
Progress in Probability
71

Christian Houdré
David M. Mason
Patricia Reynaud-Bouret
Jan Rosiński
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Preface

The High-Dimensional Probability proceedings continue a well-established tradi-
tion which began with the series of eight International Conferences on Probability
in Banach Spaces, starting with Oberwolfach in 1975. An earlier conference on
Gaussian processes with many of the same participants as the 1975 meeting was
held in Strasbourg in 1973. The last Banach space meeting took place in Bowdoin,
Maine, in 1991. It was decided in 1994 that, in order to reflect the widening
audience and interests, the name of this series should be changed to the International
Conference on High-Dimensional Probability.

The present volume is an outgrowth of the Seventh High-Dimensional Prob-
ability Conference (HDP VII) held at the superb Institut d’Études Scientifiques
de Cargèse (IESC), France, May 26–30, 2014. The scope and the quality of the
contributed papers show very well that high-dimensional probability (HDP) remains
a vibrant and expanding area of mathematical research. Four of the participants of
the first probability on Banach spaces meeting—Dick Dudley, Jim Kuelbs, Jørgen
Hoffmann-Jørgensen, and Mike Marcus—have contributed papers to this volume.

HDP deals with a set of ideas and techniques whose origin can largely be traced
back to the theory of Gaussian processes and, in particular, the study of their paths
properties. The original impetus was to characterize boundedness or continuity
via geometric structures associated with random variables in high-dimensional or
infinite-dimensional spaces. More precisely, these are geometric characteristics of
the parameter space, equipped with the metric induced by the covariance structure
of the process, described via metric entropy, majorizing measures and generic
chaining.

This set of ideas and techniques turned out to be particularly fruitful in extending
the classical limit theorems in probability, such as laws of large numbers, laws of
iterated logarithm, and central limit theorems, to the context of Banach spaces and
in the study of empirical processes.
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Similar developments took place in other mathematical subfields such as convex
geometry, asymptotic geometric analysis, additive combinatorics, and random
matrices, to name but a few topics. Moreover, the methods of HDP, and especially
its offshoot, the concentration of measure phenomenon, were found to have a
number of important applications in these areas as well as in statistics, machine
learning theory, and computer science. This breadth is very well illustrated by the
contributions in the present volume.

Most of the papers in this volume were presented at HDP VII. The participants
of this conference are grateful for the support of the Laboratoire Jean Alexandre
Dieudonné of the Université de Nice Sophia-Antipolis, of the school of Mathematics
at the Georgia Institute of Technology, of the CNRS, of the NSF (DMS Grant #
1441883), of the French Agence Nationale de la Recherche (ANR 2011 BS01 010
01 project Calibration), and of the IESC. The editors also thank Springer-Verlag for
agreeing to publish the proceedings of HDP VII.

The papers in this volume aptly display the methods and breadth of HDP. They
use a variety of techniques in their analysis that should be of interest to advanced
students and researchers. This volume begins with a dedication to the memory of
our close colleague and friend, Evarist Giné-Masdeu. It is followed by a collection
of contributed papers that are organized into four general areas: inequalities and
convexity, limit theorems, stochastic processes, and high-dimensional statistics. To
give an idea of their scope, we briefly describe them by subject area in the order
they appear in this volume.

Dedication to Evarist Giné-Masdeu

• Evarist Giné-Masdeu July 31, 1944–March 15, 2015. This article is made up of
reminiscences of Evarist’s life and work, from many of the people he touched
and influenced.

Inequalities and Convexity

• Stability of Cramer’s Characterization of the Normal Laws in Information
Distances, by S.G. Bobkov, G.P. Chistyakov, and F. Götze. The authors establish
the stability of Cramer’s theorem, which states that if the convolution of two
distributions is normal, both have to be normal. Stability is studied for probability
measures that have a Gaussian convolution component with small variance.
Quantitative estimates in terms of this variance are derived with respect to the
total variation norm and the entropic distance. Part of the arguments used in
the proof refine Sapogov-type theorems for random variables with finite second
moment.

• V.N. Sudakov’s Work on Expected Suprema of Gaussian Processes, by Richard
M. Dudley. The paper is about two works of V.N. Sudakov on expected suprema
of Gaussian processes. The first was a paper in the Japan-USSR Symposium on
probability in 1973. In it he defined the expected supremum (without absolute
values) of a Gaussian process with mean 0 and showed its usefulness. He gave
an upper bound for it as a constant times a metric entropy integral, without
proof. In 1976 he published the monograph, “Geometric Problems in the Theory
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of Infinite-Dimensional Probability Distributions,” in Russian, translated into
English in 1979. There he proved his inequality stated in 1973. In 1983. G.
Pisier gave another proof. A persistent rumor says that R. Dudley first proved
the inequality, but he disclaims this. He defined the metric entropy integral, as
an equivalent sum in 1967 and then as an integral in 1973, but the expected
supremum does not appear in these papers.

• Optimal Concentration of Information Content for Log-Concave Densities by
Matthieu Fradelizi, Mokshay Madiman, and Liyao Wang. The authors aim
to generalize the fact that a standard Gaussian measure in R

n is effectively
concentrated in a thin shell around a sphere of radius

p
n. While one possible

generalization of this—the notorious “thin-shell conjecture”—remains open, the
authors demonstrate that another generalization is in fact true: any log-concave
measure in high dimension is effectively concentrated in the annulus between
two nested convex sets. While this fact was qualitatively demonstrated earlier by
Bobkov and Madiman, the current contribution identifies sharp constants in the
concentration inequalities and also provides a short and elegant proof.

• Maximal Inequalities for Dependent Random Variables, by J. Hoffmann-
Jørgensen. Recall that a maximal inequality is an inequality estimating the
maximum of partial sum of random variables or vectors in terms of the last
sum. In the literature there exist plenty of maximal inequalities for sums of
independent random variables. The present paper deals with dependent random
variables satisfying some weak independence, for instance, maximal inequalities
of the Rademacher-Menchoff type or of the Ottaviani-Levy type or maximal
inequalities for negatively or positively correlated random variables or for
random variables satisfying a Lipschitz mixing condition.

• On the Order of the Central Moments of the Length of the Longest Common
Subsequences in Random Words, by Christian Houdré and Jinyong Ma. The
authors study the order of the central moments of order r of the length of the
longest common subsequences of two independent random words of size n
whose letters are identically distributed and independently drawn from a finite
alphabet. When all but one of the letters are drawn with small probabilities, which
depend on the size of the alphabet, a lower bound of order nr=2 is obtained. This
complements a generic upper bound also of order nr=2:

• A Weighted Approximation Approach to the Study of the Empirical Wasserstein
Distance, by David M. Mason. The author shows that weighted approximation
technology provides an effective set of tools to study the rate of convergence of
the Wasserstein distance between the cumulative distribution function [c.d.f] and
the empirical c.d.f. A crucial role is played by an exponential inequality for the
weighted approximation to the uniform empirical process.

• On the Product of Random Variables and Moments of Sums Under Dependence,
by Magda Peligrad. This paper establishes upper and lower bounds for the
moments of products of dependent random vectors in terms of mixing coeffi-
cients. These bounds allow one to compare the maximum term, the characteristic
function, the moment-generating function, and moments of sums of a dependent
vector with the corresponding ones for an independent vector with the same
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marginal distributions. The results show that moments of products and partial
sums of a phi-mixing sequence are close in a certain sense to the corresponding
ones of an independent sequence.

• The Expected Norm of a Sum of Independent Random Matrices: An Elementary
Approach, by Joel A. Tropp. Random matrices have become a core tool in
modern statistics, signal processing, numerical analysis, machine learning, and
related areas. Tools from high-dimensional probability can be used to obtain
powerful results that have wide applicability. Tropp’s paper explains an important
inequality for the spectral norm of a sum of independent random matrices. The
result extends the classical inequality of Rosenthal, and the proof is based on
elementary principles.

• Fechner’s Distribution and Connections to Skew Brownian Motion, by Jon
A. Wellner. Wellner’s paper investigates two aspects of Fechner’s two-piece
normal distribution: (1) Connections with the mean-median-mode inequality
and (strong) log-concavity (2) Connections with skew and oscillating Brownian
motion processes.

Limit Theorems

• Erdös-Rényi-Type Functional Limit Laws for Renewal Processes, by Paul
Deheuvels and Joseph G. Steinebach. The authors discuss functional versions
of the celebrated Erdős-Rényi strong law of large numbers, originally stated
as a local limit theorem for increments of partial sum processes. We work in
the framework of renewal and first-passage-time processes through a duality
argument which turns out to be deeply rooted in the theory of Orlicz spaces.

• Limit Theorems for Quantile and Depth Regions for Stochastic Processes, by
James Kuelbs and Joel Zinn. Contours of multidimensional depth functions often
characterize the distribution, so it has become of interest to consider structural
properties and limit theorems for the sample contours. Kuelbs and Zinn continue
this investigation in the context of Tukey-like depth for functional data. In
particular, their results establish convergence of the Hausdorff distance for the
empirical depth and quantile regions.

• In Memory of Wenbo V. Li’s Contributions, by Q.M. Shao. Shao’s notes are a
tribute to Wenbo Li for his contributions to probability theory and related fields
and to the probability community. He also discusses several of Wenbo’s open
questions.

Stochastic Processes

• Orlicz Integrability of Additive Functionals of Harris Ergodic Markov Chains,
by Radosław Adamczak and Witold Bednorz. Adamczak and Bednorz consider
integrability properties, expressed in terms of Orlicz functions, for “excursions”
related to additive functionals of Harris Markov chains. Applying the obtained
inequalities together with the regenerative decomposition of the functionals, we
obtain limit theorems and exponential inequalities.
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• Bounds for Stochastic Processes on Product Index Spaces, by Witold Bednorz.
In many questions that concern stochastic processes, the index space of a given
process has a natural product structure. In this paper, we formulate a general
approach to bounding processes of this type. The idea is to use a so-called
majorizing measure argument on one of the marginal index spaces and the
entropy method on the other. We show that many known consequences of
the Bernoulli theorem—complete characterization of sample boundedness for
canonical processes of random signs—can be derived in this way. Moreover we
establish some new consequences of the Bernoulli theorem, and finally we show
the usefulness of our approach by obtaining short solutions to known problems
in the theory of empirical processes.

• Permanental Vectors and Self Decomposability, by Nathalie Eisenbaum. Expo-
nential variables and more generally gamma variables are self-decomposable.
Does this property extend to the class of multivariate gamma distributions? We
consider the subclass of the permanental vectors distributions and show that,
obvious cases excepted, permanental vectors are never self-decomposable.

• Permanental Random Variables, M-Matrices, and M-Permanents, by Michael
B. Marcus and Jay Rosen. Marcus and Rosen continue their study of permanental
processes. These are stochastic processes that generalize processes that are
squares of certain Gaussian processes. Their one-dimensional projections are
gamma distributions, and they are determined by matrices, which, when sym-
metric, are covariance matrices of Gaussian processes. But this class of processes
also includes those that are determined by matrices that are not symmetric.
In their paper, they relate permanental processes determined by nonsymmetric
matrices to those determined by related symmetric matrices.

• Convergence in Law Implies Convergence in Total Variation for Polynomials
in Independent Gaussian, Gamma or Beta Random Variables, by Ivan Nourdin
and Guillaume Poly. Nourdin and Poly consider a sequence of polynomials of
bounded degree evaluated in independent Gaussian, gamma, or beta random
variables. Whenever this sequence converges in law to a nonconstant distribution,
they show that the limit distribution is automatically absolutely continuous (with
respect to the Lebesgue measure) and that the convergence actually takes place
in the total variation topology.

High-Dimensional Statistics

• Perturbation of Linear Forms of Singular Vectors Under Gaussian Noise, by
Vladimir Koltchinskii and Dong Xia. The authors deal with the problem of
estimation of linear forms of singular vectors of an m � n matrix A perturbed by
a Gaussian noise. Concentration inequalities for linear forms of singular vectors
of the perturbed matrix around properly rescaled linear forms of singular vectors
of A are obtained. They imply, in particular, tight concentration bounds for the
perturbed singular vectors in the `1-norm as well as a bias reduction method in
the problem of estimation of linear forms.
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• Optimal Kernel Selection for Density Estimation, by M. Lerasle, N. Magalhães,
and P. Reynaud-Bouret. The authors provide new general kernel selection rules
for least-squares density estimation thanks to penalized least-squares criteria.
They derive optimal oracle inequalities using concentration tools and discuss the
general problem of minimal penalty in this framework.

Atlanta, GA, USA Christian Houdré
Newark, DE, USA David M. Mason
Nice, France Patricia Reynaud-Bouret
Knoxville, TN, USA Jan Rosiński
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Evarist Giné-Masdeu

This volume is dedicated to the memory of our dear friend and colleague, Evarist
Giné-Masdeu, who passed away at age 70 on March 13, 2015. We greatly miss his
supportive and engendering influence on our profession. Many of us in the high-
dimensional probability group have had the pleasure of collaborating with him on
joint publications or were strongly influenced by his ideas and suggestions. Evarist
has contributed profound, lasting, and beautiful results to the areas of probability on
Banach spaces, the empirical process theory, the asymptotic theory of the bootstrap

xv



xvi Evarist Giné-Masdeu

and of U-statistics and processes, and the large sample properties of nonparametric
statistics and function estimators. He has, as well, given important service to our
profession as an associate editor for most of the major journals in probability theory
such as Annals of Probability, Journal of Theoretical Probability, Electronic Journal
of Probability, Bernoulli Journal, and Stochastic Processes and Their Applications.

Evarist received his Ph.D. from MIT in 1973 under the direction of Richard
M. Dudley and subsequently held academic positions at Universitat Autonoma
of Barcelona; Universidad de Carabobo, Venezuela; University of California,
Berkeley; Louisiana State University; Texas A&M; and CUNY. His last position was
at the University of Connecticut, where he was serving as chair of the Mathematics
Department, at the time of his death. He guided eight Ph.D. students. One of whom,
the late Miguel Arcones, was a fine productive mathematician and a member of our
high-dimensional Probability group.

More information about Evarist’s distinguished career and accomplishments,
including descriptions of his books and some of his major publications, are given in
his obituary on page 8 of the June/July 2015 issue of the IMS Bulletin.

Here are remembrances by some of Evarist’s many colleagues.

Rudolf Beran
I had the pleasure of meeting Evarist, through his work and sometimes in person, at
intervals over many years. Though he was far more mathematical than I am, not to
mention more charming, our research interests interacted at least twice. In a 1968
paper, I studied certain rotationally invariant tests for uniformity of a distribution on
a sphere. Evarist saw a way, in 1975 work, to develop invariant tests for uniformity
on compact Riemannian manifolds, a major technical advance. It might surprise
some that Evarist’s theoretical work has facilitated the development of statistics as
a tested practical discipline no longer limited to analyzing Euclidean data. I am not
surprised. He was a remarkable scholar with clear insight as well as a gentleman.

Tasio del Barrio
I first met Evarist Giné as a Ph.D. student through his books and papers in
probability on Banach spaces and empirical processes. I had already come to admire
his work in these fields when I had the chance to start joint research with him. It
turned out to be a very rewarding experience. This was not only for his mathematical
talent but also for his kind support in my postdoc years. I feel a great loss of both a
mathematician and a friend.

Victor de la Peña
From the first moment I met Evarist, I felt the warmth with which he welcomed
others. I met him in College Station during an interview and was fortunate to be able
to interact with him. I took a job at Columbia University in New York but frequently
visited College Station where he was a professor of mathematics. Eventually, Evarist
moved to CUNY, New York. I was fortunate to have him as a role model and in some
sense mentor.

He was a great mathematician with unsurpassed insight into problems. On top of
this, he was great leader and team player. I had the opportunity to join one of his
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multiple teams in the nascent area of U-processes. These statistical processes are
extensions of the sample average and sample variance. The theory and applications
of U-processes have been key tools in the advancement of many important areas.
To cite an example, work in this area is important in assessing the speed at which
information (like movies) is transmitted through the Internet.

I can say without doubt that the work I did under his mentorship helped launch
my career. His advice and support were instrumental in me eventually getting tenure
at Columbia University. In 1999 we published a book summarizing the theory and
applications of U-processes (mainly developed by Evarist and coauthors). Working
on this project, I came to witness his great mathematical power and generosity.

I will always remember Evarist as a dear friend and mentor. The world of
mathematics has lost one of its luminaries but his legacy lives for ever.

Friedrich Götze
It was at one of the conferences on probability in Banach spaces in the eighties that
I met Evarist for the first time. I was deeply impressed by his mathematical talent
and originality, and at the same time, I found him to be a very modest and likeable
person. In the summer, he used to spend some weeks with Rosalind in Barcelona and
often traveled in Europe, visiting Bielefeld University several times in the nineties.
During his visits, we had very stimulating and fruitful collaborations on tough open
questions concerning inverse problems for self-normalized statistics. Later David
Mason joined our collaboration during his visits in Bielefeld. Sometimes, after
intensive discussions in the office, Evarist needed a break, which often meant that
they continued in front of the building, while he smoked one of his favorite cigars.
We carried on our collaboration in the new millennium, and I warmly remember
Evarist’s and Rosalind’s great hospitality at their home, when I visited them in
Storrs.

I also very much enjoyed exchanging views with him on topics other than
mathematics, in particular, concerning the history and future of the Catalan nation, a
topic in which he engaged himself quite vividly. I learned how deeply he felt about
this issue in 2004, when we met at the Bernoulli World Congress in his hometown
Barcelona. One evening, we went together with our wives and other participants of
the conference for an evening walk in the center to listen to a concert in the famous
cathedral Santa Maria del Mar. We enjoyed the concert in this jewel of Catalan
Gothic architecture and Evarist felt very much at home. After the concert, we went to
a typical Catalan restaurant. But then a waiter spoiled an otherwise perfect evening
by insisting on responding in Spanish only to Evarist’s menu inquiries in Catalan.
Evarist got more upset than I had ever seen him.

It was nice to meet him again at the Cambridge conference in his honor in 2014,
and we even discussed plans for his next visit to Bielefeld, to continue with one of
our long-term projects. But fate decided against it.

With Evarist we have all lost much too early a dear colleague and friend.

Marjorie Hahn
Together Evarist Giné and I were Ph.D. students of Dick Dudley at MIT, and I
have benefited from his friendship and generosity ever since. Let me celebrate his
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life, accomplishments, and impact with a few remarks on the legacy by example he
leaves for all of us.

• Evarist had incredible determination. On several occasions, Evarist reminded
me that his mathematical determination stemmed largely from the following
experience: After avoiding Dick’s office for weeks because of limited progress
on his research problem, Evarist requested a new topic. Dick responded, “If I
had worked on a problem for that long, I wouldn’t give up.” This motivated
Evarist to try again with more determination than ever, and as a result, he solved
his problem. As Evarist summarized it: “Solving mathematical problems can be
really hard, but the determination to succeed can make a huge difference.”

• Evarist was an ideal collaborator. Having written five papers with Evarist, I can
safely say that he always did more than his share, yet always perceived that he
didn’t do enough. Moreover, he viewed a collaboration as an opportunity for us
to learn from each other, and I surely learned a lot from him.

• Evarist regarded his contributions and his accomplishments with unfailing
humility. Evarist would tell me that he had “a small result that he kind of liked.”
After explaining the result, I’d invariably tell him that his result either seemed
major or should have major implications. Only then would his big well-known
smile emerge as he’d admit that deep down he really liked the result.

• Evarist gave generously of his time to encourage young mathematicians. Due to
Evarist’s breadth of knowledge and skill in talking to and motivating graduate
students, I invited him to be the outside reader on dissertation committees for
at least a half dozen of my Ph.D. students. He took his job seriously, giving the
students excellent feedback that included ideas for future work.

We can honor Evarist and his mathematical legacy the most by following his
example of quiet leadership.

Christian Houdré
Two things come to my mind when thinking of Evarist. First is his generosity, simple
and genuine, which I experienced on many occasions, in particular when he involved
me into the HDP organization. Second is his fierce Catalan nationalism to which I
was definitively very sympathetic with my Québec background. He occasionally
wrote to me in Catalan and I also warmly remember his statistic that one out of
three French people in Perpignan spoke Catalan. (He had arrived to that statistic
after a short trip to Perpignan where although fluent in French, he refused to speak
it since he was in historic Catalonia. If I recall correctly after two failed attempts at
trying to be understood in Catalan, the third trial was the good one.) He was quite
fond of this statistic.

Vladimir Koltchinskii
I met Evarist for the first time at a conference on probability and mathematical
statistics in Vilnius, in 1985. This was one of very few conferences where
probabilists from the West and from the East were able to meet each other before
the fall of the Berlin Wall. I was interested in probability in Banach spaces and
knew some of Evarist’s work. A couple of years earlier, Evarist got interested in
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empirical processes. I started working on the same problems several years earlier,
so this was our main shared interest back then. I remember that around 1983 one of
my colleagues, who was, using Soviet jargon of the time, “viezdnoj” (meaning that
he was allowed to travel to the West), brought me a preprint of a remarkable paper
by Evarist Giné and Joel Zinn that continued some of the work on symmetrization
and random entropy conditions in central limit theorems for empirical processes that
I started in my own earlier papers. In some sense, Evarist and Joel developed these
ideas to perfection. Our conversations with Evarist in 1985 (and also at the First
Bernoulli Congress in Tashkent 1 year later) were mostly about these ideas. At the
same time, Evarist was trying to convince me to visit him at Texas A&M; I declined
the invitation since I was pretty sure that I would not be allowed to leave the country.
However, our life is full of surprises: the Soviet Union, designed to stay for ages, all
of a sudden started crumbling and then collapsing and then ceased to exist, and in
January of 1992, I found myself on a plane heading to New York. Evarist picked me
up at JFK airport and drove me up to Storrs, Connecticut. For anybody who moved
across the Atlantic Ocean and settled in the USA, America starts with something.
For me, the beginning of America was Evarist’s old Mazda. The first meal I had in
the USA was a bar of Häagen Dazs ice cream that Evarist highly recommended and
bought for us at a gas station on our way to Storrs.

In 1992, I spent one semester at Storrs. I do not recall actively working with
Evarist on any special project during these 4 months, but we had numerous
conversations (on mathematics and far beyond) in Evarist’s office filled with the
smoke of his cigar, and we had numerous dinners together with him and his
wife Rosalind in their apartment or in one of the local restaurants (most often, at
Wilmington Pizza House). In short, I had not found a collaborator in Evarist during
this first visit, but I found a very good friend. It was very easy to become a friend
with Evarist. There was something about his personality that we all have as children
(when we make friends fast), but we are losing this ability as we grow older. His
contagious love of life was seen in his smile and in his genuine interest in many
different things ranging from mathematics to music and arts and also to food, wine,
and good conversation. It is my impression that on March 13, 2015, many people
felt that they lost a friend (even those who met him much later than myself and have
not interacted with him as much as myself).

In the years that followed my first visit to Storrs, we met with Evarist very
frequently: in Storrs, in Boston, in Albuquerque, in Atlanta, in Paris, in Cambridge,
in Oberwolfach, in Seattle, and in his beloved Catalonia. In fact, he stayed in all the
houses or apartments where I lived in the USA. The last time we met was in Boston,
in October 2014. I was giving a talk at MIT. Evarist could not come for the talk, but
he came with Rosalind on Sunday. My wife and I went with them to the Museum of
Fine Arts to see Goya’s exhibition and had lunch together. Nothing was telling me
that it was the last time I would see him.

We always had lengthy conversations about mathematics (most often, in front of
the board) and about almost anything else in life and numerous dinners together,
but we had also worked together for a number of years, which resulted in 7 papers
we published jointly. I really liked Evarist’s attitude toward mathematics: there was
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almost Mozartian mix of seriousness and joyfulness about it. He was extremely
honest about what he was doing, and, being a brilliant and ambitious mathematician,
he never got in a trap of working on something just because it was a “hot topic.” He
probably had a “daimonion” inside of him (as Socrates called it) that prohibited
him from doing this. There have been many things over the past 30 years that were
becoming fashionable all of a sudden and were going out of fashion without leaving
a trace. I remember Evarist hearing some of the talks on these fashionable subjects
and losing his interest after a minute or two. Usually, you would not hear a negative
comment from him about the talk. He would only say with his characteristic smile:
“I know nothing about it.” He actually believed that other people were as honest as
he was and would not do rubbish (even if it sounded like rubbish to him and it was,
indeed, rubbish) and he just “knew nothing about it.” We do not remember many of
these things now. But we will remember what Evarist did. A number of his results
and the tools he developed in probability in Banach spaces, empirical processes,
and U-statistics are now being used and will be used in probability, statistics, and
beyond. And those of us, who were lucky to know him and work with him, will
always remember his generosity and warmth.

Jim Kuelbs
Evarist was an excellent mathematician, whose work will have a lasting impact on
high-dimensional probability. In addition, he was a very pleasant colleague who
provided a good deal of wisdom and wit about many things whenever we met. It
was my good fortune to interact with him at meetings in Europe and North America
on a fairly regular basis for nearly 40 years, but one occasion stands out for me. It
was not something of great importance, or even mathematical, but we laughed about
it for many years. In fact, the last time was only a few months before his untimely
death, so I hope it will also provide a chuckle for you.

The story starts when Evarist was at IVIC, the Venezuelan Institute of Scientific
Research, and I was visiting there for several weeks. My wife’s mother knew that
one could buy emeralds in Caracas, probably from Columbia, so 1 day Evarist and
I went to look for them. After visits to several shops, we got a tip on an address that
was supposedly a good place for such shopping. When we arrived there, we were
quite surprised as the location was an open-air tabac on a street corner. Nevertheless,
they displayed a few very imperfect green stones, so we asked about emeralds. We
were told these were emeralds, and that could well have been true, but they had no
clarity in their structure. We looked at various stones a bit and were about ready to
give up on our chase, when Evarist asked for clear cuts of emeralds. Well, the guy
reached under the counter and brought out a bunch of newspaper packages, and in
these packages, we found something that was much more special. Eventually we
bought some of these items, and as we walked back to the car, Evarist summarized
the experience exceedingly well by saying: “We bought some very nice emeralds at
a reasonable price, or paid a lot for some green glass.” The stones proved to be real,
and my wife still treasures the things made from them.
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Rafał Latała
I spent the fall semester of 2001 at Storrs and was overwhelmed with the hospitality
of Evarist and his wife Rosalind. They invited me to their home many times, helped
me with my weekly shopping, (I did not have a car then), and took me to Boston
several times, where their daughters lived. We had pizza together on Friday evenings
at their favorite place near Storrs. It was always a pleasure to talk with them, not
only about mathematics, academia, and related issues but also about family, friends,
politics, Catalan and Polish history, culture, and cuisine.

Evarist was a bright, knowledgeable, and modest mathematician, dedicated to his
profession and family. I enjoyed working with him very much. He was very efficient
in writing down the results and stating them in a nice and clean way. I coauthored
two papers with him on U-statistics.

Michel Ledoux
In Cambridge, England, June 2014, a beautiful and cordial conference was orga-
nized to celebrate Evarist’s 70th birthday. At the end of the first day’s sessions, I
went to a pizzeria with Evarist, Rosalind, Joel, Friedrich Götze, and some others.
Evarist ordered pizza (with no tomato!) and ice cream.

For a moment, I felt as though it was 1986 when I visited Texas A&M University
as a young assistant professor, welcomed by Evarist and his family at their home,
having lunch with him, Mike, and Joel and learning about (nearly measurable!)
empirical processes. I was simply learning how to do mathematics and to be a
mathematician. Between these two moments, Evarist was a piercing beacon of
mathematical vision and a strong and dear friend. He mentioned at the end of
the conference banquet that he never expected such an event. But it had to be and
couldn’t be more deserved. We will all miss him.

Vidyadhar Mandrekar
Prof. Evarist Giné strongly impacted the field of probability on Banach spaces
beginning with his thesis work. Unfortunately, at the time he received his Ph.D.,
it was difficult to get an academic position in the USA, so he moved to Venezuela
for his job. In spite of being isolated, he continued his excellent work. I had a good
opportunity to showcase him at an AMS special session on limit theorems in Banach
spaces (at Columbus). Once researchers saw his ideas, he received job offers in
this country and the rest is history. Since he could then easily interact with fellow
mathematicians, the area benefited tremendously. I had the good fortune of working
with him on two papers. One shows a weakness of general methods in Banach space
not being strong to obtain a Donsker theorem. However, Evarist continued to adapt
Banach space methods to the study of empirical processes with Joel Zinn, which
were very innovative and fundamental with applications to statistics. His death is a
great loss to this area in particular and to mathematics in general.

Michael B. Marcus
Evarist and I wrote 5 papers together between 1981 and 1986. On 2 of them, Joel
Zinn was a coauthor. But more important to me than our mathematical collaboration
was that Evarist and I were friends.
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I had visited Barcelona a few times before I met Evarist but only briefly. I was
very happy when he invited me to give a talk at Universidad Autonoma de Barcelona
in the late spring of 1980. I visited him and Rosalind in their apartment in Barcelona.
My visit to Barcelona was a detour on my way to a conference in St. Flour. Evarist
was going to the conference also so after a few days in Barcelona we drove off in
his car to St. Flour. On the way, we pulled off the highway and drove to a lovely
beach town (I think it was Rossas), parked the car by the harbor, and went for a
long swim. Back in the car, we crossed into France and stopped at a grocery on the
highway near Beziers, for a baguette and some charcuterie. We were having such a
good time. Evarist didn’t recognize this as France. To him, he was still in Catalonia.
He spoke in Catalan to the people who waited on us.

I was somewhat of a romantic revolutionary myself in those days and I thought
that Evarist, this gentlest of men, must dream at night of being in the mountains
organizing an insurgency to free Catalonia from its Spanish occupiers. I was very
moved by a man who was so in love with his country. I learned that he was a farmer’s
son, whose brilliance was noticed by local priests and who made it from San Cugat
to MIT, and he longed to return. He said he would go back when he retired, and I
said you will have grandchildren and you will not want to leave them.

In 1981 Joel Zinn and I went to teach at Texas A&M. A year later Evarist joined
us. We worked together on various questions in probability in Banach spaces. At this
time, Dick Dudley began using the techniques that we had all developed together to
study questions in theoretical mathematical statistics. Joel and Evarist were excited
by this and began their prolific fine work on this topic. I think that Evarist’s work in
theoretical statistics was his best work. So did very many other mathematicians. He
received a lot of credit which was well deserved.

My own work took a different direction. From 1986 on, we had different
mathematical interests but our friendship grew. My wife Jane and I saw Evarist and
Rosalind often. We cooked for each other and drank Catalan wine together. I also
saw Evarist often at the weeklong specialty conferences that we attended, usually
in the spring or summer, usually in a beautiful, exotic location. After a day of talks,
we had dinner together and then would talk with colleagues and drink too much
wine. I often rested a bit after dinner and then went to the lounge. I walked into
the room and looked for Evarist. I would see him. Always with a big smile. Always
welcoming. Always glad to see me. Always my dear friend. I miss him very much.

David M. Mason
I thoroughly enjoyed working with Evarist on knotty problems, especially when we
were narrowing in on a solution. It was like closing in on the pursuit of an elusive
and exotic beast. We published seven joint papers, the most important being our first,
in which, with Friedrich Götze, we solved a long-standing conjecture concerning the
Student t-statistic being asymptotically standard normal. As his other collaborators,
I will miss the excitement and intense energy of doing mathematics with him. An
extremely talented and dedicated mathematician, as well as a complete gentleman,
has left us too soon.
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On a personal note, I have fond memories of a beautiful Columbus Day 1998
weekend that I spent as a guest of Evarist and Rosalind at their timeshare near
Montpelier, Vermont, during the peak of the fall colors. I especially enjoyed having
a fine meal with them at the nearby New England Culinary Institute. On that same
visit, Evarist and I met up with Dick Dudley and hiked up to the Owl’s Head in
Vermont’s Groton State Forest. I managed to take a striking photo of Evarist at the
rock pausing for a cigar break with the silver blue Kettle Pond in the distance below
surrounded by a dense forest displaying its brilliant red and yellow autumn leaf
cover.

Richard Nickl
I met Evarist in September 2004, when I was in the 2nd year of my Ph.D., at a
summer school in Laredo, Cantabria, Spain, where he was lecturing on empirical
processes. From the mathematical literature I had read by myself in Vienna for my
thesis, I knew that he was one of the most substantial contributors and co-creators
of empirical process theory, and I was excited to be able to meet a great mind like
him in person. His lectures (mostly on Talagrand’s inequalities) were outstanding.
It was unbelievable for me that someone of his distinction would say at some point
during his lecture course that “his most important achievement in empirical process
theory was that he got Talagrand to work in the area”—at that time, when I thought
that mathematics was all about egos and greatness, I could not believe that someone
of his stature would say something obviously nonsensical like that! But it was a
genuine feature of his humility that I always found excessive but that over the years
I learnt was actually at the very heart of his great mathematical talent.

Evarist then was most kind to me as a very junior person, and he supported me
from the very beginning, asking me about my Ph.D. work and encouraging me
to pursue it further and more importantly getting me an invitation to the “high-
dimensional probability” conference in Santa Fe, New Mexico, in 2005, where I met
most of the other greats of the field for the first time. More importantly, of course,
then Evarist invited me to start a postdoc with him in Connecticut, which I did in
2006–2008. We wrote eight papers and one 700-page monograph, and working with
Evarist I can say without doubt was the most impressive period of my life so far as
a mathematician. It transformed me completely. Throughout these years, despite his
seniority, he was most hard working and passionate, and his mathematical sharpness
was as effective as ever (even if, as Evarist said, he was perhaps a bit slower, but the
final results didn’t show this). It is a great privilege, probably the greatest of my
life, that I could work with him over such an intensive period of time and to learn
from one of the “masters” of the subject—which he was in the area of mathematics
that was relevant for the part of theoretical statistics we were working on. I am very
sad that now I cannot really return the favor to equal extent: at least the fact that I
could contribute to the organization of a conference in his honor in Cambridge in
June 2014 forms a small part of saying thank you for everything he has done for
me. This conference, which highlighted his great standing within various fields of
mathematics, made him very happy, and I think all of us who were there were very
happy to see him earn and finally accept the recognition.
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I want to finally mention the many great nonmathematical memories I have with
Evarist and his wife Rosalind: From our first dinner out in Storrs with Rosalind
at Wilmington Pizza to the many great dinners at their place in Storrs, to the
many musical events we have been to together including Mozart’s Figaro at the
Metropolitan Opera in New York, to hear Pollini play in the musical capitals Storrs
and Vienna, to concerts of the Boston Symphony in Boston and Tanglewood, to
my visit of “his” St. Cugat near Barcelona, to the hike on Mount Monadnock with
Evarist and Dick Dudley in October 2007, and to the last time I saw him in person,
having dinner at Legal Seafoods in Cambridge (MA) in September 2014. All these
great memories, mathematical or not, will remain as alive as they are now. They
make it even more impossible for me to believe that someone as energetic, kind,
and passionate as Evarist has left us. He will be so greatly missed.

David Nualart
Evarist Giné was a very kind person and an honest and dedicated professional.
His advice was always very helpful to me. We did our undergraduate studies in
mathematics at the University of Barcelona. He graduated 5 years before me. After
receiving his Ph.D. at the Massachusetts Institute of Technology, he returned to
Barcelona to accept a position at the Universitat Autonoma of Barcelona. That is
when I met Evarist for the first time.

During his years in Barcelona, Evarist was a mentor and inspiration to me and
to the small group of probabilists there. I still remember his series of lectures on
the emerging topic of probabilities on Banach spaces. Those lectures represented a
source of new ideas at the time, and we all enjoyed them very much.

As years passed, we pursued different areas of research. He was interested in
limit theorems with connections to statistics, while I was interested in the analytic
aspects of probability theory.

I would meet Evarist occasionally at meetings and conferences and whenever he
returned to Barcelona in the summer to visit his family in his hometown of Falset.
He used to joke that he considered himself more of a farmer than a city boy.

Mathematics was not Evarist’s only passion. He was very passionate about
Catalonia. He had unconditional love for his country of origin and never hesitated to
express his intense nationalist feelings. He was only slightly less passionate about
his small cigars and baking his own bread, even when he was on the road away from
home.

Evarist’s impact on the field of probability and mathematical statistics was
significant. He produced a long list of influential papers and two basic references.

He was a very good friend and an admired and respected colleague. His death has
been a great loss for the mathematics community and for me. I still cannot believe
that Evarist is no longer among us. He will be missed.

Dragan Radulovic
Evarist once told me, “You are going to make two major decisions in your life:
picking your wife and picking your Ph.D. advisor. So choose wisely.” And I did.
Evarist was a prolific mathematician; he wrote influential books and important
papers and contributed to the field in major ways. Curiously, he did not produce
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many students. I am fortunate to be one of the few. Our student-advisor dynamic
was an unusual one. We had frequent but very short interactions. “Prof. Giné, if I
have such and such a sequence under these conditions. . . what do you think; does it
converge or not?,” I would ask. And, after just a few seconds, he would reply: “No,
there is a counterexample. Check Mason’s paper in Annals, 84 or 85 I think.” And
that was it. The vast majority of our interactions were conducted in less than 2 min.
This suited him well, for he did not need to spend the time lecturing me and I did
not like to be lectured. So it worked perfectly. All I needed was the guidance and he
was the grandmaster himself.

We would go to the Boston probability seminar, every Tuesday, for 4 years, 2 h
by car, each way. That is a lot of hours to be stuck with your advisor. And we seldom
talked mathematics. Instead, we had endless discussions about politics, history,
philosophy, and life in general. And in the process, we became very good friends.
I remember our trip to Montreal, 8 h in the car, without a single dull moment. We
jumped from one topic to another and the time flew just like that. We had different
approaches to mathematics; I liked the big pictures while he was more concerned
with the details. “What technique are you using? What is the trick?,” he would ask.
And all I could offer was a general statement like: “You see all these pieces, how
they fit together, except in this particular case. There must be something interesting
there.” And he would reply: “But what inequality are you going to use?”

Consequently, we never published a paper together. This is rather unusual for a
student and his advisor, both publishing in the same field. We tried to keep in touch,
but our careers diverged and the time and the distance did their toll. We would meet
only occasionally, on our high-dimensional probability retreats, but even there, it
was obvious that we drifted apart. I missed those endless car rides. So long Prof.
Giné, it is an honor to call myself your student.

Jan Rosiński
I met Evarist for the first time in 1975 at the First International Conference on
Probability in Banach Spaces in Oberwolfach, Germany, which was a precursor
to the high-dimensional probability conference series. I was a graduate student
visiting the West from Soviet-bloc Poland for the first time. Despite plenty of new
information to process and meeting many people whom I previously knew only from
papers, I remember meeting Evarist clearly for his sincere smile, interest in the well-
being of others, ability to listen, and contagious enthusiasm for mathematics.

Several years later, Evarist invited me to visit LSU, Baton Rouge, which
eventually evolved into my permanent stay in the USA. Even though we have not
had an opportunity for joint work, Evarist’s generosity and care extended into his
continuous support of my career, for which I am grateful and deeply indebted. He
was also an excellent mentor and friend. He will be deeply missed.

Hailin Sang
Saturday afternoon, March 14, 2015, I was astonished to read Magda Peligrad’s
email that Evarist had passed away. I could not believe that he had left us so soon.
I had just seen him at the Probability Theory and Statistics in High and Infinite
Dimensions Conference, held in honor of his 70th birthday. He looked fine.
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He was always full of energy. I thought, because of his love of mathematics
and his humor and optimistic attitude toward life, that he would have a long life. I
truly believed that he would witness more success from his postdocs and students,
including me, on his 80th and 90th birthday. But now we can only see his gentle
smile in photographs and recall his lovely Catalan accent in our memory.

Evarist was a very fine mathematician. He published numerous papers in the
major journals in probability and statistics and provided important service to
mathematics journals and societies. He also received the Alumni Award from the
University of Connecticut in 1998.

Evarist was an unconventional instructor. He didn’t bore his audience by simply
following notes and textbooks. He vigorously presented his lectures with logical
arguments. He strived both to provide the simplest possible arguments and to give
the big picture. His lectures were an art performance.

I thank Evarist for teaching me how to do research. Although he was an
easygoing professor, he was very serious in advising and research. He did not
leave holes in any project, even for something intuitively obvious. He did research
rigorously with great integrity. Evarist was not only my research advisor, but he was
an advisor for my life also. He held no prejudice. He would forgive people with a
smile if they did something wrong but not on purpose. I learned a lot from him.

Evarist loved his students as his children. I still remember the sadness and
helplessness in his eyes when he told me that Miguel Arcones passed away.
Although he devoted his whole life to research and was a very successful academic,
he led a simple life. Weather permitting, he rode his bicycle to his office arriving
before 8 o’clock. Then he would work through the whole morning with only a 10-
min coffee break. He usually had some fruit and nuts for lunch and was at the center
of the professors in the math lounge. His colleagues appreciated his humor, as well
as his comments on current events.

I can feel the pain of his family. They lost a wonderful husband, an amazing
father, and a loving grandfather. We lost an excellent mathematician, a life advisor,
and a sincere friend. I have a strong feeling that Evarist will always be with us. May
he rest in peace.

Sasha Tsybakov
Evarist was one of the people whom I liked very much and whom I always
considered as an example. He was obsessed by the beauty of mathematics. He
showed by all his work that statistics is an area of mathematics where difficult
problems exist and can be solved by beautiful tools. Overall, he had a highly esthetic
feeling for mathematics. He was also very demanding about the quality of his work
and was an exceptionally honest scientist. I did not have a joint work with Evarist,
but we have met many times at conferences. Our relations were very warm, which I
think cannot be otherwise with a person like Evarist. His charisma is still there—it
is easy to recall his voice and his smile as if he were alive and to imagine what he
would say in this and that situation. It is a sorrow that he left us so early.
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Sara van de Geer
Dear Evarist,
If we had talked about this, I think I know what you would say.
You would say: “Don’t worry, it is okay.”
You would smile and look at the ground in the way you do.
You would say: “Just go on and live your lives, it is not important.”
But you are taking such a huge place in so many people’s hearts.
You are taking such a huge place in my heart.
We were just colleagues.
I didn’t even know you that well.
But your being there was enough to give a touch of warmth to everything.
You were not just any colleague.
Having known you is a precious gift.
Sara

Jon Wellner
Evarist Giné was a brilliant and creative mathematician. He had a deep understand-
ing of the interactions between probability theory and analysis, especially in the
direction of Banach space theory, and a keen sense of how to formulate sharp
(and beautiful) results with conditions both necessary and sufficient. His persistence
and acuity in formulating sharp theorems, many in collaboration with others, were
remarkable. Evarist’s initial statistical publication concerning tests of uniformity
on compact Riemannian manifolds inspired one of my first independent post Ph.D.
research projects in the late 1970s. Later, in the 1980s and early 1990s, I had the
great pleasure and great fortune of meeting Evarist personally. He became a friend
and colleague through mutual research interests and involvement in the research
meetings on probability in Banach spaces and later high-dimensional probability.
Evarist was unfailingly generous and open in sharing his knowledge and managed to
communicate his excitement and enthusiasm for research to all. I only collaborated
with Evarist on two papers, but we jointly edited several proceedings volumes, and
I queried him frequently about a wide range of questions and problems. I greatly
valued his advice and friendship. I miss him enormously.

Andrei Zaitsev
The news of the death of Evarist Giné came as a shock to me. He died at the height
of his scientific career. I first met Evarist at the University of Bielefeld in the 1990s,
where we were both guests of Friedrich Götze. I had long been familiar with his
remarkable works. After meeting him, I was surprised to see that on his way to
becoming a world-renowned mathematician, he had remained a modest and pleasant
person. I recall with pleasure going with him mushroom collecting in the woods
around Bielefeld.

We have only one joint paper (together with David Mason). Evarist has long
been at the forefront of modern probability theory. He had much more to give to
mathematics. Sadly, his untimely death prevented this.
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Joel Zinn
Evarist and I were friends. I dearly remember the fun we had working together on
mathematics. Altogether, beginning around 1977, we wrote 25 joint papers over
approximately 25 years. One can imagine that collaborations lasting as long as this
can at times give rise to arguments. But I can not recall any. Over the years, each
time we met, whether to collaborate or not, we met as friends.

I also remember the many kindnesses that Evarist showed me. One that keeps
coming to my mind concerns Evarist’s time at Texas A&M. Evarist and I would
often arrive early to our offices—often with the intention of working on projects.
Evarist liked to smoke a cigar in the morning, but I had allergies which were effected
by the smoke. So, Evarist would come to the office especially early, smoke his cigar,
and blow the smoke out of the window, so that the smoke would not cause me any
problems when I arrived. Sometimes when I arrived at Evarist’s office earlier than
expected, I would see him almost next to the window blowing out the smoke. This
surely must have lessened his pleasure in smoking.

Another concerned the times I visited him at UConn. When I visited, I took a few
days to visit my aunt in New York. Evarist always offered to let me use his car for
the trip to New York, and whenever I visited him at UConn, I stayed with him and
Rosalind. I fondly remember their hospitality and consideration of my peculiarities,
especially their attention to my dietary needs.

Photo Credit The photo of Evarist that shows his inimitable good-natured smile
was taken by his daughter Núria Giné-Nokes in July 2011, while he was on vacation
with his family in his hometown of Falset in his beloved Catalonia.
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Stability of Cramer’s Characterization
of Normal Laws in Information Distances

Sergey Bobkov, Gennadiy Chistyakov, and Friedrich Götze

Abstract Optimal stability estimates in the class of regularized distributions are
derived for the characterization of normal laws in Cramer’s theorem with respect to
relative entropy and Fisher information distance.

Keywords Characterization of normal laws • Cramer’s theorem • Stability prob-
lems
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1 Introduction

If the sum of two independent random variables has a nearly normal distribution,
then both summands have to be nearly normal. This property is called stability,
and it depends on distances used to measure “nearness”. Quantitative forms of this
important theorem by P. Lévy are intensively studied in the literature, and we refer
to [7] for historical discussions and references. Most of the results in this direction
describe stability of Cramer’s characterization of the normal laws for distances
which are closely connected to weak convergence. On the other hand, there is no
stability for strong distances including the total variation and the relative entropy,
even in the case where the summands are equally distributed. (Thus, the answer to
a conjecture from the 1960s by McKean [14] is negative, cf. [4, 5].) Nevertheless,
the stability with respect to the relative entropy can be established for regularized
distributions in the model, where a small independent Gaussian noise is added to the
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summands. Partial results of this kind have been obtained in [7], and in this note we
introduce and develop new technical tools in order to reach optimal lower bounds
for closeness to the class of the normal laws in the sense of relative entropy. Similar
bounds are also obtained for the Fisher information distance.

First let us recall basic definitions and notations. If a random variable (for short—
r.v.) X with finite second moment has a density p, the entropic distance from the
distribution F of X to the normal is defined to be

D.X/ D h.Z/� h.X/ D
Z 1

�1
p.x/ log

p.x/

'a;b.x/
dx;

where

'a;b.x/ D 1

b
p
2�

e�.x�a/2=2b2 ; x 2 R;

denotes the density of a Gaussian r.v. Z � N.a; b2/ with the same mean a D EX D
EZ and variance b2 D Var.X/ D Var.Z/ as for X (a 2 R, b > 0). Here

h.X/ D �
Z 1

�1
p.x/ log p.x/ dx

is the Shannon entropy, which is well-defined and is bounded from above by the
entropy of Z, so that D.X/ � 0. The quantity D.X/ represents the Kullback-Leibler
distance from F to the family of all normal laws on the line; it is affine invariant,
and so it does not depend on the mean and variance of X.

One of the fundamental properties of the functional h is the entropy power
inequality

N.X C Y/ � N.X/C N. Y/;

which holds for independent random variables X and Y, where N.X/ D e2h.X/

denotes the entropy power (cf. e.g. [11, 12]). In particular, if Var.X C Y/ D 1, it
yields an upper bound

D.X C Y/ � Var.X/D.X/C Var. Y/D. Y/; (1.1)

which thus quantifies the closeness to the normal distribution for the sum in terms
of closeness to the normal distribution of the summands. The generalized Kac
problem addresses (1.1) in the opposite direction: How can one bound the entropic
distance D.X C Y/ from below in terms of D.X/ and D.Y/ for sufficiently smooth
distributions?

To this aim, for a small parameter � > 0, we consider regularized r.v.’s

X� D X C �Z; Y� D Y C �Z0;
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where Z;Z0 are independent standard normal r.v.’s, independent of X;Y. The
distributions of X� and Y� will be called regularized as well. Note that additive white
Gaussian noise is a basic statistical model used in information theory to mimic the
effect of random processes that occur in nature. In particular, the class of regularized
distributions contains a wide class of probability measures on the line which have
important applications in statistical theory.

As a main goal, we prove the following reverse of the upper bound (1.1).

Theorem 1.1 Let X and Y be independent r.v.’s with Var.X C Y/ D 1. Given 0 <
� � 1, the regularized r.v.’s X� and Y� satisfy

D.X� C Y� / � c1.�/
�
e�c2.�/=D.X�/ C e�c2.�/=D.Y� /

�
; (1.2)

where c1.�/ D ec��6 log � and c2.�/ D c��6 with an absolute constant c > 0.

Thus, when D.X� C Y� / is small, the entropic distances D.X� / and D.Y� / have
to be small, as well. In particular, if X C Y is normal, then both X and Y are normal,
so we recover Cramer’s theorem. Moreover, the dependence with respect to the
couple .D.X�/;D.Y� // on the right-hand side of (1.2) can be shown to be essentially
optimal, as stated in Theorem 1.3 below.

Theorem 1.1 remains valid even in extremal cases where D.X/ D D.Y/ D 1
(for example, when both X and Y have discrete distributions). However, the value
of D.X� / for the regularized r.v.’s X� cannot be arbitrary. Indeed, X� has always
a bounded density p� .x/ D 1

�
p
2�

E e�.x�X/2=2�2 � 1

�
p
2�

, so that h.X�/ �
� log 1

�
p
2�

. This implies an upper bound

D.X�/ � 1

2
log

eVar.X� /

�2
� 1

2
log

2e

�2
;

describing a general possible degradation of the relative entropy for decreasing � .
If D� � D.X� C Y� / is known to be sufficiently small, say, when D� � c21.�/, the
inequality (1.2) provides an additional constraint in terms of D� :

D.X� / � c

�6 log.1=D�/
:

Let us also note that one may reformulate (1.2) as an upper bound for the entropy
power N.X� C Y� / in terms of N.X� / and N.Y� /. Such relations, especially those of
the linear form

N.X C Y/ � C .N.X/C N. Y//; (1.3)

are intensively studied in the literature for various classes of probability distributions
under the name “reverse entropy power inequalities”, cf. e.g. [1–3, 10]. However,
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(1.3) cannot be used as a quantitative version of Cramér’s theorem, since it looses
information about D.X C Y/, when D.X/ and D.Y/ approach zero.

A result similar to Theorem 1.1 also holds for the Fisher information distance,
which may be more naturally written in the standardized form

Jst.X/ D b2.I.X/� I.Z// D b2
Z 1

�1

�p0.x/
p.x/

� ' 0
a;b.x/

'a;b.x/

�2
p.x/ dx

with parameters a and b as before. Here

I.X/ D
Z 1

�1
p0.x/2

p.x/
dx

denotes the Fisher information of X, assuming that the density p of X is (locally)
absolutely continuous and has a derivative p0 in the sense of Radon-Nikodym.
Similarly to D, the standardized Fisher information distance is an affine invariant
functional, so that Jst.˛ C ˇX/ D Jst.X/ for all ˛; ˇ 2 R, ˇ ¤ 0. In many
applications it is used as a strong measure of X being non Gaussian. For example,
Jst.X/ dominates the relative entropy; more precisely, we have

1

2
Jst.X/ � D.X/: (1.4)

This relation may be derived from an isoperimetric inequality for entropies due to
Stam and is often regarded as an information theoretic variant of the logarithmic
Sobolev inequality for the Gaussian measure due to Gross (cf. [6, 9, 16]). Moreover,
Stam established in [16] an analog for the entropy power inequality, 1

I.XCY/ � 1
I.X/ C

1
I.Y/ , which implies the following counterpart of the inequality (1.1)

Jst.X C Y/ � Var.X/Jst.X/C Var. Y/Jst. Y/;

for any independent r.v.’s X and Y with Var.X C Y/ D 1. We will show that this
upper bound can be reversed in a full analogy with (1.2).

Theorem 1.2 Under the assumptions of Theorem 1.1,

Jst.X� C Y� / � c3.�/
�
e�c4.�/=Jst.X� / C e�c4.�/=Jst.Y� /

�
; (1.5)

where c3.�/ D ec��6.log �/3 and c4.�/ D c��6 with an absolute constant c > 0.

Let us also describe in which sense the lower bounds (1.2) and (1.5) may be
viewed as optimal.

Theorem 1.3 For every T � 1, there exist independent identically distributed r.v.’s
X D XT and Y D YT with mean zero and variance one, such that Jst.X� / ! 0 as
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T ! 1 for 0 < � � 1 and

D.X� � Y� / � e�c.�/=D.X� / C e�c.�/=D.Y� /;

Jst.X� � Y� / � e�c.�/=Jst.X� / C e�c.�/=Jst.Y� /

with some c.�/ > 0 depending on � only.

In this note we prove Theorem 1.1 and omit the proof of Theorem 1.2. The proofs
of these theorems are rather similar and differ in technical details only, which can be
found in [8]. The paper is organized as follows. In Sect. 2, we describe preliminary
steps by introducing truncated r.v.’s X� and Y�. Since their characteristic functions
represent entire functions, this reduction of Theorem 1.1 to the case of truncated
r.v.’s allows to invoke powerful methods of complex analysis. In Sect. 3, D.X� / is
estimated in terms of the entropic distance to the normal for the regularized r.v.’s
X�
� . In Sect. 4, the product of the characteristic functions of X� and Y� is shown to

be close to the normal characteristic function in a disk of large radius depending on
1=D.X� C Y� /. In Sect. 5, we deduce by means of saddle-point methods a special
representation for the density of the r.v.’s X�

� , which is needed in Sect. 6. Finally in
Sect. 7, based on the resulting bounds for the density of X�

� , we establish the desired
upper bound for D.X�

� /. In Sect. 8 we construct an example showing the sharpness
of the estimates of Theorems 1.1 and 1.2.

2 Truncated Random Variables

Turning to Theorem 1.1, let us fix several standard notations. By

.F � G/.x/ D
Z 1

�1
F.x � y/ dG. y/; x 2 R;

we denote the convolution of given distribution functions F and G. This operation
will only be used when G D ˆb is the normal distribution function with mean
zero and a standard deviation b > 0. We omit the index in case b D 1, so that
ˆb.x/ D ˆ.x=b/ and 'b.x/ D 1

b '.x=b/.
The Kolmogorov (uniform) distance between F and G is denoted by

k F � Gk D sup
x2R

j F.x/� G.x/j;

and k F � GkTV denotes the total variation distance. In general, k F � Gk � 1
2

k F �
GkTV, while the well-known Pinsker inequality provides an upper bound for the
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total variation in terms of the relative entropy. Namely,

k F � Gk2TV � 2

Z 1

�1
p.x/ log

p.x/

q.x/
dx;

where F and G are assumed to have densities p and q, respectively.
In the required inequality (1.2) of Theorem 1.1, we may assume that X and Y have

mean zero, and that D.X� C Y� / is small. Thus, from now on our basic hypothesis
may be stated as

D.X� C Y� / � 2" .0 < " � "0/; (2.1)

where "0 is a sufficiently small absolute constant. By Pinsker’s inequality, this yields
bounds for the total variation and Kolmogorov distances

jj F� � G� �ˆp
1C2�2 jj � 1

2
jj F� � G� �ˆp

1C2�2 jjTV � p
" < 1; (2.2)

where F� and G� are the distribution functions of X� and Y� , respectively. Moreover
without loss of generality, one may assume that

�2 � Qc.log log.1="/= log.1="//1=3 (2.3)

with a sufficiently large absolute constant Qc > 0. Indeed if (2.3) does not hold, the
statement of the theorem obviously holds.

We shall need some auxiliary assertions about truncated r.v.’s. Let F and G be the
distribution functions of independent, mean zero r.v.’s X and Y with second moments
EX2 D v21 , EY2 D v22 , such that Var.X C Y/ D 1. Put

N D N."/ D
p
1C 2�2

�
1Cp

2 log.1="/
�

with a fixed parameter 0 < � � 1.
Introduce truncated r.v.’s at level N. Put X� D X in case jXj � N, X� D 0 in case

jXj > N, and similarly Y� for Y. Note that

EX� � a1 D
Z N

�N
x dF.x/; Var.X�/ � �21 D

Z N

�N
x2 dF.x/� a21;

EY� � a2 D
Z N

�N
x dG.x/; Var. Y�/ � �22 D

Z N

�N
x2 dG.x/� a22:

By definition, �1 � v1 and �2 � v2. In particular,

�21 C �22 � v21 C v22 D 1:
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Denote by F�;G� the distribution functions of the truncated r.v.’s X�;Y�, and
respectively by F�

� ;G
�
� the distribution functions of the regularized r.v.’s X�

� D X� C
�Z and Y�

� D Y� C �Z0, where Z;Z0 are independent standard normal r.v.’s that are
independent of .X;Y/.

Lemma 2.1 With some absolute constant C we have

0 � 1 � .�21 C �22 / � CN2
p
":

Lemma 2.1 can be deduced from the following observations.

Lemma 2.2 For any M > 0,

1 � F.M/C F.�M/ � 2
�
1 � F�.M/C F� .�M/

�
� 4ˆp

1C2�2.�.M � 2//C 4
p
":

The same inequalities hold true for G.

Lemma 2.3 With some positive absolute constant C we have

jj F� � FjjTV � C
p
"; jjG� � GjjTV � C

p
";

jj F�
� � G�

� �ˆp
1C2�2 jjTV � C

p
":

The proofs of Lemma 2.1 as well as Lemmas 2.2 and 2.3 are similar to those
used for Lemma 3.1 in [7]. For details we refer to [8].

Corollary 2.4 With some absolute constant C, we have

Z
jxj>N

x2 dF.x/ � CN2
p
";

Z
jxj>2N

x2 d.F�.x/C F�
� .x// � CN2

p
";

and similarly for G replacing F.

Proof By the definition of truncated random variables,

v21 D �21 C a21 C
Z

jxj>N
x2 dF.x/; v22 D �22 C a22 C

Z
jxj>N

x2 dG.x/;

so that, by Lemma 2.1,

Z
jxj>N

x2 d.F.x/C G.x// � 1 � .�21 C �22 / � CN2
p
":
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As for the second integral of the corollary, we have

Z
jxj>2N

x2 dF� .x/ D
Z

jxj>2N
x2
� Z 1

�1
'�.x � s/ dF.s/

�
dx

D
Z 1

�1
dF.s/

Z
jxj>2N

x2'� .x � s/ dx

� 2

Z N

�N
s2 dF.s/

Z
juj>N

'�.u/ du C 2

Z
jsj>N

s2 dF.s/
Z 1

�1
'�.u/ du

C 2

Z N

�N
dF.s/

Z
juj>N

u2'�.u/ du C 2

Z
jsj>N

dF.s/
Z 1

�1
u2'�.u/ du:

It remains to apply the previous step and use the bound
R1

N u2'� .u/du �
c�Ne�N2=.2�2/. The same estimate holds for

R
jxj>2N x2 dF�

� .x/. ut

3 Entropic Distance to Normal Laws for Regularized
Random Variables

We keep the same notations as in the previous section and use the relations (2.1)
when needed. In this section we obtain some results about the regularized r.v.’s X�
and X�

� , which also hold for Y� and Y�
� . Denote by pX� and pX�

�
the (smooth positive)

densities of X� and X�
� , respectively.

Lemma 3.1 With some absolute constant C we have, for all x 2 R,

j pX� .x/ � pX�

�
.x/j � C��1p": (3.1)

Proof Write

pX� .x/ D
Z N

�N
'�.x � s/ dF.s/C

Z
jsj>N

'�.x � s/ dF.s/;

pX�

�
.x/ D

Z N

�N
'�.x � s/ dF.s/C .1 � F.N/C F..�N/�/ '�.x/:

Hence

j pX� .x/� pX�

�
.x/j � 1p

2��

�
1 � F.N/C F.�N/

�
:
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But, by Lemma 2.2, and recalling the definition of N D N."/, we have

1 � F.N/C F.�N/ � 2.1� F� .N/C F�.�N// � C
p
"

with some absolute constant C. Therefore, j pX� .x/� pX�

�
j � C��1p", which is the

assertion (3.1). The lemma is proved. ut
Lemma 3.2 With some absolute constant C > 0 we have

D.X� / � D.X�
� /C C��3N3

p
": (3.2)

Proof In general, if a random variable U has density u with finite variance b2, then,
by the very definition,

D.U/ D
Z 1

�1
u.x/ log u.x/ dx C 1

2
log.2�e b2/:

Hence, D.X� /� D.X�
� / is represented as

Z 1

�1
pX� .x/ log pX� .x/ dx �

Z 1

�1
pX�

�
.x/ log pX�

�
.x/ dx C 1

2
log

v21 C �2

�21 C �2

D
Z 1

�1
. pX� .x/ � pX�

�
.x// log pX� .x/ dx C

Z 1

�1
pX�

�
.x/ log

pX� .x/

pX�

�
.x/

dx

C 1

2
log

v21 C �2

�21 C �2
: (3.3)

Since EX2 � 1, necessarily F.�2/C 1 � F.2/ � 1
2
, hence

1

2�
p
2�

e�.jxjC2/2=.2�2/ � pX�

�
.x/ � 1

�
p
2�
; (3.4)

and therefore

j log pX�

�
.x/j � C��2.x2 C 4/; x 2 R; (3.5)

with some absolute constant C. The same estimate holds for j log pX� .x/j.
Splitting the integration in

I1 D
Z 1

�1
. pX� .x/ � pX�

�
.x// log pX� .x/ dx D I1;1 C I1;2

D
� Z

jxj�2N
C
Z

jxj>2N

�
. pX� .x/� pX�

�
.x// log pX� .x/ dx;
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we now estimate the integrals I1;1 and I1;2. By Lemma 3.1 and (3.5), we get

jI1;1j � C0��3N3
p
"

with some absolute constant C0. Applying (3.5) together with Corollary 2.4, we also
have

jI1;2j � 4C��2 �1 � F� .2N/C F� .�2N/C 1 � F�
� .2N/C F�

� .�2N/
�

C C��2
� Z

jxj>2N
x2 dF�.x/C

Z
jxj>2N

x2 dF�
� .x/

�
� C0��2N2

p
":

The two bounds yield

jI1j � C00��3N3
p
" (3.6)

with some absolute constant C00.
Now consider the integral

I2 D
Z 1

�1
pX�

�
.x/ log

pX� .x/

pX�

�
.x/

dx D I2;1 C I2;2

D
� Z

jxj�2N
C
Z

jxj>2N

�
pX�

�
.x/ log

pX� .x/

pX�

�
.x/

dx;

which is non-negative, by Jensen’s inequality. Using log.1C t/ � t for t � �1, and
Lemma 3.1, we obtain

I2;1 D
Z

jxj�2N
pX�

�
.x/ log

�
1C pX� .x/ � pX�

�
.x/

pX�

�
.x/

�
dx

�
Z

jxj�2N
j pX� .x/ � pX�

�
.x/j dx � 4C��1N

p
":

It remains to estimate I2;2. We have as before, using (3.5) and Corollary 2.4,

jI2;2j � C
Z

jxj>2N
pX�

�
.x/

x2 C 4

�2
dx � C0��2N2

p
"

with some absolute constant C0. These bounds yield

I2 � C00��2N2
p
": (3.7)
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In addition, by Lemma 2.1,

log
v21 C �2

�21 C �2
� v21 � �21

�2
� C��2N2

p
":

It remains to combine this bound with (3.6) and (3.7) and apply them in (3.3). ut

4 Characteristic Functions of Truncated Random Variables

Denote by fX�.t/ and fY� .t/ the characteristic functions of the r.v.’s X� and Y�,
respectively. As integrals over finite intervals they admit analytic continuations as
entire functions to the whole complex plane C. These continuations will be denoted
by fX�.t/ and fY�.t/, (t 2 C).

Put T D N
64

D � 0

64

�
1C

q
2 log 1

"

�
, where � 0 D p

1C 2�2. We may assume that
0 < " � "0, where "0 is a sufficiently small absolute constant.

Lemma 4.1 For all t 2 C; jtj � T,

1

2
je�t2=2j � j fX�.t/j j fY�.t/j � 3

2
je�t2=2j: (4.1)

Proof For all complex t,

ˇ̌
ˇ
Z 1

�1
eitx d.F�

� � G�
� /.x/�

Z 1

�1
eitxdˆ� 0.x/

ˇ̌
ˇ �

ˇ̌
ˇ
Z 4N

�4N
eitxd.F�

� � G�
� �ˆ� 0/.x/

ˇ̌
ˇ

C
Z

jxj�4N
e�xIm.t/ d.F�

� � G�
� /.x/C

Z
jxj�4N

e�xIm.t/ '� 0.x/ dx: (4.2)

Integrating by parts, we have

Z 4N

�4N
eitx d.F�

� � G�
� �ˆ� 0/.x/ D e4itN.F�

� � G�
� �ˆ� 0/.4N/

� e�4itN.F�
� � G�

� �ˆ� 0/.�4N/� it
Z 4N

�4N
.F�

� � G�
� �ˆ� 0/.x/ eitx dx:

In view of the choice of T and N, we obtain, using Lemma 2.3, for all jtj � T,

ˇ̌ Z 4N

�4N
eitx d.F�

� � G�
� �ˆ� 0/.x/

ˇ̌
ˇ � 2C

p
" e4NjIm.t/j C 8Cjtjp" e4N jIm.t/j

� 1

6
e�.1=2C�2/ T2 : (4.3)
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The second integral on the right-hand side of (4.2) does not exceed, for jtj � T,

Z 2N

�2N
d.F� � G�/.s/

Z
jxj�4N

e�x Im.t/'p
2� .x � s/ dx

�
Z 2N

�2N
e�s Im.t/ d.F� � G�/.s/ 	

Z
juj�2N

e�u Im.t/'p
2� .u/ du

� e2NT 	 1p
�

Z 1

2N=�
e�Tu�u2=4 du � 1

6
e�.1=2C�2/T2 : (4.4)

The third integral on the right-hand side of (4.2) does not exceed, for jtj � T,

r
2

�

Z 1

4N
eTu�u2=6 du � 1

6
e�.1=2C�2/T2 : (4.5)

Applying (4.3)–(4.5) in (4.2), we arrive at the upper bound

je��2t2=2fX�.t/e��2t2=2fY� .t/� e�.1=2C�2/t2 j

� 1

2
e�.1=2C�2/T2 � 1

2
je�.1=2C�2/t2 j (4.6)

from which (4.1) follows. ut
The bounds in (4.1) show that the characteristic function fX�.t/ does not vanish

in the circle jtj � T. Hence, using results from ([13], pp. 260–266), we conclude
that fX�.t/ has a representation

fX�.t/ D expfgX�.t/g; gX�.0/ D 0;

where gX�.t/ is analytic on the circle jtj � T and admits the representation

gX�.t/ D ia1t � 1

2
�21 t2 � 1

2
t2 X�.t/; (4.7)

where

 X�.t/ D
1X

kD3
ikck

� t

T

�k�2
(4.8)

with real-valued coefficients ck such that jckj � C for some absolute constant C.
In the sequel without loss of generality we assume that a1 D 0. An analogous
representation holds for the function fY� .t/.
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5 The Density of the Random Variable X�
�

We shall use the following inversion formula

pX�

�
.x/ D 1

2�

Z 1

�1
e�ixte��2t2=2fX�.t/ dt; x 2 R;

for the density pX�

�
.x/. By Cauchy’s theorem, one may change the path of integration

in this integral from the real line to any line z D tC iy; t 2 R, with parameter y 2 R.
This results in the following representation

pX�

�
.x/ D eyxe�

2y2=2fX�.iy/ 	 I0.x; y/; x 2 R: (5.1)

Here

I0.x; y/ D 1

2�

Z 1

�1
R.t; x; y/ dt; (5.2)

where

R.t; x; y/ D fX�.t C iy/e�it.xC�2y/��2t2=2=fX�.iy/: (5.3)

Let us now describe the choice of the parameter y 2 R in (5.1). It is well-
known that the function log fX�.iy/; y 2 R, is convex. Therefore, the function
d
dy log fX�.iy/ C �2y is strictly monotone and tends to �1 as y ! �1 and tends
to 1 as y ! 1. By (4.7) and (4.8), this function is vanishing at zero. Hence, the
equation

d

dy
log fX�.iy/C �2y D �x (5.4)

has a unique continuous solution y D y.x/ such that y.x/ < 0 for x > 0 and y.x/ > 0
for x < 0. Here and in the sequel we use the principal branch of log z.

We shall need one representation of y.x/ in the interval Œ�.�21 C �2/T1; .�21 C
�2/T1�, where T1 D c0.�21 C�2/T with a sufficiently small absolute constant c0 > 0.
We see that

qX�.t/ � d

dt
log fX�.t/ � �2t D �.�21 C �2/t � r1.t/ � r2.t/

D �.�21 C �2/t � t X�.t/ � 1

2
t2 0

X�

.t/: (5.5)
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The functions r1.t/ and r2.t/ are analytic in the circle fjtj � T=2g and there, by (4.8),
they may be bounded as follows

jr1.t/j C jr2.t/j � Cjtj2=T (5.6)

with some absolute constant C. Using (5.5), (5.6) and Rouché’s theorem, we
conclude that the function qX�.t/ is univalent in the circle D D fjtj � T1g, and
qX�.D/ 
 1

2
.�21 C �2/D. By the well-known inverse function theorem (see [15],

pp. 159–160), we have

q.�1/X�

.w/ D b1w C ib2w
2 � b3w

3 C : : : ; w 2 1

2
.�21 C �2/D; (5.7)

where

in�1bn D 1

2�i

Z

j�jD 1
2T1

� 	 q0
X�

.�/

qX�.�/nC1 d�; n D 1; 2; : : : : (5.8)

Using this formula and (5.5) and (5.6), we note that

b1 D � 1

�21 C �2
(5.9)

and that all remaining coefficients b2; b3; : : : are real-valued. In addition, by (5.5)
and (5.6),

� qX�.t/

.�21 C �2/t
D 1C q1.t/ and � q0

X�

.t/

�21 C �2
D 1C q2.t/;

where q1.t/ and q2.t/ are analytic functions in D satisfying there jq1.t/j C jq2.t/j �
1
2
. Therefore, for � 2 D,

q0
X�

.�/

qX�.�/nC1 D .�1/n q3.�/

.�21 C �2/n�nC1 � .�1/n 1C q2.�/

.�21 C �2/n.1C q1.�//nC1�nC1 ;

where q3.�/ is an analytic function in D such that jq3.�/j � 3 	 2n. Hence, q3.�/
admits the representation

q3.�/ D 1C
1X

kD1
dk
�k

Tk
1
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with coefficients dk such that jdkj � 3 	 2n. Using this equality, we obtain from (5.8)
that

bn D dn�1
.�21 C �2/n Tn�1

1

and jbnj � 3 	 2n

.�21 C �2/n Tn�1
1

; n D 2; : : : : (5.10)

Now we can conclude from (5.7) and (5.10) that, for jxj � T1=.4jb1j/,

y.x/ D �iq.�1/X�

.ix/ D b1x � b2x
2 C R.x/; where jR.x/j � 48 jb1j3jxj3=T21 :

(5.11)

In the sequel we denote by � a real-valued quantity such that j� j � 1.
Using (5.11), let us prove:

Lemma 5.1 In the interval jxj � c00T1=jb1j with a sufficiently small positive
absolute constant c00,

y.x/x C 1

2
�2y.x/2 C log fX�.iy.x// D 1

2
b1x

2 C c3b31
2T

x3 C c�b51
T2

x4; (5.12)

where c is an absolute constant.

Proof From (5.10) and (5.11), it follows that

1

2
jb1xj � j y.x/j � 3

2
jb1xj: (5.13)

Therefore,

1

2
y.x/2

1X
kD4

jckj
� j y.x/j

T

�k�2 � C
�3
2

�4 b41x
4

T2
:

On the other hand, with the help of (5.10) and (5.11) one can easily deduce the
relation

y.x/x C 1

2
.�2 C �21 / y.x/2 C 1

2
c3

y.x/3

T
D 1

2
b1x

2 C 1

2
c3b

3
1

x3

T
C c�b51

T2
x4

with some absolute constant c. The assertion of the lemma follows immediately
from the two last relations. ut

Now, applying Lemma 5.1 to (5.1), we may conclude that in the interval jxj �
c00T1=jb1j, the density pX�.x/ admits the representation

pX�

�
.x/ D exp

n1
2

b1x
2 C 1

2
c3b

3
1

x3

T
C c�b51

T2
x4
o

	 I0.x; y.x// (5.14)

with some absolute constant c.
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As for the values jxj > c00T1=jb1j, in (5.1) we choose y D y.x/ D y.c00T1=jb1j/
for x > 0 and y D y.x/ D y.�c00T1=jb1j/ for x < 0. In this case, by (5.13), we note
that j yj � 3c00T1=2, and we have

ˇ̌
ˇ1
2
�2y2 C log fX�.iy/

ˇ̌
ˇ � y2

2jb1j C C

2

j yj3
T

1X
kD3

� j yj
T

�k�3

� j yj
2

�
3c00T1
2jb1j C 9

4
C.c00/2

T21
T

1X
kD3

�3c00T1
2T

�k�3� � j yj
2

�3
2

jxj C 1

4
jxj
�

� 7

8
j yxj:

As a result, for jxj > c00T1=jb1j, we obtain from (5.1) an upper bound j pX�

�
.x/j �

e� 1
8 j y.x/xj jI0.x; y.x//j, which with the help of left-hand side of (5.13) yields the

estimate

j pX�

�
.x/j � e�cTjxj=jb1 jjI0.x; y.x//j; jxj > c00T1=jb1j; (5.15)

with some absolute constant c > 0.

6 The Estimate of the Integral I0.x; y/

In order to study the behavior of the integral I0.x; y/, we need some auxiliary results.
We use the letter c to denote absolute constants which may vary from place to place.

Lemma 6.1 For t; y 2 Œ�T=4;T=4� and x 2 R, we have the relation

log jR.t; x; y/j D ��. y/t2=2C r1.t; y/; (6.1)

where

�. y/ D jb1j�1 C  X�.iy/C 2iy 0
X�

.iy/ (6.2)

and

jr1.t; y/j � ct2.t2 C y2/T�2 with some absolute constant c: (6.3)

Proof From the definition of the function R.t; x; y/ it follows that

log jR.t; x; y/j D 1

2

� 1
b1

�  X�.iy/� 2iy 0
X�

.iy/
�

t2

� 1

2
.< X�.t C iy/ �  X�.iy//.t2 � y2/C .Im X�.t C iy/C it 0

X�

.iy//ty:

(6.4)



Stability of Cramer’s Characterization of Normal Laws in Information Distances 19

Since, for t; y 2 Œ�T=4;T=4� and k D 4; : : : ,

ˇ̌<.ik.t C iy/k�2 � ik.iy/k�2/
ˇ̌

D
ˇ̌
ˇ̌ .k�2/=2X

lD0
.�1/kC1Cl

 
k � 2
2l

!
t2lyk�2�2l � .�1/kC1yk�2

ˇ̌
ˇ̌

� t2.T=4/k�4
.k�2/=2X

lD1

 
k � 2

2l

!
� 4t2.T=2/k�4;

we obtain an upper bound, for the same t and y, namely

j< X�.tCiy/� X�.iy/j �
1X

kD4

jckj
Tk�2 j<.ik.tCiy/k�2�ik.iy/k�2/j � 23Ct2

T2
: (6.5)

Since, for t; y 2 Œ�T=4;T=4� and k D 5; : : : ,

ˇ̌
Im.ik.t C iy/k�2 � ik.k � 2/t.iy/k�3/

ˇ̌

D
ˇ̌
ˇ̌ .k�3/=2X

lD1

 
k � 2
2l C 1

!
.�1/kClt2lC1yk�3�2l

ˇ̌
ˇ̌

� jtj3.T=4/k�5
.k�3/=2X

lD1

 
k � 2
2l C 1

!
� 8jtj3.T=2/k�5;

we have

j Im X�.t C iy/C it 0
X�

.iy/j

�
1X

kD5

jckj
Tk�2 jIm.ik.t C iy/k�2 � tik.k � 2/.iy/k�3/j � 24Cjtj3

T3
(6.6)

for the same t and y. Applying (6.5) and (6.6) in (6.4), we obtain the assertion of the
lemma. ut
Lemma 6.2 For jtj � c00T=

pjb1j and j yj � c00T=jb1j, we have the estimates

3

4jb1j � �. y/ � 5

4jb1j (6.7)

and

jr1.t; y/j � t2=.8jb1j/: (6.8)
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Proof Recall that the positive absolute constant c00 is chosen to be sufficiently small.
Using the following simple bounds

j X�.iy/j �
1X

kD3
jckj
� j yj

T

�k�2 � C
j yj
T

1X
kD3

� c00

jb1j
�k�3 � 1

8jb1j ; (6.9)

2j y 0
X�

.iy/j � 2j yj
T

X
kD3

jckj.k � 2/
� j yj

T

�k�3

� C
2j yj

T

1X
kD3
.k � 2/

� c00

jb1j
�k�3 � 1

8jb1j ; (6.10)

we easily obtain that

3

4jb1j � 1

jb1j �  X�.iy/j � 2j y 0
X�

.iy/j � �. y/

� 1

jb1j C j X�.iy/j C 2j y 0
x�

.iy/j � 5

4jb1j ;

and thus (6.7) is proved. The bound (6.8) follows immediately from (6.3). ut
Lemma 6.3 For t 2 Œ�T=4;T=4� and x 2 Œ�c00T1=jb1j; c00T1=jb1j�, we have

Im log R.t; x; y.x// D i

2
t3  0

X�

.iy.x//C r2.t; x/; (6.11)

where

jr2.t; x/j � c.jtj C j y.x/j/jtj3T�2 with some absolute constant c: (6.12)

Proof Write, for t; y 2 Œ�T=4;T=4� and x 2 R,

Im log R.t; y; x/ D �tx C ty

b1
� ty < X�.t C iy/ � t2 � y2

2
Im X�.t C iy/:

(6.13)

Now we choose in this formula y D y.x/, where y.x/ is the solution of Eq. (5.4) for
x 2 Œ�c00T1=jb1j; c00T1=jb1j�. For such x, in view of (5.13), we know that j y.x/j �
T=4. Let us rewrite (5.4) [see as well (5.5)] in the form

� 1

b1
y.x/C y.x/ X�.iy.x//C i

2
y2 0

X�

.iy.x/// D �x:
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Applying this relation in (6.13), we obtain the formula

Im log R.t; x; y.x// D �ty.x/.< X�.t C iy.x//�  X�.iy.x///

C i

2
t3 0

X�

.iy.x//� 1

2
.t2 � y.x/2/

�
Im X�.t C iy.x//C it 0

X�

.iy.x//
�
:

In view of (6.5) and (6.6), we can conclude that

Im log R.t; x; y.x// D i

2
t3 0

X�

.iy.x//C r2.t; x/;

where

jr2.t; x/j � 8C jtj3j y.x/jT�2 C 8Cjtj3.t2 C y.x/2/T�3 � 16C.jtj C j y.x/j/jtj3T�2

for jtj � T=4 and j y.x/j � T=4. Thus, the lemma is proved. ut
Our next step is to estimate the integral I0.x; y.x//. To this aim, we need the

following lemma.

Lemma 6.4 With some absolute constants c the following formula holds

I0.x; y.x// D 1p
2��. y.x//1=2

C r0.x/; jxj � c00T1=jb1j;

where

jr0.x/j � c.jb1j7=2 C jb1j3=2y.x/2/T�2: (6.14)

Proof For short we write y in place of y.x/. Put T2 D c00T=
pjb1j and write

Z 1

�1
<R.t; x; y/ dt D I01 C I02 D

� Z T2

�T2

C
Z

jtj�T2

�
<R.t; x; y/ dt:

First consider the integral I01. We have

I01 D I01;1 � I01;2 �
Z T2

�T2

jR.t; x; y/j dt

� 2
Z T2

�T2

jR.t; x; y/j sin2
�1
2

Im log R.t; x; y/
�

dt:

By (6.1), we see that

I01;1 D
Z T2

�T2

e� �. y/
2 t2 dt C

Z T2

�T2

e� �. y/
2 t2

�
er1.t;y/ � 1� dt:
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Using the inequality jez � 1j � jzjejzj; z 2 C, and applying Lemma 6.1 together
with (6.3), (6.7), (6.8), we have

ˇ̌
ˇ
Z T2

�T2

e� �. y/
2 t2

�
er1.t;y/ � 1

�
dt
ˇ̌
ˇ �

Z T2

�T2

e� �. y/
2 t2 jr1.t; y/jejr1.t;y/j dt

�
Z T2

�T2

e� 1
4jb1j

t2 jr1.t; y/j dt � c
Z T2

�T2

t2 e� 1
4jb1j

t2 t2 C y2

T2
dt

� cjb1j3=2.jb1j C y2/T�2: (6.15)

On the other hand

Z T2

�T2

e� �. y/
2 t2 dt D

p
2�

�. y/1=2
�
Z

jtj�T2

e� �. y/
2 t2 dt; (6.16)

where, by (6.7) and the assumption (2.3),

Z
jtj�T2

e� �. y/
2 t2 dt � c

�. y/T2
e� 1

2 .T2
p
�. y//2 � cjb1j3=2T�1e�c002 �. y/

2jb1j

T2 � cT�4:

(6.17)

Therefore in view of (6.15)–(6.17), we deduce

I01;1 D
p
2�

�. y/1=2
C c�

jb1j3=2.jb1j C y2/

T2
: (6.18)

Now let us turn to the integral I01;2. By (6.11), we have

jI01;2j � 1

2

Z T2

�T2

jR.t; x; y/j .Im log R.t; x; y//2 dt

� 2

Z T2

�T2

jR.t; x; y/j �t6j 0
X�

.iy/j2 C jr2.t; x/j2
�

dt:

By Lemmas 6.1–6.3 and by the estimates (2.3), (6.10), we arrive at the upper bound

jI01;2j � c

T2

Z 1

�1
t6
� t2 C y2

T2
C 1

�
e� 1

4jb1j

t2 dt

� c

T2
jb1j7=2

� jb1j C y2

T2
C 1

�
� cjb1j7=2

T2
: (6.19)
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It remains to estimate the integral I02. By (2.3),

jI02j � 2

Z 1

T2

jR.t; x; y/j dt � 2

Z 1

T2

e� �2

2 t2 dt

� 2

Z 1

c00�T
e� �2

2 t2 dt � c��3T�1e�.c00/2�4T2 � cT�4: (6.20)

The assertion of the lemma follows from (6.18)–(6.20). ut
Since for jxj > c00T1=jb1j we choose y.x/ D y.˙c00T1=jb1j/ and since j y.x/j �

c00T=jb1j for such x, we obtain, using Lemmas 6.1 and 6.2, and the assumption (2.3),
that

jI0.x; y.x//j � 1

2�

Z
jtj�T2

jR.t; x; y.x//j dt C 1

2�

Z
jtj>T2

jR.t; x; y.x//j dt

� 1

2�

Z 1

�1
e� t2

4jb1j dt C 1

2�

Z
jtj>T2

e� �2 t2
2 dt

� c
�
jb1j 12 C T�1

2 ��2e� �2T22
2

�
� cjb1j 12 (6.21)

with some absolute constant c. The bound (6.21) holds for jxj � c00T1=jb1j as well.
Thus (6.21) is valid for all real x.

Lemma 6.4 and the upper bound (6.21) allow us to control the behavior of the
integral I0.x; y.x//.

7 End of the Proof of Theorem 1.1

Starting from the hypothesis (2.1), we need to derive a good upper bound for
D.X�/, which is equivalent to bounding the relative entropy D.X�

� /, according
to Lemma 3.2. This will be done with the help of the relations (5.14), (5.15),
Lemma 6.4, and (6.21) for the density pX�

�
.x/ of the r.v. X�

� . First, let us prove the
following lemma.

Lemma 7.1 For jxj � c00T1=jb1j,

log
pX�

�
.x/

'p
1=jb1j.x/

D c3
2T

�
.b1x/

3 C 3b1y.x/
�

C Qr.x/;

where with some absolute constant c

jQr.x/j � c

T2
�
b21y.x/

2 C jb1j3 C jb1j5x4
�
: (7.1)
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Proof By (5.14) and Lemma 6.4, we have, for jxj � c00T1=jb1j,

log
pX�

�
.x/

'1=
pjb1j.x/

D 1

2
c3b

3
1

x3

T
C c�b51

T2
x4

� 1

2
log.jb1j�. y.x//C log

�
1C

r
�. y.x//

2�
r0.x/

�
: (7.2)

Recalling (6.2) and (4.8), we see that

jb1j�. y.x// D 1C jb1j. X�.iy.x//C 2iy.x/ 0
X�

.iy.x///

D 1C 3c3jb1j y.x/T�1 C �1.x/; (7.3)

where

�1.x/ � jb1j
1X

kD4
ik.2k � 3/ ck

� iy.x/

T

�k�2
:

It is easy to see that

j�1.x/j � 8Cjb1j
�y.x/

T

�2 � 1

4
: (7.4)

Since j3c3 b1y.x/j
T � 1

4
, and using j log.1C u/� uj � u2 (juj � 1=2), we get from (7.3)

that

log.jb1j �. y.x/// D 3c3jb1j y.x/

T
C c�

�b1y.x/

T

�2
(7.5)

with some absolute constant c. Now we conclude from (6.7) and (6.14) that

r
�. y.x//

2�
jr0.x/j � c jb1jb21 C y.x/2

T2
� 1

4

and arrive as before at the upper bound

ˇ̌
ˇ log

�
1C

r
�. y.x//

2�
r0.x/

�ˇ̌
ˇ � c jb1jb21 C y.x/2

T2
: (7.6)

Applying (7.5) and (7.6) to (7.2), we obtain the assertion of the lemma. ut
To estimate the quantity D.X�

� /, we represent it as

J1 C J2 D
� Z c00T1=jb1j

�c00T1=jb1j
C
Z

jxj>c00T1=jb1j

�
pX�

�
.x/ log

pX�

�
.x/

'p
1=jb1j.x/

dx: (7.7)
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First let us estimate J1, using the letters c;C0 to denote absolute positive constants
which may vary from place to place. By Lemma 7.1,

J1 D c3
T

J1;1 C J1;2

D c3
2T

Z c00T1
jb1j

� c00T1
jb1j

pX�

�
.x/
�
.b1x/

3 C 3b1y.x/
�

dx C
Z c00T1

jb1j

� c00T1
jb1j

pX�

�
.x/Qr.x/ dx: (7.8)

Using (5.14) and Lemma 6.4, we note that

Z c00T1=jb1j

�c00T1=jb1j
x3pX�

�
.x/ dx D

Z c00T1=jb1j

�c00T1=jb1j
x3. pX�

�
.x/� 'p

1=jb1j.x// dx

D J1;1;1 C J1;1;2 C J1;1;3

D
Z c00T1=jb1j

�c00T1=jb1j
x3'p

1=jb1j.x/
� 1p

�. y.x//jb1j
� 1

�
ec3b31x3=.2T/Cc�b51x

4=T2 dx

C
Z c00T1=jb1j

�c00T1=jb1j
x3'p

1=jb1j.x/
�

ec3b31x3=.2T/Cc�b51x
4=T2 � 1

�
dx

C 1p
2�jb1j

Z c00T1=jb1j

�c0T1=jb1j
x3'p

1=jb1j.x/e
c3b

3
1x3=.2T/Cc�b51x4=T2r0.x/ dx:

It is easy to see that

jc3j jb1j3jxj3
2T

C cjb1j5x4
T2

� jb1jx2
4

for jxj � c00T1
jb1j : (7.9)

Using (7.3) and (7.4) and the bound j.1C u/�1=2 � 1j � juj; juj � 1
2
, we get

j .�.x/jb1j/�1=2 � 1j � c
jb1j j y.x/j

T
:

The last estimates and (5.13) lead to

j J1;1;1j � cjb1j
T

Z c00T1
jb1j

� c00T1
jb1j

jxj3j y.x/j
p

jb1j e�jb1jx2=4 dx

� cjb1j5=2
T

Z 1

�1
x4e�jb1jx2=4 dx � c

T
: (7.10)
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Applying jeu � 1j � jujejuj, we have, for jxj � c0T1=jb1j,
ˇ̌
ec3b

3
1x3=.2T/Cc�b51x4=T2 � 1

ˇ̌ � cjb1j3jxj3
� 1
2T

C b21jxj
T2

�
ejb1jx2=4:

Therefore, we deduce the estimate

j J1;1;2j � cjb1j7=2
Z 1

�1
x6
� 1

T
C b21jxj

T2

�
e�jb1jx2=4 dx � c

� 1
T

C jb1j3=2
T2

�
: (7.11)

By (5.13) and (6.14), we immediately get

j J1;1;3j � c

T2

Z c00T1
jb1j

� c00T1
jb1j

jxj3 �jb1j7=2Cjb1j3=2 y.x/2
�

e�jb1j x2=4 dx � cjb1j3=2
T2

: (7.12)

Hence, by (7.10)–(7.12) and (2.3),

ˇ̌
ˇ
Z c00T1=jb1j

�c00T1=jb1j
x3pX�

�
.x/ dx

ˇ̌
ˇ � c

� 1
T

C jb1j3=2
T2

�
� c

T
: (7.13)

In the same way,

ˇ̌
ˇ
Z c00T1=jb1j

�c00T1=jb1j
xpX�

�
.x/ dx

ˇ̌
ˇ � c

� jb1j
T

C jb1j5=2
T2

�
� cjb1j

T
: (7.14)

Recalling (5.11), we see that y.x/ D b1x C c�b21x
2=T1. As a result, using (7.13)

and (7.14) and the property Var.X/ � 1, we come to the upper bound

j J1;1j � c jb1j3T�1: (7.15)

In order to estimate J1;2, we employ the inequality (7.1). Recalling (5.14), (6.21)
and (7.9), we then have

j J1;2j � c

T2

Z c0T1=jb1j

�c0T1=jb1j
�
b21y.x/

2 C jb1j3 C jb1j5x4
�pjb1j e�jb1jx24 dx � cjb1j3

T2
:

(7.16)

Combining (7.15) and (7.16), we arrive at

j J1j � cjb1j3T�2: (7.17)

Let us estimate J2. From (5.15), (6.21), we have, for all jxj > c00T1=jb1j,

pX�

�
.x/ � C0pjb1j e�cTjxj=jb1 j � C0pjb1j e�cc0c00T2=jb1j3 < 1: (7.18)
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Here we also used (2.3) and the assumption that 0 < " � "0, where "0 is a
sufficiently small absolute constant. Using (7.18) and (2.3), we easily obtain

J2 � �
Z

jxj>c00T1=jb1j
pX�

�
.x/ log'p

1=jb1j.x/ dx

D 1

2
log

2�

jb1j
Z

jxj>c00T1=jb1j
pX�

�
.x/ dx C jb1j

2

Z
jxj>c00T1=jb1j

x2pX�

�
.x/ dx

� C0pjb1j
Z

jxj>c00T1=jb1j
1

2
.log.4�/C jb1jx2/e�cTjxj=jb1 j dx

� C0 .jb1j3=2T�1 C jb1j�3=2T/ e�cc0c00T2=jb1j3 � C0T�2: (7.19)

Thus, we derive from (7.17) and (7.19) the inequality D.X�
� / � cjb1j3T�2.

Recalling (3.2) and Lemma 2.1, we finally conclude that

D.X� / � c
jb1j3
T2

C c
�N

�

�3p
" � c

.v21 C �2/3T2
C c

�N

�

�3p
" � c

.v21 C �2/3T2
:

(7.20)

An analogous inequality also holds for the r.v. Y� , and thus Theorem 1.1 follows
from these estimates.

Remark 7.2 Under the assumptions of Theorem 1.1, a stronger inequality than (1.2)
follows from (7.20). Namely, D.X� C Y� / may be bounded from below by

ec��6 log �
h

exp
n

� c

.Var.X� //3 D.X�/

o
C exp

n
� c

.Var. Y� //3 D. Y� /

oi
:

8 Proof of Theorem 1.3

In order to construct r.v.’s X and Y with the desired properties, we need some
auxiliary results. We use the letters c; c0; Qc (with indices or without) to denote
absolute positive constants which may vary from place to place, and � may be any
number such that j� j � 1. First we analyze the function v� with Fourier transform

f� .t/ D expf�.1C �2/ t2=2C it3=Tg; t 2 R:

Lemma 8.1 If the parameter T > 1 is sufficiently large and 0 � � � 2, the function
f� admits the representation

f� .t/ D
Z 1

�1
eitxv�.x/ dx (8.1)
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with a real-valued infinitely differentiable function v�.x/ which together with its all
derivatives is integrable and satisfies

v�.x/ > 0; for x � .1C �2/2 T=16I (8.2)

jv�.x/j � e�.1C�2/Tx=32; for x � .1C �2/2 T=16: (8.3)

In addition, for jxj � .1C �2/2 T=16,

c1 e�2.5�p
7/ jxy.x/j=4 � jv�.x/j � c2 e�4jxy.x/j=9; (8.4)

where

y.x/ D 1

6
T
� � .1C �2/C

p
.1C �2/2 � 12x=T

�
: (8.5)

The right inequality in (8.4) continues to hold for all x � .1C �2/2T=16.

Proof Since f� .t/ decays very fast at infinity, the function v� is given according to
the inversion formula by

v�.x/ D 1

2�

Z 1

�1
e�ixt f� .t/ dt; x 2 R: (8.6)

Clearly, it is infinitely many times differentiable, and all its derivatives are inte-
grable. It remains to prove (8.2)–(8.4). By the Cauchy theorem, one may also write

v�.x/ D eyxf� .iy/
1

2�

Z 1

�1
e�ixtR� .t; y/ dt; where R� .t; y/ D f� .t C iy/

f� .iy/
;

(8.7)

for every fixed real y. Here we choose y D y.x/ according to the equality in (8.5)
for x � .1C �2/2 T=16. In this case, it is easy to see that

e�ixtR�.t; y.x// D exp
n

� .1C �2/t2

2

�
1C 6y.x/

.1C �2/T

�
C i

t3

T

o

� exp
n

� ˛.x/

2
t2 C i

t3

T

o
:

Note that ˛.x/ � .1C �2/=2 for x as above.
For a better understanding of the behaviour of the integral in the right-hand side

of (8.7), put

QI D 1

2�

Z 1

�1
e�ixtR� .t; y/ dt
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and rewrite it in the form

QI D QI1 C QI2 D 1

2�

�Z
jtj�T1=3

C
Z

jtj>T1=3

	
e�ixtR�.t; y.x// dt: (8.8)

Using j cos u � 1C u2=2j � u4=4Š (u 2 R), we easily obtain the representation

QI1 D 1

2�

Z
jtj�T1=3

�
1 � t6

2T2

�
e�˛.x/t2=2 dt C �

4Š T4
1

2�

Z
jtj�T1=3

t12e�˛.x/t2=2 dt

D 1p
2�˛.x/

�
1 � 15

2˛.x/3 T2
C c�

˛.x/6T4

�

� 1

2�

Z
jtj>T1=3

�
1 � t6

2T2

�
e�˛.x/t2=2 dt: (8.9)

The absolute value of last integral does not exceed c.T1=3˛.x//�1e�˛.x/T2=3=2. The
integral QI2 admits the same estimate. Therefore, we obtain from (8.8) the relation

QI D 1p
2�˛.x/

�
1 � 15

2˛.x/3 T2
C c�

˛.x/6 T4

�
: (8.10)

Applying (8.10) in (8.7), we deduce for the half-axis x � .1C�2/2 T=16, the formula

v�.x/ D 1p
2�˛.x/

�
1 � 15

2˛.x/3 T2
C c�

˛.x/6 T4

�
ey.x/xf� .iy.x//: (8.11)

We conclude immediately from (8.11) that (8.2) holds. To prove (8.3), we use (8.7)
with y D y0 D �.1C �2/T=16 and, noting that

x C 1C �2

2
y0 � x

2
for x � .1C �2/2

16
T;

we easily deduce the desired estimate

jv�.x/j � e�.1C�2/Tx=32 1

2�

Z 1

�1
e�5.1C�2/2t2=16 dt � e�.1C�2/Tx=32:

Finally, to prove (8.4), we apply the formula (8.11). Using the explicit form of
y.x/, write

ey.x/xf� .iy.x// D exp
n

y.x/x C 1C �2

2
y2.x/C y.x/3

T

o

D exp
ny.x/

3
.2x C 1C �2

2
y.x//

o
(8.12)
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for x � .1C�2/2
16

T. Note that the function y.x/=x is monotonically decreasing from

zero to � 4
3
.1 C �2/�1 and is equal to D � 8

3

� � 1 C
q

7
4

�
.1C �2/�1 at the point

x D � .1C�2/2
16

T. Using these properties in (8.12), we conclude that in the interval

jxj � .1C�2/2
16

T,

e�2.5�p
7/j y.x/xj=9 � ey.x/xf� .iy.x// � e�4j y.x/xj=9; (8.13)

where the right-hand side continues to hold for all x � .1C�2/2
16

T. The inequalities
in (8.4) follow immediately from (8.11) and (8.13). ut

Now, introduce independent identically distributed r.v.’s U and V with density

p.x/ D d0v0.x/ I.�1;T=16�.x/;
1

d0
D
Z T=16

�1
v0.u/ du; (8.14)

where IA denotes the indicator function of a set A. The density p depends on T, but
for simplicity we omit this parameter. Note that, by Lemma 8.1, j1 � d0j � e�cT2 .

Consider the regularized r.v. U� with density p� D p �'� , which we represent in
the form

p�.x/ D d0v� .x/� w� .x/; where w� .x/ D d0 ..v0I.T=16;1// � '�/.x/:

The next lemma is elementary, and we omit its proof.

Lemma 8.2 We have

jw� .x/j � '�.jxj C T=16/ e�cT2 ; x � 0;

jw� .x/j � e�cT2 ; 0 < x � T=16;

jw� .x/j � e�cTx; x > T=16:

Lemma 8.3 For all sufficiently large T > 1 and 0 < � � 2,

D.U� / D 3

.1C �2/3 T2
C c�

T3
:

Proof Put E U� D a� and Var.U� / D b2� . By Lemma 8.2, ja� j C jb2� � 1 � �2j �
e�cT2 . Write

D.U� / D QJ1 C QJ2 C QJ3 D d0

Z
jxj�c0T

v�.x/ log
p�.x/

'a� ;b� .x/
dx

�
Z

jxj�c0T
w� .x/ log

p� .x/

'a� ;b� .x/
dx C

Z
jxj>c0T

p� .x/ log
p�.x/

'a� ;b� .x/
dx; (8.15)
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where c0 > 0 is a sufficiently small absolute constant. First we find two-sided bounds
on QJ1, which are based on some additional information about v� .

Using a Taylor expansion for the function
p
1 � u about zero in the interval � 3

4
�

u � 3
4
, we easily obtain that, for jxj � .1C �2/2T=16,

6y.x/

.1C �2/T
D �1C

s
1 � 12x

.1C �2/2
T

D � 6x

.1C �2/2 T
� 18x2

.1C �2/4 T2
� 108x3

.1C �2/6 T3
C c�x4

T4
;

which leads to the relation

y.x/x C 1C �2

2
y.x/2 C y.x/3

T
D � x2

2.1C �2/
� x3

.1C �2/3 T

� 9x4

2.1C �2/5 T2
C c�x5

T3
: (8.16)

In addition, it is easy to verify that

˛.x/ D .1C �2/
�
1 � 6x

.1C �2/2 T
� 18x2

.1C �2/4 T2
C c�x3

T3

�
: (8.17)

Finally, using (8.16) and (8.17), we conclude from (8.11) that v� is representable as

v�.x/ D g.x/'p
1C�2.x/e

h.x/

D
�
1C 3x

.1C �2/2 T
C 15

2

3x2 � .1C �2/

.1C �2/4 T2
C c� jxj.1C x2/

T3

�

	 'p
1C�2.x/ exp

n
� x3

.1C �2/3 T
� 9x4

2.1C �2/5 T2
C c�x5

T3

o
(8.18)

for jxj � .1C �2/2T=16.
Now, from (8.18) and Lemma 8.2, we obtain a simple bound

jw� .x/=v� .x/j � 1=2 for jxj � c0T: (8.19)

Therefore we have the relation, using again Lemmas 8.1 and 8.2,

QJ1 D d0

Z
jxj�c0T

v�.x/ log
v�.x/

'a� ;b� .x/
dx C 2�

Z
jxj�c0T

jw� .x/j dx C �e�cT2

D
Z

jxj�c0T
v�.x/ log

v�.x/

'p
1C�2.x/

dx C �e�cT2 : (8.20)
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Let us denote the integral on the right-hand side of (8.20) by QJ1;1. With the help
of (8.18) it is not difficult to derive the representation

QJ1;1 D
Z

jxj�c0T
'p

1C�2.x/e
h.x/
�

� x3

.1C �2/3 T
� 15x4

2.1C �2/5 T2

C 3x

.1C �2/2 T
C 54x2 � 15.1C �2/

2.1C �2/4 T2
C c� jxj.1C x4/

T3

�
dx: (8.21)

Since jeh.x/ � 1 � h.x/j � 1
2
h.x/2ejh.x/j, and '2p

1C�2.x/e
2h.x/ � 'p

1C�2.x/ for jxj �
c0T, we easily deduce from (8.21) that

QJ1;1 D
Z

jxj�c0T
'p

1C�2.x/
�3.1C �2/x � x3

.1C �2/3 T
C 54x2 � 15.1C �2/

2.1C �2/4 T2

� 21.1C �2/x4 � 2x6

2.1C �2/6 T2

�
dx C c�

T3
D 3

.1C �2/3 T2
C c�

T3
: (8.22)

It remains to estimate the integrals QJ2 and QJ3. By (8.19) and Lemma 8.2,

j QJ2j �
Z

jxj�c0T
jw� .x/j.� log'a� ;b� .x/C log

3

2
C j log v�.x/j/ dx

� QcT3e�cT2 � e�cT2 ; (8.23)

while by Lemmas 8.1 and 8.2,

j QJ3j �
Z

jxj>c0T
.jv�.x/j C jw� .x/j/.

p
2�b� C x2

2b2�
C j log.jv�.x/C jw� .x/j/ dx

� Qc
Z

jxj>c0T
.1C x2/e�cTjxjdx C

Z
jxj>c0T

.jv�.x/j C jw� .x/j/1=2 dx � e�cT2 :

(8.24)

The assertion of the lemma follows from (8.22)–(8.24). ut
To complete the proof of Theorem 1.3, we need yet another lemma.

Lemma 8.4 For all sufficiently large T > 1 and 0 < � � 2, we have

D.U� � V�/ � e�cT2 :
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Proof Putting Np� .x/ D p� .�x/, we have

D.U� � V� / D
Z 1

�1
. p� � Np�/.x/ log

. p� � Np� /.x/
'p

2.1C�2/.x/
dx

C
Z 1

�1
. p� � Np� /.x/ log

'p
2.1C�2/.x/

'p
Var.X��Y� /.x/

dx: (8.25)

Note that Np� .x/ D d0 Nv�.x/ � Nw� .x/ with Nv�.x/ D v�.�x/, Nw� .x/ D w� .�x/, and

p� � Np� D d20.v� � Nv�/.x/�d0.v� � Nw� /.x/�d0. Nv� �w� /.x/C.w� � Nw� /.x/: (8.26)

By the very definition of v� , v� � Nv� D 'p
2.1C�2/. Since jVar.U� � V� / � 2.1C

�2/j � e�cT2 , using Lemma 8.1, we note that the second integral on the right-hand
side of (8.25) does not exceed e�cT2 . Using Lemmas 8.1 and 8.2, we get

j.v� � Nw� /.x/j C j. Nv� � w� /.x/j C jw� � Nw� .x/j � e�cT2 ; jxj � QcT; (8.27)

j.v� � Nw� .x/j C j. Nv� � w� /.x/j C j.w� � Nw� /.x/j � e�cTjxj; jxj > QcT: (8.28)

It follows from these estimates that

. p� � Np�/.x/
'p

2.1C�2/.x/
D 1C c�e�cT2 (8.29)

for jxj � c0T. Hence, with the help of Lemmas 8.1 and 8.2, we may conclude that

ˇ̌
ˇ̌ Z

jxj�c0T
. p� � Np�/.x/ log

. p� � Np� /.x/
'p

2.1C�2/.x/
dx

ˇ̌
ˇ̌ � e�cT2 : (8.30)

A similar integral over the set jxj > c0T can be estimated with the help of (8.27)
and (8.28), and here we arrive at the same bound as well. Therefore, the assertion of
the lemma follows from (8.25). ut

Introduce the r.v.’s X D .U � a0/=b0 and Y D .V � a0/=b0. Since D.X� / D
D.Ub0� / and D.X� � Y� / D D.Ub0� � Vb0� /, the statement of Theorem 1.3 for
the entropic distance D immediately follows from Lemmas 8.3 and 8.4. As for the
distance Jst, we need to prove corresponding analogs of Lemmas 8.3 and 8.4 for
Jst.U� / and Jst.U� �V�/, respectively. By the Stam inequality (1.4) and Lemma 8.3,
we see that

Jst.U� / � c.�/ T�2 for sufficiently large T > 1; (8.31)
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where c.�/ denote positive constants depending on � only. We estimate the quantity
Jst.U� � V�/, by using the formula

Jst.U� � V� /

2Var.U� /
D �

Z 1

�1
. p� � Np� /00.x/ log

. p� � Np� /.x/
'p

Var.U��V� /.x/
dx: (8.32)

It is not difficult to conclude from (8.26), using our previous arguments, that

. p� � Np� /00.x/ D d20'
00p
2.1C�2/.x/C R� .x/; (8.33)

where jR� .x/j � c.�/e�cT2 for jxj � QcT and jR�.x/j � c.�/e�cTjxj for jxj > QcT.
Applying (8.33) in the formula (8.32) and repeating the argument that we used in
the proof of Lemma 8.4, we obtain the desired result, namely

Jst.U� � V� / � c.�/Var.X� /e�cT2 for sufficiently large T > 1: (8.34)

By Theorem 1.2, Jst.U� / � �c.�/=.log Jst.U� � V� //, so Jst.U�/ ! 0 as T ! 1.
Since Jst.X�/ D Jst.Ub0� / and Jst.X� � Y� / D Jst.Ub0� � Vb0� /, the statement of
Theorem 1.3 for Jst follows from (8.31) and (8.34).
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Dedicated to the memory of Evarist Giné.

Abstract It is noted that the late Volodya N. Sudakov (1934–2016) first published
a statement in 1973 and proof in 1976 that the expected supremum of a centered
Gaussian process is bounded above by a constant times a metric entropy integral.
In particular, the present author (R.M. Dudley) defined such an integral but did not
state nor prove such a bound.
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1 Introductory Remarks

Vladimir N. Sudakov reached his 80th birthday in 2014. A rather well known fact,
which I’ll call a majorization inequality, says that the expected supremum of a
centered Gaussian process is bounded above by a constant times a metric entropy
integral. Who first (a) called attention to the expected supremum, (b) stated such an
inequality, and (c) published a proof of it, when? My answer in all three cases is
Sudakov (1973, for (a) and (b); 1976, for (c)) [19, 20]. I defined the metric entropy
integral, as an equivalent sum in 1967, then explicitly in 1973, and showed that
its finiteness implies sample continuity. Sudakov’s work on Gaussian processes has
perhaps been best known for his minoration; that he was first to state and give a
proof for a majorization inequality seems to have passed almost unnoticed, and I
hope to rectify that.
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2 Sudakov and Strassen

At the International Congress of Mathematicians in Moscow in the summer of 1966,
Sudakov gave a talk, in Russian, which applied metric entropy log.N.C; d; "// (see
Sect. 3), then called "-entropy, of sets C in a Hilbert space H, to sample continuity
and boundedness of the isonormal process L on H, the Gaussian process having
mean 0 and covariance equal to the inner product, restricted to C. As far as I know
this was the first presentation, oral or written, of such results by anyone, to an
international audience. I attended the Moscow 1966 talk and took notes as best I
could with my meager Russian. When I looked back at the notes later, I regretted not
having absorbed the significance of Sudakov’s talk at first. The notion of isonormal
process on a Hilbert space originated, as far as I know, with Irving E. Segal, cf.
Segal [12]. I did not give any talk at the 1966 Congress.

2.1 Strassen

Volker Strassen did give a talk at the 1966 Congress, on his then-new form of the
law of the iterated logarithm. Whether he attended Sudakov’s talk I don’t recall, but
he had been aware of "-entropy by about 1964. Strassen was born in 1936. Like
me, he got his doctorate in mathematics in 1962 and then spent several years in
Berkeley, he in the Statistics Department (where probability resided) until 1968,
and I in the Mathematics Department until the end of 1966; there was a seminar
with probability topics organized by Jacob Feldman, a student of Segal. While we
were both in Berkeley, Strassen and I talked about metric entropy. In the late 1960s
Strassen began to work on speed of computation, on which he later won several
prizes.

Strassen was invited to give a talk at a probability and information theory meeting
in Canada which took place in 1968. He declined the invitation but kindly urged the
organizers to invite me in his place, as they did; I went and presented the joint paper
[16]. The paper gave two results: one, by Strassen, a central limit theorem in CŒ0; 1�
with a metric entropy hypothesis; and a counter-example, by me, showing that for
i.i.d. variables Xj with values in CŒ0; 1� having mean EXj D 0 and being bounded:
for some M < 1, kX1.!/k � M for all !, the central limit theorem can fail.

3 Early Papers on Metric Entropy and Gaussian Processes

Let .S; d/ be a totally bounded metric space and for each " > 0 let N.S; d; "/ be
the minimum number of points in an "-net, within " of each point of S. If d is
a Hilbert space (e.g. L2) metric it may be omitted from the notation. By “metric
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entropy integral” I mean

Z u

0

p
log.N.S; d; "//d" (3.1)

for u > 0. The integrand is 0 for " large enough, as N.S; d; "/ is nonincreasing in "
and becomes equal to 1. Thus finiteness of (3.1) for some u > 0 implies it for all
u > 0.

Fortunately for me, Irving Segal was one of the founding co-editors of Journal of
Functional Analysis and solicited my 1967 paper for vol. 1 of the journal. The paper
showed that finiteness of (3.1) for u D 1 (or an equivalent sum; formulated as an
integral in 1973) for a subset S of a Hilbert space is sufficient for sample continuity
and boundedness of the isonormal process restricted to S. Dudley [5] showed that
if the metric entropy integral is finite for a Gaussian process, its indefinite integral
gives a modulus of continuity for the process.

A weaker statement is that it suffices for sample continuity that for some r with
0 < r < 2, as " # 0,

log N.S; d; "/ D O."�r/: (3.2)

In my 1967 paper, p. 293, I wrote that “V. Strassen proved (unpublished) in 1963 or
1964” that condition (3.2) implies sample continuity of L on S. Sudakov stated the
implication in his 1966 lecture, as I mentioned in Dudley [6, p. 87]. So before 1967,
both Sudakov and Strassen had shown the sufficiency of (3.2) although neither had
published a statement or proof of it. The abstract Sudakov [15] (in Russian) is quite
short; it has two sentences, one about eigen element expansions as in its title, and the
second, “For Gaussian distributions, new results are obtained.” In Sudakov (1976,
pp. 2–3 of the 1979 translation)[20] he reviews previous work, beginning with his
1966 talk.

In MathSciNet (Mathematical Reviews online) there is a gap in indexed reviews
of Sudakov’s publications. There are ten listed as published in the years 1958–1964,
none for 1965–1970 (although at least one paper, Sudakov 1969, existed) and 20
for works published in 1971–1980, of which I was reviewer for 7, beginning with
Sudakov [17]. Some of my reviews of Sudakov’s works were not very perceptive. I
had been a reviewer for Math. Reviews since April 1966. (In 1968 and 1971, I had
the chance to review an announcement and then a paper by V.N. Vapnik and A.Ya.
Chervonenkis.)

Sudakov [16] was as far as I can find his first publication on Gaussian processes.
It made the connection with "-entropy. Sudakov [17, 19] carried the work further.
In particular in 1973 he gave an equivalent condition for sample-boundedness of a
Gaussian process fXt W t 2 Tg, namely that

E sup
t2T

Xt WD supfE sup
t2A

Xt W A � T; A countableg < C1: (3.3)
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Sudakov [20] gave a book-length presentation of his results on Gaussian
processes (and also on doubly stochastic operators). An antecedent of the book is
his doctoral dissertation Sudakov [18], which has the same title. In reviewing the
book for Math. Reviews MR0431359 (55 #4359) I said I had learned about metric
entropy “from V. Strassen, who wanted to give credit to ‘someone’ whose name
we forgot.” And so, I said, Sudakov was “too generous” in saying the application of
such ideas to Gaussian processes came “independently” to several authors, although
sufficiency of (3.2) for sample continuity seems to have been found independently
by Strassen and Sudakov.

4 An Inequality: Majorization of E sup

For a Gaussian process fXt; t 2 Tg with mean 0, such an inequality says that

E sup
t2T

Xt � K
Z C1

0

p
log N.";T; dX/d" (4.1)

for some K < 1, where dX.s; t/ WD .E..Xs � Xt/
2//1=2. This has been attributed

to me and called “Dudley’s Theorem” by Ledoux and Talagrand, 1991, Theo-
rem 11.17, p. 321. But in fact I am only responsible for the integral (3.1) over a
finite interval and the fact that its finiteness implies sample continuity. In (4.1), C1
can clearly be replaced by

u D diam.T/ WD supfdX.s; t/ W s; t 2 Tg:

(By the way, the left side of (4.1) may be finite while the right side is infinite.)
Sudakov [19] first defined the left-hand side (3.3) of (4.1). I was slow to

appreciate it. My short review of Sudakov [19] in Math. Reviews, MR0443059,
makes no explicit mention of the expected supremum; still less did I mention it in
the earlier paper Dudley [4]. The bound (4.1) with K D 24 given by Ledoux and
Talagrand had, as they say on p. 329, been proved by Pisier [11].

Ten years earlier, Sudakov (1973, Eq. (6))[19], had stated the inequality

E sup
x2S

L.x/ � CS1 WD C
1X

kD�1
2�k

q
log2.N.2�k; S// (4.2)

for C D 22=
p
2� . Sudakov (1976, transl. 1979, Proposition 33)[20], gives a proof,

pp. 54–56 of the translation. (If one is not convinced by Sudakov’s proof, then
the bound (4.1) might be attributed to Pisier, but in no case to me. Also Lifshits
(2012, pp. 73–75)[10] gives further evidence that Sudakov’s statement (or better) is
correct.)
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My review in Math. Revs. of Sudakov [20] also did not mention the quantity (3.3)
and so neither (4.2) nor its proof.

We have straightforwardly for every integer k

2�k
q

log2 N.2�k; S/ D 2

Z 2�k

2�k�1

p
.log 2/ log.N.2�k; S//dx

� 2
p

log 2
Z 2�k

2�k�1

p
log.N.x; S//dx:

It follows that S1 � 2
p

log 2
R C1
0

p
log.N.x; S//dx: This implies inequality (4.1)

with the constant 24 improved to K WD 44
p

log 2=
p
2� < 14:62. As will be

seen later, Lifshits [10] gave a still smaller constant. But I suggest that in view
of Sudakov’s priority, the inequality (4.1) for any (correct) finite K be called
“Sudakov’s majorization,” by contrast with Sudakov’s useful lower bound for
E supx2S L.x/ based on metric entropy, well known as “Sudakov’s minoration” (e.g.,
Ledoux and Talagrand, [8, pp. 79–84]). Chevet [2] gave, in a rather long paper, the
first published proof of a crucial lemma in the Sudakov minoration.

According to Google Scholar, Sudakov [19] had only 15 citers as of May 19,
2015, but they did include Ledoux and Talagrand [8], also its chapter on Gaussian
processes, and TalagrandŠs 1987 [26] paper on characterizing sample boundedness
of Gaussian processes via majorizing measures. Sudakov (1976, transl. 1979)[20]
had 228 citers (roughly half of them relating to optimal transportation and other
non-Gaussian topics) as of June 12, 2015; it was from the list of citing works that I
found Lifshits [10].

5 Books on Gaussian Processes

There are chapters on Gaussian processes in several books. For entire books,
although there are some on applications such as machine learning, I will comment
only on Lifshits [9, 10] and Bogachev [1].

5.1 Bogachev [1]

This book’s Theorem 7.1.2, p. 334, states the Sudakov minoration and what I have
called his majorization. For proof, Bogachev refers to Ledoux and Talagrand [8],
Ledoux [7], and Lifshits [9]. Sudakov (1976, transl. 1979)[20] is not mentioned
there; it is in the bibliography as ref. no. [733], p. 422, but I could not find a citation
of it in the book.
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5.2 Lifshits [9]

This book cites three works by Sudakov, [Sud1] = Sudakov [16], [Sud2] = Sudakov
[17], and [Sud3] = Sudakov [20]. It gives an inequality (4.1), apparently as
Theorem 14.1, although I have not seen the exact statement. Lifshits gives credit
to Dmitrovskii [3] for the statement and proof.

5.3 Lifshits [10]

On p. 75 Lifshits gives the constant K D 4
p
2 in (4.1), which is the best I have seen.

The proof seems to be self-contained. Lemma 10.1 on p. 73 says (correctly) that if
X1; : : : ;XN are centered jointly Gaussian variables and E.X2j / � �2 for each j, then

E max
1�j�N

Xj � p
2 log N�:

(Ledoux and Talagrand [8], (3.13), p. 71 have such an inequality with a factor of 3
instead of

p
2.) I was unable in a limited time to check Lifshits’s proof of his version

of (4.1) via the Lemma and induction.
The bibliography of Lifshits [10] lists 183 items, including Sudakov [16, 17, 20],

but no works by Dmitrovskii. Sudakov (1976 and 1979) is his second most-cited
work with 234 citations, Google Scholar, Nov. 14 (2015).
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for Log-Concave Densities
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Abstract An elementary proof is provided of sharp bounds for the varentropy
of random vectors with log-concave densities, as well as for deviations of the
information content from its mean. These bounds significantly improve on the
bounds obtained by Bobkov and Madiman (Ann Probab 39(4):1528–1543, 2011).
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1 Introduction

Consider a random vector Z taking values in R
n, drawn from the standard Gaussian

distribution � , whose density is given by

	.x/ D 1

.2�/
n
2

e� jxj

2

2

for each x 2 R
n, where j 	 j denotes the Euclidean norm. It is well known that

when the dimension n is large, the distribution of Z is highly concentrated around
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the sphere of radius
p

n; that
p

n is the appropriate radius follows by the trivial
observation that EjZj2 D Pn

iD1 EZ2i D n. One way to express this concentration
property is by computing the variance of jZj2, which is easy to do using the
independence of the coordinates of Z:

Var.jZj2/ D Var

� nX
iD1

Z2i

	
D

nX
iD1

Var.Z2i / D 2n:

In particular, the standard deviation of jZj2 is
p
2n, which is much smaller than the

mean n of jZj2 when n is large. Another way to express this concentration property
is through a deviation inequality:

P

 jZj2

n
� 1 > t

�
� exp



� n

2
Œt � log.1C t/�

�
(1.1)

for the upper tail, and a corresponding upper bound on the lower tail. These
inequalities immediately follow from Chernoff’s bound, since jZj2=n is just the
empirical mean of i.i.d. random variables.

It is natural to wonder if, like so many other facts about Gaussian measures, the
above concentration property also has an extension to log-concave measures (or to
some subclass of them). There are two ways one may think about extending the
above concentration property. One is to ask if there is a universal constant C such
that

Var.jXj2/ � Cn;

for every random vector X that has an isotropic, log-concave distribution on R
n.

Here, we say that a distribution on R
n is isotropic if its covariance matrix is

the identity matrix; this assumption ensures that EjXj2 D n, and provides the
normalization needed to make the question meaningful. This question has been
well studied in the literature, and is known as the “thin shell conjecture” in
convex geometry. It is closely related to other famous conjectures: it implies the
hyperplane conjecture of Bourgain [13, 14], is trivially implied by the Kannan-
Lovasz-Simonovits conjecture, and also implies the Kannan-Lovasz-Simonovits
conjecture up to logarithmic terms [12]. The best bounds known to date are those of
Guédon and Milman [18], and assert that

Var.jXj2/ � Cn4=3:

The second way that one may try to extend the above concentration property
from Gaussians to log-concave measures is to first observe that the quantity that
concentrates, namely jZj2, is essentially the logarithm of the Gaussian density
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function. More precisely, since

� log	.x/ D n

2
log.2�/C jxj2

2
;

the concentration of jZj2 about its mean is equivalent to the concentration of
� log	.Z/ about its mean. Thus one can ask if, for every random vector X that
has a log-concave density f on R

n,

Var.� log f .X// � Cn (1.2)

for some absolute constant C. An affirmative answer to this question was provided
by Bobkov and Madiman [2]. The approach of [2] can be used to obtain bounds
on C, but the bounds so obtained are quite suboptimal (around 1000). Recently
V.H. Nguyen [27] (see also [28]) and Wang [32] independently determined, in
their respective Ph.D. theses, that the sharp constant C in the bound (1.2) is 1.
Soon after this work, simpler proofs of the sharp variance bound were obtained
independently by us (presented in the proof of Theorem 2.3 in this paper) and by
Bolley et al. [7] (see Remark 4.2 in their paper). An advantage of our proof over
the others mentioned is that it is very short and straightforward, and emerges as
a consequence of a more basic log-concavity property (namely Theorem 2.9) of
Lp-norms of log-concave functions, which may be thought of as an analogue for
log-concave functions of a classical inequality of Borell [8] for concave functions.

If we are interested in finer control of the integrability of � log f .X/, we may wish
to consider analogues for general log-concave distributions of the inequality (1.1).
Our second objective in this note is to provide such an analogue (in Theorem 4.1).
A weak version of such a statement was announced in [3] and proved in [2], but
the bounds we provide in this note are much stronger. Our approach has two key
advantages: first, the proof is transparent and completely avoids the use of the
sophisticated Lovasz-Simonovits localization lemma, which is a key ingredient of
the approach in [2]; and second, our bounds on the moment generating function are
sharp, and are attained for example when the distribution under consideration has
i.i.d. exponentially distributed marginals.

While in general exponential deviation inequalities imply variance bounds, the
reverse is not true. Nonetheless, our approach in this note is to first prove the
variance bound (1.2), and then use a general bootstrapping result (Theorem 3.1)
to deduce the exponential deviation inequalities from it. The bootstrapping result
is of independent interest; it relies on a technical condition that turns out to be
automatically satisfied when the distribution in question is log-concave.

Finally we note that many of the results in this note can be extended to the class of
convex measures; partial work in this direction is done by Nguyen [28], and results
with sharp constants are obtained in the forthcoming paper [17].
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2 Optimal Varentropy Bound for Log-Concave Distributions

Before we proceed, we need to fix some definitions and notation.

Definition 2.1 Let a random vector X taking values in R
n have probability density

function f . The information content of X is the random variable Qh.X/ D � log f .X/.
The entropy of X is defined as h.X/ D E.Qh.X//. The varentropy of a random
vector X is defined as V.X/ D Var.Qh.X//.

Note that the entropy and varentropy depend not on the realization of X but
only on its density f , whereas the information content does indeed depend on the
realization of X. For instance, one can write h.X/ D � R

Rn f log f and

V.X/ D Var.log f .X// D
Z
Rn

f .log f /2 �
�Z

Rn
f log f

	2
:

Nonetheless, for reasons of convenience and in keeping with historical convention,
we slightly abuse notation as above.

As observed in [2], the distribution of the difference Qh.X/ � h.X/ is invariant
under any affine transformation of Rn (i.e., Qh.TX/ � h.TX/ D Qh.X/ � h.X/ for all
invertible affine maps T W Rn ! R

n); hence the varentropy V.X/ is affine-invariant
while the entropy h.X/ is not.

Another invariance for both h.X/ and V.X/ follows from the fact that they only
depend on the distribution of log.f .X//, so that they are unchanged if f is modified in
such a way that its sublevel sets keep the same volume. This implies (see, e.g., [25,
Theorem 1.13]) that if f ? is the spherically symmetric, decreasing rearrangement
of f , and X? is distributed according to the density f ?, then h.X/ D h.X?/ and
V.X/ D V.X?/. The rearrangement-invariance of entropy was a key element in the
development of refined entropy power inequalities in [33].

Log-concavity is a natural shape constraint for functions (in particular, prob-
ability density functions) because it generalizes the Gaussian distributions. Fur-
thermore, the class of log-concave distributions is infinite-dimensional, and hence,
comprises a nonparametric model in statistical terms.

Definition 2.2 A function f W Rn ! Œ0;1/ is log-concave if f can be written as

f .x/ D e�U.x/;

where U W Rn 7! .�1;C1� is a convex function, i.e., U.tx C .1� t/y/ � tU.x/C
.1� t/U.y/ for any x, y and 0 < t < 1. When f is a probability density function and
is log-concave, we say that f is a log-concave density.

We can now state the optimal form of the inequality (1.2), first obtained by
Nguyen [27] and Wang [32] as discussed in Sect. 1.
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Theorem 2.3 ([27, 32]) Given a random vector X in R
n with log-concave density

f ,

V.X/ � n

Remark 2.4 The probability bound does not depend on f – it is universal over the
class of log-concave densities.

Remark 2.5 The bound is sharp. Indeed, let X have density f D e�' , with ' W Rn !
Œ0;1� being positively homogeneous of degree 1, i.e., such that '.tx/ D t'.x/ for
all t > 0 and all x 2 R

n. Then one can check that the random variable Y D '.X/
has a gamma distribution with shape parameter n and scale parameter 1, i.e., it is
distributed according to the density given by

fY.t/ D tn�1e�t

.n � 1/Š
:

Consequently E.Y/ D n and E.Y2/ D n.n C 1/, and therefore V.X/ D Var.Y/ D n.
Particular examples of equality include:

1. The case where '.x/ D Pn
iD1 xi on the cone of points with non-negative

coordinates (which corresponds to X having i.i.d. coordinates with the standard
exponential distribution), and

2. The case where '.x/ D inffr > 0 W x 2 rKg for some compact convex set
K containing the origin (which, by taking K to be a symmetric convex body,
includes all norms on R

n suitably normalized so that e�' is a density).

Remark 2.6 Bolley et al. [7] in fact prove a stronger inequality, namely,

1

V.X/
� 1

n
�
�

E
˚rU.X/ 	 Hess.U.X//�1rU.X/

���1
:

This gives a strict improvement of Theorem 2.3 when the density f D e�U of X is
strictly log-concave, in the sense that Hess.U.X// is, almost surely, strictly positive
definite. As noted by Bolley et al. [7], one may give another alternative proof of
Theorem 2.3 by applying a result of Hargé [19, Theorem 2].

In order to present our proof of Theorem 2.3, we will need some lemmata. The
first one is a straightforward computation that is a special case of a well known fact
about exponential families in statistics, but we write out a proof for completeness.

Lemma 2.7 Let f be any probability density function on R
n such that f 2 L˛.Rn/

for each ˛ > 0, and define

F.˛/ D log
Z
Rn

f ˛:
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Let X˛ be a random variable with density f˛ on R
n, where

f˛ WD f ˛R
Rn f ˛

:

Then F is infinitely differentiable on .0;1/, and moreover, for any ˛ > 0,

F00.˛/ D 1

˛2
V.X˛/:

Proof Note that the assumption that f 2 L˛.Rn/ (or equivalently that F.˛/ < 1)
for all ˛ > 0 guarantees that F.˛/ is infinitely differentiable for ˛ > 0 and that we
can freely change the order of taking expectations and differentiation.

Now observe that

F0.˛/ D
R

f ˛ log fR
f ˛

D
Z

f˛ log f I

if we wish, we may also massage this to write

F0.˛/ D 1

˛
ŒF.˛/ � h.X˛/�: (2.1)

Differentiating again, we get

F00.˛/ D
R

f ˛.log f /2R
f ˛

�
�R

f ˛ log fR
f ˛

	2

D
Z

f˛.log f /2 �
�Z

f˛ log f

	2

D VarŒlog f .X˛/� D Var

�
1

˛
flog f˛.X˛/C F.˛/g

�

D 1

˛2
VarŒlog f˛.X˛/� D V.X˛/

˛2
;

as desired. ut
The following lemma is a standard fact about the so-called perspective function

in convex analysis. The use of this terminology is due to Hiriart-Urruty and
Lemaréchal [20, p. 160] (see [10] for additional discussion), although the notion has
been used without a name in convex analysis for a long time (see, e.g., [30, p. 35]).
Perspective functions have also seen recent use in convex geometry [6, 11, 17]) and
empirical process theory [31]. We give the short proof for completeness.



Concentration of Information 51

Lemma 2.8 If U W Rn ! R [ fC1g is a convex function, then

w.z; ˛/ WD ˛U.z=˛/

is a convex function on R
n � .0;C1/.

Proof First note that by definition, w.az; a˛/ D aw.z; ˛/ for any a > 0 and any
.z; ˛/ 2 R

n � .0;C1/, which implies in particular that

1

˛
w.z; ˛/ D w

�
z

˛
; 1

	
:

Hence

w.
z1 C .1 � 
/z2; 
˛1 C .1 � 
/˛2/

D Œ
˛1 C .1 � 
/˛2�U
�

˛1

z1
˛1

C .1 � 
/˛2
z2
˛2


˛1 C .1 � 
/˛2

	

� 
˛1U

�
z1
˛1

	
C .1 � 
/˛2U

�
z2
˛2

	

D 
w.z1; ˛1/C .1 � 
/w.z2; ˛2/;

for any 
 2 Œ0; 1�, z1; z2 2 R
n, and ˛1; ˛2 2 .0;1/. ut

The key observation is the following theorem.

Theorem 2.9 If f is log-concave on R
n, then the function

G.˛/ WD ˛n
Z

f .x/˛dx

is log-concave on .0;C1/.

Proof Write f D e�U , with U convex. Make the change of variable x D z=˛ to get

G.˛/ D
Z

e�˛U.z=˛/dz:

The function w.z; ˛/ WD ˛U.z=˛/ is convex on R
n �.0;C1/ by Lemma 2.8, which

means that the integrand above is log-concave. The log-concavity of G then follows
from Prékopa’s theorem [29], which implies that marginals of log-concave functions
are log-concave. ut
Remark 2.10 An old theorem of Borell [8, Theorem 2] states that if f is concave
on R

n, then Gf .p/ WD .p C 1/ 	 	 	 .p C n/
R

f pis log-concave as a function of p 2
.0;1/. Using this and the fact that a log-concave function is a limit of ˛-concave
functions with ˛ ! 0, one can obtain an alternate, indirect proof of Theorem 2.9.
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One can also similarly obtain an indirect proof of Theorem 2.9 by considering a
limiting version of [4, Theorem VII.2], which expresses a log-concavity property
of .p � 1/ : : : .p � n/

R
	�p for any convex function 	 on R

n, for p > n C 1 (an
improvement of this to the optimal range p > n is described in [6, 17], although this
is not required for this alternate proof of Theorem 2.9).

Proof of Theorem 2.3 Since f is a log-concave density, it necessarily holds that f 2
L˛.Rn/ for every ˛ > 0; in particular, G.˛/ WD ˛n

R
f ˛ is finite and infinitely

differentiable on the domain .0;1/. By definition,

log G.˛/ D n log˛ C log
Z

f ˛ D n log˛ C F.˛/:

Consequently,

d2

d˛2
Œlog G.˛/� D � n

˛2
C F00.˛/:

By Theorem 2.9, log G.˛/ is concave, and hence we must have that

� n

˛2
C F00.˛/ � 0

for each ˛ > 0. However, Lemma 2.7 implies that F00.˛/ D V.X˛/=˛2, so that we
obtain the inequality

V.X˛/� n

˛2
� 0:

For ˛ D 1, this implies that V.X/ � n.

Notice that if f D e�U , where U W Rn ! Œ0;1� is positively homogeneous of
degree 1, then the same change of variable as in the proof of Theorem 2.9 shows
that

G.˛/ D
Z

e�˛U.z=˛/dz D
Z

e�U.z/dz D
Z

f .z/dz D 1:

Hence the function G is constant. Then the proof above shows that V.X/ D n, which
establishes the equality case stated in Remark 2.5.

3 A General Bootstrapping Strategy

The purpose of this section is to describe a strategy for obtaining exponential
deviation inequalities when one has uniform control on variances of a family
of random variables. Log-concavity is not an assumption made anywhere in this
section.
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Theorem 3.1 Suppose X � f , where f 2 L˛.Rn/ for each ˛ > 0. Let X˛ � f˛ ,
where

f˛.x/ D f ˛.x/R
f ˛
:

If K D K.f / WD sup˛>0 V.X˛/, then

E

eˇfQh.X/�h.X/g� � eKr.�ˇ/; ˇ 2 R;

where

r.u/ D



u � log.1C u/ for u > �1
C1 for u � �1 :

Proof Suppose X is a random vector drawn from a density f on R
n, and define, for

each ˛ > 0, F.˛/ D log
R

f ˛ . Set

K D sup
˛>0

V.X˛/ D sup
˛>0

˛2F00.˛/I

the second equality follows from Lemma 2.7. Since f 2 L˛.Rn/ for each ˛ > 0,
F.˛/ is finite and moreover, infinitely differentiable for ˛ > 0, and we can freely
change the order of integration and differentiation when differentiating F.˛/.

From Taylor-Lagrange formula, for every ˛ > 0, one has

F.˛/ D F.1/C .˛ � 1/F0.1/C
Z ˛

1

.˛ � u/F00.u/du:

Using that F.1/ D 0, F00.u/ � K=u2 for every u > 0 and the fact that for 0 < ˛ <

u < 1, one has ˛ � u < 0, we get

F.˛/ � .˛ � 1/F0.1/C K
Z ˛

1

˛ � u

u2
du

D .˛ � 1/F0.1/C K
h
�˛

u
� log.u/

i˛
1
:

Thus, for ˛ > 0, we have proved that

F.˛/ � .˛ � 1/F0.1/C K.˛ � 1 � log˛/:

Setting ˇ D 1 � ˛, we have for ˇ < 1 that

eF.1�ˇ/ � e�ˇF0.1/eK.�ˇ�log.1�ˇ//: (3.1)
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Observe that eF.1�ˇ/ D R
f 1�ˇ D EŒf �ˇ.X/� D EŒe�ˇ log f .X/� D E


eˇQh.X/� and

e�ˇF0.1/ D eˇh.X/; the latter fact follows from the fact that F0.1/ D �h.X/ as is clear
from the identity (2.1). Hence the inequality (3.1) may be rewritten as

E

eˇfQh.X/�h.X/g� � eKr.�ˇ/; ˇ 2 R: (3.2)

ut
Remark 3.2 We note that the function r.t/ D t � log.1 C t/ for t > �1, (or the
related function h.t/ D t log t � t C 1 for t > 0, which satisfies sh.t=s/ D tr1.s=t/
for r1.u/ D r.u � 1/) appears in many exponential concentration inequalities in the
literature, including Bennett’s inequality [1] (see also [9]), and empirical process
theory [34]. It would be nice to have a clearer understanding of why these functions
appear in so many related contexts even though the specific circumstances vary quite
a bit.

Remark 3.3 Note that the function r is convex on R and has a quadratic behavior in
the neighborhood of 0 (r.u/ �0

u2

2
) and a linear behavior at C1 (r.u/ �1 u).

Corollary 3.4 With the assumptions and notation of Theorem 3.1, we have for any
t > 0 that

PfQh.X/� h.X/ � tg � exp



� Kr

�
t

K

	�

PfQh.X/� h.X/ � �tg � exp



� Kr

�
� t

K

	�

The proof is classical and often called the Cramér-Chernoff method (see for
example Sect. 2.2 in [9]). It uses the Legendre transform '� of a convex function
' W R ! R [ fC1g defined for y 2 R by

'�.y/ D sup
x

xy � '.x/:

Notice that if min' D '.0/ then for every y > 0, the supremum is reached at a
positive x, that is '�.y/ D supx>0 xy � '.x/: Similarly, for y < 0, the supremum is
reached at a negative x.

Proof The idea is simply to use Markov’s inequality in conjunction with Theo-
rem 3.1, and optimize the resulting bound.

For the lower tail, we have for ˇ > 0 and t > 0,

PŒQh.X/� h.X/ � �t� � E
�

e�ˇ
�Qh.X/�h.X/

��
e�ˇt

� exp



K

�
r.ˇ/ � ˇt

K

	�
:
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Thus minimizing on ˇ > 0, and using the remark before the proof, we get

PŒQh.X/� h.X/ � �t� � exp



� K sup

ˇ>0

�
ˇt

K
� r.ˇ/

	�
D e�Kr�. t

K /: (3.3)

Let us compute the Legendre transform r� of r. For every t, one has

r�.t/ D sup
u

tu � r.u/ D sup
u>�1

.tu � u C log.1C u// :

One deduces that r�.t/ D C1 for t � 1. For t < 1, by differentiating, the
supremum is reached at u D t=.1 � t/ and replacing in the definition we get

r�.t/ D �t � log.1 � t/ D r.�t/:

Thus r�.t/ D r.�t/ for all t 2 R. Replacing, in the inequality (3.3), we get the result
for the lower tail.

For the upper tail, we use the same argument: for ˇ > 0 and t > 0,

PŒQh.X/� h.X/ � t� � E
�

eˇ
�Qh.X/�h.X/

��
e�ˇt

� exp



K

�
r.�ˇ/ � ˇt

K

	�
:

Thus minimizing on ˇ > 0, we get

PŒQh.X/� h.X/ � t� � exp



� K sup

ˇ>0

�
ˇt

K
� r.�ˇ/

	�
: (3.4)

Using the remark before the proof, in the right hand side term appears the Legendre
transform of the function Qr defined by Qr.u/ D r.�u/. Using that r�.t/ D r.�t/ D
Qr.t/, we deduce that .Qr/� D .r�/� D r. Thus the inequality (3.4) gives the result for
the upper tail.

ut

4 Conclusion

The purpose of this section is to combine the results of Sects. 2 and 3 to deduce
sharp bounds for the moment generating function of the information content of
random vectors with log-concave densities. Naturally these yield good bounds on
the deviation probability of the information content Qh.X/ from its mean h.X/ D
EQh.X/. We also take the opportunity to record some other easy consequences.
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Theorem 4.1 Let X be a random vector in R
n with a log-concave density f . For

ˇ < 1,

E
�

eˇŒQh.X/�h.X/�

�
� E

�
eˇŒQh.X�/�h.X�/�

�
;

where X� has density f � D e�Pn
iD1 xi , restricted to the positive quadrant.

Proof Taking K D n in Theorem 3.1 (which we can do in the log-concave setting
because of Theorem 2.3), we obtain:

E

eˇfQh.X/�h.X/g� � enr.�ˇ/; ˇ 2 R:

Some easy computations will show:

E

eˇfQh.X�/�h.X�/g� D enr.�ˇ/; ˇ 2 R:

This concludes the proof.
ut

As for the case of equality of Theorem 2.3, discussed in Remark 2.5, notice that
there is a broader class of densities for which one has equality in Theorem 4.1,
including all those of the form e�kxkK , where K is a symmetric convex body.

Remark 4.2 The assumptionˇ < 1 in Theorem 4.1 is strictly not required; however,
for ˇ � 1, the right side is equal to C1. Indeed, already for ˇ D 1, one sees that
for any random vector X with density f ,

E

eQh.X/�h.X/

� D e�h.X/E
�
1

f .X/

�
D e�h.X/

Z
supp(f)

dx

D e�h.X/Voln.supp(f)/;

where supp(f) D fx 2 Rn W f .x/ > 0g is the support of the density f and Voln denotes
Lebesgue measure on R

n. In particular, this quantity for X�, whose support has
infinite Lebesgue measure, is C1.

Remark 4.3 Since

lim
˛!0

2

˛2
E
�

e˛.log f .X/�EŒlog f .X/�/

�
D V.X/;

we can recover Theorem 2.3 from Theorem 4.1.

Taking K D n in Corollary 3.4 (again because of Theorem 2.3), we obtain:
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Corollary 4.4 Let X be a random vector in R
n with a log-concave density f . For

t > 0,

PŒQh.X/� h.X/ � �nt� � e�nr.�t/;

PŒQh.X/� h.X/ � nt� � e�nr.t/;

where r.u/ is defined in Theorem 3.1.

The original concentration of information bounds obtained in [2] were subopti-
mal not just in terms of constants but also in the exponent; specifically it was proved
there that

P


1

n

ˇ̌Qh.X/� h.X/
ˇ̌ � t

�
� 2 e�ct

p
n (4.1)

for a universal constant c > 1=16 (and also that a better bound with ct2n in the
exponent holds on a bounded range, say, for t 2 .0; 2�). One key advantage of the
method presented in this paper, apart from its utter simplicity, is the correct linear
dependence of the exponent on dimension. Incidentally, we learnt from a lecture
of Klartag [22] that another proof of (4.1) can be given based on the concentration
property of the eigenvalues of the Hessian of the Brenier map (corresponding to
optimal transportation from one log-concave density to another) that was discovered
by Klartag and Kolesnikov [23]; however, the latter proof shares the suboptimal

p
nt

exponent of [2].
The following inequality is an immediate corollary of Corollary 4.4 since it

merely expresses a bound on the support of the distribution of the information
content.

Corollary 4.5 Let X have a log-concave probability density function f on R
n. Then:

h.X/ � � log kf k1 C n:

Proof By Corollary 4.4, almost surely,

log f .X/ � EŒlog f .X/�C n;

since when t � 1, PŒlog f .X/ � EŒlog f .X/� � nt� D 0. Taking the supremum over
all realizable values of X yields

log kf k1 � EŒlog f .X/�C n;

which is equivalent to the desired statement. ut
Corollary 4.5 was first explicitly proved in [4], where several applications of it

are developed, but it is also implicitly contained in earlier work (see, e.g., the proof
of Theorem 7 in [16]).
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An immediate consequence of Corollary 4.5, unmentioned in [4], is a result due
to [15]:

Corollary 4.6 Let X be a random vector in R
n with a log-concave density f . Then

kf k1 � enf .EŒX�/:

Proof By Jensen’s inequality,

log f .EX/ � EŒlog f .X/�:

By Corollary 4.5,

EŒlog f .X/� � log kf k1 � n:

Hence,

log f .EX/ � log kf k1 � n:

Exponentiating concludes the proof. ut
Finally we mention that the main result may also be interpreted as a small ball

inequality for the random variable f .X/. As an illustration, we record a sharp form
of [24, Corollary 2.4] (cf., [21, Corollary 5.1] and [5, Proposition 5.1]).

Corollary 4.7 Let f be a log-concave density on R
n. Then

Pff .X/ � cnkf k1g � 1 �
�

e 	 c 	 log

�
1

c

		n

;

where 0 < c < 1
e .

Proof Note that

Pff .X/ � cnkf k1g D Pflog f .X/ � log kf k1 C n log cg
D PfQh.X/ � � log kf k1 � n log cg
� PfQh.X/ � h.X/� n.1C log c/g:

using Corollary 4.5 for the last inequality. Applying Corollary 4.4 with t D � log c�
1 yields

Pff .X/ � cnkf k1g � e�nr.�1�log c/:

Elementary algebra concludes the proof. ut
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Such “effective support” results are useful in convex geometry as they can allow
to reduce certain statements about log-concave functions or measures to statements
about convex sets; they thus provide an efficient route to proving functional or
probabilistic analogues of known results in the geometry of convex sets. Instances
where such a strategy is used include [5, 24]. These and other applications of the
concentration of information phenomenon are discussed in [26].

Acknowledgements We are indebted to Paata Ivanisvili, Fedor Nazarov, and Christos Saroglou
for useful comments on an earlier version of this paper. In particular, Christos Saroglou pointed
out that the class of extremals in our inequalities is wider than we had realized, and Remark 2.5 is
due to him. We are also grateful to François Bolley, Dario Cordero-Erausquin and an anonymous
referee for pointing out relevant references.

This work was partially supported by the project GeMeCoD ANR 2011 BS01 007 01, and by
the U.S. National Science Foundation through the grant DMS-1409504 (CAREER). A significant
portion of this paper is based on the Ph.D. dissertation of Wang [32], co-advised by M. Madiman
and N. Read, at Yale University

References

1. G. Bennett, Probability inequalities for the sum of independent random variables. J. Am. Stat.
Assoc. 57(297), 33–45 (1962)

2. S. Bobkov, M. Madiman, Concentration of the information in data with log-concave
distributions. Ann. Probab. 39(4), 1528–1543 (2011)

3. S. Bobkov, M. Madiman, Dimensional behaviour of entropy and information. C. R. Acad. Sci.
Paris Sér. I Math. 349, 201–204 Février (2011)

4. S. Bobkov, M. Madiman, The entropy per coordinate of a random vector is highly constrained
under convexity conditions. IEEE Trans. Inform. Theory 57(8), 4940–4954 (2011)

5. S. Bobkov, M. Madiman, Reverse Brunn-Minkowski and reverse entropy power inequalities
for convex measures. J. Funct. Anal. 262, 3309–3339 (2012)

6. S. Bobkov, M. Fradelizi, J. Li, M. Madiman, When can one invert Hölder’s inequality? (and
why one may want to). Preprint (2016)

7. F. Bolley, I. Gentil, A. Guillin, Dimensional improvements of the logarithmic Sobolev,
Talagrand and Brascamp-Lieb inequalities. Preprint, arXiv:1507:01086 (2015)

8. C. Borell, Complements of Lyapunov’s inequality. Math. Ann. 205, 323–331 (1973)
9. S. Boucheron, G. Lugosi, P. Massart, Concentration Inequalities (Oxford University Press,

Oxford, 2013). A nonasymptotic theory of independence, With a foreword by Michel Ledoux
10. S. Boyd, L. Vandenberghe, Convex Optimization (Cambridge University Press, Cambridge,

2004)
11. D. Cordero-Erausquin, M. Fradelizi, G. Paouris, P. Pivovarov, Volume of the polar of random

sets and shadow systems. Math. Ann. 362, 1305–1325 (2014)
12. R. Eldan, Thin shell implies spectral gap up to polylog via a stochastic localization scheme.

Geom. Funct. Anal. 23(2), 532–569 (2013)
13. R. Eldan, B. Klartag, Approximately Gaussian marginals and the hyperplane conjecture,

in Concentration, Functional Inequalities and Isoperimetry, ed. by C. Houdré, M. Ledoux,
E. Milman, M. Milman. Contemporary Mathematics, vol. 545 (American Mathematical
Society, Providence, RI, 2011), pp. 55–68

14. R. Eldan, J. Lehec, Bounding the norm of a log-concave vector via thin-shell estimates, in
Geometric Aspects of Functional Analysis, ed. by B. Klartag, E. Milman. Lecture Notes in
Mathematics, vol. 2116 (Springer, Berlin, 2014), pp. 107–122



60 M. Fradelizi et al.

15. M. Fradelizi, Sections of convex bodies through their centroid. Arch. Math. (Basel) 69(6),
515–522 (1997)

16. M. Fradelizi, M. Meyer, Increasing functions and inverse Santaló inequality for unconditional
functions. Positivity 12(3), 407–420 (2008)

17. J. Li, M. Fradelizi, M. Madiman, Concentration of information content and other functionals
under convex measures, in Proceedings of the 2016 IEEE International Symposium on
Information Theory (Barcelona, 2016) pp. 1128–1132

18. O. Guédon, E. Milman, Interpolating thin-shell and sharp large-deviation estimates for
isotropic log-concave measures. Geom. Funct. Anal. 21(5), 1043–1068 (2011)

19. G. Hargé, Reinforcement of an inequality due to Brascamp and Lieb. J. Funct. Anal. 254(2),
267–300 (2008)

20. J.-B. Hiriart-Urruty, C. Lemaréchal, Convex Analysis and Minimization Algorithms. I.
Fundamentals. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of
Mathematical Sciences], vol. 305 (Springer-Verlag, Berlin, 1993)

21. B. Klartag, A central limit theorem for convex sets. Invent. Math. 168(1), 91–131 (2007)
22. B. Klartag, Eigenvalue distribution of optimal transportation. in Presentation given at the

Workshop on Information Theory and Concentration Phenomena held at the Institute for
Mathematics and its Applications (IMA), Minneapolis, April (2015)

23. B. Klartag, A. Kolesnikov, Eigenvalue distribution of optimal transportation. Anal. PDE 8(1),
33–55 (2015)

24. B. Klartag, V.D. Milman, Geometry of log-concave functions and measures. Geom. Dedicata
112, 169–182 (2005)

25. E.H. Lieb, M. Loss, Analysis, 2nd edn. Graduate Studies in Mathematics, vol. 14 (American
Mathematical Society, Providence, RI, 2001)

26. M. Madiman, L. Wang, S. Bobkov, Some applications of the nonasymptotic equipartition
property of log-concave distributions. Preprint (2016)

27. V.H. Nguyen, Inégalités fonctionnelles et convexité. Ph.D. thesis, Université Pierre et Marie
Curie (Paris VI) (2013)

28. V.H. Nguyen, Dimensional variance inequalities of Brascamp-Lieb type and a local approach
to dimensional Prékopa’s theorem. J. Funct. Anal. 266(2), 931–955 (2014)

29. A. Prékopa, On logarithmic concave measures and functions. Acta Sci. Math. (Szeged) 34,
335–343 (1973)

30. R.T. Rockafellar, Convex Analysis. Princeton Mathematical Series, vol. 28 (Princeton
University Press, Princeton, NJ, 1970)

31. A. van der Vaart, J.A. Wellner, A local maximal inequality under uniform entropy. Electron.
J. Stat. 5, 192–203 (2011)

32. L. Wang, Heat capacity bound, energy fluctuations and convexity. Ph.D. thesis, Yale University
(2014)

33. L. Wang, M. Madiman, Beyond the entropy power inequality, via rearrangements. IEEE Trans.
Inf. Theory 60(9), 5116–5137 (2014)

34. J.A. Wellner, Limit theorems for the ratio of the empirical distribution function to the true
distribution function. Z. Wahrsch. Verw. Gebiete 45(1), 73–88 (1978)



Maximal Inequalities for Dependent Random
Variables

Jørgen Hoffmann-Jørgensen

Abstract Maximal inequalities play a crucial role in many probabilistic limit
theorem; for instance, the law of large numbers, the law of the iterated logarithm,
the martingale limit theorem and the central limit theorem. Let X1;X2; : : : be random
variables with partial sums Sk D X1 C 	 	 	 C Xk. Then a maximal inequality gives
conditions ensuring that the maximal partial sum Mn D max1�i�n Si is of the same
order as the last sum Sn. In the literature there exist large number of maximal
inequalities if X1;X2; : : : are independent but much fewer for dependent random
variables. In this paper, I shall focus on random variables X1;X2; : : : having some
weak dependence properties; such as positive and negative In-correlation, mixing
conditions and weak martingale conditions.

Keywords Demi-martingales • Integral orderings • Mixing conditions •
Negative and positive correlation
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1 Introduction

Throughout this paper, we let .�;F ;P/ and . Q�; QF ; QP/ denote two fixed probability
spaces. We let R D .�1;1/ denote the real line and we let RC D Œ0;1/ denote
the non-negative real line. We let N0 D f0; 1; 2; : : :g denote the set of all non-
negative integers, we let N D f1; 2; : : :g denote the set of all positive integers and
we define

�n D f.i; j/ 2 N
2
0 j j � i � ng ; �n D f.i; j/ 2 N

2
0 j 0 � j � i � ng 8 n 2 N0 ;

r D f.i; k; j/ 2 N
3
0 j i < k � jg :
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Let X1;X2; : : : be a sequence of random variables and let us consider the partial sums
and the maximal partial sums : Si;i D Mi;i D Mi;i D 0 and

Si;j D P
i<k�j

Xk ; Mi;j D max
i�k�j

Si;k ; Mi;j D max
i�k�j

jSi;kj 8 .i; j/ 2 �1 : (1.1)

Then Mi;j and Mi;j are non-negative random variables. Recall that a maximal
inequality is an inequality stating the maximal sum Mi;j (or Mi;j) is of the same order
as the final sum SC

i;j (or jSi;jj); where we let xC D max.x; 0/ denote the positive part
of x for x 2 R.

In the literature there exists a variety of maximal inequalities. Let me review a
few of these. Let X1;X2; : : : be random variables and let Si;j, Mi;j and Mi;j be given
by (1.1). Then we have:

The Rademacher-Menchoff inequality (see [21] and [16]): Let �1 �2; : : : be
non-negative numbers satisfying ES2i;j � P

i<k�j �k for all .i; j/ 2 �1. Then
we have

EM2
i;j �

�
1C b log. j�i/

log 2 c
�2 P

i<k�j
�k 8 .i; j/ 2 �1 : (1.2)

The Minkovski-Hölder inequality (see [8, pp. 166–167]): Let us define �.n/ D
.EjXnjq/1=r for all n � 1 and set ˛ D �

1 � r
q_1
�C

. Then we have

EM
q
i;j �

� P
i<k�j

�.k/
r

q_1

	q_1
� . j � i/˛

� P
i<k�j

�.k/

	r

8 .i; j/ 2 �1 : (1.3)

Lévy’s inequality (see [8, p. 473]): If .X1; : : : ;Xk ; �XkC1 : : : ;�Xj/ and
.X1; : : : ;Xj/ have the same distribution for all 0 < k < j, then we have

P.Mi;j > t/ � 2P.Si;j > t/ 8 .i; j; t/ 2 �1 � RC ; (1.4)

P.Mi;j > t/ � 2P.jSi;jj > t/ 8 .i; j; t/ 2 �1 � RC : (1.5)

Khinchine’s inequality (see [8, p. 307]): If .1X1; : : : ; jXj/ and .X1; : : : ;Xj/

have the same distribution for all j � 1 and all signs 1; : : : ; j 2 f�1;C1g,
then we have

1
2

EM
q
i;j � EjSi;jjq � Kq E

 P
i<k�j

X2k

!q=2

8 .i; j/ 2 �1 ; (1.6)

where Kq D 1, if q � 2 and Kq D ��1=2 2q=2 �.
qC1
2
/, if q � 2.

The prophet inequality (see [4]): Suppose that X1;X2; : : : are independent with
EXn D 0 for all n � 1 and let ' W Œ0;1/ ! Œ0;1/ be an increasing, convex
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function with '.0/ D 0. Then we have

E'..Mi;j � a/C/ � 2E'
�
.Si;j � a/C

� 8 .i; j; a/ 2 �1 � R ; (1.7)

E'.Mi;j/ � 2E'.jSi;jj/ 8 .i; j/ 2 �1 : (1.8)

Ottaviani’s inequality (see [8, p. 472]) Suppose that X1;X2; : : : are independent
and let us define �i;j.s/ D mini<k�j P.jSi;kj � s/ for all .i; j; s/ 2 �1 � R. Then
we have

�i;j.s/P.Mi;j > s C t/ � P.jSi;jj > t/ 8 .i; j; s; t/ 2 �1 � RC � RC : (1.9)

The martingale inequality (see [8, p. 472]): Let Fi;j denote the �-algebra gen-
erated by .XiC1; : : : ;Xj/ for all .i; j/ 2 �1 and suppose that Si;j 2 L.P/ and
Si;k � E.Si;j j Fk;j/ a.s. for all i < k < j. If ' W R ! Œ0;1/ is increasing and
convex, we have

'.t/P.Mi;j > t/ � E
�
1fMi;j>tg '.Si;j/

� 8 t 2 R : (1.10)

If x 2 R, we let bxc denote the largest integer � x and we let dxe denote the
smallest integer � x. We let R D Œ�1;1� denote the extended real line and I shall
use the following extension of the arithmetic on the real line R D .�1;1/:

x C 1 WD 1 8 � 1 � x � 1 ; x C .�1/ WD �1 8 � 1 � x < 1 ;

0 	 .˙1/ WD 0 ; x 	 .˙1/ WD ˙1 ; .�x/ 	 .˙1/ WD �1 8 0 < x � 1 ;

1
0

D log 1 D e1 WD 1 ; 1
˙1 D e�1 WD 0 ; x

y WD x 	 1y ; x0 D 1 8 x; y 2 R ;

and I shall use the standard conventions inf ; D min ; WD 1, sup ; D max ; WD
�1 and

P
k2; ak WD 0.

If V is a real vector space, we say that  W V ! R is sub-additive if  .x C y/ �
 .x/ C  . y/ for all x; y 2 V . Let k � 1 be an integer. Then we let Bk denote the
Borel �-algebra on R

k and we let � denote the coordinate-wise ordering on R
k; that

is .x1; : : : ; xk/ � . y1; : : : ; yk/ if and only if xi � yi for all i D 1; : : : ; k. If D  R
k

and F W D ! R
m is a function, we say that F is increasing if F.x/ � F. y/ for all

x; y 2 D with x � y. If u D .u1; : : : ; uk/ and v D .v1; : : : ; vk/ are given vectors in
R

k, we define

Œ�; u� D fx 2 R
k j x � ug ; Œu;�� D fx 2 R

k j u � xg ;
u ^ v D .min.u1; v1/; : : : ;min.uk; vk// ; u _ v D .max.u1; v1/; : : : ;max.uk; vk// :

We say that F W R
kC ! R is homogeneous if F.rx/ D r F.x/ for all x 2 R

kC
and all r 2 RC, and we say that f W Rk ! R is super-modular if f .x/ C f . y/ �
f .x _ y/ C f .x ^ y/ for all x; y 2 R

k; see [10]. We let B.Rk/ denote the set of all
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bounded Borel functions from R
k to R, we let IB.Rk/ denote the set of all bounded,

increasing Borel functions from R
k to R and we let BC.Rk/ and IBC.Rk/ denote

the sets of all non-negative functions in B.Rk/ and IB.Rk/ respectively.
We let L0.P/ denote the set of all real random variables on .�;F ;P/ and we

let L0C.P/ denote the set of all non-negative random variables. If Z W � ! R is
an arbitrary function, we let E�Z and E�Z denote the upper and lower expectations
of Z. We let L.P/ denote the set of all random variables X W � ! R satisfying
E�X D E�X and we set EX WD E�X D E�X for all X 2 L.P/ and L1.P/ WD fX 2
L.P/ j EX ¤ ˙1g.

2 Rademacher-Menchoff Type Inequalities

In this section we shall study maximal inequalities of the Rademacher-Menchoff
type; see [12, 16–18, 21] and [13]. A triangular scheme .Si;j;Mi;j/.i;j/2�0 will be
called a max-scheme if Si;j and Mi;j are non-negative random variables satisfying

Si;i D Mi;i D 0 a.s. and Mi;j � Mi;k�1_.Si;k CMk;j/ a.s. 8 .i; k; j/ 2 r : (2.1)

Let .Si;j;Mi;j/ be a max-scheme. Then we have Mi;j � Mi;j�1 _ Si;j a.s. and Mi;j �
Si;iC1 C MiC1;j a.s. [take k D j and k D i C 1 in (2.1)]. So by induction we have

Mi;j � max
i<k�j

Si;k a.s and Mi;j � P
i<k�j

Sk�1;k a.s 8 .i:j/ 2 �1 : (2.2)

Let .Si;j/.i;j/2�1 be non-negative random variables satisfying

Si;j � Si;k C Sk;j a.s. 8.i; j/ 2 �1 (2.3)

and set Si;i D Mi;i D 0 and Mi;j D maxi<k�j Si;k for all .i; j/ 2 �1. Then .Si;j;Mi;j/

is a max scheme. In particular, we see that .SC
i;j ;Mi;j/ and .jSi;jj;Mi;j/ are max-

schemes, if Si;j, Mi;j and Mi;j are given by (1.1) for some sequence .Xn/ of real
random variables. Let .Si;j;Mi;j/ be a max-scheme. In this section we shall search
for conditions ensuring that the maximal “sum” Mi;j is of the same order as the
“sum” Si;j. More precisely:

Let K W L0C.P/ ! Œ0;1� be a functional. Then we say that K is P-increasing if
K.0/ < 1 and K.X/ � K.Y/ for all X;Y 2 L0C.P/ with X � Y a.s. We say that
K is weakly sub-additive if K is P-increasing and K.X _ Y/ � K.X/ C K.Y/ for
all X;Y 2 L0C.P/ and we say that K is sub-additive if K is P-increasing and K.X C
Y/ � K.X/ C K.Y/ for all X;Y 2 L0C.P/. Note that every sub-additive functional
is weakly sub-additive. Let K W L0C.P/ ! Œ0;1� be a P-increasing functional and
let .Si;j;Mi;j/ be a max-scheme. In this section, I shall search for upper bounds
of K.Mi;j/ in terms of K.Si;j/. More precisely, let D  RC be a non-empty set
and let f W N0 ! RC and Vi;j W D ! RC be given functions for .i; j/ 2 �0
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satisfying Vi;j.t/ � Vi;jC1.t/ and K.t Si;j/ � f . j � i/Vi;j.t/ for all .i; j; t/ 2 �0 � D.
I shall then search for functions F W N0 ! RC and Ui;j W D ! RC satisfying
K.t Mi;j/ � F. j � i/Ui;j.t/ for all .i; j; t/ 2 �0 � D. If K is weakly sub-additive,
then (2.2) shows that

K.t Mi;j/ � P
i<k�j

K.t Si;k/ � F. j � i/Vi;j.t/ 8 .i; j; t/ 2 �1 � D ; (2.4)

where F.n/ D f .1/C	 	 	C f .n/ for all n 2 N. This function is in general too large to
be really useful. In order to improve (2.4) I shall use the recursive structure of (2.1)
together with an inequality of the following type:

K.X _ .Y C Z// � �.K.
X/C K.�Y/;K.�Z// 8 X;Y;Z 2 L0C.P/ ; (2.5)

where 
;�; � 2 RC and� W R2C ! RC is an increasing, homogeneous function and
we use the convention �.1; x/ D �.x;1/ D 1 for all x 2 Œ0;1�. To construct
the improved function, we shall need following notion:

Let � W R2C ! RC be an increasing homogeneous function. If f W N0 ! RC and
r 2 RC, we define f �r .n/ inductively as follows:

f �r .0/ D f .0/ ; f �r .n/ D �.r f �r .n � 1/; f .n// 8 r 2 RC 8 n 2 N : (2.6)

If f W N0 ! RC is increasing, then an easy induction argument (see the proof of
Proposition A.2) shows that f �r is increasing if and only if f .0/ � �.r f .0/; f .1//;
for instance if f .0/ D 0 or if �.r; 1/ � 1. If f W N0 ! RC is increasing and c � 1

is a given number satisfying �.rc; 1/ � c, then an easy induction argument shows
that f �.n/ � c f .n/ for all n 2 N0. In the applications I shall consider the following
increasing, homogeneous functions:

†�.x; y/ WD .x1=� C y1=� /� ; ‚
.x; y/ WD x
 y1�
 8 .x; y/ 2 R
2C ; (2.7)

…�.x; y/ WD inf
0<˛<1

�
�. 1

˛
/ x C �. 1

1�˛ / y
� 8 .x; y/ 2 R

2C ; (2.8)

where � > 0, 0 < 
 < 1 and � W RC ! RC is a given function, together with the
following weakly sub-additive functionals:

L	.X/ D E	.X/ ; M	.X/ D sup
u2R

C

 .u/P.X > u/ ; (2.9)

where 	 W RC ! RC is an increasing function and  W RC ! RC is an arbitrary
function. Note that f

†�
r .n/ D �Pn

kD0 r.n�k/=� f .k/1=�
��

for all n 2 N0 and all r 2
RC and that …� D †�C1 if � � 0 and �.x/ D x� for all x > 1.

Let � W R2C ! RC be an increasing homogeneous function and set �.1; x/ D
�.x;1/ D 1 for all x 2 Œ0;1�. Let �; � � 0 be given numbers and let K W
L0C.P/ ! Œ0;1� be a weakly sub-additive functional. Let us consider the following
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condition:

K.X C Y/ � �.K.�X/;K.�Y// 8 X;Y 2 L0C.P/ : (2.10)

Let 0 < p < 1 be given. Since x C y � x
p _ y

1�p for all x; y � 0, we see that .K; †1/
satisfies (2.10) with .�; �/ D . 1p ;

1
1�p / and since x _ . y C z/ � .x _ y/ C z for all

x; y; z � 0, we see that (2.10) implies that .K; �/ satisfies (2.5) with .
; �; �/ D
.�; �; �/. Since K is weakly subadditive, we see that .K; †1/ satisfies (2.5) with
.
; �; �/ D .1; 1p ;

1
1�p /. If K. 	 /1=� is sub-additive for some � > 0, we see that

.K; †�/ satisfies (2.10) with .�; �/ D .1; 1/ and (2.5) with .
; �; �/ D .1; 1; 1/.
If � W RC ! RC is a given function satisfying K.sX/ � �.s/K.X/ for all s > 1

and all X 2 L0C.P/. then .K;…�/ satisfies (2.10) with .�; �/ D .1; 1/ and (2.5) with
.
; �; �/ D .1; 1; 1/.

Let 	 W RC ! RC be an increasing function. Then L	 is weakly sub-additive.
If � > 0 and 	. 	 /1=� is subadditive; for instance, if 	.st/ � s� 	.t/ for all s > 1

and all t � 0, then Minkovski’s inequality shows that .L	;†�/ satisfies (2.5) with
.
; �; �/ D .1; 1; 1/. If � W RC ! RC is a given function satisfying 	.st/ �
�.s/ 	.t/ for all s > 1 and all t � 0, then L	.sX/ � �.s/L	.X/ for all s > 1 and
all X 2 L0C.P/ and so we see that .L	;†�/ satisfies (2.5) with .
; �; �/ D .1; 1; 1/.
If 	 is log-convex and 0 < p < 1, then Hölder’s inequality shows that .L	;‚p/

satisfies (2.5) with .
; �; �/ D . 1p ;
1
p ;

1
1�p /.

Let  W RC ! RC be a given function. Then M is a weakly sub-additive
functional and if � W RC ! RC is a given function satisfying  .st/ � �.s/  .t/ for
all s > 1 and all t � 0, then the reader easily verifies that .M ;…�/ satisfies (2.5)
with .
; �; �/ D .1; 1; 1/.

The results of this section rely on a purely analytic proposition solving a certain
functional inequality (see Proposition A.2 in Appendix). To do this, we need the
following notion. If � W N0 ! N0 is an increasing function, we define

D�
i;j D fk 2 N0 j i < k � j ; �.j�k/_�.k�i�1/ < �. j�i/g 8 .i; j/ 2 �1 : (2.11)

Set O�.n/ D inffk 2 N0 j �.k/ � �.n/g for all n 2 N0. Then O� W N0 ! N0 is an
increasing function satisfying O�.n/ � n for all n 2 N0 and we have O�.n/ D n if and
only if either n D 0 or n � 1 and �.n � 1/ < �.n/. Since � is increasing, we have
�.k/ < �.n/ for all 0 � k < O�.n/ and

D�
i;j D fk 2 N0 j j � O�. j � i/ < k � i C O�. j � i/g 8.i; j/ 2 �1 : (2.12)

Hence, if .i; j/ 2 �1, we have that D�
i;j D fk 2 N0 j i < k � jg if and only if

�. j � i � 1/ < �. j � i/. Similarly, we have that D�
i;j ¤ ; if and only if �.b j�i

2
c/ <

�. j � i/ and if so we have d iCjC1
2

e 2 D�
i;j.
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Theorem 2.1 Let K W L0C.P/ ! Œ0;1� be a P-increasing functional, let � W R2C !
RC be an increasing, homogeneous function and set �.1; x/ D �.x;1/ D 1 for
all x 2 Œ0;1�. Let # W RC ! RC, f W N0 ! RC and � W N0 ! N0 be increasing
functions and let 
;�; �; r 2 RC be given numbers satisfying

(a) K.X _ .Y C Z// � �.K.
X/C K.�Y/;K.�Z// 8 X;Y;Z 2 L0C.P/ ;
(b) �.0/ D 0 and f .0/ � �.rf .0/; f .1// :

Let .Mi;j;Si;j/.i;j/2�0 be a max-scheme and let D  RC be a non-empty set such that

t 2 D and �t 2 D for all t 2 D. Let Gi;j W RC ! RC for .i; j/ 2 �0 be given
functions satisfying

(c) K.t Si;j/ � f .�. j � i// #.Gi;j.t// 8.i; j; t/ 2 �0 � .�D/ ;
(d) Gi;j.t/ � Gi;jC1.t/ 8.i; j; t/ 2 �0 � .�D/ :

where �D WD f�t j t 2 Dg. Let us define Vi;j.t/ D #.Gi;j.�t// for all .i; j; t/ 2
�0 � RC and

‡r D f.i; j; t/ 2 �1 � D j f �r .�. j � i//Vi;j.t/ < K.t Mi;j/g :

Then we have K.t Mi;j/ � f �r .�. j � i//Vi;j.t/ for all .i; j; t/ 2 �0 � D if and only if
the following condition holds:

(e) min
k2D

�
i;j
.Vi;k�1.
t/C Vk;j.�t// � r Vi;j.t/ 8 .i; j; t/ 2 ‡r :

Suppose that Gi;i.t/ D 0 for all .i; t/ 2 N0 � .�D/ and let �; ˛; ˇ; ı; a; b; q � 0 be
given numbers satisfying

( f) max
i<k<j

.Gi;k.t/C Gk;j.t// � �Gi;j.t/ 8 .i; j; t/ 2 �2 � .�D/ ;

(g) Gi;j.
t/ � ˛Gi;j.t/ ; Gi;j.�t/ � ˇGi;j.t/ 8.i; j; t/ 2 �0 � .�D/ ;
(h) #.bx/ � a#.x/1Cı and #.x/C #. y/ � q#.x C y/ 8x; y � 0 :

If � � 1, then we have K.t Mi;j/ � f �r .�. j � i//Vi;j.t/ for all .i; j; t/ 2 �0 � D if just
one of the following two conditions hold:

(i) ˛ˇ�

˛Cˇ � b ; �.n � 1/ < �.n/ 8 n � 2 and r � 2a
�K.tMi;j/

f�r .�.1//

�ı 8 .i; j; t/ 2 ‡r :

( j) .˛ _ ˇ/� � b ; �.b n
2
c/ < �.n/ 8 n � 2 and r � qa

�K.tMi;j/

f�r .�.1//

�ı 8.i; j; t/ 2 ‡r :

Proof We shall apply Proposition A.2 with D, � , Vi;j as above and

Ai;j.t/ D K.tMi;j/ ;Bi;j.t/ D K.�t Si;j/ ; h D f ; . p; q/ D .�; 
/ :

Let .i; k; j/ 2 r and t � 0 be given. By (a) and (2.1), we have

K.t Mi;j/ � �.K.
tMi;k�1/C K.�t Mk;j/;K.�t Si;k// :
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Hence, we see that condition (a) in Proposition A.2 holds. Since Mi;i D Si;i D 0

a.s., we have Ai;i.t/ D Bi;i.t/ D K.0/ and by (c), we have K.0/ � f .0/Vi;i.t/.
So by (c) and (d) we see that the conditions (b) and (c) in Proposition A.2 hold.
Hence, we have that Ai;j and Bi;j are finite and increasing on D for all .i; j/ 2 �0

and by (b), we see that f �r is increasing. So by Proposition A.2, we see that (e)
implies K.t Mi;j/ � f �r .�. j � i//Vi;j.t/ for all .i; j; t/ 2 �0 � D. Conversely, the
latter condition implies that ‡r D ; in which case (e) holds trivially.

Suppose that Gi;i.t/ D 0 for all .i; t/ 2 N0 � .�D/ and that (f)–(h) hold. Let
.i; j; t/ 2 �1 � D be given and set Wi;j.t/ D min

k2D
�
i;j
.Vi;k�1.
t/C Vk;j.�t//. Then I

claim that we have

�. j � i � 1/ < �. j � i/ ) Wi;j.t/ � 2 #
�
˛ˇ�

˛Cˇ Gi;j.�t/
�
; (*)

�.b j�i
2

c/ < �. j � i/ ) Wi;j.t/ � q#.��Gi;j.�t// ; (**)

where � WD ˛ _ ˇ.

Proof of (*) Suppose that �. j � i � 1/ < �. j � i/. By (2.12), we have D�
i;j D

fk 2 N0 j i < k � jg. Since t 2 D, we have 
t 2 D and �t 2 D and so we have
Gm;m.�t/ D Gm;m.
�t/ D Gm;m.��t/ D 0 for all m 2 N0. Hence, if j D i C 1, we
have Wi;j.t/ D Vi;i.
t/ C Vj;j.�t/ D 2 #.0/ � 2 #.x/ for all x � 0. Suppose that
j � i C 2 and set a D ˇ

˛
, gm;n D Gm;n.�t/ and h D ˇ�

˛Cˇ Gi;j.�t/. Then we have

gi;i D gj;j D 0 and � gi;j D .1C 1
a / h and so by (f) and Lemma A.1, we have

min
i<k�j

.Gi;k�1.�t/ _ . ˇ
˛

Gk;j.�t// � ˇ�

˛Cˇ Gi;j.�t/ :

By (g), we have Gi;k�1.
�t/ _ Gk;j.��t/ � ˛ .Gi;k�1.�t/ _ . ˇ
˛

Gk;j.�t/// for all i <
k � j and since # is increasing, we have

Wi;j.t/ D min
i<k�j

.Vi;k�1.
t/C Vk;j.�t// � 2 #

�
min
i<k�j

.Gi;k�1.
�t/ _ Gk;j.��t//

	

� 2 #
�
˛ˇ�

˛Cˇ Gi;j.�t/
�
;

which completes the proof of (*).

Proof of (**) Suppose that �.b j�i
2

c/ < �. j � i/ and set � D d iCjC1
2

e. By (2.12), we

have � 2 D�
i;j and so by (h) we have

Wi;j.t/ � Vi;��1.
t/C V�;j.�t/ � q#
�
Gi;��1.
�t/C G�;j.��t/

�
:

By (d), we have Gi;��1.
�t/ � Gi;�.
�t/ and so by (f) and (g), we have

Gi;��1.
�t/C G�;j.��t/ � ˛Gi;� .�t/C ˇG�;j.�t/ � ��Gi;j.�t/
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Since # is increasing, we have Wi;j.t/ � q#.��Gi;j.�t// proves (**).

Suppose that (i) holds and let .i; j; t/ 2 ‡r be given. By (2.2), we have Mi;iC1 �
Si;iC1 a.s. and by (c), we have K.�t Si;iC1/ � f .�.1//Vi;iC1.t/. Since � � 1, we have
K.t Mi;iC1/ � f .�.1//Vi;iC1.t/. Hence, if f .�.1// � f �r .�.1// we have .i; i C 1; t/ …
‡r and j� i � 2, and if f .�.1// > f �r .�.1//, we have �.1/ > 0 D �.0/. Hence, by (i)
we have �. j � i � 1/ < �. j � i/ and since f �r .�. j � i// � f �r .�.1// and .i; j; t/ 2 ‡r ,

we have Vi;j.t/ � K.tMi;j/

f�r .�.1//
. So by (i) we have 2a Vi;j.t/ı � r and ˛ˇ�

˛Cˇ � b and so by
(*) and (h) we have

Wi;j.t/ � 2 #.b Gi;j.�t// � 2a Vi;j.t/
1Cı D 2a Vi;j.t/

ı Vi;j.t/ � r Vi;j.t/ :

Hence, (e) holds and so we have K.tMi;j/ � f �r .�. j � i//Vi;j.t/ for all .i; j; t/ 2
�0 � D.

Suppose that ( j) holds and let .i; j; t/ 2 ‡r be given. As above, we see that we
have either j� i � 2 or �.1/ > 0 D �.0/. Hence, by ( j) we have �.b j�i

2
c/ < �. j� i/.

Since .i; j; t/ 2 ‡r and f �r .�. j � i// � f �r .�.1//, we have Vi;j.t/ � K.tMi;j/

f�r .�.1//
. Hence,

by ( j) we have qa Vi;j.t/ı � r and �� � b and so by (**) and (h) we have

Wi;j.t/ � q#.b Gi;j.�t// � qa Vi;j.t/
ı Vi;j.t/ � r Vi;j.t/ :

Hence, (e) holds and so we have K.tMi;j/ � f �r .�. j � i//Vi;j.t/ for all .i; j; t/ 2
�0 � D. ut
Remark 2.2

(1): Let # W RC ! RC be an increasing function and let b; � > 0 be given. Then
# satisfies (h) with .a; b; ı; q/ D .1; 1; 0; 2/. If #.x/ D x� , then # satisfies (h)
with .a; b; ı; q/ D .b� ; b; 0; 2.1��/C/. If #.x/ D ex� and b � 1, then # satisfies
(h) with .a; b; ı; q/ D .1; b; b� � 1; 2/. If #.x/ D e�x��

and 0 < b � 1, then #
satisfies (h) with .a; b; ı; q/ D .1; b; b�� � 1; 2/.

(2): Let f W N0 ! RC be an increasing function and let r � 0 and c � 1 be given
numbers such that �.rc; 1/ � c. Then we have f �r .n/ � c f .n/ for all n 2 N0.
Hence, if (a)–(e) hold, we have K.t Mi;j/ � c f .�. j � i// #.Gi;j.�t// for all
.i; j; t/ 2 �0 � D. If � > 0, we have †�.rc; 1/ � c if and only if 0 � r < 1

and c � .1 � r1=� /�� . If 0 < p < 1, we have ‚p.rc; 1/ � c if and only if
c � rp=.1�p/. If � W RC ! RC is a function satisfying �.s/ � 1 for all s > 1

and p; q > 0 are given numbers satisfying 1
p C 1

q D 1 and r �. p/ < 1, then we
have …�.rc; 1/ � c for all c � �.q/=.1� r �. p//.

(3): Let me comment on the role of the function �. In most applications we use
�.n/ � n and if so we have D�

i;j D fk 2 N0 j i < k � jg. In order to obtain the
logarithmic constant in the classical Rademacher-Menchoff inequality (1.2),

we use the function `.n/ WD b logC n
log 2 c for n 2 N0; then ` W N0 ! N9 is

increasing with `.0/ D `.1/ D 0 and we have `.b n
2
c/ < `.n/ for all n � 2. So
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by (2.12), we have d iCjC1
2

e 2 D`
i;j. for all .i; j/ 2 �2. Let � W N0 ! N0 be an

unbounded increasing function and let ��.n/ WD inffk 2 N0 j �.k C 1/ > ng
be its “inverse” for n 2 N0. Then we have �.��.n// � n � ��.�.n// for all
n 2 N0. Hence, if h W N0 ! RC is an increasing function and f .n/ D h.��.n//,
then we have h.n/ � f .�.n// for all n 2 N0 and observe that f D h ı �� is the
smallest function with this property. Note that `�.n/ D 2nC1 � 1 and so we
have h.n/ � f .`.n// for all n 2 N0 where f .n/ D h.2nC1 � 1/.

Examples In the examples below, we let .Si;j;Mi;j/.i;j/2�0 be a max scheme, we let
K W L0C.P/ ! Œ0;1� be a P-increasing functional and we let � W R2C ! RC be an
increasing homogeneous function.

Example 2.3 Suppose that .K; �/ satisfies (a) with 
 D � D � D 1. Let � > 0 and
let .gi;j/.i;j/2�0 be a triangular scheme of non-negative numbers satisfying gi;i D 0

for all i 2 N0 and (cf. (1.a)–(1.c) in [18]):

gi;j � gi;jC1 8 .i; j/ 2 �1 and max
i<k<j

.gi;k C gk;j/ � � gi;j 8.i; j/ 2 �2 :

Let f W N0 ! RC, � W N0 ! N0 and # W RC ! RC be increasing functions
such that �.0/ D 0 and let r; q � 0 be given such that f .0/ � �.r f .0/; f .1// and
#.x/C #. y/ � q#.x C y/ 8 x; y � 0. Set D D f1g and Gi;j.t/ � gi;j. Then (d), (f)
and (g) holds with ˛ D ˇ D 1. So by Theorem 2.1 we have:

(1.a) If #.�x/ � r
2
#.2x/ for all x � 0 and K.Si;j/ � f . j � i/ #.gi;j/ for all

.i; j/ 2 �0, we have K.Mi;j/ � f �r . j � i/ #.gi;j/ for all .i; j/ 2 �0 (apply
Theorem 2.1 with �.n/ � n).

(1.b): If �.b n
2
c/ < �.n/ 8 n � 2, #.�x/ � r

q #.x/ 8 x � 0 and K.Si;j/ � f .�. j �
i// #.gi;j/ for all .i; j/ 2 �0, then we have K.Mi;j/ � f �r .�. j� i// #.gi;j/ for
all .i; j/ 2 �0.

Let � � 1 and let 	 W RC ! RC be an increasing function such that 	. 	 /1=�
is sub-additive. Then .L	;†�/ satisfies (a) with 
 D � D � D 1. Hence, we see

that (1.a) extends Theorem 3.1 in [18], and that (1.b) with �.n/ D b logC n
log 2 c, extends

Theorem 3.3 and Corollary 3.1 in [18].
Let  ; � W RC ! RC be given functions satisfying  .st/ � �.s/  .t/ for all

s > 1 and all t. Then .M	;…�/ satisfies (a) with 
 D � D � D 1. Hence, we see
that (1.a) extends Theorem 3.2 in [18] and gives a general solution to Problem 2 in
[18].

Suppose that � D †� for some � > 0 and let .�k/k�0 be a sequence of non-

negative numbers. Applying (1.b) with �.n/ D b logC n
log 2 c, gi;j D P

i<k�j �k, � D 1

and f .n/ � 1, we obtain following extension of the classical Rademacher-Menchoff
inequality:

(1.c): If K.Si;j/ � P
i<k�j �k for all .i; j/ 2 �0, then we have K.Mi;j/ ��

1C b log. j�i/
log 2 c

�� P
i<k�j �k for all .i; j/ 2 �1 [see (1.2)].
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Example 2.4 Suppose that .K; �/ satisfies (a) for some 
;�; � � 1 and let D  RC
be a non-empty set such that 
t; �t 2 D for all t 2 D. Let Gi;j W RC ! RC be given
functions such that Gi;i.t/ D 0 8 .i; t/ 2 N0 � RC and suppose that .Gi;j/ satisfies
(d), (f) and (g) for some �; ˛; ˇ � 0. Let f W N0 ! RC and # W RC ! RC be
increasing functions and let r � 0 be given such that f .0/ � �.r f .0/; f .1//. By
Theorem 2.1 with �.n/ � n, we have

(2.a): If #. ˛ˇ�
˛Cˇ x/ � r

2
#.x/ for all x � 0 and K.t Si;j/ � f . j � i/ #.Gi;j.t// for all

.i; j; t/ 2 �0 � .�D/, then we have K.t Mi;j/ � f �r . j � i/ #.Gi;j.�t// for all

.i; j; t/ 2 �0 � D.

Let 	 W RC ! RC be log-convex function and let �; � > 0 be given such that
1
�

C 1
�

D 1. Then .L	;‚1=�/ satisfies (a) with .
; �; �/ D .�; �; �/. Set r D 2

and c D 21=.1��/. Since 
 D �, we may take ˛ D ˇ and since ‚1=�.2; 1/ � 1 and
‚1=�.2c; 1/ D c, we have the following extension of Theorem 2.1 in [18]:

(2.b): If ˛� � 2 and E	.t Si;j/ � f . j� i/ #.Gi;j.t// for all .i; j; t/ 2 �0� .�D/, then
we have E	.tMi;j/ � 21=.1��/ f . j � i/ #.Gi;j.�t// for all .i; j; t/ 2 �0 � D.

Example 2.5 Suppose that K is weakly subadditive and K.X/ � 1 for all X 2
L0C.P/. Let �; � > 0 be given such that 1

�
C 1

�
D 1 and let D  RC be a non-empty

set such that �t 2 D for all t 2 D. Let ˇ; � � 0 and Gi;j W RC ! RC be given such
that Gi;i.t/ D 0 8 .i; t/ 2 N0 � .�D/ and Gi;j.�t/ � ˇGi;j.t/ 8 .i; t/ 2 �0 � .�D/
and .Gi;j/ satisfies (d) and (f). Then .K; †1/ satisfies (a) with .
; � �/ D .1; �; �/

and since 
 D 1, we see that .Gi;j/ satisfies (g) with .˛; ˇ/ D .1; ˇ/. Let f W N0 !
RC and # W RC ! RC be increasing functions. Let u; ı > 0 be given numbers
satisfying u . f .0/

2
C f .1// � 41=ı. Applying (2.a) with .r; c/ D . 1

2
; 2/ and f replaced

by uf , we have

(3.a): If #. ˇ�

1Cˇ x/ � #.x/1Cı 8 x � 0 and K.t Si;j/ � u f . j � i/ #.Gi;j.t// for all
.i; j; t/ 2 �0 � D, then we have K.tMi;j/ � 2u#.Gi;j.�t// for all .i; j; t/ 2
�0 � D.

Note that T .X/ D P.X > 1/ is a weakly sub-additive functional such that
T .X/ � 1 and T .tX/ D P.X > 1

t / for all X 2 L0C.P/ and all t > 0. Applying
(3.a) on this functional and with #.x/ D e�1=x, we obtain Theorem 2.2 in [18].

In the last two results of this section I shall treat the case where K is a weakly
sub-additive functional satisfying K.0/ D 0 and K.X/ � 1 for all X 2 L0C.P/; for
instance, if K D L	 where 	 W RC ! Œ0; 1� is increasing with 	.0/ D 0.

Theorem 2.6 Let .Si;j;Mi;j/ be a max-scheme, let K W L0C.P/ ! Œ0; 1� be a weakly
sub-additive functional such that K.0/ D 0 and let f W N0 ! RC be an increasing
function such that f .2/ > 0. Let 0 � ˇ < 1 and p; q > 0 be given numbers such
that p C q D 1, let D  .0;1/ be a non-empty interval with left endpoint 0 and let
G0;G1; : : : W RC ! RC be given functions satisfying:

(a) K
�
1
t Si;j

�
� f . j � i/ e�Gj�i.t/ 8 .i; j; t/ 2 �1 � D ;
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(b) Gn.t/ � GnC1.t/ and Gn.qt/ � ˇGn.t/ 8.n; t/ 2 N0 � D :

Let us define

F.n/ D
nP

kD1
f .k/ ; Qn.t/ D max

1�m�n
.Gm�1.t/ ^ Gn�m. pt// ;

Cn.t/ D fu 2 D j Qn.u/ < .1C t/Gn.u/g ; Ln.t/ D inf
u2Ci;j.t/

Gn.u/ :

for all .n; t/ 2 N � RC. If the following condition hold:

(c) 9 ı > 0 so that lim inf
n!1

Ln.ı/

log F.n/ >
1

1�ˇ ;

then there exists a > 0 such that K. 1t Mi;j/ � a f . j � i/ e�ˇGi;j.t/ for all .i; j; t/ 2
�0 � D. More precisely, if ı > 0 and c � 0 are given numbers satisfying

(d) ec � f .2/�1 41=ı and log F.n/ � c C log f .n/C .1 � ˇ/ Ln.ı/ 8 n � 2 ;

then we have K. 1t Mi;j/ � 2ec f . j � i/ e�ˇGi;j.t/ for all .i; j; t/ 2 �0 � D.

Proof Set h.0/ D 0 and h.n/ D ec f .n/ for n � 1 and let us define Vi;i.t/ D 0

for .i; t/ 2 N0 � D and Vi;j.t/ D e�ˇ Gj�i.t/ for .i; j; t/ 2 �1 � RC. We shall apply
Proposition A.2 with D; h;Vi;j as above, . p; q/ D . p; 1/ and

Ai;j.t/ D K
�
1
t Mi;j

�
; Bi;j.t/ D K

� q
t Si;j

�
; � D †1 ; �.n/ � n ; r D 1

2
:

Let .i; k; j/ 2 r and t > 0 be given. Since K is weakly sub-additive and p C q D 1,
we have

K
�
1
t Mi;j

� � K
�
1
t Mi;k�1

�C K
�
1
pt Mk;j

�
C K

�
1
qt Si;k

�
:

Hence we see that condition (a) in Proposition A.2 holds. Since Mi;i D 0 a.s. and
K.0/ D 0, we have Ai;i.t/ D 0 D Vi;i.t/ and since Gn � GnC1, we see that the
condition (b) in Proposition A.2 holds. Let .i; j; t/ 2 �0 � D be given, Since q � 1

and D is an interval with left endpoint 0, we have qt 2 D. So by (a) and (b) we
have Gj�i.qt/ � ˇGj�i.t/ and Bi;j.t/ � h. j � i/Vi;j.t/. Hence, we see that (a)–
(c) in Proposition A.2 hold and since r D 1

2
, we have that h†1r is increasing and

h.n/ � h†1r .n/ � 2 h.n/ for all n 2 N0. Since ec � 1, we have f .n/ � h.n/ � h†1r .n/
for all n 2 N.

Suppose that (d) holds for some ı > 0 and some c � 0. Let .i; j; t/ 2 ‡r be
given, where ‡r is defined as in Proposition A.2. Since Mi;iC1 � Si;iC1 a.s. and
ˇ < 1 � ec, we have by (a)

Ai;iC1.t/ � K. 1t Si;iC1/ � f .1/ e�Gi;iC1.t/ � h†1r .1/Vi;iC1.t/
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and since .i; j; t/ 2 ‡r , we have n WD j � i � 2. So by (2.4) and weak sub-additivity,
we have

ec f .n/ e�ˇGn.t/ � h†1r .n/Vi;j.t/ < Ai;j.t/ � F.n/ e�Gn.t/ :

Taking logarithms and using (c), we have

.1 � ˇ/Gn.t/ < log F.n/� log f .n/� c � .1 � ˇ/ Ln.ı/

and since ˇ < 1, we have Gn.t/ < Ln.�/. So we must have Qn.t/ � .1C ı/Gn.t/.
Hence, there exists an integer 1 � m � n such that Gm�1.t/ ^ Gn�m. pt/ � .1 C
ı/Gn.t/. Set k D i C m. Then we have i < k � j and

Vi;k�1.t/C Vk;j. pt/ � 2 .Vi;k�1.t/ _ Vk;j. pt// D 2 e�ˇ .Gm�1.t/^Gn�m. pt//

� 2 e�ˇ.1Cı/Gn.t/ D 2Vi;j.t/
1Cı :

Since K.X/ � 1 and .i; j; t/ 2 ‡r , we have Ai;j.t/ � 1 and h†1r .n/Vi;j.t/ � 1.
Since ec f .2/ � h†1r .n/ and ı > 0, we have 2Vi;j.t/ı � 2 e�cı f .2/�ı and since
ec � f .2/�1 41=ıj, we have

Vi;k�1.t/C Vk;j. pt/ � 2Vi;j.t/
ı Vi;j.t/ � 1

2
Vi;j.t/ D r Vi;j.t/ :

Since � is strictly increasing and i < k � j, we have k 2 D�
i;j and so by

Proposition A.2 we have K. 1t Mi;j/ � h†1r . j � i/Vi;j.t/ for all .i; j; t/ 2 �0 � D.
Since h†1r .n/ � 2 h.n/ � 2ec f .n/ and Vi;j.t/ D e�ˇGj�i.t/, we see that K. 1t Mi;j/ �
2ec f . j � i/ e�ˇGj�i.t/ for all .i; j; t/ 2 �0 � D.

Suppose that (c) holds and let ı > 0 be chosen according to (c). Since F.n/ !
1. there exists an integer n0 � 1 such that F.n0/ > e and log F.n/ � .1 � ˇ/ Ln.ı/

for all n � n0. But then there exists c > 0 such that ec � f .2/�1 41=ı and c �
� log f .2/. Since F and f are increasing, we see that (c) implies (d) with this choice
of .ı; c/. ut
Corollary 2.7 (cf. [12] and [13]) Let .Si;j;Mi;j/ be a max-scheme, let K W L0C.P/ !
Œ0; 1� be a weakly sub-additive functional such that K.0/ D 0 and let f W N0 ! RC
be an increasing function such that f .2/ > 0. Let 0 � ˛; ˇ < 1 and p; q > 0 be given
numbers such that p C q D 1 and let D  .0;1/ be a non-empty interval with left
endpoint 0. Let 	 W RC ! RC be a given function and let g1; g2; : : : W RC ! RC
be increasing functions satisfying

(a) K
�
1
t Si;j

� � f . j � i/ exp
�
� 	.t/

j�iCgj�i.t/

�
8.i; j; t/ 2 �1 � D ;

(b) 	. pt/ � ˛ 	.1/ ; 	.qt/ � ˇ 	.t/ and gn.t/ � gnC1.t/ 8 .n; t/ 2 N � D :
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Set F.n/ D f .1/C 	 	 	 C f .n/ for n 2 N and let us define

C�
n .�/ D fu 2 D j 	.u/ > 0 ; gn.u/ > n�g and L�

n .�/ D inf
u2C�

n .�/

	.u/
nCgn.u/

for all .�; n/ 2 RC � N. If the following condition hold:

(c) 9 0 � � < ˛
1�˛ so that lim inf

n!1
L�

n .�/

log F.n/ >
1

1�ˇ ;

then there exists a > 0 so that

K
�
1
t Mi;j

� � a f . j � i/ exp
�
� ˇ 	.t/

j�iCgj�i.t/

�
8 .i; j; t/ 2 �1 � D :

More precisely, if 0 � � < ˛
1�˛ and c � 0 are given numbers satisfying ec �

f .2/�1 4.2�C1/=.˛�� .1�˛// and

(d) log F.n/ � c C log f .n/C .1 � ˇ/ L�
n .�/ 8 n � 2 ;

then we have K. 1t Mi;j/ � 2ec f . j � i/ exp
�
� ˇ 	.t/

j�iCgj�i.t/

�
for all .i; j; t/ 2 �1 � D.

Proof Suppose that (d) holds and let us define G0.t/ D 	.t/ and Gn.t/ D 	.t/
nCgn.t/

for .n; t/ 2 N � RC. Since gn is increasing, we see that the conditions (a) and (b) in
Theorem 2.6 hold and we shall adopt the notation of Theorem 2.6 with this choice
of .Gn/. Let 0 � � < ˛

1�˛ and n � 2 be a given and set ı D ˛��.1�˛/
2�C1 , � D 1C�.1�˛/

1C˛
and m D dn�e. Then we have 0 < ı < ˛ and 1

2
� 1

1C˛ < � < 1 and since n � 2

and n � m � n .1 � �/ > 0, we have 2 � m � n � 1. Let u 2 Cn.ı/ be given.
Since 	. pu/ � ˛ 	.u/, we have Gm�1.u/^ .˛Gn�m.u// < .1C ı/Gn.u/ and since
1 < n� � m < 1C n� , we have

n�.1Cı/.m�1/
ı

� n 1�.1Cı/�
ı

D n� and n˛�.1Cı/.n�m/
1Cı�˛ � n ˛�.1Cı/ .1��/

1Cı�˛ D n� :

Let 1 � j � n be a given integer and let x 2 RC be a given number. Then an easy
computation shows that we have

Gj.u/ < x Gn.u/ ) 	.u/ > 0 ; x > 1 and gn.u/ >
n�xj
x�1 :

Applying this with . j; x/ D .m � 1; 1C ı/ and . j; x/ D .n � m; 1Cı
˛
/, we have

gn.u/ >
n�.1Cı/.m�1/

ı
^ n˛�.1Cı/.n�m/

1Cı�˛ � n� :

Hence, we have Cn.ı/  C�
n .ı/ and L�

n .�/ � Ln.ı/ and so we see that the corollary
follows from Theorem 2.6. ut
Remark 2.8 Recall that T .X/ WD P.X > 1/ is a weakly subadditive functional
with T . 1t X/ D P.X > t/; see Example 2.3 in Remark 2.2. Kevei and Mason (see
Theorem 2.1 in [13]) have proved a result similar to Corollary 2.7 in case that K D
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T , 	.t/ D t2 and f .n/ � A but with condition (c) replaced with the following
condition lim

n!1 Lı
n.�/ D 1 8 0 < � < 1, where Lı

n.�/ WD infu2C�

n .�/
	.u/

gn.u/ log u .

To compare Theorem 2.1 in [13] with Corollary 2.4, let us consider the setting of
Corollary 2.7 and let ƒ W RC ! RC be an increasing function such that ƒ.0/ D 1

and lim sup
n!1

log F.n/
ƒ.n/ � 1. Let us define

Lı
n.�/ D inf

u2C�

n .�/

	.u/
gn.u/ƒ.	.u//

8n 2 N 8 � > 0 :

Let 0 < � < ˛
1�˛ and n 2 N be given such that � Lı

n.�/ � 1 and let
u 2 C�

n .�/ be given. Since n� < gn.u/ and Lı
n.�/ gn.u/ƒ.	.u// � 	.u/, we have

n�Lı
n.�/ƒ.	.u// � 	.u/ and since ƒ is increasing and � 1, we have n � 	.u/.

Hence, we have ƒ.n/ � ƒ.	.u// and

	.u/
nCgn.u/

� �
1C�

	.u/
gn.u/ƒ.	.u//

ƒ.	.u// � �
1C� Lı

n.�/ƒ.n/ 8 u 2 C�
n .�/ :

Taking infimum over u, we see that Lı
n.�/ � 1C�

�

L�

n .�/

ƒ.n/ for n 2 N and all 0 < � <
˛
1�˛ satisfying Lı

n.�/ � 1
�

. Hence, if lim inf
n!1 Lı

n.�/ >
1C�

� .1�ˇ/ , then condition (c)

holds. In particular Theorem 2.1 in [13] follows from Corollary 2.7.

3 Ottaviani-Lévy Type Inequalities

In this section I shall prove a maximal inequality of the Ottaviani-Lévy type for
random vectors with values in a measurable linear space. Recall that .V;B/ is a
measurable linear space if V is a real vector space and B is a �-algebra on V such
that .x; y/ Õ x C y is measurable from .V � V;B ˝ B/ to .V;B/ and .s; x/ Õ sx
is measurable from .R � V;B.R/ ˝ B/ to .V;B/. If V is a real vector space, we
let V� denote the algebraic dual of V; that is the set of all linear functionals from
V into R and if „  V� is a non-empty set we let B„.V/ denote the smallest �-
algebra on V making � measurable for all � 2 „. Then .V;B„.V// is a measurable
linear space and X W .�;F/ ! .V;B„.V// is measurable if and only if �.X/ is
a real random variable for all � 2 „. If span.„/ denotes the linear span of „,
then X1; : : : ;Xn W � ! .V;B„.V// are independent if and only if �.X1/; : : : ; �.Xn/

are independent real random variables for all � 2 span.„/. Let .V; k 	 k/ be a
Banach space and let B.V/ denote the Borel �-algebra on V; that is the smallest
�-algebra on V containing all open sets. If .V; k 	 k/ is separable, then .V;B.V// is
a measurable linear space but if .V; k 	 k/ is non-separable, then .V;B.V// need not
be a measurable linear space; for instance, if `1 is the set of all bounded sequences
with the sup-norm kxk1 D supn2N jxnj, then .`1;B.`1// is a measurable linear
space if and only if the continuum hypothesis holds.
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Let T be a non-empty set and let V  R
T be a linear space of real valued

functions on T. Let �t.x/ D x.t/ for x 2 V and t 2 T denote the evaluation
map. Then �t 2 V� for all t 2 T and we let BT.V/ denote the cylinder �-algebra;
that is the smallest �-algebra on V making �t measurable for all t 2 T. Note that
BT.V/ D B„.V/ where „ D f�t j t 2 Tg. Hence, we see that .V;BT.V// is a
measurable linear space and recall that X D .X.t/ j t 2 T/ is a stochastic process
with sample paths in V if and only if X W .�;F/ ! .V;BT.V// is a measurable
function.

If V is a real vector space and „  V� is a non-empty set, we let Q„.x/ WD
sup�2„ �.x/ for x 2 V denote the support function of „. Then Q„ is sub-additive
and homogeneous with values in .�1;1� and Q„.0/ D 0. Note that Q„ is a semi-
norm if and only if Q„.x/ D Q„.�x/ for all x 2 V . Hence, if Q„ D „[ .�„/, then
Q Q„ is a semi-norm and we have Q Q„.x/ D sup�2„ j�.x/j for all x 2 V .

If G W RC ! RC is an increasing, right continuous function, we let 
G denote the
Lebesgue-Stieltjes measure on RC induced by G; that is the unique Borel measure
on RC satisfying 
G.Œ0; x�/ D G.x/ for all x 2 RC.

Lemma 3.1 Let S be a real random variable and let L;M and V be non-negative
random variables. Let ˛; ˇ W RC ! RC be Borel functions satisfying

(a) ˛.s/P.M � s/ � E�.1fL�sg S/C ˇ.s/P.V � s/ 8 s 2 RC.

Let G W RC ! RC be an increasing, right continuous function such that A.x/ WDR
Œ0;x� ˛.s/ 
G.ds/ < 1 and B.x/ WD R

Œ0;x� ˇ.s/ 
G.ds/ < 1 for all x � 0, Then we
have

(b) EA.M/ � E�.S G.L//C EB.V/.

Let a; b; p; q; u � 0 and c � 1 be given numbers satisfying

(c) G.u C cx/ � a C p A.x/ ; B.x/ � b C q G.x/ 8 x � 0.

If V � u C c M a.s. and S � 0 a.s., then we have

(d) .1 � pq/C EG.V/ � a C bp C p E.S G.L//.

Proof (b): If E�.S G.L// D 1, then (b) holds trivially. So let us suppose that
E�.S G.L// < 1 and set H.s; !/ D 1fL�sg.!/ S.!/ and  .s/ D E�.S 1fL>sg/ for
all s 2 RC and all ! 2 �. By Tonelli’s theorem we have

E.SC G.L// D
Z
R

C

��
HC.s; !/ .
G ˝ P/.ds; d!/ < 1

and so we have
R
� HC.s; !/P.d!/ < 1 for 
G-a.a. s 2 RC. By (a), we have

 .s/ � �ˇ.s/ for all s 2 RC. Hence, we have H.s; 	 / 2 L1.P/ and EH.s; 	 / D
 .s/ for 
G-a.a. s 2 RC. So by the Fubini-Tonelli theorem we have

E.S G.L// D
Z
R

C

��
H.s; !/ .
G ˝ P/.ds; d!/ D

Z
RC

 .s/ 
G.ds/
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and by Tonelli’s theorem we have EB.V/ D R
R

C

ˇ.s/P.V � s/ 
G.ds/ and

EA.M/ D
Z
�

P.d!/
Z
R

C

˛.s/1fM�sg.!/ 
G.ds/

D
Z
R

C

˛.s/P.M � s/ 
G.ds/ :

By (a), we have ˛.s/P.M � s/ �  .s/ C ˇ.s/P.V � s/ for all s 2 RC and since
G.x/ D 
G.Œ0; x�/ for all x 2 RC, we have

EA.M/ �
Z
R

C

 .s/ 
G.ds/C
Z
R

C

ˇ.s/P.V � s/ 
G.ds/

D E.S G.L//C EB.V/

which proves (b).
(d): Suppose that (c) holds and that we have V � u C cM a.s. and S � 0 a.s.

Set M� D M ^ � and V� D V ^ � for all � > 0. Since S � 0 a.s. we have
� WD E.S G.L// � 0 and that (a) holds with .M;V/ replaced by .M�;V�/. So by (b),
we have EA.M�/ � � C EB.V�/ and since c � 1 and V � u C c M a.s., we have
V� � u C c M� a.s. So by (c) we have

EG.V�/ � a C p EA.M�/ � a C p�C p EB.V�/

� a C p�C pb C pqEG.V�/ :

Since 0 � G.V�/ � G.�/ < 1 and 0 � aCp�Cpb, we have .1�pq/C EG.M�/ �
a C p�C pb for all � > 0 and since G.M�/ " G.M/, we see that (d) follows from
the monotone convergence theorem. ut
Theorem 3.2 Let Q0; : : : ;Qn W � ! R and R0; : : : ;Rn W � ! R be (extended)
random variables and let us define M0 D Q0, Mi D max .Q1; : : : ;Qi/ for i D
1; : : : ; n and

�t D inff1 � i � n j Qi > tg 8 t 2 R :

Let � W R
2 ! Œ0; 1� be a given function and let r; s; t 2 R be given numbers

satisfying

(a) Qn � Mi�1 _ .Mi�1 C R0 C Ri/ a.s. 8 1 � i � n :
(b) P.Ri > s ; �t D i/ � �.s; t/P.�t D i/ 8 1 � i � n :
(c) r C s � 0 and Q0 ^ Q1 � t a.s.

Then we have

(d) P.Qn > r C s C t/ � P.R0 > r ; Mn > t/C �.s; t/P.Mn > t/ :
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Set �.s; t/ D supu�t �.s; u/ and #k.s; t/ D 1��.s;t/k
1��.s;t/ for all k 2 N0 with the convention

that #k.s; t/ D k if �.s; t/ D 1. If Qn D Mn a.s., then we have

(e) P.Mn > t C k.r C s// � #k.s; t/P.R0 > r/C �.s; t/k P.Mn > t/ 8 k 2 N0 :

Proof Let N 2 F be a P-null set such that Q0.!/ ^ Q1.!/ � t for all ! 2 � n N
and

Qn.!/ � Mi�1.!/ _ .Mi�1.!/C R0.!/C Ri.!// 8! 2 � n N 8 1 � i � n :

Let 1 < i � n be a given integer and let ! 2 f�t D i ; Qn > r C s C tg n N be a
given element. Then we have Mi�1.!/ � t < Qi.!/ and since r C s � 0, we have
t � r C s C t < Qn.!/. So we have Mi�1.!/ � t < Qn.!/ and

r C s C t < Qn.!/ � Mi�1.!/C R0.!/C Ri.!/ � t C R0.!/C Ri.!/ :

Let ! 2 f�1 D 1 ; Qn > r C s C tg n N be a given element. Since Q1.!/ > t and
Q0.!/ ^ Q1.!/ � t, we have M0.!/ D Q0.!/ � t and since r C s � 0, we have
t � r C s C t < Qn.!/ and so we have

r C s C t < Qn.!/ � M0.!/C R0.!/C R1.!/ � t C R0.!/C R1.!/ :

Thus, we have f�t D i ; Qn > r C s C tg n N  fR0 C Ri > r C sg for all 1 � i � n
and so by (b) we have

P.�t D i ; Qn > r C s C t/ � P.�t D i ; R0 C Ri > r C s/

� P.�t D i ; R0 > r/C �.s; t/P.�t D i/

for all 1 � i � n. Since rCs � 0, we have fQn > rCsCtg  fMn > tg D f�t � ng.
Thus, summing the inequality over i D 1; : : : ; n, we obtain (d).

Suppose that Qn D Mn a.s. and set ck D t C k .r C s/ for all k 2 N0. Since c0 D t
and #0.t/ D 0, we see that (e) holds for k D 0. Suppose that (e) holds for some
integer k � 0. Since ck � t and ckC1 D r C s C ck, we have by (d) and the induction
hypothesis:

P.Mn > ckC1/ D P.Qn > r C s C ck/ � P.R0 > r/C �.s; ck/P.Mn > ck/

� P.R0 > r/C �.s; t/P.Mn > ck/

� .1C �.s; t/ #k.s; t//P.R0 > r/C �.s; t/kC1 P.Mn > t/ ;

and since #kC1.s; t/ D 1C �.s; t/ #k.s; t/, we see that (e) follows by induction. ut
Theorem 3.3 Let .V;B/ be a measurable linear space, let n � 2 be a given integer
and let X1; : : : ;Xn W � ! .V;B/ be independent random vectors with partial sums
S0 D 0 and Si D X1 C 	 	 	 C Xi for 1 � i � n. Let „  V� be a non-empty set of
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B-measurable linear functions such that Q„.x/ WD sup�2„ �.x/ is B-measurable.
Let us define

M„
n D max

1�i�n
Q„.Si/ ; L„n D max

1�i�n
Q„.Xi/ ; M„

i;n D max
i<��n

Q„.S� � Si/ ;

ˇn.s/ D min
1��<n

inf
�2„P.�.S� � Sn/ � s/ ; �n.s/ D max

1�i<n
P.M„

i;n > s/ ;

�n.s/ D max
1�i<n

P.Q„.Sn � Si/ > s/ ; Q�n.s/ D max
1�i<n

P.Q„.Si � Sn/ > s/

for all 0 � i < n and all s 2 R. Set‚n;k.s/ D 1��n.s/k

1��n.s/
for k 2 N0 with the convention

that‚n;k.s/ D k if �n.s/ D 1. Let f W .�1;1� ! Œ0;1� be an increasing function.
Then we have

(a) ˇn.u/P.M„
n > s C u/ � P.Q„.Sn/ > s/ 8 s 2 R 8 u 2 RC :

(b) ˇn.u/Ef .M„
n � u/ � Ef .Q„.Sn// 8 u 2 RC :

(c) ˇn.s/ � 1 � Q�n.s/ and ˇn.u/ �n.s C u/ � �n.s/ � �n.s/ 8 s 2 R 8 u 2 RC ;

and if r; s; t 2 RC and k 2 N0 are given numbers, then we have

(d) P.Q„.Sn/ > r C s C t/ � P.L„n > r/C �n.s/P.M„
n > t/ :

(e) P.M„
n > t C k.r C s// � ‚n;k.s/P.L„n > r/C �n.s/k P.M„

n > t/ :

Suppose that Q„.x/ � 0 for all x 2 V and let u � 0 be a given number such that
�n.u/ < 1. Let G W RC ! RC be an increasing, right continuous function and let
K � 1 be number such that G.2x/ � K G.x/ for all x � 0 and set

� D log K
log 2 ; � D log 1

�n.u/
and �k D K2 .k C 1/� 8 k 2 N0 :

Then we have

( f) L„n � r a.s. ) Ee
M„
n � e
.2rCu/

1�e
.rCu/�� 8 0 � 
 <
�

rCu :

(g) .1 � �k �n.u/k/C EG.M„
n / � �k G.u/C �k EG.L„n / 8 k 2 N0 :

Proof

(a): Since .V;B/ is a measurable linear space and Q„ is B-measurable,
we see that Q„.S1/ : : : ;Q„.Sn/ are (extended) random variables. Since
X1; : : : ;Xn are independent, we see that .Q„.S1/; : : : ;Q„.Si// and Si � Sn

are independent for all 1 � i < n. Hence, we see that (a) follows from
Theorem 3.1 in [9].

(b): Let s; u � 0 be given numbers and set Ju D f �1..u;1�/. Since f is
increasing, we see that Ju is an interval of the form .x;1� or Œx;1� for
some x 2 Œ�1;1�. So by (a) we have

ˇn.u/P. f .M„
n � u/ > s/ � ˇn.u/P.M„

n � u 2 Js/

� P.Q„.S„n / 2 Js/ D P.f .Q„.Sn// > s/ :
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Hence, we see that (b) follows from (3.30), p. 206 in [8].
(c): Let s 2 R and u 2 RC be given and set

ˇi;n.s/ D min
i<��n

inf
�2„ P.�.S� � Sn/ � s/ 8i D 0; 1; : : : n � 1 :

Then we have ˇn.s/ � ˇi;n.s/ for all 0 � i < n and since �.S� � Sn/ �
Q„.S� � Sn/ for all � 2 „, we have ˇn.s/ � 1 � Q�n.s/. Applying (a) on
.XiC1; : : : ;Xn/, we see that ˇi;n.s/P.M„

i;n > s C u/ � P.Q„.Sn � Si/ > u/
and since Q„.Sn � Si/ � M„

i;n, we have ˇn.s/ �n.s C u/ � �n.s/ � �n.s/.
(d): Let r; s; t 2 RC be given. We shall apply Theorem 3.2 with Q0 D 0 and

Qi D Q„.Si/ for 1 � i � n and with R0 D L„n , Rn D 0 and Ri D Q„.Sn �
Si/ for 1 � i < n. Let 1 < i < n be given. Since Sn D Si�1 C Xi C .Sn � Si/

and Q„ is subadditive, we have

Qn D Q„.Sn/ � Q„.Si�1/C Q„.Xi/C Q„.Sn � Si/ � Qi�1 C R0 C Ri

and since Sn D Sn�1CXn and Sn D X1C.Sn�S1/, we have Qn � Qn�1CR0
and Qn � R0 C R1. Since Q0 D Rn D 0, we see that condition (a) in
Theorem 3.2 holds, and since Ri and .Q.S1/; : : : ;Q.Si// are independent,
we see that condition (b) in Theorem 3.2 holds with �.s; t/ D �n.s/. Thus,
we see that (d) follows from Theorem 3.2.

(e): Let r; s; t 2 RC be given. We shall apply Theorem 3.2 with Q0 D 0, Qi D
M„

i for 1 � i � n and with R0 D L„n , Rn D 0 and Ri D M„
i;n for 1 � i < n.

Let 1 � i � n be given. Since Q„.S�/ � Q„.Si�1/CQ„.Xi/CQ„.S��Si/,
we have

Q„.S�/ � Qi�1 C R0 C Ri 8 i � � � n ;

or equivalently maxi���n Q„.S�/ � Qi�1 C R0 C Ri. Since

Qn D Qi�1 _ max
i���n

Q„.S�/ ;

we see that (a) in Theorem 3.2 holds and since Ri and .Q„.S1/; : : : ;Q„.Si//

are independent and Q0 D 0, we see that (b) and (c) in Theorem 3.2 holds
with �.s; t/ D �n.s/. Thus, we see that (e) follows from Theorem 3.2.

(f)–(g): Suppose that Q„.x/ � 0 for all x 2 V and that� WD �n.u/ < 1. Let s 2 RC
and k 2 N0 be given. Since s C ku D s

kC1 C k. s
kC1 C u/, we have by (e)

with .r; s; t/ WD . s
kC1 ; u;

s
kC1/

P.M„
n > s C ku/ � 1

1�� P..k C 1/ L„n > s/C �k P..k C 1/M„
n > s/ :

Suppose that L„n � r a.s. and let k 2 N0 and 0 � 
 <
�

v
be given

where v D r C u and U D .M„
n � r/C. Taking s D .k C 1/r, we
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see that P.U > kv/ � �k D e�k� for all k 2 N0. Since 0 � 
 <
�

v
and

P.kv � U < .k C 1/v/ � e�k� , we have

Ee
U D
1P

kD0
E.e
U 1fkv�U<.kC1/vg/ � e
v

1P
kD0

e.
v��/k D e
v

1�e
v��

and since M„
n � r C U, we have Ee
M„

n � e
r Ee
U which completes the
proof of (f). Let k 2 N0 be given and set M D . 1

kC1 M„
n � u/C. Applying

the inequality above with s replaced by .k C 1/ s, we have

P.M > s/ D P.M„
n > .k C 1/.s C u// � P.M„

n > .k C 1/s C ku/

� 1
1�� P.L„n > s/C �k P.M„

n > s/

for all s � 0. Hence, we see that condition (a) in Lemma 3.1 holds with
.M;L; S;V/ D .M;L„n ;

1
1�� ;M

„
n / and .˛.s/; ˇ.s// D .1; �k/ and note that

M„
n � ukCckM where uk D .kC1/u and ck D kC1. Since G.2x/ � K G.x/,

then an easy argument shows that G.sx/ � K s� G.x/ for all s � 1 and all
x � 0. In particular, we have

G.uk C ck x/ � K G.uk/C K G.ckx/ � K2 .k C 1/� .G.u/C G.x// :

Since ˛.s/ � 1 and ˇ.s/ � �k, we see that condition (c) in Lemma 3.1
holds with a D K2 .k C 1/� G.u/, p D K2 .k C 1/� , b D 0 and q D �k and
so we see that (g) follows from Lemma 3.1.

ut
Remark 3.4 Let .V; k 	 k/ be a Banach space and let „ be a countable set of
continuous linear functionals such that kxk D sup�2„ �.x/ for all x 2 V . Then
the classical Ottaviani inequality (see Lemma 6.2, p. 152 in [14]) states that

.1� �n.s//P

�
max
1�i�n

kSik > s C u

	
� P.kSnk > u/ 8 s; u > 0

where �n.s/ D max1�i�n P.kSn � Sik > s/. Let �n.s/ and Q�n.s/ be defined as in
Theorem 3.3. Since Q„.x/ D kxk, we have �n.s/ D Q�n.x/ D �n.s/ and so by
Theorem 3.3.(c) we have ˇn.s/ � 1��n.s/ and in general we have thatˇn.s/ is much
larger than 1� �n.s/. Hence, we see that Theorem 3.3.(a) extends and improves the
usual Ottaviani inequality. At the same time, we have that (a) extends and improves
the usual Lévy inequality. To see this let

�ı
Y . p/ D inf fx 2 R j P.Y � x/ � pg ; ��

Y . p/ D inf fx 2 R j P.Y � x/ > pg
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denote the smallest and largest p-fractile of the random variable Y for 0 < p < 1.
Then we have

ˇn.s/ � p 8 s � max
1�i<n

sup
�2„

�ı
�.Si�Sn/

. p/ :

Suppose that �.Si � Sn/ has median � 0 for all 0 � i < n and all � 2 „. Then
we have ˇn.0/ � 1

2
. So by Theorem 3.3.(a) with u D 0 we have P.M„

n > s/ �
2P.Q„.Sn/ > s/ for all s 2 R.

4 Maximal Inequalities for Weakly Dependent Random
Variables

In this section I shall establish maximal inequalities under weak dependence
assumptions. The weak dependence properties will be stated in terms of an
appropriate stochastic ordering. Let .S;A/ be a measurable space and let ˆ be a
non-empty set of functions from S into R. If � and � are measures on .S;A/, we
write � �ˆ � if

R �
	 d� � R �

	 d� for all 	 2 ˆ, where
R � f d� and

R
� f d�

denote the upper and lower �-integrals of f ; see [10]. If X W .�;F/ ! .S;A/ is a
measurable function, we let PX.A/ WD P.X�1.A// for A 2 A denote the distribution
of X and if Y W Q� ! S is a measurable function, we write X � Y if PX D QPY and
we write X �ˆ Y if PX �ˆ

QPY .
If H is a set of subsets of S, we let W.S;H/ denote the set of all functions f W

S ! R such that for all x < y there exists a set H 2 H[ f;; Sg satisfying ff > yg 
H  ff > xg; see [10].

Let k 2 N be an integer. Then we say that J � R
k is an upper interval if Œu;��  J

for all u 2 J and we define lower intervals similarly. We let J .Rk/ denote the set
of all upper intervals belonging to Bk. Note that W.Rk;J .Rk// is the set of all
increasing Borel functions from R

k into R.
Let X W � ! R

n and Y W � ! R
k be random vectors. Then we say that X and Y

are negatively In-correlated if

P.X 2 J1 ; Y 2 J2/ � P.X 2 J1/P.Y 2 J2/ 8 J1 2 J .Rn/ 8 J2 2 J .Rk/ (4.1)

and we say that X and Y are positively In-correlated if

P.X 2 J1 ; Y 2 J2/ � P.X 2 J1/P.Y 2 J2/ 8 J1 2 J .Rn/ 8 J2 2 J .Rk/ : (4.2)

Recall that a n-dimensional random vector X D .X1; : : : ;Xn/ is associated if
and only if X and X are positively In-correlated, that X is negatively associated if
and only if X˛ and Xˇ are negatively In-correlated for all disjoint non-empty sets
˛; ˇ  f1; : : : ; ng and that X is positively associated if and only if X˛ and Xˇ are
positively In-correlated for all disjoint non-empty sets ˛; ˇ  f1; : : : ; ng, where
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X˛ D .Xi/i2˛ is the ˛’th marginal of X whenever ˛  f1; : : : ; ng is a non-empty set
(see [7, 11, 15, 19, 22]). I suggests to give the definition of association, in order to
compare a well-known concept with this new definition of dependency.

If � and � are measures on .Rk;Bk/, we shall consider the following integral
orderings on R

k, see [10]:

� �st � if and only if �.J/ � �.J/ for all J 2 J .Rk/.
� �or � if and only if �.Œx;��/ � �.Œx;��/ for all x 2 R

k.
� �ism � if and only if

R � f d� � R � f d� for all increasing, super-modular
functions f W Rk ! R.

� �sm � if and only if
R � f d� � R � f d� for all super-modular Borel functions

f W Rk ! R.
� �bsm � if and only if

R � f d� � R � f d� for all bounded, super-modular Borel
functions f W Rk ! R.

Note that the sequence X1; : : : ;Xn is a submartingale if and only if X1; : : : ;Xn are
integrable and

E..XiC1 � Xi/ 	.X1; : : : ;Xi// � 0 8	 2 BC.Ri/ 8 1 � i < n ; (4.3)

or equivalently if X1; : : : ;Xn 2 L1.P/ and .X1; : : : ;Xi;Xi/ �ˆi .X1; : : : ;Xi;XiC1/
for all 1 � i < n where ˆi is the set of all functions of the form .x1; : : : xiC1/ Õ
xiC1 	.x1; : : : xi/ for some 	 2 BC.Ri/. In [20], Newman and Wright have defined
a demi-submartingale to be a sequence X1; : : :Xn 2 L1.P/ satisfying

E..XiC1 � Xi/ 	.X1; : : : ;Xi// � 0 8	 2 IBC.Ri/ 8 1 � i < n ; (4.4)

or equivalently if X1; : : : ;Xn 2 L1.P/ and .X1; : : : ;Xi;Xi/ �‰i .X1; : : : ;Xi;XiC1/
for all 1 � i < n where ‰i is the set of all functions of the form .x1; : : : xiC1/ Õ
xiC1  .x1; : : : xi/ for some  2 IBC.Ri/. If X1; : : : ;Xn is a demi-submartingale, we
have EX1 � 	 	 	 � EXn. If X1; : : : ;Xn 2 L1.P/ is a demi-submartingale satisfying
EX1 D EXn, we say that X1; : : : ;Xn is a demi-martingale; see [20].

Proposition 4.1 Let �; � 2 Pr.Rk/ be probability measures and let � be a Borel
measure on R

k such that F�.x/ WD �.Œ�; x�/ < 1 for all x 2 R
k. Let .�1; : : : ; �k/

and .�1; : : : ; �k/ denote the 1-dimensional marginals of � and �, respectively. Let
 1; : : : ;  k W R ! R be increasing functions and let � .B/ WD �. �1.B// and
� .B/ WD �. �1.B// denote the image measures for B 2 Bk where

 .x/ D . 1.x1/; : : : ;  k.xk// ; †.x/ D
kP

iD1
 i.xi/ 8 x D .x1; : : : ; xk/ 2 R

k :

Let � be a Borel measure on R and let ˛ > k be a number satisfying

G˛.t/ WD 1
�.˛/

Z
.�1;t�

.t � y/˛�1 �.dy/ < 1 8 t 2 R :
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Let ' W R ! R be a convex function and let '0 W R ! R be an increasing convex
function. Then we have

(a) � �x � ) � �x � for x D st ; or ; ism ; sm ; bsm :
(b) � �st � , R � h d� � R � h d� for all increasing functions h W Rk ! R :

(c) � �sm � ) � �bsm � , � �ism � and �i D �i 8 i D 1; : : : ; k :
(d) � �ism � ) R �

.'0 ı†/ d� � R �
.'0 ı†/ d� :

(e) � �bsm � ) R �
.' ı†/ d� � R �

.' ı†/ d� :
( f) If � �or �, then we have

( f.1)
R
Rk.F� ı  / d� � R

Rk.F� ı  / d� ;
( f.2)

R
Rk.G˛ ı†/ d� � R

Rk .G˛ ı†/ d� ;
( f.3)

R
Rk

�Qk
iD1  

C
i

�
d� � R

Rk

�Qk
iD1  

C
i

�
d� :

(g) � �ism � ) � �or �; and if k D 2, then the converse implication holds.

Proof

(a): Since �; � are Radon measures, we have
R � f d� D R �

. f ı  / d� andR � f d� D R �
. f ı  / d� for all functions f W R

k ! R. If J  R
k is an

upper interval, then so is  �1.J/. Hence, we see that (a) holds for x D st. Let
x D .x1; : : : ; xk/ 2 R

k and set Ji WD  �1
i .Œxi;1// for i D 1; : : : ; k. Then

J1; : : : ; Jk are upper intervals on R and since  �1.Œx;��/ D Qk
iD1 Ji, we see

that (a) holds for x D or. If f W R
k ! R is increasing or super-modular,

then so is f ı  (see Proposition 4.1 in [10]). Hence, we see that (a) holds for
x D ism ; sm ; bsm.

(b) follows from Theorem 3.3.(3+4) in [10] and (c) follows from Theorem 4.7
in [10]. By Proposition 4.1 and Theorem 4.4 in [10], we have that '0 ı † is
increasing and super-modular. Hence, we see that (d) holds.

(e): Suppose that � �bsm � and let Q�.B/ WD �.�B/ and Q�.B/ WD �.�B/ denote
the reflected measures for B 2 Bk. Since f .�x/ is super-modular for every
super-modular function f .x/, we have Q� �bsm Q�. So by (d) we see thatR �
.' ı†/ d� � R �

.' ı†/ d� if ' is either increasing or decreasing. So
suppose that ' is neither increasing nor decreasing. Then we must have m WD
inft2R '.t/ > �1 and there exist convex functions '1; '2 W R ! Œ0;1/ such
that '1 is increasing, '2 is decreasing and '.t/ D mC'1.t/C'2.t/ for all t 2 R.
By the argument above we have

R
Rk .'j ı†/ d� � R

Rk .'j ı †/ d� for j D 1; 2

and since�.Rk/ D 1 D �.Rk/, we have
R
Rk .' ı†/ d� � R

Rk .' ı†/ d� which
completes the proof of (e).

(f.1): Suppose that � �or �. By (a), we have � �or � and since F�.x/ <
1 for all x 2 R

k, we have that � is �-finite. So by Theorem 3.3.(7) in
[10], we have

Z
Rk
.F� ı  / d� D

Z
Rk

F� d� �
Z
Rk

F� d� D
Z
Rk
.F� ı  / d�

which proves (f.1).
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(f.2): Let ˇ > 0 and x 2 R be given. Since �.ˇ C 1/ D ˇ �.ˇ/ we have

Z x

�1
Gˇ.t/ dt D

Z x

�1
dt
Z
.�1;t�

.t�y/ˇ�1

�.ˇ/
�.dy/

D
Z
.�1;x�

�.dy/
Z x

y

.t�y/ˇ�1

�.ˇ/
dt D

Z
.�1;x�

.x�y/ˇ

ˇ �.ˇ/
�.dy/ D GˇC1.x/ :

Let x1; : : : ; xk 2 R be given. Applying the equality above with ˇ D
˛ � 1, we find

G˛.x1 C 	 	 	 C xk/ D
Z x1

�1
G˛�1.t1 C x2 C 	 	 	 C xk/ dt1 :

Since ˛ > k, we may iterate this equality k times and if so we obtain
the following equality

G˛.x1 C 	 	 	 C xk/ D
Z x1

�1
dt1 	 	 	

Z xk

�1
G˛�k.t1 C 	 	 	 C tk/ dtk :

Set U.x/ D x1 C 	 	 	C xk for all x D .x1; : : : ; xk/ 2 R
k and let us define

�˛.B/ D R
B G˛�k.U.t// dt for all B 2 Bk. Then �˛ is a Borel measure

on R
k satisfying �˛.Œ�; x�/ D G˛.U.x// < 1 for all x 2 R

k. By (a),
we have � �or � and so by (f.1) we have

Z
Rk
.G˛ı†/ d�D

Z
Rk
.G˛ıU/ d� �

Z
Rk
.G˛ıU/ d� D

Z
Rk
.G˛ı†/ d�

which proves (f.2).
(f.3): Let 
k denote the k-dimensional Lebesgue measure on R

k and set

kC.B/ WD 
k.B \ Œ0;1/k/ for B 2 Bk. Then we have 
kC.Œ�; x�/ DQk

iD1 xC
i for all x D .x1; : : : ; xk/ 2 R

k. Hence, we see that (f.3) follows
from (f.1).

(g): Suppose that � �ism � and let u 2 R
k be given. Since 1Œu;�� is increasing and

super-modular, we see that � �or �. So suppose that k D 2 and � �or �. Let
g W R2 ! R be a bounded, continuous, increasing, super-modular function and
let .a1; a2/ � .b1; b2/ be given vectors. Since g is super-modular, .a1; a2/ D
.a1; b2/ ^ .b1; a2/ and .b1; b2/ D .a1; b2/ _ .b1; a2/, we have

g.b1; b2/C g.a1; a2/ � g.a1; b2/ � g.b1; a2/ � 0

and since g is bounded and continuous, we have that the Lebesgue-Stieltjes
measure 
g is a finite measure on .R2;B2/ satisfying


g.�a1; b1���a; ; b2�/ D g.b1; b2/C g.a1; a2/ � g.a1; b2/ � g.b1; a2/
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for all .a1; a2/ � .b1; b2/; see [8, pp. 37–38]. Let Fg.x/ D 
g.Œ�; x�/ be the
distribution function of 
g. Since g is bounded, we have that m WD infx2R2 g.x/
is finite. Let us define g1.s/ WD inft2R .g.s; t/�m/ and g2.s/ WD inft2R .g.t; s/�
m/ for all s 2 R. Since g is increasing and bounded, we see that g1 and g2 are
bounded, non-negative and increasing on R and that we have

Fg.x1; x2/ D g.x1; x2/ � g1.x1/� g2.x2/� m 8 .x1; x2/ 2 R
2 :

Hence, we have g.x1; x2/ D Fg.x1; x2/C g1.x1/C g2.x2/C m and by (f.1) we
have

R
R2

Fg d� � R
R2

Fg d� and since�i �st �i and gi is increasing for i D 1; 2,
we have

Z
R2

.g1.s/C g2.t// �.ds; dt/ �
Z
R2

.g1.s/C g2.t// �.ds; dt/ :

Since �.R2/ D 1 D �.R2/, we have
R
R2

g d� � R
R2

g d� for all bounded,
continuous, increasing super-modular functions g W R

2 ! R. Hence, by
Theorem 4.7 in [10], we have � �ism � which completes the proof of (g).

ut
Remark 4.2 Theorem 3.9.11, p. 118 in [19] states that the first implication in
Proposition 4.1(c) is an equivalence. This is true in dimension 1 and 2, but fails
in dimension 3 or more (see Example C in [10]). It seems, that this mistake has been
overlooked in the later literature and I have not found any attempt to correct this
mistake.

Proposition 4.3 Let .S1;A1/ and .S2;A2/ be measurable spaces. Let Xi W � ! Si

and QXi W Q� ! Si be measurable functions for i D 1; 2. Let H1  A1 and H2  A2

be non-empty sets satisfying

(a) P.X1 2 H1 ;X2 2 H2/ � QP. QX1 2 H1 ; QX2 2 H2/ ;

(b) P.X1 2 H1/ D QP. QX1 2 H1/ ; P.X2 2 H2/ D QP. QX2 2 H2/

for all H1 2 H1 and all H2 2 H2. Let 	i 2 W.Si;Hi/ be a given function for
i D 1; 2. Then we have

(c) E�	1.X1/ D QE�	1. QX1/ ; E�	2.X2/ D QE�	2. QX2/ :
(d) E�.	1.X1/ 	2.X2// � QE�.	1. QX1/ 	2. QX2// :
(e) E�.	1.X1/ 	2.X2// � QE�.	1. QX1/ 	2. QX2// :
Proof Set H�

i D f;; Sig [ Hi and Ci D fSi n H j H 2 H�
i g for i D 1; 2. Then

(a) and (b) holds with .H1;H2/ replaced by .H�
1 ;H�

2 / and (c) follows from (b) and
Theorem 3.3 in [10].

Let WC
i denote the set of all non-negative functions in W.Si;Hi/ and let VC

i
denote the set of all non-negative functions in W.Si; Ci/. Applying Theorem 3.3 in
[10] twice, we see that

E. 1.X1/  2.X2// � QE. 1. QX1/  2. QX2// 8 1 2 WC
1 8 2 2 WC

2 : (i)
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Let C1 2 C1 and H2 2 H�
2 be given sets. Then H1 WD S1 n C1 belongs to H�

1 and by
(b) we have P.X1 2 C1/ D QP. QX1 2 C1/. So by (a) we have

QP. QX1 2 C1 ; QX2 2 H2/ D P. QX2 2 H2/ � QP. QX1 2 H1 ; QX2 2 H2/

� P.X2 2 H2/� P.X1 2 H1 ; X2 2 H2/ D P.X1 2 C1 ; X2 2 H2/ :

Hence, as above we see that

QE. 1. QX1/  2. QX2// � E. 1.X1/  2.X2// 8 1 2 VC
1 8 2 2 WC

2 : (ii)

In the same manner, we see that

QE. 1. QX1/  2. QX2// � E. 1.X1/  2.X2// 8 1 2 WC
1 8 2 2 VC

2 ; (iii)

and since H�
i D fSi n C j C 2 Cig, we have

E. 1.X1/  2.X2// � QE. 1. QX1/  2. QX2// 8 1 2 VC
1 8 2 2 VC

2 : (iv)

Set Ui D 	i.Xi/ and QUi D 	i. QXi/ for i D 1; 2. Since 	i 2 W.Si;Hi/, we have
	C

i 2 WC
i and 	�

i 2 VC
i and so by (i)–(iv), we have

E.UC
1 UC

2 / � QE. QUC
1

QUC
2 / ; E.U�

1 U�
2 / � QE. QU�

1
QU�
2 / ;

QE. QUC
1

QU�
2 / � E.UC

1 U�
2 / ;

QE. QU�
1

QUC
2 / � E.U�

1 UC
2 / :

Since .xy/C D xCyC C x�y�, we see that E..U1U2/
C/ � QE.. QU1

QU2/
C/ and since

.xy/� D xCy� C x�yC, we have QE.. QU1
QU2/

�/ � E..U1U2/
�/. Recalling the

equalities E�Y D EYC � EY� and E�Y D �E�.�Y/, we obtain (d) and (e). ut
Corollary 4.4 Let X W � ! R

n and Y W � ! R
k be random vectors and let ƒn;k

be the set of all functions h W RnCk ! R of the form h.x; y/ D f .x/ g. y/ for some
increasing Borel functions f W Rn ! R and g W Rk ! R. Then the following four
statements are equivalent:

(a) X and Y are negatively In-correlated.
(b) �X and Y are positively In-correlated.
(c) cov. f .X/; h.Y// � 0 8f 2 IB.Rn/ 8 h 2 IB.Rk/ :

(d) P.X;Y/ �ƒn;k PX ˝ PY ;

and if n D k D 1, then (a)–(d) are equivalent to either of the following three
statements:

(e) P.X;Y/ �or PX ˝ PY :

( f) P.X;Y/ �ism PX ˝ PY :

(g) P.X;Y/ �bsm PX ˝ PY :
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Proof Since R
n n .�J/ 2 J .Rn/ for all J 2 J .Rn/, we see that (a) and (b) are

equivalent and so by Proposition 4.3, we see that (a)–(d) are equivalent. Suppose
that n D k D 1. By Proposition 4.1, we see that (e)–(g) are equivalent and since J is
a non-empty upper interval in R if and only if J D Œa;1/ or J D .a;1/ for some
a 2 R, we see that (e) and (a) are equivalent. ut
Theorem 4.5 Let Y1; : : : ;Yn W � ! R be real random variables and let
S1; : : : ; Sn 2 L1.P/ be integrable random variables satisfying

(a) SiC1 ^ Yi � YiC1 � SiC1 _ Yi a.s. 8 1 � i < n :
(b) E

�
1fYi>tg .SiC1 � Si/

� � 0 8 1 � i < n 8 t � 0 :

Then we have

(c) t P.Yn > t/ � E
�
1fY1>tg .t � S1/

�C E
�
1fYn>tg Sn

� 8 t � 0 ;

(d) Y1 � S1 a.s. on fY1 > 0g ) t P.Yn > t/ � E
�
1fYn>tg Sn

� 8 t � 0 ;

and if Y1 D S1 a.s. and E.1fYi��tg .SiC1 � Si// � E.SiC1 � Si/ for all 1 � i < n and
all t 2 RC, then we have

(e) t P.Yn < �t/ � �E.1fYn<�tg Sn/ 8 t � 0 :

( f) t P.jYnj > t/ � E.1fjYnj>tg jSnj/ 8 t � 0 :

Proof Let t � 0 be given and set Ui D 1fYi>tg for i D 1; : : : ; n and U0 D 0. Let
1 � i < n be given and let me show that t .UiC1 � Ui/ � SiC1 .UiC1 � Ui/ a.s. If
Ui D UiC1, this holds trivially. If UiC1 D 1 and Ui D 0, we have Yi � t < YiC1 and
since YiC1 � SiC1 _ Yi a.s., we have

SiC1 .UiC1 � Ui/ D SiC1 � YiC1 > t D t .UiC1 � Ui/ a.s.

If UiC1 D 0 and Ui D 1, we have YiC1 � t < Yi and since SiC1 ^ Yi � YiC1 a.s., we
have

SiC1 .UiC1 � Ui/ D �SiC1 � �YiC1 � �t D t .UiC1 � Ui/ a.s.

which proves the claim. So by partial summation, we have

Sn Un � S1 U1 D
n�1P
iD1

SiC1 .UiC1 � Ui/C
n�1P
iD1

Ui .SiC1 � Si/

� t .Un � U1/C
n�1P
iD1

Ui .SiC1 � Si/ ;

and by (b) we have E.Ui .SiC1�Si// � 0 for all 1 � i < n. Since S1; : : : ; Sn 2 L1.P/,
we see that (c) holds, and (d) is an easy consequence of (c).
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(e)–(f): Suppose that Y1 D S1 a.s. and that E.1fYi��tg .SiC1 � Si// � E.SiC1 � Si/

for all 1 � i < n and all t 2 RC. Note that .�Yi;�Si/ satisfies (a) and since

E
�
1f�Yi>tg .Si � SiC1/

� D E.Si � SiC1/ � E.1fYi��tg .Si � SiC1// � 0 ;

we see that .�Yi;�Si/ satisfies (b). Since Y1 D S1 a.s. we see that (e) follows from
(d) applied to .�Yi;�Si/. By (d) and (e) we have

t P.jYnj > t/ D t P.Yn > t/C t P.Yn < �t/

� E.1fYn>tgSn/ � E.1fYn<�tgSn/ � E.1fjYnj>tgjSnj/

which proves (f). ut
Remark 4.6 Let Y and S be random variables such that S 2 L1.P/, Y � 0 a.s.
and t P.Y > t/ � E.1fY>tg S/ for all t � 0; see (d) and (f) in Theorem 4.5. Let
G W RC ! RC be an increasing, right continuous function. By Lemma 3.1 with
.S;L;M;V/ D .S;Y;Y; 0/, ˛.s/ D s and ˇ.s/ D 0, we have EG˘.Y/ � E�.S G.Y//
where G˘.x/ D R

Œ0;x� t 
G.dt/ for all x � 0. Taking G.x/ D xp�1 for some p > 1,

we have G˘.x/ D p�1
p xp. Hence, we have EYp � p

p�1 E.S Yp�1/ and so by Hölder’s

inequality, we have .EYp/1=p � p
p�1 .EjSjp/1=p. Taking G.x/ D log.1C x/, we have

G˘.x/ D x � log.1C x/ and so we have E.Y � log.1C Y// � E.S log.1C Y//. In
particular, we see that (d) and (f) give a variety of moment inequalities.

Corollary 4.7 Let .S1; : : : Sn/ be a demi-submartingale and let fi W Ri ! R be an
increasing Borel function for i D 1; : : : n satisfying

xiC1 ^ fi.x1; : : : ; xi/ � fiC1.x1; : : : ; xiC1/ � xiC1 _ fi.x1; : : : ; xi/

for all 1 � i < n and all x1; : : : ; xiC1 2 R and set Yi D fi.S1; : : : ; Si/ for i D
1; : : : ; n. Then we have

(a) t P.Yn > t/ � E
�
1fY1>tg .t � S1/

�C E
�
1fYn>tg Sn

� 8 t � 0 ;

(b) f1.x/ � x 8 x 2 R ) t P.Yn > t/ � E
�
1fYn>tg Sn

� 8 t � 0 ;

and if f1.x/ D x for all x 2 R and ES1 D ESn, then we have

(c) t P.Yn < �t/ � �E.1fYn<�tg Sn/ 8 t 2 RC :
(d) t P.jYnj > t/ � E.1fjYnj>tg jSnj/ 8 t 2 RC :

Proof By hypothesis, we see that .Yi; Si/1�i�n satisfies (a) in Theorem 4.5 and
since .S1; : : : ; Sn/ is a demi-submartingale, we see that .Yi; Si/1�i�n satisfies (b)
in Theorem 4.5. Hence, we see that (a)–(b) follow from Theorem 4.5. Suppose
that f1.x/ D x for all x 2 R and that ES1 D ESn. Let 1 � i < n be a
given integer and let t 2 R. Then we have Y1 D S1 and since fi is increasing,
we have 1ffi��tg 2 IBC.Ri/. Since ES1 � ESiC1 � ESn D ES1, we have
E.SiC1 � Si/ D 0 � E.1fYi��tg .SiC1 � Si//. Hence, we see that (c)–(d) follow
from Theorem 4.5. ut
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Corollary 4.8 (cf. [20]) Let .S1; : : : ; Sn/ be a demi-submartingale and for
1� i � n, let Si;i � 	 	 	 � S1;i denote the order statistics of S1; : : : ; Si for all
1 � i � n. Let 1 � k � n be a given integer and let us define

Uk
i WD Sk^i;i and Vk

i WD S1C.i�k/C;i 8 i D 1; : : : ; n :

Let t 2 RC be given. Then we have

(a) t P.Uk
n > t/ � E.1fUk

n>tg Sn/ and t P.Vk
n > t/ � E.1fVk

n>tg Sn/ ;

and if ES1 D ESn, then we have

(b) t P.Uk
n < �t/ � �E.1fUk

n<�tg Sn/ and t P.Vk
n < �t/ � �E.1fVk

n<�tg Sn/ :

(c) t P.jUk
nj > t/ � E.1fjUk

nj>tg jSnj/ and t P.jVk
nj > t/ � E.1fjVk

n j>tg jSnj/ :
Proof If i 2 N and x D .x1; : : : ; xi/ 2 R

i, we let �i;i.x/ � 	 	 	 � �1;i.x/ denote
the order statistics of x1; : : : ; xi. Then the hypotheses of Corollary 4.8 holds with
fi D �k^i;i and fi D �1C.i�k/C;i and since �1;1.x/ D x for all x 2 R, we see that the
corollary follows from Corollary 4.8. ut
Theorem 4.9 Let n � 2 be a given integer and let X1; : : : ;Xn W � ! R and
QX1; : : : ; QXn W Q� ! R be random variables such that Xi � QXi for all 1 � i � n. Let

f1; : : : ; fn�1 W R ! R be Borel functions and let Fj W Rj ! R be defined inductively
as follows F1.x/ WD x for x 2 R and

FjC1.x1; : : : ; xjC1/ D fj.Fj.x1; : : : ; xj//C xjC1 8x1; : : : ; xjC1 2 R 81 � j < n :

Let Co.R/ denote the set of all convex functions from R into R. Set ˆ1 D Co.R/
and

ˆjC1 D f	 2 Co.R/ j 	. fj. 	 /C a/ 2 ˆj 8 a 2 Rg 8 1 � j < n :

If fi.Fi.X1; : : : ;Xi// and XiC1 are negatively In-correlated for all 1 � i < n and
fi.Fi. QX1; : : : ; QXi// and QXiC1 are positively In-correlated for all 1 � i < n, then we
have

(a) E�	.Fj.X1; : : : ;Xj// � QE�	.Fj. QX1; : : : ; QXj// 8	 2 ˆj 8 1 � j � n :

Proof Set Ui D Fi.X1; : : : ;Xi/ and QUi D Fi. QX1; : : : ; QXi/ for 1 � i � n and set
Vi D fi.Ui/ and QVi D fi. QUi/ for 1 � i < n. LetˆC

j denote the set of all non-negative

functions inˆj and let me first show that (a) holds for all 1 � j � n and all 	 2 ˆC
j .

Since X1 � QX1, we see that this holds for j D 1. Let 1 � j < n be a given integer
such that E	.Uj/ � QE	. QUj/ for all 	 2 ˆC

j . Let 	 2 ˆC
jC1 be given and let me

show that E	.UjC1/ � QE	. QUjC1/. Since Vj and XjC1 are negatively In-correlated,
we have P.Vj;XjC1/ �bsm PVj ˝ PXjC1

and since UjC1 D Vj C XjC1 and 	 is convex
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and non-negative, we have by Proposition 4.1.(e)

E	.UjC1/ D E	.Vj C XjC1/ �
Z
R

E	.Vj C t/PXjC1
.dt/ :

Since QVj and QXjC1 are positively In-correlated, we have QP QVj
˝ QP QXjC1

/ �bsm P. QVj; QXjC1/

and since QUjC1 D QVj C QXjC1 and 	 is convex and non-negative, we have by
Proposition 4.1.(e)

QE	. QUjC1/ D QE	. QVj C QXjC1/ �
Z
R

QE	. QVj C t/ QP QXjC1
.dt/ :

Let t 2 R be given and set  j;t.s/ D 	. fj.s/C t/ for all s 2 R: Since 	 2 ˆC
jC1, we

have  j;t 2 ˆC
j and so by induction hypothesis we have E j;t.Uj/ � QE j;t. QUj/ and

since XjC1 � QXjC1, we have

E	.UjC1/ �
Z
R

E j;t.Uj/PXjC1
.dt/ �

Z
R

QE j;t. QUj/ QP QXjC1
.dt/ � QE	. QUjC1/ :

So by induction, we see that E	.Uj/ � QE	. QUj/ for all 1 � j � n and all 	 2 ˆC
j .

Now let me show that .	. 	 / C a/C 2 ˆC
j for all 1 � j � n, all 	 2 ˆj and

all a 2 R. If j D 1, this is evident. Let 1 � j < n be a given integer satisfying
.	. 	 /C a/C 2 ˆC

j for all 	 2 ˆj and all a 2 R. Let 	 2 ˆjC1 and a; b 2 R be
given and set 	a.t/ D .	.t/ C a/C and  b.t/ D 	. fj.t/ C b/ for all t 2 R. Since
	 2 ˆjC1, we have  b 2 ˆj and so by induction hypothesis we have

	a. fj.t/C b/ D .	. fj.t/C b/C a/C D . b.t/C a/C 2 ˆj :

Hence, we have 	a 2 ˆjC1 for all a 2 R. So by induction, we see that .	. 	 /Ca/C 2
ˆC

j for all 1 � j � n all 	 2 ˆj and all a 2 R. Since E	.Uj/ � QE	. QUj/ for all

1 � j � n and all 	 2 ˆC
j , we see that (a) follows from Theorem 3.3 in [10]. ut

Theorem 4.10 Let X1; : : : ;Xn W � ! R and QX1; : : : ; QXn W Q� ! R be random
variables such that Xi � QXi for all 1 � i � n. Set S0 D 0 D QS0 and let Sk D
X1 C 	 	 	 C Xk and QSk D QX1 C 	 	 	 C QXk denote the partial sums for 1 � k � n. Let
us define Mn D max.jS1j; : : : ; jSnj/ and

Mi;j D max
i<��j

.S� � Si/ ; QMi;j D max
i<��j

. QS� � QSi/ 8 0 � i < j � n

Li;j D min
i<��j

.S� � Si/ ; QLi;j D min
i<��j

. QS� � QSi/ 8 0 � i < j � n

for all j D 1; : : : ; n.
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(1): Suppose that Sj and XjC1 are negatively In-correlated for all 1 � j < n and
that QSj and QXjC1 are positively In-correlated for all 1 � j < n. Then we have
E�	.Sn/ � QE�	. QSn/ for every convex function 	 W R ! R.

(2): Suppose that Mi;n and Xi are negatively In-correlated for all 1 � i < n and
that QMi;n and QXi are positively In-correlated for all 1 � i < n. Then we have
E�	.M0;n/ � QE�	. QM0;n/ for every convex, increasing function 	 W R ! R.

(3): Suppose that Li;n and Xi are negatively In-correlated for all 1 � i < n and
that QLi;n and QXi are positively In-correlated for all 1 � i < n. Then we have
E�	.L0;n/ � QE�	. QL0;n/ for every convex, decreasing function 	 W R ! R.

(4): Suppose that Mi;n and Xi are negatively In-correlated, that Li;n and Xi are
negatively In-correlated, that QMi;n and QXi are positively In-correlated and that
QLi;n and QXi are positively In-correlated for all 1 � i < n. Then we have

E	.Mn/ � QE	. QMC
0;n/C QE	. QL�

0;n/ � 2E	.M0;n/

for every increasing, convex function 	 W RC ! RC.

Proof

(1): We shall apply Theorem 4.9 with fi.x/ D x for x 2 R and 1 � i < n. Let Fj

and ˆj be defined as in Theorem 4.9 and let 	 W R ! R be a convex function.
Then Fj.x1; : : : ; xj/ D x1 C 	 	 	 C xj and we have 	 2 ˆn. Hence, we see that
(1) follows from Theorem 4.9.

(2): We shall apply Theorem 4.9 on the sequences .Y1; : : : ;Yn/ D .Xn; : : : ;X1/ and
. QY1; : : : ; QYn/ D . QXn; : : : ; QX1/ with fi.x/ D x _ 0. Let Fj and ˆj be defined as in
Theorem 4.9. Let 	 W R ! R be an increasing convex function. Then it follows
easily that 	 2 ˆn and that we have

Fj.x1; : : : ; xj/ D max
0�i<j

 P
i<��j

x�

!
8 1 � j � n : (i)

Let 1 � j < n be given. Since Fj.Y1; : : : ;Yj/ D Mn�j;n and YjC1 D Xn�j, we
see that Fj.Y1; : : : ;Yj/ and YjC1 are negatively In-correlated. Similarly, we see
that Fj. QY1; : : : ; QYj/ and QYjC1 are positively In-correlated. Hence, we see that (3)
follows from Theorem 4.9.

(3): We shall apply Theorem 4.9 on the sequences .Z1; : : : ;Zn/ D �.Xn; : : : ;X1/
and . QZ1; : : : ; QZn/ D �. QXn; : : : ; QX1/ with fi.x/ D x _ 0. Let Fj andˆj be defined
as in Theorem 4.9 and let 	 W R ! R be a decreasing convex function.
Then  .x/ WD 	.�x/ is increasing and convex and belongs to ˆn and Fj is
given by (i). Let 1 � j < n be given. Since Ln�j;n and Xn�j are negatively
In-correlated, we see that �Ln�j;n and �Xn�j are negatively In-correlated and
since ZjC1 D �Xn�j and �Ln�j;n D Fj.Z1; : : : ;Zj/, we see that ZjC1 and
Fj.Z1; : : : ;Zj/ are negatively In-correlated. Similarly, we see that QZjC1 and
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Fj. QZ1; : : : ; QZj/ are positively In-correlated. So by Theorem 4.9 we have

E�	.L0;n/ D E� .�L0;n/ � QE� .� QL0;n/ D QE�	. QL0;n/

which proves (3).
(4): Let 	 W RC ! RC be an increasing convex function and set 	1.x/ D 	.xC/

and 	2.x/ D 	.x�/ for all x 2 R. Then 	1 is increasing and convex and 	2
is decreasing and convex. So by (2) and (3) we have E	1.M0;n/ � QE	1. QM0;n/

and E	2L0;n/ � QE	2. QL0;n/. Note that M0;n D max.S1; : : : ; Sn/ and �L0;n D
max.�S1; : : : ;�Sn/. Hence, we have Mn D M0;n _ .�L0;n/ and since 	 is non-
negative, we have 	.Mn/ � 	1.M0;n/C 	2.L0;n/ and

E	.M0;n/ � E	1.M0;n/C E	2.L0;n/ � QE	1. QM0;n/C QE	2. QL0;n/

which proves (4).
ut

Remark 4.11

(1): Let .Y1; : : : ;Yn/ be a positively associated (respectively, negatively associated)
random vector; for instance, if Y1; : : : ;Yn are independent. Let 1 � i < n be
a given integer and let 	 W Ri ! R and  W Rn�i ! R be increasing Borel
functions. Then 	.Y1; : : : ;Yi/ and YiC1 are positively (negatively) In-correlated
and  .YiC1; : : : ;Yn/ and Yi are positively (negatively) In-correlated.

(2): Suppose that QX1; : : : ; QXn are independent such that Xi � QXi and EXi D 0 for all
1 � i � n. Let 	 W RC ! RC be an increasing convex function with 	.0/ D 0.
By the prophet inequality of Choi and Klass (see [4]), we have E	. QMC

0;n/ �
2E	. QSC

n / and E	. QL�
0;n/ � 2E	. QS�

n /. Hence, we have the following prophet
inequalities:

If Mi;n and Xi are negatively In-correlated for all 1 � i < n, then we have
E	.L�

0;n/ � 2E	. QS�
n /

If Li;n and Xi are negatively In-correlated for all 1 � i < n, then we have
E	.MC

0;n/ � 2E	. QSC
n /

If Mi;n and Xi are negatively In-correlated and Li;n and Xi are negatively
In-correlated for all 1 � i < n, then we have E	.M0;n/ � 2E	.j QSnj/

5 The Lipschitz’ Mixing Coefficient

In [20], Newman and Wright have proved a central limit theorem for associated
stationary sequences and in the literature there exists a variety of central limit
theorems under various mixing conditions (see for instance [1–3, 5, 6]). In this
section, I shall introduce the Lipschitz’ mixing coefficient (see (5.2) below) and
show that it is closely related to both negative and positive In-correlation and that
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the Lipschitz’ mixing coefficient can used to establish the central limit theorem for
sequences of identically distributed random variables and for stationary sequences.

Let C denote the set of all complex numbers. If h W R ! C is a complex-valued
function, we define the Lipschitz’ norm as usual:

khkLip D inf fc � 0 j jh.x/� h. y/j � c jx � yj 8 x; y 2 R g : (5.1)

If U;V W � ! C are complex random variables , we say that the covariance of U
and V exists if U, V and UV are P-integrable and if so, we define the covariance as
usual; that is, cov.U;V/ WD E.U � EU/.V � EV/ D E.UV/� .EU/.EV/.

We let Lip1.R/ denote the set of all bounded functions f W R ! R satisfying
kf kLip � 1, and if X;Y W � ! R and are random variables, we define the Lipschitz’
mixing coefficient of .X;Y/ as follows

`.X;Y/ WD supf jcov. f .X/; f .Y//j j f 2 Lip1.R/g : (5.2)

Since x Õ 1
j˛j f .u C ˛x/ belongs to Lip1.R/ for all f 2 Lip1.R/, we have

`.u C ˛ X; u C ˛ Y/ D j˛j2 `.X;Y/ 8 u; ˛ 2 R : (5.3)

Let f W R ! C be a bounded Lipschitz’ function and let f1 and f2 denote the real
and imaginary parts of f . Then f1 and f2 are bounded Lipschitz’ functions. Let A and
B denote the real and imaginary parts of cov. f .X/; f .Y// and set h D f1 C f2 and
g D f1 � f2. Then we have

A D cov. f1.X/; f1.Y// � cov. f2.X/; f2.Y//

B D cov. f1.X/; f2.Y//C cov. f2.X/; f1.Y//

2B D cov.h.X/; h.Y//� cov.g.X/; g.Y// :

Hence, we have jAj � q `.X;Y/ and jBj � r
2
`.X;Y/where q D kf1k2LipCkf2k2Lip and

r D khk2Lip C kgk2Lip. Since jaj C jbj � p
2

p
a2 C b2, we have khkLip � p

2 kf kLip

and kgkLip � p
2 kf kLip. Hence, we have r � 4 kf k2Lip and since q � 2 kf k2Lip we

have

jcov. f .X/; f .Y//j � jAj C jBj � 4 kf k2Lip `.X;Y/ (5.4)

for every bounded Lipschitz’ function f W R ! C.
Let .X�;Y�/ be a symmetrization of the random vector .X;Y/, that is, .X�;Y�/ �

.X0 � X;Y 0 � Y/ where .X0;Y 0/ is an independent copy of .X;Y/. Let f 2 Lip1.R/
be a given function and set �f .x; y/ D . f .x/� Ef .X//. f . y/� Ef .Y// for all .x; y/ 2
R
2. Then we have cov. f .X/; f .Y// D E�f .X;Y/ and since f 2 Lip1.R/, we have

j�f .x; y/j � E.jx � Xj 	 jy � Yj/ for all .x; y/ 2 R
2. Integrating this inequality with



Maximal Inequalities for Dependent Random Variables 95

respect to P.X;Y/, we see that

jcov. f .X/; f .Y//j � E.jX�Y�j/ 8 f 2 Lip1.R/ ; (5.5)

X;Y 2 L2.P/ ) `.X;Y/ � 2
p

var.X/ 	
p

var.Y/ : (5.6)

If X is a random variable, we let 'X.t/ WD EeitX denote the characteristic function
of X for all t 2 R.

Theorem 5.1 Let n; k � 1 be given integers and let X D .X1; : : : ;Xn/ and Y D
.Y1; : : : ;Yk/ be random vectors such that the covariances cov.Xi;Yj/ exists for all
1 � i � n and all 1 � j � k. Let a1; : : : ; an � 0 and b1; : : : ; bk � 0 be non-negative
numbers and let f W R

n ! R and h W R
k ! R be given functions satisfying the

following Lipschitz’ conditions:

(a) j f .x/ � f . y/j �
nP

iD1
aijxi � yij 8 x D .x1; : : : ; xn/ ; y D . y1; : : : ; yn/ 2 R

n ;

(b) jh.u/� h.v/j �
kP

jD1
bjjuj � vjj 8 u D .u1; : : : ; uk/ ; v D .v1; : : : ; vk/ 2 R

k :

Then the covariance cov. f .X/; h.Y// exists and if X and Y are either positively
In-correlated or negatively In-correlated, then we have we have

(c) jcov. f .X/; h.Y//j �
ˇ̌
ˇ nP

iD1

kP
jD1

ai bj cov.Xi;Yj/
ˇ̌
ˇ :

(d) `.Xi;Yj/ D jcov.Xi;Yj/j 8 1 � i � n 8 1 � j � k :

Proof Since the covariances cov.Xi;Yj/ exists. we have that Xi, Yj and XiYj are P-
integrable for all 1 � i � n and all 1 � j � k and by (a) and (b), we have j f .X/j �
j f .0/j CP

1�i�n ai jXij and jh.Y/j � jh.0/j CP
1�j�k bj jYjj. Hence, we see that the

covariance cov. f .X/; h.Y// exists.
Set f0.x/ D Pn

iD1 aixi for all x D .x1; : : : ; xn/ 2 R
n and h0. y/ D Pk

jD1 bjyj for
all y D . y1; : : : ; yk/ 2 R

k. By (a), we see that f1.x/ WD f0.x/ C f .x/ and f2.x/ WD
f0.x/ � f .x/ are increasing Borel functions on R

n and by (b), we see that h1. y/ WD
h0. y/C h. y/ and h2. y/ WD h0. y/� h. y/ are increasing Borel functions on R

k. Let
us define U� WD f�.X/ and V� WD h�.Y/ for � D 0; 1; 2. Then we have

U1 D U0 C f .X/ ; V1 D V0 C h.Y/ ; U2 D U0 � f .X/ ; V2 D V0 � h.Y/

and so we have

cov.U1;V1/C cov.U2;V2/ D 2 cov.U0;V0/C 2 cov. f .X/; h.Y// ; (i)

cov.U2;V1/C cov.U1;V2/ D 2 cov.U0;V0/ � 2 cov. f .X/; h.Y// : (ii)

Suppose that X and Y are negatively In-correlated. Since f� and h� are increasing for
� D 0; 1; 2, we see that cov.U0;V0/ � 0 and that the covariances on the left hand
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sides of (i) and (ii) are � 0. Hence, we have ˙cov. f .X/; h.Y// � �cov.U0;V0/ and
so we have

jcov. f .X/; h.Y//j � jcov.U0;V0/j D
ˇ̌
ˇ̌
ˇ

nP
iD1

kP
jD1

aibj cov.Xi;Yj/

ˇ̌
ˇ̌
ˇ :

Suppose that X and Y are positively In-correlated. Since f� and h� are increasing for
� D 0; 1; 2, we see that cov.U0;V0/ � 0 and that the covariances on the left hand
sides of (i) and (ii) are � 0. Hence, as above we have

jcov. f .X/; h.Y//j � jcov.U0;V0/j D
ˇ̌
ˇ̌
ˇ

nP
iD1

kP
jD1

aibj cov.Xi;Yj/

ˇ̌
ˇ̌
ˇ

which completes the proof of (c).
(d): Let 1 � i � n and 1 � j � k be given integers. By (c) we have `.Xi;Yj/ �

jcov.Xi;Yj/j. Let n 2 N be given and let �n.x/ D .�x/_ .x ^n/ for x 2 R denote the
truncation function. Then we have �n 2 Lip1.R/ and j�n.x/j D n ^ jxj for all x 2 R.
In particular, we have j�n.Xi/j � jXij, j�n.Yj/j � jYjj and j�n.Xi/�n.Yj/j � jXiYjj
and since �n.x/ ! x for all x 2 R and Xi, Yj and XiYj belong to L1.P/, we have by
Lebesgue dominated convergence theorem that cov.�n.Xi/; �n.Yj// ! cov.Xi;Yj/.
Since �n 2 Lip1.R/, we have jcov.�n.Xi/; �n.Yj//j � `.Xi;Yj/ and so we see that
jcov.Xi;Yj/j � `.Xi;Yj/ which completes the proof of (d). ut
Lemma 5.2 Let X1; : : : ;Xn be random variables with partial sums S0 D 0 and
Sk D X1 C 	 	 	 C Xk for 1 � k � n. Then we have

(a)

ˇ̌
ˇ̌'Sk.t/ �

kQ
�D1

'X� .t/

ˇ̌
ˇ̌ � 4t2

kP
�D1

`.S��1;X�/ 8 t 2 R 8 1 � k � n :

Proof Let t 2 R be given. If k D 1, then (a) holds trivially. So let 1 � k < n be a
given integer such that (a) holds for this k and set f .x/ D eitx for all x 2 R. Then f
is bounded with kf kLip � jtj and so by (5.4) we have

j'SkC1
.t/ � 'Sk.t/ 	 'XkC1

.t/j D jcov. f .Sk/; f .XkC1//j � 4t2`.Sk;XkC1/ :

Recall that j'XkC1
.t/j � 1. So by the induction hypothesis we have

ˇ̌
ˇ̌'Sk.t/ 'XkC1

.t/ �
kC1Q
�D1

'X� .t/

ˇ̌
ˇ̌ �

ˇ̌
ˇ̌'Sk.t/ �

kQ
�D1

'X� .t/

ˇ̌
ˇ̌ � 4t2

kP
�D1

`.S��1;X�/ :

Summing the two inequalities, we see that (a) follows by induction. ut
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Lemma 5.3 Let X be a random variable with mean 0 and finite variance v D EX2

and set r.x/ D 1^ jxj
3

for x 2 R and RX.t/ D EŒX2 r.tX/� for t 2 R. Then we have

(a) j'X.t/ � .1 � vt2

2
/j � t2

2
RX.t/ 8 t 2 R :

(b) j'X.
tp
n
/n � e�vt2=2j � t2evt2

�
v2 t2

n C 1
2

RX.
tp
n
/
� 8t 2 R 8 n 2 N :

Proof By Taylor’s formula we have jeix � .1C ix � x2

2
/j � x2

2
r.x/ and since EX D

0 and EX2 D v, we see that (a) holds. To prove (b), I shall need the following
inequalities:

jeu � evj � ju � vj e<u_<v 8 u; v 2 C ; (i)

jez � .1C z
n /

nj � 1
n jzj2 ejzj 8 z 2 C 8 n 2 N : (ii)

Proof of (i) Let z D x C iy be a complex number. By the mean value theorem, we

have j1 � exj � jxj exC

and 0 � 1 � cos y � y2

2
and so we have

jez � 1j2 D .ex � 1/2 C 2ex .1 � cos y/ � jxj2 e2xC C y2 ex � .x2 C y2/ e2xC

:

Hence, we have jez � 1j � jzj exC

. Let u; v 2 C be given and set a D <u and
b D <v. Since a _ b D b C .a � b/C, we have

jeu � evj D eb jeu�v � 1j � ju � vj ebC.a�b/C D ju � vj ea_b

which proves (i).

Proof of (ii) Let z 2 C and n 2 N be given. If n D 1, then (ii) is easy and well-
known. Let 2 � j � n be given. Then we have

jŠ
nj

�n
j

� D
j�1Q
�D1
.1 � �

n / � .1 � j�1
n /

j�1 ;

and by the mean value theorem, there exists a number � such that 1 � j�1
n < � < 1

and

1 � jŠ
nj

�n
j

� � 1 � .1� j�1
n /

j�1 D . j�1/2
n � j�2 � . j�1/2

n 8 2 � j � n :
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Observe that the left hand side is 0 for j D 0; 1. Hence, we have

jez � .1C z
n /

nj �
nP

jD0
jzjj
jŠ

�
1 � jŠ

njŠ

�n
j

��C
1P

jDnC1
jzjj
jŠ

�
nP

jD2
jzjj
jŠ

. j�1/2
n C

1P
jDnC1

jzjj
jŠ

� jzj2
n

nP
jD2

jzjj�2
. j�2/Š C jzj2

n

1P
jDnC1

jzjj�2
. j�2/Š D 1

n jzj2ejzj

which proves (ii).

Let t 2 R and n 2 N be given and set tn D tp
n

and zn D n .'X.tn/ � 1/. By

(a), we have jzn C v
2
t2j � t2

2
RX.tn/ and since 0 � RX.u/ � v, we have jznj � v t2.

By (ii), we have

jezn � 'X.tn/
nj D jezn � .1C zn

n /
nj � 1

n jznj2ejznj � v2 t4

n evt2 ;

and by (i), we have

jezn � e�vt2=2j � jzn C v
2
t2j e.�vt2=2/_<zn � t2

2
evt2 RX.tn/ :

Hence, we have

j'X.tn/
n � e�vt2=2j � t2evt2

�
v2 t2

n C 1
2

RX.tn/
�

which proves (b). ut
Theorem 5.4 Let X1;X2; : : : 2 L2.P/ be identically distributed, random variables
with mean 0 and variance v and let S0 D 0 and Sn D X1 C 	 	 	 C Xn denote the
partial sums for n � 1. Then we have

(a) lim
n!1

 
1
n

nP
jD1

`.Sj�1;Xj/

!
D 0 ) Snp

n

�! N.0; v/ :

Proof Let 	.t/ D 'X1 .t/ and 	n.t/ D 'Sn.t/ denote the characteristic functions of
the X1 and Sn. By the classical central limit theorem we have 	. tp

n
/n ! e�vt2=2 for

all t 2 R and by Lemma 5.2 we have

j	n.
tp
n
/� 	. tp

n
/nj � 4t2 1n

nP
jD1
`.Sj�1;Xj/ ;

which proves the theorem. ut
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Remark 5.5 Recall that the sequence .an/ tends to a in Cesàro mean if and only if
1
n

Pn
kD1 ak ! a. Let X1;X2; : : : 2 L2.P/ be identically distributed (not necessarily

independent) random variables with mean 0 and variance v. Then Theorem 5.4
shows that the central limits theorem holds if the Lipschitz’ mixing coefficients
`.Sn;XnC1/ tends to 0 in Cesàro mean and recall that we have `.Sn;XnC1/ D
jcov.Sn;XnC1/j if Sn and XnC1 are either positively In-correlated or negatively In-
correlated.

Theorem 5.6 Let .Xn/n�1  L2.P/ be a strictly stationary sequence, let S0 D 0

and Sn D X1 C 	 	 	 C Xn for n � 1 denote the partial sums and set v.0/ D 0 and

�.n/ D cov.X1;XnC1/ ; v.n/ D var Sn ; Cn;k D
nP

jD1
`.S. j�1/k ; Sjk � S. j�1/k/

for all n; k � 1. Then we have

(a) v.n/
n D v.1/C 2

nP
kD1

.1 � k
n / �.k/ 8 n; k � 1 ;

(b)
nP

jD1
cov.S. j�1/k ; Sjk � S. j�1/k/ D 1

2
.v.nk/ � n v.k// 8 n; k � 1 ;

(c) Cn;k � 2
p
v.k/

n�1P
jD0

p
v.jk/ 8 n; k � 1 :

Suppose that EX1 D 0 and let �2 � 0 be a non-negative number satisfying

(d) lim inf
k!1

�
lim sup

n!1
Cn;k

nk

�
D 0 and lim

k!1
v.k/

k D �2 ;

Then we have Snp
n

�! N.0; �2/ and if �2 > 0, we have Snp
v.n/

�! N.0; 1/.

Proof (a) and (b) are easy consequences of (weak) stationarity and since v.k/ D
var.SnCk � Sk/ for all n; k � 0, we see that (c) follows from (5.6).

So suppose that EX1 D 0 and that (d) holds. Set Un D n�1=2 Sn for n 2 N and
let 	n D 'Sn and  n D 'Un denote the characteristic functions of Sn and Un for all
n � 1. Then we have  n.t/ D 	n.

tp
n
/ for all t 2 R and all n 2 N.

Let t 2 R and 0 < ı < 1 be given numbers. By (d), there exists an integer k � 1

(which will be fixed for the rest of the proof) such that

j�2 � v.k/
k j � ı

1Ct2
and lim sup

n!1
Cn;k

nk < ı
1C16 t2

: (i)

Set Xk
j D Sjk�S.j�1/k for j � 1. Since .Xi/ is strictly stationary, we see that Xk

1;X
k
2; : : :

are identically distributed with common characteristic function 	k and partial sums
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Xk
1 C 	 	 	 C Xk

j D Sjk. So by Lemma 5.2 we have

j mk.t/ �  k.
tp
m
/mj D

ˇ̌
ˇ	mk.

tp
mk
/� 	k.

tp
mk
/m
ˇ̌
ˇ

� 4t2 1
mk

mX
jD1

`.Sk. j�1/; Skj � Sk. j�1// D 4t2 Cm;k

mk

for all m � 1. Let m � 1 be given and let RUk.s/ be defined as in Lemma 5.3. Since
EUk D 0 and EU2

k D v.k/
k , we have by Lemma 5.3

ˇ̌
 k.

tp
m
/m � e� v.k/

2k t2
ˇ̌ � t2 e

v.k/
k t2

�
v.k/2

m k2
t2 C 1

2
RUk.

tp
m
/
�
:

Note that RUk .s/ is continuous with RUk.0/ D 0. So by (i) there exists an integer
mk � 1 such that

j mk.t/ �  k.
tp
m
/mj < ı

4
8 m � mk

ˇ̌
 k.

tp
m
/m � e� v.k/

2k t2
ˇ̌ � ı

4
8 m � mk

Since j�2 � v.k/
k j � ı

1Ct2
, we have je� v.k/

2k t2 � e��2 t2=2j � t2

2
j�2 � v.k/

k j � ı
2

and so

we have j mk.t/ � e��2 t2=2j � ı for all m � mk.
Set q D 1 C EjtX1j and r D 4.qk/2ı�2. Let n > r C k mk be given and set

m D b n
k c. Then we have 0 � n � mk < k and by the mean value theorem, we have

0 � p
n � p

mk � .n � mk/ 1

2
p

mk
� k

2
p

mk
:

Since EjtXij D EjtX1j � q, we have Ejt Smkj � qmk and Ejt.Sn � Smk/j � q .n �
mk/ � qk and since jeix � eiyj � jx � yj and n � r, we have

j n.t/�  mk.t/j � jtj EjUn � Umkj � tp
n
Ejt.Sn � Smk/j C

p
n�p

mkp
nmk

EjtSmkj
� q kp

n
C q k

2
p

n
� 2qkp

n
� ı ;

Since n > k mk, we have m � mk and so we have j mk.t/ � e��2t2=2j < ı and

j n.t/ � e��2t2=2j � j n.t/ �  mk.t/j C j mk.t/ � e��2t2=2j < 2ı

for all n > r C k mk. Hence, we have Un
�! N.0; �2/ and since v.n/

n ! �2, we have
Snp
v.n/

�! N.0; 1/ if �2 > 0. ut
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Remark 5.7

(1): Recall that the series
1P

nD1
an is Cesàro summable with Cesàro sum A if and

only if the partial sums a1C	 	 	C an tends to A in Cesáro mean or equivalent if
nP

kD1
.1 � k

n / ak ! A. By (a), we see that lim
n!1

v.n/
n D �2 if and only if

1P
nD1

�.n/

is Cesàro summable with Cesàro sum �2�v.1/
2

.

(2): Suppose that �.n/ � 0 for all n � 1. By (a), we see that . v.n/n /n�1 is increasing

and lim
n!1

v.n/
n D v.1/C 2

1P
kD1

�.k/.

(3): Suppose that �.n/ � 0 for all n � 1. By (a), we see that . v.n/n /n�1 is decreasing

and we have
1P

kD1
j�.k/j � v.1/

2
and lim

n!1
v.n/

n D v.1/C 2
1P

kD1
�.k/.

(4): Suppose that Sn and SnCk � Sn are positively In-correlated or negatively In-
correlated for every .n; k/ 2 N

2. Then Theorem 5.1 shows Cn;k
nk D 1

2
.
v.nk/

nk �
v.k/

k / for all n; k � 1 and so we see that condition (d) holds if and only if

lim
k!1

v.k/
k D �2.

Appendix

In this appendix, I shall give a purely analytic solution to a certain recursive, func-
tional inequality which is closely linked to the Rademacher-Menchoff inequalities
of Sect. 2. But first let me prove the following simple lemma.

Lemma A.1 Let .gi;j/.i;j/2�0 be a triangular schemes of non-negative numbers. Let
.i; j/ 2 �2 be a given pair and let a > 0 and h � 0 be given numbers satisfying

gi;i _ .a gj;j/ � h and max
i<k<k

.gi;k C gk;j/ � .1C 1
a / h :

Then we have min
i<k�j

.gi;k�1 _ .a gk;j// � h.

Proof I shall split the proof in three cases:

Case 1 : gi;j�1 � h. Since a gj;j � h, we have gi;j�1 _ .a gj;j/ � h.
Case 2 : gi;iC1 � h < gi;j�1. Then there exists an integer i < k < j such that

gi;k�1 � h � gi;k and since h C gk:j � gi;k C gk;j � .1 C 1
a / h, we have

gi;k�1 _ .a gk;j/ � h.
Case 3 : gi;iC1 > h. Since j � 2, we have i < iC1 < j and so we have hCgiC1;j �

gi;iC1CgiC1;j � .1C 1
a / h and since gi;i � h, we have gi;i _.a giC1;j/ � h.

Since the three cases exhaust all possibilities, we see that there exists an integer
i < k � j such that gi;k�1 _ .a gk;j/ � h. ut
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Proposition A.2 Let p; q 2 RC be given numbers and let D  RC be a non-empty
set such that pt 2 D and qt 2 D for all t 2 D. Let � W R2C ! RC, be an increasing
homogeneous function and set �.x;1/ D �.1; x/ D 1 for all x 2 Œ0;1�. Let
Ai;j;Bi;j;Vi;j W D ! Œ0;1� be given functions for .i; j/ 2 �0 and let h W N0 ! RC
and � W N0 ! N0 be increasing functions such that �.0/ D 0 and

(a) Ai;j.t/ � �.Ak;j. pt/C Ai;k�1.qt/;Bi;k.t// 8.i; k; j; t/ 2 r � D ;
(b) Ai;i.t/ � h.0/Vi;i.t/ and Vi;j.t/ � Vi;jC1.t/ < 1 8 .i; j; t/ 2 �0 � D ;
(c) Bi;j.t/ � h.�. j � i//Vi;j.t/ 8 .i; j; t/ 2 �0 � D :

Then we have Ai;j.t/ < 1 and Bi;j.t/ < 1 for all .i; j; t/ 2 �0 � D. Let s � 0 be a
given number satisfying h.0/ � �.s h.0/; h.1// and let us define

‡s D f.i; j; t/ 2 �1 � D j h�s .�. j � i//Vi;j.t/ < Ai;j.t/g :

Then h�s is increasing and if

(d) min
k2D

�
i;j

.Vi;k�1.qt/C Vk;j. pt// � s Vi;j.t/ 8 .i; j; t/ 2 ‡r ;

then we have Ai;j.t/ � h�s .�. j � i//Vi;j.t/ for all .i; j; t/ 2 �0 � D.

Proof By (b) and (c), we have Ai;i.t/ < 1 for all .i; t/ 2 N0 � D and Bi;j.t/ < 1
for all .i; j; t/ 2 �0 � D. Let n � 0 be a given integer such that Ai;iCn.t/ < 1 for all
.i; t/ 2 N0 � D and let .i; t/ 2 N0 � D be given. Since pt 2 D and qt 2 D, we have
Ai;iCn.qt/CAiCnC1;iCnC1. pt/ < 1. Hence, by (a), we see that Ai;iCnC1.t/ < 1 and
so by induction, we have Ai;j.t/ < 1 for all .i; j; t/ 2 �0 � D.

Suppose that h.0/ � �.s h.0/; h.1//. By (2.6), we have h�s .0/ D h.0/ �
�.s h.0/; h.1// D h�r .1/. Let n � 1 be a given integer such that h�s .n � 1/ � h�s .n/.
By (2.6), we have h�s .nC1/ D �.s h�s .n/; h.nC1// and since � and h are increasing
we have h�s .n C 1/ � �.s h�s .n � 1/ ; h.n// D h�s .n/. So by induction, we see that
h�s is increasing.

Suppose in addition that (d) holds. Since �.0/ D 0, we have h.0/ D h�s .�.0// and
so by (b) we have Ai;j.t/ � h�s .�. j � i//Vi;j.t/ for all .i; j; t/ 2 �0 � D. Let n � 0 be
a given integer such that Ai;j.t/ � f �s .�. j � i//Vi;j.t/ for all .i; j; t/ 2 �n � D. Let
.i; j; t/ 2 �nC1 � D be given and let me show that Ai;j.t/ � h�s .�. j � i//Vi;j.t/.

If j � i � n, this follows from the induction hypothesis and if Ai;j.t/ � h�s .�. j �
i//Vi;j.t/, this holds trivially. So suppose that j� i D nC1 and h�s .�. j � i//Vi;j.t/ <
Ai;j.t/ and set � D �.n C 1/. Since j � i D n C 1 � 1, we have .i; j; t/ 2 ‡s. Recall

that mink2; ak D 1 and Vi;j.t/ < 1. So by (d) there exists k 2 D�
i;j such that

Vi;k�1.qt/C Vk;j. pt/ � s Vi;j.t/.

Since k 2 D�
i;j, we have �.j � k/_ �.k � i �1/ � ��1 and since h�s is increasing,

we have h�s .�. j � k// � h�s .� � 1/ and h�s .�.k � i � 1// � h�s .� � 1/. Since h and
� are increasing and k � i � n C 1, we have h.�.k � i// � h.�/ and since i < k � j
and n C 1 D j � i, we have .i; k � 1/ 2 �n and .k; j/ 2 �n. Since t 2 D, we have
pt; qt 2 D and so by induction hypothesis, we have Ai;k�1.qt/ � h�s .��1//Vi;k�1.qt/
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and Ak;j. pt/ � h�s .� � 1/Vk;j. pt/. Since Vi;k�1.qt/C Vk;j. pt// � s Vi;j.t/, we have

Ai;k�1.qt/C Ak;j. pt/ � s h�s .� � 1/Vi;j.t/ :

By (c), we have Bi;k.t/ � h.�.k � i//Vi;k.t/ and since � and h are increasing and
k � i � j � i D n C 1, we have h.�.k � i// � h.�/. So we have Bi;k.t/ � h.�/Vi;k.t/
and by (a) and homogeneity and monotonicity of � we have

Ai;j.t/ � �.Ai;k�1.qt/C Ak;j. pt/;Bi;k.t//

� �.s h�s .� � 1/; h.�//Vi;j.t/ D h�s .�/Vi;j.t/ :

Hence, by induction we see that Ai;j.t/ � h�s .�. j� i//Vi;j.t/ for all .i; j; t/ 2 �0�D.
ut
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On the Order of the Central Moments
of the Length of the Longest Common
Subsequences in Random Words

Christian Houdré and Jinyong Ma

Abstract We investigate the order of the r-th, 1 � r < C1, central moment of
the length of the longest common subsequences of two independent random words
of size n whose letters are identically distributed and independently drawn from a
finite alphabet. When all but one of the letters are drawn with small probabilities,
which depend on the size of the alphabet, a lower bound is shown to be of order
nr=2. This result complements a generic upper bound also of order nr=2.

Keywords Burkholder inequality • Efron-Stein inequality • Last passage perco-
lation • Longest common subsequence • r-th central moment
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1 Introduction and Statements of Results

Let X D .Xi/i�1 and Y D .Yi/i�1 be two independent sequences of iid random
variables taking their values in a finite alphabet Am D f˛1; ˛2; : : : ; ˛mg, m � 2,
with P.X1 D ˛k/ D P.Y1 D ˛k/ D pk, k D 1; 2; : : : ;m. Let also LCn be the length
of the longest common subsequence of the random words X1 	 	 	 Xn and Y1 	 	 	 Yn,
i.e., LCn WD LCn.X1 	 	 	 XnI Y1 	 	 	 Yn/ is the largest k such that there exist 1 � i1 <
i2 < 	 	 	 < ik � n and 1 � j1 < j2 < 	 	 	 < jk � n, with Xis D Yjs , s D 1; : : : ; k.

The study of the asymptotic behavior of LCn has a long history starting with the
well known result of Chvátal and Sankoff [5] asserting that

lim
n!1

ELCn

n
D ��

m : (1.1)

C. Houdré (�) • J. Ma
School of Mathematics, Georgia Institute of Technology, Atlanta, GA, 30332-0160, USA
e-mail: houdre@math.gatech.edu; jinyma@gmail.com

© Springer International Publishing Switzerland 2016
C. Houdré et al. (eds.), High Dimensional Probability VII,
Progress in Probability 71, DOI 10.1007/978-3-319-40519-3_5

105

mailto:houdre@math.gatech.edu
mailto:jinyma@gmail.com


106 C. Houdré and J. Ma

However, to this day, the exact value of ��
m (which depends on the distribution of X1

and on the size of the alphabet) is still unknown even in “simple cases” such as for
uniform Bernoulli random variables. This first asymptotic result was sharpened by
Alexander [1] who showed that

��
mn � KA

p
n log n � ELCn � ��

mn; (1.2)

where KA > 0 is a constant depending neither on n nor on the distribution of X1.
Next, Steele [13] was the first to investigate the order of the variance proving,
in particular, that VarLCn � n. However, finding the order of the lower bound
is more illusive. For Bernoulli random variables and in various instances where
there is a strong “bias” such as high asymmetry or mixed common and increasing
subsequence problems, the lower bound is also shown to be of order n [6, 8, 9].
The uniform case is still unresolved and tight lower variance estimates seem to be
lacking (however, see [2, 3], where a situation “as close as we want” to uniformity
is treated).

Below, starting with a generic upper bound, we investigate the order of the
r-th, r � 1, central moment of LCn in case of finite alphabets (of course, as far
as the order is concerned only the case 1 � r � 2 is really of interest for this lower
bound).

The upper bound obtained in [13] relies on an asymmetric version of the Efron-
Stein inequality which can be viewed as a tensorization property of the variance.
The symmetric Efron-Stein inequality has seen a generalization, due to Rhee and
Talagrand [12], to the r-th moment where it is, in turn, viewed as a consequence
of Burkholder’s square function inequality. As described next, in the asymmetric
case, a similar extension also holds thus providing a generic upper bound on the
r-th central moment of LCn. First, let S W R

n ! R be a Borel function and let
.Zi/1�i�n and . OZi/1�i�n be two independent families of iid random variables having
the same law. Now, and with suboptimal notation, let S D S.Z1;Z2; : : : ;Zn/, and let
Si D S.Z1;Z2; : : : ;Zi�1; OZi;ZiC1; : : : ;Zn/, 1 � i � n. Then, as shown next, for any
r � 2,

kS � ESkr WD .EjS � ESjr/
1=r � r � 1

21=r

 
nX

iD1
kS � Sik2r

!1=2
: (1.3)

Indeed, for i D 1; : : : ; n, let Fi D �.Z1; : : : ;Zi/ be the �-field generated by
Z1; : : : ;Zi, let F0 D f�;;g be trivial, and let di WD E.SjFi/ � E.SjFi�1/. Thus,
.di;Fi/1�i�n is a martingale differences sequence and from Burkholder’s square
function inequality, with optimal constant, e.g., see [11], for r � 2,

kS � ESkr D
�����

nX
iD1

di

�����
r

� .r � 1/
������
 

nX
iD1

d2i

!1=2������
r

� .r � 1/
 

nX
iD1

kd2i kr=2

!1=2
:

(1.4)
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Moreover, and as in [12], letting Gi D �.Z1;Z2; : : : ;Zi; OZi/, 1 � i � n,

EjS � Sijr D E.E.jS � SijrjGi//

� E.jE.SjGi/ � E.SjFi�1/C E.SijFi�1/ � E.SijGi/jr/

WD EjU C Vjr; (1.5)

where U D E.SjGi/�E.SjFi�1/ and V D E.SijFi�1/�E.SijGi/. But, given Fi�1, U
and V are independent, with moreover E.UjFi�1/ D E.VjFi�1/ D 0 and EjUjr D
EjVjr D Ejdijr, thus,

EjU C Vjr D E.E.jU C VjrjFi�1// � EjUjr C EjVjr D 2Ejdijr; (1.6)

using the calculus inequality, valid for any r � 2, u 2 R and v 2 R, juCvjr � jujr C
rsign.u/jujr�1v C jvjr, and taking conditional expectations. Combining (1.4), (1.5)
and (1.6) gives (1.3).

Next, apply (1.3) to LCn viewed as a function of the 2n random variables
X1; : : : ;Xn;Y1; : : : ;Yn and note, at first, that replacing Xi (resp. Yi) by an inde-
pendent copy OXi (resp. OYi), changes jLCn � LCn.X1 	 	 	 OXi 	 	 	 XnI Y1 	 	 	 Yn/j (resp.
jLCn �LCn.X1 	 	 	 XnI Y1 	 	 	 OYi 	 	 	 Yn/j) by at most 1. Thus, following Steele [13] and
for each i D 1; : : : ; n,

jjLCn � LCn.X1 	 	 	 OXi 	 	 	 XnI Y1 	 	 	 Yn/jj2r
D
�
E.jLCn � LCn.X1 	 	 	 OXi 	 	 	 XnI Y1 	 	 	 Yn/jr1Xi¤ OXi

/
�2=r

�
�
P.Xi ¤ OXi/

�2=r D
 
1 �

mX
kD1

p2k

!2=r

: (1.7)

Combining (1.7), and its version for .Yi/1�i�n, with (1.3) yields, for any r � 2,

EjLCn � ELCnjr � .r � 1/r

2

 
1 �

mX
kD1

p2k

!
.2n/r=2; (1.8)

which further yields,

EjLCn � ELCnjr �
  
1 �

mX
kD1

p2k

!
n

!r=2

;

for any 0 < r � 2, by the Cauchy-Schwarz inequality.
Therefore, (1.8) provides an upper bound whose order could also be obtained, in a

simpler way, by integrating out the tail inequality given via Hoeffding’s exponential
martingale inequality. Let us now state the main result of the paper which provides
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a lower bound on the r-th central moment of LCn, when all but one of the symbols
are drawn with very small probabilities.

Theorem 1.1 Let 1 � r < C1, and let .Xi/i�1 and .Yi/i�1 be two independent
sequences of iid random variables with values in Am D f˛1; ˛2; : : : ; ˛mg, m � 2,
such that P.X1 D ˛k/ D pk, k D 1; 2; : : : ;m. Further, let j0 2 f1; : : : ;mg be such
that maxj¤j0 pj � min.2�2e�5Km=m;Km=2m2/, where Km D min.K; 1=800m/ and
K D 2�410�2e�67. Then, there exists a constant C > 0 depending on r, m, pj0 and
maxj¤j0 pj, such that, for all n � 1,

Mr.LCn/ WD E jLCn � ELCnjr � Cn
r
2 : (1.9)

An estimate on the constant C present in (1.9) is given in Remark 2.1.
In contrast to [6, 8] or [9] which deal only with binary words, our results are

proved for alphabets of arbitrary, but fixed size m, and are thus novel in that context
as well even for the variance, i.e., r D 2. Moreover, our results are no longer
existential, but provide precise constants depending on the alphabet size. As well
known, e.g., see [2, 3], the LCS problem is a last passage percolation (LPP) problem
with strictly increasing paths and dependent weights and, therefore, in our context,
the order of the variance is linear. For the LPP problem with independent weights
the variance is conjectured to be sublinear. In view of (1.8) and (1.9), it is tempting
to conjecture, and we do so, that when properly centered (by ��

mn) and normalized
(by

p
n), asymptotically, LCn has a normal component. (The limiting law is in

fact normal, see [7].) This conjecture might appear surprising since in LPP with
independent weights different limiting laws are conjectured and have been proved
to be such in the closely related Bernoulli matching model [10]. It should finally
also be noted that, as seen in [4], with another closely related model, the order nr=2

on the central moments does not guarantee normal convergence, but nevertheless a
normal component is present.

As for the content of the rest of paper, Sect. 2 presents a proof of Theorem 1.1
which relies on a key preliminary result, Theorem 2.1, whose proof is given in
Sect. 3.

2 Proof of Theorem 1.1

The strategy of proof to obtain the lower bound is to first represent LCn as a random
function of the number of most probable letters ˛j0 . In turn, this random function
locally satisfies a reversed Lipschitz condition which ultimately gives the lower
bound in Theorem 1.1. This methodology extends, modifies and simplifies (and
at times corrects) the binary strategy of proof of [6] or [9] providing also a more
quantitative result.

To start, and as in [6], pick a letter equiprobably at random from all the non-˛j0
letters in either one of the two finite sequences, of length n, X or Y (Throughout the
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paper, by finite sequences X and Y, of length n, it is meant that X D .Xi/1�i�n and
Y D .Yi/1�i�n). Next, change it to the most probable letter ˛j0 and call the two new
finite sequences QX and QY. Then the length of the longest common subsequence of QX
and QY, denoted by eLCn, tends, on an event of high probability, to be larger than LCn.
This is the content of the following theorem which is proved in the next section.

Theorem 2.1 Let the hypothesis of Theorem 1.1 hold. Then, for all n � 1, there
exists a set Bn � An

m � An
m, such that,

P ..X;Y/ 2 Bn/ � 1 � 125 exp

�
�n.maxj¤j0 pj/

6

5

	
; (2.1)

and such that for all .x; y/ 2 Bn,

P.eLCn � LCn D 1jX D x;Y D y/ � K

m
; (2.2)

P.eLCn � LCn D �1jX D x;Y D y/ � K

2m
; (2.3)

where K D 2�410�2e�67.

As already mentioned, the proof of Theorem 2.1 is given in the next section,
let us nevertheless indicate how it leads to the lower bound on Mr.LCn/ given in
Theorem 1.1. In fact, the arguments leading to the conclusion of Theorem 1.1 remain
valid under any hypotheses for which the conclusions of Theorem 2.1 remain valid.

From now on, assume without loss of generality that p1 > 1=2 and that p2 D
max2�j�m pj, so that ˛1 is the most probable letter and ˛2 the second most probable
one.

To begin with, let us present a few definitions. For the two finite random
sequences X D .Xi/1�i�n and Y D .Yi/1�i�n, let N1 be the total number of
letters ˛1 present in both sequences, i.e., N1 is a binomial random variable with
parameters 2n and p1. Next, by induction, define a finite collection of pairs of finite
random sequences .Xk;Yk/0�k�2n, which are independent of X and Y, and therefore
independent of N1, as follows: First, let X0 D .X0i /1�i�n and Y0 D .Y0i /1�i�n

be independent, with X0i and Y0i , i D 1; : : : ; n, iid random variables with values
in f˛2; : : : ; ˛mg and such that P.X01 D ˛k/ D P.Y01 D ˛k/ D pk=.1 � p1/,
2 � k � m. In other words, X0 and Y0 are two independent finite sequences of
iid random variables whose joint law is the law of ..X;Y/jN1 D 0/. Once (Xk;Yk) is
defined, let (XkC1;YkC1) be the pair of finite random sequences obtained by taking
(pathwise) with equal probability, one letter from all the letters ˛2; ˛3; : : : ; ˛m in
the pair .Xk;Yk/ and replacing it with ˛1, and for this path iterating the process
till k D 2n. Clearly, for 1 � k � 2n � 1, Xk and Yk are not independent, while
.X2n

i ;Y
2n
i /1�i�n is a deterministic sequence made up only of the letter ˛1.

Rigorously, the random variables can be defined as follows: let � be our
underlying space, and let �2nC1 be its .2n C 1/-fold Cartesian product. For each



110 C. Houdré and J. Ma

! D .!0; !1; : : : ; !2n/ 2 �2nC1 and 0 � k � 2n, .Xk.!/;Yk.!// only depends
on !0; !1; : : : ; !k. Then, .XkC1.!/;YkC1.!// is obtained from .Xk.!/;Yk.!// by
replacing with equal probability any non-˛1 letter by ˛1, while the choice of the
non-˛1 letter to be replaced in .Xk.!/;Yk.!// is determined by !kC1.

Next, let LCn.k/ denote the length of the longest common subsequence of Xk and
Yk (with a slight abuse of notation and terminology with the identification of finite
sequences and words). The lemma below shows that .Xk;Yk/ has the same law as
.X;Y/ conditional on N1 D k, and therefore the law of LCn.k/ is the same as the
conditional law of LCn given N1 D k.

Lemma 2.1 For any k D 0; 1; : : : ; 2n,

.Xk;Yk/
dD ..X;Y/jN1 D k/; (2.4)

and moreover,

.XN1 ;YN1 /
dD .X;Y/; (2.5)

where
dD denotes equality in distribution.

Proof The proof is by induction on k. By definition, .X0;Y0/ has the same law as
.X;Y/ conditional on N1 D 0. For any .˛j1 ; : : : ; ˛j2n/ 2 An

m � An
m, let

q` D ˇ̌˚
1 � i � 2n W ˛ji D ˛`

�ˇ̌
;

1 � ` � m. Now assume that (2.4) is true for k, i.e., assume that for any
.˛j1 ; : : : ; ˛j2n/ 2 An

m � An
m, with q1 D k,

P
�
.Xk

1; : : : ;X
k
n;Y

k
1 ; : : : ;Y

k
n/ D .˛j1 ; : : : ; ˛j2n/

� D
 
2n

k

!�1 mY
`D2

�
p`

1 � p1

	q`

:

(2.6)
Then, for any .˛j1 ; : : : ; ˛j2n/ 2 An

m � An
m, with q1 D k C 1,

P
�
.XkC1

1 ; : : : ;XkC1
n ;YkC1

1 ; : : : ;YkC1
n / D .˛j1 ; : : : ; ˛j2n/

� D
kC1X
iD1

P
�
.XkC1

1 ; : : : ;XkC1
n ;YkC1

1 ; : : : ;YkC1
n / D .˛j1 ; : : : ; ˛j2n/jBkC1

i

�
P.BkC1

i /; (2.7)

where BkC1
i , 1 � i � k C 1, is the event that the i-th ˛1 in .˛j1 ; : : : ; ˛j2n/ is changed

from a non-˛1 letter when passing from .Xk;Yk/ to .XkC1;YkC1/. (Conditional on
BkC1

i , the i-th ˛1 in .˛j1 ; : : : ; ˛j2n/ could have been changed from any letter in
f˛2; ˛3; : : : ; ˛mg.) Assuming this ˛1 has been changed, say, from ˛s, 2 � s � m,
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the corresponding probability is given by:

P
�
.Xk;Yk/ D .˛j1 ; : : : ; ˛s; : : : ; ˛j2n/

� D
 
2n

k

!�1 mY
`D2

�
p`

1 � p1

	q` � ps

1 � p1

	
;

where, above, ˛s takes the place of the i-th ˛1 in the sequence .˛j1 ; : : : ; ˛j2n/. Thus,

P
�
.XkC1

1 ; : : : ;XkC1
n ;YkC1

1 ; : : : ;YkC1
n / D .˛j1 ; : : : ; ˛j2n/jBkC1

i

�
P.BkC1

i /

D
 
2n

k

!�1 mY
`D2

�
p`

1 � p1

	q`
 

mX
sD2

ps

1 � p1

!
1

2n � k
;

which when incorporated into (2.7), gives

P
�
.XkC1

1 ; : : : ;XkC1
n ;YkC1

1 ; : : : ;YkC1
n / D .˛j1 ; : : : ; ˛j2n/

�

D
 
2n

k C 1

!�1 mY
`D2

�
p`

1 � p1

	q`

; (2.8)

finishing the proof of the first part of the lemma.
Next, from (2.4) and the independence of N1 and f.Xk;Yk/g0�k�2n, for any

.u; v/ 2 R
n � R

n,

E
�
ei<u;X>Ci<v;Y>

� D
2nX

kD0
E
�
ei<u;X>Ci<v;Y>jN1 D k

�
P .N1 D k/

D
2nX

kD0
E

�
ei<u;Xk>Ci<v;Yk>

�
P .N1 D k/

D
2nX

kD0
E

�
ei<u;Xk>Ci<v;Yk>jN1 D k

�
P .N1 D k/

D
2nX

kD0
E

�
ei<u;XN1>Ci<v;YN1 >jN1 D k

�
P .N1 D k/

D E

�
ei<u;XN1>Ci<v;YN1 >

�
;

finishing the proof of the lemma. �
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Let now LCn.N1/ be the length of the longest common subsequence of XN1

and YN1 . The above lemma implies that LCn and LCn.N1/ have the same law and,
therefore,

Mr.LCn.N1// D Mr.LCn/: (2.9)

To lower bound the right hand side of (2.9) (and to prove Theorem 1.1) the following
simple inequality will prove useful.

Lemma 2.2 Let f W Dom ! Z satisfy a local reversed Lipschitz condition, i.e., let
` � 0 and let f be such that for any i; j 2 D with j � i C `,

f . j/ � f .i/ � c. j � i/;

for some c > 0. Let T be a Dom-valued random variable with Ej f .T/jr < C1,
r � 1, then

Mr. f .T// �
� c

2

�r
.Mr.T/ � `r/ : (2.10)

Proof Let r � 1, and letbT be an independent copy of T. First, and clearly, Mr.T/ �
E.jT �bTjr/ � 2r

Mr.T/. Hence,

Mr. f .T// � 1

2r
E.j f .T/ � f .bT/jr/

�
� c

2

�r �
E.T �bT/r1

T�bT�` C E.bT � T/r1bT�T�`
�

�
� c

2

�r �
EjT �bTjr � `r

�

�
� c

2

�r
.Mr.T/ � `r/ :

�

The above lemma will prove useful in providing a lower bound on Mr.LCn.N1//
by showing that, after removing the randomness of LCn.	/, LCn.	/ satisfies a
local reversed Lipschitz condition. To do so, for a random variable U with finite
r-th moment and for a random vector V , let Mr.UjV/ WD E

�jU � E .UjV/ jr
ˇ̌
V
�
.

Clearly, by convexity and the conditional Jensen’s inequality,

Mr.UjV/ � 2r
�
E
�jU � EUjr

ˇ̌
V
�
=2C E

�jE.UjV/� EUjr
ˇ̌
V
�
=2
�

� 2r
E
�jU � EUjr

ˇ̌
V
�

(2.11)
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and so, for any n � 1,

Mr.LCn.N1// � 1

2r
E.Mr.LCn.N1/j.LCn.k//0�k�2n//

D 1

2r

Z
�

Mr.LCn.N1/j.LCn.k//0�k�2n.!//P.d!/

� 1

2r

Z
On

Mr.LCn.N1/j.LCn.k//0�k�2n.!//P.d!/; (2.12)

where for each n � 1,

On WD
\
i;j2I

j�iC`.n/



LCn. j/� LCn.i/ � K

4m
. j � i/

�
; (2.13)

where K is given in Theorem 2.1 and where `.n/ � 0 is to be chosen later.
(Of course, above and everywhere, intersections, unions and sums are taken over
countable sets of integers.) In words, on the event On the random function LCn has a
slope of at least K=4m, when restricted to the interval I and when i and j are at least
`.n/ apart from each other.

Since N1 is independent of .LCn.k//0�k�2n, and from (2.11), for each ! 2 �,

Mr.LCn.N1/j.LCn.k//0�k�2n.!//

� 1

2r
Mr.LCn.N1/j.LCn.k//0�k�2n.!/; 1N12I D 1/P.N1 2 Ij.LCn.k//0�k�2n.!//

D 1

2r
Mr.LCn.N1/j.LCn.k//0�k�2n.!/; 1N12I D 1/P.N1 2 I/; (2.14)

where

I D
h
2np1 �

p
2n.1� p1/p1; 2np1 C

p
2n.1� p1/p1

i
: (2.15)

Again, for each ! 2 On, from Lemma 2.2, and since N1 is independent of
.LCn.k//0�k�2n,

Mr.LCn.N1/j.LCn.k//0�k�2n.!/; 1N12I D 1/

�
�

K

8m

	r

.Mr.N1j1N12I D 1/� `.n/r/ : (2.16)
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Now, (2.12), (2.14) and (2.16) lead to

Mr.LCn.N1// � 1

4r

�
K

8m

	r

.Mr.N1j1N12I D 1/� `.n/r/P.N1 2 I/P.On/;

(2.17)

and it remains to estimate each one of the three terms on the right hand side of (2.17).
By the Berry-Esséen inequality, and all n � 1,

ˇ̌
ˇ̌P.N1 2 I/� 1p

2�

Z 1

�1
e� x2

2 dx

ˇ̌
ˇ̌ � 1p

2np1.1 � p1/
: (2.18)

Moreover,

Mr.N1j1N12I D 1/

D E.jN1 � 2np1 C 2np1 � E.N1j1N12I D 1/jrj1N12I D 1/

� ˇ̌
E.jN1 � 2np1jrj1N12I D 1/1=r � j2np1 � E.N1j1N12I D 1/jˇ̌r ; (2.19)

and

jE.N1j1N12I D 1/� 2np1j

D
p
2np1.1 � p1/

ˇ̌
ˇ̌
ˇE
 

N1 � 2np1p
2np1.1 � p1/

ˇ̌
ˇ1N12I D 1

!ˇ̌
ˇ̌
ˇ

D p
2np1.1 � p1/

ˇ̌
F̌n.1/�ˆ.1/C Fn.�1/�ˆ.�1/� R 1

�1.Fn.x/ �ˆ.x//dx
ˇ̌
ˇ

P.N1 2 I/

�
p
2np1.1 � p1/

4maxx2Œ�1;1� jFn.x/ �ˆ.x/j
P.N1 2 I/

� 2R 1
�1 e� x2

2 dx=
p
2� � 1=p2np1.1 � p1/

; (2.20)

where Fn is the distribution functions of .N1 � 2np1/=
p
2np1.1 � p1/, while ˆ is

the standard normal one. Likewise,

E.jN1 � 2np1jrj1N12I D 1/

� .2np1.1 � p1//
r=2

R 1
�1 jxjrdˆ.x/� 4maxx2Œ�1;1� jFn.x/ �ˆ.x/j

P.N1 2 I/

� .2np1.1 � p1//
r=2

R 1
�1 jxjre� x2

2 dx � 2p�=pnp1.1 � p1/R 1
�1 e� x2

2 dx C p
�=
p

np1.1 � p1/
: (2.21)
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Next, (2.19)–(2.21) lead to:

Mr.N1j1N12I D 1/

�
ˇ̌
ˇ̌
ˇ.2np1.1 � p1//

1
2

0
@
R 1

�1 jxjre� x2
2 dx � 2

p
�=
p

np1.1 � p1/R 1
�1 e� x2

2 dx C p
�=
p

np1.1 � p1/

1
A

1
r

� 2R 1
�1 e� x2

2 dx=
p
2� � 1=p2np1.1 � p1/

ˇ̌
ˇ̌
ˇ
r

:

(2.22)

Finally, assuming Theorem 2.1, the estimates (2.17)–(2.22) combined with the
estimate on P.On/ obtained in the next lemma give the lower bound (1.9), whenever
33m2 log n=K2 � `.n/ � K1

p
n (where K1 is given and estimated in Remark 2.1).

Lemma 2.3 For m � 2, let Km D min.K; 1=800m/ where K D 2�410�2e�67, and
let p2 � min.2�2e�5Km=m;Km=2m2/. Then, for all n � 1,

P.On/ � 1 �
�
500

p
�e2n exp

�
�np62
5

	
C 2n exp

�
�K2`.n/

32m2

		
: (2.23)

Proof Let An WD f.X;Y/ 2 Bng and let Ak
n WD f.Xk;Yk/ 2 Bng. Then,

P

  \
k2I

Ak
n

!c!
�
X
k2I

P
��

Ak
n

�c� D
X
k2I

P
�
Ac

njN1 D k
� �

X
k2I

P.Ac
n/

P.N1 D k/
;

(2.24)

by Lemma 2.1. Next, by Stirling’s formula in the form,

p
2�nnC 1

2 e�nC 1
12nC1 < nŠ <

p
2�nnC 1

2 e�nC 1
12n ;

for all k 2 I and n � 1,

P.N1 D k/ D
 
2n

k

!
pk
1.1 � p1/

2n�k

� 1p
2�e2

.2n/2nC1=2

kkC1=2.2n � k/2n�kC1=2 pk
1.1 � p1/

2n�k

WD �.k; n; p1/:



116 C. Houdré and J. Ma

Hence, for all k 2 I and p1 � 3=4 (which holds true since p2 � K=m), from the
property of the probability mass function of the binomial distribution,

P.N1 D k/

� min
�
P.N1 D 2np1 � b

p
2n.1� p1/p1c/;P.N1 D 2np1 C b

p
2n.1� p1/p1c/

�

� min
�
�
�
2np1 � bp2n.1� p1/p1c; n; p1

�
; �
�
2np1 C bp2n.1� p1/p1c; n; p1

��

� 1

2
p
2�e2

p
n
: (2.25)

This last inequality in conjunction with (2.24) and Theorem 2.1, gives

P

  \
k2I

Ak
n

!c!
� 4

p
�e2nP.Ac

n/ � 500
p
�e2n exp

�
�np62
5

	
: (2.26)

Next, for each n � 1, letting

�kC1 D
(

LCn.k C 1/� LCn.k/; when Ak
n holds,

1; otherwise,
(2.27)

it follows from Theorem 2.1 that,

E.�kC1jXk;Yk/ � K

2m
: (2.28)

Now, for each k D 0; 1; : : : ; 2n, let Fk WD �.X0;Y0; : : : ;Xk;Yk/, be the �-field
generated by X0;Y0; : : : ;Xk;Yk. Clearly, .�k � E.�kjFk�1/;Fk/1�k�2n forms a
martingale differences sequence and since �1 � �k � 1, Hoeffding’s martingale
inequality gives, for any i < j,

P

 
jX

kDiC1
.�k � E.�kjFk�1// < � K

4m
. j � i/

!
� exp

�
�K2. j � i/

32m2

	
: (2.29)

Moreover, from (2.28),
Pj

kDiC1 E.�kjXk�1;Yk�1/ � K. j � i/=2m, and therefore

P

 
jX

kDiC1
�k � K

4m
. j � i/

!
� P

 
jX

kDiC1
.�k � E.�kjFk�1// < � K

4m
. j � i/

!

� exp

�
�K2. j � i/

32m2

	
: (2.30)
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For each n � 1, let now

O�
n D

\
i;j2I

j�iC`.n/

(
jX

iC1
�k � K

4m
. j � i/

)
;

then, from (2.30)

P

��
O�

n

�c
�

�
X
i;j2I

j�iC`.n/

P

 
jX

iC1
�k <

K

4m
. j � i/

!
� 2n exp

�
�K2`.n/

32m2

	
: (2.31)

From the very definition of �k in (2.27),
T

k2I Ak
n \ O�

n � On; and therefore

P ..On/
c/ � P

  \
k2I

Ak
n

!c!
C P

��
O�

n

�c
�

� 500
p
�e2n exp

�
�np62
5

	
C 2n exp

�
�K2`.n/

32m2

	
: (2.32)

�
Remark 2.1 The reader might wonder how to estimate the constant C in Theo-
rem 1.1. In view of (2.9), the right hand side of (2.17) needs to be lower bounded.
Letting n � p�12

2 C m8, together with (2.18), (2.22) and (2.23) yield to:

P.N1 2 I/ � 1

2
; P.On/ � 1

2
;

and

Mr.N1j1N12I D 1/ � e� 1
2 2�.1Cr/.1C r/�1.n.1� p1//

r
2 :

Moreover, choosing

`.n/ D 2.�1�r� 1
r /e� 1

2r .n.1� p1//
1
2

�
1

1C r

	 1
r

WD K1
p

n;

in (2.17), gives:

Mr.LCn/ � 2�4�6r.1C r/�1e�1=2Krm�r.1� p1/
r=2nr=2:
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Letting C1 D 2�4�6r.1C r/�1e�1=2Krm�r.1 � p1/r=2, and

C2 D min
n�p�12

2 Cm8

Mr.LCn/

nr=2
� .r � 1/r

2
2r=2

 
1 �

mX
kD1

p2k

!
;

by (1.8), then one can choose C D min.C1;C2/ in Theorem 1.1.

3 Proof of Theorem 2.1

3.1 Description of Alignments

Let us begin with an example. Let A3 D f˛1; ˛2; ˛3g, with ˛i D i, i D 1; 2; 3; and,
say that

X D 121313111211; Y D 111311112112: (3.1)

An optimal alignment of X and Y, i.e., an alignment corresponding to a LCS, is

1 2 1 3 1 3 1 1 1 2 1 1
1 1 1 3 1 1 1 1 2 1 1 2

(3.2)

and another possible optimal alignment is

1 2 1 3 1 3 1 1 1 2 1 1
1 1 1 3 1 1 1 1 2 1 1 2

(3.3)

both corresponding to the LCS 1131111211.
Comparing these two optimal alignments, it is clear that the way the letters ˛1 are

aligned, between the aligned non-˛1 letters, is not important as long as a maximal
number of such letters ˛1 are aligned. Therefore, in general, it is enough to describe
which non-˛1 letters are aligned and to assume that between pairs of aligned non-˛1
letters a maximal number of letters ˛1 are aligned. In other words, we can identify
the two optimal alignments (3.2) and (3.3) as the same.

Next, let a cell, be either the beginning of an alignment till and including, if any,
its first pair of aligned non-˛1 letter, or be a part of an alignment between pairs of
aligned non-˛1 letters.
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For example, the alignment (3.2) can be decomposed into two cells C.1/ and
C.2/ as

C.1/; v1D�1‚ …„ ƒ
1 2 1 3
1 1 1 3

C.2/; v2D0‚ …„ ƒ
1 3 1 1 1 2
1 1 1 1 2

1 1
1 1 2

(3.4)

where, moreover, each vi denotes the difference between the number of letters ˛1 in
the X-strand and the Y-strand of the cell C.i/, i D 1; 2. For the alignment (3.2), this
gives the representation v D .v1; v2/ D .�1; 0/. Another optimal alignment is via
v D .v1; v2/ D .0;�1/ corresponding to another LCS, namely 1113111211:

C.1/; v1D0‚ …„ ƒ
1 2 1 3 1 3
1 1 1 3

C.2/; v2D�1‚ …„ ƒ
1 1 1 2
1 1 1 1 2

1 1
1 1 2

(3.5)

Note that any alignment has a cell-decomposition with a corresponding finite vector
of differences. (With the convention that when no non-˛1 letters are aligned, then
the alignment has no cell.)

Let X D X1X2 	 	 	 Xn and Y D Y1Y2 	 	 	 Yn be given. As just conveyed, any
alignment has a cell-decomposition with an associated vector representation v WD
.v1; : : : ; vk/ indicating the number of cells (k, here) and the differences between the
number of letters ˛1 in the X-strand and the corresponding number in the Y-strand
of each cell. Conversely, any v 2 Z

k corresponds to a, possibly empty, family of
cell-decompositions.

Let us now turn to optimality. First, clearly any optimal alignment is made of,
say, k cells (recall also our convention above), where within each cell a maximum
number of letters ˛1 are aligned and, if any, the optimal alignment also has a tail part
(the part after the last cell, i.e., the part after the last aligned non-˛1 letters) where
as many letter ˛1 as possible are aligned. Therefore, such an optimal alignment
is given via a unique v 2 Z

k. On the other hand, every v D .v1; : : : ; vk/ 2 Z
k

also corresponds to a (possibly empty) family of optimal alignments. All of these
optimal alignments have the same number of pairs of aligned non-˛1 letters where
within each cell a maximal number of letters ˛1 are aligned, and where moreover
as many letters ˛1 as possible are aligned after the pair of aligned non-˛1-letters.
These optimal alignments corresponding to the same v can differ in the way the
letters ˛1 are aligned within each cell and in the tail part. It can also happen, and
in contrast to the binary case, that one can align different pairs of non-˛1 letters,
which can only happen when no letters ˛1 are present between these different pairs
of non-˛1 letters. (Take, for example, X D 1321 and Y D 2311, then the optimal
alignments corresponding to v 2 Z can align either the letter 2 or the letter 3.) But
in both cases such optimal alignments based on the same v give the same length
for the corresponding longest common subsequences. Therefore, we can identify
all the optimal alignments in the family associated with v as a single one. In other
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words, we identify each vector v with an optimal alignment, provided one exists,
and vice-versa.

Writing jvj for the number of coordinates of v, i.e., jvj D k, if v 2 Z
k, the cell-

decomposition � � � associated with v D .v1; : : : ; vk/ 2 Z
k can now precisely be

defined:

Definition 3.1 Let k 2 N; k � 1 and let v D .v1; : : : ; vk/ 2 Z
k. Let �v.0/ D

�v.0/ D 0, and for each i D 1; : : : ; k, let .�v.i/; �v.i// be any one of the smallest
pair of integers .s; t/ (where .s1; t1/ � .s2; t2/ indicates that s1 � s2 and t1 � t2)
satisfying the following three conditions:

1. �v.i � 1/ < s and �v.i � 1/ < t;
2. Xs D Yt 2 f˛2; : : : ; ˛mg;
3. the difference between the number of letters ˛1 in the integer intervals Œ�v.i �
1/; s� and Œ�v.i � 1/; t� is equal to vi.

If for some i D 1; : : : ; k, no such .s; t/ exists, then set �v.i/ D 	 	 	 D �v.k/ D 1
and �v.i/ D 	 	 	 D �v.k/ D 1.

In other words, above, �v.i/; �v.i/, i D 1; : : : ; k, are the indices corresponding to
the i-th aligned non-˛1 pair in v. For i D 1; : : : ; k, the i-th cell, Cv.i/ is the pair

Cv.i/ WD �
X�v.i�1/C1 : : :X�v.i/I Y�v.i�1/C1 	 	 	 Y�v.i/

�
;

and the cell Cv.i/ is called a vi-cell.
Let us further comment on the above definition, we actually defined a greedy

algorithm for each cell (each cell must be minimal meaning that the cell ends as
soon as all three conditions in Definition 3.1 are met). For any optimal alignment,
let us compare its cells with our minimal cells alignment. If any, respectively denote
the first two different cells by copt

i and cmin
i , 1 � i � k, since these cells correspond

to the same vi 2 Z, they only differ in the number of pairs of aligned letters ˛1.
From the definition of minimality, copt

i contains more pairs of aligned letters ˛1 than
cmin

i . These pairs of letters ˛1, being of same number on the X-strand and Y-strand,
can thus be pushed to next cell. By iterating this push-procedure till the tail, then any
optimal alignment can be transformed into a minimal (optimal) alignment without
reducing the length of the common subsequence. Thus an optimal alignment can
always be transformed into a minimal (optimal) alignment.

With the above definition, we can let the alignment associated to v be any
alignment (provided one exists) satisfying the following three conditions:

1. X�v.i/ is aligned with Y�v.i/, for every i D 1; 2; : : : ; k;
2. the number of aligned letters ˛1 in the cell Cv.i/, denoted by Sv.i/, is

the minimum number of letters ˛1 present in either X�v.i�1/C1	 	 	X�v.i/ or
Y�v.i�1/C1	 	 	Y�v.i/;

3. after having aligned X�v.k/ with Y�v.k/, then align as many letters ˛1 as possible
and denote that number by rv .
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From these definitions, for any v 2 Z
k, and if there exists a minimal cell-

decomposition corresponding to v exists, then �v.k/ � n and �v.k/ � n. Such
a v is then said to be admissible. Let V denote the set of all admissible cell-
decompositions, that is,

V WD
(
v 2

1[
kD1

Z
k W �v.jvj/ � n; �v.jvj/ � n

)
: (3.6)

Then, for every v 2 V , and further for jvj D 0 in case of no cell, the length of the
common subsequence corresponding to this alignment is:

ƒCv D jvj C
jvjX

iD1
Sv.i/C rv: (3.7)

Therefore the length of the longest common subsequence of X and Y can be
expressed as:

LCn D max
v2V

ƒCv; (3.8)

and, moreover, an alignment associated to an admissible v is optimal if and only if
ƒCv D LCn.

3.2 The Effect of Changing a Non-˛1 Letter into ˛1

Again, the main idea behind Theorem 2.1 is that, by changing a randomly picked
non-˛1 letter into ˛1, the length of the longest common subsequence is more likely
to increase by one than to decrease by one. More precisely, conditional on the event
An D f.X;Y/ 2 Bng, the probability of an increase of LCn is at least K=m while the
probability of a decrease is at most K=2m. Let us illustrate this fact with another
example. Let X and Y be given by,

X D 112113112131; Y D 131111111131; (3.9)

with optimal alignment:

C.1/; v1D�2‚ …„ ƒ
1 1 2 1 1 3 1 1 2 1 3
1 3 1 1 1 1 1 1 1 1 3

1
1

(3.10)

Above, there are 6 non-˛1 letters, X3;X6;X9;X11;Y2;Y11, and each one has probabil-
ity 1=6 to be picked and replaced by ˛1. Next, X3;X6;X9 and Y2 are not aligned with
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other letters but rather with gaps. Moreover, since X3;X6;X9 are on the top strand
which contains a lesser number of letters ˛1, picking one of them and replacing it
leads to an increase of one in the length of the LCS. On the other hand, since X11 and
Y11 are aligned in this optimal alignment, picking one of them and replacing it could
potentially (but not necessarily) decrease the length of the LCS by one. Finally,
picking Y2 may only potentially increase the length of the LCS by modifying the
alignment. In conclusion, in this example, by switching a randomly chosen non-˛1
letter into ˛1, the probability of an increase of the length of the LCS is at least 1=2,
while the probability of a decrease is at most 1=3.

To prove Theorem 2.1, we just need to prove that typically there exists an optimal
alignment such that:

1. Among all the non-˛1 letters in X and Y, the proportion which are on the cell-
strand with the smaller number of letters ˛1 is at least K=m.

2. Among all the non-˛1 letters in X and Y, the proportion which is aligned is at
most K=2m.

Formally, let v D .v1; : : : ; vk/ 2 Z
k be admissible. For each 1 � i � k, if vi ¤ 0,

let N�
v .i/ be the number of non-˛1 letters on the cell-strand of Cv.i/ with the lesser

number of letters ˛1, i.e., let

N�
v .i/ D

(P�v.i/�1
jD�v.i�1/C1 1Xj2f˛2;:::;˛mg; if vi < 0,P�v.i/�1
jD�v.i�1/C1 1Yj2f˛2;:::;˛mg; if vi > 0,

(3.11)

while if vi D 0, let N�
v .i/ D 0. Then, the total number of non-˛1 letters present on

the cell-strands with the smaller number of letters ˛1 is equal to

N�
v WD

jvjX
iD1

N�
v .i/: (3.12)

Let Ni be the number of letters ˛i in the two finite sequences X and Y, and let

N>1 D
mX

iD2
Ni: (3.13)

Next, let

Bn WD ˚
.x; y/ 2 An

m � An
m W there exists an optimal alignment of .x; y/

with jvj � 1; n�
v � Kn>1=m and 2jvj � Kn>1=2mg ;

where, above, n�
v is the value of N�

v corresponding to v and similarly for n>1.
Clearly, Bn depends on K and m. Letting An D f.X;Y/ 2 Bng, our goal is now
to prove that for some QK > 0, independent of n, P .An/ � 1 � e� QKn.
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To continue, we need an optimal alignment having enough non-˛1 letters in
the cell-strands with the smaller number of letters ˛1. However, for many optimal
alignments, most cells are zero-cells, i.e., cells with the same number of letters ˛1
on both strands. To bypass this hurdle, on an optimal alignment where most cells are
zero-cells, some of the zero-cells are broken up in order to create enough nonzero-
cells while at the same time, maintaining the optimality of the alignment after this
breaking procedure. Let us present this breaking operation on an example. Take the
two sequences

X D 112113113; and Y D 112131113:

One of their optimal alignments is

C.1/; v1D0‚ …„ ƒ
1 1 2
1 1 2

C.2/; v2D0‚ …„ ƒ
1 1 3 1 1 3
1 3 1 1 1 3

(3.14)

where both cells C.1/ and C.2/ are zero-cells. Now in the cell C.2/, X6 and Y5 are
only one position away from being aligned. Thus aligning them, instead of the pair
X5 and Y6, breaks the cell C.2/ into two new cells QC.2/ and QC.3/, with Qv2 D 1 and
Qv3 D �1. The new optimal alignment is then:

QC.1/; Qv1D0‚ …„ ƒ
1 1 2
1 1 2

QC.2/; Qv2D1‚ …„ ƒ
1 1 3
1 3

QC.3/; Qv3D�1‚ …„ ƒ
1 1 3
1 1 1 3

(3.15)

The advantage of breaking up a zero-cell is that the resulting newly formed cells
have different numbers of letters ˛1 on each strand, thus N�

v tends to increase in
this process while the length of the common subsequence remains the same. After
applying this procedure and getting enough cells with different numbers of letters
˛1 on the two strands, there is a high probability of finding enough non-˛1 letters on
the strand with the smaller number of letters ˛1.

The previous example leads to our next definition.

Definition 3.2 Let k 2 N; k � 1, let v 2 Z
k \ V , and for i D 1; : : : ; k, let Cv.i/ be

any cell with vi D 0. Then, Cv.i/ is said to be breakable if there exist j and j0 such
that:

1. Xj D Yj0 2 f˛2; : : : ; ˛mg;
2. �v.i � 1/ < j < �v.i/ and �v.i � 1/ < j0 < �v.i/;
3. the difference between the number of letters ˛1 in

X�v.i�1/C1X�v.i�1/C2 	 	 	 Xj�1 and Y�v.i�1/C1Y�v.i�1/C2 	 	 	 Yj0�1

is plus or minus one.
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3.3 Probabilistic Developments

After the combinatorial developments of the previous sections, let us now bring for-
ward some probabilistic tools. We start by introducing a useful way of constructing
alignments corresponding to a given vector v D .v1; : : : ; vk/ 2 R

k.
For 1 � i � n and 2 � j � m, let R j

i (resp. Sj
i) be the number of letters ˛j

between the .i � 1/-th and i-th ˛1 in the infinite sequence .Xi/i�1 (resp. .Yi/i�1),
with, of course, R j

1 (resp. Sj
1) being the number of letters ˛j before the first ˛1.

Recall also, from Definition 3.1, that in order to construct a zero-cell, we use the
random time T0, given by

T0 D min
2�j�m

Tj
0; (3.16)

where Tj
0 WD minfi D 1; 2; : : : W R j

i ¤ 0; Sj
i ¤ 0g. For a �u-cell (u > 0), the

random time is

T�u D min
2�j�m

Tj�u; (3.17)

where Tj�u WD minfi D 1; 2; : : : W R j
i ¤ 0; Sj

iCu ¤ 0g, and for a u-cell (u > 0),

Tu D min
2�j�m

Tj
u; (3.18)

where Tj
u WD minfi D 1; 2; : : : W Rj

iCu ¤ 0; Sj
i ¤ 0g. In other words, a cell with

vi D u can be constructed in the following way: Begin by keeping the first u letters
˛1 in the X-strand, then align consecutive pairs of letter ˛1 until meeting the first
pair of the same non-˛1 letter. (As previously argued, here different choices of pairs
of the same non-˛1 letter are possible, i.e., if there are no letters ˛1 between different
minimal pairs, but any pair will do if there is more than one choice.)

Let us find the law of R j
i and, to do so, let R>1i D Pm

jD2 R j
i be the total

number of non-˛1 letters between the .i � 1/-th and the i-th ˛1. Then, R>1i C 1 is a
geometric random variable with parameter p1, i.e., P.R>1i D k/ D .1 � p1/kp1, k D
0; 1; 2; : : : . Moreover, conditionally on R>1i , .R j

i /
m
jD2 has a multinomial distribution

and therefore

P.R j
i D k/ D

1X
`Dk

P.R j
i D kjR>1i D `/P.R>1i D `/

D
1X
`Dk

 
`

k

!�
pj

1 � p1

	k �1 � p1 � pj

1 � p1

	`�k

.1 � p1/
`p1

D
�

p1
p1 C pj

	�
pj

p1 C pj

	k

; (3.19)
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for k D 0; 1; 2; : : : . Thus, R j
i C 1 has a geometric distribution with parameter

p1=. p1 C pj/, 2 � j � m.
To continue our probabilistic analysis, let us provide a rough lower bound on

the length of the LCS. First, aligning as many letters ˛1 as possible in X and Y,
would get approximately a common subsequence of length np1, then aligning as
many letters ˛2 as possible without disturbing the already aligned ˛1, would give an
additional

Pnp1
iD1 minfR2i ; S

2
i g aligned ˛2. Moreover, since R2i and S2i are independent

geometric random variables, minfR2i ; S
2
i g C 1 is a geometric random variable with

parameter 1 � . p2=. p1 C p2//2. So, on average, the aligned letters ˛2 contribute to
the length of the LCS by an amount of:

np1
p22

p1. p1 C 2p2/
D 1

p1 C 2p2
np22 � .1� p2/np22:

This heuristic argument leads to the following lemma:

Lemma 3.1 Let p1 > 1=2 and let D1 WD ˚
LCn � np1 C �

.1 � p2/2 � p2
�

np22
�
.

Then, P.D1/ � 1 � 4 exp.�2np62/ � exp
�
n. p32 C log.1 � p32//. p1 � p32/

�
.

Proof For p1 > ı > 0, let Dx
2.ı/ WD ˚ˇ̌Pn

iD1 1fXiD˛1g � np1
ˇ̌ � ın

�
, let Dy

2.ı/ WD˚ˇ̌Pn
iD1 1fYiD˛1g � np1

ˇ̌ � ın
�
, and let D2.ı/ WD Dx

2.ı/\ Dy
2.ı/, so that on D2.ı/, at

least n1.ı/ WD n. p1 � ı/ letters ˛1 can be aligned. Clearly, 1 C min.R2i ; S
2
i / has a

geometric distribution with parameter 1 � . p2=. p1 C p2//2. Also, if G1; : : : ;Gr are
iid geometric random variables with parameter p, then for any ˇ < 1,

P

 
rX

iD1
Gi � ˇ

p
r

!
� exp .�.ˇ � 1 � logˇ/r/ : (3.20)

By taking p D 1 � . p2=. p1 C p2//2 and r D n1.ı/, and since the sequences have
same length n, the following equality in law holds true:

n1.ı/X
iD1

min.R2i ; S
2
i /C n1.ı/

dD
n1.ı/X
iD1

.Gi ^ n/ :

For any ˇ < 1, let us estimate

P

0
B@

n1.ı/X
iD1

min.R2i ; S
2
i / <

ˇn1.ı/

1 �
�

p2
p1Cp2

�2 � n1.ı/

1
CA :
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First,

ˇn1.ı/

1 �
�

p2
p1Cp2

�2 � n1.ı/ � n;

and therefore,

P

0
B@

n1.ı/X
iD1

min.R2i ; S
2
i / <

ˇn1.ı/

1 �
�

p2
p1Cp2

�2 � n1.ı/

1
CA � e�.ˇ�1�log ˇ/n1.ı/: (3.21)

Next, let

D3.ˇ; ı/ WD

8̂
<
:̂

n1.ı/X
iD1

min.R2i ; S
2
i / � ˇn1.ı/

1 �
�

p2
p1Cp2

�2 � n1.ı/

9>=
>; :

Letting ı D p32 and ˇ D 1 � p32, and when D2.ı/ and D3.ˇ; ı/ both hold, then

LCn � ˇn1.ı/

1 �
�

p2
p1Cp2

�2 � n1.ı/C n1.ı/

D np22
p1 � p32

. p1 C p2/2 � p22
C n. p1 � p32/ � np22

p2. p1 � p32/

1 �
�

p2
p1Cp2

�2

D np1 C
�
. p1 � p32/.1 � p2. p1 C p2/2/

p1. p1 C 2p2/
� p2

	
np22

� np1 C
�
. p1 � p32/.1 � p2/

p1.1C p2/
� p2

	
np22

� np1 C �
.1 � p2/

2 � p2
�

np22:

Since D2. p32/ \ D3.1 � p32; p
3
2/ � D1, it follows from Hoeffding’s inequality

and (3.21) that

P.D1/ � 1 � 4 exp.�2np62/� exp
�
n. p32 C log.1 � p32//. p1 � p32/

�
:

�
To state our next lemma, let us introduce some more notation. First, let

V.k/ WD ˚
.v1; v2; : : : ; vk/ 2 Z

k W jv1j C 	 	 	 C jvkj � 2k
�
; (3.22)
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and then let

P WD
[

2k�np22

V.k/: (3.23)

With these definitions, the previous lemma further yields:

Lemma 3.2 Let O be the set of all the optimal alignments of X D .Xi/1�i�n and
Y D .Yi/1�i�n, let D D fO � Pg, let p1 > 1=2 and let p2 < 1=10. Then, P.D/ �
1 � 5 exp

��np62=5
�
.

Proof Let NX
1 be the number of letters ˛1 in X, and NY

1 be the corresponding number
in Y, and so N1 D NX

1 CNY
1 . From the proof of the previous lemma, with its notation,

it is clear that:

D1 \ D2. p32/ �



LCn � N1
2

� np32 C �
.1 � p2/

2 � p2
�

np22

�
(3.24)

�



LCn � N1
2

C 1

2
np22

�
WD QD1. p22/; (3.25)

since p2 < 1=10. But, D2. p32/ \ D3.1 � p32; p
3
2/ � D1, so as in the previous lemma,

P

�
LCn � N1

2
C 1

2
np22

	
� 1 � 4 exp.�2np62/� exp

�
n. p32 C log.1 � p32//. p1 � p32/

�

� 1 � 5 exp
��np62=5

�
;

since again p2 < 1=10. It remains to show that QD1. p22/ � D. But, for any alignment
with jvj D k � 0,

LCn � N1
2

� 1

2

kX
iD1

jvij C k; (3.26)

while on QD1. p22/,

LCn � N1
2

C 1

2
np22: (3.27)

In case jvj D 0, no optimal alignment do satisfy both (3.26) and (3.27), while for
jvj � 1, they both combine to yield

Pk
iD1 jvij � 2k and np22 � 2k, and this finishes

the proof. �

The previous lemma asserts that, with high probability, any optimal alignment
belongs to the set P. Hence, in order to prove that the optimal alignments satisfy a
property, one needs, essentially, to only prove it for the alignments in P.
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3.4 High Probability Events

Recall, from Definition 3.1, that any v 2 Z
k; k � 1 is associated with an alignment

having k D jvj cells Cv.1/; : : : ;Cv.jvj/, and that a cell is called a nonzero-cell if it
contains a different number of letters ˛1 on the X-strand and on the Y-strand. For any
� > 0, let W� be the subset of P, consisting of the alignments having a proportion
of nonzero-cells at least equal to � , i.e.,

W� WD fv 2 P W jfi 2 Œ1; k� W vi ¤ 0gj � � jvjg ;

and let .W� /c WD PnW� .
To complete the proof of the theorem, some further relevant events need to be

defined.

• For any v 2 P, let E�v be the event that the proportion of zero-cells in
Cv.1/; : : : ;Cv.jvj/, is at least equal to � . Then, let

E� WD
\

v2.W� /c

E�v WD
\

v2.W� /c

fIb � �J0g ;

where J0 is the number of zero-cells while Ib is the number of breakable zero-
cells for v, i.e., E� is the event that every v 2 .W� /c has a proportion of breakable
zero-cells at least equal to � .

• Recall also from (3.12) and (3.13), that N�
v is the total number of non-˛1 letters

in the cell strands with the lesser number of ˛1, and that N>1 is the total number
of non-˛1 letters in X and Y. Then, let

F� WD
\
v2W�

Fv WD
\
v2W�



N�
v � K

m
N>1

�
;

i.e., F� is the event that for every v 2 W� , the proportion of non-˛1 letters which
are on the cell-strand with the smaller number of letters ˛1, is at least equal to
K=m.

• Let

G� WD
\
v2W�

Gv WD
\
v2W�



2jvj � K

2m
N>1

�
;

i.e., G� are the alignments v 2 W� having a proportion of aligned non-˛1 letters
at most equal to K=2m.
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Finally recall from Sect. 3.2 that An D f.X;Y/ 2 Bng is the event that there exists
an optimal alignment, with jvj � 1, such that N�

v � KN>1=m and 2jvj � KN>1=2m,
and therefore

D \ E� \ F� \ G� � An: (3.28)

Our next task is to prove that each one of the events E� ;F� ;G� hold with high
probability. Let us start with E� .

Lemma 3.3 Let 0 < � � p21=.1C p21/, then

P.E� / � 1 �
X
2k�np22

exp

 
�
 
2.1� �/

�
p21

1C p21
� �

	2
� log f .�/

!
k

!
; (3.29)

where f .�/ D �
.4C 2�/=�2

��
..2C �/=2/2 .1=.1� �//1�� .

Proof For any v 2 PnW� , let us compute the probability that a zero-cell in the
alignment associated with v is breakable. Recalling the definition of T0 in (3.16),
for 2 � j � m, let Mj be the event that this cell ends with a pair of letters ˛j. So,
when Mj holds, then T0 D Tj

0. For 2 � j � m, let also

Uj
1 WD minfi D 2; 3; : : : W R j

i�1 ¤ 0; Sj
i�1 D 0; R j

i D 0; Sj
i ¤ 0g;

Uj
2 WD minfi D 2; 3; : : : W R j

i�1 D 0; Sj
i�1 ¤ 0; R j

i ¤ 0; Sj
i D 0g;

and

Uj WD minfUj
1;U

j
2g:

With the above constructions, conditional on the event Mj, if Uj < Tj
0 then this

zero-cell is breakable and thus, to lower bound the probability that it is breakable, it
is enough to lower bound P.Uj < Tj

0/. To do so, let first .Zj
i/i�1 be the independent

random vectors given by:

Zj
i D .R j

2i�1; S
j
2i�1;R

j
2i; S

j
2i/:

Then, let

QUj D minfi D 1; 2; : : : W Zj
i 2 B1 [ B2g;

QTj
0 D minfi D 1; 2; : : : W Zj

i 2 B3 [ B4g;
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where

B1 WD N
� � f0g � f0g � N

�;B2 WD f0g � N
� � N

� � f0g;
B3 WD N

� � N
� � N � N; B4 WD N � N � N

� � N
�;

and where as usual N is the set of non-negative integers, while N� D Nnf0g. Clearly,
2 QUj � Uj and 2 QTj

0 � 1 � Tj
0, thus P.Uj < Tj

0/ � P.2 QUj < 2 QTj
0 � 1/ D P. QUj < QTj

0/.
Now, since the random vectors .Zj

i/i�1 are iid, and since B1 [ B2 and B3 [ B4 are
pairwise disjoint,

P. QUj < QTj
0/ D P.Zj

i 2 B1 [ B2/

P.Zj
i 2 B1 [ B2/C P.Zj

i 2 B3 [ B4/

D 2p21
2p21 C 2. p1 C pj/2 � p2j

� p21
1C p21

:

Therefore,

P.a zero-cell is breakable/ D
mX

jD2
P.a zero-cell is breakablejMj/P.Mj/

D
mX

jD2
P.Uj < Tj

0/P.Mj/ � p21
1C p21

:

Let J be the index set of all the zero-cells in the alignment associated with v 2
.W� /c, and so jJj � .1 � �/jvj. For each i 2 J, let Ii be the Bernoulli random
variable which is one if the cell Cv.i/ is breakable and 0 otherwise. Recall that E�v
is the event that the proportion of breakable cells in v is at least equal to � . Then,
since � � p21=.1C p21/, from Hoeffding’s inequality, and after subtracting the mean,

P..E�v /
c/ D P

 X
i2J

Ii < � jJj
!

� exp

 
�2.1� �/jvj

�
p21

1C p21
� �

	2!
:

Recall now the definition of V.k/ in (3.22) and let .W� .k//c WD .W� /c \ V.k/.
For any two integers, ` and q`, with 0 < q < 1, Stirling’s formula in the form
1 � `Še`=.

p
2�```/ � e=

p
2� , gives

 
`

q`

!
� q�q`.1� q/�.`�q`/; (3.30)
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which, when combined with simple estimates yields,

j.W� .k//cj � 2�k

 
2k C �k

�k

! 
k

�k

!

� . f .�//k WD
 �

4C 2�

�2

	� �
2C �

2

	2 �
1

1 � �

	1��!k

: (3.31)

Next, let E� .k/ D T
v2.W� .k//c E�v , then

P..E� .k//c/ �
X

v2.W� .k//c

P..E�v /
c/

� exp

 
�
 
2.1� �/

�
p21

1C p21
� �

	2
� log f .�/

!
k

!
;

and therefore,

P..E� /c/ �
X
2k�np22

P..E� .k//c/

�
X
2k�np22

exp

 
�
 
2.1� �/

�
p21

1C p21
� �

	2
� log f .�/

!
k

!
: (3.32)

�

Of course, in (3.32), one wants

2.1� �/
�

p21
1C p21

� �

	2
� log f .�/ > 0; (3.33)

and choices of � for which this is indeed the case are given later.
Let u be a non-negative integer. For any �u-cell ending with an aligned pair of

letters ˛j (the event Mj holds for this cell), let � j
X.`/ be the index of the `-th R j

i such
that R j

i ¤ 0, i.e.,

�
j
X.1/ D minfi � 1 W R j

i ¤ 0g;

and for any ` � 1, � j
X.l C 1/ D minfi > � j

X.`/ W R j
i ¤ 0g. Let

�j;� WD minf` D 1; 2; : : : W Sj

uC� j
X.`/

¤ 0g:
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In words, � j;� is the number of nonzero values taken by Rj D .R j
i /1�i�s (where s is

the number of letters ˛1 in the X-strand of the cell). Since X and Y are independent,

P.�j;� D k/ D P.Sj

uC� j
X.1/

D 0; : : : ; Sj

uC� j
X.k�1/ D 0; Sj

uC� j
X.k/

¤ 0/

D
�

p1
p1 C pj

	k�1 pj

p1 C pj
; (3.34)

for k D 1; 2; : : : . Thus, � j;� has a geometric distribution with parameter Qpj D
pj=. p1 C pj/, 2 � j � m. (By just replacing �X by �Y the random variables � j;�
can then be defined for u-cells. Hence, since X and Y have the same law, the
corresponding law of � j;� remains unchanged, therefore taking care of all the cases.)
When �u < 0, the number of letters ˛j in the X-strand (which is the strand with the
smaller number of letters ˛1) is at least � j;� � 1 and, as shown in the next lemma,
this provides a lower bound for N�

v (the number of non-˛1 letters on the cell-strand
with the lesser number of letters ˛1) in this �u-cell.

Recalling now that F� D T
v2W� fN�

v � KN>1=mg, we have:

Lemma 3.4 Let 0 < � < 1, let K D 2�410�2e�67, and let p1 � 1 � e�67=4. Then,
P.F� / � 1 � 38 exp.�3np22=200/.

Proof For any v 2 W� , let J be the index set of all the nonzero-cells of the alignment
corresponding to v, hence, jJj � � jvj. Then,

N�
v D

jvjX
iD1

N�
v .i/ D

X
i2J

N�
v .i/ �

X
i2J

�
�

j.i/;�
i � 1

�
;

where j.i/ is the index of the last aligned pair of letters ˛j in the cell Cv.i/, and

where � j.i/;�
i is the number of nonzero Rj.i/ D .Rj.i/

` /1�`�s (assuming this is a �u-
cell, and that s is the number of letters ˛1 in the X-strand of Cv.i/. In case of a u-cell,
by symmetry, the same argument is valid on the Y-strand). From (3.34), � j.i/;�

i is a
geometric random variable with parameter Qpj.i/. Now, let " > 0, let again Qp2 D
p2=. p1 C p2/, and let F1;v WD fN�

v � "jvj=Qp2g. Then,

P.Fc
1;v/ � P

 X
i2J

�
�

j.i/;�
i � 1

�
� "

Qp2 jvj
!

� P

 X
i2J

�
j.i/;�
i � "=� C Qp2

Qp2 jJj
!

� P

 X
i2J

�
j.i/;�
i � "=� C 2p2

Qp2 jJj
!
: (3.35)
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The geometric random variables � j.i/;�
i , i 2 J, are independent each with parameter

Qpj.i/ � Qp2, and moreover the sequences have finite length n, therefore,

P

 X
i2J

�
j.i/;�
i � "=� C 2p2

Qp2 jJj
!

� P

 X
i2J

.Gi ^ n/ � "=� C 2p2
Qp2 jJj

!
;

where the Gi are iid geometric random variables with parameter Qp2. As proved later,
and using (3.20), when

"=� C 2p2
Qp2 jJj < n; (3.36)

it follows that

P

 X
i2J

�
j.i/;�
i � "=� C 2p2

Qp2 jJj
!

� P

 X
i2J

Gi � "=� C 2p2
Qp2 jJj

!

� exp ..1C log."=� C 2p2// � jvj/ : (3.37)

Let F�1 .k/ WD T
v2W�\V.k/ F1;v D T

v2W�\V.k/ fN�
v � "jvj=Qp2g, and let F�1 WDT

2k�np22
F�1 .k/. From the very definition of V.k/ in (3.22), and using (3.30),

jV.k/j � 2k

 
3k

k

!
� 2k3k

�
3

2

	2k

D
�
27

2

	k

;

which when combined with (3.37) leads to

P.F�1 .k// � 1 � exp .k log.27=2/C k .1C log."=� C 2p2// �/ : (3.38)

Of course, one wants log.27=2/C.1C log."=� C 2p2// � < 0. Choosing � D 1=25

and " D 10�2e�67, then P..F�1 .k//
c/ � e�3k=100, for any p1 � 1 � 2�2e�67, and so

P..F�1 /
c/ �

X
2k�np22

P..F�1 .k//
c/ � exp.�3np22=200/

1 � exp.�3=100/ � 34 exp.�3np22=200/:

Note also that for these choices of � and p1, (3.33) is satisfied and so E� also holds
with high probability.

From the proof of Lemma 3.1, when D2..1 � p1// holds, the total number of
non-˛1 letters in X and Y is at most 4n.1�p1/. Thus N>1 � 4n.1�p1/, and so when
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F�1 \ D2..1 � p1// holds, for every v 2 W� ,

N�
v

N>1
� "jvj

Qp24n.1� p1/
� "

Qp24n.1� p1/

np22
2

� "p2
16.1� p1/

� "

16m
� K

m
:

Also note that by properly choosing these constants and under the further condition
400mK < 1, it follows that (3.36) holds true. Therefore,

P..F� /c/ � P..F�1 /
c/C P..D2.1 � p1//

c/

� 34 exp.�3np22=200/C 4 exp.�2n.1� p1/
2/

� 38 exp.�3np22=200/:

�

Recalling that G� D T
v2W� f2jvj � KN>1=2mg, we finally have:

Lemma 3.5 Let 0 < � < 1, let K D 2�410�2e�67, and moreover let p2 �
minf2�2e�5K=m;K=2m2g. Then, P.G� / � 1 � 8 exp.�np22=2/.

Proof For any v 2 W� , let Cv.1/; : : : ;Cv.jvj/ be the corresponding cells. If the
cell Cv.i/ ends with a pair of aligned ˛j, 2 � j � m, then let �j.i/

i be the number
of nonzero values taken by Rj.i/ in Cv.i/. If vi � 0, by the same arguments as in
getting (3.34), �j.i/

i has a geometric distribution with parameter Qpj.i/ D pj.i/=. p1 C
pj.i//. If vi > 0, then there exists a geometric random variable �j.i/;�

i with parameter

Qpj.i/ such that �j.i/;�
i � �

j.i/
i � �

j.i/;�
i C vi. Let NX

>1 (resp. NY
>1) be the number of

non-˛1 letters in X (resp. Y), so that N>1 D NX
>1 C NY

>1, and let

GX
v WD



jvj � K

2m
Nx
>1

�
and GY

v WD



jvj � K

2m
Ny
>1

�
;

and so GX
v \ GY

v � Gv . Since NX
>1 � Pjvj

iD1 �
j.i/
i ,

P
�
.GX

v /
c
� � P

0
@jvj > K

2m

jvjX
iD1

�
j.i/
i

1
A

� P

0
@jvj > K

2m

0
@ X
1�i�jvj;vi�0

�
j.i/
i C

X
1�i�jvj;vi>0

�
j.i/;�
i

1
A
1
A

� P

0
@ jvjX

iD1
.Gi ^ n/ <

2mjvj
K

1
A ;



Order of the Central Moments of the Length of the LCS 135

where the Gi are iid geometric random variables with parameter Qp2 and the truncation
is at n since the sequences have such a length. From the proof of Lemma 3.1, when
D2..1 � p1// holds, N>1 � 4n.1 � p1/, then jvj � 2n.1 � p1/. Thus 2mjvj �
2mn.1� p1/ < 2m2p2n, and so if 2m2p2 < K, then for any p2 � 2�2e�5K=m,

P
�
.GX

v /
c \ D2..1 � p1//

�

� P

0
@ jvjX

iD1
Gi <

2mjvj
K

1
A � P

0
@ jvjX

iD1
Gi <

e�5jvj
Qp2

1
A � exp.�4jvj/: (3.39)

Likewise, P
�
.GY

v /
c \ D2..1 � p1//

� � exp.�4jvj/; and thus

P ..Gv/
c \ D2..1� p1/// � 2 exp.�4jvj/:

As before, let G� .k/ WD T
v2W�\V.k/ Gv and G� D T

2k�np22
G� .k/, then

P..G� .k//c \ D2..1 � p1/// � jV.k/j2 exp.�4k/ � 2 exp.�k/;

and

P..G� /c/ � P..G� /c \ D2..1 � p1///C P.D2..1 � p1//
c/

�
X
2k�np22

P..G� .k//c \ D2..1 � p1///C 4 exp.�2n.1� p1/
2/

� 2

1 � 1=e
exp.�np22=2/C 4 exp.�2n.1� p1/

2/

� 8 exp.�np22=2/: (3.40)

�

From Lemma 3.2–3.5, using (3.28), letting � D 1=25, K D 2�410�2e�67 and
Km WD min.K; 1=800m/, and for p2�minf2�2e�5Km=m;Km=2m2g, it follows that:

P.Ac
n/ � P.Dc/C P..E� /c/C P..F� /c/C P..G� /c/

� 5 exp

�
�np62
5

	
C 74 exp

�
�np22
103

	
C 38 exp

�
�3np22
200

	
C 8 exp

�
�np22
2

	

� 125 exp

�
�np62
5

	
: (3.41)

This finishes the proof of Theorem 2.1. �
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Remark 3.1

(i) Our results on the central r-th absolute moments of the LCS continue to be
valid for three or more sequences of random words. First, the upper bound
methods are very easily adapted to provide the same order nr=2. Next, for the
lower bound, the alignments can still be represented with a series of cells,
each of the cells ending with the same non-˛1 letter from every strand. Then,
with exponential bounds techniques, a similar high probability event can be
exhibited, also leading to a lower bound of order nr=2.

(ii) With the methodology developed here, the results of [2, 6] can also be
generalized, beyond the variance or the Bernoulli case, to centered absolute
moments, m-letters alphabets and even to a general scoring function framework
with scoring functions satisfying bounded differences conditions.
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A Weighted Approximation Approach
to the Study of the Empirical Wasserstein
Distance

David M. Mason

Dedicated to the memory of Evarist Giné.

Abstract We shall demonstrate that weighted approximation technology provides
an effective set of tools to study the rate of convergence of the Wasserstein distance
between the cumulative distribution function [c.d.f] and the empirical c.d.f.

Keywords Empirical process • Wasserstein distance • Weighted approximation

Mathematics Subject Classification (2010). Primary 60F17, 62E17; Secondary
62E20

1 Introduction

Let X;X1;X2; : : : ; be a sequence of independent [i.i.d.] nondegenerate random vari-
ables with common cumulative distribution function F [c.d.f.] and left-continuous
inverse or quantile function Q, defined for s 2 .0; 1/ to be

Q.s/ D inffx W F.x/ � sg: (1.1)

For each integer n � 1 let Fn denote the empirical distribution function

Fn.x/ D 1

n

nX
iD1

1 fXi � xg ; � 1 < x < 1: (1.2)
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Recall that the Wasserstein distance between any two cdfs F and G with finite means
is

d1 .G;F/ D
Z 1

�1
jG.x/� F.x/j dx:

(This is called the Kantorovich transport distance. For more about terminology see
the footnote on page 4 of Bobkov and Ledoux [1].) In particular, the (empirical)
Wasserstein distance between Fn, based on X1; ; : : : ;Xn i.i.d. F, and F is

d1 .Fn;F/ D
Z 1

�1
jFn.x/ � F.x/j dx;

where Q is defined as in (1.1). Note that d1 .Fn;F/ is finite as long as E jX1j < 1.
The empirical Wasserstein distance d1 .Fn;F/ also has the representation

d1 .Fn;F/ D
Z 1

0

jQn.t/ � Q .t/j dt;

where Qn is the empirical quantile function defined for t 2 .0; 1/,

Qn.t/ D inf fx W Fn .x/ � tg :

(See for instance, Exercise 3 on page 64 of Shorack and Wellner [14].)
Let U;U1;U2; : : : ; be independent Uniform .0; 1/ random variables. For each

integer n � 1 the empirical distribution function based on U1; : : : ;Un; is defined to
be

Gn.t/ D 1

n

nX
iD1

1fUi � tg; t 2 Œ0; 1� : (1.3)

Note that if X1; : : : ;Xn, n � 1; are i.i.d. F and U1; : : : ;Un are i.i.d. Uniform .0; 1/

random variables, then by the probability integral transformation

.X1; : : : ;Xn/ Dd .Q.U1/; : : : ;Q.Un// : (1.4)

This implies that

d1 .Fn;F/ Dd

Z 1

0

jGn.t/ � tj dQ .t/ : (1.5)

We shall show how to use weighted approximation technology to obtain rates of
convergence of Ed1 .Fn;F/ to zero. This will lead to refinements and complements
to Theorem 6.7 of Bobkov and Ledoux [1], which in our notation says that for a
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universal constant c > 0,

2c
Z
ftWt.1�t/� 1

4n g
t.1 � t/dQ .t/C 2cp

n

Z
ftWt.1�t/> 1

4n g
p

t.1 � t/dQ .t/

� Ed1 .Fn;F/ �
Z
ftWt.1�t/� 1

4n g
t.1 � t/dQ .t/

C 1p
n

Z
ftWt.1�t/> 1

4n g
p

t.1 � t/dQ .t/ ; (1.6)

where c may chosen to be 1
2
5�4. They base their proof on their Lemma 3.8 in [1], a

version of which is stated in (3.23) below.
In Sect. 2 we shall describe the weighted approximation tools that we shall be

using. Next, in Sect. 3 we shall apply them to obtain rates at which Ed1 .Fn;F/
converges to zero. Then in Sect. 4 we shall discuss the original motivation to develop
the exponential inequality for the weighted approximation to the uniform empirical
process stated in Sect. 2.2.

2 The Mason and van Zwet Refinement of KMT (1975)

Much of our analysis will be based on weighted approximations to the uniform
empirical process, which is defined by

˛n.t/ D p
nfGn.t/ � tg; t 2 Œ0; 1� : (2.1)

Mason and van Zwet [11] obtained the following refinement of the Komlós, Major
and Tusnády [KMT] [9] Brownian bridge approximation to the uniform empirical
process.

Theorem 2.1 There exists a probability space .�;A;P/ with independent Uniform
.0; 1/ random variables U1; U2; : : : ; and a sequence of Brownian bridges
B1;B2; : : : ; such that for all n � 1, 1 � d � n, and �1 < x < 1;

P

(
sup

0�t�d=n
j˛n.t/ � Bn.t/j � n�1=2.a log d C x/

)
� b exp.�cx/ (2.2)

and

P

(
sup

1�d=n�t�1
j˛n.t/� Bn.t/j � n�1=2.a log d C x/

)
� b exp.�cx/; (2.3)

where a; b and c are suitable positive constants independent of n, d and x
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Setting d D n into these inequalities yields the original KMT [9] inequality given
in their Theorem 3.

Remark Actually, KMT [9] construct for each n � 1 a probability space on which
sit i.i.d. Uniform .0; 1/ random variables U1; : : : ;Un and a Brownian bridge Bn such
that inequality (2.2) holds with d D 1. Lemma 3.1.2 of Csörgő [3] details how to use
their result holding for each n to construct on the same probability space a sequence
of i.i.d. U1;U2 : : : ; Uniform .0; 1/ random variables and a sequence of Brownian
bridges B1;B2 : : : ; such that for all n � 1 inequality (2.2) holds with d D 1 on this
space. Mason and van Zwet [11] show in their proof that inequalities (2.2) and (2.3)
hold for each n � 1 and 1 � d � n for the original KMT [9] construction and then,
in turn, apply Lemma 3.1.2 of [3] to construct the extended space of Theorem 2.1

2.1 Mason and van Zwet Weighted Approximations

Mason and van Zwet [11] pointed out that their inequality leads to the following
useful weighted approximations. For any 0 � � < 1=2, n � 1, and 1 � d � n let

�.1/
n;�.d/ WD sup

d=n�t�1
n� j˛n.t/ � Bn.t/j

t1=2��
; (2.4)

�.2/
n;�.d/ WD sup

0�t�1�d=n

n� j˛n.t/ � Bn.t/j
.1 � t/1=2��

; (2.5)

and for 1 � d � n=2, set

�n;�.d/ WD sup
d=n�t�1�d=n

n� j˛n.t/ � Bn.t/j
.t.1 � t//1=2��

: (2.6)

By arguing exactly as in the proof of Theorem 2.1 in Csörgő et al. [4] with ˛n

replacing the uniform quantile process ˇn, one easily verifies that on the probability
space of Theorem 2.1, one has for any 0 � � < 1=2

�n;�.1/ D Op.1/; (2.7)

with the same holding with �n;�.1/ replaced by �.1/
n;�.1/ and �.2/

n;�.1/:

2.2 An Exponential Inequality for the Weighted
Approximation to the Uniform Empirical Process

Mason [10] derived the following exponential inequality for the Mason and van
Zwet weighted approximations, which was motivated by a question of Evarist Giné.
We shall discuss this in Sect. 4.
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Theorem 2.2 On the probability space of Theorem 2.1 for every 0 � � < 1=2

there exist positive constants A� and C� such that for all n � 2, 1 � d � n=2 and
0 � x < 1;

P f�n;�.d/ � xg � 2A� exp.d1=2��C�/ exp

�
�d1=2��cx

4

	
;

with similar inequalities for �.1/
n;�.d/ and�.2/

n;�.d/ for 1 � d � n.

2.3 A Moment Bound for the Weighted Approximation

Theorem 2.2 readily yields the following uniform moment bounds for (2.4), (2.5)
and (2.6).

Proposition 2.3 On the probability space of Theorem 2.1, for all 0 � � < 1=2

there exists a � > 0 such that

sup
n�2

E exp .��n;�.1// < 1;

with the same statement holding with �n;�.1/ replaced by �.1/
n;�.1/ or �.2/

n;�.1/: In
particular, we have for all r > 0, supn�2 E�r

n;�.1/ < 1:

There is also a functional version of Proposition 2.3. For each integer n � 2 let
Rn denote a class of nondecreasing left-continuous functions r on Œ1=n; 1 � 1=n�:
Assume there exists a sequence of positive constants Dn such that for some 0 � � <

1=2

sup
n�2

sup
r2Rn

D�1
n

Z 1�1=n

1=n
.s.1 � s//1=2��dr.s/ DW M < 1: (2.8)

From Proposition 2.3 we obtain the following functional form of it.

Proposition 2.4 Let fRn; n � 2g denote a sequence of classes of nondecreasing
left-continuous functions on Œ1=n; 1 � 1=n� satisfying (2.8) for some 0 � � < 1=2.
On the probability space of Theorem 2.1 there exists a � > 0 such that

sup
n�2

E exp.�n�In/ < 1; (2.9)

where

In WD sup
r2Rn

D�1
n

Z 1�1=n

1=n
j˛n.s/ � Bn.s/jdr.s/:
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Proposition 2.4 follows trivially from Proposition 2.3 by observing that n�In �
�n;�.1/M.

All of the results stated in Sects. 2.2 and 2.3 are found in Mason [10].

3 Use of Theorem 2.2 to Study the Empirical Wasserstein
Distance

In order to state our results we first need a definition and some background material.
We begin with the definition of the domain of attraction to a normal law.

Let X;X1;X2; : : : ; be a sequence of independent nondegenerate random variables
with common c.d.f. F and left-continuous inverse or quantile function Q: We say
that F is in the domain of attraction of a normal law, written F 2 DN; if there exist
norming and centering constants bn and cn such that

Pn
iD1 Xi � cn

bn
!d Z; (3.1)

where here and elsewhere Z denotes a standard normal random variable. Csörgő et
al. [5] show that whenever F 2 DN one can always choose for n � 2, cn D nEX
and bn D p

n� .1=n/ ; where for any 0 < u < 1=2

�2 .u/ WD
Z 1�u

u

Z 1�u

u
.s ^ t � st/ dQ .s/ dQ .t/ : (3.2)

For future reference we shall write for any 0 < u < 1=2

�2 .u/ D
�Z 1�u

u

p
s .1 � s/dQ .s/

	2
; (3.3)

and note that

�2 .u/ � �2 .u/ : (3.4)

Observe that

�2 .u/ D Var

�Z 1�u

u
.1 fU � tg � t/ dQ .t/

	
;
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where U is Uniform .0; 1/: Furthermore �2 .0/ WD �2 .0C/ < 1 if and only if
�2 WD VarX is finite, in which case �2 .0/ D �2.

Now with Fn as in (1.2), we have by (1.4)

Pn
iD1 Xi � nEX

bn
D
R1

�1
p

n fF.x/� Fn.x/g dx

� .1=n/
Dd

� R 10 ˛n.s/dQ .s/

� .1=n/
:

In fact one can use weighted approximation technology to show whenever F 2 DN
that on the probability space on which (2.7) holds

R 1
0 ˛n.s/dQ .s/

� .1=n/
D
R 1�1=n
1=n Bn.s/dQ .s/

� .1=n/
C op .1/ Dd Z C op .1/ ,

Crucial to the proof is the fact proved in Corollary 1 of Csörgő et al. [5] that F 2 DN
if and only if

lim
u&0

u
�
Q2 .
u/C Q2 .1 � 
u/

�
=�2 .u/ D 0, for all 
 > 0 (3.5)

if and only if � is slowly varying at zero, i.e.

lim
u&0

�2 .
u/ =�2 .u/ D 1, for all 
 > 0: (3.6)

In our proofs that follow, whenever we apply Proposition 2.3 we assume that we are
on the probability space of Theorem 2.1. Our first result related to Ed1 .Fn;F/ is the
following estimate of a trimmed version of this expectation.

Proposition 3.1 For any quantile function Q and p > 1,

Z 1� 1
n

1
n

E j˛n .t/j dQ .t/ D
Z 1� 1

n

1
n

E jB .t/j dQ .t/ .1C O .1// (3.7)

D
r
2

�

Z 1� 1
n

1
n

p
t .1 � t/dQ .t/ .1C O .1// ; (3.8)

where B is a Brownian bridge on Œ0; 1� and the big Oh term in (3.8) is bounded in
absolute value by cp .r .1=n//1�1=p for some constant cp depending on p and

r .1=n/ D
ˇ̌
Q
�
1
n

�ˇ̌C ˇ̌
Q
�
1 � 1

n

�ˇ̌

n1=2
R 1� 1

n
1
n

p
t .1 � t/dQ .t/

: (3.9)

Furthermore, if

r .1=n/ ! 0, as n ! 1, (3.10)
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then

Z 1� 1
n

1
n

E j˛n .t/j dQ .t/ D
Z 1� 1

n

1
n

E jB .t/j dQ .t/ .1C o .1// : (3.11)

Proof Note that for any finite measure � on

1
n ; 1 � 1

n

�
and random functions f and

g in such that Ef and Eg are in L1
�
1
n ; 1 � 1

n

�
; �
�
,

ˇ̌
ˇ̌
ˇ
Z 1� 1

n

1
n

E jf .t/j d� .t/ �
Z 1� 1

n

1
n

E jg .t/j d� .t/

ˇ̌
ˇ̌
ˇ �

Z 1� 1
n

1
n

E jf .t/ � g .t/j d� .t/ :

Applying this fact we get with obvious choices of f , g and �

ˇ̌
ˇ̌
ˇ
Z 1� 1

n

1
n

E j˛n .t/j dQ .t/ �
Z 1� 1

n

1
n

E jB .t/j dQ .t/

ˇ̌
ˇ̌
ˇ

�
Z 1� 1

n

1
n

E j˛n .t/ � Bn .t/j dQ .t/ :

This last bound is in turn with v D 1=2� 1= .2p/

� E�n;� .1/

Z 1� 1
n

1
n

.t .1 � t//1=2�v dQ .t/ n�v

D E�n;� .1/

Z 1� 1
n

1
n

.t .1 � t//1=.2p/ dQ .t/ n�1=2C1=.2p/;

which by an application of Proposition 2.3 is for some positive constant Cp,

� Cp

Z 1� 1
n

1
n

.t .1 � t//1=.2p/ dQ .t/ n�1=2C1=.2p/ (3.12)

and by Hölder’s inequality is

� Cp

 Z 1� 1
n

1
n

p
t .1 � t/dQ .t/

! 1
p �ˇ̌ˇ̌Q

�
1

n

	ˇ̌
ˇ̌C

ˇ̌
ˇ̌Q
�
1 � 1

n

	ˇ̌
ˇ̌
	1� 1

p

n� 1
2C 1

2p

D Cp

Z 1� 1
n

1
n

p
t .1 � t/dQ .t/

0
B@

ˇ̌
Q
�
1
n

�ˇ̌C ˇ̌
Q
�
1 � 1

n

�ˇ̌

n1=2
R 1� 1

n
1
n

p
t .1 � t/dQ .t/

1
CA
1� 1

p

:
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Noting that for each t 2 .0; 1/,

E jB .t/j D E jZj
p

t .1 � t/ D
r
2

�

p
t .1 � t/; (3.13)

we see that for cp D Cp
p

�
2

the last bound

D
Z 1� 1

n

1
n

E jB .t/j dQ .t/ cp .r .1=n//1�1=p :

Notice that by (3.4)

r2 .1=n/ � 2n�1
�

Q2

�
1

n

	
C Q2

�
1 � 1

n

		
=�2 .1=n/ ; (3.14)

where �2 .1=n/ is defined in (3.2). It is shown in the proof of Lemma 2.1 of Csörgő
et al. [6] that

lim sup
n!1

n�1
�

Q2

�
1

n

	
C Q2

�
1 � 1

n

		
=�2 .1=n/ � 1: (3.15)

Therefore under absolutely no conditions on Q we have (3.7). Furthermore if (3.10)
holds, we have (3.11). ut
Corollary 3.2 If F 2 DN, then

Z 1

0

E j˛n .t/j dQ .t/ D
Z 1� 1

n

1
n

E jB .t/j dQ .t/ .1C o .1// : (3.16)

Proof If F 2 DN, by (3.14) and (3.5), (3.10) holds. Thus

Z 1� 1
n

1
n

E j˛n .t/j dQ .t/ D
Z 1� 1

n

1
n

E jB .t/j dQ .t/ .1C o .1// : (3.17)

Observing that

Z 1� 1
n

1
n

E jB .t/j dQ .t/ D
r
2

�
� .1=n/ ;

we see that to finish the proof it suffices to prove that

 Z 1
n

0

E j˛n .t/j dQ .t/C
Z 1

1� 1
n

E j˛n .t/j dQ .t/

!
=� .1=n/ ! 0: (3.18)
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Since � .1=n/ � � .1=n/, to show this it is enough to verify that

 Z 1
n

0

E j˛n .t/j dQ .t/C
Z 1

1� 1
n

E j˛n .t/j dQ .t/

!
=� .1=n/ ! 0: (3.19)

Notice that since E j˛n .t/j � 2
p

nt, we have

Z 1
n

0

E j˛n .t/j dQ .t/ =� .1=n/ � 2
p

n
Z 1

n

0

tdQ .t/ =� .1=n/

�
 
2p
n

ˇ̌
ˇ̌Q
�
1

n

	ˇ̌
ˇ̌C 2

p
n
Z 1

n

0

jQ .t/j dt

!
=� .1=n/

�
 
2p
n

ˇ̌
ˇ̌Q
�
1

n

	ˇ̌
ˇ̌C 2

p
n
Z 1

n

0

t�1=2� .t/ dt sup
0<t�1=n

p
t jQ .t/j
� .t/

!
=� .1=n/ ;

D 2p
n

ˇ̌
Q
�
1
n

�ˇ̌
� .1=n/

C o.1/ D o.1/;

where in the last step we use the facts that F 2 DN is equivalent to � being slowly

varying at zero and that F 2 DN implies sup0<t�1=n

p
tjQ.t/j
�.t/ D o.1/: (We pointed

out these two facts in (3.5) and (3.6) above.) This proves the first part of (3.19). The
second part of (3.19) is proved in the same way. ut
Remark Notice that in the special case when F is symmetric about zero and F .x/ D
1 � 1

2
.1C x/�2 for x � 0, we have F 2 DN and

Z 1

0

E j˛n .t/j dQ .t/ � log np
�
; as n ! 1:

Remark Clearly a sufficient condition for (3.16) to hold is that, as n ! 1,
r .1=n/ ! 0, and

 Z 1=n

0

E j˛n .t/j dQ .t/C
Z 1

1�1=n
E j˛n .t/j dQ .t/

!
=� .1=n/ ! 0: (3.20)

The proof of Corollary 3.2 shows that whenever F 2 DN, both r .1=n/ ! 0, as
n ! 1, and (3.20) hold.

Assuming that E jXj < 1, write for 0 < u � 1=2 and n � 2,

ˇn .u/ D p
n
Z u

0

tdQ .t/C p
n
Z 1

1�u
.1 � t/ dQ .t/ DW ˇn;.�/ .u/C ˇn;.C/ .u/ :

(3.21)
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Observation Whenever E jXj < 1, (3.20) is satisfied if and only if

ˇn .1=n/ =� .1=n/ ! 0, as n ! 1: (3.22)

Proof Lemma 3.8 of Bobkov and Ledoux [1] says that for an absolute constant
c > 0 for all 0 � t � 1,

c min
n
2
p

nt .1 � t/ ;
p

t .1 � t/
o

� E j˛n .t/j

� min
np

n2t .1 � t/ ;
p

t .1 � t/
o
; (3.23)

where c may chosen to be 1
2
5�4. This implies that for all 0 < t � 1=n with 1=n �

1=2

c
p

nt

2
D c min


p
nt

2
;

p
t

2

�
� c min

n
2
p

nt .1 � t/ ;
p

t .1 � t/
o

� E j˛n .t/j � 2
p

nt .1 � t/ : (3.24)

Using this inequality, we get for n � 2,

c
p

n

2

Z 1=n

0

tdQ .t/ �
Z 1=n

0

E j˛n .t/j dQ .t/ � 2
p

n
Z 1=n

0

tdQ .t/ :

Obviously this implies that ˇn;.�/ .1=n/ =� .1=n/ ! 0, as n ! 1, if and only if

 Z 1=n

0

E j˛n .t/j dQ .t/

!
=� .1=n/ ! 0, as n ! 1:

In the same way using the version of inequality (3.24) with t replaced by 1 � t, we

get
ˇn;.C/.1=n/
�.1=n/ ! 0, as n ! 1, if and only if

�Z 1

1�1=n
E j˛n .t/j dQ .t/

	
=� .1=n/ ! 0, as n ! 1:

ut
Remark Whenever

0 <

Z 1

�1

p
F.x/ .1 � F.x//dx D

Z 1

0

p
s.1 � s/dQ .s/ < 1; (3.25)
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we have

VarX D �2 .0/ D
Z 1

0

Z 1

0

.s ^ t � st/ dQ .s/ dQ .t/

�
�Z 1

0

p
s.1 � s/dQ .s/

	2
< 1,

which implies 0 < VarX < 1, and thus F 2 DN. Hence we can infer from (3.20)
that

Z 1

0

E j˛n .t/j dQ .t/ �
Z 1� 1

n

1
n

E j˛n .t/j dQ .t/ ! 0

and from (3.25) that

Z 1

0

E jB .t/j dQ .t/ �
Z 1� 1

n

1
n

E jB .t/j dQ .t/ ! 0;

and thus since r2 .1=n/ ! 0 we can conclude by (3.11) that

Z 1

0

E j˛n .t/j dQ .t/ !
Z 1

0

E jB .t/j dQ .t/ < 1.

For our next result we shall use the fact (e.g. Inequality 2.1 of Shorack [13]) that for
any 0 < � < 1=2 and 0 < c < 1 � d < 1

Z 1�d

c
.s.1 � s//1=2��dQ.s/=�.c; d/ � .3=

p
�/.c ^ d/��; (3.26)

where

�2.c; d/ D
Z 1�d

c

Z 1�d

c
.s ^ t � st/ dQ .s/ dQ .t/ :

Proposition 3.3 For any quantile function Q, any p > 1 and any sequences of
positive numbers 0 < cn < 1 � dn < 1, n � 1,

ˇ̌
ˇ̌Z 1�dn

cn

E j˛n .t/j dQ .t/ �
Z 1�dn

cn

E jB .t/j dQ .t/

ˇ̌
ˇ̌

�
r
�

2
Cp.3=

p
�/.n .cn ^ dn//

��/
Z 1�dn

cn

E jB .t/j dQ .t/ ; (3.27)
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where v D 1=2� 1= .2p/. In particular, if n .cn ^ dn/ ! 1, as n ! 1,
Z 1�dn

cn

E j˛n .t/j dQ .t/ D
Z 1�dn

cn

E jB .t/j dQ .t/ .1C o .1// : (3.28)

Proof Notice that for 0 < c < 1 � d < 1

�2.c; d/ �
�Z 1�d

c

p
s.1 � s/dQ .s/

	2
;

and we get by the Shorack [13] fact (3.26) that for any 0 < c < 1 � d < 1 and
0 < v < 1=2,

Z 1�d

c
.s.1 � s//1=2��dQ.s/=

Z 1�d

c

p
s.1 � s/dQ .s/ � .3=

p
�/.c ^ d/��:

We see then, as in the proof of Proposition 3.1, that for any p > 1 with v D 1=2�
1= .2p/,

ˇ̌
ˇ̌Z 1�dn

cn

E j˛n .t/j dQ .t/ �
Z 1�dn

cn

E jB .t/j dQ .t/

ˇ̌
ˇ̌

� Cp

Z 1�dn

cn

.t .1 � t//1=.2p/ dQ .t/ n�1=2C1=.2p/

D Cp

R 1�dn

cn
.t .1 � t//1=.2p/ dQ .t/R 1�dn

cn

p
s.1 � s/dQ .s/

n�1=2C1=.2p/
Z 1�dn

cn

p
s.1 � s/dQ .s/

�
r
�

2
Cp.3=

p
�/.n .cn ^ dn//

��/
r
2

�

Z 1�dn

cn

p
s.1 � s/dQ .s/

D
r
�

2
Cp.3=

p
�/.n .cn ^ dn//

��/
Z 1�dn

cn

E jB .t/j dQ .t/ :

ut
We immediately get the following corollary.

Corollary 3.4 If E jXj < 1 , then for all 0 < " < 1 there exists a k > 0 such that
for k=n � 1=2

Z
.0;1/�Œk=n;1�k=n�

E jGn .t/ � tj dQ .t/C 1p
n

Z 1�k=n

k=n
E jB .t/j dQ .t/ .1 � "/

� Ed1 .Fn;F/ �
Z
.0;1/�Œk=n;1�k=n�

E jGn .t/ � tj dQ .t/

C 1p
n

Z 1�k=n

k=n
E jB .t/j dQ .t/ .1C "/ : (3.29)
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Note that if E jXj < 1, by applying inequality (3.23), we get for n=2 � k,

Z
.0;1/�Œk=n;1�k=n�

E jGn .t/ � tj dQ .t/ � 2

Z
.0;1/�Œk=n;1�k=n�

t .1 � t/ dQ .t/ : (3.30)

Now E jXj < 1 implies that for any 0 < " < 1, k > 0 and all large enough n=2 � k,
the right side of (3.30) is less than ". Thus from (3.27) and (3.30) we can say that
for any 0 < " < 1 there exists a k > 0 such that for all large enough n=2 � k

1p
n

Z 1�k=n

k=n
E jB .t/j dQ .t/ .1 � "/ � Ed1 .Fn;F/

� "C 1p
n

Z 1�k=n

k=n
E jB .t/j dQ .t/ .1C "/ :

4 A Result of del Barrio et al. [7]

Set

Wn D n
Z 1

�1
jFn.x/ � F.x/j dx:

del Barrio et al. [7] using a version of the weighted approximation of (2.7) , derived
the asymptotic distribution of Wn whenever F 2 DN and satisfies some additional
conditions. For instance, if (3.25) is satisfied then

p
n
Z 1

�1
jFn.x/� F.x/j dx Dd

Z 1

0

j˛n.s/j dQ .s/ !d

Z 1

0

jB.s/j dQ .s/ : (4.1)

Condition (3.25) is a bit stronger than 0 < VarX D �2 < 1 and it is necessary for
the limit integral to exist. Notice that if we remove the absolute values signs in (4.1)
we get the usual central limit theorem, namely, in the 0 < �2 < 1 case

p
n
Z 1

�1
fFn.x/ � F.x/g dx !d �Z Dd

Z 1

0

B.s/dQ .s/ :

Along the way, in their study, del Barrio et al. [7] proved that whenever F 2 DN;
for all 0 < r < 2;

sup
n�1

E

ˇ̌
ˇ̌Wn � EWn

bn

ˇ̌
ˇ̌r < 1; (4.2)
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where bn is as in (3.1). We shall demonstrate how Theorem 2.2 leads to a quick
proof of this result.

4.1 An Equivalent Version of the del Barrio, Giné and Matrán
result (4.2)

Observing that by (1.4),

Wn Dd n
Z 1

0

jGn.t/ � tj dQ.t/;

and since, as pointed out above, we can always choose bn D p
n� .1=n/, we see

that their result (4.2) is equivalent to, for all 0 < r < 2;

sup
n�2

E

ˇ̌
ˇ̌
ˇ
R 1
0 fj˛n.t/j � E j˛n.t/jg dQ.t/

� .1=n/

ˇ̌
ˇ̌
ˇ
r

< 1: (4.3)

In a separate technical lemma they showed that whenever F 2 DN; for all
0 < r < 2;

sup
n�2

E

ˇ̌
ˇ̌
ˇ
R
.0;1/�Œ1=n;1�1=n� fj˛n.t/j � E j˛n.t/jg dQ.t/

� .1=n/

ˇ̌
ˇ̌
ˇ
r

< 1 (4.4)

and they used the Talagrand [15] exponential inequality to prove that for all r > 0;

sup
n�2

E

ˇ̌
ˇ̌
ˇ̌
R 1�1=n
1=n fj˛n.t/j � E j˛n.t/jg dQ.t/

� .1=n/

ˇ̌
ˇ̌
ˇ̌
r

< 1: (4.5)

Clearly (4.4) and (4.5) imply (4.2).

4.2 A Weighted Approximation Approach to (4.5)

Evarist Giné asked the author whether it is true that on the space of Theorem 2.1,
for all r > 0;

sup
n�2

E

"
sup

1=n�t�1�1=n

n�j˛n.t/ � Bn.t/j
.t.1 � t//1=2��

#r

< 1‹ (4.6)
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In which case, a weighted approximation approach could be used to show that for
all r > 0; (4.5) holds.

This was the motivation for the author to establish Theorem 2.2, which we have
shown in Proposition 2.3 implies (4.6). We shall use Proposition 2.4 and some pieces
from del Barrio et al. [7] to prove that (4.5) holds for all r > 0; under no assumptions
on F: Their proof of (4.5), based on Talagrand [15], assumes F 2 DN:

Our aim will be to transfer our study of the moment behavior of

R 1�1=n
1=n fj˛n.t/j � E j˛n.t/jg dQ.t/

� .1=n/

to that of

R 1�1=n
1=n fjBn.t/j � E jBn.t/jg dQ.t/

� .1=n/
:

What follows is somewhat technical, however, it demonstrates nicely the power of
Theorem 2.2.

Step 1.
For any quantile function Q; one has for any 0 < � < 1=2 (see the Shorack [13]
fact (3.26))

sup
n�2

R 1�1=n
1=n .s.1 � s//1=2��dQ.s/

n�� .1=n/
� 3p

�
:

Thus from Proposition 2.4, (with M D 3p
�

, Dn D n�� .1=n/ and obvious choices

of fRn; n � 2g); we get for any 0 < � < 1=2, on the probability space of the
KMT [9] approximation there exists a � > 0 such that (2.9) holds, where

In WD
R 1�1=n
1=n j˛n.s/� Bn.s/jdQ.s/

n�� .1=n/
:

Step 2.
Noting that

n�In D
R 1�1=n
1=n j˛n.s/ � Bn.s/jdQ.s/

� .1=n/
;

we see that (2.9) implies that for any r > 0

sup
n�2

E

ˇ̌
ˇ̌
ˇ̌
R 1�1=n
1=n fj˛n.s/j � jBn.s/jg dQ.s/

� .1=n/

ˇ̌
ˇ̌
ˇ̌
r

< 1: (4.7)
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Step 3.
By recopying steps from the proof of Theorem 5.1 of del Barrio et al. [7],
(also see their Proposition 6.2), based on Borell’s inequality [2] one gets the
exponential inequality, valid for all t > 0

P

8<
:

ˇ̌
ˇR 1�1=n
1=n fjB.t/j � E jB.t/jg dQ .t/

ˇ̌
ˇ

� .1=n/
> t

9=
; � 2 exp

�
�2t2

�2

	
;

which, of course, implies that for all r > 0;

sup
n�2

E

ˇ̌
ˇ̌
ˇ̌
R 1�1=n
1=n fjB.t/j � E jB.t/jg dQ.t/

� .1=n/

ˇ̌
ˇ̌
ˇ̌
r

< 1:

This in combination with (4.7) establishes (4.5), which we have just shown
holds under absolutely no assumptions on the underlying c.d.f F. As pointed
out above, (4.4) and (4.5) imply the del Barrio et al. [7] result (4.3), which on
account of (4.4) requires F 2 DN: In the end, del Barrio et al. [7] decided to use
their own proof of (4.5) based on the Talagrand [15] inequality.

4.3 One Can Say More

Piecing all of our inequalities together we obtain the following inequality.

Proposition 4.1 Under absolutely no conditions on F; for all n � 2 and t > 0;

P

8<
:

ˇ̌
ˇR 1�1=n
1=n fj˛n.t/j � E j˛n.t/jg dQ.t/

ˇ̌
ˇ

� .1=n/
> t

9=
; � A exp .�Ct/ ; (4.8)

for suitable constants A > 0 and C > 0 independent of F.

For additional investigations along this line consult Haeusler and Mason [8],
who study the asymptotic distribution of the appropriately centered and normed
moderately trimmed Wasserstein distance

Z Q.1�an=n/

Q.an=n/
jFn.x/� F.x/j dx Dd

Z 1�an=n

an=n
jGn.t/ � tj dQ.t/;

where an is a sequence of positive constants satisfying an ! 0 and nan ! 1: See
Haeusler and Mason [8] for motivation. As part of a general investigation of the
trimmed pth Mallows distance, Munk and Czado [12] had previously looked at a
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somewhat different version of the trimmed Wasserstein distance when 0 < an D
˛ < 1=2. Check their paper for details.

Acknowledgements The author thanks the Centro de Investigación en Matemáticas, Guanajuato,
Mexico for their hospitality, where this paper was partially written.
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On the Product of Random Variables
and Moments of Sums Under Dependence

Magda Peligrad

Dedicated to the memory of Evarist Giné

Abstract In this paper we compare the moments of products of dependent random
vectors with the corresponding ones of independent vectors with the same marginal
distributions. Various applications of this result are pointed out, including inequali-
ties for the maximum of dependent random variables and moments of partial sums.
The inequalities involve the generalized phi-mixing coefficient.

Keywords Inequalities • Mixing coefficients • Moments for partial sums • Prod-
uct of dependent random variables
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1 Introduction

This paper is motivated by the study of moments of products and moments of
sums for a dependent vector. In the independent case, the bounds for moments
of products or sums is well understood. Various aspects of these bounds can be
found in books by Ledoux and Talagrand [14], and by de la Peña and Giné [6],
among others. Bounds for moments of sums are also available for various classes of
dependent sequences. For martingales, the book by de la Peña and Giné [6] is again
an excellent source of information. Various other classes of dependent sequences
have been considered in the literature. For positively associated sequences see Birkel
[3], negatively associated sequences [25], and classes based on projective conditions
[7, 16, 21, 22, 24, 27]. Many of these bounds can be expressed in terms of mixing
coefficients surveyed in the book by Bradley [4].
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By using the expectations of product of moments, we shall compare the
maximum term, the characteristics function, the moment generating function and
moments of sums of a dependent vector to the corresponding ones for an indepen-
dent vector with the same marginal distributions.

Relevant to our study is the following coefficient of dependence. Let .�;K;P/
be a probability space and consider A;B two sub-sigma algebras K. Denote by jj	jjp

the norm in Lp.�;K;P/: Define

N'.A;B/ D sup
jcov.X;Y/j
jjXjj1jjYjj1 ,

where supremum is taken over all real-valued functions X 2 L1.�;A;P/ and
Y 2 L1.�;B;P/;where, as usual, 0=0 is interpreted to be 0:Note that N'.A;B/ � 2:

This coefficient is, up to a constant, comparable with the '-mixing coefficient
introduced by Ibragimov [11] defined in the following way:

'.A;B/ D sup
A2A;B2B;P.A/¤0

jP.BjA/� P.B/j

D sup
B2B

.ess sup jP.BjA/� P.B/j/:

Note that by Theorem 3.1 in [4], we have

jcov.X;Y/j � 2'.�.X/; �.Y//jjXjj1jjYjj1; (1.1)

and by item (c.1) of Theorem 4.4 in [4], N' D 2'.
Let .Xk/1�k�n be a random vector and define the sigma algebras Pk D �.Xk/ and

Fn
kC1 D �.XkC1; : : :Xn/: Define the N'-mixing coefficient

N' D N'..Xk/1�k�n/ D max
1�k�n�1 N'.Pk;Fn

kC1/: (1.2)

Similarly define

' D '..Xk/1�k�n/ D max
1�k�n�1 '.Pk;Fn

kC1/:

One of our results compares the product of a vector of real positive random
variables uniformly bounded by 1with the product of independent random variables.
We shall show that

.1 � N'/.1 �
nY

kD1
EYk/ � .1 � E.

nY
kD1

Yk// � .1C N'/.1�
nY

kD1
EYk/:
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Actually, we shall derive related results for certain complex-valued random vari-
ables, which will allow us to obtain upper and lower bounds for moments of sums
of positive random variables in terms of independent variables.

Also, for an arbitrary random vector of positive random variables .Yk/; we
compare the moments of sums to the corresponding moments of an independent
vector with the same marginal distributions .Y�

k /: For any 0 < p < 1; we shall show
that

.1 � 2 N'/K�1
p E.

Xn

kD1 Y�
k /

p � E.
Xn

kD1 Yk/
p � .1C 2 N'/KpE.

Xn

kD1 Y�
k /

p;

where the constant Kp depends only on p via the optimal Khinchin lower constant
A2p from [9].

More precisely Kp can be taken 21C.1�2p/^1A�1
2p : The inequality in the right hand

side provides an alternative approach to the proof of Proposition 1 in [5] (see
also relation (1.4.27) of Theorem 1.4.12 in [6]). We also exhibit a lower bound,
interesting when 2 N' < 1.

At the end of the paper we discuss the computability of the '-mixing coefficient
used in the results and we comment about its relation to Doeblin recurrence and
the Dobrushin coefficient of ergodicity for Markov chains. We also discuss some
aspects of the Ibragimov conjecture on the central limit theorem for a '-mixing
sequence, which motivated this paper.

2 Results and Applications

Our first result points out an identity for any product of random variables.

Lemma 2.1 Let .Yk/1�k�n, n � 2; be a vector of complex-valued random variables
with EYk ¤ 1 for all k. Define

Rj D 1

1 � EYj
cov.

nY
kDjC1

Yk;Yj/ for 1 � j � n � 1; Rn D 0: (2.1)

Then

.1 � E.

nY
kD1

Yk// D
nX

kD1
.

k�1Y
jD1

EYj/.1 � EYk/.1 � Rk/; (2.2)

where we understand that
Q0

jD1 EYj D 1:
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Proof We start by a remark: For n � 2,

cov.
nY

kDjC1
Yk; 1 � Yj/ D �cov.

nY
kDjC1

Yk;Yj/ D �Rj.1 � EYj/:

By simple algebra,

.1 � E.

nY
kD1

Yk// D 1 � E.

nY
kD2

Yk/EY1 C cov.
nY

kD2
Yk; 1 � Y1/

D 1 � E.

nY
kD2

Yk/EY1 C cov.
nY

kD2
Yk; 1 � Y1/:

By using notation (2.1), we write

.1 � E.

nY
kD1

Yk// D 1 � E.

nY
kD2

Yk/EY1 � R1.1 � EY1/

D .1 � E.

nY
kD2

Yk//EY1 C .1 � R1/.1 � EY1/:

We notice now that we can apply recurrence and obtain the identity (2.2). �

Lemma 2.1 allows us to compare the moments of products of random variables
bounded by 1 with the corresponding ones of independent variables. It is convenient
to consider complex-valued random variables.

Lemma 2.2 Let .Yk/1�k�n, n � 2; be a vector of complex random variables with
jjYkjj1 � 1, EYk real and positive for all k; 1 � k � n. Denote

! D !..Yk/1�k�n/ D max
1�k�n�1 j Re Rkj: (2.3)

Then

.1 � !/.1 �
nY

kD1
EYk/ � Re.1 � E.

nY
kD1

Yk// � .1C !/.1 �
nY

kD1
EYk/:
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Proof Note that our conditions imply that 0 � EYk � 1: By Lemma 2.1 and the
definition of ! we obtain

Re.1 � E.

nY
kD1

Yk// D
nX

kD1
.

k�1Y
jD1

EYj/.1 � EYk/.1 � Re Rk/

� .1C !/

nX
kD1
.

k�1Y
jD1

EYj/.1 � EYk/;

and

Re.1 � E.

nY
kD1

Yk// � .1 � !/

nX
kD1
.

k�1Y
jD1

EYj/.1 � EYk/:

The result follows since

nX
kD1
.

k�1Y
jD1

EYj/.1 � EYk/ D 1 �
nY

kD1
EYk:

�

If the variables are real-valued we obtain

Lemma 2.3 Let .Yk/1�k�n, n � 2; be real-valued random variables with 0 � Yk �
1 a.s. Then

.1 � !/.1 �
nY

kD1
EYk/ � .1 � E.

nY
kD1

Yk// � .1C !/.1 �
nY

kD1
EYk/;

where ! D !.n/ is defined by

! D sup
1� j�n�1

1

E.1 � Yj/
jcov.

nY
kDjC1

Yk; 1 � Yj/j :

Also ! � N' where N' is defined by (1.2).

Proof In this case all the conditions of Lemma 2.2 are satisfied. In addition, for
1 � j � n � 1; we have

jRjj D 1

1 � EYj
jcov.

nY
kDjC1

Yk;Yj/j D 1

Ej1 � Yjj jcov.
nY

kDjC1
Yk; 1 � Yj/j � N';
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and the result follows. Note that, in this lemma, we do not have to assume EYk ¤ 1

since we can interpret 0=0 D 0. �

2.1 Application to Indicator Functions

Let .Ak/1�k�n be events in K: We apply Lemma 2.3 to the indicator functions Yk D
IAk . For these functions

! D max
1� j�n�1 jP..\n

kDjC1Ak/ \ A0
j/ � P.\n

kDjC1Ak/P.A
0
j/j=P.A0

j/;

where A0
k is the complement of Ak and we interpret 0=0 D 0: Note that for this case

! � '..IAk/k/:

Then, by Lemma 2.3,

.1 � !/.1 �
nY

kD1
P.Ak// � 1 � P.\n

kD1Ak/ � .1C !/.1 �
nY

kD1
P.Ak//: (2.4)

We can represent relation (2.4) in the following equivalent way:

.1 � !/P.[n
kD1.A�

k /
0

/ � P.[n
kD1A0

k/ � .1C !/P.[n
kD1.A�

k /
0

/; (2.5)

where .A�
k / are independent with P.Ak/D P.A�

k /: Also it can be represented as

jP.\n
kD1Ak/ �

nY
kD1

P.Ak/j � !P.[n
kD1.A�

k /
0

/:

From this last expression we can see that the inequality (2.4) is tighter than Lemma 3
in [17], which has in the right hand side only !.

2.2 Maximum of Random Variables

Consider now a vector .X�
k /1�k�n of independent random variables where each X�

k
is distributed as Xk: Then for all real x;

.1 � '/P.max
1�k�n

X�
k � x/ � P.max

1�k�n
Xk � x/ � .1C '/P.max

1�k�n
X�

k � x/: (2.6)
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To prove it, we consider the events Ak D I.Xk < x/ and notice that

.max
1�k�n

Xk � x/ D [n
kD1A0

k: (2.7)

We then apply relation (2.5) along with the definition of '-mixing coefficients to
conclude that ! � '.

By using the sequence of inequalities in relation (2.6) and the integration by parts
formula (see Theorem 18.4 in [2]), we can obtain various moment inequalities for
functions of the maximum of variables in terms of the maximum of independent
variables. For instance, for any positive continuous and nondecreasing function g;
we have

.1 � '/Eg.max
1�k�n

jX�
k j/ � Eg.max

1�k�n
jXkj/ � .1C '/Eg.max

1�k�n
jX�

k j/:

Inequality (2.6) was obtained by a direct approach in [19] and exploited to derive
a central limit theorem for '-mixing sequences.

2.3 Application to Laplace Transform of Positive Functions

Here we shall apply Lemma 2.3 to the Laplace transform of positive functions. For
any positive random variable X and positive number t; denote MX.t/ D E exp.�tX/:
Given .Xk/1�k�n a vector of positive random variables, for every t > 0; define

Yk.t/ D exp.�tXk/:

Note that Yk.t/ satisfies the conditions of Lemma 2.3. Also note that

E.
Qn

kD1 Yk/ D E.exp.�t
nX

kD1
Xk// and

Qn
kD1 EYk D E.exp.�t

nX
kD1

X�
k //; where

.X�
k /1�k�n are independent variables, with each variable X�

k distributed as Xk.

Denote Sn D
nX

kD1
Xk and S�

n D
nX

kD1
X�

k : We also have

!.t/ D max
1� j�n�1

1

E.1 � exp.�tXj//
jcov.exp.�t

nX
kDjC1

Xk/; 1 � exp.�tXj//j � N':

Therefore

.1 � N'/.1 � MS�

n
.�t// � 1� MSn.�t/ � .1C N'/.1 � MS�

n
.�t//: (2.8)
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2.4 Application to Characteristic Functions

We consider here a vector of random variables .Xk/1�k�n. We introduce the random
function of t, Yk D exp.itXk/: Denote the characteristic function fX.t/ D E exp.itX/:
We assume that for a t fixed fXk.t/ is positive and different from 1, for all k. For this
case

!.t/ D max
1� j�n�1 j Re Rj.t/j; (2.9)

where

Re Rj.t/ D �1
1� E cos.tXj/

Œcov.cos.
nX

kDjC1
tXk/; 1 � cos.tXj//

C cov.sin.
nX

kDjC1
tXk/; sin.tXj//�:

By Lemma 2.2, it follows that for such a value of t,

.1 � !.t//.1 � fS�

n
.t// � Re.1 � fSn.t// � .1C !.t//.1 � fS�

n
.t//; (2.10)

where, as before, .X�
k /1�k�n are independent, each X�

k distributed as Xk and Sn,
S�

n are their sums.
If in addition we assume that for such t,

cov.sin.
nX

kDjC1
tXk/; sin.tXj// D 0 (2.11)

for all natural numbers j, 0 � j � n; then, by the definition of N' we see that !.t/ � N'
and we have

.1 � N'/.1 � fS�

n
.t// � Re.1 � fSn.t// � .1C N'/.1 � fS�

n
.t//: (2.12)

2.5 Bounds for Moments of Partial Sums

To compare the moments of partial sums of a dependent sequence with an
independent one we shall use the following well-known lemma (see, for instance,
relation (4.1) in [8]).
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Lemma 2.4 Let Y be a random variable with characteristic function fY.t/ and for
a real number r 2 .0; 2/ assume that EjYjr < 1. Then,

EjYjr D Cr

Z 1

�1
.1 � Re fY.u//

juj1Cr
du;

with Cr D ��1�.1C r/ sin �r
2
:

In order to derive moment inequalities for sums of random variables with a
positive characteristic function we combine inequality (2.12) with Lemma 2.4.
Therefore, by taking also into account the continuity of norms, we obtain:

Lemma 2.5 Assume that for all natural numbers k; 1 � k � n; the characteristic
function fXk.t/ is positive for all t and in addition we have for all natural numbers j;
1 � j � n � 1;

cov.sin.
nX

kDjC1
tXk/; sin.tXj// D 0 for almost all t: (2.13)

Then, for every r 2 .0; 2�;

.1 � N'/EjS�
n jr � EjSnjr � .1C N'/EjS�

n jr: (2.14)

The condition that the random variables have positive characteristic function
can be easily removed at the cost of the constants by symmetrization and de-
symmetrization procedures. These procedures will also have the effect of removing
condition (2.13). In order to point out some intermediate results we shall proceed
in two steps. First we symmetrize with a Rademacher sequence, and then we shall
combine two kinds of symmetrization.

2.5.1 Symmetrization with a Rademacher sequence

Assume now that for all k; Xk is such that Re fXk.t/ � 0 for all t. For 1 � k � n we
consider now a Rademacher vector of independent random variables (i.e. "k are i.i.d.
P."k D ˙1/ D 1=2/ which is independent on the vector .Xk/1�k�n and introduce
the vector ."kXk/1�k�n:

By Fubini’s theorem, we note that E sin t"kXk D 0 and

f"kXk.t/ D E cos tXk D Re fXk.t/ � 0.
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In addition, also by Fubini’s theorem, by integrating first with "j we can easily get,
for all k;

cov.sin.
nX

kDjC1
t"kXk/; sin.t"jXj// D E.sin.

nX
kDjC1

t"kXk/ sin.t"jXj// D 0;

showing that condition (2.13) is satisfied. Therefore the vector ."kXk/1�k�n satisfies
the conditions of Lemma 2.5. Furthermore, it is easy to see that for all natural
numbers j; 1 � j � n � 1; we have

Rj.t/ D �1
1 � E cos t"jXj

cov.cos.
nX

kDjC1
t"kXk/; 1 � cos.t"jXj//

D �1
1 � E cos tXj

cov.cos.
nX

kDjC1
t"kXk/; 1 � cos.tXj//:

It follows that for all natural numbers j; 1 � j � n � 1;

jRj.t/j � N'..Xk/1�k�n/ D N':

By Lemma 2.5, we obtain for 0 < r � 2;

.1 � N'/Ej
nX

kD1
"kX�

k jr � Ej
nX

kD1
"kXkjr � .1C N'/Ej

nX
kD1

"kX�
k jr: (2.15)

It is well-known that, by Khinchin inequalities (see page 21 in [6]), for 0 < r � 2

there is a positive constant Ar depending only on r; such that

Ar.
Xn

kD1 X2k /
r=2 � E"j

Xn

kD1 "kXkjr � .
Xn

kD1 X2k /
r=2; (2.16)

where E" denotes the integration with respect to variables ."k/1�k�n: The best
constant Ar can be found in [9]. Therefore, by combining (2.15) and (2.16) we obtain

.1 � N'/ArE.
Xn

kD1.X
�
k /
2/r=2 � .1 � N'/Ej

Xn

kD1 "kX�
k jr

� Ej
Xn

kD1 "kXkjr � E.
Xn

kD1 X2k /
r=2:



Product of Random Variables 165

and

ArE.
Xn

kD1 X2k /
r=2 � Ej

Xn

kD1 "kXkjr � .1C N'/Ej
nX

kD1
"kX�

k jr

� .1C N'/E.
Xn

kD1.X
�
k /
2/r=2:

Therefore, we have established the following result:

Proposition 2.6 Assume that for all natural numbers k; 1 � k � n, Re fXj.t/ � 0

for all t. Then for 0 < r � 2 we have

.1 � N'/ArE.
Xn

kD1.X
�
k /
2/r=2 � E.

Xn

kD1 X2k /
r=2 (2.17)

� .1C N'/A�1
r E.

Xn

kD1.X
�
k /
2/r=2:

where .X�
k / are independent with each X�

k distributed as Xk and Ar is the lower
Khinchin constant.

2.5.2 Second Symmetrization and Desymmetrization

In case where Re fXj.t/ is not positive for all t, we can remove this restriction by using
a combination of symmetrization techniques, at the cost of constants. We shall use
the following lemma. It contains two simple inequalities which we formulate only
in the setting we apply them. They can be formulated for more general variables.
Parts of this lemma are well-known.

Lemma 2.7 Let X and Y be two i.i.d. symmetric random variables. Choose 0 <
r � 2. Then,

EjX C Yjr � 2EjXjr: (2.18)

and

EjXjr � brEjX C Yjr; (2.19)

where br can be taken br D 2.1�r/_0:

Proof For proving the inequality (2.18), we apply Lemma 2.4. By using the fact
that by symmetry fXCY.u/ D fX.u/fY.u/ D j fY.u/j2; and that Re fY.u/ � j fY.u/j we
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obtain, for 0 < r < 2;

EjX C Yjr D Cr

Z 1

�1
.1 � j fY.u/j2/

juj1Cr
du � 2Cr

Z 1

�1
.1 � j fY.u/j/

juj1Cr
du �

2Cr

Z 1

�1
.1 � Re fY.u//

juj1Cr
du D 2EjXjr:

We turn now to prove (2.19). Since 2X D .X C Y/ C .X � Y/ and .X;Y/ and
.X;�Y/ have the same distribution, by convexity, it follows that for 0 < r � 1 we
have

2r
EjXjr � EjXjr � EjX C Yjr C EjX � Yjr D 2EjX C Yjr:

If r > 1; by the triangle inequality we obtain the well-known inequality

2jjXjjr � jjX C Yjjr C jjX � Yjjr D 2jjX C Yjjr:

�

We shall obtain now an analogue of Proposition 2.6 for a general vector
.Xk/1�k�n: With this aim we consider a vector of variables, .X0

k/1�k�n which
is an independent copy of .Xk/1�k�n and two independent Rademacher vectors
."k/1�k�n; ."

0
k/1�k�n which are independent of both .Xk/1�k�n and .X0

k/1�k�n:Define
the vector QXk D "kXk C "0

kX0
k; 1 � k � n: Now, by Theorem 6.6 in [4] we know that

N'.. QXk/1�k�n/ � 2 N'..Xk/1�k�n/:

Furthermore, since "0
kX0

k is symmetric and independent of "kXk, we obtain fQXk
.t/ D

j f"kXk.t/j2. Also by Fubini’s theorem condition (2.13) is satisfied.
Therefore we can apply Lemma 2.5 which gives

.1 � 2 N'/Ej
nX

kD1
QX�

k jr � Ej
nX

kD1
QXkjr � .1C 2 N'/Ej

nX
kD1

QX�
k jr; (2.20)

where . QX�
k /1�k�n are independent and each QX�

k is distributed as QXk: Without
restricting the generality we can take QX�

k of the form QX�
k D "kX�

k C"0
k.X

0
k/

� with both
vectors .X�

k /1�k�n and
�
.X0

k/
��
1�k�n

; i.i.d., with the same marginal distributions as
.Xk/1�k�n: We shall denote

Vn D
nX

kD1
"kXk , Wn D

nX
kD1

"0
kX0

k
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and

V�
n D

nX
kD1

"kX�
k , W�

n D
nX

kD1
"0

k.X
0
k/

�:

Note that Vn;Wn are i.i.d., symmetric random variables and also V�
n and W�

n are i.i.d.
and symmetric random variables. With these notations we can write

nX
kD1

QXk D Vn C Wn,
nX

kD1
QX�

k D V�
n C W�

n ;

and relation (2.20) as

.1 � 2 N'/EjV�
n C W�

n jr � EjVn C Wnjr � .1C 2 N'/EjV�
n C W�

n jr: (2.21)

So, for r 2 .0; 2�; by (2.19) and (2.18) of Lemma 2.7, applied together with (2.21)
we obtain

.1 � 2 N'/EjV�
n jr � .1 � 2 N'/brEjV�

n C W�
n jr � brEjVn C Wnjr � 2brEjVnjr:

By the same arguments, we also have

EjVnjr � brEjVn C Wnjr � .1C 2 N'/brEjV�
n C W�

n jr � .1C 2 N'/2brEjV�
n jr:

Overall

.2br/
�1.1 � 2 N'/EjV�

n jr � EjVnjr � 2br.1C 2 N'/EjV�
n jr: (2.22)

Combining this latter inequality with Khinchin inequalities, with the notation Cr D
2brA�1

r D 21C.1�r/^1A�1
r ; we obtain for 0 < r � 2 and an arbitrary vector

.Xk/1�k�n,

.1 � 2 N'/C�1
r E.

Xn

kD1.X
�
k /
2/r=2 � E.

Xn

kD1 X2k /
r=2 (2.23)

� .1C 2 N'/CrE.
Xn

kD1.X
�
k /
2/r=2:

Now, giving a positive vector of random variables .Yk/1�k�n;we define the sequence
Xk D p

Yk: By applying inequality (2.23) to .Xk/1�k�n we obtain:

Theorem 2.8 Assume .Yk/1�k�n, n � 2; are arbitrary positive random variables
and 0 < p � 1. If E.Yp

k / < 1, 1 � k � n, then

.1 � 2 N'/K�1
p E.

Xn

kD1 Y�
k /

p � E.
Xn

kD1 Yk/
p

� .1C 2 N'/KpE.
Xn

kD1 Y�
k /

p;
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where .Y�
k /1�k�n are independent random variables with Y�

k distributed as Yk and
Kp can be taken 21C.1�2p/^1A�1

2p with A2p the lower Khinchin constant.

Since always N'1 � 2; we obtain for any vector of positive random variables
.Yk/1�k�n; that

E.
Xn

kD1 Yk/
p � 5KpE.

Xn

kD1 Y�
k /

p; (2.24)

where .Y�
k /1�k�n are independent and each Y�

k is distributed as Yk: The constant is
depending only on p; and is expressed as a function of the lower Khinchin constant.
Therefore, our proof provides for power functions an alternative approach to the
result given in Proposition 1 in [5] (see also relation (1.4.27) on page 33 in [6]),
whose proof is based on a truncation argument. The paper by de la Peña [5] also
provides examples showing that, in general, inequality (2.24) cannot be reversed.
However, our results in Proposition 2.6 and Theorem 2.8 provide a class of random
vectors for which this is possible. In order for the inequality in the left hand side to
be meaningful we have to assume that 2 N' < 1. For this class of random vectors we
also obtain a lower bound for the moments of sums of positive random variables, in
terms of moments of sum of independent ones. Of course, if we have Re fXj.t/ > 0

for almost all t and all j; by Proposition 2.6, we obtain better constants and in this
case, in order to use the lower bound, we have only to assume N' < 1.

2.6 Discussion of the '-Mixing Coefficient

In general, the computation of the Ibragimov coefficient ' is not an easy task
except in the Markovian case. If .Xk/1�k�n is a Markov random vector the definition
simplifies as follows:

' D '..Xk/1�k�n/ D max
1�k�n�1 '.�.Xk/; �.XkC1//:

Furthermore, by relation (1.1.2) in [13],

'.�.Xk/; �.XkC1// � sup
B2�.XkC1/

Œess supP.Bj�.Xk//� ess infP.Bj�.Xk//�:

We mention that

ı.�.Xk/; �.XkC1// D 1 � sup
B2�.XkC1/

Œess supP.Bj�.Xk// � ess infP.Bj�.Xk//�

is the famous Dobrushin coefficient of ergodicity.
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If .Xk/1�k�n are discrete random variables, we denote by

q.k/ij D P.XkC1 D jjXk D i/:

Then by Proposition 1.2.3 in [13],

'.�.Xk/; �.XkC1// � 1

2
sup

i;j

X
`

jq.k/i` � q.k/j` j:

Now, assume we have a strictly stationary Markov chain .Xk/k2Z satisfying the
following form of Doeblin condition: There is a Borel set A with P.X0 2 A/ D 1

and there is an " 2 .0; 1/ such that

P.X1 2 BjX0 D x/ � P.X0 2 B/ � 1 � ";

as soon as P.X0 2 B/ � ": In this case we have ' � 1 � " (see for
instance Sect. 21.23 in [4, Vol. 2]). Here, because of stationarity ' is defined as
'.�.X0/; �.X1//:

In many situations, the following two quantities are relevant to the computation
of the coefficient ' (0=0 D 0):

 � D sup
A;B

P.X0 2 A;X1 2 B/

P.X0 2 A/.X1 2 B/
and  0 D inf

A;B

P.X0 2 A;X1 2 B/

P.X0 2 A/.X1 2 B/
.

Then, by Proposition 5.2 in [4, Vol. 1], we have 1 �  � � 1 and 0 �  0 � 1:

Moreover

' � 1 � 1

 � and ' � 1 �  0:

These inequalities are practical in many situations. For instance, it is convenient to
specify a stationary Markov chain .Xk/k2Z with marginal distribution function F by
a copula C.x0; x1/:

P.X0 � x0;X1 � x1/ D C.F.x0/;F.x1//:

If for some 0 < ı � 1 the absolutely continuous part of the copula C.x0; x1/ has a
density c.x0; x1/ � ı; then we have  0 � ı and ' � 1 � ı: For instance, for the
Marshall-Olkin copula

C˛.x0; x1/ D min.x0x1�˛1 ; x1x
1�˛
0 /; 0 � ˛ < 1;

we have c.x0; x1/ � 1 � ˛ and therefore ' � ˛: For a detailed formulation of the
'-mixing coefficients in terms of copula and further examples see for instance [15].
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We now give an estimate of the coefficient ' for a specific example related to
number theory. For every irrational number x in .0; 1/ there is a unique sequence of
positive integers x1; x2; x3; : : : such that the following continued fraction expansion
holds:

x D 1

x1 C 1

x2C 1
x3C���

:

If we introduce on Œ0; 1� the Gauss probability measure with the density f .x/ D
.ln 2/�1.1C x/�1; then the sequence .x1; x2; x3; : : :/ is strictly stationary. We know
from Lemma 2.1 in [23] that for this sequence � < 1:8 and then ' � 1�. �/�1 �
0:45: For this case, our inequality (2.6) gives

.0:55/

�
1 �

�
ln.1C x/

ln 2

	n	
� P.max

1�k�n
Xk � x/

� .1:55/

�
1 �

�
ln.1C x/

ln 2

	n	
:

Also, the left hand side of (2.8) holds with 1 � N' D 1 � 2' � 0:1:

As a matter of fact, all the left hand side inequalities obtained in this paper are
usable if the coefficient ' is small enough. One way to reduce the size of ' is to use
various blocking procedures. A useful blocking procedure is to fix a natural number
p > 1 and to leave a gap of p between the variables. For instance, when we treat
the maximum of random variables, we can look at .Xp;X2p; : : : ;Xkp/ with k being
the integer part of n=p: Let us denote by 'p the mixing coefficient for this sequence.
The left hand side of (2.6) gives

.1 � 'p/P.max
1�`�k

X�̀
p � x/ � P.max

1�`�k
X`p � x/ � P.max

1�k�n
Xk � x/:

which is meaningful provided 'p < 1: In the Markov setting, by Theorem 7.4 in [4],
we know that

N'.�.Xp/; �.X2p// D
2p�1Y
kDp

. N'.�.Xk/; �.XkC1//;

which gives in the stationary setting N'p � . N'/p (i.e 2'p � .2'/p).
When dealing with sums of random variables, an extremely useful procedure

is the Bernstein big and small block argument: The variables are divided in large
blocks intertwined with small blocks. The partial sum in big blocks are vectors
distant enough to have a small mixing coefficient while the sum of variables in
small blocks is negligible.



Product of Random Variables 171

2.7 Discussion of the Ibragimov Conjecture

For a stationary sequence X D .Xk/k2Z we define:

'k.X/ D '.�.X`I ` � 0/; �.XjI j � k//:

We call the sequence '-mixing if limk!1 '.k/ D 0. We denote by Sn D Pn
kD1 Xk:

Ibragimov [11] formulated the following conjecture:

Conjecture 2.9 Assume .Xk/k2Z is a stationary '-mixing sequence such that EX0 D
0 and EX20 < 1. Denote by �2n D E.S2n/ and assume �2n ! 1. Then .Sn=�n/n�1
converges in distribution to a standard normal variable.

This conjecture was reformulated in [12] to include the functional central limit
theorem. For x real denote by Œx� the integer part of x and introduce

Wn.t/ D SŒnt�=�n, 0 � t � 1;

a random element of DŒ0; 1�; the space of functions defined on Œ0; 1�, which are
continuous from the right and have left hand limits. We endow DŒ0; 1� with uniform
topology.

Conjecture 2.10 Let .Xk/k2Z be as above. Then Wn is weakly convergent to W,
where W denotes the standard Brownian motion on Œ0; 1�.

From Peligrad [18] we know that the Ibragimov-Iosifescu conjectures hold under
the additional assumption

lim inf
n

E.S2n/=n > 0: (2.25)

Our study was initially motivated by this conjecture. We came short of proving it.
However the results in this paper show that, from some point of view, moments of
products and partial sums of a '-mixing sequence are close to the corresponding
ones of an independent sequence.

Other results related to the Ibragimov conjecture can be found, for instance, in [1,
10, 18–20, 26]. They are all based on inequalities for the maximum of partial sums
and by Hoffman-Jorgensen type inequalities (see Peligrad [18]), which are valid for
'k sufficiently small for some k � 1: These inequalities also lead to Rosenthal type
inequalities.
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The Expected Norm of a Sum of Independent
Random Matrices: An Elementary Approach

Joel A. Tropp

Abstract In contemporary applied and computational mathematics, a frequent
challenge is to bound the expectation of the spectral norm of a sum of independent
random matrices. This quantity is controlled by the norm of the expected square
of the random matrix and the expectation of the maximum squared norm achieved
by one of the summands; there is also a weak dependence on the dimension of the
random matrix. The purpose of this paper is to give a complete, elementary proof of
this important inequality.

Keywords Probability inequality • Random matrix • Sum of independent random
variables
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1 Motivation

Over the last decade, random matrices have become ubiquitous in applied and
computational mathematics. As this trend accelerates, more researchers must
confront random matrices as part of their work. Classical random matrix theory
can be difficult to use, and it is often silent about the questions that come up in
modern applications. As a consequence, it has become imperative to develop and
disseminate new tools that are easy to use and that apply to a wide range of random
matrices.
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1.1 Matrix Concentration Inequalities

Matrix concentration inequalities are among the most popular of these new methods.
For a random matrix Z with appropriate structure, these results use simple
parameters associated with the random matrix to provide bounds of the form

E kZ � EZk � : : : and P fkZ � EZk � tg � : : :

where k	k denotes the spectral norm, also known as the `2 operator norm. Matrix
concentration tools have already found a place in many areas of the mathematical
sciences, including

• numerical linear algebra [42]
• numerical analysis [30]
• uncertainty quantification [13]
• statistics [23]
• econometrics [6]
• approximation theory [11]
• sampling theory [2]
• machine learning [15, 26]
• learning theory [16, 31]
• signal processing [8]
• optimization [10]
• computer graphics and vision [9]
• quantum information [18]
• algorithms [12, 17]
• combinatorics [33].

These references are chosen more or less at random from a long menu of
possibilities. See the monograph [44] for an overview of the main results on matrix
concentration, many detailed applications, and additional background references.

1.2 The Expected Norm

The purpose of this paper is to provide a complete proof of the following important
theorem. This result is adapted from [7, Theorem A.1]; see also [14, p. 6].

Theorem I (The Expected Norm of a Sum of Independent Random Matrices)
Consider an independent family fS1; : : : ;Sng of random d1 � d2 complex-valued
matrices with ESi D 0 for each index i, and define

Z WD
nX

iD1
Si: (1.1)
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Introduce the matrix variance parameter

v.Z / WD max
˚��E ZZ ���� ; ��E Z�Z

����

D max

(�����
nX

iD1
E

SiS

�
i

������ ;
�����

nX
iD1

E

S �

i Si
������
)

(1.2)

and the large deviation parameter

L WD
�
Emaxi kSik2

�1=2
: (1.3)

Define the dimensional constant

C.d/ WD C.d1; d2/ WD 4 	 �1C 2
˙

log.d1 C d2/
��
:

Then we have the matching estimates

p
c 	 v.Z / C c 	 L �

�
E kZk2

�1=2 �
p

C.d/ 	 v.Z / C C.d/ 	 L: (1.4)

In the lower inequality, we can take c WD 1=4.

The proof of this result occupies the bulk of this paper. The argument is based on
the most elementary considerations possible. Indeed, we need nothing more than
some simple matrix inequalities and some basic discrete probability. In contrast, all
previous proofs of Theorem I rely on the noncommutative Khintchine inequality [5,
27, 36]. This paper is targeted at the high-dimensional probability community; see
the arXiv version [43] for a presentation with additional details. Once the reader
has digested the ideas here, it may be easier to appreciate the related—but more
sophisticated—arguments based on exchangeable pairs in the papers [28, 35].

1.3 Discussion

Before we continue, some remarks about Theorem I are in order. First, although it
may seem restrictive to focus on independent sums, as in (1.1), this model captures
an enormous number of useful examples. See the monograph [44] for justification.

We have chosen the term variance parameter because the quantity (1.2) is a
direct generalization of the variance of a scalar random variable. The passage from
the first formula to the second formula in (1.2) is an immediate consequence of the
assumption that the summands Si are independent and have zero mean (see Sect. 4).
We use the term large-deviation parameter because the quantity (1.3) reflects the
part of the expected norm of the random matrix that is attributable to one of the



176 J.A. Tropp

summands taking an unusually large value. In practice, both parameters are easy to
compute using matrix arithmetic and some basic probabilistic considerations.

In applications, it is common that we need high-probability bounds on the norm
of a random matrix. Typically, the bigger challenge is to estimate the expectation
of the norm, which is what Theorem I achieves. Once we have a bound for the
expectation, we can use scalar concentration inequalities, such as the result [4,
Theorem 6.10], to obtain high-probability bounds on the deviation between the norm
and its mean value.

We have stated Theorem I as a bound on the second moment of kZk because this
is the most natural form of the result. Equivalent bounds hold for the first moment:

p
c0 	 v.Z / C c0 	 L � E kZk � p

C.d/ 	 v.Z / C C.d/ 	 L:

We can take c0 D 1=8. The upper bound follows easily from (1.4) and Jensen’s
inequality. The lower bound requires the Khintchine–Kahane inequality [24].

It is productive to interpret Theorem I as a perturbation result. Suppose that
Z D R � ER, where R is a sum of independent random matrices. Bounds for
E kZk have many useful consequences. This type of result implies that, on average,
all of the singular values of R are close to the corresponding singular values of ER.
On average, the singular vectors of R are close to the corresponding singular vectors
of ER, provided that the associated singular values are isolated. Furthermore,
we discover that, on average, each linear functional trŒCR� is uniformly close to
E trŒCR� for each fixed matrix C 2 M

d2�d1 with Schatten 1-norm kC kS1 � 1.
Observe that the lower and upper estimates in (1.4) differ only by the factor

C.d/. As a consequence, the lower bound has no explicit dimensional dependence,
while the upper bound has only a weak dependence on the dimension. Under the
assumptions of the theorem, it is not possible to make substantial improvements to
either the lower bound or the upper bound. Section 6 provides examples that support
this claim.

In the theory of matrix concentration, one of the major challenges is to under-
stand what properties of the random matrix Z allow us to remove the dimensional
factor C.d/ from the estimate (1.4). This question is largely open, but the recent
papers [1, 34, 45] make some progress.

1.4 History

Variants of Theorem I have been available for some time. An early version of
the upper bound appeared in Rudelson’s work [39, Theorem 1]; see also [40,
Theorem 3.1] and [41, Sect. 9]. The first explicit statement of the upper bound
appeared in [7, Theorem A.1]; the same result was discovered independently by
Dirksen [14, p. 6]. The proofs of these results all rely on the noncommutative
Khintchine inequality [5, 27, 36]. In our approach, the main innovation is a
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particularly easy proof of a Khintchine-type inequality for matrices, patterned
after [28, Corollary 7.3] and [45, Theorem 8.1].

The ideas behind the proof of the lower bound in Theorem I are older.
This estimate depends on generic considerations about the behavior of a sum of
independent random variables in a Banach space. These techniques are explained in
detail in [25, Chap. 6]. Our presentation expands on a proof sketch that appears in
the monograph [44, Sects. 5.1.2 and 6.1.2]; see also [14].

1.5 Roadmap

Section 2 contains some background material from linear algebra. To prove the
upper bound in Theorem I, the key step is to establish the result for the special case
of a sum of fixed matrices, each modulated by a random sign. This result appears in
Sect. 3. In Sect. 4, we exploit this result to obtain the upper bound in (1.4). In Sect. 5,
we present the easier proof of the lower bound in (1.4). Finally, Sect. 6 shows that it
is not possible to improve (1.4) substantially.

2 Background

This section contains some background results from linear algebra and probability.
Most of this material is drawn from [3, 19, 25].

2.1 Notation

We write C
d for the complex linear space of d-dimensional complex vectors. The

symbol k	k denotes the `2 norm on C
d. We write M

d1�d2 for the complex linear
space of d1 � d2 complex matrices. The symbol k	k also denotes the spectral norm
of a matrix, which is often called the `2 operator norm. The operator trŒ	� returns the
trace of a square matrix; we instate the convention that powers bind before the trace.
The star � refers to the conjugate transpose operation on vectors and matrices.

Next, introduce the real linear space Hd of d � d Hermitian matrices. The maps

min.	/ and 
max.	/ return the algebraic minimum and maximum eigenvalues of
an Hermitian matrix. We use the symbol 4 to refer to the semidefinite order on
Hermitian matrices: A 4 H means that the matrix H � A is positive semidefinite.

The map P f	g returns the probability of an event. The operator EŒ	� returns the
expectation of a random variable. We only include the brackets when it is necessary
for clarity, and we impose the convention that nonlinear functions bind before the
expectation. The notation EXŒ	� refers to partial expectation with respect to the
random variable X, with all other random variables held fixed.
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2.2 Basic Spectral Theory and Some Matrix Inequalities

Each Hermitian matrix H 2 Hd has an eigenvalue decomposition

H D
dX

iD1

iuiu

�
i

where the eigenvalues 
i are uniquely determined real numbers and fuig is an
orthonormal basis for Cd. For each nonnegative integer r,

H D
dX

iD1

iuiu

�
i implies H r D

dX
iD1


r
i uiu

�
i : (2.1)

In particular, H 2p is positive semidefinite for each nonnegative integer p, and
kH k2p D kH 2pk.

We need a bound for the norm of a sum of squared positive-semidefinite matrices.

Fact 2.1 (Bound for a Sum of Squares) Consider positive-semidefinite matrices
A1; : : : ;An 2 Hd. Then

�����
nX

iD1
A2

i

����� � maxi kAik 	
�����

nX
iD1

Ai

����� :

Proof For each index i,

A2
i 4 M 	 Ai where M WD maxi 
max.Ai/.

Summing these relations, we see that

nX
iD1

A2
i 4 M 	

nX
iD1

Ai:

Weyl’s monotonicity principle [3, Corollary III.2.3] yields the inequality


max

 
nX

iD1
A2

i

!
� 
max

 
M 	

nX
iD1

Ai

!
D M 	 
max

 
nX

iD1
Ai

!
:

We used the fact that the maximum eigenvalue of an Hermitian matrix is positively
homogeneous. Finally, the spectral norm of a positive-semidefinite matrix is equal
to its maximum eigenvalue. ut

We require another substantial matrix inequality, which is one of several matrix
analogs of the inequality between the geometric mean and the arithmetic mean.



The Norm of a Sum of Independent Random Matrices 179

Fact 2.2 (GM–AM Trace Inequality) Consider Hermitian matrices H ;W ;Y in
Hd. For integers r and q that satisfy 0 � q � 2r,

tr

H W qH Y 2r�q

�C tr

H W 2r�qH Y q

� � tr

H 2 	 �W 2r C Y 2r

��
: (2.2)

In particular,

2rX
qD0

tr

H W qH Y 2r�q

� � 2r C 1

2
tr

H 2 	 �W 2r C Y 2r

��
:

The result (2.2) is a matrix version of the following numerical inequality. For

;� � 0,


��1�� C 
1���� � 
C � for each � 2 Œ0; 1�. (2.3)

This estimate follows from the observation that the left-hand side is a convex
function of � .

Proof We will prove (2.2) as a consequence of (2.3). The case r D 0 is immediate,
so we may assume that r � 1. Let q be an integer in the range 0 � q � 2r. Introduce
eigenvalue decompositions:

W D
dX

iD1

iuiu

�
i and Y D

dX
jD1

�jvjv
�
j :

Calculate that

tr

H W qH Y 2r�q

� D tr

2
4H

 
dX

iD1



q
i uiu

�
i

!
H

0
@ dX

jD1
�
2r�q
j vjv

�
j

1
A
3
5

D
dX

i;jD1



q
i�

2r�q
j 	 tr


Huiu

�
i Hvjv

�
j

�

�
dX

i;jD1
j
ijq j�jj2r�q 	 ˇ̌u�

i Hvj

ˇ̌2
:

(2.4)

The first identity relies on the formula (2.1) for the eigenvalue decomposition of a
monomial. The second step depends on the linearity of the trace. In the last line, we
rewrite the trace using cyclicity, and the inequality emerges when we apply absolute
values.
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Invoking the inequality (2.4) twice, we arrive at the bound

tr

H W qH Y 2r�q

�C tr

H W 2r�qH Y q

�

�
dX

i;jD1

� j
ijq j�jj2r�q C j
ij2r�q j�jjq � 	 ˇ̌u�
i Hvj

ˇ̌2

�
dX

i;jD1

�

2r

i C �2r
j

� 	 ˇ̌u�
i Hvj

ˇ̌2
:

(2.5)

The second inequality is (2.3), with � D q=.2r/ and 
 D 
2r
i and � D �2r

j .
It remains to rewrite the right-hand side of (2.5) in a more recognizable form. To

that end, observe that

tr

H W qH Y 2r�q

�C tr

H W 2r�qH Y q

�

�
dX

i;jD1

�

2r

i C �2r
j

� 	 tr

Huiu

�
i Hvjv

�
j

�

D tr

2
4H

 
dX

iD1

2r

i uiu
�
i

!
H

0
@ dX

jD1
vjv

�
j

1
A
3
5

C tr

2
4H

 
dX

iD1
uiu

�
i

!
H

0
@ dX

jD1
�2r

j vjv
�
j

1
A
3
5

D tr

H 2 	 W 2r

�C tr

H 2 	 Y 2r

�
:

This argument just reverses the steps leading to (2.4). ut

2.3 The Hermitian Dilation

Next, we introduce the Hermitian dilation H .B/ of a rectangular matrix B 2
M

d1�d2 . This is the Hermitian matrix

H .B/ WD
�

0 B

B� 0

�
2 Hd1Cd2 : (2.6)

Note that the map H is real-linear. By direct calculation,

H .B/2 D
�
BB� 0

0 B�B

�
: (2.7)
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We also have the spectral-norm identity

kH .B/k D kBk : (2.8)

This point follows by direct calculation.

2.4 Symmetrization

Symmetrization is an important technique for studying the expectation of a function
of independent random variables. The idea is to inject auxiliary randomness into
the function. Then we condition on the original random variables and average with
respect to the extra randomness. When the auxiliary random variables are more
pliable, this approach can lead to significant simplifications.

A Rademacher random variable " takes the two values ˙1with equal probability.
The following result shows how we can use Rademacher random variables to study
a sum of independent random matrices.

Fact 2.3 (Symmetrization) Consider an independent family fS1; : : : ;Sng �
M

d1�d2 of random matrices. Let f"1; : : : ; "ng be an independent family of
Rademacher random variables that are also independent from the random matrices.
For each r � 1,

1

2
	
 
E

�����
nX

iD1
"i.Si � ESi/

�����
r!1=r

�
 
E

�����
nX

iD1
.Si � ESi/

�����
r!1=r

� 2 	
 
E

�����
nX

iD1
"iSi

�����
r!1=r

:

This result holds whenever E kSikr < 1 for each index i.

See [25, Lemma 6.3] for the easy proof.

3 The Expected Norm of a Matrix Rademacher Series

To prove Theorem I, our overall strategy is to use symmetrization. This approach
allows us to reduce the study of an independent sum of random matrices to the
study of a sum of fixed matrices modulated by independent Rademacher random
variables. This type of random matrix is called a matrix Rademacher series. In this
section, we establish a bound on the spectral norm of a matrix Rademacher series.
This is the key technical step in the proof of Theorem I.
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Theorem 3.1 (Matrix Rademacher Series) Let H1; : : : ;Hn be fixed Hermitian
matrices with dimension d. Let "1; : : : ; "n be independent Rademacher random
variables. Then

0
@E

�����
nX

iD1
"iHi

�����
2
1
A
1=2

�
p
1C 2dlog de 	

�����
nX

iD1
H 2

i

�����
1=2

: (3.1)

The proof of Theorem 3.1 occupies the bulk of this section, beginning with Sect. 3.2.
The argument is really just a fancy version of the familiar calculation of the moments
of a centered standard normal random variable; see Sect. 3.8 for details.

3.1 Discussion

Before we establish Theorem 3.1, let us make a few comments. First, it is helpful to
interpret the result in the same language we have used to state Theorem I. Introduce
the matrix Rademacher series

X WD
nX

iD1
"iHi:

Compute the matrix variance, defined in (1.2):

v.X/ WD ��EX 2
�� D

������
nX

i;jD1
EŒ"i"j� 	 HiHj

������ D
�����

nX
iD1

H 2
i

����� :

We may rewrite Theorem 3.1 as the statement that

�
E kXk2

�1=2 �
p
.1C 2dlog de/ 	 v.X/:

In other words, Theorem 3.1 is a sharper version of the upper bound in Theorem I
for the special case of a matrix Rademacher series.

Next, we have focused on bounding the second moment of kXk because this
is the most natural form of the result. Note that we also control the first moment
because of Jensen’s inequality:

E

�����
nX

iD1
"iHi

����� �
p
1C 2dlog de 	

�����
nX

iD1
H 2

i

�����
1=2

: (3.2)

A simple variant on the proof of Theorem 3.1 provides bounds for higher moments.
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Third, the dimensional factor on the right-hand side of (3.1) is asymptotically
sharp. Indeed, let us write K.d/ for the minimum possible constant in the inequality

0
@E

�����
nX

iD1
"iHi

�����
2
1
A
1=2

� K.d/ 	
�����

nX
iD1

H 2
i

�����
1=2

for Hi 2 Hd and n 2 N.

The example in Sect. 6.1 shows that

K.d/ � p
2 log d:

In other words, (3.1) cannot be improved without making further assumptions.
Theorem 3.1 is a variant on the noncommutative Khintchine inequality, first

established by Lust-Piquard [27] and later improved by Pisier [36] and by
Buchholz [5]. The noncommutative Khintchine inequality gives bounds for the
Schatten norm of a matrix Rademacher series, rather than for the spectral norm.
Rudelson [39] pointed out that the noncommutative Khintchine inequality also
implies bounds for the spectral norm of a matrix Rademacher series. In our
presentation, we choose to control the spectral norm directly.

3.2 The Spectral Norm and the Trace Moments

To begin the proof of Theorem 3.1, we introduce the random Hermitian matrix

X WD
nX

iD1
"iHi (3.3)

Our goal is to bound the expected spectral norm of X . We may proceed by
estimating the expected trace of a power of the random matrix, which is known
as a trace moment. Fix a positive integer p. Observe that

�
E kXk2

�1=2 � �
E kXk2p �1=.2p/

D �
E kX 2pk �1=.2p/ � �

E tr X 2p
�1=.2p/

:

(3.4)

The first identity is Jensen’s inequality. In the last inequality, we bound the norm of
the positive-semidefinite matrix X 2p by its trace.

Remark 3.2 (Higher Moments) It should be clear that we can also bound expected
powers of the spectral norm using the same technique. For simplicity, we omit this
development.
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3.3 Summation by Parts

To study the trace moments of the random matrix X , we rely on a discrete analog of
integration by parts. This approach is clearer if we introduce some more notation.
For each index i, define the random matrices

XCi WD CHi C
X
j¤i

"jHj and X�i WD �Hi C
X
j¤i

"jHj

In other words, the distribution of X"ii is the conditional distribution of the random
matrix X given the value "i of the ith Rademacher variable.

Beginning with the trace moment, observe that

E tr X 2p D E tr

X 	 X 2p�1�

D
nX

iD1
E

E"i tr


"iHi 	 X 2p�1��

D
nX

iD1
E

h1
2

tr
h

C Hi 	 X
2p�1
Ci

i
C 1

2
tr
h

� Hi 	 X
2p�1
�i

ii

D 1

2

nX
iD1

E tr
h
Hi 	

�
X
2p�1
Ci � X

2p�1
�i

�i

(3.5)

To reach the second line, we simply write out the definition (3.3) of the random
matrix X . Then we write the expectation as an iterated expectation. Afterward, write
out the partial expectation using the notation X˙i. Finally, we collect terms.

3.4 A Difference of Powers

Next, let us apply an algebraic identity to reduce the difference of powers in (3.5).
For matrices W ;Y 2 Hd, it holds that

W 2p�1 � Y 2p�1 D
2p�2X
qD0

W q.W � Y /Y 2p�2�q: (3.6)

To check this identity, expand the matrix products and notice that the sum
telescopes.
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Introduce (3.6) with W D XCi and Y D X�i into (3.5) to see that

E tr X 2p D 1

2

nX
iD1

E tr

2
4Hi 	

2p�2X
qD0

X
q
Ci

�
XCi � X�i

�
X
2p�2�q
�i

3
5

D
nX

iD1

2p�2X
qD0

E tr
h
HiX

q
CiHiX

2p�2�q
�i

i
:

(3.7)

We have used the observation that XCi � X�i D 2Hi.

3.5 A Bound for the Trace Moments

We are now in a position to obtain a bound for the trace moments of X . Beginning
with (3.7), we compute that

E tr X 2p D
nX

iD1

2p�2X
qD0

E tr
h
HiX

q
CiHiX

2p�2�q
�i

i

�
nX

iD1

2p � 1
2

E tr
h
H 2

i 	
�
X
2p�2
Ci C X

2p�2
�i

�i

D .2p � 1/ 	
nX

iD1
E tr


H 2

i 	 �E"i X 2p�2��

D .2p � 1/ 	 E tr

" 
nX

iD1
H 2

i

!
	 X 2p�2

#

� .2p � 1/ 	
�����

nX
iD1

H 2
i

����� 	 E tr X 2p�2:

(3.8)

The bound in the second line is Fact 2.2, with r D p � 1 and W D XCi and
Y D X�i. To reach the third line, observe that the parenthesis in the second line is
twice the partial expectation of X 2p�2 with respect to "i. Last, invoke the familiar
spectral norm bound for the trace of a product, using the observation that X 2p�2 is
positive semidefinite.
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3.6 Iteration and the Spectral Norm Bound

The expression (3.8) shows that the trace moment is controlled by a trace moment
with a smaller power:

E tr X 2p � .2p � 1/ 	
�����

nX
iD1

H 2
i

����� 	 E tr X 2p�2:

Iterating this bound p times, we arrive at the result

E tr X 2p � .2p � 1/ŠŠ 	
�����

nX
iD1

H 2
i

�����
p

	 tr X 0

D d 	 .2p � 1/ŠŠ 	
�����

nX
iD1

H 2
i

�����
p

:

(3.9)

The double factorial is .2p � 1/ŠŠ WD .2p � 1/.2p � 3/.2p � 5/ 	 	 	 .5/.3/.1/.
The expression (3.4) shows that we can control the expected spectral norm of X

by means of a trace moment. Therefore, for any nonnegative integer p, it holds that

E kXk � �
E tr X 2p

�1=.2p/ � �
d 	 .2p � 1/ŠŠ

�1=.2p/ 	
�����

nX
iD1

H 2
i

�����
1=2

: (3.10)

The second inequality is simply our bound (3.9). All that remains is to choose the
value of p to minimize the factor on the right-hand side.

3.7 Calculating the Constant

Let us develop an accurate bound for the leading factor on the right-hand side
of (3.10). We claim that

.2p � 1/ŠŠ �
�
2p C 1

e

	p

: (3.11)

Given this estimate, select p D dlog de to reach

�
d 	 .2p � 1/ŠŠ

�1=.2p/ � d1=.2p/

r
2p C 1

e

� p
2p C 1 D

p
1C 2dlog de:

(3.12)
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Introduce the inequality (3.12) into (3.10) to complete the proof of Theorem 3.1.
To check that (3.11) is valid, we use some tools from integral calculus:

log
�
.2p � 1/ŠŠ

�

D
p�1X
iD1

log.2i C 1/

D
"
1

2
log.2 	 0C 1/C

p�1X
iD1

log.2i C 1/C 1

2
log.2p C 1/

#
� 1

2
log.2p C 1/

�
Z p

0

log.2x C 1/ dx � 1

2
log.2p C 1/

D p log.2p C 1/� p:

The bracket in the second line is the trapezoid rule approximation of the integral in
the third line. Since the integrand is concave, the trapezoid rule underestimates the
integral. Exponentiating this formula, we arrive at (3.11).

3.8 Context

The proof of Theorem 3.1 is really just a discrete, matrix version of the familiar
calculation of the .2p/th moment of a centered normal random variable. Let us
elaborate. Recall the Gaussian integration by parts formula:

EŒ� 	 f .�/� D �2 	 EŒ f 0.�/� (3.13)

where � � NORMAL.0; �2/ and f W R ! R is any function for which the integrals
are finite. To compute the .2p/th moment of � , we apply (3.13) repeatedly to obtain

E �2p D E

� 	 �2p�1� D .2p � 1/ 	 �2 	 E �2p�2 D 	 	 	 D .2p � 1/ŠŠ 	 �2p

In Theorem 3.1, the matrix variance parameter v.X/ plays the role of the scalar
variance �2.

In fact, the link with Gaussian integration by parts is even stronger. Consider a
matrix Gaussian series

Y WD
nX

iD1
�iHi

where f�ig is an independent family of standard normal variables. If we replace the
discrete integration by parts in the proof of Theorem 3.1 with Gaussian integration



188 J.A. Tropp

by parts, the argument leads to the bound

0
@E

�����
nX

iD1
�iHi

�����
2
1
A
1=2

�
p
1C 2dlog de 	

�����
nX

iD1
H 2

i

�����
1=2

:

This approach requires matrix calculus, but it is slightly simpler than the argument
for matrix Rademacher series in other respects. See [45, Theorem 8.1] for a proof
of the noncommutative Khintchine inequality for Gaussian series along these lines.
The exchangeable pairs technique for establishing the noncommutative Khintchine
inequality [28, Corollary 7.1] is another realization of the same idea.

4 Upper Bounds for the Expected Norm

We are now prepared to establish the upper bound for an arbitrary sum of
independent random matrices. The argument is based on the specialized result,
Theorem 3.1, for matrix Rademacher series. It proceeds by steps through more and
more general classes of random matrices: first positive semidefinite, then Hermitian,
and finally rectangular. Here is what we will show.

Theorem 4.1 (Expected Norm: Upper Bounds) Define the dimensional constant
C.d/ WD 4.1 C 2dlog de/. The expected spectral norm of a sum of independent
random matrices satisfies the following upper bounds.

1. The Positive-Semidefinite Case. Consider a family fT1; : : : ;Tng of independent,
random d � d positive-semidefinite matrices, and define

W WD
nX

iD1
Ti:

Then

E kW k �
h
kEW k1=2 Cp

C.d/ 	 �Emaxi kTik
�1=2i2

: (4.1)

2. The Centered Hermitian Case. Consider a family fY1; : : : ;Yng of independent,
random d � d Hermitian matrices with EYi D 0 for each index i, and define

X WD
nX

iD1
Yi:
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Then

�
E kXk2

�1=2 �
p

C.d/ 	 ��EX 2
��1=2 C C.d/ 	

�
Emaxi kYik2

�1=2
: (4.2)

3. The Centered Rectangular Case. Consider a family fS1; : : : ;Sng of indepen-
dent, random d1 � d2 matrices with ESi D 0 for each index i, and define

Z WD
nX

iD1
Si:

Then

�
E kZk2

�1=2 � p
C.d/ 	 max

n��E ZZ ����1=2 ; ��E Z�Z
���1=2o

C C.d/ 	
�
Emaxi kSik2

�1=2
(4.3)

where d WD d1 C d2.

The proof of Theorem 4.1 takes up the rest of this section. The presentation includes
notes about the provenance of various parts of the argument.

The upper bound in Theorem I follows instantly from Case (3) of Theorem 4.1.
We just introduce the notation v.Z / for the variance parameter, and we calculate
that

E

ZZ �� D

nX
i;jD1

E

SiS

�
j

� D
nX

iD1
E

SiS

�
i

�
:

The first expression follows immediately from the definition of Z and the linearity
of the expectation; the second identity holds because the random matrices Si are
independent and have mean zero. The formula for E


Z�Z

�
is valid for precisely

the same reasons.

4.1 Proof of the Positive-Semidefinite Case

Recall that W is a random d � d positive-semidefinite matrix of the form

W WD
nX

iD1
Ti where the Ti are positive semidefinite.



190 J.A. Tropp

Let us introduce notation for the quantity of interest:

E WD E kW k D E

�����
nX

iD1
Ti

�����
By the triangle inequality for the spectral norm,

E �
�����

nX
iD1

ETi

�����C E

�����
nX

iD1
.Ti � ETi/

����� �
�����

nX
iD1

ETi

�����C 2E

�����
nX

iD1
"iTi

����� :

The second inequality follows from symmetrization, Fact 2.3. In this expression,
f"ig is an independent family of Rademacher random variables, independent of fTig.
Conditioning on the choice of the random matrices Ti, we apply Theorem 3.1 via
the bound (3.2):

E

�����
nX

iD1
"iTi

����� D E

"
E"

�����
nX

iD1
"iTi

�����
#

�
p
1C 2dlog de 	 E

2
4
�����

nX
iD1

T 2
i

�����
1=2
3
5 :

The operator E" averages over the Rademacher random variables, with the matrices
Ti fixed. Now, since the matrices Ti are positive-semidefinite,

E

2
4
�����

nX
iD1

T 2
i

�����
1=2
3
5 � E

2
4�maxi kTik

�1=2 	
�����

nX
iD1

Ti

�����
1=2
3
5

� �
Emaxi kTik

�1=2 	
 
E

�����
nX

iD1
Ti

�����
!1=2

D �
Emaxi kTik

�1=2 	 E1=2:

The first inequality is Fact 2.1, and the second is Cauchy–Schwarz. Combine the
last three displays to see that

E �
�����

nX
iD1

ETi

�����C
p
4.1C 2dlog de/ 	 �Emaxi kTik

�1=2 	 E1=2: (4.4)

For any ˛; ˇ � 0, the quadratic inequality t2 � ˛ C ˇt implies that t � p
˛ C ˇ.

Applying this fact to the quadratic relation (4.4) for E1=2, we obtain

E1=2 �
�����

nX
iD1

ETi

�����
1=2

C
p
4.1C 2dlog de/ 	 �Emaxi kTik

�1=2
:



The Norm of a Sum of Independent Random Matrices 191

The conclusion (4.1) follows.
This argument is adapted from Rudelson’s paper [39], which develops a version

of this result for the case where the matrices Ti have rank one; see also [40]. The
paper [41] contains the first estimates for the constants. Magen and Zouzias [29]
observed that similar considerations apply when the matrices Ti have higher rank.
The complete result (4.1) first appeared in [7, Appendix]. The constants in this paper
are marginally better. Related bounds for Schatten norms appear in [28, Sect. 7] and
in [22].

The results described in the last paragraph are all matrix versions of the classical
inequalities due to Rosenthal [38, Lemma 1]. These bounds can be interpreted as
polynomial moment versions of the Chernoff inequality.

4.2 Proof of the Hermitian Case

The result (4.2) for Hermitian matrices is a corollary of Theorem 3.1 and the
result (4.1) for positive-semidefinite matrices. Recall that X is a d � d random
Hermitian matrix of the form

X WD
nX

iD1
Yi where EYi D 0.

We may calculate that

�
E kXk2

�1=2 D
0
@E

�����
nX

iD1
Yi

�����
2
1
A
1=2

� 2

0
@E

2
4E"

�����
nX

iD1
"iYi

�����
2
3
5
1
A
1=2

�
p
4.1C 2dlog de/ 	

 
E

�����
nX

iD1
Y 2

i

�����
!1=2

:

The first inequality follows from the symmetrization procedure, Fact 2.3. The
second inequality applies Theorem 3.1, conditional on the choice of Yi. The
remaining expectation involves a sum of independent random matrices that are
positive-semidefinite. Therefore, we may invoke (4.1) with Ti D Y 2

i . We obtain

E

�����
nX

iD1
Y 2

i

����� �
2
4
�����

nX
iD1

EY 2
i

�����
1=2

C
p
4.1C 2dlog de/ 	 �Emaxi kY 2

i k �1=2
3
5
2

:
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Combine the last two displays to reach

�
E kXk2

�1=2 �
p
4.1C 2dlog de/ 	

"�����
nX

iD1
EY 2

i

�����
1=2

C
p
4.1C 2dlog de/ 	 �Emaxi kYik2

�1=2
#
:

Rewrite this expression to reach (4.2).
A version of the result (4.2) first appeared in [7, Appendix]; the constants

here are marginally better. Related results for the Schatten norm appear in the
papers [20–22, 28]. These bounds are matrix extensions of the scalar inequalities
due to Rosenthal [38, Theorem 3] and to Rosén [37, Theorem 1]; see also Nagaev–
Pinelis [32, Theorem 2]. They can be interpreted as the polynomial moment
inequalities that sharpen the Bernstein inequality.

4.3 Proof of the Rectangular Case

Finally, we establish the rectangular result (4.3). Recall that Z is a d1 � d2 random
rectangular matrix of the form

Z WD
nX

iD1
Si where ESi D 0.

Set d WD d1 C d2, and form a random d � d Hermitian matrix X by dilating Z :

X WD H .Z / D
nX

iD1
H .Si/:

The Hermitian dilation H is defined in (2.6); the second relation holds because the
dilation is real-linear.

Evidently, the random matrix X is a sum of independent, centered, random
Hermitian matrices H .Si/. Therefore, we may apply (4.2) to X to see that

�
E kH .Z /k2

�1=2 �
p
4.1C 2dlog de/ 	 ��E H .Z /2

���1=2

C 4.1C 2dlog de/ 	 �Emaxi kH .Si/k2
�1=2

: (4.5)
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Since the dilation preserves norms (2.8), the left-hand side of (4.5) is exactly what
we want:

�
E kH .Z /k2

�1=2 D
�
E kZk2

�1=2
:

To simplify the first term on the right-hand side of (4.5), invoke the formula (2.7)
for the square of the dilation:

��E H .Z /2
��� D

����
�
E

ZZ �� 0

0 E

Z�Z

�
�����

D max
˚��E ZZ ���� ; ��E Z�Z

���� :
(4.6)

The second identity relies on the fact that the norm of a block-diagonal matrix is the
maximum norm of a diagonal block. To simplify the second term on the right-hand
side of (4.5), we use (2.8) again:

kH .Si/k D kSik :

Introduce the last three displays into (4.5) to arrive at the result (4.3).
The result (4.3) first appeared in the monograph [44, Eq. (6.16)] with (possibly)

incorrect constants. The current paper contains the first complete presentation of the
bound.

5 Lower Bounds for the Expected Norm

Finally, let us demonstrate that each of the upper bounds in Theorem 4.1 is sharp up
to the dimensional constant C.d/. The following result gives matching lower bounds
in each of the three cases.

Theorem 5.1 (Expected Norm: Lower Bounds) The expected spectral norm of a
sum of independent random matrices satisfies the following lower bounds.

1. The Positive-Semidefinite Case. Consider a family fT1; : : : ;Tng of independent,
random d � d positive-semidefinite matrices, and define

W WD
nX

iD1
Ti:

Then

E kW k � 1

4

h
kEW k1=2 C �

Emaxi kTik
�1=2i2

: (5.1)
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2. The Centered Hermitian Case. Consider a family fY1; : : : ;Yng of independent,
random d � d Hermitian matrices with EYi D 0 for each index i, and define

X WD
nX

iD1
Yi:

Then

�
E kXk2

�1=2 � 1

2

��EX 2
��1=2 C 1

4

�
Emaxi kYik2

�1=2
: (5.2)

3. The Centered Rectangular Case. Consider a family fS1; : : : ;Sng of indepen-
dent, random d1 � d2 matrices with ESi D 0 for each index i, and define

Z WD
nX

iD1
Si:

Then

E kZk � 1

2
max

n��E ZZ ����1=2 ; ��E Z�Z
���1=2o

C1

4

�
Emaxi kSik2

�1=2
:

(5.3)

The rest of the section describes the proof of Theorem 5.1.
The lower bound in Theorem I is an immediate consequence of Case (3) of

Theorem 5.1. We simply introduce the notation v.Z / for the variance parameter.

5.1 The Positive-Semidefinite Case

The lower bound (5.1) in the positive-semidefinite case is relatively easy. Recall that

W WD
nX

iD1
Ti where the Ti are positive semidefinite.

First, by Jensen’s inequality

E kW k � kEW k : (5.4)

Second, let I be the minimum value of the index i where maxi kTik is achieved; note
that I is a random variable. Since the summands Ti are positive semidefinite, it is
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easy to see that

TI 4
nX

iD1
Ti:

Using Weyl’s monotonicity principle [3, Corollary III.2.3], we have

maxi kTik D kTIk D 
max.TI/ � 
max

 
nX

iD1
Ti

!
D
�����

nX
iD1

Ti

����� D kW k :

Take the expectation to arrive at

Emaxi kTik � E kW k : (5.5)

Average the two bounds (5.4) and (5.5) to obtain

E kW k � 1

2

 kEW k C Emaxi kTik
�
:

To reach (5.1), apply the numerical fact that 2.a C b/ � �p
a C p

b
�2

, valid for all
a; b � 0.

5.2 Hermitian Case

The Hermitian case (5.2) is similar in spirit, but the details are a little more involved.
Recall that

X WD
nX

iD1
Yi where EYi D 0.

First, note that

�
E kXk2

�1=2 D �
E kX 2k �1=2 � ��EX 2

��1=2 : (5.6)

The second relation is Jensen’s inequality. To obtain the other part of our lower
bound, we use the lower bound from the symmetrization result, Fact 2.3:

E kXk2 D E

�����
nX

iD1
Yi

�����
2

� 1

4
E

�����
nX

iD1
"iYi

�����
2
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where f"ig is an independent family of Rademacher random variables, independent
from fYig. Now, we condition on the choice of fYig, and we compute the partial
expectation with respect to the "i. Let I be the minimum value of the index i where
maxi kYik2 is achieved. By Jensen’s inequality, applied conditionally,

E"

�����
nX

iD1
"iYi

�����
2

� E"I

�����E
"

nX
iD1

"iYi

ˇ̌
"I

#�����
2

D E"I k"IYIk2 D maxi kYik2 :

Combining the last two displays and taking a square root, we discover that

�
E kXk2

�1=2 � 1

2

�
Emaxi kYik2

�1=2
: (5.7)

Average the two bounds (5.6) and (5.7) to conclude that (5.2) is valid.

5.3 The Rectangular Case

The rectangular case (5.3) follows instantly from the Hermitian case when we
apply (5.2) to the Hermitian dilation. Recall that

Z WD
nX

iD1
Si where ESi D 0.

Define a random matrix X by applying the Hermitian dilation (2.6) to Z :

X WD H .Z / D
nX

iD1
H .Si/:

Since the random matrix X is a sum of independent, centered, random Hermitian
matrices, the bound (5.2) yields

�
E kH .Z /k2

�1=2 � 1

2

��E H .Z /2
���C 1

4

�
Emaxi kH .Si/k2

�1=2
:

Repeating the calculations in Sect. 4.3, we arrive at the advertised result (5.3).

6 Optimality of Theorem I

The lower bounds and upper bounds in Theorem I match, except for the dimensional
factor C.d/. In this section, we show by example that neither the lower bounds nor
the upper bounds can be sharpened substantially. More precisely, the logarithms
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cannot appear in the lower bound, and they must appear in the upper bound. As a
consequence, unless we make further assumptions, Theorem I cannot be improved
except by constant factors and, in one place, by an iterated logarithm.

6.1 Upper Bound: Variance Term

First, let us show that the variance term in the upper bound in (1.4) must contain a
logarithm. This example is drawn from [44, Sect. 6.1.2].

For a large parameter n, consider the d � d random matrix

Z WD
dX

iD1

nX
jD1

1p
n
"ijEii

As before, f"ijg is an independent family of Rademacher random variables, and Eii

is a d � d matrix with a one in the .i; i/ position and zeroes elsewhere. The variance
parameter satisfies

v.Z / D
������

dX
iD1

nX
jD1

1

n
Eii

������ D kIdk D 1:

The large deviation parameter satisfies

L2 D Emaxi;j

���� 1p
n
"ijEii

����
2

D 1

n
:

Therefore, the variance term drives the upper bound (1.4). For this example, it is
easy to estimate the norm directly. Indeed,

E kZk2 � E

�����
dX

iD1
�iEii

�����
2

D E max
iD1;:::;d j�ij2 � 2 log d:

Here, f�ig is an independent family of standard normal variables, and the first
approximation follows from the central limit theorem. The norm of a diagonal
matrix is the maximum absolute value of one of the diagonal entries. Last, we use
the well-known fact that the expected maximum among d squared standard normal
variables is asymptotic to 2 log d. In summary,

�
E kZk2

�1=2 � p
2 log d 	 v.X/:
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We conclude that the variance term in the upper bound must carry a logarithm.
Furthermore, it follows that Theorem 3.1 is numerically sharp.

6.2 Upper Bound: Large-Deviation Term

Next, we verify that the large-deviation term in the upper bound in (1.4) must also
contain a logarithm, although the bound is slightly suboptimal. This example is
drawn from [44, Sect. 6.1.2].

For a large parameter n, consider the d � d random matrix

Z WD
dX

iD1

nX
jD1

�
ıij � n�1� 	 Eii

where fıijg is an independent family of BERNOULLI
�
n�1� random variables. That

is, ıij takes only the values zero and one, and its expectation is n�1. The variance
parameter for the random matrix is

v.Z / D
������

dX
iD1

nX
jD1

E
�
ıij � n�1�2 	 Eii

������ D
������

dX
iD1

nX
jD1

n�1�1 � n�1� 	 Eii

������ � 1:

The large deviation parameter is

L2 D Emaxi;j

���ıij � n�1� 	 Eii

��2 � 1:

Therefore, the large-deviation term drives the upper bound in (1.4):

�
E kZk2

�1=2 �
p
4.1C 2dlog de/C 4.1C 2dlog de/:

On the other hand, by direct calculation

�
E kZk2

�1=2 �
0
@E

�����
dX

iD1
.Qi � 1/ 	 Eii

�����
2
1
A
1=2

D
�
E max

iD1;:::;d jQi � 1j2
	1=2

� const 	 log d

log log d
:

Here, fQig is an independent family of POISSON.1/ random variables, and the
first approximation follows from the Poisson limit of a binomial. The second
approximation depends on a (messy) calculation for the expected squared maximum
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of a family of independent Poisson variables. We see that the large deviation term
in the upper bound (1.4) cannot be improved, except by an iterated logarithm factor.

6.3 Lower Bound: Variance Term

Next, we argue that there are examples where the variance term in the lower bound
from (1.4) cannot have a logarithmic factor.

Consider a d � d random matrix of the form

Z WD
dX

i;jD1
"ijEij:

Here, f"ijg is an independent family of Rademacher random variables. The variance
parameter satisfies

v.Z / D max

8<
:
������

dX
i;jD1

�
E "2ij

� 	 EijE�
ij

������ ;
������

dX
i;jD1

�
E "2ij

� 	 E�
ij Eij

������

9=
;

D max
˚ kd 	 Idk ; kd 	 Idk � D d:

The large-deviation parameter is

L2 D Emaxi;j

��"ijEij

��2 D 1:

Therefore, the variance term controls the lower bound in (1.4):

�
E kZk2

�1=2 � p
cd C c:

Meanwhile, it can be shown that the norm of the random matrix Z satisfies

�
E kZk2

�1=2 � p
2d:

See the paper [1] for an elegant proof of this nontrivial result. We see that the
variance term in the lower bound in (1.4) cannot have a logarithmic factor.
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6.4 Lower Bound: Large-Deviation Term

Finally, let us produce an example where the large-deviation term in the lower bound
from (1.4) cannot have a logarithmic factor.

Consider a d � d random matrix of the form

Z WD
dX

iD1
PiEii:

Here, fPig is an independent family of symmetric random variables whose tails
satisfy

P fjPij � tg D
(

t�4; t � 1

1; t � 1:

The key properties of these variables are that

EP2i D 2 and E max
iD1;:::;d P2i � const 	 d2:

The second expression just describes the asymptotic order of the expected maxi-
mum. We quickly compute that the variance term satisfies

v.Z / D
�����

dX
iD1

�
EP2i

�
Eii

����� D 2:

Meanwhile, the large-deviation factor satisfies

L2 D E max
iD1;:::;d kPiEiik2 D E max

iD1;:::;d jPij2 � const 	 d2:

Therefore, the large-deviation term drives the lower bound (1.4):

�
E kZk2

�1=2
' const 	 d:

On the other hand, by direct calculation,

�
E kZk2

�1=2 D
0
@E

�����
dX

iD1
PiEii

�����
2
1
A
1=2

D
�
E max

iD1;:::;d jPij2
	1=2

� const 	 d:

We conclude that the large-deviation term in the lower bound (1.4) cannot carry a
logarithmic factor.
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Fechner’s Distribution and Connections to Skew
Brownian Motion

Jon A. Wellner

Abstract This note investigates two aspects of Fechner’s two-piece normal distri-
bution: (1) connections with the mean-median-mode inequality and (strong) log-
concavity; (2) connections with skew and oscillating Brownian motion processes.
The developments here have been inspired by Wallis (Stat Sci 29:106–112, 2014)
and rely on Chen and Zili (Sci China Math 58:97–108, 2015).

Keywords Fechner’s law • Local time • Mean • Median • Mode • Oscillating
Brownian motion • Pieced half normal • Quantiles • Skewed Brownian motion

Mathematics Subject Classification (2010). Primary 62E20; Secondary 62G20,
62D99, 62N01

1 Three Two-Piece Half-Normal Distributions

The standard Gaussian density 	 and distribution functionˆ are given by

	.z/ D 1p
2�

exp.�z2=2/; z 2 R;

and

ˆ.z/ D
Z z

�1
	.x/dx D

Z z

�1
1p
2�

exp.�x2=2/dx; z 2 R:
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Now let �C; �� > 0 be two positive numbers with �C 6D �� in general, and consider
the following three densities on R:

f .xI �C; ��/ �
(

2�
�

�
C

C�
�

	 1
�

�

	.x=��/; x < 0;
2�

C

�
C

C�
�

	 1
�

C

	.x=�C/; x � 0I

g.xI �C; ��/ �
(

1
�

�

	.x=��/; x < 0;
1
�

C

	.x=�C/; x � 0I

h.xI �C; ��/ �
(

2�
C

�
C

C�
�

	 1
�

�

	.x=��/; x < 0;
2�

�

�
C

C�
�

	 1
�

C

	.x=�C/; x � 0:

(1.1)

It is easily seen that f , g, and h differ only in the scaling of the two half normal
densities 	.x=�˙/=�˙1.0;1/.xsign.x//. Thus with � � ��=.�� C �C/ we have

f .xI �C; ��/ �
(
2� 	 1

�
�

	.x=��/; x < 0;

2.1� �/ 	 1
�

C

	.x=�C/; x � 0I

g.xI �C; ��/ �
(

1
�

�

	.x=��/; x < 0;
1
�

C

	.x=�C/; x � 0I

h.xI �C; ��/ �
(
2.1� �/ 	 1

�
�

	.x=��/; x < 0;

2� 	 1
�

C

	.x=�C/; x � 0:

The density f is continuous on R, while the densities g and h are discontinuous at
0. The density f is associated with [8] and “Fechner’s Lagegesetz der Mittlewerte”;
see [20, 25]. (Also see [9, 21, 22], and [23, Chap. 7] for further historical information
about Fechner.) As noted by Wallis [25], this density (and the version thereof with
an additional shift parameter) has been rediscovered repeatedly. It is interesting to
note that the density f is log-concave (see e.g. [7]) and even strongly log-concave
(see e.g. [28]).

The density g is the limit distribution of the median of i.i.d random variables
with density p when when p is discontinuous at its median m, and then �2˙ D
1=.4p.m˙/2/ where p.m˙/ denote the left and right limits of p at m respectively;
see e.g. [27, pp. 343–354], [14, 15].

The density h is the marginal density of oscillating Brownian motion, see e.g.
[13, p. 302]. This process, which is closely related to skew Brownian motion (see
e.g. [3, 10, 12, 16, 19]), arises as the weak limit of random walk processes which
are inhomogeneous in space: imagine letting the increment distributions change as
the walk crosses through 0 with variance �2C for x � 0 and variance �2� for x < 0.
See [13] for a first theorem of this type and [11] for further convergence results in
this direction.
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One point of interest here is the connection with the mean–median–mode
inequality going back to Fechner and Pearson.

Fechner proved that for the density f with �� � �C the inequality

mean � median � mode (1.2)

holds true, and that strict inequalities hold when �� > �C. Fechner did this by
examining the ratio .Med � Mode/=.Mean � Mode/ and considering the limits as
�C % �� and as �C & 0 for fixed �C. In our notation this ratio becomes (see
Table 1)

Med � Mode

Mean � Mode
D
��ˆ�1

�
�

C

C�
�

4�
�

�
p
2=�.�C � ��/

!


�=4; as �C % ��;p
�=4ˆ�1.3=4/; as �C ! 0;

D


0:785398 : : : ;

0:845348 : : :

�
< 1:

Apparently the phenomena of the inequalities in (1.2) was observed (but not proved)
by Pearson [17] in connection with his Type III curves.

The inequalities in (1.2) are illustrated in Fig. 1.
As a result of the series of papers [2, 6, 20, 24], and counterexamples (see

e.g. [1]), this phenomena is now well-understood. In particular, from [6], for
distributions F with median m D 0 (so that, with X � F, P.X � m/ � 1=2

and P.X � m/ � 1=2) and � D E.X/ assumed finite, if XC D maxfX; 0g and

Fig. 1 Fechner’s density f .xI �
�

; �
C

/ with �
�

D 3=2, �
C

D 1; mean (solid line), median
(dashed line)
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0 1 2 3 4
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0.6

0.8

1.0

Fig. 2 Fechner stochastic order plot: F
C

, dashed curve, F
�

, solid curve; �
�

D 3=2, �
C

D 1

Fig. 3 Quantile limit density g.xI �
�

; �
C

/ with �
�

D 3=2, �
C

D 1, mean at dashed line

X� � � minf0;Xg satisfy X� >s XC, then there is at least one mode M such that
� � 0 � M. This is illustrated in Fig. 2.

Here we note that while the densities g and h also have mode at 0, the density
g has median 0 and mean < 0 (when �� > �C), the density h has mean 0 and
median > 0. Thus g gives an example of a density in which the equality median
D mode occurs, while h gives an example of a density for which the median
fails to fall between the mean and mode, and thus, necessarily, X� fails to be
stochastically larger (or smaller) than XC. These facts are illustrated in Figs. 3, 4,
and 5, 6, respectively.

Finally, Fig. 7 gives a plot of all three of these densities together, all with �� D
3=2, �C D 1.
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0 1 2 3 4

0.2

0.4

0.6

0.8

1.0

Fig. 4 Quantile stochastic order plot: G
C

, dashed curve, G
�

solid curve; �
�

D 3=2, �
C

D 1

Fig. 5 Oscillating Brownian motion limit density h.xI �
�

; �
C

/ with �
�

D 3=2, �
C

D 1, median
at dashed line

2 Summary of the Properties of f , g, and h

Table 1 summarizes some of the properties of the densities f , g, and h. The formulas
for the median are given only for the case that �� > �C.

In addition, the variances are given as follows:

Varf .X/ D
�
1 � 2

�

	
.�C � ��/2 C �C��;

Varg.X/ D 1

2

�
1 � 1

�

	
.�C � ��/2 C �C��;

Varh.X/ D �C��:
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0.6

0.8

1.0

Fig. 6 Oscillating BM limit stochastic order plot: H
C

, dashed curve, H
�

solid curve; �
�

D 3=2,
�

C

D 1

Fig. 7 The three densities f (solid), g (dotted), and h dashed; �
�

D 3=2, �
C

D 1

Table 1 The mode, median, and mean of three (marginal) densities: Fechner, (nonstandard)
quantile limit, and oscillating Brownian motion, as functions of �

C

and �
�

Fechner Quantile limit Osc BM limit

Symbol f g h

Mode 0 0 0

Median �
�

ˆ�1
�
�

C

C�
�

4�
�

�
0 �

C

ˆ�1

�
1�

�
4�

�

�
C

C�
�

�
�1
	

Mean
q

2
�
.�

C

� �
�

/ 1
p

2�
.�

C

� �
�

/ 0

P.X > 0/ �
C

�
C

C�
�

D 1� � 1=2 �
�

�
C

C�
�

D �
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3 Questions

We know that skew Brownian motion was studied by Walsh [26] because it provides
an example of a diffusion process with discontinuous local time. We know that
oscillating Brownian motion with �C 6D �� (or q 6D p and ˛ D 0 in the notation of
following sections) has both discontinuous marginal (which are scaled versions of
the density h), and discontinuous local time. What are the properties of processes (if
any) related to the densities f and g?

• Does Fechner’s density f arise as the marginal density of a diffusion process in
R?

• Does the median zero density g arise as the marginal density of a diffusion
process?

• What are the continuity properties of the marginal densities of the processes
connected to the densities f and g?

• What are the continuity properties of the corresponding local time processes?

We will give answers to these questions in the next two sections.

4 A General Three-Parameter Mixture Family

Of course it is clear that f , g, and h as defined in Sect. 1 are special cases of the
following mixture family: For � 2 Œ0; 1� and �C; �� > 0, let

q.xI �C; ��; �/ D �
2

��
	

�
x

��

	
1.�1;0/.x/C .1 � �/

2

�C
	

�
x

�C

	
1Œ0;1/.x/:

Then

q.xI �C; ��; �/ D

8̂
<
:̂

f .xI �C; ��/; if � D �f � �
�

�
C

C �
�

;

g.xI �C; ��/; if � D �g � 1=2;

h.xI �C; ��/; if � D �h � �
C

�
C

C�
�

:

For this three-parameter family, with X � q,

EqX D
r
2

�
f.1 � �/�C � ���g ;

median.X/ D
(
��ˆ�1 � 1

4�

�
; if � � 1=2;

�Cˆ�1
�
1 � 1

4.1��/
�
; if � < 1=2;
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Fig. 8 The densities q.�I 3=2; 1; �/ for � 2 ff:1; :2; : : : ; :9g

Fig. 9 Mean (solid), median (dotted), and mode (dashed) of the densities q.�I 3=2; 1; �/ for � 2
.0; 1/

Varq.X/ D .1 � �/�2C C ��2� � ..1 � �/�C � ���/2
2

�
;

Pq.X > 0/ D 1 � �:

Figure 8 shows the densities q.	I 3=2; 1; �/ with � 2 f:1; :2; : : : ; :9g
In Fig. 9 we see that the mean median and mode follow the inequality (1.2) for

� � 1=2, and the reverse inequalities

mode � median � mean (4.1)

for � � :108389 : : :, but that such inequalities fail for � 2 .:108389; :5/.
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5 Skew and Oscillating Brownian Motion Connections

How do these various densities connect with processes? From [19, Exercise 1.16,
p. 82], we see that q.	I t; t; �/ is the marginal density of skew Brownian motion
with parameter 1 � � at time t starting from 0 at t D 0. This process is denoted by
X1��t in [19]. Moreover, from [19, Exercise 2.24, p. 401], X1��t D r1�� .Y1��t / where
r1�� .x/ D .x=�/1Œ0;1/.x/C.x=.1��//1.�1;0/.x/. Equivalently, Y1��t D s1�� .X1��t /

where

s1�� .x/ D �x1Œ0;1/.x/C .1 � �/x1.�1;0/.x/:

Thus Y1��t has marginal density h.	=t; �; 1��/ D q.	=tI �; 1��; �/, and it becomes
clear that Y1��t is oscillating Brownian motion with �C D � , �� D 1 � � .

Now consider Z1��t � v� .X1��t / where

v� .x/ D .1 � �/x1Œ0;1/.x/C �x1.�1;0/.x/:

Then Z1��t has marginal density f .	=t; 1��; �/ D q.	=tI 1��; �; �/. This is Fechner’s
density, and hence we call the process Z1��t the Fechner process.

6 More on the Fechner Process

Chen and Zili [5] study the following stochastic differential equation:



dYx

t D �
p1fYx

t �0g C q1f0<Yx
t �ag C r1fa<Yx

t g
�

dBt C ˛
2

dL0t .Y
x/C ˇ

2
dLa

t .Y
x/;

Y0 D x 2 R;

where ˛; ˇ 2 .�1; 1/, B is a one-dimensional standard Brownian motion, and for
w 2 R, Lw

t .Y
x/ is the semimartingale local time for Yx at level w; that is,

Lw
t .Y

x/ D lim
!0

1



Z t

0

1Œw;wC�.Yx
s /dhYxis:

Here hYxi denotes the predictable quadratic variation process of Y. They note that
in the special case p D q D r D 1 and ˇ D 0, Yx

t is a skew Brownian motion
with skew parameter 1=.2 � ˛/; and in the special case when p D q D r D 1 the
process Yx

t is a double-skewed Brownian motion. Another special case of interest is
p 6D q D r, ˛ D 0, and ˇ D 0, which corresponds to oscillating Brownian motion
in the terminology of [13]. In the special case of r D q and ˇ D 0, Yx

t is a skewed
oscillating Brownian motion process, to use a combination of the terminology of
[5, 13]. For further developments and applications of processes defined by the
stochastic differential equation in the last display, see [18].
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We are interested in a particular member of this class of processes, namely the
Fechner process having continuous marginal densities.

Chen and Zili [5] show that the resulting SDE in this latter case, namely



dXx

t D �
p1fYx

t �0g C q1f0<Yx
t g
�

dBt C ˛
2

dL0t .X
x//;

Xx
0 D x 2 R;

(6.1)

has a unique strong solution, and that moreover the transition density of the diffusion
Xx is given by

pX
t .x; y/ D 1p

2�t

�
1fy�0g

p
C 1fy>0g

q

	
�



exp

�
� .f .x/ � f .y//2

2t

	

C p C q.˛ � 1/

p � q.˛ � 1/ sign.y/ exp

�
� .j f .x/j C j f .y/j/2

2t

	�
(6.2)

where f .y/ � .y=p/1Œy�0� C .y=q/1Œy>0�. This implies that the transition density
pX

t .0; y/ is given by

pX
t .0; y/ D 1p

2� t

�
1

fy�0g

p
C 1

fy>0g

q

	
�



exp

�
� f .y/2

2t

	

C p C q.˛ � 1/
p � q.˛ � 1/

sign.y/ exp
�

� f .y/2

2t

	�

D 1p
2� t

�
1

fy�0g

p
C 1

fy>0g

q

	
�


1C p C q.˛ � 1/

p � q.˛ � 1/ sign.y/
�

exp

�
� f .y/2

2t

	

D
8<
:

1
p

2� t
	 1p
�
1 � pCq.˛�1/

p�q.˛�1/

�
	 exp

�
� f .y/2

2t

�
; y � 0;

1
p

2� t
	 1q
�
1C pCq.˛�1/

p�q.˛�1/

�
	 exp

�
� f .y/2

2t

�
; y > 0:

(6.3)

This family of marginal densities for the process X0t � Xt is continuous at 0 if

1

p

�
1 � p C q.˛ � 1/

p � q.˛ � 1/
	

D 1

q

�
1C p C q.˛ � 1/

p � q.˛ � 1/
	
:

and this is easily seen to hold if and only if

1 � ˛ D p2

q2
; or if ˛ D 1 � p2

q2
2 .�1; 1/: (6.4)
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Then

pX
t .0; y/ D

8<
:

1p
2� t

	 2
pCq 	 exp

�
� y2

2p2t

�
; y � 0;

1p
2� t

	 2
pCq 	 exp

�
� y2

2q2t

�
; y > 0:

D f .y=
p

tI p; q/=
p

t

where f .	I 	; 	/ is Fechner’s density as given in (1.1). Again, note that f is a
continuous function of its first (and all) arguments. Furthermore, the transition
density pX

t .x; y/ is now given by

pX
t .x; y/ D

8̂
ˆ̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂̂
:

1p
2� t

1
q

n
exp

�
� .x�y/2

2q2 t

�
C 1�p=q

1Cp=q exp
�
� .xCy/2

2q2t

�o
; x > 0; y > 0;

1p
2� t

1
p

n
exp

�
� .x�y/2

2p2 t

�
� 1�p=q

1Cp=q exp
�
� .jxjCjyj/2

2p2t

�o
; x � 0; y � 0;

1p
2� t

1
q



exp

�
� . x

p � y
q /
2

2t

	
C 1�p=q

1Cp=q exp

�
� . jxj

p C jyj

q /
2

2t

	�
; x � 0; y > 0;

1p
2� t

1
p



exp

�
� . x

q � y
p /
2

2t

	
� 1�p=q

1Cp=q exp

�
� . jxj

q C jyj

p /
2

2t

	�
; x > 0; y � 0;

which is jointly continuous as a function of .x; y/. See Fig. 10. In general the
transition densities of skewed oscillating Brownian motion given in (6.2) are
discontinuous; see Fig. 11.

Fig. 10 Fechner process transition density pX
1 .x; y/ with p D 1 and q D 3
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Fig. 11 Skewed oscillating Brownian motion process transition density pX
1 .x; y/ with p D 1, q D

3, and ˛ D 1=2

Question: With ˛ related to p and q as in (6.4), does the process Xx
t have a jointly

continuous local time process Lw
t .X

x/? (In particular is it continuous in w?)
The answer is no as shown by Chen [4]. Moreover, Chen [4] shows that the local

time process Lw
t .X

x/ is jointly continuous only when ˛ D 1� p=q.

Here is the proof of the two assertions from [4]. Define

f .y/ D



y=p; for y � 0;

y=q; for y > 0:

By Chen and Zili [5, Eq. (2.9)]

L0t .X
x/ D 2

2 � ˛
bL0t .Xx/; (6.5)

where bL0t .Xx/ is the symmetric local time of Xx at 0. From the proof of [5],
Corollary 2.3, we see that Zf .x/ � f .Xx/ is a skew driven Brownian motion driven
by B starting from f .x/:

dZf .x/
t D dBt C 1

2

�
q.˛ � 1/

p
C 1

	
dL0t .Z

f .x//:
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By use of (6.5) we can rewrite the last display in term by symmetric semimartingale
local time:

dZf .x/
t D dBt C 1

2

�
p C q.˛ � 1/

p � q.˛ � 1/
	

dbL0t .Zf .x//:

By the same computation as for (2.5) of [5], it follows that L0t .X
x/ D qL0t .Z

f .x//, and
hence that

bL0t .Xx/ D .2 � ˛/q
p C q.1� ˛/

bL0t .Zf .x//: (6.6)

Since Z is a skew Brownian motion, it follows from [3, Theorem 1.2], that unless
p C q.˛ � 1/ D 0 (i.e. unless ˛ D 1� .p=q/), the process

w 7! w C p C q.˛ � 1/
p � q.˛ � 1/

bL0T.Zw/

is a discontinuous homogeneous Markov process, where T D infft > 0 WbL0t .Z0/ D
1g. Thus, unless ˛ D 1� .p=q/, by (6.6) we have x 7!bL0T.Xx/ is discontinuous, and
so in view of (6.5), x 7! L0T.X

x/ is discontinuous. For the Fechner process, L0t .X
x/

cannot be jointly continuous in .t; x/, nor is it continuous in x.
When ˛ D 1 � p=q we see that the factors

�
1˙ p C q.˛ � 1/

p � q.˛ � 1/

	
D 1;

and hence the marginal density pX
t .0; y/ in (6.3) reduces the form of g given in (1.1).

Summarizing the discussion above leads to the following proposition:

Proposition Let Xx
t � Xx

t .p; q; ˛/ denote the (strong) solution of the stochastic
differential equation (6.1).

(a) For ˛ D 1 � .p=q/2, Xx
t has continuous transition densities and marginal

densities for x D 0 which are scaled versions of the Fechner density f given
in (1.1). On the other hand, the local time process Lx

t .X
x/ is discontinuous (at

x D 0).
(b) For ˛ D 1 � p=q, Xx

t has discontinuous transition densities and marginal
densities for x D 0 which are scaled versions of the median zero density g
given in (1.1). On the other hand, the local time process Lx

t .X
x/ is continuous.
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Limit Theorems



Erdős-Rényi-Type Functional Limit Laws
for Renewal Processes

Paul Deheuvels and Joseph G. Steinebach

Abstract We prove functional limit laws for Erdős-Rényi-type increments of
renewal processes.

Keywords First passage time process • Functional Erdős–Rényi law • Large
deviations • Renewal process

Mathematics Subject Classification (2010). Primary 60F15, 60F17; Secondary
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1 Introduction

1.1 A Functional Limit Law

Let fXn W n � 1g be independent and identically distributed (iid) random variables
(rv’s). Set S0 WD 0, Sn WD X1 C : : : C Xn for n � 1, and X WD X1. Denote by
F.x/ WD P.X � x/ for x 2 R, the distribution function (df) of X, and let  .t/ WD
E
�
etX
� D R

R
etxdF.x/ for t 2 R, denote its moment generating function (mgf). We

shall assume that .A:1-2-3/ below are fulfilled:

.A:1/ � WD E.X/ 2 .0;1/;

.A:2/ P.X D �/ < 1;

.A:3/ �1 � t1 WD infft W  .t/ < 1g < 0 < t0 WD supft W  .t/ < 1g � 1.
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At times, we shall need the additional condition .A:4/ or .A:5/.

.A:4/ P.X < 0/ D 0.

.A:5/ P.X � 0/ D 0.

We note that .A:5/ ) .A:4/ ) t1 D �1. Define the renewal process pertaining
to fSn W n � 0g by

N.t/ WD maxfn � 0 W Sn � tg for t � 0: (1.1)

By .A:1/ and the law of large numbers, n�1Sn ! � > 0 a.s. as n ! 1. This implies
that, a.s., N.t/ < 1 for all t � 0, with t�1N.t/ ! 1=� as t ! 1.
For each T 2 R, set logC T WD log.T _ e/. Fix a constant 0 < C < 1, and for each
x � 0 consider the increment function of t 2 Œ0;C�, defined by

�xIT.t/ WD .logC T/�1
�
N.x C t logC T/ � N.x/

�
for t 2 Œ0;C�: (1.2)

We shall establish an Erdős-Rényi-type functional limit theorem (FLT), describing
the limiting behavior as T ! 1 of the random set

GTIC WD f�xIT .	/ W 0 � x � Tg : (1.3)

Our main result is stated in Theorem 1.2 at the end of Sect. 1.1. In Sects. 2 and 3,
we present the proof of this theorem, together with auxiliary results on mgf’s and
Legendre transforms.
The following notation will be needed. Set I WD ft W  .t/ < 1g, and define the
Legendre-Chernoff function pertaining to  .	/ by

‰.˛/ WD sup
t2I

ft˛ � log .t/g for ˛ 2 R: (1.4)

Introduce the Legendre conjugate function ‰�.	/ of ‰.	/, defined by

‰�.˛/ WD

8̂
<̂
ˆ̂:
˛‰.1=˛/ for ˛ > 0;

t0 for ˛ D 0;

1 for ˛ < 0:

(1.5)

We postpone until Sects. 1.2 and 2 a discussion of the properties of  , ‰ and ‰�.
We denote by MC the set of nonnegative Radon measures on R

C WD Œ0;1/, and set
M� D f�� W � 2 MCg. By Lebesgue-Stieltjes integration (see, e.g., Theorem 2,
p. 163 in Chow and Teicher [5]), each � 2 M˙ is fully characterized by the values
on a dense subset of RC of its right-continuous df

H�.t/ WD
Z
.�1;t�

d� D � .Œ0; t�/ for t 2 R: (1.6)
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For � 2 MC (resp. � 2 M�) H� belongs to the class I (resp. D) of nondecreasing
(resp. nonincreasing) right-continuous functions H of t 2 R onto R

C (resp. �R
C),

such that H.t/ D 0 for t < 0. Conversely, an arbitrary H 2 I (resp. H 2 D) defines a
unique Lebesgue-Stieltjes measure � D dH 2 MC (resp. � D dH 2 M�) such that
H D H� . Since the map � 2 MC $ H� 2 I (resp. � 2 M� $ H� 2 D) is one-to-
one, we shall identify MC with I (resp. M� with D), and write the forthcoming
statements in terms of either one of these sets, on the basis of convenience. For
each C > 0, we denote by MC

C the subset of MC (resp. M�
C the subset of

M�), composed of all nonnegative (resp. nonpositive) Radon measures � on RC,
supported by Œ0;C� (i.e., such that � .R � Œ0;C�/ D 0), and set IC (resp. DC) for the
corresponding set of df’s. We endowMC

C $ IC (resp. M�
C $ DC), with the metric

topology W , of weak (or weak�) convergence of nonnegative (resp. nonpositive)
bounded measures. We note that any � 2 MĊ is bounded, since j�.A/j � j�.Œ0;C�/j
for each measurable A  R. For f�n W n � 1g  MĊ and � 2 MĊ , the convergence
�n !W � is characterized by the properties, as n ! 1,

Z
R

	.t/dH�n.t/ !
Z
R

	.t/dH�.t/ for each 	 2 CB on RI

, H�n.t/ ! H�.t/ at each continuity point t 2 R of the limit H�;

where CB denotes the set of bounded continuous functions on R. The weak topology
W on MC

C $ IC (resp. M�
C $ DC) is metricised by the Lévy metric �L, defined

as follows. For each H�1 ;H�2 2 IC, we set

�L.H�1 ;H�2/ (1.7)

WD inf f > 0 W H�1.t � / �  � H�2.t/ � H�1.t C /C ; 8tg :

We extend the definition of �L to H�1 ;H�2 2 DC, by setting, via (1.7),

�L.H�1 ;H�2/ WD �L.�H�1 ;�H�2/: (1.8)

At times, we shall endow MC
C $ IC (resp. M�

C $ DC), with the uniform topology
U , induced by the distance �U , defined, for each �1; �2 2 MĊ , by

�U .H�1 ;H�2/ D kH�1 � H�2k WD sup
t2R

jH�1.t/ � H�2.t/j: (1.9)

To define the Hausdorff set-metrics pertaining to �L and �U , we set, for each H 2
IC and  > 0,

NIW.H/ WD fG 2 IC W �L.G;H/ < g (1.10)

NIU .H/ WD fG 2 IC W kG � Hk < g ; (1.11)
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and, for each A  IC ,

AIW WD
[
H2A

NIW .H/ and AIU WD
[
H2A

NIU .H/; (1.12)

with the convention that
S

;.	/ WD ;, when A D ; in (1.12). Finally, for each
A;B  IC , we set

�L.A;B/ WD inf
˚
 > 0 W A  BIW and B  AIW

�
; (1.13)

�U .A;B/ WD inf
˚
 > 0 W A  BIU and B  AIU

�
: (1.14)

We extend these definitions to A;B 2 DC , via the formal change of IC into DC

in (1.10)–(1.14). Since �L.H�1;H�2/ � �U .H�1 ;H�2/, U is stronger than W on IC

(resp. DC).
Set 
 WD dx for the Lebesgue measure on R. The Lebesgue decomposition (see, e.g.,
Corollary 1, p. 196 in Chow and Teicher [5]) of � 2 MĊ yields � D �ACC�S, where
the absolutely continuous component �AC 2 MĊ , and the singular component �S 2
MĊ , of �, fulfill �AC � 
 and �S ? 
, and

H�.t/ D H�AC.t/C H�S.t/ D
Z t

0

h�.t/dt C H�S.t/ for all t 2 R: (1.15)

In (1.15), for � 2 MĊ , ˙h�.t/ WD ˙ d
dt H�AC.t/ � 0, is a locally integrable (with

respect to 
) nonnegative function of t 2 R, with support in Œ0;C�, and uniquely
defined, up to a 
-a.e. equivalence. As usual, we write �1 � �2 when �1 is absolutely
continuous with respect to �2, and �1 ? �2 when there exists a partition of R D
A1 [ A2 into measurable sets A1 \ A2 D ; with �1.A2/ D �2.A1/ D 0. In (1.15),
H�S.t/ WD �S.Œ0; t�/, for t 2 R, is the df of the singular component �S 2 MĊ of
� 2 MĊ . We shall denote by ACIC (resp. ACDC) the subset of all absolutely
continuous H� 2 IC (resp. H� 2 DC), fulfilling H�S.t/ D 0 for all t 2 R.
We now state our main result in Theorem 1.2 below. Introduce the sets

KC
‰�IC WD



H� 2 IC W

Z C

0

‰� .h�.t// dt C‰.0/H�S.C/ � 1

�
; (1.16)

and

KC�
‰�IC WD



H� 2 ACIC W

Z C

0

‰� .h�.t// dt � 1

�
: (1.17)

Remark 1.1

.1ı/ Under .A:1-2-3-4/, the constant ‰.0/ in (1.16) reduces to (see, e.g.,
Lemma 2.5 in the sequel) ‰.0/ D � logP.X D 0/, with the convention
that � log 0 D 1, to cover the case where P.X D 0/ D 0.
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.2ı/ In the forthcoming Sect. 1.2, we shall prove that, under .A:1-2-3-4/, KC
‰�IC is

a compact subset of .IC;W/. If, in addition .A:5/ holds, then ‰.0/ D 1 and
KC
‰�IC D KC�

‰�IC is a compact subset of .IC;U/.
.3ı/ In Sect. 1.2, we will investigate the properties of KC

‰�IC, KC�
‰�IC . Under .A:1-2-

3/, by setting ‡ D ‰� in (1.24)–(1.27), with ‰ as in (1.4) and ‰� as in (1.5),
we will show that (1.16)–(1.17) are in agreement with the notation of Sect. 1.2.

Theorem 1.2 Under .A:1-2-3-4/, for each C > 0, we have, almost surely,

lim
T!1�L

�
GTIC ;KC�

‰�IC
�

D lim
T!1�L

�
GTIC ;KC

‰�IC
�

D 0: (1.18)

If, in addition, .A:5/ holds, then ‰.0/ D 1 and KC�
‰�IC D KC

‰�IC.

Remark 1.3 Our arguments fail to give a proof of (1.18) under the sole conditions
.A:1-2-3/. We conjecture that this extension holds, even though the technical details
appear to be difficult to handle.

The proof of Theorem 1.2 is postponed until Sect. 3. We first present applications
which motivate this result. The FLT in Theorem 1.2 is related to functional limit
laws, initiated in the framework of empirical processes by Deheuvels and Mason [9],
and of the following general form. Let Q be a class of functions on Œ0;C�, endowed
with the topology induced by a metric �. Following (1.10)–(1.14), we extend �
to a Hausdorff set-metric between subsets of Q. We then consider a random set
of functions RTIC  Q for T � 0, with a non-random limit set RC  Q, in the
following sense. We assume that RC is a compact subset of .Q; �/, such that, a.s.
as T ! 1, �.RTIC;RC/ ! 0. Under this setup, for any functional ‚ W Q ! R,
continuous in .Q; �/, we get

lim
T!1

n
sup

H2RTIC

‚.H/
o

D sup
H2RC

‚.H/ a.s. (1.19)

The relation (1.19) allows us to describe globally the strong limiting behavior
of supH2RTIC

‚.H/ for all possible continuous functionals ‚ on .Q; �/. The
evaluation of the (non-random) constant supH2RC

‚.H/ reduces to an analytical
problem (see, e.g., Deheuvels and Mason [8]). As an example, we apply (1.19) to
Q D IC, RTIC D GTIC , RC D KC

‰�IC and � D �L. In view of Proposition 1.5, we
so obtain the following corollary of Theorem 1.2.

Corollary 1.4 Assume .A:1-2-3-4/. Let ‚ W IC ! R be a functional, continuous
with respect to the weak topology W on IC. Then, a.s.,

lim
T!1

(
sup
0�x�T

‚.�xIT/
)

D sup
H2KC

‰�

IC

‚.H/ D sup
H2KC�

‰�

IC

‚.H/: (1.20)
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Example The functional ‚.H/ D H.C/ is continuous on .IC;W/, so that (1.20)
holds. To evaluate the RHS of (1.20), we write, via (1.28),

sup
H�2K�

‰�

IC

H�.C/ D sup
H�2K�

‰�

IC

H�AC.C/ D C inff˛ > 1=� W C‰�.˛/ � 1g:

Consider the constants defined by

0 � ˇ�
C WD sup f˛ < 1=� W C‰�.˛/ � 1g < 1=� (1.21)

< ˇC
C WD inf f˛ > 1=� W C‰�.˛/ � 1g < 1: (1.22)

By applying the above arguments to ‚.H/ D ˙H.C/, we infer from (1.20)–(1.22),
that, under .A:1-2-3-4/, a.s.,

lim
T!1

n
sup
0�x�T

�xIT.C/
o

D CˇC
C ; lim

T!1

n
inf

0�x�T
�xIT.C/

o
D Cˇ�

C : (1.23)

The limit law (1.23), originally established by Steinebach [24, 25], was further
refined by Bacro et al. [1], and Deheuvels and Steinebach [10].

A rough outline of our proofs is as follows. Our results rely on the description, in
the forthcoming Theorem 3.7, of Erdős-Rényi-type FLT’s for the increments of the
partial sum process. The proof of Theorem 1.2 is then based on an inversion scheme,
in the spirit of that used for quantile processes by Deheuvels and Mason [8, 9]. The
details of this argument raise some huge technical difficulties. In the first place the
topology involved in the FLT’s plays a crucial role, together with the properties of
the limit sets, which are defined as Orlicz-type classes of functions. The inversion
scheme is discussed for piecewise linear functions in Sect. 2.3, and then, one needs
continuity arguments to treat the general case. This is achieved through a careful
analytical description of the problem, in Sects. 1.2 and 2, of interest in and of itself.

1.2 Auxiliary Results

We will consider functions ‡.	/ W R ! Œ0;1�, fulfilling, for some �‡ 2 R:

.‡:1/ ‡ is convex and nonnegative on R;

.‡:2/ ‡.�‡/ D 0; ‡.˛/ > 0 for ˛ ¤ �‡ ; ‡.˛/ < 1 in a neighborhood of �‡ ;

.‡:3/ lim
˛!�1˛

�1‡.˛/ D �1I‡ 2 Œ�1; 0/, lim
˛!1˛

�1‡.˛/ D �0I‡ 2 .0;1�.

In view of .‡:1-2-3/ and (1.15), consider the sets of functions of IC and DC

KC
‡ IC WD



H� 2 IC W

Z C

0

‡ .h�.t// dt C �0I‡H�S.C/ � 1

�
; (1.24)
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K�
‡ IC WD



H� 2 DC W

Z C

0

‡ .h�.t// dt C �1I‡H�S.C/ � 1

�
: (1.25)

Set, likewise

KC�
‡ IC WD



H� 2 ACIC W

Z C

0

‡ .h�.t// dt � 1

�
; (1.26)

and

K��
‡ IC WD



H� 2 ACDC W

Z C

0

‡ .h�.t// dt � 1

�
: (1.27)

In (1.24) [resp. (1.25)], we use the convention that, when �0I‡ D 1 (resp. �1I‡ D
�1), the H� 2 KC

‡ IC (resp. H� 2 K�
‡ IC) fulfill H�S.C/ D 0, and are absolutely

continuous on Œ0;C�. We have therefore in this case K‡̇ IC D K˙�
‡ IC.

Proposition 1.5 Under .‡:1-2-3/, when 0 < �0I‡ (resp. �1I‡ < 0), KC
‡ IC (resp.

K�
‡ IC) is compact in .IC;W/ (resp. .DC;W/). When �0I‡ D 1 (resp. �1I‡ D �1),

KC
‡ IC (resp K�

‡ IC) compact in .IC;U/ (resp. .DC;U/).

Proof We first give proof in the “C” case, and recall some facts. A topological
space T is sequentially compact iff each infinite sequence has a convergent infinite
subsequence (see, e.g., Kelley [16], p. 162). In general, sequential compactness is
not equivalent to compactness, however, this equivalence holds for metric spaces
(see, e.g., Theorem 5, p. 138 in Kelley [16]), and our arguments will make use of
this property. To be compact, a non-void subset A of a metric space needs only to
be relatively compact (namely to be included in a compact set), and closed. In the
present setup, this last property is equivalent to the requirement that A is complete.
By the Helly-Bray theorem (see, e.g., Theorem 1, p. 261 in Feller [13]), a necessary
and sufficient condition for A  IC , A ¤ ;, to be relatively compact in .IC;W/ is
that:

.C:1/ supH2A H.C/ < 1.

By the Arzelà-Ascoli theorem (see, e.g., Theorem A5, p. 369 in Rudin [20]), a
necessary and sufficient condition for A  IC, A ¤ ;, to be relatively compact
in .IC;U/, is that .C:1-2/ hold, where the last condition is given by:

.C:2/ The functions in A are uniformly equicontinuous.

Let now ‡ fulfill .‡:1-2-3/, and let H� 2 KC
‡ IC be as in (1.15). In view of (1.15)

and (1.24), we may write the convexity inequalities

‡

�
1

C

Z C

0

h�.t/dt

	
� 1

C

Z C

0

‡.h�.t//dt � 1

C
; (1.28)
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which implies that H�AC.C/ � M1 WD C inff˛ > �‡ W ‡.˛/ � 1=Cg < 1. We
note that the finiteness of M1 < 1 follows from .‡:3/. Since, by (1.24), H�S.C/ �
M2 WD 1=�0I‡ < 1, we get H�.C/ � M1 C M2 < 1. Since this inequality holds
uniformly over all H� 2 KC

‡ IC , A D KC
‡ IC fulfills .C:1/.

Let now .‡:1-2-3/ hold with �0I‡ D 1. Fix any  > 0 and set 1=1 WD 0. Our
assumptions imply that supu�r.u=‡.u// ! 0 as r ! 1. Thus, we may choose
r > �‡ so large that, for all r � r , supu�r.u=‡.u// < =2. Now, for each � > 0,
r � r and H� 2 KC

‡ IC D KC�
‡ IC  ACIC, we have the inequalities

sup
jt�sj��

jH�.t/ � H�.s/j

D sup
jt�sj��

ˇ̌
ˇ̌
Z t

s
h�.v/dv

ˇ̌
ˇ̌ � �r C

Z C

0

h�.v/1fh�.v/�rgdv

� �r C sup
u�r
.u=‡.u//

Z C

0

‡.h�.v//dv � �r C =2:

Thus, whenever jt � sj � =.2r/, we have jH�.t/ � H�.s/j � , uniformly over
H� 2 KC

‡ IC . The choice of  > 0 being arbitrary, this establishes .C:2/ for KC
‡ IC .

Making use of the just-proven fact that KC
‡ IC fulfills .C:1/, we conclude that KC

‡ IC is
relatively compact in .IC;U/.
To complete our proof, we need only show that, under .‡:1-2-3/, KC

‡ IC is closed in
.IC;W/ (resp. .IC;U/, when �0I‡ D 1). Consider the functionals

J C
CI‡ W H� 2 IC ! J C

CI‡.H�/ D
Z C

0

‡.h�.t//dt C �0I‡H�S.C/; (1.29)

J �
CI‡ W H� 2 DC ! J �

CI‡.H�/ D
Z C

0

‡.h�.t//dt C �1I‡H�S.C/: (1.30)

By Lemmas 3.3–3.4 of Lynch and Sethuraman [18], J C
CI‡ is lower semi-continuous

in .IC;W/, so that, for all f�n W n � 1g  MC
C and � 2 MC

C ,

lim
n!1�L.H�n ;H�/ D 0 ) lim inf

n!1 J C
CI‡.H�n/ � JCI‡.H�/: (1.31)

For each n � 1, H�n 2 KC
‡ IC , J C

CI‡.H�n/ � 1. By (1.31), this implies that

J C
CI‡.H�/ � 1, whence H� 2 K‡ IC . This entails that K‡ IC is complete in .IC;W/,

and therefore, compact in .IC;W/. The observation that

lim
n!1 kH�n � H�k D 0 ) lim

n!1�L.H�n ;H�/ D 0;

shows that, when �0I‡ D 1, KC
‡ IC D KC�

‡ IC is complete, and therefore, compact in
.IC;U/. Refer to Varadhan [26] for a direct proof of this property.
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For the proof in the “�” case, for each ‡ D ‡C fulfilling .‡:1-2-3/, we set
‡�.u/ D ‡C.�u/ for u 2 R, and observe that ‡� fulfills .‡:1-2-3/, with

�‡
�

D ��‡
C

; �1I‡
�

D ��0I‡
C

and �0I‡
�

D ��1I‡
C

:

For H� 2 IC as in (1.15), we denote by H.��/ 2 DC the df of �� 2 M�
C . Then, for

0 � t � C,

H.��/.t/ WD �H�.t/ D
Z t

0

f�h�.u/g du � H�S.t/; (1.32)

and

h.��/.t/ D dH.��/.t/
dt

D �h�.t/; H.��/S.t/ D �H�S.t/: (1.33)

Thus, in view of (1.29)–(1.30), we see that, for any � 2 IC , .��/ 2 DC,

J �
CI‡

C

.H.��// D
Z C

0

‡C.h.��/.t//dt C �1I‡
C

H.��/S.C/

D J C
CI‡

�

.H�/ D
Z C

0

‡�.h�.t//dt C �0I‡
�

H�S.C/: (1.34)

We now make the formal change of ‡ D ‡C into ‡ D ‡� in (1.31). This, together
with (1.7)–(1.8) and (1.34), shows that, for any f�n W n � 1g  MC

C and � 2 MC
C

(or, for any f.��n/ W n � 1g  M�
C and .��/ 2 M�

C ), we have

lim
n!1�L.H�n ;H�/ D 0 , lim

n!1�L.H.��n/;H.��// D 0

) lim inf
n!1 J C

CI‡
�

.H�n/ � J C
CI‡

�

.H�/

, lim inf
n!1 J �

CI‡
C

.H.��n// � J �
CI‡

C

.H.��//: (1.35)

Thus, J �
CI‡ , as in (1.30), is lower semi-continuous on .DC;W/. Given this property,

the remainder of the proof in the “�” case is similar to the corresponding proof in
the “C” case, and details will, therefore, be omitted. �

Proposition 1.6 Under .‡:1-2-3/, for each C > 0, KC
‡ IC (resp K�

‡ IC) is the closure

of KC�
‡ IC (resp. K�

‡ IC) in .IC;W/ (resp. .DC;W/).

Proof Following the lines of proof of Proposition 1.5, we will limit ourselves to the
“C” case. For H� 2 IC as in (1.15), set, as in (1.29),

J C
CI‡.H�/ WD

Z C

0

‡ .h�.t// dt C �0I‡H�S.C/:
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Denote by P D ft0 D 1 < : : : < tk D Cg a partition of Œ0;C�, and let PC denote
the set of all such partitions, with k D 1; 2; : : : arbitrary. Denote by HP

� 2 ACIC the
continuous function on Œ0;C�, fulfilling:

.i/ HP
� .ti/ D H�.ti/ for i D 0; : : : ; k;

.ii/ For i D 1; : : : ; k, HP
� is linear on .ti�1; ti/, with Lebesgue derivative

hP
� .t/ D H�.ti/ � H�.ti�1/

ti � ti�1
for t 2 .ti�1; ti/:

For each P 2 PC, we denote by �.P/ the �-field generated by the intervals
Œ0; t1�; .t1; t2�; : : : ; .tk�1;C� of P D ft0 D 1 < : : : < tk D Cg. Partitions P;P0 2 PC

are endowed with the partial order P � P0 , �.P/  �.P0/. Consider now
a directed set .N I �/, namely, a non-void partially ordered set, such that any two
�; �0 2 N admit an upper bound �00 2 N , in the sense that � � �00 and �0 � �00. A
directed net of partitions along N is a mapping � 2 N ! P� 2 PC such that
� � �0 ) P� � P�0 . Following Lynch and Sethuraman [18], we consider
limits along a directed net N , such that �.P�/ ! BC. Here, BC denotes the
�-algebra of Borel subsets of Œ0;C�, and convergence is meant in the sense that
�
�S

�2N P�
� D BC. An example is given by setting N D N, and, for each n � 0,

Pn D fCi=2n W i D 0; : : : ; 2ng. For this N and fP� W � 2 N g, we see that
m � n ) Pm  Pn, whence �.Pm/  �.Pn/. Also, it is straightforward that,
in this case, �

�S
n2N Pn

� D BC. Given this notation, in view of (1.29), and by
invoking Theorem 3.2 and (3.16)–(3.25) of Lynch and Sethuraman [18], we get

sup
�2N

J C
CI‡
�
H

P�
�

� D J C
CI‡
�
H�

�
; (1.36)

and
J C

CI‡
�
H

P�
�

� ! J C
CI‡
�
H�

�
along � 2 N : (1.37)

We consider the special case where we set in the above relations N D N and Pn D
fCi=2n W i D 0; : : : ; 2ng. We so obtain that HPn

� 2 ACIC is such that J C
CI‡
�
HPn
�

� !
J C

CI‡
�
H�

�
as n ! 1. Next, we see that, for each continuity point t 2 .0;C/, of H� ,

we have, as n ! 1,

H�

�b2nCtc
2n

	
! H�.t/ and H�

�b2nCtc C 1

2n

	
! H�.t/:

Here and elsewhere, buc � u < buc C 1 denotes the integer part of u. In view of
the definition of HPn

� , this readily implies that, as n ! 1, HPn
� .t/ ! H�.t/ for each

continuity point t 2 .0;C/ of H� . Thus, as n ! 1,

HPn
�

W! H�: (1.38)
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The assumption H� 2 KC
‡ IC is equivalent to the condition that J C

CI‡.H�/ � 1, which,
by (1.36) implies the inequality J C

CI‡
�
HPn
�

� � 1. Since HPn
� 2 ACIC, we have, in

turn, HPn
� 2 K�

‡ IC. In view of (1.38), this suffices for our needs. �

Remark 1.7 The just-given proof improves on the statement of Proposition 1.6 by
showing that, under .‡:1-2-3/, for each C > 0, KC

‡ IC (resp K�
‡ IC) is the closure in

.IC;W/ (resp. .DC;W/) of the subset of KC�
‡ IC (resp. H� 2 K�

‡ IC), composed of
piecewise linear functions.

2 Properties of Moment-Generating and Related Functions

2.1 Moment-Generating Functions and Legendre Transforms

Assume .A:1-2-3/. Set I WD ft W  .t/ < 1g. Since  .0/ D 1, I is an interval with
endpoints t1 and t0, such that 0 2 .t1; t0/  I  Œt1; t0�, and which may or may not
belong to I, depending upon the law of X (see, e.g., Deheuvels [6]). The function
 .t/ 2 .0;1� is positive and log-convex on R (see, e.g., (2.1)–(2.2) below), analytic
on .t1; t0/ and continuous on I. .A:3/ implies the existence of arbitrary moments of
X, with dm

dtm  .0/ D E.Xm/ for all m 2 N. As in Deheuvels and Devroye [7], set, for
t1 < t < t0,

m.t/ WD d

dt
log .t/ D  0.t/

 .t/
; �2.t/ WD m0.t/ D  00.t/ .t/ �  0.t/2

 .t/2
: (2.1)

By the Schwarz inequality, combined with .A:2-3/, we get, for t1 < t < t0,

 00.t/ .t/ �  0.t/2 D E.X2etX/E.etX/ � E.XetX/2 > 0: (2.2)

As follows from (2.1)–(2.2), we have 0 < m0.t/ D �2.t/ < 1 for all t1 < t < t0,
together with �2.0/ D �2 WD Var.X/. This entails that, under .A:1-2-3/, m.	/ is
analytic and strictly increasing on .t1; t0/, with m.0/ D �. Set

a WD ess sup.X/ D supfx W F.x/ < 1g; (2.3)

b WD ess inf.X/ D supfx W F.x/ > 0g; (2.4)

�1 � B WD lim
t#t1

m.t/ < � D m.0/ < A WD lim
t"t0

m.t/ � 1: (2.5)

By combining (2.3)–(2.4)–(2.5) with the relation m.t/ D E.XetX/=E.etX/ for t1 <
t < t0, we obtain the following lemma (see, e.g., Theorem 1 in Deheuvels, Devroye
and Lynch [11])
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Lemma 2.1 Under .A:1-2-3/, we have

� 1 � b � B < � < A � a � 1: (2.6)

Moreover, when a < 1 (resp. b > �1), we have A D a and t0 D 1 (resp. B D b
and t1 D �1).

Proof Noting that B < � < A follows from (2.5), we establish the inequality A � a.
The proof of b � B, being similar will be omitted. There is nothing to prove if
a D 1, so that we limit ourselves to a < 1. In this case, by the definition (2.3) of
a, for each  > 0, we have P.X � a C / D 1. It follows that, for each t1 < t < t0,

m.t/ D E.XetX/

E.etX/
� .a C /

E.etX/

E.etX/
D a C :

By letting t " t0 in this inequality, we infer from (2.5) that A � a C . Since  > 0

may be chosen arbitrarily small, we conclude that A � a, as sought. To complete the
proof of (2.6), we observe that a < 1 implies that t0 D 1, and hence, via .A:2/,
that a > � > 0. Thus, for each 0 <  < a, we have

 .t/ D
Z a

�1
etxdF.x/ � et.a�/ C

Z a

a�
etxdF.x/;

 0.t/ D
Z a

�1
xetxdF.x/ � .a � /

Z a

a�
etxdF.x/:

By letting t " t0 D 1, we get

e�t.a�/
Z a

a�
etxdF.x/ � et=2

P
�
a � 1

2
 < X � a

� ! 1:

Therefore, we get, via (2.1),

lim
t!1

(
.a � /

R a
a� etxdF.x/

et.a�/ C R a
a� etxdF.x/

)
D a �  � lim

t!1
 0.t/
 .t/

D A:

Since our choice of  2 .0; a/ is arbitrary, we infer from the above relation, in
combination with (2.6), that A D a, as sought. When b > �1, a similar argument
shows that t1 D �1 and b D B. �

Lemma 2.2 Under .A:1-2-3/, when t0 D 1 (resp. t1 D �1), we have A D a
(resp. B D b).



Erdős-Rényi-Type Functional Limit Laws 231

Proof Assume t0 D 1. Lemma 2.1, implies that A D a when a < 1. We may
therefore limit our proof to the case where a D 1. Under this condition, we observe
that, for each c > 0 and t > 0,

 .t/ D
Z 1

�1
etxdF.x/ � etc C

Z 1

c
etxdF.x/;

 0.t/ D
Z 1

�1
xetxdF.x/ � c

Z 1

c
etxdF.x/:

Now, for each 0 <  < c, we have, as t " t0 D 1,

e�tc
Z 1

c
etxdF.x/ � et=2

P
�
X � c C 1

2

� ! 1:

Therefore, we get

lim
t!1



c
Z 1

c
etxdF.x/

� 

etc C

Z 1

c
etxdF.x/

��1
D c � lim

t!1
 0.t/
 .t/

D A:

Since c > 0 may be chosen arbitrarily large in this relation, we conclude that A D
1 D a. A similar argument shows that B D b when t1 D �1. �
Remark 2.3

.1ı/ Lemmas 2.1–2.2 show that A D a (resp. B D b), unless a D 1 and t0 < 1
(resp. b D �1 and t1 > �1). Conversely, when a D 1 and t0 < 1 (resp.
b D �1 and t1 > �1), we may have either A < a, or A D a (resp. B D b or
B > b), depending upon the law of X (see, e.g., Theorem 2 in Deheuvels et al.
[11]). Below are examples.

.2ı/ The exponential distribution, with df F.x/ D 1� e�x for x � 0, fulfills  .t/ D
1=.1 � t/ for t < t0 D 1 < 1. Since m.t/ D 1=.1 � t/ ! 1 as t " t0, we so
obtain a distribution for which t0 < 1,  .t0/ D 1, and A D a D 1.

.3ı/ Fix 0 < p < 1, and consider the discrete rv X, with distribution given by

P.X D k/ D Cpk

k.k � 1/.k � 2/
for k D 3; 4; : : : ;

where the norming constant C > 0 is given by

1

C D H. p/ WD
1X

kD3

pk

k.k � 1/.k � 2/ D 1

4

�
3p2 � 2p � 2.1� p/2 log.1 � p/

�
:
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Here,  .t/ D H. pet/=H. p/, a D 1, t0 D � log p < 1, so that pet0 D 1, and
 .t0/ D H.1/=H. p/D 1=.4H. p// < 1. Since

pH0. p/ D
1X

kD3

pk

.k � 1/.k � 2/ D p2 C p.1 � p/ log.1 � p/;

we see that, as t " t0, pet " 1, whence

m.t/ D petH0. pet/

H. pet/
! A D H0.1/

H.1/
D 4:

We so obtain a distribution for which t0 D � log p < 1 and A D 1 < a D 1.

For a general distribution fulfilling .A:1-2-3/, when B < ˛ < A, the equation m.t/ D
˛ has a unique solution t D t� D t�.˛/, fulfilling

m.t�.˛// D ˛; t1 < t�.˛/ < t0; t�.�/ D 0: (2.7)

It follows from (2.1), (2.5), (2.7), and the properties of m.	/ and  .	/, that t�.˛/ is a
strictly increasing analytic function of ˛ 2 .B;A/, fulfilling

lim
˛"B

t�.˛/ D t0 and lim
˛#A

t�.˛/ D t1; (2.8)

0 <
dt�.˛/

d˛
D 1

m0.t�.˛//
D 1

�2.t�.˛//
< 1 for B < ˛ < A: (2.9)

As in (1.4) let the Legendre-Chernoff function of  be given by

‰.˛/ WD sup
t2I

ft˛ � log .t/g 2 Œ0;1� for ˛ 2 R: (2.10)

An application of the Markov inequality entails that, for each n � 1,

P.Sn � n˛/ � exp.�n‰.˛// for ˛ � �; (2.11)

P.Sn � n˛/ � exp.�n‰.˛// for ˛ � �: (2.12)

By Theorem 1 of Chernoff [4], we get, under .A:1-2-3/,

lim
n!1 n�1 logP.Sn � n˛/ D �‰.˛/ for ˛ � �; (2.13)

lim
n!1 n�1 logP.Sn � n˛/ D �‰.˛/ for ˛ � �: (2.14)

Some consequences of (2.13)–(2.14) are stated in the next two lemmas.
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Lemma 2.4 Under .A:1-2-3/, when a < 1 (resp. b > �1), we have

‰.˛/ D
(

� logP.X D a/ for ˛ D a;

1 for ˛ > a;
(2.15)

and when b > �1
‰.b/ D

(
� logP.X D b/ for ˛ D b;

1 for ˛ < b:
(2.16)

Proof When a < 1, P.Sn � na/ D P.X D a/n, and, for each " > 0, P.Sn �
n.a C "// D 0. Thus, by (2.13)–(2.14), taken with ˛ D a (resp. ˛ D a C "), we
obtain that ‰.a/ D � logP.X D a/ (resp. ‰.a C "/ D 1), whence (2.15). By a
similar argument for ˛ � b (resp. ˛ � b � "), we get (2.16). �

Lemma 2.5 Under .A:1-2-3-4/, we have t1 D �1 and

‰.˛/ D
(

� logP.X D 0/ for ˛ D 0;

1 for ˛ < 0:
(2.17)

Proof Under .A:4/, we have P.Sn � 0/ D P.X D 0/n. Therefore, (2.17) is a direct
consequence of (2.14), taken with ˛ D 0. �

By (2.10), ‰.	/ is the supremum over t 2 I of the set of linear (and hence, convex)
functions f˛ ! t˛ � log .t/ W t 2 Ig (which by .A:3/, includes the null function
for t D 0). Thus, ‰.	/ is a (possibly infinite) convex nonnegative function on R. It
follows from (2.7) and (2.10), that, under .A:1-2-3/,

‰.�/ D 0; ‰.˛/ D ˛t�.˛/ � log .t�.˛// < 1 for B < ˛ < A; (2.18)

As follows from (2.18) and the properties of t�.˛/ over ˛ 2 .B;A/, ‰.˛/ is an
analytic function of ˛ 2 .B;A/, fulfilling, via (2.8) and (2.18),

d‰.˛/

d˛
D t�.˛/ and ‰.˛/ D

Z ˛

�

t�.u/du D
Z t�.˛/

0

tm0.t/dt: (2.19)

In particular, we infer from (2.19) that

‰.A/ D lim
˛"A

‰.˛/ D
Z t0

0

tm0.t/dt; ‰.B/ D lim
˛#B

‰.˛/ D
Z t1

0

tm0.t/dt: (2.20)
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In view of (2.8) and (2.18), ‰.	/ is strictly convex on .B;A/, decreasing on .B; ��
and increasing on Œ�;A/. When A < 1, the definition of‰.˛/ for ˛ � A is given by

‰.˛/ D

8̂
<̂
ˆ̂:
˛t0 � log .t0/; if A � ˛ < a D 1; .) t0 < 1/;

� logP.X D a/; if A D a D ˛ < 1; .) t0 D 1/;

1; if A D a < ˛ < 1; .) t0 D 1/:

(2.21)

Likewise, when B > �1, the definition of ‰.˛/ for ˛ � B is given by

‰.˛/ D

8̂
<̂
ˆ̂:
˛t1 � log .t1/; if B � ˛ > b D �1; .) t1 > �1/;

� logP.X D b/; if B D b D ˛ > �1; .) t1 D �1/;

1; if B D b > ˛ > �1; .) t1 D �1/:

(2.22)

As follows from (2.21)–(2.22), ‰.	/ is not strictly convex on ŒA;1/ when A <

a D 1 (resp. on .�1;B� when B > b D �1), being linear on this interval.
Set J WD f˛ W ‰.˛/ < 1g. By (2.18)–(2.22), .b; a/  J  Œb; a� is an interval
with endpoints b and a, and ‰.	/ is continuous on J. Moreover, we have (see, e.g.,
Lemma 2.1 in Deheuvels [6]),

lim
˛#�1

˛�1‰.˛/ D t1 and lim
˛"1

˛�1‰.˛/ D t0: (2.23)

Remark 2.6

.1ı/ Let fa.t/ W t � 0g and fQa.t/ W t � 0g be nondecreasing functions, fulfilling the
conditions

.i/ a.0/ D Qa.0/ D 0,
T0 WD supft W a.t/ < 1g > 0, eT0 WD supft W Qa.t/ < 1g > 0;

.ii/ a.	/ is continuous on I0 WD ft � 0 W a.t/ < 1g,
Qa.	/ is continuous oneI0 WD ft � 0 W Qa.t/ < 1g;

.iii/ a .Qa.t// D t for t 2eI0 and Qa .a.t// D t for t 2 I0.

We note that T0 (resp. eT0) is the upper endpoint of I0 (resp. eI0). Consider the
conjugate (or complementary) pair of Young functions given by

A.s/ D
( R s

0
a.u/du for 0 � s � T0;

1 for s > T0;
(2.24)

eA.s/ D
( R s

0
Qa.u/du for 0 � s �eT0;

1 for s >eT0: (2.25)
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These functions fulfill Young’s inequality (refer to Rao and Ren [19], p. 6)

st � A.s/CeA.t/ for s � 0 and t � 0; (2.26)

together with the reciprocal relations

A.t/ D sup
s2I0

fst �eA.s/g D sQa.s/� A.Qa.s//; (2.27)

eA.s/ D sup
t2eI0

fst � A.st/g D ta.t/ �eA.a.t//: (2.28)

Examples of conjugate pairs of Young functions are given, for s > 0, by

A.s/ D ‰.�˙ s/ D
Z s

0

a.u/du; a.u/ D t�.�˙ u/; (2.29)

eA.s/ D logf .˙s/e	s�g D
Z s

0

Qa.u/du; Qa.u/ D m.˙u/� �: (2.30)

A consequence of (2.27)–(2.28), when applied to (2.29)–(2.30), is that the Legendre-
Chernoff function ‰.	/ completely determines the mgf  .	/ of X, whence the law
of X. Since the knowledge, for all C > 0, of the strong limiting behavior of the
maximal and minimal increments of size C log T of the partial sum process S.	/
(see, e.g. (3.2)–(3.3) in the sequel) fully determines‰.	/ (and hence, � which is the
unique solution of ‰.�/ D 0), the same holds for  .	/, and hence for the law of X.
We so obtain an easy proof of a characterization result due to Bártfai [2], showing
that the knowledge of the limiting behavior of the Erdős-Rényi increments fully
determines the underlying distribution.

.2ı/ For any Young function fA.s/ W s � 0g, as in (2.24), we may define the Orlicz
class (see, e.g., Rao and Ren [19], p. 45) of A.	/ by

LAIC D



f W Œ0;C� ! R W
Z C

0

A .j f .t/j/ dt < 1
�
:

In view of this definition, we may rewrite the definition (1.27) of KC�
ˆIC into

KC�
ˆIC D fH� 2 ACIC W h� 2 LˆICg :

This last identity shows that our results are deeply rooted in the theory of Orlicz
spaces (see, e.g., Krasnosel’skii and Rutickii [17], Rao and Ren [19]).
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2.2 The Legendre Conjugate Function

Under .A:1-2-3/, the Legendre conjugate function of ‰.	/ is given by

‰�.˛/ WD

8̂
<̂
ˆ̂:
˛‰.1=˛/ for ˛ > 0;

t0 for ˛ D 0;

1 for ˛ < 0:

(2.31)

Recall the definitions (2.3)–(2.5) and (2.7), of a, A and t�.	/.
Lemma 2.7 Under .A:1-2-3/, ‰�.	/ is convex and nonnegative on R. It fulfills
‰�.1=�/ D 0, together with

‰�.˛/ D ‰�
0 .˛/ WD

(
supt2Ift � ˛ log .t/g for ˛ � 0;

1 for ˛ < 0:
(2.32)

Moreover, setting 1=A D 0 when A D 1, for each 0 � 1=A < ˛ < 1,

‰�.˛/ D t�.1=˛/� ˛ log .t�.1=˛//; (2.33)

d

d˛
‰�.˛/ D ‰.1=˛/� t�.1=˛/

˛
; (2.34)

d2

d˛2
‰�.˛/ D 1

˛2�2.t�.1=˛//
> 0: (2.35)

In addition, when A < 1, we have

‰�.˛/ D

8̂
<̂
ˆ̂:

t0 � ˛ log .t0/; if 0 � ˛ < 1=A; A < a D 1;

�˛ logP.X D a/; if ˛ D 1=A; A D a < 1;

1; if 0 � ˛ < 1=A; A D a < 1:

(2.36)

Proof In view of (2.31)–(2.32), ‰�.˛/ D ‰�
0 .˛/ for ˛ > 0 follows from the

definition (2.10) of ‰.	/. When ˛ D 0, (2.32) yields, via .A:3/, ‰�
0 .0/ D

supt2I t D t0, which is in agreement with ‰�.0/ D ‰�
0 .0/ D t0 in (2.31). Since

‰�.˛/ D ‰�
0 .˛/ D 1 for ˛ < 0, we get ‰�.˛/ D ‰�

0 .˛/ for all ˛ 2 R, which
establishes (2.31)–(2.32). Since, for ˛ � 0, ‰�.˛/ D ‰�

0 .˛/ is the supremum over
t 2 I of the set of convex functions ft ! t � ˛ log .t/g (which, via .A:3/, includes
the null function for t D 0 2 I), ‰�.	/ D ‰�

0 .	/ is a (possibly infinite) nonnegative
convex function on R

C WD Œ0;1/. By setting, as in (2.31)–(2.32),‰�.˛/ D 1 for
˛ < 0, we see that the so-defined ‰�.	/ D ‰�

0 .	/ is convex on R. The remainder of
the proof follows from (2.8)–(2.9) and the observation that, via (2.31), that (2.33)
is equivalent to (2.18) after the formal change of ˛ into 1=˛. By all this, (2.36) is a
consequence of (2.21). �
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As follows from (2.6) and (2.35), ‰�.	/ is finite and strictly convex on .1=A;1/,
decreasing on .1=A; 1=��, increasing on Œ1=�;1/, and positive on R � f1=�g.
By (2.36), we see that, whenever A < a D 1, ‰�.	/ is linear (and hence, not
strictly convex) on Œ0; 1=A/. Given these relations, (2.31) implies that

lim
˛#�1

˛�1‰�.˛/ D 1 and lim
˛"1

˛�1‰�.˛/ D ‰.0/: (2.37)

Remark 2.8 We point out that, for all ˛ 2 R,

‰�
1 .˛/ WD sup

t2I
ft � ˛ log .t/g � ‰�.˛/ D ‰�

0 .˛/; (2.38)

with a possibly strict inequality for ˛ < 0. To establish this property under .A:1-2-
3-4/, we recall from (2.3) that b � 0. Thus, we infer from (2.6) that m.t/ � b � 0

for all t 2 I. Therefore, whenever ˛ < 0, the function �.t/ WD t � ˛ log .t/ fulfills
�0.t/ D 1 � ˛m.t/ > 0 over t 2 I. This yields, for ˛ < 0,

‰�
1 .˛/ D sup

t2I
ft � ˛ log .t/g D t0 � ˛ log .t0/ � 1; (2.39)

where the inequality is strict iff  .t0/ < 1. In the latter case, we must also have
t0 < 1 (see, e.g., Remark 2.3). Therefore, whenever ‰�

0 .˛/ D t0 � ˛ log .t0/ <
1, we have 0 < ‰�

1 .˛/ < ‰�.˛/ D 1 for ˛ < 0, so that the function ‰�
1 .˛/, as

defined in (2.38), differs from ‰�.˛/, as defined in (2.31).

2.3 An Inversion Scheme

Assume that ˆ is such that ‡ D ˆ fulfills .‡:1-2-3/, with �ˆ > 0. Set

ˆC.˛/ WD
(
ˆ.˛/ for ˛ � 0;

1 for ˛ < 0:

Observe that ‡ D ˆC also fulfills .‡:1-2-3/, with �ˆ
C

D �ˆ > 0. Given this
property, to simplify notation, we shall set, throughout the present section,ˆ D ˆC,
and work under the assumption that ˆ.˛/ D 1 for ˛ < 0. In agreement with
.‡:3/, (2.23), and the notation (2.31), corresponding to the case where ˆ D ‰, we
define the Legendre conjugate function ˆ� of ˆ by

ˆ�.˛/ D

8̂
<̂
ˆ̂:
˛ˆ.1=˛/ for ˛ > 0;

ˆ�.0/ WD �0Iˆ D limu!1 u�1ˆ.u/ for ˛ D 0;

1 for ˛ < 0:

(2.40)
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It is noteworthy that fˆ�g�.˛/ D ˆ.˛/ for ˛ � 0. We have, namely,

ˆ.˛/ D

8̂
<̂
ˆ̂:
˛ˆ�.1=˛/ for ˛ > 0;

ˆ.0/ D �0Iˆ� WD limu!1 u�1ˆ�.u/ for ˛ D 0

1 for ˛ < 0:

(2.41)

Fix C > 0, and consider a non-null piecewise linear function with finitely many
jumps H� 2 KC

ˆIC  IC . We denote by I�
C the subset IC of all such functions. We

set D WD H�.C/ > 0, and assume that H� 2 I�
C is of the form

H�.t/ D
Z t

0

h�.s/ds C
Z
Œ0;t�

dH�S.t/ for t 2 R; (2.42)

where h� and H�S are as follows. We introduce two nondecreasing sequences t0 D
0 � t1 � : : : � tk D C, and T0 D 0 � T1 � : : : � Tk D H�.C/. We set
ci D Ti � Ti�1 and c�

i D ti � ti�1 for i D 1; : : : ; k, and set

N WD fi W 1 � i � k; W ti�1 D tig D fi W 1 � i � k; ci D 0g;
P WD f1 � i � k W ti�1 < tig D fi W 1 � i � k; c�

i > 0g;
N � WD fi W 1 � i � k; W Ti�1 D Tig D fi W 1 � i � k; c�

i D 0g;
P� WD f1 � i � k W Ti�1 < Tig D fi W 1 � i � k; ci > 0g:

Denote by ıx the Dirac measure at x. We define h� and H�S in (2.42) by

h�.t/ WD
X
i2P

�
Ti � Ti�1
ti � ti�1

	
1fti�1<t�tig for t 2 R; (2.43)

dH�S WD
X
i2N

.Ti � Ti�1/ıti : (2.44)

We now define the invert Hinv
� 2 I�

D of H� , by

Hinv
� .t/ WD

Z t

0

hinv
� .s/ds C

Z
Œ0;t�

dHinv
�S
.t/ for t 2 R; (2.45)

where hinv
� and Hinv

�S
in (2.45) are given by

hinv
� .t/ WD

X
i2P�

�
ti � ti�1

Ti � Ti�1

	
1fTi�1<t�Tig for t 2 R; (2.46)

dHinv
�S

WD
X

i2N�

.ti � ti�1/ıTi : (2.47)
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(2.45)–(2.47) imply that Hinv
� 2 ID. By replacing fti W 1 � i � kg, H� , h� , H�S and

C > 0 by fTi W 1 � i � kg, Hinv
� , hinv

� , Hinv
�S

and D > 0, respectively, we may repeat
verbatim these definitions, as to define the invert of Hinv

� 2 ID by fHinv
� ginv D H� 2

IC. It follows that the map RC;D W H� 2 I�
C ! Hinv

� 2 I�
D is one-to-one, with invert

given by RD;C.

Lemma 2.9 Under the assumptions above, we have

Hinv
� .t/ D supfs � C W H�.s/ � tg for 0 � t � D D H�.C/; (2.48)

H�.t/ D supfs � D W Hinv
� .s/ � tg for 0 � t � C D Hinv

� .D/ (2.49)

Moreover,

J C
CIˆ.H�/ D

Z C

0

ˆ.h�.t//dt C �0IˆH�.C/

D
X
i2P
.ti � ti�1/ˆ

�
Ti � Ti�1
ti � ti�1

	
Cˆ�.0/

X
i2N

.Ti � Ti�1/

D J C
DIˆ�

.Hinv
� / D

Z C

0

ˆ�.hinv
� .t//dt C �0Iˆ� Hinv

� .D/ (2.50)

D
X
i2P�

.Ti � Ti�1/ˆ
�

ti � ti�1
Ti � Ti�1

	
Cˆ.0/

X
i2N�

.ti � ti�1/:

Proof The proof of (2.48)–(2.49) is achieved by a tedious enumeration of cases,
whose details are omitted. To establish (2.50), we combine (2.43)–(2.46) with the
definition (1.29) of J C

CIˆ. �

Let C > 0. In view of Lemma 2.9, we now define the invert of an arbitrary H� 2 IC

such that D WD H�.C/ > 0 as the function Hinv
� 2 ID fulfilling Hinv

� .D/ D C, and
defined via the reciprocal equations

Hinv
� .t/ D supfs � C W H�.s/ � tg for 0 � t � D D H�.C/; (2.51)

H�.t/ D supfs � D W Hinv
� .s/ � tg for 0 � t � C D Hinv

� .D/: (2.52)

We shall make use of the following lemma.

Lemma 2.10 Fix C > 0 and D > 0, and let H�1 ;H�2 2 IC and " > 0 be such that
�L.H�1;H�2/ < ". Assume that D WD H�j.C/, j D 1; 2, and consider Hinv

�j
2 ID for

j D 1; 2. We then have

�L.Hinv
�1
;Hinv

�2
/ < ": (2.53)
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Proof Fix any 0 � t � D, and set, in view of (2.51), 0 � x WD Hinv
�2
.t/ � C.

By (2.51), we have

H�2.x � u/ � t < H�2.x C u/ for all u > 0:

Now, the inequality �L.H�1;H�2/ < " implies that, for all s 2 R, H�1.s � "/ � " <

H�2.s/ < H�1.sC"/C". By setting s D x�u (resp. s D xCu) in this last inequality,
we see that, for each u > 0, we have the inequalities H�1.x�"�u/ < H�2.x�u/C" �
t C " (resp. t � " < H�2.x C u/ � " < H�1.x C " C u/). This, in turn, implies that
Hinv
�2
.t/ � " D x � " � Hinv

�1
.t C "/ (resp. Hinv

�1
.t � "/ � x C " D Hinv

�2
.t/C "). We so

obtain that

Hinv
�1
.t � "/� " � Hinv

�2
.t/ � Hinv

�1
.t C "/C ":

Our initial choice of 0 � t � D being arbitrary, we see that the above inequalities
hold for all 0 � t � D. This suffices for (2.53). �

The next lemma will be useful to show that, when H� 2 IC varies in KC
ˆIC , the values

of D D H�.C/ vary within specified limits.

Lemma 2.11 Assume that ‡ D ˆ fulfills .‡:1-2-3/. Then, for each H� 2 KC
ˆIC, we

have

C˛�
CIˆ � H�.C/ � C˛C

CWˆ; (2.54)

where

˛�
CIˆ WD supf˛ < �ˆ W ˆ.˛/ � 1=Cg;
˛C

CIˆ WD inff˛ > �ˆ W ˆ.˛/ � 1=Cg: (2.55)

Proof The mapping H� 2 IC ! H�.C/ is continuous with respect to the weak
topology W . Therefore, by Proposition 1.6, we have

sup
H�2KC

ˆIC

H�.C/ D sup
H�2KC�

ˆIC

H�.C/:

Since H� 2 KC�
ˆIC is absolutely continuous, by setting h�.t/ D d

dt H�.t/, we may
rewrite the convexity inequalities (1.28) into

ˆ

�
1

C
H�.C/

	
D ˆ

�
1

C

Z C

0

h�.t/dt

	
� 1

C

Z C

0

ˆ.h�.t//dt � 1

C
; (2.56)

which, in view of (2.55), implies that H�.C/ � C˛C
C . The proof of the remaining

inequality in (2.54) is very similar, and hence, omitted. �
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The next proposition extends the validity of (2.50) to arbitrary df’s.

Proposition 2.12 Let ‡ D ˆ, fulfill .‡:1-2-3/, with �ˆ > 0 and ˆ.˛/ D 1 for
˛ < 0. Fix C > 0 and D > 0, and consider the mapping RC;D W H�1 2 fH� 2
IC; H�.C/ D Dg ! Hinv

�1
2 fH� 2 ID; H�.D/ D Cg. Then the mapping RC;D is

continuous with respect to the weak topology W , and one-to-one, with invert equal
to RD;C. Moreover, we have the equalities

J C
CIˆ.H�/ D J C

CIˆ�

.Hinv
� /: (2.57)

Proof The assertion that the mapping RC;D is one-to-one, with invert equal to RD;C

is straightforward. The continuity of RC;D (resp. RD;C) follows from Lemma 2.10.
To complete our proof, we need only establish (2.57). For this, we fix H�1 2 fH� 2
IC; H�.C/ D Dg and H�2 WD Hinv

�1
2 fH� 2 ID; H�.D/ D Cg. By Proposition 1.5

and Remark 1.7, there exists a sequence Hn 2 I�
C such that �L.Hn;H�1/ ! 0

as n ! 1. As follows from Lemma 2.10, we have also �L.Hinv
n ;Hinv

�1
/ ! 0 as

n ! 1, with Hinv
n 2 I�

D. Now, making use of Lemma 2.9, we see that, for each
n D 1; 2; : : :, J C

CIˆ.Hn/ D J C
CIˆ�

.Hinv
n /. This, together with an application of (1.31),

shows that

J C
CIˆ.H�/ � L1 D lim inf

n!1 J C
CIˆ.Hn/; (2.58)

J C
CIˆ�

.Hinv
� / � L1 D lim inf

n!1 J C
CIˆ.H

inv
n /: (2.59)

To conclude, we need only choose fHn W n � 1g as in the proof of Proposition 1.6,
in such a way that

sup
n�1

J C
CIˆ.Hn/ D J C

CIˆ.H�/:

By so doing, we infer from (2.58)–(2.59) that

J C
CIˆ.H�/ D L1 � J C

CIˆ�

.Hinv
� /:

By interchanging �1 and �2, we obtain, in turn, that

J C
CIˆ.H�/ � J C

CIˆ�

.Hinv
� /:

We so obtain (2.57). �
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3 Proof of Theorem 1.2

Towards proving Theorem 1.2, we recall the notation of Sects. 1, 2. For n � 0, let
Sn WD Pn

iD1 Xi denote the partial sums of fXn W n � 1g, with the convention thatP
;.	/ WD 0, and, for t � 0, consider the partial sum process S.t/ WD Sbtc. Fix a

constant C > 0, and for each x � 0 consider the increment function

�xIT.t/ WD .logC T/�1
�
S.x C t logC T/ � S.x/

�
; t 2 Œ0;C�: (3.1)

The Erdős-Rényi “new law of large numbers” (Erdős and Rényi [12], Shepp [23],
Deheuvels, Devroye and Lynch [6]) shows that, under .A:1-2-3/, a.s.,

lim
T!1

n
sup
0�x�T

�xIT.C/
o

D C˛C
C ; lim

T!1

n
inf

0�x�T
�xIT.C/

o
D C˛�

C ; (3.2)

where, in view of (2.18) and (2.23),

�1 < ˛�
C WD sup f˛ < � W C‰.˛/ � 1g < � (3.3)

< ˛C
C WD inf f˛ > � W C‰.˛/ � 1g < 1:

Consider the set of functions of t 2 Œ0;C�, defined by

FTIC WD f�xIT .	/ W 0 � x � Tg : (3.4)

The original Erdős-Rényi law (3.2), describes the a.s. limiting behavior of
supf‚.	/ W 	 2 FTICg, for the functional ‚.	/ D ˙	.C/. The variants of
this result for other choices of ‚ (such as‚.	/ D ˙ sup0�t�C ˙	.t/) discussed by
Deheuvels and Devroye [7], motivate a functional limit theorem (FLT), describing
the a.s. limiting behavior of FTIC , as T ! 1. For the statement of this FLT, some
complements are needed.
We first extend the notation of Sect. 1 to signed measures. Let B (resp. BC) denote
the set of Borel subsets of R (resp. Œ0;C�). Denote by M (resp. MC) the set of
Radon measures on R

C (resp., on Œ0;C�). By definition M (resp. MC) is the set of
continuous linear forms on the space C.RC/ (resp. C.Œ0;C�) of continuous functions
with compact support in R

C (resp. Œ0;C�), endowed with the topology U of uniform
convergence. Namely, .C.RC/;U/ (resp. .C.Œ0;C�/;U/) is a Banach space, of which
M (resp. MC) is the topological dual. Any � 2 M (resp. � 2 MC) is the difference
of two nonnegative Radon measures on R

C (resp. Œ0;C�), in MC (resp. MC
C ). In

contrast, a Borel signed-measure on the Borel algebra B of subsets of RC (resp. BC

if subsets of Œ0;C�) is a finite countably additive set-function on B (resp. BC). Any
Borel signed-measure on B (resp. BC) is the difference of two nonnegative Borel
measures on B (resp. BC) (see, e.g., Theorem 1.8.1, p. 19 in Kawata [15]). A Radon
measure on R

C is not necessarily a Borel signed-measure on B. On the other hand,
a Radon measure on Œ0;C� (resp., on any compact subset K on R

C), is always a
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Borel signed-measure on BC (resp. on the Borel algebra BK of subsets of K), and
conversely. Because of this, unless otherwise specified, we will work on MC rather
than on M, so that the Radon measures we consider are Borel signed measures and
vice-versa. Below, we shall refer, for short, to MC, as the set of all Radon signed-
measures on Œ0;C�.
Denote by BVC the set of all right-continuous df’s H� , of Radon signed-measures
� 2 MC, of the form

H�.x/ WD � ..�1; x�/ D � .Œ0; x�/ for x 2 R:

By Lebesgue-Stieltjes integration, the map � D dH� 2 MC $ H� 2 BVC is one-
to-one. The set BVC collects the right-continuous functions H, fulfilling H.t/ D 0

for t < 0, H.t/ D H.C/ for t � C, of bounded (total) variation on Œ0;C�. The total
variation of a function 	 on A  R is the supremum

kd	kA WD sup
P

nX
iD1

j	.ti/� 	.ti�1/j;

over all finite P D ft0 < t1 < : : : < tng  A. By the Hahn-Jordan decomposition
theorem (see, e.g., Rudin [20], p. 173), for each � 2 MC, there exists a pair of
disjoint measurable subsets AC

� ;A
C
� of Œ0;C�, such that A�

� [AC
� D Œ0;C�, A�

� \AC
� D

;, and for which the measures defined by

�˙ W A 2 BC ! �˙.A/ WD sup
B2BC

˙�.A \ B/ D ˙� �A \ A�̇
�
; (3.5)

are such that �˙ 2 MC
C . By this construction, we have

��? �C; � D �C � �� and H� D H�C
� H�� : (3.6)

By all this, for each A 2 BC, the total variation of H� on A is given by j�j.A/ D
jdH�j.A/ D �C.A/C ��.A/. For A D Œ0;C� and � 2 MC, we get

j�j.Œ0;C�/ D �C.Œ0;C�/C ��.Œ0;C�/ D H�C
.C/C H��.C/ < 1: (3.7)

In view of (1.15), the Lebesgue decomposition of �˙ is as follows. For each t � 0,
we have

H�˙

.t/ D H
�˙

AC
.t/C H

�˙

S
.t/ D

Z t

0

h�˙

.t/dt C H
�˙

S
.t/; (3.8)

with

h�˙

.t/ DWD d

dt
H�̇AC

.t/ D
(
0 for t 2 A	

� ;

˙h�.t/ � 0 for t 2 A�̇ ;
(3.9)
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and where the df H
�˙

S
of the singular component �Ṡ of �˙ fulfills �Ṡ ?
. We have

therefore, for all t 2 R,

H�.t/ D
Z t

0

h�.t/dt C H�S.t/; (3.10)

h�.t/ D h�C
.t/ � h��.t/ D h�C

.t/1ft2AC

� g � h��.t/1ft2A�

� g; (3.11)

H�S.t/ D H
�

C

S
.t/ � H��

S
.t/ and dH��

S
? dH

�
C

S
: (3.12)

The absolutely continuous Radon signed-measures � 2 MC, with j�j � 
,
compose a subset of MC, which we denote by ACMC. We denote by BVACC

the set of df’s H� of signed measures � 2 ACMC.
The space MC of Radon signed measures on Œ0;C�, endowed with the topology,W ,
of weak (or weak�) convergence, is denoted by .MC;W/. The topology W on MC

is defined as follows. Given a directed net .N I �/ of signed measures �� 2 MC for
� 2 N , and some � 2 MC, we have, along N , �� !W �, iff, for every bounded
real continuous function 	 on R, along N ,

Z
Œ0;C�

	.t/dH��.t/ !
Z
Œ0;C�

	.t/dH�.t/:

In contrast with the case where this convergence holds in MĊ , the weak conver-
gence of �� to � in MC is not equivalent to the convergence of H�n.t/ to H�.t/ at
each continuity point t of H� . Moreover, the weak� topology W on the topological
dual of an infinite dimensional Banach space (in the present setup, the topological
dual MC of .CC;U/) is, in general, not metrisable, and so, we cannot hope to endow
MC with a metric inducing W . This difficulty may be overridden, thanks to the
observation that the totally bounded subsets of MC are weak�-metrisable. Making
use of this property, we will work in the following framework. For each M > 0, we
denote by MCIM (resp. BVCIM) the set of all � 2 MC (resp. H� 2 BVC) such that
j�j.Œ0;C�/ � M. We set likewise MĊIM WD MĊ \ MCIM , ICIM WD BVCIM \ IC D
fH� W � 2 MC

CIMg, and DCIM WD BVCIM \ DC D fH� W � 2 M�
CIMg. We invoke

Corollary 1, pp. 182–183 in Högnäs [14], to show that the weak topology W on
BVCIM may be induced by the metric �H, defined, for H�1 ;H�2 2 BVCIM , by

�H.H�1;H�2/ WD
Z C

0

jH�1.t/ � H�2.t/jdt C jH�1.C/� H�2.C/j: (3.13)

The next lemma compares the metrics�H, �L and �U .

Proposition 3.1 For any �1; �2 2 MC, we have

�H.H�1 ;H�2/ � .C C 1/kH�1 � H�2k: (3.14)
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If, in addition, �1; �2 2 MĊIM, then,

�H.H�1;H�2/ � 2.C C 1C M/�L.H�1;H�2/; (3.15)

�L.H�1;H�2/ � max
˚
�H.H�1;H�2/;�H.H�1 ;H�2/

1=2
�
: (3.16)

Proof We infer from (1.9) and (3.13), that, for any �1; �2 2 MC,

�H.H�1;H�2/ � CkH�1 � H�2k C kH�1 � H�2k;

whence (3.14). let now �1; �2 2 MC
CIM be such that �L.H�1;H�2/ < . As follows

from (1.7), we have, for all t 2 R,

H�2.t/ � H�1.t/ � H�1.t C / � H�1.t/C ;

H�1.t/ � H�2.t/ � H�2.t C / � H�2.t/C ;

and, for t D C, noting that H�j.t/ D H�j.C/, j D 1; 2, for t � C, we get

jH�2.C/� H�1.C/j � 2 C H�1.C C / � H�1.C/C H�2.C C / � H�1.C/ D 2:

Likewise, since 0 � H�j.t/ � M, j D 1; 2, for all t 2 R,

Z C

0

jH�2.t/ � H�1.t/jdt

�
Z C

0

fH�1.t C / � H�1.t/C g dt C
Z C

0

fH�2.t C / � H�2.t/C g dt

� 2C C
Z CC

C
fH�1.t/C H�2.t/g dt �

Z 

0

fH�1.t/C H�2.t/g dt

� 2C C 2M:

By combining the above inequalities, we obtain (3.15). The proof of this statement
for �1; �2 2 M�

CIM follows along the same lines.
To establish (3.16), we let H�1 ;H�2 2 ICIM , and set �L.H�1 ;H�2/ D 0.

.1/ Consider first the case where 0 > C. Select any C <  < 0. In this case, we
must have, for some t 2 R, either

H�1.t � / �  � H�2.t/ or H�1.t C /C  � H�2.t/:

If t � C, then H�1.t � / � H�1.C � / D 0, so that the first inequality is
impossible. We must therefore have H�1.tC/C � H�2.t/. This last inequality
is impossible for t < 0, so that, we must have 0 � t � C, in which case
the inequality reduces to H�1.C/ C  � H�2.t/, which, in turn, implies that
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H�2.C/ � H�1.C/ � . Making use of a similar argument for t > C, and
collecting both cases, we obtain that

�H.H�2 ;H�1/ � jH�2.C/ � H�1.C/j �  > 0 D �L.H�2;H�1/:

.2/ Next, we treat the case where 0 � C. Then, for each  < 0 � C, there exists
some t 2 R such that, either H�2.t/ > H�1.tC/C, or H�2.t/ < H�1.t�/�.
We must have therefore one of the following cases.

.i/ Assume that for some 0 � t � C � , H�2.t/ D H�1.t C / C . In this case,
we see that, for all t � s � t C  � C,

H�2.s/ � H�1.s/ � H�2.t/� H�1.t C / � :

We have therefore

Z C

0

jH�2.s/� H�1.s/jds �
Z tC

t
 ds D 2:

.ii/ Assume now that, for some t � C � , H�2.t/ D H�1.t C / C . In this
case, we see that H�1.t C / D H�1.C/, so that H�2.C/ � H�1.C/ � H�2.t/ D
H�1.t C / D , and jH�2.C/ � H�1.C/j � .

.iii/ The other cases reduce to .i-ii/ via the replacement of .�1; �2/ by .�2; �1/.

By collecting the conclusions of Cases .i-ii-iii/, we see that

�H.H�2;H�1/ � jH�2.C/ � H�1.C/j � min
˚
; 2

�
> min

˚
0; .0/2

�
D min

˚
�L.H�2;H�1/;�L.H�2 ;H�1/

2
�
;

from where (3.16) is straightforward. �

Remark 3.2 The inequality (3.16) provides an easy proof of Corollary 2, p. 183 of
Högnäs [14], showing that, whenever f�n W n � 1g  MĊ and � 2 MĊ are such
that�H.H�n ;H�/ ! 0 as n ! 1, then, we also have�L.H�n ;H�/ ! 0 as n ! 1.

Proposition 3.3 For each C > 0 and M > 0, MCIM is compact in .MC;W/.

Proof Let f�n W n � 1g  MCIM. For each n � 1, �n D �C
n � ��

n , and

j�nj.Œ0;C�/ D �C
n .Œ0;C�/C ��

n .Œ0;C�/ � M;

so that �ṅ 2 MC
CIM . By the arguments in the proof of Proposition 1.5, it is readily

checked that MC
CIM is compact in .MC

C ;W/. Therefore, there exist two nonnegative
measures �� 2 MC

CIM and ��� 2 MC
CIM, together with an increasing sequence
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1 � n1 < n2 < : : : , such that, as j ! 1,

�L.�C
nj
; ��/ ! 0 and �L.��

nj
; ���/ ! 0:

Setting � D �� � ���, we infer from (3.15), that, as j ! 1,

�H.�nj ; �/ � �H.�C
nj
; ��/C�H.��

nj
; ���/

� 2.C C M C 1/
n
�L.�C

nj
; ��/C�L.��

nj
; ���/

o
! 0:

We so obtain that the space MCIM , endowed with the metric topology induced by
�H, is sequentially compact, and hence, compact. �

Define the Hausdorff set-metric pertaining to �H as follows. For each H� 2 MC

and  > 0, set

NIH.H�/ WD fG 2 MC W �H.G;H�/ < g ;

and, for each A  MC and  > 0, set

AIH WD
[

H�2A

NIH.H/:

Finally, for each A;B  MC, set

�H.A;B/ WD inf
˚
 > 0 W A  BIH and B  AIH

�
: (3.17)

Let ‡ D ˆ fulfill .‡:1-2-3/, and consider the set of functions of MC

HˆIC WD
n
H� 2 BVC W

Z C

0

ˆ .h�.t// dt

C�0IˆH
�

C

S
.C/C �1IˆH��

S
.C/ � 1

o
: (3.18)

Set, likewise

H�̂ IC WD



H� 2 ACC W
Z C

0

ˆ .h�.t// dt � 1

�
: (3.19)

In (3.18), we use the convention that, when �0Iˆ D 1 (resp. �1Iˆ D �1), the
H� 2 HˆIC fulfill H

�
C

S
.C/ D 0 (resp. H��

S
.C/ D 0). When �0Iˆ D ��1Iˆ D 1, the

H� 2 HˆIC are absolutely continuous on Œ0;C�, so that HˆIC D H�̂ IC.
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Introduce the functional on MC $ BVC , defined by

JCIˆ.H�/ WD
Z C

0

ˆ .h�.t// dt C �0IˆH
�

C

S
.C/C �1IˆH��

S
.C/: (3.20)

Proposition 3.4 Let ‡ D ˆ fulfill .‡:1-2-3/, with �ˆ D 0. Then for each C > 0

and M > 0, JCIˆ is lower semi-continuous on .BVCIM;W/.

Proof Since .BVCIM;W/ is metric, we need only show that, for any sequence f�n W
n � 1g  MCIM and � 2 MCIM , we have

lim
n!1�H.H�n ;H�/ D 0 ) lim inf

n!1 JCIˆ.H�n/ � J C
CIˆ.H�/: (3.21)

For this, we make use of the Hahn-Jordan decomposition � D �C � �� of �, as
in (3.5)–(3.6), with �˙ 2 MC

C , and observe that the condition that � 2 BVCIM is
equivalent, via (3.7) to

j�j.Œ0;C�/ D �C.Œ0;C�/C ��.Œ0;C�/ � M:

Set, for each A 2 BC,

�C.A/ WD �.A \ AC
� / and ��.A/ WD ��.A \ A�

� /:

By this definition, H�˙

2 IC
C \BVCIMCC , and � D �C���. In view of (3.8)–(3.10),

observe that, a.e. with respect to u 2 Œ0;C�,

h�˙

.u/ D d�˙.u/
du

D
(

h�̇ .u/ for u 2 A�̇ ;

0 for u 2 A	
� :

Recalling that ˆ.0/ D ˆ.�ˆ/ D 0, we infer from the above relations that

JCIˆ.H�/ D J C
CI‰.H�C

/C J C
CIˆ.�H��/: (3.22)

Set now L WD lim infn!1 JCIˆ.H�n/. There exists an increasing sequence fnk W k �
1g of integers such that

L WD lim
k!1JCIˆ.H�nk

/:

Consider the Hahn-Jordan decomposition �n D ��
n ���

n of �n 2 MCIM . Making use
of the fact (see, e.g., Proposition 3.3) that MCIM is a compact subset of .MC;W/,
and via the eventual replacement of fnk W k � 1g by a properly chosen infinite
subsequence, we may assume that there exist Radon signed measures � 2 MCIM
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and ��̇ 2 MĊIM , such that, as k ! 1

�nk

W! �; �C
nk

W! �C� ; ��
nk

D �nk � �C
nk

W! ��� D � � �
/
�: (3.23)

This implies that � D �C� � ��� , with ��̇ 2 MC
C . By Proposition 1.6, we infer

from (3.23) that

lim inf
k!1 J C

CIˆ.˙H�˙

nk
/ � J C

CIˆ.˙H
�˙

�

/: (3.24)

On the other hand, we infer from (3.5) that, for any A 2 BC,

�C.A/ D �.A \ AC
� / D �C� .A \ AC

� /� ��� .A \ AC
� / � �C� .A \ AC

� /;

0 D �.A \ A�
� / � �C� .A \ A�

� /:

We have therefore

�C.A/ D �C.A \ AC
� /C �C.A \ A�

� / � �C� .A \ AC
� /C �C� .A \ A�

� / D �C� .A/:

A similar argument shows that, for any A 2 BC, ��.A/ � ��� .A/. This implies that
the measures ��̇ � �˙ are nonnegative. Consider the Lebesgue decompositions of
these measures, given by

H
�˙

�

.t/�H�˙

.t/D Hf�˙

�

��˙g.t/ D
Z t

0

hf�˙

�

��˙g.u/duCHf�˙

�

��˙gS
.t/ for t 2R:

Since �ˆ D 0, ˆ is nonincreasing (resp. nonincreasing) on .�1; 0� (resp. Œ0;1/).
By all this, we see that

J C
CIˆ.H�C

/ D
Z
Œ0;t�\A

�C

ˆ.h�.u//du C �0Iˆ
Z
Œ0;t�\A

�C

dH�S.u/

�
Z
Œ0;t�\A

�C

ˆ.h�.u/C hf�˙

�

��˙g.u//du

C�0Iˆ
Z
Œ0;t�\A

�C

dfH�S C Hf�˙

�

��˙gS
g.u/

D
Z
Œ0;t�\A

�C

ˆ.h
�˙

�

.u//du C �0Iˆ
Z
Œ0;t�\A

�C

dfHf�˙

�

gS
g.u/

�
Z
Œ0;t�
ˆ.h

�˙

�

.u//du C �0Iˆ
Z
Œ0;t�

dfHf�˙

�

gS
g.u/ D J C

CIˆ.H�
C

�

/:
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Making use of a similar argument in the “�” case, we get, via (3.22)–(3.24),

JCIˆ.H�/ D J C
CI‰.H�C

/C J C
CIˆ.�H��/ � J C

CI‰.H�
C

�

/C J C
CIˆ.�H��

�

/

� lim inf
k!1 J C

CIˆ.H�
C

nk
/C lim inf

k!1 J C
CIˆ.�H��

nk
/ � lim inf

k!1 JCIˆ.H�nk
/ D L:

To conclude, we observe that the just-proven inequality J C
CIˆ.H�/ � L does not

depend upon the choice of fnk W k � 1g. �

Corollary 3.5 Let ‡ D ˆ fulfill .‡:1-2-3/. Then, for any C > 0, there exists an
M > 0 such that HˆIC is a compact subset of .BVCIM;W/.

Proof Making use of the same arguments as in the proof of Proposition 1.6, we see
that an arbitrary H� 2 HˆIC fulfills, for all 0 � t � C, the inequalities

�1 < ˛�
CIˆ WD supf˛ < �ˆ W ˆ.˛/ > 1=Cg � H�.t/

� ˛C
CIˆ WD inff˛ > �ˆ W ˆ.˛/ > 1=Cg < 1:

This suffices to show that H�.t/ is bounded on Œ0;C�, but does not yield the proper
information on the total variation jdH�j of H� on Œ0;C�. To obtain the necessary
bounds, we repeat this arguments for H�˙

and with ˆ˙.˛/ WD ˆ.˙˛/ for ˛ � 0,
and ˆ˙.˛/ WD 1 for ˛ < 0. We so obtain readily the existence of an M > 0 so
large that HˆIC � BVCIM .
Let I denote the identity. Observe that

fH� � �ˆI W H� 2 HˆICg D Hˆ0IC;

where ˆ0.˛/ WD ˆ.˛ C �ˆ/ for ˛ 2 R. Since then �ˆ0 D 0 we may apply
Proposition 3.4 to show that JCIˆ0 is lower semi-continuous in .BVCIM;W/.
This implies that Hˆ0IC D fH� 2 BVCIM W JCIˆ0.H�/ � 1g is closed in
.BVCIM;W/. Since Proposition 3.3 shows that BVCIM is compact, the conclusion
is straightforward. �

Proposition 3.6 Assume that ‡ D ˆ fulfills .ˆ:1-2-3/. Fix C > 0, and let M > 0

be so large that HˆIC  BVCIM. Denote by H��̂IC the subset of H�̂ IC composed of
piecewise linear functions. Then, H��̂IC is dense in HˆIC, with respect to the metric
topology .BVCIM;W/.

Proof Making use of the argument used in the proof of Corollary 3.5, we may
limit ourselves to the case where �ˆ D 0. Under this assumption, we infer from
Corollary 3.5 that, whenever fH�n W n � 1g  H��̂IC  HˆIC , there exists an
H� 2 HˆIC, together with an increasing sequence of integers 1 � n1 < n2 < : : :,
such that, as k ! 1,

H�k

W! H�:
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Conversely, if H� 2 HˆIC  BVCIM is arbitrary, we write the Hahn-Jordan
decomposition � D �C � �� of �, and make use of Proposition 1.6 and Remark 1.7
to show the existence of two sequences f�ṅ W n � 1g 2 MC

C , such that �ṅ 2 H��̂IC ,
and, as n ! 1

H�˙

n

W! H�˙

:

Namely, with Pn as in the proof of Proposition 1.6, we set

H�˙

n
WD HPn

�˙

for n � 1:

Set �n D �C
n � ��

n for n � 1. By (1.36)–(1.38), this choice ensures that

JCIˆ.�n/ D JCIˆ.�C
n /C JCIˆ.���

n / for n � 1;

�ṅ
W! �˙ as n ! 1;

JCIˆ.˙�ṅ / � JCIˆ.˙�˙/;

JCIˆ.˙�ṅ / ! JCIˆ.˙�˙/ as n ! 1:

Making use of the triangle inequality, we write

�H.H�;H�n/ � �H.H�C

;H
�

C

n
/C�H.H�� ;H��

n
/ ! 0;

and

JCIˆ.�n/ D JCIˆ.�C
n /C JCIˆ.���

n /

� JCIˆ.�C/C JCIˆ.���/ D JCIˆ.�n/ � 1:

This shows that H�n 2 H��̂IC, and that H�n

W! H� as n ! 1. The proof of
Proposition 3.6 is, therefore, completed. �

We shall make use of Theorems 3.1 and 3.2 of Deheuvels [6], which give a general
form of an Erdős-Rényi FLT for the partial sum process, stated below.

Theorem 3.7 Under .A:1-2-3/, for any C > 0, there exists an M < 1 such that,
almost surely for all T sufficiently large, FTIC  BVCIM. Moreover, we have, almost
surely,

lim
T!1�H

�
FTIC;H�̂ IC

� D lim
T!1�H .FTIC;HˆIC/ D 0: (3.25)
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If, in addition, .A:4/ holds, then, almost surely FTIC  IC
C , and HˆIC  IC

C . We
then have, almost surely,

lim
T!1�L

�
FTIC;H�̂ IC

� D lim
T!1�L .FTIC;HˆIC/ D 0: (3.26)

Under .A:1-2-3/, when t1 D �1 and t0 D 1, we have HˆIC D H�̂ IC, and

lim
T!1�U .FTIC;HˆIC/ D 0: (3.27)

Remark 3.8 The limit law (3.27), due to Borovkov [3], was shown by Deheuvels
[6] to follow from (3.25). Sanchis [21, 22] rediscovered (3.27), and gave an other
proof of this result.

In order to prove Theorem 1.2, we first establish the lemma:

Lemma 3.9 Fix C > 0 and M > 0, and consider the mapping

H� 2 P W BCCIM ! P.H�/ 2 IC;

defined by

P.H�/.t/ WD sup
0�s�t

H�.s/ for 0 � s � t:

Then P is a continuous mapping of .BVCIM;U/ onto .IC;W/.

Remark 3.10 We conjecture that the mapping in Lemma 3.9 is continuous with
respect to the weak topology. This is a crucial point in the extension of the statement
of Theorem 1.2 to situations where .A:4/ is not fulfilled.

Proof Obviously, we have, for H�1 ;H�2 2 BVCIM

sup
0�t�1

ˇ̌
ˇ̌
ˇ
(

sup
0�s�t

H�1.s/

)
�
(

sup
0�s�t

H�2.s/

) ˇ̌
ˇ̌
ˇ � sup

0�s�1
jH�1.s/ � H�2.s/j ;

so that �U .P.H�1/;P.H�2// � �U .H�1 ;H�2/, which completes our proof. �

Lemma 3.11 Let ‡ D ˆ fulfill .‡:1-2-3/, with �ˆ > 0, and set

ˆC.˛/ D
(
ˆ.˛/ for ˛ � 0;

1 for ˛ < 0:
(3.28)

Then, ‡ D ˆC fulfills .‡:1-2-3/ with �ˆ
C

D �ˆ. Moreover, we have

P .HˆIC/ D Hˆ
C

IC: (3.29)
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Proof The fact that ‡ D ˆC fulfills .‡:1-2-3/ with �ˆ
C

D �ˆ when �ˆ > 0 is
straightforward. We have �0Iˆ

C

D �0Iˆ and �0Iˆ
C

D 1. The remainder of the proof
is straightforward and omitted. �

Proof of Theorem 1.2 Consider first the case where .A:1-2-3-4/ hold. In this case,
for each choice of C > 0 and all T > 0 sufficiently large, FTIC  IC, and (3.26)
holds. We then combine Proposition 1.6 and Remark 1.7, with Proposition 2.12
and the inversion argument in Deheuvels and Mason [8], to obtain (1.18). For the
second part of the theorem, we observe that, under the condition ‰.0/ D 1, we
have, by (2.37), �0I‰� D 1 and �1I‰� D �1. Therefore, in this case, KC

‰�

C
D KC�

‰�

C
.

�
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for renewal processes. Ann. Inst. Henri Poincaré 23, 195–207 (1987)

2. P. Bártfai, Die Bestimmung der eu einem wiederkehrended Prozess gehörenden Verteilungs-
funktion aus den mit Fehlern behafteten Daten einer einzigen Realisation. Stud. Sci. Math.
Hung. 1, 161–168 (1966)

3. K.A. Borovkov, A functional form of the Erdős and Rényi law of large numbers. Theory
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Limit Theorems for Quantile and Depth Regions
for Stochastic Processes

James Kuelbs and Joel Zinn

Abstract Since contours of multi-dimensional depth functions often characterize
the distribution, it has become of interest to consider structural properties and limit
theorems for the sample contours [see Zuo and Serfling (Ann. Stat. 28(2):483–
499, 2000) and Kong and Mizera (Stat. Sin. 22(4):1589–1610, 2012)]. In particular,
Kong and Mizera have shown that for finite dimensional data, directional quantile
envelopes coincide with the level sets of half-space (Tukey) depth. We continue
this line of study in the context of functional data, when considering analogues
of Tukey’s half-space depth (Tukey, Mathematics and the picturing of data, in
Proceedings of the International Congress of Mathematicians (Vancouver, BC,
1974), vol. 2 (Canadian Mathematical Congress, Montreal, QC, 1975), pp. 523–
531). This includes both a functional version of the equality of (directional) quantile
envelopes and quantile regions as well as limit theorems for the sample quantile
regions up to

p
n asymptotics.

Keywords Depth region • Quantile region

Mathematics Subject Classification (2010). Primary 60F05; Secondary 60F17,
62E20

1 Introduction

The study of depth functions and resulting depth regions provide what is called a
center-outward order for multidimensional data that allows one to gain insight into
the underlying probability law. Many of the results obtained are for depths in R
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but more recently functional data, such as that obtained from streaming data, has
received considerable attention.

When trying to assess the viability of a particular statistical approach, it is
important to analyze the method when applied to specific data, asking if the
empirical version is consistent, and what rates of convergence one might have. In the
case of functional data this often leads to considering the data functions at a discrete
set of points—perhaps a large number of points in the domain of the functions.
However, if the infinite dimensional process (or measure with infinite dimensional
support) is unstable in some way with respect to the method one is using to order
the typical functions being encountered, there is the question of what one might
be modeling in these situations. In this paper, as in the development of general
empirical processes, we are interested in some basic probabilistic properties of the
statistics being proposed for half-space depth and the related quantile processes,
when no restrictions on the domain of the functions are imposed. If one has stability
for the statistic being employed to provide the infinite dimensional ordering, this
alleviates some of the concerns just mentioned.

Papers that provided motivation, and some useful contrasts for what we do in
this paper, include [5, 12–14]. In addition, the papers [20, 21] examine a number
of unifying properties of a broad collection of such depths, and in [21] some
convergence results for the related depth regions and their boundaries are established
for R

d-valued data. They also contain an extensive list of references. The paper
[5] also provides results obtaining convergence of Tukey half-space depth regions
(see also [18]) for R

d-valued data under conditions that are quite different from
those in [21], but in each setting something close to a “law of large numbers” is
an important assumption required for the proofs. An assumption of a similar nature
appears in (3.14) and (3.15) of Theorem 3.9, and can be verified in many situations
by applying the empirical quantile CLTs for stochastic processes obtained in [7, 8].
These CLTs, along with the approach in [5], were a primary motivation for the
various limit theorems we establish here. In particular, the results in [7, 8] allow us
to obtain

p
n-asymptotics for the convergence of the half-space depth sets for many

types of functional data. This includes data given by a broad collection of Gaussian
processes, martingales, and independent increment processes. Furthermore, the limit
theorems obtained have Gaussian limits uniformly over the parameter set of the data
process and in the quantile levels ˛ 2 I for I a closed interval of .0; 1/, and are
established directly without first introducing a corresponding half-space depth. This
is in contrast with the limit theorems for empirical medians in [13, 14] based on
the argmax of empirical Tukey depth processes, which have non-Gaussian limits
for data in R

d when d � 2. A first CLT of this type was obtained in [15] for
the empirical median process when the data was a sample continuous Brownian
motion on Œ0; 1�, and later in [16] for the empirical ˛-quantile processes for each
fixed ˛ 2 .0; 1/. The proofs in these papers are quite different than those in [7]
and [8], which employ empirical process theory as developed for functional data
in [11], a method of Vervaat from [19], the CLT results in [1], and the necessary
and sufficient conditions for sample function continuity of a Gaussian process using
generic chaining as in [17].
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A brief outline of the paper is as follows. In Sect. 2 we introduce basic notation.
Section 3 introduces additional notation and states the main results of this paper,
namely Proposition 3.7 and Theorem 3.9, which indicate how half-space depth
regions for stochastic processes based on evaluation maps are uniquely determined
by related upper and lower quantile functions for the process. In addition, under
suitable conditions they show the empirical versions of these regions converge to
the population versions with respect to a Hausdorff metric (also used for finite
dimensional data in [5, 21]), and include both consistency results and

p
n-rates of

convergence for these distances.
As mentioned above, the main assumptions required in the proof of Theorem 3.9

can be verified by applying the empirical quantile CLTs in [7, 8] for many types of
functional data, but we also obtain some consistency results for empirical quantile
functions in Theorem 3.16 and Corollary 3.18. They are of independent interest, and
can be used in this setting to verify conditions (3.14) and (3.15) of Theorem 3.9. As
is natural to expect, these consistency results are obtained under weaker conditions.
However, they do not yield the

p
n-rates of convergence given in Theorem 3.9,

which follow when one can apply the CLT results.
Theorem 3.9 applies quite generally, but the limiting regions can often be very

small. This is pointed out in Sect. 4, where we examine half-space depth regions
based on data obtained by independently sampling continuous Brownian motions,
showing that although Theorem 3.9 applies, the quantile regions and depth regions
have probability zero. That these regions may have zero probability is a problem
which holds for many other processes (see Remark 4.1), and hence motivates our
Proposition 4.2. This result shows that if we suitably smooth the one dimensional
distributions, then one can avoid this problem for many stochastic processes.
Throughout the paper when we speak of smoothing a stochastic process we mean
that we are applying the smoothing of Proposition 4.2.

We postpone proofs to Sect. 5, but a number of remarks are included in earlier
sections to motivate and understand how the results fit together. Section 4 also
provides a brief comparison with the results used to eliminate zero depth in [3],
our Proposition 4.2, and also the analogue in Proposition 4 of Kuelbs and Zinn [9].

2 Basic Notation

Throughout the paper E is a nonempty set, D.E/ a collection of real-valued functions
on E, DE is the minimal sigma-algebra making the evaluation maps �t W D.E/ ! R

measurable, where

�t.z/ D z.t/; t 2 E; z 2 D.E/; (2.1)

and � is a probability measure on .D.E/;DE/. Of course, the (functional) data of
interest are drawn from D.E/ and � is the population distribution or law on DE of
the data. It will also be convenient to have i.i.d. stochastic processes X WD fX.t/ W
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t 2 Eg;X1;X2; 	 	 	 on some probability space .�;F ;P/ such that the common law
they induce on .D.E/;DE/ is �. For each t 2 E, we denote the distribution function
of X.t/ by Ft.x/ WD F.t; x/; x 2 R: In addition, without loss of generality we assume
that the sample paths of these processes are always in D.E/, and for n � 1 denote
the empirical measures for � on .D.E/;DE/ by

�n.!/ D 1

n

nX
jD1

ıXj.!/; ! 2 �: (2.2)

At this stage the set E and the set of functions D.E/ are purposely abstract. An
important special case in [10] takes E to be the linear functions on R

d of Euclidean
norm one, and D.E/ a subset (usually subspace) of the continuous functions on
E containing fz W z.t/ D t.x/; t 2 E; x 2 R

dg. In this setting the results of this
paper apply to Tukey depth regions (and the related quantile regions), implying new
empirical results for this important classical depth. The reason one does not proceed
in a similar manner in the infinite dimensional case is that this choice of E is too
large to always have the empirical quantile CLTs of Kuelbs and Zinn [7] applicable
in this setting, and also the resulting half-space depth may be zero with probability
one. For example, Proposition 3.6 of Kuelbs and Zinn [6] provides an explicit
formula for half-space depth for Gaussian measures on a Banach space which is
zero except for points in a set of measure zero when all continuous linear functionals
or, equivalently, all continuous linear functionals of norm one, are used to define E.
The papers [3, 6, 9] contain other examples where zero depths appear, but [9] also
shows how to alleviate this problem using a smoothing (a random numerical shift)
of the data by establishing a result similar to that in Proposition 4.2 below. In
particular, Theorems 1 and 2 of Kuelbs and Zinn [9] examine other aspects of this
sort of problem, and establish limit theorems for half-region depth when the set E
satisfies a compactness condition. It also provides some examples which show that
the smoothing method we use avoids some non-intuitive properties that the modified
half-region depth proposed in other papers possesses. See Examples 1–3 in [9] for
details as well as some comments in Sect. 4 below that provide additional details
on the zero depth problem as handled in [3].

To describe the quantile and depth regions in our results we now recall the
definition of left and right ˛-quantiles for real-valued random variables.

Definition 2.1 Let � be a real-valued random variable with Borel probability law
�� , and for x 2 R set F�.x/ D P.� � x/. Then, for ˛ 2 .0; 1/, the left and right
˛-quantiles of � (equivalently, of the distribution function F� or the probability law
��) are defined, respectively, as

�˛;l.�/ WD �˛;l.F�/ WD �˛;l.��/ WD inffx W F�.x/ � ˛g and (2.3)

�˛;r.�/ WD �˛;r.F�/ WD �˛;r.��/ WD supfx W F�.x
�/ � ˛g D inffx W F�.x/ > ˛g:
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Next we turn to the definition of the left and right ˛-quantile functions deter-
mined by a measure � on .D.E/;DE/. In Remarks 2.3 and 2.4 that follow we indicate
some simplifications of this notation that we employ for our “fixed” measure � and
its empirical measures �n.!/.

Definition 2.2 Let � be a probability measure on .D.E/;DE), f�t W t 2 Eg denote
the evaluation maps in (2.1), and for each t 2 E the distribution function of �t with
respect to � is F�t : Then, for .˛; t/ 2 .0; 1/�E; the left and right ˛-quantile functions
determined by � are

�˛;l.t; �/ WD �˛;l.�t/ WD �˛;l.F�t / WD inffxW �. f 2 D.E/W �t. f / � x/ � ˛g and
(2.4)

�˛;r.t; �/ WD �˛;r.�t/ WD �˛;r.F�t / WD inffxW �. f 2 D.E/W �t. f / � x/ > ˛g: (2.5)

Remark 2.3 If the measure � is our “fixed” measure, �, we simplify to

�˛;l.t/ WD �˛;l.t; �/ and �˛;r.t/ WD �˛;r.t; �/: (2.6)

In case we also have �˛;l.t/ D �˛;r.t/ for all t 2 E, then to denote their common
value we simply write

�˛.t/; t 2 E; (2.7)

and note that �˛.t/ is the unique function f .t/ on E such that for each t 2 E, f .t/ is the
left ˛-quantile of the random variable �t.	/ on .D.E/;DE; �/. In addition, note that
if X WD fX.t/ W t 2 Eg is a stochastic process with sample paths in D.E/ that induces
law � on .D.E/;DE/, then the left and right ˛-quantile functions determined by �
can be defined by the distribution functions Ft.x/ WD F.t; x/ D P.X.t/ � x/, since
Ft D F�;�t ; t 2 E.

Remark 2.4 If our measure is �n.!/, we usually leave out the ! and write

�n
˛;l.t/ WD �˛;l.t; �n/ and �n

˛;r.t/ WD �˛;r.t; �n/: (2.8)

However, as in the proof of Theorem 3.9, there are times when including ! is
helpful, and we then write

�n
˛;l.t; !/ WD �˛;l.t; �n.!// and �n

˛;r.t; !/ WD �˛;r.t; �n.!//: (2.9)

Moreover, the empirical quantiles are such that for each ! 2 �; t 2 E

�n
˛;l.t; !/ D inffxW 1

n

nX
jD1

IXj.t;!/�x/ � ˛g and (2.10)

�n
˛;r.t; !/ D inffxW 1

n

nX
jD1

IXj.t;!/�x/ > ˛g:
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3 Equality of Quantile and Depth Regions, and Convergence
Results

In order to state our results on half-space quantile and depth regions for functional
data (or stochastic processes), the following lemma recalls some basic facts about
right and left quantiles of a real-valued random variable.

Lemma 3.1 Let � be a real-valued random variable with distribution function F� .
Then, for ˛ 2 .0; 1/,

�1�˛;r.�/ D ��˛;l.��/; (3.1)

and if F�.x/ D ˛ for some x > �˛;l.�/, then F�.x/ D ˛

for all x 2 Œ�˛;l.�/; �˛;r.�//: In addition, if x 2 Œ�˛;l.�/; �˛;r.�//, then x is an
˛-quantile of �, i.e. F�.x/ � ˛ and 1 � F�.x�/ � 1 � ˛:

Next we turn to the definitions of ˛-quantile regions, half-space depths, and
˛-depth regions.

Definition 3.2 Let � be a probability measure on .D.E/;DE/ with left and right
˛-quantile functions as in (2.4). If ˛ 2 .0; 1

2
�, then the ˛-quantile region (with

respect to �) is the subset of D.E/ given by

M˛;� WD \t2Efz 2 D.E/ W �˛;l.t; �/ � z.t/ � �1�˛;r.t; �/g: (3.2)

Remark 3.3 If the measure � is our “fixed” measure, �, we simplify to

M˛ WD \t2Efz 2 D.E/ W �˛;l.t/ � z.t/ � �1�˛;r.t/g; (3.3)

where the left and right quantiles are (with respect to �) as in (2.6), and again ignore
its dependence on �.

Remark 3.4 If the measure � is �n.!/, we usually leave out the !. That is, for ˛ 2
.0; 1

2
� and n � 1; the empirical ˛-quantile region (with respect to �n) is denoted by

M˛;n WD \t2Efz 2 D.E/ W �n
˛;l.t/ � z.t/ � �n

1�˛;r.t/g; (3.4)

where empirical ˛-quantile functions �n
˛;l.t/ and �n

1�˛;r.t/ are as in (2.8). Of course,
these functions and M˛;n are defined for all ! 2 �, and when that dependence
needs special emphasis we will write �n

˛;l.t; !/; �
n
˛;r.t; !/, and M˛;n.!/, respectively.

Otherwise the dependence on ! will be suppressed.

Definition 3.5 Let � be a probability measure on .D.E/;DE/. For any real-valued
function, h, on E, we define the half-space depth of h with respect to � and the
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evaluation maps �t; t 2 E; by

D.h; �/ WD inf
t2E

minf�.z 2 D.E/ W z.t/ � h.t//; �.z 2 D.E/ W z.t/ � h.t//g; (3.5)

and the ˛-depth regions by

N˛;� WD fh 2 D.E/ W D.h; �/ � ˛g: (3.6)

Remark 3.6 If the measure � is�n.!/, we usually leave out the !. That is, for n � 1

the empirical half-space depths with respect to �n are denoted by D.h; �n/ and the
empirical ˛-depth regions are

N˛;n WD fh 2 D.E/ W D.h; �n/ � ˛g: (3.7)

When the dependence on ! needs special emphasis we will write D.h; �n/.!/ and
N˛;n.!/, respectively. Moreover, the depth D.h; 	/ not only depends on the measure,
but is defined in terms of the evaluation maps indexed by E, so in what follows
we may also refer to it as the E-depth with respect to the measure involved, or
simply as E-depth. In addition, when the stochastic process X induces the law � on
.D.E/;DE/, we have

D.h; �/ D inf
t2E

minfP.X.t/ � h.t//;P.X.t/ � h.t//g: (3.8)

We write ƒ� to denote the measurable cover function of a real-valued function
ƒ on �, see [4], and for U;V subsets of D.E/ we denote the Hausdorff distance
between U and V (with respect to the sup-norm on D.E/) by

dH.U;V/ D inff > 0 W U  V and V  Ug; (3.9)

where U D fz 2 D.E/ W infh2U supt2E jz.t/� h.t/j < g. If U or V is empty, but not
both, then dH.U;V/ D 1:

3.1 Equality of Depth and Quantile Regions

The following proposition shows certain quantile regions are equal to related depth
regions. The proposition is quite general, and also applies to the empirical quantiles
and the related empirical depths.

Proposition 3.7 Assume the notation in Sect. 2, and (3.2)–(3.7). Then, for ˛ 2
.0; 1

2
� and � any probability measure on .D.E/;DE/ we have

M˛;� D N˛;� : (3.10)
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In particular, the ˛-quantile regions and the ˛-depth regions with respect to � and
also the empirical measures �n are such that

M˛ D N˛; (3.11)

and for n � 1; ! 2 �;

M˛;n.!/ D N˛;n.!/: (3.12)

Remark 3.8 Although Proposition 3.7 holds quite generally, it is important to note
that there are many examples where the sets in (3.11) are small. In fact, they may
have � probability zero for all ˛ > 0. We present such an example in Sect. 4, but
many of the examples discussed in [6] also have similar properties. Nevertheless,
it is important to keep in mind that if one wants to examine quantile regions of the
type in Proposition 3.7, then some variety of half-space depth emerges. Hence, we
will follow this example by showing the sets involved in (3.11) are much larger for
smooth versions of the data, where before smoothing they possibly had positive half
space depth with probability zero. Finally, with �0;l.t/ D �1 and �1;r.t/ D C1 for
all t 2 E, which are their natural definitions, we easily see M0 D D.E/. Hence (3.11)
also h olds for ˛ D 0; since fh 2 D.E/ W D.h; �/ � 0g D D.E/. If D.E/ is assumed
to be a linear space, then the maps �t; t 2 E; are linear from D.E/ into R, and hence
M˛ is convex. If D.E/ has a topology such that these maps are continuous, then M˛

is also closed. Of course, from (3.11) the sets N˛ then have similar properties.

3.2 Empirical Regions Converge

In Proposition 3.7, D.E/ is quite arbitrary, except that it supports the probability
measure � D L.X/. However, for many standard stochastic processes X WD fX.t/ W
t 2 Eg the set E is a compact interval of the real line or a compact subset of
some metric space, and its sample paths may well be continuous, cadlag, or at least
uniformly bounded on E. Hence, in such cases we can take D.E/ to be the Banach
space `1.E/ with sup-norm jjhjj1 D supt2E jh.t/j, or some closed linear subspace
of `1.E/ of smoother functions that reflect the regularity of the sample paths of
X. The choice of D.E/ D `1.E/ is convenient in that weak convergence results for
empirical processes are readily available in this setting. Moreover, if D.E/ D `1.E/
and the sample paths of X are in `1.E/, then stochastic boundedness of X and
a fairly immediate argument, see the proof of Corollary 3.11, implies for given
˛ 2 .0; 1

2
� and all ! 2 � that

�˛;l.	/; �1�˛;r.	/; �n
˛;l.	/; �n

1�˛;r.	/ 2 D.E/: (3.13)

If D.E/ is a closed subspace of `1.E/, then under suitable conditions we can still
verify (3.13), but these arguments are more subtle. Hence in the next result (3.13) is
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an assumption, but following its statement we present some corollaries where (3.13)
is verified directly.

Theorem 3.9 Let D.E/ be a closed linear subspace of `1.E/ with respect to the
sup-norm jj 	 jj1 such that for some ˛ 2 .0; 1

2
� and all ! 2 � (3.13) holds, and the

measurable cover functions

k�n
˛;l.	/� �˛;l.	/jj�1 (3.14)

and

jj�n
1�˛;r.	/� �1�˛;r.	/jj�1 (3.15)

converge in probability to zero with respect to P. Then, for the given ˛ 2 .0; 1
2
� the

sets M˛;N˛;M˛;n; and N˛;n are non-empty, and the measurable cover functions (of
the Hausdorff distances)

d�
H.M˛;n;M˛/ D d�

H.N˛;n;N˛/ (3.16)

converge in probability to zero with respect to P. In addition, if 1 � an D O.
p

n/
converges to infinity, and the measurable cover functions

anjj�n
˛;l.	/� �˛;l.	/jj�1 and anjj�n

1�˛;r.	/� �1�˛;r.	/jj�1 (3.17)

are bounded in probability, then

and�
H.M˛;n;M˛/ and and�

H.N˛;n;N˛/ (3.18)

are bounded in probability with respect to P.

Remark 3.10 The assumptions (3.14) and (3.15) or (3.17) in Theorem 3.9 are non-
trivial, but by applying the results in [7, 8] one can obtain a broad collection of
stochastic processes for which they can be verified for all ˛ 2 .0; 1/ with best
possible an, namely an D p

n. In particular, this includes Levy’s area process (and
other iterated self-similar processes), symmetric stable processes with stationary
independent increments, and m-times iterated Brownian motion. In addition, at
least in some situations, one can apply the results in [6] to identify depth regions,
which when combined with Proposition 3.7 allow us to determine the related
quantile regions for these processes. In Sect. 4 we examine the combined effect
of Proposition 3.7 and Theorem 3.9 when they are applied to sample continuous
Brownian motion. Similar results also hold for a large number of other stochastic
processes, some of which are mentioned in Sect. 4.
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Corollary 3.11 Let � D L.X/, D.E/ D `1.E/; and assume ˛ 2 .0; 1
2
� is such that

there exists x˛ 2 .0;1/ with

sup
t2E

P.jX.t/j � x˛/ < ˛: (3.19)

Then, (3.14) and (3.15) imply (3.16), and (3.17) implies both (3.16) and (3.18) hold.

The next two corollaries verify Theorem 3.9 for D.E/ a closed linear subspace of
`1.E/ consisting of smooth functions, provided it is assumed that the sample paths
of X and both �˛;l; �1�˛;r; satisfy the same smoothness conditions. Of course, the
assumption that �˛;l; �1�˛;r; are suitably smooth, can be verified by imposing suitable
assumptions on the distribution functions F.t; x/ D P.Xt � x/. For example, in [8]
this follows immediately from the self-similarity property assumed on the stochastic
process X, but it can also be verified for processes which are not self-similar by the
following lemma.

Lemma 3.12 Let .E; d/ be a metric space, for each t 2 E assume that

lim
s!t

sup
x2R

jF.s; x/� F.t; x/j D 0; (3.20)

and that for a given ˛ 2 .0; 1/ there exists �.˛/ > 0 such that

inf
t2E;jx��˛;l.t/j��.˛/

f .t; x/ � c˛ > 0; (3.21)

where f .t; x/ is the density of F.t; x/ WD P.Xt � x/. In addition assume for the given
˛ 2 .0; 1/ there exists y˛ 2 .0;1/ such that

sup
t2E

P.jX.t/j � y˛/ < ˛ ^ .1 � ˛/; (3.22)

and C.E/ denotes the real-valued continuous functions on .E; d/. Then,
�˛;l.	/ D �˛;r.	/ WD �˛.	/ 2 C.E/\ `1.E/ for the given ˛ 2 .0; 1/, and jj�˛.	/jj1 �
y˛.

Remark 3.13 If ˛ 2 .0; 1
2
�, then we can take x˛ D y˛ , where x˛ is defined as

in (3.19) and y˛ is defined as in (3.22). The use of y˛ is relevant when ˛ 2
. 1
2
; 1/. Furthermore, if fX.t/ W t 2 Eg is sample path continuous, and .E; d/ is

a compact metric space, then jjXjj1 is a measurable random function which is
finite with probability one and (3.22) holds. Moreover, X sample path continuous
with probability one implies it is continuous in distribution as d.s; t/ ! 0. Hence,
since F.t; x/ is continuous in x the convergence in distribution is uniform, which
implies (3.20). Thus when (3.21) also holds we have �˛;l.	/ D �˛;r.	/ � �˛.	/ 2 C.E/
for those ˛ 2 .0; 1/. Similar conclusions also hold if E is a compact interval of R
and fX.t/ W t 2 Eg is continuous in distribution on E with cadlag sample paths.
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Corollary 3.14 Let .E; d/ be a compact metric space with D.E/ D C.E/; the space
of real-valued continuous functions on .E; d/, and assume for some ˛ 2 .0; 1

2
�;

�˛;l; �1�˛;r; are functions in C.E/. Then, for the given ˛, (3.14) and (3.15) imply
(3.16), and (3.17) implies both (3.16) and (3.18) hold with D.E/ D C.E/.

Corollary 3.15 Let E be a compact interval of the real line, and assume D.E/ is
the space of real-valued cadlag functions on E. If for some ˛ 2 .0; 1

2
�; �˛;l; �1�˛;r;

are cadlag functions on E, then for the given ˛ (3.14) and (3.15) imply (3.16),
and (3.17) implies both (3.16) and (3.18) hold with D.E/ the cadlag functions on E.

In Corollaries 3.14 and 3.15 we are assuming (3.14) and (3.15), or (3.17), and that
the quantile functions �˛;l and �1�˛;r are in D.E/. Hence, to complete their proofs it
suffices to show the empirical quantiles �n

˛;l and �n
1�˛;r are also in the corresponding

D.E/. This follows since an argument from Lemma 3 in [8] implies the left empirical
quantile functions �n

˛;l inherit the continuity or cadlag nature of the sample paths
assumed for the process X. To obtain the same conclusion for the right empirical
quantiles �n

1�˛;r; Lemma 3.1 combined with Lemma 3 in [8] suffices.

3.3 Quantile Process Consistency

Application of the results in [7, 8] to obtain (3.14) and (3.15), or (3.17), involve
CLTs for ˛-quantile processes which hold uniformly in .t; ˛/ 2 E � I, where I is
a closed subinterval of .0; 1/. Hence, of necessity, even when E is a single point,
this requires the densities f .t; x/ for X.t/ to be strictly positive and continuous on
Jt WD fx W 0 < F.t; x/ < 1g. In the proofs of these CLTs we assumed Jt WD R,
and for more general E our proofs also required that the densities f f .t; 	/ W t 2 Eg
satisfying the uniform equicontinuity condition

lim
ı!0

sup
t2E

sup
ju�vj�ı

j f .t; u/� f .t; v/j D 0; (3.23)

and for every closed interval I in .0; 1/ there is an �.I/ > 0 satisfying

inf
t2E;˛2I;jx��˛ .t/j��.I/

f .t; x/ � cI;�.I/ > 0; (3.24)

where �˛.t/; ˛ 2 .0; 1/; t 2 E; is the unique ˛-quantile for the distribution F.t; 	/
when its density f .t; 	/ is strictly positive.

Although these CLTs hold for a broad collection of stochastic processes, we were
motivated to consider consistency results in hope of weakening these assumptions
in that setting. This turns out to be the case as the condition (3.23) and that Jt WD
R; t 2 E; are no longer required for our consistency results. Furthermore, a local
form of (3.24) holding for a fixed I rather than all I suffices [see (3.27)]. Of course,
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if I is a single ˛ 2 .0; 1/ then (3.27) already appeared in (3.21) of Lemma 3.12 to
verify the continuity of the function �˛.	/ on E.

Hence, the global strict positivity and continuity of the densities can be consid-
erably weakened for consistency of ˛-empirical quantiles, making such results of
independent interest. Here they provide sufficient conditions for (3.14) and (3.15),
which combine to show that the measurable cover functions (of the Hausdorff
distances) in (3.16) converge in probability to zero under these weakened conditions.

For ! 2 �; t 2 E, and x 2 R we denote the empirical distribution functions by

Fn.t; x/ WD 1

n

nX
jD1

I.Xj.t; !/ � x/ D 1

n

nX
jD1

IXj2Ct;x ; n � 1;Ct;x 2 C; (3.25)

where C D fCt;x W t 2 E; x 2 Rg;Ct;x D fz 2 D.E/ W z.t/ � xg; and, as usual, we
ignore writing that Fn depends on ! 2 �. Then, we have

Theorem 3.16 Let F.t; x/ D P.X.t/ � x/ have the density f .t; x/ for t 2 E; x 2 R.
In addition, assume

P�.lim sup
n!1

sup
t2E;x2R

jFn.t; x/ � F.t; x/j > 0/ D 0; (3.26)

and for I a closed interval of .0; 1/ there exists �.I/ > 0 such that

inf
t2E;˛2I;jx��˛;l.t/j��.I/

f .t; x/ � cI;�.I/ > 0: (3.27)

Then, for all ˛ 2 I we have �˛;l.	/ D �˛;r.	/ � �˛.	/, and there is a set �0 such that
P�.�0/ D 1, and on�0

lim
n!1 sup

˛2I;t2E
j�n
˛;l.t/ � �˛.t/j D 0: (3.28)

Moreover, if D.E/ is a linear subspace of `1.E/; jj 	 jj1 is measurable on
.D.E/;DE/, and �n

˛;l.	/; �˛.	/ 2 D.E/, then

jj�n
˛;l.	/� �˛.	/jj1 (3.29)

is measurable, and converges to zero with P probability one.

Remark 3.17 The condition (3.27) is used in two ways in the proof of Theo-
rem 3.16. The first is to show for all ˛ 2 I we have �˛;l.	/ D �˛;r.	/ � �˛.	/,
and the second is to verify (5.17) and (5.18).

To prove the analogue of (3.28) and (3.29) for the processes

�n
1�˛;r.	/� �1�˛.	/; n � 1; (3.30)
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we define for ! 2 �; t 2 E, and x 2 R the distribution functions

Hn.t; x/ WD 1

n

nX
jD1

I.�Xj.t; !/ � x/ and H.t; x/ WD P.�X.t/ � x/; (3.31)

and, as usual, we ignore writing that Hn depends on ! 2 �. Then, we have

Corollary 3.18 Assume

P�.lim sup
n!1

sup
t2E;x2R

jHn.t; x/ � H.t; x/j > 0/ D 0; (3.32)

and for ˛ 2 .0; 1/ there exists �.˛/ > 0 such that

inf
t2E;jx��1�˛;r.t/j��.˛/

f .t; x/ � c�.˛/ > 0: (3.33)

Then, �1�˛;l.	/ D �1�˛;r.	/ � �1�˛.	/, and there is a set �0 such that
P�.�0/ D 1, and on�0

lim
n!1 sup

t2E
j�n
1�˛;r.t/ � �1�˛.t/j D 0: (3.34)

Moreover, if D.E/ is a linear subspace of `1.E/; jj 	 jj1 is measurable on
.D.E/;DE/, and �n

1�˛;r.	/; �1�˛.	/ 2 D.E/, then

jj�n
1�˛;r.	/� �1�˛.	/jj1 (3.35)

is measurable, and converges to zero with P probability one.

Remark 3.19 In order that Theorem 3.16 and Corollary 3.18 apply to obtain
conclusions from Theorem 3.9, the nontrivial assumptions (3.26) and (3.32) must
be verified. However, the assumptions that the sup-norm jj 	 jj1 is measurable
on .D.E/;DE/, and the relevant quantile and empirical quantile functions are
in a suitable D.E/, often follow more directly. For example, Lemma 3.12 and
Remark 3.13 provide some sufficient conditions for this when dealing with the
quantile functions, and the comments following Corollaries 3.14 and 3.15 making
reference to the argument of Lemma 3 in [8] are useful for the empirical quantile
functions. In particular, if fX.t/ W t 2 Eg is sample path continuous, and .E; d/
is a compact metric space, or E is a compact interval of R and fX.t/ W t 2 Eg
is continuous in distribution on E with cadlag sample paths, then the quantile
functions and empirical quantile functions of Theorem 3.16 and Corollary 3.18 are
in D.E/, and the measurability of the sup-norm holds on D.E/, provided D.E/ is the
continuous functions on E (respectively, the cadlag paths on E).
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4 An Example, and How to Avoid Zero Half Space Depth

As mentioned in Remark 3.8, Proposition 3.7 holds quite generally, but there are
many examples where the sets in (3.11) have probability zero for all ˛ > 0 with
respect to the probability� D L.X/ on .D.E/;DE/. Hence, we start with an example
of this type. The example also satisfies the assumptions of Theorem 3.9, so even
though the sets in (3.11) are small, the convergence results in Theorem 3.9 still
hold. Following this we provide a smoothing result for functional data given by a
stochastic process. This appears in Proposition 4.2, which shows the sets in (3.11)
are much larger for smooth versions of the data, where before smoothing they
possibly had positive half space depth with probability zero. The smoothing used
in Proposition 4.2 is not a smoothing of the sample paths of the functional data, but
of each one dimensional distribution, and in the sense made explicit in Remark 4.3,
the change in the data can be made arbitrarily small. Furthermore, the half-space
depth and quantile regions of the resulting smoothed process can be shown to have
positive probability in many situations. Following the statement of Proposition 4.2
we provide an example for which these regions can be explicitly obtained with fairly
brief arguments.

Let fY.t/ W t 2 Œ0; 1�g be a centered sample continuous Brownian motion with
variance parameter one and Y.0/ D 0 with probability one. Set E D Œ0; 1� and
D.E/ D CŒ0; 1�; the Banach space of continuous functions on Œ0; 1� in the sup-
norm. We then have DE is the Borel subsets of CŒ0; 1�, which we denote by BCŒ0;1�:

Then, for E D Œ0; 1� and � D L.Y/ on .CŒ0; 1�;BCŒ0;1�/

�.h 2 CŒ0; 1� W D.h; �/ > 0/ D 0; (4.1)

where D.h; �/ is given by (3.5) with � D � and h 2 D.E/ D CŒ0; 1�.
To verify (4.1) we first observe that

D.h; �/

� inf
0<t�1minf�.z 2 CŒ0; 1� W z.t/p

t
� h.t/p

t
/; �.z 2 CŒ0; 1� W z.t/p

t
� h.t/p

t
/g
(4.2)

D inf
0<t�1minf1 �ˆ.h.t/p

t
/; ˆ.

h.t/p
t
/g;

whereˆ is the standard normal distribution function. Hence,

D.h; �/ � lim inf
t#0

minf1�ˆ.
h.t/p

t
/; ˆ.

h.t/p
t
/g D 0 (4.3)



Quantile and Depth Regions 269

for all h 2 CŒ0; 1� such that

lim sup
t#0

h.t/p
t

D 1 or lim inf
t#0

h.t/p
t

D �1: (4.4)

Using the law of the iterated logarithm for Brownian motion at zero, we have that
both terms in (4.4) hold for a set of functions h 2 CŒ0; 1� with �-probability one.

Thus, (4.1) follows, and the sets in (3.11) are of �-measure zero. Of course,
these sets are clearly non-empty since they contain the zero function. Moreover, for
standard Brownian motion on Œ0; 1� and ˛ 2 .0; 1/, the left and right ˛-quantiles
for each time t 2 Œ0; 1� are equal, and �˛.t/ D p

t�˛.1/ D p
tˆ�1.˛/; and hence

�˛.1/ < 0 for 0 < ˛ < 1
2
, � 1

2
.1/ D 0, and �˛.1/ > 0 for 1

2
< ˛ < 1. Therefore, for

Brownian motion and ˛ 2 .0; 1
2
� we have

M˛ D fh 2 CŒ0; 1� W p
t�˛.1/ � h.t/ � p

t�1�˛.1/g; (4.5)

and for ˛ D 1
2

it consists only of the zero function. Since Proposition 3.7 holds, we
also have for ˛ 2 .0; 1

2
� that

fh 2 CŒ0; 1� W D.h; �/ � ˛g D fh 2 CŒ0; 1� W p
t�˛.1/ � h.t/ � p

t�1�˛.1/g;
(4.6)

and by what we have shown above the sets in (4.5) and (4.6) have�measure zero. Of
course, one can also see this directly from the law of the iterated logarithm which
implies both terms in (4.4) hold with � measure one, but we thought it useful to
proceed as we did because of Remark 4.1 below. In addition, applying Theorems 2
and 3 of Kuelbs and Zinn [8], we have assumptions (3.14), (3.15), and (3.17) holding
for each ˛ 2 .0; 1/. In particular, using Lemma 3 and Theorem 3 of Kuelbs and
Zinn [8] one can avoid using measurable cover functions for these processes since
we are assuming the input data has sample continuous or cadlag paths, and hence
the conclusions of Theorem 3.9 in (3.16) and (3.18) hold, with limit sets as in (3.3)
and (3.6), again without the use of measurable cover functions.

Remark 4.1 Similar ideas imply (4.1) for sample continuous fractional Brownian
motions which start at zero with probability one when t D 0 since the LIL at zero
for these processes implies (4.4) with

p
t replaced by t�, where � is the scaling

parameter of the fractional Brownian motion. Also, if fY.t/ W t 2 Œ0; 1�g is a
symmetric stable process with stationary independent increments, sample paths in
the space of cadlag functions on Œ0; 1�, and Y.0/ D 0 with probability one, then the
same result holds by applying Theorem 5-iii, page 222, in [2] provided the process
is not identically zero.

Now we turn to a proposition which indicates how we can smooth a broad
collection of stochastic processes in order that the resulting smoothed process has
strictly positive depth with probability one, and is always close to original process in
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a sense to be specified in Remark 4.3 below. The smoothing in Proposition 4.2 is also
useful when applying the functional data results in [7, 8, 11], as many of these results
depend on regularity assumptions for the distribution of X.t/. Hence, by choosing
the density fZ.	/ to be suitably smooth, we can be certain the necessary regularity
conditions hold. For example, it is easy to see that the processes mentioned in
Remark 4.1 can be smoothed using this result.

Proposition 4.2 Let D.E/ be a subset of `1.E/ which contains the constant
functions and is closed under addition, assume Y WD fY.t/ W t 2 Eg is a
stochastic process with sample paths in D.E/ and Z is a real-valued random
variable independent of Y defined on the probability space .�;F ;P/, and let
X WD fX.t/ W t 2 Eg, where X.t/ D Y.t/ C Z for t 2 E. Furthermore, assume
Z has probability density fZ.	/ that is positive a.s. on R with respect to Lebesgue
measure, the family of random variables fY.t/ W t 2 Eg is bounded in probability,
and for h 2 D.E/ and � D L.X/ on .D.E/;DE/, the depth D.h; �/ is defined as
in (3.5) with � D �. Then, for all h 2 D.E/ the E-half space depth is such that

D.h; �/ > 0: (4.7)

Remark 4.3 Since E.jjX � Yjjp1/ D E.jZjp/ can be made small by choosing the
density of Z to decrease rapidly at infinity and with probability near one in a small
neighborhood of zero, the X process is close to the Y process in the Lp-norm of
their sup-norm difference. Therefore, at least in this sense the smoothing does not
modify the data a great deal in order that the depth be positive with probability
one. In addition, if fY.t/ W t 2 Œ0; 1�g is standard Brownian motion and X.t/ D
Y.t/C Z; t 2 Œ0; 1�; where Z is a mean zero Gaussian random variable independent
of fY.t/ W t 2 Œ0; 1�g with variance �2 > 0, then we are able to see explicit changes
in the quantile and depth regions given in (4.5) and (4.6) for fY.t/ W t 2 Œ0; 1�g and
those for the smoothed process fX.t/ W t 2 Œ0; 1�g obtained below. That is, since
P.X.t/ � y/ D ˆ.y=

p
t C �2/ for all y 2 R; t 2 Œ0; 1�; where ˆ is the distribution

function of a mean zero, variance one Gaussian random variable, we have

�˛.t/ D
p

t C �2ˆ�1.˛/

for all ˛ 2 .0; 1/ and t 2 Œ0; 1�. Thus the ˛-quantile and depth regions for fX.t/ W
t 2 Œ0; 1�g and ˛ 2 .0; 1

2
� are given by

M˛;X D \t2Œ0;1�fz 2 CŒ0; 1� W
p

t C �2ˆ�1.˛/ � z.t/ �
p

t C �2ˆ�1.1 � ˛/g:

Since �2 > 0 and M˛;X has non-empty interior with respect to the sup-norm
topology on CŒ0; 1� for all ˛ 2 .0; 1

2
/, then the Cameron-Martin formula easily

implies these regions have positive probability with respect to �, the probability
law of fX.t/ W t 2 Œ0; 1�g on CŒ0; 1�. Of course, since M˛ D f0g for ˛ D 1

2
then
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�.M 1
2 ;X
/ D 0 as one should expect. Moreover, since (3.10) implies M˛;X D N˛;X ,

we also have �.N˛;X/ > 0 for all ˛ 2 .0; 1
2
/ and �.N 1

2
/ D 0.

Remark 4.4 Although a fairly large number of possible depths have been used to
provide orderings for finite dimensional data, it might be of some interest to contrast
the use of Proposition 4.2 above, Proposition 4 of [9], and the results obtained in
[3] to handle the zero depth problem for infinite dimensional data given by many
standard stochastic processes. First it is easy to observe from the hypothesis that
Proposition 4.2 applies easily, and provides positive half-space depth for a wide
range of stochastic processes. Proposition 4 of [9] does the same for half-region
depth. In contrast, Theorems 5 and 7 in [3] are formulated for fractional Brownian
motion, but discuss other depths, and Theorem 6 depends on a series expansion
of the process, so is best suited to Hilbert space. Moreover, Theorem 6 of [3]
applies only to the depth SD.x/ defined using the Hilbert norm. So in the sentence
immediately following Theorem 6 where it is proposed to apply the same depth for
CŒ0; 1�-valued data using the fact that CŒ0; 1�  L2Œ0; 1�, one should wonder exactly
how that changes things. In particular, it is unclear how this depth defined in terms
of the L2Œ0; 1�-norm provides a natural ordering to functions whose sup-norm may
be much larger then their L2Œ0; 1�-norm.

Hence, the results in these theorems cover several depths, but they apply to far
fewer processes then our Proposition 4.2, or its analogue in Proposition 4 of [9].
Moreover, the positivity of the depth for the modified processes in Theorem 5 of [3]
is only shown for a modification of the original depth in two of the three depths
studied. The third, an integrated depth, is already suitably modified. In contrast
the results in our work show the original depth is positive once the smoothing
of the one dimensional distribution functions are made. We are not claiming this
for all possible depths, but for the half-space depth of this paper it follows by
Proposition 4.2, and also for the half-region depth of [9] this is the case (see
Proposition 4 of [9]). Furthermore, as shown in Examples 1–3 of [9], the modified
half-region depth used in Theorem 5 of [3] has a number of unpleasant properties. In
particular, example one shows modified half-region depth as defined in equation (4)
of [3] frequently does not have a unique median (a unique function with modified
half region depth 1/2 when the one dimensional distributions are continuous).
Example 2 in [9] shows that there are processes symmetric about zero that have
multiple medians for modified half-region depth, yet the zero function is the unique
median for half-region depth of the original process and also for the process
modified using our method as given in Proposition 4 of [9] or Proposition 4.2 of the
current paper. Example three goes one step further and shows that under symmetry
about zero, the zero function may not be among the multiple medians given by
the modified half-region depth, yet it is the unique half-region depth median for
the process obtained using our method for smoothing. Hence one might want to be
cautious about the many new medians proposed. An addendum for complete proofs
of the results mentioned for these examples is referenced in [9].

We first used the smoothing of the one dimensional distributions in our papers
[7, 8], where we obtained empirical quantile CLTs for continuous time processes
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when the input process can come from a broad collection of Gaussian processes,
martingales, and independent increment processes. These results define the quantile
processes directly, and the CLTs are uniform in the quantile level ˛ 2 I, where
I is a closed interval of .0; 1/, and t 2 E. Furthermore, since E is allowed to be
quite general, and not just some interval of reals, these results can also be applied
in a wider setting. For example, they apply to the Brownian sheet, and we also have
been able to use these results to obtain new empirical quantile process limit theorems
for Tukey depth on R

d in [10] by taking E the surface of the unit ball in R
d. The

fact E is quite general was also important for the limit theorems we obtained in [9]
for half-region depth. Remark 5 there indicates that under some circumstances one
might not even need to smooth the one dimensional distributions to have positive
half-region depth. However, observations of a similar nature also appeared in the
earlier papers [7, 8] when proving the empirical quantile CLTs.

5 Proofs of the Results

Proof of Proposition 3.7 If h 2 M˛ , then �˛;l.t/ � h.t/ � �1�˛;r.t/ for all t 2 E.
Now h.t/ � �˛;l.t/ implies �.z W z.t/ � h.t// � ˛; and similarly h.t/ � �1�˛;r.t/
implies �.z W z.t/ � h.t// � �.z W z.t/ � �1�˛;r.t// � ˛. Therefore, D.h; �/ �
minf˛; ˛g D ˛:

Conversely, assume D.h; �/ � ˛ and h 2 D.E/. Then, (3.5) with � D � implies
for every t 2 E that

�.z 2 D.E/ W z.t/ � h.t// � ˛ (5.1)

and

�.z 2 D.E/ W z.t/ � h.t// � ˛: (5.2)

Thus, for every t 2 E, we have from (5.1) that h.t/ � �1�˛;r.t/, and from (5.2) that
h.t/ � �˛;l.t/. Therefore, for every t 2 E we have �˛;l.t/ � h.t/ � �1�˛;r.t/, which
implies h 2 M˛ , and the proposition is proved. ut
Proof of Theorem 3.9 For ˛ 2 .0; 1

2
�, the set M˛ (respectively M˛;n) is non-empty

since (3.13) implies �˛;l.	/ and �1�˛;r.	/ are in M˛ (respectively �n
˛;l.	/ and �n

1�˛;r.	/
are in M˛;n/, and Proposition 3.7 implies N˛ and N˛;n are non-empty since M˛ D N˛
and M˛;n D N˛;n. Hence, we observe that

M
˛ D fz 2 D.E/ W 8t 2 E; �˛;l.t/ �  < z.t/ < �1�˛;r.t/C g (5.3)

and

M
˛;n D fz 2 D.E/ W 8t 2 E; �n

˛;l.t/ �  < z.t/ < �n
1�˛;r.t/C g: (5.4)
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Now, we’ll use (3.13) to show that

f! WM˛;n.!/  M
˛g (5.5)

D f! W 8t 2 E; �n
˛;l.t; !/ > �˛;l.t/ � ; �n

1�˛;r.t; !/ < �1�˛;r.t/C g

and

f! WM˛  M˛;n.!/
g (5.6)

D f! W 8t 2 E; �˛;l.t/ > �
n
˛;l.t; !/ � ; �1�˛;r.t/ < �n

1�˛;r.t; !/C g:

The proofs of (5.5) and (5.6) are similar, so we’ll just check (5.5). Also, it is
trivial that the right-hand of (5.5) is contained in the left-hand side. To prove the
other inclusion fix ! such that M˛;n.!/  M

˛ . By (3.13) we have

�n
˛;l.	; !/; �n

1�˛;r.	; !/ 2 M˛;n.!/;

and since we are assuming M˛;n.!/  M
˛ , for all t 2 E

�˛;l.t/ �  < �n
˛;l.t; !/ � �n

1�˛;r.t; !/ < �1�˛;r.t/C ;

which implies ! is in the right-hand side of (5.5).
Therefore, both f! W M˛;n.!/  M

˛g and f! W M˛  M˛;n.!/
g contain the set

An, where

An D f! W sup
t2E

j�n
˛;l.t; !/ � �˛;l.t/j < g \ fsup

t2E
j�n
1�˛;r.t; !/ � �1�˛;r.t/j < g:

(5.7)

Now

f! W dH.M˛;n.!/;M˛/ < g D f! W M˛;n.!/  M
˛g \ f! W M˛  M˛;n.!/

g;
(5.8)

and hence

f! W dH.M˛;n.!/;M˛/ � g (5.9)

D f! W M˛;n.!/  M
˛gc [ f! W M˛  M˛;n.!/

gc  Ac
n:

Therefore,

P�.dH.M˛;n;M˛/ � / � P�.sup
t2E

j�n
˛;l.t/ � �˛;l.t/j � / (5.10)

CP�.sup
t2E

j�n
1�˛;r.t/ � �1�˛;r.t/j � /
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where P� denotes the outer probability given by P. Since P�.ƒ > c/ D P.ƒ� > c/
for all constants c; we thus have from (3.14) and (3.15) that the measurable cover
function of the left term in (3.16) converges in probability to zero. Furthermore,
applying (3.11) and (3.12) of Proposition 3.7, we also have the equality in (3.16),
and hence the measurable cover function of the right term in (3.16) also converges
in probability to zero. Therefore, the first part of the theorem holds.

Since (5.10) holds for every  > 0 we have with  D L=an > 0 that

P�.andH.M˛;n;M˛/ � L/ � P�.an sup
t2E

j�n
˛;l.t/ � �˛;l.t/j � L/ (5.11)

CP�.an sup
t2E

j�n
1�˛;r.t/ � �1�˛;r.t/j � L/;

and hence (5.10) and the relationship between P-outer probability and measurable
cover functions mentioned above implies and�

H.M˛;n;M˛/ is bounded in proba-
bility. Again, by applying (3.11) and (3.12) of Proposition 3.7, we also have
and�

H.N˛;n;N˛/ is bounded in probability. Thus (3.18) holds, and the theorem
follows. ut
Proof of Corollary 3.11 Since we are assuming (3.14),(3.15), and (3.17) to hold, it
suffices to show the stochastic boundedness assumption in (3.19) implies (3.13) with
D.E/ D `1.E/: Since the sample paths of X are assumed to be in D.E/ D `1.E/,
we have for ˛ 2 .0; 1

2
�; n � 1; t 2 E that

�n
˛;l.t/ D inffx W 1

n

nX
jD1

I.Xj.t/ � x/ � ˛g � �ˇ

and

�n
1�˛;r.t/ D inffx W 1

n

nX
jD1

I.Xj.t/ � x/ > 1 � ˛g � ˇ;

where ˇ WD sup1� j�n supt2E jXj.t/j D sup1� j�n jjXjjj1 < 1: If ˛ 2 .0; 1
2
/, then

for every t 2 E

�ˇ � �n
˛;l.t/ � �n

˛;r.t/ � �n
1�˛;l.t/ � �n

1�˛;r.t/ � ˇ;

and hence �n
˛;l.	/; �n

1�˛;r.	/ 2 `1.E/. Furthermore, if ˛ D 1
2
, then by deleting the

middle two terms in the previous inequality we have �n
1
2 ;l
.	/; �n

1
2 ;r
.	/ 2 `1.E/.

Similarly, if ˛ 2 .0; 1
2
� and (3.19) holds, then for all t 2 E

�˛;l.t/ D inffx W P.X.t/ � x/ � ˛g � �x˛
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and since 0 < ˛ � 1
2

� 1 � ˛ < 1;

�1�˛;r.t/ D inffx W P.X.t/ � x/ > 1 � ˛g � x˛:

Since t 2 E is arbitrary, arguing as above we also have for the given ˛ 2 .0; 1
2
� that

�˛;l.	/; �1�˛;r.	/ 2 `1.E/. Therefore, (3.13) holds when D.E/ D `1.E/. ut
Proof of Lemma 3.12 Since we are assuming (3.21), for each t 2 E the distribution
function F.t; x/ is strictly increasing and continuous in x on the open interval
.�˛;l.t/ � �.˛/; �˛;l.t/ C �.˛// and hence for the given ˛ we have �˛;l.	/ D
�˛;r.	/ � �˛.	/. Moreover, if ˛ 2 .0; 1

2
�/ and (3.22) holds, then as in the proof

of Corollary 3.11 for the given ˛ 2 .0; 1
2
�/ we have supt2E j�˛.t/j � y˛ < 1; and

�˛.	/ 2 `1.E/. Furthermore, if ˛ 2 . 1
2
; 1/, then 1�˛ 2 .0; 1

2
/ and arguing as before

we have for t 2 E that

�y˛ � �1�˛;l.t/ � �1�˛;r.t/ � �˛;l.t/ � �˛;r.t/ � y˛:

Therefore, we again have supt2E j�˛.t/j � y˛ < 1; and �˛.	/ 2 `1.E/.
Hence it suffices to show �˛.	/ 2 C.E/, so fix t 2 E; ˛ 2 .0; 1/;  2 .0; �.˛//,

and take ı > 0 such that d.s; t/ � ı and (3.20) implies

sup
.s;x/Wd.s;t/�ı;x2R

jF.s; x/� F.t; x/j � �; (5.12)

where� < c˛ and c˛ is as in (3.21). Then, d.s; t/ � ı and (5.12) implies

F.t; �˛.s// � F.t; �˛.t//C� D ˛ C� < F.t; �˛.t/C / (5.13)

and

F.t; �˛.s// � F.s; �˛.s//�� D ˛ �� > F.t; �˛.t/ � / (5.14)

since (3.21) implies

F.t; �˛.t/C / D ˛ C
Z �˛.t/C

�˛.t/
f .t; x/dx � ˛ C c˛ > ˛ C�

and

F.t; �˛.t/ � / D ˛ �
Z �˛.t/

�˛.t/�
f .t; x/dx � ˛ � c˛ < ˛ ��:

Now (5.13) and (5.14) combine to imply

�˛.t/ �  � �˛.s/ � �˛.t/C 
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for d.s; t/ � ı. Since  > 0 can be taken arbitrarily small, �˛.	/ 2 C.E/ and the
lemma is verified. ut
Proof of Theorem 3.16 Since we are assuming (3.27), for each t 2 E the distribution
function F.t; x/ is strictly increasing and continuous in x on the open interval
.�˛;l.t/� �.I/; �˛;l.t/C �.I//; and hence for ˛ 2 I we have �˛;l.	/ D �˛;r.	/ � �˛.	/.

To establish (3.28) we use (3.26) to take �0 such that P�.�0/ D 1; and on �0

lim sup
n!1

sup
Ct;x2C

jFn.t; x/ � F.t; x/j D 0: (5.15)

Since we are also assuming (3.27), fix I  .0; 1/; 0 <  � �.I/, and ! 2 �0.
Then, by (5.15) and our definition of �0 there exists ı � ı.!; / > 0 such that for
n � n.ı.!; // we have

sup
Ct;x2C

jFn.t; x/ � F.t; x/j < ı; (5.16)

Furthermore, if ı D ı.!; / < cI;�.I/, our choice of  > 0 and (3.27) implies

sup
˛2I;t2E

F.t; �˛.t/ � / < ˛ � ı; (5.17)

and

inf
˛2I;t2E

F.t; �˛.t/C / > ˛ C ı: (5.18)

That is, (5.17) holds since

sup
˛2I;t2E

F.t; �˛.t/ � / � ˛ � inf
˛2I;t2E

Z �˛.t/

�˛.t/�
f .t; x/dx;

and (3.27) and our choice of ı D ı.!; / < cI;�.I/ then implies

inf
˛2I;t2E

Z �˛.t/

�˛.t/�
f .t; x/dx � cI;�.I/ > ı:

Similarly, (5.18) holds since

inf
˛2I;t2E

F.t; �˛.t/C / � ˛ C inf
˛2I;t2E

Z �˛.t/C

�˛.t/
f .t; x/dx;
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and (3.27) and our choice of ı implies

inf
˛2I;t2E

Z �˛.t/C

�˛.t/
f .t; x/dx � cI;�.I/ > ı:

Thus for n � n.ı.!; //, (5.16), and by definition of �n
˛;l.t/ that

inf
˛2I;t2E

Fn.t; �
n
˛;l.t// � ˛;

we have on �0 that

inf
˛2I;t2E

F.t; �n
˛;l.t// � inf

˛2I;t2E
Fn.t; �

n
˛;l.t// � ı � ˛ � ı:

Therefore, by (5.17) for all t 2 E; all ˛ 2 I; and ! 2 �0

�n
˛;l.t/ � �˛.t/ � ; (5.19)

provided n � n.ı.!; //.
Similarly, for all x < �n

˛;l.t/ we have for all t 2 E; all ˛ 2 I; and ! 2 �0

F.t; x/ < Fn.t; x/C ı.!; / � ˛ C ı < F.t; �˛.t/C /;

provided n � n.ı.!; //, where the first inequality follows from (5.16), the second
by definition of �n

˛.t/ and that x < �n
˛.t/, and the third by (5.18). Thus �˛.t/C  > x

for all x < �n
˛.t/, and combining this with (5.19) we have for all t 2 E; all ˛ 2 I;

and ! 2 �0 that

�˛.t/ �  � �n
˛.t/ � �˛.t/C ; (5.20)

provided n � n.ı.!; //. Since  > 0 was arbitrary, letting n ! 1 implies (3.28).
ut

Proof of Corollary 3.18 Let � D L.�X/, �n D 1
n

Pn
jD1 ı�Xj on .D.E/;DE/, and for

˛ 2 .0; 1/ define the left ˛-quantiles �˛;l.t; �/ and �˛;l.t; �n/ as in Definition 2.2.
Then, since (3.32) holds, Theorem 3.16 implies

lim
n!1 sup

t2E
j�˛;l.t; �n/� �˛;l.t; �/j D 0 (5.21)

on a subset E0 of � such that P�.E0/ D 1 provided for the given ˛ there exists
�.˛/ > 0 such that

inf
t2E;jx��˛;l.t;�/j��.˛/

h.t; x/ � c�.˛/ > 0 (5.22)

where h.t; x/ is the density of �X.t/.
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Now for each t 2 E we can take h.t; x/ D f .t;�x/ for all x 2 R, and hence
Lemma 3.1 implies �˛;l.t; �/ D ��1�˛;r.t/; t 2 E, where as usual �1�˛;r.t/ is defined
using L.X/. Thus, (5.22) is equivalent to

inf
t2E;jxC�1�˛;r.t/j��.˛/

f .t;�x/ � c�.˛/ > 0; (5.23)

and setting u D �x we have (5.23) equivalent to

inf
t2E;j�uC�1�˛;r.t/j��.˛/

f .t; u/ � c�.˛/ > 0; (5.24)

which follows from (3.33). Therefore, (5.21), holds, and since Lemma 3.1 also
implies �˛;l.t; �n/ D ��n

1�˛;r.t/; t 2 E, we thus have (3.34). Of course, (3.35) then
follows immediately, and Corollary 3.18 is proved. ut
Proof of Proposition 4.2 Since fY.t/ W t 2 Eg is bounded in probability there exists
c 2 .0;1/ such that supt2E P.jY.t/j > c/ < 1

2
: Then, for t 2 E

P.X.t/ � h.t// D
Z
R

P.Y.t/ � h.t/ � u/fZ.u/du; (5.25)

and for u � c C jjhjj1 we have

P.Y.t/ � h.t/� u/ � P.Y.t/ � jjhjj1 � .c C jjhjj1// � P.Y.t/ � �c/:
(5.26)

Since our choice of c implies P.Y.t/ � �c/ � P.jY.t/j � c/ > 1
2
, (5.26) implies

P.Y.t/ � h.t/� u/ >
1

2
; (5.27)

and combining (5.25) and (5.27)

inf
t2E

P.X.t/ � h.t// � 1

2
P.Z � c C jjhjj1/ � ı1.c; jjhjj1/ > 0: (5.28)

We also have for t 2 E that

P.X.t/ � h.t// D
Z
R

P.Y.t/ � h.t/ � u/fZ.u/du; (5.29)

and for t 2 E and u � �.c C jjhjj1/ that

P.Y.t/ � h.t/ � u/ � P.Y.t/ � �jjhjj1 C .c C jjhjj1// � P.Y.t/ � c/:
(5.30)



Quantile and Depth Regions 279

Our choice of c also implies P.Y.t/ � c/ � P.jY.t/j � c/ > 1
2
, and hence (5.30)

implies

P.Y.t/ � h.t/ � u/ >
1

2
: (5.31)

Combining (5.29) and (5.31) we thus have

inf
t2E

P.X.t/ � h.t// � 1

2
P.Z � �.c C jjhjj1// � ı2.c; jjhjj1/ > 0: (5.32)

Hence, (5.28) and (5.32) imply (4.7), and the proposition is proved. ut
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1 Introduction

Wenbo V. Li, Professor of Mathematical Sciences at the University of Delaware,
died suddenly of a heart attack on January 26, 2013, near his home in Newark,
Delaware. He was 49 years old. Wenbo is survived by his wife Sunny and his son
James.

Wenbo was born on October 27, 1963 in Harbin, China. After obtaining his
Bachelor’s degree in applied mathematics from Jilin University in Changchun,
China, he came to the United States in 1986 and studied probability theory at the
University of Wisconsin–Madison, under the supervision of James Kuelbs. Wenbo
obtained his PhD in Mathematics in 1992 and joined the University of Delaware
as an Assistant Professor, being promoted to Associate Professor in 1996 and Full
Professor in 2002.

Wenbo was a probabilist with a broad range of research interests, including
Gaussian processes, random polynomials and matrices, stochastic inequalities,
probability on Banach spaces, geometric functional analysis, stochastic partial
differential equations and random dynamics. He was a leading expert on small
value probability estimates. In 2006, he was elected Fellow of the IMS, “for his
distinguished research in the theory of Gaussian processes and in using this theory
to solve many important problems in diverse areas of probability”. He served
as an associate editor for several probability journals, including The Annals of
Probability, Journal of Theoretical Probability, Journal of Mathematical Research
and Exposition, and International Journal of Stochastic Processes. He orga-
nized or co-organized many international conferences/workshops, including High
Dimensional Probability (2005), IMS-China International Conference on Statistics
and Probability (2009), International Conference on Small Deviation Probabilities
(2003, 2005).

In this short note, we briefly review some of Wenbo’s main contributions and
some open questions Wenbo posed or found of interest.

2 Selected Wenbo’s Main Contributions

Wenbo had many research interests and made significant contributions to various
topics, especially to the estimation of small value probabilities. In this section, we
give a brief review of some of his main contributions.

2.1 Small Ball Probability and the Metric Entropy

Let� be a centered Gaussian measure on a real separable Banach space B with norm
k 	 k and dual B�. The reproducing Hilbert space of �, denoted by .H�; k 	 k�/, is
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the completion of the range of the mapping S W B� ! B defined via the Bochner
integral

Sf D
Z

B
xf .x/d�.x/; f 2 B�;

and the completion is with respect to the norm defined by the inner product

hSf ; Sgi D
Z

B
f .x/g.x/d�.x/; f ; g 2 B�:

If K is a compact set in a metric space .E; d/, then the metric entropy of K is
defined as H.K; / D log N.K; /, where N.K; / is minimum number of balls in E
with radius  needed to cover K.

One of the most significant contributions that Wenbo made to small ball theory
was achieved with Jim Kuelbs. This was to disclose the precise link between the
small problem for a Gaussian measure � and the metric entropy of the unit ball of
the reproducing Hilbert space generated by �. The notation in this result is as in [7]
and [12].

Theorem 2.1 (Kuelbs and Li [7]) Let � be a centered Gaussian measure on a real
separable Banach space B and let

log�.B/ D �	./;

where B D fx 2 B W kxk < g. Let K� be the unit ball of the reproducing Hilbert
space H� and H.K�; / be the metric entropy of K�.

(i) Then

H.K�; =.2	.//
1=2/ � 	.2/:

In particular, if 	./ � 	.2/ and 	./ � �˛J.�1/, ˛ > 0 and J is a slowly
varying function at infinity such that J.x/ � J.x�/ for each � > 0, then

H.K�; / � �2˛=.2C˛/J.1=/2=.2C˛/ as  ! 0:

(ii) If 	./ � f ./, where f .1=x/ is a regularly varying function at infinity, then

H.K�; =f ./1=2/ � f ./:

In particular, if f ./ D �˛J.�1/, ˛ > 0 and J is as in (i), then

H.K�; / � �2˛=.2C˛/J.1=/2=.2C˛/ as  ! 0:
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(iii) If H.K�; / � g./, where g.1=x/ is a regularly varying function at infinity,
then

	./ � g.=	./1=2/:

In particular, if g./ D �ˇJ.�1/, 0 < ˇ < 2 and J is as in (i), then

	./ � �2ˇ=.2�ˇ/J.1=/2=.2�ˇ/:

(iv) If H.K�; / � g./, where g.1=x/ is a regularly varying function at infinity,
then

	.2/ � g.=	./1=2/:

In particular, if g./ D �ˇJ.�1/, 0 < ˇ < 2 and J is as in (i), then

	./ � �2ˇ=.2�ˇ/J.1=/2=.2�ˇ/:

The last part in (iv) was proved by Li and Linde [12]. The link established in
Theorem 2.1 permits the application of tools and results from functional analysis to
attack important problems of estimating the small ball probabilities, which are of
special interest in probability theory, and vice versa. We refer to Li [11] for latest
development and applications.

2.2 Li’s Weak Correlation Inequality

Let � be a centered Gaussian measure on a real separable Banach space. Let A and
B be any two symmetric convex sets. The Gaussian correlation conjecture says that

�.A \ B/ � �.A/�.B/:

Wenbo worked for many years on the Gaussian correlation conjecture and proved
the following weak correlation inequality:

Theorem 2.2 (Li [9]) For A and B symmetric convex sets and 0 < 
 < 1

�.A \ B/ � �.
A/�
�
.1� 
2/1=2B

�
:

The Gaussian correlation conjecture is equivalent to: for any centered Gaussian
random vector .X1; 	 	 	 ;Xn/ and for 1 � k < n

P.jXij � xi; 1 � i � n/ � P.jXij � xi; 1 � i � k/P.jXjj � xj; k < j � n/ (2.1)

for x1; 	 	 	 ; xn > 0.
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It is known that (2.1) holds for k D 1. There have been several claims of a proof
of the Gaussian correlation conjecture.

2.3 Li’s Comparison Theorem

Let �n; n � 1 be i.i.d. standard normal random variables, fang and fbng be sequences
of strictly positive real numbers with

P1
nD1 an < 1,

P1
nD1 bn < 1.

Theorem 2.3 (Li [8]) If

1X
nD1

j1 � an=bnj < 1; (2.2)

then as  ! 0

P
� 1X

nD1
an�

2
n � 2

�
�
� 1Y

nD1
.bn=an/

�1=2
P
� 1X

nD1
bn�

2
n � 2

�
: (2.3)

Theorem 2 of Gao et al. [5] removes assumption (2.2) and shows (2.3) providedQ1
nD1.bn=an/ < 1.

2.4 A Reversed Slepian Type Inequality

Let fXi; 1 � i � ng and fYi; 1 � i � ng be centered Gaussian random vectors. The
classical Slepian [15] inequality states that

If EX2i D EY2i and E.XiXj/ � E.YiYj/ for all 1 � i; j � n, then for any x

P
�

max
1�i�n

Xi � x
�

� P
�

max
1�i�n

Yi � x
�

The Slepian inequality has played an important role in various probability
estimates for Gaussian measure. Li and Shao [13] established the following reversed
inequality, which is a special case of Theorem 2.2 in [13].

Theorem 2.4 (Li and Shao [13]) Assume EX2i D EY2i D 1 and 0 � E.XiXj/ �
E.YiYj/ for all 1 � i; j � n. Then for x � 0

P
�

max
1�i�n

Xi � x
�

� P
�

max
1�i�n

Yi � x
�

� P
�

max
1�i�n

Xi � x
�

�

Y
1�i<j�n

�� � 2 arcsin.EXiXj/

� � 2 arcsin.EYiYj/

�exp
�

�x2=.1CEYiYj/
�
:
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2.5 The First Exit Time of a Brownian Motion
from an Unbounded Convex Domain

Let B.t/ D .B1.t/; 	 	 	 ;Bd.t// 2 Rd; t � 0 be a standard d-dimensional Brownian
motion, where Bi.t/; 1 � i � d are independent standard Brownian motions. Let

D D f.x; y/ 2 RdC1 W y > f .x/; x 2 Rdg;

where f .x/ is a convex function on Rd. The first exit time �D of a .dC1/-dimensional
Brownian motion from D starting at the point .x0; f .x0/C 1/ is defined by

�D D infft � 0 W .x0 C B.t/; f .x0/C 1C B0.t// 62 Dg;

where B0.t/ is a standard Brownian motion independent of B.t/. Bañuelos et al. [1]
proved that If d D 1, f .x/ D jxj2, then

log P.�D � t/ � �t1=3 as t ! 1:

Li [10] gave a very general estimate for log P.�D > t/. In particular, for f .x/ D
exp.kxkp/; p > 0;

lim
t!1 t�1.log t/2=p log P.�D � t/ D �j2v=2;

where v D .d � 2/=2 and jv is the smallest positive zero of the Bessel function Jv .

2.6 Lower Tail Probabilities

Let fXt; t 2 Tg be a real valued Gaussian process indexed by T with EXt D 0.
Lower tail probability refers to

P
�

sup
t2T
.Xt � Xt0 / � x

�
as x ! 0; t0 2 T

or

P
�

sup
t2T

Xt � x
�

as jTj ! 1:

Li and Shao [14] obtained a general result for the lower tail probability of non-
stationary Gaussian process

P

�
sup
t2T
.Xt � Xt0 / � x

�
as x ! 0;
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Special cases include:

(a) Let fX.t/; t 2 Œ0; 1�dg be a centered Gaussian process with X.0/ D 0 and
stationary increments, that is

8 t; s 2 Œ0; 1�d; E.Xt � Xs/
2 D �2.kt � sk/:

If there are 0 < ˛ � ˇ < 1 such that �.h/=h˛ is non-decreasing and �.h/=hˇ

non-increasing, then as  ! 0

ln P. sup
t2Œ0;1�d

X.t/ � �.// � � log
1


:

(b) Let fX.t/; t 2 Œ0; 1�dg be a centered Gaussian process with X.0/ D 0 and

E.XtXs/ D
dY

iD1

1

2
.�2.ti/C �2.si/ � �2.jti � sij//:

If there are 0 < ˛ � ˇ < 1 such that �.h/=h˛ is non-decreasing and �.h/=hˇ

non-increasing, then as  ! 0, then as  ! 0

ln P. sup
t2Œ0;1�d

X.t/ � �d.// � � lnd 1


:

2.7 Large Deviations for Self-Interaction Local Times

Let B.t/; t � 0 be a one-dimensional Brownian motion and k � 2. The self-
interaction local time given by

ˇt D
Z
Œ0;t�k

1fB.s1/DB.s2/D���DB.sk/gds1 	 	 	 dsk

measures the intensity of the k-multiple self-intersection of the Brownian path. It is
known that

ˇt D
Z 1

�1
Lk.t; x/dx;

where

L.t; x/ D
Z t

0

ıx.B.s//ds

is the local time of the Brownian motion.
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Chen and Li [3] proved that the following holds:

lim
x!1 x�2=.k�1/ log P.ˇ1 � x/

D � 1

4.k � 1/
�k C 1

2

�.3�k/=.k�1/
B
� 1

k � 1 ;
1

2

�2
;

where B.	; 	/ is the beta function.
This is a special case of Theorem 1.1 in [3].

2.8 Ten Lectures on Small Value Probabilities and Applications

Wenbo delivered ten comprehensive lectures on small value probabilities and
applications at NSF/CBMS Regional Research Conference in the Mathematical
Sciences, University of Alabama in Huntsville, June 04–08, 2012. We highly
recommend them to anyone who is interested in this topic.

3 Wenbo’s Open Problems

From time to time Wenbo raised many interesting open questions. In this section we
summarize a selection of them, some of which might not be originally due to him.
We refer to Wenbo’s ten lectures for details.

1. Gaussian products conjecture:
For any centered Gaussian vector .X1; 	 	 	 ;Xn/, it holds

E.X2m
1 	 	 	 X2m

n / � E.X2m
1 / 	 	 	 E.X2m

n /

for each integer m � 1.
It is known it is true when m D 1 (Frenkel [4]) .

2. Gaussian minimum conjecture:
Let .Xi; 1 � i � n/ be a centered Gaussian random vector. Then

E min
1�i�n

jXij � E min
1�i�n

jX�
i j;

where X�
i are independent Gaussian random variables with E.X�2

i / D E.X2i /.
A weak result was proved by Gordon et al. [6]:

E min
1�i�n

jXij � .1=2/E min
1�i�n

jX�
i j:
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3. Conjecture: Let i; 1 � i � n be i.i.d. r.v.’s P.i D ˙1/ D 1=2. Then for any
faig satisfying

Pn
iD1 a2i D 1

P
�
j

nX
iD1

aiij � 1
�

� 1=2:

The best known lower bound is 3=8.
In the following open questions 4–6, let ij be i.i.d. Bernoulli random variables

with P.ij D ˙1/ D 1=2.
4. Determinant of Bernoulli matrices:

Let Mn D .ij/n�n. It is easy to show that

E.det.Mn/
2/ D nŠ:

It was proved by Tao and Vu [16] that

P
�
j det.Mn/j � p

nŠ exp.�29.n log n/1=2/
�

D o.1/:

Conjecture: For 0 < ı < 1,

P
�
j det.Mn/j � .1 � ı/

p
nŠ
�

D o.1/

and with probability tending to 1

j det.Mn/j D nO.1/
p

nŠ:

5. Singularity probability of random Bernoulli matrices:
Let Mn D .ij/n�n. Clearly, one has

P.det.Mn/ D 0/ � .1C o.1//n221�n:

It is conjectured that

P.det.Mn/ D 0/ D
�1
2

C o.1/
�n
:

The best known result is due to Bourgain et al. [2]:

P.det.Mn/ D 0/ �
� 1p

2
C o.1/

�n
:
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6. Gaussian Hadamard conjecture:
The Hadamard conjecture can be restated as

P
�

max
1�j6Dk�n

j
nX

iD1
ijikj < 1

�
� 2�n2 ;

where n D 4m
The Gaussian Hadamard conjecture is: Let �ij be i.i.d. standard normal

random variables. Then

ln P
�

max
1�j6Dk�n

j
nX

iD1
�ij�ikj < 1

�
� �n2:

7. The traveling salesman problem:
Let

Ln D min
�

n�1X
iD1

jX�.iC1/ � X�.i/j

be the shortest tour of n i.i.d. uniform points fXi; 1 � i � ng � Œ0; 1�d, where �
denotes a permutation of f1; 	 	 	 ; ng. It is known that

E.Ln/=n.d�1/=d ! ˇ.d/:

Open question: What is the value of ˇ.d/? Does the central limit theorem
hold?

8. Two-sample matching:
Let fXig and fYig be i.i.d. uniformly distributed on Œ0; 1�2. Consider

Mn D min
�

nX
iD1

jXi � Y�.i/j; M�
n D min

�
max
1�i�n

jXi � Y�.i/j:

It is known that there exist 0 < c0 < c1 < 1 such that

c0 � EMnp
n log n

� c1; c0 � EM�
n

n�1=2.log n/3=4
� c1:

Open question: What are the exact limits? What are the limiting distributions
of Mn=

p
n log n and M�

n =.n
�1=2.log n/3=4/ ?

Acknowledgements We would like to thank the referee for his/her helpful suggestions/comments.
This work was partly supported by Hong Kong RGC GRF 403513 and 14302515.



Wenbo V. Li’s Contributions 291

References

1. R. Banuelos, R. DeBlassie, R. Smits, The first exit time of Brownian motion from interior of a
parabola. Ann. Probab. 29, 882–901 (2001)

2. J. Bourgain, V. Vu, P.M. Wood, On the singularity probability of discrete random matrices. J.
Funct. Anal. 258, 559–603 (2010)

3. X. Chen, W.V. Li, Large and moderate deviations for intersection local times. Probab. Theory
Relat. Fields 128, 213–254 (2004)

4. P.E. Frenkel, Pfaffians, Hafnians and products of real linear functionals. Math. Res. Lett. 15,
351–358 (2008)

5. F. Gao, J. Hannig, T.Y. Lee, F. Torcaso, Exact L2 small balls of Gaussian processes. J. Theor.
Probab. 17, 503–520 (2004)

6. Y. Gordon, A. Litvak, C. Schtt, E. Werner, On the minimum of several random varaibles. Proc.
Am. Math. Soc. 134, 3665–3675 (2006)

7. J. Kuelbs, W.V. Li, Metric entropy and the small ball problem for Gaussian measures. J. Funct.
Anal. 116, 133–157 (1993)

8. W.V. Li, Comparison results for the lower tail of Gaussian seminorms. J. Theor. Probab. 5,
1–31 (1992)

9. W.V. Li, A Gaussian correlation inequality and its applications to small ball probabilities.
Electron. Commun. Probab. 4, 111–118 (1999)

10. W.V. Li, The first exit time of a Brownian motion from an unbounded convex domain. Ann.
Probab. 31, 1078–1096 (2003)

11. W.V. Li, Ten Lectures on Small Deviation Probabilities: Theory and Applications (2012), http:
jamesyli.com/wenboli_backup

12. W.V. Li, W. Linde, Approximation, metric entropy and small ball estimates for Gaussian
measures. Ann. Probab. 27, 1556–1578 (1999)

13. W.V. Li, Q.M. Shao, A normal comparison inequality and its applications. Probab. Theory
Relat. Fields 122, 494–508 (2002)

14. W.V. Li, Q.M. Shao, Lower tail probabilities for Gaussian processes. Ann. Probab. 32, 216–242
(2004)

15. D. Slepian, The one-sided barrier problem for Gaussian noise. Bell Syst. Tech. J. 41, 463–501
(1962)

16. T. Tao, V. Vu, On random ˙1 matrices: singularity and determinant. Random Struct.
Algorithm. 28, 1–23 (2006)

http:jamesyli.com/wenboli_backup
http:jamesyli.com/wenboli_backup


Part III
Stochastic Processes



Orlicz Integrability of Additive Functionals of
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Abstract For a Harris ergodic Markov chain .Xn/n�0, on a general state space,
started from the small measure or from the stationary distribution, we provide
optimal estimates for Orlicz norms of sums

P�
iD0 f .Xi/, where � is the first

regeneration time of the chain. The estimates are expressed in terms of other
Orlicz norms of the function f (with respect to the stationary distribution) and the
regeneration time � (with respect to the small measure). We provide applications
to tail estimates for additive functionals of the chain .Xn/ generated by unbounded
functions as well as to classical limit theorems (CLT, LIL, Berry-Esseen).

Keywords Limit theorems • Markov chains • Orlicz spaces • Tail inequalities •
Young functions

Mathematics Subject Classification (2010). Primary 60J05, 60E15; Secondary
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1 Introduction and Notation

Consider a Polish space X with the Borel �-field B and let .Xn/n�0 be a time
homogeneous Markov chain on X with a transition function PWX � B ! Œ0; 1�.
Throughout the article we will assume that the chain is Harris ergodic, i.e. that there
exists a unique probability measure � on .X ;B/ such that

kPn.x; 	/� �kTV ! 0

for all x 2 X , where k 	 kTV denotes the total variation norm, i.e. k�kTV D
supA2B j�.A/j for any signed measure �.
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One of the best known and most efficient tools of studying such chains is the
regeneration technique [4, 30], which we briefly recall bellow. We refer the reader
to the monographs [28, 31] and [12] for extensive description of this method and
restrict ourselves to the basics which we will need to formulate and prove our results.

One can show that under the above assumptions there exists a set (usually called
small set) C 2 EC D fA 2 BW�.A/ > 0g, a positive integer m, ı > 0 and a Borell
probability measure � on X (small measure) such that

Pm.x; 	/ � ı�.	/ (1.1)

for all x 2 C. Moreover one can always choose m and � in such a way that �.C/ > 0.
Existence of the above objects allows to redefine the chain (possibly on an

enlarged probability space) together with an auxiliary regeneration structure. More
precisely, one defines the sequence . QXn/n�0 and a sequence .Yn/n�0 of f0; 1g-random
variables by requiring that QX0 have the same distribution as X0 and specifying
the conditional probabilities (see [28, Chap. 17.3.1]) as follows. Denote F QX

km D
�.. QXi/i�km/ and FY

k�1 D �..Yi/i�k�1/. For x 2 C let

r.x; y/ D ı�.dy/

Pm.x; dy/
:

Note that the density in the definition of r is well-defined by (1.1) and the Radon-
Nikodym theorem. Moreover it does not exceed ı�1 and so r.x; y/ � 1. Now for
A1; : : : ;Am 2 B set

P

�
fYk D 1g \

m\
iD1

f QXkmCi 2 AigjF QX
km;FY

k�1; QXkm D x
�

D P

�
fY0 D 1g \

m\
iD1

f QXi 2 Aigj QX0 D x
�

D 1fx2Cg
Z

A1

	 	 	
Z

Am

r.x; xm/P.xm�1; dxm/P.xm�2; dxm�1/ 	 	 	 P.x; dx1/

and

P.fYk D 0g \
m\

iD1
f QXkmCi 2 AigjF QX

km;FY
k�1; QXkm D x/

D P.fY0 D 0g \
m\

iD1
f QXi 2 Aigj QX0 D x/

D
Z

A1

	 	 	
Z

Am

�
1 � 1fx2Cgr.x; xm/

�
P.xm�1; dxm/ 	 	 	 P.x; dx1/:
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Note that if QXkm D x … C, then (conditionally) almost surely Yk D 0 and the
conditional distribution of . QXkmC1; : : : ; QX.kC1/m/ given F QX

km;FY
k�1; QXkm is the same as

the conditional distribution of .XkmC1; : : : ;X.kC1/m/ given Xkm D x.
The process . QXn;Yn/n�0 is usually referred to as the split chain (although some

authors reserve this name for the process . QXnm;Yn/n�0). In the special case of m D 1

the above construction admits a nice ‘algorithmic’ interpretation: if QXn D x 2 C,
then one tosses a coin with probability of heads equal to ı; if one gets heads, then
the point QXnC1 is generated from the measure � (which is independent of x) and one
sets Yn D 1, otherwise the new point QXnC1 is generated from the transition function
.P.x; 	/ � ı�.	//=.1 � ı/ and one sets Yn D 0; if QXn D x … C, then Yn D 0 and
QXnC1 is generated from P.x; 	/. In the general case this interpretation works for the
process . QXnm;Yn/ and the above formulas allow to fill in the missing values of QXnmCi

in a consistent way.
One can easily check that . QXn/n�0 has the same distribution as .Xn/n�0 and so we

may and will identify the two sequences (we will suppress the tilde). The auxiliary
variables Yn can be used to introduce some independence which allows to recover
many results for Markov chains from corresponding statements for the independent
(or one-dependent) case. Indeed, observe that if we define the stopping times

�.0/ D inffk � 0;Yk D 1g; �.i/ D inffk > �.i � 1/W Yk D 1g; i D 1; 2; : : : ;

then the blocks

R0 D .X0; : : : ;X�.0/mCm�1/;Ri D .Xm.�.i�1/C1/; : : : ;Xm�.i/Cm�1/

are one-dependent, i.e. for all k, �.Ri; i < k/ is independent of �.Ri; i > k/. In
the special case, when m D 1 (the strongly aperiodic case) the blocks Ri are
independent. Moreover, for i � 1 the blocks Ri form a stationary sequence.

In particular for any function f WX ! R, the corresponding additive functionalPn
iD0 f .Xi/ can be split (modulo the initial and final segment) into a sum (of random

length) of one-dependent (independent for m D 1) identically distributed summands

si. f / D
m�.iC1/Cm�1X
jDm.�.i/C1/

f .Xj/:

A crucial and very useful fact is the following equality, which follows from
Pitman’s occupation measure formula ([35, 36], see also Theorem 10.0.1 in [28]),
i.e. for any measurable FWX � f0; 1g ! R,

E�

�.0/X
iD0

F.Xmi;Yi/ D ı�1�.C/�1E�F.X0;Y0/; (1.2)
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where by E� we denote the expectation for the process with X0 distributed according
to the measure �. More precisely, if one side of (1.2) is well defined, then so is the
other side and the equality holds.

It is also worth noting that independently of �, the P�-distribution of si. f / is
equal to the P�-distribution of

S D S. f / D
�.0/mCm�1X

iD0
f .Xi/:

In particular, by (1.2) this easily implies that for any initial distribution �,

E�si. f / D E�S D ı�1�.C/�1m
Z
X

fd�: (1.3)

The above technique of decomposing additive functionals of Markov chains
into independent or almost independent summands has proven to be very useful in
studying limit theorems for Markov chains (see e.g. [8, 9, 12, 20, 28, 31, 40]), as well
as in obtaining non-asymptotic concentration inequalities (see e.g. [1, 2, 13, 14]).
The basic difficulty of this approach is providing proper integrability for the variable
S. This is usually achieved either via pointwise drift conditions (e.g. [2, 5, 14, 28]),
especially important in Markov Chain Monte Carlo algorithms or other statistical
applications, when not much information regarding the behaviour of f with respect
to the stationary measure is available. Such drift conditions are also useful for
quantifying the ergodicity of the chain, measured in terms of integrability of the
regeneration time T D �.1/ � �.0/ (which via coupling constructions can be
translated in the language of total variation norms or mixing coefficients). Classical
assumptions about integrability of T are of the form ET˛ < 1 or E exp.�T/ < 1,
which corresponds to polynomial or geometric ergodicity of the chain. However,
recently new, modified drift conditions have been introduced [14, 15], which give
other orders of integrability of T, corresponding to various subgeometric rates of
ergodicity. Chains satisfying such drift conditions appear naturally in Markov Chain
Monte Carlo algorithms or analysis of nonlinear autoregressive models [15].

Another line of research concerns the behaviour of the stationary chain. It is
then natural to impose conditions concerning integrability of f with respect to the
measure � and to assume some order of ergodicity of the chain. Such an approach
has both advantages and limitations. On the one hand, investigating chains started
from a point provides us with more precise information, on the other hand it requires
more a priori knowledge on the relation between the function f and the transition
function P (in particular one can show that in certain situations the subtle drift
criteria involving the function f cannot be avoided, see e.g. [2, 21]). When dealing
with the stationary case one in turn relies just on the integrability of f with respect
to � and with this restricted information it is possible to obtain properties of the
additive functional valid for all stationary chains admitting� as a stationary measure
and possessing a prescribed order of ergodicity.
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From this point of view it is natural to ask questions concerning more general
notions of integrability of the variable S. In this note we will focus on Orlicz
integrability. Recall that 'W Œ0;1/ ! RC is called a Young functions if it is strictly
increasing, convex and '.0/ D 0. For a real random variable X we define the Orlicz
norm corresponding to ' as

kXk' D inffC > 0WE'.jXj=C/ � 1g:
The Orlicz space associated to ' is the set L' of random variables X such that
kXk' < 1.

In what follows, we will deal with various underlying measures on the state
space X or on the space of trajectories of the chain. To stress the dependence of
the Orlicz norm on the initial distribution � of the chain .Xn/ we will denote it
by k 	 k�;' , e.g. kSk�;' will denote the '-Orlicz norm of the functional S for the
stationary chain, whereas kSk�;'—the '-Orlicz norm of the same functional for the
chain started from initial distribution �. We will also denote by k f k�;� the �-Orlicz
norm of the function f WX ! R when the underlying probability measure is �.
Although the notation is the same for Orlicz norms of functionals of the Markov
chains and functions on X , the meaning will always be clear from the context and
thus should not lead to misunderstanding.

Remarks

1. Note that the distribution of T D �.1/ � �.0/ is independent of the initial
distribution of the chain and is equal to the distribution of �.0/C 1 for the chain
starting from the measure �. Thus kTk D k�.0/C 1k�; .

2. In [33], the authors consider ergodicity of order  of a Markov chain, for a
special class of nondecreasing functions  WN ! RC. They call a Markov chain
ergodic of order  iff E� ı.T/ < 1, where  ı.n/ D Pn

iD1  .i/. Since  ı can
be extended to a convex increasing function, one can easily see that this notion is
closely related to the finiteness of a proper Orlicz norm of T (related to a certain
shift of the function  ı).

We will be interested in the following two, closely related, questions.

Question 1 Given two Young functions ' and  and a Markov chain .Xn/ such
that kTk < 1, what do we have to assume about f WX ! R to guarantee that
kSk�;' < 1 (resp. kSk�;' < 1)?

Question 2 Given two Young functions � and  , a Markov chain .Xn/ such that
kTk < 1 and f WX ! R, such that k f k�;� < 1, what can we say about the
integrability of S for the chain started from � or from �?

As it turns out, the answers to both questions are surprisingly explicit and
elementary. We present them in Sect. 2 (Theorems 2, 10, Corollaries 7, 15). The
upper estimates have very short proofs, which rely only on elementary properties of
Orlicz functions and the formula (1.3). They are also optimal as can be seen from
Propositions 4, 11 and Theorem 5, which are proven in Sect. 3. The proofs of the
optimality results are obtained by a construction of a general class of examples of
Markov chains with appropriate integrability properties.
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We would like to stress that despite being elementary, both the estimates and the
counterexamples have non-trivial applications (some of which we present in the last
section) and therefore are of considerable interest. For example when specialized to
'.x/ D x2, the estimates give optimal conditions for the CLT or LIL for Markov
chains under assumptions concerning the rate of ergodicity and integrability of the
test functions in the stationary case. To our best knowledge these corollaries have
not been presented before in this generality, even though it is likely that they can be
also obtained from general results for strongly mixing sequences derived in [16, 38,
39] (we provide a more detailed discussion in the remark after Theorem 17). Also,
we are able to obtain exponential tail estimates for additive functionals of chains
started from the small measure or from the stationary distribution. They may find
applications both in the statistical analysis of stationary chains and in some MCMC
algorithms as in some situations one is able to sample from the small measure.

In the following sections of the article we present our main estimates, demon-
strate their optimality and provide applications to limit theorems and tail estimates.
For the reader’s convenience we gather all the basic facts about Orlicz spaces, which
are used in the course of the proof, in the appendix (we refer the reader to the
monographs [22, 25, 37] for a more detailed account on this class of Banach spaces).

2 Main Estimates

To simplify the notation, in what follows we will write � instead of �.0/.

2.1 The Chain Started from �

Assumption (A) We will assume that

lim
x!0

 .x/=x D 0 and  .1/ � 1:

Since any Young function on a probability space is equivalent to a function
satisfying this condition (see the definition of domination and equivalence of
functions below), it will not decrease the generality of our estimates, while allowing
to describe them in a more concise manner (in the general case one simply needs to
adjust appropriately the constants in the inequalities). In particular, the assumption
(A) guarantees the correctness of the following definition (where by a generalized
Young function we mean a nondecreasing convex function �W Œ0;1/ ! Œ0;1� with
�.0/ D 0, limx!1 �.x/ D 1).

Definition 1 Let ' and  be Young functions. Assume that  satisfies the
assumption .A/. Define the generalized Young function � D �'; by the formula

�.x/ D sup
y�0

'.xy/�  .y/

y
:



Orlicz Integrability of Additive Functionals of Markov Chains 301

Theorem 2 Let ' and  be Young functions. Assume that  satisfies the assump-
tion .A/. Let � D �'; . Then for any Harris ergodic Markov chain .Xn/, a small set
C, a measure � satisfying (1.1), and all functions f WX ! R, we have

���
m�Cm�1X

jD0
f .Xj/

���
�;'

� 2mk� C 1k�; k f k�;�: (2.1)

Proof Let a D k� C 1k�; , b D k f k�;� . We have

E�'
� S

abm

�
D E�'

�P�mCm�1
jD0 f .Xj/

abm

�

� E�

�mCm�1X
jD0

'. f .Xj/b�1.� C 1/a�1/
.� C 1/m

� E�

�mCm�1X
jD0

�. f .Xj/b�1/
am

C E�

�mCm�1X
jD0

 ..� C 1/a�1/
.� C 1/m

D ı�1�.C/�1a�1
E��. f .X0/b

�1/C E� ..� C 1/a�1/;

where the first inequality follows from convexity of ', the second one from the
definition of the function � and the last equality from (1.3). Let us now notice that
another application of (1.3) gives

E�.� C 1/ D ı�1�.C/�1:

Thanks to the assumption  .1/ � 1, we have E� ..� C 1/ı�.C// �  .E�.� C
1/ı�.C// D  .1/ � 1, which implies that a � ı�1�.C/�1. Combined with the
definition of a and b this gives

E�'
� S

abm

�
� 2

and hence E�'.S=.2abm// � E�2
�1'.S=abm/ � 1, which ends the proof. ut

Let us point out that the only ingredient of the above proof, which is related to
Markov chains is the use of formula (1.3). In particular, a simple rephrasing of the
proof leads to the following result, which may be of independent interest.

Theorem 3 Let .Un/n�0 be a sequence of real random variables and let T be
a positive integer-valued random variable. Assume that for all functions f WR !
Œ0;1/,

E

T�1X
iD0

f .Ui/ � ETEf .U0/:
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Let ' and be two Young functions and assume that  satisfies the assumption (A).
Let � D �'; . Then

k
T�1X
iD0

Uik' � 2kTk kU0k�:

Note that the hypotheses of the above theorem are satisfied e.g. when Ui are i.i.d.
and T � 1 is a stopping time.

As one can see, the proof of Theorem 2 is very simple. At the same time, it
turns out that the estimate given in Theorem 2 is optimal (up to constants) and thus
answers completely Question 1 for the chain starting from �. Below we present two
results on optimality of Theorem 2 whose proofs are postponed to the next section.

Domination and Equivalence of Functions Consider two non-decreasing func-
tions �1; �2W Œ0;1/ ! Œ0;1�, such that �1.0/ D �2.0/ D 0. As is classical in
the theory of Orlicz spaces with respect to probabilistic measures, we say that �2
dominates �1 (denoted by �1 � �2) if there exist positive constants C1;C2 and x0,
such that

�1.x/ � C1�2.C2x/ (2.2)

for x � x0. Assume now for a while that the underlying probability space is rich
enough, so that the Orlicz spaces considered are infinite-dimensional. One can easily
check that if �i are Young functions, then �1 � �2 iff there is an inclusion and
comparison of norms between the corresponding Orlicz spaces. We will say that �1
and �2 are equivalent (�1 ' �2) iff �1 � �2 and �2 � �1. One can also easily check
that two Young functions are equivalent iff they define equivalent Orlicz norms (and
the same remains true for functions equivalent to Young functions). Note also that
if (2.2) holds and �2 is a Young function, then �1.x/ � �2.max.C1; 1/C2x/ for all
x � x0.

Our first optimality result is

Proposition 4 (Weak Optimality of Theorem 2) Let ' and be as in Theorem 2.
Assume that a Young function � has the property that for every X , every Harris
ergodic Markov chain .Xn/ on X , a small set C, a small measure � with k�k�; < 1
and every function f WX ! R such that k f k�;� < 1, we have kS. f /k�;' < 1. Then
�'; � �.

It turns out that if we assume something more about the functions ' and  , the
above proposition can be considerably strengthened.

Theorem 5 (Strong Optimality of Theorem 2) Let '; and � be as in Theorem 2.
Assume additionally that '�1 ı  is equivalent to a Young function. Let Y be a
random variable such that kYk� D 1. Then there exists a Harris ergodic Markov
chain .Xn/ on some Polish space X , with stationary distribution � , a small set C, a



Orlicz Integrability of Additive Functionals of Markov Chains 303

small measure � and a function f WX ! R, such that the distribution of f under � is
equal to the law of Y, k�k�; < 1 and kS. f /k�;' D 1.

Remarks

1. In the last section we will see that the above theorem for '.x/ D x2 can be used
to construct examples of chains violating the central limit theorem.

2. We do not know if the additional assumption on convexity of '�1 ı  is needed
in the above theorem.

3. In fact in the construction we provide, the set C is an atom for the chain (i.e. in
the minorization condition, m D 1 and ı D 1).

The above results give a fairly complete answer to Question 1 for a chain started
from a small measure. We will now show that Theorem 2 can be also used to derive
the answer to Question 2.

Recall that the Legendre transform of a function �W Œ0;1/ ! RC [ f1g is
defined as �� D supfxy � �.y/W y � 0g. Our answer to Question 2 is based on the
following observation (which will also be used in the proof of Theorem 5).

Proposition 6 Let '; be Young functions. Assume that satisfies the assumption
(A) and limx!1  .x/=x D 1. Then the function � D �'; is equivalent to ��,
where � D . �/�1 ı '�. More precisely, for any x � 0,

2��.2�1x/ � �.x/ � 2�1��.2x/: (2.3)

Before we prove the above proposition, let us formulate an immediate corollary,
whose optimality will also be shown in the next section.

Corollary 7 Let � and  be two Young functions. Assume that  satisfies the
assumption (A) and limx!1 .x/=x D 1. Then for any Harris ergodic Markov
chain, small set C, small measure � and any f WX ! R we have

kSk�; Q' � 4mk.� C 1/k�; k f k�;�;

where Q' D . � ı ��/�.

Proof of Proposition 6 Using the fact that '�� D ' we get

�.x/ D sup
y�0

'.xy/�  .y/
y

D sup
y�0

sup
z�0

xyz � '�.z/ �  .y/

y

D sup
z�0

�
xz � inf

y�0
'�.z/C  .y/

y

�
D Q��.x/;



304 R. Adamczak and W. Bednorz

where Q�.z/ D infy�0.'�.z/C  .y//y�1. Note that if '�.z/ < 1, then as a function
of y, '�.z/y�1 decreases, whereas  .y/y�1 increases, so for all z � 0 we have

'�.z/
y0

� Q�.z/ � 2
'�.z/

y0
;

where y0 is defined by the equation '�.z/ D  .y0/, i.e. y0 D  �1.'�.z//. In
combination with Lemma 22 from the Appendix, this yields

1

2
�.z/ � Q�.z/ � 2�.z/: (2.4)

Note that this is also true if '�.z/ D 1. Now, (2.4) easily implies that 2��.x=2/ �
�.x/ � 2�1��.2x/ and thus ends the proof of the proposition. ut

We also have the following proposition whose proof is deferred to Sect. 3.

Proposition 8 Let  and � be as in Corollary 7 and let ' be a Young function such
that for every X , every Markov chain .Xn/ on X , a small set C, a small measure �
and f WX ! R with k�k�; < 1 and k f k�;� < 1, we have kSk�;' < 1. Then
' � . � ı ��/�.

Examples Let us now take a closer look at consequences of our theorems for
classical Young functions. The following examples are straightforward and rely
only on theorems presented in the last two sections and elementary formulas for
Legendre transforms of classical Young functions. The formulas we present here
will be used in Sect. 4. We also note that below we consider functions of the form
x 7! exp.x˛/ � 1 for ˛ 2 .0; 1/. Formally such functions are not Young functions
but it is easy to see that they can be modified for small values of x in such a way
that they become Young functions. It is customary to define kXk ˛ D inffC >

0WE exp..jXj=C/˛/ � 2g. Under such definition k	k ˛ is a quasi-norm, which can be
shown to be equivalent to the Orlicz norm corresponding to the modified function.

1. If '.x/ D xp and  .x/ D xr, where r > p � 1, then �'; .x/ ' x
p.r�1/

r�p .
2. If '.x/ D exp.x˛/ � 1 and  .x/ ' exp.xˇ/ � 1, where ˇ � ˛, then �'; .x/ '

exp.x
˛ˇ
ˇ�˛ /� 1.

3. If '.x/ D xp and  .x/ ' exp.xˇ/ � 1, where ˇ > 0, then �'; .x/ '
xp log.p�1/=ˇ x.

4. If  .x/ D xr (r > 1) and �.x/ D xp (p � 1), then '.x/ ' x
rp

rCp�1 .
5. If  .x/ ' exp.xˇ/ � 1 and �.x/ D exp.x˛/ � 1 (˛; ˇ > 0), then '.x/ '

exp.x
˛ˇ
˛Cˇ /� 1.

6. If  .x/ ' exp.xˇ/ � 1 (ˇ > 0) and �.x/ D xp (p � 1), then '.x/ ' xp

log.p�1/=ˇ x
.
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2.2 The Stationary Case

We will now present answers to Questions 1 and 2 in the stationary case. Let us start
with the following

Definition 9 Let ' and  be Young functions. Assume that limx!0  .x/=x D 0

and define the generalized Young function � D �'; by the formula

�.x/ D sup
y�0
.'.xy/� y�1 .y//:

In the stationary case the function � will play a role analogous to the one of
function � for the chain started from the small measure.

Theorem 10 Let ' and  be Young functions, limx!0  .x/=x D 0. Let � D �';� .
Then for any Harris ergodic Markov chain .Xn/, small set C, small measure � and
all functions f WX ! R, we have

���
m�Cm�1X

jD0
f .Xj/

���
�;'

� mk� C 1k�; 
�
1C ı�.C/k� C 1k�; 

�
k f k�;� : (2.5)

Proof The proof is very similar to the proof of Theorem 2, however it involves one
more application of Pitman’s formula to pass from the stationary case to the case of
the chain started from �.

Consider any functional FWXN � f0; 1gN ! R (measurable with respect to the
product �-field) on the space of the trajectories of the process .Xn;Yn/n�0 (recall
from the introduction that we identify Xn and QXn). By the definition of the split
chain, independently of the distribution of X0, we have for any i 2 N,

E.F..Xj/j�im; .Yj/j�i/jFX
im;FY

i / D G.Xim;Yi/;

where G.x; y/ D E.x;y/F..Xi/i�0; .Yi/i�0/ D EF..Xi/i�0; .Yi/i�0jX0 D x;Y0 D y/.
In particular for the functional

F..Xi/i�0; .Yi/i�0/ D '
�
.abm/�1

m�Cm�1X
iD0

f .Xi/
�
;

where a D k� C 1k�; and b D k f k�;� , we have

E�'..abm/�1
m�Cm�1X

iD0
f .Xi// D E�G.X0;Y0/ D ı�.C/E�

�X
iD0

G.Xim;Yi/

D ı�.C/
1X

iD0
E�G.Xim;Yi/1fi��g
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D ı�.C/
1X

iD0
E�E

�
F..Xj/j�im; .Yj/j�i/jFX

im;FY
i

�
1fi��g

D ı�.C/
1X

iD0
E�'

�
.abm/�1

m�Cm�1X
jDim

f .Xj/
�

1fi��g

D ı�.C/E�

�X
iD0

'
�
.abm/�1

m�Cm�1X
jDim

f .Xj/
�

� ı�.C/E�

�X
iD0

m�Cm�1X
jDim

1

m.� � i C 1/
'..ab/�1.� � i C 1/f .Xj//

D ı�.C/E�

m�Cm�1X
jD0

bj=mcX
iD0

1

m.� � i C 1/
'..ab/�1.� � i C 1/f .Xj//

� ı�.C/E�

m�Cm�1X
jD0

bjm�1c C 1

m.� C 1/
'..ab/�1.� C 1/f .Xj//;

where the second equality follows from (1.2) and the two last inequalities from the
convexity of '.

We thus obtain

E�'..abm/�1S. f // � ı�.C/m�1
E�

m�Cm�1X
iD0

'..ab/�1.� C 1/f .Xi//

� ı�.C/m�1
E�

m�Cm�1X
iD0

�.b�1f .Xi//C ı�.C/aE� .a
�1.� C 1//

� E��.b
�1f .X0//C ı�.C/aE� .a

�1.� C 1// � 1C ı�.C/a;

where we used (1.3). This ends the proof of the theorem. ut
Remark The dependence of the estimates presented in the above theorem on k� C
1k�; cannot be improved in the case of general Orlicz functions, since for '.x/ D x,
 .x/ D x2, and f � 1we have kS. f /k�;' D E�.�C1/ ' E�.�C1/2 D k�C1k2�; .
However, under additional assumptions on the growth of ', one can obtain a better
estimate and replace the factor 1C ı�.C/k� C 1k�; by g.1C ı�.C/k� C 1k�; /,
where g.r/ D supx>0 x='�1.'.x/=r/. For rapidly growing ' and large k� C 1k�; 
this may be an important improvement. It is also elementary to check that for '.x/ D
exp.x� /� 1, we can use g.r/ ' log1=� .r/.
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Just as in the case of Theorem 2, the estimates given in Theorem 10 are optimal.
Below we state the corresponding optimality results, deferring their proofs to
Sect. 3.

Proposition 11 (Weak Optimality of Theorem 10) Let ' and  be as in Theo-
rem 10. Assume that a Young function � has the property that for every X , every
Harris ergodic Markov chain .Xn/ on X , small set C and small measure � with
k�k�; < 1 and every function f WX ! R such that k f k�;� < 1, we have
kS. f /k�;' < 1. Then �'; � �.

Theorem 12 (Strong Optimality of Theorem 10) Let '; and � be as in Theo-
rem 10. Let Q .x/ D  .x/=x and assume that Q is strictly increasing, Q .0/ D 0,
Q .1/ D 1. Assume additionally that the function � D '�1 ı Q is equivalent to

a Young function. Let Y be a random variable such that kYk� D 1. Then there
exists a Harris ergodic Markov chain .Xn/ on some Polish space X with stationary
distribution � , small set C, small measure � and a function f WX ! R, such that the
distribution of f under � is equal to the law of Y, k�k�;' < 1 and kS. f /k�;' D 1.

Our next goal is to provide the answer to Question 2 in the case of stationary
chains. For this we will need an equivalent expression for the function �, given in
the following

Proposition 13 For any Young functions '; such that limx!0  .x/=x D 0, the
function � D �'; is equivalent to ' ı ��, where �.x/ D '�1. .x/=x/. More
precisely, for all x � 0,

'.��.x// � �.x/ � 1

2
'.��.2x//:

Proof Thanks to the assumption on  , we have limy!0.'.xy/ �  .y/=y/ D 0, so
we can restrict our attention to y > 0, such that '.xy/ >  .y/=y (note that if there
are no such y, then ��.x/ D �.x/ D 0 and the inequalities of the proposition are
trivially true). For such y, by convexity of ', we obtain

'.xy/�  .y/=y � '.xy � '�1. .y/=y//

and

'.xy/�  .y/=y � '.xy/�  .y/=.2y/ � 1

2
'.2xy � '�1. .y/=y//;

which, by taking the supremum over y, proves the proposition. ut
We will also need the following

Lemma 14 Assume that � and  are Young functions, Q .x/ D  .x/=x is strictly
increasing and Q .0/ D 0, Q .1/ D 1. Let the function � be defined by

��1.x/ D ��1.x/ Q �1.x/ (2.6)
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for all x � 0. Then there exist constants K; x0 2 .0;1/ such that for all x � x0,

K�1x � .#�/�1.x/ Q �1.�.x// � 2x (2.7)

where # D ��1 ı Q .
Moreover the function Q� D � ı #� is equivalent to �.

Proof Note first that #.x/ D ��1. Q .x//x, and so # is equivalent to a Young
function (e.g. by Lemma 21 in the Appendix). The inequalities (2.7) follow now
by Lemma 22 from the Appendix.

Moreover

Q��1.x/ D .#�/�1.��1.x//

and thus by (2.7) for x sufficiently large,

K�1��1.x/ D K�1 ��1.x/
Q �1.x/

� Q��1.x/ � 2
��1.x/
Q �1.x/

D 2��1.x/;

which clearly implies that Q�.K�1x/ � �.x/ � Q�.2x/ for x large enough. ut
If we now start from two Young functions  and � and assume that ' is a Young

function such that ' � � [with � given by (2.6)], then '..'�1 ı Q /�/ � �..��1 ı
Q /�/ ' �. Thus the above Lemma, together with Theorem 10 and Proposition 13

immediately give the following Corollary, which gives the answer to Question 2 for
the stationary chain (to distinguish it from the case of the chain started from �, the
role of � is now played by �).

Corollary 15 Assume that � and  are Young functions, Q .x/ D  .x/=x is strictly
increasing, Q .0/ D 0, Q .1/ D 1. Let the function � be defined by (2.6). If ' is a
Young function such that ' � �, then there exists K < 1, such that for any Harris
ergodic Markov chain .Xn/ on X , small set C, small measure � and f WX ! R,

kS. f /k�;' � Kk� C 1k�; 
�
1C ı�.C/k� C 1k�; 

�
k f k�;� : (2.8)

Remark For slowly growing functions  and � there may be no Orlicz function ',
such that ' � �. This is not surprising, since as we will see from the construction
presented in Sect. 3.1, the �-integrability of S. f / is closely related to integrability
of functions from a point-wise product of Orlicz spaces. As a consequence, S. f /
may not even be integrable.

We have the following optimality result corresponding to Corollary 15. Its proof
will be presented in the next section.

Proposition 16 Assume that � and  are Young functions, Q .x/ D  .x/=x is
strictly increasing, Q .0/ D 0, Q .1/ D 1. Let the function � be defined by (2.6)
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and let ' be a Young function such that for every X , every Harris ergodic Markov
chain .Xn/ on X , small set C, small measure � and f WX ! R with k�k�; < 1 and
k f k�;� < 1, we have kS. f /k�;' < 1. Then ' � �.

Remark By convexity of ', the condition ' � � holds iff there exists a constant
K < 1 and x0 > 0, such that

K'�1.x/ � Q �1.x/��1.x/

for x > x0. Thus, under the assumptions that Q is strictly increasing Q .0/ D 0,
Q .1/ D 1, the above condition characterizes the triples of Young functions such

that k f k�;� < 1 implies kS. f /k�;' < 1 for all Markov chains with k�k�; < 1.

Examples Just as in the previous section, we will now present some concrete
formulas for classical Young functions, some of which will be used in Sect. 4 to
derive tail inequalities for additive functionals of stationary Markov chains.

1. If '.x/ D xp and  .x/ D xr, where r > p C 1 � 2, then �'; .x/ ' x
p.r�1/
r�p�1 .

2. If '.x/ D exp.x˛/ � 1 and  .x/ D exp.xˇ/ � 1, where ˇ � ˛, then �'; .x/ '
exp.x

˛ˇ
ˇ�˛ /� 1.

3. If '.x/ D xp and  .x/ D exp.xˇ/� 1, where ˇ > 0, then �'; .x/ ' xp logp=ˇ x.

4. If  .x/ D xr and �.x/ D xp (r � 2; p � .r � 1/=.r � 2/), then '.x/ ' x
.r�1/p
rCp�1 .

5. If  .x/ D exp.xˇ/ � 1 and �.x/ D exp.x˛/ � 1 (˛; ˇ > 0), then '.x/ '
exp.x

˛ˇ
˛Cˇ /� 1.

6. If  .x/ D exp.xˇ/ � 1 (ˇ > 0) and �.x/ D xp (p > 1), then '.x/ ' xp

logp=ˇ x
.

3 Proofs of Optimality

3.1 Main Counterexample

We will now introduce a general construction of a Markov chain, which will serve
as an example in proofs of all our optimality theorems.

Let S be a Polish space and let ˛ be a Borel probability measure on S. Consider
two Borel measurable functions Qf WS ! R and hWS ! N n f0g. We will construct
a Markov chain on some Polish space X � S, a small set C  X , a probability
measure � and a function f WX ! R, possessing the following properties.

Properties of the chain

(i) The condition (1.1) is satisfied with m D 1 and ı D 1 (in other words C is an
atom for the chain),

(ii) �.S/ D 1,
(iii) for any x 2 S, Px.� C 1 D h.x// D 1,
(iv) for any x 2 S, Px.S. f / D Qf .x/h.x// D 1,
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(v) for any function GWR ! R we have

E�G.S. f // D R
Z
S

G.Qf .x/h.x//h.x/�1˛.dx/

and

E�G.� C 1/ D R
Z
S

G.h.x//h.x/�1˛.dx/;

where R D .
R

C h.y/�1˛.dy//�1,
(vi) .Xn/ admits a unique stationary distribution � and the law of f under � is the

same as the law of Qf under ˛,
(vii) for any nondecreasing function FWX ! R,

E�F.jS. f /j/ � 1

2

Z
S

F.h.x/j Qf .x/j=2/˛.dx/:

(viii) if ˛.fxW h.x/ D 1g/ > 0, then the chain is Harris ergodic.

Construction of the Chain Let X D S1
nD1fx 2 SW h.x/ � ng � fng. As a disjoint

union, it clearly possesses a natural structure of a measurable space inherited from
S. By Theorem 3.2.4. in [41] this structure is compatible with some Polish topology
on X . Formally, S 6 X but it does not pose a problem as we can clearly identify S
with S � f1g D fx 2 SW h.x/ � 1g � f1g.

The dynamics of the chain will be very simple.

• If Xn D .x; i/ and h.x/ > i, then with probability one XnC1 D .x; i C 1/.
• If Xn D .x; i/ and h.x/ D i, then XnC1 D .y; 1/, where y is distributed according

to the probability measure

�.dy/ D Rh.y/�1˛.dy/: (3.1)

More formally, the transition function of the chain is given by

P..x; i/;A/ D



ı.x;iC1/.A/ if i < h.x/
�.fy 2 SW .y; 1/ 2 Ag/ if i D h.x/:

In other words, the chain describes a particle, which after departing from
a point .x; 1/ 2 S changes its ‘level’ by jumping deterministically to points
.x; 2/; : : : ; .x; h.x// and then goes back to ‘level’ one by selecting the first coordinate
according to the measure �.

Clearly, �.S/ D 1 and so condition (ii) is satisfied. Note that ˛ and � are formally
measures on S, but we may and will sometimes treat them as measures on X .
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Let now C D f.x; i/ 2 X W h.x/ D ig. Then P..x; i/;A/ D �.A/ for any .x; i/ 2 C
and a Borel subset A of X , which shows that (1.1) holds with m D 1 and ı D 1 .

Let us now prove condition (iii). Since C is an atom for the chain, Yn D 1 iff
Xn 2 C. Moreover, if X0 D .x; 1/ ' x 2 S, then Xi D .x; i C 1/ for i C 1 � h.x/
and � D inffi � 0W Xi 2 Cg D inffi � 0W i C 1 D h.x/g D h.x/ � 1, which proves
property (iii).

To assure that property (iv) holds, it is enough to define

f ..x; i// D Qf .x/;

since then X0 D .x; 1/ implies that f .Xn/ D Qf .x/ for n � � .
Condition (v) follows now from properties (ii), (iii) and (iv) together with

formula (3.1).
We will now pass to conditions (vi) and (vii).
By the construction of the chain it is easy to prove that the chain admits a unique

stationary measure � given by

�.A � fkg/ D ˛.A/n�1

for A  fx 2 SW h.x/ D ng and any k � n . Thus for any Borel set B  R we have

�.f.x; i/ 2 X W f ..x; i// 2 Bg/ D �.f.x; i/ 2 X W Qf .x/ 2 Bg/
D
X
n�1

�.f.x; i/ 2 X W h.x/ D n; Qf .x/ 2 Bg

D
X
n�1

n 	 n�1˛.fx 2 SW h.x/ D n; Qf .x/ 2 Bg/

D ˛.fx 2 SW Qf .x/ 2 Bg/:

As for (vii), X0 D .x; i/ implies that

S. f / D .h.x/� i C 1/ Qf .x/:

Thus, letting An;k D f.x; k/ 2 X W h.x/ D ng, Bn D fx 2 SW h.x/ D ng, we get

E�F.jS. f /j/ D
Z
X

F..h.x/� i C 1/j Qf .x/j/�.d.x; i//

D
X
n;k

Z
An;k

F..n � k C 1/j Qf .x/j/�.d.x; i//

D
X

n

X
k�n

Z
Bn

n�1F..n � k C 1/j Qf .x/j/˛.dx/
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�
X

n

Z
Bn

1

2
F.nj Qf .x/j=2/˛.dx/

D 1

2

Z
S

F.h.x/j Qf .x/j=2/˛.dx/;

proving (vii).
Now we will prove (viii). Note that A WD fx 2 SW h.x/ D 1g  C. Thus, if

˛.A/ > 0, then also �.C/ > 0, which proves that the chain is strongly aperiodic (see
e.g. Chap. 5 of [28] or Chap. 2 of [31]). Moreover one can easily see that � is an irre-
ducibility measure for the chain and the chain is Harris recurrent. Thus, by Propo-
sition 6.3. of [31] the chain is Harris ergodic (in fact in [31] ergodicity is defined as
aperiodicity together with positivity and Harris recurrence; Proposition 6.3. states
that this is equivalent to convergence of n-step probabilities for any initial point).

What remains to be proven is condition (i). Since �.C/ > 0 we have C 2 EC,
whereas inequality (1.1) for m D ı D 1 is satisfied by the construction.

3.2 The Chain Started from �

We will start with the proof of Proposition 4. The chain constructed above will allow
us to reduce it to elementary techniques from the theory of Orlicz spaces.

Proof of Proposition 4 Assume that the function � does not satisfy the condition
�'; � �. Thus, there exists a sequence of numbers xn ! 1 such that

�.xn/ < �'; .xn2
�n/:

By the definition of �'; this means that there exists a sequence tn > 0 such that

'.xntn2�n/

tn
� �.xn/C  .tn/

tn
:

One can assume that tn � 2. Indeed, for all n large enough if tn � 2, then

'..xn2
�1/2�.n�1/ 	 2/
2

� '.xntn2�n/

tn
� �.xn/ � 2�.xn2

�1/

� �.xn2
�1/C  .2/

2
:

Set �n D btnc for n � 1 and �0 D 1. We have for n � 1,

'.xn�n2
1�n/

�n
� '.xntn2�n/

tn
� �.xn/C  .tn/

tn
� �.xn/C  .�n/

�n
� 1; (3.2)
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where in the last inequality we used the assumption (A). Define now pn D
C2�n. .�n/=�n C �.xn//

�1, where C is a constant, so that
P

n�0 pn D 1. Consider a
Polish space S with a probability measure ˛, a partition S D S

n�0 An, ˛.An/ D pn

and two functions h and Qf , such that Qf .x/ D xn and h.x/ D �n for x 2 An.
Let .Xn/n�0 be the Markov chain obtained by applying to S, Qf and h the main

construction introduced in Sect. 3.1. By property (viii) and the condition �0 D 1, the
chain is Harris ergodic. By property (v), we have

E� .� C 1/ D R
Z
S
 .h.x//h.x/�1˛.dx/ D R

X
n�0

 .�n/

�n
pn � 2RC;

where the inequality follows from the definition of pn. Thus, the chain .Xn/ satisfies
k�k�; < 1.

By property (vi) we get

E��. f / D
Z
S
�.Qf .x//˛.dx/ D

X
n�0

�.xn/pn � 2C:

On the other hand for any � > 0, we have by property (v), the construction of
functions Qf ; g and (3.2),

E�'.� jS. f /j/ D R
Z
S
'.� j Qf .x/jh.x//h.x/�1˛.dx/

� R
X
n�1

'.2n�1�xn�n2
1�n/

�n
pn

� R
X

nW2n�1��1
2n�1�

'.xn�n2
1�n/

�n
pn

� R
X

nW2n�1��1
2n�1�

�
�.xn/C  .�n/

�n

�
pn D 1;

which shows that kS. f /k�;' D 1 and proves the proposition. ut
Proof of Theorem 5 Let S be a Polish space, ˛ a probability measure on S and
Qf WS ! R a function whose law under ˛ is the same as the law of Y.

We will consider in detail only the case when limx!1 '.x/=x D 1. It is easy
to see, using formula (1.3) and the construction below, that in the case ' ' id the
theorem also holds (note that in this case also � ' id).

By the convexity assumption and Lemma 23 from the Appendix, we obtain that
� D . �/�1 ı '� is equivalent to a Young function. Thus by Proposition 6 and
Lemma 22 from the Appendix we get

��.	/ ' . �/�1 ı '�.	/ ' '�.	/
 �1 ı '�.	/ : (3.3)
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By Lemma 20 in the Appendix (or in the case when �� ' id by the well known
facts about the spaces L1 and L1), there exists a function gWS ! RC such that

Z
S

'�.g.x//
 �1.'�.g.x///

˛.dx/ < 1 and
Z
S

j Qf .x/jg.x/˛.dx/ D 1: (3.4)

Define the function hWS ! N n f0g by h.x/ D b �1.'�.g.x///c C 1.
Let now X , .Xn/ and f be the Polish space, Markov chain and function obtained

from S; ˛; Qf ; h according to the main construction of Sect. 3.1. Note that we can
assume that ˛.fxW h.x/ D 1g/ > 0 and thus by property (viii) this chain is Harris
ergodic.

Note that by the definition of h, if h.x/ � 2, then h.x/ � 2 �1.'�.g.x///. Thus,
by property (v) and (3.4), we get

E� ..� C 1/=2/ D R
Z
S
 .h.x/=2/h.x/�1˛.dx/

� R .1=2/C R
Z
S

'�.g.x//
 �1.'�.g.x///

˛.dx/ < 1;

which implies that k�k�; < 1. Recall now the definition of �, given in (3.1). By
the property (v), for all a > 0, we have

E�'.jS. f /j=a/ D
Z
S
'.j Qf .x/jh.x/=a/�.dx/;

which implies that kS. f /k�;' < 1 iff k Qf hk�;' < 1 (note that on the left hand side
� is treated as a measure on X and on the right hand side as a measure on S).

Note however, that by (3.4) we have

Z
S
'�.g.x//�.dx/ D R

Z
S

'�.g.x//
h.x/

˛.dx/ � R
Z
S

'�.g.x//
 �1.'�.g.x///

˛.dx/ < 1;

which gives kgk�;'� < 1, but

Z
S

j Qf .x/jh.x/g.x/�.dx/ D R
Z
S

j Qf .x/jg.x/˛.dx/ D 1:

This shows that k Qf hk�;' D 1 and ends the proof. ut
Proof of Proposition 8 Note that for any function f (not necessarily equivalent to a
Young function) we have f �� � f . Thus, by Proposition 6, we have

�'; � � ” .. �/�1 ı '�/� � �

H) �� � . �/�1 ı '� ”  � ı �� � '� ” ' � . � ı ��/�;

which ends the proof by Proposition 4. ut



Orlicz Integrability of Additive Functionals of Markov Chains 315

3.3 The Stationary Case

For the proofs of results concerning optimality of our estimates for the chain
started from � we will also use the general construction from Sect. 3.1. As already
mentioned, in this case the problem turns out to be closely related to the classical
theory of point-wise multiplication of Orlicz spaces (we refer to [34] for an
overview).

Proof of Proposition 11 Assume that the function � does not satisfy the condition
�'; � �. Thus, there exists a sequence of numbers xn ! 1, such that �.xn/ <

�'; .xn2
�n/, i.e. for some sequence tn > 0, n D 1; 2; : : :, we have

'.xn2
�ntn/ � �.xn/C  .tn/=tn:

Similarly as in the proof of Proposition 4, we show that without loss of generality
we can assume that tn are positive integers and thus the right hand side above is
bounded from below. Let us additionally define t0 D 1.

Let pn D C2�n.�.xn/ C  .tn/=tn/�1, where C is such that
P

n�0 pn D 1, and
consider a probability space .S; ˛/, where S D S1

nD0 An with An disjoint and
˛.An/ D pn, together with two functions Qf WS ! R and hWS ! R such that for
x 2 An, we have Qf .x/ D xn, h.x/ D tn.

By applying to S, Qf and h the general construction of Sect. 3.1, we get a Harris
ergodic Markov chain and a function f , which by properties (v) and (vi) satisfy

E� .� C 1/ D R
X
n�0

 .tn/

tn
pn � 2RC;

E��. f / D
X
n�0

�.xn/pn � C:

However, by property (vii) we get for any � > 0,

E�'.� jS. f /j/ � 1

2

Z
S
'.�h.x/j Qf .x/j=2/˛.dx/ D 1

2

X
n�0

'.�xntn=2/pn

� 1

2

X
n�1

'.2n�1�xntn2
�n/pn

� 1

2

X
nW2n�1��1

2n�1�'.xntn2
�n/pn

� 1

2

X
nW2n�1��1

2n�1�.�.xn/C  .tn/=tn/pn D 1;

which ends the proof. ut
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Proof of Theorem 12 Consider first the case limx!1 �.x/=x D 1.
Note that under the assumptions of the lemma, Q is also equivalent to a Young

function. We will show that for some constant C and x large enough we have

'�1.x/ � C��1.x/ Q �1.x/: (3.5)

We have ��1.x/ D Q �1.'.x// and thus, by the assumption on � and Lemma 22
from the Appendix, we get '�1.x/ � C.��/�1.'�1.x// Q �1.x/ for some constant
C < 1 and x large enough. But by Proposition 13, .��/�1.'�1.x// � 2��1.x/ and
thus (3.5) follows.

If limx!1 �.x/=x < 1, then (3.5) also holds if we interpret ��1 as the
generalized inverse (note that in this case L� D L1)

Theorem 1 from [26] states that if '; �; Q are Young functions such that (3.5)
holds for all x 2 Œ0;1/ and Y is a random variable such that kYk� D 1, then
there exists a random variable X, such that kXk Q < 1 and kXYk' D 1. One can

easily see that the functions '; �; Q can be modified to equivalent Young functions
such that (3.5) holds for all x � 0 (possibly with a different C). Thus, there exists
X satisfying the above condition. Clearly, one can assume that with probability one
X is a positive integer and P.X D 1/ > 0. Consider now a Polish space .S; ˛/ and
Qf ; hWS ! R such that . Qf ; h/ is distributed with respect to ˛ as .Y;X/. Let .Xn/ be
the Markov chain given by the construction of Sect. 3.1. By property (v) we have

E� 
�� C 1

a

�
D R

Z
S
 
�h.x/

a

�
h.x/�1˛.dx/ D R

a
E Q 

�X

a

�
< 1

for a large enough, since kXk Q < 1. By property (vi), the law of f under � is equal
to the law of Y. Finally, by property (vii), for every a > 0,

E�'
� jS. f /j

a

�
� 2�1

E'
�XY

2a

�
D 1;

which proves that kS. f /k�;' D 1. ut
Proof of Proposition 16 Let � D '�1 ı Q . By Propositions 11, 13 and Lemma 14
we have

' ı �� � � ' � ı #�; (3.6)

where # D ��1 ı Q . In particular �� is finite and so limx!1 �.x/=x �
limx!1 ���.x/=x D 1. By (3.6), .#�/�1ı��1 � .��/�1ı'�1. Another application
of Lemma 14 together with Lemma 22 in the Appendix yields for some constant
C 2 .1;1/ and x large enough,

��1.x/ � C.#�/�1.��1.x// Q �1.x/ � C2.��/�1.'�1.Cx// Q �1.Cx/

D C2.��/�1.'�1.Cx//��1.'�1.Cx// � 2C2'�1.Cx/;

which implies that ' � �. ut



Orlicz Integrability of Additive Functionals of Markov Chains 317

4 Applications

4.1 Limit Theorems for Additive Functionals

It is well known that for a Harris ergodic Markov chain and a function f , the CLT

f .X0/C : : :C f .Xn�1/p
n

d! N .0; �2f / (4.1)

holds in the stationary case iff it holds for any initial distribution.
Moreover (see [12] and [6]) under the assumption that E� f 2 < 1, the above CLT

holds iff E�S. f / D 0, E�.S. f //2 < 1 and the asymptotic variance is given by �2f D
ı�.C/m�1.Es1. f /2 C 2Es1. f /s2. f //. If the chain has an atom, this equivalence
holds without the assumption E� f 2 < 1.

It is also known (see [12]) that the condition E� f D 0, E�S.j f j/2 < 1 implies
the law of the iterated logarithm

��f D lim inf
n!1

Pn�1
iD0 f .Xi/p

n log log n
� lim sup

n!1

Pn�1
iD0 f .Xi/p

n log log n
D �f a:s: (4.2)

Moreover for chains with an atom lim supn!1
jPn�1

iD0 f .Xi/jp
n log log n

< 1 a:s: implies the
CLT (see [12], Theorem 2.2. and Remark 2.3).

Our results from Sect. 2.1 can be thus applied to give optimal conditions for CLT
and LIL in terms of ergodicity of the chain (expressed by Orlicz integrability of the
regeneration time) and integrability of f with respect to the stationary measure.

The following theorem is an immediate consequence of Theorems 2, 5 and
Proposition 4.

Theorem 17 Consider a Harris ergodic Markov chain .Xn/ on a Polish space
X and a function f WX ! R, E� f D 0. Let  be a Young function such that
limx!0  .x/=x D 0 and assume that k�k�; < 1. Let finally �.x/ D Q �.x2/,
where Q .x/ D  .x/=x. If k f k�;� < 1, then the CLT (4.1) and LIL (4.2) hold.

Moreover, every Young function Q� such that k f k�; Q� implies the CLT (or LIL) for
all Harris ergodic Markov chains with k�k�; < 1 satisfies � � Q�.

If the function x 7! p
 .x/ is equivalent to a Young function, then for every

random variable Y with kYk� D 1 one can construct a stationary Harris ergodic
Markov chain .Xn/ and a function f such that f .Xn/ has the same law as Y, k�k�; <
1 and both (4.1) and (4.2) fail.

Remark As noted in [20], in the case of geometric ergodicity, i.e. when  .x/ D
exp.x/ � 1, the CLT part of the above theorem can be obtained from results in
[16], giving very general and optimal conditions for CLT under ˛-mixing. The
integrability condition for f is in this case E� f 2 logC.j f j/ < 1. The sufficiency
for the LIL part can be similarly deduced from [38].
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The equivalence of the exponential decay of mixing coefficients with geometric
ergodicity of Markov chains (measured in terms of  ) follows from [32, 33].
Optimality of the condition follows from examples given in [10]. Examples of
geometrically ergodic Markov chains and a function f such that Ef 2 < 1 and the
CLT fails have been also constructed in [11, 18]. Let us point out that if the Markov
chain is reversible and geometrically ergodic, then k f k�;2 < 1 implies the CLT
and thus also E�S. f /2 < 1. Thus under this additional assumptions our formulas
for  .x/ D exp.x/ � 1 and �.x/ D x2 are no longer optimal (our example from
Sect. 3.1 is obviously non-reversible). It would be of interest to derive counterparts
of theorems from Sect. 2 under the assumption of reversibility.

It is possible that in a more general case Theorem 17 can also be recovered from
the results in [10, 11, 16, 38, 39], however we have not attempted to do this in
full generality (we have only verified that such an approach works in the case of
 .x/ D xp). To be more precise, let us briefly explain what route one may take to
give a parallel proof of the Central Limit Theorem. The results in [16, 39] provide
optimal condition for CLT of stationary sequences .Yi/

1
iD0 in terms of strong mixing

coefficients and appropriate integrability of Y0. The integrability condition requires
that Y0 belong to a certain rearrangement invariant function space, characterized
in terms of mixing coefficients. On the other hand, it is well known that Harris
ergodic Markov chains are strongly mixing and the mixing sequence can be bounded
from above in terms of tails of the coupling time, which is closely related to the
regeneration time, considered in this paper (see e.g. the formula (9.22) in [39]).
Since for Harris chains it is enough to study the CLT for the stationary case, to
derive a CLT in the spirit of Theorem 17 from results of [16, 39], one would need to
(1) obtain bounds on the coupling time in terms of the regeneration time, (2) deduce
the speed of mixing for the chain from the integrability of the coupling time, (3)
relate the rearrangement invariant function space given by the speed of mixing to an
appropriate Orlicz space. Clearly, there are well known tools, which can be applied
at each step, however carrying out all the calculations related to steps (1) and (3) in
the case of general Young functions may be a nontrivial, technical task.

Let us also remark that to our best knowledge, so far there has been no ’regener-
ation’ proof of Theorem 17 even in the case of geometric ergodicity. In our opinion
such proofs are of interest since they are usually more elementary than results
for general mixing sequences, moreover they provide more ‘geometric’ insight
into the structure of the Markov chain dynamics. The question of a corresponding
‘regeneration’ proof of the CLT for uniformly ergodic chains (answered in [6]) had
been proposed as an open problem by Roberts and Rosenthal [40].

Berry-Esseen Type Theorems Similarly, we can use a result by Bolthausen [8, 9]
to derive Berry-Esseen type bounds for additive functionals of stationary chains.
More specifically, Lemma 2 in [9], together with Theorem 2 give

Theorem 18 Let .Xn/ be a stationary strongly aperiodic Harris ergodic Markov
chain on X , such that k�k�; < 1, where  is a Young function satisfying .x 7!
x3/ �  and limx!0  .x/=x D 0. Let � D ��.x3/, where �.x/ D  .

p
x/=

p
x.
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Then for every f WX ! R such that E� f D 0, k f k�;� < 1 and �2f WD E.S. f //2 > 0,
we have

ˇ̌
ˇP
�Pn�1

iD0 f .Xi/ � E� f

�f
p

n
� x

�
� ˚.x/

ˇ̌
ˇ D O.n�1=2/;

where ˚.x/ D .2�/�1=2
R x

�1 exp.�y2=2/dy.

4.2 Tail Estimates

The last application we develop concerns tail inequalities for additive functionals.
The approach we take is by now fairly standard (see e.g. [1, 2, 7, 13, 15, 23, 24])
and relies on splitting the additive functional into a sum of independent (or one-
dependent blocks) and using inequalities for sums of independent random variables.
Our results on Orlicz integrability imply inequalities for the chain started from the
small measure (an atom) or from the stationary distribution. The former case may
have potential applications in MCMC algorithms in situations when small measure
is known explicitly and one is able to sample from it. In what follows we denote
 ˛ D exp.x˛/� 1.

Theorem 19 Let .Xn/n�0 be a Harris ergodic Markov chain on X . Assume that
k�k�; ˛ < 1 for some ˛ 2 .0; 1�. Let f WX ! R be a measurable function, such
that E� f D 0. If k f k�; ˇ < 1 for some ˇ > 0, then for all t � 0,

P�.j f .X0/C : : :C f .Xn�1/j � t/ (4.3)

� K exp
�

� t2

Knı�.C/E�S. f /2

�
C K exp

�
� t

Kk f k�; ˇk� C 1k3�; ˛
�

C K exp
�

� t�

K.k f k�; ˇk� C 1k�; ˛/� log n

�

and

P�.j f .X0/C : : :C f .Xn�1/j � t/

� K exp
�

� t2

Knı�.C/E�S. f /2

�
C K exp

�
� t

Kk f k�; ˇk� C 1k3�; ˛
�

C K exp
�

� t�

K.k f k�; ˇk� C 1k�; ˛/� log.k� C 1k�; ˛ /
�

C K exp
�

� t�

K.k f k�; ˇk� C 1k�; ˛/� log n

�
;

where � D ˛ˇ

˛Cˇ and K depends only on ˛; ˇ and m in the formula (1.1).
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Remarks

1. The proof of the above theorem is similar to those presented in [1, 2], therefore
we will present only a sketch.

2. When m D 1, ı�.C/E�S. f /2 is the variance of the limiting Gaussian distribution
for the additive functional.

3. If one does not insist on having the limiting variance in the case m D 1 as the
subgaussian coefficient and instead replaces it by E�S. f /2, one can get rid of
the second summand on the right hand sides of the estimates (i.e. the summand
containing k� C 1k3).

4. One can also obtain similar results for suprema of empirical processes of a
Markov chain (or equivalently for additive functionals with values in a Banach
space). The difference is that one obtains then bounds on deviation above
expectation and not from zero. A proof is almost the same, it simply requires
a suitable generalization of an inequality for real valued summands, relying on
the celebrated Talagrand’s inequality, and an additional argument to take care of
the expectation. Since our goal is rather to illustrate the consequences of results
from Sect. 2, than to provide the most general inequalities, we do not state the
details and refer the reader to [1, 2] for the special case of geometrically ergodic
Markov chains. For the same reason we will not try to evaluate constants in the
inequalities.

5. In a similar way one can obtain tail estimates in the polynomial case (i.e. when
the regeneration time or the function f are only polynomially integrable). One
just needs to use the explicit formulas for 	 from other examples that have been
discussed in Sect. 2. The estimate of the bounded part (after truncation) comes
again from Bernstein’s inequality, whereas the unbounded part can be handled
with the Hoffman-Joergensen inequality [or its easy modifications for functions
of the form x 7! xp=.logˇ x/], just as e.g. in [17].

6. Similar inequalities for ˛-mixing sequences (however with a different subgaus-
sian coefficient) were proved in [27]. We refer to [2] for a detailed discussion of
the difference between the results of [27] and results in the spirit of Theorem 19.

Proof of Theorem 19 Below we will several times use known bounds for sums of
independent random variables in the one-dependent case. Clearly, it may be done at
the cost of worsening the constants by splitting the sum into sums of odd and even
terms, therefore we will just write the final result without further comments. In the
proof we will use the letter K to denote constants depending on ˛; ˇ;m. Their values
may change from one occurrence to another.

Setting N D inffiW m�.i/C m � 1 � n � 1g we may write

j f .X0/C : : :C f .Xn�1/j

�
.m�.0/Cm�1/X

iD0
j f .Xi/j C j

NX
iD1

si�1. f /j C
m�.N/Cm�1X

iDn

j f .Xi/j

DW I C II C III;
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where each of the sums on the right hand side may be interpreted as empty.
The first and last terms can be taken care of by Chebyshev’s inequalities

corresponding to proper Orlicz norms, using estimates of Corollaries 7 and 15 [note
that P.III � t/ � P.I � t/C nP.js0.j f j/j � t/].

We will consider only the case of the chain started from �. The stationary case is
similar, simply to bound I we use the estimates of Orlicz norms for the chain started
from � , given in Theorem 10 (together with the remark following it to get a better
dependence on k� C 1k�; ˛ ).

By Corollary 7 and examples provided in Sect. 2, for ' D  � we obtain

ksi. f /k' � ksi.j f j/k' D kS.j f j/k�; � � Kk� C 1k�; ˛k f k�; ˇ :
Thus,

P.I � t/C P.III � t/ � 2n exp
�

�
� t

Kk� C 1k�; ˛k f k�; ˇ
���

: (4.4)

The second term can be split into II1 C II2, where

II1 D j
NX

iD1
.si. f /1fjsi. f /j�ag � Esi. f /1fjsi. f /j�ag/j;

II2 D j
NX

iD1
.si. f /1fjsi. f /j>ag � Esi. f /1fjsi. f /j>ag/j:

Setting a D K˛;ˇksi. f /k � log1=� n � K˛;ˇmk f k�; ˇk� C1k�; ˛ log1=� n, we can
proceed as in Lemma 3 of [2] to get

P.II2 � t/ � 2 exp
�

�
� t

K˛;ˇa

���
: (4.5)

It remains to bound the term II1. Introduce the variables Ti D �.i/ � �.i � 1/, i � 1

and note that ETi D ı�1�.C/�1. Recall also that Ti is distributed as � C 1 for the
chain started from �. For 4nm�1�.C/ı � 2, we have

P.N > 4nm�1�.C/ı/ � P

� b4nm�1�.C/ıcX
iD1

Ti � n=m
�

D P

� b4nm�1�.C/ıcX
iD1

.Ti � ETi/ � n=m � 2nm�1�.C/ıETi

�

D P

� b4nm�1�.C/ıcX
iD1

.Ti � ETi/ � �n=m
�

� k.n=m/; (4.6)
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where

k.t/ D min
�

K˛ exp
�

� 1

K˛
min

� t2m

nk� C 1k2�; ˛
;

t˛

k� C 1k˛�; ˛
��
; 1
�
:

The last bound for ˛ D 1 follows from Bernstein’s  1 inequality and for ˛ < 1

from results in [19] (as shown in Sect. 3.2.2 of [3]).
Note that if 4nm�1�.C/ı < 2, then

k.n=m/ � exp.�K˛nm�1k� C 1k�2
�; ˛

/ � exp.�K˛nm�1.E� C 1/�2/

D exp.�K˛nm�1ı2�.C/2/ � exp.�K˛=2/:

Thus the above tail estimate for N remains true also in this case (after adjusting the
constant K˛).

Therefore, by Bernstein’s bounds on suprema of partial sums of a sequence of
independent random variables bounded by 2a, we get

P.II1 � t/ � P.II1 � t & N � 4nm�1�.C/ı/C k.n=m/

� K exp
�

� 1

K
min

� t2

nm�1�.C/ıE�S. f /2
;

t

k f k�; ˇk� C 1k�; ˛ log1=� n

��

C k.n=m/: (4.7)

Note that the right-hand sides of (4.4) and (4.5) as well as the first term on the
right-hand side of (4.7) are dominated by the right hand-side of (4.3) (provided that
the latter does not exceed one and after adjusting the constants). Now, if k.n=m/ �
K exp.�.t=Kk f k�; ˇk� C 1k�; ˛ /˛/, then also k.n=m/ is dominated by the right-
hand side of (4.3), which gives the desired estimate.

We will now provide an alternate bound on II, which will work if

k.n=m/ > K exp
�

�
� t

Kk f k�; ˇk� C 1k�; ˛
�˛�

(4.8)

for sufficiently large K, which will allow us to complete the proof.
Since N � n=m, by the same inequalities we used to derive (4.6) (i.e.  �

Bernstein’s bounds) and Lévy type inequalities (like in [1]), we obtain

P.II � t/ (4.9)

� K� exp
�

� 1

K�
min

� t2m

n.k f k�; ˇk� C 1k�; ˛ /2
;
� t

k f k�; ˇk� C 1k�; ˛
����

;
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By (4.8) and the definition of k, we have

K exp
�

�
� t

Kk f k�; ˇk� C 1k�; ˛
�˛� � k.n=m/

� K exp
�

�
� n

Kmk� C 1k2�; ˛
�˛�

(we use here the fact that for our purposes we can assume that the constant K in (4.8)
is large enough). Thus,

t2m

n.k f k�; ˇk� C 1k�; ˛ /2
� t

k f k�; ˇk� C 1k3�; ˛
;

which ends the proof by (4.9), (4.4) and (4.5). ut

Appendix. Some Generalities on Orlicz Young Functions and
Orlicz Spaces

All the lemmas presented below are standard facts from the theory of Orlicz spaces,
we present them here for the reader’s convenience. For the proof of the first lemma
below see e.g. [22, 37].

Lemma 20 If ' is a Young function, then X 2 L' if and only if EjXYj < 1 for all
Y such that E'�.Y/ � 1. Moreover, the norm

kXk D supfEXYWE'�.Y/ � 1g

is equivalent to kXk' .

The next lemma is a modification of Lemma 5.4. in [29]. In the original
formulation it concerns the notion of equivalence of functions (and not asymptotic
equivalence relevant in our probabilistic setting). One can however easily see that
the proof from [29] yields the version stated below.

Lemma 21 Consider two increasing continuous functions F;GW Œ0;1/ ! Œ0;1/

with F.0/ D G.0/ D 0, F.1/ D G.1/ D 1. The following conditions are
equivalent:

(i) F ı G�1 is equivalent to a Young function.
(ii) There exist positive constants C; x0 such that

F ı G�1.sx/ � C�1sF ı G�1.x/

for all s � 1 and x � x0.
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(iii) There exist positive constants C; x0 such that

F.sx/

F.x/
� C�1G.sx/

G.x/

for all s � 1, x � x0.

Lemma 22 For any Young function  such that limx!1  .x/=x D 1 and any
x � 0,

x � . �/�1.x/ �1.x/ � 2x:

Moreover, the right hand side inequality holds for any strictly increasing con-
tinuous function  W Œ0;1/ ! Œ0;1/, such that  .0/ D 0,  .1/ D 1,
limx!1 .x/=x D 1.

Lemma 23 Let ' and  be two Young functions. Assume that

lim
x!1'.x/=x D 1:

If '�1 ı  is equivalent to a Young function, then so is . �/�1 ı '�.

Proof It is easy to see that under the assumptions of the lemma we also have
limx!1 .x/=x D 1 and thus '�.x/,  �.x/ are finite for all x � 0. Applying
Lemma 21 with F D '�1, G D  �1, we get that

'�1.sx/

 �1.sx/
� C�1 '�1.x/

 �1.x/

for some C > 0, all s � 1 and x large enough. By Lemma 22 we obtain for x large
enough,

. �/�1.sx/

.'�/�1.sx/
� .4C/�1

. �/�1.x/

.'�/�1.x/
;

which ends the proof by another application of Lemma 21. ut
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Bounds for Stochastic Processes on Product
Index Spaces

Witold Bednorz

Abstract In this paper we discuss the question of how to bound the supremum of
a stochastic process with an index set of a product type. It is tempting to approach
the question by analyzing the process on each of the marginal index sets separately.
However it turns out that it is necessary to also study suitable partitions of the entire
index set. We show what can be done in this direction and how to use the method to
reprove some known results. In particular we point out that all known applications of
the Bernoulli Theorem can be obtained in this way. Moreover we use the shattering
dimension to slightly extend the application to VC classes. We also show some
application to the regularity of paths of processes which take values in vector spaces.
Finally we give a short proof of the Mendelson–Paouris result on sums of squares
for empirical processes.

Keywords Shattering dimension • Stochastic inequalities • VC classes
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1 Introduction

In this paper I denotes a countable set and .F; k 	 k/ a separable Banach space.
Consider the class A of subsets of I. We say that the class A satisfies the maximal
inequality if for any symmetric independent random variables Xi, i 2 I taking values
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in F the following inequality holds

E sup
A2A

�����
X
i2A

Xi

����� 6 KE

�����
X
i2I

Xi

����� ; (1.1)

where K depends on A only. We point out that in this paper K will be used to denote
constants that appear in the formulation of our results and may depend on them.
We use c;C;L;M to denote absolute constants, which may change their values from
line to line by numerical factors. Also we write � to express that two quantities are
comparable up to a universal constant. This will help us to reduce the notation in
this paper. It is an easy observation to see that (1.1) is equivalent to

E sup
A2A

�����
X
i2A

vi"i

����� 6 KE

�����
X
i2I

vi"i

����� ; (1.2)

where .vi/i2I , consists of vectors in F and ."i/i2I is a Bernoulli sequence, i.e. a
sequence of independent r.v.’s such that P."i D ˙1/ D 1

2
.

To understand what is the proper characterization of such classes A we recall
here the notion of VC dimension. We say that A has VC dimension d if there exists
a set B � I, jBj D d such that jfB \ A W A 2 Agj D 2d but for all B � I,
jBj > d, jfB \ A W A 2 Agj < 2dC1. It means that A shatters some set B of
cardinality d, but does not shatter any set of cardinality d C 1. The result which
has been proved in [1] as a corollary of the Bernoulli Theorem states that finite
VC dimension is the necessary and sufficient condition for the class A to have the
property (1.1). Since our paper refers often to the Bernoulli Theorem we recall its
formulation. We begin by mentioning Talagrand’s result for Gaussian’s processes. In
order to find two-sided bounds for supremum of the process G.t/ D P

i2I tigi, where
t 2 T � `2.I/ and .gi/i2I is a Gaussian sequence, i.e. a sequence of independent
standard Gaussian r.v.’s we need Talagrand’s �2.T/ numbers, cf. Definition 2.2.19
in [15] or (3.1) below. By the well known Theorem 2.4.1 in [15] we have

E sup
t2T

G.t/ � �2.T/: (1.3)

The Bernoulli Theorem, i.e. Theorem 1.1 in [1], concerns a similar question for
processes of random signs.

Theorem 1.1 Suppose that T � `2.I/. Then

E sup
t2T

X
i2I

ti"i � inf
T
T1CT2

 
sup
t2T1

ktk1 C �2.T2/

!
:

where the infimum is taken over all decompositions T1 C T2 D ft1 C t2 W t1 2
T1; t2 2 T2g that contain the set T and ktk1 D P

i2I jtij.
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Note that if 0 2 T then we can also require that 0 2 T2 in the above result. The
consequence of Theorem 1.1 to our problem with maximal inequalities is as follows.

Theorem 1.2 The class A satisfies (1.1) with a finite constant K if and only if A is
a VC class of a finite dimension. Moreover the square root of the dimension is up to
a universal constant comparable with the optimal value of K.

Observe that part of the result is obvious. Namely one can easily show that
if A satisfies the maximal inequality then it is necessarily a VC class of a finite
dimension. Indeed let ."i/i2I be a Bernoulli sequence. Suppose that set B � I is
shattered. Let xi D 1 for i 2 B and xi D 0, i 62 B. Obviously

E

ˇ̌
ˇ̌
ˇ
X
i2I

xi"i

ˇ̌
ˇ̌
ˇ D E

ˇ̌
ˇ̌
ˇ
X
i2B

"i

ˇ̌
ˇ̌
ˇ 6

p
jBj

and on the other hand

E sup
A2A

ˇ̌
ˇ̌
ˇ
X
i2A

xi"i

ˇ̌
ˇ̌
ˇ D E sup

A2A

ˇ̌
ˇ̌
ˇ
X

i2A\B

xi"i

ˇ̌
ˇ̌
ˇ > E

X
i2B

"i1"iD1 D jBj=2:

Consequently if (1.1) holds then K >
pjBj=2. Therefore (1.1) implies that the

cardinality of B must be smaller or equal 4K2.
Much more difficult is to prove the converse statement, i.e. that for each VC

class A of dimension d inequality (1.2) holds with K comparable with
p

d. In order
to prove this result one has to first replace the basic formulation of the maximal
inequality—(1.2) by its equivalent version

E sup
A2A

sup
t2T

ˇ̌
ˇ̌
ˇ
X
i2A

ti"i

ˇ̌
ˇ̌
ˇ 6 KE sup

t2T

ˇ̌
ˇ̌
ˇ
X
i2I

ti"i

ˇ̌
ˇ̌
ˇ ; (1.4)

where ."i/i2I is a Bernoulli sequence and 0 2 T � `2.I/. Note that we use
absolute values since part of our work concerns complex spaces. However it is
important to mention that in the real case E supt2T

P
i2I ti"i is comparable with

E supt2T jPi2I ti"ij if 0 2 T and therefore we often require in this paper that
0 2 T � `2.I/. Let us denote

b.T/ D E sup
t2T

ˇ̌
ˇ̌
ˇ
X
i2I

ti"i

ˇ̌
ˇ̌
ˇ ; g.T/ D E sup

t2T

ˇ̌
ˇ̌
ˇ
X
i2I

tigi

ˇ̌
ˇ̌
ˇ ;

where ."i/i2I , .gi/i2I are respectively Bernoulli and Gaussian sequence. We recall
that, what was known for a long time [5, 7], (1.4) holds when Bernoulli random
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variables are replaced by Gaussians, i.e.

E sup
A2A

sup
t2T

ˇ̌
ˇ̌
ˇ
X
i2A

giti

ˇ̌
ˇ̌
ˇ 6 C

p
dE sup

t2T

ˇ̌
ˇ̌
ˇ
X
i2I

tigi

ˇ̌
ˇ̌
ˇ D C

p
dg.T/; (1.5)

for any 0 2 T � `2.I/. Due to Theorem 1.1 one can cover the set T by T1 C T2,
where 0 2 T2 and

max

(
sup
t2T1

ktk1; g.T2/
)

6 Lb.T/: (1.6)

Therefore using (1.5) and (1.6)

E sup
A2A

sup
t2T

ˇ̌
ˇ̌
ˇ
X
i2A

"iti

ˇ̌
ˇ̌
ˇ

6 sup
t2T1

ktk1 C E sup
A2A

sup
t2T2

j
X
i2A

"itij

6 sup
t2T1

ktk1 C
r
�

2
E sup

A2A
sup
t2T2

j
X
i2A

ti"iEjgijj

6 sup
t2T1

ktk1 C
r
�

2
E sup

A2A
sup
t2T2

j
X
i2A

tigij

6 sup
t2T1

ktk1 C
r
�

2
g.T2/ 6 CL

p
db.T/:

This proves Theorem 1.2.
Here is another example in which a similar approach works. Let G be a compact

Abelian group and .vi/i2I a sequence of vectors taking values in F. Let �i, i 2 I be
characters on G. A deep result of Fernique [4] is

E sup
h2G

�����
X
i2I

vi�i.h/gi

����� 6 C

 
E

�����
X
i2I

vigi

�����C sup
kx�k61

E sup
h2G

ˇ̌
ˇ̌
ˇ
X
i2I

x�.vi/�i.h/gi

ˇ̌
ˇ̌
ˇ
!
:
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This can be rewritten similarly as (1.5), i.e. for any 0 2 T � `2.I/ (which is a
complex space in this case)

E sup
h2G

sup
t2T

ˇ̌
ˇ̌
ˇ
X
i2I

ti�i.h/gi

ˇ̌
ˇ̌
ˇ 6 C

 
g.T/C sup

t2T
E sup

h2G

ˇ̌
ˇ̌
ˇ
X
i2I

ti�i.h/gi

ˇ̌
ˇ̌
ˇ
!
: (1.7)

Once again the Bernoulli Theorem permits us to prove a similar result for Bernoulli
sequences. Namely by Theorem 1.1 we get the decomposition T � T1 C T2, 0 2 T2
such that

max

(
sup
t2T1

ktk1; g.T2/
)

6 Lb.T/: (1.8)

Consequently using (1.7), (1.8) and j�i.h/j 6 1 we get

E sup
h2G

sup
t2T

ˇ̌
ˇ̌
ˇ
X
i2I

ti�i.h/"i

ˇ̌
ˇ̌
ˇ (1.9)

6 sup
t2T1

ktk1 C E sup
h2G

sup
t2T2

ˇ̌
ˇ̌
ˇ
X
i2A

"iti�i.h/

ˇ̌
ˇ̌
ˇ

6 sup
t2T1

ktk1 C
r
�

2
E sup

h2G
sup
t2T2

ˇ̌
ˇ̌
ˇ
X
i2I

ti�i.h/gi

ˇ̌
ˇ̌
ˇ

6 sup
t2T1

ktk1 C C

 
g.T2/C sup

t2T2

E sup
h2G

ˇ̌
ˇ̌
ˇ
X
i2I

ti�i.h/gi

ˇ̌
ˇ̌
ˇ
!

6 CL

 
b.T/C sup

t2T2

E sup
h2G

j
X
i2I

ti�i.h/gij
!
: (1.10)

The final step is the Marcus–Pisier estimate [12] (see Theorem 3.2.12 in [15])

sup
t2T2

E sup
h2G

ˇ̌
ˇ̌
ˇ
X
i2I

ti�i.h/gi

ˇ̌
ˇ̌
ˇ 6 M sup

t2T2

E sup
h2G

ˇ̌
ˇ̌
ˇ
X
i2I

ti�i.h/"i

ˇ̌
ˇ̌
ˇ : (1.11)

Note that (1.11) is deeply based on the translational invariance of the distance

dt.g; h/ D
 X

i2I

jtij2j�i.g/� �i.h/j2
! 1

2

g; h 2 G: (1.12)
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Since we may assume that T2 � T � T1 we get

sup
t2T2

E sup
h2G

ˇ̌
ˇ̌
ˇ
X
i2I

ti�i.h/"i

ˇ̌
ˇ̌
ˇ

6 sup
t2T

E sup
h2G

ˇ̌
ˇ̌
ˇ
X
i2I

ti�i.h/"i

ˇ̌
ˇ̌
ˇC sup

t2T1

E sup
h2G

ˇ̌
ˇ̌
ˇ
X
i2I

ti�i.h/"i

ˇ̌
ˇ̌
ˇ

6 sup
t2T

E sup
h2G

ˇ̌
ˇ̌
ˇ
X
i2I

ti�i.h/"i

ˇ̌
ˇ̌
ˇC Lb.T/: (1.13)

Combining (1.9) with (1.11) and (1.13) we get the following result.

Theorem 1.3 Suppose that 0 2 T � `2.I/. For any compact group G and a
collection of vectors vi 2 F in a complex Banach space .F; k 	 k/ and characters �i

on G the following holds

E sup
h2G

sup
t2T

ˇ̌
ˇ̌
ˇ
X
i2I

ti�i.h/"i

ˇ̌
ˇ̌
ˇ 6 K

 
b.T/C sup

t2T
E sup

h2G

ˇ̌
ˇ̌
ˇ
X
i2I

ti�i.h/"i

ˇ̌
ˇ̌
ˇ
!
:

The aim of this note is to explore the questions described above in a unified
language. We consider random processes X.u; t/, .u; t/ 2 U � T with values in
R or C, which means that we study stochastic processes defined on product index
sets. In particular we cover all canonical processes in this way. Indeed, suppose that
U � R

I or CI and T � R
I or CI are such that for any u 2 U and t 2 T we have thatP

i2I juitij2 < 1. Then for any family of independent random variables Xi such that
EXi D 0, EjXij2 D 1,

X.u; t/ D
X
i2I

uitiXi; u 2 U; t 2 T

is a well defined process. As we have already mentioned, our main class of examples
includes Gaussian canonical processes, where Xi D gi, i 2 I are standard normal
variables and Bernoulli canonical processes, where Xi D "i, i 2 I are random signs.
In particular, our goal is to find bounds for E supu2U kPi2I uivi"ik, where vi 2 F,
i 2 I, formulated in terms of EkPi2I vi"ik. One of our results is an application of the
shattering dimension introduced by Mendelson and Vershynin [14], which enables
us to generalize Theorem 1.2. In this way we deduce that under mild conditions on
U � R

I we have

E sup
u2U

�����
X
i2I

uiviXi

����� 6 KE

�����
X
i2I

viXi

�����
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for any independent symmetric r.v.’s Xi, i 2 I. We show how to apply the result to
the analysis of convex bodies and their volume in high dimensional spaces. On the
other hand we can use our approach to study processes X.t/ D .Xi.t//i2I , t 2 Œ0; 1�,
which take values in R

I or CI . For example to check whether paths t ! X.t/ belong
to `2 we should consider

X.u; t/ D
X
i2I

uiXi.t/; u D .ui/i2I 2 U; t 2 Œ0; 1�;

where U is the unit ball in `2.I/, i.e. U D fu 2 R
I W Pi2I juij2 6 1g. The finiteness

of kX.t/k2 < 1 is equivalent to the finiteness of supu2U jX.u; t/j. Similarly we can
treat a well known question in the theory of empirical processes. Suppose that .E ;B/
is a measurable space and F a countable family of measurable real functions on E .
Let X1;X2; : : : ;XN be independent random variables, which take values in .E ;B/,
we may define

X.u; f / D
NX

iD1
uif .Xi/; u D .ui/

N
iD1 2 U; f 2 F ;

where U D BN.0; 1/ D fu 2 R
N W PN

iD1 juij2 6 1g. Then it is clear that

sup
u2U

jX.u; f /j2 D
NX

iD1
jf .Xi/j2; for all f 2 F :

In the last section we give a short proof of Mendelson–Paouris result [13] that
provides an upper bound for E supu2U supf 2F jX.u; t/j.

2 Upper Bounds

For the sake of exposition we shall give an idea how to bound stochastic processes.
The approach we present slightly extends results of Latala [9, 10] and Mendelson–
Paouris [13]. Suppose that EjX.t/ � X.s/j < 1 for all s; t 2 T. For each s; t 2 T
and n > 0 we define Nqn.s; t/ as the smallest q > 0 such that

Fq;n.s; t/ D Eq�1.jX.t/� X.s/j � q/C

D
Z 1

1

P.jX.t/� X.s/j > qt/dt 6 N�1
n : (2.1)

We shall prove the following observation.
‘Note that the theory we describe below can be extended to the case of arbitrary

increasing numbers Nn.’ but for our purposes it is better to work in the type
exponential case where Nn D 22

n
for n > 0 and N0 D 1.
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Lemma 2.1 Function Nqn.s; t/, s; t 2 T is a distance on T, namely is symmetric,
satisfies the triangle inequality and Nqn.s; t/ D 0 if and only if X.s/ D X.t/ a.s.

Proof Obviously Nqn.s; t/ is finite and symmetric Nqn.s; t/ D Nqn.t; s/. To see that it
equals 0 if and only if P.jX.t/ � X.s/j > 0/ > 0 note that if X.s/ ¤ X.t/ then
EjX.t/ � X.s/j > 0. The function q ! Fq;n.s; t/ is decreasing continuous and a.s.
Fq;n.s; t/ ! 1 if q ! 0 and EjX.t/ � X.s/j > 0. Moreover Fq;n.s; t/ is strictly
decreasing on the interval fq > 0 W Fq;n.s; t/ > 0g and consequently Nq.s; t/ is the
unique solution of the equation Fq;n.s; t/ D N�1

n , namely

E.Nqn.s; t//
�1.jX.t/� X.s/j � Nqn.s; t//C D N�1

n :

Finally we show that Nq satisfies the triangle inequality. Indeed for any u; v;w 2 T
either Nq.u; v/ D 0 or Nq.v;w/ D 0 or Nq.u;w/ D 0 and the inequality is trivial or all
the quantities are positive and then

FNqn.u;v/;n.u; v/ D FNqn.v;w/;n.v;w/ D FNqn.u;w/;n.u;w/ D N�1
n :

It suffices to observe

1

Nqn.u; v/C Nqn.v;w/
E .jX.u/� X.w/j � Nqn.u; v/� Nqn.w; v//C

6 E
� jX.u/� X.w/j C jX.w/� X.v/j

Nqn.u; v/C Nqn.w; v/
� 1

	
C
:

The function x ! .x � 1/C is convex which implies that

.px C qy � 1/C 6 p.x � 1/C C q.y � 1/C (2.2)

for p; q > 0, p C q D 1 and x; y > 0. We use (2.2) for

x D jX.u/� X.v/j
Nqn.u; v/

; y D jX.v/� X.w/j
Nqn.v;w/

and

p D Nqn.u; v/

Nqn.u; v/C Nqn.w; v/
; q D Nqn.v;w/

Nqn.u; v/C Nqn.w; v/
:

Therefore

1

Nqn.u; v/C Nqn.v;w/
E .jX.u/� X.w/j � Nqn.u; v/� Nqn.w; v//C

6 pE
� jX.u/� X.v/j

Nqn.u; v/
� 1

	
C

C qE
� jX.v/� X.w/j

Nqn.v;w/
� 1

	
C

6 pN�1
n C qN�1

n D N�1
n
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which by definition gives that

Nqn.u; v/C Nqn.v;w/ > Nqn.v;w/:

ut
Obviously usually we do not need to use the optimal distances Nqn and can replace
the construction by one that is sufficient for our purposes. We say that a family of
distances qn, n > 0 on T is admissible if qn.s; t/ > Nqn.s; t/ and qnC1.s; t/ > qn.s; t/.
For example Latala [9, 10] and Mendelson–Paouris [13] used moments, namely if

kX.t/ � X.s/kp D .EjX.t/ � X.s/jp/
1
p < 1, p > 1 then we may take qn.s; t/ D

2kX.t/� X.s/k2n . Indeed observe that

E
� jX.t/� X.s/j
2kX.t/ � X.s/k2n

� 1
	

C
6 EjX.t/ � X.s/j2n

.2kX.t/ � X.s/k2n/2
n 6 1

Nn
:

Following Talagrand we say that a sequence of partitions An, n > 0 of a set T is
admissible if it is increasing,A0 D fTg and jAnj 6 Nn. Let us also define admissible
sequences of partitions A D .An/n>0 of the set T, which means nested sequences
of partitions such that A0 D fTg and jAnj 6 Nn. For each A 2 An we define

�n.A/ D sup
s;t2A

qn.s; t/:

Let An.t/ denote the element of An that contains point t. For each A 2 An, n > 0

we define tA to be an arbitrary point in A. We may and will assume that if tA 2 B 2
AnC1, B � A 2 An then tB D tA. Let �n.t/ D tAn.t/, then �0.t/ D tT is a fixed point
in T. Let Tn D f�n.t/ W t 2 Tg for n > 0. Clearly the Tn, n > 0 are nested, namely
Tn � TnC1 for n > 0. For each stochastic process X.t/, t 2 T and � > 0 we may
define

��X.T/ D inf
A

sup
t2T

1X
nD0

�nC� .An.t//:

We prove that for � > 2, ��X.T/ is a good upper bound for E sups;t2T jX.t/� X.s/j.
Theorem 2.2 For � > 2 the following inequality holds

E sup
s;t2T

jX.t/ � X.s/j 6 4��X.T/:

Proof Note that

jX.t/� X.�0.t//j

6
1X

nD0
qnC� .�nC1.t/; �n.t//
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C
1X

nD0
.jX.�nC1.t// � X.�n.t//j � qnC� .�nC1.t/; �n.t///C

6
1X

nD0
�nC� .An.t//C

1X
nD0

X
u2Tn

X
v2An.u/\TnC1

.jX.u/� X.v/j � qnC� .u; v//C :

For any " > 0 one can find nearly optimal admissible partition .An/n>0 such that

sup
t2T

1X
nD0

�nC� .An.t// 6 .1C "/��X.T/

and therefore

E sup
t2T

jX.t/� X.�0.t//j

6 ��X.T/C "C
1X

nD0

X
u2Tn

X
v2An.u/\TnC1

qnC� .u; v/
NnC�

6 .1C "/��X.T/C
1X

nD0

X
u2Tn

�nC� .An.u//
NnC1
NnC�

6 ��X.T/

 
1C "C

1X
nD0

NnNnC1
NnC�

!

6 .1C "/��X.T/C ��X.T/

 
N0N1

N2
C

1X
nD1

1

Nn

!

6 ��X.T/

 
1C "C

1X
nD0

2�n�1
!
;

where in the last line we used N2
n D NnC1, Nn > 2nC1 for n > 1 and N0N1=N2 D

1=4 < 1=2. Since " is arbitrary small we infer that E supt2T jX.t/ � X.�0.t//j 6
2��X.T/ and hence E sups;t jX.t/� X.s/j 6 4��X.T/. ut
The basic question is how to construct admissible sequences of partitions. The
simplest way to do this goes through entropy numbers. Recall that for a given
distance � on T the quantity N.T; �; "/ denotes the smallest number of balls of
radius " with respect to � necessary to cover the set T. Consequently for a given
� > 0 we define entropy numbers as

e�n D inff" > 0 W N.T; qnC� ; "/ 6 Nng; n > 0:
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Having the construction ready we may easily produce an admissible sequence of
partitions. At each level n there exists at most Nn sets of qnC� diameter 2" that covers
T. To obtain a nested sequence of partitions we must intersect all the sets constructed
at levels 0; 1; : : : ; n � 1. The partition An has no more than N0N1 : : :Nn�1 6 Nn

elements. Moreover for each set A 2 An we have

�nC��1.A/ 6 2e�n�1 for n > 1:

Obviously���1.T/ 6 ��.T/ 6 2e�0. Let E�X.T/ D P1
nD0 e�n, then for any � > 1

���1
X .T/ 6 2e�0 C 2

1X
nD1

e�n�1 6 4E�X.T/:

and hence by Theorem 2.2 with � > 3

E sup
s;t2T

jX.t/� X.s/j 6 16E�X.T/: (2.3)

We turn to our main question of processes on product spaces. For X.u; t/, u 2 U,
t 2 T we define two different families of distances qn;t and qn;u, which are admissible
to control the marginal processes, respectively, u ! X.u; t/ on U and t ! X.u; t/
on T.

First for a given t 2 T, let qn;t, n > 0 be a family of distances on U admissible
for the process u ! X.u; t/ and let e�n;t, n > 0 be entropy numbers on U constructed
for qn;t, n > 0. By (2.3) we infer that for � > 3

E sup
u;v2U

jX.u; t/� X.v; t/j 6 16

1X
nD0

e�n;t: (2.4)

If we define E�X;t.U/ D P1
nD0 e�n;t and E�X;T.U/ D supt2T E�X;t.U/, then we may

rewrite (2.4) as

sup
t2T

E sup
u;v2U

jX.u; t/� X.v; t/j 6 16E�X;T.U/;

and in this way the entropy numbers may be used to bound the family of processes
u ! X.u; t/, where t 2 T.

On the other hand for a given u 2 U let qn;u, n > 0 be a family of distances on T
admissible for t ! X.u; t/. Obviously qn;U D supu2U qn;u is a good upper bound for
all distances qn;u. Let

��X;U.T/ D inf
A

sup
t2T

1X
nD0

�nC�;U.An.t//;
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where the infimum is taken over all admissible partitions A D .An/n>0 of T and

�n;U.A/ D sup
s;t2A

qn;U.s; t/ D sup
s;t2A

sup
u2U

qn;u.s; t/:

Theorem 2.2 applied to the distances qn;U, n > 0 yields that

sup
u2U

E sup
s;t2T

jX.u; t/� X.u; s/j 6 4��X;U.T/:

We prove that the two quantities E�X;T.U/ and ��X;U.T/ suffice to control the process
X.u; t/, u 2 U, t 2 T.

We state our main result, which extends the idea described in Theorem 3.3.1 in
[15].

Theorem 2.3 For any � > 4 the following inequality holds

E sup
u;v2U

sup
s;t2T

jX.u; t/� X.v; s/j 6 24.��X;U.T/C E�X;T.U//:

Proof We first observe that if ��X;U.T/ < 1 then, by the definition, for any " > 0

there exists an admissible partition sequence C D .Cn/n>0 of T, which satisfies

.1C "/��X;U.T/ > sup
t2T

1X
nD0

�nC�;U.Cn.t//:

Let us fix C 2 Cn and let �n.C/ be a point in T such that

e�n;�n.C/
6 .1C "/ inffe�n;t W t 2 Cg:

Consequently, for any n > 2 there exists a partition BC;n�2 of the set U into at most
Nn�2 sets B that satisfy

�nC��2;�n�2.C/.B/ 6 2e�n�2;�n�2.C/
; where �n;t.B/ D sup

u;v2B
qn;t.u; v/:

Using sets B � C for B 2 BC;n�2 and C 2 Cn�2 we get a partition A0
n�2 of

U � T into at most N2
n�2 6 Nn�1 sets. Finally intersecting all the constructed sets

in A0
0;A0

1; : : : ;A0
n�2 we obtain a nested sequence of partitions .An/n>2 such that

jAnj 6 Nn. We complete the sequence by A0 D A1 D fU � Tg. In this way
A D .An/n>0 is an admissible sequence of partitions for U � T. Let An.u; t/ be the
element of An that contains point .u; t/. Clearly

An.u; t/ � B � C;
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where C D Cn�2.t/ and u 2 B 2 BC;n�2. Therefore for n > 2,

sup
s;s02C

qnC��2;U.s; s0/ 6 �nC��2;U.C/

and

sup
v;v02B

qnC��2;�n�2.C/.v; v
0/ 6 2e�n�2;�n�2.C/

6 2.1C "/e�n�2;t:

We turn to the analysis of optimal quantiles Nqn for the process X.u; t/, u 2 U, t 2 T.
We show that for any x; y; z 2 T and v;w 2 U

Nqn..v; x/; .w; y// 6 qn;U.x; z/C qn;U.y; z/C qn;z.v;w/:

This holds due to the triangle inequality

Nqn..v; x/; .w; y//

6 Nqn..v; x/; .v; z//C Nqn..w; y/; .w; z//C Nqn..v; z/; .w; z//

6 qn;v.x; z/C qn;w.y; z/C qn;z.v;w/

6 qn;U.x; z/C qn;U.y; z/C qn;z.v;w/:

In particular it implies that for any .v; s/ 2 B � C

NqnC��2..u; t/; .v; s//

6 qnC��2;U.t; �n�2.C//C qnC��2;U.s; �n�2.C//C qnC��2;�n�2.C/.u; v/

and hence

�nC��2.B � C/ 6 2�nC��2;U.Cn�2.t//C 2.1C "/e�n�2;t:

If � > 2 then also for n D 0; 1,

�nC��2.U � T/ 6 ��.U � T/ 6 2��.T/C 2.1C "/ sup
t2T

e�0;t:

It implies that for any � > 2

���2
X .U � T/ 6 4��.T/C 4.1C "/ sup

t2T
e�0;t C 2.1C "/��X;U.T/C 2.1C "/E�X;T.U/:

Therefore for any � > 4 we may apply Theorem 1.3 for distances Nqn and in this way
prove our result with the constant 24. ut
In the next sections we analyze various applications of our result.
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3 Gaussian Case

As we have said, the main application of our theory is to Gaussian canonical
processes. Let T � `2.I/ and recall that

G.t/ D
X
i2I

tigi; t 2 T;

where .gi/i2I is a sequence of i.i.d. standard normal variables. For the process G.t/,
t 2 T the natural distance is

d.s; t/ D .EjG.t/ � G.s/j2/ 12 D kt � sk2; s; t 2 T:

It is easy to see that the optimal quantities for G satisfy

Nqn.s; t/ � 2
n
2 d.s; t/; for all s; t 2 T:

Consequently denoting qn.s; t/ D C2
n
2 d.s; t/ for large enough C we get an

admissible sequence of distances. Moreover,

�G.T/ � �2.T; d/ D inf
A

sup
t2T

1X
nD0

2
n
2 �.An.t//; (3.1)

where the infimum is taken over all admissible A D .An/n>0 sequences of partitions
and �.A/ D sups;t2A d.s; t/. Since d is the canonical distance for `2.I/ we usually
suppress d in �2.T; d/ and simply write �2.T/. As we have pointed out in the
introduction that using (1.3) we get

K�1�2.T/ 6 E sup
s;t2T

jG.t/� G.s/j 6 K�2.T/:

Let us also define

en D inff" W N.T; d; "/ 6 Nng; n > 0:

Obviously e�n 6 C2
nC�
2 en and hence

E�G.T/ 6 C2
�
2

X
n>0

2
n
2 en:

Let E.T; d/ D P1
nD0 2

n
2 en. It is a well known fact (Theorem 3.1.1 in [15]) that

K�1E.T; d/ 6
Z 1

0

p
log.N.T; d; "//d" 6 KE.T; d/: (3.2)
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Again since d is the canonical distance on `2.I/ we will suppress d in E.T; d/ and
write E.T/. From (2.3) we infer Dudley’s bound

E sup
s;t2T

jG.t/ � G.s/j 6 16C2
�
2 E.T/:

Turning our attention to product spaces let us recall that for U � R
I or CI , T � R

I

or CI such that ut D .uiti/i2I 2 `2.I/ for all u 2 U and t 2 T we may define

G.u; t/ D
X
i2I

uitigi; u 2 U; t 2 T;

where .gi/i2I is a Gaussian sequence. Note that for all s; t 2 T, u; v 2 U

Nqn..u; t/; .v; s// 6 C2
n
2 kut � vsk2:

For each u 2 U and s; t 2 T let du.s; t/ D ku.t � s/k2. We may define

qn;u.s; t/ D C2
n
2 du.s; t/; qn;U.s; t/ D C2

n
2 sup

u2U
du.s; t/:

In particular

qn;U.s; t/ 6 C sup
u2U

kuk1d.s; t/

and therefore

��G;U.T/ 6 C2
�
2 sup

u2U
kuk1�2.T; d/: (3.3)

On the other hand we define for all t 2 T and u; v 2 U

qn;t.u; v/ D C2
n
2 kt.u � v/k2: (3.4)

For each t 2 T let us denote by dt the distance on U given by

dt.u; v/ D
 X

i2I

jtij2jui � vij2
! 1

2

; u; v 2 U:

Using these distances we may rewrite (3.4) as qn;t D C2
n
2 dt. Let

en;t D inff" W N.U; dt; "/ 6 Nng; n > 0 and E.U; dt/ D
1X

nD0
2

n
2 en;t:
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We obtain from (3.4)

e�n;t 6 C2
nC�
2 en;t and E�X;T.U/ 6 C2

�
2 sup

t2T
E.U; dt/:

Using (3.2) we have

K�1E.U; dt/ 6
Z 1

0

p
log.N.U; dt; "//d" 6 KE.U; dt/:

We recall also that if 0 2 T then by (1.3) �2.T/ � g.T/ D E supt2T jG.t/j. We may
state the following corollary of Theorem 2.3, which extends slightly Theorem 3.3.1
in [15].

Corollary 3.1 For any � > 4

E sup
u;v2U

sup
s;t2T

jG.u; t/� G.v; s/j

6 32.��G;U.T/C E�G;T.U// 6 32C2
�
2

�
sup
u2U

kuk1�2.T/C sup
t2T

E.U; dt/

	
:

Moreover

E.U; dt/ �
Z 1

0

p
log N.U; dt; "/d" and �2.T/ � g.T/ if 0 2 T:

It is tempting to replace supu2U kuk1�2.T/ and supt2T E.U; dt/, respectively,
by supu2U �2.T; du/ and supt2T �2.U; dt/. We shall show that this approach cannot
work. To this aim let us consider the following toy example, where T and U are
usual ellipsoids, i.e.

U D
(

u 2 R
I W

X
i2I

juij2
jxij2 6 1

)
: (3.5)

and

T D
(

t 2 R
I W

X
i2I

jtij2
jyij2 6 1

)
:

Obviously

E sup
u2U;t2T

jG.u; t/j D E max
i2I

jxiyigij:
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On the other hand

sup
u2U

E sup
t2T

jG.u; t/j � sup
u2U

kuyk2 D max
i2I

jxiyij D kxyk1:

Similarly, supt2T E supu2U jG.u; t/j � kxyk1. However kxyk1 6 1 does not
guarantee that E maxi2I jxiyigij is finite, for example if xi D yi D 1. On the other
hand Corollary 3.1 implies the following result for the ellipsoid U.

Remark 3.2 Suppose that U is given by (3.5). Then for any set 0 2 T � `2.I/,

E sup
u2U

sup
t2T

jG.u; t/j 6 K.kxk1g.T/C�.T/kxk2/:

Proof For the sake of simplicity we assume that I D N. We use Corollary 3.1
together with the following observation. For each t 2 T points .uiti/i2N, u 2 U forms

an ellipsoid Ut D fa 2 R
N W Pi2N

jui j2
jti j2jxi j2 6 1g and therefore by Proposition 2.5.2

in [15]

Z 1

0

p
log N.U; dt; "/d" 6 L

1X
nD0

2
n
2 jx2n t2n j;

where L is a universal constant, assuming that we have rearranged .xiti/i2N in such
a way that the sequence jxitij, i 2 N is non-increasing. It suffices to note that by the
Schwartz inequality

1X
nD0

2
n
2 .jx2n t2n j2/ 6 2jx1t1j C 2

1X
nD1

0
@ 2nX

iD2n�1C1
jxitij2

1
A

1
2

6 2jx1t1j C 2

1X
nD1

max
2n�1<i62n

jxij
0
@ 2nX

iD2n�1C1
jtij2

1
A

1
2

6 2kxk2ktk2:

Consequently,

E sup
u2U

sup
t2T

jG.u; t/j 6 K.kxk1�2.T/C�.T/kxk2/:

It remains to apply (1.3), i.e. g.T/ � �2.T/. ut
Note that kxk1 D supu2U kuk1 and kxk2 � �2.U/. It is clear that this result can be
slightly improved if E.U/ < 1. Indeed similarly to (3.3) one can show that

E�G;U.T/ 6 C2
�
2 sup

t2T
ktk1E.U/
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and hence by Corollary 3.1 for any set U such that E.U/ < 1

E sup
u2U

sup
t2T

jG.u; t/j 6 K

�
kxk1g.T/C sup

t2T
ktk1E.U/

	
:

It is sort of general rule that we expect certain regularity of U, whereas the set T is
usually assumed to be unknown.

We next turn to showing that Corollary 3.1 is sufficiently strong to answer both of
the questions about VC classes and Fourier series that we posed in the introduction,
in the Gaussian type formulation. Namely we prove that these problems are related
to certain properties of entropy functionals

R1
0

p
log.N.U; dt; "//d", t 2 T.

We begin with a result on VC classes of finite dimension. In this case A consists
of a 2 R

I , of the form a D 1A for some A � I and T is any subset of `2.I/ that
contains 0. By Theorem 14.12 in [11] we have that for any t 2 `2.I/ such that
ktk2 D 1 and given VC class A of dimension d

log N.A; dt; "/ 6 Ld

�
1C log

1

"

	
; 0 < " < 1:

Consequently

sup
t2T

Z 1

0

p
log N.A; dt; "/d" 6

p
Ld�.T/

Z 1

0

.1C log
1

"
/
1
2 d" 6 M

p
d�.T/

and hence E.A; dt/ 6 M
p

d�.T/ for any t 2 T. Since clearly �.T/ 6 �2.T/ we
may use Corollary 3.1 with � D 4 and deduce

E sup
a2A

sup
t2T

jG.a; t/j 6 64C.�2.T/C M
p

d�.T// 6 K
p

d�2.T/;

which by (1.3) implies (1.5).
Our next step is to show that the Gaussian version of the problem on Fourier

series is also related to Corollary 3.1. In this case U consists of u 2 C
I of the form

ui D �i.h/ for h 2 G, where �i, i 2 I are characters on the compact Abelian group
G and T is any subset of `2.I/ that contains 0. Recall that the crucial observation for
our study is that distances dt, t 2 T defined in (1.12) are translationally invariant on
the group G, i.e.

dt.f 	 h; g 	 h/ D dt.f ; g/ D .
X
i2I

jtij2j�i.f / � �i.g/j2/ 12 ; for any f ; g; h 2 G:

Therefore by a deep result of Fernique (Theorem 3.1.1 in [15]) we have

K�1E.G; dt/ 6 E sup
g2G

jG.g; t/j 6 KE.G; dt/:
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Consequently by Corollary 3.1 and (1.3) we can deduce (1.7), which is the Gaussian
version of Theorem 1.3.

The first new consequence of Corollary 3.1 concerns shattering dimension of U.
Suppose that U is the class of real functions bounded by 1, i.e. U � Œ�1; 1�I . We
say that a subset B of I is "-shattered if there exists a level function v on B such
that given any subset A of B one can find a function u 2 U with ui 6 vi if i 2 A
and ui > vi C " if i 2 BnA. The shattering dimension of U, denoted by vc.U; "/, is
the maximal cardinality of a set "-shattered by U. A deep result of Mendelson and
Vershynin [14] is that for any t 2 `2.I/ such that ktk2 D 1 we have

log N.U; dt; "/ 6 Lvc.U; c"/ log

�
2

"

	
; 0 < " < 1; (3.6)

where L and c are positive absolute constants. This leads to the following corollary.

Corollary 3.3 Suppose that 0 2 T � `2.I/ and supu2U kuk1. The following
inequality holds

E sup
u2U

sup
t2T

jG.u; t/j 6 K

�
g.T/C�.T/

Z 1

0

p
vc.U; "/ log .2="/d"

	
:

Proof It suffices to apply (3.6) then Corollary 3.1 and finally (1.3). ut
It is worth mentioning what this result says about the shattering dimension of convex
bodies. Suppose that U � Œ�1; 1�d is a convex and symmetric body then vc.U; "/ is
the maximal cardinality of a subset J of f1; 2; : : : ; dg such that PJ.U/ 
 Œ� "

2
; "
2
�J ,

where PJ is the orthogonal projection from R
d on R

J . For example, suppose that U
is a unit ball in R

d then vc.U; "/ D k � 1 for any " 2 Œ 2p
k
; 2p

k�1 / and k D 1; 2; : : : d

and, moreover, vc.U; "/ D d for " < 2p
d
. Consequently

Z 1

0

p
vc.U; "/ log.2="/d" 6 K

p
d log d:

Note that for t 2 R
d, ti D 1=

p
d we have that

R1
0

p
log N.U; dt; "/d" is up to a

constant smaller than
p

d. Hence the above estimate is not far from this.

4 Bernoulli Case

Our next aim is to obtain a version of Corollary 3.1 in the setting of Bernoulli
processes. We recall that by Bernoulli processes we mean

X.t/ D
X
i2I

ti"i; for t 2 T � `2.I/;
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where ."i/i2I is a Bernoulli sequence. Note that b.T/ D E supt2T jX.t/j: If 0 2 T
then by Theorem 1.1 we have a geometrical characterization of b.T/.

We turn to the analysis of Bernoulli processes on product spaces, namely we
consider

X.u; t/ D
X
i2I

uiti"i; t 2 T; u 2 U;

where T � R
I orCI , U � R

I or CI and ."i/i2I is a Bernoulli sequence. Our approach
is to use Theorem 1.1 in order to extend Corollary 3.1 to the case of random signs.

Theorem 4.1 Suppose that 0 2 T. Then there exists � W T ! `2 such that
k�.t/k1 6 Lb.T/ for all t 2 T, �.0/ D 0 and

E sup
u2U

sup
t2T

jX.u; t/j 6 K

�
sup
u2U

kuk1b.T/C sup
t2T

E.U; dt��.t//
	
;

where

E.U; dt��.t// �
Z 1

0

q
log N.U; dt��.t/; "/d":

Proof Obviously we may assume that b.T/ D E supt2T jPi2I ti"ij < 1. Therefore
by Theorem 1.1 there exists a decomposition T � T1 C T2, T1;T2 � `2.I/ which
satisfies 0 2 T2 and

max

(
sup
t2T1

ktk1; g.T2/
)

6 Lb.T/; (4.1)

where L is a universal constant. Hence combining Corollary 3.1 with (4.1)

E sup
u2U

sup
t2T

jX.u; t/j

6 C

 
E sup

u2U
sup
t2T1

jX.u; t/j C E sup
u2U

sup
t2T2

jX.u; t/j
!

6 C

 
sup
u2U

kuk1 sup
t2T1

ktk1 C
r
�

2
E sup

u2U
sup
t2T2

jG.u; t/j
!

6 CL

 
sup
u2U

kuk1b.T/C sup
t2T2

Z 1

0

p
log N.U; dt; "/d"

!
:

The decomposition of T into T1 C T2 can be defined in a way that T1 D f�.t/ W
t 2 Tg and T2 D ft � �.t/ W t 2 Tg where � W T ! `2 is such that �.0/ D 0,
k�.t/k1 6 Lb.T/ and �2.T2/ 6 Lb.T/. It completes the proof. ut
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Our remarks on the entropy function from the previous section show that Theo-
rem 4.1 solves both our questions from the introduction. In fact we can easily extend
our result for the functional shattering dimension.

Corollary 4.2 Suppose that supu2U kuk1 6 1 and U is of "-shattering dimension
vc.U; "/ for 0 < " < 1, then

E sup
u2U

sup
t2T

jX.u; t/j 6 Kb.T/
Z 1

0

p
vc.U; "/ log.2="/d":

Proof Obviously by Theorem 4.1,

E sup
u2U

sup
t2T

jX.u; t/j

6 K

�
sup
u2U

kuk1b.T/C sup
t2T

kt � �.t/k2
Z 1

0

p
vc.U; "/ log.2="/d"

	
;

where k�.t/k1 6 Lb.T/. Since

sup
t2T

kt � �.t/k2 6 Lb.T/ and sup
u2U

kuk1 6 1

it implies that

E sup
u2U

sup
t2T

jX.u; t/j 6 Kb.T/
Z 1

0

p
vc.U; "/ log.2="/d":

ut
Corollary 4.3 Suppose that supu2U kuk1 6 1 and vi 2 F, i 2 I, then

E sup
u2U

�����
X
i2I

uivi"i

����� 6 KE

�����
X
i2I

vi"i

�����
Z 1

0

p
vc.U; "/ log.2="/d":

Note that in the same way as for the maximal inequality we may ask what is the
right characterization of U � R

I , supu2U kuk1 6 1 for which the inequality

E sup
u2U

�����
X
i2I

uiXi

����� 6 K

�����
X
i2I

Xi

����� ; (4.2)

holds for any sequence of independent symmetric r.v.’s Xi, i 2 I; which take values
in a separable Banach space F. With the same proof as the first part of Theorem 1.2
one can show that U should satisfy the condition

sup
0<"<1

"
p

vc.U; "/ < 1:
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On the other hand Corollary 4.3 implies that

Z 1

0

p
vc.U; "/ log.2="/d" < 1

is a sufficient condition for the inequality (4.2). The precise answer to this question
seems at the moment to be beyond our reach.

We revisit our toy example, where U is the ellipsoid

U D
(

u 2 R
I W
X
i2I

juij2
jxij2 6 1

)
;

where jxij > 0 are given numbers. One can show the following result.

Remark 4.4 Suppose that U is the usual ellipsoid. Then for any set 0 2 T � `2.I/

E sup
u2U

sup
t2T

jX.u; t/j 6 Kkxk2b.T/:

Proof We may argue in a similar way as in Remark 3.2 using this time Theorem 4.1
and obtain

E sup
u2U

sup
t2T

jX.u; t/j 6 K

�
kxk1b.T/C sup

t2T
kt � �.t/k2kxk2

	
:

Since �.T/ 6 Lb.T/ and k�.t/k1 6 Lb.T/ we get supt2T kt � �.t/k2 6 Lb.T/ and
therefore

E sup
u2U

sup
t2T

jX.u; t/j 6 Kkxk2b.T/:

ut
On the other hand by Schwarz’s inequality

E sup
u2U

sup
t2T

jX.u; t/j D sup
t2T

E sup
u2U

jX.u; t/j D sup
t2T

ktxk2

Consequently in this case the expectation of the supremum of the Bernoulli process
over the product of index sets can be explained by the analysis of one of its marginal
processes.

We remark that once we prove the comparability of moments like (4.2) one can
deduce also the comparability of tails.



Bounds for Stochastic Processes on Product Index Spaces 349

Remark 4.5 Suppose that supu2U kuk1 6 1. If for any Xi, i 2 I symmetric
independent random variables which take values in a separable Banach space
.F; k 	 k/

E sup
u2U

�����
X
i2I

uiXi

����� 6 LE

�����
X
i2I

Xi

����� ; (4.3)

then there exists an absolute constant K such that

P

 
sup
u2U

�����
X
i2I

uiXi

����� > Kt

!
6 KP

 �����
X
i2I

Xi

����� > t

!
:

Proof It suffices to prove the inequality for Xi D vi"i, where vi 2 F and "i are
independent Bernoulli variables. The general result follows then from the Fubini
theorem. By the result of Dilworth and Montgomery-Smith [2] for all p > 1

�����sup
u2U

�����
X
i2I

uivi"i

�����
�����

p

6 C

0
@
�����sup

u2U

�����
X
i2I

uivi"i

�����
�����
1

C sup
u2U

sup
kx�k61

�����
X
i2I

uix
�
i .vi/"i

�����
p

1
A :

Therefore by the Markov inequality and the assumption supu2U kuk1 6 1we obtain
for all p > 1

P

0
@sup

u2U

�����
X
i2I

uivi"i

����� > C

0
@E

�����
X
i2I

vi"i

�����C sup
kx�k61

�����
X
i2I

x�.vi/"i

�����
p

1
A
1
A

6 e�p: (4.4)

On the other hand it is known (e.g. [8]) that for any functional x� 2 F�

P

0
@
ˇ̌
ˇ̌
ˇ
X
i2I

x�.vi/"i

ˇ̌
ˇ̌
ˇ > M�1

�����
X
i2I

x�vi"i

�����
p

1
A > min fc; e�pg ; (4.5)
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where M > 1. Hence

P

 
sup
u2U

�����
X
i2I

uivi"i

����� > C

 
E

�����
X
i2I

vi"i

�����C Mt

!!

6 sup
kx�k61

c�1P
 ˇ̌
ˇ̌
ˇ
X
i2I

x�.vi/"i

ˇ̌
ˇ̌
ˇ > t

!
6 c�1P

 �����
X
i2I

vi"i

����� > t

!
:

We end the proof considering two cases. If t > M�1E
��P

i2I vi"i

�� then

P

 
sup
u2U

�����
X
i2I

uivi"i

����� > 2CMt

!
6 c�1P

 
k
X
i2I

vi"ik > t

!
:

If t 6 M�1EkPi2I vi"ik then by Paley-Zygmund inequality and the Kahane
inequality with the optimal constant [6]

P

 �����
X
i2I

vi"i

����� > t

!
> M�2

�
E
��P

i2I "ivi

���2
E
��P

i2I "ivi

��2 > 1

2
M�2:

It shows that

P

 
sup
u2U

�����
X
i2I

uivi"i

����� > Kt

!
6 KP

 �����
X
i2I

vi"i

����� > t

!
;

which completes the proof. ut

5 Applications

As our first application to processes on A D Œ0; 1� with values in R
I . In order to

discuss whether or not X.a/, a 2 A, has its paths in `2.I/ space we must verify the
condition kX.a/k2 < 1 a.s. for all a 2 A. This is the same question as

sup
kx�k61

sup
a2A

hx�;X.a/i < 1:

Hence it suffices to check the condition E supa2A supt2T jX.a; t/j < 1, where T D
ft 2 `2.I/ W ktk2 6 1g and

X.a; t/ D ht;X.a/i; t 2 T; a 2 A:
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Note that in this way we match each random vector X.a/ with the process X.a; t/,
t 2 T. By Theorem 2.3 (note that X.0; s/ D 0)

E sup
a2A

sup
t2T

jX.a; t/j 6 32.��X;A.T/C E�X;T.A//:

In this setting we usually expect that

qn;a.s; t/ 6 qn;1.s; t/; a 2 A, (5.1)

which means that on average the increments increase with time. Condition (5.1)
yields ��X;A.T/ 6 ��X.1/.T/. Under certain assumptions we may also expect that
��X.1/.T/ is equivalent to EkX.1/k2. For example this is the case when X.1/ is a
centred Gaussian vector and also if X.1/ consists of entries X.1/i, i 2 I that are
independent random variables that satisfy some technical assumptions as stated in
[10]. Moreover if there exists an increasing family of functions �n W RC ! RC,
which are continuous, increasing, �n.0/ D 0 such that for all t 2 T and a; b 2 A

qn;t.a; b/ 6 �n.ja � bj/ and
1X

nD0
��1

nC� .Nn/ < 1 (5.2)

then

E�X;T.A/ 6
1X

nD0
��1

nC� .Nn/ < 1:

In this way we obtain the following remark, which is a generalization results in
[3, 4].

Remark 5.1 Suppose that X.a; t/, a 2 A, t 2 T satisfies (5.1), (5.2) and EkX.1/k2
is comparable with �X.1/.T/ then

E sup
a2A

sup
t2T

jX.a; t/j 6 K.EkX.1/k2 C 1/:

As our second application we consider empirical processes. Let .X ;B/ be a
measurable space, F be a countable family of measurable functions f W X ! R

such that 0 2 Fand X1;X2; : : : ;XN be family of independent random variables that
satisfy type Bernstein inequality

P
�
j.f � g/.Xi/j > d1.f ; g/t C d2.f ; g/t

1
2

�
6 2 exp.�t/; for all t > 1: (5.3)



352 W. Bednorz

We shall analyze the case when d2.f ; g/ > d1.f ; g/. By Exercise 9.3.5 in [15] for
any centred independent random variables Y1;Y2; : : : ;Yn, which satisfy

P
�
jYij > At C Bt

1
2

�
6 2 exp.�t/ for all i D 1; 2; : : : ;N and t > 1;

where A 6 B and for any numbers u1; u2; : : : ; uN we have

P

 ˇ̌
ˇ̌
ˇ

NX
iD1

uiYi

ˇ̌
ˇ̌
ˇ > L

�
Akuk1t C Bkuk2t 12

�!
6 2 exp.�t/ for all t > 1: (5.4)

Observe that if we define

X.u; f / D 1p
N

NX
iD1

"iuif .Xi/; u 2 U; f 2 F ;

where U is a unit ball in R
N and ."i/

N
iD1 is a Bernoulli sequence independent of Xi,

i D 1; 2; : : : ;N, then

E sup
u2U

sup
f 2F

jX.u; f /j D E sup
f 2F

 
1

N

NX
iD1

jf .Xi/j2
! 1

2

:

Clearly by (5.4) applied to Yi D "i.f � g/.Xi/ we get for all t > 1

P
�

jX.u; f /� X.u; g/j > Lp
N

�
d1.f ; g/kuk1t C d2.f ; g/kuk2t 12

�	

6 2 exp.�t/: (5.5)

Thus, in particular, we can use

qn;u.f ; g/ D L.d1.f ; g/kuk12n C d2.f ; g/kuk22 n
2 /:

Then

qn;U.f ; g/ D Lp
N
.d1.f ; g/2

n C d2.f ; g/2
n
2 /: (5.6)

Let

�i.F ; di/ D inf
A

sup
f 2F

1X
nD0

2
n
i �i.An.f //;



Bounds for Stochastic Processes on Product Index Spaces 353

where the infimum is taken over all admissible partitionsA D .An/n>0 and�i.A/ D
supf ;g2A di.f ; g/. It is easy to construct admissible partitions, which work for both
�1.F ; d1/ and �2.F ; d2/. Namely we consider partitions A1 D .A1

n/n>0 and A2 D
.A2

n/n>0 such that

.1C "/�2.F ; di/ > sup
f 2F

1X
nD0

2
n
i �i.A

i
n.f //; i D 1; 2;

for some arbitrary small " > 0 and then define A D .An/n>0 by An D A1
n�1\A2

n�1
for n > 1 and A0 D fFg. Obviously A is admissible. Moreover,

sup
f 2F

1X
nD0

2
n
i �i.An.f // 6 .1C "/2

1
i �i.F ; di/; i D 1; 2: (5.7)

Using the partition A we derive from (5.6)

��X;U.F/ 6 2�C1.1C "/p
N

.�1.F ; d1/C �2.F ; d2//:

On the other hand using that X.u; f /� X.v; f / D X.u � v; f / � X.0; f /; similarly to
(5.5), we get for all t > 1

P
�

jX.u; f /� X.v; f /j > Lp
N

�
d1.f ; 0/ku � vk1t C d2.f ; 0/ku � vk2t 12

�	

6 2 exp.�t/:

Hence we may define

qn;f .u; v/ D Lp
N

�
d1.f ; 0/ku � vk12n C d2.f ; 0/ku � vk22 n

2

�
: (5.8)

Our aim is to compute the entropy numbers e�n;f , n > 0. Let n0 > 1 be such that
2n0 > N > 2n0�1. It is straightforward that we only have to consider the case when
N is suitably large. We claim that for any n > n0 and suitably chosen � > 1 it is
possible to cover BN.0; 1/, a unit ball in R

N , by at most NnC� cubes of `1 diameter
at most N� 1

2 .Nn/
� 1

N . Indeed we can apply the volume type argument. It is possible
to cover BN.0; 1/ with M disjoint cubes of `1 diameter t with disjoint interiors in
BN.0; 1C t

p
N/. Since jBN.0; 1/j � .C=

p
N/N we get

M 6 jBN.0; 1C t
p

N/j
tN

6
 

Cp
N

 
1C t

p
N

t

!!N

6 CN

�
1C 1

t
p

N

	N

:
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We may choose t D N� 1
2 N

� 1
N

n , then

CN

�
1C 1

t
p

N

	N

D CN

�
1C N

1
N

n

	N

6 .NnC� /
1
N ;

where the last inequality uses the assumption that n > n0. In this way we cover
BN.0; 1/ by at most NnC� sets of `1 diameter at most N� 1

2 .Nn/
� 1

N and `2 diameter

at most N
� 1

N
n . By (5.8) we infer the following entropy bound

e�nC�;f 6 L2�
�

d1.f ; 0/N
�1.Nn/

� 1
N C d2.f ; 0/N

� 1
2 .Nn/

� 1
N

�
:

We recall that the constant L is absolute but may change its value from line to line
up to a numerical factor. This implies the bound

1X
nDn0C�

e�n;f

6 L2�
 1X

nDn0C�

!

6 L2� .d1.f ; 0/C d2.f ; 0// :

The second step is to consider n 6 n0=2 C � . In this case we can simply use the
trivial covering of BN.0; 1/ by a single set, which obviously has `1 and `2 diameter
equal 2; and hence

e�n;f D L2�p
N
.d1.f ; 0/2

n C d2.f ; 0/2
n
2 /

and

n0=2C�X
nD0

e�n;f 6 L2� .d1.f ; 0/C d2.f ; 0// :

The most difficult case is when n0=2C� 6 n 6 n0C� . In this setting we will cover
BN.0; 1/ with cubes of `1 diameter 2t, where on t D 1p

mn
and mn 6 N. We will

not control `2 diameter, we simply use that it is always bounded by 2. Note that if
x 2 BN.0; 1/ there are only mn coordinates such that jxij > t. Therefore we can cover
BN.0; 1/ with cubes in R

N of `1 diameter 2t if for each subset J � f1; 2; : : : ;Ng
such that jJj D mn we cover BJ.0; 1/ � R

J with cubes in R
J of `1 diameter 2t. In

this way we cover the situation, where all coordinates but those in J stay in the cube
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Œ�t; t�J
c
. By our volume argument one needs at most

MJ 6 CJ

 
1C 2tpjJj

!jJj
D Cmn

�
1C 2tp

mn

	mn

2t-cubes in R
J to cover BJ.0; 1/. Our choice of t guarantees that MJ 6 .3C=2/mn .

Therefore one needs
� N

mn

�
.3C=2/mn cubes of `1 diameter 2t to cover BN.0; 1/. We

require that

 
N

mn

!�
3C

2

	mn

6 Nn:

It remains to find mn that satisfies the above inequality. First observe that

 
N

mn

!
6
�

eN

mn

	mn

D exp.mn log.eN=mn//:

Following Talagrand we define mn as the smallest integer such that

2n�� 6 mn log.eN=mn/:

Clearly if n > n0=2C � then mn > 1 and thus by Lemma 9.3.12 in [15] we deduce
that mn log.eN=mn/ 6 2n��C1 and hence

 
N

mn

!�
3C

2

	mn

6 exp.2n��C1/
�
3C

2

	mn

6 Nn;

for sufficiently large � . Again by Lemma 9.3.12 in [15] we have 1
8
mnC1 6 mn for

all n 2 fŒn0=2�C �; : : : ; n0 C � � 1g and mn0C� D 2n0 > N. It implies that

mn > N

�
1

8

	n0C��n

: (5.9)

Recall that each of the covering cubes has `2 diameter 2 and therefore by the
definition of mn and then by (5.9)

e�n;f 6 L2�p
N

�
d1.f ; 0/

2n

p
mn

C d2.f ; 0/2
n
2

	

6 L2�C n�n0
2

�
d1.f ; 0/

p
log.eN=mn/C d2.f ; 0/

�

6 L2�C n�n0
2 .d1.f ; 0/

p
1C .n0 C � � n/ log.8/C d2.f ; 0//:
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Again we derive the bound

n0C�X
nDn0=2C�

e�n;f 6 L2� .d1.f ; 0/C d2.f ; 0//:

We have established that

E�X;f .U/ D
1X

nD0
e�n;f 6 L2� .d1.f ; 0/C d2.f ; 0//

and consequently

E�X;F.U/ D sup
f 2F

E�X;f .U/ 6 L2� sup
f 2F

.d1.f ; 0/C d2.f ; 0//:

By Theorem 2.3 we get

E sup
f 2F

.
1p
N

NX
iD1

jf .Xi/j2/ 12

6 K

�
1p
N
.�1.F ; d1/C �2.F ; d2//C�1.F/C�2.F/

	
:

Note that our assumption that d2 dominates d1 is not necessary for the result. Clearly
using Nd2 D max.d1; d2/ instead of d2 we only have to observe that our admissible
partition A works for �1.F ; d1/ and �2.F ; d2/ in the sense of (5.7) one can use the
following inequality

1X
nD0

2
n
2 N�2.An.f // 6

1X
nD0

2n�1.An.f //C
1X

nD0
2

n
2 �2.An.f //;

where N�2.A/ is the diameter of A with respect to Nd2 distance. In the same way
N�2.F/ 6 �1.F/C�2.F/. We have proved the following result.

Theorem 5.2 Suppose that 0 2 F and F satisfies (5.3). Then

E sup
f 2F

1p
N

 
NX

iD1
jf .Xi/j2

! 1
2

6 K

�
1p
N
.�1.F ; d1/C �2.F ; d2//C�1.F/C�2.F/

	
:
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This result is due to Mendelson and Paouris [13] (see Theorem 9.3.1 in [15]) and
concerns a slightly more general situation. The proof we have shown is different and
much less technically involved.
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Permanental Vectors and Selfdecomposability

Nathalie Eisenbaum

Abstract Exponential variables, gamma variables or squared centered Gaussian
variables, are always selfdecomposable. Does this property extend to multivariate
gamma distributions? We show here that for any d-dimensional centered Gaussian
vector .�1; : : : ; �d/with a nonsingular covariance, the vector .�21; : : : ; �

2
d/ is not self-

decomposable unless its components are independent. More generally, permanental
vectors with nonsingular kernels are not selfdecomposable unless their components
are independent.

Keywords Exponential variable • Gamma variable • Gaussian process • Infinite
divisibility • Permanental process • Selfdecomposability
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1 Introduction

A d-dimensional vector X is selfdecomposable if for every b in Œ0; 1� there exists a
d-dimensional vector Xb, independent of X such that

X
.law/D bX C Xb:

Exponential variables are well-known examples of one dimensional selfdecom-
posable variables. Equivalently, gamma variables and squared centered Gaussian
variables are selfdecomposable. It is hence natural to ask whether this property
extends to multivariate gamma distributions. We answer here the following question:
given .�1; : : : ; �d/ a centered Gaussian vector with a nonsingular covariance, is the
vector .�21; : : : ; �

2
d/ selfdecomposable?
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This question is actually in keeping with the older question first raised by Lévy
in 1948 [5] of the infinite divisibility of .�21; �

2
2/. Indeed selfdecomposition implies

infinite divisibility and several answers have since been made to Lévy’s question. To
Lévy’s doubts on the possible infinite divisibility of .�21; �

2
2/, when �1 and �2 are not

independent, Vere-Jones [7] answers that this couple is always infinitely divisible.
In dimension d > 2, Griffiths [4] has established criteria (later rewritten by Bapat
[1] and Eisenbaum and Kaspi [2]) for the realization of that property. For example
a fractional Brownian motion satisfies this criteria iff its index is lower than the
Brownian motion index.

Hence the property of infinite divisibility does not really separate the one-
dimensional case from the higher dimensional cases. Actually the stronger property
of selfdecomposability does. Indeed we show here that unless its components are
independent, .�21; : : : ; �

2
d/ is never selfdecomposable.

Our answer easily extends to permanental vectors. Permanental vectors rep-
resent a natural extension of squared Gaussian vectors. They have marginals
with gamma distribution without the Gaussian structure. More precisely, a vector
. 1;  2; : : : ;  n/ with nonnegative components is a permanental vector with kernel
G D .G.i; j/; 1 � i; j � n/ and index ˇ > 0, if its Laplace transform has the
following form, for every ˛1; ˛2; : : : ; ˛n in RC

IE.expf�1
2

nX
iD1

˛i ig/ D det.I C ˛G/�1=ˇ (1.1)

where I is the n � n-identity matrix and ˛ is the diagonal matrix with diagonal
entries.

Vere-Jones [8] has formulated clear necessary and sufficient conditions for the
existence of such vectors. In particular, symmetry of the matrix G is not necessary.
The interest of permanental vectors with non-symmetric kernel is mostly due to their
connection with local times of Markov processes (see [3]).

Note that when G is symmetric positive definite and ˇ D 2, (1.1) gives the
Laplace transform of a vector .�21; �

2
2; : : : ; �

2
n/ where .�1; �2; : : : ; �n/ is a centered

Gaussian vector with covariance G.
Section 2 presents the proof of the following theorem.

Theorem 1.1 Unless its components are independent, a permanental vector of
dimension d > 1 with a nonsingular kernel is never selfdecomposable.
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2 Proof of Theorem 1.1

Let . x;  y/ be a permanental couple with a kernel G and index ˇ. Vere-Jones
necessary and sufficient condition of existence of a permanental couple translates
into:

G.x; x/ � 0; G.y; y/ � 0; G.x; y/G.y; x/ � 0;

G.x; x/G.y; y/ � G.x; y/G.y; x/:

This condition is independent of ˇ, hence . x;  y/ is always infinitely divisible. We
choose to take ˇ D 2 and note then that . x;  y/ has the same law as .�2x ; �

2
y/ where

.�x; �y/ is a centered Gaussian couple with covariance

QG D
�

G.x; x/
p

G.x; y/G.y; x/p
G.x; y/G.y; x/ G.y; y/

�

The two cases “G.x; y/G.y; x/ D 0” and “G.x; x/G.y; y/ D G.x; y/G.y; x/”
correspond respectively to �x and �y independent, and to the existence of a constant
c > 0 such that �2x D c�2y . In this two cases, the couple .�2x ; �

2
y/ is obviously

selfdecomposable.
Excluding these two obvious cases, we show now that .�2x ; �

2
y/ is not selfdecom-

posable by using the following necessary and sufficient condition for selfdecompo-
sition (see Theorem 15.10 in Sato’s book [6]). The unit sphere fz 2 R

2 W jzj D 1g is
denoted by S.

A given infinitely divisible distribution on R
2 with Lévy measure � is selfdecom-

posable iff

�.B/ D
Z

S

.dz/

Z 1

0

1B.rz/kz.r/
dr

r
(2.1)

with a finite measure 
 on S and a nonnegative function kz.r/ measurable in z 2 S
and decreasing in r > 0.

Without loss of generality we can assume that QG D
�
1 �

� 1

�
, with � 2 .0; 1/.

The Lévy measure � of .�2x ; �
2
y/ is computed in [7]:

�.dxdy/ D 1

x
e

� x
.1��2/ 1.x>0/dx ı0.dy/C 1

y
e

� y
.1��2/ 1.y>0/ ı0.dx/dy

C �2

1 � �2
e� 1

1��2
.xCy/

.�2xy/�1=2I1.
2�

p
xy

1 � �2 /1.x>0;y>0/dxdy

where I1 is the modified Bessel function of order 1.
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Hence for B a Borel subset of R2C

�.B/ D
Z �

2

0

ı0.d�/
Z 1

0

1B.r; 0/ expf� r

1C �2
gdr

C
Z �

2

0

ı �
2
.d�/

Z 1

0

1B.0; r// expf� r

1C �2
gdr

C
Z �

2

0

d�
Z 1

0

1B.r cos �; r sin �/k� .r/
dr

r

with k� .r/ D r 1

�
p

cos � sin �
expf� r

1��2 .cos � C sin �/gI1.
2�r
1��2

p
cos � sin �/.

We can write �.B/ in the form (2.1) identifying Œ0; �=2� with the corresponding
arc of S and putting kz.r/ D k� .r/ when z is not on the coordinate axes. Since I1 is
an increasing function and re�r is increasing for small r, k� .r/ is increasing in r in
a neighborhood of 0. Therefore, kz.r/ is not decreasing in r > 0 when z is not in the
coordinate axes.

Suppose that � satisfies another decomposition with the following form:
�.B/ D R

S
Q
.dz/

R1
0 1B.rz/Qkz.r/

dr
r with Q
 finite measure on S and Qkz.r/ nonnega-

tive measurable function on S�R
C. Taking inspiration from Remark 15.12 of Sato’s

book [6], one obtains then the existence of a measurable strictly positive function
h on S such that: Q
.dz/ D h.z/
.dz/ and Qkz.r/ D 1

h.z/kz.r/ 
.dz/-almost every z.

Hence Qkz.r/ would not be a decreasing function of r either.
Consequently there is no decomposition of � satisfying (2.1). �
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Abstract We explore some properties of a recent representation of permanental
vectors which expresses them as sums of independent vectors with components that
are independent gamma random variables.
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1 Introduction

An Rn valued ˛-permanental random variable X D .X1; : : : ;Xn/ is a random
variable with Laplace transform

E
�

e�Pn
iD1 siXi

�
D 1

jI C RSj˛ (1.1)
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for some n � n matrix R and diagonal matrix S with entries si, 1 � i � n, and ˛ > 0.
Permanental random variables were introduced by Vere-Jones [3], who called them
multivariate gamma distributions. (Actually he considered the moment generating
function.)

In [2, Lemma 2.1] we obtain a representation for permanental random variables
with the property that A D R�1 is an M-matrix. A matrix A D fai;jg1�i;j�n is said to
be a nonsingular M-matrix if

(1) ai;j � 0 for all i ¤ j.
(2) A is nonsingular and A�1 � 0.

The representation depends on the ˛-perminant of the off diagonal elements of A
which we now define.

The ˛-perminant of n � n matrix M is

jMj˛ D
ˇ̌
ˇ̌
ˇ̌
M1;1 	 	 	 M1;n

	 	 	 	 	 	
Mn;1 	 	 	 Mn;n

ˇ̌
ˇ̌
ˇ̌
˛

D
X
�

˛c.�/M1;�.1/M2;�.1/ 	 	 	 Mn;�.n/: (1.2)

Here the sum runs over all permutations � on Œ1; n� and c.�/ is the number of cycles
in � .

We use boldface, such as x, to denote vectors. Let k D .k1; : : : ; kn/ 2 N
n and

jkj D Pn
lD1 kl. For 1 � m � jkj, set im D j, where

j�1X
lD1

kl < m �
jX

lD1
kl: (1.3)

For any n � n matrix C D fci;jg1�i;j�n we define

C.k/ D

2
664

ci1;i1 ci1;i2 	 	 	 ci1;i
jkj

ci2;i1 ci2;i2 	 	 	 ci2;i
jkj

	 	 	 	 	 	
ci

jkj

;i1 ci
jkj

;i2 	 	 	 ci
jkj

;i
jkj

3
775 ; (1.4)

and C.0/ D 1. For example, if k D .0; 2; 3/ then jkj D 5 and i1 D i2 D 2 and
i3 D i4 D i5 D 3,

C.0; 2; 3/ D

2
666664

c2;2 c2;2 c2;3 c2;3 c2;3
c2;2 c2;2 c2;3 c2;3 c2;3
c3;2 c3;2 c3;3 c3;3 c3;3
c3;2 c3;2 c3;3 c3;3 c3;3
c3;2 c3;2 c3;3 c3;3 c3;3

3
777775
: (1.5)
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Here is an alternate description of C.k/. For any n�n matrix C D fci;jg1�i;j�n the
matrix C.k/ is an jkj � jkj matrix with its first k1 diagonal elements equal to c1;1, its
next k2 diagonal elements equal to c2;2, and so on. The general element C.k/p;q D
cNp;Nq, where Np is equal to either index of diagonal element in row p (the diagonal
element has two indices but they are the same), and Nq equal to either index of the
diagonal element in column q. Thus in the above example we see that C.0; 2; 3/4;1 D
c3;2.

Suppose that A is an n � n M-matrix. Set ai D ai;i and write

A D DA � B; (1.6)

where D is a diagonal matrix with entries a1; : : : ; an and all the elements of B are
non-negative. (Note that all the diagonal elements of B are equal to zero.) In addition
set

A D D�1
A A D I � D�1

A B WD I � B: (1.7)

The next lemma is [2, Lemma 2.1].

Lemma 1.1 Let A D R�1 be an n � n nonsingular M-matrix with diagonal entries
a1; : : : ; an and S be an n � n diagonal matrix with entries .s1; : : : ; sn/. Then (1.1) is
equal to

jAj˛Qn
iD1 a˛i

X
kD.k1;:::;kn/

jB.k/j˛Qn
iD1 aki

i kiŠ

1

.1C .s1=a1//˛Ck1 	 	 	 .1C .sn=an//˛Ckn

D jAj˛
X

kD.k1;:::;kn/

jB.k/j˛Qn
iD1 kiŠ

1

.1C .s1=a1//˛Ck1 	 	 	 .1C .sn=an//˛Ckn
: (1.8)

where the sum is over all k D .k1; : : : ; kn/ 2 N
n. (The series converges for all

s1; : : : ; sn 2 RnC for all ˛ > 0.)

Setting S D 0 we see that

jAj˛Qn
iD1 a˛i

X
kD.k1;:::;kn/

jB.k/j˛Qn
iD1 a˛i kiŠ

D jAj˛
X

kD.k1;:::;kn/

jB.k/j˛Qn
iD1 kiŠ

D 1: (1.9)

Let Z˛;B be an n-dimensional integer valued random variable with

P
�
Z˛;B D .k1; : : : ; kn/

� D jAj˛ jB.k/j˛Qn
iD1 kiŠ

: (1.10)

(We omit writing the subscript ˛;B when they are fixed from term to term.)
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The sum in (1.8) is the Laplace transform of the ˛-permanental random variable
X. Therefore,

X
lawD

X
kD.k1;:::;kn/

Ik1;:::;kn.Z/ .�˛Ck1;a1 ; : : : ; �˛Ckn;an/ (1.11)

lawD .�˛CZ1;a1 ; : : : ; �˛CZn ;an/ ;

where Z and all the gamma distributed random variables, �u;v are independent.
Recall that the probability density function of �u;v is

f .u; vI x/ D vuxu�1e�vx

�.u/
for x > 0 and u; v > 0; (1.12)

and equal to 0 for x � 0. We see that when X has probability density �u;v , vX has
probability density �u;1. It is easy to see that

E.�p
u;1/ D �.p C u/

�.u/
: (1.13)

It follows from (1.11) that for measurable functions f on RnC,

E. f .X// D
X

kD.k1;:::;kn/

P .Z D .k1; : : : ; kn//E . f .�˛Ck1;a1 ; : : : ; �˛Ckn ;an//

D E . f .�˛CZ1;a1 ; : : : ; �˛CZn ;an// : (1.14)

Since

�˛Cˇ;a
lawD �˛;a C �ˇ;a; (1.15)

it follows from (1.14) that for all increasing functions f

E. f .X// � E . f .�˛;a1 ; : : : ; �˛;an// : (1.16)

We explain in [2] that in some respects (1.16) is a generalization of the Sudakov
Inequality for Gaussian processes and use it to obtain sufficient conditions for
permanental processes to be unbounded.

A permanental process is a process with finite joint distributions that are
permanental random variables. For example, let G D fG.t/; t 2 Rg be a
Gaussian process with covariance QR.s; t/. Then for all n and all t1; : : : ; tn in Rn,
.G2.t1/=2; : : : ;G2.tn/=2/ is an n-dimensional 1/2-permanental random variable,
with R in (1.1) equal to the kernel f QR.ti; tj/gn

i;jD1. The stochastic process G2=2 D
fG2.t/=2; t 2 Rg is a 1/2-permanental process. In [2] we consider permanental
processes defined for all ˛ > 0 and for kernels R.s; t/ that need not be symmetric.
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In the first part of this paper we give some properties of the random variable Z.
It turns out that it is easy to obtain the Laplace transform of Z.

Lemma 1.2

E
�

e�Pn
iD1 siZi

�
D jAj˛

jI � .BE.s//j˛ (1.17)

where E.s/ is an n � n diagonal matrix with entries e�si , i D 1; : : : ; n.

Proof

E
�

e�Pn
iD1 siZi

�
D

X
kD.k1;:::;kn/

e�Pn
iD1 sikiP .Z D .k1; : : : ; kn//

D jAj˛
X

kD.k1;:::;kn/

nY
iD1

e�siki
jB.k/j˛Qn

iD1 kiŠ
: (1.18)

Note that

nY
iD1

e�siki
jB.k/j˛Qn

iD1 kiŠ
D j.BE.s//.k/j˛Qn

iD1 kiŠ
: (1.19)

By (1.9) with B.0/ replaced by BE.s/ for each fixed s

jI � BE.s/j˛
X

kD.k1;:::;kn/

j.BE.s//.k/j˛Qn
iD1 kiŠ

D 1: (1.20)

We get (1.17) from this and (1.18). ut
A significant property of permanental random variables that are determined by

kernels that are inverse M-matrices is that they are infinitely divisible. Similarly it
follows from (1.17) that for all ˛; ˇ > 0

Z˛Cˇ;B
lawD Z˛;B C Zˇ;B: (1.21)

We can differentiate (1.17) to give a simple formula for the moments of the
components of Z˛;B, which we simply denote by Z in the following lemma.

Lemma 1.3 For any integer m � 1 and 1 � p � n,

E.Zm
p / D

X
j0C���jlDm; ji�1

lD0;1;:::;m�1

.�1/lCmC1˛j0 .˛ C 1/j1 	 	 	 .˛ C l/jl .Rp;pAp;p/
l.Rp;pAp;p � 1/:

(1.22)
(Ap;p is also referred to as ap elsewhere in this paper.)
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Proof To simplify the notation we take p D 1. Note that by (1.17) and the fact that
A D I � .BE.0//

E.Zm
1 / D .�1/m @

m

@sm
1

 
jAj˛

jI � .BE.s//j˛
! ˇ̌
ˇ̌
ˇ
sD0

(1.23)

D .�1/mjI � .BE.0//j˛ @
m

@sm
1

�
1

jI � .BE.s//j˛
	 ˇ̌ˇ̌
ˇ
sD0
:

Hence to prove (1.22) it suffices to show that for any m

@m

@sm
1

�
1

jI � .BE.s//j˛
	 ˇ̌ˇ̌
ˇ
sD0

D
X

j0C���jlDm; ji�1

lD0;1;:::;m�1

.�1/lC1 (1.24)

˛j0 .˛ C 1/j1 	 	 	 .˛ C l/jl
.R1;1A1;1/ l

jI � .BE.0//j˛ .R1;1A1;1 � 1/:

Note that for any � > 0 we have

@

@s1

�
1

jI � .BE.s//j�
	

D � �

jI � .BE.s//j�C1
@

@s1
jI � .BE.s//j: (1.25)

We expand the determinant by the first column. Since b1;1 D 0 we have

jI � .BE.s//j D M1;1 � b2;1e
�s1M2;1 C b3;1e

�s1M3;1 	 	 	 ˙ bn;1e
�s1Mn;1 (1.26)

where Mi;1 are minors of I � .BE.s// and the last sign is plus or minus according
to whether n is odd or even. Note that the terms Mi;1 are not functions of s1.
Using (1.26) we see that

@

@s1
jI � .BE.s//j D b2;1e

�s1M2;1 � b3;1e
�s1M3;1 	 	 	 � bn;1e

�s1Mn;1

D �jI � .BE.s//j C M1;1: (1.27)

Using this we get

@

@s1

�
1

jI � .BE.s//j�
	

D �

jI � .BE.s//j� � �M1;1

jI � .BE.s//j�C1 (1.28)

D � �

jI � .BE.s//j�
�

M1;1

jI � .BE.s//j � 1
	
:
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We now show by induction on m that

@m

@sm
1

�
1

jI � .BE.s//j˛
	

D
X

j0C���jlDm; ji�1

lD0;1;:::;m�1

.�1/lC1 (1.29)

˛j0 .˛ C 1/j1 	 	 	 .˛ C l/jl
M l
1;1

jI � .BE.s//j˛Cl

�
M1;1

jI � .BE.s//j � 1

	
:

It is easy to see that for m D 1 this agrees with (1.28) for � D ˛. Assume that (1.29)
holds for m. We show it holds for m C 1. We take another derivative with respect to
s1. It follows from (1.28) that

@

@s1

 
M l
1;1

jI � .BE.s//j˛Cl

�
M1;1

jI � .BE.s//j � 1

	!
(1.30)

D @

@s1

 
M lC1
1;1

jI � .BE.s//j˛ClC1 � M l
1;1

jI � .BE.s//j˛Cl

!

D � .˛ C l C 1/M lC1
1;1

jI � .BE.s//j˛ClC1

�
M1;1

jI � .BE.s//j � 1

	

C .˛ C l/M l
1;1

jI � .BE.s//j˛Cl

�
M1;1

jI � .BE.s//j � 1

	
:

Let us consider the term corresponding l D k when we take another derivative
with respect to s1. Two sets of terms in (1.29) contribute to this. One set are the terms
in which j0C	 	 	Cjk D m�1, jk � 1which become terms in which j0C	 	 	C.jkC1/ D
m, jk � 1, when

M l
1;1

jI�.BE.s//j˛Cl

�
M1;1

jI�.BE.s//j � 1
�

is replaced by the last line of (1.30).

This almost gives us all we need. We are only lacking j0C	 	 	C jk D m, jk D 1. This
comes from the next to last line of (1.30) multiplying the terms in (1.29) in which
l D k � 1. One can check that the sign of the terms for l D k for m C 1 is different
from the sign of the terms for l D k for m which is what we need. This completes
the proof by induction.

Recall that A D I � .BE.0// and that M1;1 is actually a function of s. Therefore,

g.0/

jI � .BE.0//j D M1;1.0/

jAj D ..A/�1/1;1 D R1;1A1;1; (1.31)

by (1.7). Combining this with (1.29) we get (1.24). ut
Recall that

Rp;p D Rp;pAp;p: (1.32)
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The next lemma gives relationship between the moments of the components of a
permanental random variables X and the components of the corresponding random
variables Z.

Lemma 1.4 For mj � 1, We have

E

0
@ nY

jD1
.ajXj/

mj

1
A D E

0
@ nY

jD1

mj�1Y
lD0

�
˛ C Zj C l

�
1
A : (1.33)

or, equivalently

jR.m/j˛ D E

0
@ nY

jD1

mj�1Y
lD0

�
˛ C Zj C l

�
1
A : (1.34)

Proof Let a1; : : : ; an denote the diagonal elements of A and set Y D
.a1X1; : : : ; anXn/. Then

Y
lawD .�˛CZ1;1; : : : ; �˛CZn ;1/ (1.35)

The left-hand side of (1.33) is E
�Qn

jD1.Yj/
mj

�
. Therefore, by (1.14) it is equal to

E

0
@ nY

jD1
�

mj

˛CZj ;1

1
A D E

0
@ nY

jD1

�.˛ C Zj C mj/

�.˛ C Zj/

1
A ; (1.36)

from which we get (1.33).
It follows from [3, Proposition 4.2] that for any m D .m1; : : : ;mn/

E

0
@ nY

jD1
X

mj

j

1
A D jR.m/j˛: (1.37)

Since jR.m/j˛Qn
jD1 a

mj

j D jR.m/j˛ we get (1.34). ut
One can use the approach of Lemma 1.3 or try to invert (1.33) to find mixed

moments of Zi. Either approach seems difficult. However, it is easy to make a little
progress in this direction.

Lemma 1.5 For all i and j, including i D j,

Cov ZiZj D Cov aiXiajXj D ˛ a1a2Ri;jRj;i: (1.38)
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Proof By Lemma 1.4

E.Zi/C ˛ D ˛aiRi;i (1.39)

and

E.aiajXiXj/ D E..˛ C Zi/.˛ C Zj//: (1.40)

We write

E..˛ C Zi/.˛ C Zj// D ˛2 C ˛E.Zi/C ˛E.Zj/C E.Zi/E.Zj/ (1.41)

D ˛2 C ˛E.Zi/C ˛E.Zj/C Cov.ZiZj/C E.Zi/E.Zj/

D .E.Zi/C ˛/.E.Zj/C ˛/C Cov.ZiZj/

D .˛aiRi;i/.˛ajRj;j/C Cov.ZiZj/;

where we use (1.39) for the last line. Using (1.41) and calculating the left-hand side
of (1.40) we get the equality of the first and third terms in (1.38). To find the equality
of the second and third terms in (1.38) we differentiate the Laplace transform of
.X1;X2/ in (1.1). ut

If m D .0; : : : ;mj; 0; : : : 0/ WD Qm it follows from (1.34) that

jR. Qm/j˛ D E

0
@

mj�1Y
lD0

�
˛ C Zj C l

�
1
A : (1.42)

Note that

jR. Qm/j˛ D R
mj

j;j jEmj j˛ (1.43)

where Emj is an mj � mj matrix with all entries equal to 1. Therefore, by [3,
Proposition 3.6]

jR. Qm/j˛ D R
mj

j;j

mj�1Y
lD0
.˛ C l/: (1.44)

Combining (1.42) and (1.44) we get the following inversion of (1.22):

Lemma 1.6

R
mj

j;j D E

0
@

mj�1Y
lD0

˛ C Zj C l

˛ C l

1
A : (1.45)
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As a simple example of (1.45) or (1.33) we have

˛Ri;i D ˛ C E .Zi/ : (1.46)

Adding this up for i D 1; : : : ; n we get

E .kZk`1 / D ˛

 
nX

iD1
Ri;i � n

!
: (1.47)

In the next section we give some formulas relating the `1 norms of permanental
random variables to the `1 norms of the corresponding random variables Z.

We give an alternate form of Lemma 1.3 in which the proof uses Lemma 1.6.

Lemma 1.7 For any m and 1 � p � n,

E.Zm
p / D

mX
lD0

X
.j0;j1;:::;jl/2Jm.l/

.�1/lCm˛j0 .˛ C 1/j1 	 	 	 .˛ C l/jl.Rp;pAp;p/
l (1.48)

where

Jm.l/ D f.j0; j1; : : : ; jl/ j j0 C 	 	 	 jl D mI ji � 1; i D 0; : : : ; l � 1I jl � 0g: (1.49)

Proof To simplify the notation we take p D 1. It follows from (1.45) that for each m,

E

 
m�1Y
iD0

.˛ C i C Z1/

!
D .R1;1A1;1/

m
m�1Y
iD0

.˛ C i/ : (1.50)

When m D 1 this gives

E .Z1/ D ˛R1;1A1;1 � ˛; (1.51)

which proves (1.48) when m D 1.
Expanding the left hand side of (1.50) gives

mX
kD0

X
U�Œ0;m�1�

jUjDm�k

Y
i2U

.˛ C i/E
�
Zk
1

� D .R1;1A1;1/
m

m�1Y
iD0

.˛ C i/ : (1.52)

We prove (1.48) inductively. We have just seen that when m D 1 (1.52) holds when
E.Z1/ takes the value given in (1.48). Therefore, if we show that (1.52) holds when
m D 2 and E.Z1/ and E.Z21/ take the value given in (1.48), it follows that (1.48)
gives the correct value of E.Z21/ when m D 2. We now assume that we have shown
this up to m � 1 and write out the left-hand side of (1.52), replacing each E.Zk

1/,
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k D 1; : : : ;m by the right-hand side of (1.48). Doing this we obtain terms,
depending on k and U, which, up to their sign, are of the form

I.j1; : : : ; jm�1I l/ D
m�1Y
iD0

.˛ C i/ji .R1;1A1;1/
l; (1.53)

where
Pm�1

iD0 ji D m; 0 � l � m; ji � 1; i D 0; : : : ; l � 1; jl � 0 and 0 � ji � 1; i D
l C 1; : : : ;m � 1.

The terms in (1.53) may come from the term
Q

i2U .˛ C i/ in (1.52) or they may
come from the expression for E

�
Zk
1

�
in (1.48). Suppose that for some i D 0; : : : ; l�1

we have ji > 1 and i 2 U and k D Nk � l. Consider what this term is in (1.53). Note
that we obtain the same term with a change of sign when U is replaced by U � fig
and k D Nk C 1. The same observation holds in reverse. Furthermore, both these
arguments also apply when jl > 0.

Because of all this cancelation, when we add up all the terms which, up to their
sign, are of the form (1.53), and take their signs into consideration we only get non-
zero contributions when all ji D 1; i D 0; : : : ; l � 1 and jl D 0. That is, we only get
non-zero contributions when

lX
iD0

ji D l (1.54)

But recall that we have
Pm�1

iD0 ji D m in (1.53) so for this to hold we must havePm�1
iDlC1 ji D m � l with 0 � ji � 1; i D l C 1; : : : ;m � 1. This is not possible

because there are only m � l � 1 terms in this sum. Therefore we must have l D m
in (1.54), which can also be written as

Pm�1
iD0 ji D m because jl D jm D 0. This

shows that summing all the terms on the left-hand side of (1.52) gives the right hand
side of (1.52). This completes the induction step and establishes (1.48). ut
Example 1.1 It is interesting to have some examples. We have already pointed out
that for any 1 � p � n

E.Zp/ D ˛.Ap;pRp;p � 1/: (1.55)

Using (1.48) we get

E.Z4p/ D 
˛.˛ C 1/.˛ C 2/.˛ C 3/

�
.Ap;pRp;p/

4 (1.56)

�˛2.˛ C 1/.˛ C 2/C ˛.˛ C 1/2.˛ C 2/

C˛.˛ C 1/.˛ C 2/2 C ˛.˛ C 1/.˛ C 2/.˛ C 3/
�
.Ap;pRp;p/

3

C˛2.˛ C 1/.˛ C 2/C ˛.˛ C 1/2.˛ C 2/C ˛.˛ C 1/.˛ C 2/2

C˛3.˛ C 1/C ˛2.˛ C 1/2 C ˛.˛ C 1/3
�
.Ap;pRp;p/

2

�˛3.˛ C 1/C ˛2.˛ C 1/2 C ˛.˛ C 1/3 C ˛4
�
.Ap;pRp;p/C ˛4:
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Using (1.22) we get

E.Z4p/ D 
˛.˛ C 1/.˛ C 2/.˛ C 3/

�
.Ap;pRp;p/

3.Ap;pRp;p � 1/ (1.57)

�˛2.˛ C 1/.˛ C 2/C ˛.˛ C 1/2.˛ C 2/

C˛.˛ C 1/.˛ C 2/2�.Ap;pRp;p/
2.Ap;pRp;p � 1/

C˛3.˛ C 1/C ˛2.˛ C 1/2 C ˛.˛ C 1/3
�
.Ap;pRp;p/.Ap;pRp;p � 1/

�˛4.Ap;pRp;p � 1/:

2 Some Formulas for the `1 Norm of Permanental Random
Variables

We can use (1.14) and properties of independent gamma random variables to obtain
some interesting formulas for functions of permanental random variables. Taking
advantage of the infinitely divisibility of the components of Y, defined in (1.35), we
see that

kYk`1 lawD �˛nCkZk`1 ;1: (2.1)

Note that

P.kZk`1 D j/ D
X

kD.k1;:::;kn/jkjDj

P .Z D .k1; : : : ; kn// ; (2.2)

where jkj D Pn
iD1 ki . The following lemma is an immediate consequence of (2.1):

Lemma 2.1 Let ˆ be a positive real valued function. Then

E.ˆ.kYk`1 // D E.ˆ.�n˛CkZk`1 ;1//: (2.3)

Example 2.1 It follows from (2.3) and (1.13) that for any p > 0,

E.kYkp
1/ D E

�
� .kZk`1 C n˛ C p/

� .kZk`1 C n˛/

	
: (2.4)

Clearly, E.kYk`1 / D Pn
iD1 aiE.Xi/ and E.Xi/ D ˛Ri;i. Therefore, (1.47) follows

from (2.4) with p D 1.

Using these results we get a formula for the expectation of the `2 norm of certain
n-dimensional Gaussian random variables.
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Corollary 2.1 Let � D .�1; : : : ; �n/ be a mean zero Gaussian random variable with
covariance matrix R. Assume that A D R�1 exists and is an M-matrix. Let faign

iD1
denote the diagonal elements of A. Set a1=2� D .a1=21 �1; : : : ; a

1=2
n �n/. Then

���a1=2�p
2

���2
`2

lawD �n=2CkZk`1 ;1 : (2.5)

and

E

����a1=2�p
2

���
2

	
D E

�
� .kZk`1 C .n C 1/=2/

� .kZk`1 C n=2/

	
: (2.6)

Proof The statement in (2.5) is simply (2.1) with Y D .a1=21 �1; : : : ; a
1=2
n �n/ and

˛ D 1=2. The statement in (2.6) is simply (2.4) with p D 1=2. ut

3 Symmetrizing M-Matrices

It follows from [1, p. 135, G20; see also p. 150, E11] that a symmetric M-matrix is
positive definite. Therefore when the M-matrix A is symmetric and ˛ D 1=2, (1.1),
with R D A�1, is the Laplace transform of a vector with components that are
the squares of the components of a Gaussian vector. For this reason we think
of symmetric M-matrices as being special. Therefore, given an M-matrix, we ask
ourselves how does the permanental vector it defines compare with the permanental
vector defined by a symmetrized version of the M-matrix.

When the M-matrix is symmetric and ˛ D 1=2, (1.1), with R D M�1, is
the Laplace transform of a vector with components that are the squares of the
components of a Gaussian vector. For this reason we think of symmetric M-matrices
as being special. Therefore, given an M-matrix, we ask ourselves how does the
permanental vector it defines compare with the permanental vector defined by a
symmetrized version of the M-matrix.

For a positive n � n matrix C with entries fci;jg we define S.C/ to be the n � n
matrix with entries f.ci;jcj;i//

1=2g. When A is an n � n non-singular M-matrix of the
form A D D � B, as in (1.6), we set Asym D D � S.B/. We consider the relationship
of permanental vectors determined by A and Asym, i.e. by R D A�1 and Rsym WD A�1

sym
as in (1.1). In Remark 3.2 we explain how this can be used in the study of sample
path properties of permanental processes.

Lemma 3.1 Let A be a non-singular M-matrix, with diagonal elements faig, i D
1; : : : ; n. Then

jAj � 1: (3.1)

Proof This follows from (1.9) since B.0/ D 1. ut
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The series expansion in (1.8) gives the following relationships between two non-
singular M-matrices A and A0 subject to certain regularity conditions.

Lemma 3.2 Let A and A0 be n � n non singular M-matrices and define A and A
0

as
in (1.7). Assume that B

0 � B. Then

A
0 � A and .A/�1 � .A

0
/�1: (3.2)

Proof The first inequality in (3.2) follows immediately from (1.7).
To obtain the second statement in (3.2) we write A D DA.I � D�1

A B/, so that by
[1, Chap. 7, Theorem 5.2]

A�1DA D .I � B/�1 D
1X

jD0
.B/j and A0�1DA D .I � B

0
/�1 D

1X
jD0
.B

0
/j (3.3)

both converge. Therefore A�1DA � A0�1DA0 which is the same as the second
inequality in (3.2). ut
Lemma 3.3 When A is an n � n non-singular M-matrix, Asym, and Asym are n � n
non-singular M-matrices and

jAsymj � jAj and jAsymj � jAj: (3.4)

Proof We prove this for A and Asym. Given this it is obvious that the lemma also
holds for A and Asym.

It follows from [1, p. 136, H25] that we can find a positive diagonal matrix
E D diag .e1; : : : ; en/ such that

EAE�1 C E�1AtE (3.5)

is strictly positive definite. We use this to show that Asym is strictly positive definite.
We write A D D � B as in (1.6). For any x D .x1; : : : ; xn/, by definition,

nX
i;jD1

.Asym/i;jxixj D
nX

iD1
aix

2
i �

nX
i;jD1

.bi;jbj;i/
1=2xixj (3.6)

�
nX

iD1
aix

2
i �

nX
i;jD1

.bi;jbj;i/
1=2jxij jxjj

D
nX

iD1
aix

2
i �

nX
i;jD1

.eibi;je
�1
j ejbj;ie

�1
i /1=2jxij jxjj;

where, the first equality uses the facts that B � 0 and has bi;i D 0, 1 � i � n.
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Using the inequality between the geometric mean and arithmetic mean of
numbers we see that the last line of (3.6)

�
nX

iD1
aix

2
i � 1

2

nX
i;jD1

.eibi;je
�1
j C ejbj;ie

�1
i /jxij jxjj (3.7)

D
nX

iD1
aix

2
i � 1

2

nX
i;jD1

.eibi;je
�1
j C e�1

i bt
i;jej/jxij jxjj

D 1

2

nX
i;jD1

..EAE�1/i;j C .E�1AtE/i;j/jxij jxjj > 0;

by (3.5). Therefore Asym is strictly positive definite and by definition, Asym has non-
positive off diagonal elements. Since the eigenvalues of Asym are real and strictly
positive we see by [1, p. 135, G20] that Asym is a non-singular M-matrix.

To get (3.4) we note that by (1.9)

jAj˛
X

kD.k1;:::;kn/

jB.k/j˛Qn
iD1 ak

i kiŠ
D jAsymj˛

X
kD.k1;:::;kn/

jS.B/.k/j˛Qn
iD1 ak

i kiŠ
: (3.8)

Using (3.9) in the next lemma, we get (3.4). ut
Lemma 3.4 Let C be a positive n � n matrix. Then

jS.C/j˛ � jCj˛ and jS.C/.k/j˛ � jC.k/j˛: (3.9)

Proof Consider two terms on the right-hand side of (1.2) for jCj˛ ,

˛c.�/c1;�.1/c2;�.2/ 	 	 	 cn;�.n/ (3.10)

and

˛c.��1/c1;��1.1/c2;��1.2/ 	 	 	 cn;��1.n/ D ˛c.�/c�.1/;1c�.2/;2 	 	 	 c�.n/;n (3.11)

The sum of these terms is

˛c.�/
�
c1;�.1/c2;�.2/ 	 	 	 cn;�.n/ C c�.1/;1c�.2/;2 	 	 	 c�.n/;n

�
: (3.12)

The corresponding sum of these terms for jS.C/j˛ is

˛c.�/2.c1;�.1/c2;�.1/ 	 	 	 cn;�.n/c�.1/;1c�.2/;2 	 	 	 c�.n/;n/
1=2: (3.13)

Considering the inequality between the geometric mean and arithmetic mean of
numbers we see that the term in (3.12) is greater than or equal to the term in (3.13).
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The same inequality holds for all the other terms on the right-hand side of (1.2).
Therefore we have the first inequality in (3.9). A similar analysis gives the second
inequality. ut
Theorem 3.1 Let X and QX be permanental vectors determined by A and Asym and f
be a positive function on Rn. Then

E. f .X// � jAj˛
jAsymj˛ E. f . QX//: (3.14)

Proof Using Lemma 3.4 and (1.14) we have

E. f .X// (3.15)

D jAj
X

kD.k1;:::;kn/

jB.k/j˛Qn
iD1 kiŠ

E . f .�˛Ck1;a1 ; : : : ; �˛Ckn ;an//

� jAj
X

kD.k1;:::;kn/

jBsym.k/j˛Qn
iD1 kiŠ

E . f .�˛Ck1;a1 ; : : : ; �˛Ckn;an//

D jAj˛
jAsymj˛ E. f . QX//:

ut
This leads to an interesting two sided inequality.

Corollary 3.1 Let X and QX be permanental vectors determined by A and Asym. Then
for all functions g of X and QX and sets B in the range of g

jAj˛
jAsymj˛ P

�
g. QX/ 2 B

� � P .g.X/ 2 B/ (3.16)

�
�
1 � jAj˛

jAsymj˛
	

C jAj˛
jAsymj˛ P

�
g. QX/ 2 B

�
:

Proof The first inequality follows by taking f .X/ D Ig.X/2B. 	 / in (3.14) and,
similarly, the second inequality follows by taking f .X/ D Ig.X/2Bc. 	 / in (3.14). ut
Corollary 3.2 Under the hypotheses of Corollary 3.1

P .g.X/ 2 B/ D 1 H) P
�
g. QX/ 2 B

� D 1: (3.17)

Proof It follows from the first inequality in (3.16) that

P .g.X/ 2 Bc/ D 0 H) P
�
g. QX/ 2 Bc

� D 0: (3.18)
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We get (3.17) by taking complements. ut
Remark 3.1 A useful application of Corollaries 3.1 and 3.2 is to take g.X/ D kXk1.

Remark 3.2 When fR.s; t/; s; t 2 Sg is the potential density of a transient Markov
process with state space S, for all .s1; : : : ; sn/ in S, the matrix fR.si; sj/gn

i;jD1
is invertible and its inverse A.s1; : : : ; sn/ is a non-singular M-matrix. For all
.s1; : : : ; sn/ in S consider Asym.s1; : : : ; sn/. If

inf8t1;:::;tn ;8n

jA.t1; : : : ; tn/j
jAsym.t1; : : : ; tn/j > 0 (3.19)

it follows from Corollary 3.1 that supt2T Xt < 1 almost surely if and only if
supt2T

QXt < 1 almost surely. Here we also use the fact that these are tail events.
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Abstract Consider a sequence of polynomials of bounded degree evaluated in
independent Gaussian, Gamma or Beta random variables. We show that, if this
sequence converges in law to a nonconstant distribution, then (1) the limit distribu-
tion is necessarily absolutely continuous with respect to the Lebesgue measure and
(2) the convergence automatically takes place in the total variation topology. Our
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1 Introduction and Main Results

The Fortet-Mourier distance between (laws of) random variables, defined as

dFM.F;G/ D sup
khk

1

�1
kh0k

1

�1

ˇ̌
EŒh.F/�� EŒh.G/�

ˇ̌
(1.1)

is well-known to metrize the convergence in law, see, e.g., [5, Theorem 11.3.3]. In

other words, one has that Fn
law! F1 if and only if dFM.Fn;F1/ ! 0 as n ! 1. But

there is plenty of other distances that allows one to measure the proximity between
laws of random variables. For instance, one may use the Kolmogorov distance:

dKol.F;G/ D sup
x2R

ˇ̌
P.F � x/� P.G � x/

ˇ̌
:

Of course, if dKol.Fn;F1/ ! 0 then Fn
law! F1. But the converse implication

is wrong in general, meaning that the Kolmogorov distance does not metrize the
convergence in law. Nevertheless, it becomes true when the target law is continuous
(that is, when the law of F1 has a density with respect to the Lebesgue measure),
a fact which can be easily checked by using (for instance) Dini’s second theorem.
Yet another popular distance for measuring the distance between laws of random
variables, which is even stronger than the Kolmogorov distance, is the total variation
distance:

dTV.F;G/ D sup
A2B.R/

ˇ̌
P.F 2 A/� P.G 2 A/

ˇ̌
: (1.2)

One may prove that

dTV.F;G/ D 1

2
sup

khk
1

�1

ˇ̌
EŒh.F/�� EŒh.G/�

ˇ̌
; (1.3)

or, whenever F and G both have a density (noted f and g respectively)

dTV.F;G/ D 1

2

Z
R

j f .x/� g.x/jdx:

Unlike the Fortet-Mourier or Kolmogorov distances, it can happen that Fn
law!

F1 for continuous Fn and F1 without having that dTV.Fn;F1/ ! 0. For an
explicit counterexample, one may consider Fn � 2

�
cos2.nx/1Œ0;��.x/dx; indeed, it

is immediate to check that Fn
law! F1 � UŒ0;�� but dTV.Fn;F1/ 6! 0 (it is indeed a

strictly positive quantity that does not depend on n).
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As we just saw, the convergence in total variation is very strong and therefore it
cannot be expected from the mere convergence in law without further assumptions.
For instance, in our case, it is crucial that the random variables under consideration
are in the domain of suitable differential operators. Let us give three representative
results in this direction. Firstly, there is a celebrated theorem of Ibragimov (see, e.g.,
Reiss [10]) according to which, if Fn;F1 are continuous random variables with

densities fn,f1 that are unimodal, then Fn
law! F1 if and only if dTV.Fn;F1/ ! 0.

Secondly, let us quote the paper [11], in which necessary and sufficient conditions
are given (in term of the absolute continuity of the laws) so that the classical
Central Limit Theorem holds in total variation. Finally, let us mention [1] or [6]
for conditions ensuring the convergence in total variation for random variables in
Sobolev or Dirichlet spaces. Although all the above examples are related to very
different frameworks, they have in common the use of a particular structure of
the involved variables; loosely speaking, this structure allows to derive a kind of
“non-degeneracy” in an appropriate sense which, in turn, enables to reinforce the
convergence, from the Fortet-Mourier distance to the total variation one.

Our goal in this short note is to exhibit another instance where convergence in law
and in total variation are equivalent. More precisely, we shall prove the following
result, which may be seen as an extension to the Gamma and Beta cases of our
previous results in [9].

Theorem 1.0.1 Assume that one of the following three conditions is satisfied:

(1) X � N.0; 1/;
(2) X � �.r; 1/ with r � 1;
(3) X � ˇ.a; b/ with a; b � 1.

Let X1;X2; : : : be independent copies of X. Fix an integer d � 1 and, for each n, let
mn be a positive integer and let Qn 2 RŒx1; : : : ; xmn � be a multilinear polynomial of
degree at most d; assume further that mn ! 1 as n ! 1. Finally, suppose that Fn

has the form

Fn D Qn.X1; : : : ;Xmn/; n � 1;

and that it converges in law as n ! 1 to a non-constant random variable F1.
Then the law of F1 is absolutely continuous with respect to the Lebesgue measure
and Fn actually converges to F1 in total variation.

In the statement of Theorem 1.0.1, by ‘multilinear polynomial of degree at most
d’ we mean a polynomial Q 2 RŒx1; : : : ; xm� of the form

Q.x1; : : : ; xm/ D
X

S
f1;:::;mg; jSj�d

aS

Y
i2S

xi;

for some real coefficients aS and with the usual convention that
Q

i2; xi D 1.
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Before providing the proof of Theorem 1.0.1, let us comment a little bit about
why we are ‘only’ considering the three cases (1), (2) and (3). This is actually due
to our method of proof. Indeed, the two main ingredients we are using for showing
Theorem 1.0.1 are the following.

(a) We will make use of a Markov semigroup approach. More specifically, our strat-
egy relies on the use of orthogonal polynomials, which are also eigenvectors
of diffusion operators. In dimension 1, up to affine transformations only the
Hermite (case (1)), Laguerre (case (2)) and Jacobi (case (3)) polynomials are of
this form, see [7].

(b) We will make use of the Carbery–Wright inequality (Theorem 2.1). The main
assumption for this inequality to hold is the log-concavity property. This impose
some further (weak) restrictions on the parameters in the cases (2) and (3).

The rest of the paper is organized as follows. In Sect. 2, we gather some useful
preliminary results. Theorem 1.0.1 is shown in Sect. 3.

2 Preliminaries

From now on, we shall write m instead of mn for the sake of simplicity.

2.1 Markov Semigroup

In this section, we introduce the framework we will need to prove Theorem 1.0.1.
We refer the reader to [2] for the details and missing proofs. Fix an integer m and let
� denote the distribution of the random vector .X1; : : : ;Xm/, with X1; : : : ;Xm being
independent copies of X, for X satisfying either (1), (2) or (3). In these three cases,
there exists a reversible Markov process on R

m, with semigroup Pt, equilibrium
measure � and generator L. The operator L is selfadjoint and negative semidefinite.
We define the Dirichlet form E associated to L and acting on some domain D.L/
such that, for any f ; g 2 D.L/,

E. f ; g/ D �
Z

fLgd� D �
Z

gLfd�:

When f D g, we simply write E. f / instead of E. f ; f /. The carré du champ operator
� will be also of interest; it is the operator defined as

�. f ; g/ D 1

2

�
L. fg/� fLg � gLf

�
:
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Similarly to E , when f D g we simply write �. f / instead of �. f ; f /. SinceR
Lf d� D 0, we observe the following link between the Dirichlet form E and

the carré du champ operator �:

Z
�. f ; g/d� D E. f ; g/:

An important property which is satisfied in the three cases .1/, .2/ and .3/ is that �
is diffusive in the following sense:

�.	. f /; g/ D 	0. f /�. f ; g/: (2.1)

Besides, and it is another important property shared by .1/, .2/, .3/, the eigenvalues
of �L may be ordered as a countable sequence like 0 D 
0 < 
1 < 
2 < 	 	 	 ,
with a corresponding sequence of orthonormal eigenfunctions u0, u1, u2, 	 	 	 where
u0 D 1; in addition, this sequence of eigenfunctions forms a complete orthogonal
basis of L2.�/. For completeness, let us give more details in each of our three cases
(1), (2), (3).

(1) The case where X � N.0; 1/. We have

Lf .x/ D �f .x/ � x 	 rf .x/; x 2 R
m; (2.2)

where � is the Laplacian operator and r is the gradient. As a result,

�. f ; g/ D rf 	 rg: (2.3)

We can compute that Sp.�L/ D N and that Ker.L C k I/ (with I the identity
operator) is composed of those polynomials R.x1; : : : ; xm/ having the form

R.x1; : : : ; xm/

D
X

i1Ci2C���CimDk

˛.i1; 	 	 	 ; im/
mY

jD1
Hij.xj/:

Here, Hi stands for the Hermite polynomial of degree i.
(2) The case where X � �.r; 1/. The density of X is fX.t/ D tr�1 e�t

�.r/ , t � 0, with
� the Euler Gamma function; it is log-concave for r � 1. Besides, we have

Lf .x/ D
mX

iD1

�
xi@iif C .r C 1 � xi/@if

�
; x 2 R

m: (2.4)
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As a result,

�. f ; g/.x/ D
mX

iD1
xi@if .x/@ig.x/; x 2 R

m: (2.5)

We can compute that Sp.�L/ D N and that Ker.L C k I/ is composed of those
polynomial functions R.x1; : : : ; xm/ having the form

R.x1; : : : ; xm/ D
X

i1Ci2C���CimDk

˛.i1; 	 	 	 ; im/
mY

jD1
Lij .xj/:

Here Li.X/ stands for the ith Laguerre polynomial of parameter r defined as

Li.x/ D x�rex

iŠ

di

dxi

˚
e�xxiCr

�
; x 2 R:

(3) The case where X � ˇ.a; b/. In this case, X is continuous with density

fX.t/ D

8̂
<
:̂

ta�1.1 � t/b�1
R 1
0

ua�1.1 � u/b�1 du
if t 2 Œ0; 1�

0 otherwise

:

The density fX is log-concave when a; b � 1. Moreover, we have

Lf .x/ D
mX

iD1

�
.1 � x2i /@iif C .b � a � .b C a/xi/@if

�
; x 2 R

m: (2.6)

As a result,

�. f ; g/.x/ D
mX

iD1
.1 � x2i /@if .x/@ig.x/; x 2 R

m: (2.7)

Here, the structure of the spectrum turns out to be a little bit more complicated
than in the two previous cases (1) and (2). Indeed, we have that

Sp.�L/

D fi1.i1 C a C b � 1/C 	 	 	 C im.im C a C b � 1/ j i1; : : : ; im 2 Ng:



Convergence in Law Implies Convergence in Total Variation for Polynomials. . . 387

Note in particular that the first nonzero element of Sp.�L/ is 
1 D aCb�1 > 0.
Also, one can compute that, when 
 2 Sp.�L/, then Ker.LC
 I/ is composed
of those polynomial functions R.x1; : : : ; xm/ having the form

R.x1; : : : ; xm/

D
X

i1.i1CaCb�1/C���Cim.imCaCb�1/D

˛.i1; 	 	 	 ; inm/Ji1 .x1/ 	 	 	 Jim.xm/:

Here Ji.X/ is the ith Jacobi polynomial defined, for x 2 R, as

Ji.x/ D .�1/i
2iiŠ

.1 � x/1�a.1C x/1�b di

dxi

˚
.1 � x/a�1.1C x/b�1.1 � x2/i

�
:

To end up with this quick summary, we stress that a Poincaré inequality holds true
in the three cases (1), (2) and (3). This is well-known and easy to prove, by using
the previous facts together with the decomposition

L2.�/ D
M


2Sp.�L/
Ker.L C 
 I/:

Namely, with 
1 > 0 the first nonzero eigenvalue of �L, we have

Var�. f / � 1


1
E. f /: (2.8)

2.2 Carbery–Wright Inequality

The proof of Theorem 1.0.1 will rely, among others, on the following crucial
inequality due to Carbery and Wright [4, Theorem 8]. We state it here for
convenience.

Theorem 2.1 (Carbery–Wright) There exists an absolute constant c > 0 such
that, if Q W Rm ! R is a polynomial of degree at most k and � is a log-concave
probability measure on R

m then, for all ˛ > 0,

�Z
Q2d�

	 1
2k

� �fx 2 R
m W jQ.x/j � ˛g � c k ˛

1
k : (2.9)
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2.3 Absolute Continuity

There is a celebrated result of Borell [3] according to which, if X1, X2, . . . are
independent, identically distributed and X1 has an absolute continuous law, then
any nonconstant polynomial in the Xi’s has an absolute continuous law, too.
In the particular case where the common law satisfies either (1), (2) or (3) in
Theorem 1.0.1, one can recover Borell’s theorem as a consequence of the Carbery–
Wright inequality. We provide the proof of this fact here, since it may be seen as a
first step towards the proof of Theorem 1.0.1.

Proposition 2.1.1 Assume that one of the three conditions (1), (2) or (3) of
Theorem 1.0.1 is satisfied. Let X1;X2; : : : be independent copies of X. Consider two
integers m; d � 1 and let Q 2 RŒx1; : : : ; xm� be a polynomial of degree d. Then the
law of Q.X1; : : : ;Xm/ is absolutely continuous with respect to the Lebesgue measure
if and only if its variance is not zero.

Proof Write � for the distribution of .X1; : : : ;Xm/ and assume that the variance of
Q.X1; : : : ;Xm// is strictly positive. We shall prove that, if A is a Borel set of R with
Lebesgue measure zero, then P.Q.X1; : : : ;Xm/ 2 A/ D 0. This will be done in three
steps.

Step 1. Let " > 0 and let B be a bounded Borel set. We shall prove that

Z
1fQ2Bg

�.Q/

"C �.Q/
d� (2.10)

D
Z �Z Q

�1
1B.u/du �


 �LQ

�.Q/C "
C �.Q; �.Q//

.�.Q/C "/2

�	
d�:

Indeed, let h W R ! Œ0; 1� be C1 with compact support. We can write, using
among other (2.1),

Z �Z Q

�1
h.u/du � �LQ

�.Q/C "

	
d� D E

�Z Q

�1
h.u/du � 1

�.Q/C "
;Q

	

D
Z �

h.Q/
�.Q/

�.Q/C "
�
Z Q

�1
h.u/du

�.Q; �.Q//

.�.Q/C "/2

	
d�:

Applying Lusin’s theorem allows one, by dominated convergence, to pass from
h to 1B in the previous identity; this leads to the desired conclusion (2.10).
Step 2. Let us apply (2.10) to B D A \ Œ�n; n�. Since

R �
�1 1B.u/du is zero almost

everywhere, one deduces that, for all " > 0 and all n 2 N
�,

Z
1fQ2A\Œ�n;n�g

�.Q/

"C �.Q/
d� D 0:
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By monotone convergence .n ! 1/ it comes that, for all " > 0,

Z
1fQ2Ag

�.Q/

"C �.Q/
d� D 0: (2.11)

Step 3. Observe that �.Q/ is a polynomial of degree at most 2d, see
indeed (2.3), (2.5) or (2.7). We deduce from the Carbery–Wright inequality (2.9),
together with the Poincaré inequality (2.8), that �.Q/ is strictly positive almost
everywhere. Thus, by dominated convergence ." ! 0/ in (2.11) we finally get
that �fQ 2 Ag D P.Q.X1; : : : ;Xm/ 2 A/ D 0.

ut

3 Proof of Theorem 1.0.1

We are now in a position to show Theorem 1.0.1. We will split its proof in several
steps.

Step 1. For any p 2 Œ1;1/ we shall prove that

sup
n

Z
jQnjpd�m < 1: (3.1)

(Let us recall our convention about m from the beginning of Sect. 2.) Indeed,
using (for instance) Propositions 3.11, 3.12 and 3.16 of [8] (namely, a hypercon-
tractivity property), one first observes that, for any p 2 Œ2;1/, there exists a
constant cp > 0 such that, for all n,

Z
jQnjpd�m � cp

�Z
Q2

nd�m

	p=2

: (3.2)

(This is for obtaining (3.2) that we need Qn to be multilinear.) On the other hand,
one can write

Z
Q2

nd�m

D
Z

Q2
n 1fQ2n� 1

2

R
Q2nd�mgd�m C

Z
Q2

n 1fQ2n<
1
2

R
Q2nd�mgd�m

�
sZ

Q4
nd�m

s
�m



x W Qn.x/2 � 1

2

Z
Q2

nd�m

�
C 1

2

Z
Q2

nd�m;
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so that, using (3.2) with p D 4,

�m



x W Qn.x/

2 � 1

2

Z
Q2

nd�m

�
�
�R

Q2
nd�m

�2
4
R

Q4
nd�m

� 1

4c4
:

But fQngn�1 is tight as fFngn�1 converges in law. As a result, there exists M > 0

such that, for all n,

�m
˚
x W Qn.x/

2 � M
�
<

1

4c4
:

We deduce that
R

Q2
nd�m � 2M which, together with (3.2), leads to the

claim (3.1).
Step 2. We shall prove the existence of a constant c > 0 such that, for any u > 0
and any n 2 N

�,

�m fx W �.Qn/ � ug � c
u
1
2d

Var�m.Qn/
1
2d

: (3.3)

Observe first that �.Qn/ is a polynomial of degree at most 2d, see
indeed (2.3), (2.5) or (2.7). On the other hand, since X has a log-concave
density, the probability �m is absolutely continuous with a log-concave density
as well. As a consequence, Carbery–Wright inequality (2.9) applies and yields
the existence of a constant c > 0 such that

�m fx W �.Qn/ � ug � c u
1
2d

�Z
�.Qn/d�m

	� 1
2d

:

To get the claim (3.3), it remains one to apply the Poincaré inequality (2.8).
Step 3. We shall prove the existence of n0 2 N

� and � > 0 such that, for any
" > 0,

sup
n�n0

Z
"

�.Qn/C "
d�m � � "

1
2dC1 : (3.4)

Indeed, thanks to the result shown in Step 2 one can write

Z
"

�.Qn/C "
d�m � "

u
C �m fx W �.Qn/ � ug

� "

u
C c

u
1
2d

Var�m.Qn/
1
2d

:
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But, by Step 1 and since �m ı Q�1
n converges to some probability measure �,

one has that Var�m.Qn/ converges to the variance of � as n ! 1. Moreover this
variance is strictly positive by assumption. We deduce the existence of n0 2 N

�
and ı > 0 such that

sup
n�n0

Z
"

�.Qn/C "
d�m � "

u
C ı u

1
2d :

Choosing u D "
2d

2dC1 leads to the desired conclusion (3.4).
Step 4. Let m0 be shorthand for mn0 and recall the Fortet-Mourier distance (1.1)
as well as the total variation distance (1.3) from the Introduction. We shall prove
that, for any n; n0 � n0 (with n0 and � given by Step 3), any 0 < ˛ � 1 and any
" > 0,

dTV.Fn;Fn0/ � 1

˛
dFM.Fn;Fn0/C 4� "

1
2dC1 (3.5)

C2
r
2

�

˛

"2
sup
n�n0

�Z
�.Qn; �.Qn//d�m C

Z ˇ̌
LQn

ˇ̌
d�m

	
:

Indeed, set p˛.x/ D 1

˛
p
2�

e� x2

2˛2 , x 2 R, 0 < ˛ � 1, and let g 2 C1
c be bounded

by 1. It is immediately checked that

kg � p˛k1 � 1 � 1

˛
and k.g � p˛/

0k1 � 1

˛
: (3.6)

Let n; n0 � n0 be given integers. Using Step 3 and (3.6) we can write

ˇ̌
ˇ̌
Z

g d.�m ı Q�1
n / �

Z
g d.�m0 ı Q�1

n0

/

ˇ̌
ˇ̌

D
ˇ̌
ˇ̌Z g ı Qn d�m �

Z
g ı Qn0 d�m0

ˇ̌
ˇ̌

�
ˇ̌
ˇ̌Z .g � p˛/ ı Qnd�m �

Z
.g � p˛/ ı Qn0d�m0

ˇ̌
ˇ̌

C
ˇ̌
ˇ̌Z .g � g � p˛/ ı Qn �

�
�.Qn/

�.Qn/C "
C "

�.Qn/C "

	
d�m

ˇ̌
ˇ̌

C
ˇ̌
ˇ̌Z .g � g � p˛/ ı Qn0 �

�
�.Qn0/

�.Qn0/C "
C "

�.Qn0/C "

	
d�m0

ˇ̌
ˇ̌

� 1

˛
dFM.Fn;Fn0/C 2

Z
"

�.Qn/C "
d�m C 2

Z
"

�.Qn0/C "
d�m0
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C
ˇ̌
ˇ̌
Z
.g � g � p˛/ ı Qn � �.Qn/

�.Qn/C "
d�m

ˇ̌
ˇ̌

C
ˇ̌
ˇ̌Z .g � g � p˛/ ı Qn0 � �.Qn0/

�.Qn0/C "
d�m0

ˇ̌
ˇ̌

� 1

˛
dFM.Fn;Fn0/C 4� "

1
2dC1

C2 sup
n�n0

ˇ̌
ˇ̌
Z
.g � g � p˛/ ı Qn � �.Qn/

�.Qn/C "
d�m

ˇ̌
ˇ̌ :

Now, set ‰.x/ D R x
�1 g.s/ds and let us apply (2.1). We obtain

ˇ̌
ˇ̌Z .g � g � p˛/ ı Qn � �.Qn/

�.Qn/C "
d�m

ˇ̌
ˇ̌

D
ˇ̌
ˇ̌Z 1

�.Qn/C "
�
�
.‰ �‰ � p˛/ ı Qn;Qn

�
d�m

ˇ̌
ˇ̌

D
ˇ̌
ˇ̌Z .‰ �‰ � p˛/ ı Qn �

�
�
�
Qn;

1

�.Qn/C "

�C LQn

�.Qn/C "

	
d�m

ˇ̌
ˇ̌

D
ˇ̌
ˇ̌Z .‰ �‰ � p˛/ ı Qn �

�
��.Qn; �.Qn//

.�.Qn/C "/2
C LQn

�.Qn/C "

	
d�m

ˇ̌
ˇ̌

� 1

"2

Z
j.‰ �‰ � p˛/ ı Qnj � ��.Qn; �.Qn//C ˇ̌

LQn

ˇ̌�
d�m: (3.7)

On the other hand,

j‰.x/ �‰ � p˛.x/j D
ˇ̌
ˇ̌Z

R

p˛.y/

�Z x

�1
.g.u/� g.u � y// du

	
dy

ˇ̌
ˇ̌

�
Z
R

p˛.y/

ˇ̌
ˇ̌Z x

�1
g.u/du �

Z x

�1
g.u � y/du

ˇ̌
ˇ̌dy

�
Z
R

p˛.y/

ˇ̌
ˇ̌Z x

x�y
g.u/du

ˇ̌
ˇ̌dy �

Z
R

p˛.y/ jyj dy �
r
2

�
˛;

(3.8)

so the desired conclusion (3.5) now follows easily.
Step 5. We shall prove that

sup
n�n0

�Z
�.Qn; �.Qn//d�m C

Z ˇ̌
LQn

ˇ̌
d�m

	
< 1: (3.9)
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First, relying on the results of Sect. 2.1 we have that

Qn 2
M
˛�
2d

Ker.L C ˛I/:

Since L is a bounded operator on the space
L

˛�
2d
Ker.L C ˛I/ and Qn is

bounded in L2.�m/, we deduce immediately that supn

R
L.Qn/

2d�m < 1,
implying in turn that

sup
n

Z
jL.Qn/jd�m < 1:

Besides, one has � D 1
2
.LC 2
I/ on Ker.LC
I/ and one deduces for the same

reason as above that

sup
n

Z
�.Qn; �.Qn//d�m < 1:

The proof of (3.9) is complete.
Step 6: Conclusion. The Fortet-Mourier distance dFM metrizing the convergence
in distribution, our assumption ensures that dFM.Fn;Fn0/ ! 0 as n; n0 ! 1.
Therefore, combining (3.9) with (3.5), letting n; n0 ! 1, then ˛ ! 0 and
then " ! 0, we conclude that limn;n0!1 dTV.Fn;Fn0/ D 0, meaning that Fn

is a Cauchy sequence in the total variation topology. But the space of bounded
measures is complete for the total variation distance, so the distribution of Fn

must converge to some distribution, say �, in the total variation distance. Of
course, � must coincide with the law of F1. Moreover, let A be a Borel set
of Lebesgue measure zero. By Proposition 2.1.1, we have P.Fn 2 A/ D 0

when n is large enough. Since dTV.Fn;F1/ ! 0 as n ! 1, we deduce that
P.F1 2 A/ D 0 as well, thus proving that the law of F1 is absolutely continuous
with respect to the Lebesgue measure by the Radon-Nikodym theorem. The proof
of Theorem 1.0.1 is now complete. ut

Acknowledgements We thank an anonymous referee for his/her careful reading, and for suggest-
ing several improvements.
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Part IV
High Dimensional Statistics



Perturbation of Linear Forms of Singular
Vectors Under Gaussian Noise

Vladimir Koltchinskii and Dong Xia

Abstract Let A 2 R
m�n be a matrix of rank r with singular value decomposition

(SVD) A D Pr
kD1 �k.uk ˝ vk/; where f�k; k D 1; : : : ; rg are singular values of

A (arranged in a non-increasing order) and uk 2 R
m; vk 2 R

n; k D 1; : : : ; r are the
corresponding left and right orthonormal singular vectors. Let QA D ACX be a noisy
observation of A; where X 2 R

m�n is a random matrix with i.i.d. Gaussian entries,
Xij � N .0; �2/; and consider its SVD QA D Pm^n

kD1 Q�k.Quk ˝ Qvk/ with singular values
Q�1 � : : : � Q�m^n and singular vectors Quk; Qvk; k D 1; : : : ;m ^ n:

The goal of this paper is to develop sharp concentration bounds for linear forms
hQuk; xi; x 2 R

m and h Qvk; yi; y 2 R
n of the perturbed (empirical) singular vectors in

the case when the singular values of A are distinct and, more generally, concentration
bounds for bilinear forms of projection operators associated with SVD. In particular,

the results imply upper bounds of the order O

�q
log.mCn/

m_n

	
(holding with a high

probability) on

max
1�i�m

ˇ̌˝Quk �
p
1C bkuk; e

m
i

˛ˇ̌
and max

1�j�n

ˇ̌˝ Qvk �
p
1C bkvk; e

n
j

˛ˇ̌
;

where bk are properly chosen constants characterizing the bias of empirical singular
vectors Quk; Qvk and fem

i ; i D 1; : : : ;mg; fen
j ; j D 1; : : : ; ng are the canonical bases of

R
m;Rn; respectively.
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1 Introduction and Main Results

Analysis of perturbations of singular vectors of matrices under a random noise
is of importance in a variety of areas including, for instance, digital signal
processing, numerical linear algebra and spectral based methods of community
detection in large networks (see [2–5, 7, 8, 10, 12] and references therein). Recently,
random perturbations of singular vectors have been studied in Vu [14], Wang [16],
O’Rourke et al. [9], Benaych-Georges and Nadakuditi [1]. However, up to our
best knowledge, this paper proposes first sharp results concerning concentration of
the components of singular vectors of randomly perturbed matrices. At the same
time, there has been interest in the recent literature in so called “delocalization”
properties of eigenvectors of random matrices, see Vu and Wang [15], Rudelson
and Vershynin [11] and references therein. In this case, the “information matrix”
A is equal to zero, QA D X and, under certain regularity conditions, it is proved
that the magnitudes of the components for the eigenvectors of X (in the case of
symmetric square matrix) are of the order O

� log.n/p
n

�
with a high probability. This

is somewhat similar to the results on “componentwise concentration” of singular
vectors of QA D A C X proved in this paper, but the analysis in the case when A ¤ 0

is quite different (it relies on perturbation theory and on the condition that the gaps
between the singular values are sufficiently large).

Later in this section, we provide a formal description of the problem studied
in the current paper. Before this, we introduce the notations that will be used
throughout the paper. For nonnegative K1;K2, the notation K1 . K2 (equivalently,
K2 & K1) means that there exists an absolute constant C > 0 such that K1 �
CK2I K1 � K2 is equivalent to K1 . K2 and K2 . K1 simultaneously. In the case
when the constant C might depend on �; we provide these symbols with subscript
� W say, K1 .� K2: There will be many constants involved in the arguments that may
evolve from line to line.

In what follows, h	; 	i denotes the inner product of finite-dimensional Euclidean
spaces. For N � 1; eN

j ; j D 1; : : : ;N denotes the canonical basis of the space RN : If

P is the orthogonal projector onto a subspace L � R
N ; then P? denotes the projector

onto the orthogonal complement L?: With a minor abuse of notation, k 	 k denotes
both the l2-norm of vectors in finite-dimensional spaces and the operator norm of
matrices (i.e., their largest singular value). The Hilbert-Schmidt norm of matrices is
denoted by k 	 k2. Finally, k 	 k1 is adopted for the l1-norm of vectors.

In what follows, A0 2 R
n�m denotes the transpose of a matrix A 2 R

m�n: The
following mappingƒ W Rm�n 7! R

.mCn/�.mCn/ will be frequently used:

ƒ.A/ WD
�
0 A
A0 0

�
;A 2 R

m�n:

Note that the image ƒ.A/ is a symmetric .m C n/ � .m C n/ matrix.
Vectors u 2 R

m; v 2 R
n; etc. will be viewed as column vectors (or m � 1; n � 1;

etc. matrices). For u 2 R
m; v 2 R

n; denote by u ˝v the matrix uv0 2 R
m�n: In other
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words, u ˝ v can be viewed as a linear transformation from R
n into R

m defined as
follows: .u ˝ v/x D uhv; xi; x 2 R

n:

Let A 2 R
m�n be an m � n matrix and let

A D
m^nX
iD1

�i.ui ˝ vi/

be its singular value decomposition (SVD) with singular values �1 � : : : � �m^n �
0; orthonormal left singular vectors u1; : : : ; um^n 2 R

m and orthonormal right
singular vectors v1; : : : ; vm^n 2 R

n: If A is of rank rank.A/ D r � m ^ n; then
�i D 0; i > r and the SVD can be written as A D Pr

iD1 �i.ui ˝ vi/: Note that
in the case when there are repeated singular values �i; the singular vectors are not
unique. In this case, let �1 > : : : �d > 0 with d � r be distinct singular values of
A arranged in decreasing order and denote �k WD fi W �i D �kg; k D 1; : : : ; d: Let
�k WD card.�k/ be the multiplicity of �k; k D 1; : : : ; d: Denote

Puv
k WD

X
i2�k

.ui ˝ vi/; Pvu
k WD

X
i2�k

.vi ˝ ui/;

Puu
k WD

X
i2�k

.ui ˝ ui/; Pvvk WD
X
i2�k

.vi ˝ vi/:

It is straightforward to check that the following relationships hold:

.Puu
k /

0 D Puu
k ; .P

uu
k /

2 D Puu
k ; Pvu

k D .Puv
k /

0; Puv
k Pvu

k D Puu
k : (1.1)

This implies, in particular, that the operators Puu
k ;P

vv
k are orthogonal projectors (in

the spaces Rm;Rn; respectively). It is also easy to check that

Puu
k Puu

k0

D 0; Pvvk Pvvk0

D 0; Pvu
k Puv

k0

D 0; Puv
k Pvu

k0

D 0; k ¤ k0: (1.2)

The SVD of matrix A can be rewritten as A D Pd
kD1 �kPuv

k and it can be shown
that the operators Puv

k ; k D 1; : : : ; d are uniquely defined. Let

B D ƒ.A/ D
�
0 A
A0 0

�
D

dX
kD1

�k

�
0 Puv

k

Pvu
k 0

�
:

For k D 1; : : : ; d; denote

Pk WD 1

2

�Puu
k Puv

k

Pvu
k Pvvk

�
; P�k WD 1

2

� Puu
k �Puv

k

�Pvu
k Pvvk

�
;
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and also

��k WD ��k:

Using relationships (1.1), (1.2), it is easy to show that PkPk0 D Pk0Pk D �.k D
k0/Pk for all k; k0; 1 � jkj � d; 1 � jk0j � d: Since the operators Pk W R

mCn 7!
R

mCn; 1 � jkj � d are also symmetric, they are orthogonal projectors onto mutually
orthogonal subspaces of RmCn: Note that, by a simple algebra, B D P

1�jkj�d �kPk;

implying that �k are distinct eigenvalues of B and Pk are the corresponding
eigenprojectors. Note also that if 2

Pd
kD1 �k < mCn; then zero is also an eigenvalue

of B (that will be denoted by �0) of multiplicity �0 WD n C m � 2
Pd

kD1 �k:

Representation A 7! B D ƒ.A/ D
�
0 A
A0 0

�
will play a crucial role in what

follows since it allows to reduce the analysis of SVD for matrix A to the spectral
representation B D P

1�jkj�d �kPk. In particular, the operators Puv
k involved in the

SVD A D Pd
kD1 �kPuv

k can be recovered from the eigenprojectors Pk of matrix B

(hence, they are uniquely defined). Define also �i WD 1p
2

� ui

vi

�
and ��i WD 1p

2

� ui

�vi

�

for i D 1; : : : ; r and let ��k WD f�i W i 2 �kg; k D 1; : : : ; d: Then, �i; 1 � jij � r
are orthonormal eigenvectors of B (not necessarily uniquely defined) corresponding
to its non-zero eigenvalues �1 � 	 	 	 � �r > 0 > ��r � 	 	 	 � ��1 with ��i D ��i

and

Pk D
X
i2�k

.�i ˝ �i/; 1 � jkj � d:

It will be assumed in what follows that A is perturbed by a random matrix X 2
R

m�n with i.i.d. entries Xij � N .0; �2/ for some � > 0: Given the SVD of the
perturbed matrix

QA D A C X D
m^nX
jD1

Q�i.Qui ˝ Qvi/;

our main interest lies in estimating singular vectors ui and vi of the matrix A in the
case when its singular values �i are distinct, or, more generally, in estimating the
operators Puu

k ;P
uv
k ;P

vu
k ;P

vv
k : To this end, we will use the estimators

QPuu
k WD

X
i2�k

.Qui ˝ Qui/; QPuv
k WD

X
i2�k

.Qui ˝ Qvi/;

QPvu
k WD

X
i2�k

. Qvi ˝ Qui/; QPvvk WD
X
i2�k

. Qvi ˝ Qvi/;
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and our main goal will be to study the fluctuations of the bilinear forms of these
random operators around the bilinear forms of operators Puu

k ;P
uv
k ; Pvu

k ;P
vv
k : In

the case when the singular values of A are distinct, this would allow us to study
the fluctuations of linear forms of singular vectors Qui; Qvi around the corresponding
linear forms of ui; vi which would provide a way to control the fluctuations of
components of “empirical” singular vectors in a given basis around their true
counterparts. Clearly, the problem can be and will be reduced to the analysis of
spectral representation of a symmetric random matrix

QB D ƒ. QA/ D
�
0 QA
QA0 0

�
D B C �; where � D ƒ.X/ D

�
0 X
X0 0

�
; (1.3)

that can be viewed as a random perturbation of the symmetric matrix B: The spectral
representation of this matrix can be written in the form

QB D
X

1�jij�.m^n/

Q�i. Q�i ˝ Q�i/;

where

Q��i D �Q�i; Q�i WD 1p
2

� Qui

Qvi

�
; Q��i WD 1p

2

� Qui

�Qvi

�
; i D 1; : : : ; .m ^ n/:

If the operator norm k�k of the “noise” matrix � is small enough comparing with
the “spectral gap” of the k-th eigenvalue �k of B (for some k D 1; : : : ; d), then
it is easy to see that QPk WD P

i2�k
. Q�i ˝ Q�i/ is the orthogonal projector on the

direct sum of eigenspaces of QB corresponding to the “cluster” f Q�i W i 2 �kg of

its eigenvalues localized in a neighborhood of �k: Moreover, QPk D 1
2

� QPuu
k

QPuv
kQPvu

k
QPvvk

�
:

Thus, it is enough to study the fluctuations of bilinear forms of random orthogonal
projectors QPk around the corresponding bilinear form of the spectral projectors Pk

to derive similar properties of operators QPuu
k ;

QPuv
k ;

QPvu
k ;

QPvvk :

We will be interested in bounding the bilinear forms of operators QPk � Pk for
k D 1; : : : ; d: To this end, we will provide separate bounds on the random error
QPk � E QPk and on the bias E QPk � Pk: For k D 1; : : : ; d; Ngk denotes the distance
from the eigenvalue �k to the rest of the spectrum of A (the eigengap of �k). More
specifically, for 2 � k � d � 1, Ngk D min.�k � �kC1; �k�1 � �k/; Ng1 D �1 � �2
and Ngd D min.�d�1 � �d; �d/:

The main assumption in the results that follow is that EkXk < Ngk
2

(more precisely,

EkXk � .1 � �/ Ngk
2

for a positive � ). In view of the concentration inequality of
Lemma 2.1 in the next section, this essentially means that the operator norm of
the random perturbation matrix k�k D kXk is strictly smaller than one half of the
spectral gap Ngk of singular value�k: Since, again by Lemma 2.1,EkXk � �

p
m _ n;

this assumption also means that Ngk & �
p

m _ n (so, the spectral gap Ngk is sufficiently
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large). Our goal is to prove that, under this assumption, the values of bilinear form
h QPkx; yi of random spectral projector QPk have tight concentration around their means

(with the magnitude of deviations of the order
q

1
m_n ). We will also show that the

bias E QPk � Pk of the spectral projector QPk is “aligned” with the spectral projector

Pk (up to an error of the order
q

1
m_n in the operator norm). More precisely, the

following results hold.

Theorem 1.1 Suppose that for some � 2 .0; 1/; EkXk � .1 � �/ Ngk
2
: There exists

a constant D� > 0 such that, for all x; y 2 R
mCn and for all t � 1; the following

inequality holds with probability at least 1 � e�t W
ˇ̌˝
. QPk � E QPk/x; y

˛ˇ̌ � D�

�
p

t

Ngk

��p
m _ n C �

p
t

Ngk
C 1

�
kxkkyk: (1.4)

Assuming that t . m _ n and taking into account that �
p

m _ n � EkXk � Ngk;

we easily get from the bound of Theorem 1.1 that

ˇ̌˝
. QPk � E QPk/x; y

˛ˇ̌
.�

�
p

t

Ngk
kxkkyk .�

r
t

m _ n
kxkkyk;

so, the fluctuations of h QPkx; yi around its expectation are indeed of the order
q

1
m_n :

The next result shows that the bias E QPk � Pk of QPk can be represented as a sum
of a “low rank part” Pk.E QPk � Pk/Pk and a small remainder.

Theorem 1.2 The following bound holds with some constant D > 0 W
���E QPk � Pk

��� � D
�2.m _ n/

Ng2k
: (1.5)

Moreover, suppose that for some � 2 .0; 1/, EkXk � .1� �/ Ngk
2
: Then, there exists a

constant C� > 0 such that

��E QPk � Pk � Pk.E QPk � Pk/Pk

�� � C�
�k�

2
p

m _ n

Ng2k
: (1.6)

Since, under the assumption EkXk � .1 � �/ Ngk
2
; we have Ngk & �

p
m _ n;

bound (1.6) implies that the following representation holds

E QPk � Pk D Pk.E QPk � Pk/Pk C Tk
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with the remainder Tk satisfying the bound

kTkk .�

�2
p

m _ n

Ng2k
.�

�kp
m _ n

:

We will now consider a special case when �k has multiplicity 1 (�k D 1). In
this case, �k D fikg for some ik 2 f1; : : : ; .m ^ n/g and Pk D �ik ˝ �ik : Let QPk WD
Q�ik ˝ Q�ik : Note that on the event k�k D kXk < Ngk

2
that is assumed to hold with

a high probability, the multiplicity of Q�ik is also 1 (see the discussion in the next
section after Lemma 2.2). Note also that the unit eigenvectors �ik ;

Q�ik are defined
only up to their signs. Due to this, we will assume without loss of generality that
h Q�ik ; �ik i � 0:

Since Pk D �ik ˝ �ik is an operator of rank 1; we have

Pk.E QPk � Pk/Pk D bkPk;

where

bk WD
D
.E QPk � Pk/�ik ; �ik

E
D Eh Q�ik ; �ik i2 � 1:

Therefore,

E QPk D .1C bk/Pk C Tk

and bk turns out to be the main parameter characterizing the bias of QPk: Clearly,
bk 2 Œ�1; 0� (note that bk D 0 is equivalent to Q�ik D �ik a.s. and bk D �1 is
equivalent to Q�ik ? �ik a.s.). On the other hand, by bound (1.5) of Theorem 1.2,

jbkj �
���E QPk � Pk

��� . �2.m _ n/

Ng2k
: (1.7)

In the next theorem, it will be assumed that the bias is not too large in the sense that
bk is bounded away by a constant � > 0 from �1:
Theorem 1.3 Suppose that, for some � 2 .0; 1/; EkXk � .1��/ Ngk

2
and 1Cbk � �:

Then, for all x 2 R
mCn and for all t � 1 with probability at least 1 � e�t,

ˇ̌˝ Q�ik �
p
1C bk�ik ; x

˛ˇ̌
.�

�
p

t

Ngk

��p
m _ n C �

p
t

Ngk
C 1

�
kxk:

Assuming that t . m _ n; the bound of Theorem 1.3 implies that

ˇ̌˝ Q�ik �
p
1C bk�ik ; x

˛ˇ̌
.�

�
p

t

Ngk
kxk .�

r
t

m _ n
kxk:
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Therefore, the fluctuations of h Q�ik ; xi around
p
1C bkh�ik ; xi are of the order

q
1

m_n :

Recall that �ik WD 1p
2

� uik

vik

�
; where uik ; vik are left and right singular vectors of

A corresponding to its singular value �k: Theorem 1.3 easily implies the following
corollary.

Corollary 1.4 Under the conditions of Theorem 1.3, with probability at least 1 �
1

mCn ,

max
n��Quik �

p
1C bkuik

��1;
�� Qvik �

p
1C bkvik

��1
o

.
r

log.m C n/

m _ n
:

For the proof, it is enough to take t D 2 log.mCn/; x D emCn
i ; i D 1; : : : ; .mCn/

and to use the bound of Theorem 1.3 along with the union bound. Then recalling
that �ik D 1p

2
.u0

ik
; v0

ik
/0; Theorem 1.3 easily implies the claim.

Theorem 1.3 shows that the “naive estimator” h Q�ik ; xi of linear form h�ik ; xi could
be improved by reducing its bias that, in principle, could be done by its simple
rescaling h Q�ik ; xi 7! h.1C bk/

�1=2 Q�ik ; xi: Of course, the difficulty with this approach
is related to the fact that the bias parameter bk is unknown. We will outline below a
simple approach based on repeated observations of matrix A: More specifically, let
QA1 D A C X1 and QA2 D A C X2 be two independent copies of QA and denote QB1 D
ƒ. QA1/; QB2 D ƒ. QA2/: Let Q�1ik and Q�2ik be the eigenvectors of QB1 and QB2 corresponding

to their eigenvalues Q�1ik ; Q�2ik : The signs of Q�1ik and Q�2ik are chosen so that
˝ Q�1ik ; Q�2ik

˛ � 0.
Let

Qbk WD ˝ Q�1ik ; Q�2ik
˛ � 1: (1.8)

Given � > 0; define

O�.�/ik
WD

Q�1ikp
1C Qbk _

p
�

2

:

Corollary 1.5 Under the assumptions of Theorem 1.3, there exists a constant D� >

0 such that for all x 2 R
mCn and all t � 1 with probability at least 1 � e�t ,

jObk � bkj � D�

�
p

t

Ngk

h�p
m _ n C �

p
t

Ngk
C 1

i
(1.9)

and

j˝ O�.�/ik
� �ik ; x

˛j � D�

�
p

t

Ngk

h�p
m _ n C �

p
t

Ngk
C 1

i
kxk: (1.10)
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Note that O�.�/ik
is not necessarily a unit vector. However, its linear form provides

a better approximation of the linear forms of �ik than in the case of vector Q�1ik that
is properly normalized. Clearly, the result implies similar bounds for the singular
vectors Ou.�/ik

and Ov.�/ik
.

2 Proofs of the Main Results

The proofs follow the approach of Koltchinskii and Lounici [6] who did a similar
analysis in the problem of estimation of spectral projectors of sample covariance.
We start with discussing several preliminary facts used in what follows. Lemmas 2.1
and 2.2 below provide moment bounds and a concentration inequality for k�k D
kXk: The bound on EkXk of Lemma 2.1 is available in many references (see, e.g.,
Vershynin [13]). The concentration bound for kXk is a straightforward consequence
of the Gaussian concentration inequality. The moment bounds of Lemma 2.2 can be
easily proved by integrating out the tails of the exponential bound that follows from
the concentration inequality of Lemma 2.1.

Lemma 2.1 There exist absolute constants c0; c1; c2 > 0 such that

c0�
p

m _ n � EkXk � c1�
p

m _ n

and for all t > 0,

P
˚ˇ̌kXk � EkXkˇ̌ � c2�

p
t
� � e�t:

Lemma 2.2 For all p � 1, it holds that

E
1=pkXkp � �

p
m _ n

According to a well-known result that goes back to Weyl, for symmetric (or
Hermitian) N � N matrices C;D

max
1�j�N

ˇ̌
ˇ
#

j .C/� 

#
j .D/

ˇ̌
ˇ � kC � Dk;

where 
#.C/; 
#.D/ denote the vectors consisting of the eigenvalues of matrices
C;D; respectively, arranged in a non-increasing order. This immediately implies
that, for all k D 1; : : : ; d;

max
j2�k

j Q�j � �kj � k�k
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and

min
j2[k0

¤k�k0

j Q�j � �kj � Ngk � k�k:

Assuming that k�k < Ngk
2
;we get that f Q�j W j 2 �kg � .�k � Ngk=2; �kCNgk=2/ and the

rest of the eigenvalues of QB are outside of this interval. Moreover, if k�k < Ngk
4
; then

the cluster of eigenvalues f Q�j W j 2 �kg is localized inside a shorter interval .�k �
Ngk=4; �k C Ngk=4/ of radius Ngk=4 and its distance from the rest of the spectrum of QB is
> 3

4
Ngk: These simple considerations allow us to view the projection operator QPk DP

j2�k
. Q�j ˝ Q�j/ as a projector on the direct sum of eigenspaces of QB corresponding to

its eigenvalues located in a “small” neighborhood of the eigenvalue �k of B; which
makes QPk a natural estimator of Pk:

Define operators Ck as follows:

Ck D
X
s¤k

1

�s � �k
Ps:

In the case when 2
Pd

kD1 �k < mCn and, hence,�0 D 0 is also an eigenvalue of B; it
will be assumed that the above sum includes s D 0 with P0 being the corresponding
spectral projector.

The next simple lemma can be found, for instance, in Koltchinskii and
Lounici [6]. Its proof is based on a standard perturbation analysis utilizing Riesz
formula for spectral projectors.

Lemma 2.3 The following bound holds:

k QPk � Pkk � 4
k�k
Ngk
:

Moreover,

QPk � Pk D Lk.�/C Sk.�/;

where Lk.�/ WD Ck�Pk C Pk�Ck and

kSk.�/k � 14

�k�k
Ngk

	2
:
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Proof of Theorem 1.1 Since ELk.�/ D 0; it is easy to check that

QPk � E QPk D Lk.�/C Sk.�/� ESk.�/ DW Lk.�/C Rk.�/: (2.1)

We will first provide a bound on the bilinear form of the remainder
˝
Rk.�/x; y

˛
:Note

that

hRk.�/x; yi D hSk.�/x; yi � hESk.�/x; yi
is a function of the random matrix X 2 R

m�n since � D ƒ.X/ [see (1.3)]. When we
need to emphasize this dependence, we will write �X instead of �:With some abuse
of notation, we will view X as a point in R

m�n rather than a random variable.
Let 0 < � < 1 and define a function hx;y;ı.	/ W Rm�n ! R as follows:

hx;y;ı.X/ WD hSk.�X/x; yi	
�k�Xk

ı

	
;

where 	 is a Lipschitz function with constant 1
�

on RC and 0 � 	.s/ � 1. More
precisely, assume that 	.s/ D 1; s � 1; 	.s/ D 0; s � .1 C �/ and 	 is linear
in between. We will prove that the function X 7! hx;y;ı.X/ satisfy the Lipschitz
condition. Note that

jh.Sk.�X1/ � Sk.�X2 // x; yij � kSk.�X1 /� Sk.�X2 /kkxkkyk:
To control the norm kSk.�X1/� Sk.�X2 /k, we need to apply Lemma 4 from [6]. It is
stated below without the proof.

Lemma 2.4 Let � 2 .0; 1/ and suppose that ı � 1��
1C�

Ngk
2
: There exists a constant

C� > 0 such that, for all symmetric �1; �2 2 R
.mCn/�.mCn/ satisfying the conditions

k�1k � .1C �/ı and k�2k � .1C �/ı;

kSk.�1/� Sk.�2/k � C�
ı

Ng2k
k�1 � �2k:

We now derive the Lipschitz condition for the function X 7! hx;y;ı.X/:

Lemma 2.5 Under the assumption that ı � 1��
1C�

Ngk
2

, there exists a constant C� > 0,

ˇ̌
hx;y;ı.X1/� hx;y;ı.X2/

ˇ̌ � C�
ıkX1 � X2k2

Ng2k
kxkkyk: (2.2)
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Proof Suppose first that max.k�X1k; k�X2k/ � .1 C �/ı: Using Lemma 2.4 and
Lipschitz properties of function 	; we get

jhx;y;ı.X1/�hx;y;ı.X2/j D
ˇ̌
ˇ̌˝Sk.�X1 /x; y

˛
	

�k�X1k
ı

	
� ˝

Sk.�X2 /x; y
˛
	

�k�X2k
ı

	ˇ̌
ˇ̌

�kSk.�X1 / � Sk.�X2/kkxkkyk	
�k�X1k

ı

	

CkSk.�X2 /k
ˇ̌
ˇ̌	
�k�X1k

ı

	
� 	

�k�X2k
ı

	ˇ̌
ˇ̌ kxkkyk

�C�
ık�X1 � �X2k

Ng2k
kxkkyk C 14.1C �/2ı2

Ng2k
k�X1 � �X2k

�ı
kxkkyk

.�

ık�X1 � �X2k
Ng2k

kxkkyk .�

ıkX1 � X2k2
Ng2k

kxkkyk:

In the case when min.k�X1k; k�X2k/ � .1C �/ı, we have hx;y;ı.X1/ D hx;y;ı.X2/ D
0; and (2.2) trivially holds. Finally, in the case when k�X1k � .1 C �/ı � k�X2k,
we have

jhx;y;ı.X1/ � hx;y;ı.X2/j D
ˇ̌
ˇ̌˝Sk.�X1 /x; y

˛
	

�k�X1k
ı

	ˇ̌
ˇ̌

D
ˇ̌
ˇ̌˝Sk.�X1 /x; y

˛
	

�k�X1k
ı

	
� ˝

Sk.�X1/x; y
˛
	

�k�X2k
ı

	ˇ̌
ˇ̌

� kSk.�X1/k
ˇ̌
ˇ̌	
�k�X1k

ı

	
� 	

�k�X2k
ı

	ˇ̌
ˇ̌ kxkkyk

� 14

�
.1C �/ı

Ngk

	2 k�X1 � �X2k
�ı

kxkkyk

.�

ıkX1 � X2k2
Ng2k

kxkkyk:

The case k�X2k � .1C �/ı � k�X1k is similar. ut
Our next step is to apply the following concentration bound that easily follows

from the Gaussian isoperimetric inequality.

Lemma 2.6 Let f W R
m�n 7! R be a function satisfying the following Lipschitz

condition with some constant L > 0 W

jf .A1/� f .A2/j � LkA1 � A2k2;A1;A2 2 R
m�n
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Suppose X is a random m � n matrix with i.i.d. entries Xij � N .0; �2/: Let M be a
real number such that

P
˚
f .X/ � M

� � 1

4
and P

˚
f .X/ � M

� � 1

4
:

Then there exists some constant D1 > 0 such that for all t � 1,

P

nˇ̌
f .X/� M

ˇ̌ � D1L�
p

t
o

� e�t:

The next lemma is the main ingredient in the proof of Theorem 1.1. It provides
a Bernstein type bound on the bilinear form hRk.�/x; yi of the remainder Rk in the
representation (2.1).

Lemma 2.7 Suppose that, for some � 2 .0; 1/; Ek�k � .1 � �/ Ngk
2
: Then, there

exists a constant D� > 0 such that for all x; y 2 R
mCn and all t � log.4/, the

following inequality holds with probability at least 1 � e�t

jhRk.�/x; yij � D�

�
p

t

Ngk

�
�
p

m _ n C �
p

t

Ngk

	
kxkkyk:

Proof Define ın;m.t/ WD Ek�k C c2�
p

t: By the second bound of Lemma 2.1, with
a proper choice of constant c2 > 0; Pfk�k � ın;m.t/g � e�t: We first consider the
case when c2�

p
t � �

2

Ngk
2
; which implies that

ın;m.t/ � .1 � �=2/
Ngk

2
D 1 � � 0

1C � 0
Ngk

2

for some � 0 2 .0; 1/ depending only on �: Therefore, it enables us to use Lemma 2.5

with ı WD ın;m.t/: Recall that hx;y;ı.X/ D ˝
Sk.�/x; y

˛
	

�
k�k
ı

	
and let M WD

Med
�˝

Sk.�/x; y
˛�

. Observe that, for t � log.4/;

Pfhx;y;ı.X/ � Mg � Pfhx;y;ı.X/ � M; k�k � ın;m.t/g

�Pf˝Sk.�/x; y
˛ � M

� � Pfk�k > ın;m.t/g � 1

2
� e�t � 1

4

and, similarly. P.hx;y;ı.X/ � M/ � 1
4
: Therefore, by applying Lemmas 2.5 and 2.6,

we conclude that with probability at least 1 � e�t,

ˇ̌
hx;y;ı.X/� M

ˇ̌
.�

ın;m.t/�
p

t

Ng2k
kxkkyk
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Since, by the first bound of Lemma 2.1, ın;m.t/ . �.
p

m _ n C p
t/; we get that

with the same probability

ˇ̌
hx;y;ı.X/� M

ˇ̌
.�

�
p

t

Ngk

�
p

m _ n C �
p

t

Ngk
kxkkyk:

Moreover, on the event fk�k � ın;m.t/g that holds with probability at least
1 � e�t; hx;y;ı.X/ D ˝

Sk.�/x; y
˛
: Therefore, the following inequality holds with

probability at least 1 � 2e�t W
ˇ̌˝

Sk.�/x; y
˛ � M

ˇ̌
.�

�
p

t

Ngk

�
p

m _ n C �
p

t

Ngk
kxkkyk: (2.3)

We still need to prove a similar inequality in the case c2�
p

t � �

2

Ngk
2
: In this case,

Ek�k � .1 � �/ Ngk

2
� 2c2.1 � �/

�
�
p

t;

implying that ın;m.t/ .� �
p

t: It follows from Lemma 2.3 that

ˇ̌˝
Sk.�/x; y

˛ˇ̌ � kSk.�/kkxkkyk . k�k2
Ng2k

kxkkyk

This implies that with probability at least 1 � e�t,

ˇ̌˝
Sk.�/x; y

˛ˇ̌
.
ı2n;m.t/

Ng2k
kxkkyk .�

�2t

Ng2k
kxkkyk:

Since t � log.4/ and e�t � 1=4; we can bound the median M of
˝
Sk.�/x; y

˛
as

follows:

M .�

�2t

Ng2k
kxkkyk;

which immediately implies that bound (2.3) holds under assumption c2�
p

t � �

2

Ngk
2

as well. By integrating out the tails of exponential bound (2.3), we obtain that

ˇ̌
E
˝
Sk.�/x; y

˛ � M
ˇ̌ � E

ˇ̌˝
Sk.�/x; y

˛ � M
ˇ̌

.�

�2
p

m _ n

Ng2k
kxkkyk;

which allows us to replace the median by the mean in concentration inequality (2.3).
To complete the proof, it remains to rewrite the probability bound 1�2e�t as 1�e�t

by adjusting the value of the constant D� . ut
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Recalling that QPk �E QPk D Lk.�/C Rk.�/; it remains to study the concentration
of
˝
Lk.�/x; y

˛
.

Lemma 2.8 For all x; y 2 R
mCn and t > 0,

P

�ˇ̌˝
Lk.�/x; y

˛ˇ̌ � 4
�kxkkykp

t

Ngk

	
� e�t:

Proof Recall that Lk.�/ D Pk�Ck C Ck�Pk implying that

hLk.�/x; yi D h�Pkx;Ckyi C h�Ckx;Pkyi:

If x D
� x1

x2

�
; y D

� y1
y2

�
; where x1; y1 2 R

m; x2; y2 2 R
n; then it is easy to check

that

h�x; yi D hXx2; y1i C hXy2; x1i:

Clearly, the random variable h�x; yi is normal with mean zero and variance

Eh�x; yi2 � 2
h
EhXx2; y1i2 C EhXy2; x1i2

i
:

Since X is an m � n matrix with i.i.d. N .0; �2/ entries, we easily get that

EhXx2; y1i2 D EhX; y1 ˝ x2i2 D �2ky1 ˝ x2k22 D �2kx2k2ky1k2

and, similarly,

EhXy2; x1i2 D �2kx1k2ky2k2:

Therefore,

Eh�x; yi2 �2�2
h
kx2k2ky1k2 C kx1k2ky2k2

i

�2�2
h
.kx1k2 C kx2k2/.ky1k2 C ky2k2/

i
D 2�2kxk2kyk2:

As a consequence, the random variable hLk.�/x; yi is also normal with mean zero
and its variance is bounded from above as follows:

EhLk.�/x; yi2 �2
h
Eh�Pkx;Ckyi2 C Eh�Ckx;Pkyi2

i

�4�2
h
kPkxk2kCkyk2 C kCkxk2kPkyk2

i
:
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Since kPkk � 1 and kCkk � 1
Ngk
; we get that

EhLk.�/x; yi2 � 8�2

Ng2k
kxk2kyk2:

The bound of the lemma easily follows from standard tail bounds for normal random
variables. ut

The upper bound on j˝. QPk � E QPk/x; y
˛j claimed in Theorem 1.1 follows by

combining Lemmas 2.7 and 2.8. ut
Proof of Theorem 1.2 Note that, since QPk � Pk D Lk.�/C Sk.�/ and ELk.�/ D 0,
we have

E QPk � Pk D ESk.�/:

It follows from the bound on kSk.�/k of Lemma 2.3 that

���E QPk � Pk

��� � EkSk.�/k � 14
Ek�k2

Ng2k
(2.4)

and the bound of Lemma 2.2 implies that

���E QPk � Pk

��� . �2.m _ n/

Ng2k
;

which proves (1.5).
Let

ın;m WD Ek�k C c2�
p

log.m C n/:

It follows from Lemma 2.1 that, with a proper choice of constant c2 > 0;

P .k�k � ın;m/ � 1

m C n
:

In the case when c2�
p

log.m C n/ > �

2

Ngk
2
; the proof of bound (1.6) is trivial. Indeed,

in this case

���E QPk � Pk

��� � Ek QPkk C kPkk � 2 .�

�2 log.m C n/

Ng2k
. �k�

2
p

m _ n

Ng2k
:

Since
���Pk.E QPk � Pk/Pk

��� �
���E QPk � Pk

���; bound (1.6) of the theorem follows when

c2�
p

log.m C n/ > �

2

Ngk
2
:
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In the rest of the proof, it will be assumed that c2�
p

log.m C n/ � �

2

Ngk
2

which,

together with the condition Ek�k D EkXk � .1 � �/
Ngk
2
; implies that ın;m � .1 �

�=2/
Ngk
2
: On the other hand, ın;m . �

p
m _ n: The following decomposition of the

bias E QPk � Pk is obvious:

E QPk � Pk D ESk.�/ D EPkSk.�/Pk

CE
�
P?

k Sk.�/Pk C PkSk.�/P
?
k C P?

k Sk.�/P
?
k

�
�.k�k � ın;m/

CE
�
P?

k Sk.�/Pk C PkSk.�/P
?
k C P?

k Sk.�/P
?
k

�
�.k�k > ın;m/

(2.5)

We start with bounding the part of the expectation in the right hand side of (2.5) that
corresponds to the event fk�k � ın;mg on which we also have k�k < Ngk

2
: Under this

assumption, the eigenvalues �k of B and �j. QB/; j 2 �k of QB are inside the circle �k

in C with center �k and radius Ngk
2
: The rest of the eigenvalues of B; QB are outside of

�k: According to the Riesz formula for spectral projectors,

QPk D � 1

2�i

I
�k

RQB.�/d�;

where RT.�/ D .T � �I/�1; � 2 C n �.T/ denotes the resolvent of operator T (�.T/
being its spectrum). It is also assumed that the contour �k has a counterclockwise
orientation. Note that the resolvents will be viewed as operators from C

mCn into
itself. The following power series expansion is standard:

RQB.�/ DRBC�.�/ D .B C � � �I/�1

DŒ.B � �I/.I C .B � �I/�1�/��1

D.I C RB.�/�/
�1RB.�/ D

X
r�0
.�1/rŒRB.�/��

rRB.�/;

where the series in the last line converges because kRB.�/�k � kRB.�/kk�k <
2
Ngk

Ngk
2

D 1. The inequality kRB.�/k � 2
Ngk

holds for all � 2 �k: One can easily verify
that

Pk D � 1

2�i

I
�k

RB.�/d�;

Lk.�/ D 1

2�i

I
�k

RB.�/�RB.�/d�;

Sk.�/ D � 1

2�i

I
�k

X
r�2
.�1/rŒRB.�/��

rRB.�/d�:
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The following spectral representation of the resolvent will be used

RB.�/ D
X

s

1

�s � �Ps;

where the sum in the right hand side includes s D 0 in the case when �0 D 0 is an
eigenvalue of B (equivalently, in the case when 2

Pd
kD1 �k < m C n). Define

QRB.�/ WD RB.�/ � 1

�k � �Pk D
X
s¤k

1

�s � �Ps:

Then, for r � 2;

P?
k ŒRB.�/��

rRB.�/Pk D 1

�k � �P?
k ŒRB.�/��

rPk

D 1

.�k � �/2
rX

sD2
. QRB.�/�/

s�1Pk�.RB.�/�/
r�sPk C 1

�k � �.
QRB.�/�/

rPk:

The above representation easily follows from the following simple observation: let
a WD Pk

�k��� and b WD QRB.�/�: Then

.a C b/r Da.a C b/r�1 C b.a C b/r�1

Da.a C b/r�1 C ba.a C b/r�2 C b2.a C b/r�2

Da.a C b/r�1 C ba.a C b/r�2 C b2a.a C b/r�3 C b3.a C b/r�3

D : : : D
rX

sD1
bs�1a.a C b/r�s C br:

As a result,

P?
k Sk.�/Pk D �

X
r�2
.�1/r 1

2�i

I
�k

"
1

.�k � �/2

rX
sD2
. QRB.�/�/

s�1Pk�.RB.�/�/
r�sPk

C 1

�k � �.
QRB.�/�/

rPk

#
d�

(2.6)
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Let Pk D P
l2�k

�l˝�l;where f�l; l 2 �kg are orthonormal eigenvectors corresponding

to the eigenvalue �k: Therefore, for any y 2 R
mCn,

. QRB.�/�/
s�1Pk�.RB.�/�/

r�sPky D
X
l2�k

. QRB.�/�/
s�1�l ˝ �l�.RB.�/�/

r�sPky

D
X
l2�k

h�.RB.�/�/
r�sPky; �li . QRB.�/�/

s�2 QRB.�/��l

(2.7)
Since j h�.RB.�/�/

r�sPky; �li j � k�kr�sC1kRB.�/kr�skyk, we get

Ej h�.RB.�/�/
r�sPky; �li j2�.k�k � ın;m/ � ı2.r�sC1/

n;m

�
2

Ngk

	2.r�s/

kyk2:

Also, for any x 2 R
mCn, we have to bound

E
ˇ̌˝
. QRB.�/�/

s�2 QRB.�/��l; x
˛ˇ̌2
�.k�k � ın;m/: (2.8)

In what follows, we need some additional notations. Let Xc
1; : : : ;X

c
n �

N .0; �2Im/ be the i.i.d. columns of X and .Xr
1/

0; : : : ; .Xr
n/

0 � N .0; �2In/ be its
i.i.d. rows (here Im and In are m � m and n � n identity matrices). For j D 1; : : : ; n,
define the vector LXc

j D ..Xc
j /

0; 0/0 2 R
mCn; representing the .m C j/-th column of

matrix �: Similarly, for i D 1; : : : ;m; LXr
i D .0; .Xr

i /
0/0 2 R

mCn represents the i-th
row of � . With these notations, the following representations of � holds

� D
nX

jD1
emCn

mCj ˝ LXc
j C

nX
jD1

LXc
j ˝ emCn

mCj ;

� D
mX

iD1
LXr

i ˝ emCn
i C

mX
iD1

emCn
i ˝ LXr

i ;

and, moreover,

nX
jD1

emCn
mCj ˝ LXc

j D
mX

iD1
LXr

i ˝ emCn
i ;

nX
jD1

LXc
j ˝ emCn

mCj D
mX

iD1
emCn

i ˝ LXr
i :
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Therefore,

˝
. QRB.�/�/

s�2 QRB.�/��l; x
˛ D

nX
jD1

D LXc
j ; �l

E ˝
. QRB.�/�/

s�2 QRB.�/e
mCn
mCj ; x

˛

C
nX

jD1

D
emCn

mCj ; �l

E ˝
. QRB.�/�/

s�2 QRB.�/ LXc
j ; x
˛ DW I1.x/C I2.x/;

and we get

E
ˇ̌˝
. QRB.�/�/

s�2 QRB.�/��l; x
˛ˇ̌2
�.k�k � ın;m/

�2E.jI1.x/j2 C jI2.x/j2/�.k�k � ın;m/:
(2.9)

Observe that the random variable . QRB.�/�/
s�2 QRB.�/ is a function of fPt LXc

j ; t ¤
k; j D 1; : : : ; ng: Indeed, since QRB.�/ is a linear combination of operators Pt; t ¤ k;
it is easy to see that . QRB.�/�/

s�2 QRB.�/ can be represented as a linear combination
of operators

.Pt1�Pt2 /.Pt2�Pt3 / : : : .Pts�2�Pts�1 /

with tj ¤ k and with non-random complex coefficients. On the other hand,

Ptk�PtkC1
D

nX
jD1

Ptk emCn
mCj ˝ PtkC1

LXc
j C

nX
jD1

Ptk
LXc

j ˝ PtkC1
emCn

mCj :

These two facts imply that . QRB.�/�/
s�2 QRB.�/ is a function of fPt LXc

j ; t ¤ k; j D
1; : : : ; ng: Similarly, it is also a function of fPt LXr

i ; t ¤ k; i D 1; : : : ;mg:
It is easy to see that random variables fPk LXc

j ; j D 1; : : : ; ng and fPt LXc
j ; j D

1; : : : ; n; t ¤ kg are independent. Since they are mean zero normal random variables
and LXc

j ; j D 1; : : : ; n are independent, it is enough to check that, for all j D
1; : : : ; n; t ¤ k; Pk LXc

j and Pt LXc
j are uncorrelated. To this end, observe that

E.Pk LXc
j ˝ Pt LXc

j / DPkE. LXc
j ˝ LXc

j /Pt

D1

4

�Puu
k Puv

k

Pvu
k Pvvk

�� Im 0

0 0

��Puu
t Puv

t

Pvu
t Pvvt

�

D1

4

�Puu
k Puu

t Puu
k Puv

t

Pvu
k Puu

t Pvu
k Puv

t

�
D
�
0 0

0 0

�
;

where we used orthogonality relationships (1.2). Quite similarly, one can prove
independence of fPk LXr

i ; i D 1; : : : ;mg and fPt LXr
i ; i D 1; : : : ;m; t ¤ kg:
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We will now provide an upper bound on EjI1.x/j2�.k�k � ın;m/: To this end,
define

!j.x/ D
D
. QRB.�/�/

s�2 QRB.�/e
mCn
mCj ; x

E
; j D 1; : : : ; n

D!.1/j .x/C i!.2/j .x/ 2 C:

Let I1.x/ D �.1/.x/ C i�.2/.x/ 2 C: Then, conditionally on fPt LXc
j W t ¤ k; j D

1; : : : ; ng, the random vector .�.1/.x/; �.2/.x// has the same distribution as mean
zero Gaussian random vector in R

2 with covariance,

0
@ nX

jD1

�2

2
!

k1
j .x/!

k2
j .x/

1
A ; k1; k2 D 1; 2

(to check the last claim, it is enough to compute conditional covariance of
.�.1/.x/; �.2/.x// given fPt LXc

j W t ¤ k; j D 1; : : : ; ng using the fact that

. QRB.�/�/
s�2 QRB.�/ is a function of fPt LXc

j ; t ¤ k; j D 1; : : : ; ng). Therefore,

E

�
jI1.x/j2

ˇ̌
ˇPt LXc

j W t ¤ k; j D 1; : : : ; n
�

DE

�
.�.1/.x//2 C .�.2/.x//2

ˇ̌
ˇPt LXc

j W t ¤ k; j D 1; : : : ; n
�

D�2

2

nX
jD1

�
.!

.1/
j .x//2 C .!

.2/
j .x//2

�
D �2

2

nX
jD1

j!j.x/j2:

Furthermore,

nX
jD1

�2j!j.x/j2 D �2
nX

jD1
j!j.x/j2

D�2
nX

jD1

ˇ̌
ˇ
D QRB.�/.� QRB.�//

s�2x; emCn
mCj

Eˇ̌
ˇ2

D�2 ˝ QRB.�/.� QRB.�//
s�2x; QRB.�/.� QRB.�/�/

s�2x
˛

��2k QRB.�/k2.s�1/k�k2.s�2/kxk2:

Under the assumption ın;m <
Ngk
2

, the following inclusion holds:

fk�k � ın;mg �
8<
:

nX
jD1

�2j!j.x/j2 � �2
�
2

Ngk

	2.s�1/
ı2.s�2/n;m kxk2

9=
; DW G
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Therefore,

EjI1.x/j2�.k�k � ın;m/ � EjI1.x/j2�G D EE

�
jI1.x/j2

ˇ̌
ˇ̌Pt LXc

j ; t ¤ k; j D 1; : : : ; n

	
�G

DEE

� nX
jD1

�2j!j.x/j2
ˇ̌
ˇ̌Pt LXc

j ; t ¤ k; j D 1; : : : ; n

	
�G � �2

�
2

Ngk

	2.s�1/
ı
2.s�2/
n;m kxk2:

(2.10)

A similar bound holds also for EjI2.x/j2�.k�k � ın;m/ W

EjI2.x/j2�.k�k � ın;m/ � �2
�
2

Ngk

	2.s�1/
ı2.s�2/n;m kxk2: (2.11)

For the proof, it is enough to observe that

I2.x/ D
nP

jD1

D
emCn

mCj ; �l

E ˝
. QRB.�/�/

s�2 QRB.�/ LXc
j ; x
˛

D
�
. QRB.�/�/

s�2 QRB.�/

�Pn
jD1 LXc

j ˝ emCn
mCj

	
�l; x

�

D
�
. QRB.�/�/

s�2 QRB.�/

�Pm
iD1 emCn

i ˝ LXr
i

	
�l; x

�

D
mP

iD1

D LXr
i ; �l

E ˝
. QRB.�/�/

s�2 QRB.�/e
mCn
i ; x

˛

and to repeat the previous conditioning argument (this time, given fPt LXr
i W t ¤ k; i D

1; : : : ;mg).
Combining bounds (2.10), (2.11) and (2.9), we get

E
ˇ̌˝
. QRB.�/�/

s�2 QRB.�/��l; x
˛ˇ̌2
�.k�k � ın;m/ � 2�2

�
2

Ngk

	2.s�1/
ı2.s�2/n;m kxk2:

Then, it follows that

ˇ̌
ˇE h�.RB.�/�/

r�sPky; �li
˝
. QRB.�/�/

s�2 QRB.�/��l; x
˛
�.k�k � ın;m/

ˇ̌
ˇ

�
�
E jh�.RB.�/�/

r�sPky; �lij2 �.k�k � ın;m/
�1=2

�
�
E
ˇ̌˝
. QRB.�/�/

s�2 QRB.�/��l; x
˛ˇ̌2
�.k�k � ın;m/

�1=2

�p
2�

�
2ın;m

Ngk

	r�1
kxkkyk;
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which, taking into account (2.7), implies that

ˇ̌
ˇE ˝. QRB.�/�/

s�1Pk�.RB.�/�/
r�sPky; x

˛
�.k�k � ın;m/

ˇ̌
ˇ

�p
2�k�

�
2ın;m

Ngk

	r�1
kxkkyk

Since . QRB.�/�/
rPk D . QRB.�/�/

r�1 QRB.�/�Pk, it can be proved by a similar
argument that

ˇ̌
E
˝
. QRB.�/�/

rPky; x
˛
�.k�k � ın;m/

ˇ̌ � p
2�k�

2

Ngk

�
2ın;m

Ngk

	r�1
kxkkyk:

Therefore, substituting the above bounds in (2.6) and taking into account that j�k �
�j D Ngk

2
; � 2 �k and that the length of the contour of integration �k is equal to 2� Ngk

2
;

we get

ˇ̌
ˇE ˝P?

k Sk.�/Pky; x
˛
�.k�k � ın;m/

ˇ̌
ˇ �

X
r�2

r Ngk

2

�
2

Ngk

	2 p
2�k�

�
2ın;m

Ngk

	r�1
kxkkyk

D 2

Ngk

p
2�k�

X
r�2

r

�
2ın;m

Ngk

	r�1
kxkkyk .� �k�

ın;m

Ng2k
kxkkyk;

where we also used the condition ın;m � .1��=2/ Ngk
2

implying that 2ın;m
Ngk

� 1��=2:
Clearly, this implies that

���EP?
k Sk.�/Pk

����.k�k � ın;m/ .� �k�
ın;m

Ng2k
.�

�k�
p

m _ n

Ng2k
:

Furthermore, the same bound, obviously, holds for

��E˝PkSk.�/P
?
k y; x

˛
�.k�k � ın;m/

�� D ��E˝P?
k Sk.�/Pkx; y

˛
�.k�k � ın;m/

��
and, by similar arguments, it can be demonstrated that it also holds for

���EP?
k Sk.�/P

?
k

����.k�k � ın;m/

(the only different term in this case is . QRB.�/�/
r QRB.�/; but, since f�t; t ¤ kg are

outside of the circle �k, it simply leads to
H
�k
. QRB.�/�/

r QRB.�/d� D 0).
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It remains to observe that
���E �P?

k Sk.�/Pk C PkSk.�/P
?
k C P?

k Sk.�/P
?
k

�
�.k�k > ın;m/

���
�E

���P?
k Sk.�/Pk C PkSk.�/P

?
k C P?

k Sk.�/P
?
k

����.k�k > ın;m/

�EkSk.�/k�.k�k > ın;m/

�.EkSk.�/k2/1=2P1=2.k�k > ın;m/

.E
1=2

�k�k
Ngk

	4
P
1=2.k�k > ın;m/ . 1p

m _ n

�2.m _ n/

Ng2k
. �2

p
m _ n

Ng2k
and to substitute the above bounds to identity (2.5) to get that

���E QPk � Pk � PkESk.�/Pk

��� .�

�k�
2
p

m _ n

Ng2k
;

which implies the claim of the theorem. ut
Proof of Theorem 1.3 By a simple computation (see Lemma 8 and the derivation
of (6.6) in [6]), the following identity holds

˝ Q�ik �
p
1C bk�ik ; x

˛ D �k.x/p
1C bk C �k.x/

�
p
1C bkp

1C bk C �k.x/
�p
1C bk C �k.x/C p

1C bk
��k.�ik/ h�ik ; xi ;

(2.12)

where �k.x/ WD ˝
. QPk � .1 C bk/Pk/�ik ; x

˛
; x 2 R

mCn: In what follows, assume that
kxk D 1: By the bounds of Theorems 1.1 and 1.2, with probability at least 1� e�t W

j�k.x/j � D�

�
p

t

Ngk

��p
m _ n C �

p
t

Ngk
C 1

�
:

The assumption EkXk � .1 � �/ Ngk
2

implies that �
p

m _ n . Ngk: Therefore, if t

satisfies the assumption �
p

t
Ngk

� c� for a sufficiently small constant c� > 0; then we
have j�k.x/j � �=2: By the assumption that 1C bk � �; this implies that 1C bk C
�k.x/ � �=2: Thus, it easily follows from identity (2.12) that with probability at
least 1 � 2e�t

ˇ̌
ˇ̌˝ Q�ik �

p
1C bk�ik ; x

˛ˇ̌ˇ̌ .�

�
p

t

Ngk

��p
m _ n C �

p
t

Ngk
C 1

�
:
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It remains to show that the same bound holds when �
p

t
Ngk

> c� : In this case, we
simply have that

ˇ̌
ˇ̌˝ Q�ik �

p
1C bk�ik ; x

˛ˇ̌ˇ̌ � k Q�ik k C .1C bk/k�ik k � 2 .�

�2t

Ng2k
;

which implies the bound of the theorem. ut
Proof of Corollary 1.5 By a simple algebra,

jQbk � bkj D
ˇ̌
ˇ˝ Q�1ik ; Q�2ik

˛ � .1C bk/
ˇ̌
ˇ �

ˇ̌
ˇp1C bk

˝ Q�1ik �
p
1C bk�ik ; �ik

˛ˇ̌ˇ
C
ˇ̌
ˇp1C bk

˝ Q�2ik �
p
1C bk�ik ; �ik

˛ˇ̌ˇC
ˇ̌
ˇ˝ Q�1ik �

p
1C bk�ik ;

Q�2ik �
p
1C bk�ik

˛ˇ̌ˇ:

Corollary 1.5 implies that with probability at least 1 � e�t

ˇ̌
ˇp1C bk

˝ Q�1ik �
p
1C bk�ik ; �ik

˛ˇ̌ˇ .�

�
p

t

Ngk

h�p
m _ n C �

p
t

Ngk
C 1

i
;

where we also used the fact that 1 C bk 2 Œ0; 1�: A similar bound holds with the
same probability for

ˇ̌
ˇp1C bk

˝ Q�2ik �
p
1C bk�ik ; �ik

˛ˇ̌ˇ:
To control the remaining term

ˇ̌
ˇ˝ Q�1ik �

p
1C bk�ik ;

Q�2ik �
p
1C bk�ik

˛ˇ̌ˇ;

note that Q�1ik and Q�2ik are independent. Thus, applying the bound of Theorem 1.3

conditionally on Q�2ik ; we get that with probability at least 1 � e�t

ˇ̌
ˇ˝ Q�1ik �

p
1C bk�ik ;

Q�2ik �
p
1C bk�ik

˛ˇ̌ˇ .�
�
p

t

Ngk

h �pm _ n C �
p

t

Ngk
C 1

i
k Q�2ik �

p
1C bk�ik k:

It remains to observe that

k Q�2ik �
p
1C bk�ik k � 2

to complete the proof of bound (1.9).
Assume that kxk � 1: Recall that under the assumptions of the corollary,

�
p

m _ n .� Ngk and, if �
p

t
Ngk

� c� for a sufficiently small constant c�; then

bound (1.9) implies that jQbk �bkj � �=4 (on the event of probability at least 1�e�t).
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Since 1 C bk � �=2; on the same event we also have 1 C Qbk � �=4 implying that

O�.�/ik
D Q�1ikp

1CQbk

: Therefore,

ˇ̌
ˇ˝ O�.�/ik

� �ik ; x
˛ˇ̌ˇ D 1p

1CQbk

ˇ̌
ˇ˝ Q�1ik �

p
1C Qbk�ik ; x

˛ˇ̌ˇ (2.13)

.�

ˇ̌
ˇ˝ Q�1ik � p

1C bk�ik ; x
˛ˇ̌ˇC

ˇ̌
ˇp1C bk �

p
1C Qbk

ˇ̌
ˇ:

The first term in the right hand side can be bounded using Theorem 1.3 and, for the
second term,

ˇ̌
ˇp1C bk �

q
1C Qbk

ˇ̌
ˇ D jQbk � bkjp

1C bk C
p
1C Qbk

.� jQbk � bkj;

so bound (1.9) can be used. Substituting these bounds in (2.13), we derive (1.10) in

the case when �
p

t
Ngk

� c� :

In the opposite case, when �
p

t
Ngk
> c� ; we have

ˇ̌
ˇ˝ O�.�/ik

� �ik ; x
˛ˇ̌ˇ � k O�.�/ik

k C k�ik k � 1p
1C Qbk _

p
�

2

C 1 � 2p
�

C 1:

Therefore,

ˇ̌
ˇ˝ O�.�/ik

� �ik ; x
˛ˇ̌ˇ .�

�
p

t

Ngk
;

which implies (1.10) in this case. ut
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Optimal Kernel Selection for Density Estimation

Matthieu Lerasle, Nelo Molter Magalhães, and Patricia Reynaud-Bouret

Abstract We provide new general kernel selection rules thanks to penalized least-
squares criteria. We derive optimal oracle inequalities using adequate concentration
tools. We also investigate the problem of minimal penalty as described in Birgé and
Massart (2007, Probab. Theory Relat. Fields, 138(1–2):33–73).

Keywords Density estimation • Kernel estimators • Minimal penalty • Optimal
penalty • Oracle inequalities

1 Introduction

Concentration inequalities are central in the analysis of adaptive nonparametric
statistics. They lead to sharp penalized criteria for model selection [20], to select
bandwidths and even approximation kernels for Parzen’s estimators in high dimen-
sion [17], to aggregate estimators [24] and to properly calibrate thresholds [9].

In the present work, we are interested in the selection of a general kernel
estimator based on a least-squares density estimation approach. The problem has
been considered in L1-loss by Devroye and Lugosi [8]. Other methods combining
log-likelihood and roughness/smoothness penalties have also been proposed in [10–
12]. However these estimators are usually quite difficult to compute in practice.
We propose here to minimize penalized least-squares criteria and obtain from them
more easily computable estimators. Sharp concentration inequalities for U-statistics
[1, 16, 18] control the variance term of the kernel estimators, whose asymptotic
behavior has been precisely described, for instance in [7, 21, 22]. We derive from
these bounds (see Proposition 4.1) a penalization method to select a kernel which
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satisfies an asymptotically optimal oracle inequality, i.e. with leading constant
asymptotically equal to 1.

In the spirit of [14], we use an extended definition of kernels that allows to
deal simultaneously with classical collections of estimators as projection estimators,
weighted projection estimators, or Parzen’s estimators. This method can be used for
example to select an optimal model in model selection (in accordance with [20])
or to select an optimal bandwidth together with an optimal approximation kernel
among a finite collection of Parzen’s estimators. In this sense, our method deals,
in particular, with the same problem as that of Goldenshluger and Lepski [17] and
we establish in this framework that a leading constant 1 in the oracle inequality is
indeed possible.

Another main consequence of concentration inequalities is to prove the existence
of a minimal level of penalty, under which no oracle inequalities can hold. Birgé and
Massart shed light on this phenomenon in a Gaussian setting for model selection [5].
Moreover in this setting, they prove that the optimal penalty is twice the minimal
one. In addition, there is a sharp phase transition in the dimension of the selected
models leading to an estimate of the optimal penalty in their case (which is known
up to a multiplicative constant). Indeed, starting from the idea that in many models
the optimal penalty is twice the minimal one (this is the slope heuristic), Arlot and
Massart [3] propose to detect the minimal penalty by the phase transition and to
apply the “�2” rule (this is the slope algorithm). They prove that this algorithm
works at least in some regression settings.

In the present work, we also show that minimal penalties exist in the density
estimation setting. In particular, we exhibit a sharp “phase transition” of the behavior
of the selected estimator around this minimal penalty. The analysis of this last result
is not standard however. First, the “slope heuristic” of [5] only holds in particular
cases as the selection of projection estimators, see also [19]. As in the selection of a
linear estimator in a regression setting [2], the heuristic can sometimes be corrected:
for example for the selection of a bandwidth when the approximation kernel is
fixed. In general since there is no simple relation between the minimal penalty and
the optimal one, the slope algorithm of [3] shall only be used with care for kernel
selection. Surprisingly our work reveals that the minimal penalty can be negative.
In this case, minimizing an unpenalized criterion leads to oracle estimators. To our
knowledge, such phenomenon has only been noticed previously in a very particular
classification setting [13]. We illustrate all of these different behaviors by means of
a simulation study.

In Sect. 2, after fixing the main notation, providing some examples and defining
the framework, we explain our goal, describe what we mean by an oracle inequality
and state the exponential inequalities that we shall need. Then we derive optimal
penalties in Sect. 3 and study the problem of minimal penalties in Sect. 4. All
of these results are illustrated for our three main examples : projection kernels,
approximation kernels and weighted projection kernels. In Sect. 5, some simulations
are performed in the approximation kernel case. The main proofs are detailed in
Sect. 6 and technical results are discussed in the appendix.
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2 Kernel Selection for Least-Squares Density Estimation

2.1 Setting

Let X;Y;X1; : : : ;Xn denote i.i.d. random variables taking values in the measurable
space .X;X ; �/, with common distribution P. Assume P has density s with respect
to � and s is uniformly bounded. Hence, s belongs to L2, where, for any p � 1,

Lp WD



t W X ! R; s.t. ktkp
p WD

Z
jtjp d� < 1

�
:

Moreover, k	k D k	k2 and h	; 	i denote respectively the L2-norm and the
associated inner product and k	k1 is the supremum norm. We systematically use x_
y and x ^y for max.x; y/ and min.x; y/ respectively, and denote jAj the cardinality of
the set A. Recall that xC D x_0 and, for any y 2 R

C, byc D supfn 2 N s.t. n � yg.
Let fk gk2K denote a collection of symmetric functions k W X2 ! R indexed by

some given finite set K such that

sup
x2X

Z
X

k.x; y/2d�.y/ _ sup
.x;y/2X2

jk.x; y/j < 1 :

A function k satisfying these assumptions is called a kernel, in the sequel. A kernel
k is associated with an estimator Osk of s defined for any x 2 X by

Osk.x/ WD 1

n

nX
iD1

k.Xi; x/ :

Our aim is to select a “good” OsOk in the family fOsk; k 2 Kg. Our results are expressed
in terms of a constant � � 1 such that for all k 2 K,

sup
x2X

Z
X

k.x; y/2d�.y/ _ sup
.x;y/2X2

jk.x; y/j � �n : (2.1)

This condition plays the same role as
R jk.x; y/js.y/d�.y/ < 1, the milder

condition used in [8] when working with L1-losses. Before describing the method,
let us give three examples of such estimators that are used for density estimation,
and see how they can naturally be associated to some kernels. Section A of the
appendix gives the computations leading to the corresponding �’s.

Example 1 (Projection Estimators) Projection estimators are among the most clas-
sical density estimators. Given a linear subspace S � L2, the projection estimator
on S is defined by

OsS D arg min
t2S

(
ktk2 � 2

n

nX
iD1

t.Xi/

)
:
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Let S be a family of linear subspaces S of L2. For any S 2 S, let .'`/`2IS denote an
orthonormal basis of S. The projection estimator OsS can be computed and is equal to

OsS D
X
`2IS

 
1

n

nX
iD1

'`.Xi/

!
'` :

It is therefore easy to see that it is the estimator associated to the projection kernel
kS defined for any x and y in X by

kS.x; y/ WD
X
`2IS

'`.x/'`.y/ :

Notice that kS actually depends on the basis .'`/`2IS even if OsS does not. In the
sequel, we always assume that some orthonormal basis .'`/`2IS is given with S.
Given a finite collection S of linear subspaces of L2, one can choose the following
constant � in (2.1) for the collection .kS/S2S

� D 1 _ 1

n
sup
S2S

sup
f 2S;kf kD1

k f k21 : (2.2)

Example 2 (Parzen’s Estimators) Given a bounded symmetric integrable function
K W R ! R such that

R
R

K.u/du D 1 and a bandwidth h > 0, the Parzen estimator
is defined by

8x 2 R; OsK;h.x/ D 1

nh

nX
iD1

K

�
x � Xi

h

	
:

It can also naturally be seen as a kernel estimator, associated to the function kK;h

defined for any x and y in R by

kK;h.x; y/ WD 1

h
K
� x � y

h

�
:

We shall call the function kK;h an approximation or Parzen kernel.
Given a finite collection of pairs .K; h/ 2 H, one can choose � D 1 in (2.1) if,

h � kKk1 kKk1
n

for any .K; h/ 2 H : (2.3)

Example 3 (Weighted Projection Estimators) Let .'i/iD1;:::;p denote an orthonormal
system in L2 and let w D .wi/iD1;:::;p denote real numbers in Œ0; 1�. The associated
weighted kernel projection estimator of s is defined by

Osw D
pX

iD1
wi

0
@ 1

n

nX
jD1

'i.Xj/

1
A 'i :
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These estimators are used to derive very sharp adaptive results. In particular,
Pinsker’s estimators are weighted kernel projection estimators (see for example
[23]). When w 2 f0; 1gp, we recover a classical projection estimator. A weighted
projection estimator is associated to the weighted projection kernel defined for any
x and y in X by

kw.x; y/ WD
pX

iD1
wi'i.x/'i.y/ :

Given any finite collection W of weights, one can choose in (2.1)

� D 1 _
 
1

n
sup
x2X

pX
iD1

'i.x/
2

!
: (2.4)

2.2 Oracle Inequalities and Penalized Criterion

The goal is to estimate s in the best possible way using a finite collection of kernel
estimators .Osk/k2K. In other words, the purpose is to select among .Osk/k2K an esti-
mator OsOk from the data such that

��OsOk � s
��2 is as close as possible to infk2K kOsk � sk2.

More precisely our aim is to select Ok such that, with high probability,

��OsOk � s
��2 � Cn inf

k2K kOsk � sk2 C Rn ; (2.5)

where Cn � 1 is the leading constant and Rn > 0 is usually a remaining term. In
this case, OsOk is said to satisfy an oracle inequality, as long as Rn is small compared
to infk2K kOsk � sk2 and Cn is a bounded sequence. This means that the selected
estimator does as well as the best estimator in the family up to some multiplicative
constant. The best case one can expect is to get Cn close to 1. This is why, when
Cn !n!1 1, the corresponding oracle inequality is called asymptotically optimal.
To do so, we study minimizers of penalized least-squares criteria. Note that in our
three examples choosing Ok 2 K amounts to choosing the smoothing parameter, that
is respectively to choosingbS 2 S, .bK; Oh/ 2 H or Ow 2 W .

Let Pn denote the empirical measure, that is, for any real valued function t,

Pn.t/ WD 1

n

nX
iD1

t.Xi/ :

For any t 2 L2, let also P.t/ WD R
X

t.x/s.x/d�.x/ :
The least-squares contrast is defined, for any t 2 L2, by

�.t/ WD ktk2 � 2t :
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Then for any given function pen W K ! R, the least-squares penalized criterion is
defined by

Cpen.k/ WD Pn�.Osk/C pen.k/ : (2.6)

Finally the selected Ok 2 K is given by any minimizer of Cpen.k/, that is,

Ok 2 arg min
k2K

˚
Cpen.k/

�
: (2.7)

As P�.t/ D kt � sk2 � ksk2, it is equivalent to minimize kOsk � sk2 or P�.Osk/. As
our goal is to select OsOk satisfying an oracle inequality, an ideal penalty penid should
satisfy Cpenid

.k/ D P�.Osk/, i.e. criterion (2.6) with

penid.k/ WD .P � Pn/�.Osk/ D 2.Pn � P/.Osk/ :

To identify the main quantities of interest, let us introduce some notation and
develop penid.k/. For all k 2 K, let

sk.x/ WD
Z
X

k.y; x/s.y/d�.y/ D E Œk.X; x/ � ; 8x 2 X ;

and

Uk WD
nX

i¤jD1

�
k.Xi;Xj/� sk.Xi/� sk.Xj/C E Œk.X;Y/ �

�
:

Because those quantities are fundamental in the sequel, let us also define ‚k.x/ D
Ak.x; x/ where for .x; y/ 2 X

2

Ak.x; y/ WD
Z
X

k.x; z/k.z; y/d�.z/ : (2.8)

Denoting

for all x 2 X; �k.x/ D k.x; x/ ;

the ideal penalty is then equal to

penid.k/ D 2.Pn � P/.Osk � sk/C 2.Pn � P/sk

D 2

�
P�k � Psk

n
C .Pn � P/�k

n
C Uk

n2
C
�
1 � 2

n

	
.Pn � P/sk

	
: (2.9)
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The main point is that by using concentration inequalities, we obtain:

penid.k/ ' 2

�
P�k � Psk

n

	
:

The term Psk=n depends on s which is unknown. Fortunately, it can be easily
controlled as detailed in the sequel. Therefore one can hope that the choice

pen.k/ D 2
P�k

n

is convenient. In general, this choice still depends on the unknown density s but it
can be easily estimated in a data-driven way by

pen.k/ D 2
Pn�k

n
:

The goal of Sect. 3 is to prove this heuristic and to show that 2P�k=n and 2Pn�k=n
are optimal choices for the penalty, that is, they lead to an asymptotically optimal
oracle inequality.

2.3 Concentration Tools

To derive sharp oracle inequalities, we only need two fundamental concentration
tools, namely a weak Bernstein’s inequality and the concentration bounds for
degenerate U-statistics of order two. We cite them here under their most suitable
form for our purpose.

A Weak Bernstein’s Inequality

Proposition 2.1 For any bounded real valued function f and any X1; : : : ;Xn i.i.d.
with distribution P, for any u > 0,

Pr .Pn � P/f �
s
2P . f 2 / u

n
C k f k1 u

3n
� exp.�u/ :

The proof is straightforward and can be derived from either Bennett’s or Bernstein’s
inequality [6].

Concentration of Degenerate U-Statistics of Order 2

Proposition 2.2 Let X;X1; : : :Xn be i.i.d. random variables defined on a Polish
space X equipped with its Borel �-algebra and let

�
fi;j
�
1�i6Dj�n

denote bounded
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real valued symmetric measurable functions defined on X
2, such that for any i 6D j,

fi;j D fj;i and

8 i; j s.t. 1 � i ¤ j � n; E


fi;j.x;X/
� D 0 for a.e. x in X : (2.10)

Let U be the following totally degenerate U-statistic of order 2,

U D
X

1�i¤j�n

fi;j.Xi;Xj/ :

Let A be an upper bound of
ˇ̌
fi;j.x; y/

ˇ̌
for any i; j; x; y and

B2 D max

0
@ sup

i;x2X

i�1X
jD1

E


fi;j.x;Xj/
2
�
; sup

j;t2X

nX
iDjC1

E


fi;j.Xi; t/
2
�
1
A

C2 D
X

1�i¤j�n

E


fi;j.Xi;Xj/
2
�

D D sup
.a;b/2A

E

2
4 X
1�i<j�n

fi;j.Xi;Xj/ai.Xi/bj.Xj/

3
5 ;

where A D
8<
: .a; b/; s.t. E

"
n�1X
iD1

ai.Xi/
2

#
� 1; E

2
4 nX

jD2
bj.Xj/

2

3
5 � 1

9=
; :

Then there exists some absolute constant � > 0 such that for any u > 0, with
probability larger than 1 � 2:7e�u,

U � �
�
C

p
u C Du C Bu3=2 C Au2

�
:

The present result is a simplification of Theorem 3.4.8 in [15], which provides
explicit constants for any variables defined on a Polish space. It is mainly inspired
by Houdré and Reynaud-Bouret [18], where the result therein has been stated only
for real variables. This inequality actually dates back to Giné et al. [16]. This result
has been further generalized by Adamczak to U-statistics of any order [1], though
the constants are not explicit.

3 Optimal Penalties for Kernel Selection

The main aim of this section is to show that 2P�k=n is a theoretical optimal penalty
for kernel selection, which means that if pen.k/ is close to 2P�k=n, the selected
kernel Ok satisfies an asymptotically optimal oracle inequality.
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3.1 Main Assumptions

To express our results in a simple form, a positive constant‡ is assumed to control,
for any k and k0 in K, all the following quantities.

.�.1C ksk1/ / _ sup
k2K

kskk2 � ‡ ; (3.11)

P
�
�2k
� � ‡nP‚k ; (3.12)

ksk � sk0k1 � ‡ _ p
‡n ksk � sk0k ; (3.13)

E


Ak.X;Y/
2
� � ‡P‚k ; (3.14)

sup
x2X

E


Ak.X; x/
2
� � ‡n ; (3.15)

v2k WD sup
t2Bk

Pt2 � ‡ _
p
‡P‚k ; (3.16)

where Bk is the set of functions t that can be written t.x/ D R
a.z/k.z; x/d�.z/ for

some a 2 L2 with kak � 1.
These assumptions may seem very intricate. They are actually fulfilled by our

three main examples under very mild conditions (see Sect. 3.3).

3.2 The Optimal Penalty Theorem

In the sequel, � denotes a positive absolute constant whose value may change from
line to line and if there are indices such as �� , it means that this is a positive function
of � and only � whose value may change from line to line.

Theorem 3.1 If Assumptions (3.11)–(3.16) hold, then, for any x � 1, with
probability larger than 1 � �jKj2e�x, for any � 2 .0; 1/, any minimizer Ok of the
penalized criterion (2.6) satisfies the following inequality

8k 2 K; .1 � 4�/ ��s � OsOk
��2 � .1C 4�/ ks � Oskk2 C

�
pen.k/� 2

P�k

n

	

�
�

pen
� Ok
�

� 2
P�Ok

n

	
C �‡x2

�n
: (3.17)

Assume moreover that there exists C > 0, ı0 � ı > 0 and r � 0 such that for any
x � 1, with probability larger than 1 � Ce�x, for any k 2 K,

.ı � 1/P‚k

n
� �r

‡x2

n
� pen.k/ � 2P�k

n
� .ı0 � 1/

P‚k

n
C �r

‡x2

n
: (3.18)
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Then for all � 2 .0; 1/ and all x � 1, the following holds with probability at least
1 � �.C C jKj2/e�x,

.ı ^ 1/� 5�
.ı0 _ 1/C .4C ı0/�

��s � OsOk
��2 � inf

k2K ks � Oskk2 C �
�

r C 1

�3

	
‡x2

n
:

Let us make some remarks.

• First, this is an oracle inequality (see (2.5)) with leading constant Cn and
remaining term Rn given by

Cn D .ı0 _ 1/C .4C ı0/�
.ı ^ 1/� 5�

and Rn D �Cn.r C ��3/
‡x2

n
;

as long as

– � is small enough for Cn to be positive,
– x is large enough for the probability to be large and
– n is large enough for Rn to be negligible.

Typically, r; ı; ı0; � and ‡ are bounded w.r.t. n and x has to be of the order of
log.jKj _ n/ for the remainder to be negligible. In particular, K may grow with n
as long as (i) log.jKj _ n/2 remains negligible with respect to n and (ii) ‡ does
not depend on n.

• If pen.k/ D 2P�k=n, that is if ı D ı0 D 1 and r D C D 0 in (3.18), the estimator
OsOk satisfies an asymptotically optimal oracle inequality i.e. Cn !n!1 1 since �
can be chosen as close to 0 as desired. Take for instance, � D .log n/�1.

• In general P�k depends on the unknown s and this last penalty cannot be used in
practice. Fortunately, its empirical counterpart pen.k/ D 2Pn�k=n satisfies (3.18)
with ı D 1 � � , ı0 D 1 C � , r D 1=� and C D 2jKj for any � 2 .0; 1/ and
in particular � D .log n/�1 (see (6.34) in Proposition B.1). Hence, the estimator
OsOk selected with this choice of penalty also satisfies an asymptotically optimal
oracle inequality, by the same argument.

• Finally, we only get an oracle inequality when ı > 0, that is when pen.k/ is larger
than .2P�k � P‚k/=n up to some residual term. We discuss the necessity of this
condition in Sect. 4.

3.3 Main Examples

This section shows that Theorem 3.1 can be applied in the examples. In addition, it
provides the computation of 2P�k=n in some specific cases of special interest.

Example 1 (Continued)
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Proposition 3.2 Let fkS; S 2 S g be a collection of projection kernels. Assump-
tions (3.11), (3.12), (3.14), (3.15) and (3.16) hold for any‡ � �.1Cksk1/, where
� is given by (2.2). In addition, Assumption (3.13) is satisfied under either of the
following classical assumptions (see [20, Chap. 7]):

8S; S0 2 S; either S � S0 or S0 � S ; (3.19)

or

8S 2 S; kskSk1 � ‡

2
: (3.20)

These particular projection kernels satisfy for all .x; y/ 2 X
2

AkS.x; y/ D
Z
X

kS.x; z/kS.y; z/d�.z/

D
X

.i;j/2I2S
'i.x/'j.y/

Z
X

'i.z/'j.z/d�.z/ D kS.x; y/ :

In particular,‚kS D �kS D P
i2IS

'2i and 2P�kS � P‚kS D P�kS .
Moreover, it appears that the function ‚kS is constant in some linear spaces S

of interest (see [19] for more details). Let us mention one particular case studied
further on in the sequel. Suppose S is a collection of regular histogram spaces S on
X, that is, any S 2 S is a space of piecewise constant functions on a partition IS

of X such that �.i/ D 1=DS for any i in IS. Assumption (3.20) is satisfied for this
collection as soon as ‡ � 2 ksk1. The family .'i/i2IS , where 'i D p

DS1i is an
orthonormal basis of S and

�kS D
X
i2IS

'2i D DS :

Hence, P�kS D DS and 2DS=n can actually be used as a penalty to ensure that the
selected estimator satisfies an asymptotically optimal oracle inequality. Moreover,
in this example it is actually necessary to choose a penalty larger than DS=n to get
an oracle inequality (see [19] or Sect. 4 for more details).

Example 2 (Continued)

Proposition 3.3 Let fkK;h; .K; h/ 2 H g be a collection of approximation kernels.
Assumptions (3.11)–(3.16) hold with � D 1, for any

‡ � max
K


 jK.0/j
kKk2 _

�
1C 2 ksk1 kKk21

��
;

as soon as (2.3) is satisfied.
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These approximation kernels satisfy, for all x 2 R,

�kK;h.x/ D kK;h.x; x/ D K.0/

h
;

‚kK;h.x/ D AkK;h.x; x/ D 1

h2

Z
R

K
� x � y

h

�2
dy D kKk2

h
:

Therefore, the optimal penalty 2P�kK;h=n D 2K.0/=.nh/ can be computed in
practice and yields an asymptotically optimal selection criterion. Surprisingly, the
lower bound 2P�kK;h=n � P‚kK;h=n D .2K.0/ � kKk2/=.nh/ can be negative if
kKk2 > 2K.0/ and even if K(0) > 0, which is usually the case for Parzen kernels. In
this case, a minimizer of (2.6) satisfies an oracle inequality, even if this criterion is
not penalized. This remarkable fact is illustrated in the simulation study in Sect. 5.

Example 3 (Continued)

Proposition 3.4 Let fkw;w 2 W g be a collection of weighted projection kernels.
Assumption (3.11) is valid for ‡ � �.1 C ksk1/, where � is given by (2.4).
Moreover (3.11) and (2.1) imply (3.12)–(3.16).

For these weighted projection kernels, for all x 2 X

�kw.x/ D
pX

iD1
wi'i.x/

2; hence P�kw D
pX

iD1
wiP'

2
i and

‚kw.x/ D
pX

i;jD1
wiwj'i'j

Z
X

'i.x/'j.x/d�.x/ D
pX

iD1
w2i 'i.x/

2 � �kw.x/ :

In this case, the optimal penalty 2P�kw=n has to be estimated in general. However,
in the following example it can still be directly computed.

Let X D Œ0; 1�, let � be the Lebesgue measure. Let '0 � 1 and, for any j � 1,

'2j�1.x/ D p
2 cos.2�jx/; '2j.x/ D p

2 sin.2�jx/ :

Consider some odd p and a family of weights W D fwi; i D 0; : : : ; pg such that,
for any w 2 W and any i D 1; : : : ; p=2; w2i�1 D w2i D �i. In this case, the values
of the functions of interest do not depend on x

�kw D w0 C
p=2X
jD1

�j; ‚kw D w20 C
p=2X
jD1

�2j :

In particular, this family includes Pinsker’s and Tikhonov’s weights.
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4 Minimal Penalties for Kernel Selection

The purpose of this section is to see whether the lower bound penmin.k/ WD .2P�k �
P‚k/=n is sharp in Theorem 3.1. To do so we first need the following result which
links ks � Oskk to deterministic quantities, thanks to concentration tools.

4.1 Bias-Variance Decomposition with High Probability

Proposition 4.1 Assume fk gk2K is a finite collection of kernels satisfying Assump-
tions (3.11)–(3.16). For all x > 1, for all � in .0; 1�, with probability larger than
1 � �jKje�x

ksk � Oskk2 � .1C �/
P‚k

n
C �‡x2

�n
;

P‚k

n
� .1C �/ ksk � Oskk2 C �‡x2

�n
:

Moreover, for all x > 1 and for all � in .0; 1/, with probability larger than 1 �
�jKje�x, for all k 2 K, each of the following inequalities hold

ks � Oskk2 � .1C �/

�
ks � skk2 C P‚k

n

	
C �‡x2

�3n
;

ks � skk2 C P‚k

n
� .1C �/ ks � Oskk2 C �‡x2

�3n
:

This means that not only in expectation but also with high probability can the term
ks � Oskk2 be decomposed in a bias term ks � skk2 and a “variance” term P‚k=n. The
bias term measures the capacity of the kernel k to approximate s whereas P‚k=n is
the price to pay for replacing sk by its empirical version Osk. In this sense, P‚k=n
measures the complexity of the kernel k in a way which is completely adapted to
our problem of density estimation. Even if it does not seem like a natural measure
of complexity at first glance, note that in the previous examples, it is indeed always
linked to a natural complexity. When dealing with regular histograms defined on
Œ0; 1�, P‚kS is the dimension of the considered space S, whereas for approximation
kernels P‚kK;h is proportional to the inverse of the considered bandwidth h.
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4.2 Some General Results About the Minimal Penalty

In this section, we assume that we are in the asymptotic regime where the number
of observations n ! 1. In particular, the asymptotic notations refers to this regime.

From now on, the family K D Kn may depend on n as long as both � and
‡ remain absolute constants that do not depend on it. Indeed, on the previous
examples, this seems a reasonable regime. Since Kn now depends on n, our selected
Ok D Okn also depends on n.

To prove that the lower bound penmin.k/ is sharp, we need to show that the
estimator chosen by minimizing (2.6) with a penalty smaller than penmin does not
satisfy an oracle inequality. This is only possible if the ks � Oskk2’s are not of the
same order and if they are larger than the remaining term �.r C ��3/‡x2=n. From
an asymptotic point of view, we rewrite this thanks to Proposition 4.1 as for all
n � 1, there exist k0;n and k1;n in Kn such that

��s � sk1;n

��2C P‚k1;n

n
���s � sk0;n

��2C P‚k0;n

n
��

�
r C 1

�3

	
‡x2

n
; (4.21)

where an � bn means that bn=an !n!1 0. More explicitly, denoting by o.1/ a
sequence only depending on n and tending to 0 as n tends to infinity and whose
value may change from line to line, one assumes that there exists cs and cR positive
constants such that for all n � 1, there exist k0;n and k1;n in Kn such that

��s � sk0;n

��2 C P‚k0;n

n
� cs o.1/

���s � sk1;n

��2 C P‚k1;n

n

	
(4.22)

.log.jKnj _ n//3

n
� cR o.1/

���s � sk0;n

��2 C P‚k0;n

n

	
: (4.23)

We put a log-cube factor in the remaining term to allow some choices of � D
�n !n!1 0 and r D rn !n!1 C1.

But (4.22) and (4.23) (or (4.21)) are not sufficient. Indeed, the following result
explains what happens when the bias terms are always the leading terms.

Corollary 4.2 Let .Kn/n�1 be a sequence of finite collections of kernels k satisfying
Assumptions (3.11)–(3.16) for a positive constant‡ independent of n and such that

1

n
D cb o.1/ inf

k2Kn

ks � skk2
P‚k

; (4.24)

for some positive constant cb.
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Assume that there exist real numbers of any sign ı0 � ı and a sequence .rn/n�1
of nonnegative real numbers such that, for all n � 1, with probability larger than
1 � �=n2, for all k 2 Kn,

ı
P‚k

n
� �ı;ı0 ;‡

rn log.n _ jKnj/2
n

� pen.k/ � 2P�k � P‚k

n
� ı0 P‚k

n
C �ı;ı0 ;‡

rn log.n _ jKnj/2
n

:

Then, with probability larger than 1 � �=n2,

���s � OsOkn

���2 �

.1C �ı;ı0 ;‡;cb o.1// inf
k2Kn

ks � Oskk2 C �ı;ı0 ;‡ . rn C log n /
log.n _ jKnj/2

n
:

The proof easily follows by taking � D .log n/�1 in (3.17), � D 2 for instance
in Proposition 4.1 and by using Assumption (4.24) and the bounds on pen.k/.
This result shows that the estimator OsOkn

satisfies an asymptotically optimal oracle
inequality when condition (4.24) holds, whatever the values of ı and ı0 even when
they are negative. This proves that the lower bound penmin is not sharp in this case.

Therefore, we have to assume that at least one bias ks � skk2 is negligible with
respect to P‚k=n. Actually, to conclude, we assume that this happens for k1;n
in (4.21).

Theorem 4.3 Let .Kn/n�1 be a sequence of finite collections of kernels satisfying
Assumptions (3.11)–(3.16), with ‡ not depending on n. Each Kn is also assumed to
satisfy (4.22) and (4.23) with a kernel k1;n 2 Kn in (4.22) such that

��s � sk1;n

��2 � c o.1/
P‚k1;n

n
; (4.25)

for some fixed positive constant c. Suppose that there exist ı � ı0 > 0 and a
sequence .rn/n�1 of nonnegative real numbers such that rn � � log.jKnj _ n/ and
such that for all n � 1, with probability larger than 1 � �n�2, for all k 2 Kn,

2P�k � P‚k

n
� ı

P‚k

n
� �ı;ı0 ;‡

rn log.jKnj _ n/2

n
� pen.k/

� 2P�k � P‚k

n
� ı0 P‚k

n
C �ı;ı0 ;‡

rn log.jKnj _ n/2

n
: (4.26)
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Then, with probability larger than 1 � �=n2, the following holds

P‚Okn
�
�
ı0

ı
C �ı;ı0 ;‡;c;cs;cR o.1/

	
P‚k1;n and (4.27)

���s � OsOkn

���2 �
�
ı0

ı
C �ı;ı0 ;‡;c;cs;cR o.1/

	��s � Osk1;n

��2

� ��s � Osk0;n

��2 � inf
k2Kn

ks � Oskk2 : (4.28)

By (4.28), under the conditions of Theorem 4.3, the estimator OsOkn
cannot satisfy

an oracle inequality, hence, the lower bound .2P�k � P‚k/=n in Theorem 3.1 is
sharp. This shows that .2P�k � P‚k/=n is a minimal penalty in the sense of [5] for
kernel selection. When

pen.k/ D 2P�k � P‚k

n
C �

P‚k

n
;

the complexity P‚Okn
presents a sharp phase transition when � becomes positive.

Indeed, when � < 0 it follows from (4.27) that the complexity P‚Okn
is asymptoti-

cally larger than P‚k1;n. But on the other hand, as a consequence of Theorem 3.1,
when � > 0, this complexity becomes smaller than

��n inf
k2Kn

�
ks � skk2 C P‚k

n

	
� ��

�
n
��s � sk0;n

��2 C P‚k0;n

�

� ��

�
n
��s � sk1;n

��2 C P‚k1;n

�
� ��P‚k1;n :

4.3 Examples

Example 1 (Continued) Let S D Sn be the collection of spaces of regular
histograms on Œ0; 1� with dimensions f1; : : : ; n g and let OS D OSn be the selected
space thanks to the penalized criterion. Recall that, for any S 2 Sn, the orthonormal
basis is defined by 'i D p

DS1i and P‚kS D DS. Assume that s is ˛-Hölderian, with
˛ 2 .0; 1�with ˛-Hölderian norm L. It is well known (see for instance Section 1.3.3.
of [4]) that the bias is bounded above by

ks � skS k2 � �LD�2˛
S :

In particular, if DS1 D n,

��s � skS1

��2 � �Ln�2˛ � 1 D DS1

n
D P‚kS1

n
:
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Thus, (4.25) holds for kernel kS1 . Moreover, if DS0 D bp
nc,

.log.n _ jSnj/3
n

� ��s � skS0

��2 C DS0

n
� �L

�
1

n˛
C 1p

n

	

� ��s � skS1

��2 C DS1

n
:

Hence, (4.21) holds with k0;n D kS0 and k1;n D kS1 . Therefore, Theorem 4.3 and
Theorem 3.1 apply in this example. If pen.kS/ D .1�ı/DS=n, the dimension DkbSn

�
�ın and OskbSn

is not consistent and does not satisfy an oracle inequality. On the other

hand, if pen.kS/ D .1C ı/DS=n,

DbSn
� �L;ı

�
n1�˛ C p

n
� � DS1 D n

and OskbSn
satisfies an oracle inequality which implies that, with probability larger

than 1� �=n2,

���s � OskbSn

���2 � �˛;L;ın
�2˛=.2˛C1/ ;

by taking DS ' n1=.2˛C1/: It achieves the minimax rate of convergence over the
class of ˛-Hölderian functions.

From Theorem 3.1, the penalty pen.kS/ D 2DS=n provides an estimator OskbSn
that

achieves an asymptotically optimal oracle inequality. Therefore the optimal penalty
is equal to 2 times the minimal one. In particular, the slope heuristics of [5] holds in
this example, as already noticed in [19].

Finally to illustrate Corollary 4.2, let us take s.x/ D 2x and the collection
of regular histograms with dimension in f1; : : : ; bnˇcg, with ˇ < 1=3. Simple
calculations show that

ks � skS k2
DS

� �D�3
S � �n�3ˇ � n�1:

Hence (4.24) applies and the penalized estimator with penalty pen.kS/ ' ı DS
n

always satisfies an oracle inequality even if ı D 0 or ı < 0. This was actually
expected since it is likely to choose the largest dimension which is also the oracle
choice in this case.

Example 2 (Continued) Let K be a fixed function, let H D Hn denote the following
grid of bandwidths

H D

 kKk1 kKk1

i
= i D 1; : : : ; n

�
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and let Oh D Ohn be the selected bandwidth. Assume as before that s is a density on
Œ0; 1� that belongs to the Nikol’ski class N .˛;L/ with ˛ 2 .0; 1� and L > 0. By
Proposition 1.5 in [25], if K satisfies

R juj˛ jK.u/j du < 1
��s � skK;h

��2 � �˛;K;Lh2˛ :

In particular, when h1 D kKk1 kKk1 =n,

��s � skK;h1

��2 � �˛;K;Ln�2˛ � P‚kK;h1

n
D kKk2

kKk1 kKk1
:

On the other hand, for h0 D kKk1 kKk1 =
�p

n
˘

,

.log n _ jHnj/2
n

� ��s � skK;h0

��2 C P‚kK;h0

n

� �K;˛;L

�
1

n˛
C 1p

n

	
� ��s � skK;h1

��2 C P‚kK;h1

n
:

Hence, (4.21) and (4.25) hold with kernels k0;n D kK;h0 and k1;n D kK;h1 . Therefore,
Theorems 4.3 and 3.1 apply in this example. If for some ı > 0 we set pen.kK;h/ D
.2K.0/� kKk2 � ı kKk2/=.nh/, then Ohn � �ı;Kn�1 and OskK;Ohn

is not consistent and
does not satisfy an oracle inequality. On the other hand, if pen.kK;h/ D .2K.0/ �
kKk2 C ı kKk2/=.nh/, then

Ohn � �ı;K;L
�

n1�˛ C p
n
��1 � �ı;K;Ln�1 ;

and OsK;k
Ohn

satisfies an oracle inequality which implies that, with probability larger

than 1� �=n2,

���s � OskK;Ohn

���2 � �˛;K;L;ın
�2˛=.2˛C1/ ;

for h D kKk1 kKk1 =
�

n1=.2˛C1/˘ 2 H: In particular it achieves the minimax rate
of convergence over the class N .˛;L/. Finally, if pen.kK;h/ D 2K.0/=.nh/, OskK;Ohn
achieves an asymptotically optimal oracle inequality, thanks to Theorem 3.1.

The minimal penalty is therefore

penmin.kK;h/ D 2K.0/� kKk2
nh

:
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In this case, the optimal penalty penopt.kK;h/ D 2K.0/=.nh/ derived from Theo-

rem 3.1 is not twice the minimal one, but one still has, if 2K.0/ ¤ kKk2,

penopt.kK;h/ D 2K.0/

2K.0/� kKk2 penmin.kK;h/ ;

even if they can be of opposite sign depending on K. This type of nontrivial
relationship between optimal and minimal penalty has already been underlined in
[2] in regression framework for selecting linear estimators.

Note that if one allows two kernel functions K1 and K2 in the family of kernels
such that 2K1.0/ ¤ kK1k2, 2K2.0/ ¤ kK2k2 and

2K1.0/

2K1.0/� kK1k2
¤ 2K2.0/

2K2.0/� kK2k2
;

then there is no absolute constant multiplicative factor linking the minimal penalty
and the optimal one.

5 Small Simulation Study

In this section we illustrate on simulated data Theorems 3.1 and 4.3. We focus on
approximation kernels only, since projection kernels have been already discussed in
[19].

We observe an n D 100 i.i.d. sample of standard gaussian distribution. For a
fixed parameter a � 0 we consider the family of kernels

kKa;h.x; y/ D 1

h
Ka

� x � y

h

�
with h 2 H D



1

2i
; i D 1; : : : ; 50

�
;

where for x 2 R; Ka.x/ D 1

2
p
2�

�
e� .x�a/2

2 C e� .xCa/2

2

	
:

In particular the kernel estimator with a D 0 is the classical Gaussian kernel
estimator. Moreover

Ka.0/ D 1p
2�

exp

�
�a2

2

	
and kKak2 D 1C e�a2

4
p
�

:

Thus, depending on the value of a, the minimal penalty .2Ka.0/�kKak2/=.nh/may
be negative. We study the behavior of the penalized criterion

Cpen .kKa;h / D Pn�.OskKa ;h
/C pen.kKa;h/
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with penalties of the form

pen .kKa;h / D 2Ka.0/� kKak2
nh

C �
kKak2

nh
; (5.29)

for different values of � (� D �1; 0; 1) and a (a D 0; 1:5; 2; 3). On Fig. 1 are
represented the selected estimates by the optimal penalty 2Ka.0/=.nh/ for the
different values of a and on Fig. 2 one sees the evolution of the different penalized
criteria as a function of 1=h. The contrast curves for a D 0 are classical on
Fig. 2. Without penalization, the criterion decreases and leads to the selection of
the smallest bandwidth. At the minimal penalty, the curve is flat and at the optimal
penalty one selects a meaningful bandwidth as shown on Fig. 1.
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Fig. 1 Selected approximation kernel estimators when the penalty is the optimal one, i.e.
2Ka.0/=.nh/
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Fig. 3 Behavior of 1=Oh, which is proportional to the complexity P‚kKa ;h
, for the estimator selected

by the criterion whose penalty is given by (5.29), as a function of �

When a > 0, despite the choice of those unusual kernels, the reconstructions on
Fig. 1 for the optimal penalty are also meaningful. However when a D 2 or a D 3,
the criterion with minimal penalty is smaller than the unpenalized criterion, meaning
that minimizing the latter criterion leads by Theorem 3.1 to an oracle inequality. In
our simulation, when a D 3, the curves for the optimal criterion and the unpenalized
one are so close that the same estimator is selected by both methods.

Finally Fig. 3 shows that there is indeed in all cases a sharp phase transition
around � D 0 i.e. at the minimal penalty for the complexity of the selected estimate.

6 Proofs

6.1 Proof of Theorem 3.1

The starting point to prove the oracle inequality is to notice that any minimizer Ok of
Cpen satisfies

��s � OsOk
��2 � ks � Oskk2 C .pen.k/ � penid.k/ /�

�
pen

� Ok
�

� penid

� Ok
��

:
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Using the expression of the ideal penalty (2.9) we find

��s � OsOk
��2 � ks � Oskk2 C

�
pen.k/ � 2P�k

n

	
�
�

pen
� Ok
�

� 2P�Ok
n

	

C 2
P.sk � sOk/

n
C 2

�
1 � 2

n

	
.Pn � P/.sOk � sk/

C 2
.Pn � P/.�Ok � �k/

n
C 2

UOk � Uk

n2
: (6.30)

By Proposition B.1 (see the appendix), for all x > 1, for all � in .0; 1/, with
probability larger than 1 � .7:4jKj C 2jKj2/e�x,

��s � OsOk
��2 � ks � Oskk2 C

�
pen.k/ � 2P�k

n

	
�
�

pen
� Ok
�

� 2P�Ok
n

	

C �
��s � sOk

��2 C � ks � skk2 C � ‡

�n

C
�
1 � 2

n

	
�
��s � sOk

��2 C
�
1 � 2

n

	
� ks � skk2 C �‡x2

�n

C �
P‚k

n
C �

P‚Ok
n

C �‡x

�n
C �

P‚k

n
C �

P‚Ok
n

C �‡x2

�n

Hence

��s � OsOk
��2 � ks � Oskk2 C

�
pen.k/ � 2P�k

n

	
�
�

pen
� Ok
�

� 2
P�Ok

n

	

C 2�

���s � sOk
��2 C P‚Ok

n

�
C 2�

�
ks � skk2 C P‚k

n

�
C �‡x2

�n
:

This bound holds using (3.11)–(3.13) only. Now by Proposition 4.1 applied with
� D 1, we have for all x > 1, for all � 2 .0; 1/, with probability larger than
1 � .16:8jKj C 2jKj2/e�x,

��s � OsOk
��2 � ks � Oskk2 C

�
pen.k/ � 2P�k

n

	
�
�

pen
� Ok
�

� 2P�Ok
n

	

C 4�
��s � OsOk

��2 C 4� ks � Oskk2 C �‡x2

�n
:

This gives the first part of the theorem.
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For the second part, by the condition (3.18) on the penalty, we find for all x > 1,
for all � in .0; 1/, with probability larger than 1 � .C C 16:8jKj C 2jKj2/e�x,

.1 � 4�/ ��s � OsOk
��2 �

.1C 4�/ ks � Oskk2 C .ı0 � 1/C P‚k

n
C .1 � ı/C

P‚Ok
n

C �
�

r C 1

�

	
‡x2

n
:

By Proposition 4.1 applied with � D � , we have with probability larger than 1 �
.C C 26:2jKj C 2jKj2/e�x,

.1 � 4�/ ��s � OsOk
��2 � .1C 4�/ ks � Oskk2 C .ı0 � 1/C.1C �/ks � Oskk2

C .1 � ı/C.1C �/
��s � OsOk

��2 C �
�

r C 1

�3

	
‡x2

n
;

that is

. .ı ^ 1/� �.4C .1 � ı/C/ /
��s � OsOk

��2

� �
.ı0 _ 1/C �.4C .ı0 � 1/C/

� ks � Oskk2 C �
�

r C 1

�3

	
‡x2

n
:

Hence, because 1 � Œ.ı0 _ 1/C .4C .ı0 � 1/C/�� � .ı0 _ 1/C .4C ı0/� , we obtain
the desired result.

6.2 Proof of Proposition 4.1

First, let us denote for all x 2 X

FA;k.x/ WD E ŒAk.X; x/ � ; �k.x/ WD
Z
.k.y; x/ � sk.y/ /

2 d�.y/ ;

and

UA;k WD
nX

i¤jD1

�
Ak.Xi;Xj/ � FA;k.Xi/� FA;k.Xj/C E ŒAk.X;Y/ �

�
:

Some easy computations then provide the following useful equality

ksk � Oskk2 D 1

n
Pn�k C 1

n2
UA;k :
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We need only treat the terms on the right-hand side, thanks to the probability tools
of Sect. 2.3. Applying Proposition 2.1, we get, for any x � 1, with probability larger
than 1� 2 jKj e�x,

j.Pn � P/�kj �
r
2x

n
P�2k C k�kk1 x

3n
:

One can then check the following link between �k and ‚k

P�k D
Z
.k.y; x/ � sk.x/ /

2 s.y/d�.x/d�.y/ D P‚k � kskk2 :

Next, by (2.1) and (3.11)

k�kk1 D sup
y2X

Z
.k.y; x/� E Œk.X; x/ � /2 d�.x/

� 4 sup
y2X

Z
k.y; x/2d�.x/ � 4‡n :

In particular, since �k � 0,

P�2k � k�kk1 P�k � 4‡nP‚k :

It follows from these computations and from (3.11) that there exists an absolute
constant � such that, for any x � 1, with probability larger than 1 � 2 jKj e�x, for
any � 2 .0; 1/,

jPn�k � P‚kj � �P‚k C �‡x

�
:

We now need to control the term UA;k. From Proposition 2.2, for any x � 1, with
probability larger than 1 � 5:4 jKj e�x,

jUA;kj
n2

� �
n2
�

C
p

x C Dx C Bx3=2 C Ax2
�
:

By (2.1), (3.11) and Cauchy-Schwarz inequality,

A D 4 sup
.x;y/2X2

Z
k.x; z/k.y; z/d�.z/ � 4 sup

x2X

Z
k.x; z/2d�.z/ � 4‡n :

In addition, by (3.15), B2 � 16 supx2X E


Ak.X; x/2
� � 16‡n :
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Moreover, applying the Assumption (3.14),

C2 �
nX

i¤jD1
E


Ak.Xi;Xj/
2
� D n2E


Ak.X;Y/

2
� � n2‡P‚k :

Finally, applying the Cauchy-Schwarz inequality and proceeding as for C2, the
quantity used to define D can be bounded above as follows:

E

2
4 n�1X

iD1

nX
jDiC1

ai.Xi/bj.Xj/Ak.Xi;Xj/

3
5 � n

p
E ŒAk.X;Y/2 � � n

p
‡P‚k :

Hence for any x � 1, with probability larger than 1� 5:4 jKj e�x,

for any � 2 .0; 1/; jUA;kj
n2

� �
P‚k

n
C �‡x2

�n
:

Therefore, for all � 2 .0; 1/,
ˇ̌
ˇ̌kOsk � skk2 � P‚k

n

ˇ̌
ˇ̌ � 2�

P‚k

n
C �‡x2

�n
;

and the first part of the result follows by choosing � D �=2. Concerning the two
remaining inequalities appearing in the proposition, we begin by developing the
loss. For all k 2 K

kOsk � sk2 D kOsk � skk2 C ksk � sk2 C 2hOsk � sk; sk � si :

Then, for all x 2 X

FA;k.x/� sk.x/ D
Z

s.y/
Z

k.x; z/k.z; y/d�.z/d�.y/ �
Z

s.z/k.z; x/d�.z/

D
Z �Z

s.y/k.z; y/d�.y/� s.z/

	
k.x; z/d�.z/

D
Z
. sk.z/ � s.z/ / k.z; x/d�.z/ :

Moreover, since PFA;k D kskk2, we find

hOsk � sk; sk � si D
Z
. Osk.x/ . sk.x/� s.x/ / / d�.x/C E Œ sk.X/ � � kskk2

D 1

n

nX
iD1

Z
.k.x;Xi/ .sk.x/� s.x/ / / d�.x/C P.sk � FA;k/
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D 1

n

nX
iD1

.FA;k.Xi/� sk.Xi/ /C P.sk � FA;k/

D .Pn � P/.FA;k � sk/ :

This expression motivates us to apply again Proposition 2.1 to this term. We find
by (2.1), (3.11) and Cauchy-Schwarz inequality

sup
x2X

jFA;k.x/� sk.x/j � ks � skk sup
x2X

Z js.z/ � sk.z/j
ks � skk k.x; z/d�.z/

� ks � skk
s

sup
x2X

Z
k.x; z/2d�.z/ � ks � skk

p
‡n :

Moreover,

P .FA;k � sk /
2 � ks � skk2 P

�Z js.z/ � sk.z/j
ks � skk k.:; z/d�.z/

	2

� ks � skk2 v2k :

Thus by (3.16), for any �; u > 0,
s
2P .FA;k � sk /

2 x

n
� � ks � skk2 C

�
‡ _ p

‡P‚k
�

x

2�n

� � ks � skk2 C ‡x

�n
_
�

u

�

P‚k

n
C ‡x2

16�un

	
:

Hence, for any � 2 .0; 1/ and x � 1, taking u D �2

s
2P .FA;k � sk /

2 x

n
� �

�
ks � skk2 C P‚k

n

	
C �‡x2

�3n
:

By Proposition 2.1, for all � in .0; 1/ , for all x > 0 with probability larger than
1 � 2jKje�x,

2 jhOsk � sk; sk � sij � 2

s
2P .FA;k � sk /

2 x

n
C 2 ks � skk

p
‡n

x

3n

� 3�

�
ks � skk2 C P‚k

n

	
C �‡x2

�3n
:
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Putting together all of the above, one concludes that for all � in .0; 1/, for all x > 1,
with probability larger than 1 � 9:4jKje�x

kOsk � sk2 � ksk � sk2 � 3� ks � skk2 C .1C 4�/
P‚k

n
C �‡x2

�3n

and

kOsk � sk2 � ksk � sk2 � �3�
�

ks � skk2 C P‚k

n

	
C .1 � �/P‚k

n
� �‡x2

�3n
:

Choosing, � D �=4 leads to the second part of the result.

6.3 Proof of Theorem 4.3

It follows from (3.17) (applied with � D �.log n/�1 and x D � log.n _ jKnj/) and
Assumption (4.26) that with probability larger than 1��n�2 we have for any k 2 K
and any n � 2

���OsOkn
� s
���2 �

�
1C �

log n

	
kOsk � sk2 � .1C ı0/

�
1C �

log n

	
P‚k

n

C .1C ı/

�
1C �

log n

	
P‚Okn

n
C �ı;ı0 ;‡

log.jKnj _ n/3

n
: (6.31)

Applying this inequality with k D k1;n and using Proposition 4.1 with � D
�.log n/�1=3 and x D � log.jKnj _ n/ as a lower bound for

���OsOkn
� s
���2 and as an

upper bound for
��Osk1;n � s

��2, we obtain asymptotically that with probability larger
than 1� �n�2,

� ı.1C �ı o.1//
P‚Okn

n
� .1C o.1//

��sk1;n � s
��2 � ı0.1C �ı0 o.1//

P‚k1;n

n

C �ı;ı0 ;‡

log.jKnj _ n/3

n
:

By Assumption (4.25),
��sk1;n � s

��2 � c o.1/
P‚k1;n

n and by (4.22),

. log.jKnj _ n//3

n
� cRcs o.1/

P‚k1;n

n
:
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This gives (4.27). In addition, starting with the event where (6.31) holds and using
Proposition 4.1, we also have with probability larger than 1� �n�2,

���OsOkn
� s
���2 �

�
1C �

log n

	��Osk1;n � s
��2 � .1C ı0/

P‚k1;n

n

C .1C ı/ .1C o.1//
���OsOkn

� s
���2 C �ı;ı0 ;‡

log.jKnj _ n/3

n
:

Since
��Osk1;n � s

��2 ' P‚k1;n
n , this leads to

.�ı C �ı o.1//
��OsOk � s

��2 �

� .ı0 C �ı0 ;c o.1//
��Osk1;n � s

��2 C �ı;ı0 ;‡

log.jKnj _ n/3

n
:

This leads to (4.28) by (4.21).
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Appendix 1: Proofs for the Examples

Computation of the Constant � for the Three Examples

We have to show for each family fk gk2K (see (2.8) and (2.1)) that there exists a
constant � � 1 such that for all k 2 K

sup
x2X

j‚k.x/j � �n; and sup
.x;y/2X2

jk.x; y/j � �n :

Example 1 (Projection Kernels) First, notice that from Cauchy-Schwarz inequality
we have for all .x; y/ 2 X

2 jkS.x; y/j � p
�kS.x/�kS.y/ and by orthonormality, for

any .x; x0/ 2 X
2,

AkS.x; x
0/ D

X
.i;j/2I2S

'i.x/'j.x
0/
Z
X

'i.y/'j.y/d�.y/ D kS.x; x
0/ :

In particular, for any x 2 X,‚kS.x/ D �kS.x/. Hence, projection kernels satisfy (2.1)
for � D 1 _ n�1 supS2S k�kS k1. We conclude by writing

k�kSk1 D sup
x2X

X
i2IS

'i.x/
2 D sup

.ai/i2I s.t.P
i2IS

a2i D1

sup
x2X

0
@X

i2IS

ai'i.x/

1
A
2

:
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For f 2 S we have k f k2 D P
i2Ih f ; 'ii2. Hence with ai D h f ; 'ii,

k�kS k1 D sup
f 2S;k f kD1

k f k21 :

Example 2 (Approximation Kernels) First, sup.x;y/2X2 jkK;h.x; y/j � kKk1 =h: Sec-
ond, since K 2 L1

‚kK;h.x/ D 1

h2

Z
X

K
� x � y

h

�2
dy D kKk2

h
� kKk1 kKk1

h
:

Now K 2 L1 and
R

K.u/du D 1 implies kKk1 � 1, hence (2.1) holds with � D 1 if
one assumes that h � kKk1kKk1=n.

Example 3 (Weighted Projection Kernels) For all x 2 X

‚kw.x/ D
pX

i;jD1
wi'i.x/wj'j.x/

Z
X

'i.y/'j.y/d�.y/ D
pX

iD1
w2i 'i.x/

2 :

From Cauchy-Schwarz inequality, for any .x; y/ 2 X
2,

jkw.x; y/j � p
‚kw.x/‚kw.y/ :

We thus find that kw verifies (2.1) with � � 1_ n�1 supw2W k‚kwk1. Since wi � 1

we find the announced result which is independent of W .

Proof of Proposition 3.2

Since kskS k2 � ksk2 � ksk1, we find that (3.11) only requires ‡ � �.1C ksk1/.
Assumption (3.12) holds: this follows from ‡ � � and

E

�kS.X/

2
� � k�kS k1 P�kS � �nP‚kS :

Now for proving Assumption (3.14), we write

E


AkS.X;Y/
2
� D E


kS.X;Y/

2
� D

Z
X

E


kS.X; x/
2
�

s.x/d�.x/

� ksk1
X

.i;j/2I2S
E

'i.X/'j.X/

� Z
X

'i.x/'j.x/d�.x/

D ksk1 P‚kS � ‡P‚kS :
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In the same way, Assumption (3.15) follows from ksk1 � � ‡ . Suppose (3.19)
holds with S D S C S0 so that the basis .'i/i2I of S0 is included in the one .'i/i2J
of S. Since k�kS k1 � �n we have

skS.x/� skS0

.x/ D
X

j2J nI

�
P'j

�
'j.x/ �

s X
j2J nI

�
P'j

�2 X
j2J nI

'j.x/2

� ��skS � skS0

�� k�kS k1=21 � ��skS � skS0

��p
�n :

Hence, (3.13) holds in this case. Assuming (3.20) implies that (3.13) holds since

��skS � skS0

��1 � kskSk1 C ��skS0

��1 � ‡ :

Finally for (3.16), for any a 2 L2,

Z
X

a.x/kS.x; y/d�.x/ D
X
i2I

ha; 'ii'i.y/ D …S.a/ :

is the orthogonal projection of a onto S. Therefore, BkS is the unit ball in S for the
L2-norm and, for any t 2 BkS , E


t.X/2

� � ksk1 ktk2 � ksk1 :

Proof of Proposition 3.3

First, since kKk1 � 1

��skK;h

��2 D
Z
X

�Z
X

s.y/
1

h
K
� x � y

h

�
dy

	2
dx

D
Z
X

�Z
X

s.x C hz/K . z / dz

	2
dx

� kKk21
Z
X

�Z
X

s.x C hz/
jK . z /j
kKk1

dz

	2
dx

� kKk21
Z
X2

s.x C hz/2
jK . z /j
kKk1

dxdz � ksk1kKk21 :

Hence, Assumption (3.11) holds if ‡ � 1C ksk1 kKk21. Now, we have

P
�
�2kK;h

�
D K.0/2

h2
D P‚kK;h

K.0/2

kKk2 h
� nP‚kK;h

K.0/2

kKk2 kKk1 kKk1
;
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so it is sufficient to have‡ � jK.0/j= kKk2 (since jK.0/j � kKk1) to ensure (3.12).
Moreover, for any h 2 H and any x 2 X,

skK;h.x/ D
Z
X

s.y/
1

h
K
� x � y

h

�
dy D

Z
X

s.x C zh/K.z/dz � ksk1 kKk1 :

Therefore, Assumption (3.13) holds for ‡ � 2 ksk1 kKk1. Then on one hand

ˇ̌
AkK;h.x; y/

ˇ̌ � 1

h2

Z
X

ˇ̌
ˇK
� x � z

h

�
K
� y � z

h

�ˇ̌
ˇ dz

� 1

h

Z
X

ˇ̌
ˇK
� x � y

h
� u

�
K .u /

ˇ̌
ˇ du

� kKk2
h

^ kKk1 kKk1
h

� P‚kK;h ^ n :

And on the other hand

E
 ˇ̌

AkK;h.X; x/
ˇ̌ � � 1

h

Z
X2

ˇ̌
ˇK
� x � y

h
� u

�
K .u /

ˇ̌
ˇ du s.y/dy

D
Z
X2

jK .v /K .u /j s.x C h.v � u//dudv � ksk1 kKk21 :

Therefore,

sup
x2X

E


AkK;h.X; x/
2
� � sup

.x;y/2X2
ˇ̌
AkK;h.x; y/

ˇ̌
sup
x2X

E
 ˇ̌

AkK;h.X; x/
ˇ̌ �

� �
P‚kK;h ^ n

� ksk1 kKk21 ;

and E


AkK;h.X;Y/
2
� � supx2X E


AkK;h.X; x/

2
� � ksk1kKk21P‚kK;h : Hence

Assumption (3.14) and (3.15) hold when ‡ � ksk1 kKk21. Finally let us prove
that Assumption (3.16) is satisfied. Let t 2 BkK;h and a 2 L2 be such that kak D 1

and t.y/ D R
X

a.x/ 1h K
� x�y

h

�
dx for all y 2 X. Then the following follows from

Cauchy-Schwarz inequality

t.y/ � 1

h

sZ
X

a.x/2dx

sZ
X

K
� x � y

h

�2
dx � kKkp

h
:

Thus for any t 2 BkK;h

Pt2 � ktk1 hjtj ; si � kKkp
h

ksk D ksk
q

P‚kK;h �
q
‡P‚kK;h :
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We conclude that all the assumptions hold if

‡ �
�

jK.0/j= kKk2
�

_
�
1C 2 ksk1 kKk21

�
:

Proof of Proposition 3.4

Let us define for convenienceˆ.x/ WD Pp
iD1 'i.x/2, so � � 1_n�1 kˆk1. Then we

have for these kernels: ˆ.x/ � �kw.x/ � ‚kw.x/ for all x 2 X. Moreover, denoting
by …s the orthogonal projection of s onto the linear span of .'i/iD1;:::;p,

kskwk2 D
pX

iD1
w2i .P'i /

2 � k…sk2 � ksk2 � ksk1 :

Assumption (3.11) holds for this family if ‡ � �.1 C ksk1/. We prove in what
follows that all the remaining assumptions are valid using only (2.1) and (3.11).

First, it follows from Cauchy-Schwarz inequality that, for any x 2 X, �kw.x/
2 �

ˆ.x/‚kw.x/. Assumption (3.12) is then automatically satisfied from the definition
of �

E

�kw.X/

2
� � kˆk1 P‚kw � �nP‚kw :

Now let w and w0 be any two vectors in Œ0; 1�p, we have

skw D
pX

iD1
wi.P'i/'i; skw � skw0

D
pX

iD1
.wi � w0

i/ .P'i / 'i :

Hence
��skw � skw0

��2 D Pp
iD1.wi � w0

i/
2 .P'i /

2 and, by Cauchy-Schwarz inequality,
for any x 2 X,

ˇ̌
skw.x/� skw0

.x/
ˇ̌ � ��skw � skw0

��pˆ.x/ � ��skw � skw0

��p
�n :

Assumption (3.13) follows using (3.11). Concerning Assumptions (3.14) and (3.15),
let us first notice that by orthonormality, for any .x; x0/ 2 X

2,

Akw.x; x
0/ D

pX
iD1

w2i 'i.x/'i.x
0/ :
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Therefore, Assumption (3.15) holds since

E


Akw.X; x/
2
� D

Z
X

 
pX

iD1
w2i 'i.y/'i.x/

!2
s.y/d�.y/

� ksk1
X

1�i;j�p

w2i w2j 'i.x/'j.x/
Z
X

'i.y/'j.y/d�.y/

D ksk1
pX

iD1
w4i 'i.x/

2 � ksk1ˆ.x/ � ksk1 �n :

Assumption (3.14) also holds from similar computations:

E


Akw.X;Y/
2
� D

Z
X

E

2
4
 

pX
iD1

w2i 'i.X/'i.x/

!23
5 s.x/d�.x/

� ksk1
X

1�i;j�p

w2i w2j E

'i.X/'j.X/

� Z
X

'i.x/'j.x/d�.x/

� ksk1 P‚kw :

We finish with the proof of (3.16). Let us prove that Bkw D Ekw , where

Ekw D
(

t D
pX

iD1
witi'i; s.t.

pX
iD1

t2i � 1

)
:

First, notice that any t 2 Bkw can be written

Z
X

a.x/kw.x; y/d�.x/ D
pX

iD1
wiha; 'ii'i.y/ :

Then, consider some t 2 Ekw . By definition, there exists a collection .ti/iD1;:::;p such
that t D Pp

iD1 witi'i, and
Pp

iD1 t2i � 1. If a D Pp
iD1 ti'i, kak2 D Pp

iD1 t2i � 1 and
ha; 'ii D ti, hence t 2 Bkw . Conversely, for t 2 Bkw , there exists some function a 2
L2 such that kak2 � 1, and t D Pp

iD1 wiha; 'ii'i. Since .'i/iD1;:::;p is an orthonormal
system, one can take a D Pp

iD1ha; 'ii'i. With ti D ha; 'ii, we find kak2 D Pp
iD1 t2i

and t 2 Ekw . For any t 2 Bkw D Ekw , ktk2 D Pp
iD1 w2i t2i � Pp

iD1 t2i � 1. Hence
Pt2 � ksk1 ktk2 � ksk1 :
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Appendix 2: Concentration of the Residual Terms

The following proposition gathers the concentration bounds of the remaining terms
appearing in (6.30).

Proposition B.1 Let fk gk2K denote a finite collection of kernels satisfying (2.1)
and suppose that Assumptions (3.11)–(3.13) hold. Then

8� 2 .0; 1/; 2
P.sOk � sk/

n
� �

��s � sOk
��2 C � ks � skk2 C 2‡

�n
: (6.32)

For any x � 1, with probability larger than 1 � 2 jKj2 e�x, for any .k; k0/ 2 K2, for
any � 2 .0; 1/,

j2.Pn � P/.sk � sk0/j � �
�

ks � sk0k2 C ks � skk2
�

C �‡x2

�n
: (6.33)

For any x � 1, with probability larger than 1� 2 jKj e�x, for any k 2 K,

8� 2 .0; 1/; j2.Pn � P/�kj � �P‚k C �‡x

�
: (6.34)

For any x � 1, with probability larger than 1� 5:4 jKj e�x, for any k 2 K,

8� 2 .0; 1/; 2 jUkj
n2

� �
P‚k

n
C �‡x2

�n
: (6.35)

Proof First for (6.32), notice that, by (3.13), for any � 2 .0; 1/

2
P.sOk � sk/

n
� 2

��sOk � sk

��1
n

� 2

n

�
‡ _

�
�

4
n
��sk � sOk

��2 C ‡

�

		

� �

2

��sk � sOk
��2 C 2‡

�n
� �

��s � sOk
��2 C � ks � skk2 C 2‡

�n
:

Then, by Proposition 2.1, with probability larger than 1 � jKj2 e�x,

for any .k; k0/ 2 K2; .Pn � P/.sk � sk0/ �
s
2P .sk � sk0 /2 x

n
C ksk � sk0k1 x

3n
:

Since by (3.11) P . sk � sk0 /2 � ksk1 ksk � sk0k2 � ‡ ksk � sk0k2 ;

s
2P .sk � sk0 /2 x

n
� �

4
ksk � sk0k2 C 2‡x

�n
:
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Moreover, by (3.13) ksk�sk0k
1

x

3n � �
4

ksk � sk0k2 C �‡x2

�n : Hence, for x � 1, with

probability larger than 1 � jKj2 e�x

.Pn � P/.sk � sk0/ � �

2
ksk � sk0k2 C �‡x2

�n

� �
�

ks � sk0k2 C ks � skk2
�

C �‡x2

�n
;

which gives (6.33). Now, using again Proposition 2.1, with probability larger than
1 � jKj e�x, for any k 2 K,

.Pn � P/�k �
s
2P .�k /

2 x

n
C k�kk1 x

3n
:

By (2.1) and (3.11), for any k 2 K, k�kk1 � sup.x;y/2X2 jk.x; y/j � �n � ‡n :

Concerning (6.34), we get by (3.12), P�2k � ‡nP‚k, hence, for any x � 1 we have
with probability larger than 1 � jKj e�x

.Pn � P/�k � �P‚k C
�
1

3
C 1

2�

	
‡x :

For (6.35), we apply Proposition 2.2 to obtain with probability larger than 1 �
2:7 jKj e�x, for any k 2 K,

Uk

n2
� �

n2
�

C
p

x C Dx C Bx3=2 C Ax2
�
;

where A;B;C;D are defined accordingly to Proposition 2.2. Let us evaluate all these
terms. First, A � 4 sup.x;y/2X2 jk.x; y/j � 4‡n by (2.1) and (3.11). Next, C2 �
�n2E


k.X;Y/2

� � �n2 ksk1 P‚k � �n2‡P‚k :

Using (2.1), we find B2 � 4n supx2X
R

k.x; y/2s.y/d�.y/ � 4n ksk1 � :

By (3.11), we consequently have B2 � 4‡n. Finally, using Cauchy-Schwarz
inequality and proceeding as for C2,

E

2
4 n�1X

iD1

nX
jDiC1

ai.Xi/bj.Xj/k.Xi;Xj/

3
5 � n

p
E Œk.X;Y/2 � � n

p
‡P‚k :

Hence, D � n
p
‡P‚k which gives (6.35).
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