1. (8.34)

By Theorem 1.2, J(Uy) < —c(0)/(logJ(Us — V), 80 J(Uy) — 0 as T — oo.
Since Jy(Xs) = Ju(Upyo) and J4(Xs — Ys) = Ju(Upye — Viyo), the statement of
Theorem 1.3 for J, follows from (8.31) and (8.34).
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V.N. Sudakov’s Work on Expected Suprema
of Gaussian Processes

Richard M. Dudley

Dedicated to the memory of Evarist Giné.

Abstract It is noted that the late Volodya N. Sudakov (1934-2016) first published
a statement in 1973 and proof in 1976 that the expected supremum of a centered
Gaussian process is bounded above by a constant times a metric entropy integral.
In particular, the present author (R.M. Dudley) defined such an integral but did not
state nor prove such a bound.

Keywords Metric entropy

Mathematics Subject Classification (2010). Primary 60G15

1 Introductory Remarks

Vladimir N. Sudakov reached his 80th birthday in 2014. A rather well known fact,
which T’'ll call a majorization inequality, says that the expected supremum of a
centered Gaussian process is bounded above by a constant times a metric entropy
integral. Who first (a) called attention to the expected supremum, (b) stated such an
inequality, and (c) published a proof of it, when? My answer in all three cases is
Sudakov (1973, for (a) and (b); 1976, for (c)) [19, 20]. I defined the metric entropy
integral, as an equivalent sum in 1967, then explicitly in 1973, and showed that
its finiteness implies sample continuity. Sudakov’s work on Gaussian processes has
perhaps been best known for his minoration; that he was first to state and give a
proof for a majorization inequality seems to have passed almost unnoticed, and I
hope to rectify that.
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2 Sudakov and Strassen

At the International Congress of Mathematicians in Moscow in the summer of 1966,
Sudakov gave a talk, in Russian, which applied metric entropy log(N(C, d, ¢)) (see
Sect. 3), then called e-entropy, of sets C in a Hilbert space H, to sample continuity
and boundedness of the isonormal process L on H, the Gaussian process having
mean 0 and covariance equal to the inner product, restricted to C. As far as I know
this was the first presentation, oral or written, of such results by anyone, to an
international audience. I attended the Moscow 1966 talk and took notes as best I
could with my meager Russian. When I looked back at the notes later, I regretted not
having absorbed the significance of Sudakov’s talk at first. The notion of isonormal
process on a Hilbert space originated, as far as I know, with Irving E. Segal, cf.
Segal [12]. I did not give any talk at the 1966 Congress.

2.1 Strassen

Volker Strassen did give a talk at the 1966 Congress, on his then-new form of the
law of the iterated logarithm. Whether he attended Sudakov’s talk I don’t recall, but
he had been aware of e-entropy by about 1964. Strassen was born in 1936. Like
me, he got his doctorate in mathematics in 1962 and then spent several years in
Berkeley, he in the Statistics Department (where probability resided) until 1968,
and I in the Mathematics Department until the end of 1966; there was a seminar
with probability topics organized by Jacob Feldman, a student of Segal. While we
were both in Berkeley, Strassen and I talked about metric entropy. In the late 1960s
Strassen began to work on speed of computation, on which he later won several
prizes.

Strassen was invited to give a talk at a probability and information theory meeting
in Canada which took place in 1968. He declined the invitation but kindly urged the
organizers to invite me in his place, as they did; I went and presented the joint paper
[16]. The paper gave two results: one, by Strassen, a central limit theorem in C[0, 1]
with a metric entropy hypothesis; and a counter-example, by me, showing that for
i.i.d. variables X; with values in C[0, 1] having mean EX; = 0 and being bounded:
for some M < oo, | X;(w)|| < M for all w, the central limit theorem can fail.

3 Early Papers on Metric Entropy and Gaussian Processes

Let (S, d) be a totally bounded metric space and for each ¢ > 0 let N(S,d, ¢) be
the minimum number of points in an e-net, within & of each point of S. If d is
a Hilbert space (e.g. L?) metric it may be omitted from the notation. By “metric
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entropy integral” I mean

/M V10g(N(S,d, €))de 3.1
0

for u > 0. The integrand is O for ¢ large enough, as N(S, d, €) is nonincreasing in &
and becomes equal to 1. Thus finiteness of (3.1) for some u# > 0 implies it for all
u>0.

Fortunately for me, Irving Segal was one of the founding co-editors of Journal of
Functional Analysis and solicited my 1967 paper for vol. 1 of the journal. The paper
showed that finiteness of (3.1) for u = 1 (or an equivalent sum; formulated as an
integral in 1973) for a subset S of a Hilbert space is sufficient for sample continuity
and boundedness of the isonormal process restricted to S. Dudley [5] showed that
if the metric entropy integral is finite for a Gaussian process, its indefinite integral
gives a modulus of continuity for the process.

A weaker statement is that it suffices for sample continuity that for some r with
0<r<2ase 0,

logN(S,d,e) = O(g™"). (3.2)

In my 1967 paper, p. 293, I wrote that “V. Strassen proved (unpublished) in 1963 or
1964” that condition (3.2) implies sample continuity of L on S. Sudakov stated the
implication in his 1966 lecture, as I mentioned in Dudley [6, p. 87]. So before 1967,
both Sudakov and Strassen had shown the sufficiency of (3.2) although neither had
published a statement or proof of it. The abstract Sudakov [15] (in Russian) is quite
short; it has two sentences, one about eigen element expansions as in its title, and the
second, “For Gaussian distributions, new results are obtained.” In Sudakov (1976,
pp- 2-3 of the 1979 translation)[20] he reviews previous work, beginning with his
1966 talk.

In MathSciNet (Mathematical Reviews online) there is a gap in indexed reviews
of Sudakov’s publications. There are ten listed as published in the years 1958—-1964,
none for 1965-1970 (although at least one paper, Sudakov 1969, existed) and 20
for works published in 1971-1980, of which I was reviewer for 7, beginning with
Sudakov [17]. Some of my reviews of Sudakov’s works were not very perceptive. I
had been a reviewer for Math. Reviews since April 1966. (In 1968 and 1971, I had
the chance to review an announcement and then a paper by V.N. Vapnik and A.Ya.
Chervonenkis.)

Sudakov [16] was as far as I can find his first publication on Gaussian processes.
It made the connection with e-entropy. Sudakov [17, 19] carried the work further.
In particular in 1973 he gave an equivalent condition for sample-boundedness of a
Gaussian process {X; : t € T}, namely that

EsupX, :=sup{EsupX,: A CT, A countable} < +o00. (3.3)

teT tEA
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Sudakov [20] gave a book-length presentation of his results on Gaussian
processes (and also on doubly stochastic operators). An antecedent of the book is
his doctoral dissertation Sudakov [18], which has the same title. In reviewing the
book for Math. Reviews MR0431359 (55 #4359) I said I had learned about metric
entropy “from V. Strassen, who wanted to give credit to ‘someone’ whose name
we forgot.” And so, I said, Sudakov was “too generous” in saying the application of
such ideas to Gaussian processes came “independently” to several authors, although
sufficiency of (3.2) for sample continuity seems to have been found independently
by Strassen and Sudakov.

4 An Inequality: Majorization of E sup

For a Gaussian process {X;, ¢t € T} with mean 0, such an inequality says that

+o00

EsupX; <K V9ogN(e, T,dx)de 4.1)

teT 0

for some K < oo, where dx(s,t) = (E((X; — X,)Z))l/z. This has been attributed
to me and called “Dudley’s Theorem” by Ledoux and Talagrand, 1991, Theo-
rem 11.17, p. 321. But in fact I am only responsible for the integral (3.1) over a
finite interval and the fact that its finiteness implies sample continuity. In (4.1), 400
can clearly be replaced by

u = diam(7T) := sup{dx(s,t) : s,t € T}.

(By the way, the left side of (4.1) may be finite while the right side is infinite.)
Sudakov [19] first defined the left-hand side (3.3) of (4.1). I was slow to
appreciate it. My short review of Sudakov [19] in Math. Reviews, MR0443059,
makes no explicit mention of the expected supremum,; still less did I mention it in
the earlier paper Dudley [4]. The bound (4.1) with K = 24 given by Ledoux and
Talagrand had, as they say on p. 329, been proved by Pisier [11].
Ten years earlier, Sudakov (1973, Eq. (6))[19], had stated the inequality

EsupL(x) < CS;:=C Y _ 27" /log,(N(27*.9)) (4.2)
X€S

k=—00

for C = 22/~/27. Sudakov (1976, transl. 1979, Proposition 33)[20], gives a proof,
pp. 54-56 of the translation. (If one is not convinced by Sudakov’s proof, then
the bound (4.1) might be attributed to Pisier, but in no case to me. Also Lifshits
(2012, pp. 73-75)[10] gives further evidence that Sudakov’s statement (or better) is
correct.)
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My review in Math. Revs. of Sudakov [20] also did not mention the quantity (3.3)
and so neither (4.2) nor its proof.
We have straightforwardly for every integer k

271(
27% [log, N2*,5) =2 v/ (log2) log(N(27*, §))dx
2—k—1

—k

< 24/log?2 v 10og(N(x, S))dx.
2—k—1

It follows that S; < 2./log2 f0+°° V1og(N(x, S))dx. This implies inequality (4.1)
with the constant 24 improved to K := 44,/log2/~2n < 14.62. As will be
seen later, Lifshits [10] gave a still smaller constant. But I suggest that in view
of Sudakov’s priority, the inequality (4.1) for any (correct) finite K be called
“Sudakov’s majorization,” by contrast with Sudakov’s useful lower bound for
E sup, . L(x) based on metric entropy, well known as “Sudakov’s minoration” (e.g.,
Ledoux and Talagrand, [8, pp. 79-84]). Chevet [2] gave, in a rather long paper, the
first published proof of a crucial lemma in the Sudakov minoration.

According to Google Scholar, Sudakov [19] had only 15 citers as of May 19,
2015, but they did include Ledoux and Talagrand [8], also its chapter on Gaussian
processes, and TalagrandSs 1987 [26] paper on characterizing sample boundedness
of Gaussian processes via majorizing measures. Sudakov (1976, transl. 1979)[20]
had 228 citers (roughly half of them relating to optimal transportation and other
non-Gaussian topics) as of June 12, 2015; it was from the list of citing works that I
found Lifshits [10].

5 Books on Gaussian Processes

There are chapters on Gaussian processes in several books. For entire books,
although there are some on applications such as machine learning, I will comment
only on Lifshits [9, 10] and Bogachev [1].

5.1 Bogacheyv [1]

This book’s Theorem 7.1.2, p. 334, states the Sudakov minoration and what I have
called his majorization. For proof, Bogachev refers to Ledoux and Talagrand [8],
Ledoux [7], and Lifshits [9]. Sudakov (1976, transl. 1979)[20] is not mentioned
there; it is in the bibliography as ref. no. [733], p. 422, but I could not find a citation
of it in the book.



42 R.M. Dudley
5.2 Lifshits [9]

This book cites three works by Sudakov, [Sud1] = Sudakov [16], [Sud2] = Sudakov
[17], and [Sud3] = Sudakov [20]. It gives an inequality (4.1), apparently as
Theorem 14.1, although I have not seen the exact statement. Lifshits gives credit
to Dmitrovskii [3] for the statement and proof.

5.3 Lifshits [10]

On p. 75 Lifshits gives the constant K = 4+/2 in (4.1), which is the best I have seen.
The proof seems to be self-contained. Lemma 10.1 on p. 73 says (correctly) that if
Xj, ..., Xy are centered jointly Gaussian variables and E (ij) < o2 for each J, then

E max X; < /2logNo.

1<j<N

(Ledoux and Talagrand [8], (3.13), p. 71 have such an inequality with a factor of 3
instead of +/2.) I was unable in a limited time to check Lifshits’s proof of his version
of (4.1) via the Lemma and induction.

The bibliography of Lifshits [10] lists 183 items, including Sudakov [16, 17, 20],
but no works by Dmitrovskii. Sudakov (1976 and 1979) is his second most-cited
work with 234 citations, Google Scholar, Nov. 14 (2015).
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Abstract An elementary proof is provided of sharp bounds for the varentropy
of random vectors with log-concave densities, as well as for deviations of the
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bounds obtained by Bobkov and Madiman (Ann Probab 39(4):1528-1543,2011).

Keywords Concentration ¢ Information * Log-concave ¢ Varentropy

Mathematics Subject Classification (2010). Primary 52A40; Secondary 60E15,
94A17

1 Introduction

Consider a random vector Z taking values in R", drawn from the standard Gaussian
distribution y, whose density is given by

for each x € R", where | - | denotes the Euclidean norm. It is well known that
when the dimension 7 is large, the distribution of Z is highly concentrated around
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the sphere of radius \/n; that /i is the appropriate radius follows by the trivial
observation that E|Z|> = Yo EZi2 = n. One way to express this concentration
property is by computing the variance of |Z|?, which is easy to do using the
independence of the coordinates of Z:

Var(|Z|?) = Var(ZZ}) =) Var(Z}) = 2n.

i=1 i=1

In particular, the standard deviation of |Z|? is +/2n, which is much smaller than the
mean 7 of |Z|? when n is large. Another way to express this concentration property
is through a deviation inequality:

P{@—1>t} fexp{ —g[t—log(l—i-t)]} (1.1)

n

for the upper tail, and a corresponding upper bound on the lower tail. These
inequalities immediately follow from Chernoff’s bound, since |Z|?/n is just the
empirical mean of i.i.d. random variables.

It is natural to wonder if, like so many other facts about Gaussian measures, the
above concentration property also has an extension to log-concave measures (or to
some subclass of them). There are two ways one may think about extending the
above concentration property. One is to ask if there is a universal constant C such
that

Var([X|?) < Cn,

for every random vector X that has an isotropic, log-concave distribution on R”.
Here, we say that a distribution on R" is isotropic if its covariance matrix is
the identity matrix; this assumption ensures that E|X|> = n, and provides the
normalization needed to make the question meaningful. This question has been
well studied in the literature, and is known as the “thin shell conjecture” in
convex geometry. It is closely related to other famous conjectures: it implies the
hyperplane conjecture of Bourgain [13, 14], is trivially implied by the Kannan-
Lovasz-Simonovits conjecture, and also implies the Kannan-Lovasz-Simonovits
conjecture up to logarithmic terms [12]. The best bounds known to date are those of
Guédon and Milman [18], and assert that

Var(|X|?) < Cn*/3.
The second way that one may try to extend the above concentration property

from Gaussians to log-concave measures is to first observe that the quantity that
concentrates, namely |Z|?, is essentially the logarithm of the Gaussian density
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function. More precisely, since

n |x|?
—loggp(x) = 3 log(27) + -

the concentration of |Z|> about its mean is equivalent to the concentration of
—log ¢(Z) about its mean. Thus one can ask if, for every random vector X that
has a log-concave density f on R”,

Var(—logf(X)) < Cn (1.2)

for some absolute constant C. An affirmative answer to this question was provided
by Bobkov and Madiman [2]. The approach of [2] can be used to obtain bounds
on C, but the bounds so obtained are quite suboptimal (around 1000). Recently
V.H. Nguyen [27] (see also [28]) and Wang [32] independently determined, in
their respective Ph.D. theses, that the sharp constant C in the bound (1.2) is 1.
Soon after this work, simpler proofs of the sharp variance bound were obtained
independently by us (presented in the proof of Theorem 2.3 in this paper) and by
Bolley et al. [7] (see Remark 4.2 in their paper). An advantage of our proof over
the others mentioned is that it is very short and straightforward, and emerges as
a consequence of a more basic log-concavity property (namely Theorem 2.9) of
I”-norms of log-concave functions, which may be thought of as an analogue for
log-concave functions of a classical inequality of Borell [8] for concave functions.

If we are interested in finer control of the integrability of — log f(X), we may wish
to consider analogues for general log-concave distributions of the inequality (1.1).
Our second objective in this note is to provide such an analogue (in Theorem 4.1).
A weak version of such a statement was announced in [3] and proved in [2], but
the bounds we provide in this note are much stronger. Our approach has two key
advantages: first, the proof is transparent and completely avoids the use of the
sophisticated Lovasz-Simonovits localization lemma, which is a key ingredient of
the approach in [2]; and second, our bounds on the moment generating function are
sharp, and are attained for example when the distribution under consideration has
i.i.d. exponentially distributed marginals.

While in general exponential deviation inequalities imply variance bounds, the
reverse is not true. Nonetheless, our approach in this note is to first prove the
variance bound (1.2), and then use a general bootstrapping result (Theorem 3.1)
to deduce the exponential deviation inequalities from it. The bootstrapping result
is of independent interest; it relies on a technical condition that turns out to be
automatically satisfied when the distribution in question is log-concave.

Finally we note that many of the results in this note can be extended to the class of
convex measures; partial work in this direction is done by Nguyen [28], and results
with sharp constants are obtained in the forthcoming paper [17].
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2 Optimal Varentropy Bound for Log-Concave Distributions

Before we proceed, we need to fix some definitions and notation.

Definition 2.1 Let a random vector X taking values in R” have probability density
function f. The information content of X is the random variable 2(X) = — logf(X).
The entropy of X is defined as h(X) = E(h(X)). The varentropy of a random
vector X is defined as V(X) = Var(iz(X)).

Note that the entropy and varentropy depend not on the realization of X but
only on its density f, whereas the information content does indeed depend on the
realization of X. For instance, one can write h(X) = — fRn flogf and

2
V(0 = Vartlog00) = [ togs? ([ rioer).

Nonetheless, for reasons of convenience and in keeping with historical convention,
we slightly abuse notation as above.

As observed in [2], the distribution of the difference 2(X) — h(X) is invariant
under any affine transformation of R” (i.e., WTX) — h(TX) = h(X) — h(X) for all
invertible affine maps 7 : R* — R"); hence the varentropy V(X) is affine-invariant
while the entropy /(X) is not.

Another invariance for both 4(X) and V(X) follows from the fact that they only
depend on the distribution of log(f (X)), so that they are unchanged if f is modified in
such a way that its sublevel sets keep the same volume. This implies (see, e.g., [25,
Theorem 1.13]) that if f* is the spherically symmetric, decreasing rearrangement
of f, and X* is distributed according to the density f*, then A(X) = h(X*) and
V(X) = V(X*). The rearrangement-invariance of entropy was a key element in the
development of refined entropy power inequalities in [33].

Log-concavity is a natural shape constraint for functions (in particular, prob-
ability density functions) because it generalizes the Gaussian distributions. Fur-
thermore, the class of log-concave distributions is infinite-dimensional, and hence,
comprises a nonparametric model in statistical terms.

Definition 2.2 A function f : R* — [0, 00) is log-concave if f can be written as
) = eV,

where U : R" > (—o00, +00] is a convex function, i.e., U(tx + (1 —1)y) < tU(x) +
(1—-1U(y) forany x, yand 0 < ¢ < 1. When f is a probability density function and
is log-concave, we say that f is a log-concave density.

We can now state the optimal form of the inequality (1.2), first obtained by
Nguyen [27] and Wang [32] as discussed in Sect. 1.
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Theorem 2.3 ([27, 32]) Given a random vector X in R™ with log-concave density

/s
VX)<n

Remark 2.4 The probability bound does not depend on f— it is universal over the
class of log-concave densities.

Remark 2.5 The bound is sharp. Indeed, let X have density f = e %, with¢ : R" —
[0, oo] being positively homogeneous of degree 1, i.e., such that ¢(tx) = re(x) for
all > 0 and all x € R". Then one can check that the random variable ¥ = ¢(X)
has a gamma distribution with shape parameter n and scale parameter 1, i.e., it is
distributed according to the density given by

—le—r

H=——.
0 = o=,
Consequently E(Y) = n and E(Y?) = n(n + 1), and therefore V(X) = Var(Y) = n.
Particular examples of equality include:

1. The case where ¢(x) = Y ', x; on the cone of points with non-negative
coordinates (which corresponds to X having i.i.d. coordinates with the standard
exponential distribution), and

2. The case where ¢(x) = inf{r > 0 : x € rK} for some compact convex set
K containing the origin (which, by taking K to be a symmetric convex body,
includes all norms on R” suitably normalized so that e is a density).

Remark 2.6 Bolley et al. [7] in fact prove a stronger inequality, namely,

11 - -
Voo " [E{VU(X)-Hess(U(X)) ‘VU(X)}} :

This gives a strict improvement of Theorem 2.3 when the density f = ¢~V of X is
strictly log-concave, in the sense that Hess(U (X)) is, almost surely, strictly positive
definite. As noted by Bolley et al. [7], one may give another alternative proof of
Theorem 2.3 by applying a result of Hargé [19, Theorem 2].

In order to present our proof of Theorem 2.3, we will need some lemmata. The
first one is a straightforward computation that is a special case of a well known fact
about exponential families in statistics, but we write out a proof for completeness.

Lemma 2.7 Let f be any probability density function on R" such that f € L*(R")
for each o > 0, and define

F(a) =log | f“.
RVI
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Let Xy, be a random variable with density f, on R", where

=L
Ja: e

Then F is infinitely differentiable on (0, 00), and moreover; for any a > 0,
7 1
Fi(a) = = V(Xa).
o

Proof Note that the assumption that f € L*(R") (or equivalently that F(«) < 00)
for all « > 0 guarantees that F'(«) is infinitely differentiable for « > 0 and that we
can freely change the order of taking expectations and differentiation.

Now observe that

J*logf
Fl(a) = ff7 = [ fologf:
if we wish, we may also massage this to write

LIF@) - hxo)) @.1)

o

Fl(a) =

Differentiating again, we get

Py = L f‘”f(l;agf)z B (f ff“ }ngy
— [ toer? = ( [ logf)2
= Varllog (X,)] = Var| - flogf (X%, + Fl@) |
= o varllogfu ()] =~
as desired. O

The following lemma is a standard fact about the so-called perspective function
in convex analysis. The use of this terminology is due to Hiriart-Urruty and
Lemaréchal [20, p. 160] (see [10] for additional discussion), although the notion has
been used without a name in convex analysis for a long time (see, e.g., [30, p. 35]).
Perspective functions have also seen recent use in convex geometry [6, 11, 17]) and
empirical process theory [31]. We give the short proof for completeness.
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Lemma 2.8 IfU : R" — R U {400} is a convex function, then
w(z, ) == aU(z/a)

is a convex function on R" x (0, 4-00).

Proof First note that by definition, w(az, ae) = aw(z,«) for any a > 0 and any
(z,a) € R" x (0, +00), which implies in particular that

lw(z, Q) = W(E, 1).
o o

wAzr + (1 =Nz, Aay + (1 — A)ap)

Ao+ (1— Do 2
Xat + (1— Aoz )

< AalU(Z—l) £ (1= /\)azU(Z—z)
o1 (2%

= Aw(zy, 1) + (1 — A)w(zz, a2),

Hence

= [Aa; + (1 — V)ay] U(

forany A € [0,1], 71,22 € R", and o, o2 € (0, 00). O
The key observation is the following theorem.

Theorem 2.9 Iff is log-concave on R", then the function

G(o) :=o" /f(x)“dx

is log-concave on (0, +00).

Proof Write f = e~ Y, with U convex. Make the change of variable x = z/a to get
Ga) = [ e,

The function w(z, ) := aU(z/a) is convex on R” x (0, +00) by Lemma 2.8, which
means that the integrand above is log-concave. The log-concavity of G then follows
from Prékopa’s theorem [29], which implies that marginals of log-concave functions
are log-concave. O

Remark 2.10 An old theorem of Borell [8, Theorem 2] states that if f is concave
on R”, then Gy(p) := (p + 1)---(p + n) [ fPis log-concave as a function of p €
(0, 00). Using this and the fact that a log-concave function is a limit of a-concave
functions with ¢ — 0, one can obtain an alternate, indirect proof of Theorem 2.9.
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One can also similarly obtain an indirect proof of Theorem 2.9 by considering a
limiting version of [4, Theorem VIIL.2], which expresses a log-concavity property
of (p — 1)...(p — n) [ ¢P for any convex function ¢ on R”, forp > n + 1 (an
improvement of this to the optimal range p > n is described in [6, 17], although this
is not required for this alternate proof of Theorem 2.9).

Proof of Theorem 2.3 Since f is a log-concave density, it necessarily holds that f €
L*(R") for every @ > 0; in particular, G(e) := o" [ f* is finite and infinitely
differentiable on the domain (0, co). By definition,

log G(o) = nlogx +10g/f°‘ =nloga + F(x).

Consequently,

2

——5llog Gle] = —% + F'(@).

By Theorem 2.9, log G(«) is concave, and hence we must have that

A F'@ <0
o

for each @ > 0. However, Lemma 2.7 implies that F”(a) = V(X,)/a?, so that we
obtain the inequality

VXy) —n

<0.
a2

For o = 1, this implies that V(X) < n.

Notice that if f = ¢~ Y, where U : R" — [0, o0] is positively homogeneous of
degree 1, then the same change of variable as in the proof of Theorem 2.9 shows
that

GMz/meﬂ=/fWﬁ=/mmzL

Hence the function G is constant. Then the proof above shows that V(X) = n, which
establishes the equality case stated in Remark 2.5.

3 A General Bootstrapping Strategy

The purpose of this section is to describe a strategy for obtaining exponential
deviation inequalities when one has uniform control on variances of a family
of random variables. Log-concavity is not an assumption made anywhere in this
section.
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Theorem 3.1 Suppose X ~ f, where f € L*(R") for each o« > 0. Let Xy ~ fq,
where

S )

Jo(x) = ffa .

IfK = K(f) := supy~o V(Xy), then

E[eﬂ{ﬁoo—h(X)}] <eKP . BeR

,
where

ru) = u—1log(l 4+ u) foru> —1
+o00o foru < —1

Proof Suppose X is a random vector drawn from a density f on R", and define, for
each o > 0, F(o) = log [ f*. Set

K = sup V(X,) = supa’F" (a);

a>0 a>0

the second equality follows from Lemma 2.7. Since f € L*(R") for each o > 0,
F(a) is finite and moreover, infinitely differentiable for « > 0, and we can freely
change the order of integration and differentiation when differentiating F(«).

From Taylor-Lagrange formula, for every @ > 0, one has

F(a) = F(1) + (& — DF'(1) + /a(a — u)F" (u)du.
1

Using that F(1) = 0, F”(u) < K/u® for every u > 0 and the fact that for 0 < o <
u < 1,one has o —u < 0, we get

F(a) < (¢ — DF'(1) + K/la “u_z " du
— (@—1)F()+K [—% . 1og(u)]‘f .
Thus, for « > 0, we have proved that
F@) < (@—1D)F(1)+K@@—1-loga).
Setting B = 1 — &, we have for 8 < 1 that

oFU=P) < oBF'(1) K(—p—log(1=p)). 3.1)
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Observe that e17#) = [f17F = E[fP(X)] = E[e Ploe/D] = E[eﬂﬁ(x)] and
e PP = ¢PhX). the latter fact follows from the fact that F/(1) = —h(X) as is clear
from the identity (2.1). Hence the inequality (3.1) may be rewritten as

E[eﬁ{ﬁ(X)—h(X)}] <& BeR. (3.2)

|

Remark 3.2 'We note that the function r(f) = ¢ — log(l + ¢) for t > —1, (or the
related function A(f) = tlogt — t + 1 for ¢t > 0, which satisfies sh(t/s) = tri(s/t)
for ri(u) = r(u — 1)) appears in many exponential concentration inequalities in the
literature, including Bennett’s inequality [1] (see also [9]), and empirical process
theory [34]. It would be nice to have a clearer understanding of why these functions
appear in so many related contexts even though the specific circumstances vary quite
a bit.

Remark 3.3 Note that the function r is convex on R and has a quadratic behavior in
the neighborhood of 0 (r(u) ~¢ %) and a linear behavior at +00 (r(1t) ~co ).

Corollary 3.4 With the assumptions and notation of Theorem 3.1, we have for any
t > 0 that

P{R(X) — h(X) = 1} < exp{ _ K(%)}

P{h(X) — h(X) < 1} < eXP{ ‘K’( N é)}

The proof is classical and often called the Cramér-Chernoff method (see for
example Sect.2.2 in [9]). It uses the Legendre transform ¢* of a convex function
¢ : R — R U {400} defined for y € R by

@*(y) = supxy — ¢(x).

Notice that if ming = ¢(0) then for every y > 0, the supremum is reached at a
positive x, that is ¢*(y) = sup,.,xy — ¢(x). Similarly, for y < 0, the supremum is
reached at a negative x.

Proof The idea is simply to use Markov’s inequality in conjunction with Theo-
rem 3.1, and optimize the resulting bound.
For the lower tail, we have for § > O and t > 0,

Pl(X) — h(X) < —1] < E[e—ﬂ (’7“’—’“"’)}—&

< exp {K(r(ﬁ) - %)}
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Thus minimizing on 8 > 0, and using the remark before the proof, we get

PlR(X) — h(X) < —1] < exp{ — Ksup (% - r(ﬂ))} =% (). 33)

p>0
Let us compute the Legendre transform r* of r. For every ¢, one has

r* (1) = suptu — r(u) = sup (tu—u + log(l + u)).

u>—1

One deduces that r*(f) = +oo for t > 1. For ¢t < 1, by differentiating, the
supremum is reached at u = ¢/(1 — ¢) and replacing in the definition we get

r* () = —t —log(1 — 1) = r(—1).

Thus *(t) = r(—t) for all t € R. Replacing, in the inequality (3.3), we get the result
for the lower tail.
For the upper tail, we use the same argument: for § > 0 and 7 > 0,

P[A(X) — h(X) > 1] < E[eﬂ (W’—”(X’)}e—ﬂ’

< exp{K(r(—ﬂ) - %)}

Thus minimizing on 8 > 0, we get
Pl(X) —h(X) > 1] < exp{ — K sup (& — r(—ﬂ))} . 3.4
p>0 K

Using the remark before the proof, in the right hand side term appears the Legendre
transform of the function 7 defined by 7(u) = r(—u). Using that r*(t) = r(—t) =
7(t), we deduce that (7)* = (r*)* = r. Thus the inequality (3.4) gives the result for
the upper tail.

O

4 Conclusion

The purpose of this section is to combine the results of Sects.2 and 3 to deduce
sharp bounds for the moment generating function of the information content of
random vectors with log-concave densities. Naturally these yield good bounds on
the deviation probability of the information content h(X) from its mean h(X) =
Eh(X). We also take the opportunity to record some other easy consequences.



56 M. Fradelizi et al.

Theorem 4.1 Let X be a random vector in R" with a log-concave density f. For

B <1,

E[eﬂ[ﬁ(x)—h(x)]} < E[eﬂ[ﬁ(X*)—h(X*)]}

where X* has density f* = e~ =% restricted to the positive quadrant.

Proof Taking K = n in Theorem 3.1 (which we can do in the log-concave setting
because of Theorem 2.3), we obtain:

E[Eﬂ{m)—h(x»] <P BeR.
Some easy computations will show:
E[eﬁ{ﬁ(X*)—h(X*)}] =P BeR.
This concludes the proof.

|

As for the case of equality of Theorem 2.3, discussed in Remark 2.5, notice that
there is a broader class of densities for which one has equality in Theorem 4.1,
including all those of the form e~ Mlx | where K is a symmetric convex body.

Remark 4.2 The assumption § < 1in Theorem 4.1 is strictly not required; however,
for B > 1, the right side is equal to +o0. Indeed, already for § = 1, one sees that
for any random vector X with density f,

E[ EE(X)—h(X)] _ e—h(X)E|:[1 :| — hx) / dx
(X) supp(f)

= ¢ "®Vol,(supp(f)),

where supp(f) = {x € R” : f(x) > 0} is the support of the density f and Vol,, denotes
Lebesgue measure on R”. In particular, this quantity for X*, whose support has
infinite Lebesgue measure, is +o00.

Remark 4.3 Since

lim iE e (ogf(X)—Eflog/X)]) | — V(X)
a—0 o2 ’

we can recover Theorem 2.3 from Theorem 4.1.

Taking K = n in Corollary 3.4 (again because of Theorem 2.3), we obtain:
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Corollary 4.4 Let X be a random vector in R" with a log-concave density f. For
t>0,

Pl(X) — h(X) < —ni] < e,
Pl(X) — h(X) > ni] < e ®,

where r(u) is defined in Theorem 3.1.

The original concentration of information bounds obtained in [2] were subopti-
mal not just in terms of constants but also in the exponent; specifically it was proved
there that

P %Vz(X)—h(X)|zt <2 VM (4.1

for a universal constant ¢ > 1/16 (and also that a better bound with c£?n in the
exponent holds on a bounded range, say, for # € (0, 2]). One key advantage of the
method presented in this paper, apart from its utter simplicity, is the correct linear
dependence of the exponent on dimension. Incidentally, we learnt from a lecture
of Klartag [22] that another proof of (4.1) can be given based on the concentration
property of the eigenvalues of the Hessian of the Brenier map (corresponding to
optimal transportation from one log-concave density to another) that was discovered
by Klartag and Kolesnikov [23]; however, the latter proof shares the suboptimal /nt
exponent of [2].

The following inequality is an immediate corollary of Corollary 4.4 since it
merely expresses a bound on the support of the distribution of the information
content.

Corollary 4.5 Let X have a log-concave probability density function f on R". Then:
h(X) < —log|lfllec + n.

Proof By Corollary 4.4, almost surely,
logf(X) < E[logf(X)] + n,

since when t > 1, P[logf(X) — E[logf(X)] > nf] = 0. Taking the supremum over
all realizable values of X yields

log [[flleo < Eflogf(X)] + n,

which is equivalent to the desired statement. O

Corollary 4.5 was first explicitly proved in [4], where several applications of it
are developed, but it is also implicitly contained in earlier work (see, e.g., the proof
of Theorem 7 in [16]).
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An immediate consequence of Corollary 4.5, unmentioned in [4], is a result due
to [15]:

Corollary 4.6 Let X be a random vector in R" with a log-concave density f. Then

flloo = €"f(E[X]).

Proof By Jensen’s inequality,

log f(EX) > E[logf(X)].

By Corollary 4.5,
Eflogf(X)] = log [flloo — 1.
Hence,
log f(EX) > log [|fllec — .
Exponentiating concludes the proof. O

Finally we mention that the main result may also be interpreted as a small ball
inequality for the random variable f(X). As an illustration, we record a sharp form
of [24, Corollary 2.4] (cf., [21, Corollary 5.1] and [5, Proposition 5.1]).

Corollary 4.7 Letf be a log-concave density on R". Then

c

B > oo} = 1 — (e-c'log (1))

where 0 < ¢ < %

Proof Note that

P{f(X) = "[Iflloo} = P{logf(X) < log||flloc + nlogc}
= P{h(X) > —log [[f]lec —nlogc}
< P{h(X) > h(X) —n(1 + logc)}.

using Corollary 4.5 for the last inequality. Applying Corollary 4.4 with t = —log c—
1 yields

P{(X) < " [flloo} < 717120,

Elementary algebra concludes the proof. O
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Such “effective support” results are useful in convex geometry as they can allow
to reduce certain statements about log-concave functions or measures to statements
about convex sets; they thus provide an efficient route to proving functional or
probabilistic analogues of known results in the geometry of convex sets. Instances
where such a strategy is used include [5, 24]. These and other applications of the
concentration of information phenomenon are discussed in [26].
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Maximal Inequalities for Dependent Random
Variables

Jorgen Hoffmann-Jgrgensen

Abstract Maximal inequalities play a crucial role in many probabilistic limit
theorem; for instance, the law of large numbers, the law of the iterated logarithm,
the martingale limit theorem and the central limit theorem. Let X;, X5, . . . be random
variables with partial sums S; = X; + --- + X;. Then a maximal inequality gives
conditions ensuring that the maximal partial sum M, = max;<;<, S; is of the same
order as the last sum S,. In the literature there exist large number of maximal
inequalities if Xj, X», ... are independent but much fewer for dependent random
variables. In this paper, I shall focus on random variables Xi, X5, ... having some
weak dependence properties; such as positive and negative In-correlation, mixing
conditions and weak martingale conditions.
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1 Introduction

Throughout this paper, we let (2, F, P) and (Q, F , f’) denote two fixed probability
spaces. We let R = (—o0, 00) denote the real line and we let R; = [0, co) denote
the non-negative real line. We let Ny = {0, 1,2,...} denote the set of all non-
negative integers, we let N = {1,2,...} denote the set of all positive integers and
we define

A, ={(i.))eNg|j—i=n}, A"={(i,j)eNJ|0<j—i<n} VneN,
V={Gkj)eN;|i<k=<j}.
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LetX|, X5, ... be a sequence of random variables and let us consider the partial sums

and the maximal partial sums : S;; = M;; = M,-,,- =0and
Sij = ig:iiXk , Mi; = }2}?;&]_51',1( , M= gllfi; [Sik] VY (.j) € Ar. (1.1

Then M;; and M, j are non-negative random variables. Recall that a maximal
inequality is an inequality stating the maximal sum M;; (or M; ;) is of the same order
as the final sum SZ; (or |S;]); where we let x* = max(x, 0) denote the positive part
of x forx € R.

In the literature there exists a variety of maximal inequalities. Let me review a
few of these. Let X, X5, ... be random variables and let S;;, M;; and Mi.j be given
by (1.1). Then we have:

The Rademacher-Menchoff inequality (see [21] and [16]): Let 7| 1p,... be
non-negative numbers satisfying ESiZJ <> <k<j T for all (i,j) € A,. Then
we have

) 2 ..
B < (14152 )) ¥ o Vg eAr (1.2)
i<k<j

The Minkovski-Holder inequality (see [8, pp. 166—167]): Let us define p(n) =
(E|X,|9)"/" foralln > 1 and seta = (1 — q_\,;l)-‘r Then we have

. qVv1 r
EM, < ( > p(k)qvl) < (- ( > p(k)) Vi) A (3

i<k<j i<k<j
Lévy’sinequality (see [8, p. 473]): If (Xi,..., Xk, —Xk41...,—X;) and
(X1, ..., X)) have the same distribution for all 0 < k < j, then we have
PM;j>1) <2P(Sij>1) VY(i,jH)eA xRy, (1.4)
P(M;; > 1) <2P(Sijl >1) V(i,j,1) € A; xR (1.5)

Khinchine’s inequality (see [8, p. 307]): If (:Xi,...,€X;) and (Xi,....X))
have the same distribution for all j > 1 and all signs €1,...,¢; € {—1,+1},
then we have

q/2
YEM]; <E|S;j|’ < K,E ( > Xg) Y (i,j) € Ay, (1.6)

i<k<j

where K, = 1,if ¢ < 2and K, = n~"/2292 (1), if g > 2.
The prophet inequality (see [4]): Suppose that X;, X, ... are independent with
EX, = Oforalln > 1 and let ¢ : [0,00) — [0, 00) be an increasing, convex
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function with ¢(0) = 0. Then we have

Eo((Mij—a)t) <2Ep((Sij—a)T) V(i.ja)€e Ay xR, (1.7)
Ep(Mij) < 2Ep(ISij)) Y (i.j) € Ar. (1.8)

Ottaviani’s inequality (see [8, p. 472]) Suppose that X, X5, ... are independent
and let us define y;;(s) = min;«x<; P(|Six| < s) forall (i,j,s) € A1 x R. Then
we have

)/iJ(S)P(MiJ'>S+Z‘)§P(|SiJ‘|>t) V(i,j,S,I)GAIXR+XR+. (1.9)

The martingale inequality (see [8, p. 472]): Let F;; denote the o-algebra gen-
erated by (X;11,...,X;) for all (i,j) € A, and suppose that S;; € L(P) and
Sixk < E(Sij | Fry)as. foralli <k <j Ifp : R — [0,00) is increasing and

convex, we have
() PM;; > 1) < E(I{Ml._j>,} qo(SiJ)) VieR. (1.10)

If x € R, we let [x] denote the largest integer < x and we let [x] denote the
smallest integer > x. We let R = [—00, oo] denote the extended real line and I shall
use the following extension of the arithmetic on the real line R = (—o0, 00):

x+oo:=00V —00<x<00, x4+ (—00):=—00V —00 <x < 00,
0-(£o0):=0, x-(£o0) := £00, (—x) - (£o0) := Foo V0 <x <00,

1 _ _ 00 . _ 1 _ ,—oco._ X o .
6—logoo—e =00, g5 =€ .—O,y.—x

%,xozl‘v’x,yeﬁ,
and I shall use the standard conventions inf @ = min @ := oo, sup § = max @ :=
—ooand ) ;g ar := 0.

If V is a real vector space, we say that ¥ : V — R is sub-additive if ¥ (x + y) <
V¥ (x) + ¥ (y) forall x,y € V. Let k > 1 be an integer. Then we let B* denote the
Borel o-algebra on R* and we let < denote the coordinate-wise ordering on R*: that
is (xp,...,x%) < (y1,...,y) ifand only if x; < y; foralli = 1,..., k. If D C R¥
and F : D — R”™ is a function, we say that F is increasing if F(x) < F(y) for all
x,y € Dwithx < y. Ifu = (uy,...,u) and v = (vy, ..., vx) are given vectors in
R*, we define

[ul ={xeR | x<u}, [ux] ={xeR|u<ax,
uAv = (min(uy,vy),...,min(u, v)) , u vV v = (max(up, vy), ..., max(u, vg)) .
We say that F : Rﬁ_ — R is homogeneous if F(rx) = rF(x) for all x € Rﬁ_

and all » € Ry, and we say that f : R* — R is super-modular if f(x) + f(y) <
f(xVy) +f(xAy) forall x,y € RF; see [10]. We let B(R¥) denote the set of all
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bounded Borel functions from R¥ to R, we let IB (Rk) denote the set of all bounded,
increasing Borel functions from R¥ to R and we let B (R¥) and 1B (R¥) denote
the sets of all non-negative functions in B(R¥) and IB(R¥) respectively.

We let L°(P) denote the set of all real random variables on (2, F, P) and we
let L(_)|_ (P) denote the set of all non-negative random variables. If Z : Q@ — R is
an arbitrary function, we let E*Z and E.Z denote the upper and lower expectations
of Z. We let L(P) denote the set of all random variables X : 2 — R satisfying
E.X = E*X and we set EX := E,X = E*X forall X € L(P) and L'(P) := {X €
L(P) | EX # foo}.

2 Rademacher-Menchoff Type Inequalities

In this section we shall study maximal inequalities of the Rademacher-Menchoff
type; see [12, 16-18, 21] and [13]. A triangular scheme (S;;, M;;)qjjea, Will be
called a max-scheme if S;; and M; are non-negative random variables satisfying

Si,i = Mi,i = 0 a.s. and MiJ < Mi,k—l V(Si,k +MkJ) as. V (l, k,J) eV. 2.1

Let (Sij, M;;) be a max-scheme. Then we have M;; < M, ;—; V §;; a.s. and M;; <
Sii+1 + M;qjas. [take k = jand k = i 4+ 1 in (2.1)]. So by induction we have

M;; < max Sjx asand Mj; < Y S as V(ij) € Ay. (2.2)
i<k<j

i<k<j
Let (Sij)(jjea, be non-negative random variables satisfying
Sizi <Six + SkJ as. V(i,j) € A 2.3)

and set S;; = M;; = 0 and M;; = max;«x<; Six for all (i, j) € A;. Then (S;;, M)
is a max scheme. In particular, we see that (S:;,M,- j) and (|S; ‘,-|,A71,-=,~) are max-
schemes, if S;;, M;; and Il_/I,-zi are given by (1.1) for some sequence (X,) of real
random variables. Let (S;;, Mj;;) be a max-scheme. In this section we shall search
for conditions ensuring that the maximal “sum” M]; is of the same order as the
“sum” S; ;. More precisely:

Let KC: L?F (P) — [0, o] be a functional. Then we say that K is P-increasing if
K(0) < oo and K(X) < K(Y) forall X,Y € LY (P) with X < Y a.s. We say that
IC is weakly sub-additive if K is P-increasing and IC(X Vv Y) < K(X) 4+ K(Y) for
allX,Y € LS)r (P) and we say that K is sub-additive if K is P-increasing and K(X +
Y) < KX) + K(Y) forall X, Y € L?F (P). Note that every sub-additive functional
is weakly sub-additive. Let C : L?F (P) — [0, 0o] be a P-increasing functional and
let (S;;, M;;) be a max-scheme. In this section, I shall search for upper bounds
of (M) in terms of K(S;;). More precisely, let D € R, be a non-empty set
and let f : Ng - Ry and V;; : D — Ry be given functions for (i,j) € Ay
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satisfying Vi ;(t) < Vijy1(9) and K(tS;;) < f(j — i) Vi;(r) for all (i,j,t) € Ay x D.
I shall then search for functions F : Ny — Ry and U;; : D — Ry satisfying
K(tM;;) < F(j—1i) Ug(t) forall (i,j, 1) € Ag x D. If K is weakly sub-additive,
then (2.2) shows that

KEM;j) < Y K(@Six) <F(j—i)Vij(ty Y(i.j,1)e Ay xD, 2.4)

i<k<j

where F(n) = f(1)+---+f(n) for all n € N. This function is in general too large to
be really useful. In order to improve (2.4) I shall use the recursive structure of (2.1)
together with an inequality of the following type:

KXV (Y +2) <T(KAX) + K(nY).K(vZ)) VYX.Y,ZeL'(P), (2.5)

where A, u,v € Ry and I : Ri_ — R is an increasing, homogeneous function and
we use the convention I'(co,x) = I'(x,00) = oo for all x € [0, oc]. To construct
the improved function, we shall need following notion:

LetI': Ri — R be an increasing homogeneous function. If f : Ng — R4 and
r € R4, we define fT' (n) inductively as follows:

YOy =£0), ff(n) =T@f (n—1).f(n)) VreRyVneN. (2.6)

If f : No = Ry is increasing, then an easy induction argument (see the proof of
Proposition A.2) shows that ! is increasing if and only if £(0) < T'(r£(0),£(1));
for instance if f(0) = O orif I'(r, 1) > 1. If f : Ny — Ry is increasing and ¢ > 1
is a given number satisfying I'(rc, 1) < ¢, then an easy induction argument shows
that fT'(n) < cf(n) for all n € Ny. In the applications I shall consider the following
increasing, homogeneous functions:

2, (ny) = @7+ Oany) =Xy Vxy) e RE, (2.7)

My = inf (x(@x+x(5)y) Yy e R%, (2.8)

where y > 0,0 < A < 1and y : R+ — Ry is a given function, together with the
following weakly sub-additive functionals:

Ly(X) = EP(X) . My(X) = sup ¥(u) P(X > u). 2.9)

u€R

where ¢ : R4 — R, is an increasing function and ¢ : Ry — R is an arbitrary
function. Note that £ (n) = (Xio r" 0/ £(k)1/7)” foralln € Ny and all r €
Ry and that IT, = X,y if y > Oand y(x) = x” forallx > 1.

Let T : Ri — R4 be an increasing homogeneous function and set I (co, x) =
I'(x,00) = oo for all x € [0,00]. Let u,v > 0 be given numbers and let I :
L(_)F (P) — [0, o] be a weakly sub-additive functional. Let us consider the following
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condition:
KX+Y)<TI'(K(uX),K(vY)) VX, Ye L L (P). (2.10)

Let 0 < p < 1 be given. Slncex+y <z \/ forallx y > 0, we see that (KC, X)

satisfies (2.10) with (u,v) = (1, = )) and sincex VvV (y+2) < (xVy)+zforall
x,y,z > 0, we see that (2.10) 1mp11es that (IC, ') satisfies (2.5) with (A, u,v) =
(u, pu,v). Since K is weakly subadditive, we see that (KC, X)) satisfies (2.5) with
A, u,v) = (1, 11), ﬁ). If K(-)/7 is sub-additive for some y > 0, we see that
(K, X,) satisfies (2.10) with (u,v) = (1,1) and (2.5) with (A, u,v) = (1,1,1).
If y : R+ — Ry is a given function satisfying K(sX) < y(s) £(X) forall s > 1
andall X € L?F(P). then (KC, IT ) satisfies (2.10) with (1, v) = (1, 1) and (2.5) with
A,p,v)=(1,1,1).

Let ¢ : Ry — R be an increasing function. Then £, is weakly sub-additive.
If y > 0 and ¢(-)"/7 is subadditive; for instance, if ¢ (st) < s” ¢ () for all s > 1
and all ¢ > 0, then Minkovski’s inequality shows that (Ly, X,) satisfies (2.5) with
A, p,v) = (1,1,1). If y : Ry — Ry is a given function satisfying ¢(st) <
x(s)@(1) forall s > 1 and all £ > 0, then Ly(sX) < x(s) Ly(X) forall s > 1 and
all X € LS’F(P) and so we see that (Ly4, X)) satisfies (2.5) with (A, u,v) = (1,1,1).
If ¢ is log-convex and 0 < p < 1, then Holder’s inequality shows that (Ly, ©,)
satisfies (2.5) with (A, u, v) = (1 1, =

Lety : Rt — R4 bea glven functlon Then M, is a weakly sub-additive
functional and if y : Ry — R is a given function satisfying v (st) < y(s) ¥ (¢) for
all s > 1 and all ¢ > 0, then the reader easily verifies that (M, IT,) satisfies (2.5)
with (A, u,v) = (1,1, 1).

The results of this section rely on a purely analytic proposition solving a certain
functional inequality (see Proposition A.2 in Appendix). To do this, we need the
following notion. If £ : Ny — Ny is an increasing function, we define

={tkeNoi<k=j,§(G-kVEk=i=1) <E(-D}V(i.j) € Ar. (21D

Set é(n) = inf{k € Ny | E(k) > £(n)} for all n € N. Thené NO — Ny is an
increasing function satisfying E(n) < nforall n € Ny and we have g(n) = nif and
only if eithern = O orn > 1 and §(n — 1) < &(n). Since £ is increasing, we have
£(k) < £(n) for all 0 < k < £(n) and

—{keNy|j—E(j—i)<k<i+E(—D} V(ij)eA,. (2.12)

Hence, if (i,j) € A, we have that ij =1{ke Ny |i<k<j}if and only if
E(j—i—1) < &(j—i). Similarly, we have that Dé # @ if and only if £(| 5 Ciy <
&(j — i) and if so we have [#] € Dij.
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Theorem 2.1 Let K : L(_)|_ (P) — [0, 0] be a P-increasing functional, let T : Rﬁ_ —
R+ be an increasing, homogeneous function and set I' (0o, x) = I'(x, 00) = oo for
allx € [0,00]. Let ¥ : Ry — Ry, f: Ng —» Ry and & : Ny — Ny be increasing
functions and let A, b, v, r € Ry be given numbers satisfying

(a) KXV (Y +2)) <T(KAX) + K(nY),K(wZ)) VX, Y,ZeL’(P),

(b) §(0) =0 and f(0) = T'(1f(0).£(1)).

Let (M}, Sij)ijiea, be a max-scheme and let D € Ry be a non-empty set such that
At € Dand put € D forallt € D. Let Gi; : Ry — Ry for (i,j) € Ay be given
functions satisfying

(c) K(tSij) <f(EG—) ¥ (Gij(1) V(,j.1) € Agx (vD),
(d) Gij(t) < Gij+1() VY(i,j.1) € Agx (vD).

where vD = {vt | t € D}. Let us define V;;(t) = 9(G;j(vt)) for all (i,j,1) €
Ao xRy and
Y, = {(i.j,1) € Ay x D | 1 ((j =) Vij(r) < K(t M)}

Then we have K(t M;;) < fY(§(j — i) Vij(?) for all (i,j,1) € Ay x D if and only if
the following condition holds:

(e) min, e (Vi (At) + Vig(u0) < Vi) ¥ (i.j1) € X,
i

Suppose that G;;(t) = 0 for all (i,t) € Ny x (vD) and let p, o, B,6,a,b,q > 0 be
given numbers satisfying
(f) max (Gix(0) + Gy () = pGij(t) ¥ (i,j,1) € Ay x (vD),

(g) Gij(At) <aGij(1) , Gij(ut) < BGij(t) V(i,j. 1) € Ag x (vD),
(h) ¥(bx) <ad () and ¥ (x) + ¥ (y) <qd(x+y) Vxy>0.

Ifv > 1, then we have K(t M) < fF(&(j—i)) Vi;(t) for all (i,j,1) € Ag x D if just
one of the following two conditions hold:

. afp KaeMp\® 0
(i) a+ﬁ§b,S(n—l)<§(n)\7’n22andr22a (m) v (ijt)e,.

9\
() @V PP =b, E13]) <& Yn=2andr = ga (F8) Viijn e,

Proof We shall apply Proposition A.2 with D, I', V;; as above and

Aij(0) = K(tMiy) . Bij() = KiSij) . h=f., (p.q) = (1. ).
Let (i, k,j) € V and r > 0 be given. By (a) and (2.1), we have

K@M;j) < TOC(At Mg—1) 4+ Kt M), K(vtSix)) .
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Hence, we see that condition (a) in Proposition A.2 holds. Since M;; = S;; = 0
a.s., we have A;;(r) = B;;(f) = K(0) and by (c), we have K(0) < f(0) V().
So by (c) and (d) we see that the conditions (b) and (c) in Proposition A.2 hold.
Hence, we have that A;; and B, are finite and increasing on D for all (i,j) € Ay
and by (b), we see that £ is increasing. So by Proposition A.2, we see that (e)
implies K(tM;;) < fF(&(j — i) Vi;(t) for all (i,j,7) € Ay x D. Conversely, the
latter condition implies that Y, = @ in which case (e) holds trivially.

Suppose that G;;(f) = 0 for all (i,1) € Ny x (vD) and that (f)—(h) hold. Let
(i,j,1) € Ay x D be given and set W;;(1) = minkeD’; (Vig—1 (A1) + Vi j(ut)). Then I
claim that we have !

EG—i—1D<EG—i) = Wy <29 (0% GiJ(Vt)) ; *)
ELF)) <EG—D = Wiy < g9(pGi(v1), %)

where n :=a Vv .

Proof of (*) Suppose that £(j —i — 1) < &(j — i). By (2.12), we have ij =
{k € Ng|i<k<j} Since t € D, we have A\t € D and ut € D and so we have
Gum(t) = Gppm(Avt) = G, (puvet) = 0 for all m € Ny. Hence, if j = i + 1, we
have W;;(t) = V(A1) + Vj(ut) = 29(0) < 29 (x) for all x > 0. Suppose that
j>i+2andseta = g, 8mn = Guuy(vt) and h = a’%} G;j(vt). Then we have
gii=g,;,=0andpg;=(1+ ;ll) h and so by (f) and Lemma A.1, we have

; B B
min, (Gikm1 (1) v (5 Grj(v)) = 5 Giy(vp).

By (g), we have G,'!k_l(ll)l) \% GkJ(le) <« (G,;k_l(vt) \% (g szj(l)l))) forall i <
k < jand since ¥ is increasing, we have

Wi = min (Viges () + Vigun) = 29 (min (Giaca 00V G o))

=29 (Z5.Gijvn) |

which completes the proof of (¥).

Proof of (**) Suppose that é(L’%’J) < &(j—i)andsetk = [#] By (2.12), we
have « € ij and so by (h) we have

Wij(1) < Vi1 (A1) + Viej(ut) < g9 (Giye—1(Av1) + G (o)) .
By (d), we have G;,—1(Avt) < G;,(Avt) and so by (f) and (g), we have

Gi,K—l(AVt) + GKJ(H“UI) =a Gi,K(Ut) + :3 GK.j(Vt) = npe Gi.j(Vt)
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Since ¢ is increasing, we have W;;(t) < g v (np G;;(vt)) proves (*¥).

Suppose that (i) holds and let (i, ], ) € Y, be given. By (2.2), we have M ;41 <
Sii+1 a.s. and by (c), we have K(vtS; ;1) < f(E(1)) Viit1(?). Since v > 1, we have
K(tMjit1) < f(E(1)) Viis1(r). Hence, if f(§(1)) < £ (5(1)) we have (i,i + 1,1) ¢
Y,andj—i > 2,andif f(£(1)) > fI'(£(1)), we have £(1) > 0 = £(0). Hence, by (i)
we have £ (j—i—1) < £(j—1i) and since f7 (§(j—i)) > fF ((1)) and (i,/, 1) € Y,
we have V;;(t) < KeMip  So by (i) we have 2a V;;(t)* < r and 9P < b and so by

FEm) - atp
(*) and (h) we have

W;j(1) < 29(bGij(v)) < 2a V(D' = 2a V(1) Vij(t) < rVi(r).

Hence, (e) holds and so we have K(rM;;) < fI(§(j — i) Vi;(?) for all (i,j, 1) €
AO x D.

Suppose that (j) holds and let (i,j, 1) € T, be given. As above, we see that we
have either j—i > 2 or §(1) > 0 = £(0). Hence, by (j) we have § (|5 ]|) < £(j—1i).

Since (i.j.1) € Y, and 1 (6(j — ) = 7 (E(1)). we have Vi;(1) < 7

by (j) we have ga Vi‘,-(t)g < rand np < b and so by (**) and (h) we have

Hence,

Wii(t) < g ¥ (b Gij(vr)) < qa Vij(1)° Vij(t) < rVi(o).

Hence, (e) holds and so we have K(rM;;) < fI'(§(j —i)) Vi;(?) for all (i,j, 1) €
AO x D. O

Remark 2.2

(1): Let ¥ : Ry — R4 be an increasing function and let b, T > 0 be given. Then
¥ satisfies (h) with (a,b,8,q9) = (1,1,0,2). If ¥ (x) = x7, then ¢ satisfies (h)
with (a,b,8,q) = (b*,b,0,2097) If 9 (x) = ¢ and b > 1, then ¥ satisfies
(h) with (a,b,8,q) = (1,b,b* — 1,2).If 9 (x) = ¢ and 0 < b < 1, then ¥
satisfies (h) with (a,b,8,q9) = (1,b,b7° —1,2).

(2): Letf : No — R4 be an increasing function and let » > 0 and ¢ > 1 be given
numbers such that I'(rc, 1) < c. Then we have f' (n) < cf(n) for all n € Ny.
Hence, if (a)—(e) hold, we have K(tM;;) < cf(§(j — i) ¥(Gi;(ve)) for all
(i,j,t) € Ag xD.If y > 0, we have X, (rc,1) < cifandonly if 0 < r < 1
and ¢ > (1 —r/")77. If0 < p < 1, we have ®p(rc,1) < cif and only if
¢ > /0P If y : Ry — Ry is a function satisfying y(s) > 1 forall s > 1
and p, g > 0 are given numbers satisfying 5 + é = land r y(p) < 1, then we
have I, (rc, 1) < cforallc > x(q)/(1 —r x(p)).

(3): Let me comment on the role of the function . In most applications we use
£(n) = n and if so we have D?i = {k e Ny | i <k <j}. In order to obtain the
logarithmic constant in the classical Rademacher-Menchoff inequality (1.2),

we use the function £(n) := L%J forn € Ny; then £ : Ny — Ny is

increasing with £(0) = £(1) = 0 and we have £(|5]|) < £(n) forall n > 2. So
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by (2.12), we have [#] € ij. for all (i,j) € A,. Let £ : Ng — Ny be an
unbounded increasing function and let £~ (n) := inf{fk € Ny | E(k + 1) > n}
be its “inverse” for n € Ny. Then we have £(§~(n)) < n < £~ (£(n)) for all
n € Ny. Hence, if & : Ny — Ry is an increasing function and f(n) = h(§™ (n)),
then we have h(n) < f(&(n)) for all n € Ny and observe that f = h o £~ is the
smallest function with this property. Note that £~ (n) = 2""! — 1 and so we
have h(n) < f(£(n)) for all n € Ny where f(n) = h(2"! —1).

Examples In the examples below, we let (S;;, Mj;j)(ijea, be a max scheme, we let
K: Lg_ (P) — [0, 00] be a P-increasing functional and we let T : Ri_ — R4 be an
increasing homogeneous function.

Example 2.3 Suppose that (IC, I') satisfies (a) withA = u = v = 1. Let p > 0 and
let (gi/)(jea, be a triangular scheme of non-negative numbers satisfying g;; = 0
for all i € Ny and (cf. (1.a)—(1.c) in [18]):

8ij < &ij+1 Y (i,j) € Ay and max (gik +8r) < pgij V(i.j) € Ay

Letf : Ny - R4, & : Ny - Npand & : Ry — Ry be increasing functions
such that £(0) = 0 and let r, ¢ > 0 be given such that f(0) < I'(rf(0),f(1)) and
B +3(y) < qgdx+y) Vx,y > 0.Set D = {1} and G;;(t) = g;;. Then (d), (f)
and (g) holds with @ = B = 1. So by Theorem 2.1 we have:

(La)  If ¥(px) < 50(2x) for all x > 0 and K(S;;) =< f(j — 1) P (giy) for all
(i,j) € Ay, we have IC(M;;) < frr(j — i) ¥(giy) for all (i,j) € Ay (apply
Theorem 2.1 with £(n) = n).

(Lb): IFE([5]) <&(m) Yn=2,9(px) < ;9(x) Vx=0and K(Siy) <f(E( -
i)) ¥(giy) forall (i,j) € Ay, then we have IC(M;) ffrr(g(j— i)) ¥ (gi;) for
all (i,j) € Ay.

Let y > 1andlet ¢ : Ry — Ry be an increasing function such that ¢(-)'/”
is sub-additive. Then (L4, ¥,) satisfies (a) with A = pu = v = 1. Hence, we see

that (1.a) extends Theorem 3.1 in [18], and that (1.b) with £(n) = Lkﬁ;"J, extends
Theorem 3.3 and Corollary 3.1 in [18].

Let ¥, x : R+ — Ry be given functions satisfying ¥ (st) < y(s) ¥ (¢) for all
s > 1 and all 7. Then (Mg, IT,) satisfies (a) with A = u = v = 1. Hence, we see
that (1.a) extends Theorem 3.2 in [18] and gives a general solution to Problem 2 in
[18].

Suppose that I' = X, for some y > 0 and let (t¢)r>0 be a sequence of non-

negative numbers. Applying (1.b) with £(n) = Lkﬁ;”J, 8ij = Dicksj T p = 1

andf(n) = 1, we obtain following extension of the classical Rademacher-Menchoff
inequality:
(Lo If K(Siy) = Zi<k§/ 7 for all (i,j) € Ay, then we have K(M;;) <

i—i 1 \V ..
(1 + alzd ) Y vey  forall i.j) € A, [see (1.2)]
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Example 2.4 Suppose that (KC, I") satisfies (a) forsome A, u,v > landlet D € R
be a non-empty set such that Az, ut € D forall t € D. Let G;; : R4 — R4 be given
functions such that G;;(t) = 0 V (i,f) € Ng x R4 and suppose that (G;;) satisfies
(d), (f) and (g) for some p,a, 8 > 0. Letf : Ny — Ry and ¢ : Ry — R4 be
increasing functions and let » > 0 be given such that f(0) < I'(rf(0),f(1)). By
Theorem 2.1 with £(n) = n, we have

(2.a): If z‘}(% x) < 20(x) forallx > 0 and K(¢S;;) < f(j— i) ¥(Gi;(¢)) for all
(i,j,1) € Ao x (vD), then we have K(tM;) < fI'(j — i) 9(G;;(vi)) for all
(i,j, 1) € Ay x D.

Let ¢ : Ry — R4 be log-convex function and let p, v > 0 be given such that
i + % = 1. Then (L4, ©1,) satisfies (a) with (A, u,v) = (u, @, v). Setr = 2
and ¢ = 21/~ Since A = i, we may take @ = B and since ©/,(2,1) > 1 and
O1/4(2¢,1) = ¢, we have the following extension of Theorem 2.1 in [18]:

(2.b): Ifap <2and E¢(tS;;) < f(j—i) ¥ (Gi;(t)) forall (i,j, 1) € Ao x (vD), then
we have E¢ (1M ;) < 21/07H £(j — i) 9(G;j(v1)) for all (i,j, 1) € Ag x D.

Example 2.5 Suppose that K is weakly subadditive and C(X) < 1 for all X €
L?F (P). Let u, v > 0 be given such that ﬁ + % = 1 and let D € R be a non-empty
set such that ut € D forallt € D. Let 8, p > 0 and G;; : R4 — R be given such
that Gi’i(l‘) =0V (l, l) € Ny x (VD) and G,’J(,LL[) < ,3 G,’zj(l‘) v (l, l) e Ay x (VD)
and (G;;) satisfies (d) and (f). Then (K, X) satisfies (a) with (A, u v) = (1, u, v)
and since A = 1, we see that (G;;) satisfies (g) with (@, 8) = (1, B). Letf : No —
R4+ and ¢ : Rt — R4 be increasing functions. Let #,§ > 0 be given numbers
satisfying u ({2 + £(1)) > 41/%. Applying (2.a) with (r, ¢) = (1,2) and f replaced
by uf, we have

B.a): If ﬁ(% x) < 9@ Vx> 0and K(tS;;) < uf(j— i) H(Gij(?) for all

(i,j,1) € Ay x D, then we have (1M ;) < 2u®(G;;(vt)) forall (i,j,1) €
A() x D.

Note that 7(X) = P(X > 1) is a weakly sub-additive functional such that
TX) < land T(tX) = P(X > %) for all X € Lg_(P) and all + > 0. Applying
(3.a) on this functional and with 9 (x) = ¢~!/*, we obtain Theorem 2.2 in [18].

In the last two results of this section I shall treat the case where KC is a weakly
sub-additive functional satisfying K(0) = 0 and (X)) < 1 forall X € Lg_ (P); for
instance, if L = L4 where ¢ : Ry — [0, 1] is increasing with ¢ (0) = 0.

Theorem 2.6 Let (S;j, M) be a max-scheme, let K : L(_)|_ (P) — [0, 1] be a weakly
sub-additive functional such that K(0) = 0 and let f : Ny — Ry be an increasing
Sfunction such that f(2) > 0. Let 0 < B < 1 and p,q > 0 be given numbers such
thatp + q = 1, let D € (0, 00) be a non-empty interval with left endpoint 0 and let
Go, G1,...: Ry — Ry be given functions satisfying:

(@ K(18y) </~ e O Y (Qij) € Ay xD.
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(b) G,(t) > Gu41(t) and G,(qt) = BG,(t) V(n,t) eNgxD.
Let us define

Fn) = 370 . 0,0 = max (Guer() A Gron(p1).

Co(t) ={u e D | On(w) < (1 + 1) Gu(w)}, Ly(t) = iél_f_() Gn(u).

uecC;;

for all (n,t) € N x Ry. If the following condition hold:
Ln(8) 1

logF(nm) ~ 1T-8°

(c) 48 > 0 so that hmmf

then there exists a > 0 such that IC(% M;j) < af(j—i) e PGiiD for all (i,j,1) €
Ay x D. More precisely, if § > 0 and ¢ > 0 are given numbers satisfying

(d) e > f(2)7"' 4% and log F(n) < ¢ + logf(n) + (1 — B)L,(§) Vn=>2,
then we have IC(% M) < 2e¢f(j—i) e P GO forall (i,j,t) € Ay x D.

Proof Set h(0) = 0 and h(n) = e¢‘f(n) for n > 1 and let us define V;;(r) = 0
for (i,r) € Ng x D and V;;(t) = e P9~ for (i,j, 1) € A; x Ry. We shall apply
Proposition A.2 with D, h, V;; as above, (p,q) = (p, 1) and

lJ(t)_ ( J)v l](t)_ ( )sF:ZlvE(n)Envr:%-

Let (i, k,j) € V and ¢ > 0 be given. Since K is weakly sub-additiveand p + g = 1,
we have

K (M) < K (M) + K (5 M) + (580 -

Hence we see that condition (a) in Proposition A.2 holds. Since M;; = 0 a.s. and
K(0) = 0, we have A;;(f) = 0 = V;;(¢) and since G, > G,+;, we see that the
condition (b) in Proposition A.2 holds. Let (i, /,7) € Ao x D be given, Since g < 1
and D is an interval with left endpoint 0, we have g € D. So by (a) and (b) we
have G;_i(qt) > B Gj—i(t) and B;j(f) < h(j — i) Vi;j(1). Hence, we see that (a)-
(c) in Proposition A.2 hold and since r = %, we have that h*! is increasing and
h(n) < h® (n) < 2h(n) forall n € Ny. Since e¢ > 1, we have f(n) < h(n) < h>!(n)
foralln € N.

Suppose that (d) holds for some § > 0 and some ¢ > 0. Let (i,j,1) € Y, be
given, where Y, is defined as in Proposition A.2. Since M, ;| < S;;4+; a.s. and
B <1 < e, we have by (a)

Ajit1(1) <KL Siie1) (1) e Gt < BZ1(1) Vg (1)
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and since (i,j, ) € Y,, we have n := j—i > 2. So by (2.4) and weak sub-additivity,
we have

¢ fn) e PO < BT (n) Vig() < Ai(t) < F(n) e™ 0.
Taking logarithms and using (c), we have

(I =B)Gu(1) <logF(n) —logf(n) —c = (1= p)L,(5)

and since B < 1, we have G, (1) < L,(p). So we must have Q,(t) > (1 + §) G,(¢).
Hence, there exists an integer 1 < m < n such that G,,—(t) A G,—,,(pt) > (1 +
8) G,(?). Set k = i + m. Then we have i < k < j and

Vike1 (0 + Vij(pt) < 2 (Vig—1(t) V Vig(pr)) = 2 =P Gt OAGu=n(p0)

< 26—ﬂ(1+8) Gu(t) — 2VjJ(l)1+8 )

Since K(X) < 1 and (i,j,f) € Y, we have A;;(f) < 1 and hrEI(n) Vij() < 1.
Since e“f(2) < h*¥'(n) and § > 0, we have 2 Vi.j(t)‘S < 2¢7f(2)7? and since
e > f(2)71 4131 we have

Vike1 (1) + Vig(pt) < 2Vi(0)° Vij(t) < 3 Vi) = rViy(e).

Since £ is strictly increasing and i < k < j, we have k € Dii and so by
Proposition A.2 we have IC(% M) < hrEI(j — i) Vij(®) for all (i,j,1) € Ay x D.
Since h¥'(n) < 2h(n) < 2¢f(n) and Vi (1) = e PG— we see that IC(% M) <
2e°f(j—i) e PG=O forall (i,j,1) € Ay x D.

Suppose that (c) holds and let § > 0 be chosen according to (c). Since F(n) —
oo. there exists an integer ng > 1 such that F(ng) > e and log F(n) < (1 — B) L,(§)
for all n > ny. But then there exists ¢ > 0 such that ¢¢ > £(2)"'4!/% and ¢ >
—logf(2). Since F and f are increasing, we see that (c) implies (d) with this choice
of (8, ¢). O

Corollary 2.7 (cf.[12] and [13]) Let (S;;, M) be a max-scheme, let KC : L(_)|_ (P) —
[0, 1] be a weakly sub-additive functional such that IC(0) = 0 and let f : Ng — R4
be an increasing function such that f(2) > 0. Let0 < o, B < 1 andp, q > 0 be given
numbers such that p + g = 1 and let D C (0, 00) be a non-empty interval with left
endpoint 0. Let ¢ : Ry — R be a given function and let g1,8>,... : Ry — Ry
be increasing functions satisfying

J—itgj—i(1)
(b) ¢(pt) = ad(l),¢(q) = Bp(1) and gu(1) < gu1(1) YV (n,1) ENXD.

(a) K(2Si)) <fGi—i) exp(—&) V(i,j.)) € A1 xD,
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Set F(n) =f(1) + --- + f(n) for n € N and let us define

* = * ; _o@)
C () ={ueD|¢du) >0, g,(u) >nb} and L;(0) = elc*f(é)) n+gu (1)

forall (6,n) € Ry x N. If the following condition hold:

Ly (0) 1

(c) 30 <6 < ;% so that hmmf ToeFm > =B

then there exists a > 0 so that

K(AMy) < afGi—i) exp (-=5225) V(i) € A xD.

o

More precisely, if 0 < 0 <
f(Z)_l 4(29-{—1)/(0(—9(1—0()) and

H
|
5

and ¢ > 0 are given numbers satisfying ¢ >

(d) logF(n) <c+logf(n)+(1—-B)L¥©O) VYVn=2,

then we have IC(% M) < 2ef(j—i) exp (—j_f?%)forall (i,j,t) € A; x D.

Proof Suppose that (d) holds and let us define Go(t) = ¢ (1) and G,(t) = +gt)(t)

for (n,t) € N x R4. Since g, is increasing, we see that the conditions (a) and (b) in
Theorem 2.6 hold and we shall adopt the notation of Theorem 2.6 with this choice

of (G,). Let0 < 6 < ;% andn > 2 be a given and set § = “_209(;“), y = 1+f$a_“)
and m = [ny]. Then we have 0 < § < « and% < ﬁ <y < landsincen > 2

andn—m >n(l—y) > 0,wehave 2 < m <n-—1.Letu € C,(8) be given.
Since ¢ (pu) > « ¢ (u), we have Gy—1 (u) A (@ Gy—p(u)) < (1 + 8) G,(u) and since
1 <ny <m <1+ ny, we have

n=(148)(m=1) - (l+5)y — na—(148) (n—m) o= (l+8)(l Y _
: >n =nf and e 2N e =10

Let 1 <j < nbe a given integer and let x € R be a given number. Then an easy
computation shows that we have

Gi(u) <xG,(u) = ¢u) >0, x> 1 and g,(u) > =
Applying this with (j,x) = (m— 1,1 + §) and (j,x) = (n —m, laﬁ), we have

—(1+8)(m—1 144
gul) > =IO re U0 g

Hence, we have C,(6) € C;(8) and L () < L,(6) and so we see that the corollary
follows from Theorem 2.6. O

Remark 2.8 Recall that 7(X) := P(X > 1) is a weakly subadditive functional
with ’T(% X) = P(X > 1); see Example 2.3 in Remark 2.2. Kevei and Mason (see
Theorem 2.1 in [13]) have proved a result similar to Corollary 2.7 in case that L =
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T, ¢(t) = £ and f(n) = A but with condition (c) replaced with the following
condition lim L7(0) = oo V0 < 6 < 1, where L; (0) := inf,ecx )
n—o0

gn(u) logu”
To compare Theorem 2.1 in [13] with Corollary 2.4, let us consider the setting of
Corollary 2.7 and let A : R4 — Ry be an increasing function such that A(0) = 1

and lim sup % < 1. Let us define
n—o0

° — ¢ (u)
LO) = inf ooty YneNVe>o.

Let 0 < 6 < % and n € N be given such that 6 L;(f) > 1 and let
u € C;(0) be given. Since nf < g,(u) and L7 (6) g,(u) A(¢p(u)) < ¢(u), we have
nbL;(0) A(¢(u)) < ¢(u) and since A is increasing and > 1, we have n < ¢ (u).
Hence, we have A(n) < A(¢(u)) and

Q) 0 ¢ (u) 6 jo
n+gn(u) Z 1+6 gn(1) AP (u) A(¢(”)) 2 1+6 Ln(e) A(n) Vu € C:l((e) .

"
Taking infimum over u, we see that L>(0) < # LX ((ne))
o

. . ° 1 . . . °
1= satisfying L7 (0) > 5. Hence, if li,nig.}f L) >

forn e Nandall0 < 0 <

146
6 (1=p)’

holds. In particular Theorem 2.1 in [13] follows from Corollary 2.7.

then condition (c)

3 Ottaviani-Lévy Type Inequalities

In this section I shall prove a maximal inequality of the Ottaviani-Lévy type for
random vectors with values in a measurable linear space. Recall that (V, B) is a
measurable linear space if V is a real vector space and 5 is a o-algebra on V such
that (x,y) ~ x 4+ y is measurable from (V x V, B ® B) to (V, B) and (s,x) ~ sx
is measurable from (R x V, B(R) ® B) to (V, B). If V is a real vector space, we
let V* denote the algebraic dual of V; that is the set of all linear functionals from
Vinto R and if 2 € V* is a non-empty set we let B=(V) denote the smallest o-
algebra on V making £ measurable for all £ € E. Then (V, BZ(V)) is a measurable
linear space and X : (R2,F) — (V,BE(V)) is measurable if and only if £(X) is
a real random variable for all £ € E. If span(E) denotes the linear span of E,
then X1, ..., X, : Q — (V, BE(V)) are independent if and only if n(X1), ..., n(X,)
are independent real random variables for all n € span(E). Let (V.| - |) be a
Banach space and let B(V) denote the Borel o-algebra on V; that is the smallest
o-algebra on V containing all open sets. If (V, || - ||) is separable, then (V, B(V)) is
a measurable linear space but if (V, | -||) is non-separable, then (V, 5(V)) need not
be a measurable linear space; for instance, if £°° is the set of all bounded sequences
with the sup-norm ||x||ec = Sup,ey |*n|, then (£%°, B(£°°)) is a measurable linear
space if and only if the continuum hypothesis holds.
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Let T be a non-empty set and let V' C R” be a linear space of real valued
functions on 7. Let m,(x) = x(f) for x € V and t € T denote the evaluation
map. Then 7, € V* forall t € T and we let BY (V) denote the cylinder o-algebra;
that is the smallest o-algebra on V making 7, measurable for all € T. Note that
BT(V) = BE(V) where 8 = {m, | t € T}. Hence, we see that (V, B"(V)) is a
measurable linear space and recall that X = (X(f) | # € T) is a stochastic process
with sample paths in V if and only if X : (22, F) — (V,B(V)) is a measurable
function.

If V is a real vector space and & C V* is a non-empty set, we let Q% (x) :=
supgeg &(x) for x € V denote the support function of E. Then QF is sub-additive
and homogeneous with values in (—oo, co] and Q% (0) = 0. Note that QF is a semi-
norm if and only if Q% (x) = Q% (—x) forall x € V. Hence, if & = & U (—E&), then
QF is a semi-norm and we have Q% (x) = Supgeg [(x)| forallx € V.

If G : Ry — Ry is an increasing, right continuous function, we let A denote the
Lebesgue-Stieltjes measure on R induced by G; that is the unique Borel measure
on R satisfying A([0, x]) = G(x) forall x € R.

Lemma 3.1 Let S be a real random variable and let L, M and V be non-negative
random variables. Let o, B : Ry — Ry be Borel functions satisfying

(a) a(s) PM = 5) < E*(1yz> S) + B(s) P(V =5) VseRy.

Let G : Ry — Ry be an increasing, right continuous function such that A(x) :=
f[o,x] a(s) Ag(ds) < oo and B(x) := f[o,x] B(s) Ag(ds) < oo for all x > 0, Then we
have

(b) EA(M) < E*(SG(L)) + EB(V).

Leta,b,p,q,u > 0and c > 1 be given numbers satisfying

(c) Glu+cx) <a+pAkx), Bx) <b+qgGkx) Vx=>0.

IfV<u+cMas. and S > 0 a.s., then we have

(d) (1-pg)" EG(V) < a+ bp+ pE(SG(L)).

Proof (b): If E*(SG(L)) = o0, then (b) holds trivially. So let us suppose that
E*(SG(L)) < oo and set H(s,w) = ly>g (@) S(w) and ¥ (s) = E*(S l{-y) for
all s € Ry and all w € Q2. By Tonelli’s theorem we have

ESTG(L) = /R i H' (s, ) (A¢ ® P)(ds, dw) < 00
+X

and so we have [, H*(s,w) P(dw) < oo for Ag-a.a. s € Ry. By (a), we have
Y(s) > —B(s) for all s € R,. Hence, we have H(s, -) € L'(P) and EH(s, -) =
¥ (s) for Ag-a.a. s € Ry. So by the Fubini-Tonelli theorem we have

E(SG(L)) = /

H(s,w) (A¢ ® P)(ds,dw) = / ¥ (s) Ag(ds)
RJ'_XQ R+
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and by Tonelli’s theorem we have EB(V) = fR+ B(s) P(V > 5) Ag(ds) and
FAM) = / P(dw) / a(s) =5 (@) Ag(ds)
Q Ry

= / a(s) P(M > s) Ag(ds) .
R4

By (a), we have a(s) P(M > s) < ¥ (s) + B(s) P(V > s) for all s € Ry and since
G(x) = Ag([0,x]) for all x € R4, we have

EAM) < Y (s) Ag(ds) + B(s) P(V = 5) Ag(ds)
Ry Ry

= E(SG(L)) + EB(V)

which proves (b).

(d): Suppose that (c) holds and that we have V < u + cM a.s. and § > 0 a.s.
Set M, = M Apand V, = V A pforall p > 0. Since § > 0 a.s. we have
w:= E(SG(L)) > 0 and that (a) holds with (M, V) replaced by (M, V,). So by (b),
we have EA(M,) < u + EB(V,) and since ¢ > 1 and V < u 4 c¢M a.s., we have
V, < u+cM,as. So by (c) we have

EG(Vp) =a+pEAMp) < a+pu+pEB(V))
<a+pp+pb+pgEG(V,).

Since 0 < G(V,,) < G(p) < ocoand 0 < a+ pu + pb, we have (1 —pg) T EG(M,) <
a+ pu + pb for all p > 0 and since G(M,) 1 G(M), we see that (d) follows from

the monotone convergence theorem. O
Theorem 3.2 Let Qp, ..., 0, : @ — RandRy....,R, : @ — R be (extended)
random variables and let us define My = Qo, M; = max(Q1,...,Q;) for i =
1,...,nand

p=inf{l<i<n|Q;>t} VteR.

Let y : R*? — [0,1] be a given function and let r,s,t € R be given numbers
satisfying

(a) Qw <M1 v(Mi—; +Ry+R) as. V1<i<n.
(b) PR, >s,15,=0) <y(s,HhP(ry =i) VI<i<n.
(c) r+5>0 and QoA Q) <t a.s.

Then we have

(d) P(Qn>r+s+1t)<PRy>r,M,>t)+y(s,t) PIM, > 1).
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Set 0(s, t) = sup,s, y(s, u) and O(s, t) = 11__%((‘2?; forall k € Ny with the convention
that U4 (s, t) = kif 0(s,t) = 1. If Q,, = M, a.s., then we have

(e) P(M, >t +k(r+s)) <(s,0) P(Ry > r) +0(s,) P(M,, >1) YkeN,.
Proof Let N € F be a P-null set such that Qp(w) A Q1(w) < tforallw € Q\ N
and

On(@) = Mi—1 (@) V (Mi—1 (@) + Ro(w) + Ri(w)) Vo € Q\NV 1 <i<n.

Let 1 < i < nbeagivenintegerandletw € {r, =i, O, >r+s+1t}\Nbea
given element. Then we have M;_|(w) < t < Q;(w) and since r + s > 0, we have
t<r+s+1t<Quw). Sowehave M;_;(w) <t < Q,(w) and

r+s+1t<Qyw) <Mi—1(0) + Ry(w) + Ri(®w) <t+ Ry(w) + Ri(w) .

Letw € {ty =1, Q, > r+ s+ 1t} \ N be a given element. Since Q;(w) > ¢ and
Oo(w) A Q1(w) < t, we have My(w) = Qo(w) < t and since r + s > 0, we have
t<r—+s—+1t< Quw)and so we have

r+s+1t<Quw) < My(w) + Ro(w) + Ri(w) <t + Ro(w) + Ri(w) .

Thus, wehave {t; =i, Q, >r+s+t}\NC{Ry+R; >r+s}foralll <i<n
and so by (b) we have
Pl=i,Q0u>r+s+t)<P(ti=i,Ry+R >r+ys)
<P(ty=1i,Ro>r)+y(s,t)P(r, =)
forall 1 <i <n.Sincer+s > 0, wehave {Q, > r+s+t} C{M, >t} = {r, < n}.
Thus, summing the inequality overi = 1,...,n, we obtain (d).

Suppose that O, = M, a.s. and set ¢, =t + k (r+s) forall k € Ny. Since ¢y = ¢
and Jy(r) = 0, we see that (e) holds for k = 0. Suppose that (e) holds for some
integer k > 0. Since ¢; > tand cx+; = r + s + ¢k, we have by (d) and the induction
hypothesis:

P(My, > cpy1) = P(Qn > 1+ 5+ c) < P(Ro > 1)+ y(s, ) P(My, > )
< P(Ry>r)+0(s,t) P(M,, > cx)

< (14 0(s, 1) (s, 1)) P(Ry > r) + 0(s, )" "' P(M,, > 1),

and since Uy41(s,1) = 1 + 0(s, 1) Ox(s, t), we see that (e) follows by induction. O

Theorem 3.3 Let (V, B) be a measurable linear space, let n > 2 be a given integer
andlet X1, ..., X, : Q — (V, B) be independent random vectors with partial sums
So=0andS; =X+ ---+X;for1 <i <n. Let 8 C V* be a non-empty set of
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B-measurable linear functions such that QF (x) := Supgeg &(x) is B-measurable.
Let us define

M7 = max Q5(S) , LY = max Q°(X)) , M, = max Q%(S, —S$)),
1<i<n 1<i<n ’ i<v=n

B.(s) = min inf P(£(S, —S,) <s), T,(s) = max P(MZ, > s),
1<v<n £€B 1<i<n ’

ya(s) = max P(Q5(S, —S) > 5), Puls) = max P(Q(Si — Su) > 5)

forall0 <i<nandalls € R. Set ©,(s) = 11__1;:“(8; for k € Ny with the convention
that ©,(s) = kif [y(s) = 1. Let f : (—o0, 00] — [0, 00] be an increasing function.

Then we have

(@) Bu(u) PIME > s +u) < P(Q%(S,) >s5) VseRVueRy.

(b) Bu(u) EF(ME —u) < Ef(Q%(S,)) YueRy.

(c) Bu(s) =1—7,(s) and B, () Tp(s + 1) < yu(s) < Tu(s) VseRVueR,,

and ifr,s,t € Ry and k € Ny are given numbers, then we have

(d) P(QE(S,) > r4s+1) < P(LE > r) 4 yu(s) PME > 7).
(¢) PIMZ > 1+ k(r +5)) = ©,4(s) PLE > 1) + T (5 P(ME > 1).

Suppose that Q% (x) > 0 for all x € V and let u > 0 be a given number such that
I(u) < 1. Let G : Ry — Ry be an increasing, right continuous function and let
K > 1 be number such that G(2x) < K G(x) for all x > 0 and set

=5y —logph and v = K2 1 Vhe Ny,

Then we have

= AME eA(2r+u) y
(f)Lnfra.s. = Ee ”SW V0§A<r+—u

(g) (1 =y T, EGMMZ) < v G(u) + v EG(LE) VkeNp.
Proof

(a): Since (V,B) is a measurable linear space and QF is B-measurable,
we see that Q% (S)) ..., Q%(S,) are (extended) random variables. Since
Xi,...,X, are independent, we see that (QE(Sl), e, QE(Si)) and S; — S,
are independent for all 1 < i < n. Hence, we see that (a) follows from
Theorem 3.1 in [9].

(b): Let s,u > 0 be given numbers and set J, = f~'((u,o0]). Since f is
increasing, we see that J,, is an interval of the form (x, co] or [x, oo] for
some x € [—00, 00]. So by (a) we have

B (u) P(f(MnE —u)>s) < B,(u) P(MnE —uely
< P(Q%(SY) € Jy) = P(f(Q%(Sn) > 9).
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Hence, we see that (b) follows from (3.30), p. 206 in [8].
Lets € R and u € R be given and set

Bin(s) = min inf P(E(S, —S,) <s) Vi=0,1,...n—1.
i<v<n £€E

Then we have B,(s) < Bi.(s) forall 0 < i < n and since £(S, — S,) <
QE(S, — S,) for all £ € E, we have B,(s) > 1 — 7,(s). Applying (a) on
Xi+1,...,X,), we see that B;,,(s) P( l:n > s+ u) < P(QE(S, —S) > u)
and since Q¥ (S, — §;) < MLE”, we have B,(s) T(s + u) < yu(s) < T,(s).
Let r, 5, € Ry be given. We shall apply Theorem 3.2 with Qp = 0 and
0 = QE(Si) for1 <i < nand with Ry = LnE,Rn =0andR; = QE(Sn —
S;)forl <i<n.Letl <i<nbegiven. Since S, = Si—1 + X; + (S, — S;)
and QF is subadditive, we have

0n = 0%(S,) < 0%(Si—1) + 0% (X)) + Q%(S, — 8;) < Qi1 + Ro + R;

and since S, = S,—1 +X,, and S, = X; +(S,—S81), we have O, < Q,—1 +Ro
and Q, < Ry + R;. Since Qp = R, = 0, we see that condition (a) in
Theorem 3.2 holds, and since R; and (Q(S}), ..., Q(S;)) are independent,
we see that condition (b) in Theorem 3.2 holds with y (s, f) = y,(s). Thus,
we see that (d) follows from Theorem 3.2.

Let r,s,t € R4 be given. We shall apply Theorem 3.2 with Qg = 0, Q; =
ME for1 <i<nandwithRy=LZ R, =0andR; = M{, for 1 <i <n.
Let1 <i < nbe given. Since Q= (S,) < Q%(Si—1)+ Q% (X;) + Q% (S, —S)),
we have

0%(S,) < Qi1 +Ro+ R Vi<v<n,
or equivalently max;<, <y 0%(S,) < Qi_1 + Ry + R;. Since

Qn = Qi—l V' max QE (Sv) ,
i<v=<n

we see that (a) in Theorem 3.2 holds and since R; and (Q%(S)), ..., Q% (S)))
are independent and Qp = 0, we see that (b) and (c) in Theorem 3.2 holds
with y (s, 1) = I',(s). Thus, we see that (e) follows from Theorem 3.2.
Suppose that Q% (x) > 0 forall x € V and that y := I',(u) < 1. Lets € R4
and k € Ny be given. Since s + ku = 7 + k(57 + u), we have by (e)
with (r,5,1) := (g7, 4 1757)

P(ME > s+ ku) < = P((k + DLE >5) + uf P((k+ 1)ME > ).

Suppose that L < r as. and let k € Npand 0 < A < % be given
where v = r+uand U = (ME — r)T. Taking s = (k + 1)r, we
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see that P(U > kv) < uf = ¢ for all k € Ny. Since 0 < A < % and
P(kv < U < (k+ 1)v) < e, we have

) o0

. 3 2 Av—y)k d
Ee*Y = 3 E(€ Lgp<v<atiyy) <€ Y eM Mk = e
k=0 k=0

and since M < r 4+ U, we have Ee* M7 < ¢*r Ee*U which completes the
proof of (). Let k € Ny be given and set M = (57 ME — u)™. Applying
the inequality above with s replaced by (k + 1) s, we have

P(M > s) = P(M® > (k+ 1)(s + 1)) < P(MZ > (k + 1)s + ku)

< 25 PILY > 5) 4+ PME > 5)

for all s > 0. Hence, we see that condition (a) in Lemma 3.1 holds with
(M,L,S,V) = (M,LE, ﬁ,MnE) and (a(s), B(s)) = (1, 1) and note that
ME < up+cxM where uy, = (k+1)u and ¢, = k+1. Since G(2x) < K G(x),
then an easy argument shows that G(sx) < K s G(x) for all s > 1 and all
x > 0. In particular, we have

G(ur + crx) < K G(uy) + K G(crx) < K2 (k + 1) (G(u) + G(x)) .
Since a(s) = 1 and B(s) = u*, we see that condition (c) in Lemma 3.1

holds with a = K? (k + 1) G(u), p = K> (k + 1), b = 0 and ¢ = p* and
so we see that (g) follows from Lemma 3.1.

O
Remark 3.4 Let (V,| - ||) be a Banach space and let E be a countable set of
continuous linear functionals such that [|x|| = supgegz §(x) for all x € V. Then

the classical Ottaviani inequality (see Lemma 6.2, p. 152 in [14]) states that

a- nn(s))P(lmax IS:l > s+ u) <P(IS;|| >u) Vs,u>0

<is<

where 7,(s) = max;<j<, P(|S, — Si|| > s). Let y,(s) and y,(s) be defined as in
Theorem 3.3. Since Q%(x) = |x|, we have y,(s) = 7,(x) = n.(s) and so by
Theorem 3.3.(c) we have 8,,(s) > 1—n,(s) and in general we have that §,,(s) is much
larger than 1 — 1, (s). Hence, we see that Theorem 3.3.(a) extends and improves the
usual Ottaviani inequality. At the same time, we have that (a) extends and improves
the usual Lévy inequality. To see this let

xy(p) =inf{x e R|P(Y =x) = p}. xy(p) =inf{x e R[P(Y =x) > p}
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denote the smallest and largest p-fractile of the random variable ¥ for 0 < p < 1.
Then we have

Bu(9) Zp Vs> max sup xi g, (p).
= E€B

Suppose that £(S; — S,) has median < 0 forall 0 < i < nand all £ € E. Then
we have $,(0) > % So by Theorem 3.3.(a) with u = 0 we have P(ME > 5) <
2 P(QE(S,) > s) forall s € R.

4 Maximal Inequalities for Weakly Dependent Random
Variables

In this section I shall establish maximal inequalities under weak dependence
assumptions. The weak dependence properties will be stated in terms of an
appropriate stochastic ordering. Let (S, .4) be a measurable space and let ® be a
non-empty set of functions from § into R. If x and v are measures on (S, .4), we
write & <o v if [Tdp < [T¢dv forall ¢ € ®, where [*fdu and [, fdu
denote the upper and lower p-integrals of f; see [10]. If X : (2, F) — (S, A) isa
measurable function, we let Px(A) := P(X~'(A)) for A € A denote the distribution
of Xand if Y : € — S is a measurable function, we write X ~ Y if Py = 13y and
we write X <¢ Y if Px <o ﬁy.

If H is a set of subsets of S, we let W(S, H) denote the set of all functions f :
S — R such that for all x < y there exists a set H € H U {@, S} satisfying {f > y} €
H C {f > x}; see [10].

Let k € N be an integer. Then we say that J C R¥ is an upper interval if [u, ¥] € J
for all u € J and we define lower intervals similarly. We let 7 (R¥) denote the set
of all upper intervals belonging to B*. Note that W(RF, 7 (IR)) is the set of all
increasing Borel functions from R¥ into R.

LetX : Q — R"and Y : Q@ — R be random vectors. Then we say that X and Y
are negatively In-correlated if

PXelJ,Yeh)<PXel)PY )V € TRV, e TR 4.1)
and we say that X and Y are positively In-correlated if
PXel,Yelh)>=PXeJ)PYel) VS e TRV, € j(R"). “4.2)

Recall that a n-dimensional random vector X = (X\,...,X,) is associated if
and only if X and X are positively In-correlated, that X is negatively associated if
and only if X, and Xg are negatively In-correlated for all disjoint non-empty sets
o, € {1,...,n} and that X is positively associated it and only if X,, and Xp are
positively In-correlated for all disjoint non-empty sets o, 8 < {1,...,n}, where
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Xy = (Xi)ieq is the o’th marginal of X whenever & C {1,...,n} is a non-empty set
(see [7, 11, 15, 19, 22]). I suggests to give the definition of association, in order to
compare a well-known concept with this new definition of dependency.

If 1 and v are measures on (R¥, B¥), we shall consider the following integral
orderings on RX, see [10]:

w =g v ifand onlyif u(J) < v(J) forallJ € J(R¥).

U <o v if and only if u([x, *]) < v([x, *]) for all x € R¥,

MU =<ism v if and only if f * fdu < f * fdv for all increasing, super-modular
functions f : R¥ — R.

M Zgm v if and only if f * fdu < f * f dv for all super-modular Borel functions
f:RE SR,

U =psm v if and only if f * fdu < f * f dv for all bounded, super-modular Borel
functions f : R¥ — R.

Note that the sequence X1, . . ., X, is a submartingale if and only if X1, ..., X), are
integrable and

E((Xiy1 — X)) ¢(X1,...,X)) >0 Vo eBL(R)VI<i<n, (4.3)

or equivalently if X,...,X, € L'(P) and (X1,..., X5, X)) <o, (X1,...,Xi, Xi41)
for all 1 < i < n where ®; is the set of all functions of the form (xi,...xi+1) ~
Xi+1¢(x1,...x;) for some ¢ € By (R?). In [20], Newman and Wright have defined
a demi-submartingale to be a sequence X1, ... X, € L' (P) satisfying

E((XH_] —X[)¢(X1, - ,Xi)) >0 V¢ € IB+(RZ) Vi<i<n, “4.4)

or equivalently if X;,...,X, € L'(P) and (Xi,...,X;, X)) <y, X1,.... X, Xit1)
forall 1 < i < n where ; is the set of all functions of the form (xi,...x+1) ~
Xir1 ¥ (x1,...x;) for some ¥ € IB(RY).If Xy,...,X, is a demi-submartingale, we
have EX; < --- < EX,. If X,...,X, € L (P) is a demi-submartingale satisfying
EX; = EX,,, we say that X1, ..., X, is a demi-martingale; see [20].

Proposition 4.1 Let j1,v € Pr(R%) be probability measures and let 1) be a Borel
measure on R* such that F,(x) := n([*,x]) < oo for all x € R, Let (1, ..., jx)
and (v1, ..., i) denote the 1-dimensional marginals of v and v, respectively. Let
Vi,....¥x : R = R be increasing functions and let wy(B) := w(y~'(B)) and
vy (B) := v(Y ! (B)) denote the image measures for B € B* where

k
Yx) = Wi(x), . b)), T =D vi(x) Vx=(xp,...,x) € R,
i=1
Let 0 be a Borel measure on R and let o > k be a number satisfying

Gy (1) :=%a) / (t—y)* 'o(dy) <oco VieR.
(—o0.1]



84 J. Hoffmann-Jgrgensen

Let ¢ : R — R be a convex function and let ¢y : R — R be an increasing convex
function. Then we have

(a) =X, v = Wy Xx vy forx=st, or,ism, sm, bsm.

(b) 1 <4 v & [“hdu < [*hdv for all increasing functions h : R* — R.
(¢) WZ3mV = U=ZpsmV & UZmvandu; =v; Vi=1,... k.
(d) p=imv = f*(wooﬁ)duff*(wooﬁ)d%

(&) L Zpsmv = [T(poX)du = [T(poX)dv.

(f) If & 2o v, then we have

(f1)  [p(Fyoy)dp < [p(Fyoy)dv,

(f:2) ka(Ga oX)dpu < ka (Gu o X) dv,

(£3)  Jr (1_[;;1 Vi) dp = [ (n;;l v;h)dv.
(g) U =ismV = W 2oV, and if k = 2, then the converse implication holds.
Proof

(a): Since u,v are Radon measures, we have f*fd,uw = f*(f o ¥)du and
[*fdvy = [*(f o ¥)dv for all functions f : R¥ — R.IfJ C RFis an
upper interval, then so is ¥~ !(J). Hence, we see that (a) holds for x = st. Let
x = (x1,...,x) € RFandsetJ; ;= ¥;"([x;,00)) fori = 1,... k. Then
J1....,Ji are upper intervals on R and since ¥~ ([x, *]) = 1_[{'(=1 Ji, we see
that (a) holds for x = or. If f : R¥ — R is increasing or super-modular,
then so is f o Y (see Proposition 4.1 in [10]). Hence, we see that (a) holds for
X = ism, sm, bsm.

(b) follows from Theorem 3.3.(3+4) in [10] and (c) follows from Theorem 4.7
in [10]. By Proposition 4.1 and Theorem 4.4 in [10], we have that ¢y o X is
increasing and super-modular. Hence, we see that (d) holds.

(e): Suppose that © <psm v and let fi(B) := u(—B) and V(B) := v(—B) denote
the reflected measures for B € B*. Since f(—x) is super-modular for every
super-modular function f(x), we have i =<psm V. So by (d) we see that
f*(¢ oX)du < f*(fp o X)dp if ¢ is either increasing or decreasing. So
suppose that ¢ is neither increasing nor decreasing. Then we must have m :=
inf,egr @(f) > —oo and there exist convex functions ¢, ¢, : R — [0, 00) such
that ¢ is increasing, ¢, is decreasing and ¢ () = m+@; () +¢,(¢) forallt € R.
By the argument above we have [p (¢j 0 ) dp < [p (gj0 Z)dv forj = 1,2
and since £ (R¥) = 1 = v(R¥), we have Jre (@oX)dp < [pi (9o X) dv which
completes the proof of (e).

(f.1):  Suppose that ;& <, v. By (a), we have ity <o vy and since F,(x) <
oo for all x € R, we have that 7 is o-finite. So by Theorem 3.3.(7) in
[10], we have

/Rk(F,,ol/f)dﬂ=/RkF,,duwS/Rande:/Rk(Fnol/,)dU

which proves (f.1).
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(2):

(£.2):

(£.3):

Let > 0 and x € R be given. Since I'(8 + 1) = B '(f) we have

X _ X (_)ﬁ—l
T =yl )b
— [ oty [ Sa= [ ee@) = Ginw.
(=00.x] y (—00.4]

Let xq,...,x; € R be given. Applying the equality above with § =
o — 1, we find

X1

Ga(X1+~~~+xk)=/ Go—1(ti +x2+ -+ x) dty .

—00

Since o > k, we may iterate this equality k times and if so we obtain
the following equality

X1 Xk
Ga(x1+~~~+x;<)=/ dll"'/ Goi(ti + -+ + 1) diy..

—00 —0o0

Set U(x) =x;+---+xforallx = (x1,...,x) € RF and let us define
0x(B) = fB Go—1(U(t)) dt for all B € B*. Then o, is a Borel measure
on R¥ satisfying o, ([*,x]) = G,(U(x)) < oo for all x € R*. By (a),
we have py <o vy and so by (f.1) we have

/Rk (Gaoz)du=/Rk (GaoU)d/Wf/Rk (GaoU)deszk (GooX) dv

which proves (f.2).

Let A% denote the k-dimensional Lebesgue measure on R* and set
)L’_‘F(B) := AM(B N [0, 00)¥) for B € B*. Then we have Aﬁ_([*,x]) =
]_[f.‘:l xl.+ forall x = (xi,...,x;) € R¥. Hence, we see that (f.3) follows
from (f.1).

Suppose that j4 <igm v and let u € R¥ be given. Since 1[4+ 1s increasing and
super-modular, we see that ;t <, v. So suppose that k = 2 and p =<, v. Let
g : R? — R be a bounded, continuous, increasing, super-modular function and
let (aj,az) < (b1, b;) be given vectors. Since g is super-modular, (a;,a;) =
(al, bz) AN (bl, 612) and (bl, bz) = (al, bz) \Y (bl, az), we have

g(b1,b2) + glar,az) — glar, ba) — g(b1,a2) > 0

and since g is bounded and continuous, we have that the Lebesgue-Stieltjes
measure A, is a finite measure on (R?, B?) satisfying

Ag(lar, bi]x]a, , by]) = g(b1,b2) + glar, az) — g(ar, by) — g(b1, az)
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for all (a1,a2) < (b1, b2); see [8, pp. 37-38]. Let Fo(x) = A, ([*,x]) be the
distribution function of A,. Since g is bounded, we have that m := inf, cp> g(x)
is finite. Let us define g; (s) := infier (g(s, #) —m) and g»(s) := infer (g(t, ) —
m) for all s € R. Since g is increasing and bounded, we see that g; and g are
bounded, non-negative and increasing on R and that we have

Fo(x1,x2) = g(x1,x2) — g1(x1) — g2(x2) —m  V (x1,x2) € R2.

Hence, we have g(x1,x2) = F,(x1,x2) + g1(x1) + g2(x2) + m and by (f.1) we
have f]R2 Fodp < fRZ F, dv and since t; < v; and g; is increasing fori = 1,2,
we have

/ (61(5) + 2(0)) j(ds. ) < / (61(5) + g2(0)) v(ds. di) .
R2 R2

Since u(R?) = 1 = v(R?), we have [p, gdu < [z, gdv for all bounded,
continuous, increasing super-modular functions g : R?> — R. Hence, by
Theorem 4.7 in [10], we have p <jsm v which completes the proof of (g).

|

Remark 4.2 Theorem 3.9.11, p. 118 in [19] states that the first implication in
Proposition 4.1(c) is an equivalence. This is true in dimension 1 and 2, but fails
in dimension 3 or more (see Example C in [10]). It seems, that this mistake has been
overlooked in the later literature and I have not found any attempt to correct this
mistake.

Proposition 4.3 Let (S1, A1) and (2, A>) be measurable spaces. Let X; : @ — S;
and X; : Q — S; be measurable functions fori = 1,2. Let H; € A and H, € A,
be non-empty sets satisfying

(a) P(X, € Hy ., X2 € Hy)) < P(X, € Hy . X, € Hy) ,
(b) P(X; € H) = P(X1 € Hy), P(Xz € Hy) = P(X2 € Hy)

for all H € H, and all Hy € H,. Let ¢; € W(S;, H;) be a given function for
i =1,2. Then we have

(¢) E*¢1(X)) = E*¢1(X1) , E*o(X2) = E*¢(Xs) .
(d) E*(¢1(X1) $2(X2)) < E*(¢1(X1) $2(X2)) .
(e) Ex(91(X1) §2(X2)) < Ex(¢1(X1) $2(X2)) -

Proof Set HY = {0,S;} UH;and C; = {Si \ H | H € H!} fori = 1,2. Then
(a) and (b) holds with (1, H,) replaced by (], #5) and (c) follows from (b) and
Theorem 3.3 in [10].

Let Wi+ denote the set of all non-negative functions in W(S;, H;) and let Vi+
denote the set of all non-negative functions in W(S;, C;). Applying Theorem 3.3 in
[10] twice, we see that

EW1 (X)) ¥2(X2)) < E(Wi(X1) ¥2(X2)) Yy € W Vo, € Wy (i)
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LetCy € Ciand H, € H5 bg g~iven sets. Then H; := S \ C; belongs to /| and by
(b) we have P(X; € C,) = P(X; € C}). So by (a) we have

ﬁ(}zl e(C;, Xz € Hz) = P(Xz € Hz) —15()?1 eH, Xz € Hz)

EP(Xz EHZ)_P(X] EHl s X2 EHz) :P(Xl € C1 N X2 EHz).

Hence, as above we see that

EWn (X)) ¥2(X2) < EQi(X1) v2(X2) Yy e Vit Ve Wy . (i)

In the same manner, we see that

E(n (X)) ¥2(X2)) < EQ(X) ¥a(X2)) Y € Wi Yy € Vi (iif)

and since H} = {S;\ C | C € C;}, we have

EWn(X1) v2(X)) < EWi(X) ¥2(X2)) Yy e ViV, eV . (iv)

Set U; = ¢i(X;) and U; = ¢;(X;) for i = 1,2. Since ¢; € W(S;, H;), we have
¢t € W and ¢ € Vit and so by (i)—(iv), we have

E(UTUS) < E(UUY) . E(UUy) < E(U7 03),
E(U}0;) < EWUU) . E(UT0) < E(UTUS) .

Since ()cy)Jr = xtyt + x~y~, we see that E(U,Uy) ™) < E((U,U,)7") and since
(xy)~ = xty~ 4+ x7yt, we have E(U,U;)") < E((UiU,)7). Recalling the
equahtles E*Y = EY't —EY™ and E,Y = —E*(-Y), we obtain (d) and (e). O

Corollary 4.4 LetX : Q — R"and Y : Q — R* be random vectors and let Ak
be the set of all functions h : R"% — R of the form h(x,y) = f(x) g(y) for some
increasing Borel functions f : R" — R and g : R¥ — R. Then the following four
statements are equivalent:

(a) X and Y are negatively In-correlated.

(b) —X and Y are positively In-correlated.

(c) cov(f(X),h(Y)) <0 VfeIB(R") YhelIB(R).

(d) Pxy) =, Px ® Py,

and if n = k = 1, then (a)—(d) are equivalent to either of the following three
statements:

(e) Px.y) Zor Px ® Py.

() Pxy) <ism Px @ Py.
(g) Pxy) Zvsm Px ® Py.
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Proof Since R" \ (—=J) € JR") for all J € J(R"), we see that (a) and (b) are
equivalent and so by Proposition 4.3, we see that (a)—(d) are equivalent. Suppose
that » = k = 1. By Proposition 4.1, we see that (e)—(g) are equivalent and since J is
a non-empty upper interval in R if and only if J/ = [a, 00) or J = (a, o0) for some

a € R, we see that (e) and (a) are equivalent. |
Theorem 4.5 Let Yy,...,Y, : Q — R be real random variables and let
S1....,S, € L'(P) be integrable random variables satisfying

(@) SisainNYi <Y1 <Sip1VYias V1=<i<n.
(b) E(lyy>g (Sig1 —S)) =0 V1<i<nV:=0.

Then we have

(c) tP(Y, > 1) < E(lgy;> (1 = 81)) + E(lgy,>3 S,) V120,
(d) Yy <Syas. on{Yy >0} = tP(Y,>1) <E(ly,>4S:) V=0,

and if Y1 = S1 a.s. and E(ly,>—p (Siv1 —Si)) = E(Sit1—Si) forall 1 <i <nand
allt € Ry, then we have
(e) tP(Y, <—1t) < —E(lyy,<—nSp,) Yt>0.
(f) tP(lYn| > t) =< E(I{IY,,\>r} |Sn|) Vt>0.
Proof Lett > 0 be given and set U; = lyy,. fori = 1,...,nand Uy = 0. Let
1 < i < n be given and let me show that ¢ (U;+; — U;) < Siy1 (Uix1 — U;) as. If
U; = Ui+, this holds trivially. If U;y+; = 1 and U; = 0, we have ¥; <t < Y;4; and
since Yiy1 < S;+1 V Y; a.s., we have

Si+1 (Ui+1 — Ui) = Si+1 >Yip1>t= l‘(UH_l — Ui) a.s.

If Uiy =0and U; = 1, we have Y;; <t < Y;andsince S;y; A Y; < Y4 a.s., we
have

Sit1Uip1 —U) = =Siy1 = —Yip1 = =t =t (Uit — U)) as.

which proves the claim. So by partial summation, we have

-1 n—1
Y St (U1 —U) + X Ui (Siv1 — Si)

i=1 i=1

Sy Up— 81 Uj

n

n—1
>t(Uy=U)+ D Ui(Sit1—S)),
i=1
and by (b) we have E(U; (Si+-1—S;)) > Oforall 1 <i < n.Since Si,...,S, € L'(P),
we see that (c) holds, and (d) is an easy consequence of (c).
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(e)—(f): Suppose that ¥; = S a.s. and that E(1(y,>—n (Si+1—351)) = E(Si+1—3S5))
forall 1 <i <nandallr € R;. Note that (—Y;, —S;) satisfies (a) and since

E(l—yg (Si = Sit1)) = E(Si — Sit1) — E(lgy>—g (Si — Si1)) = 0,

we see that (—Y;, —S;) satisfies (b). Since Y} = S| a.s. we see that (e) follows from
(d) applied to (—Y;, —S;). By (d) and (e) we have

tP(|Yy| > 1) =tP(Y, >1t)+tP(Y, <—t)
< E(lyy,>n50) — E(lyy,<—1Sn) = E(1qjy,1>1S])

which proves (f). O

Remark 4.6 Let Y and S be random variables such that S € L! (P),Y > 0 as.
and tP(Y > 1) < E(lgy-pS) for all t+ > 0; see (d) and (f) in Theorem 4.5. Let
G : R4y — R; be an increasing, right continuous function. By Lemma 3.1 with
(S,L,M,V) = (S,Y,Y,0), a(s) = s and B(s) = 0, we have EG®°(Y) < E*(SG(Y))
where G®(x) = f[O,x] t Ag(dt) for all x > 0. Taking G(x) = x~! for some p > 1,
we have G°(x) = "% x”. Hence, we have EY? < p%l E(SYP~') and so by Holder’s
inequality, we have (EY?)'/? < p%l (E|S|P)!/P. Taking G(x) = log(1 + x), we have
G®(x) = x —log(1 + x) and so we have E(Y —log(1l + Y)) < E(S log(1 4+ Y)). In
particular, we see that (d) and (f) give a variety of moment inequalities.

Corollary 4.7 Let (Sy,...S,) be a demi-submartingale and let f; : R — R be an
increasing Borel function for i = 1, ...n satisfying

Xip1 ASfi(xn, oo xi) < fiprGen, o X)) < X Vil o xg)

foralll < i < nandallxy,...,xi+1 € R and set Y; = fi(Sy,...,S;) fori =
1,...,n. Then we have

(@) tP(Y,>1) < E(lgysn (t—=S1) + E(Lyy,>n S,) Y120,
(b) i) <xVxeR = tP(Y, >1) <E(ly,-4S,) Yt>0,

and if fi(x) = x for all x € R and ES| = ES,, then we have

(c) tP(Y, <—1) < —E(lgy,<—pnSn) VYteR,.
(d) tP(|Y,] > 1) < E(I{IY,,\>r} 1S.) VieRy.

Proof By hypothesis, we see that (Y;, S;)1<i<» satisfies (a) in Theorem 4.5 and
since (S1,...,S,) is a demi-submartingale, we see that (Y, S;)1<i<, satisfies (b)
in Theorem 4.5. Hence, we see that (a)—(b) follow from Theorem 4.5. Suppose
that fi(x) = x for all x € R and that ES; = ES,. Let 1 < i < nbea
given integer and let + € R. Then we have ¥; = §; and since f; is increasing,
we have ly>_pn € 1B, (RY). Since ES; < ESiy1 < ES, = ES;, we have
E(Sit1 —Si) = 0 < E(lyy>—p (Si+1 — Si)). Hence, we see that (c)—(d) follow
from Theorem 4.5. O
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Corollary 4.8 (cf. [20]) Let (Si,....S,) be a demi-submartingale and for
1<i<n let S;; < .-+ < S8y, denote the order statistics of Si,...,S; for all
1 <i<n Letl <k <nbea given integer and let us define

Ulk = Sk/\i,i and Vlk = Sl+(i—k)+,i Vi= 1, ...,

Let t € Ry be given. Then we have
(a) tP(Uy > 1) < E(lggiay Sp) and tP(Vy > 1) < E(lgyis Sn)
and if ES| = ES,,, then we have

(b) tP(U£ <-1) < _E(I{U,’j<—t} Sy) and tP(Vr]l( <-1) = _E(I{V,’j<—t} Sn) -
(c) tP(UY > 1) < E(Lgutjsy [Sal) and t P(IVy| > 1) < E(Lgyiisg ISal) -
Proof Ifi € Nand x = (x1....,x;) € R, we let m;;(x) < --- < my,(x) denote

the order statistics of xj,...,x;. Then the hypotheses of Corollary 4.8 holds with
fi = menii and fi = 74 g+ ; and since 1 (x) = x for all x € R, we see that the

corollary follows from Corollary 4.8. O
Theorem4 9 Let n > 2 be a given integer and let X1,...,X, : @ — R and
Xl, X : © — R be random variables such that X; ~ X for all 1 <i<n Let

fir.e. ,fn_ : R — R be Borel functions and let F; : R/ — R be defined inductively
as follows F\(x) := x for x € R and

F}+1()C1,...,Xj+1) :ﬁ(Fj(xl,...,xj)) +Xj+1 Vxl,...,)Qj+1 eRVI1 5] <n.

Let Co(R) denote the set of all convex functions from R into R. Set &, = Co(R)
and

b1 ={p cCoR) |p(fi(-)+a)e P VacR} VI<j<n.

If fi(Fi(X1, ..., X)) and Xiy\ are negatively In-correlated for all 1 < i < n and
[i(Fi(X1,...,X;)) and X4 are positively In-correlated for all 1 < i < n, then we
have

(a) E*¢(Fi(X1..... X)) < E*¢(Fi(X...... X)) VoedVI<j<n.

Proof Set U; :~F,-(X1,.~..,X,~) and U; = Fi(}zl,...,)?i) for 1 < i < n and set
Vi = fi(U;) and V; = f;(U;) for 1 <i < n.Let d>j+ denote the set of all non-negative
functions in ®; and let me first show that (a) holds forall 1 <j <nandall ¢ € d>j+.

Since X; ~ X, we see that this holds for j = 1. Let | < ] < n be a given integer
such that E¢(U)) < E¢>(U) for all ¢ € <I>Jr Let ¢ € /+1 be given and let me

show that E¢(Ujy1) < E¢(UI+1). Since V; and X1 are negatively In-correlated,
we have P(Vjsz+l) Sbsm Py; ® PXJ.Jrl and since Uit+1 = V; + Xj41 and ¢ is convex
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and non-negative, we have by Proposition 4.1.(e)
Ep(Ups1) = Ep(V; + Xja1) < /R EG(V; + 1) Py, (dr).

Since V; and X4 are positively In-correlated, we have PV,- ® ﬁ)’(‘j ) Sosm P % %)

and since Uj+1 = \7,- + Xj+1 and ¢ is convex and non-negative, we have by
Proposition 4.1.(e)

E¢(Uj1) = E$(V; + Xj11) = /R E¢(V;+1) Py, (dr).

Let 1 € R be given and set ¥;,(s) = ¢(fj(s) + 1) forall s € R. Since ¢ € @;Ll, we
have ¥, € ® j+ and so by induction hypothesis we have Ey;,(U;) < El//j,,(lj ;) and
since Xj 1 ~ ~j+1’ we have

B W) = [ B0 P < [ Evi(0)Py (@) < Ep(Gre).

So by induction, we see that E¢ (U;) < E¢(ﬁj) foralll <j<nandall¢ € <I>j+.
Now let me show that (¢(-) + a)™ € d>j+ forall1 <j < n,all ¢ € ®; and

alla € R.Ifj = 1, this is evident. Let 1 < j < n be a given integer satisfying
(P()+a)t e CIDJTF forall¢ € ®;andalla € R. Let¢p € ®j1; and a,b € Rbe

given and set ¢, (1) = (¢(t) + a)* and ¥,,(1) = ¢(f;(r) + b) for all € R. Since
¢ € ®;1, we have Y, € ®; and so by induction hypothesis we have

$a(fi(1) +b) = (P(fi() + D) + )" = (Yu() + )" € ;.

Hence, we have ¢, € ®;4, foralla € R. So by induction, we see that (¢ () +a)t e
<I>j+ foralll <j <nall¢ € @ and all a € R. Since E¢p(U;) < E¢(U;) for all
l1<j<nandall¢ € CDJ*, we see that (a) follows from Theorem 3.3 in [10]. O

Theorem 4.10 LetXl,..., Q- Rand)zl,...,)z : Q — R be random
variables such that X; ~ X for alll < i <n SetSy =0 = 5’0 and let S, =
X1+ -+ Xy and Sk Xl + .-+ Xk denote the partial sums for 1 < k < n. Let
us deﬁne M, = max(|Si], ..., |S |) and

M,,—max(S -5, z,—max(S —-S) VOo<i<j<n

I<v<j i<v<j

L;; = min (S, —S,) , L,J—mln(S —S) V0<i<j<n
I<v<j I<v<j

forallj=1,...,n
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(1):

(2):

(3):

(4):

J. Hoffmann-Jgrgensen

Suppose that S; and X;\ are negatively In-correlated for all 1 < j < n and
that S and X; \j+1 are positively In-correlated for all 1 < j < n. Then we have
E* (S ) < E* &(S,) for every convex function ¢ : R — R.

Suppose that M;,, and X; are negatively In-correlated for all 1 < i < n and
that M in and X, are positively In-correlated for all 1 < i < n. Then we have
E*¢(Mo,) < E*¢(My,,) for every convex, increasing function ¢ : R — R.
Suppose that L;, and X; are negatively In-correlated for all 1 < i < n and
that I:,-,,, and X; are positively In-correlated for all 1 < i < n. Then we have
E*¢(Lo,) < E*¢(Lo,) for every convex, decreasing function ¢ : R — R.
Suppose that M;, and X; are negatively In-correlated, that L;, and X; are
negatively In-correlated, that M,; in and X, are positively In-correlated and that
L, . and X; are positively In-correlated for all 1 < i < n. Then we have

E¢(M,) < E¢(M{,) + Ep(Ly,) < 2E¢Mo,)

for every increasing, convex function ¢ : Ry — R,

Proof

(:

Q2):

3):

We shall apply Theorem 4.9 with fj(x) = xforx € Rand 1 < i < n. Let F;
and ®; be defined as in Theorem 4.9 and let ¢ : R — R be a convex function.
Then Fj(xi,...,x;)) = x1 4+ --- + x; and we have ¢ € ®,. Hence, we see that
(1) follows from Theorem 4.9.

We shall apply Theorem 4.9 on the sequences (Y1, ..., Y,) = (X,,..., X)) and
(Y1,...,Y) = (X,,..., X)) with fi(x) = x v 0. Let F; and ®; be defined as in
Theorem 4.9. Let ¢ : R — R be an increasing convex function. Then it follows
easily that ¢ € ®, and that we have

Fi(xy, ... x])—max 3 xy Vi<j<n. (1)

X 0<i<j i<v<j
Let 1 <j < nbe given. Since Fj(Yy,...,Y)) = M,_;, and Y; | = X,_;, we
see that ~Fj(Y1, o Y) apd Yy are negatlvely In-correlated. Similarly, we see
that Fj(Yy,...,Y;) and Y;4 are positively In-correlated. Hence, we see that (3)

follows from Theorem 4.9.

We shall apply Theorem 4.9 on the sequences (Z,...,Z,) = —(X,,...,X))
and (Z,,...,Z,) = —(X,,..., X)) with fi(x) = x V0. Let F; and ®; be defined
as in Theorem 4.9 and let ¢ : R — R be a decreasing convex function.
Then ¥ (x) := ¢(—x) is increasing and convex and belongs to ®, and F; is
given by (i). Let 1 < j < n be given. Since L,—;, and X,_; are negatively
In-correlated, we see that —L,,_;, and —X,,_; are negatively In-correlated and
since Zjy1 = —X,—j and —L,_;, = Fj(Z,,...,Z;), we see that %1’+1 and
Fi(Zy,...,Z;) are negatively In-correlated. Similarly, we see that Z;;; and
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“:

Fj(Z~1, ces Zj) are positively In-correlated. So by Theorem 4.9 we have
E*¢(Lon) = EY(=Lon) < E*Y(=Lo) = E*¢(Los)

which proves (3).

Let ¢ : Ry — Ry be an increasing convex function and set ¢ (x) = ¢(x™)
and ¢, (x) = ¢(x7) for all x € R. Then ¢; is increasing and convex and ¢,
is decreasing and convex. So by (2) and (3) we have E¢(My,,) < Eq&l(ll;Io,,,)
and E¢pLy,) < E¢2(I:0,n). Note that My, = max(S,...,S,) and —Ly, =
max(—Si, ..., —S,). Hence, we have M,, = My, Vv (—Lo,,) and since ¢ is non-
negative, we have ¢ (M,,) < ¢1(Mo,,) + ¢»(Lo,,) and

E¢p(Mo,) < Ep1(Mo,) + E¢a(Lon) < E¢1(Mo,) + E¢a(Lo.)

which proves (4).

Remark 4.11

(1):

Q2):

Let (Y1, ..., Y,) be a positively associated (respectively, negatively associated)
random vector; for instance, if Yi,..., Y, are independent. Let 1 < i < n be
a given integer and let ¢ : R® — R and ¥ : R"™ — R be increasing Borel
functions. Then ¢ (Y1, ..., ¥;) and Y;4, are positively (negatively) In-correlated
and ¥ (Yit1,...,Y,) and Y; are positively (negatively) In-correlated.
Suppose that X Lyeo- ,}Zn are independent such that X; ~ Xi and EX; = 0 for all
1 <i<n.Let¢: Ry — R4 bean increasing convex function with ¢(0) = 0.
By the prophet inequality of Choi and Klass (see [4]), we have E¢ (A;I(‘{ L) =
2E¢ (S';f ) and E¢ (ia L) < 2E¢ (5’;). Hence, we have the following prophet
inequalities:

If M;, and X; are negatively In-correlated for all 1 < i < n, then we have
Ep(Ly,) < 2E$(S;)

If L;, and X; are negatively In-correlated for all 1 < i < n, then we have
E¢(My,) < 2E¢(SF)

If M;, and X; are negatively In-correlated and L;, and X; are negatively
In-correlated for all 1 < i < n, then we have E¢(My,) < 2E¢(|S,|)

S The Lipschitz’ Mixing Coefficient

In [20], Newman and Wright have proved a central limit theorem for associated
stationary sequences and in the literature there exists a variety of central limit
theorems under various mixing conditions (see for instance [1-3, 5, 6]). In this
section, I shall introduce the Lipschitz’ mixing coefficient (see (5.2) below) and
show that it is closely related to both negative and positive In-correlation and that
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the Lipschitz’ mixing coefficient can used to establish the central limit theorem for
sequences of identically distributed random variables and for stationary sequences.

Let C denote the set of all complex numbers. If # : R — C is a complex-valued
function, we define the Lipschitz’ norm as usual:

Ihllip = inf{c > 0| [h(x) —h(y)| < clx—y| Vx,y e R}. (5.1)

If U,V : Q — C are complex random variables , we say that the covariance of U
and V exists if U, V and UV are P-integrable and if so, we define the covariance as
usual; that is, cov(U, V) := E(U — EU)(V — EV) = E(UV) — (EU)(EV).

We let Lip, (R) denote the set of all bounded functions f : R — R satisfying
IfllLip < 1, and if X, ¥ : @ — R and are random variables, we define the Lipschitz’
mixing coefficient of (X, Y) as follows

£(X. Y) == sup{ |cov(f(X).f (V)| | f € Lip;(R)} . (5.2)

Since x ﬁ f(u + ax) belongs to Lip, (R) for all f € Lip, (R), we have

Cu+aXut+aY) =|a*4X.Y) Yu,acR. (5.3)

Letf : R — C be a bounded Lipschitz’ function and let f; and f, denote the real
and imaginary parts of f. Then f] and f, are bounded Lipschitz’ functions. Let A and
B denote the real and imaginary parts of cov(f(X),f(Y)) and set & = f; + f> and
g = fi —f>. Then we have

A = cov(fi(X),fi(Y)) — cov(f2(X)./2(Y))
B = cov(f1(X)./2(Y)) + cov(f2(X).f1(Y))
2B = cov(h(X), h(Y)) — cov(g(X), g(Y)) .

Hence, we have |A| < ¢£(X,Y)and |B| < £ {(X,Y) where ¢ = ||fq ||fip+ |[f2||12‘ip and
r = |lhlE;, + Il Since |a| + |b] < v/2 v/a® + b7, we have ||h]|Lip < V2 |Ifl|Lip
and |[gllip < /2 [IflLip- Hence, we have r < 4||f[|?,, and since ¢ < 2 [f[|};, we
have

|cov(f(X).f ()| < Al + B < 4|IfIIt;, £(X. ) (5.4)

for every bounded Lipschitz’ functionf : R — C.

Let (X*, Y*) be a symmetrization of the random vector (X, Y), that is, (X*, Y*) ~
(X’ = X,Y' —Y) where (X', Y’) is an independent copy of (X, Y). Let f € Lip,(R)
be a given function and set 7/ (x, y) = (f(x) — Ef (X))(f(y) — Ef(Y)) forall (x,y) €
R?. Then we have cov(f(X),f(Y)) = Ens(X,Y) and since f € Lip,(R), we have
|7 (x,y)| < E(]x—X|-|y—Y]) forall (x,y) € R?. Integrating this inequality with
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respect to P(x y), we see that

lcov(f(X).f(Y))| < E(IX*Y*|) VfeLip(R), (5.5)
X, Y e 2(P) = £(X,Y) <2+/var(X) - /var(Y). (5.6)

If X is a random variable, we let px(f) := Ee'™® denote the characteristic function
of X forallr € R.

Theorem 5.1 Let n,k > 1 be given integers and let X = (X1,...,X,) and Y =
(Y1,..., Yx) be random vectors such that the covariances cov(X;, Y;) exists for all
1 <i<nandalll <j< k. Letay,...,a, > 0andb,...,b; > 0 be non-negative
numbers and let f : R" — R and h : RF — R be given functions satisfying the
following Lipschitz’ conditions:

(@) 1f@) —f)] < S aili—yi| Yx=(1eeooixa) sy = (3aen.ayn) €RY

i=1

k
(b) |h(u) —h(v)| < 2bj|u,—vj| Yu=u,....,u), v=(vy,...,0) € R,
=

Then the covariance cov(f(X), h(Y)) exists and if X and Y are either positively
In-correlated or negatively In-correlated, then we have we have

(c) |cov(f(X),h(Y))| < Z Z a;bjcov(X;, Y))| .

i=1 j=
(d) £(X;,Y;) = |cov(X;, Y))] \7’1 <i<nV1<j<k.
Proof Since the covariances cov(X;, Y;) exists. we have that X;, ¥; and X;Y; are P-
integrable forall 1 <i <nandall 1 <j < k and by (a) and (b), we have | f X)| <
|fO)] + X1 <icn @i 1Xi| and [R(Y)| < |R(0)| + 3, <j<; bj |Yj|- Hence, we see that the
covariance cov(f(X), h(Y)) exists.

Setfo(x) = Y i aix; forall x = (x1,...,x,) € R" and ho(y) = Z \ bjy; for
ally = (y1.....yx) € RF By (a), we see thatfl(x) ‘= fo(x) + f(x) and fr(x) =
Jfo(x) — f(x) are increasing Borel functions on R” and by (b), we see that a;(y) :=
ho(y) + h(y) and hy(y) := ho(y) — h(y) are increasing Borel functions on R*. Let
us define U, := f,(X) and V,, := h,(Y) for v = 0, 1, 2. Then we have

U =Uy+fX), Vi=Vo+h(), Uy =Uy—f(X), Vo = Vy—h(Y)
and so we have

cov(Uy, V1) + cov(U,, Vo) = 2 cov(Uy, Vo) + 2cov(f(X), h(Y)), @1)
cov(Us, V1) + cov(Uy, Vo) = 2 cov(Uy, Vy) —2cov(f(X), h(Y)) . (ii)

Suppose that X and Y are negatively In-correlated. Since f,, and &, are increasing for
v = 0, 1,2, we see that cov(Uy, V) < 0 and that the covariances on the left hand
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sides of (i) and (ii) are < 0. Hence, we have £cov(f(X), h(Y)) < —cov(Uy, V) and
so we have

lcov(f(X), h(Y))| < |cov(Uo, Vo)| =

n k
Y > abjcov(X;. Y))
i=1 j=1

Suppose that X and Y are positively In-correlated. Since f, and A, are increasing for
v = 0, 1,2, we see that cov(Uy, V) > 0 and that the covariances on the left hand
sides of (i) and (ii) are > 0. Hence, as above we have

n k
lcov(f(X), h(Y))| < [cov(Uo. Vo)l = | 3_ ) aibjcov(X;. Y))
i=1j=1

which completes the proof of (c).

(d:Letl <i<nand1 <j <k be given integers. By (c) we have {(X;, ¥;) <
|cov(X;, ¥;)|. Let n € N be given and let n,,(x) = (—x) V (x An) for x € R denote the
truncation function. Then we have 7, € Lip; (R) and |5,(x)| = n A |x| forallx € R.
In particular, we have [, (X)| < [Xil, [n,(%)] < |¥}| and [n,X)m.(¥)] < X
and since 1,(x) — x for all x € R and X;, ¥; and X;Y; belong to L' (P), we have by
Lebesgue dominated convergence theorem that cov(n,(X;), 7,(Y;)) — cov(X;, Y;).
Since 1, € Lip,(R), we have |cov(n,(X;), n,(¥;))| < £(X;,Y;) and so we see that
|cov(X;, ¥;)| < £(X;, ¥;) which completes the proof of (d). |

Lemma 5.2 Let Xy,...,X, be random variables with partial sums Sy = 0 and
Sy =X1+ -+ X for | <k <n. Then we have

k k
(a) |os, () — [T ox, (O <42 > £(Sy—1,X,) VteRVI<k<n.
1

V= v=1

Proof Lett € R be given. If k = 1, then (a) holds trivially. Solet 1 <k <nbea
given integer such that (a) holds for this k and set f(x) = e/* for all x € R. Then f
is bounded with ||f||Lip < |¢| and so by (5.4) we have

|05, () — @5,.(0) - @x 4, (D] = |cOV(F(S) . f Ki1))| < 422E(Sk, Xit1) -

Recall that |x, , , (1)| < 1. So by the induction hypothesis we have

=

k+1
@5 (1) @xp, (1) — 1:[1 @x, (1)

k k
@5, () — 1:[1 ox, (1)| < 47 Z:le(sv—lsxv)-

Summing the two inequalities, we see that (a) follows by induction. O
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Lemma 5.3 Let X be a random variable with mean 0 and finite variance v = EX?
and setr(x) = 1 A |’3(—‘f0rx € R and Rx(t) = E[X? r(tX)] for t € R. Then we have
2 2

(a) lox() — (1= )| = 5Rx(t) VteR.
(b) lox( )" —e P < P (50 + JRx(Jp)) Vi€RVneN.
Proof By Taylor’s formula we have |e™ — (1 + ix — )%Z)I < %2 r(x) and since EX =
0 and EX?> = v, we see that (a) holds. To prove (b), I shall need the following
inequalities:

le" —e'| < |u—v] ™M vy veC, )

le — (1 +2)"| < Lz?ell vzeCVneN. (ii)
Proof of (i) Let z = x + iy be a complex number. By the mean value theorem, we
have |1 — ¢*| < |x] ¢ and 0 <1l-—cosy< %2 and so we have

let — 117 = (" — 1)? + 2¢* (1 —cosy) < |x|2e2’(+ +yP e < (P +y7) &

Hence, we have | — 1| < [] & Letu,v € Cbe given and set ¢ = Nu and
b = Rv. Sincea Vb = b+ (a— b)T, we have

i+
btab) = avb

e —e’| = e’ e — 1] < |u—v] u—vle

which proves (i).

Proof of (ii) Let z € C and n € N be given. If n = 1, then (ii) is easy and well-
known. Let 2 < j < n be given. Then we have

L) =Ta-2 = -5
no\j ] n’ — n ’

=

and by the mean value theorem, there exists a number 6 such that 1 — % <6<l
and

1_%(;) <1-(-Lly-'= <j—nl>2 g2 < (j—nnz V2<j<n.



98 J. Hoffmann-Jgrgensen

Observe that the left hand side is O for j = 0, 1. Hence, we have

. 2y < N L2 it (n L
Jj=0 j=n+1
n . o0 .
¥ (=D)? |z
=L w ot X
j=2 j=n+1
R T AT R S R RO I
=5 Z G T o > =1 lzlte”

j=n+1

~
Il

[}
~

which proves (ii).
Lett € Rand n € N be given and set #, = ﬁ and z, = n(px(t,) — 1). By

(a), we have |z, + %tzl < %Rx(tn) and since 0 < Ry(u) < v, we have |z,| < v#.
By (ii), we have

2.4
e = x(0)"] = | = (14 2| < & |z, el < 2
and by (i), we have
—vf2 2 2
|ez,1 eV /2| < |Zn %tzle( vi? /2)VRz, < %evt RX(tn)-

Hence, we have
2 2 2.2
lox(t) — ™2 < 2o (22 4 L Ry(ry))

which proves (b). |

Theorem 5.4 Let X1,X,,... € LZ(P) be identically distributed, random variables
with mean 0 and variance v and let Sg = 0 and S, = X1 + --- + X,, denote the
partial sums for n > 1. Then we have

(@ lim [LSes.x) ] =0 = 3% S5 NO.v).
i (£ csom) 0 = 4
Proof Let ¢(t) = ¢x,(t) and ¢,(f) = ¢s,(¢) denote the characteristic functions of

the X; and S,,. By the classical central limit theorem we have ¢(JLE)” — /2 for
all r € R and by Lemma 5.2 we have

bn(75) —¢( )" < 4t2%j§1 E(Sj-1. X))

which proves the theorem. O
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Remark 5.5 Recall that the sequence (a,) tends to a in Cesaro mean if and only if
% ZZ=1 ar — a.Let X, Xs,... € L2 (P) be identically distributed (not necessarily
independent) random variables with mean 0 and variance v. Then Theorem 5.4
shows that the central limits theorem holds if the Lipschitz’ mixing coefficients
£(S,, X,+1) tends to 0 in Cesaro mean and recall that we have £(S,, X,+1) =
|cov(Sy, Xut1)| if S, and X1, are either positively In-correlated or negatively In-
correlated.

Theorem 5.6 Let (X,),>1 < L*(P) be a strictly stationary sequence, let Sy = 0
and S, = X1 + --- 4+ X,, for n > 1 denote the partial sums and set v(0) = 0 and

p(n) = cov(Xy, Xpt1) , v(n) = varS,, Chx = Z E(S(j_l)k Sik = S(j—1k)
=

foralln,k > 1. Then we have
(a) 22 =y(1) +2 Z(l—ﬁ)p(k) Vnk=>1,

(b) Z cov(Si—nk » Sik — S(ji—k) = (v(nk) —nv(k) Vnk>1,

=1
(¢) Cox <2/ u(k) Z VuGk) Vnk=>1.

j=0
Suppose that EX; = 0 and let 0 > 0 be a non-negative number satisfying

(d) liminf (hmsup C”") =0 and lim Y0 =42,
k—00

n—>00 k—oo K

S, 2
Then we have W ) and if 5% > 0, we have F —>N(0 1).

Proof (a) and (b) are easy consequences of (weak) stationarity and since v(k) =
var(S,+x — Sy) for all n, k > 0, we see that (c) follows from (5.6).

So suppose that EX; = 0 and that (d) holds. Set U, = n~'/2S, for n € N and
let ¢, = @5, and ¥, = @y, denote the characteristic functions of S, and U, for all
n > 1. Then we have v, (¢) = %(ﬁ) forallt € Randalln € N.

Letr € Rand 0 < § < 1 be given numbers. By (d), there exists an integer k > 1
(which will be fixed for the rest of the proof) such that

2 v 8 :
lo® — =1 = 14 and limsu

n—>o00

5 .
T+1672 * @

SetX = Sjg—S¢—n forj > 1. Since (X;) is strictly stationary, we see thath Xk e
are 1dentlcally distributed with common characteristic function ¢ and part1al sums
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Xkt X;‘ = Si. So by Lemma 5.2 we have
to\m| __ oy _t_ym
Wk ) = V()" = |dme (o) — ()
<425 Sy, Sy — Sig-n) = 48 2
=

forall m > 1. Let m > 1 be given and let Ry, (s) be defined as in Lemma 5.3. Since
EU;, = 0and EU? = v(k) , we have by Lemma 5.3

(k)

il/fk(_)m_e % tzi <t L(k) (v(k)zt It RUk(\/ta))

Note that Ry, (s) is continuous with Ry, (0) = 0. So by (i) there exists an integer
my. > 1 such that
[V (1) — wk(ﬁ)’"l < ?T Vm > my

wh o

()" —e x = Ym=m

Since |0? — v(k)| < lﬁtz,

we have [ () — e /2| < § for all m > my.
Set ¢ = 1 + E|tX;| and r = 4(gk)*>§72. Let n > r + kmy be given and set
m= L%J. Then we have 0 < n — mk < k and by the mean value theorem, we have

k ) 2 e C t2/2| I 2 _ vk

we have |e™ o ——|§%andso

0<\/_—x/_k<(n—mk) ﬁ_Zf

Since E|tX;| = E|tXi| < g, we have E|t S| < gmk and E|t(S, — Syux)| < g (n —
mk) < gk and since |e™ — e”| < |x —y| and n > r, we have

Va0 = V)] < 11| E|U — Upal < ~=Elr(S, — Spid| + L2228 EJ1S,

<2qk<8,

SqEtarE <<

. "
Since n > k my, we have m > my, and so we have |V, (f) — e™° ’2/2| < 6 and

[ (6) — e 72| < [P (t) = Yo ()] + | Wi (1) — 77772 < 28

U(n)

for all n > r + kmy. Hence, we have U, — N (0, 0?) and since — o2, we have

S N(0,1)if 0% > 0. o

q/v(n)
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Remark 5.7

o0

(1): Recall that the series Y a, is Cesaro summable with Cesaro sum A if and
n=1

only if the partial sums a; + - - - 4 a, tends to A in Cesiro mean or equivalent if

n o0
Z (1- %) ar — A. By (a), we see that lim M = o2 if and only if }_ p(n)
n=1
is Cesaro summable with Cesaro sum =~ v(l)
(2): Suppose that p(rn) > 0 forall n > 1. By (a), we see that (#)nzl is increasing
o
and lim @ =v(l)+2 > pk).
n—00 =1
(3): Suppose that p(n) < 0 forall n > 1. By (a), we see that (v(") )u>1 is decreasing

and we have Z lp(k)| < ”(1) and hm M =v(l)+2 Z o(k).

(4): Suppose that S and S,4+r — S, are posmvely In- correlated or negatlvely In-

correlated for every (n, k) € N2. Then Theorem 5.1 shows Szt = 5 (v("k)
”(kk)) for all n,k > 1 and so we see that condition (d) holds if and only if
lim 0 = 2
k—o00 k ’

Appendix

In this appendix, I shall give a purely analytic solution to a certain recursive, func-
tional inequality which is closely linked to the Rademacher-Menchoff inequalities
of Sect. 2. But first let me prove the following simple lemma.

Lemma A.1 Let (g;;)ijea, be a triangular schemes of non-negative numbers. Let
(i,j) € A, be a given pair and let a > 0 and h > 0 be given numbers satisfying

giiV(agj)) <h and max (gix + gy) < (1+ Lh.
I1<K<,

Then we have min (g;x—1 Vv (a gk,)) < h.
i<k<j

Proof 1 shall split the proof in three cases:

Case1: gij—1 <h.Sinceag;; <h,wehaveg;j 1V (agjy) <h

Case2: gii+1 < h < gij—1. Then there exists an integer i < k < j such that
gii—1 < h < gy and since i + gi; < gix + grj < (1 + 1) h, we have
ik—1V (agej) < h.

Case3: gii+1 > h.Sincej > 2,wehavei <i+1 < jandsowehave h+g;11; <
iit1+8it1; < (1+ 1) handsince g;; < h, we have g;; Vv (a giy1,) < h.

Since the three cases exhaust all possibilities, we see that there exists an integer
i <k<jsuchthat gV (agw;) <h. O
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Proposition A.2 Let p, g € R4 be given numbers and let D C Ry be a non-empty
set such that pt € D and qt € D forallt € D. Let T : Rﬁ_ — Ry, be an increasing
homogeneous function and set T'(x,00) = I'(00,x) = oo for all x € [0,00]. Let
Aij,Bij,Vij : D — [0, 00] be given functions for (i,j) € Ag and let h : Ng — R
and £ : Ny — Ny be increasing functions such that £ (0) = 0 and

(a) Aij(t) < T'(Ari(pr) + Aix—1(g0), Bix (1)) V(. k,j,t) € VXD,
(b) Aii(t) < h(0) Vii(t) and V;j(t) < Vijp1(t) <oo V(i,jt) e AgxD,
(c) Bij(t) <h(E(j—1) Vij(t) VY (i.j.1) € AgxD.

Then we have A;j(t) < oo and B;j(t) < oo for all (i,j,t) € Ag x D. Let s > 0 be a
given number satisfying h(0) < I'(s h(0), (1)) and let us define

Y, = {(i.j.1) € Ay x D | hy (§(j — i) Vij(t) < A ()}

Then h!' is increasing and if

(d) mi? (Vik=1(qt) + Vij(p) <sVij(t) VY (i,j1) e Y.,
keD;;

then we have A; (1) < hf (§(j — 1)) Vi;(?) for all (i,j, 1) € Ay x D.

Proof By (b) and (c), we have A;;(f) < oo forall (i,1) € Ny x D and B;;(f) < oo
forall (i,j,t) € Ay x D. Let n > 0 be a given integer such that A; ;+,(f) < oo for all
(i,1) € Ng x D and let (i,1) € Ny x D be given. Since pt € D and gt € D, we have
Ajitn(qt) + Aignt1,+n+1(pt) < 0o. Hence, by (a), we see that A; j+,+1(f) < oo and
so by induction, we have A, ;(f) < oo forall (i,j,1) € Ag x D.

Suppose that h(0) < T(sh(0),n(1)). By (2.6), we have hl'(0) = h(0) <
[(sh(0), (1)) = hI'(1). Letn > 1 be a given integer such that A (n — 1) < hl'(n).
By (2.6), we have h! (n+1) = T'(s h" (n), h(n+1)) and since I and h are increasing
we have Al (n + 1) > T'(sh"(n — 1), h(n)) = h"(n). So by induction, we see that
h' is increasing.

Suppose in addition that (d) holds. Since & (0) = 0, we have 2(0) = AL (£(0)) and
so by (b) we have A; ;(1) < hl'(§(j — i) Vi;(¢) for all (i, j, 1) € A°xD.Letn > 0be
a given integer such that A; (1) < fI'(§(j —i)) Vi;(t) for all (i,j, 1) € A" x D. Let
(i,j, 1) € A" x D be given and let me show that Aij(t) < hEEG — i) Vi(0).

If j — i < n, this follows from the induction hypothesis and if A; (1) < hl (£(j —
i)) V(1) this holds trivially. So suppose thatj—i = n+ 1 and Al (§(j — i) Vi;(1) <
A;j(t)andsetv =E(m + 1). Sincej—i =n+ 1 > 1, we have (i,, 1) € Y. Recall
that mingeg ax = oo and V;;(f) < oo. So by (d) there exists k € Df‘j such that
Vik—1(qt) + Vij(pt) < s V().

Since k € DfJ, we have £(j—k) VE(k—i—1) < v—1 and since A! is increasing,
we have hl (§(j —k)) < hl' (v — 1) and Al (§(k —i — 1)) < hl' (v — 1). Since h and
& are increasing and k —i < n 4 1, we have h(&(k —i)) < h(v) and since i < k <
andn+ 1 =j—1i,wehave (i,k— 1) € A" and (k,j) € A". Since ¢t € D, we have
pt, gt € D and so by induction hypothesis, we have A, x—1 (g7) < h'' (v—1)) Vi —1(qt)
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and Ay ;(pt) < hf(u — 1) Vij(p1). Since Vi1 (gt) + Vi j(pt)) < sVij(t), we have
Aij—1(gt) + Ari(pt) < shi (v —1) V(o).

By (c), we have B;(t) < h(é(k — i)) Vix(f) and since & and h are increasing and
k—i<j—i=n+1,wehave h(§(k—i)) < h(v). So we have B; (1) < h(v) V()
and by (a) and homogeneity and monotonicity of I' we have

Aij(1) < T(Aix—1(gt) + Arj(pt), Bix(0)
<T(sh} (v—1), h(v)) Vij(t) = h} (v) Vi;(D) .

Hence, by induction we see that A; (1) < hl (§(j—1i)) Vi;(?) forall (i,j,7) € AgxD.
O
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On the Order of the Central Moments
of the Length of the Longest Common
Subsequences in Random Words
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Abstract We investigate the order of the r-th, 1 < r < 400, central moment of
the length of the longest common subsequences of two independent random words
of size n whose letters are identically distributed and independently drawn from a
finite alphabet. When all but one of the letters are drawn with small probabilities,
which depend on the size of the alphabet, a lower bound is shown to be of order
n'/?. This result complements a generic upper bound also of order n'/?.

Keywords Burkholder inequality * Efron-Stein inequality * Last passage perco-
lation * Longest common subsequence ¢ r-th central moment
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1 Introduction and Statements of Results

Let X = (X)i>1 and ¥ = (Yi)i>1 be two independent sequences of iid random
variables taking their values in a finite alphabet A4,, = {0y, a2,..., 0y}, m > 2,
with P(X; = o) = P(Y1 = o) = pi, k = 1,2, ..., m. Let also LC, be the length
of the longest common subsequence of the random words X; ---X, and Y, ---Y,,
ie.,, LC, :== LC,(X;---X,; Y1 -+ Y,) is the largest k such that there exist 1 < i <
h<--<p<nandl <ji<jpp<---<jp<nwithX;, =Y,,s=1,... k.

The study of the asymptotic behavior of LC, has a long history starting with the
well known result of Chvatal and Sankoff [5] asserting that

ELC,
lim =y (1.1)
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However, to this day, the exact value of y,; (which depends on the distribution of X;
and on the size of the alphabet) is still unknown even in “simple cases” such as for
uniform Bernoulli random variables. This first asymptotic result was sharpened by
Alexander [1] who showed that

yon —Kyy/nlogn < ELC, < y,n, (1.2)

where K4 > 0 is a constant depending neither on n nor on the distribution of X.
Next, Steele [13] was the first to investigate the order of the variance proving,
in particular, that VarLC, < n. However, finding the order of the lower bound
is more illusive. For Bernoulli random variables and in various instances where
there is a strong “bias” such as high asymmetry or mixed common and increasing
subsequence problems, the lower bound is also shown to be of order n [6, 8, 9].
The uniform case is still unresolved and tight lower variance estimates seem to be
lacking (however, see [2, 3], where a situation “as close as we want” to uniformity
is treated).

Below, starting with a generic upper bound, we investigate the order of the
r-th, r > 1, central moment of LC, in case of finite alphabets (of course, as far
as the order is concerned only the case 1 < r < 2 is really of interest for this lower
bound).

The upper bound obtained in [13] relies on an asymmetric version of the Efron-
Stein inequality which can be viewed as a tensorization property of the variance.
The symmetric Efron-Stein inequality has seen a generalization, due to Rhee and
Talagrand [12], to the r-th moment where it is, in turn, viewed as a consequence
of Burkholder’s square function inequality. As described next, in the asymmetric
case, a similar extension also holds thus providing a generic upper bound on the
r-th central moment of LC,. First, let § : R” — R be a Borel function and let
(Zi)1<i<n and (2i)1§i§n be two independent families of iid random variables having
the same law. Now, and with suboptimal notation, let § = S(Z,, 2, ...,Z,), and let
Si =8Z1,2,,... ,Zi_l,ii,Zi+1, ...»Zy), 1 <i < n.Then, as shown next, for any
r>2,

n 1/2
rnl/r r—1
IS —ES|l, == (IS —ES|)"" < 7 (Z ||S—S,-||%) : (1.3)

i=1

Indeed, fori = 1,...,n,let F; = o(Z,...,Z;) be the o-field generated by
Zy,...,7Z;, let Fo = {Q, 0} be trivial, and let d; := E(S|F;) — E(S|F;—1). Thus,
(di, Fi)1<i<n 1s a martingale differences sequence and from Burkholder’s square
function inequality, with optimal constant, e.g., see [11], for r > 2,

IS —ES|l, =

>
i=1

. i=1

u 172 n 1/2
<(@r-1 (Z d?) <(r— 1)(2 ”diZ”r/z) :
i=1

(1.4)
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Moreover, and as in [12], letting G; = 0(Z;,2Z,, . .. ,Z,-,Z), 1<i<n,

E|S—S8i|" = E(E(S — Si|"1G:)
> E(JE(S|G) — E(S|Fim1) + E(Si| Fim1) — E(Si|G)|")
=E|U+ V|, (1.5)
where U = E(S|G;) —E(S|Fi—1) and V = E(S;| Fi—1) —E(S;|G;). But, given F;_, U

and V are independent, with moreover E(U|F;—;) = E(V|F—1) = 0and E|U|" =
E|V|" = E|d,|", thus,

E|lU+VI"=E®E(U + VI'|Fi-1) = E|U|" + E|[V|" = 2E|d;|", (1.6)

using the calculus inequality, valid forany r > 2,u € Randv € R, |u+v|" > |u|"+
rsign(u)|u|”'v + |v|", and taking conditional expectations. Combining (1.4), (1.5)
and (1.6) gives (1.3).

Next, apply (1.3) to LC, viewed as a function of the 2n random variables
Xi,..., X, Y1,...,Y, and note, at first, that replacing X; (resp. ¥;) by an inde-
pendent copy }2,- (resp. I}i), changes |LC, — LC,(X; --~)2,~ <Xy Y-+ Y| (resp.
|ILC,—LC, (X)X, Yy -+ I?i -+-Y,)|) by at most 1. Thus, following Steele [13] and
foreachi=1,...,n,

ILC, — LCy(X1 -+ Xi - X3 Y1 -~ V) |2

~ 2/
= (BOLC, = LGy -+ R+ X Vi Vo) Ty i)

m 2/r
A \2/T
<(pxi# %)) = (1 —Zpi) - (1.7)
k=1
Combining (1.7), and its version for (¥;)i<i<n, With (1.3) yields, for any r > 2,

-1y "
E|LC, —ELG,|" < % (1 - Zp,%) @), (1.8)
k=1

which further yields,

m r/2
E|LC, — ELC,| < ((1 —Zp,f) n) ,
k=1

for any 0 < r < 2, by the Cauchy-Schwarz inequality.

Therefore, (1.8) provides an upper bound whose order could also be obtained, in a
simpler way, by integrating out the tail inequality given via Hoeffding’s exponential
martingale inequality. Let us now state the main result of the paper which provides
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a lower bound on the r-th central moment of LC,, when all but one of the symbols
are drawn with very small probabilities.

Theorem 1.1 Let 1 < r < 4o0, and let (X;)i>1 and (Y;)i>1 be two independent
sequences of iid random variables with values in A,, = {a1,02,...,0,}, m > 2,
such that P(X, = ay) = pr, k = 1,2,...,m. Further, let jo € {1,...,m} be such
that max;;, p; < min(2~%¢"°K,,/m. K,,/2m*), where K,, = min(K, 1/800m) and
K = 274107 2¢7%7. Then, there exists a constant C > 0 depending on r, m, pj, and
max;j, pj, such that, for alln > 1,

M,(LC,) := E|LC, —ELC,|” > Cn>. (1.9)

An estimate on the constant C present in (1.9) is given in Remark 2.1.

In contrast to [6, 8] or [9] which deal only with binary words, our results are
proved for alphabets of arbitrary, but fixed size m, and are thus novel in that context
as well even for the variance, i.e., r = 2. Moreover, our results are no longer
existential, but provide precise constants depending on the alphabet size. As well
known, e.g., see [2, 3], the LCS problem is a last passage percolation (LPP) problem
with strictly increasing paths and dependent weights and, therefore, in our context,
the order of the variance is linear. For the LPP problem with independent weights
the variance is conjectured to be sublinear. In view of (1.8) and (1.9), it is tempting
to conjecture, and we do so, that when properly centered (by y,-n) and normalized
(by +/n), asymptotically, LC, has a normal component. (The limiting law is in
fact normal, see [7].) This conjecture might appear surprising since in LPP with
independent weights different limiting laws are conjectured and have been proved
to be such in the closely related Bernoulli matching model [10]. It should finally
also be noted that, as seen in [4], with another closely related model, the order n'/2
on the central moments does not guarantee normal convergence, but nevertheless a
normal component is present.

As for the content of the rest of paper, Sect.2 presents a proof of Theorem 1.1
which relies on a key preliminary result, Theorem 2.1, whose proof is given in
Sect. 3.

2 Proof of Theorem 1.1

The strategy of proof to obtain the lower bound is to first represent LC,, as a random
function of the number of most probable letters «j,. In turn, this random function
locally satisfies a reversed Lipschitz condition which ultimately gives the lower
bound in Theorem 1.1. This methodology extends, modifies and simplifies (and
at times corrects) the binary strategy of proof of [6] or [9] providing also a more
quantitative result.

To start, and as in [6], pick a letter equiprobably at random from all the non-a;,
letters in either one of the two finite sequences, of length n, X or Y (Throughout the
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paper by finite sequences X and Y, of length n, it is meant that X = (X;)1<i<n and
= (¥i)1=i=n)- Next, change it to the most probable letter «;, and call the two new
ﬁnlte > sequences X and Y. Then the length of the longest common subsequence of X
and Y, denoted by LC,, tends, on an event of high probability, to be larger than LC,.
This is the content of the following theorem which is proved in the next section.

Theorem 2.1 Let the hypothesis of Theorem 1.1 hold. Then, for all n > 1, there
exists a set B, C A, x A2, such that,

. )6
P((X,Y) € By) > 1 — 125exp (—%) , 2.1)
and such that for all (x,y) € B,

K
P(LC, — LC, =1 X=xY=y)>— (2.2)

m’

— K
P(LC,—LC, =—-1|X=x,Y=y) < oy (2.3)

where K = 2741072797,

As already mentioned, the proof of Theorem 2.1 is given in the next section,
let us nevertheless indicate how it leads to the lower bound on M, (LC,) given in
Theorem 1.1. In fact, the arguments leading to the conclusion of Theorem 1.1 remain
valid under any hypotheses for which the conclusions of Theorem 2.1 remain valid.

From now on, assume without loss of generality that py > 1/2 and that p;, =
maxy<j<m Pj, S0 that oy is the most probable letter and oy the second most probable
one.

To begin with, let us present a few definitions. For the two finite random
sequences X = (X;)i<i<n and ¥ = (¥i)1<i<n, let N; be the total number of
letters «; present in both sequences, i.e., N; is a binomial random variable with
parameters 2n and p;. Next, by induction, define a finite collection of pairs of finite
random sequences (X", Yk)05k52n, which are independent of X and Y, and therefore
independent of Ny, as follows: First, let X0 = (X,Q)lsisn and Y0 = (Yio)lsisn
be independent, with X? and YiO, i = 1,...,n, iid random variables with values
in {a2,...,,} and such that P(X? = o) = P(Y) = o) = pi/(1 — p1),
2 < k < m. In other words, X° and Y° are two independent finite sequences of
iid random variables whose joint law is the law of ((X, Y)|N; = 0). Once (XX, Y*) is
defined, let (X**1, Y**1) be the pair of finite random sequences obtained by taking
(pathwise) with equal probability, one letter from all the letters oy, o3, ..., &y in
the pair (X*, Y*) and replacing it with oy, and for this path iterating the process
till &k = 2n. Clearly, for 1 < k < 2n — 1, X* and Y* are not independent, while
(Xiz”, Yiz”)ls i<n 15 a deterministic sequence made up only of the letter ;.

Rigorously, the random variables can be defined as follows: let 2 be our
underlying space, and let Q%! be its (2n + 1)-fold Cartesian product. For each
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o = (0o, w1,...,w3,) € Q¥ and 0 < k < 2n, (X*(w), Y*(w)) only depends
on wy, i, ...,w. Then, (X*T!(w), Y*1(w)) is obtained from (X*(w), Y*(w)) by
replacing with equal probability any non-¢; letter by o, while the choice of the
non-; letter to be replaced in (X*(w), Y*(w)) is determined by wy+1.

Next, let LG, (k) denote the length of the longest common subsequence of X* and
Y¥ (with a slight abuse of notation and terminology with the identification of finite
sequences and words). The lemma below shows that (X, Y*) has the same law as
(X, Y) conditional on N; = k, and therefore the law of LC, (k) is the same as the
conditional law of LC, given N; = k.

Lemma 2.1 Foranyk =0,1,...,2n,
(X579 £ (X DIV = k), (24)
and moreover,
XM Y™ £ (X, ), 2.5)

d e
where = denotes equality in distribution.

Proof The proof is by induction on k. By definition, (X°, Y°) has the same law as
(X,Y) conditional on N; = 0. For any (¢, ..., 0),,) € Al x Al let

qg:|{1§i§2n: ozj,.:oug}i,

1 < £ < m. Now assume that (2.4) is true for k, i.e., assume that for any
(..o ap,) € AL x AL with g, = k,

-1
2n m pe qe
P((X",...,X,’j,Y{‘,...,Y,’j)z(ozjl,...,am)):(k) ]_[( ) :

(2.6)
Then, for any (;,, ..., a;,) € A x Ar, withgy =k + 1,

P Y = () =

k+1
POt XETL YY) = () BETYPBETY, 27)
i=1

where Bf.‘“, 1 <i<k+ 1,is the event that the i-th o in (e}, ..., ;,) is changed
from a non-o; letter when passing from (X*, Y¥) to (X**!, Y¥*1). (Conditional on
Bf.‘“, the i-th o in (o, ..., @),) could have been changed from any letter in
{az, @3, ...,0,}.) Assuming this «; has been changed, say, from oy, 2 < s < m,



Order of the Central Moments of the Length of the LCS 111

the corresponding probability is given by:

-1
K yvhy — (. . _ 2n m( D )q(( Ps )
P (X5 Y% = (0. .o, en e 0t,) ( ) g T )

k

where, above, o takes the place of the i-th o in the sequence (¢, . .. , @, ). Thus,

P XL YY) = (a0, | BETY) PBETY)

-1
_[2n ﬁ pe % Xm: Ds 1
o\ k i \=pi = 1-p 2n—k’

which when incorporated into (2.7), gives

Py Y = ()

-1
_ n m Pe qe
_<k+1) g(l—pl)’ (2.8)

finishing the proof of the first part of the lemma.
Next, from (2.4) and the independence of N; and {(X*, Y*)}o<i<2., for any
(u,v) e R"" xR",

2n
E (ei<u,X>+i<v,Y>) — ZE (ei<u,X>+i<v,Y> |N1 — k) ]P(Nl — k)

k=0
2n

_ ZE (ei<u,X1‘>+i<v,Y1‘>) P (N, = k)
k=0
2n

_ ZE (ei<u,X">+i<v,Y">|N1 _ k) P (N, = k)
k=0

2n
= YE (e iy = ) PV, = )
k=0

_ i<u XN >+i<v, YN >
=E (e ,

finishing the proof of the lemma. |
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Let now LC,(N;) be the length of the longest common subsequence of X!
and YV, The above lemma implies that LC,, and LC,(N;) have the same law and,
therefore,

M, (LC,(N1)) = M, (LCy). (2.9)

To lower bound the right hand side of (2.9) (and to prove Theorem 1.1) the following
simple inequality will prove useful.
Lemma 2.2 Letf : Dom — Z satisfy a local reversed Lipschitz condition, i.e., let
£ > 0 and let f be such that for any i,j € D withj > i + £,

F) =) = c(j—1),
for some ¢ > 0. Let T be a Dom-valued random variable with E|f(T)|" < o0,
r>1, then

Cc

ML) = (5) () - ). (2.10)

Proof LEt r>1,and let T be an independent copy of T'. First, and clearly, M, (T) <
E(|T —T|") < 2"M,(T). Hence,

M., (f(T))

v

SEQFD) DI

(E) (BT -1, 5, + BT 1115,

- (5 (-0
> (5) eam o).

The above lemma will prove useful in providing a lower bound on M, (LC,,(N1))
by showing that, after removing the randomness of LC,(:), LC,(-) satisfies a
local reversed Lipschitz condition. To do so, for a random variable U with finite
r-th moment and for a random vector V, let M.(U|V) := E (|U —E (U|V) |’|V).
Clearly, by convexity and the conditional Jensen’s inequality,

M,(U|V) <2" (E(|U-EU|"|V) /2 + E([E(U|V) —EU[|'|V) /2)
<2'E(|U-EU|'|V) (2.11)
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and so, forany n > 1,

M, (LG, (1)) = %E(Mr(Lcn(Nm(Lcn(k))OSkSZn))
_ 21 / M, (LG (N[ (LCa (k) o<t con (@) P(d0)
Q
z% [ MwcIee @has )P, 12
where foreachn > 1,
0, = ﬂ, {Lcn(j) LG = G- (2.13)
jzitn)

where K is given in Theorem 2.1 and where £(n) > 0 is to be chosen later.
(Of course, above and everywhere, intersections, unions and sums are taken over
countable sets of integers.) In words, on the event O, the random function LC, has a
slope of at least K/4m, when restricted to the interval I and when i and j are at least
£(n) apart from each other.

Since N is independent of (LC,(k))o<k<2x, and from (2.11), for each w € €2,

Mr (Lcn (Nl ) I (Lcn (k))0§k§2n (a)))

> %Mr(LCn(Nl)I(Lcn(k))osksbt(w)v 1y,er = DPWN; € I|(LCyu(k))o<k<om(®))
_ %M,(Lcn(zvm(Lcn(k))ofkgn(w), Lyer = DBV, € 1), (2.14)
where

1= [20p1 = V2n(T = popr. 21 + V/20(T = pop | 2.15)

Again, for each o € O,, from Lemma 2.2, and since N; is independent of
(LCy(k))o<k<2ns

MV(LCV!(NI)|(LCn(k))0§k§2n(a))s 1N1€I = 1)

> (85) M, (Millyer = )= L)), (216)
m
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Now, (2.12), (2.14) and (2.16) lead to

M, (LC, (1)) = }(g) (M, (N | Lyyer = 1) — €)' ) BQV, € DP(O,),
2.17)

and it remains to estimate each one of the three terms on the right hand side of (2.17).
By the Berry-Esséen inequality, and all n > 1,

1 L 1
PN, el)— — e Tdx| € ———. (2.18)
‘ V2w J-1 V2npi1(1 —py)
Moreover,
M, (Ni[1yer = 1)
= E(|N1 - 2np1 + 2np1 _E(N1|1N1€I = 1)|r|1N151 = 1)
> |E(Ny —2np1| [Iy,er = D7 = 2npy — EWNi |1y, = 1) " (2.19)

and

IE(Ni[1yer = 1) = 2npy|

Ny —2n
= \/2np1(1 —Pl) E l—pl‘ljvlel = 1
v 2npi(1 —p1)

) o) = ®(1) + Fo(=1) = (1) = [1, (o) = D())dx

= /2npi(1 —p; BV <)
dmaxyef—1,1) [Fn(x) — ()]
< v2npi(1 —p1) E[P(]]\,l <l
2

(2.20)

= 3 ;
JL e T dx/ V2w =1/ 2mp (U= pi)

where F), is the distribution functions of (Ny — 2np1)/+/2np1(1 — p1), while ® is
the standard normal one. Likewise,

E(IN1 = 2np1|" Iyer = 1)
2 J2 I dPx) — 4 maxeep-1.1) [Fa(x) — @)
P(N] (S I)
2
pl))r/zf_ll [x|"e™ = dx — 25/7 / y/npi (1 — py) 221)
f_ll e~ 2dx + /7 //npi(1 —p1)

> (2np1(1 —p1)

> (2np1(1 -
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Next, (2.19)—(2.21) lead to:

M, (N1[1yer = 1)

1
2 v
[ lre S dx —23/@/ /npr (1= p1)
2
e Tax+ yr/api (1= pr)
2

e S ay/ VI — I =) |

(2.22)

> |@npi(1 —p1))?

r

Finally, assuming Theorem 2.1, the estimates (2.17)—(2.22) combined with the
estimate on P(O,,) obtained in the next lemma give the lower bound (1.9), whenever
33m?logn/K?* < £(n) < K +/n (where K| is given and estimated in Remark 2.1).

Lemma 2.3 Form > 2, let K,, = min(K, 1/800m) where K = 274107279, and
let py < min(272¢7°K,,/m, K,,/2m?). Then, for alln > 1,

6 2
P(O,) > 1 — (sooﬁezn exp (—%) + 2nexp (—K e(”))) . (2.23)

32m?
Proof LetA, := {(X,Y) € B,} and let A¥ := {(X*, Y*) € B,}. Then,

p ((mA)) = S R(A)) = S Pl = 0) = 30 50

kel kel kel kel
(2.24)
by Lemma 2.1. Next, by Stirling’s formula in the form,
V2" T T < pl < 2 Tre

forallk €e Tandn > 1,

POV = k) = <2k”)p§(1 -p)

- 1 (zn)2n+l/2
= are? KF2(2n — fy—kr1/2P

= y(k,n,pr).

HOUE
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Hence, for all k € I and p; > 3/4 (which holds true since p, < K/m), from the
property of the probability mass function of the binomial distribution,

P(N, = k)
> min (]P’(Nl = 2np; — | v/2n(1 — p)p1]), P(Ny = 2np; + [v/2n(1 _PI)PIJ))
> min (J/ (2’1171 = [v2n(1 _Pl)PlJv”sPl) Y (2’1171 + [v2n(1 _Pl)lev”sPl))

1

o 2.25
= 232metn (2:29)

This last inequality in conjunction with (2.24) and Theorem 2.1, gives

¢ 6
P ((ﬂAk) ) < 4Jme*nP(AS) < 500/e’nexp (—@) ) (2.26)

kel >

Next, for each n > 1, letting

LC,(k+1)—LC,(k), when Al;, holds,
Apy1 = ( ® ) (2.27)
, otherwise,
it follows from Theorem 2.1 that,
k vk K
E(Ap X5, 74 = —. (2.28)
2m

Now, for each k = 0,1,...,2n, let F, := o(X°,Y°,..., X" Y5), be the o-field
generated by X°, Y0, ... X% YX Clearly, (Ax — E(Ax|Fi=1), Fi)1<k<2n forms a
martingale differences sequence and since —1 < A; < 1, Hoeffding’s martingale
inequality gives, for any i < j,

]' 2 sy
P ( 3 (M- E(AF) < —%(j— i)) <exp (_M) .29

2
k=i+1 32m

Moreover, from (2.28), Z],;=i+1 E(AX*1, Y*1) > K(j — i)/2m, and therefore

/ K / K
P ( Y A< E(j—i)) <P ( D (A —E(AFimn)) < —E(j—i))

k=i+1 k=i+1

2 . _ B
< exp (—%) . (2.30)
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For eachn > 1, let now

N

ijel
Jj=i+L(n)

J
PN %(j—i)} ,

i+1

then, from (2.30)

; d K . K2{(n)
P((Oﬁ) ) < 261: P <§-+1 Ay < E(J—z)) < 2nexp (— 2 ) 2.31)
ij i
i)

From the very definition of A in (2.27), (,¢; A% N 0% C O,, and therefore

E((0)) <P (((‘]Ak) ) B((0)°)

kel

¢ K%l
< 500/menexp (—%) + 2nexp (— 5 (’Z)) . (2.32)
m

Remark 2.1 The reader might wonder how to estimate the constant C in Theo-
rem 1.1. In view of (2.9), the right hand side of (2.17) needs to be lower bounded.
Letting n > 172_12 + m?®, together with (2.18), (2.22) and (2.23) yield to:

1

PNy €1) > -, P(On)zi,

=

and
M, (N [y, = 1) = e 227051 + 1)~ (n(1 = p1)) 5.

Moreover, choosing

1
1 T
tn) = 20D (n(1 = py) (—) — Ky
147
in (2.17), gives:

Mr(LCn) > 2—4—6r(1 + r)—le—l/ZKrm—r(l _pl)r/an/Z‘
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Letting C; = 2747 (1 + r)~'e”2K"'m™"(1 — p;)"/?, and

. Mr(LCn) (}’— 1)r r/2 - 2
C, = min 7 < > 2 1—;17,( ,

nS[’z_lz-l—m8

by (1.8), then one can choose C = min(Cy, C;) in Theorem 1.1.

3 Proof of Theorem 2.1

3.1 Description of Alignments

Let us begin with an example. Let A3 = {a, ap, a3}, witho; = i, i = 1,2, 3, and,
say that

X = 121313111211, Y = 111311112112. 3.1

An optimal alignment of X and Y, i.e., an alignment corresponding to a LCS, is

1 2 1 3 1 3 1 1 1 2 1 1
3.2
1 1 1 3 1 1 1 1 2 1 1 2 (3-2)
and another possible optimal alignment is
1 2 1 31 3 1 1 1 2 1 1
1 1 1 3 1 1 1 1 2 1 1 2 3-3)

both corresponding to the LCS 1131111211.

Comparing these two optimal alignments, it is clear that the way the letters «; are
aligned, between the aligned non-«; letters, is not important as long as a maximal
number of such letters o) are aligned. Therefore, in general, it is enough to describe
which non-« letters are aligned and to assume that between pairs of aligned non-«;
letters a maximal number of letters o are aligned. In other words, we can identify
the two optimal alignments (3.2) and (3.3) as the same.

Next, let a cell, be either the beginning of an alignment till and including, if any,
its first pair of aligned non-«o; letter, or be a part of an alignment between pairs of
aligned non-¢; letters.
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For example, the alignment (3.2) can be decomposed into two cells C(1) and
C(2) as

(), vi=—1 C(2), v2=0
1 2 1 3 1 3 1 1 1 2 1 1
1 1 1 3 1 1 11 2 1 1 2 (34

where, moreover, each v; denotes the difference between the number of letters o in
the X-strand and the Y-strand of the cell C(i), i = 1, 2. For the alignment (3.2), this
gives the representation v = (v, v2) = (—1,0). Another optimal alignment is via
v = (v1, v2) = (0, —1) corresponding to another LCS, namely 1113111211:

c(1), v;=0 @), vy=—1
1 2 1 3 1 3 1 1 1 2 1 1
1 1 1 3 1 1 1 1 2 1 1 2 35

Note that any alignment has a cell-decomposition with a corresponding finite vector
of differences. (With the convention that when no non-¢; letters are aligned, then
the alignment has no cell.)

Let X = X1X,---X, and Y = Y|Y,---Y, be given. As just conveyed, any
alignment has a cell-decomposition with an associated vector representation v :=
(v1, ..., vy) indicating the number of cells (k, here) and the differences between the
number of letters «; in the X-strand and the corresponding number in the Y-strand
of each cell. Conversely, any v € Z* corresponds to a, possibly empty, family of
cell-decompositions.

Let us now turn to optimality. First, clearly any optimal alignment is made of,
say, k cells (recall also our convention above), where within each cell a maximum
number of letters «; are aligned and, if any, the optimal alignment also has a tail part
(the part after the last cell, i.e., the part after the last aligned non-o letters) where
as many letter «; as possible are aligned. Therefore, such an optimal alignment
is given via a unique v € Z*. On the other hand, every v = (vy,...,v) € ZF
also corresponds to a (possibly empty) family of optimal alignments. All of these
optimal alignments have the same number of pairs of aligned non-«; letters where
within each cell a maximal number of letters «; are aligned, and where moreover
as many letters o) as possible are aligned after the pair of aligned non-o-letters.
These optimal alignments corresponding to the same v can differ in the way the
letters «; are aligned within each cell and in the tail part. It can also happen, and
in contrast to the binary case, that one can align different pairs of non-o; letters,
which can only happen when no letters o are present between these different pairs
of non-¢ letters. (Take, for example, X = 1321 and Y = 2311, then the optimal
alignments corresponding to v € Z can align either the letter 2 or the letter 3.) But
in both cases such optimal alignments based on the same v give the same length
for the corresponding longest common subsequences. Therefore, we can identify
all the optimal alignments in the family associated with v as a single one. In other
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words, we identify each vector v with an optimal alignment, provided one exists,
and vice-versa.

Writing |v| for the number of coordinates of v, i.e., |v| = k, if v € 7k, the cell-
decomposition 7 — v associated with v = (v1,...,v;) € ZF can now precisely be
defined:

Definition 3.1 Let k € N,k > landletv = (v1,...,v) € ZF Let m,(0) =
Vy(0) = 0, and for eachi = 1,...,k, let (, (i), v,(i)) be any one of the smallest
pair of integers (s, ) (where (s1,#;) < (s2,1) indicates that s; < s, and t; < 1)
satisfying the following three conditions:

1. my(i—1) <sandv,(i—1) <t

2. Xy =Y, €d{an,...,an};

3. the difference between the number of letters o in the integer intervals [, (i —
1),s] and [v, (i — 1), 1] is equal to v;.

If for some i = 1,...,k, no such (s, ) exists, then set 7,(i) = --- = m,(k) = o0
and v, (i) = --- = vy (k) = oo.

In other words, above, 1, (i), v, (i), i = 1, ..., k, are the indices corresponding to
the i-th aligned non-o; pairin v. Fori = 1, ...k, the i-th cell, C, (i) is the pair

Co (D) := (X im)+1 - - - Xy (3 Yoo i=)1 - Yoo ) »

and the cell C, (i) is called a v;-cell.

Let us further comment on the above definition, we actually defined a greedy
algorithm for each cell (each cell must be minimal meaning that the cell ends as
soon as all three conditions in Definition 3.1 are met). For any optimal alignment,
let us compare its cells with our minimal cells alignment. If any, respectively denote
the first two different cells by c;}p " and ci."i", 1 < i < k, since these cells correspond
to the same v; € Z, they only differ in the number of pairs of aligned letters «;.
From the definition of minimality, ¢{” ' contains more pairs of aligned letters oy than
ci."i”. These pairs of letters o, being of same number on the X-strand and Y-strand,
can thus be pushed to next cell. By iterating this push-procedure till the tail, then any
optimal alignment can be transformed into a minimal (optimal) alignment without
reducing the length of the common subsequence. Thus an optimal alignment can
always be transformed into a minimal (optimal) alignment.

With the above definition, we can let the alignment associated to v be any
alignment (provided one exists) satisfying the following three conditions:

1. Xz, (i is aligned with Y, (), foreveryi =1,2,...,k;

2. the number of aligned letters «; in the cell C,(i), denoted by S,(i), is
the minimum number of letters «; present in either Xy —1)41- Xz, ) OF
Y, i-n+1 Yo,

3. after having aligned Xy, ) with Y, «), then align as many letters o as possible
and denote that number by r,.
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From these definitions, for any v € 7k, and if there exists a minimal cell-
decomposition corresponding to v exists, then m,(k) < n and v,(k) < n. Such
a v is then said to be admissible. Let V denote the set of all admissible cell-
decompositions, that is,

V= veUZk:nv(lvDEn,vv(lvl)En . (3.6)
k=1

Then, for every v € V, and further for |v] = 0 in case of no cell, the length of the
common subsequence corresponding to this alignment is:

[v]

AC, = [v] + > SuG) + 1. (3.7)

i=1

Therefore the length of the longest common subsequence of X and Y can be
expressed as:

LC, = max AC,, (3.8)

vEV

and, moreover, an alignment associated to an admissible v is optimal if and only if
AC, = LC,.

3.2 The Effect of Changing a Non-a; Letter into o

Again, the main idea behind Theorem 2.1 is that, by changing a randomly picked
non-¢; letter into «, the length of the longest common subsequence is more likely
to increase by one than to decrease by one. More precisely, conditional on the event
A, = {(X,Y) € B,}, the probability of an increase of LC, is at least K/m while the
probability of a decrease is at most K/2m. Let us illustrate this fact with another
example. Let X and Y be given by,

X = 112113112131, ¥ = 131111111131, 3.9

with optimal alignment:

1
0 (3.10)

Above, there are 6 non-o letters, X3, Xg, X9, X11, Y2, Y11, and each one has probabil-
ity 1/6 to be picked and replaced by «;. Next, X3, X5, X9 and Y, are not aligned with
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other letters but rather with gaps. Moreover, since X3, X, X9 are on the top strand
which contains a lesser number of letters ¢/, picking one of them and replacing it
leads to an increase of one in the length of the LCS. On the other hand, since X;; and
Y1, are aligned in this optimal alignment, picking one of them and replacing it could
potentially (but not necessarily) decrease the length of the LCS by one. Finally,
picking Y, may only potentially increase the length of the LCS by modifying the
alignment. In conclusion, in this example, by switching a randomly chosen non-«;
letter into 1, the probability of an increase of the length of the LCS is at least 1/2,
while the probability of a decrease is at most 1/3.

To prove Theorem 2.1, we just need to prove that typically there exists an optimal
alignment such that:

1. Among all the non-«; letters in X and Y, the proportion which are on the cell-
strand with the smaller number of letters «; is at least K/m.

2. Among all the non-¢; letters in X and Y, the proportion which is aligned is at
most K /2m.

Formally, let v = (vy,...,v) € 7Z¥ be admissible. For each 1 < i < k, if v; #0,
let N, (i) be the number of non-o letters on the cell-strand of C, (i) with the lesser
number of letters ¢, i.e., let

7y (i)—1 .
Zj=nu(i—1)+1 Ixeto,.any> Vi <O,

N, (i) = G
v( )_l :
Zj=1jv(i—l)+l lY,'G{Otz,....am}’ if v; > 0,

@3.11)

while if v; = 0, let N, (i) = 0. Then, the total number of non- letters present on
the cell-strands with the smaller number of letters «; is equal to

|v]
Ny =Y "N, (). (3.12)
i=1
Let N; be the number of letters ¢; in the two finite sequences X and Y, and let
N.i =Y N (3.13)
=2
Next, let

By :={(x,y) € Aj, x A : there exists an optimal alignment of (x, y)
with |v| > 1,n, > Kn.;/m and 2|v| < Kn./2m},
where, above, n; is the value of N, corresponding to v and similarly for n.;.

Clearly, B, depends on K and m. Letting A, = {(X,Y) € B,}, our goal is now
to prove that for some K >0, independent of n, P (4,) > 1 — e~k
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To continue, we need an optimal alignment having enough non-¢; letters in
the cell-strands with the smaller number of letters ;. However, for many optimal
alignments, most cells are zero-cells, i.e., cells with the same number of letters «;
on both strands. To bypass this hurdle, on an optimal alignment where most cells are
zero-cells, some of the zero-cells are broken up in order to create enough nonzero-
cells while at the same time, maintaining the optimality of the alignment after this
breaking procedure. Let us present this breaking operation on an example. Take the
two sequences

X =112113113, and Y = 112131113.

One of their optimal alignments is

c(1), v;=0 C(2), v,=0
1 1 2 1 1 3 1 1 3

3.14
1 1 2 1 3 1 1 1 3 ( )

where both cells C(1) and C(2) are zero-cells. Now in the cell C(2), X and Y5 are
only one position away from being aligned. Thus aligning them, instead of the pair
X5 and Yg, breaks the cell C(2) into two new cells C(2) and C(3), with v, = 1 and

v3 = —1. The new optimal alignment is then:
C(1), 7;=0 C(2). Tr=1 C(3), T3=—1
1 1 2 1 1 3 1 1 3
3.15
1 1 2 1 31 1 1 3 (3.13)

The advantage of breaking up a zero-cell is that the resulting newly formed cells
have different numbers of letters «; on each strand, thus N,~ tends to increase in
this process while the length of the common subsequence remains the same. After
applying this procedure and getting enough cells with different numbers of letters
o on the two strands, there is a high probability of finding enough non-«; letters on
the strand with the smaller number of letters «;.

The previous example leads to our next definition.

Definition 3.2 Letk e Nk > 1,letv e Z*NV,and fori = 1,...,k, let Cy(i) be
any cell with v; = 0. Then, C, (i) is said to be breakable if there exist j and j* such
that:

1. X; =Yy €f{on,...,0n};
2. m(i—1) <j<m@)andv,(i—1) <j < v,(i);
3. the difference between the number of letters o) in

Xy (i—1)+1 X7, (i—1)+2 - Xj—1 and Yy, i—y+1 Yo, (i—)+2 - Yy—1

is plus or minus one.
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3.3 Probabilistic Developments

After the combinatorial developments of the previous sections, let us now bring for-
ward some probabilistic tools. We start by introducing a useful way of constructing
alignments corresponding to a given vector v = (v1,..., %) € R,

For1 <i <nand2 < j < m, let R! (resp. S!) be the number of letters
between the (i — 1)-th and i-th «; in the infinite sequence (X;);>1 (resp. (Yi)i>1),
with, of course, R{ (resp. S’i) being the number of letters «; before the first a;.

Recall also, from Definition 3.1, that in order to construct a zero-cell, we use the
random time 7, given by

To = min T), (3.16)
2<j<m
where T) := min{i = 1,2,...: R} # 0,8 # 0}. For a —u-cell (u > 0), the
random time is
T_, = min TV, (3.17)
2<j<m

where TV, := min{i = 1,2,...: R/ #0, S{ﬂ # 0}, and for a u-cell (u > 0),

T, = min T/, (3.18)
2<j<m
where TL == min{i = 1,2,... : Rfﬂ # 0, Si # 0}. In other words, a cell with

v; = u can be constructed in the following way: Begin by keeping the first u letters
a; in the X-strand, then align consecutive pairs of letter ; until meeting the first
pair of the same non-«; letter. (As previously argued, here different choices of pairs
of the same non-o letter are possible, i.e., if there are no letters o« between different
minimal pairs, but any pair will do if there is more than one choice.)

Let us find the law of R/ and, to do so, let R7' = Y "'_, R/ be the total
number of non-o; letters between the (i — 1)-th and the i-th «. Then, R! + 1is a
geometric random variable with parameter py, i.e., P(R7! = k) = (1 —p1)*p1, k =
0,1,2,.... Moreover, conditionally on Ri>1, (le );”=2 has a multinomial distribution
and therefore

PR =k) =) PR = kIR = OPR" = 0)
=k

e e] E . k 1— . {—k
= (k (lp’ ) ( lpl p’) (1=p)'pi
=k — D1 — D1

' k
=( P )( Pj ) (3.19)
pr+pi) \p1+p;
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for k = 0,1,2,.... Thus, R{ + 1 has a geometric distribution with parameter
pi/(p1+p)2=j=m.

To continue our probabilistic analysis, let us provide a rough lower bound on
the length of the LCS. First, aligning as many letters ¢; as possible in X and Y,
would get approximately a common subsequence of length np;, then aligning as
many letters o, as possible without disturbing the already aligned «/;, would give an
additional )7, min{Riz, Slz} aligned o, Moreover, since Ri2 and Si2 are independent
geometric random variables, min{Riz, Slz} + 1 is a geometric random variable with
parameter 1 — (p2/(p1 + p2))?. So, on average, the aligned letters o, contribute to
the length of the LCS by an amount of:

Pz
Pl(Pl + 2P2) p1+2p>

np3 > (1 — pa)np3.

This heuristic argument leads to the following lemma:

Lemma 3.1 Let p; > 1/2 and let Dy := {LCn > np + ((1 —p2)? —pz) np%}
Then, P(Dy) > 1 — 4exp(—2npg) —exp (n(pg + log(1 — %))(pl —p%)).

Proof For p; > § > 0, let D}(§) := {\Zl 1 Lixi=ay} —np1| < 8n}, let D(8) =
{\Zl y=any — npli < Sn} and let D»(8) := D3(8) N D5(8), so that on D,(§), at
least n1(8) := n(p; — &) letters « can be aligned. Clearly, 1 + min(R?, S?) has a

geometric distribution with parameter 1 — (p2/(p1 + p2))?. Also, if Gy, ..., G, are
iid geometric random variables with parameter p, then for any § < 1,

P (Z G < IE;) <exp(~(f— 1 —log f)r). (3.20)
i=1

By taking p = 1 — (p2/(p1 + p2))? and r = n;(§), and since the sequences have
same length n, the following equality in law holds true:

n1(8) n1(5)

Z min(R?, $?) + n1(8) = Z (Gi A n).
i=1

For any B8 < 1, let us estimate

n1(8)
Z mln(R2 S2 ,Bm—(S)z —n1(9)

P2
pitp2
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First,

@ 6 <.
1- (Pll-)‘iPz)

and therefore,

- 2 2 Bni(9) 1-1 §
P[> min(R?,§}) < ————— —m(§) | < e 1 Tlehm), (3.21)
i _ D:
=l Pl‘iPZ
Next, let
n1(8
Q By (8)

D3(B.8) :== 4 Y min(R;,S}) = > —m(5)
i=1

_(_»r
1 (Pl -ipz )
Letting § = p3 and = 1 — p3, and when D,(8) and D3(B, §) both hold, then

e, > "0 6 me)
1- (PI'EPZ)
2 P1 —Pg
2 2 2
(p1 +p2)* —p;

» P2(p1—p3)
2 2
_ P2
1 (P1+Pz)
R ((Pl =) =pa(p1 +p2)*) —pz) np?

pi(p1 +2p2) :

(P =p)(1=ps) )n >
pi(1+p2) 2)

> np1 + ((1 = p2)* — p2) np3.

=np +n(p1 —p3) —np

2”171-1-(

Since D2(p3) N D3(1 — p3,p3) C Dy, it follows from Hoeffding’s inequality
and (3.21) that

P(Dy) > 1 — 4exp(—2np3) — exp (n(p3 + log(1 — p3))(p1 — p3)) -

To state our next lemma, let us introduce some more notation. First, let

V(k) == {(vi,va,...,00) € ZF oy | + -+ + || < 24}, (3.22)
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and then let

P:= ] V. (3.23)

2k2np%

With these definitions, the previous lemma further yields:

Lemma 3.2 Let O be the set of all the optimal alignments of X = (Xi)1<i<n and
Y = (Y)i<i<n, let D = {O C P}, let p1 > 1/2 and let p» < 1/10. Then, P(D) >
1 — 5exp (—nps/5).

Proof Let N{ be the number of letters o in X, and N} be the corresponding number

inY,andsoN; = N{‘ +N, f’ . From the proof of the previous lemma, with its notation,
it is clear that:

N
D1 N Dy(p3) C %LCn > 71 —np3 + ((1 = p2)> = p2) np3 (3.24)
N1 N
C %LC,, > 71 + Enp% = Dl(p%), (3.25)

since p, < 1/10. But, D2(p3) N D3(1 — p3, p3) C Dy, s0 as in the previous lemma,

N 1
P(LCn >+ Enpi) > 1 —4exp(—2np3) — exp (n(p3 + log(1 — p3))(p1 — p3))
>1—5exp (—npg/S) ,

since again p, < 1/10. It remains to show that D ( p3) C D. But, for any alignment
with [v] = k > 0,

R
1
LC, < — — — |+ k. 3.26
=3 2i§=1|v|+ (3.26)
while on Dy (p3),
N1
LC, > 5+ Enp%. (3.27)

In case |v| = 0, no optimal alignment do satisfy both (3.26) and (3.27), while for
|v| > 1, they both combine to yield Zf;l |vi] < 2k and np% < 2k, and this finishes
the proof. |

The previous lemma asserts that, with high probability, any optimal alignment
belongs to the set P. Hence, in order to prove that the optimal alignments satisfy a
property, one needs, essentially, to only prove it for the alignments in P.
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3.4 High Probability Events

Recall, from Definition 3.1, that any v € ZX,k > 1 is associated with an alignment
having k = |v| cells C, (1), ..., Cy(Jv]), and that a cell is called a nonzero-cell if it
contains a different number of letters r; on the X-strand and on the Y-strand. For any
6 > 0, let W? be the subset of P, consisting of the alignments having a proportion
of nonzero-cells at least equal to 6, i.e.,

Wl={veP:|{ic[l.k:v;#0} >0},

and let (W?)° := P\W?.
To complete the proof of the theorem, some further relevant events need to be
defined.

e For any v € P, let EY be the event that the proportion of zero-cells in
Cy(1),...,Cy(Jv]), is at least equal to 6. Then, let

E= () El:= [ =04},

ve(Wo)e ve(wo)e

where Jj is the number of zero-cells while I, is the number of breakable zero-
cells for v, i.e., EY is the event that every v € (W?) has a proportion of breakable
zero-cells at least equal to 6.

* Recall also from (3.12) and (3.13), that N, is the total number of non-c; letters
in the cell strands with the lesser number of ¢, and that N~ is the total number
of non-o; letters in X and Y. Then, let

Flo= () Fo=) {N;zgml},

vew? vew?

i.e., F? is the event that for every v € W, the proportion of non-o; letters which
are on the cell-strand with the smaller number of letters «;, is at least equal to
K/m.

e Let

G'=(G:=) {2|v|§%N>1},

vew? vew?

i.e., G? are the alignments v € WY having a proportion of aligned non-o; letters
at most equal to K /2m.
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Finally recall from Sect. 3.2 that A, = {(X,Y) € B,} is the event that there exists
an optimal alignment, with |v| > 1, such that N,” > KN..;/m and 2|v| < KN~ /2m,
and therefore

DNENnF'nG? ca,. (3.28)

Our next task is to prove that each one of the events E?, F¥, G’ hold with high
probability. Let us start with E?.

Lemma 3.3 Let 0 < 6 < p3/(1 + p?), then

2
PE) >1- Y exp (- (2(1 —9) (1 f - 9) —1ogf(9)) k) . (3.29)
P

2kznp% 1

where f(0) = ((4 + 29)/92) (2+6)/2)°1/(1 =)',

Proof For any v € P\WY, let us compute the probability that a zero-cell in the
alignment associated with v is breakable. Recalling the definition of 7 in (3.16),
for 2 < j < m, let M; be the event that this cell ends with a pair of letters «;. So,
when M; holds, then Ty = T{). For2 <j <m, let also

UV,:=min{i=2,3,...: R_,#0. S_,=0, R =0, S #0}
U,:=min{i=2,3,...: R_, =0, S_, #0, R #0, S =0}
and
UV = min{U}, US}.

With the above constructions, conditional on the event M;, if U/ < Tj then this
zero-cell is breakable and thus, to lower bound the probablhty that it is breakable it
is enough to lower bound P(I/ < T o). To do so, let first (Z] )i>1 be the independent
random vectors given by:

= (Réi—l’ Séi—l ) Réi’ Séi)'
Then, let
0 =min{i =1,2,...: Z €BUBy},

T{):min{iz 1,2,...: ZZEB,@ U By},
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where

B := N* x {0} x {0} x N*, B, := {0} x N* x N* x {0},
By :=N*xN*xNxN, B;:=NxNxN*xN*
and where as usual N is the set of non-negative integers, while N* = N\{0}. Clearly,
200 > U and 2T, — 1 < Ty, thus P(UY < T))) > PQU’ < 2T} — 1) = P(U' < TY).
Now, since the random vectors (Zf)izl are iid, and since B; U B, and B3z U By are
pairwise disjoint,
P(Z € B, UB,)
P(Z, € By UBy) + P(Z, € By U By)

P(IF < T))

27 __ni
291 +2(pr+p)?—p; T 1+t

Therefore,

P(a zero-cell is breakable) = Z IP(a zero-cell is breakable|M;)P(M;)

Pl

1+p%.

j=2
=Y P(U < T)PM,) =
j=2

Let J be the index set of all the zero-cells in the alignment associated with v €
(W9)<, and so |J| > (1 — 6)|v|. For each i € J, let I; be the Bernoulli random
variable which is one if the cell C, (i) is breakable and 0 otherwise. Recall that Ef
is the event that the proportion of breakable cells in v is at least equal to 6. Then,
since 6 < p% /(1 + p%), from Hoeffding’s inequality, and after subtracting the mean,

2
P((E))) =P (Zb < 9|J|) < exp (—za — )| (1 _prz - 9) ) :

i€eJ 1

Recall now the definition of V(k) in (3.22) and let (W?(k))° := (W?)¢ N V(k).
For any two integers, £ and gf, with 0 < ¢ < 1, Stirling’s formula in the form

1 < £let/(V2mllY) < e/ 27, gives

(6 ) <qg (1 -q M, (3.30)
ql
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which, when combined with simple estimates yields,

0 vl = ok 2K+ OK) [k
eon=n{ 1))

6 0\ 2 1-6\ ¥
< (F(O) = ((4;229) (2; ) (lie) ) . (33D

Next, let E? (k) = (), c(wo ) Eo» then

P(E°()) < Y P(ED)

ve(WH (k)

2
< eXP<— (2(1 —0) (1 fpz - 9) - logf(é’)) k) .
1

P(E’)) = Y PUE" (K))

and therefore,

Zanp%
2 2

<Y exp (— (2(1 —9) (1 il S - 9) —1ogf(9)) k) . (332)

2kznp% Py
[ |

Of course, in (3.32), one wants
pi 2

2(1—6 ! —9) —logf(6) > 0, 3.33
( (Hﬁ e/(0) (3.33)

and choices of 6 for which this is indeed the case are given later.
Let u be a non-negative integer. For any —u-cell ending with an aligned pair of
letters o; (the event M; holds for this cell), let 74 (£) be the index of the £-th R/ such

that R/ # 0, i.e.,
r)"((l) =min{i > 1 : R‘l-i # 0},
and for any £ > 1, r§(l 4+ 1) = min{i > r)"((ﬁ) : R{ # 0}. Let

= e mi _ Y
o7 i=min{d =1,2,...: Su+r§((z)7é0}‘
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In words, ,oj’ is the number of nonzero values taken by R = (R )1<L<Y (where s is
the number of letters «; in the X-strand of the cell). Since X and Y are independent,

= _ 1y o - 4 =
P~ =k) = P(Su+r§<1> =08 ey =0 Sere (0 70
k—1
_ ( D1 ) p] , (334)
p1+pj p1+pj
for k = 1,2,.... Thus, p/~ has a geometric distribution with parameter P =

pi/(p1 +pj), 2 < j < m. (By just replacing 7y by 7y the random variables p/~
can then be defined for u-cells. Hence, since X and Y have the same law, the
corresponding law of p/~ remains unchanged, therefore taking care of all the cases.)
When —u < 0, the number of letters ¢; in the X-strand (which is the strand with the
smaller number of letters o) is at least pf*_ — 1 and, as shown in the next lemma,
this provides a lower bound for N;~ (the number of non-«; letters on the cell-strand
with the lesser number of letters o) in this —u-cell.
Recalling now that F? = Nyewe (N, = KN-1/m}, we have:

Lemma3.4 Let0 < 0 < 1, let K = 274107%¢7%, and let p, > 1 — e=% /4. Then,
P(F?) > 1 — 38 exp(—3np3/200).

Proof Forany v € WY, letJ be the index set of all the nonzero-cells of the alignment
corresponding to v, hence, |J| > 8|v|. Then,

[v]

ZN )= N, (z)>Z( ’“*‘—1),

ieJ ieJ

where j(i) is the index of the last aligned pair of letters «; in the cell C,(i), and
where /" is the number of nonzero R = (Ri"), <<, (assuming this is a —u-
cell, and that s is the number of letters «; in the X-strand of C,, (7). In case of a u-cell,
by symmetry, the same argument is valid on the Y-strand). From (3.34), p/ D~ s a
geometric random variable with parameter p;;. Now, let ¢ > 0, let again p, =

p2/(p1 + p2), and let Fy ,, := {N, > e|v|/p2}. Then,

P(F{,) <P (Z (p{m 1) < ﬁ%lv|)

ieJ
. 045
<p (S p0m < 2Ty,
ieJ P2

=P (Z Pl < @m) : (3.35)

i€J
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The geometric random variables p‘l.j D= ieJ, are independent each with parameter
Dji) < D2, and moreover the sequences have finite length n, therefore,

o 0+2 0+2
B3 ol fulJl <P Z(Qi/\n)fulfl :
ieJ P2 ieJ pa

where the G; are iid geometric random variables with parameter p,. As proved later,
and using (3.20), when

8/9 + 2])2
P2

|J| < n, (3.36)

it follows that

o e/0+2 6+2
P (Zp{(’)’ < %m) <P (Zgi < g/ﬁ%l‘”)

i€J i€J

<exp((1 + log(e/6 + 2py)) B|v|) . (3.37)

Let F¢(k) := muewerw(k) Fi, = ﬂvewgm/(k) {N; > ¢|v|/pa}, and let F{ :=
ﬂsznp% F 19 (k). From the very definition of V(k) in (3.22), and using (3.30),

o 3RY e 3V (27)
|v<k)|_2(k)_23(5) -(3)

which when combined with (3.37) leads to
P(F{(k)) > 1 —exp (klog(27/2) + k(1 + log(e/6 + 2p2)) 0) . (3.38)

Of course, one wants log(27/2) 4+ (1 + log(e/6 + 2p,)) 8 < 0. Choosing 8 = 1/25
and & = 1072797, then P((F{ (k))°) < e73/1% forany p; > 1 —272¢7%, and so

exp(—3np3/200)

= T < 34exp(—3np2/200).
T— exp(=3/100) — >+ exP(=3np2/200)

P((F))) = Y P((FI(K)) <

Zanp%

Note also that for these choices of 8 and py, (3.33) is satisfied and so E? also holds
with high probability.

From the proof of Lemma 3.1, when D,((1 — p;)) holds, the total number of
non-¢ letters in X and Y is at most 4n(1 —p;). Thus N~ < 4n(1 —p;), and so when
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F? N Dy((1 — p1)) holds, for every v € W?,

_ 2
N, > glv| S £ np; . ep2 - KN -
Ns1 ™ padn(1—p1) = padn(l —p1) 2 16(1—py) — 16m

3>

Also note that by properly choosing these constants and under the further condition
400mK < 1, it follows that (3.36) holds true. Therefore,

P((F?)°) < P((F{)) + P((D2(1 — p1))*)
< 34exp(—3np3/200) + 4exp(—2n(1 — p1)?)
< 38 exp(—3np3/200).

Recalling that G¥ = (), cyyo {2|v| < KN-1/2m}, we finally have:

Lemma3.5 Let 0 < 0 < 1, let K = 27*1072¢7%, and moreover let p2 =<
min{2~2e~K/m, K/2m?}. Then, P(G?) > 1 — 8 exp(—np3/2).

Proof For any v € WY, let C,(1),...,C,(Jv|) be the corresponding cells. If the
cell Cy (i) ends with a pair of aligned oj, 2 < j < m, then let p{(i) be the number
of nonzero values taken by R'?) in C,(i). If v; < 0, by the same arguments as in
getting (3.34), p{(i) has a geometric distribution with parameter p;;) = pji)/(p1 +
Piy)- If v; > 0, then there exists a geometric random variable pf(i) " with parameter
Pj(y such that pf(i)’_ < pf(i) < p{(i)’_ + ;. Let NX, (resp. N¥,) be the number of
non-a letters in X (resp. Y), so that N>y = NZ| + N>l, and let

K
{| |<—Nx } and G! := {|v|§%N}>1},

and so GX N GY C Gy. Since NX > Zlvll pf(’),

[v]

P(GN)) <P || >3- ZW

<P |v|>% Z Pf(l) Z PZ(I)_

1<i<[v],v;<0 1<i<|v|,v;>0

[v]

<F|2Gam < vl
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where the G; are iid geometric random variables with parameter p, and the truncation
is at n since the sequences have such a length. From the proof of Lemma 3.1, when
Dy((1 — py)) holds, N1 < 4n(1 — py), then |v| < 2n(1 — p;). Thus 2m|v| <
2mn(1 — p1) < 2m?p,n, and so if 2m?p, < K, then for any p, < 272¢ 75K /m,

P ((G))* N Da((1 —p1)))
v [v]

’ s
<P Zgi< rr;{|v| <P Zgi< eﬁlvl < exp(—4|v]).
i=1 i=1 2

Likewise, P ((GY)° N D,((1 — p1))) < exp(—4|v]). and thus
P ((Gy)" N D2((1 = p1))) < 2exp(—4|v]).
As before, let G’ (k) := ey Gv and G” = (Ny,2 G¥ (), then
P((G” (k)" N D1((1 = p1))) < [V(k)|2exp(—4k) < 2exp(—k),
and

P((G")) < P(G")" N Da((1 = p1))) + P(D>((1 = p1))°)

< 3 PG () N Da(1 —p1)) + 4exp(~2n(1 — p1)?)

2kznp%

IA

1—1/e exp(—np3/2) + 4exp(=2n(1 = p1)*)

<38 exp(—np% /2).

(3.39)

(3.40)

From Lemma 3.2-3.5, using (3.28), letting § = 1/25, K = 27*1072¢7% and
K,, := min(K, 1/800m), and for p, <min{2~2¢°K,,/m, K,,/2m?}, it follows that:

P(AS) < P(D°) 4+ P((E”)) + P((F?)°) + P((G")")

6 2 3np?
< 5exp(—%) + 74exp(—%) + 38 exp(—%) + SeXp(—n2

6
<125 exp(—%) .

This finishes the proof of Theorem 2.1.
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Remark 3.1

(i) Our results on the central r-th absolute moments of the LCS continue to be
valid for three or more sequences of random words. First, the upper bound
methods are very easily adapted to provide the same order n’/2. Next, for the
lower bound, the alignments can still be represented with a series of cells,
each of the cells ending with the same non-«; letter from every strand. Then,
with exponential bounds techniques, a similar high probability event can be
exhibited, also leading to a lower bound of order n'’'2,

(i) With the methodology developed here, the results of [2, 6] can also be
generalized, beyond the variance or the Bernoulli case, to centered absolute
moments, m-letters alphabets and even to a general scoring function framework
with scoring functions satisfying bounded differences conditions.
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A Weighted Approximation Approach
to the Study of the Empirical Wasserstein
Distance

David M. Mason

Dedicated to the memory of Evarist Giné.
Abstract We shall demonstrate that weighted approximation technology provides
an effective set of tools to study the rate of convergence of the Wasserstein distance
between the cumulative distribution function [c.d.f] and the empirical c.d.f.
Keywords Empirical process ¢ Wasserstein distance * Weighted approximation
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62E20

1 Introduction

Let X, X;, X, ..., be a sequence of independent [i.i.d.] nondegenerate random vari-
ables with common cumulative distribution function F [c.d.f.] and left-continuous
inverse or quantile function Q, defined for s € (0, 1) to be

O(s) = inf{x : F(x) > s}. (1.1

For each integer n > 1 let F,, denote the empirical distribution function

F,,(x):%Zl{X,-gx}, — 00 < x < 00. (1.2)

i=1
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Recall that the Wasserstein distance between any two cdfs F and G with finite means
is

o0

di (G,F) = / |G(x) — F(x)| dx.

—00

(This is called the Kantorovich transport distance. For more about terminology see
the footnote on page 4 of Bobkov and Ledoux [1].) In particular, the (empirical)

Wasserstein distance between F),, based on X1, ,..., X, i.i.d. F, and F'is
o0
&b = [ R0 - F)dx
—00

where Q is defined as in (1.1). Note that d; (F,,, F) is finite as long as E |X;| < oo.
The empirical Wasserstein distance d; (F,, F)) also has the representation

1
4 (Fnf) = [ 10,0~ 0 (0]t
0
where Q, is the empirical quantile function defined for ¢ € (0, 1),

0,(H) = inf{x: F, (x) > 1}

(See for instance, Exercise 3 on page 64 of Shorack and Wellner [14].)

Let U, U}, Uy, ..., be independent Uniform (0, 1) random variables. For each
integer n > 1 the empirical distribution function based on Uy, ..., U,, is defined to
be

1 n
G,(t) = - HU; <1, te]0,1]. 1.3
0 =—Y W=t 1e[0.1] (1.3)

i=1

Note that if X;,...,X,, n > 1, are i.i.d. F and Uy,..., U, are i.i.d. Uniform (0, 1)
random variables, then by the probability integral transformation

X1, ..., X)) =q (Q1),...,0U,)). (1.4)
This implies that
1
dy (Fy. F) =4 /0 1Galt) — 1140 (1) (15)

We shall show how to use weighted approximation technology to obtain rates of
convergence of Ed; (F,, F) to zero. This will lead to refinements and complements
to Theorem 6.7 of Bobkov and Ledoux [1], which in our notation says that for a
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universal constant ¢ > 0,
2
2 / 11 = 1dO (f) + — / VI =10dO (7)
{r(1—n=<4} N {ri(1—n)> )

< Edy (F F) < / (1 — 1dQ (1)

{r(1-n=+}

! Vil —=1dQO (1), (1.6)

4
Jn {r(1—n>

where ¢ may chosen to be %5_4. They base their proof on their Lemma 3.8 in [1], a
version of which is stated in (3.23) below.

In Sect.2 we shall describe the weighted approximation tools that we shall be
using. Next, in Sect.3 we shall apply them to obtain rates at which Ed; (F,, F)
converges to zero. Then in Sect. 4 we shall discuss the original motivation to develop
the exponential inequality for the weighted approximation to the uniform empirical
process stated in Sect. 2.2.

2 The Mason and van Zwet Refinement of KMT (1975)

Much of our analysis will be based on weighted approximations to the uniform
empirical process, which is defined by

O(n(t) = \/ﬁ{Gn(t) - t}v re [Ov 1] . (21)

Mason and van Zwet [11] obtained the following refinement of the Komlds, Major
and Tusnady [KMT] [9] Brownian bridge approximation to the uniform empirical
process.

Theorem 2.1 There exists a probability space (2, A, P) with independent Uniform

(0,1) random variables Uy, U,, ..., and a sequence of Brownian bridges
B1,By, ...,suchthatforalln > 1,1 <d <n, and —o00 < x < 00,
P sup |an(f) — Ba(t)| = n7*(alogd +x)} < bexp(—cx) (2.2)
0<t<d/n
and
P{ sup  on(t) — B,(t)] = n”"*(alogd + x)p < bexp(—cx), (2.3)
1—d/n<t<1

where a, b and c are suitable positive constants independent of n, d and x
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Setting d = n into these inequalities yields the original KMT [9] inequality given
in their Theorem 3.

Remark Actually, KMT [9] construct for each n > 1 a probability space on which
siti.i.d. Uniform (0, 1) random variables Uy, .. ., U, and a Brownian bridge B, such
that inequality (2.2) holds with d = 1. Lemma 3.1.2 of Csorg6 [3] details how to use
their result holding for each n to construct on the same probability space a sequence
of iid. U}, U, ..., Uniform (0, 1) random variables and a sequence of Brownian
bridges By, B; . . ., such that for all n > 1 inequality (2.2) holds with d = 1 on this
space. Mason and van Zwet [11] show in their proof that inequalities (2.2) and (2.3)
hold for eachn > 1 and 1 < d < n for the original KMT [9] construction and then,
in turn, apply Lemma 3.1.2 of [3] to construct the extended space of Theorem 2.1

2.1 Mason and van Zwet Weighted Approximations

Mason and van Zwet [11] pointed out that their inequality leads to the following
useful weighted approximations. Forany 0 <v < 1/2,n>1l,and 1 <d <nlet

n” |on (1) — Bu(1)]

T 4

AL =

d/n<t<l

"lotn(7) — By(1)]
AP (d):= su L, 2.5
) 05:5113d/n (1=t *>

andfor 1 <d <n/2, set

Apy(d) :=  sup " lon(t) = Ba(0)] (2.6)

d/n<t<l—d/n (t(l - t))l/Z—v

By arguing exactly as in the proof of Theorem 2.1 in Csorgd et al. [4] with «,
replacing the uniform quantile process f,,, one easily verifies that on the probability
space of Theorem 2.1, one has forany 0 < v < 1/2

Any(1) = 0p(1), 2.7
with the same holding with A, ,, (1) replaced by A;{&(l) and Aﬁfﬂ(l).

2.2 An Exponential Inequality for the Weighted
Approximation to the Uniform Empirical Process

Mason [10] derived the following exponential inequality for the Mason and van
Zwet weighted approximations, which was motivated by a question of Evarist Giné.
We shall discuss this in Sect. 4.
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v < 1/2

Theorem 2.2 On the probability space of Theorem 2.1 for every 0 <
<d <n/2and

there exist positive constants A, and C, such that for alln > 2, 1
0<x<o0,

1/2—vcx
P{A,,(d) > x} <24, exp(d/*™"C,) exp (_T) ,

with similar inequalities for A,(f\), (d) and Aﬁ d) forl1 <d<n.

2.3 A Moment Bound for the Weighted Approximation

Theorem 2.2 readily yields the following uniform moment bounds for (2.4), (2.5)
and (2.6).

Proposition 2.3 On the probability space of Theorem 2.1, for all 0 < v < 1/2
there exists a y > 0 such that

sup Eexp (YA, (1)) < oo,

n>2
with the same statement holding with A, , (1) replaced by Af,%g(l) or Aifl),(l). In
particular, we have for all r > 0, sup, ., EA; (1) < oo.

There is also a functional version of Proposition 2.3. For each integer n > 2 let
R, denote a class of nondecreasing left-continuous functions r on [1/n,1 — 1/n].
Assume there exists a sequence of positive constants D), such that for some 0 < v <
1/2

1—1/n
sup sup D! / (s(1 = s)*™dr(s) =: M < 0. (2.8)
1

n>2reR, /n

From Proposition 2.3 we obtain the following functional form of it.

Proposition 2.4 Let {R,,n > 2} denote a sequence of classes of nondecreasing
left-continuous functions on [1/n, 1 — 1/n] satisfying (2.8) for some 0 < v < 1/2.
On the probability space of Theorem 2.1 there exists a y > 0 such that

sup Eexp(yn'l,) < oo, (2.9)

n>2

where

1—1/n
I, := sup D' / |t () — B, (s)|dr(s).
réR, 1/n
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Proposition 2.4 follows trivially from Proposition 2.3 by observing that n'1, <
Any(DM.
All of the results stated in Sects. 2.2 and 2.3 are found in Mason [10].

3 Use of Theorem 2.2 to Study the Empirical Wasserstein
Distance

In order to state our results we first need a definition and some background material.
We begin with the definition of the domain of attraction to a normal law.

Let X, X1, X5, ..., be a sequence of independent nondegenerate random variables
with common c.d.f. F and left-continuous inverse or quantile function Q. We say
that F is in the domain of attraction of a normal law, written F' € DN, if there exist
norming and centering constants b, and ¢, such that

Yimi Xi—cn

Z, 3.1
by —d (3.D

where here and elsewhere Z denotes a standard normal random variable. Csorg6 et
al. [5] show that whenever F € DN one can always choose forn > 2, ¢, = nEX
and b, = /no (1/n), where forany 0 < u < 1/2

1—u 1—u
az(u):=/ / (s At —s1)dQ (s)dO (). (3.2)

For future reference we shall write for any 0 < u < 1/2

1—u 2
2 (u) = ( Vs (1 —s)dQ (s)) , (3.3)
and note that
2 () = 0% (u). (3.4)

Observe that

o (u) = Var (/1_”(1 w=n —r)dQ(r)),
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where U is Uniform (0, 1). Furthermore ¢ (0) := ¢? (0+) < oo if and only if
02 := VarX is finite, in which case 0 (0) = o2.
Now with F,, as in (1.2), we have by (1.4)

SO Xi—nEX  [%0 JA{F() — F,(0)}dx  — [y au(s)dQ (s)
bn - o (1/n) T s/

In fact one can use weighted approximation technology to show whenever F € DN
that on the probability space on which (2.7) holds

Jhan)dQ () [ Ba(9)dQ (s)
o(l/n) o (1/n)

Crucial to the proofis the fact proved in Corollary 1 of Csorgd et al. [5] that F € DN
if and only if

+o,(1)=4Z+0,(1),

1{1}) u(Q* (Au) + Q> (1 — Au)) /o* (u) = 0, forall A > 0 (3.5)

if and only if o is slowly varying at zero, i.e.

1{n 02 (Au) Jo* (u) = 1, forall A > 0. (3.6)
u\0

In our proofs that follow, whenever we apply Proposition 2.3 we assume that we are
on the probability space of Theorem 2.1. Our first result related to Ed; (F),, F) is the
following estimate of a trimmed version of this expectation.

Proposition 3.1 For any quantile function Q andp > 1,

1-1 1-1
/1 E o, (1] dO (1) :/1 E|B(0)|dQ (1) (1+0(1)) (3.7)

-t
=J§[ Vi =0dQ (1) (1 +0(1), (3:8)

where B is a Brownian bridge on [0, 1] and the big Oh term in (3.8) is bounded in
absolute value by c, (r (1/ n))l_l/ P for some constant c, depending on p and

o) +le(-1|
nl/2 fll_% V(1 —=10dQ (t)

r(1/n) = (3.9)

Furthermore, if

r(1/n) — 0, as n — oo, (3.10)
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then
1-1 1-1
/l Ela, (1) dQ (1) Z/l EB@®)[dQ (1) (1+o0(1)). (3.11)

Proof Note that for any finite measure x on [, 1 — 1] and random functions f and
g in such that Ef and Eg are in L, ([% 11— %] , ,u),

-1 -1 1-1
‘/ Elf(t)ldu(t)—/l Elg(t)ldu(t)S/l EIfF () — g 0]y (1)

Applying this fact we get with obvious choices of f, g and

1-1 1-1
‘/ Elan(r)mg(r)—/l E|B(1)]dQ (1)

-
sfl Elan (1) — B, (] dQ ().

n

This last bound is in turn with v = 1/2 — 1/ (2p)
-4
=B, [ -0 a0
1

-
= EA,W (1)/ ([ (1 _ t))l/(ZP) dQ (l‘) n—l/2+l/(2p)’
1
which by an application of Proposition 2.3 is for some positive constant C,,

-4
< Cp[ (t (1= )" aQ () =121/ (3.12)

and by Holder’s inequality is
1 1 1
= ! 1 N\N\'"7 _i4n
<G V(1 —1)dQ (1) (Q(—) + Q(l——)) n 2"
1 n n

1
=5

-1 . L
—¢, [ " Via=niow 06)I+le(t )l
" nl/2 fl i mdQ 0
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Noting that for each ¢ € (0, 1),

EB@)|=E|Z| Vt(1—1) = \/g\/t(l —1), (3.13)

we see that for ¢, = C,,/% the last bound

t
- / EB(1)]dQ (1) ¢, (r (1/m)' 7.

n

Notice that by (3.4)
P (1/n) <2n7! (Q2 (%) +0? (1 — %)) Jo?(1/n), (3.14)

where 02 (1/n) is defined in (3.2). It is shown in the proof of Lemma 2.1 of Cs6rgd
et al. [6] that

1 1
limsupn~' (Q2 (—) + 0 (1 — —)) Jo*(1/n) < 1. (3.15)

n—00 n n
Therefore under absolutely no conditions on Q we have (3.7). Furthermore if (3.10)
holds, we have (3.11). O

Corollary 3.2 IfF € DN, then

1 1-1
/OElan(t)ldQ(t) =/l E|B(n]dQ (1) (1 +0(1)). (3.16)

Proof If F € DN, by (3.14) and (3.5), (3.10) holds. Thus

1-1 1-1
L Ela, (0]dQ (1) = / EIB®]dQ () (1+0(1)). (3.17)

Observing that

-4
[ Emoaon = 2eam.

n

we see that to finish the proof it suffices to prove that

1 1
( /0 Elo 0140+ [ Elay (0]d0 (r)) e/ >0 (18)

n
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Since 7 (1/n) > o (1/n), to show this it is enough to verify that

! 1
(/0 E oy, (t)IdQ(t)+/l_lE|ocn (t)IdQ(t)) /o (1/n) — 0. (3.19)

Notice that since E |a,, (f)| < 2./nt, we have

/0 " Elen (01dQ (1) /o (1/n) < 2 /0 " 1d0 (1) /o (1/n)

2 1 C
< (ﬁ ‘Q(;)‘ +2vi IQ(t)Idt) /o (1/n)

<[ Zlo(} [ V1100 ;
- (ﬁ Q(n)'+2f/o : G(t)dtofilf/n o (1) )/a(l/ )
2 [2(3)] _
= %o(l/n) +0(1) = 0(1),

where in the last step we use the facts that F' € DN is equivalent to o being slowly

varying at zero and that F € DN implies supy_,<;, ‘/il%(’)l = o(1). (We pointed
out these two facts in (3.5) and (3.6) above.) This proves the first part of (3.19). The

second part of (3.19) is proved in the same way. O
Remark Notice that in the special case when F is symmetric about zero and F (x) =
1-— % (1 +)c)_2 for x > 0, we have F € DN and

1
/O Ela, (0)]dO (1) ~ li’/g;, as n — co.

Remark Clearly a sufficient condition for (3.16) to hold is that, as n — oo,
r(1/n) — 0, and

1/n 1
(/0 Ela, (1] dQ (1) + /1 E|ay (1)|dQ (f)) /T (1/n) — 0. (3.20)

—1/n

The proof of Corollary 3.2 shows that whenever F € DN, both r(1/n) — 0, as
n — o0, and (3.20) hold.

Assuming that E |X| < oo, write for0 <u <1/2andn > 2,

u 1
B =i [0+ [ (1=0d0(0) = puicy ) + s ).
! (3.21)
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Observation Whenever E |X| < oo, (3.20) is satisfied if and only if
En (1/n)/t(1/n) — 0,as n — oo. (3.22)

Proof Lemma 3.8 of Bobkov and Ledoux [1] says that for an absolute constant
c>0forall0 <t <1,

¢ min {zﬁt(l —n.ia —t)} < Ela, ()|
< min {ﬁzt(l 0, /il = t)}, (3.23)
where ¢ may chosen to be %5_4. This implies that for all 0 < ¢ < 1/n with 1/n <

1/2

2 2
SEla, ()] <24/nt(1—1). (3.24)

CTW = cmin{@, ﬁ} < cmin {Zﬁt(l —t),M}

Using this inequality, we get forn > 2,

1/n 1/n 1/n
%ﬁfo Q) < [ Elon(0]d0® <2vi [ a0 ().

Obviously this implies that 8, (—) (1/n) /T (1/n) — 0, as n — oo, if and only if
1/n
/ Ela, (1)|dQ @) |/t (1/n) — 0,as n — oo.
0

In the same way using the version of inequality (3.24) with ¢ replaced by 1 — ¢, we

get ﬁn.iﬁ/(i)/") — 0, as n — o0, if and only if

(/l E |a, (t)|dQ(t)) /Tt (1/n) = 0,as n — oc.
1

—1/n

Remark Whenever

[od) 1
0< / VF@x) (1 =F(x))dx = / Vsl —s)dQ (s) < o0, (3.25)
—00 0
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we have

1 1
Varx=a2(0)=/0 /O (s At —s1)dQ (s)dO (1)

2
< ( / e (s)) <0
0

which implies 0 < VarX < oo, and thus F € DN. Hence we can infer from (3.20)
that

1 1-1
| Ewoiaco- [ Elwolaon o
0 n
and from (3.25) that
1 1-1
| oo~ [ EEo@o -0
and thus since 72 (1/n) — 0 we can conclude by (3.11) that

1 1
/E|an(r)|dQ(r)+/ E|B(H]dQ () < oo.
0 0

For our next result we shall use the fact (e.g. Inequality 2.1 of Shorack [13]) that for
any0<v<l1/2and0<c<1l—-d<1

1—d
/ (s(1 —5))"?7dQ(s) /o (c.d) < B//V)(c Ad)™", (3.26)
where

1—d 1—d
oz(c,d)zf / (s At —s1)dQ (s)dO ().

Proposition 3.3 For any quantile function Q, any p > 1 and any sequences of
positive numbers 0 < c, <1 —-d, <1,n>1,

1—d, 1—d,
/ Elan(t)IdQ(t)—/ E|B(®)]dQ ()

n n

o 1—d,,
< \/;Cp(3/ﬁ)(n (N dn))_”)/ E|B()|dO (1), (3.27)
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where v = 1/2 — 1/ (2p). In particular, if n (c, A d,) — 00, as n — oo,

1—d, 1—d,
/ Ela, (1)]dQ (1) :/ E|B(®H)[dQO @) (1+o0(1)). (3.28)

Proof Noticethatfor0 <c<1—-d <1
1—d 2
o (e.d) < ( VAT=510)) |

and we get by the Shorack [13] fact (3.26) that forany 0 < ¢ < 1 —d < 1 and
0<v<1/2

c

1—d

1—d
/ (=N [ Vs =9)dQ(s) < B/ ) (e nd)™.

We see then, as in the proof of Proposition 3.1, that for any p > 1 withv = 1/2 —

1/ (2p),

1—d, 1—d,
/ Elan(t)ldQ(t)—/ E|B()]dQ ()

1—d,
= Cp/ (r(1— t))l/(ZP) do (1) = 1/241/@2p)

1=d, 1=V g4 1—d,

s 2 [l
= \/;Cp@/\/;)(" (cn A dn))™") \/;/ Vs(1 = $)dQ (s)

T 1—d,
= \/;CPG/W)(H (ca A dn))_”)/c E[B(1)]dQ ().

We immediately get the following corollary.

Corollary 3.4 IfE|X| < oo, then for all 0 < & < 1 there exists a k > 0 such that
fork/n <1/2

1 1—k/n
\/ﬁ k/n

< Ed\ (Fy.F) < / E|G, (1) — 1] dQ (1
(0,1)—[k/n,1—k/n]

/ E|G, (1) —1[dQ (1) + E|B()|dQ (1) (1 —¢)
(0,1)—[k/n,1—k/n]

1 1—k/n
+%/k E|B(1)|dO (1) (1 +¢). (3.29)

/n
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Note that if E |X| < oo, by applying inequality (3.23), we get for n/2 > k,

/ E|G, () —tdQ () < 2/ t(1=0dQ@. (3.30)
(0,1)—[k/n,1—k/n]

(0,1)—[k/n,1—k/n]

Now E |X| < oo implies that forany 0 < & < 1,k > 0 and all large enoughn/2 > k,
the right side of (3.30) is less than ¢. Thus from (3.27) and (3.30) we can say that
for any 0 < & < 1 there exists a k > 0 such that for all large enough n/2 > k

1—k/n
N E|B(1)]dQ (1) (1 —¢) < Ed, (F,, F)
1 1—k/n
— E|B(1)|d 1 .
§8+ﬁ o |B ()| dQ (1) (1 + ¢)

4 A Result of del Barrio et al. [7]
Set
W, = n/ |Fn(x) — F(x)| dx.

del Barrio et al. [7] using a version of the weighted approximation of (2.7) , derived
the asymptotic distribution of W,, whenever F € DN and satisfies some additional
conditions. For instance, if (3.25) is satisfied then

o0 1 1
Ji /_ 1F ) = Pl dx = /0 0a(5)] 4O () > /0 B(s)[dQ(s).  (4.1)

Condition (3.25) is a bit stronger than 0 < VarX = o2 < oo and it is necessary for
the limit integral to exist. Notice that if we remove the absolute values signs in (4.1)
we get the usual central limit theorem, namely, in the 0 < 02 < oo case

o0 1
Ji /_ (Fa() — FQ)ydx 4 0Z =, /0 B(s)dQ (s)

Along the way, in their study, del Barrio et al. [7] proved that whenever F € DN,
forall0 < r <2,

r

sup E < 00, (4.2)

n>1

W, — EW,
by
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where b, is as in (3.1). We shall demonstrate how Theorem 2.2 leads to a quick
proof of this result.

4.1 An Equivalent Version of the del Barrio, Giné and Matrdn
result (4.2)

Observing that by (1.4),

1
W, =an /0 1Ga(0) — 1] dQ).

and since, as pointed out above, we can always choose b, = +/no (1/n), we see
that their result (4.2) is equivalent to, for all 0 < r < 2,

r

I ten(®)] — E Jan(0)]} dO(1)

sup £ o (L/n)

n>2

(4.3)

In a separate technical lemma they showed that whenever F € DN, for all
O0<r<2,

Jon-t1ymi—1/m o] = E (1) [} dO(1)

o (/) < 00 4.4)

sup £

n>2

and they used the Talagrand [15] exponential inequality to prove that for all » > 0,

1—1/n

S e (®)] — E lan ()]} 400 |
sup £ < 00
et o (1/n)

4.5)
Clearly (4.4) and (4.5) imply (4.2).

4.2 A Weighted Approximation Approach to (4.5)

Evarist Giné asked the author whether it is true that on the space of Theorem 2.1,
forall r > 0,

nV o (£) — Bu(9)] ]
sup E su — | <o0? (4.6)
nZIZ) |:1/n§t511)—1/n (t(l - t))l/Z—v



152 D.M. Mason

In which case, a weighted approximation approach could be used to show that for
all » > 0, (4.5) holds.

This was the motivation for the author to establish Theorem 2.2, which we have
shown in Proposition 2.3 implies (4.6). We shall use Proposition 2.4 and some pieces
from del Barrio et al. [7] to prove that (4.5) holds for all » > 0, under no assumptions
on F. Their proof of (4.5), based on Talagrand [15], assumes F' € DN.

Our aim will be to transfer our study of the moment behavior of

S ()] — E lan(0)]} dQ(0)
o (1/n)

to that of

S5V B0 — E B, (1))} dQ(0)
o (1/n) '

What follows is somewhat technical, however, it demonstrates nicely the power of
Theorem 2.2.

Step 1.
For any quantile function Q, one has for any 0 < v < 1/2 (see the Shorack [13]
fact (3.26))

S (=) Pdoes) 3
s no (1/n) =5

Thus from Proposition 2.4, (with M = iv, D, = n’o (1/n) and obvious choices

of {R,,n > 2}), we get for any 0 < v < 1/2, on the probability space of the
KMT [9] approximation there exists a y > 0 such that (2.9) holds, where

S en(s) = Bu(s)ldQ(s)

I nvo (1/n)

Step 2.
Noting that

I n(s) — Ba(s)|dQ(s)
B o (1/n) ’

we see that (2.9) implies that for any » > 0

n'I,

S en(s)] = 1Bu(s)]} dOGs) |
sup E < o0

4.7
sup o (1/m) @7




Wasserstein Distance 153

Step 3.
By recopying steps from the proof of Theorem 5.1 of del Barrio et al. [7],
(also see their Proposition 6.2), based on Borell’s inequality [2] one gets the
exponential inequality, valid for all > 0

2 30— E B a0 0 22
. >tp =2exp\—— ).
o (1/n) ( )

2

which, of course, implies that for all » > 0,

S B@)| - EIBO 40|
sup £ < 00.
et o (1/n)

This in combination with (4.7) establishes (4.5), which we have just shown
holds under absolutely no assumptions on the underlying c.d.f F. As pointed
out above, (4.4) and (4.5) imply the del Barrio et al. [7] result (4.3), which on
account of (4.4) requires F' € DN. In the end, del Barrio et al. [7] decided to use
their own proof of (4.5) based on the Talagrand [15] inequality.

4.3 One Can Say More

Piecing all of our inequalities together we obtain the following inequality.

Proposition 4.1 Under absolutely no conditions on F, for alln > 2 and t > 0,

" en ] = E loa(@)]} Q)
P o(1/n)

>ty <Aexp(—Ct), (4.8)

for suitable constants A > 0 and C > 0 independent of F.

For additional investigations along this line consult Haeusler and Mason [8],
who study the asymptotic distribution of the appropriately centered and normed
moderately trimmed Wasserstein distance

O(1—an/n) 1—ay/n
/ () — F(O)| dx = / 1Gal) — 1] dQ(1).
QOlan/n) an/n

where a, is a sequence of positive constants satisfying a, — 0 and na,, — co. See
Haeusler and Mason [8] for motivation. As part of a general investigation of the
trimmed pth Mallows distance, Munk and Czado [12] had previously looked at a
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somewhat different version of the trimmed Wasserstein distance when 0 < a, =
a < 1/2. Check their paper for details.

Acknowledgements The author thanks the Centro de Investigaciéon en Matemadticas, Guanajuato,
Mexico for their hospitality, where this paper was partially written.
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On the Product of Random Variables
and Moments of Sums Under Dependence

Magda Peligrad

Dedicated to the memory of Evarist Giné

Abstract In this paper we compare the moments of products of dependent random
vectors with the corresponding ones of independent vectors with the same marginal
distributions. Various applications of this result are pointed out, including inequali-
ties for the maximum of dependent random variables and moments of partial sums.
The inequalities involve the generalized phi-mixing coefficient.
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uct of dependent random variables
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1 Introduction

This paper is motivated by the study of moments of products and moments of
sums for a dependent vector. In the independent case, the bounds for moments
of products or sums is well understood. Various aspects of these bounds can be
found in books by Ledoux and Talagrand [14], and by de la Pefia and Giné [6],
among others. Bounds for moments of sums are also available for various classes of
dependent sequences. For martingales, the book by de la Pefia and Giné [6] is again
an excellent source of information. Various other classes of dependent sequences
have been considered in the literature. For positively associated sequences see Birkel
[3], negatively associated sequences [25], and classes based on projective conditions
[7, 16, 21, 22, 24, 27]. Many of these bounds can be expressed in terms of mixing
coefficients surveyed in the book by Bradley [4].
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By using the expectations of product of moments, we shall compare the
maximum term, the characteristics function, the moment generating function and
moments of sums of a dependent vector to the corresponding ones for an indepen-
dent vector with the same marginal distributions.

Relevant to our study is the following coefficient of dependence. Let (2, IC, P)
be a probability space and consider A, B two sub-sigma algebras K. Denote by ||-||,
the norm in L,,(2, K, P). Define

_ [cov(X,Y)|

¢(A, B) = sup ~—r—r

[1Xlool Y11

where supremum is taken over all real-valued functions X € Lo (2,4, P) and

Y € Li1(2, B, P), where, as usual, 0/0 is interpreted to be 0. Note that (A, B) < 2.
This coefficient is, up to a constant, comparable with the p-mixing coefficient

introduced by Ibragimov [11] defined in the following way:

p(A, B) = sup IP(B]A) — P(B)|
A€ A,BEB,P(A)F#0
= sup(ess sup |P(B|.A) — P(B)|).
BeB

Note that by Theorem 3.1 in [4], we have
lcov(X. Y)| = 2¢(0(X), o (YD IX[[oolY]]1, (1.1)
and by item (c.1) of Theorem 4.4 in [4], ¢ = 2¢.
Let (Xi)1<k<n be a random vector and define the sigma algebras P, = o (X;) and
Fe = 0 (Xk+1, - - - X»). Define the ¢-mixing coefficient
¢ = ¢((Xi)1k=n) = 15T§f_1¢(Pk’Ff+l)' (1.2)
Similarly define
0 = o((Xp)1<k<n) = | Jnax ©(Pr, Fip1)-
One of our results compares the product of a vector of real positive random

variables uniformly bounded by 1 with the product of independent random variables.
We shall show that

1-@)(-J]EY) =0 -E([[r) < (0 + @ -] ][EY0).
k=1 k=1 k=1
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Actually, we shall derive related results for certain complex-valued random vari-
ables, which will allow us to obtain upper and lower bounds for moments of sums
of positive random variables in terms of independent variables.

Also, for an arbitrary random vector of positive random variables (Y}), we
compare the moments of sums to the corresponding moments of an independent
vector with the same marginal distributions (¥;"). For any 0 < p < 1, we shall show
that

JR— n n p - " p
(1-20)K'EQY_ _ Y[V <EQ . _ W =(1+20KEQ  _ ¥Y.

where the constant K, depends only on p via the optimal Khinchin lower constant
Ay, from [9].

More precisely K, can be taken 21+(1_21’)’\1A2_pl. The inequality in the right hand
side provides an alternative approach to the proof of Proposition 1 in [5] (see
also relation (1.4.27) of Theorem 1.4.12 in [6]). We also exhibit a lower bound,
interesting when 2¢ < 1.

At the end of the paper we discuss the computability of the ¢g-mixing coefficient
used in the results and we comment about its relation to Doeblin recurrence and
the Dobrushin coefficient of ergodicity for Markov chains. We also discuss some
aspects of the Ibragimov conjecture on the central limit theorem for a ¢-mixing
sequence, which motivated this paper.

2 Results and Applications

Our first result points out an identity for any product of random variables.

Lemma 2.1 Let (Yi)1<k<n, 1 > 2, be a vector of complex-valued random variables
with EY, # 1 for all k. Define

R = ! cov( [[ YuYpfor1 <j<n—1.R,=0. (2.1)
SRS o
Then
n n k-1
=B ] =Y _J[EN1 -EY)( - Ry, 2.2)

k=1 k=1 j=1

where we understand that 1_[/(‘)=1 EY; = 1.
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Proof We start by a remark: Forn > 2,
cov( l_[ Yi,1=Y;) = —cov( l—[ Y, Y)) = —R;(1 = EY)).
k=j+1 k=j+1

By simple algebra,
A =E([[¥) = 1=E( [ YOEY: + cov(] [ ¥, 1 = Y1)
k=1 k=2 k=2

=1 —E(] [ YOEY) + cov(] [ Ya. 1 = Y).
k=2 k=2

By using notation (2.1), we write

(1 —E(] [¥0) = 1-E(] [ YOEY: — Ri(1 — EYy)
k=1 k=2

= (1 —E(J[¥)EY: + (1 = R)(1 - EY)).
k=2

We notice now that we can apply recurrence and obtain the identity (2.2). O

Lemma 2.1 allows us to compare the moments of products of random variables
bounded by 1 with the corresponding ones of independent variables. It is convenient
to consider complex-valued random variables.

Lemma 2.2 Let (Yi)i1<k<n, 1 = 2, be a vector of complex random variables with
|Yilloo < 1, EYy real and positive for all k, 1 < k < n. Denote

o = o((Yy)1<k<n) = m<aX_1 | Re Ry|. (2.3)

1<k

Then

(1—o)(1-][E¥) <Re(1 —E(J [ 1) < (1 + &)(1 = [ [ EY).
k=1 k=1 k=1
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Proof Note that our conditions imply that 0 < EY; < 1. By Lemma 2.1 and the
definition of @ we obtain

n n  k—1
Re(1 —E([ [v0) = Y (JTE¥)( ~EY)(1 —ReRy)

k=1 k=1 j=1

n k=1

<+ ) (J]ERH-EY,
k=1 j=1
and
Re(1 - E(]‘[ 1) = (1 - ) Z(]‘[ EY))(1 — EY)).
k=1 j=1
The result follows since
Z(HEY)(I —EY) =1- l_[IEYk
k=1 j=1

O
If the variables are real-valued we obtain

Lemma 2.3 Let (Yi)i1<k<n, 1 > 2, be real-valued random variables with 0 < Y <
1 a.s. Then

(1-o)(1-[]EY) < 1 -E(J %) < 0+ o)1 - [[EYD),
k=1 k=1 k=1
where @ = w(n) is defined by

w= sup ————]|cov( Yi,1—-Y))|.
1<1<I; IE(I Y) 1;[_1 g !

Also w < ¢ where ¢ is defined by (1.2).

Proof In this case all the conditions of Lemma 2.2 are satisfied. In addition, for
1 <j<n-—1, wehave

IR;| =

1 - _
|COV( l_[ Y. Yj)| = WWOU( [] ve1-mi=<é.
=j+1 / k=j+1
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and the result follows. Note that, in this lemma, we do not have to assume EY; # 1
since we can interpret 0/0 = 0. O

2.1 Application to Indicator Functions

Let (Ax)1<k<n be events in . We apply Lemma 2.3 to the indicator functions Y, =
14,. For these functions

o= max [P(Mi_;y A1) NA) — P(Ni 1 ADPAYI/PA)),

1<j<n—1
where A} is the complement of A; and we interpret 0/0 = 0. Note that for this case

o < @((La)k)-
Then, by Lemma 2.3,

(1—o)(1 -] [P@)) < 1-P(Nj_,A0) < (1 + o)1 = [[P@A). (24
k=1 k=1
We can represent relation (2.4) in the following equivalent way:
(1= @)P(Ui (4])) < P(Ui,4) < (1 + 0)P(Ul_ (A7), 25)
where (A]) are independent with P(A;)= P(A}). Also it can be represented as
IP(;_,40 — [P0 < oP(U_, 47)).
k=1

From this last expression we can see that the inequality (2.4) is tighter than Lemma 3
in [17], which has in the right hand side only w.

2.2 Maximum of Random Variables

Consider now a vector (X,’(k )1<k<n Of independent random variables where each X,’f
is distributed as X. Then for all real x,

(1 —¢)P(max X; > x) <P(max X; >x) < (1 + ¢)P(max X >x). (2.6
1<k<n 1<k<n 1<k<n
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To prove it, we consider the events A, = I(X; < x) and notice that

(max X; > x) = Uj_ A} 2.7

1<k<n

We then apply relation (2.5) along with the definition of @-mixing coefficients to
conclude that w < ¢.

By using the sequence of inequalities in relation (2.6) and the integration by parts
formula (see Theorem 18.4 in [2]), we can obtain various moment inequalities for
functions of the maximum of variables in terms of the maximum of independent
variables. For instance, for any positive continuous and nondecreasing function g,
we have

(1 —9)Eg(max |X;|) < Eg(max |Xi]) < (14 ¢)Eg(max |X;]).
1<k<n 1<k=<n 1<k=<n

Inequality (2.6) was obtained by a direct approach in [19] and exploited to derive
a central limit theorem for ¢-mixing sequences.

2.3 Application to Laplace Transform of Positive Functions

Here we shall apply Lemma 2.3 to the Laplace transform of positive functions. For
any positive random variable X and positive number z, denote My () = E exp(—tX).
Given (Xi)1<k<n a vector of positive random variables, for every ¢ > 0, define

Yi(t) = exp(—1Xy).

Note that Y, () satisfies the conditions of Lemma 2.3. Also note that

E([Ti=) Yo) = E(exp(—)_Xy)) and [[j_ EY; = E(exp(—)_X;)). where
k=1 k=1
(XF)1<k<n are mdependent varlables with each variable X distributed as Xi.

Denote S, = ZXk and S ZX *. We also have
k=1 k=1

1

! T v — Y Xp),1—exp(—tX)| < @.
wlt) = el TE(T — exp(—th))ICOV(exp( k=/Z+1 Y PN =

Therefore

(1 -9) (1 =Mgr(-1) = 1 = Ms,(—=1) < (1 + 9)(1 — Mgz (=1)). (2.8)
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2.4 Application to Characteristic Functions

We consider here a vector of random variables (Xi)1<k<,. We introduce the random
function of ¢, ¥ = exp(itX}). Denote the characteristic function fx (f) = E exp(itX).
We assume that for a ¢ fixed fx, (¢) is positive and different from 1, for all k. For this
case

o() = max |ReR;(7)], (2.9)
1<jsn—1

where

—1

ReRi(f) = ————
e Ri(®) 1 — Ecos(zX;)

[cov(cos( 2": Xi), 1 — cos(tX;))

k=j+1

+ cov(sin( Z 1X;), sin(zX;))].
k=j+1

By Lemma 2.2, it follows that for such a value of ¢,
(1= @)1 —fsx (1) < Re(l —f5,(1)) < (1 + 0())(1 — f5x (1)), (2.10)

where, as before, (X}')i<i<» are independent, each X} distributed as X; and S,
S are their sums.
If in addition we assume that for such ¢,

cov(sin( »  1X;). sin(X;)) = 0 (2.11)
k=j+1

for all natural numbers j, 0 < j < n, then, by the definition of ¢ we see that w(r) < ¢
and we have

(I =@)(A —fs: (1) = Re(1 —f5,(1) = (1 + @)(1 — fsx (). (2.12)

2.5 Bounds for Moments of Partial Sums

To compare the moments of partial sums of a dependent sequence with an
independent one we shall use the following well-known lemma (see, for instance,
relation (4.1) in [8]).
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Lemma 2.4 Let Y be a random variable with characteristic function fy(t) and for
a real number r € (0,2) assume that E|Y|" < oo. Then,

vy =c, [ S

0o |u|l+r

with C, = 1~ 'T'(1 4 r)sin Z.

In order to derive moment inequalities for sums of random variables with a
positive characteristic function we combine inequality (2.12) with Lemma 2.4.
Therefore, by taking also into account the continuity of norms, we obtain:

Lemma 2.5 Assume that for all natural numbers k, 1 < k < n, the characteristic
Junction fx, (t) is positive for all t and in addition we have for all natural numbers j,
I<j=<n-1,

cov(sin( Y 1Xy), sin(tX;)) = 0 for almost all t. (2.13)
k=j+1

Then, for every r € (0, 2],
(1 -@)E[S;|" < ElS," = (1 + 9)E[S,]". (2.14)

The condition that the random variables have positive characteristic function
can be easily removed at the cost of the constants by symmetrization and de-
symmetrization procedures. These procedures will also have the effect of removing
condition (2.13). In order to point out some intermediate results we shall proceed
in two steps. First we symmetrize with a Rademacher sequence, and then we shall
combine two kinds of symmetrization.

2.5.1 Symmetrization with a Rademacher sequence

Assume now that for all k, X is such that Refx, (r) > Oforall#. For 1 <k < n we
consider now a Rademacher vector of independent random variables (i.e. &; are i.i.d.
P(ex = £1) = 1/2) which is independent on the vector (Xi)1<k<» and introduce
the vector (exXx)1<k<n-

By Fubini’s theorem, we note that [E sin 76, X; = 0 and

Jax, (t) = EcostX; = Refx, (1) > 0.
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In addition, also by Fubini’s theorem, by integrating first with ¢; we can easily get,
for all &,

cov(sin( Z terXk), sin(te;X;)) = E(sin( Z terXy) sin(te;X;)) = 0,
k=j+1 k=j+1

showing that condition (2.13) is satisfied. Therefore the vector (g;Xy)1<k<, satisfies
the conditions of Lemma 2.5. Furthermore, it is easy to see that for all natural
numbersj, 1 <j <n—1, we have

-1 "
R,(l) = mCOV(COS(kgl ISka), 1— COS(Z‘&‘]‘X}'))
! (cos( 3 teuX). 1 — cos(ix))
= ————Cov(cos ) , 1 —cCos i)).
1 — EcostX; v Kk /

k=j+1
It follows that for all natural numbersj, 1 <j<n—1,
IR(D)] < o((X)1<k<n) = @

By Lemma 2.5, we obtain for 0 < r < 2,
(1—@E| Y aX;|" <El Y aX < (1+@E| Y aXi|" (2.15)
k=1 k=1 k=1

It is well-known that, by Khinchin inequalities (see page 21 in [6]), for 0 < r < 2
there is a positive constant A, depending only on r, such that

AQ XD =ElY _ aXl = XD7 (2.16)

where E, denotes the integration with respect to variables (&;)1<«<n. The best
constant A, can be found in [9]. Therefore, by combining (2.15) and (2.16) we obtain

I=PAEQ . X <(1-@BY. _ axil’
<ElY._ eXidl <EQ._ X)7
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and
AEQ XD <ElY  aXd < (1+@E) Xl
k=1
- " *\2\r/2
<U+PEQ_,_ xOH"
Therefore, we have established the following result:

Proposition 2.6 Assume that for all natural numbers k, 1 < k < n, Re ij(t) >0
forallt. Then for 0 < r < 2 we have

A=PAEQ . (xDH7 <EQ._ X" (2.17)
< (1+9AEQ]_ (0D

where (X}) are independent with each X; distributed as X and A, is the lower
Khinchin constant.

2.5.2 Second Symmetrization and Desymmetrization

In case where Re f, (7) is not positive for all 7, we can remove this restriction by using
a combination of symmetrization techniques, at the cost of constants. We shall use
the following lemma. It contains two simple inequalities which we formulate only
in the setting we apply them. They can be formulated for more general variables.
Parts of this lemma are well-known.

Lemma 2.7 Let X and Y be two i.i.d. symmetric random variables. Choose 0 <
r < 2. Then,

E|X + Y| < 2E|X|". (2.18)
and
EX|" < b,E|X + Y|", (2.19)

where b, can be taken b, = 2070,

Proof For proving the inequality (2.18), we apply Lemma 2.4. By using the fact
that by symmetry fy+y(u) = fy(u)fy(u) = | fy(u)|*, and that Re fy(u) < | fy(u)| we
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obtain, for0 < r < 2,

U0 P [t

r—
IEIX"‘YI _C"/ |M|1+r |u|l+r =

—00 —0o0

2C, /Oo (A =Refy) ,, _ 2E|X|".

0o |u|l+r

We turn now to prove (2.19). Since 2X = (X + Y) + (X — Y) and (X,Y) and
(X, —Y) have the same distribution, by convexity, it follows that for 0 < r < 1 we
have

2EX|" <EX|"<E|X+ Y| +EX-Y|"=2E|X+Y/|.
If r > 1, by the triangle inequality we obtain the well-known inequality

O

We shall obtain now an analogue of Proposition 2.6 for a general vector
(Xi)1<k<n. With this aim we consider a vector of variables, (X})i<x<, which
is an independent copy of (Xi)i<k<» and two independent Rademacher vectors
(&) 1<k<n- (€})1<k<n Which are independent of both (Xi)1<k<, and (X})1<k<n. Define
the vector X; = Xk + €,X;, 1 <k < n.Now, by Theorem 6.6 in [4] we know that

(X)) 1<k<n) < 26((Xi)1<k<n)-

Furthermore, since &, X; is symmetric and independent of &;Xy, we obtain f;, (1) =
| foux, (£)|%. Also by Fubini’s theorem condition (2.13) is satisfied.
Therefore we can apply Lemma 2.5 which gives

(1—2Q)E| Y X7|"<E|Y X" < (1+20)E| Y _X;|". (2.20)
k=1 k=1 k=1

where (5(;: )i<k<n are independent and each X ,f is distributed as 5(/(. Without
restricting the generality we can take X} of the form X = &, X} + & (X})* with both
vectors (X;)1<k<n and ((X,/()*) , 1.i.d., with the same marginal distributions as
(Xx)1<k<n- We shall denote

n n
Ve= Y e, Wo = &X,
k=1 k=1

1<k<n
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and

V= Zstk W = Z & (Xp)*.

k=1

Note that V,,, W, arei.i.d., symmetric random variables and also V" and W) are i.i.d.
and symmetric random variables. With these notations we can write

znjffk =V, + W, Zn:)?;: =V + W
k=1

and relation (2.20) as
(1 =2Q)E|V} + W' <E|V, + Wol" < 1+ 20)E[V} + Wi, (221)

So, for r € (0, 2], by (2.19) and (2.18) of Lemma 2.7, applied together with (2.21)
we obtain

(1 =2Q)E|V;|" < (1= 29)bE|V; + Wi | < bE|V, + W,|" < 25,E|V,|".
By the same arguments, we also have
EIV,l" < b,EIV, + Wal” < (1 + 20)bE|VS + Wr|” < (1 +29)2b,E|V}|".
Overall
(2b) ' (1 = 2Q)E|Vy|” < E|V,|" < 2b,(1 4+ 29)E[V,r]". (2.22)
Combining this latter inequality with Khinchin inequalities, with the notation C, =

2b,A; = 2MHU=IMATL e obtain for 0 < r < 2 and an arbitrary vector
(X 1<k<n»

(1-20)C B ()2 =BG Xpy? (2.23)
< (1+29)C, IE(Z (XD,

Now, giving a positive vector of random variables (Y)1<k<n, Wwe define the sequence
X = /Yx. By applying inequality (2.23) to (Xi)1<k<n We obtain:

Theorem 2.8 Assume (Yi)i1<k<n, n > 2, are arbitrary positive random variables
and 0 < p < 1. IfE(Y}) < 00, 1 <k < n, then

(1—20)K, "B _ Y <EQ._ %Y

<(1+20KEQ XY,
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where (Y}})1<k<n are independent random variables with Y} distributed as Yy and
K, can be taken 21'H1_21’)A1A2_pl with Aoy, the lower Khinchin constant.

Since always ¢; < 2, we obtain for any vector of positive random variables
(Yi) 1<k<n, that

QY Y <SKEQ., YV, (224

where (Y})1<k<, are independent and each Y} is distributed as Y. The constant is
depending only on p, and is expressed as a function of the lower Khinchin constant.
Therefore, our proof provides for power functions an alternative approach to the
result given in Proposition 1 in [5] (see also relation (1.4.27) on page 33 in [6]),
whose proof is based on a truncation argument. The paper by de la Pefia [5] also
provides examples showing that, in general, inequality (2.24) cannot be reversed.
However, our results in Proposition 2.6 and Theorem 2.8 provide a class of random
vectors for which this is possible. In order for the inequality in the left hand side to
be meaningful we have to assume that 2¢ < 1. For this class of random vectors we
also obtain a lower bound for the moments of sums of positive random variables, in
terms of moments of sum of independent ones. Of course, if we have Re fx, (1) > 0
for almost all ¢ and all j, by Proposition 2.6, we obtain better constants and in this
case, in order to use the lower bound, we have only to assume ¢ < 1.

2.6 Discussion of the p-Mixing Coefficient

In general, the computation of the Ibragimov coefficient ¢ is not an easy task
except in the Markovian case. If (Xi)1<x<, is @ Markov random vector the definition
simplifies as follows:

¢ = o((X)1<k<n) = max ¢(0(Xy), 0(Xx+1))-
1<k<n—1
Furthermore, by relation (1.1.2) in [13],

0(0(Xp),0(Xi+1)) < . s&p )[ess sup P(B|o (Xy)) — essinfP(B|o (Xy))].
€0 (Xk+1

We mention that

8(0(Xy),0(Xx+1)) =1— sup [esssupP(B|o(Xy)) — essinf P(B|o(Xy))]
BEO (X4 1)

is the famous Dobrushin coefficient of ergodicity.
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If (Xi)1<k<n are discrete random variables, we denote by
k . .
q;’ = P(Xt1 = Jj|1 X = ).

Then by Proposition 1.2.3 in [13],
1 k k
90 (X0).0(Xis1) < 5 sup )~ Ly’ — g
L

Now, assume we have a strictly stationary Markov chain (X )ez satisfying the
following form of Doeblin condition: There is a Borel set A with P(Xy, € A) = 1
and there is an ¢ € (0, 1) such that

P(X; €B|Xo=x)—PXoeB) <1—c¢,

as soon as P(Xy € B) < e&. In this case we have ¢ < 1 — ¢ (see for
instance Sect. 21.23 in [4, Vol. 2]). Here, because of stationarity ¢ is defined as
p(0(Xo), 0(X1)).

In many situations, the following two quantities are relevant to the computation

of the coefficient ¢ (0/0 = 0):
P(Xyo€A,X; €B . P(XoeA X, €B
¥* = sup (%o ! )andw’:mf (o ! ).
4.8 P(Xo € A)(X; € B) ABP(Xo € A)(X, € B)

Then, by Proposition 5.2 in [4, Vol. 1], we have 1 < ¢* < ocoand0 < ¢’ < 1.
Moreover

1
(pfl—wandqofl—w’.

These inequalities are practical in many situations. For instance, it is convenient to
specify a stationary Markov chain (Xj)rez with marginal distribution function F by
a copula C(xp, x1):

P(Xo < x0, X1 < x1) = C(F(x0), F(x1)).
If for some 0 < § < 1 the absolutely continuous part of the copula C(x¢,x1) has a
density c(xo,x;) > &, then we have ¥’ > § and ¢ < 1 — §. For instance, for the
Marshall-Olkin copula

Cy(x0,x1) = min(xox}_“,xlx(l)_“), 0<a<l,

we have c(xp,x;) > 1 — « and therefore ¢ < «. For a detailed formulation of the
@-mixing coefficients in terms of copula and further examples see for instance [15].
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We now give an estimate of the coefficient ¢ for a specific example related to
number theory. For every irrational number x in (0, 1) there is a unique sequence of
positive integers xi, Xz, x3, . . . such that the following continued fraction expansion
holds:

1
x=—"F".
X1 +
' et

If we introduce on [0, 1] the Gauss probability measure with the density f(x) =
(In2)~!(1 4+ x)~!, then the sequence (x1, X, x3,...) is strictly stationary. We know
from Lemma 2.1 in [23] that for this sequence ¥* < 1.8 andthen¢ < 1—(y¥*)~! <
0.45. For this case, our inequality (2.6) gives

(0.55) (1 _ (M)) < B(max X; > 1)

In2
< (1.55) (1 _ (%)) .

Also, the left hand side of (2.8) holds with 1 —¢ =1 —2¢ > 0.1.

As a matter of fact, all the left hand side inequalities obtained in this paper are
usable if the coefficient ¢ is small enough. One way to reduce the size of ¢ is to use
various blocking procedures. A useful blocking procedure is to fix a natural number
p > 1 and to leave a gap of p between the variables. For instance, when we treat
the maximum of random variables, we can look at (X,, Xop, ..., Xy,) with k being
the integer part of n/p. Let us denote by ¢, the mixing coefficient for this sequence.
The left hand side of (2.6) gives

_ * > < > < >
¢ %)P(gg;k&p >x) = P(lr;l?;cszp >x) < P(lrggank > x).

which is meaningful provided ¢, < 1. In the Markov setting, by Theorem 7.4 in [4],
we know that

2p—1

P(0(X,).0(Xp)) = [ [ (@0 (X0). 0 (X))

k=p

which gives in the stationary setting @, < (¢)” (i.e 2¢, < 2p)").

When dealing with sums of random variables, an extremely useful procedure
is the Bernstein big and small block argument: The variables are divided in large
blocks intertwined with small blocks. The partial sum in big blocks are vectors
distant enough to have a small mixing coefficient while the sum of variables in
small blocks is negligible.
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2.7 Discussion of the Ibragimov Conjecture

For a stationary sequence X = (Xy)rez we define:
X)) = p(0(Xe; £ <0), 0(X;5j > k)).

We call the sequence ¢-mixing if limy— o (k) = 0. We denote by S, = > ;_, Xi.
Ibragimov [11] formulated the following conjecture:

Conjecture 2.9 Assume (Xi)rez is a stationary ¢-mixing sequence such that EXy =
0 and EX; < oo. Denote by 02 = E(S?) and assume 07 — oo. Then (S,/0,)n>1
converges in distribution to a standard normal variable.

This conjecture was reformulated in [12] to include the functional central limit
theorem. For x real denote by [x] the integer part of x and introduce

Wou(t) = Sy /00, 0 <t < 1,

a random element of D[0, 1], the space of functions defined on [0, 1], which are
continuous from the right and have left hand limits. We endow D|0, 1] with uniform
topology.

Conjecture 2.10 Let (X;)rez be as above. Then W, is weakly convergent to W,
where W denotes the standard Brownian motion on [0, 1].

From Peligrad [18] we know that the Ibragimov-Iosifescu conjectures hold under
the additional assumption

liminf E(S2)/n > 0. (2.25)

Our study was initially motivated by this conjecture. We came short of proving it.
However the results in this paper show that, from some point of view, moments of
products and partial sums of a ¢-mixing sequence are close to the corresponding
ones of an independent sequence.

Other results related to the Ibragimov conjecture can be found, for instance, in [1,
10, 18-20, 26]. They are all based on inequalities for the maximum of partial sums
and by Hoffman-Jorgensen type inequalities (see Peligrad [18]), which are valid for
¢y sufficiently small for some k£ > 1. These inequalities also lead to Rosenthal type
inequalities.
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The Expected Norm of a Sum of Independent
Random Matrices: An Elementary Approach

Joel A. Tropp

Abstract In contemporary applied and computational mathematics, a frequent
challenge is to bound the expectation of the spectral norm of a sum of independent
random matrices. This quantity is controlled by the norm of the expected square
of the random matrix and the expectation of the maximum squared norm achieved
by one of the summands; there is also a weak dependence on the dimension of the
random matrix. The purpose of this paper is to give a complete, elementary proof of
this important inequality.

Keywords Probability inequality * Random matrix * Sum of independent random
variables
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1 Motivation

Over the last decade, random matrices have become ubiquitous in applied and
computational mathematics. As this trend accelerates, more researchers must
confront random matrices as part of their work. Classical random matrix theory
can be difficult to use, and it is often silent about the questions that come up in
modern applications. As a consequence, it has become imperative to develop and
disseminate new tools that are easy to use and that apply to a wide range of random
matrices.
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1.1 Matrix Concentration Inequalities

Matrix concentration inequalities are among the most popular of these new methods.
For a random matrix Z with appropriate structure, these results use simple
parameters associated with the random matrix to provide bounds of the form

E|Z-EZ| < ... and P{|Z-EZ|>1 <

where ||| denotes the spectral norm, also known as the £, operator norm. Matrix
concentration tools have already found a place in many areas of the mathematical
sciences, including

* numerical linear algebra [42]
* numerical analysis [30]

* uncertainty quantification [13]
e statistics [23]

e econometrics [6]

* approximation theory [11]

* sampling theory [2]

* machine learning [15, 26]

* learning theory [16, 31]
 signal processing [8]

* optimization [10]

e computer graphics and vision [9]
e quantum information [18]
 algorithms [12, 17]

e combinatorics [33].

These references are chosen more or less at random from a long menu of
possibilities. See the monograph [44] for an overview of the main results on matrix
concentration, many detailed applications, and additional background references.

1.2 The Expected Norm

The purpose of this paper is to provide a complete proof of the following important
theorem. This result is adapted from [7, Theorem A.1]; see also [14, p. 6].

Theorem I (The Expected Norm of a Sum of Independent Random Matrices)
Consider an independent family {S\, ..., S,} of random d, x d, complex-valued
matrices with E S; = 0 for each index i, and define

VA :=il:Si. (1.1
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Introduce the matrix variance parameter

3

v(Z) :=max{|E[ZZ"]

:max{

and the large deviation parameter

E[z*Z]|}

Xn: E[S*S]
i=1

n

ZE [SiSi*]

i=1

’

} (1.2)

1/2
L= (]E max; ||s,-||2) . (1.3)
Define the dimensional constant
C(d) := C(dy.dy) :=4- (1 +2[ log(d) + d>)]).

Then we have the matching estimates

Ve v(Z) + ¢ L < (E ||Z||2)1/2 < JCd)-v(Z) + C(d)-L. (1.4)

In the lower inequality, we can take ¢ := 1/4.

The proof of this result occupies the bulk of this paper. The argument is based on
the most elementary considerations possible. Indeed, we need nothing more than
some simple matrix inequalities and some basic discrete probability. In contrast, all
previous proofs of Theorem I rely on the noncommutative Khintchine inequality [5,
27, 36]. This paper is targeted at the high-dimensional probability community; see
the arXiv version [43] for a presentation with additional details. Once the reader
has digested the ideas here, it may be easier to appreciate the related—but more
sophisticated—arguments based on exchangeable pairs in the papers [28, 35].

1.3 Discussion

Before we continue, some remarks about Theorem I are in order. First, although it
may seem restrictive to focus on independent sums, as in (1.1), this model captures
an enormous number of useful examples. See the monograph [44] for justification.
We have chosen the term variance parameter because the quantity (1.2) is a
direct generalization of the variance of a scalar random variable. The passage from
the first formula to the second formula in (1.2) is an immediate consequence of the
assumption that the summands ; are independent and have zero mean (see Sect. 4).
We use the term large-deviation parameter because the quantity (1.3) reflects the
part of the expected norm of the random matrix that is attributable to one of the
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summands taking an unusually large value. In practice, both parameters are easy to
compute using matrix arithmetic and some basic probabilistic considerations.

In applications, it is common that we need high-probability bounds on the norm
of a random matrix. Typically, the bigger challenge is to estimate the expectation
of the norm, which is what Theorem I achieves. Once we have a bound for the
expectation, we can use scalar concentration inequalities, such as the result [4,
Theorem 6.10], to obtain high-probability bounds on the deviation between the norm
and its mean value.

We have stated Theorem I as a bound on the second moment of || Z || because this
is the most natural form of the result. Equivalent bounds hold for the first moment:

Ve uZ) + L < E|Z| < JC@d)-v(Z) + Cd)-L.

We can take ¢’ = 1/8. The upper bound follows easily from (1.4) and Jensen’s
inequality. The lower bound requires the Khintchine—Kahane inequality [24].

It is productive to interpret Theorem I as a perturbation result. Suppose that
Z = R — ER, where R is a sum of independent random matrices. Bounds for
E || Z || have many useful consequences. This type of result implies that, on average,
all of the singular values of R are close to the corresponding singular values of E R.
On average, the singular vectors of R are close to the corresponding singular vectors
of E R, provided that the associated singular values are isolated. Furthermore,
we discover that, on average, each linear functional tr[CR] is uniformly close to
E tr[CR] for each fixed matrix C € M“*% with Schatten 1-norm ||C Is, < L.

Observe that the lower and upper estimates in (1.4) differ only by the factor
C(d). As a consequence, the lower bound has no explicit dimensional dependence,
while the upper bound has only a weak dependence on the dimension. Under the
assumptions of the theorem, it is not possible to make substantial improvements to
either the lower bound or the upper bound. Section 6 provides examples that support
this claim.

In the theory of matrix concentration, one of the major challenges is to under-
stand what properties of the random matrix Z allow us to remove the dimensional
factor C(d) from the estimate (1.4). This question is largely open, but the recent
papers [1, 34, 45] make some progress.

1.4 History

Variants of Theorem I have been available for some time. An early version of
the upper bound appeared in Rudelson’s work [39, Theorem 1]; see also [40,
Theorem 3.1] and [41, Sect. 9]. The first explicit statement of the upper bound
appeared in [7, Theorem A.1]; the same result was discovered independently by
Dirksen [14, p. 6]. The proofs of these results all rely on the noncommutative
Khintchine inequality [5, 27, 36]. In our approach, the main innovation is a
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particularly easy proof of a Khintchine-type inequality for matrices, patterned
after [28, Corollary 7.3] and [45, Theorem 8.1].

The ideas behind the proof of the lower bound in Theorem I are older.
This estimate depends on generic considerations about the behavior of a sum of
independent random variables in a Banach space. These techniques are explained in
detail in [25, Chap. 6]. Our presentation expands on a proof sketch that appears in
the monograph [44, Sects. 5.1.2 and 6.1.2]; see also [14].

1.5 Roadmap

Section 2 contains some background material from linear algebra. To prove the
upper bound in Theorem I, the key step is to establish the result for the special case
of a sum of fixed matrices, each modulated by a random sign. This result appears in
Sect. 3. In Sect. 4, we exploit this result to obtain the upper bound in (1.4). In Sect. 5,
we present the easier proof of the lower bound in (1.4). Finally, Sect. 6 shows that it
is not possible to improve (1.4) substantially.

2 Background

This section contains some background results from linear algebra and probability.
Most of this material is drawn from [3, 19, 25].

2.1 Notation

We write C? for the complex linear space of d-dimensional complex vectors. The
symbol ||-|| denotes the £, norm on C¢. We write M“*% for the complex linear
space of d; x d, complex matrices. The symbol ||-|| also denotes the spectral norm
of a matrix, which is often called the £, operator norm. The operator tr[-] returns the
trace of a square matrix; we instate the convention that powers bind before the trace.
The star * refers to the conjugate transpose operation on vectors and matrices.

Next, introduce the real linear space H, of d x d Hermitian matrices. The maps
Amin(+) and Ay« (+) return the algebraic minimum and maximum eigenvalues of
an Hermitian matrix. We use the symbol < to refer to the semidefinite order on
Hermitian matrices: A < H means that the matrix H — A is positive semidefinite.

The map P{-} returns the probability of an event. The operator E[-] returns the
expectation of a random variable. We only include the brackets when it is necessary
for clarity, and we impose the convention that nonlinear functions bind before the
expectation. The notation Ex[-] refers to partial expectation with respect to the
random variable X, with all other random variables held fixed.
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2.2 Basic Spectral Theory and Some Matrix Inequalities

Each Hermitian matrix H € H; has an eigenvalue decomposition

d

*

H = E Aiuiui
i=1

where the eigenvalues A; are uniquely determined real numbers and {u;} is an
orthonormal basis for C¢. For each nonnegative integer r,

d d
H =) Jwu} implies H" =) Auu;. (2.1)
i=1 i=1

In particular, H? is positive semidefinite for each nonnegative integer p, and
2p _ 2
IH |7 = | H>].
We need a bound for the norm of a sum of squared positive-semidefinite matrices.

Fact 2.1 (Bound for a Sum of Squares) Consider positive-semidefinite matrices
Aq,..., A, € Hy. Then

n

>4

i=1

n
> A} < max; | A -

i=1

Proof For each index i,
A,-2 <XM-A; where M := max; Amax(A4;).

Summing these relations, we see that

Xn:Ai2<M-ZAi.
i=1

i=1

Weyl’s monotonicity principle [3, Corollary I11.2.3] yields the inequality

Amax (Zn: A,Z) = Amax (M zn:Az) =M- Amax (zn: Az) .
i=1 i=1

i=1

We used the fact that the maximum eigenvalue of an Hermitian matrix is positively
homogeneous. Finally, the spectral norm of a positive-semidefinite matrix is equal
to its maximum eigenvalue. O

We require another substantial matrix inequality, which is one of several matrix
analogs of the inequality between the geometric mean and the arithmetic mean.
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Fact 2.2 (GM-AM Trace Inequality) Consider Hermitian matrices H, W,Y in
H,. For integers r and q that satisfy 0 < g < 2r,

w[HWIHY> |+« [HW> HY| <u[H*- (W +Y¥)]. 2.2)

In particular,

> w[HWIHY> 1] < %

w[H?>- (W +Y7)].

The result (2.2) is a matrix version of the following numerical inequality. For
A p >0,

A= 2170 <A+ foreach 8 € [0, 1]. (2.3)

This estimate follows from the observation that the left-hand side is a convex
function of 6.

Proof We will prove (2.2) as a consequence of (2.3). The case r = 0 is immediate,
so we may assume that r > 1. Let g be an integer in the range 0 < g < 2r. Introduce
eigenvalue decompositions:

d d
W =3 Xwu and Y =Y pop.
i=1

J=1

Calculate that
d
tr [HW‘]HYzV—C]] =tr| H (Z A?ulul*) Z 2r q j *
i=1

= qu 4 tr[Huu} Hu;v; *] (2.4)
ij=1
4 2

< Yl P |l Hojl

ij=1

The first identity relies on the formula (2.1) for the eigenvalue decomposition of a
monomial. The second step depends on the linearity of the trace. In the last line, we
rewrite the trace using cyclicity, and the inequality emerges when we apply absolute
values.
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Invoking the inequality (2.4) twice, we arrive at the bound

tw[HWIHY” |+ c[HW> “HY"]
d

Z Pl 20 a2 ] ?) - |u Hoy |
Pt (2.5)

d
Z (A" + ) ‘u;kij|2.

The second inequality is (2.3), with 6 = ¢/(2r) and A = A} and pu = "
It remains to rewrite the right-hand side of (2.5) in a more recognizable form. To
that end, observe that

w[HWIHY> |+ w[HW> HY"]

d
Z (A7 + 1) - tr [ Huu} Hopo |

d d
=tr| H (Zkfrulul*) H Z‘UJ‘U]*

i=1

d
+tr| H (Zu,uf) Z“f v/
i=1
=uw[H>-W”]+ua[H* Y]

This argument just reverses the steps leading to (2.4). O

2.3 The Hermitian Dilation

Next, we introduce the Hermitian dilation 7 (B) of a rectangular matrix B €
M@*  This is the Hermitian matrix

0 B

H(B) := [B* 0

:| S Hdl +ds- (2.6)
Note that the map 7 is real-linear. By direct calculation,

2.7

HBY = [BB* 0 }

0 B*B
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We also have the spectral-norm identity
.72 (B)|| = || BIl- (2.8)

This point follows by direct calculation.

2.4 Symmetrization

Symmetrization is an important technique for studying the expectation of a function
of independent random variables. The idea is to inject auxiliary randomness into
the function. Then we condition on the original random variables and average with
respect to the extra randomness. When the auxiliary random variables are more
pliable, this approach can lead to significant simplifications.

A Rademacher random variable ¢ takes the two values 1 with equal probability.
The following result shows how we can use Rademacher random variables to study
a sum of independent random matrices.

Fact 2.3 (Symmetrization) Consider an independent family {Sy,...,S,} C
M%*%  of random matrices. Let {ei,...,e,} be an independent family of
Rademacher random variables that are also independent from the random matrices.

For eachr > 1,
1 r\ 1/r n r\ 1/r
[Srass]) < (e ass])
N 1/r
<2- (E ) .

This result holds whenever E || S;||" < oo for each index i.

Zn: g(S;i—ES;)

i=1

n
E £iS;
i=1

See [25, Lemma 6.3] for the easy proof.

3 The Expected Norm of a Matrix Rademacher Series

To prove Theorem I, our overall strategy is to use symmetrization. This approach
allows us to reduce the study of an independent sum of random matrices to the
study of a sum of fixed matrices modulated by independent Rademacher random
variables. This type of random matrix is called a matrix Rademacher series. In this
section, we establish a bound on the spectral norm of a matrix Rademacher series.
This is the key technical step in the proof of Theorem I.
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Theorem 3.1 (Matrix Rademacher Series) Ler H,..., H, be fixed Hermitian
matrices with dimension d. Let €1,...,¢&, be independent Rademacher random
variables. Then

o\ 172

< 1+ 2[logd] -

1/2

E (3.1

n
E &iH;
i=1

>
i=1

The proof of Theorem 3.1 occupies the bulk of this section, beginning with Sect. 3.2.
The argument is really just a fancy version of the familiar calculation of the moments
of a centered standard normal random variable; see Sect. 3.8 for details.

3.1 Discussion

Before we establish Theorem 3.1, let us make a few comments. First, it is helpful to
interpret the result in the same language we have used to state Theorem I. Introduce
the matrix Rademacher series

X = Zn: & H,;.
i=1

Compute the matrix variance, defined in (1.2):

v(X) = [EX?| = | Eleis)] - HH;| =

ij=1

>
i=1

We may rewrite Theorem 3.1 as the statement that

/
(B1x1?)" < VAT F 2Mogd]) - v(X).

In other words, Theorem 3.1 is a sharper version of the upper bound in Theorem I
for the special case of a matrix Rademacher series.

Next, we have focused on bounding the second moment of || X | because this
is the most natural form of the result. Note that we also control the first moment
because of Jensen’s inequality:

1/2

E (3.2

< 1+ 2[logd] -

Xn: & H; Z H?
i=1 i=1

A simple variant on the proof of Theorem 3.1 provides bounds for higher moments.
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Third, the dimensional factor on the right-hand side of (3.1) is asymptotically
sharp. Indeed, let us write K(d) for the minimum possible constant in the inequality

2\ /2 1/2

< K@) Z H;

i=1

E for H; € H; and n € N.

n
E & H;
i=1

The example in Sect. 6.1 shows that

K(d) = y/2logd.

In other words, (3.1) cannot be improved without making further assumptions.

Theorem 3.1 is a variant on the noncommutative Khintchine inequality, first
established by Lust-Piquard [27] and later improved by Pisier [36] and by
Buchholz [5]. The noncommutative Khintchine inequality gives bounds for the
Schatten norm of a matrix Rademacher series, rather than for the spectral norm.
Rudelson [39] pointed out that the noncommutative Khintchine inequality also
implies bounds for the spectral norm of a matrix Rademacher series. In our
presentation, we choose to control the spectral norm directly.

3.2 The Spectral Norm and the Trace Moments

To begin the proof of Theorem 3.1, we introduce the random Hermitian matrix
X =) &H, (3.3)
i=1

Our goal is to bound the expected spectral norm of X. We may proceed by
estimating the expected trace of a power of the random matrix, which is known
as a trace moment. Fix a positive integer p. Observe that

1/2
(E ”X”Z) < (E”X”Zp)l/(ZP) (3 4)

(E ||X2p|| )1/(21’) < (E tI_XZp)l/(zP) )

The first identity is Jensen’s inequality. In the last inequality, we bound the norm of
the positive-semidefinite matrix X % by its trace.

Remark 3.2 (Higher Moments) It should be clear that we can also bound expected
powers of the spectral norm using the same technique. For simplicity, we omit this
development.
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3.3 Summation by Parts

To study the trace moments of the random matrix X, we rely on a discrete analog of
integration by parts. This approach is clearer if we introduce some more notation.
For each index i, define the random matrices

X—I—i = +Hl + Zgjlij and X_i = —Hl‘ + Zé‘jlfj
J# J#i

In other words, the distribution of X, is the conditional distribution of the random
matrix X given the value ¢; of the ith Rademacher variable.
Beginning with the trace moment, observe that

EwrX” =Etw[X - X¥]

= ZE [Egi tr [SiHi . XZ‘D_l]]

i=1

:gE[%tr[+Iﬂ-xi’;—l]+%tr[_Hi'Xilg_l]] (3.5

= % zn:Etr (B (x5 = x77)]
i=1

To reach the second line, we simply write out the definition (3.3) of the random
matrix X . Then we write the expectation as an iterated expectation. Afterward, write
out the partial expectation using the notation X +,. Finally, we collect terms.

3.4 A Difference of Powers

Next, let us apply an algebraic identity to reduce the difference of powers in (3.5).
For matrices W, Y € Hy, it holds that

2p—2
wr-l _yw»-l — Z WaUW — Y)YZI’_Z_‘]. (3.6)
q=0

To check this identity, expand the matrix products and notice that the sum
telescopes.
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Introduce (3.6) with W = X1, and Y = X_; into (3.5) to see that

n 2p—2
Etr X¥ = % Y Etr|Hi- Y X1(Xyi— X)X
q=0

i=1
(3.7)

n 2p—2

=Y Y Eu[HXLHXST.

i=1 ¢g=0

We have used the observation that X, — X_; = 2H,.

3.5 A Bound for the Trace Moments
We are now in a position to obtain a bound for the trace moments of X . Beginning
with (3.7), we compute that

n 2p—2
EuX” =33 Bu[HXY,HXY
i=1 ¢=0

“2p—1 ) 22 -2
< Etr[Hi- X+ X2 ]
; 2 ( + )

=@p—1)-Y Et[H? (E, X*7?)] (3.8)

i=1

=2p—-1)-Eu |:(Zn: Hiz) .XZP—Z]
i=1
>

i=1

<@2p-1)- Bt X2,

The bound in the second line is Fact 2.2, with r = p— 1 and W = X4, and
Y = X_,. To reach the third line, observe that the parenthesis in the second line is
twice the partial expectation of X2 ~2 with respect to ;. Last, invoke the familiar
spectral norm bound for the trace of a product, using the observation that X%~ is
positive semidefinite.
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3.6 Iteration and the Spectral Norm Bound

The expression (3.8) shows that the trace moment is controlled by a trace moment
with a smaller power:

Etr X* <@2p—1)- Bt X772,

i=1

Iterating this bound p times, we arrive at the result

i=1

p

Etr X¥ < (2p—1!- ~tr X

3.9)

P

i=1

=d-2p—1I-

The double factorial is 2p — ! := 2p—1)(2p—3)2p —5)--- (5)(3)(1).
The expression (3.4) shows that we can control the expected spectral norm of X
by means of a trace moment. Therefore, for any nonnegative integer p, it holds that

1/2

i=1

E|X| < (EwXx?)"® < (a-@p—1n)"*.

(3.10)

The second inequality is simply our bound (3.9). All that remains is to choose the
value of p to minimize the factor on the right-hand side.

3.7 Calculating the Constant

Let us develop an accurate bound for the leading factor on the right-hand side
of (3.10). We claim that

p
2p— ) < (2”: 1) . 3.11)

Given this estimate, select p = [logd] to reach

(d. 2p— 1)!!)1/(217) < g¥/@ /ﬂ 3.12)
e .

< V2 +1= 1+ 2[logd].
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Introduce the inequality (3.12) into (3.10) to complete the proof of Theorem 3.1.
To check that (3.11) is valid, we use some tools from integral calculus:

log ((Zp - 1)!!)
p—1

= Z log(2i + 1)

i=1

1 P“ , 1 1
= [5 log(2-0 + 1) + glog(Zl + 1) + 5 log(2p + 1)} — 5 log(2p + 1)
P 1
< / log(2x 4+ 1) dx — 3 log(2p + 1)
0
=plog(2p+ 1) —p.

The bracket in the second line is the trapezoid rule approximation of the integral in
the third line. Since the integrand is concave, the trapezoid rule underestimates the
integral. Exponentiating this formula, we arrive at (3.11).

3.8 Context

The proof of Theorem 3.1 is really just a discrete, matrix version of the familiar
calculation of the (2p)th moment of a centered normal random variable. Let us
elaborate. Recall the Gaussian integration by parts formula:

Ely -f(y)] = o*-E[f (y)] (3.13)

where y ~ NORMAL(0,0?) and f : R — R is any function for which the integrals
are finite. To compute the (2p)th moment of y, we apply (3.13) repeatedly to obtain

IE)/ZP:E[)/')/ZP_I] =2p—1)-0? Ey¥2=...=2p—DN- 0%

In Theorem 3.1, the matrix variance parameter v(X) plays the role of the scalar
variance 0.
In fact, the link with Gaussian integration by parts is even stronger. Consider a

matrix Gaussian series

Y = Zn: viH;
i=1

where {y;} is an independent family of standard normal variables. If we replace the
discrete integration by parts in the proof of Theorem 3.1 with Gaussian integration
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by parts, the argument leads to the bound

2\ /2 1/2

< V1+2logd]- |y H?
i=1

E

Z yiH;
i=1

This approach requires matrix calculus, but it is slightly simpler than the argument
for matrix Rademacher series in other respects. See [45, Theorem 8.1] for a proof
of the noncommutative Khintchine inequality for Gaussian series along these lines.
The exchangeable pairs technique for establishing the noncommutative Khintchine
inequality [28, Corollary 7.1] is another realization of the same idea.

4 Upper Bounds for the Expected Norm

We are now prepared to establish the upper bound for an arbitrary sum of
independent random matrices. The argument is based on the specialized result,
Theorem 3.1, for matrix Rademacher series. It proceeds by steps through more and
more general classes of random matrices: first positive semidefinite, then Hermitian,
and finally rectangular. Here is what we will show.

Theorem 4.1 (Expected Norm: Upper Bounds) Define the dimensional constant
C(d) := 4(1 4 2[logd]). The expected spectral norm of a sum of independent
random matrices satisfies the following upper bounds.

1. The Positive-Semidefinite Case. Consider a family {T, ..., T,} of independent,
random d x d positive-semidefinite matrices, and define

W=>"T.
i=1
Then
17272
E|W] < [IEW| + VC@- (Emax, |T)'] . .0

2. The Centered Hermitian Case. Consider a family {Y1, ..., Y,} of independent,
random d x d Hermitian matrices with EY; = 0 for each index i, and define

X = Xj;Yl



The Norm of a Sum of Independent Random Matrices 189

Then

1/2

(E1x1?) " < Ve@ - |EX?| + c@- (Emax ¥?) . @2

3. The Centered Rectangular Case. Consider a family {Si,...,S,} of indepen-
dent, random dy x dy matrices with E S; = 0 for each index i, and define

7z = Zn;sl

Then

(1217)" = V@ max {|E[22°]|"°. |E[2°2]]"}
+ C(d)- (E max; ||s,-||2)1/2 4.3)

where d ;= dy + ds.

The proof of Theorem 4.1 takes up the rest of this section. The presentation includes
notes about the provenance of various parts of the argument.

The upper bound in Theorem I follows instantly from Case (3) of Theorem 4.1.
We just introduce the notation v(Z) for the variance parameter, and we calculate
that

E[zZ*] = Z E[S:S"] = Z E[S8:S7].

The first expression follows immediately from the definition of Z and the linearity
of the expectation; the second identity holds because the random matrices S; are
independent and have mean zero. The formula for E [Z *Z ] is valid for precisely
the same reasons.

4.1 Proof of the Positive-Semidefinite Case

Recall that W is a random d x d positive-semidefinite matrix of the form

n
W .= Z T; where the T; are positive semidefinite.

i=1
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Let us introduce notation for the quantity of interest:

>t
i=1

E:=E|W||=E

By the triangle inequality for the spectral norm,

Y er

i=1

E< +E < +2E

i(n—ETi)

i=1

zn:SiTi' .
i=1

>ET
i=1

The second inequality follows from symmetrization, Fact 2.3. In this expression,
{&;} is an independent family of Rademacher random variables, independent of {7}}.
Conditioning on the choice of the random matrices T;, we apply Theorem 3.1 via

the bound (3.2):
=E |:IE5

The operator E, averages over the Rademacher random variables, with the matrices
T; fixed. Now, since the matrices T; are positive-semidefinite,

1/2
E

] < 1+ 2[logd] -E

2": &T; 2": &T; 2": Tiz
i=1 i=1 i=1

1/2
<E (maxi Tl )1/2.

1/2

)1/2

The first inequality is Fact 2.1, and the second is Cauchy—Schwarz. Combine the
last three displays to see that

i=1

: o

i=1

i=1

i=1

< (Emax ||T;]|)"*- (E

1/2

= (Emax; |T;|) '~ - E'~

Vg2, (4.4)

E< + V/4(1 + 2[logd)) - (Emax; | Ti])

For any a, 8 > 0, the quadratic inequality # < o + Bt implies that t < /o + B.
Applying this fact to the quadratic relation (4.4) for E'/?, we obtain

1/2

£ < + V(T + 2Mlogd]) - (Emax; | T )"

Y e
i=1
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The conclusion (4.1) follows.

This argument is adapted from Rudelson’s paper [39], which develops a version
of this result for the case where the matrices T; have rank one; see also [40]. The
paper [41] contains the first estimates for the constants. Magen and Zouzias [29]
observed that similar considerations apply when the matrices 7; have higher rank.
The complete result (4.1) first appeared in [7, Appendix]. The constants in this paper
are marginally better. Related bounds for Schatten norms appear in [28, Sect. 7] and
in [22].

The results described in the last paragraph are all matrix versions of the classical
inequalities due to Rosenthal [38, Lemma 1]. These bounds can be interpreted as
polynomial moment versions of the Chernoff inequality.

4.2 Proof of the Hermitian Case

The result (4.2) for Hermitian matrices is a corollary of Theorem 3.1 and the
result (4.1) for positive-semidefinite matrices. Recall that X is a d X d random
Hermitian matrix of the form

X = ZYi where EY; = 0.

i=1
We may calculate that

1/2

> Y

i=1

(E1xr?)” = (&

)N 1/2

ZH:EiYi

i=1

<2|E|E.

n 1/2
< V4(1 + 2[logd]) - (E doy? ) .
i=1

The first inequality follows from the symmetrization procedure, Fact 2.3. The
second inequality applies Theorem 3.1, conditional on the choice of Y;. The
remaining expectation involves a sum of independent random matrices that are
positive-semidefinite. Therefore, we may invoke (4.1) with T; = Yiz. We obtain

12 2

E + V4(1 £ 2[logd]) - (Emax; | ¥?])"*

=

NG
i=1

> By
i=1
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Combine the last two displays to reach

1/2

(E1x1?) " < Va(i + 2fiogd]) - [

> EY
i=1

+ V/4(1 + 2[logd]) - (Emax; ||Yi||2)1/2:|'

Rewrite this expression to reach (4.2).

A version of the result (4.2) first appeared in [7, Appendix]; the constants
here are marginally better. Related results for the Schatten norm appear in the
papers [20-22, 28]. These bounds are matrix extensions of the scalar inequalities
due to Rosenthal [38, Theorem 3] and to Rosén [37, Theorem 1]; see also Nagaev—
Pinelis [32, Theorem 2]. They can be interpreted as the polynomial moment
inequalities that sharpen the Bernstein inequality.

4.3 Proof of the Rectangular Case

Finally, we establish the rectangular result (4.3). Recall that Z is a d; x d, random
rectangular matrix of the form

Z = ZSi where E S; = 0.

i=1

Setd := d; + d, and form a random d x d Hermitian matrix X by dilating Z:

X = #(Z) = zn:ji”(s,-).

i=1

The Hermitian dilation .77 is defined in (2.6); the second relation holds because the
dilation is real-linear.

Evidently, the random matrix X is a sum of independent, centered, random
Hermitian matrices 57 (S;). Therefore, we may apply (4.2) to X to see that

(E ||f%ﬂ(2)||2)1/2 < Va(l + 2flogd)) - |[E[2(2)]|"”

+4(1 +2[logd]) - (Emax; | £/(S)|”)""*.

(4.5)
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Since the dilation preserves norms (2.8), the left-hand side of (4.5) is exactly what
we want:

(E1r@r)” = (B1zr)”

To simplify the first term on the right-hand side of (4.5), invoke the formula (2.7)
for the square of the dilation:

e = | o 2 )

E[z*Z]|}.

(4.6)
= max{”IE [ZZ ]

The second identity relies on the fact that the norm of a block-diagonal matrix is the
maximum norm of a diagonal block. To simplify the second term on the right-hand
side of (4.5), we use (2.8) again:

172 (SOl = I1Sill -

Introduce the last three displays into (4.5) to arrive at the result (4.3).

The result (4.3) first appeared in the monograph [44, Eq. (6.16)] with (possibly)
incorrect constants. The current paper contains the first complete presentation of the
bound.

S Lower Bounds for the Expected Norm

Finally, let us demonstrate that each of the upper bounds in Theorem 4.1 is sharp up
to the dimensional constant C(d). The following result gives matching lower bounds
in each of the three cases.

Theorem 5.1 (Expected Norm: Lower Bounds) The expected spectral norm of a
sum of independent random matrices satisfies the following lower bounds.

1. The Positive-Semidefinite Case. Consider a family {T, ..., T,} of independent,
random d x d positive-semidefinite matrices, and define

W = Zn: T..
i=1

Then

1
EIWI = [IEWI + (Emax 1T)"] 5.1)
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2. The Centered Hermitian Case. Consider a family {Y1, ..., Y,} of independent,
random d x d Hermitian matrices with EY; = 0 for each index i, and define

X = Xj;Yl

Then
172 1 1 1/2
(E1xP) " 2 5 E X7 + 5 (Bmaxvig?) (5.2)

3. The Centered Rectangular Case. Consider a family {S\, ..., S,} of indepen-
dent, random dy x dy matrices with E S; = 0 for each index i, and define

Z = Xn: Si.
i=1

Then

1
E1Z) 2 g max | [E[22°]]". |E[2°2]|")
| " (5.3)
2
+4—1 (Emaxi 1S || ) .
The rest of the section describes the proof of Theorem 5.1.

The lower bound in Theorem I is an immediate consequence of Case (3) of
Theorem 5.1. We simply introduce the notation v(Z) for the variance parameter.

5.1 The Positive-Semidefinite Case

The lower bound (5.1) in the positive-semidefinite case is relatively easy. Recall that

n
W .= Z T; where the T; are positive semidefinite.
i=1
First, by Jensen’s inequality

EwWl=IEW]. 54

Second, let I be the minimum value of the index i where max; || 7;|| is achieved; note
that 7 is a random variable. Since the summands 7; are positive semidefinite, it is
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easy to see that

Using Wey!l’s monotonicity principle [3, Corollary II1.2.3], we have

max; ”Tl” = ”TI” = Amax(T1) < Amax (Z Tz) = ZTI = ”W” .
i=1 i=1
Take the expectation to arrive at
Emax; |Ti| <E[|W]. (5.5)

Average the two bounds (5.4) and (5.5) to obtain
1
E(W] = E[IIEWII + Emax; | T3] ].

To reach (5.1), apply the numerical fact that 2(a + b) > (ﬁ + \/5)2, valid for all
a,b>0.

5.2 Hermitian Case

The Hermitian case (5.2) is similar in spirit, but the details are a little more involved.
Recall that

X ::ZY,- where EY; = 0.

i=1
First, note that

1/2
(E1x17) " = (B1x2)"? = [EX2]" (5.6)

The second relation is Jensen’s inequality. To obtain the other part of our lower
bound, we use the lower bound from the symmetrization result, Fact 2.3:

!
>_F
=4

2
E|X|*=E

i=1

n
E &Y;
i=1
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where {g;} is an independent family of Rademacher random variables, independent
from {Y;}. Now, we condition on the choice of {¥;}, and we compute the partial
expectation with respect to the ¢;. Let I be the minimum value of the index i where
max; || Y,<||2 is achieved. By Jensen’s inequality, applied conditionally,

Xn:SiYi E[Xn:Sin‘iéj]
i=1 i=1

Combining the last two displays and taking a square root, we discover that

ELGRE

Average the two bounds (5.6) and (5.7) to conclude that (5.2) is valid.

2 2

E. > E,, =E,, [leY;]* = max; |Yi[|*.

1/2

(Emax; | Y:]*) (5.7)

1
2

5.3 The Rectangular Case

The rectangular case (5.3) follows instantly from the Hermitian case when we
apply (5.2) to the Hermitian dilation. Recall that

7z = ZS,- where E S; = 0.
i=1
Define a random matrix X by applying the Hermitian dilation (2.6) to Z:
X :=0(Z)=) H(S).
i=1

Since the random matrix X is a sum of independent, centered, random Hermitian
matrices, the bound (5.2) yields

/ 1 1
E1r@IP) " = 5 [B[#@]] + § (Emax | 25)P) "

Repeating the calculations in Sect. 4.3, we arrive at the advertised result (5.3).

6 Optimality of Theorem I

The lower bounds and upper bounds in Theorem I match, except for the dimensional
factor C(d). In this section, we show by example that neither the lower bounds nor
the upper bounds can be sharpened substantially. More precisely, the logarithms
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cannot appear in the lower bound, and they must appear in the upper bound. As a
consequence, unless we make further assumptions, Theorem I cannot be improved
except by constant factors and, in one place, by an iterated logarithm.

6.1 Upper Bound: Variance Term

First, let us show that the variance term in the upper bound in (1.4) must contain a
logarithm. This example is drawn from [44, Sect. 6.1.2].
For a large parameter n, consider the d X d random matrix

1
7z = Z Z ESUEZ‘Z‘

As before, {¢;} is an independent family of Rademacher random variables, and E;;
is a d x d matrix with a one in the (i, i) position and zeroes elsewhere. The variance
parameter satisfies

n

d
1
vW(Z) = ZZ;E,, = L] = 1.
i=1 j=1

The large deviation parameter satisfies

2

1
—=¢iEi

Jn

Therefore, the variance term drives the upper bound (1.4). For this example, it is
easy to estimate the norm directly. Indeed,

[’ = E max;;

n.

2

d
Z ViEi;

i=1

E|Z|*~E

Here, {y;} is an independent family of standard normal variables, and the first
approximation follows from the central limit theorem. The norm of a diagonal
matrix is the maximum absolute value of one of the diagonal entries. Last, we use
the well-known fact that the expected maximum among d squared standard normal
variables is asymptotic to 2 logd. In summary,

NV
(E 1Z|l ) ~ 2logd - v(X).
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We conclude that the variance term in the upper bound must carry a logarithm.
Furthermore, it follows that Theorem 3.1 is numerically sharp.

6.2 Upper Bound: Large-Deviation Term

Next, we verify that the large-deviation term in the upper bound in (1.4) must also
contain a logarithm, although the bound is slightly suboptimal. This example is
drawn from [44, Sect. 6.1.2].

For a large parameter n, consider the d X d random matrix

d n
)N
i=1 j=1

where {§;} is an independent family of BERNOULLI(n_l) random variables. That
is, 8;; takes only the values zero and one, and its expectation is n~'. The variance
parameter for the random matrix is
d n
v(Z) = ZZE §i—n") ZZ (1—-n"1)-Eq| ~ 1.
i=1 j=1 i=1 j=1
The large deviation parameter is

= [E max;; ” (8,:,' — n_l) -E;; ||2 ~ 1.

Therefore, the large-deviation term drives the upper bound in (1.4):

(E ||Z||2)1/2 < VA1 + 2[logd]) + 4(1 + 2[logd]).

On the other hand, by direct calculation

(E1z?)"”

2\ 1/2

%

d
E|> (Qi—1) E;

i=1

logd
..... loglogd’

[
—
s
g
o
L
_5
|
:
N

=
[’S)
2
(@]
Q
=
4

Here, {Q;} is an independent family of POISSON(1) random variables, and the
first approximation follows from the Poisson limit of a binomial. The second
approximation depends on a (messy) calculation for the expected squared maximum
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of a family of independent Poisson variables. We see that the large deviation term
in the upper bound (1.4) cannot be improved, except by an iterated logarithm factor.

6.3 Lower Bound: Variance Term

Next, we argue that there are examples where the variance term in the lower bound
from (1.4) cannot have a logarithmic factor.
Consider a d x d random matrix of the form

d
7 = E 8ijEij-
ij=1

Here, {;;} is an independent family of Rademacher random variables. The variance
parameter satisfies

d d
2 2
v(Z) =max{ | Y (Eej)-EEF| .| > (Ee}) - EFE;
ij=1 ij=1
= max{ ld-Lall 5 |14 - La| } =d.
The large-deviation parameter is
L2 = Emaxw ||£UEU||2 =1.
Therefore, the variance term controls the lower bound in (1.4):
1/2
(E ||Z||2) > Jed +c.
Meanwhile, it can be shown that the norm of the random matrix Z satisfies
1/2
(E 1z ||2) ~ V2.

See the paper [1] for an elegant proof of this nontrivial result. We see that the
variance term in the lower bound in (1.4) cannot have a logarithmic factor.
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6.4 Lower Bound: Large-Deviation Term

Finally, let us produce an example where the large-deviation term in the lower bound
from (1.4) cannot have a logarithmic factor.
Consider a d x d random matrix of the form

d
7z = ZPL'E”‘.
i=1

Here, {P;} is an independent family of symmetric random variables whose tails
satisfy

>
P{|Pi| = 1} = B

The key properties of these variables are that

IEPi2 =2 and E madei2 ~ const - d°.

=

The second expression just describes the asymptotic order of the expected maxi-
mum. We quickly compute that the variance term satisfies

d
vw(Z) = Z (EPHE;| = 2.
Meanwhile, the large-deviation factor satisfies
= E Jnax ||PE,,|| = IE Jmax |P| ~ const - d°.

Therefore, the large-deviation term drives the lower bound (1.4):
1/2
(]E ||Z||2) % const - d.

On the other hand, by direct calculation,

(B1z1?)"” =

We conclude that the large-deviation term in the lower bound (1.4) cannot carry a
logarithmic factor.

1/2

i
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Fechner’s Distribution and Connections to Skew
Brownian Motion

Jon A. Wellner

Abstract This note investigates two aspects of Fechner’s two-piece normal distri-
bution: (1) connections with the mean-median-mode inequality and (strong) log-
concavity; (2) connections with skew and oscillating Brownian motion processes.
The developments here have been inspired by Wallis (Stat Sci 29:106-112, 2014)
and rely on Chen and Zili (Sci China Math 58:97-108, 2015).

Keywords Fechner’s law ¢ Local time * Mean ¢ Median * Mode * Oscillating
Brownian motion ¢ Pieced half normal * Quantiles * Skewed Brownian motion
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1 Three Two-Piece Half-Normal Distributions
The standard Gaussian density ¢ and distribution function @ are given by

d(2) = exp(—22/2), z€R,

1
V21

and

®(z) = /_ ) ¢ (x)dx = /_ ) \/lz_nexp(—xz/2)dx, zeR.
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Now let o4, 0— > 0 be two positive numbers with 0 # o_ in general, and consider
the following three densities on R:

20— 1
’ _¢(X/O'_)’ x < 0’
flx;04,0-) = 0+;r0_ o_
% ' %d)(x/o:,_), X Z 0,
glxiop,00) = o%d’(x/(f—), x <0,
»04,0— ﬁqb(x/cﬁ_)’ x>0;

204 . Lg(x/o_), x<0
h(cog,0-) = 750 °F >0
ot to_ : Ed)(-x/o—-l-)s X = U

(1.1)

It is easily seen that f, g, and h differ only in the scaling of the two half normal
densities ¢ (x/0+)/0+1(0,00) (xsign(x)). Thus with 6 = o_/(o— + o4 ) we have

20 Lg(x/o-), x <0,
21-0)- ﬁ¢>(x/0+), x> 0;

(%_d)(x/(f_), x <0,
ﬁ(P(X/O'_F), X = 0;

f(-xv 0+70—) = {

s = |

2(1-0)- L p(x/o-), x <O,

TR = 20 Lpifor). xzo00

The density f is continuous on R, while the densities g and & are discontinuous at
0. The density f is associated with [8] and “Fechner’s Lagegesetz der Mittlewerte”;
see [20, 25]. (Also see [9, 21, 22], and [23, Chap. 7] for further historical information
about Fechner.) As noted by Wallis [25], this density (and the version thereof with
an additional shift parameter) has been rediscovered repeatedly. It is interesting to
note that the density f is log-concave (see e.g. [7]) and even strongly log-concave
(see e.g. [28]).

The density g is the limit distribution of the median of i.i.d random variables
with density p when when p is discontinuous at its median m, and then cri =
1/(4p(m=)?) where p(m=) denote the left and right limits of p at m respectively;
see e.g. [27, pp. 343-354], [14, 15].

The density 4 is the marginal density of oscillating Brownian motion, see e.g.
[13, p. 302]. This process, which is closely related to skew Brownian motion (see
e.g. [3, 10, 12, 16, 19]), arises as the weak limit of random walk processes which
are inhomogeneous in space: imagine letting the increment distributions change as
the walk crosses through 0 with variance 042_ for x > 0 and variance ¢ for x < 0.
See [13] for a first theorem of this type and [11] for further convergence results in
this direction.
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One point of interest here is the connection with the mean—median—mode
inequality going back to Fechner and Pearson.
Fechner proved that for the density f with o— > o the inequality

mean < median < mode (1.2)

holds true, and that strict inequalities hold when o— > o4. Fechner did this by
examining the ratio (Med — Mode)/(Mean — Mode) and considering the limits as

o+ /" o_ and as o4 \ O for fixed o4. In our notation this ratio becomes (see
Table 1)

_ +o—
Med — Mode oo~ (Gtta,g )

Mean — Mode /2/m(0y —0_)

R /4, as oy So_,
w/4D71(3/4), as oy — 0,

_ {0.785398...,}
= < 1.
0.845348 ...

Apparently the phenomena of the inequalities in (1.2) was observed (but not proved)

by Pearson [17] in connection with his Type III curves.

The inequalities in (1.2) are illustrated in Fig. 1.

As a result of the series of papers [2, 6, 20, 24], and counterexamples (see
e.g. [1]), this phenomena is now well-understood. In particular, from [6], for
distributions F with median m = 0 (so that, with X ~ F, P(X < m) > 1/2
and P(X > m) > 1/2) and u = E(X) assumed finite, if X* = max{X,0} and

2
Fig. 1 Fechner’s density f(x;0—,04) with o— = 3/2, o4 = 1; mean (solid line), median
(dashed line)
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Fig. 2 Fechner stochastic order plot: F, dashed curve, F_, solid curve; o = 3/2, 04 =1

0.4

-4 -2 2 4

Fig. 3 Quantile limit density g(x; 0—, 04 ) witho_— = 3/2, 0+ = 1, mean at dashed line

X~ = —min{0, X} satisfy X~ >; X +, then there is at least one mode M such that
# <0 < M. This is illustrated in Fig. 2.

Here we note that while the densities g and 4 also have mode at 0, the density
g has median 0 and mean < 0 (when o_ > o04), the density & has mean O and
median > 0. Thus g gives an example of a density in which the equality median
= mode occurs, while & gives an example of a density for which the median
fails to fall between the mean and mode, and thus, necessarily, X~ fails to be
stochastically larger (or smaller) than XT. These facts are illustrated in Figs. 3, 4,
and 5, 6, respectively.

Finally, Fig.7 gives a plot of all three of these densities together, all with o_ =
3 / 2, o4 = 1.
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Fig. 4 Quantile stochastic order plot: G, dashed curve, G_ solid curve; o— = 3/2, 04 =1

0.5

0.4}

0.3}

-4 -2 4

Fig. 5 Oscillating Brownian motion limit density &(x; 0—, 04) witho— = 3/2, o4 = 1, median
at dashed line

2 Summary of the Properties of f, g, and h

Table 1 summarizes some of the properties of the densities f, g, and h. The formulas
for the median are given only for the case that o_ > 0.
In addition, the variances are given as follows:

Vary(X) = (1 - %) (0 —0_) +o040_,

1 1

Var,(X) = 3 (1 — ;) (04 —0-)* + 040,

Varh(X) = 040-—.
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Fig. 6 Oscillating BM limit stochastic order plot: H., dashed curve, H_ solid curve; o— = 3/2,

U+=1

Fig. 7 The three densities f (solid), g (dotted), and h dashed; o— = 3/2,04 =1

Table 1 The mode, median, and mean of three (marginal) densities: Fechner, (nonstandard)
quantile limit, and oscillating Brownian motion, as functions of o4 and o_—

Fechner Quantile limit Osc BM limit
Symbol f g h
Mode 0 0 0
=1
Median oo (=) o o4 @1 (1 - (=) )
Mean \/g (o4 —0-) i(d.;. —0-) 0
P(X > 0) =10 1/2 el
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3  Questions

We know that skew Brownian motion was studied by Walsh [26] because it provides
an example of a diffusion process with discontinuous local time. We know that
oscillating Brownian motion with o # o_ (or ¢ # p and @ = 0 in the notation of
following sections) has both discontinuous marginal (which are scaled versions of
the density /